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Summary 

Listeria monocytogenes is a ubiquitous food pathogen responsible for the often-fatal infection, 

listeriosis. Foods that act as vectors of L. monocytogenes include meat products, seafood and fish 

products, dairy products, and ready-to-eat (RTE) foods. South Africa recently experienced the 

largest ever listeriosis outbreak during 2017-18, and despite this, information on 

L. monocytogenes is still lacking. Internationally, there is a high incidence of L. monocytogenes

resistance towards antibiotics currently used as a treatment for listeriosis. However, in South 

Africa there is little information available on the resistance patterns of L. monocytogenes to these 

antibiotics. Additionally, due to the difficulty in controlling L. monocytogenes in the food 

processing environment, new methods such as bacteriophage treatment are being investigated 

to reduce L. monocytogenes numbers in these environments. Worldwide, studies have 

demonstrated the efficacy of bacteriophages against L. monocytogenes, but in South Africa, this 

technology is still unfamiliar and untested. Seeing as South Africa has a high burden of serious 

diseases, such as tuberculosis and HIV/AIDS, which often amplify the impacts of listeriosis, data 

on the efficacy of phage treatment, as well as currently used antibiotics, against L. monocytogenes, 

is greatly needed.  

Using L. monocytogenes isolates from various origins (Clinical, Environmental, Raw meats, Raw 

seafood, and RTE) in the Western Cape, South Africa, the first objective was to classify 

L. monocytogenes isolates into lineage groups by using a recently developed PCR-RFLP method

(based on SNPs within the hlyA gene). The results showed an overrepresentation of Lineage I in 

Clinical environments and Raw seafood, while in the Environmental, Raw meats, and RTE 

categories, Lineages I and II were somewhat equally distributed. The prevalence of a high number 

of Lineage I isolates in categories other than Clinical contrasts with previous evidence that 

Lineage I is mostly associated with human listeriosis, while Lineage II is mostly associated with 

foods.  

The second objective was to determine the susceptibility of L. monocytogenes isolates to a 

commercial bacteriophage (ListexTM P100), using spot tests. Additionally, the lineage group data 

was used to determine whether or not lineage classifications influenced bacteriophage 

susceptibility. The L. monocytogenes isolates from the Clinical, Environmental, Raw meats, and 

Raw Seafood categories were significantly susceptible to phage activity. However, a large fraction 

of isolates in the RTE category were tolerant to the phage, which disagrees with the findings of 

others. Additionally, both lineage groups were significantly susceptible to phage activity when 

considering all categories combined and lineage grouping did not significantly influence phage 

susceptibility. 
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The final objective was to determine the antibiotic resistance of L. monocytogenes isolates to five 

antibiotics, namely ampicillin, chloramphenicol, erythromycin, gentamicin, and tetracycline, 

using the disc diffusion method (EUCAST). The results indicated that all isolates were significantly 

susceptible to ampicillin, and many isolates were resistant to chloramphenicol, erythromycin, 

and tetracycline. Clinical and Raw seafood isolates were significantly susceptible to all antibiotics, 

while Raw meats had the highest number of resistant strains. 

Stellenbosch University https://scholar.sun.ac.za



v 

 

Opsomming 

Listeria monocytogenes is 'n alomteenwoordige voedselpatogeen wat verantwoordelik is vir die 

dikwels noodlottige infeksie, listeriose. Voedselsoorte wat dien as vektore van L. monocytogenes 

sluit in vleisprodukte, seekos en visprodukte, suiwelprodukte, en gereed-om-te eet (RTE) 

voedsel. Suid-Afrika het onlangs die grootste listeriose-uitbraak gedurende 2017-18 ervaar, en 

ten spyte hiervan, ontbreek inligting oor L. monocytogenes nogsteeds in Suid-Afrika. 

Internasionale studies het hoë weerstandigheid gerapporteer teen antibiotika wat tans gebruik 

word as 'n behandeling vir listeriose. In Suid-Afrika is daar egter min inligting beskikbaar oor die 

weerstandigheid van L. monocytogenes aan hierdie antibiotika. Daarbenewens, as gevolg van die 

probleme in die beheer van L. monocytogenes in die voedselverwerkings-omgewing 

(voedselfabrieke), word nuwe metodes soos bakteriofaag-behandeling ondersoek om die 

teenwoordigheid van L. monocytogenes in hierdie omgewings te verminder. Wêreldwyd het 

studies die doeltreffendheid van bakteriofage teen L. monocytogenes gedemonstreer, maar in 

Suid-Afrika is hierdie tegnologie steeds onbekend en ongetoets. Aangesien Suid-Afrika 'n hoë las 

het van ernstige siektes soos tuberkulose en MIV/VIGS, wat dikwels die impak van listeriose 

vererger, is data oor die doeltreffendheid van bakteriofage, asook antibiotikum weerstandigheid, 

baie nodig. 

Die eerste doel was om L. monocytogenes isolate van verskeie bronne (Kliniese, Omgewing, Rou 

vleis, Rou seekos, en RTE) in die Wes-Kaap, Suid-Afrika, te klassifiseer in een van drie linie groepe, 

deur die gebruik van 'n onlangs-ontwikkelde metode vir PCR-RFLP (gebaseer op enkel-

nukleotied polimorfisme binne die hlyA-geen). Die resultate het getoon dat daar ‘n 

oorverteenwoordigheid van Linie I was in isolate komende van listeriosis pasiënte (Klinies) en 

rou seekos, terwyl Linie I en Linie II iewat ewe versprei was in isolate komende van die 

Omgewing, Rou vleis, en RTE. Die voorkoms van 'n hoë aantal Linie I isolate in kategorieë anders 

as Kliniese, is in teenstelling met baie ander studies wat Linie I gevind het meestal van listeriose 

gevalle (d.w.s. kliniese), terwyl Linie II meer dikwels met voedsel geassosieer word. 

Die tweede doel was om die vatbaarheid van L. monocytogenes isolate te bepaal vir 'n 

kommersiële bakteriofaag (ListexTM P100), deur middel van kol-toetse. Verder is die linie 

groepering gebruik om te bepaal of vatbaarheid vir die bakteriofaag daardeur beinvloed word. 

Die L. monocytogenes isolate van die Kliniese, Omgewings-, Rou vleis, en Rou seekos-kategorieë 

was aansienlik vatbaar vir die bakteriofaag. 'n Groot fraksie van isolate in die RTE-kategorie was 

egter onvatbaar vir die bakteriofaag, in teenstelling met ander se bevindings. Daarbenewens was 

beide linie groepe beduidend vatbaar vir bakteriofaag aktiwiteit by die oorweging van alle 

kategorieë gekombineer en linie groepering het nie beduidend hierdie vatbaarheid beïnvloed nie. 
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Die finale doel was om die antibiotikum-weerstand van L. monocytogenes te bepaal teen vyf 

antibiotika, naamlik ampisillien, chloramphenicol, eritromisien, gentamisien en tetrasikliene, met 

behulp van die skyfdiffusie-metode (EUCAST). Die resultate het aangedui dat alle isolate 

beduidend vatbaar was vir ampisillien, en baie isolate was weerstandig teen chloramphenicol, 

eritromisien en tetrasikliene. Kliniese en Rou seekos-isolate was aansienlik vatbaar vir alle 

antibiotika, terwyl die Rou vleis kategorie die meeste weerstandige isolate bevat het. 
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Chapter 1  

General Introduction 

The global human population is ever expanding and shows no sign of abating in the near future. 

With it comes an increased need for food, and consequently an increase in food processing. 

Nowadays, convenience foods are increasingly being mass-produced, and food that require little 

preparation at home is progressively being favoured over more traditionally prepared meals that 

require long cooking times (Forsythe, 2010). As a result of increasing human dependence on 

different food producers to supply food, there has been a steady increase in foodborne related 

illnesses (Swaminathan & Gerner-Smidt, 2007; Forsythe, 2010). These illnesses can be caused by 

viruses (e.g. noroviruses, hepatitis A virus), parasites (e.g. Toxoplasma gondii), or bacteria (e.g. 

Salmonella, Bacillus cereus etc.), and their presence in food is usually a result of undercooking, 

cross contamination, or inappropriate storage temperatures (WHO, 2019). There are 600 million 

recorded cases of foodborne illnesses annually and about 420 000 people die as a result of eating 

food contaminated with pathogens (WHO, 2019). Thus, food pathogens represent one of the 

biggest challenges to food and medical industries alike. 

One of the most important food pathogens is Listeria monocytogenes, a bacterium 

responsible for the serious, and often fatal, foodborne infection listeriosis (Forsythe, 2010). It is 

ubiquitous in nature, occurring in soil, water, and fertilizer (White et al., 2002; de Noordhout et 

al., 2014). It is quite resilient, being able to withstand high levels of nitrite and salt, and can grow 

at very low temperatures (0–4°C) (Forsythe, 2010; Lamont &  Sobel, 2011). This means that 

L. monocytogenes can grow, and even thrive, in the refrigerator where other pathogens are often 

unable to grow (Montville et al., 2012; de Noordhout et al., 2014). Because of the bacterium’s 

characteristics, foods often implicated as a risk for carrying L. monocytogenes include ready-to-

eat meat products (such as deli meat and sausages), cold-smoked fish, dairy products (especially 

soft cheeses), and fresh produce (Hof, 2004; Manfreda et al., 2005; Yücel et al., 2005; Meloni et al., 

2009; Forsythe, 2010; Martins et al., 2011; Montville et al., 2012; Fallah et al., 2013; Wang et al., 

2013; Ziegler et al., 2019). The associated listeriosis risk for these foods arises because there is 

often no additional cooking step to kill bacteria before the food is consumed (Guenther et al., 

2009; Vasconcelos et al., 2016; Henriques et al., 2017). In the past few years, a steady increase in 

the presence of L. monocytogenes in various food types have led to a number of listeriosis 

outbreaks around the world (Aureli et al., 2000; Buchanan et al., 2017; Denise et al., 2017; 

Gelbíčová et al., 2018), and with a mortality rate as high as 30%, this increased presence of 

L. monocytogenes in food is a rising and important public health concern. 
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There are two forms of listeriosis, namely non-invasive and invasive. The non-invasive 

form affects healthy-individuals and usually only leads to febrile gastroenteritis, which is self-

limiting (Montero et al., 2015). Non-invasive listeriosis will generally occur only when very high 

doses of L. monocytogenes are consumed (>105 CFU/mL) (Farber & Peterkin, 1991; Vázquez-

boland et al., 2001a). The invasive form, however, manifests in immunocompromised individuals, 

where it can lead to serious illnesses such as septicaemia, meningitis, and encephalitis (NICD, 

2017a). Individuals that are particularly at risk are those with diseases such as cancer or 

HIV/AIDS (that weaken or compromise their immune system), babies or young children, the 

elderly, and pregnant women (Epstein et al., 1996; de Noordhout et al., 2014). Pregnant women 

specifically are 20 times more likely to be infected with L. monocytogenes, and while the women 

only experience mild symptoms, the infection is usually detrimental to the unborn babies and can 

lead to miscarriages (Lamont & Sobel, 2011). Tracing the source of a L. monocytogenes infection 

is often problematic, since the incubation period of the bacterium can be up to 90 days (Forsythe, 

2010). Thus, by the time a patient is eventually diagnosed, the causal agent (i.e. the food source) 

can no longer be determined. Countries that are plagued by a high burden of serious diseases 

such as HIV/AIDS and tuberculosis, as in the case of South Africa, are particularly at risk, since 

the immunocompromised individuals are up to 1 000 times more likely to contract listeriosis than 

healthy individuals (Allerberger & Wagner, 2010; Bester & Essack, 2012; Nyasulu et al., 2012; 

Moyane et al., 2013). Infection with L. monocytogenes is usually treated with either one or a 

combination of various antibiotics. Currently the antibiotic of choice is ampicillin (a type of 

penicillin), alone or in combination with an aminoglycoside such as gentamicin (Charpentier and 

Courvalin, 1999; Hof, 2004). While L. monocytogenes is susceptible to a range of antibiotics, it is 

increasingly becoming antibiotic resistant, which is of great concern (Alonso-Hernando et al., 

2012; Fallah et al., 2013; Carvalho et al., 2019). Antibiotic resistant L. monocytogenes strains can 

have a particularly detrimental impact on immunocompromised individuals, and it is therefore 

necessary to continuously monitor L. monocytogenes resistance. 

The food processing industry often exerts considerable effort to control L. monocytogenes, 

but it is generally accepted to be almost impossible to completely eradicate the bacterium from a 

processing facility (Todd & Notermans, 2011; Buchanan et al., 2017; Chen et al., 2017). Because 

of L. monocytogenes’ close association with the environment, it can easily enter food processing 

facilities via incoming raw material (Todd & Notermans, 2011; Buchanan et al., 2017). Once inside 

the food processing facility, the ability of L. monocytogenes to form biofilms then enables it to 

spread and persist within a facility even after cleaning and sanitation (Todd & Notermans, 2011; 

Buchanan et al., 2017; Chen et al., 2017). Moreover, several studies report increased resistance of 

L. monocytogenes towards sanitizers (Pan et al., 2006; Strydom & Witthuhn, 2015; Kovacevic et 

al., 2016). This has led food processors to explore alternative strategies to control 
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L. monocytogenes within the food processing environment. One of these strategies involves the 

use of bacteriophages (a type of virus) as an “environmentally-friendly” biocontrol to eradicate 

these bacteria. Bacteriophages are very specific in their hosts targets; hence they can infect and 

kill L. monocytogenes without having an effect on other bacterial species (Guenther et al., 2009; 

Moye et al., 2018).  Additionally, bacteriophages are also reported to be effective on biofilms (Soni 

& Nannapaneni, 2010a; Montañez-izquierdo et al., 2012; Rodríguez-Melcón et al., 2018), which is 

especially useful for food producers as there is always a risk of L. monocytogenes biofilm 

formation.  

South Africa has recently experienced the largest ever global outbreak of listeriosis during 

2017-18, which was traced back to a pork-meat processed product called polony (NICD, 2018a; 

Olanya et al., 2019; Smith et al., 2019b). More than 1 060 people were infected with 

L. monocytogenes and 216 died as a result (NICD, 2018b). Prior to the outbreak, listeriosis was a 

non-notifiable disease, i.e. health workers were not responsible for informing the authorities 

when dealing with cases of listeriosis (NICD, 2018c; WHO, 2018). Therefore, the same amount 

and quality of historic data that other countries (e.g. the United States) possess regarding 

listeriosis outbreaks and cases in general is not available in South Africa. Because South Africa 

does not have an active monitoring system for foodborne illnesses, the real impact of these 

infections may well be grossly underestimated. A better understanding of where the sources of 

L. monocytogenes are, and how the bacteria respond to antimicrobial treatments (e.g. 

bacteriophages or antibiotics), can help to improve control of the bacteria and could in turn 

potentially avoid another future listeriosis outbreak of such magnitude. 

By making use of L. monocytogenes strains isolated from various origins and types of food 

in the Western Cape, South Africa, this dissertation aimed to answer three main questions, which 

are: 1) what are the main classification patterns in terms of lineage grouping of L. 

monocytogenes?; 2) can bacteriophage treatment be used as an effective alternative to antibiotic 

use in a South African context?; and 3) are currently used antibiotics still effective in controlling 

L. monocytogenes strains in South Africa? In other words, the flow of the dissertation was 

essentially concerned with what is present (i.e. L. monocytogenes classification), how effective are 

current methods at dealing with what is present, and finally is there a viable new alternative to 

deal with what is present. A detailed explanation follows. 

The first objective was to classify L. monocytogenes into respective lineage groups by 

using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Three 

common lineage groups are available for L. monocytogenes to be assigned to, which in turn can be 

subdivided into a total of 12 serotypes. However, the majority of strains are usually assigned to 

Lineage I (serotypes 1/2b and 4b) and Lineage II (serotype 1/2a). Serotype 1/2a and 1/2b are 
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mostly isolated from food, while serotype 4b is characteristic of human listeriosis cases (Ward et 

al., 2004; Swaminathan & Gerner-Smidt, 2007; Orsi et al., 2010). Classifying L. monocytogenes 

from various origins in the Western Cape firstly sheds much needed light on lineage association 

patterns in South Africa, and secondly can be compared to patterns found elsewhere in the world.  

The second objective was to determine whether these L. monocytogenes isolates are 

susceptible to a commercial bacteriophage, and whether lineage grouping differentially affects 

phage activity. The use of bacteriophage control is still relatively new, and not much is yet known 

about possible acquired bacterial resistance towards these phages. The few studies that have 

been done so far (outside of South Africa), determined phages to be effective against L. 

monocytogenes with no reported resistance. However, in 2015, local researchers tested the 

efficacy of a commercial bacteriophage, and found that in contrast to other studies, a large 

majority of L. monocytogenes strains were resistant to the bacteriophage (Strydom, 2015). 

Therefore, this part of the study was concerned not only with expanding the current knowledge 

base for potential bacteriophage usage in a South African context (since there is a great lack of 

information regarding this), but also to determine whether the findings here replicate or 

contradict what has been observed elsewhere. In other words, the aim was to establish whether 

the L. monocytogenes isolates in this study exhibit the same tolerance towards the mentioned 

commercial bacteriophage or not. 

The third and final objective of this study was to assess the antibiotic susceptibility of 

L. monocytogenes isolates against five different antibiotics by using the disk diffusion method as 

recommended by the European Committee on Antimicrobial Susceptibility Testing (EUCAST, 

2012). Currently, there is a lack of information in South African literature on the possible 

antibiotic resistance of L. monocytogenes isolates from the food and clinical environment. This, 

together with the high levels of mortality associated with the recent outbreak and the fact that 

antibiotic-resistant strains of L. monocytogenes are generally on the rise, means that more in-

depth studies into the efficacy of antibiotics currently used against L. monocytogenes in South 

Africa is desperately needed, since the outcomes of such studies can guide the management of 

L. monocytogenes in both food processing and clinical environments, potentially stemming the 

increased tide of L. monocytogenes resistance and thereby safeguarding current antibiotic 

treatments for future generations.  

In conclusion, despite the significant effect that L. monocytogenes has on public 

health, very little research output has been generated on L. monocytogenes specific to the South 

African environment. Therefore, at the very least this study aimed to fill this gap by generating 

information on isolates from food, environmental, and clinical origin. 
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Chapter 2  

Literature Review 

2.1. Introduction 

The amount of food produced, processed, and distributed regionally and nationally increases 

annually, and with it so too does the need for the improved safety thereof (Forsythe, 2010). The 

potential therefore exists for the general public to get exposed to more pathogens every year as 

a result of this annual increase in food production, globalisation of the food chain, and changes in 

food processing methods (Swaminathan & Gerner-Smidt, 2007; Forsythe, 2010). However, 

consumers are continuously demanding that food be processed less and contain fewer additives, 

while simultaneously seeking an increasing variety of convenience foods and demanding longer 

shelf lives (Swaminathan & Gerner-Smidt, 2007; Montville et al., 2012). Moreover, consumers 

want to spend less time on food preparation, resulting in an ever-increasing variety and 

production of ready-to-eat (RTE) foods. Such increased production of RTE foods have led to the 

emergence of psychrotrophic pathogenic bacteria, such as Listeria monocytogenes (Muñoz et al., 

2012), that are able to survive and rapidly multiply in raw and processed foods (Forsythe, 2010).  

Listeria monocytogenes is a ubiquitous, Gram-positive, non-spore forming, motile 

bacterium responsible for the often fatal human disease listeriosis (Forsythe, 2010). Listeria 

monocytogenes is commonly associated with raw food products due to its presence in soil and 

water (White et al., 2002; de Noordhout et al., 2014) and tolerates a wide range of temperatures, 

being able to grow and multiply in the range of 0°C to 4°C, even though its optimum growth 

temperature is between 30°C and 37°C (Forsythe, 2010). It is thus very well adapted to 

refrigeration temperatures, which is in stark contrast to other pathogens that are mostly growth-

inhibited at such low temperatures (de Noordhout et al., 2014). Furthermore, L. monocytogenes 

has the ability to tolerate high salt concentrations (Lamont & Sobel, 2011) and is also resistant to 

levels of nitrite that inhibit the majority of other food pathogens (Forsythe, 2010). Spoilage 

bacteria cannot grow at refrigeration temperatures, which reduces microbial competition for 

L. monocytogenes, leading to its subsequent proliferation at such low temperatures (Montville et 

al., 2012). In food production facilities, L. monocytogenes can survive by forming biofilms, thereby 

creating a steady supply of strains that are able to contaminate food (Todd & Notermans, 2011; 

Chen et al., 2017). Foods that act as vectors of L. monocytogenes and which are also highly 

susceptible to contamination include meat products (especially deli meats), seafood and fish 

products, and pasteurized or raw milk products such as soft cheeses (Hof, 2004; Manfreda et al., 

2005; Yücel et al., 2005; Meloni et al., 2009; Forsythe, 2010; Martins et al., 2011; Montville et al., 
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2012; Fallah et al., 2013; Wang et al., 2013; Ziegler et al., 2019). Due to the lack of typical 

processing steps that reduce pathogens in RTE food, fresh fruit, and vegetables, these products 

can easily be contaminated with L. monocytogenes (Guenther et al., 2009; Vasconcelos et al., 2016; 

Henriques et al., 2017). Thus, overall L. monocytogenes can tolerate a wide range of conditions 

that are necessary for the preservation and storage of food. 

2.2. Growth and survival of Listeria monocytogenes  

Listeria monocytogenes is a facultative anaerobic bacteria and commonly occurs in agricultural 

and food processing environments (Epstein et al., 1996; Buchanan et al., 2017). Soils with higher 

moisture content, or soil in close proximity to bodies of water, are associated with a higher 

prevalence of L. monocytogenes. The bacteria occurs within the intestines of various mammals, 

birds, and even crustaceans (Epstein et al., 1996). As a result of its close association with animals 

and agricultural environments, food is considered to be the principal vehicle of contamination, 

with RTE foods being of particular significance, especially RTE foods which are kept at 

refrigeration temperatures for prolonged periods of time (Swaminathan & Gerner-Smidt, 2007; 

Buchanan et al., 2017; Leong et al., 2017). There are many ways in which L. monocytogenes can 

enter the food processing environment (Figure 2.1). Due to its ubiquitous presence in the 

agricultural environment, it can enter the food processing facility by means of raw material, 

movement of factory staff, improper hygiene practises, ineffective cleaning procedures, or even 

poor design of factory equipment (Todd & Notermans, 2011; Buchanan et al., 2017).  
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Figure 2.1 The various ways by which L. monocytogenes circulate in the environment and ultimately end 
up on the consumers plate: water sources, agricultural environments and associated livestock and/or fresh 
produce, and even employees and other humans associated with such food processing environments 
(NicAogáin & O’Byrne, 2016 used with permission). 

Studies have shown that food processing equipment can convey contamination to 

uncontaminated food products. Using a slicer as an example, L. monocytogenes can be transferred 

from the blade to the food product, whilst simultaneously persisting on the blade even after 

numerous slices are made, thus acting as a semi-continuous source of contamination 

(Chaitiemwong et al., 2014; Scollon et al., 2016; Wang & Ryser, 2016). The frequency of 

L. monocytogenes in the food processing environment is not necessarily correlated to its 

frequency in food products (Buchanan et al., 2017) and post-processing contamination is still 

thought to be the main cause of L. monocytogenes incidence (Jadhav et al., 2012; Ferreira et al., 

2014). The ability of many strains of L. monocytogenes to endure adverse conditions such as high 

salt concentration, and low pH-, and low oxygen levels, often lead such strains to proliferate in 

food products (Montville et al., 2012; Chen et al., 2017). Lower temperatures also decrease the 

bacterium’s metabolic rate and cause the cell membranes to become more rigid (NicAogáin & 

O’Byrne, 2016). This enables L. monocytogenes to better withstand salty environments, making 

cured meats a hospitable growth medium at such low temperatures (Montville et al., 2012). 

Furthermore, due to its ubiquitous nature, complete eradication of L. monocytogenes from the 

food processing environment is nearly impossible. Listeria monocytogenes is able to survive in 

the food processing environment even after years of sanitation control, and there could be several 

possible explanations for this phenomenon (Buchanan et al., 2017): strains can grow in small 

crevices which might be missed by disinfectants, leading to continuous re-introduction of the 
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strains into the sanitized environment (Todd and Notermans, 2011; Allen et al., 2016); persistent 

cells may be present; and the formation of biofilms and its protection of individual cells to 

sanitation (Buchanan et al., 2017). Biofilms are immobile communities; a combination of bacterial 

cells and a self-produced mixture of polysaccharides, proteins, and extracellular DNA (Olivares et 

al., 2013; Allen et al., 2016; Friera et al., 2017). Growth within a biofilm promotes interaction 

between cells and nutrients, possible harmful metabolites, and genetic material which may 

improve survival and growth (Buchanan et al., 2017). Biofilm formation is possible on various 

surfaces such as glass, stainless steel, and polystyrene (Bonsaglia et al., 2014). Several factors 

influence the extent of this biofilm formation, which include matrix composition, temperature, 

and even strain origin (Kadam et al., 2013). It is unlikely that pure L. monocytogenes biofilms 

occur in the food processing environment, but rather that L. monocytogenes cells form part of a 

multispecies biofilm (Ferreira et al., 2014). In the food processing environment, L. monocytogenes 

often coexists with L. innocua, and the presence of the latter species could be used as an indication 

that the environment is potentially contaminated with L. monocytogenes too (Costa et al., 2018). 

It is no surprise that in the last few decades there has been a steady increase in listeriosis 

outbreaks due to L. monocytogenes presence in foods (Aureli et al., 2000; Buchanan et al., 2017; 

Denise et al., 2017; Gelbíčová et al., 2018). In South Africa, listeriosis was non-notifiable prior to 

the 2017-18 outbreak. Thus, there are few records of listeriosis or the foods that could be 

implicated as a possible source prior to the SA 2017-18 outbreak. However, recent outbreaks in 

the USA (Figure 2.2) indicate that listeriosis outbreaks are mostly due to RTE food products. The 

South African listeriosis outbreak of 2017-18 was traced back to a local product called polony 

(Olanya et al., 2019; Smith et al., 2019b). Polony is a processed deli meat product similar to 

bologna sausage. 
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Figure 2.2 Multistate listeriosis outbreaks associated with various food products in the United States from 
2011 to 2019 (data obtained from CDC, 2019). 

A proactive approach needs to be taken in order to control L. monocytogenes and to prevent 

contamination of food (Buchanan et al., 2017). The steps may include risk assessment, effective 

cleaning and sanitation procedures, control of personnel movement in and out of areas where 

food is prepared, and improved hygienic design of the processing facility (Buchanan et al., 2017). 

2.3. Listeria monocytogenes and its effect on humans 

Listeriosis is a disease caused by infection with L. monocytogenes. It can lead to serious 

life-threatening conditions such as meningitis, encephalitis, and septicaemia. There are two forms 

in which listeriosis can occur, namely as non-invasive febrile gastroenteritis, which is non-lethal, 

or as a more invasive form, which has a mortality rate of 20 – 30% (Montero et al., 2015). When 

people are infected with L. monocytogenes, the incubation period (i.e. the time until the physical 

manifestation of symptoms) can be up to 90 days, which makes it exceedingly difficult to establish 

the origin of the infection once a positive diagnosis has been made (Forsythe, 2010). Moreover, it 

is also believed that up to 10% of the human population are intestinal carriers of 

L. monocytogenes without ill effect (Grif et al., 2003; Forsythe, 2010; Buchanan et al., 2017), which 

further obscures the accurate identification of the bacterium’s origin. In seemingly healthy 

individuals, an onset of febrile gastroenteritis may occur without warning, which is typically self-
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limiting (de Noordhout et al., 2014), but such healthy individuals will only be affected after a large 

number of cells have been ingested (Dalton et al., 1997; Aureli et al., 2000; Montero et al., 2015). 

