
A study of image compression techniques,

with specific focus on weighted finite

automata

Rikus Muller

Thesis presented in partial fulfilment of the requirements for the

Degree of Master of Science at the University of Stellenbosch.

Promoters: Prof. B.M. Herbst and K.M. Hunter

December 2005

Declaration

I, the undersigned, hereby declare that the work contained in this thesis is my own original

work and that I have not previously in its entirety or in part submitted it at any university

for a degree.

Rikus Muller Date

i

Summary

Image compression using weighted finite automata (WFA) is studied and implemented

in Matlab. Other more prominent image compression techniques, namely JPEG, vector

quantization, EZW wavelet image compression and fractal image compression are also

presented. The performance of WFA image compression is then compared to those of

some of the abovementioned techniques.

ii

Opsomming

Beeldkompaktering deur middel van geweegde eindige outomate (WFA) is bestudeer en

gëımplementeer in Matlab. Ander meer prominente beeldkompakteringstegnieke, naamlik

JPEG, vektorkwantifisering, EZW golfie beeldkompaktering en fraktaal beeldkompakter-

ing word ook aangebied. Die prestasie van WFA beeldkompaktering word daarna vergelyk

met dié van sommige van die bogenoemde tegnieke.

Contents

1 Introduction 1

1.1 Digital Representation of Images . 2

1.2 Overview . 3

2 Data Compression Concepts 5

2.1 Huffman Coding . 5

2.2 Terminology . 9

2.3 Arithmetic Coding . 11

2.4 A Final Note On Huffman Coding . 17

3 JPEG and Vector Quantization 18

3.1 JPEG . 18

3.1.1 Lossless Mode . 18

3.1.2 Lossy Modes . 21

3.2 Vector Quantization . 29

3.2.1 Vector Quantization of Images . 29

3.2.2 Traditional Codebook Design . 31

iii

CONTENTS iv

3.2.3 DCT-based Codebook Design . 34

4 Wavelet Image Compression 37

4.1 Discrete Wavelet Transform . 38

4.2 Quantization: EZW Algorithm . 46

5 Fractal Image Compression 53

5.1 Mathematical Background . 55

5.2 Generalization to Grayscale Images . 59

5.3 The Encoding Procedure . 61

5.4 Partitioning Schemes . 63

5.4.1 Quadtree Partitioning . 63

5.4.2 HV Partitioning . 64

5.5 Choosing the Domain Pool . 66

5.6 Resolution Independence . 67

6 Image Compression using Weighted Finite Automata 69

6.1 Finite State Machines . 70

6.2 Weighted Finite Automata . 72

6.3 Upsampling and Downsampling . 78

6.4 Encoding (Inference) Algorithms . 80

6.5 Initial Basis and Subsequent New Decoding Algorithm 84

6.6 (Matlab) Implementation . 89

6.6.1 Auxilliary m-files . 90

6.6.2 The Encoder . 90

CONTENTS v

6.6.3 The Decoder . 93

7 Results and Conclusions 95

7.1 Quality Measure . 96

7.2 Results . 96

7.3 Conclusions . 103

A M-files 105

B Test Images 111

Bibliography 115

Chapter 1

Introduction

Over the past decade or so digital images have become an everyday aspect of our lives, with

people storing their photographs on their computers, transmitting them over the internet,

and pictures decorating websites. Digital images are also used for the archival of medical

images and legal documents. However, in raw form, such images require large amounts

of computer storage space. Even with ever increasing capacities in harddisk space, such

requirements are daunting and impractical. Therefore digital images are almost always

stored in compressed form.

In image compression and signal compression we distinguish between lossless and lossy

compression. In the case of lossless compression, the decoded image is identical to the

original image. Lossless compression is of particular importance in the compression of

medical images and legal documents. However, typical compression ratios achieved with

such techniques range between 2:1 and 3:1.

On the other hand, lossy compression entails the approximation of the original image,

resulting in much higher compression ratios. With lossy compression a trade-off is made

between the quality of the reconstructed image (relative to the original) and the compres-

sion ratio obtained. Thus, the “closer” the approximant is to the original image, the more

storage space is required for the output (compressed) file and the lower the compression

1

CHAPTER 1. INTRODUCTION 2

ratio, while the higher the compression ratio, the lower the quality of the reconstructed

image. Compression ratios achieved where the resulting error is almost, if not totally,

imperceptible to the human eye are at least 10:1.

1.1 Digital Representation of Images

A grayscale image is represented digitally by a matrix ofm-by-n pixels. Pixels are typically

unsigned 8-bit integer values, ranging from 0 to 255, and therefore allowing for 256 shades

of gray. Colour images can be simulated, according to trichromatic theory, by linear

combinations of the three primary colours red, green and blue, resulting in what is known

as a colourspace (in this case referred to as the RGB colourspace). Colour images therefore

consist of three matrices representing each pixel’s coordinates in some or other colourspace.

Since each of these matrices consist of 8-bit values, each pixel has 24-bit precision. This

is known as 24-bit colour. Most of this thesis will be restricted to grayscale images, since

image compression techniques can be generalized to colour images relatively easily.

Other colourspaces can be constructed by linear transformations of the RGB colourspace,

most notably the chrominance-luminance colourspaces, namely YUV, YIQ and YCbCr.

The Y component is always the luminance component and provides a grayscale version

of the image, whereas the other two components constitute the chrominance components.

The Y component is defined by the weighted sum

Y = 0.3R + 0.6G + 0.1B.

Chrominance is defined as the difference between a color and a reference white at the

same luminance. As a result, the components U and V are defined by

U = B− Y,

V = R− Y.

CHAPTER 1. INTRODUCTION 3

These three coordinates (Y, U and V) make up the YUV colorspace, which is used in the

European (PAL) television broadcasting system. On the other hand, the YIQ colourspace

(also known as brightness, hue and saturation) is used in the North American (NTSC)

television standard. The Y component is the same as in the YUV colourspace, while I

and Q are defined by the transformation

I = 0.74V − 0.27U,

Q = 0.48V + 0.41U.

Finally, the JPEG standard uses the colour coordinate system YCbCr. Once again, Y re-

mains the same as before, with the components Cb and Cr related to U and V, respectively,

as follows:

Cb = 0.5U + 0.5,

Cr = 0.625V + 0.5.

1.2 Overview

This thesis is an overview and comparison of the most well-known lossy compression

techniques as well as an implementation and investigation of a lesser known technique.

In Chapter 2, data compression (also known as entropy coding) concepts are introduced

and the two most prominent data compression algorithms, namely Huffman coding and

Arithmetic coding, are explained. Data compression is often used in lossy compression

techniques and always in lossless compression.

Chapter 3 covers two older lossy compression algorithms, namely the Discrete Cosine

Transform (DCT) as utilized by JPEG, and vector quantization (VQ). Two more recent

techniques, intrinsically linked with the concept of resolution, are discussed in Chapters 4

and 5: Image compression using wavelet transforms makes use of multiresolution analysis

CHAPTER 1. INTRODUCTION 4

(MRA) and is covered in Chapter 4, while fractal image compression yields encodings that

are resolution independent and is based on Iterated Function Systems (IFS), as discussed

in Chapter 5.

Another more recent algorithm, and the one implemented and investigated for this thesis

makes use of weighted finite automata (WFA). Like fractal image compression, this leads

to resolution independent encodings. As such, these two techniques are related and can

be considered as “fractal like” techniques. Image compression using WFA is discussed

in Chapter 6, as well as the implementation of such a scheme. Finally, in Chapter 7 we

present comparisons of compression results obtained for some of these techniques.

Chapter 2

Data Compression Concepts

Data compression entails the exploitation of correlation in a string of symbols. Consider,

for instance, the string of text characters abacdaab, to be stored in a text file. One

could typically encode this string as a sequence of 8-bit ASCII characters, also referred

to as using fixed length codewords. However, since some characters occur more frequently

than others, we could also use fewer bits (assign shorter codewords) to encode the more

probable characters and more bits (assign longer codewords) to encode the less probable

characters. This is known as using variable length codewords.

The two most popular data compression algorithms are Huffman coding and arithmetic

coding. To illustrate how coding with variable length codewords can be done, we apply

Huffman coding to the string above, in Section 2.1. In Section 2.2, data compression

terminology is introduced, and in Section 2.3, arithmetic coding is applied to a different

string to illustrate its superiority over Huffman coding.

2.1 Huffman Coding

Huffman coding is based on building a Huffman tree. Firstly, the distinct symbols are

sorted in a list according to increasing probability, resulting in the list illustrated in

5

CHAPTER 2. DATA COMPRESSION CONCEPTS 6

Table 2.1.

Symbol c d b a

Probability 1
8

1
8

1
4

1
2

Table 2.1: Sorted list, during first iteration of Huffman coding

Next, the first two symbols in the list (the two least probable symbols) are extracted and

merged to form a node in the tree, resulting in a new symbol with its probability given

by the sum of the probabilities of these two symbols. This results in the tree shown in

Figure 2.1.

Figure 2.1: Huffman tree, after first iteration of Huffman coding

We assign a 0 and a 1 to the left and right branch, respectively, of this new node, and the

two symbols that were merged form the leaves of the node. The newly created symbol is

then inserted into the list (in such a way that the list remains sorted), yielding the list

shown in Table 2.2.

Symbol b c + d a

Probability 1
4

1
4

1
2

Table 2.2: Sorted list, during second iteration of Huffman coding

The first two symbols are extracted and merged into a new node, resulting in the tree

shown in Figure 2.2.

After inserting this new symbol in the list, we have the list shown in Table 2.3.

CHAPTER 2. DATA COMPRESSION CONCEPTS 7

Figure 2.2: Huffman tree, after second iteration of Huffman coding

Symbol a b + c + d

Probability 1
2

1
2

Table 2.3: Sorted list, during third iteration of Huffman coding

Once again, we extract the first two entries from the list and perform the merging oper-

ation, upon which our (completed) Huffman tree looks as illustrated in Figure 2.3.

After extracting these last two entries from the list, the algorithm terminates. We see

that the node created at the final step forms the root of the tree and the initial symbols

a, b, c and d result in the leaves (nodes with no children) of the tree. The codeword

for each symbol is determined by traversing the tree, starting at the root, until the leaf

which corresponds to that symbol is reached. Along the way we concatenate the 0s and

1s labelling the branches on the specific path taken.

The resulting Huffman code for our example is given in Table 2.4, from which we see that

the codeword lengths increase as the probability of the corresponding symbols decrease.

Such a table is also called a Huffman table.

Our example character string can now be encoded as shown in Table 2.5, in other words,

as 01001101110010. The resulting bitrate is 14
8

= 1.75 bits/symbol, whereas, if the

symbols were stored as ASCII characters, we would have needed 8 bits/symbol. Indeed,

CHAPTER 2. DATA COMPRESSION CONCEPTS 8

Figure 2.3: Completed Huffman tree, after third iteration of Huffman coding

Symbol Probability Huffman code

a 1
2

0

b 1
4

10

c 1
8

110

d 1
8

111

Table 2.4: Resulting Huffman code

since our alphabet in this example consists of only four symbols, a 2-bit fixed length code,

for example, as in Table 2.6, could have been adopted. This would have yielded a bitrate

of 2 bits/symbol, which would, however, still be less efficient than that achieved by the

variable length code above.

Decoding is guaranteed to be unique since Huffman codes are part of a family of prefix

codes — no codeword is a prefix of another codeword. The bits in the encoded file are

repeatedly used to traverse the Huffman tree, starting at the root until a leaf is reached,

with a 0 indicating that the left branch should be taken, and a 1 indicating that the right

branch should be taken. Upon reaching a leaf, its corresponding symbol is placed in the

decoded file. We repeat this process, starting at the root and continuing at the position

CHAPTER 2. DATA COMPRESSION CONCEPTS 9

a b a c d a a b

0 10 0 110 111 0 0 10

Table 2.5: The encoded character string

symbol codeword

a 00

b 01

c 10

d 11

Table 2.6: A 2-bit fixed length code

immediately following in the encoded file, until the end of the encoded file is reached.

Our compressed file thus decodes uniquely to abacdaab.

2.2 Terminology

The above example illustrates some of the basic concepts of data compression. Notice

that the lengths of the (Huffman) codewords are 1 = − log2(
1
2
) for a, 2 = − log2(

1
4
) for b,

and 3 = − log2(
1
8
) for c and d. In data compression, the quantity

I = − log2(p) = log2

(
1

p

)

is defined as the information (in bits) associated with a symbol occuring with probability

p. This is the ideal codeword length of the symbol, the optimal number of bits required

to encode the symbol. We see that this measure of conveyed information is well-defined:

Symbols with small probabilities (conveying a large amount of information) result in large

values of I, and symbols with large probabilities (conveying a small amount of information)

have small values of I associated with them. In particular, for a symbol with a probability

of 1, I is 0.

CHAPTER 2. DATA COMPRESSION CONCEPTS 10

This concept of information corresponds intuitively to the degree of surprise one might

feel in encountering symbols with various probabilities (the degree to which things are

unpredictable and unexpected). In classical thermodynamics, entropy is used as a similar

measure, measuring the degree of disorder of a particle system, and, as a result, data

compression is also referred to as entropy coding.

In the case of data compression, the entropy H is defined as the average information per

symbol. If there are n distinct symbols in the input file and pi represents the probability

of the ith symbol, then

H =
n∑

i=1

pi log2

(
1

pi

)
.

The entropy H is the ideal (optimal) bitrate achievable for a given input file; as stated

in [1], “it provides a fundamental lower bound for the compression that can be achieved

with a given alphabet of symbols. The entropy is therefore a very convenient measure of

the performance of a coding system.”

This brings us to a weakness of Huffman coding. Notice from our example that Huffman

coding is always constrained to integer length codewords. The information of a symbol is

an integer value only when the symbol’s probability is an integer power of 2, and this is

not the case in general. Had our character string been, for instance, abacdaaaaaaaaaab,

Huffman coding would once again have resulted in the Huffman tree in Figure 2.3. How-

ever, as we see from Table 2.7, the integer and ideal code lengths are not the same.

Symbol Probability Information (in bits) Huffman code

a 3
4

0.415 0

b 1
8

3 10

c 1
16

4 110

d 1
16

4 111

Table 2.7: Comparison of integer and ideal code lengths

CHAPTER 2. DATA COMPRESSION CONCEPTS 11

The resulting coding rate (for the Huffman code) is

R = (3
4
)(1) + (1

8
)(2) + (1

16
)(3) + (1

16
)(3) = 1.375 bits/symbol,

whereas the entropy is

H = (3
4
)(0.415) + (1

8
)(3) + (1

16
)(4) + (1

16
)(4) = 1.186 bits/symbol.

Thus Huffman coding is prone to inefficiencies, especially when symbols occur with prob-

abilities greater than 0.5, since such symbols would still require codewords of length 1,

even though their ideal codeword length might be much less than 1. Huffman coding

does, however, provide optimal integer length codes. For a proof of this, see [2].