In a one-year study focussing on the faecal carriage of L. monocytogenes in healthy individuals, 

the bacterium was isolated from volunteers even though none of them presented with febrile 

gastroenteritis symptoms (Grif et al., 2003).  

Listeriosis poses a much greater risk in individuals with weak cell-mediated immunities 

or compromised immune systems compared to healthy individuals (Forsythe, 2010). In 

immunocompromised individuals, listeriosis may lead to meningitis or septicaemia (NICD, 

2017a). Jeopardized individuals include the elderly, pregnant women, unborn babies, neonates, 

and those with a compromised immunity as a result of illness, such as HIV/AIDS or cancer 

(Epstein et al., 1996; de Noordhout et al., 2014). In the outbreak that occurred in South Africa 

during 2017-18, it was confirmed that 78% of the adults diagnosed with listeriosis were HIV 

positive (NICD, 2017a). In fact, listeriosis is 100 – 1 000 times more frequently observed in HIV 

patients than in the other high-risk groups with comparable age (Allerberger & Wagner, 2010). 

Thus, the probability of individuals with compromised immune systems contracting listeriosis 

can be magnified depending on the reason for such weakened immune systems, and is not just 

dependent on whether individuals are immunocompromised per se. 

Listeriosis is difficult to diagnose and the symptoms are often non-specific (Lamont and 

Sobel, 2011). In other words, symptoms vary according to which groups infected individuals 

belong to. For instance, unlike most other foodborne illnesses which mainly cause 

gastrointestinal symptoms, pregnant women with listeriosis might present with only mild flu-like 

symptoms (Lamont & Sobel, 2011), and can thus easily be misdiagnosed. In fact, a national survey 

conducted in the USA showed that only 18% of the pregnant women knew about listeriosis and 

less than 30% were aware that it was preventable by avoiding certain foods (Lamont & Sobel, 

2011). Non-perinatal cases of listeriosis are often concurrent with diseases such as cancer and 

diabetes, and its presence is therefore masked by the magnitude and symptoms of these diseases, 

thus leading to non-diagnosis and subsequent non-reporting of listeriosis itself (de Noordhout et 

al., 2014). Listerial meningitis symptoms presents similarly to acute bacterial meningitis and on 

occasion the central nervous system can be infected, presenting as encephalitis or 

rhombencephalitis (Allerberger & Wagner, 2010). 

2.4. Genetic diversity of Listeria monocytogenes  

Listeria monocytogenes can be divided into at least 12 serotypes (1/2a, 1/2b, 1/2c, 3a, 3b, 3c, 4a, 

4b, 4c, 4d, 4e, and 7) based on variation in the somatic (O) and flagellar (H) antigens (Seeliger & 

Langer, 1989; Rasmussen et al., 1995; Borucki & Call, 2003; Doumith et al., 2004; Liu et al., 2006; 
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Hyden et al., 2016). Although recent literature suggests there might be more that 12 serotypes, 

there does not yet seem to be complete agreement on this ( Liu, 2006; Chen et al., 2014; Chen et 

al., 2016) and thus only the well-known and established 12 serotypes are regarded here. Each 

serotype of L. monocytogenes has a unique wall teichoic acid (WTA). These distinctive WTA's are 

responsible for antigenic properties, making it possible to serotype L. monocytogenes (Shen et al., 

2017). There are three more common lineage groups identified for L. monocytogenes, namely 

Lineage I (serotypes 1/2b, 3b, 3c, and 4b), Lineage II (serotypes 1/2a, 1/2c, and 3a), and Lineage 

III (4a and 4c) (Figure 2.3). A fourth lineage group, which was previously thought to be a subgroup 

of Lineage III (IIIB), was recently reclassified as Lineage IV (Ward et al., 2008; Orsi et al., 2010; 

Lomonaco et al., 2015). However, isolates from this lineage are mostly isolated from ruminants, 

and are thus not associated with human listeriosis cases (Gray et al., 2004; Sauders et al., 2004; 

Orsi et al., 2010).  

 

Figure 2.3 Association of Listeria monocytogenes lineage groups (and serotypes) with different ecological 
categories (word size represent the proportion of lineage groups obtained from each category) 
(information from Orsi et al., 2010). 

The most notable serotypes are 1/2b and 4b (Lineage I), which are most commonly associated 

with outbreaks of human listeriosis, and 1/2a and 1/2c (Lineage II), which are overrepresented 

among food isolates (Ward et al., 2004; Swaminathan & Gerner-Smidt, 2007; Orsi et al., 2010). 

Together they account for more than 95% of implicated foods and human listeriosis cases (Jadhav 

et al., 2012; Hyden et al., 2016).  

It is suggested that the lineage groups of L. monocytogenes differ in terms of their 

pathogenicity and host specificity (Ward et al., 2004). Differences in the prevalence of certain 

lineage groups in specific environments show that frequency of exposure to isolates from Lineage 

I does not necessarily correlate with the number of human listeriosis cases (Orsi et al., 2010). This 

is due to the low occurrence of Lineage I serotypes in foods, even though such serotypes are 
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responsible for most listeriosis cases. Instead, it is suggested that serotypes from Lineage I have 

increased pathogenicity when compared to those of Lineage II (Orsi et al., 2010). A considerable 

number of L. monocytogenes strains isolated from foods have mutations that lead to premature 

stop codons in their inlA gene, leading to decreased virulence. This truncated and less virulent 

gene is especially common among isolates from Lineage II, specifically 1/2a and 1/2c serotypes 

(Nightingale et al., 2008). This could offer an explanation as to why Lineage II isolates are not 

often associated with human listeriosis cases (Nightingale et al., 2008). However, 

L. monocytogenes isolates display heterogeneity in virulence, so there is no clear association 

between virulence potential and strain origin (Montero et al., 2015). It is, however, a possibility 

that variations in the structure of the virulence-associated genes can have an effect on the 

pathogenicity of the bacterium (Vines et al., 1992). This idea is supported by epidemiological data 

that point to differences in the association of Lineages I and II with certain environments (Vines 

et al., 1992). For example, the three lineages adapt differently to environmental stresses often 

encountered in the food processing environment (e.g. temperature fluctuations) which could 

explain why Lineage II is more frequently isolated from food products (Ward et al., 2004; Orsi et 

al., 2010). In other words, it is likely that Lineage II is more adapted to the environmental 

conditions found in food processing environments.  

Isolates from Lineage III are seldom associated with human listeriosis cases. Researchers 

suggest that these isolates (e.g. 4a and 4c) are not virulent to humans and that their hosts are non-

primate mammals (Wiedmann et al., 1997; Jeffers et al., 2001). Therefore, because of the 

infrequency of Lineage III isolates in foods (about 2%), there is a reduced chance of human 

exposure and subsequent infection (Ward et al., 2004). It is also suggested that Lineage III is not 

well adapted to thermal inactivation processes (such as those encountered in a food production 

facility), making it more prevalent in animal production facilities (farms etc.) than in food 

manufacturing settings (Ward et al., 2004). 

2.5. Detection and subtyping of Listeria monocytogenes  

Due to the high mortality rate associated with invasive listeriosis, it is essential that 

L. monocytogenes (from food origin) is detected and subtyped as early as possible, in order to 

reduce, or preferably, to prevent outbreaks. Various methods are used for the detection and 

subtyping of L. monocytogenes, each with its own advantages and disadvantages. In recent times 

researchers have started moving away from conventional methods which rely only on phenotypic 

characteristics, and are opting for genotypic methods which are more consistent and sensitive 

(Jadhav et al., 2012). The incubation period for listeriosis can exceed 30 days, which means that 
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it is necessary to develop molecular fingerprinting techniques that can be used to rapidly detect 

an outbreak where it could otherwise have been regarded as a sporadic case (Fox et al., 2017). 

Molecular fingerprinting techniques, such as restriction fragment length polymorphism 

(RFLP), pulsed-field gel electrophoresis (PFGE), and ribotyping, are becoming increasingly 

popular due to their ability to identify several strains of subtypes within a bacterial species 

(Gendel, 2004). This differentiation is crucial when investigating epidemiological outbreaks and 

is valuable for understanding the problems in the food industry caused by L. monocytogenes 

(Gendel, 2004; Jadhav et al., 2012). With these methods one can recognize clusters that warrant 

further investigation. So although epidemiology is still necessary to establish a source for an 

outbreak, molecular subtyping techniques are superior for guiding studies in the right direction 

(Jackson et al., 2016). 

With conventional polymerase chain reaction (PCR), L. monocytogenes is detected by 

targeting a choice of genes including, but not limited to, hlyA, internalin A (inlA), internalin B 

(inlB), and invasion associated protein iap (Jadhav et al., 2012). It should be noted that since the 

technique analyses DNA, it cannot distinguish between living or dead organisms. When a negative 

signal is encountered, it is usually either due to the absence of the target DNA or the presence of 

inhibitory compounds used in enrichment broths (Jadhav et al., 2012). Kaclíková et al. (2002) 

developed a detection method which takes only three days, and is faster than conventional 

methods, which usually take seven to ten days. It firstly makes use of a 48 h enrichment step, 

similar to that specified in EN ISO 11290-1 (using half Fraser and full Fraser broth), followed by 

a non-selective post enrichment in brain heart infusion (BHI) of five hours. This enrichment 

increases the sensitivity of the PCR method by reducing the risk of contamination by inhibitory 

compounds.  

Restriction fragment length polymorphism (RFLP) is a sub-typing method whereby a 

virulent target gene (e.g. hlyA) is first amplified by PCR, then subsequently digested with specific 

restriction enzymes (Rasmussen, O et al., 1992; Vines et al., 1992; Wiedmann et al., 1997; De 

Cesare et al., 2007; Rip & Gouws, in press; Meghdadi et al., 2019). The target gene contains 

polymorphisms which can be visualised as specific band sizes on agarose gel electrophoresis after 

digestion, making it possible to discriminate between serotypes within L. monocytogenes lineage 

groups (Rasmussen et al., 1995; Wiedmann et al., 1997). A single nucleotide polymorphism (SNP) 

is a mutation in a single base which is substituted by another nucleotide (Schork et al., 2000). A 

study conducted by Vines et al. (1992) demonstrated the usefulness of RFLP to distinguish 

between not only lineage groups, but different serotypes of L. monocytogenes. They performed 

digests with different enzymes on four different virulence genes of the bacterium, namely hlyA, 

iap, PrfA and mpl. When digesting the hlyA gene with enzyme BstUI (Bst1236I), they were able to 
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distinguish serotypes 1/2b and 4b (Lineage I) from serotypes 1/2a and 1/2c (Lineage II), and 

also observed polymorphic differences between 1/2a and 1/2c (Vines et al., 1992). This means 

that virulence-associated genes can be used for rapid detection and molecular characterization 

of L. monocytogenes (Vines et al., 1992).  

2.6. Epidemiology 

2.6.1. Life cycle of Listeria monocytogenes  

Once ingested by humans, infection with L. monocytogenes triggers a T-cell mediated immunity 

response, enabling macrophages to destroy the bacteria (Lamont & Sobel, 2011). Continuous 

exposure creates memory T-cells that are able to recognise the L. monocytogenes bacterium 

swiftly, providing necessary resistance against L. monocytogenes infection (Lamont & Sobel, 

2011). T-cells are leucocytes (white blood cells) serving a core purpose in adaptive immunity, the 

system responsible for modifying the body's immune system to respond to specific pathogens 

(Lamont & Sobel, 2011). Individuals with underlying conditions that suppress their T-cell 

mediated immunity, such as HIV-patients, are more likely to succumb to listeriosis (Epstein et al., 

1996; Forsythe, 2010). This could explain why listeriosis has a higher association with HIV, 

therapies that suppress the immune system and pregnancy (Lamont & Sobel, 2011). For example, 

in Australia two cancer patients (i.e. compromised immunity as a result of illness) died of 

listeriosis after eating a hospital meal containing meat infected with L. monocytogenes (Todd & 

Notermans, 2011). Furthermore, in the elderly, susceptibility to listeriosis is related to reduced 

gastric acidity that occurs as a result of ageing (Forsythe, 2010). Thus, host factors increase the 

probability of infection with L. monocytogenes e (e.g. immune system suppression) and the 

consequent development of listeriosis can be fatal. 

Once ingested in humans, L. monocytogenes is phagocytised and enters the epithelial cells. 

A transcriptional protein, protein regulatory factor A (prfA), is responsible for the switch between 

the extra- and intracellular lifecycle of L. monocytogenes. The bacterium possesses a surface 

protein, internalin, which exists in two forms, namely InlA and InlB. This protein together with its 

receptors (surface protein, E-cadherin) on the host epithelial cells facilitate adhesion (Epstein et 

al., 1996; Bonazzi et al., 2009; Lamont and Sobel, 2011). Because of this, L. monocytogenes does 

not disrupt or cause abrasions on the host cell’s gastrointestinal tract (Epstein et al., 1996). Once 

the macrophages, white blood, and plasma cells internalizes the bacterium, it is able to escape the 

vacuole and enter the cytoplasm, with subsequent proliferation (Epstein et al., 1996; Doyle, 2001; 

Lamont & Sobel, 2011). The bacterium is able to escape due to the action of the pore-forming 
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protein, listeriolysin O (LLO), encoded for by the hlyA gene, which is innate to all L. monocytogenes 

species (Cossart et al., 1989; Rasmussen, O et al., 1991; Epstein et al., 1996; Doyle, 2001).  

One of the virulence factors, a surface protein called actin A (ActA), creates a propulsion 

system for the bacteria by inducing actin polymerization and forming filaments (Portnoy et al., 

1992). Once it is near the cell membrane it forms a protrusion, which is then engulfed by the 

adjacent cell (Doyle, 2001). This enables the bacterium to use the host cell’s actin to provide the 

propulsion necessary for pathogenesis, allowing it to spread to adjacent cells (Epstein et al., 

1996). The intracellular cycle is able to continue since nearby cells are able to recognize 

pseudopodia-like structures, produced by the bacteria, which protrude from the host cell 

(Epstein et al., 1996). By avoiding the extracellular environment, immunoglobulins cannot serve 

the major protective role as expected, explaining  why immunocompromised individuals (due to  

reduced immunoglobulin activity) are more at risk for the disease (Epstein et al., 1996). 

Therefore, effective treatment of listeriosis must take this intracellular life cycle into account and 

medication administered must be able to penetrate host cells. 

2.6.2. Diagnosis of symptoms associated with Listeria monocytogenes  

Clinically, listeriosis is diagnosed when the bacterium is isolated from body tissue or fluid, such 

as blood, cerebrospinal fluid (CSF), or in pregnancy-related cases, the placenta or foetus 

(Forsythe, 2010; Noll et al., 2018). In patients with impaired immunity, severe illnesses can occur 

due to L. monocytogenes infections, namely sepsis, meningitis, or encephalitis, causing permanent 

damage or even death (de Noordhout et al., 2014).  In South Africa, L. monocytogenes is the second 

most common cause of acute bacterial meningitis (NICD, 2017a). Septicaemia and listerial 

meningitis cases have a mortality rate of 50% and 70% respectively, whereas perinatal-neonatal 

infections carry a mortality rate of greater than 80% (Forsythe, 2010). This is in stark contrast to  

other foodborne pathogens such as Escherichia coli and Salmonella that have a mortality rate of 

11% and less than 1%, respectively (Laupland et al., 2008).  

The minimum infectious dose of L. monocytogenes is not yet known, but it is suggested 

that levels of 104 to 106 colony forming units (CFU)/g may be enough to cause disease, although 

for immunocompromised individuals this amount might be lower (Vázquez-boland et al., 2001a; 

Swaminathan & Gerner-Smidt, 2007; Lamont & Sobel, 2011). Opinions regarding “safe” levels on 

RTE foods vary from absence in 25 g of food to 100 CFU/g of food, provided that L. monocytogenes 

is not able to multiply in the final product (Todd & Notermans, 2011). The 100 CFU/g limit is also 

not based upon strict dose-response formulas (European Commission, 1999). Several factors can 

have an influence on the minimum infectious dose of a foodborne pathogen such as L. 

monocytogenes (European Commission, 1999). These can include the status of the host’s immune 
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system (healthy vs. immunocompromised), strain virulence, the quantity of food consumed, and 

the number of organisms present on the food consumed (European Commission, 1999; Goulet et 

al., 2013). It is suggested that, at a concentration as low as 1 CFU/g food, L. monocytogenes 

essentially occurs on all foods, and therefore cannot be responsible for causing listeriosis at such 

a low concentration, even in susceptible subjects, since it would be too common (European 

Commission, 1999). In any case, a zero incidence of L. monocytogenes in foods is likely not 

attainable (Chen et al., 2003). The reason why levels necessary for infection is not yet determined 

is due to the high risks associated with listeriosis (i.e. death) and also because feeding studies on 

humans is unethical. (Chen et al., 2003; Mclauchlin et al., 2004). And although dose-response 

studies conducted on animals can give researchers some information, there are other factors that 

can also play a role, such as the food matrix, immunity of the consumer, and the pathogenicity and 

virulence of the L. monocytogenes strain in question (Vázquez-boland et al., 2001a; Chen et al., 

2003; Mclauchlin et al., 2004).  

Gastroenteritis caused by L. monocytogenes is self-limiting with symptoms varying from 

fever, non-bloody diarrhoea, arthromyalgia, and headache (de Noordhout et al., 2014; NICD, 

2017a). Usually, the incubation period for gastroenteritis is less than 24 hours with the duration 

of the symptoms ranging from 1 – 3 days (NICD, 2017a). When listeriosis occurs during 

pregnancy, the incubation period can range from 17 – 67 days (Goulet et al., 2013), presenting 

with mild flu-like symptoms, fever, backache, and headache (Mateus et al., 2013). Maternal 

infections occur most often during the third trimester, this being the time where T-cell immunity 

is most suppressed (Allerberger & Wagner, 2010). Infection of pregnant women with L. 

monocytogenes can lead to premature birth, stillbirth, or spontaneous abortions (Committee 

Opinion No. 614, 2014; de Noordhout et al., 2014). In pregnant women, sepsis often results in 

placental infection, which could lead to premature onset of labour and neonatal sepsis (NICD, 

2017a). While infected mothers may be asymptomatic or only experience mild symptoms such as 

fever and diarrhoea, the neonatal illness is often severe and could lead to death of the child 

(Lamont & Sobel, 2011; Todd & Notermans, 2011; Committee Opinion No. 614, 2014). The two 

clinical forms of neonatal listeriosis are early onset (first seven days after birth) and late-onset 

(up to about four weeks after birth) (Allerberger & Wagner, 2010). Neonatal infection can occur 

by means of vertical transmission from mother to baby (e.g. via the vagina during natural birth), 

via inhalation of the infected amniotic fluid, or through transplacental infection from the mother's 

circulation (Becroft et al., 1971; NICD, 2017a). Studies have shown that ampicillin administration 

at high doses, for prolonged use, can improve the chances of neonatal survival significantly 

(Lamont & Sobel, 2011). It is thus imperative that obstetricians are knowledgeable about the 

diagnosis and treatment of listeriosis, and moreover, how to prevent infection (Lamont & Sobel, 

2011). 
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Because listeriosis is not associated with the usual gastrointestinal symptoms often 

linked with foodborne illnesses, infection with L. monocytogenes is difficult to diagnose (Lamont 

& Sobel, 2011). Stool specimens are not routinely screened for L. monocytogenes due to the 

following reasons (Committee Opinion No. 614, 2014): gastroenteritis caused by L. 

monocytogenes is usually resolved within a few days in healthy individuals; the presence  of L. 

monocytogenes in stool is short-lived, making it difficult to interpret positive or negative stool 

cultures; stool culture may present a false positive. Febrile gastroenteritis due to L. 

monocytogenes has a short incubation period (less than 48 hours), therefore the isolation of the 

bacterium from stool could assist in the identification of contaminated foodstuffs, making it 

particularly useful during listeriosis outbreaks (NICD, 2017a). 

2.6.3. Treatment of listeriosis 

In healthy individuals there is typically no treatment involved for listeriosis.  

Listeria monocytogenes usually concentrate in the liver, where they are removed from the 

circulatory system (Goulet et al., 2013), making the disease self-limiting. Infection would thus be 

resolved by the time a diagnosis is made. In general, antibiotics that are able to target Gram-

positive bacteria will be effective against L. monocytogenes (Maćkiw et al., 2016). Bacteriostatic 

antibiotics are not effective due to L. monocytogenes' intracellular life cycle (Committee Opinion 

No. 614, 2014). Therefore, the preferred treatment for listeriosis is β-lactam antibiotics, such as 

penicillin or ampicillin, alone or in combination with other antibiotics such as aminoglycosides 

(Hof et al., 1997; Charpentier & Courvalin, 1999; Allerberger & Wagner, 2010; Mateus et al., 2013; 

Maćkiw et al., 2016). Beta-lactam antibiotics are some of the most important and most used 

antibiotics (Jones et al., 1997; Gullberg, 2014). They contain a nitrogen-containing beta-lactam 

ring in their molecular structure and work by binding a group of enzymes found anchored in the 

bacterial cell membrane, called penicillin-binding proteins (PBPs) (Papich & Papich, 2016). These 

proteins are involved in bacterial cell wall synthesis. Therefore, once these proteins are bound, 

they are unable to maintain the cellular wall structure. The inhibition of bacterial cell wall 

synthesis leads to autolysis and prevents infection in the host (Papich & Papich, 2016). The main 

target for β-lactams in L. monocytogenes is PBP 3 (Vicente et al., 1990; Hof et al., 1997). 

Cephalosporin antibiotics bind poorly to PBP 3 (Vicente et al., 1990; Hof et al., 1997), which could 

be the reason why L. monocytogenes is inherently resistant to cephalosporins. Although third-

generation cephalosporins are used to treat other forms of meningitis, they are  ineffective 

against listerial meningitis. The efficacy of ampicillin against L. monocytogenes is quite surprising  

due to poor penetration into the cerebrospinal fluid and  low intracellular concentration, even at 

high dosages (Lutsar et al., 1998). In spite of this, ampicillin inhibits the production of LLO and 

beta-galactosidase (both virulence factors), which may be the reason why it is still the 
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recommended treatment for L. monocytogenes infection (Hof et al., 1997). Although L. 

monocytogenes displays some resistance to ampicillin, it remains the preferred antibiotic due to 

its ability to penetrate the host cell efficiently (Lamont & Sobel, 2011). 

Aminoglycosides (such as gentamicin) are bactericidal and work by inhibiting protein 

synthesis, specifically by binding the 30S subunit of ribosomes (Gullberg, 2014). Due to the 

similarity in structure between bacterial and human mitochondrial ribosomes, some antibiotics 

can often be damaging to the human mitochondria (Gullberg, 2014). Therefore the use of 

gentamicin is limited because of its toxicity and frequent side effects that include kidney damage 

and hearing loss (Lutsar et al., 1998; Gullberg, 2014). They are often used together with β-lactams, 

but the effectiveness of this combination is still unclear (Bamford et al., 2017). One study showed 

that gentamicin therapy will likely lead to earlier mortality (Mitjà et al., 2009), whereas other 

studies showed combination therapy to be effective (Allerberger & Wagner, 2010; Thønnings et 

al., 2016; Vasconcelos et al., 2016). 

Tetracyclines are broad-spectrum antibiotics, that are active against a wide range of 

bacteria (Gullberg, 2014). Due to the extensive use of tetracycline in the agricultural industry, and 

the subsequent increase in L. monocytogenes resistance towards tetracycline, it is no longer 

recommended for clinical use (MacGowan et al., 1990; Gullberg, 2014). Chloramphenicol and 

macrolides (such as erythromycin) work by means of irreversible binding to the 50S subunit of 

the prokaryotic ribosomal subunits (Jelić & Antolović, 2016). Erythromycin is often used to treat 

listeriosis as a second-line treatment (Temple and Nahata, 2000).  

In South Africa, listerial meningitis is currently the second most common cause of 

bacterial meningitis (Bamford et al., 2017). In the past, patients that presented with meningitis 

symptoms were treated with ampicillin and gentamicin. However, this changed after the 2017-

18 listeriosis outbreak, and third-generation cephalosporin treatment, together with ampicillin 

and gentamicin, is now recommended (NICD, 2017b; Schutte et al., 2019). Immunocompromised 

individuals are usually treated with oral ampicillin or cotrimoxazole (NICD, 2017a). For patients 

that are allergic to β-lactams, treatment may be a combination of trimethoprim and a 

sulphonamide such as sulfamethoxazole (Hof et al., 1997; Allerberger & Wagner, 2010; Maćkiw 

et al., 2016). In South Africa, patients are treated with cotrimoxazole, or vancomycin together 

with gentamicin (NICD, 2017b). Clinicians also use trimethoprim-sulfamethoxazole or ampicillin 

in combination with gentamicin (Vasconcelos et al., 2016). In order for antibiotic treatment 

against L. monocytogenes to be effective, the antibiotics should be able to penetrate and distribute 

within the host cell (Lamont & Sobel, 2011). Because of this, the inefficiency of antibiotics in 

listeriosis cases may be up to 70% (Hof, 2004). Currently, L. monocytogenes is treated successfully 
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with ampicillin, penicillin, and amoxicillin (Temple & Nahata, 2000), but exhibits resistance 

towards cephalosporins, clindamycin, and chloramphenicol (Mylonakis et al., 2002).  

Although listeriosis in pregnant women could lead to adverse outcomes, early treatment 

may be effective at preventing such outcomes (Sisó et al., 2012). It could be sensible to treat these 

patients pre-emptively with ampicillin when it is suspected that the patient could test positive for 

L. monocytogenes (Committee Opinion No. 614, 2014). Ampicillin is able to cross the placental 

barrier, bind to PBP3, and kill the bacteria (Lamont & Sobel, 2011). However, the importance of 

well-informed obstetricians should be stressed. It is crucial that they are knowledgeable about 

the diagnosis and treatment of L. monocytogenes infection and how to prevent infection so as to 

eliminate complications during pregnancy (Lamont & Sobel, 2011). When informing pregnant 

women about the risks of L. monocytogenes infection, emphasis should be placed on possible food 

sources, preventative measures, and the mortality rates associated with the disease (Mateus et 

al., 2013). 

2.6.4. Antibiotic resistance 

The fact that L. monocytogenes is ubiquitous and able to grow in colder environments, is of great 

concern to the food processing environment (Olaimat et al., 2018). This together with the 

emergence of resistant strains in the clinical environment has shifted focus towards the 

mechanisms by which food isolates are acquiring resistance to various antibiotics used to treat 

infections (Olaimat et al., 2018). Despite L. monocytogenes being susceptible to a range of 

antibiotics, the emergence of antibiotic resistant strains are of great concern, as the mortality rate 

from listeriosis is up to 30% (Chen et al., 2010a; Gómez et al., 2014; Maćkiw et al., 2016; 

Vasconcelos et al., 2016; Escolar et al., 2017; Noll et al., 2018; Olaimat et al., 2018). 