2.3 Arithmetic Coding

In arithmetic coding the compressed data stream, or code string, as it is sometimes re-

ferred to, is interpreted as a binary fraction lying in the unit interval [0, 1]. The (distinct)

symbols of the string to be compressed divide the interval proportional to their probabil-

ities — each symbol is assigned a subinterval with width equal to its probability. In the

case of our example string, abacdaaaaaaaaaab, the interval could be divided as shown

in Figure 2.4.

0 1

a b c d

PSfrag replacements

3
4

7
8
15
16

Figure 2.4: Possible partitioning of the unit interval

The lower limit of each subinterval is assigned to the corresponding symbol. Thus the

subinterval [0, 3
4
) belongs to a, the subinterval [3

4
, 7
8
) belongs to b, the subinterval [7

8
, 15
16
)

belongs to c, and the subinterval [15
16
, 1) belongs to d. This partitioning is reflected in

CHAPTER 2. DATA COMPRESSION CONCEPTS 12

Symbol Probability Cumulative Probability

a 3
4

0

b 1
8

3
4

c 1
16

7
8

d 1
16

15
16

Table 2.8: Cumulative probabilities corresponding to a possible partitioning

Table 2.8; notice that the lower limit of each subinterval corresponds to the cumulative

probability for the corresponding symbol.

Other orderings for the partitioning are equally valid — we could also have ordered our

symbols as shown in Table 2.9, which leads to the partitioning shown in Figure 2.5. Here

we will stick to the first ordering.

Symbol Probability Cumulative Probability

d 1
16

0

b 1
8

1
16

a 3
4

3
16

c 1
16

15
16

Table 2.9: Cumulative probabilities corresponding to another possible partitioning

0 1

ab cd

PSfrag replacements

1
16

3
16

15
16

Figure 2.5: Another possible partitioning of the unit interval

Each time a symbol is encoded, its subinterval is chosen as the new “current interval” and

is subdivided into the same proportions as the original interval. Thus after the occurence

of the symbol a in our example string, our new current interval is [0, 3
4
), then, after

CHAPTER 2. DATA COMPRESSION CONCEPTS 13

Figure 2.6: Successive subdivisions of the unit interval

encoding b, our current interval is [9
16
, 21
32
), etc. This is illustrated in Figure 2.6. Each

encoding of a symbol constitutes an iteration of the algorithm. During each iteration we

therefore have to keep track of, and update, our current interval. We do so by defining two

variables: C, the code point, is the lower limit of the current interval, and A is the width

of the current interval. Let pi denote the probability and Pi the cumulative probability of

the current (ith) symbol to be encoded. Then each iteration of the algorithm is defined

by the formulas

C := C + (A× Pi),

A := A× pi.

Initially, we always have C = 0 and A = 1, denoting the entire unit interval. Encoding

our example string abacdaaaaaaaaaab is then as in Table 2.10.

Symbol to encode Encoding

first a C := 0 + (1)(0) = 0

A := (1)(3
4
) = 3

4

second b C := 0 + (3
4
)(3
4
) = 9

16

A := (3
4
)(1
8
) = 3

32

third a C := 9
16

A := (3
32
)(3
4
) = 9

128

CHAPTER 2. DATA COMPRESSION CONCEPTS 14

fourth c C := 9
16

+ (9
128

)(7
8
) = 639

1024

A := (9
128

)(1
16
) = 9

2048

fifth d C := 639
1024

+ (9
2048

)(15
16
) = 20583

32768

A := (9
2048

)(1
16
) = 9

32768

sixth a C := 20583
32768

A := (9
32768

)(3
4
)

...
...

...

fifteenth a C := 20583
32768

A := (9
32768

)(3
4
)10

sixteenth b C := 20583
32768

+ (9
32768

)(3
4
)11 = 86332953555

137438953472

A := (9
32768

)(3
4
)10(1

8
) = 531441

274877906944

Table 2.10: Encoding the string abacdaaaaaaaaaab

Our resulting interval is [C, C + A) = [0.628154910..., 0.628156844...). As we will see,

decoding is done by magnitude comparison: examining the code string to determine the

interval in which it lies. As code string, any value greater than or equal to C and less

than C + A can be chosen to identify the final interval [C, C + A). Notice that as more

and more symbols are coded, our interval becomes smaller and smaller, and thus more

and more bits of precision are required to represent a number in that interval — this is

how our output file grows as more and more symbols are coded. The value requiring the

smallest number of bits to represent the interval [C, C + A) is chosen; in this case, that

value is

0.10100000110011101112

CHAPTER 2. DATA COMPRESSION CONCEPTS 15

= 2−1 + 2−3 + 2−9 + 2−10 + 2−13 + 2−14 + 2−15 + 2−17 + 2−18 + 2−19

= 329335
524288

= 0.6281566619873046875

The code string is conventionally written as

.1010000011001110111

and the output file is 1010000011001110111, which consists of 19 bits.

Thus arithmetic coding outperforms Huffman coding, achieving a coding rate of 19
16

=

1.1875 bits/symbol, whereas Huffman coding would have given 22
16

= 1.375 bits/symbol.

Notice also that arithmetic coding has come very close to the entropyH = 1.186 bits/symbol

for our character string. This is in general the case: as the length of a file to be com-

pressed increases, the coding rate achieved by arithmetic coding converges to the entropy

for that file.

Decoding is done by iterating the following 3 steps [3]:

1. Examine the code string and determine the interval in which it lies. Decode the

symbol corresponding to that interval.

2. Subtract the cumulative probability of the decoded symbol from the code string.

3. Rescale the code string by undoing the multiplication for the value A: Divide the

code string by the probability of the decoded symbol.

Thus, examining the code string .10100000110011101112 = 329335
524288

, we see that it lies in

the interval for symbol a: [0, 3
4
). We therefore decode symbol a and subtract 0 from the

code string. The encoder multiplied A with 3
4
, therefore we now multiply the code string

with 4
3
, to get

code string := (329335
524288

)(4
3
) = 329335

393216
.

Subsequent iterations of the decoding are shown in Table 2.11.

CHAPTER 2. DATA COMPRESSION CONCEPTS 16

Symbol Code string after step 2 Code string after step 3

second b 329335
393216

− 3
4
= 34423

393216
(34423
393216

)(8) = 34423
49152

third a 34423
49152

− 0 = 34423
49152

(34423
49152

)(4
3
) = 34423

36864

fourth c 34423
36864

− 7
8
= 2167

36864
(2167
36864

)(16) = 2167
2304

fifth d 2167
2304
− 15

16
= 7

2304
(7
2304

)(16) = 7
144

sixth a 7
144
− 0 = 7

144
(7
144

)(4
3
)

...
...

...
...

fifteenth a (7
144

)(4
3
)9 − 0 = (7

144
)(4
3
)9 (7

144
)(4
3
)9 = (7

144
)(4
3
)10

sixteenth b

Table 2.11: Decoding the string abacdaaaaaaaaaab

The decoded string is now abacdaaaaaaaaaab. We would like decoding to terminate at

this point, so to make sure the decoder stops at the desired time, we can do one of the

following things:

1. Specify at the beginning of the output file the number of symbols the uncompressed

file consists of. After decoding that number of symbols, the decoder terminates.

2. Introduce a special End-Of-File (EOF) symbol into our alphabet of symbols and ap-

pend it to the string before encoding, updating the table of probabilities accordingly.

Upon decoding the EOF symbol, the decoder stops.

Both of these approaches lead to a slight degredation in the coding performance, but in

either case the inefficiency tends to zero as the length of the string to be compressed

increases.

As a result of arithmetic coding attaining coding rates that are arbitrarily close to the

ideal coding rates, some image compression techniques exclusively use arithmetic coding.