Antibiotic resistance in bacteria (Figure 2.4) can either be phenotypic, intrinsic, or 

acquired (Olivares et al., 2013; Gullberg, 2014; Munita & Arias, 2016; MacGowan & Macnaughton, 

2017). Phenotypic resistance is not inherited and is not a result of genetic change. Rather, it is 

transient, and depends on the environmental conditions in which the bacterium lives (Olivares et 

al., 2013). This type of resistance is usually associated with persistence, stationary growth cells, 

and biofilms. Persistent cells are cells that are able to avoid the effects of antibiotics, without 

undergoing actual genetic changes. If the selective pressure of antibiotics is removed, persistent 

cells can become antibiotic susceptible again (Corona & Martinez, 2013; Olivares et al., 2013). 

Bacteria are able to communicate by means of quorum sensing (Friera et al., 2017), and such 

communication can activate virulence genes and even lead to the formation of biofilms. The 

presence of biofilms could contribute to antibiotic resistance in different ways. Firstly, bacteria 

located in the bottom part of the biofilm have decreased metabolic activity due to oxygen and 
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nutrient deficiency (Olivares et al., 2013; Friera et al., 2017). Such conditions make the bacteria 

dormant, leading to enhanced tolerance to antibiotics. This is especially the case with β-lactams 

which only work on actively growing bacteria (Gullberg, 2014). Secondly, by diffusing slowly 

through the matrix, the effect of the antibiotic is weakened. Biofilms in medical devices (such as 

catheters) are also at risk for re-colonization in a clinical setting (Olivares et al., 2013; Friera et 

al., 2017). Thirdly, biofilms are also associated with the presence of multidrug resistant (MDR) 

bacteria (Friera et al., 2017). Listeria monocytogenes often forms part of a multispecies biofilm in 

the processing environment. This exposure to other Listeria spp. or even other species of bacteria 

could contribute to the horizontal gene transfer between strains of its own species or others 

(Allen et al., 2016). Toomey et al. (2009) examined the ability of lactic acid bacteria (LAB) to 

transfer antimicrobial resistant genes to other species of bacteria. It was found that within a 

whole-milk matrix, genes conferring resistance to erythromycin and tetracycline were readily 

transferred from LAB to L. monocytogenes. Intrinsic resistance is defined as “resistance without 

any chromosomal mutation or acquisition of resistance genes” (Nikaido, 1994). This can either 

be because the bacteria lack a target site for the antibiotic, or because they have barriers in their 

cell wall that decreases permeability (Gullberg, 2014). An example of this is Gram-negative 

bacteria whose cell membrane is inherently impermeable to many antibiotic molecules (Cox & 

Wright, 2013). This can be seen in all L. monocytogenes strains that are intrinsically resistant to 

cephalosporins (Krawczyk-Balska & Markiewicz, 2016).  
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Figure 2.4 Bacteria can acquire resistance to antibiotics by means of horizontal gene transfer (from other 
bacteria) or by mutation of their own genes; phenotypic resistance can occur by means of biofilm growth, 
swarming adaptation or persistent cells (Olivares et al., 2013 used with permission). 

Acquired resistance occurs when otherwise susceptible bacteria are able to gain resistance due 

to mutations in their chromosomal genes or by gene transfer from other bacteria (Gullberg, 2014; 

Munita & Arias, 2016; MacGowan & Macnaughton, 2017). Antibiotic resistance can arise in 

several ways (Figure 2.5): alteration of antibiotic target sites, use of efflux pumps to eject 

antibiotics out of cells, reduced cell permeability, and enzymatic modification or inactivation 

(Wright, 2010; Gullberg, 2014; Allen et al., 2016; Munita & Arias, 2016). Efflux pumps are 

prevalent features of all organisms and are used to force out toxic molecules that may harm host 

cells (Cox & Wright, 2013). But these efflux pumps could also expel antibiotics. Listeria 

monocytogenes makes use of an efflux pump, AnrAB, which is responsible for conferring 

resistance against nisin and β-lactam antibiotics (such as ampicillin, penicillin, and oxacillin) 

(Collins et al., 2010). Genetic transfer can occur by three different ways: 1) conjugation – bacteria 

transfer plasmids (genetic material) by direct contact with each other; 2) transduction – the host 

bacterium’s genes are incorporated into a bacteriophage, which then transfers this genetic 

material to another host bacterium; 3) transformation – bacteria take up naked DNA (foreign 

genetic material) from their environment and incorporate it into their own genome (Munita & 

Arias, 2016; MacGowan & Macnaughton, 2017). 
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Figure 2.5 Mechanisms of antibiotic resistance can include inactivating enzymes, efflux pumps that pump 
antibiotics out of the cell, alteration of the bacterial cell wall, and the modification of the antibiotic target 
on the cell (by courtesy of Encyclopaedia Britannica Inc. © 2012, used with permission). 

A few strategies have been proposed to reduce the risk of increased antibiotic resistance in recent 

years. Firstly, over-the-counter antibiotic prescriptions require stricter control and prescribers. 

Secondly, the general public consuming these antibiotics, could be better informed in order to 

prevent injudicious prescriptions and consumption of antibiotics (Davies & Davies, 2010; Wright, 

2010; MacGowan & Macnaughton, 2017). It has been demonstrated recently that intrinsic 

resistance has existed long before the human use of antibiotics, but that injudicious use of 

antibiotics could exacerbate the resistance of bacteria as seen in clinical settings (Cox & Wright, 

2013). The reduced use of antibiotics will reduce bacterial exposure to these chemicals, limiting 

the ability of the bacteria to acquire resistance (Wright, 2010). Intensifying surveillance of 

antibiotic use in clinical settings and in the farming environment will enable action to be taken 

early enough should resistance against existing antibiotics increase (Wright, 2010; MacGowan & 

Macnaughton, 2017).  

2.7. Reduction of Listeria monocytogenes by use of bacteriophages 

Bacteriophages (also known as viruses, and used interchangeably with the word “phage”) are 

predatory organisms with the ability to infect bacterial cells (Figure 2.6). They are abundant in 

the environment and as a result are consumed unknowingly on a regular basis (García et al., 

2010). They are thus presumed to be safe for consumption with no adverse effects having ever 

been reported (Mahony et al., 2011; Komora et al., 2018). They are exceptionally host-specific 
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which enables the phages to target one bacterial species without affecting another (Guenther et 

al., 2009; Moye et al., 2018).  

  

Figure 2.6 Anatomy of a bacteriophage typical of the Myoviridae family (Wikimedia, used with permission). 

Bacteriophages were first discovered in 1915 when Frederick Twort noticed “glassy colonies” 

that had an antibacterial effect (Twort, 1915; El-Shibiny & El-Sahhar, 2017; Kakasis & Panitsa, 

2019). Not long after the discovery, bacteriophages were successfully used to treat conditions 

such as staphylococcal skin disease, urinary tract infections, and surgical infections (Kakasis & 

Panitsa, 2019), just to name a few. However, the rise of the antibiotic era soon started and 

bacteriophage therapy shifted to the background (Kakasis & Panitsa, 2019). Unlike antibiotics, 

where the focus of treatment is on the infected patient, the use of bacteriophages is now mostly 

focused on eradicating spoilage and pathogenic bacteria from food products and the food 

processing environment. Several other approaches are already in use in the food processing 

environment. This includes treatments such as pasteurization, chemical sanitizers, irradiation, or 

high-pressure processing (HPP) (Moye et al., 2018). There are some disadvantages associated 

with these approaches. Pasteurization can mostly be used only in liquid products, while HPP 

cannot be used on fresh food products (such as meat or produce). Irradiation could have a 

detrimental effect on the sensory qualities of food, and chemical sanitizers, although effective, 

have negative associations due to their harmful effect on the environment (Moye et al., 2018). 

These methods also have a tendency to kill all (or most) of the microorganisms present, even 

potentially beneficial microorganisms (Moye et al., 2018). This has led to an interest in the use of 

bacteriophages to reduce the microbial load not only in foods but also in the food processing 
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environment, whilst simultaneously preserving the beneficial microflora (Gutiérrez et al., 2016; 

Fister et al., 2019). 

Based on their lifestyle, phages can be divided into two types, namely temperate and 

virulent phages (Figure 2.7). Virulent (lytic) phages are able to multiply within the host cell, and 

with subsequent bursting of the cell, a new generation of phage progeny is released (García et al., 

2010). Temperate phages are different in that they first enter the lysogenic phase when the phage 

DNA integrates with the host chromosome, becoming a prophage. They can enter the lytic phase 

when the prophages exit the host chromosome (García et al., 2010). It is extremely important that 

temperate phages are not used in the food industry. Because of their ability to integrate their DNA 

into the host chromosome, they are capable of passing on virulent genes, leading to strains with 

new pathogenic potential (Moye et al., 2018). This can be seen in pathogens such as Escherichia 

coli (with Shiga-toxin producing prophages) and Vibrio cholera (containing a phage that encodes 

for the cholera toxin). Thus prophages are vital in the adaptation of bacteria and their genetic 

diversity (Fortier & Sekulovic, 2013).  

 

Figure 2.7 The life cycle of the bacteriophage can consist of two phases, namely the lysogenic phase, which 
leads to the formation of prophages, and the lytic phase which leads to cell lysis. 

For the lytic phase to occur, the phage first needs to recognise and attach to the host, with 

subsequent insertion of nucleic acid. This attachment is mediated by receptor binding proteins 

(RPBs) on the phage tail fibres which recognize different receptors on the host cell. For phages 

from the Myovidae family (e.g. Myovirus A511 and P100), the two receptors that are utilized are 

wall teichoic acids (WTAs) and peptidoglycan (Figure 2.8). WTAs are the most abundant 

glycopolymers covalently bound to peptidoglycan on the bacterial cell wall (Shen et al., 2017). 

The WTAs have several other biological roles in antibiotic resistance, virulence, and also phage 
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attachment (Shen et al., 2017; Dunne et al., 2018). Different serotypes of L. monocytogenes have 

different sugar residues attached to the ribitol-phosphate backbone of the WTAs. The 1/2 

serotype group’s WTAs features L-rhamnose and N-acetylglucosamine (GlcNAc), while the WTAs 

of serotype 4b consists of GlcNAc with additional D-glucose and D-galactose (Bielmann et al., 

2015; Carvalho et al., 2015). These wall decorations serve as receptors for phages, and if absent, 

could lead to non-attachment of a bacteriophage (Promadej et al., 1999; Spears et al., 2016). The 

cell wall teichoic acid glycosylation protein, gtcA, is associated with serotype 4b and is essential 

for the attachment of glucose and galactose to these WTAs. Mutations in this gene leads to a lack 

of galactose and reduced glucose, which in turn, reduces the probability of phage attachment 

(Promadej et al., 1999; Spears et al., 2016). 

 

 

 
Figure 2.8 Different bacteriophages and their associated host receptors on the Gram-positive bacterial cell 
wall (Dunne et al., 2018 used with permission). 

After the phage genome is replicated, it takes over the host cell, forcing it to produce structural 

proteins solely for the phage. These proteins congregate to form new virions and lysis proteins, 

which causes the destruction of the host cell (García et al., 2010). It is this destruction of the host 

bacterial cell which make phages useful for antibacterial activity. Phages which show lytic activity 

are particularly useful in the food processing environment since they don’t incorporate their 

genome into the chromosome of the bacteria to form prophages but instead always eliminate the 

bacterial target cells (Guenther et al., 2009). Previous studies have shown the application of 

bacteriophages to be useful against L. monocytogenes in the RTE food industry (Table 2.1) 

(Guenther et al., 2009; García et al., 2010; Moye et al., 2018). The commercial bacteriophages used 
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(PhageGuard ListexTM, A511, ListshieldTM) were able to reduce bacterial counts on various food 

products by 1.8 to 5 log reductions (Carlton et al., 2005; Guenther et al., 2009; Soni & 

Nannapaneni, 2010b; Chibeu et al., 2013; Oliveira et al., 2014; Moye et al., 2018). But even 1 to 2 

log reductions in products such as deli meat could still reduce the mortality rate by 50% and 74%, 

respectively, for elderly people (Moye et al., 2018). This indicates that although phage treatment 

is not able to completely eradicate L. monocytogenes from a food product, it is still beneficial in 

reducing the associated risk of certain foods. 

Table 2.1 Results from the application of bacteriophage treatment on different foods 

Food product Phage tested Result Reference 

Soft cheese PhageGuard ListexTM 
A 3.5 log reduction after a single 
application, surviving colonies 
did not develop resistance 

(Carlton et al., 2005) 

Chocolate milk, 
mozzarella 
cheese brine 

A511, PhageGuard 
ListexTM 

L. monocytogenes completely 
eradicated 

(Guenther et al., 2009) 

RTE solid foods 
A511, PhageGuard 
ListexTM 

Up to 5 log reduction (Guenther et al., 2009) 

Raw salmon 
fillets 

PhageGuard ListexTM Up to 3.5 log reduction 
(Soni & Nannapaneni, 
2010b) 

Raw catfish 
fillets 

PhageGuard ListexTM 
Up to 2.3 log reduction, with no 
subsequent growth observed 

(Soni & Nannapaneni, 
2010b) 

Cooked chicken FWLLm1 
Up to 2 log reduction, with 
subsequent growth observed 

(Bigot et al., 2011) 

Melon and pear 
slices 

PhageGuard ListexTM Up to 1.5 log reduction (Oliveira et al., 2014) 

Apple slices PhageGuard ListexTM No reduction (Oliveira et al., 2014) 

RTE lettuce ListShieldTM Up to 1.1 log reduction (Perera et al., 2015) 

Although relatively new, the application of phages in foods and the food processing environment 

may be more easily accepted by consumers than the use of preservatives. Since phages are 

isolated from the environment, they are considered “natural” and “environmentally-friendly”. 

The idea that they target pathogenic bacteria without disturbing the natural microflora of the 

product means that consumers are potentially more likely to accept this new technology (Moye 

et al., 2018). Nevertheless, convincing consumers that “viruses” can be beneficial for their food 

might be a challenge, although one study demonstrated that consumers are willing to pay more 

for a bacteriophage-treated product once they are informed about the food safety benefits 

(Naanwaab et al., 2014). Therefore, it is imperative that consumers (and food manufacturers) be 

informed of possible benefits and safety of bacteriophages. 

Bacteriophage control is not without disadvantages. Their specificity can also be seen as 

a limiting factor for use in the food industry, which is why it is not yet as widespread as other 
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biopreservatives (García et al., 2010). This high specificity means that in order to deal with foods 

that contain more than one food pathogen, a phage cocktail (a mixture containing more than one 

phage) needs to be used. There are different factors that influence the efficacy of a bacteriophage. 

The phage concentration, as well as the type of food sample and storage temperature, are all 

important (Guenther et al., 2009). Furthermore, the phage and target bacteria need to be in 

contact with one another in order for bacterial eradication to occur (Hagens & Loessner, 2010). 

This can be challenging in a food processing environment, where there are numerous areas that 

can conceal bacteria. It is also suggested that the phage progeny might not be able to get into 

contact with pathogenic bacteria on the foodstuff, meaning increased phage concentration does 

not necessarily correlate with bacterial host reduction (Moye et al., 2018). The food medium can 

also have an influence on the diffusion of the phage, making phage treatment potentially more 

effective on liquid foods in comparison to drier, solid foods (Moye et al., 2018). Because the use 

of bacteriophages in the food industry is relatively new, not much is yet known about the bacterial 

host’s resistance mechanisms or the possible occurrence of resistant bacteria in the food 

processing environment (Fister et al., 2016). Phage resistance should thus not be excluded as a 

possibility (Guenther et al., 2009; Fister et al., 2016; Moye et al., 2018). This could be due to 

bacteria possessing mechanisms that could either prohibit entry into the cell or by preventing 

phage replication (Fister et al., 2016). It is proposed that phages with a broad host range be used 

in order to avoid potential resistance, or by applying phages with different host ranges in rotation 

(Guenther et al., 2009). Extensive use of phage treatment in the food processing environment 

should also be avoided. This will reduce the long-term exposure of the bacterial host to the phage, 

thereby preventing the host bacterium from acquiring possible resistance (Moye et al., 2018). 

2.8. Surveillance data and the lack of information on listeriosis in 

South Africa  

In developing countries, surveillance programs documenting foodborne illnesses are rarely put 

into practice (Todd & Notermans, 2011). In South Africa, there is currently no active monitoring 

being done on foodborne illnesses, and as a result these illnesses often remain underreported 

(Smith et al., 2016). Although numerous studies have characterized L. monocytogenes from food 

processing facilities globally, not many outputs have been generated regarding L. monocytogenes 

in the South African setting (Rip & Gouws, in press). 

In South Africa, a national listeriosis outbreak was declared in December 2017 and is 

believed to be the largest-ever global outbreak of listeriosis. As of 26 July 2018, there have been 

1 060 laboratory-confirmed cases, where the cases with known outcome having a mortality rate 

of 27% (216/806) (NICD, 2018b). Prior to December 2017, listeriosis was not a notifiable disease 
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with only a few sporadic cases reported (NICD, 2018a), hence published data relating to 

foodborne listeriosis is lacking in South Africa. In the Western Cape Province (South Africa) 

during September 2015 there was an increase in the number of human cases in which L. 

monocytogenes were isolated (Smith et al., 2016). These isolates belonged to sequence type 6 

(ST6), a sequence type often associated with listeriosis cases. In fact, 92% of clinical isolates 

obtained from patients during the 2017-18 outbreak belonged to ST6 (Smith et al., 2016; NICD, 

2018b; Schutte et al., 2019). The 2017-18 SA listeriosis outbreak was officially declared to be over 

by the Minister of Health in September 2018, but the long incubation period of listeriosis means 

that new sporadic cases are still anticipated (DoH, 2018a). There is not much historical data on 

the economic burden of food pathogens in South Africa. However, a study by Olanya et al. (2019) 

estimated that the recall cost of the 2017-18 listeriosis outbreaks alone was $28.1 million. In the 

USA L. monocytogenes is the third most costly food pathogen, with an annual cost of between 

US$2.3 billion to $22 billion (de Noordhout et al., 2014). In 2008, a listeriosis outbreak in Canada 

related to deli meat resulted in a $43 million loss for the company Maple Leaf (Fallatah, 2018). 

Additionally, the company had to settle $27 million in lawsuits. Thus, listeriosis is responsible for 

major economic impacts. 

 A challenge to epidemiological studies and exposure assessment of L. monocytogenes is 

the lack of data, with the infectious dose still unknown (Todd and Notermans, 2011). This leads 

to most companies in the food industry having a zero-tolerance policy requiring the absence of 

Listeria in a 25 g food sample. Even so, this stringent policy has not shown to be better for public 

health than more flexible criteria such as <100 L. monocytogenes CFU/g food (Forsythe, 2010; 

Montville et al., 2012). In South Africa, there is no information on the microbiological limits of L. 

monocytogenes in food. The recently updated Foodstuffs, Cosmetics and Disinfectants Act, 1972 

(Act No. 54 of 1972) includes strict regulations for bacteria such as Salmonella, Escherichia coli, 

and Staphylococcus aureus, but makes no mention of L. monocytogenes. The South African 

National Standard (SANS 885:2011) recommends a maximum allowable amount of 100 CFU/g at 

the end of shelf life in processed meat products. But this is merely a recommendation and not a 

rule enforceable by law. In order to ensure that exported foods are up to international standards, 

the microbial limits of L. monocytogenes set by different countries are used. In Canada (Bureau of 

Microbial Hazards, 2011), Europe (European Commission, 1999), Australia and New Zealand 

(Food Standards Australia New Zealand, 2014), a differentiation is made between foods that can 

support the growth of L. monocytogenes and those that cannot. According to the Compendium of 

Microbiological Criteria for Food (2016), foods that cannot support the growth of 

L. monocytogenes have the following criteria: a pH lower than 4.4, water activity less than 0.92, or 

a combination of pH less than 5.0 and water activity of less than 0.94. In RTE foods that support 

the growth of L. monocytogenes, the bacterium should not be detected in 5 x 25 g of sample. In 
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foods that cannot support growth of the bacterium, the levels of L. monocytogenes should be less 

than 100 CFU/g.  

In order to do better research into complex health challenges, a One Health approach 

(applied worldwide) has been proposed where multidisciplinary research comes together to give 

a better understanding of problems and potential solutions (Lebov et al., 2017). In order to 

establish the origin and impact of L. monocytogenes, the food industry and its various processes 

can be linked with clinical aspects (e.g. hospital cases). The One Health approach focuses on three 

domains, namely environment, animal, and human (Lebov et al., 2017). An example of this 

method would be to study soil and water where L. monocytogenes is found and the food 

processing industry (environment), the characteristics of the bacteria and the different strains 

(animal), and the listeriosis patients’ behaviour and susceptibility factors (human) (Lebov et al., 

2017). This is especially important in a country such as South Africa, where it is estimated that 

7.9 million South Africans are living with HIV, and about 330 000 people live with both HIV and 

tuberculosis (Molapo & Massy, 2019). Although the frequency of L. monocytogenes infection is 

low, the high degree of mortality, especially among the immunocompromised, validates the need 

to monitor epidemiological data (Montero et al., 2015). By comparing L. monocytogenes isolates 

from both food samples and clinical cases, the probable source of contamination could be 

revealed, allowing the identification and regulation of foods that pose a health risk to the public 

(Montero et al., 2015).  
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Chapter 3  

Lineage classification of Listeria monocytogenes isolates from 

food, environmental, and clinical origin by means of PCR-

RFLP 

3.1. Abstract 

There is a paucity of South African literature investigating the relationships between Listeria 

monocytogenes lineages isolated from clinical and food processing environments. For this study, 

L. monocytogenes isolates from various origins (Clinical, Environmental, Raw meats, Raw seafood, 

and Ready-to-eat) were classified into one of three different lineage groups by using a recently 

developed method for PCR-RFLP (based on SNPs within the hlyA gene of the bacterium). In 

addition, L. monocytogenes lineage groupings were scrutinised for patterns within the various 

categories of origin. The results showed an overrepresentation of Lineage I in the Clinical and 

Raw seafood, while in the Environmental, Raw meats, and Ready-to-eat categories, Lineages I and 

II were somewhat equally distributed. This finding was in contrast to other studies that found 

Lineage I to be mostly associated with human listeriosis, and Lineage II to be more frequently 

associated with foods. For L. monocytogenes, a clear association has not yet been made between 

different food types and lineage, so this study provides valuable insight into the distribution of 

the different lineages across a range of origins, especially in the South African context. 

3.2. Introduction 

Foodborne illnesses are a major public health concern, and it is estimated that about 420 000 

people die annually as a result of consuming food contaminated with pathogenic bacteria (WHO, 

2015). In recent years, consumers’ lifestyles have changed such that they are consuming less 

‘homemade’ meals (that undergo less processing) and more ‘instant’ foods (that undergo more 

processing), thus exposing them to a larger variety of possible foodborne pathogens (Allerberger 

& Wagner, 2010; Aparecida De Oliveira et al., 2010). These pathogens can include bacteria, 

viruses, or parasites and their presence in food is often attributed to improper food handling, 

preparation, or storage (Martinović et al., 2016). The world population is growing and the 

demography is shifting towards a higher number of elderly persons, which means an increased 

number of immunocompromised individuals. (Newell et al., 2010). With increasing global trade, 

food ingredients are no longer restricted to local sources. There are several role players in an 

expansive food supply chain that do not all have the same food safety standards. Therefore, the 
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risk of the consumer being exposed to pathogens are increasing. Subsequently more and more 

foodborne illnesses are emerging illustrating the need for ongoing research.  

Listeria monocytogenes is a Gram-positive bacterium responsible for the foodborne 

infection, listeriosis. It is ubiquitous in the environment, can tolerate high salt concentrations and 

is also able to grow at temperatures as low as 0°C (Forsythe, 2010; Nowak et al., 2015). Because 

of its presence in soil and water, it is often associated with raw food material (White et al., 2002; 

de Noordhout et al., 2014). This, together with its ability to survive long periods in food 

production facilities due to the formation of biofilms, makes the bacterium a major threat to the 

food industry (Swaminathan & Gerner-Smidt, 2007). Despite listeriosis being a rare disease (for 

example when compared to Salmonella infection), the mortality rate can be as high as 30% 

(Swaminathan & Gerner-Smidt, 2007), thus making L. monocytogenes a key pathogen in the food 

processing environment. 

Listeria monocytogenes can be classified into three common lineages, namely I, II, and III, 

and these three lineages can together be further subdivided into 12 serotypes. Of the 12 

serotypes, the three most notable are 1/2a, 1/2b, and 4b, which together account for more than 

95% of listeriosis cases (Jadhav et al., 2012; Hyden et al., 2016). However, several studies agree 

that L. monocytogenes serotypes do not all have the same degree of virulence (Wiedmann et al., 

1997; Mclauchlin et al., 2004; Ward et al., 2004; Swaminathan and Gerner-Smidt, 2007; Manuel 

et al., 2015). Isolates from Lineage I (1/2b and 4b) are mostly from human clinical cases of 

listeriosis, while isolates from Lineage II (1/2a and 1/2c) are mostly associated with foods and 

food processing facilities (Swaminathan & Gerner-Smidt, 2007; Nightingale et al., 2008; Orsi et 

al., 2010; Manuel et al., 2015). Despite Lineage I isolates being overrepresented in human clinical 

cases, isolates from Lineage II can also cause listeriosis. Moreover, even though there are 

differences in the ratios of Lineages I and II and their respective associated environments, food is 

still thought to be the principal vehicle of L. monocytogenes contamination (Swaminathan & 

Gerner-Smidt, 2007; Leong et al., 2016; Buchanan et al., 2017). The reasons for Lineage II isolates 

being so common among food isolates are still unclear; however, several researchers propose the 

idea that these differences in frequency are due to mutations and variations in the bacterium’s 

virulence genes (Vines et al., 1992). Such mutations thus enable certain lineage groups to either 

adapt to the food processing facility (due to environmental pressures) or to establish easier 

within hosts by crossing the intestinal barriers (Manuel et al., 2015). Due to these differences 

occurring between lineage groups, molecular characterization of L. monocytogenes can provide 

valuable insight as to how these different lineages associate with different origins.  

The virulence gene hlyA is innate to all L. monocytogenes bacteria and encodes for a pore-

forming haemolysin (listeriolysin O) that allows the bacterium to escape the vacuole of the host's 
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cells (Cossart et al., 1989). Therefore, by using polymerase chain reaction (PCR), amplification of 

the hlyA gene serves to confirm the presence of virulent L. monocytogenes strains. With PCR-

restriction fragment length polymorphism (PCR-RFLP), L. monocytogenes isolates can 

successfully be differentiated into three different lineage groups, namely Lineage I (serotypes 

1/2b, 3b, 3c and 4b), Lineage II (serotypes 1/2a, 1/2c and 3a), and Lineage III (serotypes 4a and 

4c) (Rasmussen, O et al., 1991; Vines et al., 1992; Wiedmann et al., 1997; De Cesare et al., 2007; 

Bester, 2011; Meghdadi et al., 2019). This classification ability is due to the presence of single 

nucleotide polymorphisms (SNPs) that are present in the virulence genes of L. monocytogenes. A 

SNP refers to a mutation in a DNA sequence, where a single nucleotide in a base pair can be 

substituted by another nucleotide (Schork et al., 2000). These SNP's usually occur at specific 

points in the genome. Therefore, isolates with the same DNA sequences in the region of interest 

can be grouped together, and groups can be separated based on their differences in SNPs. 