Examples of such techniques are the EZW algorithm, presented in Chapter 4, used in

CHAPTER 2. DATA COMPRESSION CONCEPTS 17

wavelet image compression, and image compression with WFA (see Chapter 6); both of

these rely on the entropy bound as an accurate estimate of the compression that will be

achieved, and make decisions based thereon during encoding.

2.4 A Final Note On Huffman Coding

The impression should not be that Huffman coding is obsolete. To remedy the cases where

Huffman coding performs poorly, namely when a single symbol appears with probability

far greater than 0.5, it is combined with runlength coding. Since long “runs” of the

symbol in question will occur in such cases, runlength coding introduces special symbols

that are used to designate such runs. For instance, a run of 10 zeros will be encoded

with some or other symbol designating a run of 10 zeros, rather than encoding each zero

separately with its own codeword. This results in significant improvements in compression

performance, and according to experiments the improved performance comes very close

to the performance achieved by arithmetic coding. See, for instance, the comparison of

results in [1, Chapter 15].

Chapter 3

JPEG and Vector Quantization

3.1 JPEG

The JPEG standard defines various modes of operations for the encoding of an image,

namely lossless mode, and various lossy modes, namely sequential, progressive and hier-

archical mode. Hierarchical mode will not be discussed here; for details on this mode of

operation, see [1]. The lossy modes, described in Section 3.1.2, make use of the discrete

cosine transform (DCT), whereas the lossless mode, described in the next section, utilizes

what is known as predictive coding.

3.1.1 Lossless Mode

The simplest, and also poorest, form of lossless compression is to simply feed the pixel

values of an image to an entropy coder. This is known as pulse code modulation (PCM).

However, neighbouring pixels in a continuous tone image tend to be very correlated and

are often equal. The differences between such values are therefore usually very small, and

in many cases zero. Figure 3.1 shows a typical histogram of the differences between each

pixel and its left neighbour in an image, from which we see that the differences cluster

around zero. The image used was the 512× 512 image of Lenna (A 256× 256 version is

18

CHAPTER 3. JPEG AND VECTOR QUANTIZATION 19

shown in Appendix B).

−200 −150 −100 −50 0 50 100 150 200
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Figure 3.1: Histogram of differences from a sample image

Thus, instead of encoding samples directly, we could encode the differences between sam-

ple values, which leads to much better results. This form of coding is known as differential

pulse code modulation (DPCM). A schematic view of the DPCM encoder and decoder

models are shown in Figures 3.2 and 3.3, respectively.

Figure 3.2: DPCM encoder

CHAPTER 3. JPEG AND VECTOR QUANTIZATION 20

Figure 3.3: DPCM decoder

DPCM is a form of predictive coding: The previous sample is used as the prediction for

the current sample. In predictive coding, in general, a combination of samples already

coded can be used as a prediction for the sample to be coded. Typically, an average of the

samples immediately above and to the left is used as predictor. Consider the neighbouring

samples shown in Figure 3.4, where sample x is the current sample (sample to be coded),

and the neighbouring samples that have already been coded are a, b and c.

Figure 3.4: Neighbouring samples

JPEG lossless mode defines the list of predictors shown in Table 3.1 below.

For the first line of an image the neighbouring sample a is always used as predictor

(selection value 1), and at the start of each subsequent line sample b (selection value 2) is

always used. The predictor giving the best performance differs from one image to another,

and it is up to the user to instruct the JPEG encoder which predictor to use.

CHAPTER 3. JPEG AND VECTOR QUANTIZATION 21

Selection Value Prediction

0 Reserved for Hierarchical Mode

1 a

2 b

3 c

4 a + b - c

5 a - (b - c)/2

6 b - (a - c)/2

7 (a + b)/2

Table 3.1: JPEG lossless predictors

3.1.2 Lossy Modes

The JPEG sequential and progressive modes of operation make use of the model of trans-

form coding illustrated in Figure 3.5.

Figure 3.5: Model of transform coding

Forward Transform

Here the forward transform is a 2D discrete cosine transform (DCT). The image is divided

into non-overlapping 8 × 8 blocks, with the 2D DCT applied to each block. If the rows

and/or columns are not divisible by 8, padding is done by replicating the last row and/or

column the required number of times. At worst, 7 rows and 7 columns would be added.

CHAPTER 3. JPEG AND VECTOR QUANTIZATION 22

Given an 8× 8 matrix A, the 2D forward and inverse DCTs are defined by

Âx,y =
C(x)

2

C(y)

2

8∑

i=1

8∑

j=1

Ai,j cos

[
π(x− 1)(2i− 1)

16

]
cos

[
π(y − 1)(2j − 1)

16

]
,

Ai,j =
8∑

x=1

C(x)

2

8∑

y=1

C(y)

2
Âx,y cos

[
π(x− 1)(2i− 1)

16

]
cos

[
π(y − 1)(2j − 1)

16

]
,

where

C(s) =





1√
2
, s = 1,

1, s > 1.

Just like discrete Fourier transforms (DFTs), DCTs are computationally expensive, as can

be seen from the equations above, and just like DFTs, fast algorithms have been developed

to implement DCTs. Numerous algorithms, in fact, exist for the implementation of 8× 8

2D DCTs, resulting in significant improvements in execution time.

The output values of the DCT are known as DCT coefficients — they are the coefficients

of a linear combination of discretely sampled 2D cosine functions of increasing frequency,

referred to as DCT basis functions. These functions are shown in Figure 3.6. The DCT

coefficient corresponding to the basis function in the upper left corner (which is the only

constant basis function) is called the DC coefficient; the other coefficients are called AC

coefficients.

Quantization

Figure 3.7 (taken from [1]) shows how the sensitivity of the human eye to chrominance

and luminance intensities varies with spatial frequency. According to this, we see that

the DCT coefficients corresponding to higher frequencies are “less important” than those

corresponding to lower frequencies (for both chrominance and luminance components).

Colour images are therefore first converted from the RGB colour system to the YCbCr

chrominance-luminance colour system before each component is divided into 8× 8 blocks

for the DCT, and the DCT coefficients are then quantized: rescaled and rounded off to

integer values. This provides the second step in transform coding.

CHAPTER 3. JPEG AND VECTOR QUANTIZATION 23

Figure 3.6: DCT basis functions

Tables 3.2 and 3.3 show the quantization tables defined by JPEG for luminance and

chrominance, respectively. These values were determined by measuring the thresholds for

visibility of the DCT basis functions, in other words, measuring for each basis function

the amplitude (coefficient value) that is just detectable by the human eye. Each DCT

coefficient is then divided by its corresponding quantization value and rounded off to the

nearest integer value. Dequantization is done by multiplying the quantized coefficients

with their corresponding quantization table entries.

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

Table 3.2: Luminance quantization table

CHAPTER 3. JPEG AND VECTOR QUANTIZATION 24

Figure 3.7: Contrast sensitivity functions [1]

17 18 24 47 99 99 99 99

18 21 26 66 99 99 99 99

24 26 56 99 99 99 99 99

47 66 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

Table 3.3: Chrominance quantization table

Note that not only does quantization map a large number of DCT coefficients to zero,

but, as a result of rounding off, those that are not mapped to zero map to values that are

more correlated than their unquantized counterparts. For instance, if a quantization table

CHAPTER 3. JPEG AND VECTOR QUANTIZATION 25

entry is 4, then all applicable DCT coefficients in the interval [2, 6) will be mapped to 1;

all applicable DCT coefficients in the interval [6, 10) will be mapped to 2; etc. The larger

the quantization values become, the wider these corresponding intervals become, i.e. the

more correlated the quantized DCT coefficients become. Thus, by uniformly rescaling the

quantization tables, the quality versus compression tradeoff can be manipulated: Mul-

tiplying a quantization table by a number greater than 1 (and taking its ceiling since

quantization values are always integers), results in larger entries and thus more correlated

quantized DCT coefficients. This gives a higher compression ratio, but a poorer approxi-

mation to the original image, due to the quantization doing more “damage”. Dividing a

quantization table by a number greater than 1 (and taking its ceiling), results in smaller

entries and less correlated quantized DCT coefficients. This results in a smaller compres-

sion ratio, but a better approximation to the original image, due to quantization doing

less “damage”.