In South Africa, very few studies have yet attempted to investigate how lineage groupings 

of L. monocytogenes isolates relate to clinical and food processing environments (Ackermann, 

2017; Rip & Gouws, in press). Considering that the largest ever recorded global outbreak of 

listeriosis recently occurred in South Africa (2017-18), and that different lineages can have 

different outcomes regarding listeriosis infection, an investigation into the relationships between 

lineage groups and how it disseminates in the food and the environment is warranted. In this 

study, L. monocytogenes isolates were obtained from various origins (clinical, food, and 

environmental) and, using a recently developed method for PCR-RFLP based on SNPs within the 

hlyA gene of L. monocytogenes (Rip & Gouws, in press), classified isolates into one of three lineage 

groups. The main objectives of this study were thus: 1) to differentiate L. monocytogenes isolates 

from clinical, food, and environmental origin into their respective lineage groups, and 2) to 

determine whether certain lineage groups of L. monocytogenes are more prevalent in particular 

categories or not. Lineage I was expected to dominate in the Clinical Category, and Lineage II in 

isolates obtained from food origin.  

3.3. Materials and methods 

3.3.1. Sample collection and storage 

A total of 192 isolates (presumed to be positive with L. monocytogenes) were collected from 

various origins. Twenty-two isolates from patients with listeriosis (Clinical) were received on 2% 

blood agar from the National Health Laboratory Service (NHLS Microbiology, Observatory) in the 

Western Cape region. Ethical clearance was obtained from NHLS (HREC R020/2015) and 

approved by the Research Ethics Committee: Biosafety and Environmental Ethics, Stellenbosch 
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University (Ethics #BEE-2018-1764). Presumed positive samples from various food origins 

(Environmental, Raw meats, Raw seafood, and Ready-to-eat) were received from an accredited 

food laboratory (Microchem) on either RAPID'L.Mono™ chromogenic agar (specific for 

L. monocytogenes) or PALCAM agar (specific for Listeria species). These plates were sealed and 

stored at -4°C until further examination. All isolates were also further divided into subcategories, 

where possible, within their respective categories (for example subdividing Environmental 

samples into equipment, drain, surfaces, etc.) (Addendum A). For the remainder of the chapter, 

“Ready-to-eat” refers specifically to one of the main categories in this study, whereas “RTE” refers 

to ready-to-eat foods in general. 

3.3.2. Confirmation of Listeria monocytogenes presence 

In order to confirm the presence of L. monocytogenes on acquired plates, colonies were streaked 

on RAPID'L.Mono™ agar and incubated for 24 h at 37°C. Once characteristic L. monocytogenes 

growth was observed (blue colonies with no halo), colonies from the RAPID'L.Mono™ were 

streaked on Tryptic Soy Agar (TSA) plates and incubated at 37°C for 20 – 24 h. The pure isolates 

were now ready to undergo a DNA isolation procedure and PCR. Glycerol stocks (25%) were also 

prepared from isolates grown on TSA for long term storage at -80°C. 

3.3.3. DNA extraction and amplification 

Isolates stored as glycerol stocks were grown overnight on Brain Heart Infusion (BHI) agar at 

37°C. The genomic DNA was extracted using the Quick-DNA™ Fungal/Bacterial Miniprep Kit 

(ZymoResearch) according to the manufacturer’s instructions and subsequently stored at -20°C 

until further use. As a negative extraction control, DNase/RNase-free distilled water (UltraPure™, 

Thermo Fischer) was used instead of bacterial culture. In order to amplify the 730 bp region of 

the hlyA gene, a forward primer with sequence 5’-CATTAGTGGAAAGATGGAATG-3’ and reverse 

primer with sequence 5’-GTATCCTCCAGAGTGATCGA-3’ were used (Blais et al., 1995). PCR assays 

were performed in 25 µL reaction volumes, with a final concentration of the following 

compounds: 1X NH4 reaction buffer (Bioline), 0.2 mM of each of the four dNTPs (Thermo 

Scientific), 3 mM MgCl2 (Bioline), 0.4 mM of each primer (IDT, Whitehead Scientific), 1.0 U of 

BIOTAQ Taq DNA polymerase (Bioline) (Rip and Gouws, in press) and 1 µL of undiluted template 

DNA. As a negative PCR control, DNase/RNase-free distilled water (UltraPure™, Thermo Fischer) 

was used instead of template DNA. As a positive control, L. monocytogenes ATCC 7644 was used. 

The amplification was performed in a T100TM Thermal Cycler (Bio-rad) with the following 

conditions: an initial denaturation at 94°C for 3 min, 30 cycles of denaturation at 94 °C for 30 s, 

annealing at 55°C for 30 s and extension at 72°C for 30 s, then a final extension at 72°C for 2 min. 
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Bands were subsequently visualized by electrophoresis on 1.5% agarose gel (Lonza) stained with 

SmartGlowTM pre-stain (Whitehead Scientific). A 100 bp DNA ladder (GeneRuler, Thermo 

Scientific) was used as a reference marker. A running buffer of 1X TBE Buffer (Tris-borate-EDTA) 

was used and the gel viewed using Gel DocTM XR+ System with Image LabTM Software (Bio-Rad). 

3.3.4. Restriction fragment length polymorphism (RFLP) 

After PCR amplification of the hlyA gene and visualisation by gel electrophoresis, the PCR 

amplicons were characterized by RFLPs (Rip and Gouws, in press). In a total volume of 15 µL, the 

restriction digestion mixture contained (final concentration): 3 µL PCR product, 1X FastDigest 

Green Buffer (Thermo Scientific), and Fast Digest restriction enzyme (0.5 unit/µL) (Thermo 

Scientific) and DNase/RNase-free distilled water (UltraPure™, Thermo Fischer). The digests were 

performed in a T100TM Thermal Cycler (Bio-rad) according to conditions as recommended by the 

supplier (Table 3.1). Products from the restriction digests were visualized by gel electrophoresis 

on a 1.5% agarose gel (Lonza, WhiteHead Scientific), stained with SmartGlowTM pre-stain 

(Whitehead Scientific). Undigested L. monocytogenes DNA was included as a negative control, and 

positive controls were included for Lineage I, II, and II, respectively (Table 3.1). A 100 bp DNA 

ladder (GeneRuler, Thermo Scientific) was used as a reference marker and gels were viewed 

using Gel DocTM XR+ System with Image LabTM Software (Bio-Rad). All isolates were subjected to 

digestion with each of the three restriction enzymes (Table 3.1), in three separate digests.  
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Table 3.1 Enzymes and bacterial controls used to distinguish between lineage groups 

Restriction 
enzyme* 

Incubation 
conditions  

Inactivation 
time  

Cut site Lineage  Expected 
band sizes 
(bp)* 

Positive 
Controls 

FastDigest 
Nde I 

37°C for ≥ 60 
min 

65°C for 5 
min 

5’…CATATG…3’ 

3’…GTATAC…5’ 
I 320; 410 

Listeria 
monocytogenes 

ATCC 23074 
(serotype 4b) 

FastDigest 
BfoI 

 

37°C for 5 
min 

65°C for 10 
min 

5’…RGCGCY…3’ 

3’…YCGCGR…5’ 
II 

Cuts all 
serotypes: 274; 
455 

Lineage II: 178; 
274; 278 

Listeria 
monocytogenes 

ATCC 7644  

(serotype 
1/2c) 

FastDigest 
Bsh12851 

37°C for 15 
min 

80°C for 15 
min 

5’…CGRYCG…3’ 

3’…GCYRGC…5’ 
III 340; 390 

Listeria 
monocytogenes 

ATCC 19114 
(serotype 4a) 

*Enzyme digest by means of restriction fragment length polymorphism (RFLP). See text for more details (Rip and 
Gouws, in press). 

3.3.5. Statistical analysis 

All statistical analyses were conducted in the R statistical environment (version 3.5.1) (R Core 

Team, 2017). In order to determine whether or not lineage groupings were significantly 

disproportionate, a series of binomial tests were conducted for each of the various categories. 

Binomial tests were chosen since in all cases experimental outcomes were binary, i.e. isolates 

were either classified as Lineage I or Lineage II according to the aforementioned methods. 

Expected probabilities of 0.5 were used in all instances in order to test the null hypothesis that 

lineage groupings were no different from random chance (i.e. proportions not significantly 

different from 50%). The binomial tests were performed with the function binom.test from the 

base package. 

3.4. Results and Discussion 

3.4.1. Positive Listeria monocytogenes samples 

Of the 192 samples received, 180 presented with colonies that were presumed positive for 

L. monocytogenes on RAPID'L.Mono™ chromogenic plates (Oxoid) (Figure 3.1). These 180 isolates 

were selected for further study. Other types of growth observed was characteristic of either 

L. innocua and L. welshimeri (white colonies), or L. ivanovii (blue colonies with a halo). The 

phosphatidylinositol-phospholipase C (PIPLC) activity of L. monocytogenes makes it identifiable 

on RAPID'L.Mono™. It is unable to metabolise xylose, therefore it produces colonies without a 

Stellenbosch University https://scholar.sun.ac.za



36 

 

halo. Only the samples that were positively identified as L. monocytogenes were used for further 

analyses. 

 

Figure 3.1 RAPID'L.Mono™ plates after 24 h incubation: light-blue colonies indicate positive L. 
monocytogenes growth (a) and white colonies indicate the growth of another Listeria species, namely L. 
welshimeri (b). 

3.4.2. Polymerase Chain Reaction (PCR) 

The hlyA gene was amplified for 177 of the 180 isolates tested (Figure 3.2, only Ready-to-eat 

isolates shown as an example). The three isolates that tested negative for the hlyA gene (thus not 

confirmed as L. monocytogenes) was not included for further study. There are bacterial species 

other than L. monocytogenes that are able to produce phospholipase C, which could make them 

appear similar on the RAPID’L.MonoTM plate (i.e. blueish colonies without a halo) (Gouws & 

Liedemann, 2005; Greenwood et al., 2005). Thus, the three isolates which did not contain the hlyA 

gene are suspected to have been other bacterial species (e.g. Bacillus or Staphylococcus) that 

resembled L. monocytogenes phenotypically. 
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Figure 3.2 PCR amplification of hlyA gene from L. monocytogenes isolates. L: 100 bp DNA ladder 
(GeneRuler, Thermo Scientific); lane 1: positive control (L. monocytogenes ATCC 7644); lanes 2-4, 6, 8-12: 
Ready-to-eat isolates; lanes 5 and 7: no hlyA gene amplified; lane B: negative PCR control (no DNA); lane 
D: negative control from DNA extraction. 

The final grouping for isolates that were positive for the hlyA gene according to origins were: 

Clinical (n=20); Environmental (n=31); Raw meats (n=31); Raw seafood (n=61); Ready-to-eat 

(n=34). Only three of the categories, for which additional information was available, were further 

divided into subcategories (Environmental, Raw meats, and Ready-to-eat).  

3.4.3. Restriction fragment length polymorphism (RFLP) 

Digests with the NdeI enzyme (Table 3.1; Figure 3.3; only selected examples shown) revealed 

320 bp and 410 bp bands (Lineage I), although some lanes still had an additional 730 bp band 

that was slightly visible, suggesting that DNA was not completely digested. This was resolved by 

increasing the incubation time from 1 h to 3 h. Digests with BfoI enzyme (Figure 3.4) and the 

resulting banding pattern confirmed that the isolates uncut with NdeI were from Lineage II. The 

enzyme digests all non-Lineage II isolates into band sizes of 274 bp and 455 bp and digests 

Lineage II isolates into band sizes of 178 bp, 274 bp, and 278 bp. The latter two bands (274 bp 

and 278 bp) are often seen as one band on the gel due to similar amplicon size, which is resolved 

by increasing gel electrophoresis running time and decreasing voltage.  
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Figure 3.3 Digestion with NdeI enzyme revealed bands indicative of Lineage I (320 bp and 410 bp); single 
bands at 730 bp represent undigested DNA and indicates that such samples are not Lineage I 
L. monocytogenes. The positive control used is L. monocytogenes ATCC 23074 for Lineage I. 

 

Figure 3.4 Digestion with BfoI revealed bands indicative of Lineage II (178 bp, 274 bp and 278 bp); single 
band at 730 bp represent undigested DNA; bands at 455 bp and 274 bp represent non-Lineage II 
L. monocytogenes isolates. 

The Bsh12851 enzyme digested only the reference isolate (L. monocytogenes, ATCC 19114, 

serotype 4a), indicating that Lineage III was not present in any of the sample isolates. This is a 

somewhat expected result since L. monocytogenes from Lineage III are mostly isolated from 

ruminants, and are rarely found in food or human clinical cases (Wiedmann et al., 1997; Jeffers et 

al., 2001; De Jesús & Whiting, 2003; Sauders et al., 2004; Ward et al., 2008; Orsi et al., 2010; 

Tamburro et al., 2010; Leong et al., 2017). Prior studies have noted that Lineage III isolates have 

decreased virulence due to the lack of a virulent gene belonging to the internalin family (Liu et 

al., 2006). These isolates are also more sensitive to thermal processing (Jeffers et al., 2001; De 
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Jesús & Whiting, 2003), providing an explanation on why this lineage is rarely isolated from food, 

the food processing environment, or human listeriosis cases.  

All isolates were subjected to the PCR-RFLP method with results noted below. Of the five 

categories, Lineage I made up a significantly larger fraction of the Clinical (n=20, 97%, p<0.001) 

and Raw seafood (n=59, 95%, p<0.001) categories (Figure 3.5). The other three categories did 

not have significantly different fractions between Lineages I and II (Environmental: n=31, Lineage 

I=61%, Lineage II=39%, p=0.281; Raw meats: n=31, Lineage I=58%, Lineage II=42%, p=0.473; 

Ready-to-eat: n=34, Lineage I=53%, Lineage II=47%, p=0.864). In other words, Lineage I is highly 

characteristic of Raw seafood and Clinical samples, whereas no discernible pattern emerged for 

any of the other categories, and both lineages thus occur in similar proportions in these groups. 

Refer to Addendum A for a complete table with isolates, positive PCR results, and lineage 

grouping.  

 

Figure 3.5 Distribution of lineage groups among isolates from different categories of origin indicated a 
significant association of Lineage I isolates with Clinical and Raw Seafood categories. 

3.4.4. Lineage assemblage in subcategories  

The categories Environmental, Ready-to-eat, and Raw foods, were further subdivided and 

investigated for patterns of lineage assemblage. In the Environmental category (Figure 3.6) it was 

found that isolates obtained from a factory worker’s hand (n=1), floor (n=3), and surface (n=3) 
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were exclusively made up of Lineage II (although caution should be used in the interpretation of 

these categories due to the low number of samples for each). However, the opposite was observed 

for drain (n=11) and equipment (n=9) samples where Lineage I made up a large fraction of 

samples (91% and 78%, respectively), which correlates with other studies (Hoelzer et al., 2011; 

Ackermann, 2017; Smith et al., 2019a). The results are somewhat similar to findings of Hoelzer et 

al. that Lineage I isolates associated significantly with surfaces such as floors and drains, whereas 

Lineage II isolates associated with surfaces that frequently come in contact with food. 

 

Figure 3.6 Distribution of lineage groups among different subcategories of Environmental isolates  

For the Raw meats category it was found that Lineage II was exclusively associated with Pork 

(Figure 3.7). This is consistent with other reports finding Lineage II to be dominant among 

L. monocytogenes isolates from pork origin (Zoz et al., 2017; Zuber et al., 2019). However, as 

mentioned previously caution should be used when interpreting results of low sample size.  

Although the information is invaluable, the specific patterns might not necessarily be 

generalizable. Furthermore, opposite trends were observed between beef and chicken, where the 

former was primarily characterised by Lineage II (n=4, 75%) and the latter by Lineage I (n=10, 

70%). The high occurrence of Lineage I in raw chicken isolates share some similarities with 

findings elsewhere (Zhang et al., 2007; Fallah et al., 2012). However, these findings do differ from 

others who found mostly Lineage II isolates from poultry (Fox et al., 2012; Wang et al., 2013; 
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Oliveira et al., 2018; Carvalho et al., 2019). In agreement with our study, L. monocytogenes isolates 

from meat products have been previously associated with Lineage II (serotypes 1/2a and 1/2c) 

(Gilot & Genicot, 1996; Gianfranceschi et al., 2009; Wang et al., 2013). However Fox et al. (2012) 

found a higher incidence of serotype 4b (Lineage I) in beef isolates, while a study in France found 

an equal distribution of Lineage I and Lineage II isolates among L. monocytogenes in beef (Zoz et 

al., 2017). Thus, there are inconsistent patterns in general for Raw meats isolates. The unknown 

category may possibly include a mixture of isolates from beef, pork, and chicken, thus explaining 

why there is a representation of both lineage groups as seen here. 

 

Figure 3.7 In the subcategories of Raw meats, it was found that Lineage II was exclusively associated with 
Pork. 

Lineage II made up the larger portion for polony (n=5, 80%), and Lineage I for fresh produce (n=5, 

80%). More or less equal lineage proportions were found for the deli meat (n=6, Lineage I=50%, 

Lineage II=50%) and hummus categories (n=15, Lineage I=47%, Lineage II=53%), while the 

single sample obtained for dairy was of Lineage I.  
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Figure 3.8 In the Ready-to-eat subcategories, Lineage II made up a larger portion for polony and Lineage I 
for fresh produce. 

Lineage I and Lineage II isolates are usually more or less equally distributed among Ready-to-eat 

foods such as smoked fish, deli meats, and salads (Sauders et al., 2004; Chen et al., 2006; Shen et 

al., 2006; Gianfranceschi et al., 2009; Kramarenko et al., 2013). However, contrasting trends have 

been observed where isolates from deli meat are either almost exclusively from Lineage II (Zuber 

et al., 2019), or predominantly from Lineage I (Martins et al., 2011). The overrepresentation of 

Lineage I isolates in fresh produce in this study agrees with other findings in South Africa, where 

isolates from carrot, coleslaw, and spring onions belonged to Lineage I (Rip & Gouws, in press). 

Additionally, studies outside the South African setting have also confirmed the presence of 

Lineage I isolates in fresh produce (Meloni et al., 2009; Smith et al., 2019a). It is unfortunate that 

there was only one isolate originating from dairy, but the fact that is was Lineage I is still useful. 

Past dairy-related outbreaks in the United States revealed that between 1985 and 2006, Lineage 

I isolates (either serotype 4b or 1/2b) were responsible for the majority of invasive and non-

invasive listeriosis (Melo et al., 2015), which is not surprising considering that Lineage I isolates 

have been dominant in diary plants (Miettinen et al., 1999; Barancelli et al., 2014).  
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3.4.5. Prevalence of Lineage I isolates in human listeriosis cases 

We expected that most, if not all, clinical isolates would be classified under Lineage I, since isolates 

from this lineage are usually associated with human listeriosis cases and outbreaks around the 

world (Aureli et al., 2000; Jeffers et al., 2001; Kathariou, 2002; Mclauchlin et al., 2004; Orsi et al., 

2010), and since the clinical L. monocytogenes isolates in this study were obtained from patients 

that were infected during the SA listeriosis outbreak period (2017-18). About 91% of 

L. monocytogenes isolates from the SA 2017-18 listeriosis outbreak were of sequence type 6 

(serotype 4b, Lineage I) (Smith et al., 2019b), which corroborates the results of this study since 

all but one isolate belonged to Lineage I. This sequence type was also associated with two other 

outbreaks, namely one associated with cheese in the United States in 2013 (CDC, 2019) and the 

other with contaminated meat pâté in Switzerland in 2016 (Denise et al., 2017). Serotype 4b 

(Lineage I) not only increases in virulence when exposed to colder temperatures (Orsi et al., 

2010), but can also rapidly adapt to grow and proliferate at human body temperature  (Buncic et 

al., 2001). This explains why they are better able to cause disease and are more frequently 

isolated from human listeriosis cases than L. monocytogenes isolates from Lineage II (Ribeiro & 

Destro, 2014). Only a single clinical isolate (CLM06) in this study belonged to Lineage II 

(Addendum A). However, the pattern is not always as clear. For example, clinical 

L. monocytogenes isolates collected in Belgium were mainly classified as Lineage I (64.2%) (Gilot 

and Genicot, 1996). This somewhat equal distribution of lineages among clinical isolates was also 

observed in Spain, where clinical isolates from invasive listeriosis were from both Lineage I 

(58.8%) and Lineage II (41.2%) (Ariza-Miguel et al., 2006). In contrast,  in Ireland, Lineage II was 

slightly more prevalent than Lineage I (65% vs. 35% respectively) (Fox et al., 2012). Thus, unlike 

in the United States and South Africa where Lineage I appears to be dominant in clinical settings, 

both lineages seem to co-dominate in outbreaks in Europe and surrounds (Orsi et al., 2010; 

Lukinmaa et al., 2013), indicating a geographical lineage bias for L. monocytogenes in clinical 

settings.  

3.4.6. Lineage I significantly associates with Raw seafood as opposed to Raw 

meats 

The finding of dominant Lineage I isolates from raw seafood mirrors those of previous studies 

(Weagant et al., 1988; Laciar & De Centorbi, 2002; Sauders et al., 2004; Shen et al., 2006; Chen et 

al., 2010b; Momtaz & Yadollahi, 2013; Wang et al., 2013; Montero et al., 2015). Lineage I strains 

are better adapted to tolerate osmotic stress (Walecka-Zacharska et al., 2013; Ribeiro & Destro, 

2014) and in seafood, have increased ability to form biofilms (Djordjevic et al., 2002; Takahasi et 

al., 2009). The ability of L. monocytogenes to withstand moderately high salt levels and freezing 
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temperatures, the fact that seafood is often stored at refrigeration temperatures and consumed 

with no prior cooking, and the high number of Lineage I isolates (higher mortality rate) associated 

with seafood, makes raw seafood a potential high risk food for the consumer (Hartemink and 

Georgsson, 1991; Embarek, 1994; Walecka-Zacharska et al., 2013; Jami et al., 2014). 

3.4.7. Listeria monocytogenes lineage assemblage in the Ready-to-eat category 

A high representation of Lineage I isolates in the Ready-to-eat category was expected since RTE 

foods are one of the main sources for infection with L. monocytogenes (Sauders et al., 2004; 

Maćkiw et al., 2016; Buchanan et al., 2017; Gruyter et al., 2018; Smith et al., 2019a). There are 

conflicting views on the predominance of certain lineage groups in RTE foods. Some studies 

suggest a higher association of Lineage II (serotype 1/2a) with RTE foods and the meat processing 

industry (Zhang et al., 2007; Gianfranceschi et al., 2009). However,  recent studies demonstrated 

the opposite, showing Lineage I serotypes (4b and 1/2b) to be the most prevalent in various RTE 

foods, namely cooked retail RTE foods (Chen et al., 2014), milk and RTE milk products (Aurora et 

al., 2009), and RTE meat products (Zhang et al., 2007; Meloni et al., 2009). 

The prevalence of Lineage II isolates among the polony samples was unexpected. Polony 

(a locally made processed meat product) was implicated as the source of the 2017-18 listeriosis 

outbreak in South Africa, with the implicated strain belonging to Lineage I. This implicated strain 

was isolated from the polony producing facility, as well as from other food products in the facility. 

Our Ready-to-eat samples included five polony isolates, yet only one of them was classified as 

Lineage I. This result could be due the polony being contaminated with an isolate other than 

Lineage I, due to post-process handling. 

The presence of Lineage I L. monocytogenes isolates from fresh produce is especially 

worrisome, as these products are often used in salads or other dishes that will be refrigerated for 

long periods of time, giving the bacteria opportunity to proliferate (Aparecida De Oliveira et al., 

2010). The exact source of L. monocytogenes on fresh produce is not yet known, i.e. whether 

contamination occurs on farm level or during post processing. However, it has been 

demonstrated that Lineage I isolates associated significantly more with natural environments 

such as pastures and uncultivated fields, compared to Lineage II isolates (Weis & Seeliger, 1975). 

For dairy products it is generally accepted that contamination occurs post-processing. This is 

because dairy products undergo pasteurization which effectively eliminates L. monocytogenes. 

The presence of L. monocytogenes on dairy products are due to post-processing contamination, 

often transferred from equipment, or even contamination by the end consumer (Autio et al., 2000; 

Sauders et al., 2004). This is a generally accepted theory for the contamination of most RTE foods 

(Tompkin, 2002). The prevalence of Lineage I isolates in RTE products is problematic, as serotype 
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4b (Lineage I) is frequently associated with human listeriosis outbreaks (Borucki et al., 2003; 

Jadhav et al., 2012; Hyden et al., 2016). Packaged RTE products are most likely to be consumed 

without further heating and are also stored at refrigeration temperatures, which increases the 

likelihood of L. monocytogenes growing to high numbers and thus leading to infection (Barancelli 

et al., 2014).  

3.4.8. Listeria monocytogenes in the food processing environment 

Listeria monocytogenes is commonly associated with the food processing environment, 

particularly drains, floors, and processing equipment (El-shenawy, 1998). Contamination is often 

attributed to incoming raw material, movement of personnel, and ineffective cleaning procedures 

(El-shenawy, 1998; Tompkin, 2002; Carpentier & Cerf, 2011; Fallah et al., 2013; Ferreira et al., 

2014). Moreover, complete eradication of L. monocytogenes from the food processing 

environment is difficult and the bacteria can persist due to the formation of biofilms, tolerance to 

chemical sanitizers, or even genes conferring a selective advantage for its survival (Jami et al., 

2014; NicAogáin & O’Byrne, 2016; Buchanan et al., 2017; Muhterem-uyar et al., 2018). Isolates 

from Lineage II possess certain genes that enable better adaptation and survival of the stressful 

conditions in the food processing environment (Chen et al., 2006; Mullapudi et al., 2008; Hoelzer 

et al., 2011). This could possibly explain why Lineage II isolates are more frequently found on 

food contact surfaces, compared to Lineage I. In this study, the similar distribution of Lineage I 

and II isolates within the environment could be due to the diverse routes of contamination. For 

example, raw material entering the processing facility as well as the movement of personnel in 

and out of the facility (NicAogáin & O’Byrne, 2016). Improper staff hygiene and their movement 

within the food processing facility can consequently aid the spread of L. monocytogenes (El-

shenawy, 1998; Fallah et al., 2013; Gruyter et al., 2018). Therefore, a proactive approach should 

be taken, with the focus on the hygienic design of the processing facility, educating personnel on 

food safety and associated risks, and effective monitoring and implementation of cleaning and 

sanitation procedures (Jami et al., 2014). The presence of L. monocytogenes in factory drains is 

often seen as a consequence of contamination elsewhere in the factory (El-shenawy, 1998; 

Gruyter et al., 2018).,  The association of Lineage I with the drain isolates in this study is thus a 

risk factor for the consumer and the food processing staff to contract listeriosis. 

3.4.9. General lineage associations 

The distribution of L. monocytogenes lineages can be influenced by environmental stresses. For 

example, there are differences in how lineage groups of L. monocytogenes are associated with 

different origins and how they behave under stressful conditions (as experienced in the food 
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processing environment), which in turn, influences their pathogenicity (Wiedmann et al., 1997; 

Ward et al., 2004; Hoelzer et al., 2011; Manuel et al., 2015; NicAogáin & O’Byrne, 2016). Various 

reasons have been proposed for this phenomenon. Strains of L. monocytogenes might enter the 

food processing facility by different routes (i.e. human versus raw material) which could explain 

a more common occurrence of one lineage over another (Hoelzer et al., 2011). Temperature also 

seems to influence the prevalence of a specific lineage (Orsi et al., 2010). For example, after cold 

storage at 4°C, L. monocytogenes serotype 4b isolates, as a group, tend to be more resistant to heat 

treatment at 60°C than 1/2a isolates (Buncic et al., 2001). The genetic makeup of 

L. monocytogenes may also play a role in lineage distribution. The fact that 4b serotypes 

(Lineage I) are less likely to possess genes that confer resistance to sanitizers (Mullapudi et al., 

2008) is a potential reason why Lineage I isolates have less frequently been isolated from the food 

processing environment (Mullapudi et al., 2008). Isolates from Lineage II are also more prone to 

recombination, enabling further adaptation to food processing environments (Lomonaco et al., 

2015), which could account for their frequency in these environments (Zuber et al., 2019).  

The dominant occurrence of one lineage group over another may also be influenced by 

the ability to form biofilms. While biofilm formation in seafood seems to be higher among Lineage 

I isolates (Takahasi et al., 2009), Lineage II isolates produce biofilms with higher density than 

those of Lineage I (Pan et al., 2009; Nilsson et al., 2011; Combrouse et al., 2013). The growth 

medium and nutrient availability has an influence on biofilm formation, and can thus likely 

influence the prevalence of one lineage over the other (Borucki et al., 2003; Takahasi et al., 2009; 

Reis-Teixeira et al., 2017). Due to the overrepresentation of Lineage II isolates in food products 

and the processing environment, it has been suggested that a phenomenon known as “enrichment 

bias” exists. It proposes that Lineage I isolates are more sensitive to certain enrichment protocols 

than Lineage II isolates, making it possible to underestimate the presence of the former 

(Kathariou, 2002; Bruhn et al., 2005). However this enrichment bias seems to be medium 

dependent, and is influenced by the nutrients in the medium rather than being lineage dependent 

(Gorski et al., 2006). Lineage II isolates are able to better adapt to environmental conditions, thus 

the reason why they are more frequently isolated from food processing environments, as opposed 

to Lineage I (Orsi et al., 2010). Nevertheless, due to the high number of Lineage I isolates, it is 

unlikely that enrichment bias played a role in this study.  

The dominance of Lineage I in categories other than Clinical is surprising as it disagrees 

with the majority of studies involving the distribution of L. monocytogenes serotypes in food and 

the food processing environment. Most researchers agree that Lineage II serotypes (1/2a and 

1/2c) are overrepresented in food isolates (Swaminathan & Gerner-Smidt, 2007; Nightingale et 

al., 2008; Gianfranceschi et al., 2009; Orsi et al., 2010; Manuel et al., 2015), so it is uncharacteristic 
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that such a high number of Lineage I isolates were found in this study. It also contradicts findings 

in Italy (Gianfranceschi et al., 2009) where the majority of isolates from food, environmental, and 

clinical origin belonged to Lineage II. Lineage I is known to carry a higher risk of human listeriosis 

(Rasmussen et al., 1995; Wiedmann et al., 1997; Orsi et al., 2010) and it is estimated that Lineage 

I isolates are 100 times more likely to cause listeriosis than Lineage II isolates (Chen et al., 2006). 

The collection of isolates during the outbreak period could be the reason for the dominance of 

Lineage I isolates across all categories; alternatively, it could be non-outbreak related strains, 

which can be confirmed using certain genotyping techniques, including but not limited to whole 

genome sequencing. The prevalence of Lineage I in all categories examined in this study is 

potentially worrisome, as stress factors encountered in the food environment could influence 

L. monocytogenes' ability to better survive within the human host and subsequently be more 

likely to cause disease.  

3.5. Conclusion 

The main aim of this chapter was to establish the lineage group assemblage among isolates from 

different origins in the Western Cape, South Africa. This study showed an overrepresentation of 

Lineage I in the Clinical samples (as expected), but even more concerning, a large fraction of 

Lineage I isolates in the Environmental, Raw meats, Raw seafood, and Ready-to-eat categories. 

Lineage I isolates are associated with a lower infectious dose (i.e. less bacteria are needed to cause 

listeriosis) and therefore pose a greater public health risk (Chen et al., 2006), It is therefore 

imperative that future studies establish why Lineage I isolates are more prevalent in the South 

African food environment. However, due to the risk associated with RTE foods and the high 

number of Lineage II isolates on these products, the importance of isolates from this lineage 

should not be discounted. 

The presence of L. monocytogenes in the food production environment and associated 

foods is of growing concern. Information on L. monocytogenes in South Africa is lacking, with most 

research articles published during 2018, i.e. after the SA 2017-18 listeriosis outbreak (Boatemaa 

et al., 2019). Our findings differ from a majority of studies that find Lineage I to be mostly 

associated with human listeriosis and Lineage II to be more frequently associated with foods 

(Sauders et al., 2004). Unlike other food pathogens (e.g. Salmonella), a clear association between 

different food types and L. monocytogenes lineage groups has not yet been found (Norrung & 

Skovgaard, 1993; Boerlin et al., 1997; Sauders et al., 2004; Ebner et al., 2015). In order to establish 

whether there is an actual association between different categories and L. monocytogenes lineage 

groups, continued research is necessary within South Africa, with a specific focus on L. 

monocytogenes isolates from food, clinical, and environmental origin. This study provides insight 
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into the distribution of the different lineages across a range of food categories, especially in the 

South African setting. A long-term study may offer valuable insight into whether the same 

proportion of L. monocytogenes lineages continue to exist in these categories. Additionally, it 

would be interesting to follow up this study with new post-outbreak isolates to determine if 

Lineage I still dominates in certain categories of origin. Furthermore, specific focus should be 

placed on resistance genes to elucidate whether, for example, resistance to sanitizers influence 

the prevalence of certain lineages (e.g. Lineage I). Finally, this study did not address the further 

subdivision of lineage groups into serotypes, and future studies should aim to resolve such finer 

classifications. 

  

Stellenbosch University https://scholar.sun.ac.za



49 

 

Chapter 4  

Susceptibility of Listeria monocytogenes isolates from food, 

environmental, and clinical origin in South Africa to a 

commercial bacteriophage P100  

4.1. Abstract 

Controlling L. monocytogenes in the food processing environment is difficult at best and an 

ongoing struggle. Therefore, novel methods are continuously being sought to control the 

bacterium and to reduce, or preferably avoid, the risk of food contamination. One such novel 

control method concerns the use of bacteriophages, a group of microorganisms that have long 

been known, but which have only recently started to generate interest. The interest in 

bacteriophage treatment as an alternative control method is in part due to L. monocytogenes 

becoming increasingly resistant towards currently implemented control methods. Thus, the aim 

of this study was to determine the susceptibility of L. monocytogenes isolates from various origins, 

such as food, environmental, and clinical against a commercial bacteriophage (ListexTM P100). 

Firstly, bacteriophage susceptibility tests were conducted on the L. monocytogenes isolates by 

means of spot tests. Secondly, lineage group data was compared with susceptibility results to 

determine whether or not lineage classifications influenced the susceptibly of the L. 

monocytogenes towards the bacteriophage. The L. monocytogenes isolates obtained from Clinical, 

Environmental, Raw meats, and Raw Seafood were significantly susceptible to phage activity. 

However, a large fraction of isolates in the Ready-to-eat category were tolerant to the phage, 

which is in disagreement with the finding of others. Additionally, both lineage groups were 

significantly susceptible to phage activity when considering all categories combined, and lineage 

groups did not significantly influence phage susceptibility. 

4.2. Introduction 

Listeria monocytogenes is one of the biggest foodborne pathogens in the food industry. Being a 

psychrotrophic bacterium, it has the ability to actively grow at refrigeration temperatures 

(Forsythe, 2010; Montville et al., 2012), and together with this also has the ability to tolerate high 

salt concentrations (Lamont & Sobel, 2011). Its ubiquitous nature in the environment and 

tendency to form biofilms on various surfaces in the food processing industry (e.g. stainless steel 

workbenches) makes it nearly impossible to completely eradicate from the food processing 

environment (Todd & Notermans, 2011; Buchanan et al., 2017; Chen et al., 2017). This is a 
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challenging aspect for food industries in terms of keeping food products free from contamination 

by L. monocytogenes, seeing that virtually all such products come into contact with such 

contaminated surfaces at some stage during production. This can be especially problematic in 

ready-to-eat foods (RTE), since these products do not undergo further sterilization treatment 

once they are packaged, thus leaving them highly vulnerable to contamination by 

L. monocytogenes derived from workplace surfaces (Forsythe, 2010). Furthermore, not only are 

consumers demanding a larger variety of RTE foods, they also want increased shelf lives for these 

products (Swaminathan & Gerner-Smidt, 2007; Montville et al., 2012). Therefore, the steady 

increase in the production of RTE foods that are distributed regionally and nationally, has led to 

a higher prevalence of food pathogens such as L. monocytogenes (Muñoz et al., 2012).  

Foods that have often been implicated with the presence of L. monocytogenes are meat 

products (especially delicatessen meats), fish and seafood products, and dairy products (such as 

soft cheeses) (Vázquez-boland et al., 2001b; Swaminathan and Gerner-Smidt, 2007; Forsythe, 

2010; Montville et al., 2012; Buchanan et al., 2017). Likewise, RTE fruits and vegetables, similar 

to many other RTE products, can easily be contaminated with L. monocytogenes due to the 

minimal processing that these products undergo (e.g. no heat treatment) (Vasconcelos et al., 

2016). Due to the difficulty in controlling L. monocytogenes in food processing environments, a 

proactive approach needs to be taken in preventing food contamination, as well as generally 

reducing the overall microbial load in these environments (Buchanan et al., 2017). Such proactive 

approaches include the use of disinfectants and standard sterilization procedures. However, the 

fact that these biocides are becoming increasingly ineffective at controlling L. monocytogenes has 

led researchers to start investigating other control measures, such as bacteriophage biocontrol.  

Bacteriophages are viruses with the ability to infect and lyse bacterial cells. They are 

ubiquitous in nature and are consumed unknowingly on a regular basis (EFSA, 2009; García et al., 

2010; Mahony et al., 2011). Bacteriophages are therefore assumed to be safe for consumption, 

with no adverse effects having ever been reported (Carlton et al., 2005; Hagens & Offerhaus, 2008; 

EFSA, 2009; Mahony et al., 2011; Komora et al., 2018). Bacteriophages are highly host-specific, 

meaning that they can infect and lyse only one species of bacteria, while having no effect on others 

(Hagens & Offerhaus, 2008; Guenther et al., 2009; Moye et al., 2018). This specificity is especially 

valuable for the treatment of fermented foods where the natural microflora should not be 

destroyed in order to maintain product quality (Carlton et al., 2005; Hagens & Offerhaus, 2008; 

Guenther et al., 2009). Although this host specificity can be very useful for the food industry, the 

application of such bacteriophages for targeting pathogenic bacteria in food processing facilities 

is still relatively new, even though the concept of using bacteriophages to treat or prevent 

bacterial infections has been around for a long time, having even preceded the discovery of 
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antibiotics (Sulakvelidze & Alavidze, 2001). However, the high usage levels of antibiotics in the 

United States and Western Europe for controlling pathogenic microorganisms long 

overshadowed the usefulness of bacteriophage therapy as a treatment, almost causing it to be 

forgotten. But the threat of increasing antibiotic resistance in many microorganisms has recently 

forced researchers to start investigating alternative methods to control pathogenic 

microorganisms, which has led to a revived interest in the use of bacteriophage therapy for 

controlling such pathogenic microorganisms (Mylonakis et al., 2002; Chen et al., 2010a; Rahimi 

et al., 2010; Lamont & Sobel, 2011; Mahony et al., 2011; Maćkiw et al., 2016; Noll et al., 2018). 

Bacteriophages can have either a lytic or lysogenic lifecycle (Figure 4.1), with the former 

leading to lysis of bacterial cells. In the lysogenic cycle, phages incorporate their own DNA into a 

host’s chromosome, forming prophages (García et al., 2010). This enables the phages to pass on 

virulent genes, leading to bacterial strains with higher pathogenic potential (García et al., 2010; 

Fortier and Sekulovic, 2013; Moye et al., 2018). Lysogenic (or temperate) phages are thus not 

used in the food industry (Hagens & Offerhaus, 2008; Hagens and Loessner, 2010; Klumpp et al., 

2013), and will not be discussed further in this chapter. In the lytic (or virulent) cycle, the 

bacteriophage recognizes and attaches to the bacterial host cell wall, penetrates the cell wall by 

means of tail associated proteins, and secretes its nucleic acid into the cytoplasm of the host 

(Hagens & Offerhaus, 2008; EFSA, 2009; Shen et al., 2017). Phages from the Myrovidae family (e.g. 

P100) make use of two different receptors on the host cell, namely wall teichoic acids (WTAs), 

and sugars in the peptidoglycan layer.  

 

Figure 4.1 The simplified life cycle of a lytic (virulent) bacteriophage leads to lysis of the host cell. 

Several studies on the efficacy of bacteriophages have shown them to be useful at controlling L. 

monocytogenes in the food production industry (Guenther et al., 2009; García et al., 2010; Moye 

et al., 2018). For example, commercial bacteriophages (such as A511 and ListexTM P100) are 

effective on an assortment of food products, which include: dairy products, such as cheese and 

chocolate milk (Carlton et al., 2005; Guenther et al., 2009); RTE foods (Guenther et al., 2009; 
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Cláudia et al., 2017); raw seafood (Soni & Nannapaneni, 2010b; Soni et al., 2010); poultry and 

fresh produce (Leverentz et al., 2003; Oliveira et al., 2014; Perera et al., 2015). The commercial 

P100 phage preparation, Listex™ P100, has been approved by the Food and Drug Administration 

and is also currently used in the United States, Canada, and Switzerland (Aprea et al., 2018). Phage 

P100 has a broad host range within the Listeria genus, being able to target and successfully infect 

approximately 95% of Listeria species, including L. ivanovii, L. innocua, and L. monocytogenes 

(specifically serogroups 1/2 and 4) (Carlton et al., 2005; Hagens & Loessner, 2007; Guenther et 

al., 2009). Serotypes often differ in how they respond to sanitizers or in their ability to form 

biofilms, but there has been little research on whether bacteriophages have better efficacy against 

strains of a certain serotype or lineage group.  

Because bacteriophage treatment in the food industry is still relatively new, little is still 

known about the bacterial host’s resistance mechanisms or the possible occurrence of phage 

resistant bacteria in the processing environment (Fister et al., 2016). Phage resistance should 

thus not be excluded as a possibility (Guenther et al., 2009; Fister et al., 2016; Moye et al., 2018). 

It should also be noted that, concerning disinfectants and sanitizers used in the food industry, the 

term “resistance” is somewhat loosely defined. Resistance can either be phenotypic (e.g. colony 

growth) or genotypic (expression of certain genes that facilitate resistance) (Cerf et al., 2010). It 

is therefore suggested that the term “susceptibility” be used when studying bacteriophages in 

order to distinguish between resistance types (Cerf et al., 2010), and such terminology is followed 

throughout this text. Unlike antibiotic susceptibility testing, there is great variation in tests within 

bacteriophage research. A soft agar overlay method is typically employed for the isolation and 

quantification of phages after reduction of the bacterial host (Soni et al., 2010). The spot tests 

method (also known as spot-on-lawn or spot assay) is recommended to test whether a phage 

mixture of known concentration shows activity against the bacterial host (Hyman & Abedon, 

2010; Hyman, 2019).  

To the author’s best knowledge, not much information has yet been generated on the use 

of bacteriophages in South Africa. Only one study specifically investigated the susceptibility of 

L. monocytogenes isolates from foods and the food processing environment (Strydom, 2015). 

Therefore, the main aim of this study was to determine the susceptibility of L. monocytogenes 

isolates from various origins, such as food, environmental, and clinical (all from the Western Cape, 

South Africa), against a commercial bacteriophage (ListexTM P100). The first objective was to 

determine whether or not isolates from specific origins varied in their susceptibility towards the 

commercial bacteriophage, and secondly to determine whether or not lineage classifications 

influenced the susceptibly of the L. monocytogenes towards the bacteriophage. 
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4.3. Materials and Methods 

4.3.1. Sample collection and storage 

Refer to Chapter 3 for detailed information regarding sample numbers, collection, and exact 

methods followed for lineage classification, and Addendum A for additional sample information 

and classification results. Briefly, all isolates were cultured and only those that were confirmed 

positive for hlyA gene amplification by means of polymerase chain reaction (PCR) and classified 

into lineage groups by restriction fragment length polymorphism (RFLP), were subsequently 

included for bacteriophage susceptibility tests. For the remainder of the chapter, “Ready-to-eat” 

refers specifically to one of the main categories in this study, whereas “RTE” refers to ready-to-

eat foods in general. 

4.3.2. Method optimization 

As phage P100 is already a purified phage mixture, the decision was made to proceed with the 

spot test method. With this technique, a bacterial lawn is first grown on a petri dish, with 

subsequent addition of small drops of phage dilutions. If phages are able to adsorb to and kill the 

bacteria, a zone of clearance will appear after incubation.  

Prior to conducting phage susceptibility tests by means of a spot test, a series of 

optimization tests were performed. This was due to the variation of test methods found in 

literature. Firstly, two liquid media (used to dilute bacteriophage solution) were tested, namely 

distilled water and 0.85% saline solution (Oxoid, ThermoFischer Scientific) (Soni et al., 2010; 

Rossi et al., 2011; Chibeu et al., 2013; Nóbrega et al., 2014; Strydom & Witthuhn, 2015). Different 

concentrations of phage solution (original concentration 1011 PFU/mL) were also tested, that is 

109 PFU/mL, 108 PFU/mL, 107 PFU/mL, and 106 PFU/mL (Leverentz et al., 2004; Carlton et al., 

2005; Rossi et al., 2011; Strydom & Witthuhn, 2015). These concentrations were chosen since the 

recommended phage concentration for application on a food product is 108 PFU/cm2 (Leverentz 

et al., 2004; Guenther et al., 2009; Guenther & Loessner, 2011), not exceeding 109 PFU/cm2 which 

is the maximum allowable amount to be used on foods (Moye et al., 2018). Log-phase L. 

monocytogenes cultures were used (OD600=0.6) and diluted to a final concentration of 107 

CFU/mL. Following the optimization test results (Table 4.1), a 0.85% saline solution was used to 

dilute the phage stock to a final concentration of 109 PFU/mL, since this combination was optimal 

for visualizing phage susceptibility.  
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Table 4.1 Optimizations tests showed a 0.85% saline solution used to dilute the phage to a 
concentration of 109 PFU/mL to be the most likely combination to confirm phage susceptibility. “Y” 
indicates zone of lysis; “-“ indicates no zones of lysis 
 

Distilled water Saline solution (0.85%)  
109 108 107 106 109 108 107 106 

Sample 1 Y - - - Y - - - 

Sample 2 - - - - - - - - 

Sample 3 Y Y - - Y Y Y Y 

Sample 4 Y Y - - Y Y - - 

Sample 5 Y - - - Y - - - 

Sample 6 Y Y Y Y Y Y Y Y 

Negative control - - - - - - - - 

4.3.3. Bacteriophage susceptibility tests 

Bacteriophage activity was tested by using the spot test method (Figure 4.2) (Loessner & Busse, 

1990; Hyman & Abedon, 2010; Denes et al., 2015; Khan Mirzaei & Nilsson, 2015; Estela et al., 

2016). Bacterial colonies (grown overnight at 37°C) were resuspended from tryptic soy agar 

(TSA) plates into 5 mL brain heart infusion (BHI) broth (Oxoid, ThermoFischer Scientific) and 

grown for 3 h at 37°C, to obtain log-phase growth (OD600=0.6) and was further diluted with BHI 

to obtain 107 CFU/mL. A log-phase culture was used as it is more favourable for phage attachment 

than stationary growth (Krueger & Fong, 1937; Braun et al., 2006). Cells in stationary growth are 

often smaller in size, decreasing the likelihood of being encountered by the bacteriophage. Longer 

incubations can also lead to possible gene mutations that confer a competitive advantage to the 

bacterial cell, leading to false negatives (Braun et al., 2006). A lawn of bacteria was grown by 

aliquoting 100 µL of the diluted, log-phase bacterial culture on a petri dish and employing the 

spread plate technique. The bacterial lawn was dried for approximately 30 min at room 

temperature before the bacteriophage solution (ListexTM P100) was applied. Ten µL of phage 

(diluted with 0.85% saline solution to obtain a final phage concentration of 109 PFU/mL) was 

dropped on each plate. The negative control was 10 µL of phage-free 0.85% saline solution. The 

plates were left to dry completely at room temperature before they were incubated for 18 – 20 h 

at 30°C. The plates were incubated at this temperature as susceptibility is most likely to occur at 

30°C as opposed to 37°C (Tokman et al., 2016). After incubation, the plates were inspected to 

determine whether or not a lysis zone (zone of inhibition) had formed. 
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Figure 4.2 Outline of the spot test method used to test susceptibility of L. monocytogenes isolates against 
the bacteriophage P100. Lysis zones indicate isolate is susceptible to phage; if no lysis zones are observed, 
it implies that the isolate is tolerant to the phage. 

For the purpose of the study, the terms “tolerant/tolerance” were used instead of “resistant” and 

refers to the phenotypic “resistance” observed on the bacterial lawn, when no zone of 

lysis/inhibition was present. The terms bacteriophage and phage are used interchangeably.  

4.3.4. Statistical analysis 

All statistical analyses were conducted in the R statistical environment (version 3.5.1) (R Core 

Team, 2017). In order to determine whether or not susceptibility patterns were statistically 

significant, binomial tests for the various categories were conducted. Binomial tests were chosen 

since experimental outcomes were all binary, i.e. isolates were either classified as susceptible or 

tolerant according to the aforementioned methods. Expected probabilities of 0.5 were used in all 

instances, in order to test the null hypothesis that phage effectiveness was equal to 50% (i.e. no 

better than random chance). The binomial tests were performed with the function binom.test 
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from the base package. Furthermore, it was determined whether L. monocytogenes lineage groups 

(Chapter 3) influenced phage susceptibility. For this, a Chi-square test was conducted using the 

function chisq.test and the factors phage susceptibility (susceptible or tolerant) and Lineage (I or 

II).  

4.4. Results and Discussion 

After observing growth on RAPID'L.Mono™ agar (Oxoid), 180 isolates (from food, environment, 

and clinical origin) presented with colonies that were phenotypically positive for 

L. monocytogenes on RAPID'L.Mono™ agar (i.e. light-blue colonies). Of these 180 isolates that 

were subjected to PCR, the hlyA gene was amplified in 177 isolates, thus confirming the identity 

of L. monocytogenes. The three samples for which the hlyA gene could not be amplified (thus 

confirming an identity other than L. monocytogenes) were discarded and not used for further 

analyses. The remaining 177 hlyA-positive isolates were screened for susceptibility against a 

commercial bacteriophage. 

From the bacteriophage susceptibility tests, zones of lysis (Figure 4.3) were observed in 

151 of 177 L. monocytogenes isolates (85%), meaning that 15% of the isolates exhibited tolerance. 

 

Figure 4.3 Zones of lysis (A) indicate susceptibility to phage; lack of lysis zones on the bacterial lawn (B) 
indicates tolerance to phage. 

Listeria monocytogenes was significantly susceptible to phage activity in four of the five categories 

(Figure 4.4): Clinical (n=20, 95% susceptibility, p<0.001), Environmental (n=31, 84% 

susceptibility, p<0.001), Raw meats (n=31, 81% susceptibility, p<0.01), and Raw seafood (n=61, 

97% susceptibility, p<0.001). The results from the Raw seafood isolates is similar to the findings 

of several researchers demonstrating the efficacy of phage P100 on raw seafood (Soni and 

Nannapaneni, 2010b; Soni et al., 2010; Baños et al., 2016). It should be noted however that these 

studies were conducted on the food product itself and not on the pure isolates as in our study. No 
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significant results were observed in susceptibility from the Ready-to-eat category (n=34, 65% 

susceptibility, p=0.121).  

 

Figure 4.4 Susceptibility of L. monocytogenes isolates from different categories to bacteriophage. Isolates 
from all categories except Ready-to-eat were significantly susceptible to the bacteriophage. Significance 
values for phage susceptibility must be interpreted only on a per-category basis. 

The categories Environmental, Ready-to-eat, and Raw foods, were further subdivided and 

investigated for patterns of bacteriophage susceptibility. Subdivision of the Environmental 

category (Figure 4.5) revealed that isolates from factory drains (n=11, 91% susceptibility), 

equipment (n=9, 78% susceptibility), floor (n=3, 67% susceptibility), hand (n=1), and surface 

(n=3, 67% susceptibility) showed susceptibility to phage activity. Although the low sample count 

in the subcategories makes the generalization of patterns difficult, it is possible that differences 

in drain cleaning procedures versus that of food processing equipment may influence L. 

monocytogenes’ ability to adapt its cell wall and thus withstand or be susceptible to phage 

attachment (Cheng et al., 2007; Bielmann et al., 2015).  
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Figure 4.5 Susceptibility of L. monocytogenes isolates from Environmental origin to bacteriophage.  

In the subcategories of the Raw meats isolates, there was a higher rate of tolerance from beef 

isolates (n=4, 50% susceptibility), in comparison to chicken (n=10, 70% susceptibility) and pork 

(n=4, 100% susceptibility). Isolates that were classified as "Unknown" were mostly susceptible, 

however, this is of little value since a finer classification cannot be assigned to the isolates. The 

lack of studies conducted specifically on raw meats such as poultry and beef make it difficult to 

explain the patterns of phage susceptibility observed here. Previous work showed that phages 

did not significantly reduce counts of L. monocytogenes on raw beef stored at 4°C (Dykes & 

Moorhead, 2002), but this was attributed to the low amount of phage used (Hagens & Loessner, 

2010). 
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Figure 4.6 Susceptibility of L. monocytogenes isolates from Raw meats to bacteriophage. 

In the Ready-to-eat category (Figure 4.7), isolates from deli meat were all susceptible to the 

bacteriophage (n=6, 100% susceptibility), which is consistent with findings of phage efficacy 

studies conducted on processed meat products (Guenther et al., 2009; Rossi et al., 2011; Gutiérrez 

et al., 2017). Tolerance was observed in isolates obtained from fresh produce (n=5, 40% 

susceptibility), hummus (n=15, 60% susceptibility), and polony (n=5, 40% susceptibility). 