Figure 3.8: Zigzag sequence

The quantized DCT coefficients are fed to the entropy coder, which is either a Huffman

or an arithmetic coder, in zigzag sequence, shown in Figure 3.8. As can be seen, this

results in the lower frequencies occuring earlier and the higher frequencies occuring later

CHAPTER 3. JPEG AND VECTOR QUANTIZATION 26

in the sequence. The reason for this ordering is the following: Notice, firstly, that DCT

coefficients usually rapidly tend to zero as their frequencies increase. Secondly, quantiza-

tion table entries are larger for the higher frequency coefficients and smaller for the lower

frequency coefficients, in other words, quantization table entries increase with vertical

and horizontal frequency. Since quantization involves dividing by the values and then

rounding off, a large number of quantized DCT coefficients will be zero. As a result, the

quantized coefficients in the zigzag ordering form an approximately monotonic decreasing

sequence, with the last entries all being zero (forming a run of zeros). This ensures that

JPEG encoders using Huffman coding with runlength coding achieve good compression

results.

When it comes to feeding the quantized coefficients to the entropy coder, we distinguish

between sequential coding (JPEG sequential mode) and progressive coding (JPEG pro-

gressive mode). In general, we refer to the output of the quantization component as image

descriptors.

Sequential Lossy Mode

Figure 3.9: JPEG sequential mode encoder

The term sequential coding refers to the compression of image descriptors (in this case,

DCT coefficients) in a single scan or pass. For sequential lossy mode we slightly refine

our diagram of transform coding to that of Figure 3.9. Instead of coding the DC coeffi-

cients directly, we can improve our compression results by DPCM coding them. The DC

coefficient from the previous 8× 8 block (from the same component) is used as predictor

for the current DC coefficient (DC coefficient to be coded). AC coefficients are coded

directly. The decoding process is illustrated in Figure 3.10 below.

CHAPTER 3. JPEG AND VECTOR QUANTIZATION 27

Figure 3.10: JPEG sequential mode decoder

A special restricted form of JPEG sequential lossy mode is the JPEG baseline mode.

This mode only uses Huffman coding for the entropy coder, and is restricted to fixed

Huffman tables — tables that were designed using a wide range of images [1]. Using these

tables when encoding an image, rather than designing custom tables, leads to a significant

reduction in encoding time. This does, however, lead to slightly worse compression results

since these fixed tables are in general not the optimal Huffman tables for any specific

image.

Progressive Lossy Modes

Progressive coding entails the encoding of image descriptors (in this case, DCT coeffi-

cients) in a sequence of scans or passes. Each of these passes are encoded separately, and

are thus decoded separately, so that each pass can be displayed during decoding, yielding

a progression of images, each one of better quality than the previous one. Not only is this

useful to certain applications, but in many cases slightly better compression results can be

achieved than with sequential coding. JPEG defines two progressive coding techniques:

spectral selection and successive approximation.

Spectral Selection

In spectral selection, the zigzag sequence of DCT coefficients is segmented into contiguous

bands, or spectral bands, and each band is encoded in a separate scan. The lower frequency

bands are usually encoded first. The diagram in Figure 3.9 is once again applicable; in

the case of sequential coding the entropy coding component is invoked only once, whereas

CHAPTER 3. JPEG AND VECTOR QUANTIZATION 28

here it is invoked multiple times.

Successive Approximation

Figure 3.11: First stage of successive approximation

In the first scan of successive approximation, the n most significant bits of the DCT

coefficients are coded (for some positive integer n), in other words, the coefficients are

coded at reduced precision. This is done by dividing them by 2n, which is referred to

as a point transform. This is illustrated by Figure 3.11 above. DC coefficients are once

again DPCM coded (after being point transformed). For each subsequent scan the value

of n is decremented by 1, with the point transform once again being applied to the AC

coefficients, improving their precision with each scan. On the other hand, the remaining

lower order bits of the DC coefficients are sent one at a time in these subsequent scans,

from the most significant to the least significant bit of the remaining bits. These bits are

not DPCM coded, but rather coded directly, because they are almost completely random.

Upon n reaching 0 the successive approximation progression is complete: the coefficients

are at full precision.

Mixing Spectral Selection and Successive Approximation

Spectral selection and successive approximation may be mixed: spectral selection scans

can be applied within each stage of successive approximation, or successive approximation

scans can be applied within each stage of spectral selection. Mixing these two techniques

results in a very graceful progression.

CHAPTER 3. JPEG AND VECTOR QUANTIZATION 29

3.2 Vector Quantization

Vector quantization (VQ) is a very simple lossy compression technique, with very fast

encoding and decoding times, applicable to both image and audio compression. See, for

example, [4].

3.2.1 Vector Quantization of Images

Assume we have a set of, say M , m × n matrices, with m and n small, known as a

codebook. Each matrix in our codebook is referred to as a codevector. A grayscale image

to be compressed is partitioned into non-overlapping m× n blocks, each referred to as a

target vector. For each target vector a search is performed through the codebook to find

the codevector which is “closest” to that target vector. For images the Euclidean metric

is used: An m×n matrix is reshaped to a vector with mn entries. The Euclidean distance

between two such vectors x and y is then

d(x,y) = ||x− y||2 =

√√√√
mn∑

k=1

(xk − yk)2.

Codevectors are numbered from 1 to M , and once the codevector closest to the target

vector in question is found, its number is placed in an array. Thus, the output file is an

array of indices indicating which codevector is closest to each target vector. The encoding

is typically done from left to right, top to bottom.

Consider, for instance, the 4× 4 matrix in Figure 3.12 as the image to be encoded, given

a codebook consisting of eight 2 × 2 codevectors. Our image therefore consists of four

target vectors. The encoding is done in the sequence indicated in these figures, each time

searching through the codebook for the codevector closest to the particular target vector.

Our resulting output array looks as shown in Table 3.4, where the ith codevector is closest

to the first target vector, the jth codevector is closest to the second target vector, etc.

Since there are eight codevectors, each index can be represented by a 3-bit binary number,

and since each vector consists of four elements, we have a resulting bitrate of 3
4
bits per

CHAPTER 3. JPEG AND VECTOR QUANTIZATION 30

a) First target vector b) Second target vector

c) Third target vector d) Fourth target vector

Figure 3.12: Example image

i j k l

Table 3.4: Example output array

pixel. In general, if we have a codebook consisting of M codevectors and each codevector

has s entries, then the bitrate is given by the formula

r =
dlog2Me

s
bits/pixel.

Since we take the ceiling of log2M , to calculate the number of bits needed to represent

a codevector, we could just as well choose M to be a positive integer power of 2, to fully

utilize that number of bits. Hence, VQ codebooks always contain 2n codevectors, for some

positive integer n. Our formula for the bitrate is now

r =
n

s
bits/pixel.

The larger the value of n, and thus the more elements we have in our codebook, the

better we can approximate each target vector and the higher the quality of the decoded

CHAPTER 3. JPEG AND VECTOR QUANTIZATION 31

image will be. This results in a higher bitrate r and thus a smaller compression ratio.

Conversely, the smaller the value of n, the worse our approximating codevectors will

perform in general, and the poorer the quality of the decoded image will be. This gives a

lower bitrate and thus a higher compression ratio. To decode an image, we simply “walk”

through the output array, using each entry to index a codevector in the codebook, and

“paste” the codevectors together to form a decoded image.