Although only one dairy isolate was analysed in this study, the use of phages has previously found 

to be effective on cheeses (Carlton et al., 2005; Guenther & Loessner, 2011). Studies on fresh 

produce, however, showed that phage activity differs among fruits types (Leverentz et al., 2003, 

2004; Aparecida De Oliveira et al., 2010), possibly due to differences in pH levels associated with 

the various types. The Ready-to-eat category in this study included L. monocytogenes isolates 

from an assortment of products (hummus, delicatessen meats, dairy, etc.), and such diversity 

could lead to varying results. Spot tests are reported to overestimate the efficacy of a 

bacteriophage due to the presence of produced bacteriocins that can lyse bacteria (Khan Mirzaei 

& Nilsson, 2015). Even with this overestimation, a large number of isolates from the Ready-to-eat 

category were tolerant to the phage and the results from this category were not significant. This 

means that given an isolate from such a category, chances that the phage will be able to destroy 
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the host bacteria is no better than random (about 50%). Given that ListexTM (a commercial phage 

P100 product) has recently been approved for use on RTE foods (Mehmet, 2019), this finding is 

rather worrisome. 

 

Figure 4.7 Susceptibility of L. monocytogenes isolates from Ready-to-eat category to bacteriophage.  

Finally, both lineage groups were significantly susceptible to phage activity when considering all 

categories combined (Lineage I: n=116, 87% susceptibility, p<0.001; Lineage II: n=35, 80% 

susceptibility, p<0.001), and lineage groups did not significantly influence phage susceptibility 

(Figure 4.8) (χ2=1.001, p=0.317). The same pattern of susceptibility was seen when looking at the 

subcategories; in other words, whether or not isolates were susceptible to the phage was not 

dependent on belonging to a specific lineage group. 
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Figure 4.8 Both lineages were equally susceptible to phage activity, when considering main categories (A) 
and subcategories (B) of origin. 

4.4.1. Phage susceptibility of isolates in Clinical category  

All but one isolate in the Clinical category were susceptible to the bacteriophage. These isolates 

were all from Lineage I, while the one isolate that showed tolerance was from Lineage II 

(Addendum A). As there were no associations between lineage groups and susceptibility, this 

result is not necessarily generalizable. However, a number of studies showed serotype 4b 

(Lineage I) to be more susceptible to phages (Kim et al., 2008; Vongkamjan et al., 2012). Currently, 

listeriosis is not treated with bacteriophages; however, bacteriophages are used to treat diseases 

such as bacterial dysentery, salmonellosis, and cerebrospinal meningitis. Studies have also shown 

that oral administration of phages are effective in reducing Escherichia coli (Bruttin & Bru, 2005) 

and L. monocytogenes intestinally (Mai et al., 2010). It should be emphasised that testing phage 
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efficacy as therapeutic treatment against L. monocytogenes was not an aim in this study. However, 

although phage P100 was developed for use in the food processing industry and thus direct food 

application, it is nevertheless useful to investigate phage efficacy on isolates from clinical origin. 

This could give researchers insight as to how the bacterium adapts, and if different environmental 

pressures (e.g. the human host versus the food processing factory) causes L. monocytogenes to 

develop different resistant mechanisms. Thus, phage therapy as a treatment against L. 

monocytogenes in clinical settings remains a useful avenue for future research. 

4.4.2. Association of Listeria monocytogenes lineage groups with phage 

susceptibility 

We found no association between lineage groups and phage susceptibility. Phages need to 

recognize certain sugars on the WTAs of bacteria for successful attachment (Wendlinger et al., 

1996). A bacterial strain can become resistant if cell wall modifications (caused by environmental 

stresses) cause the wall sugar conformations to change, making phage attachment impossible, 

and thus prohibiting phage entry (Denes et al., 2015; Fister et al., 2016). Host tolerance can thus 

be gained via gene mutations controlling the addition of WTAs sugars, which lead to the non-

attachment of the phage. Because WTAs determine the antigenic properties of L. monocytogenes 

(i.e. serotype classification) (Seeliger & Langer, 1989), and because sugar additions on WTAs 

determine phage attachment to L. monocytogenes (Eugster et al., 2015; Trudelle et al., 2019), it is 

more likely that an association exists between phage susceptibility and serotype, instead of 

lineage grouping. 

Different L. monocytogenes serotypes differ in their cell wall structures. Phages 

subsequently differentially target serotypes due to such cell wall differences (Denes et al., 2015), 

with serogroup 4 (4a, 4b and 4c) being the most sensitive to phage activity (Hagens et al. (2007). 

Furthermore, serogroup 3 strains mostly display phage resistance (Hagens & Loessner, 2007). 

Although phage P100 targets 95% of Listeria species and specifically serotypes 1/2 and 4 of 

L. monocytogenes (Loessner & Busse, 1990; Carlton et al., 2005), it does not target 

L. monocytogenes serogroup 3. Thus, the possibility of tolerant isolates observed here being 

serotype 3b or 3c (Lineage I) or serotype 3a (Lineage II) cannot be excluded since serotype 3a 

has been linked to an outbreak associated with butter (Lyytikäinen et al., 2002), even though 

serotypes 3a and 3c are generally rare in the food environment and human listeriosis cases (Nho 

et al., 2015). Therefore, additional serotyping on these isolates will be beneficial to better 

determine the reasons for tolerance observed here.  
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4.4.3. Key factors that play a role in phage susceptibility 

Bacteria are continuously adapting to environmental stresses for better survival. As mentioned, 

mutations causing a change in cell wall structure is one such mechanism (Strydom & Witthuhn, 

2015). Even a small structural change can result in non-attachment of the phage (Hyman & 

Abedon, 2010). Furthermore, it is likely that the processing of food products have different effects 

on the growth and adaptation of L. monocytogenes, which in turn influences phage adsorption to 

the cell wall (Cheng et al., 2007; Bielmann et al., 2015). However, phage resistance might not occur 

often due to the exertion experienced by bacteria from cell wall structure modification (Klumpp 

et al., 2013). 

True bacterial resistance to a bacteriophage can be due to mutations within the bacterial 

genome (consequently avoiding phage attachment), whereas transient resistance (or 

“tolerance") can be due to external factors (Hyman & Abedon, 2010). These factors can influence 

phage susceptibility, namely, phage and bacterial host concentration (Leverentz et al., 2004; 

EFSA, 2009), physiological state of the bacterial host, temperature (Tokman et al., 2016), and food 

matrix and composition (EFSA, 2009; Guenther et al., 2009). There are thus numerous ways in 

which bacteria can acquire phage tolerance (Guenther et al., 2009; Fister et al., 2016; Aprea et al., 

2018) 

The efficacy of bacteriophage control depends on the interaction between the phage and 

the target bacterial host. However, each of these microorganisms are influenced by different 

factors that could make efficient removal of the bacterial host less likely. It is important to 

consider the initial bacterial host count and phage concentration (Leverentz et al., 2004; EFSA, 

2009). A phage needs to diffuse into the bacterial cell for successful activity, which therefore 

requires the phage and the host bacteria to be in close proximity for bacterial eradication to occur 

(Hagens & Loessner, 2010). This can pose a challenge in food processing environments and food 

products, where complex surface structures can reduce phage accessibility towards bacteria 

which means bacteria can remain inaccessible. For the initial application of bacteriophages to 

successfully replicate and eradicate bacteria, the phage concentration needs to be high enough 

(Leverentz et al., 2004; Hagens & Offerhaus, 2008; Hagens & Loessner, 2010; Strydom & 

Witthuhn, 2015). In the food industry L. monocytogenes are often only present in low numbers, 

and it is therefore recommended that sufficient amount of phage be used in order to ensure this 

contact between phage and host cell (Klumpp et al., 2013; Strydom & Witthuhn, 2015). Biofilms 

may influence the probability of contact between phage and host. Phage P100 is effective in 

reducing biofilms on stainless steel (Soni & Nannapaneni, 2010a; Montañez-izquierdo et al., 

2012) and polystyrene (Rodríguez-Melcón et al., 2018) surfaces, and although the load of 

bacterial cells in a biofilm might seem easily accessible for the phage, the polymeric substances 
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within a biofilm might impede access to the bacterial host (Hyman & Abedon, 2010). When used 

specifically on foods, phage progeny (phage offspring) might not be able to make effective contact 

with the pathogens contaminating the product, and therefore a higher phage dosage would not 

necessarily lead to improved bacterial reduction (Moye et al., 2018). This is because the food 

matrix influences phage movement (Klumpp et al., 2013). The movement will be hampered in 

solid foods versus that of liquid foods, decreasing the likelihood of interaction between phage and 

host (Guenther et al., 2009; Guenther & Loessner, 2011). Additionally, foods with irregular 

surfaces provide additional spaces that shelter L. monocytogenes, and as a result phage treatment 

has been more successful when used in liquid foods as to when compared to solid foods (EFSA, 

2009; Guenther et al., 2009; Moye et al., 2018). This study was conducted on bacterial isolates 

recovered from food, as opposed to tests conducted on the food product itself (as in many other 

studies), thus the issue with diffusion on the food matrix is eliminated. However, the food product 

type to be treated must be carefully noted to ensure optimal treatment, since different food types 

can significantly impact on treatment efficacy, even when environmental conditions are identical 

(Guenther et al., 2009). This is because the characteristics of the food type, such as the presence 

of acid or microflora (e.g. within cheese), will influence the stability and activity of the phage, 

while the state of the food product to which phage is applied (solid or liquid), will influence phage 

movement. The processing of these food products is also likely to have different effects on the 

growth and adaptation of the host bacterium, which in turn influences phage adsorption to the 

cell wall. The tolerance observed in some of the isolates in this study was likely a result of actual 

genetic difference between strains, since phage efficacy could not have been influenced by food 

types and thus food matrices. 

Phenotypic or transient resistance can be influenced by temperature (temperature-based 

tolerance) (Leverentz et al., 2003; Kim et al., 2008; Kim & Kathariou, 2009; Mahony et al., 2011; 

Tokman et al., 2016). At the bacterium’s optimum growth temperature (37°C), the cell wall has 

less rhamnose (a type of sugar needed for phage attachment) available (Tokman et al., 2016). 

However, there are also instances where strains of L. monocytogenes demonstrate resistance at 

colder temperatures (Kim & Kathariou, 2009; Kim et al., 2012). This could be an issue in a 

practical application in the food processing facility, where temperatures are usually much colder 

than the optimum growth temperature for a food pathogen (10-12°C). Moreover, even though 

phage P100 is reportedly effective at refrigeration temperatures, this efficacy is highly influenced 

by host status (physiological/nutritional) and environmental conditions (Miguéis et al., 2017). 

For example, the efficacy of phages on Salmonella and Campylobacter spp. at cooler temperatures 

(~4°C) is conditional on a phage concentration higher than what would normally be used for 

other bacteria. This is also the case for Listeria phages, where a higher than normal concentration 

is needed for improved efficacy (Carlton et al., 2005; Nóbrega et al., 2014; Miguéis et al., 2017), 
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thus increasing control costs and making regulation problematic (Mahony et al., 2011; Moye et 

al., 2018). This higher concentration is required for sufficient phage replication, which in turn is 

needed for complete eradication of bacteria (Leverentz et al., 2003; Carlton et al., 2005; Klumpp 

et al., 2013). Furthermore, applying phage to a surface of food product with a high concentration 

of bacterial host could eventually lead to subsequent emergence of resistant L. monocytogenes 

strains (Guenther & Loessner, 2011; Vongkamjan et al., 2013; Fister et al., 2016). For example, 

phage tolerant L. monocytogenes isolates emerged in an Austrian dairy plant only after a phage 

product was used in the facility (Fister et al., 2016), which confirms that phage tolerance can arise 

as a result of phage application (Fister et al., 2016). Such tolerance can take place at the 

adsorption step, when the phage attaches to the bacterial host. In order to avoid this potential 

tolerance, it has been suggested that phages with a broad host range be used or by rotationally 

applying phages with different host ranges (Guenther et al., 2009; Klumpp et al., 2013). 

Alternatively, the use of phage treatment should be reserved as a last resort only when 

L. monocytogenes persists within the niche of a food factory (Moye et al., 2018), which can 

potentially prevent the phage from gaining tolerance through longtime exposure.  

Correct timing of phage application is important, i.e. application of phage at critical points 

where contamination with L. monocytogenes is most likely (Hagens & Offerhaus, 2008; Guenther 

& Loessner, 2011). In order to avoid the emergence of phage resistance within the food 

processing environment, products should be removed from the production area after phage 

treatment, and surfaces coming in contact with phages should be sufficiently cleaned (Guenther 

& Loessner, 2011; Aprea et al., 2018; Moye et al., 2018). This could pose as a challenge for 

production facilities that already have a set production flow in place, making it difficult to change 

the movement of products. Food products are therefore treated just before packaging (Hagens & 

Loessner, 2010; Klumpp & Loessner, 2013). However, there is a risk that phages may persist in 

the food processing facility even long after treatment has stopped (Fister et al., 2016). The 

persistence of phages in the environment could lead to phage resistant bacteria as a result of 

bacterial genome mutations (Fister et al., 2019). It is therefore imperative to ensure the complete 

removal of phages after treatment to avoid further distribution of the phage within the facility 

(Sommer et al., 2019). The likelihood of phage resistance is higher when treatment is used in the 

environment as opposed to foods (Hagens & Loessner, 2010). It is therefore suggested that phage 

treatment be reserved for use on foods, whereas biocides and sanitizers should be used in the 

food processing environments (Hagens & Loessner, 2010).  

The classification of the host strain can affect phage efficacy, for example the lineage 

grouping (or serotypes) of the bacterial host (in this case L. monocytogenes). A potential challenge 

in the food industry may thus arise from not knowing which lineage group dominates at the time 
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of phage application. Furthermore, the condition of the bacterial host also plays a role in whether 

or not phage adsorption will take place (EFSA, 2009). Bacteriophages are more likely to attach to 

bacterial cells in log-phase growth than those that are in stationary phase (Krueger & Fong, 1937; 

Braun et al., 2006; EFSA, 2009). Stressed or injured cells can shift to the stationary phase and may 

have altered cell wall conformations, which would impede phage attachment to the host (Denes 

& Wiedmann, 2014). Subsequent mutations in L. monocytogenes genes can confer a growth 

advantage to the bacterium during this stationary phase, which could lead to increased virulence 

(Bruno & Freitag, 2011) and possibly affect the attachment of phage to the cells of 

L. monocytogenes, leading to phage tolerance. This presents a technical problem since 

bacteriophages used in the food processing environment are more likely to encounter stressed 

or injured cells in a stationary phase, as opposed to healthy, log-phase cells (Denes & Wiedmann, 

2014; Strydom & Witthuhn, 2015). Thus, although this study was conducted under “best case 

scenario” conditions, i.e. log phase culture, a temperature optimal for phage attachment, and 

known lineage groupings, it is unlikely that these conditions will be encountered in the food 

processing environment. 

Interestingly, the only other South African study (to the author’s knowledge) conducted 

on phage P100 showed a very high number of L. monocytogenes isolates to be ‘resistant’ (Strydom, 

2015). The authors attributed this resistance to the presence of prophages. This is probably due 

to prophages already being present in the L. monocytogenes strains (Klumpp & Loessner, 2013), 

as phage P100 is a strictly virulent phage, meaning it is unable to become a prophage (Carlton et 

al., 2005; Guenther et al., 2009).  

Finally, it is important to note that tolerance, as observed in this study, was based purely 

on phenotypic observations and does not necessarily imply that L. monocytogenes isolates were 

resistant. It is possible that the isolates could revert back to susceptibility once they are exposed 

to a different set of environmental conditions (Guenther & Loessner, 2011). If phage treatment is 

to be used effectively in industry, tests will have to be conducted at the same food processing and 

storage temperatures to ensure phage activity is optimized for specific environmental conditions. 

Thus, although the results presented here contribute significantly to our understanding of the 

potential efficacy and applicability of phage treatment in the South African food processing 

environment, the lab experiments are still mostly preliminary and do not necessarily match the 

environmental conditions of food processing facilities. Future studies should subsequently build 

on the work presented here by focussing on industrial conditions, for example determining the 

optimal phage concentration needed specific to the food or environment to which it will be 

applied (Guenther & Loessner, 2011). Such studies will establish whether phage control is a viable 

option for implementation in the food industry. 
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4.5. Conclusion 

This study indicated that while a large majority of L. monocytogenes isolates were 

susceptible to phage P100, numerous isolates were still tolerant. Bacteriophage control offers a 

valuable tool, especially in the light of L. monocytogenes increasingly gaining resistance to 

antibiotics in clinical settings, and to sanitizers used in the food processing environment 

(Strydom & Witthuhn, 2015), in addition to consumers wanting more eco-friendly biocontrol 

options (in the processing facility and in foods). It is important to note that observed 

susceptibility patterns may change should phage treatment be applied directly to food products, 

as opposed to application to strains isolated from food. Firstly, the phage tests in this study were 

conducted on bacterial isolates recovered from food products instead of on the food products. In 

industry, the phage mixture will be applied directly to the solid or liquid food medium. This 

medium will influence the diffusion of the phage and subsequently influence whether or not the 

phage encounters the bacterial host present in the food. Secondly, temperature also plays a major 

role in phage attachment, and consequently the possible phage-resistance of the host. The tests 

in this study were conducted at 30°C to fit optimal phage-adsorption conditions (as described in 

literature), but in the food processing industry, these temperatures will be well below 25°C. This 

means that an isolate that presents as susceptible here, might present as tolerant once the phage 

is applied at cooler temperatures. It is therefore recommended that a similar study be repeated 

with food samples from various origins in South Africa, where phage is applied to different food 

surfaces and incubated under a variety of temperatures, as encountered in the food industry. In 

fact, incubation of phage treated isolates at temperatures more characteristic of food processing 

environments (i.e. colder), instead of optimum incubation temperatures for the pathogen, could 

well be the most informative way forward to establish the viability of phage control for the food 

industry (Vongkamjan et al., 2013). Another interesting avenue to explore concerns the 

effectiveness of the phages against stationary phase cultures since this study only involved log-

phase isolates (Bryan et al., 2016; Abedon et al., 2017). With so many variables influencing phage 

attachment, and thus its efficacy, it is imperative that future bacteriophage efficacy studies be 

tailored to suit the environmental conditions in which phage treatment will be applied, as 

bacteriophage efficacy tests on an industrial scale are yet to be conducted (Aprea et al., 2018). 

Despite the increasing interest in the use of bacteriophages as a means to control 

L. monocytogenes, there is still a gap in knowledge on how these phages will act in the food 

processing environment, and in turn how L. monocytogenes will adapt to treatment by these 

phages. Unlike antibiotic susceptibility tests, there is no single standardized protocol yet to test 

whether isolates are susceptible to bacteriophages. Plaque assays and spot tests all have varying 

results (Hyman and Abedon, 2010; Khan Mirzaei & Nilsson, 2015), making the determination on 
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whether an isolate is susceptible or resistant very difficult. It is therefore imperative that future 

studies not only focus on standardizing susceptibility tests but that such studies also be aligned 

towards industrial-scale application since that is ultimately the end goal of bacteriophage 

treatment.  
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Chapter 5  

Antibiotic susceptibility of Listeria monocytogenes isolates 

from food, environmental, and clinical origin in the Western 

Cape, South Africa 

5.1. Abstract 

Listeria monocytogenes is one of the top foodborne pathogens responsible for food related 

fatalities. Despite South Africa experiencing the largest ever global listeriosis outbreak, 

information on the bacterium and its resistance towards antibiotics is severely lacking. 

Furthermore, until now it remained to be discovered whether or not L. monocytogenes antibiotic 

resistance patterns in South Africa mirror resistance patterns elsewhere in the world. The aim of 

this study was therefore to determine antibiotic resistance of L. monocytogenes isolates from 

diverse origins in the Western Cape, South Africa (clinical, food, and environment) to five 

different antibiotics, namely ampicillin, chloramphenicol, erythromycin, gentamicin and 

tetracycline, using the disc diffusion method as recommended by the European Committee on 

Antimicrobial Susceptibility Testing (EUCAST). This study indicated that all the isolates were 

significantly susceptible to ampicillin, while a large number of isolates were resistant to 

chloramphenicol, erythromycin, and tetracycline. Clinical and Raw seafood isolates were 

significantly susceptible to all antibiotics, while Raw meats had the highest number of resistant 

strains. This study makes a valuable contribution to the lack of data on antibiotic resistance and 

multidrug resistant strains of L. monocytogenes in the South African environment, and how it 

compares to resistance patterns found in other countries. 

5.2. Introduction 

Foodborne illnesses, caused by food pathogens, are a major threat to public health the world over 

and are responsible for hundreds of thousands of human deaths every year (WHO, 2019). The 

most important pathogens responsible for such a high number of deaths include Salmonella, 

Toxoplasma gondii, and Listeria monocytogenes, causing salmonellosis, toxoplasmosis, and 

listeriosis, respectively (White et al., 2002; WHO, 2015; EUFIC, 2016). Moreover, the deaths 

resulting from these illnesses are increasing annually (Bari & Yeasmin, 2018). Specifically, 

L. monocytogenes is a major food contaminant and is ever-present in the food processing 

environment. As such, it is a particularly challenging microorganism to control. 
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Listeria monocytogenes is a Gram-positive, facultatively anaerobic, non-spore forming 

bacterium (Forsythe, 2010) that is ubiquitous in the environment and thus commonly associated 

with raw food material, where it acts as a food pathogen (White et al., 2002; de Noordhout et al., 

2014). Despite its optimum growth temperature of between 30°C and 37°C, it is able to grow and 

proliferate at refrigeration temperatures (Forsythe, 2010), which means that refrigeration is not 

an effective method of control against it. In recent years, there have been several listeriosis 

outbreaks around the world, with the foods mostly implicated being dairy, meat and seafood, and 

fresh produce (Fallah et al., 2012; CDC, 2019). It therefore seems the presence of this pathogen in 

the food processing environment is on the rise.  

Listeria monocytogenes is responsible for causing a serious infection, called listeriosis. The 

source of infection is mainly by eating contaminated foods; however, the infection can also be 

transmitted to an unborn baby from its mother via the placenta (Allerberger & Wagner, 2010). 

Listeriosis rarely affects healthy individuals and only manifests if high numbers of 

L. monocytogenes cells are ingested, which could at most lead to an onset of febrile gastroenteritis, 

and as such, the illness is self-limiting in these individuals (Dalton et al., 1997; Aureli et al., 2000; 

de Noordhout et al., 2014; Montero et al., 2015). Listeriosis is however, detrimental in 

immunocompromised individuals, i.e. individuals that have a suboptimal immune system such as 

pregnant women, neonates, the elderly, or patients with cancer, TB or HIV (Epstein et al., 1996; 

Forsythe, 2010; de Noordhout et al., 2014). In these individuals, listeriosis can often develop into 

life-threatening illnesses such as septicaemia and meningitis, leading to a high number of 

fatalities annually (Allerberger & Wagner, 2010). Because listeriosis is such an important and 

potentially fatal disease, it is imperative to effectively and properly control L. monocytogenes not 

only in the food processing industry, but particularly in environments that are frequented by 

immunocompromised individuals, such as hospitals and clinics. In food processing environments, 

L. monocytogenes is usually controlled by various sanitizers that contain quaternary ammonium 

compounds, peroxyacetic acid, or chlorine (Food and Drug Administration, 2017), whereas in 

listeriosis patients control is achieved with antibiotic treatment (Hof et al., 1997; Allerberger & 

Wagner, 2010).  

The current preferred antibiotic treatment for listeriosis in immunocompromised 

individuals is ampicillin, used as a standalone treatment or in combination with an 

aminoglycoside such as gentamicin (Charpentier & Courvalin, 1999; Hof, 2004). For treating 

listeriosis in pregnant women, erythromycin is usually the antibiotic of choice (Alonso-Hernando 

et al., 2012). Although L. monocytogenes is known to be susceptible to a wide variety of antibiotics, 

it is intrinsically resistant to cephalosporins, as such antibiotics are unable to bind to PBP 3 

(penicillin-binding protein), which is the main target for β-lactams in L. monocytogenes (Vicente 
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et al., 1990; Hof et al., 1997). However, there are various ways by which L. monocytogenes (and 

bacteria in general) can acquire resistance to antibiotics, which include horizontal gene transfer, 

genetic mutations, and the use of efflux pumps (Cox & Wright, 2013; Gullberg, 2014; Allen et al., 

2016; Noll et al., 2017; Wright, 2019).  

Due to the high mortality rate of individuals that have contracted listeriosis, which can be 

as high as 40% among immunocompromised individuals, the emergence of antibiotic-resistant 

L. monocytogenes strains has been of great concern (Todd & Notermans, 2011). Furthermore, an 

even bigger cause for concern is the increase of such antibiotic-resistant L. monocytogenes strains 

in recent years and several studies have reported the emergence of such strains in the food 

processing environment (Addendum B). Fortunately, some antibiotics are still highly effective 

treatments against L. monocytogenes. For example, β-lactams (such as ampicillin and penicillin) 

are still the most effective antibiotics against L. monocytogenes, with aminoglycosides (e.g. 

gentamicin) being only slightly less effective (Vitas et al., 2007). At present, there are several 

general uses for antibiotics beyond the treatment of infectious diseases, some of which include: 

1) prevention of disease and growth promotion in animal production industry (e.g. tetracycline); 

2) as biocides in household and toiletry products (e.g. triclosan); and 3) therapeutic use in clinical 

settings (e.g. ampicillin) (Cerf et al., 2010; Davies & Davies, 2010; Christensen et al., 2011; Karmi, 

2014). It should be noted that different geographical environments, as well as the different 

applications of antibiotics (e.g. clinical or veterinary use), can have an influence on the resistance 

or susceptibility patterns of L. monocytogenes isolates (Wang et al., 2013; Allen et al., 2016). 

In South Africa, a listeriosis outbreak in 2017-18 was thought to be the largest global 

outbreak on record, with 1 060 cases and 216 deaths reported (NICD, 2018b). Thus, there is a 

great need to establish which antibiotics are still effective treatments against L. monocytogenes. 

Currently, there is a general paucity of information in South African literature on the possible 

antibiotic resistance of L. monocytogenes isolates from the food and clinical environment. This, 

together with the high levels of mortality associated with the recent outbreak and the fact that 

antibiotic-resistant strains of L. monocytogenes are generally on the rise, is, therefore, an urgent 

call for a more in-depth investigation into the efficacy of antibiotics currently used against 

L. monocytogenes in South Africa. The objective of this study was thus to assess the antibiotic 

susceptibility of L. monocytogenes isolates from clinical, food, and environmental origin against 

five different antibiotics used in clinical treatment. By comparing L. monocytogenes isolates from 

the environment, food samples, and clinical cases, it could be determined whether certain 

patterns of resistance exist. 
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5.3. Materials and Methods 

5.3.1. Sample collection and storage 

Refer to Chapter 3 for detailed information regarding sample numbers, collection, and exact 

methods followed for lineage classification, and Addendum A for additional sample information 

and classification results. Briefly, all isolates were cultured and only those that were confirmed 

positive for hlyA gene amplification by means of polymerase chain reaction (PCR) and classified 

into lineage groups by restriction fragment length polymorphism (RFLP) and were subsequently 

included for antibiotic testing. For the remainder of the chapter, “Ready-to-eat” refers specifically 

to one of the main categories in this study, whereas “RTE” refers to ready-to-eat foods in general. 