3.2.2 Traditional Codebook Design

The more difficult part of vector quantization is designing the codebook. We wish to design

the codebook so as to minimize the average distortion (error) resulting from encoding

images. In other words, for a sequence of images X1, X2, . . . , Xn, we would like the

longterm average

lim
n→∞

1

n

n∑

i=1

d(Xi, X̂i)

to be small, assuming that the limit exists, where X̂i, i = 1, . . . , n are the reconstructed

images corresponding to the images Xi, i = 1, . . . , n. The approach taken is to use long

training sequences and design a codebook that minimizes the average distortion for the

training sequence. The codebook is then tested on images outside the training set, in

the hope that the results will be reasonably close to those obtained with the training

set. If so, the codebook is accepted. If, on the other hand, the results differ significantly,

the training sequence was probably not long enough, and a new codebook is designed

based on a longer training sequence. Before designing a codebook, one decides on the

dimensions of the codevectors (and thus also the target vectors), for instance 4 × 4, see

[5] or 4× 3, see [4]; let it be m× n. The training set (set of training vectors) are then all

non-overlapping m× n submatrices from a handful (e.g. five) of training images. One of

course also has to decide on the number of codevectors that the codebook should consist

of.

Algorithm 3.1, due to Linde, Buzo and Gray [4], is traditionally used during the construc-

CHAPTER 3. JPEG AND VECTOR QUANTIZATION 32

tion of a codebook.

Input: A training sequence and an initial codebook

1. Encode the training sequence with the current codebook. If the average

distortion is small enough, quit;

2. Replace each codevector with the centroid of all the training vectors which were

mapped to it (were closest to it). Go to 1.;

Algorithm 3.1: LBG algorithm

If N vectors x1,x2, . . . ,xN were mapped to a certain codevector, their centroid is given

by

x =
1

N

N∑

i=1

xi.

The algorithm iteratively improves the initial codebook. A typical iteration of the al-

gorithm is illustrated in Figures 3.13 and 3.14, where the vectors are for simplicity 2-

dimensional. The codevectors are represented by ‘o’s and the training vectors by ‘x’s.

In Figure 3.13 the training vectors in the first quadrant are closest to the codevector in

the first quadrant and will thus be mapped to it. Similarly, the training vectors in the

second quadrant will be mapped to the codevector in the second quadrant, etc. In Figure

3.14 the old codevectors have been replaced by the centroids of the training vectors that

mapped to them (in Figure 3.13). Thus, if we now encoded the training vectors with these

new codevectors, the average distortion would decrease. The average distortion decreases

monotonically with each iteration, and we terminate the algorithm when such a decrease

falls below some threshold.

There are various ways of acquiring an initial codebook. The simplest approach is to either

take the first 2R, or some randomly chosen 2R, training vectors from the training set, where

2R is the desired number of elements for the codebook. Another approach is known as

splitting, where we first calculate the centroid of the entire training sequence — yielding

the optimum single-element codebook for that training sequence. This codevector is then

split: an additional codevector is formed from it by adding a small amount of “noise”

CHAPTER 3. JPEG AND VECTOR QUANTIZATION 33

Codevectors
Training Vectors

Figure 3.13: First step in an iteration of the LBG algorithm

Codevectors
Training Vectors

Figure 3.14: Second step in an iteration of the LBG algorithm

to it, thus perturbing it. This gives an initial codebook for the LBG algorithm, which

is then run to obtain an optimal 2-element codebook. This process continues until the

desired optimal 2R-element codebook is obtained. Figure 3.15 illustrates the first 2 stages

in such a splitting procedure, resulting in an optimal 4-element codebook.

The LBG algorithm is, however, expensive in terms of computation and storage require-

ments, both of which increase exponentially with the codebook size and dimension of the

vectors. Many algorithms that are variations of the LBG algorithm have been developed

to reduce the computational compexity in exchange for small decreases in image quality;

CHAPTER 3. JPEG AND VECTOR QUANTIZATION 34

a) Centroid of training set b) Splitting the codevector

c) Result of LBG algorithm d) Splitting the codevectors

e) Result of LBG algorithm

Figure 3.15: Splitting technique

for details on some of these, see [4]. The technique that we will discuss next is a more

recent codebook design algorithm and is not a variation of the LBG algorithm. It was

published by Chaur-Heh Hsieh [5], requires no intial codebook, and is considerably faster

than the algorithms that improve on the LBG algorithm. The resulting codebook can

also be used as an initial codebook for the LBG algorithm, if one wishes to do so.

3.2.3 DCT-based Codebook Design

This technique makes use of the 2D DCT: Training images are divided into non-overlapping

m×m training vectors, then features are extracted from the training vectors by applying

a 2D DCT to each, with the DCT coefficients stored in a 1D array by following the zigzag

CHAPTER 3. JPEG AND VECTOR QUANTIZATION 35

order illustrated in Figure 2.8. Each DCT coefficient is regarded as a feature of its train-

ing vector, and the 1D vector as the feature vector. The codebook is now constructed by

partitioning the training vectors into a binary tree (this is a form of binary tree classifica-

tion): Each node in the tree represents a subset of the entire set of training vectors, with

all subsets at the same height being mutually exclusive and their union forming the entire

training set. The root of the tree represents the entire set. At each node the mean and

variance of the features of the vectors at that node are calculated. If there are N training

vectors at node n with corresponding feature vectors z1, z2, . . . , zN the mean M(j) and

variance V (j) for the jth feature are defined as

M(j) =
1

N

N∑

i=1

zi(j), j = 1, . . . ,m2,

V (j) =
1

N

N∑

i=1

[zi(j)−M(j)]2, j = 1, . . . ,m2.

The feature, say the kth, with the largest variance is used as the split key for this node:

The vectors falling on this node are partitioned by comparing their kth feature with a

split threshold. Here we choose the mean of all the kth features at this node, M(k), as the

split threshold, so that we compare each feature vector’s kth element with M(k). Vectors

whose kth feature is less than M(k) are placed in the set corresponding to the node’s

left child, the others in the right child’s set. An example of this is shown in Figure 3.16

where the training set consists of 12 vectors x1,x2, . . . ,x12. The partitioning operation is

performed at node 1 (the root), node 2 and node 3, resulting in 4 leaf nodes (4, 5, 6 and

7).

The algorithm is repeated until the same number of leaves is obtained as the desired

number of codevectors for the codebook. The centroid of each cluster of training vectors

falling on a leaf is then calculated and used as a codevector for the codebook. In the case

of our example in Figure 3.16, if we required 4 codevectors, our codebook would consist

of the codevectors

X1 =
1
3
(x1 + x4 + x6),

CHAPTER 3. JPEG AND VECTOR QUANTIZATION 36

1

2 3

4 5 6 7

PSfrag replacements {x1,x2, . . . ,x12}

{x1,x3,x4,x6,x7,x10} {x2,x5,x8,x9,x11,x12}

{x1,x4,x6}{x3,x7,x10}{x2,x5,x9,x11} {x8,x12}

Figure 3.16: Partitioning of training vectors

X2 =
1
3
(x3 + x7 + x10),

X3 =
1
4
(x2 + x5 + x9 + x11),

X4 =
1
2
(x8 + x12).

Chapter 4

Wavelet Image Compression

Like JPEG, the wavelet image compression technique discussed in this chapter follows the

paradigm of transform coding of Figure 3.5, once again illustrated in Figure 4.1. Here the

forward transform is a 2D discrete wavelet transform (DWT) and quantization is done

with the embedded zerotree wavelet (EZW) algorithm, generating image descriptors over

a 6-symbol alphabet. Once again, the image descriptors are entropy coded at the final

stage, yielding the compressed image data. Arithmetic coding is used for the entropy

coding, enabling us to calculate, during the execution of the EZW algorithm, the size of

the output file and then stop the algorithm whenever we want, e.g. as soon as a target

bitrate has been achieved.

Figure 4.1: Transform coding for wavelet image compression

37

CHAPTER 4. WAVELET IMAGE COMPRESSION 38

4.1 Discrete Wavelet Transform

We once again restrict our attention to grayscale images. The 2D DWT is applied a

certain number of times to the input image, say n, where n is small, resulting in an n-

level decomposition of the image. An example is shown in Figure 4.2, where we have a

2-level decomposition of the Lenna image, interpreted as an image.

Figure 4.2: 2-level wavelet decomposition of Lenna

A 2D DWT is accomplished by first performing a 1D DWT to the rows and then the

columns of the image (or any 2-dimensional signal for that matter). Before explaining a

1D DWT, we first introduce some terminology and notation [6].

The vector space M(Z) is defined as the set of all bi-infinite sequences, i.e.

M(Z) = {a = {aj : j ∈ Z} : aj ∈ R, j ∈ Z} ,

CHAPTER 4. WAVELET IMAGE COMPRESSION 39

and the inner product space `2(Z) of square-summable bi-infinite sequences is defined by

`2(Z) =

{
c ∈M(Z) :

∑

j∈Z

c2j <∞

}
,

with corresponding inner product

〈c, d〉`2(Z) =
∑

j∈Z

cjdj, c, d ∈ `2(Z).

Then `2(Z) is a normed linear space with respect to the norm

||c||`2(Z) =
√
〈c, c〉`2(Z) =

√∑

j∈Z

c2j , c ∈ `2(Z).

The inner product space L2(R) of square-integrable functions on R is defined by

L2(R) =

{
f : R→ R :

∫ ∞

−∞
[f(t)]2dt <∞

}
,

with corresponding inner product

〈f, g〉L2(R) =

∫ ∞

−∞
f(t)g(t)dt, f, g ∈ L2(R).

Then L2(R) is a normed linear space with respect to the norm

||f ||L2(R) =
√
〈f, f〉L2(R) =

√∫ ∞

−∞
[f(t)]2dt, f ∈ L2(R).

A sequence a ∈M(Z) is said to be finitely supported if there exist integers R and Q such

that

aj = 0, j 6∈ [R,Q].

A function φ is said to be finitely supported if there exist integers R and Q such that

φ(t) = 0, t 6∈ [R,Q],

and refinable if

φ(t) =
∑

j∈Z

ajφ(2t− j), t ∈ R

CHAPTER 4. WAVELET IMAGE COMPRESSION 40

for some finitely supported sequence a ∈ M(Z). A scaling function φ is a (piecewise)

continuous, finitely supported, refinable function also satisfying the partition of unity

property
∑

j∈Z

φ(x− j) = 1, x ∈ R.

Given a scaling function φ, we generate a sequence of vector spaces
{
V (r) : r ∈ Z

}
, with

V (r) =

{
∑

j∈Z

cjφ(2
r · −j) : c ∈ `2(Z)

}
, r ∈ Z.

These spaces are nested in the sense that

V (r) ⊂ V (r+1), r ∈ Z,

and we also have that
⋂

r∈Z

V (r) = {0} .

Each space V (r) ⊂ L2(R); moreover their union is dense in L2(R), i.e.

⋃

r∈Z

V (r) = L2(R).

As a result, we have

{0} ←− . . . V (−1) ⊂ V (0) ⊂ V (1) ⊂ . . . −→ L2(R).

Such a nested sequence
{
V (r) : r ∈ Z

}
of linear subspaces of L2(R) is called a multireso-

lution analysis (MRA) of L2(R), and is central to wavelet decomposition.

The orthogonal wavelet spaces corresponding to
{
V (r) : r ∈ Z

}
are defined as the orthog-

onal complements of each V (r) with respect to V (r+1), in other words, for each V (r),

W (r) = (V (r))⊥ =
{
f ∈ V (r+1) : 〈f, g〉 = 0, g ∈ V (r)

}
, r ∈ Z.

This leads to the following orthogonal decomposition result: if f ∈ V (r+1), then there

exist unique functions g ∈ V (r) and h ∈ W (r) such that

f = g + h.

CHAPTER 4. WAVELET IMAGE COMPRESSION 41

A finitely supported function ψ such that

W (r) =

{
∑

j∈Z

djψ(2
r · −j) : d ∈ `2(Z)

}
, r ∈ Z

is called a wavelet. It can be proven that the following decomposition result, fundamental

to wavelet analysis, holds:

φ(2r+1t− j) =
∑

k∈Z

α2k−jφ(2
rt− k) +

∑

k∈Z

β2k−jψ(2
rt− k), t ∈ R, r, j ∈ Z,

where α and β are known as the decomposition sequences, and are uniquely determined by

φ and ψ. Before implementing a wavelet decomposition on a signal, one thus first decides

on a scaling function and corresponding wavelet.

Given a vector x = (x1, x2, . . . , xn), a 1D DWT is implemented as follows: The vector x

can be converted to an element of `2(Z), say c(N) ∈ `2(Z), N ∈ N, with

c
(N)
j =





xj, j = 1, . . . , n,

0, otherwise

where c
(N)
j is interpreted as the discrete samplings of a function f ∈ L2(R) such that

fN(t) =
∑

j∈Z

c
(N)
j φ(2N t− j), t ∈ R

with

||fN − f ||L2(R) < ε,

for some or other real ε > 0. For example, f could be a function such that

c
(N)
j = f

(
j

2N

)
, j ∈ Z.

Thus, fN is an approximation to f from the space V (N), and, as a result of the density of

the MRA, we can approximate f arbitrarily closely by increasing the value of N .

Therefore, due to the orthogonal decomposition result, we have

fN = fN−1 + gN−1, fN−1 ∈ V
(N−1), gN−1 ∈ W

(N−1),

CHAPTER 4. WAVELET IMAGE COMPRESSION 42

with

fN−1(t) =
∑

j∈Z

c
(N−1)
j φ(2N−1t− j), t ∈ R

and

gN−1(t) =
∑

j∈Z

d
(N−1)
j ψ(2N−1t− j), t ∈ R.

The sequences c(N−1) and d(N−1) are given by the formulas

c
(N−1)
j =

∑

k∈Z

α2j−kc
(N)
k , j ∈ Z,

d
(N−1)
j =

∑

k∈Z

β2j−kc
(N)
k , j ∈ Z,

because

fN(t) =
∑

j∈Z

c
(N)
j φ(2N t− j)

=
∑

j∈Z

c
(N)
j

[
∑

k∈Z

α2k−jφ(2
N−1t− k) +

∑

k∈Z

β2k−jψ(2
N−1t− k)

]

=
∑

k∈Z

[
∑

j∈Z

α2k−jc
(N)
j

]
φ(2N−1t− k) +

∑

k∈Z

[
∑

j∈Z

β2k−jc
(N)
j

]
ψ(2N−1t− k), t ∈ R.