5.3.2. Antibiotic susceptibility tests 

Listeria monocytogenes isolates stored as glycerol stocks were streaked onto tryptic soy agar 

(TSA) and grown overnight at 37°C. Antibiotic susceptibility testing of the different 

L. monocytogenes isolates was performed by the disc diffusion method as recommended by the 

European Committee on Antimicrobial Susceptibility Testing (EUCAST, 2012). The overnight 

cultures of L. monocytogenes were suspended in 0.85% saline solution to obtain a McFarland 

standard of 0.5 (OxoidTM, ThermoFischer Scientific). The suspensions were applied on Mueller-

Hinton agar supplemented with 5% defibrinated horse blood and 20 mg/L β-NAD (MH-F agar) 

(OxoidTM) with a cotton swab in three different directions (each rotating 60°) and antibiotic discs 

were applied, with a sterilized tweezer, within 15 min of swabbing. The supplemented agar 

(MH-F) is recommended for fastidious bacteria such as L. monocytogenes (EUCAST, 2012). Five 

different antibiotics (OxoidTM) were tested, namely ampicillin, chloramphenicol, erythromycin, 

gentamicin, and tetracycline (Table 5.1). After 20-24 h incubation at 37°C, the zones of inhibition 

were measured with a calliper and the results were interpreted according to EUCAST 

recommendations (EUCAST, 2012). Currently, there are no set breakpoints for L. monocytogenes 

except for ampicillin and erythromycin, therefore the breakpoints of Staphylococcus aureus was 

used to interpret the zones of inhibition for the remaining antibiotics (Chen et al., 2010a; Maćkiw 

et al., 2016; Noll et al., 2017). Staphylococcus aureus ATCC 25923 was used as a control strain 

(Wiggins et al., 1978; Chen et al., 2010a; Wang et al., 2015a; Maćkiw et al., 2016). The inhibition 

zones were classified as susceptible or resistant. Isolates that were resistant to at least one 

antibiotic from three or more different antimicrobial categories were classified as multi-drug 

resistant (MDR) (Magiorakos et al., 2012) (Table 5.1). The choice of antibiotics tested was based 

on the use of these antibiotics in a clinical setting, as well as the emergence of resistance against 

certain antibiotics used for listeriosis (Alonso-Hernando et al., 2012; Fallah et al., 2013). 
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Table 5.1 Isolates were classified as susceptible (S) or resistant (R) based on the inhibition zones (mm) 
observed; isolates that were resistant to at least one antimicrobial from three or more antimicrobial 
category were classified as multidrug resistant (MDR) (EUCAST, 2012) 

Antibiotic 
Antimicrobial 

category 
Mode of action 

Disc content 

(µg) 

Zone diameter 

breakpoint (mm) 

(EUCAST, 2012) 

S R 

Ampicillin Beta-lactams Bacterial cell wall 

synthesis inhibitor 

10 ≥16 <16 

Chloramphenicol Phenicols Inhibits protein 

synthesis (prevents 

growth) 

30 ≥18 <18 

Erythromycin Macrolides Inhibits protein 

synthesis 

(bacteriostatic) 

15 ≥25 <25 

Gentamicin Aminoglycoside Inhibits protein 

synthesis (leads to 

cell death) 

10 ≥18 <18 

Tetracycline Tetracycline Inhibits protein 

synthesis (ribosomal 

inhibitor) 

30 ≥22 <19 

5.3.3. Statistical analysis 

All statistical analyses were conducted in the R statistical environment (version 3.5.1) (R Core 

Team, 2017). In order to determine whether or not antibiotic resistance patterns were 

statistically significant, binomial tests for the various categories were conducted. Tests for each 

antibiotic were performed separately. Binomial tests were chosen since experimental outcomes 

were all binary, i.e. isolates were either classified as susceptible or resistant according to the 

aforementioned methods. Expected probabilities of 0.5 were used in all instances, in order to test 

the hypothesis that antibiotic effectiveness was equal to 50% (i.e. no better than random chance). 

The binomial tests were performed with the function binom.test from the base package. 

5.4. Results and Discussion 

After observing growth on RAPID'L.Mono™ agar (Oxoid), 180 isolates (from food, environment, 

and clinical origin) presented with colonies that were phenotypically positive for 

L. monocytogenes on RAPID'L.Mono™ agar (i.e. light-blue colonies). Of these 180 isolates that 
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were subjected to PCR, the hlyA gene was amplified in 177 isolates, thus confirming the identity 

of L. monocytogenes. The three samples for which the hlyA gene could not be amplified (thus 

confirming an identity other than L. monocytogenes) were discarded and not used for further 

analyses. The remaining hlyA-positive 177 isolates were screened for their antibiotic sensitivity 

patterns.  

Antibiotic susceptibility tests indicated that all the isolates (n=177) were susceptible to 

ampicillin (Addendum A). Isolates from the Clinical category (n=20) were significantly 

susceptible (p<0.001) to all five antibiotics tested (Figure 5.1). Interestingly, one isolate 

(classified as Lineage I, see Chapter 3) from the Clinical category showed resistance to four 

antibiotics, namely chloramphenicol, erythromycin, gentamicin, and tetracycline. Eight of all the 

isolates included in this study exhibited multidrug resistance, i.e. these isolates were resistant to 

three or more antibiotics.  

 

Figure 5.1 Susceptibility of Listeria monocytogenes isolates from Clinical category to respective antibiotics.  

Isolates from Raw seafood category (n=61) were significantly susceptible (p<0.001) to all five 

antibiotics tested (Figure 5.2, ampicillin not shown). There were a few isolates from this category 

resistant to chloramphenicol, erythromycin, and tetracycline, which is in agreement with other 
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studies conducted on L. monocytogenes isolated from seafood (Fallah et al., 2013; Jamali et al., 

2015). 

 

Figure 5.2 Susceptibility of Listeria monocytogenes isolates from Raw seafood category to respective 
antibiotics.  

Isolates from the Ready-to-eat category (n=34) were also significantly susceptible (all p<0.001) 

to all antibiotics tested (Figure 5.3).  
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Figure 5.3 Susceptibility of Listeria monocytogenes isolates from Ready-to-eat category to respective 
antibiotics.  

Subdivision of the Ready-to-eat category revealed that hummus (n=15) isolates were all 

susceptible to gentamicin and tetracycline (Figure 5.4), however, there were isolates resistant to 

chloramphenicol (n=15, 93% susceptibility) and erythromycin (n=15, 87% susceptibility). 

Isolates from deli meat (n=6) were all susceptible to chloramphenicol and gentamicin, but there 

were isolates resistant to erythromycin (n=6, 50% susceptibility) and tetracycline (n=6, 93% 

susceptibility). There were five isolates originating from polony (n=5) and although all of these 

isolates were susceptible to gentamicin, there were a few that showed resistance to 

chloramphenicol (n=5, 60% susceptibility), erythromycin (n=5, 80% susceptibility), and 

tetracycline (n=5, 80% susceptibility). Chloramphenicol- and tetracycline resistance have been 

reported previously among L. monocytogenes isolates from RTE meat products (Wang et al., 

2015b; Escolar et al., 2017). The fresh produce (n=5) isolates were all susceptible to 

chloramphenicol, however there were isolates displaying resistance to erythromycin (n=5, 60% 

susceptibility), gentamicin (n=5, 80% susceptibility) and tetracycline (n=5, 60% susceptibility). 

The one dairy isolate was susceptible to all antibiotics.  
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Figure 5.4 Susceptibility of Listeria monocytogenes isolates from Ready-to-eat subcategories to respective 
antibiotics.  

In the Environmental category (Figure 5.5), isolates were significantly susceptible to ampicillin 

(not shown), chloramphenicol (p<0.01), gentamicin and tetracycline (both p<0.001). A large 

fraction of Environmental isolates were resistant to erythromycin (n=31, 61% susceptibility), 

however, these results were not significant (p=0.281).  
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Figure 5.5 Susceptibility of Listeria monocytogenes isolates from Environmental category to respective 
antibiotics.  

Further subdivision of the Environmental category (n=31) (Figure 5.6) indicated that the isolates 

originating from food processing equipment (n=9) were all susceptible to chloramphenicol, 

gentamicin, and tetracycline. However, there were isolates resistant to erythromycin (n=9, 78% 

susceptibility). The isolates from factory drains (n=11) were susceptible to tetracycline (100% 

susceptibility) and gentamicin (n=11, 91% susceptibility), however a smaller fraction showed 

susceptibility to chloramphenicol (n=11, 64% susceptibility) and erythromycin (n=11, 55% 

susceptibility). The “hand” isolate (n=1) was resistant to chloramphenicol, erythromycin, and 

tetracycline. The surface isolates (n=3) were all resistant to gentamicin and tetracycline, while a 

greater fraction of these samples were resistant to erythromycin (n=3, 67% susceptibility). 
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Figure 5.6 Susceptibility of Listeria monocytogenes isolates from Environmental subcategories to 
respective antibiotics.  

The Raw meats isolates (n=31) (Figure 5.7) showed significant susceptibility to ampicillin 

(p<0.001, not shown), chloramphenicol (p<0.01) and gentamicin (p<0.001), and while a large 

fraction of isolates were susceptible to tetracycline (n=31, 65% susceptibility), it was not 

significant (p=0.15). Slightly more than half of the isolates showed resistance to erythromycin 

(n=31, 45% susceptibility), however, these results were also not significant (p=0.72). Isolates 

from this category also exhibited the highest level of multidrug resistance (13%).  
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Figure 5.7 Susceptibility of Listeria monocytogenes isolates from Raw meats subcategories to respective 
antibiotics.  

Subdivision of the Raw meats category (n=31) (Figure 5.8) revealed that the chicken isolates 

(n=10) were all susceptible to chloramphenicol and gentamicin (p<0.01). While there were a few 

isolates resistant to erythromycin (n=10, 80% susceptibility), a large fraction was resistant to 

tetracycline (30% susceptibility). All the beef isolates (n=4) were resistant to erythromycin, with 

a few isolates resistant to chloramphenicol and gentamicin (n=4, 75% susceptibility). There was 

an equal distribution of beef isolates susceptible and resistant to tetracycline (n=4, 50% 

susceptibility). Pork isolates (n=3) were all resistant to gentamicin, while a few of the isolates 

were resistant to chloramphenicol, erythromycin and tetracycline (n=3, 67% susceptibility). 
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Figure 5.8 Susceptibility of Listeria monocytogenes isolates from Raw meats subcategories to respective 
antibiotics.  

Observing statistically significant susceptibility in the main categories of origin was reassuring, 

since it indicates that antibiotics are performing better than random chance. However, it should 

be kept in mind that the presence of even a single resistant strain is a cause for concern, 

irrespective of the effectiveness of the antibiotic in question, since such a strain could eventually 

transfer resistance to other strains, and could itself establish and proliferate. In other words, in 

the light of the impacts of L. monocytogenes on human health (i.e. potential death) every single 

sample that shows antibiotic resistance is a cause for concern. Thus, antibiotic resistant bacteria 

are, without exception, unwanted in any setting at any time and the existence of antibiotic 

resistant L. monocytogenes strains is therefore never trivial, irrespective of the amount of strains 

found. 

The eight isolates that exhibited multidrug resistance (resistance to at least one antibiotic 

in three or more classes), were all resistant to erythromycin and tetracycline. Most of the MDR 

isolates (Figure 5.9) came from Raw meats, followed by Ready-to-eat, Environmental and Clinical. 

There were no MDR isolates in the Raw seafood category. 
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Figure 5.9 MDR isolates (n=8) was mostly observed in samples originating from Raw meats, while the rest 
originated from Ready-to-eat, Clinical and Environmental. No MDR isolates originated from Raw seafood. 

5.4.1. No resistance to the current antibiotic of choice, ampicillin 

The fact that none of the isolates were resistant to ampicillin was encouraging, as this is the 

current antibiotic of choice against L. monocytogenes in South African clinics and hospitals 

(Bamford et al., 2017; NICD, 2017b), and ironically it is the most ineffective antibiotic (out of the 

ones studied here) elsewhere in the world (Addendum B). However, for the effective treatment 

of L. monocytogenes infections, several antibiotics are recommended, and not just ampicillin 

alone. This is because the effect of ampicillin on L. monocytogenes is mostly bacteriostatic 

(inhibiting growth and reproduction), even though it is a bactericidal antibiotic (Moellering et al., 

1972; Allerberger & Wagner, 2010). Therefore, it is often used together with an aminoglycoside 

such as gentamicin (Moellering et al., 1972). As with our study, other researchers have also 

reported 100% susceptibility to ampicillin (Alonso-Hernando et al., 2009; Davis & Jackson, 2009; 

Haubert et al., 2016). However in stark contrast to this, a number of international studies have 

recently demonstrated a high presence of ampicillin resistant strains in raw meats (Yücel et al., 

2005; Pesavento et al., 2010; Fallah et al., 2012; Wang et al., 2015a; Abdollahzadeh et al., 2016), 

dairy (Rahimi et al., 2010), RTE foods (Maćkiw et al., 2016; Escolar et al., 2017), seafood (Fallah 

et al., 2013; Jamali et al., 2015), and clinical isolates (Safdar & Armstrong, 2003). Specifically, 

poultry products in Turkey, Brazil, and Iran, revealed a high number of strains resistant to 

ampicillin (Ayaz & Erol, 2010; Fallah et al., 2012; Carvalho et al., 2019), while isolates from clinical 

and seafood origin, also exhibited resistance to ampicillin (Safdar & Armstrong, 2003; 

Clinical
1 (12.5%)

Environmental
(hand swab)

1 (12.5%)

Raw meats (beef; 
polony)
4 (50%)

Raw seafood
0

Ready-to-eat 
(coriander; deli meat)

2 (25%)
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Abdollahzadeh et al., 2016). Thus, while the situation in South Africa is still favourable for the use 

of ampicillin as a treatment against L. monocytogenes, the numerous aforementioned studies 

should serve as a warning that previously effective antibiotics are currently losing their efficacy. 

The situation in South Africa should, therefore, be carefully monitored since resistant strains of 

L. monocytogenes might arise or be introduced from elsewhere in the near future, which could 

have devastating consequences. 

5.4.2. Clinical isolates show a high level of susceptibility 

It was interesting to note that although the Clinical isolates were highly susceptible, one isolate 

was resistant to four antibiotics, namely chloramphenicol, erythromycin, gentamicin, and 

tetracycline (Addendum A). Resistance to these antibiotics among clinical strains have been 

reported (Safdar & Armstrong, 2003; Abdollahzadeh et al., 2016). Noll et al. (2017) also reported 

the occurrence of multidrug resistance among strains from human listeriosis cases (56%, n=259), 

obtained during an outbreak in Austria and Germany, but found no resistance against the two 

antibiotics of choice, namely ampicillin and gentamicin. However, the one clinical resistant isolate 

in this study was resistant to gentamicin as well. It is concerning that such a strain exists, and its 

origins should ideally be investigated further.  

In South Africa, antibiotic resistance among other diseases (such as tuberculosis) is on the 

rise (Nyasulu et al., 2012). From our study, it was evident that antibiotic resistance was much 

more prevalent in environmental and food categories as compared to the clinical category. This 

is also confirmed by other studies which demonstrate a higher prevalence of L. monocytogenes 

resistance among environmental isolates compared to clinical (Charpentier & Courvalin, 1999; 

Duffy et al., 2001; Safdar & Armstrong, 2003; Li et al., 2007; Morvan et al., 2010; Magiorakos et 

al., 2012). There are several factors contributing to bacteria acquiring resistance. Firstly, medical 

patients that have been prescribed antibiotics as treatment often neglect to complete the full 

course, thus leading to the incomplete eradication of all bacteria which in turn give rise to 

resistant strains (Olaimat et al., 2018). Secondly, it is also suspected that long term exposure to 

triclosan (found in many household products), at sub-lethal levels, could increase resistance in 

non-pathogenic bacteria, which could then in turn transfer resistance, via horizontal gene 

transfer, to L. monocytogenes against various aminoglycosides, such as gentamicin, kanamycin, 

and streptomycin (Davies & Davies, 2010; Christensen et al., 2011; Meyer et al., 2013; Allen et al., 

2016). 
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5.4.3. Multidrug resistance among Listeria monocytogenes isolates 

Multidrug resistant (MDR) L. monocytogenes isolates have been previously reported (Morvan et 

al., 2010; Cetinkaya et al., 2014; Kevenk & Terzi Gulel, 2016). MDR bacteria are especially 

problematic since they are associated with a higher mortality rate than susceptible bacteria, and 

also higher cost of hospitalization, as antibiotic therapy often needs to be extended (Tanwar et 

al., 2014; Medina & Pieper, 2016; Munita & Arias, 2016). MDR strains circulating in the 

environment can be transferred to food processing plants via incoming raw material or factory 

personnel. It is concerning that the isolate obtained from a factory worker (Figure 5.6) was 

resistant to three different antibiotics. This is a potential threat to the consumer, should it spread 

to food that will be consumed without further cooking. Such strains are destroyed upon cooking 

of raw foods, however, by introducing MDR strains into a processing facility, there is a risk of 

strains circulating and spreading into the immediate environment. It could be assumed that non-

pathogenic MDR bacteria are not problematic, however horizontal gene transfer between 

pathogenic and non-pathogenic bacteria can lead to the former acquiring resistance genes from 

the latter (Davies & Davies, 2010; Wright, 2010; Haubert et al., 2016). Soil studies have already 

revealed that the vast majority of non-pathogenic, soil-dwelling bacteria found in the 

environment are intrinsically resistant to multiple antibiotics (Cox & Wright, 2013). This is a 

result of the high amounts of antibiotic compounds that have accumulated in these environments 

over time, thereby selectively pressurising such soil bacteria to adapt and develop resistance 

genes (“resistome”) (Wright, 2010, 2019). For example, animal waste from agricultural systems 

where antibiotics are used spreads to agricultural soils and leads to increased antibiotic residues 

in soil and water (Meyer et al., 2013). The resistance genes of non-pathogenic bacteria are 

homologous to those found in pathogenic bacteria and could easily result in the latter acquiring 

resistance genes from the former (Wright, 2010; Meyer et al., 2013). Thus, environmental 

reservoirs offer a constant flow of genes that are able to confer resistance to susceptible bacteria 

(Cox & Wright, 2013; Wright, 2019). An example of this is where tet(M) genes (conferring 

tetracycline resistance by protecting a bacterium’s ribosomes from interacting with the 

antibiotic) are transferred from other non-pathogenic Gram-positive bacteria to 

L. monocytogenes (Bertrand et al., 2005; Morvan et al., 2010; Munita & Arias, 2016). In fact, tet(M) 

genes are readily transferable from the commensal bacterium, Enterococcus faecium, to L. 

monocytogenes (Haubert et al., 2016). Additionally, it is also known that L. monocytogenes can 

acquire erythromycin and tetracycline resistance from lactic acid bacteria, but this transfer is 

however influenced by the food medium (Allen et al., 2016). This could explain the increased 

resistance observed among environmental and food isolates as when compared to clinical isolates 

in our study.  
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5.4.4. The use of antibiotics in the agricultural industry 

This study's results tie in well with previous studies wherein L. monocytogenes isolates 

originating from poultry, pork, and other meats exhibited resistance to erythromycin and 

tetracycline (Pesavento et al., 2010; Fallah et al., 2012; Wang et al., 2015c). However, contrary to 

our findings, the isolates from these studies also exhibited resistance to gentamicin and 

chloramphenicol. Tetracycline resistance is the most frequently reported antibiotic resistance 

among L. monocytogenes species (Charpentier & Courvalin, 1999; Li et al., 2007; Chen et al., 

2010a; Wang et al., 2013). Our study aligns with this observation since levels of tetracycline 

resistance were high among the raw meat isolates tested here. This is not surprising since 

antibiotics are often used as growth promoters in sub-therapeutic levels in the poultry and meat 

industries, leading to reduced antibiotic effectiveness (Fallah et al., 2012). Reasons for the use of 

antibiotics (especially tetracycline and erythromycin) in the animal industry (poultry, pork, and 

cattle) include controlling infections (i.e. disease control), optimizing feed efficiency, and acting 

as growth promoters (Warris, 2010; Moyane et al., 2013; Gómez et al., 2014; Allen et al., 2016; 

Paridah et al., 2016; Ferri et al., 2017; Mund et al., 2017). Furthermore, tetracycline-resistant 

strains of L. monocytogenes have already been isolated from the meat processing environment 

(Gómez et al., 2014), as well as raw meat products (Pesavento et al., 2010; Fallah et al., 2012; 

Wang et al., 2015a). In fact, the resistance of L. monocytogenes to tetracycline can be up to 23% 

(Chen et al., 2010a; Noll et al., 2018). In South Africa, tetracycline contributes to 17% of the total 

amount of antibiotics used in the agricultural industry (DoH, 2019). The overuse of tetracycline 

also affects other bacteria. For instance, there is a higher prevalence of tetracycline resistance 

among Campylobacter bacteria from commercially produced chicken in South Africa, as opposed 

to those that are produced on a small scale (Bester &, 2012), which is attributed to frequent sub-

therapeutic antibiotic use. There have been several reports outside of South Africa of 

accumulated tetracycline residues detected in chicken meat (Amjad et al., 2005; Hakem et al., 

2013; Karmi, 2014; Sattar et al., 2014), while in South Africa residues of both tetracycline and 

erythromycin have been found in meat samples (DoH, 2019).  

Antibiotic resistance also occurs among L. monocytogenes isolates from fresh produce 

(e.g. coriander). Such isolates in our study were resistant to erythromycin, gentamicin, and 

tetracycline. Similarly, erythromycin and tetracycline resistant L. monocytogenes have been 

previously isolated from vegetables (David & Odeyemi, 2007; Vasconcelos et al., 2016). 

Aminoglycosides (which include gentamicin) are used in plant crop industries to control fire 

blight (Gullberg, 2014). The sub-therapeutic use of these antibiotics is highly concerning since 

some of these antibiotics are not completely broken down during cooking processes, leaving 

residues behind that are ingested by the consumer (Javadi, 2011). This can lead to a disturbance 
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in the consumer's microflora, due to continuous exposure to small amounts of antibiotic residues 

(Gullberg, 2014; Mund et al., 2017). Tetracycline is not intrinsically biodegradable, therefore 

residues may persist in the environment (soil and surface water) for long periods of time 

(Wellington et al., 2013). It is theorized that antibiotic resistance existed long before the first 

human use of antibiotics (Cox & Wright, 2013; Meyer et al., 2013; Wright, 2019). However, 

increased use of and reliance on antibiotics have intensified the selective pressures among non-

pathogenic bacteria, causing pathogenic bacteria to acquire resistance genes. RTE foods do not 

undergo heat treatment prior to consumption, meaning that individuals are at greater risk for 

listeriosis if they consume these types of foods. 

The use of antibiotics in the South African agricultural industry is governed by two acts, 

namely the "The Fertilisers, Farm, Feeds, Agricultural Remedies and Stock Remedies Act" (Act 36 

of 1947) (Fertilizers Farm Feeds Agricultural Remedies and Stock Remedies, 2008) and the 

"Medicines and Related Substances Control Act" (Act 101 of 1965) (Medicines and Related 

Substances Act, 2005). Although the Department of Agriculture, Fisheries, and Forestation is 

responsible for monitoring the use of these antibiotics, it is presented with a difficult task, as 

under these acts, antibiotics can be purchased by farmers over the counter without a prescription, 

making monitoring a complicated undertaking (DoH, 2016). Older antibiotics, such as 

tetracycline, can be registered as either stock or veterinary medicine, and for the former, no 

record of use is needed, which makes monitoring its use especially difficult (Henton et al., 2011). 

5.4.5. The use of disinfectants in food processing environments and its effect on 

antibiotic resistance 

In addition to antibiotic use, biocides and disinfectants are also used in the processing of raw 

meat. Because of its association with foodborne pathogens, such as Salmonella, Campylobacter 

and L. monocytogenes, raw meat and chicken often undergo decontamination procedures in order 

to reduce potential foodborne outbreaks (Alonso-Hernando et al., 2010). However, it has been 

suggested that the sub-inhibitory use of these decontaminants may lead to bacteria acquiring 

antibiotics resistance (Walsh et al., 2003; Alonso-Hernando et al., 2009). It is suggested that 

exposure of L. monocytogenes to stressful conditions (e.g. osmotic stress, temperature 

fluctuations etc.) within the food processing environment can have an effect on its resistance to 

clinical antimicrobials (Allen et al., 2016). This could explain why environmental 

L. monocytogenes isolates show a high number of antibiotic resistance. It could be protected by a 

biofilm in the food processing environment, and share the space with other bacteria that transfer 

resistance to the L. monocytogenes isolates. 
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A recent study on the antibiotic resistance of L. monocytogenes in the meat processing 

environment recovered a tetracycline-resistant strain, while other strains showed decreased 

susceptibility to penicillin (Gómez et al., 2014). Furthermore, exposure to sub-inhibitory 

concentrations of poultry-washing chemicals leads L. monocytogenes and Salmonella enterica to 

acquire resistance to multiple antibiotics, including erythromycin and chloramphenicol (Alonso-

Hernando et al., 2009). This is particularly worrisome since the European Food Safety Authority 

(EFSA) reports contaminated red meat and poultry to be responsible for 25% of foodborne 

related outbreaks (EFSA, 2007). This is consistent with our results, namely: L. monocytogenes 

exhibited high levels of resistance to multiple antibiotics, specifically erythromycin, 

chloramphenicol, and tetracycline. Although few studies have attempted to investigate the 

correlation between decontamination procedures and possible antibiotic resistance, the high 

levels of L. monocytogenes resistance found in raw meat and chicken samples in our study 

suggests that such a correlation potentially exists. In fact, EFSA recommends that chemical 

decontaminants (or “biocides”) should be evaluated prior to their use for carcass washing, in 

order to assess the potential development of antibiotic resistance, especially in instances where 

L. monocytogenes is the target bacterium (EFSA, 2010). Because resistant bacteria are already 

present in the environment, the continued sub-therapeutic use of antibiotics will put even more 

selective pressure on these bacteria, which will lead to an increase of resistance genes (Davies & 

Davies, 2010; Meyer et al., 2013). Thus, current regulations should be scrutinized and updated so 

that the effects of such therapeutic use can be minimised.  

5.4.6. Listeria monocytogenes antibiotic resistance patterns are geographically 

biased 

The patterns of antibiotic resistance of L. monocytogenes are not the same across different 

countries (Figure 5.10). In other words, patterns of L. monocytogenes antibiotic resistance seem 

to be geographically biased, in that they are not consistent across various regions of origin. When 

comparing results of other researchers (Addendum B) with the results from this study, 

remarkably different resistance patterns emerged, especially for ampicillin and erythromycin. 

While the exact drivers and mechanisms underlying such differences are still unclear, additional 

studies on the resistance of L. monocytogenes isolates from the South African environment would 

be of great benefit to determine firstly whether the patterns in this study remain consistent if 

replicated in a similar fashion, and secondly why these patterns differ so greatly from other 

countries. Finally, an investigation into whether differences in antibiotic use influences 

resistances patterns in different countries would be invaluable. 
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Figure 5.10 Comparison between experimental (n=177 isolates in this study) versus literature (n=48 
studies; see Addendum B for references) antibiotic resistances of L. monocytogenes; grey lines indicate 
mean values of resistance across all categories for each antibiotic and source (literature or experimental) 
combination. 

5.5. Conclusion 

To the best of the authors' knowledge, this is the first study in South Africa in which antibiotic 

resistance for L. monocytogenes was determined simultaneously for isolates from both clinical 

and various food origins. We determined that ampicillin was still the most effective treatment 

against L. monocytogenes irrespective of origin. We also showed that a large portion of isolates 

were resistant to chloramphenicol, erythromycin, and tetracycline. From literature, there is a 

definite correlation between the use of antibiotics in the agricultural and clinical industry and the 

appearance of antibiotic resistance (Meyer et al., 2013). Information on the agricultural use of 

antibiotics in South Africa is scarce, with only a handful of studies attempting to quantify this 

amount (Henton et al., 2011; Eagar et al., 2012). In contrast to other countries, such as the United 

States and China, the majority of antibiotics acquired in South Africa is for human consumption 

(DoH, 2019). In a country such as South Africa where a high burden of diseases such as 

tuberculosis and HIV/AIDS exists, the increase in resistant pathogenic L. monocytogenes strains 

could increase the number of annual fatalities of such immunocompromised individuals (Bester 

& Essack, 2012; Nyasulu et al., 2012; Moyane et al., 2013). Therefore, it is vital to continue 

surveillance studies on the increase of antibiotic resistant L. monocytogenes strains. 

Understanding the degree of antibiotic resistance of bacteria could lead to better administration 
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of antibiotics, and in the case of L. monocytogenes, could help reduce mortality rates from 

listeriosis (Nyasulu et al., 2012). Finally, antibiotic resistance patterns differ from country to 

country (Ayaz & Erol, 2010; Fallah et al., 2012). Thus, resistance patterns in South Africa might 

not be relatable to resistance patterns of other countries.  

The National Department of Health gives several challenges hindering comprehensive 

infection prevention and control (IPC) (DoH, 2016), some of which include: 1) lack of 

accountability; 2) lack of trained IPC practitioners; 3) lack of basic resources; and 4) lack of 

research. In other words, research specifically focussed on antibiotic resistance in South Africa is 

lacking. It is imperative to study the possible increase in antibiotic resistance among L. 

monocytogenes isolates in South Africa. This will provide researchers with a better understanding 

of resistance development, and in doing so will minimise the detrimental effect of resistant L. 

monocytogenes in clinical settings. Since the administration of antibiotics is governed by two 

different acts, approximating the actual amount of antibiotics use in South African agriculture is 

very difficult (Henton et al., 2011). The South African Stewardship Programme (SAASP) aims to 

promote the development of antimicrobial stewardship (AMS) in the public and private sector. 

The South African government has now implemented a strategic framework for 2018-2024 to 

increase surveillance of administered antibiotics and strengthen antibiotic stewardship, while 

taking a One Health approach (DoH, 2016, 2018b). Doing research with a One Health approach is 

extremely important and useful. Many factors influence the emergence of antibiotic resistance, 

including but not limited to: injudicious use of antibiotics by patients, overuse of antibiotics in the 

agricultural industry, and even the use of disinfectants in processing facilities. With a topic as 

multidimensional as antibiotic resistance, it is essential to take a collaborative approach and 

include isolates from different origins, since resistance is often transferred between different 

sectors (i.e. environmental, agricultural, clinical) (McEwen & Collignon, 2018). This study was 

regionally limited in its nature, and it is, therefore, crucial that future studies include isolates from 

different geographical regions and not only different origins, which, in conjunction with the latter, 

will enable a broader set of generalizations to be made regarding antibiotic resistance in 

L. monocytogenes. This work sets a foundation for future researchers to build on with more 

information on L. monocytogenes in the South African environment and its associated antibiotic 

resistance patterns. 
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Chapter 6  

General Discussion and Conclusions 

South Africa experienced the largest ever recorded global outbreak of listeriosis during 2017-18, 

motivating for the characterization of Listeria monocytogenes from diverse origins and 

investigating resistance patterns.  

The first objective of this study was to classify L. monocytogenes isolates into lineage 

groups by PCR-RFLP. There was an overrepresentation of Lineage I isolates in all of the categories 

tested. This is of great concern since Lineage I is most often associated with human listeriosis 

cases, and not so much with food. A lower number of L. monocytogenes from Lineage I is needed 

to cause listeriosis (i.e. lower infectious dose). Therefore, in a country with a high burden of 

disease such as South Africa (i.e. more immunocompromised individuals), the high prevalence of 

Lineage I isolates in food that is destined for human consumption is a great public health risk. 

The second objective was to determine the susceptibility of the L. monocytogenes isolates 

to a commercial bacteriophage (ListexTM P100) and to determine whether susceptibility was 

linked to lineage grouping. While a large number of isolates were generally found to be 

susceptible to the phage, the distribution of susceptible and tolerant isolates was somewhat equal 

in the Ready-to-eat category. This has important implications especially in light of the recent 

approval of ListexTM P100 use on ready-to-eat (RTE) foods. Thus, this part of the study 

demonstrates that phage treatment alone would likely not yet be viable in the food processing 

environment and will still have to be used in conjunction with conventional methods, instead of 

as a standalone alternative. These results are valuable, especially since not much is yet known 

about the resistance of the L. monocytogenes to these phages. 

The final objective was to conduct antibiotic susceptibility tests on the L. monocytogenes 

isolates. All isolates were susceptible to ampicillin (the current antibiotic of choice for treatment 

of listeriosis), which is reassuring; however, a large fraction of isolates were resistant to 

erythromycin, chloramphenicol, and tetracycline. This is of particular concern especially 

considering the high number of listeriosis cases in South Africa and emphasises the need to 

continuously monitor antibiotic efficacy and to search for alternative antibiotics. An unexpected 

finding was how not only antibiotic resistance patterns, but also lineage associations, differed 

from one country to another. Finally, a few multidrug resistant strains were observed, and such 

strains specifically are of great concern due to their potential impact on human health, especially 

if such strains become dominant in the food processing environment. These results again 

emphasise why undertaking research on L. monocytogenes and antibiotic resistance with specific 
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focus on the South African environment is so important, instead of relying only on international 

L. monocytogenes data. 

In South Africa, the 2017-18 outbreak was declared over on the 3rd of September 2018. 

Subsequently, there has been sporadic reports of listeriosis, which the authorities have noted as 

normal, stating that it is “below the expected range” (NICD, 2019). This is because the expected 

range of listeriosis infections (in countries such as the USA that have routine surveillance) is 

about 2 to 5 cases per 1 million individuals. However, when the incidences of diseases such as TB 

or HIV/AIDS in South Africa is compared to a country such as the USA (Figure 6.1), it becomes 

evident that South Africa has a much higher number of immunocompromised individuals, 

meaning a higher number of individuals vulnerable to contracting listeriosis (Vanleeuw & 

Loveday, 2015; CDC, 2017; STATS SA, 2018; Talwar et al., 2019). Because listeriosis only recently 

became notifiable in South Africa, it is possible that there is a lack of awareness of L. 

monocytogenes among the general public, which leads to a lack of reporting or failure to detect 

the bacteria in time. The long incubation period and varied symptoms could mean that not all 

patients may be diagnosed in time for antibiotic treatment. This again emphasizes the need for 

regular monitoring of antibiotic efficacy against L. monocytogenes and highlights why the results 

of this study are so valuable.  

 

Figure 6.1 The prevalence HIV/AIDS and TB in South Africa in comparison with its incidence in the United 
States. 

The results of this study have addressed some fundamental questions about L. monocytogenes in 

the Western Cape, but knowledge gaps still remain and there is great potential to expand on this 

work. Specifically, some recommendations for future studies are: 
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• Increasing the resolution of L. monocytogenes classification. A clear association between 

L. monocytogenes lineage groups and food types was not found in this study and seems 

generally to be the case elsewhere. Thus, for example, serotyping and whole-genome 

sequencing will increase the genetic resolution and would provide valuable information 

not only on the source of the L. monocytogenes strains, but could shed light on whether 

instead a link exists between serotype groups and food types.  

• Investigating how bacteriophages perform when exposed to diverse environmental 

conditions (such as found in the food processing environment, for example colder 

temperatures). Such experiments would be invaluable for determining the efficacy of 

bacteriophages during commercial food processing, since various factors can influence 

phage efficacy. Additionally, confirming whether phage susceptibility remains the same 

after inoculating different RTE foods (similar to that tested before by other researchers: 

salmon, deli meat etc.), to determine whether food medium has an effect on susceptibility. 

Since the present study investigated the susceptibility of pure L. monocytogenes isolates 

obtained from different origins within the Western Cape, future studies that build on this 

by using the same L. monocytogenes isolates and determining whether phage 

susceptibility is consistent or not, would be invaluable for the management of L. 

monocytogenes. 

• Continuing with observational studies on antibiotic resistance of L. monocytogenes in 

South Africa by specifically broadening the scope so as to include other provinces. By 

determining antibiotic resistance of L. monocytogenes in other provinces, comparisons 

can be made with the results of this study to determine whether resistance patterns 

remain consistent or not, the result of which will have important management 

implications. 

In conclusion, this study provides an invaluable baseline of the classification and resistance 

patterns of L. monocytogenes in the Western Cape, and overall it contributes significantly to filling 

the knowledge gap currently existing in South Africa regarding L. monocytogenes. One of the 

strengths of this study is the diverse nature and large number of isolates that were examined, and 

emphasizes the need for research to be conducted with a One Health approach, whereby samples 

originating from various sectors are examined simultaneously. This study also highlights the need 

for further, and more in-depth research, on L. monocytogenes with specific focus on the South 

African context. Research with a One Health approach is important and bacterial resistance is 

multidimensional, with resistance often spread between different sectors (environmental, 

agricultural, and clinical). This study therefore serves as a steppingstone to future collaborative 

efforts that aim to combat the ever-present threat of L. monocytogenes. 
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Addendum A  

Listeria monocytogenes isolates categorized into lineage groups, antibiotic- and phage 

susceptibility 

Sample Category 

Subcategory 
(additional 

description, as 
provided by 

supplier) 

Lineage Ampicillin Chloramphenicol Erythromycin Gentamicin Tetracycline Phage 

CLM01 Clinical Unknown I - - - - - - 

CLM06 Clinical Unknown II - - - - - T 

CLM04 Clinical Unknown I - - - - - - 

CLM15 Clinical Unknown I - - - - - - 

CLM02 Clinical Unknown I - - - - - - 

CLM05 Clinical Unknown I - - - - - - 

CLM07 Clinical Unknown I - - - - - - 

CLM08 Clinical Unknown I - - - - - - 

CLM09 Clinical Unknown I - - - - - - 

CLM10 Clinical Unknown I - - - - - - 

CLM11 Clinical Unknown I - - - - - - 

CLM12 Clinical Unknown I - - - - - - 

CLM14 Clinical Unknown I - - - - - - 

CLM16 Clinical Unknown I - - - - - - 

CLM17 Clinical Unknown I - R R R R - 

CLM18 Clinical Unknown I - - - - - - 

CLM19 Clinical Unknown I - - - - - - 

CLM20 Clinical Unknown I - - - - - - 

CLM21 Clinical Unknown I - - - - - - 

Stellenbosch University https://scholar.sun.ac.za



125 

 

Sample Category 

Subcategory 
(additional 

description, as 
provided by 

supplier) 

Lineage Ampicillin Chloramphenicol Erythromycin Gentamicin Tetracycline Phage 

CLM22 Clinical Unknown I - - - - - - 

MEN42 Environmental Drain (jam unit) I - - - - - - 

MEN30 Environmental Drain (prep area) I - R R - - - 

MEN34 Environmental Drain (production) I - - R - - - 

MEN21 Environmental Drain (production) I - - - - - - 

MEN26 Environmental Drain (prep area) I - R - - - - 

MEN23 Environmental Drain (production) I - - - - - - 

MEN31 Environmental Drain (cooking area) II - R R - - - 

MEN47 Environmental Drain I - R R - - - 

MEN01 Environmental Drain (mixer) I - - - R - - 

MEN03 Environmental Drain (LR peeler) I - - - - - - 

MEN04 Environmental Drain (mixer) I - - R - - T 

MEN24 Environmental Equipment (veg room) I - - - - - - 

MEN49 Environmental 
Equipment (small 

bizerba) 
II - - - - - - 

MEN46 Environmental Equipment I - - - - - - 

MEN48 Environmental Equipment I - - R - - - 

MEN05 Environmental 
Equipment (major 

slicer) 
I - - - - - T 

MEN07 Environmental Equipment (blender) II - - - - - - 

MEN09 Environmental 
Equipment (glass 

machine motor cover) 
I - - - - - T 

MEN11 Environmental Equipment I - - R - - - 

MEN12 Environmental Equipment I - - - - - - 

MEN36 Environmental Floor II - - R - - - 

MEN27 Environmental Floor (despatch) II - - - - - - 

MEN08 Environmental Floor (chiller) II - - - - - T 

          

Stellenbosch University https://scholar.sun.ac.za



126 

 

Sample Category 

Subcategory 
(additional 

description, as 
provided by 

supplier) 

Lineage Ampicillin Chloramphenicol Erythromycin Gentamicin Tetracycline Phage 

MEN38 Environmental 
Hand (during 
production) 

II - R R - R - 

MEN25 Environmental 
Surface (chiller door 

handles) 
II - - - - - - 

MEN14 Environmental 
Surface (red cutting 

boards) 
II - R R - - T 

MEN15 Environmental 
Surface (production 

tables) 
II - - R - - - 

MEN16 Environmental Unknown I - - - - - - 

MEN17 Environmental Unknown I - - - - - - 

MVA03 Environmental Unknown II - - R - - - 

MVA52 Environmental Unknown II - - - - - - 

MRA32 Raw meats Beef (mince) II - - R R R T 

MRA32a Raw meats Beef (mince) II - - R - - - 

MRA18 Raw meats Beef I - R R - R - 

MRA03 Raw meats Beef (mince) II - - R - - T 

MRA31 Raw meats Chicken (whole birds) I - - - - R T 

MRA34 Raw meats Chicken (fresh breasts) I - - R - R T 

MRA40 Raw meats 
Chicken (mixed 

portions) 
I - - - - R - 

MRA41 Raw meats Chicken (skins) I - - - - - - 

MRA42 Raw meats 
Chicken (frozen 

thighs) 
I - - - - R - 

MRA37 Raw meats Chicken (fillets) II - - - - - - 

MRA43 Raw meats Chicken (pieces) II - - - - R - 

MRA46 Raw meats 
Chicken (mixed 

portions) 
I - - - - R T 

MRA17 Raw meats Chicken (drumsticks) I - - R - R - 

MVA15 Raw meats Chicken II - - - - - - 

MRA36 Raw meats Pork (BBQ portions) II - R R - R - 
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Sample Category 

Subcategory 
(additional 

description, as 
provided by 

supplier) 

Lineage Ampicillin Chloramphenicol Erythromycin Gentamicin Tetracycline Phage 

MRA47 Raw meats Pork (pork belly) II - - - - - - 

MDM Raw meats 
Pork (mechanically 

deboned pork meat) 
II - - - - - - 

MRA23 Raw meats Unknown I - - R - - - 

MRA26a Raw meats Unknown II - R R - R - 

MRA26 Raw meats Unknown II - R R - - - 

MRA20 Raw meats Unknown I - R R - - - 

MRA35 Raw meats Unknown I - - - - - - 

MRA45 Raw meats Unknown I - - - - - - 

MRA39 Raw meats Unknown II - - - - - - 

MRA11 Raw meats Unknown I - - R - - T 

MRA13 Raw meats Unknown I - - - R - - 

MRA14 Raw meats Unknown I - - R - - - 

MRA20a Raw meats Unknown I - - R - - - 

MRA21 Raw meats Unknown I - R R - - - 

MRA33 Raw meats Unknown II - - R - - - 

MRA30 Raw meats Unknown I - - R - - - 

MRA02 Raw seafood Seafood I - - - - R T 

MRA09 Raw seafood Seafood I - - - - - - 

MRA10 Raw seafood Seafood I - - - - - - 

MVA01 Raw seafood Seafood I - - - - - - 

MVA02 Raw seafood Seafood I - - R - R - 

MVA04 Raw seafood Seafood I - - - - - - 

MVA05 Raw seafood Seafood I - - R - - - 

MVA06 Raw seafood Seafood I - - - - - - 

MVA07 Raw seafood Seafood I - - - - - - 
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Sample Category 

Subcategory 
(additional 

description, as 
provided by 

supplier) 

Lineage Ampicillin Chloramphenicol Erythromycin Gentamicin Tetracycline Phage 

MVA08 Raw seafood Seafood I - - - - - - 

MVA09 Raw seafood Seafood I - - - - - - 

MVA10 Raw seafood Seafood I - - - - - - 

MVA11 Raw seafood Seafood I - - - - - - 

MVA13 Raw seafood Seafood I - - - - - - 

MVA14 Raw seafood Seafood I - - - - - - 

MVA16 Raw seafood Seafood I - - - - - - 

MVA17 Raw seafood Seafood I - - - - - - 

MVA18 Raw seafood Seafood I - - - - - - 

MVA19 Raw seafood Seafood I - - - - - - 

MVA20 Raw seafood Seafood I - - - - - - 

MVA21 Raw seafood Seafood I - - - - - - 

MVA22 Raw seafood Seafood I - - - - - - 

MVA25 Raw seafood Seafood I - - - - - - 

MVA26 Raw seafood Seafood I - - - - - - 

MVA27 Raw seafood Seafood I - - - - - - 

MVA28 Raw seafood Seafood I - - - - - - 

MVA29 Raw seafood Seafood I - - - - - - 

MVA30 Raw seafood Seafood I - - R - - - 

MVA31 Raw seafood Seafood I - - - - - - 

MVA32 Raw seafood Seafood I - - - - - T 

MVA33 Raw seafood Seafood I - - - - - - 

MVA34 Raw seafood Seafood I - - - - - - 

MVA35 Raw seafood Seafood I - - - - - - 

MVA36 Raw seafood Seafood I - - - - - - 

MVA37 Raw seafood Seafood I - - - - - -  
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Sample Category 

Subcategory 
(additional 

description, as 
provided by 

supplier) 

Lineage Ampicillin Chloramphenicol Erythromycin Gentamicin Tetracycline Phage 

MVA38 Raw seafood Seafood I - R - - - - 

MVA39 Raw seafood Seafood I - - - - - - 

MVA40 Raw seafood Seafood I - - - - - - 

MVA41 Raw seafood Seafood I - - R - - - 

MVA42 Raw seafood Seafood I - - - - - - 

MVA43 Raw seafood Seafood I - - - - - - 

MVA44 Raw seafood Seafood I - - R - - - 

MVA45 Raw seafood Seafood I - - - - - - 

MVA46 Raw seafood Seafood I - - - - - - 

MVA47 Raw seafood Seafood I - - R - - - 

MVA48 Raw seafood Seafood I - - - - - - 

MVA49 Raw seafood Seafood I - - - - - - 

MVA50 Raw seafood Seafood I - - - - - - 

MVA51 Raw seafood Seafood I - - - - - - 

MVA55 Raw seafood Seafood I - - - - - - 

MVA56 Raw seafood Seafood I - - R - - - 

MVA57 Raw seafood Seafood I - - - - - - 

MVA58 Raw seafood Seafood I - - - - - - 

MVA59 Raw seafood Seafood I - - - - - - 

MVA60 Raw seafood Seafood I - - - - - - 

MVA61 Raw seafood Seafood I - - - - - - 

MVA62 Raw seafood Seafood II - - - - R - 

MVA63 Raw seafood Seafood I - - - - - - 

MVA64 Raw seafood Seafood I - - - - - - 

MVA65 Raw seafood Seafood I - - R - - - 

NPD4A Raw seafood Seafood II - - - - - - 

Stellenbosch University https://scholar.sun.ac.za



130 

 

Sample Category 

Subcategory 
(additional 

description, as 
provided by 

supplier) 

Lineage Ampicillin Chloramphenicol Erythromycin Gentamicin Tetracycline Phage 

MRE39 Ready-to-eat Dairy I - - - - - - 

MRE21 Ready-to-eat 
Deli meat (bacon 
breakfast griller) 

II - - R - - - 

MRE29 Ready-to-eat Deli meat II - - - - - - 

MRE40 Ready-to-eat 
Deli meat (cheese 

griller) 
I - - R - R - 

MRE10 Ready-to-eat Deli meat (pastrami) I - - - - - - 

MRE11 Ready-to-eat 
Deli meat (pressed 

beef) 
I - - - - - - 

MRE17 Ready-to-eat 
Deli meat (pepper 

beef) 
II - - R - - - 

MRA04 Ready-to-eat Fresh produce  I - - R - R T 

MRE37 Ready-to-eat 
Fresh produce 

(cucumber after 
dipping) 

I - - - - - - 

MRE31 Ready-to-eat 
Fresh produce 

(cucumber after 
dipping) 

II - - - - - T 

MRE32 Ready-to-eat 
Fresh produce 

(coriander after 
dipping) 

I - - R R R T 

MRE34 Ready-to-eat 
Fresh produce (cling 

peach) 
I - - - - - - 

MRE28 Ready-to-eat Hummus I - - - - - T 

MRE38 Ready-to-eat Hummus II - R - - - - 

MRE35 Ready-to-eat Hummus II - - - - - - 

MRE01 Ready-to-eat Hummus I - - - - - T 

MRE02 Ready-to-eat 
Hummus (tarama 

salata) 
II - - - - - - 

MRE03 Ready-to-eat Hummus (jalapeno) II - - - - - - 

MRE04 Ready-to-eat Hummus (zaatar) II - - - - - - 

MRE05 Ready-to-eat Hummus (orange) I - - - - - 
T 
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Sample Category 

Subcategory 
(additional 

description, as 
provided by 

supplier) 

Lineage Ampicillin Chloramphenicol Erythromycin Gentamicin Tetracycline Phage 

MRE06 Ready-to-eat Hummus (peri-peri) I - - - - - - 

MRE07 Ready-to-eat Hummus II - - R - - - 

MRE08 Ready-to-eat Hummus (red pepper) II - - R - - - 

MRE09 Ready-to-eat Hummus I - - - - - T 

MRE13 Ready-to-eat Hummus (chipotle) I - - - - - T 

MRE14 Ready-to-eat Hummus  I - - - - - T 

MRE15 Ready-to-eat Hummus (jalapeno) II - - - - - - 

Hb2 Ready-to-eat Polony I - - - - - - 

Hb3 Ready-to-eat Polony II - - - - - - 

Hb5 Ready-to-eat Polony II - - - - - T 

Hb6 Ready-to-eat Polony II - R - - - T 

Hb4 Ready-to-eat Polony II - R R - R T 

MRE16 Ready-to-eat Unknown I - - - - - - 

MRE18 Ready-to-eat Unknown I - - - - - - 

R = resistant  
T = tolerant 
‘-‘ = susceptible/sensitive 
Isolates from the same category are not necessarily from the same retail outlet, or environmental origin. Isolates with similar descriptions are not referring to duplicates. 
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Addendum B 

Studies indicating the prevalence of antibiotic resistance of 

Listeria monocytogenes to ampicillin, chloramphenicol, 

erythromycin, gentamicin, and tetracycline 

Antibiotic Origin Reference 
L. monocytogenes isolates 

resistant/isolates tested (%) 

Ampicillin  Clinical, USA (Safdar and Armstrong, 2003) 6/65 (9.2%) 

 Clinical, Iran (Abdollahzadeh et al., 2016) 14/14 (100%) 

 Seafood, Iran (Fallah et al., 2013) 107/278 (38.5%) 

 
Seafood (open-air fish 

markets), Iran 
(Jamali et al., 2015) 9/43 (20.9%) 

 Chicken, Iran (Abdollahzadeh et al., 2016) 14/14 (100%) 

 Poultry, Iran (Fallah et al., 2012) 44/98 (44.9%) 

 Raw meat, Italy (Pesavento et al., 2010) 8/40 (20%) 

 Pork, China (Wang et al., 2015c) 3/26 (11.5%) 

 Meat products, Turkey (Yücel et al., 2005) 5/66 (7.5%) 

 Dairy products, Iran (Rahimi et al., 2010) 5/19 (26.3%) 

 RTE products, Spain (Escolar et al., 2017) 8/25 (32%) 

 RTE products, Poland (Maćkiw et al., 2016) 20/210 (9.5%) 

Chloramphenicol Clinical, USA (Safdar and Armstrong, 2003) 7/54 (12.9%) 

 Seafood, Iran (Fallah et al., 2013) 9/278 (3.2%) 

 
Seafood (open-air fish 

markets), Iran 
(Jamali et al., 2015) 1/43 (2.3%) 

 Poultry, Iran (Fallah et al., 2012) 24/98 (24.5%) 

 Dairy products, Iran (Rahimi et al., 2010) 2/19 (10.5%) 

 Vegetables, Nigeria (David and Odeyemi, 2007) 60/104 (57.7%) 

 
RTE meat products, 

China 
(Wang et al., 2015a) 11/33 (33.3%) 

Erythromycin Clinical, USA (Safdar and Armstrong, 2003) 1/84 (1.9%) 

 Seafood, Iran (Fallah et al., 2013) 7/278 (2.5%) 

 
Seafood (open-air fish 

markets), Iran 
(Jamali et al., 2015) 12/43 (27.9%) 

 Seafood, Poland (Skowron et al., 2018) 33/70 (47.1%) 

 Poultry, Iran (Fallah et al., 2012) 15/98 (15.3%) 

 Raw meat, Italy (Pesavento et al., 2010) 2/40 (5%) 

 Pork, China (Wang et al., 2015c) 3/26 (11.5%) 

 Dairy products, Iran (Rahimi et al., 2010) 3/19 (15.8%) 

 Vegetables, Nigeria (David and Odeyemi, 2007) 23/104 (22.1%) 
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Antibiotic Origin Reference 
L. monocytogenes isolates 

resistant/isolates tested (%) 

Gentamycin Clinical, USA (Safdar and Armstrong, 2003) 2/52 (2%) 

 Clinical, Iran (Abdollahzadeh et al., 2016) 1/14 (7.1%) 

 Seafood, Iran (Fallah et al., 2013) 2/278 (0.72%) 

 Chicken, Iran (Abdollahzadeh et al., 2016) 1/14 (7.1%) 

 Poultry, Iran (Fallah et al., 2012) 10/98 (10.2%) 

 Raw meat, Italy (Pesavento et al., 2010) 3/40 (7.5%) 

 Pork, China (Wang et al., 2015c) 1/26 (3.9%) 

 Dairy products, Iran (Rahimi et al., 2010) 1/19 (5.3%) 

 Vegetables, Nigeria (David and Odeyemi, 2007) 33/104 (31.7%) 

 RTE products, Spain (Escolar et al., 2017) 1/25 (4%) 

Tetracycline Clinical, USA (Safdar and Armstrong, 2003) 2/66 (3%) 

 Seafood, Iran (Fallah et al., 2013) 52/278 (18.7%) 

 Poultry, Iran (Fallah et al., 2012) 34/98 (34.7%) 

 Raw meat, Italy (Pesavento et al., 2010) 1/40 (2.5%) 

 Chilled pork, China (Wang et al., 2015c) 7/26 (26.9%) 

 Dairy products, Iran (Rahimi et al., 2010) 3/19 (15.8%) 

 Vegetables, Nigeria (David and Odeyemi, 2007) 32/104 (30.8%) 

 RTE products, Spain (Escolar et al., 2017) 12/25 (48%) 

 
RTE meat products, 

China 
(Wang et al., 2015a) 4/33 (12.1%) 

 
Food processing 

environment, Canada 
(Kovacevic et al., 2013) 3/54 (5.6%) 
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