This decomposition can be repeated an arbitrary number of times, say M , yielding the

sequences of functions

{fr : r = N,N − 1, . . . , N −M} ,

{gr : r = N − 1, N − 2, . . . , N −M} ,

with

fr+1 = fr + gr, r = N − 1, N − 2, . . . , N −M

and

fr(t) =
∑

j∈Z

c
(r)
j φ(2rt− j), t ∈ R, r = N,N − 1, . . . , N −M

gr(t) =
∑

j∈Z

d
(r)
j ψ(2rt− j), t ∈ R, r = N − 1, N − 2, . . . , N −M

CHAPTER 4. WAVELET IMAGE COMPRESSION 43

where

c
(r)
j =

∑

k∈Z

α2j−kc
(r+1)
k , j ∈ Z, r = N − 1, N − 2, . . . , N −M

d
(r)
j =

∑

k∈Z

β2j−kc
(r+1)
k , j ∈ Z, r = N − 1, N − 2, . . . , N −M.

We also see that

fr ∈ V
(r), r = N,N − 1, . . . , N −M,

gr ∈ W
(r), r = N − 1, N − 2, . . . , N −M,

and

fN = fN−M + gN−M + gN−M+1 + . . .+ gN−2 + gN−1.

The functions gN−M , gN−M+1, . . . , gN−1 are called the wavelet components of the function

fN which we have associated with our initial vector x, and the sequences d(N−1), d(N−2), . . . , d(N−M)

are called the wavelet coefficient sequences. This decomposition algorithm can be illus-

trated diagrammatically as shown in Figure 4.3.

.

.

.

PSfrag replacements

fN ∈ V
(N)

fN−1 ∈ V
(N−1) gN−1 ∈ W

(N−1)

fN−2 ∈ V
(N−2) gN−2 ∈ W

(N−2)

gN−3 ∈ W
(N−3)

fN−M ∈ V
(N−M) gN−M ∈W

(N−M)

Figure 4.3: Diagram of an M-level wavelet decomposition

Reconstructing the sequence c(N), and thus also the function fN , from the sequences

c(N−1), d(N−1), . . . , c(N−M), d(N−M) is done as follows: Once again two sequences a and q,

CHAPTER 4. WAVELET IMAGE COMPRESSION 44

uniquely determined by φ and ψ, exist, called the reconstruction sequences. From these

sequences each c(r+1), r = N −M, . . . , N − 1 can be reconstructed by the formula

c
(r+1)
j =

∑

k∈Z

aj−2kc
(r)
k +

∑

k∈Z

qj−2kd
(r)
k , j ∈ Z, r = N −M, . . . , N − 1.

The application of the decomposition sequences α and β to the sequences c(r) is equivalent

to applying decomposition filters (high pass and low pass) to them and downsampling at

each stage. Reconstruction is done by upsampling the output of the high pass decompo-

sition filter and applying a high pass reconstruction filter to it, upsampling the output of

the low pass decomposition filter and applying a low pass reconstruction filter to it, and

adding these two resulting sequences. Such a process is known as using filter banks [7].

When using filter banks, we directly use the vector x, with the downsampling of its de-

compositions leading to sequences of half the length of their predecessors. Decompositions

can thus be done as long as the length of the sequence to be decomposed is divisible by 2.

This does not pose a problem in wavelet image compression, since only about two or three

levels of decomposition are typically done. If the rows and/or columns are not divisible

by 2r, where r is the number of decompositions to be done, in the worst case we would

need to pad with 2r − 1 rows and columns. As noted before, a 2D DWT is applied to

an image by first applying a 1D DWT to its rows and then a 1D DWT to its columns:

Each row is replaced with the output rows of the low pass and high pass decomposition

filters applied to it, placed next to each other (low pass left; high pass right). This is

illustrated in Figure 4.4(a). Afterwards, each column of the resulting matrix is replaced

with the output columns of the low pass and high pass decomposition filters applied to

it, one placed on top of the other (low pass top; high pass bottom). This is illustrated in

Figure 4.4(b). Subsequent decompositions are repeated on the lowest subband resulting

from the previous decomposition. After two levels of decomposition, a matrix of the form

shown in Figure 4.5 results. Compare this to Figure 4.2, where we have interpreted the

decomposition as an image.

CHAPTER 4. WAVELET IMAGE COMPRESSION 45

a) Replacing rows with their high and low pass components

b) Replacing columns with their high and low pass components

Figure 4.4: Applying highpass and lowpass filters

CHAPTER 4. WAVELET IMAGE COMPRESSION 46
PSfrag replacements

LL2 HL2

LH2 HH2

HL1

LH1 HH1

Figure 4.5: Subbbands resulting from a 2-level decomposition

4.2 Quantization: EZW Algorithm

The embedded zerotree wavelet (EZW) algorithm was published by Shapiro in [8] and is, as

the name suggests, an embedded coding technique, which is synonymous with progressive

coding (explained in Chapter 3.1.2). Here the wavelet coefficients are coded in order of

importance, specifically according to precision, magnitude, scale and spatial location, as

will be shown. The algorithm exploits the tendency of wavelet coefficients to decrease in

magnitude from the lower subbands to the higher subbands. In order to do this a data

structure is defined to order the coefficients in a tree structure: Every coefficient at a given

scale can be related to a set of coefficients at the next finer scale of similar orientation.

Consider the situation depicted in Figure 4.6. Each coefficient at scale (subband) LL3

will have a descendant coefficient at scales HL3, LH3 and HH3 — three descendants in

total. From there on each coefficient has four descendants at the next finer scale of similar

orientation, forming a quadtree structure. Each coefficient at scale LL3 is a root of such

a tree, and the resulting data structure is an array of such trees. See Figure 4.7.

CHAPTER 4. WAVELET IMAGE COMPRESSION 47

PSfrag replacements

LL3 HL3

LH3

HH3 HL2

LH2 HH2

HL1

LH1 HH1

Figure 4.6: Relationship between subbands

Figure 4.7: Array of quadtrees

This tree structure defines an ordering in which coefficients will be scanned during each

iteration of the algorithm: No child node is scanned before its parent and each coefficient

CHAPTER 4. WAVELET IMAGE COMPRESSION 48

within a given subband is scanned before any coefficient in the next subband. This

scanning order is illustrated in Figure 4.8. How the scanning is done within a specific

subband is determined by choosing either a raster scan (Figure 4.9) or a Morton scan

(Figure 4.10).

PSfrag replacements

LL3 HL3

LH3 HH3

HL2

LH2 HH2

HL1

LH1 HH1

Figure 4.8: Scanning order within subbands

CHAPTER 4. WAVELET IMAGE COMPRESSION 49

Figure 4.9: Raster scan

Figure 4.10: Morton scan

This tree structure enables the exploitation of the abovementioned tendency as follows:

A wavelet coefficient C is defined to be insignificant with respect to a threshold t, if

|C| < t. If a coefficient is deemed insignificant with respect to a certain threshold, then

it is very likely that all its descendants (i.e. all coefficients of the same orientation in

CHAPTER 4. WAVELET IMAGE COMPRESSION 50

the same spatial location at finer scales) will also be insignificant with respect to that

threshold. If this is the case, we define such a subtree to be a zerotree and that particular

coefficient is called the zerotree root. Thus, if a coefficient is coded as a zerotree root,

we know that it and all its descendants are insignificant with respect to the threshold;

all its descendants are implicitly coded as insignificant. The symbol T is used to code

a zerotree root. An insignificant coefficient which is not a zerotree root (has at least

one significant descendant) is called an isolated zero and is coded with the symbol Z. A

significant coefficient (one which is not insignificant with respect to the current threshold),

on the other hand, is coded with a P if it is positive, and an N if it is negative. The

process outlined above, known as encoding a significance map, is used in conjunction with

successive approximation quantization during each iteration of the EZW algorithm — the

threshold’s magnitude is reduced from one iteration to the next, and a next significant

bit is outputted for each significant coefficient, adding more and more precision to the

coefficients and thus more and more detail to the encoded image. Typically the threshold

is reduced by halving it during each iteration. Its initial value is then the largest power of

two less than the maximum absolute value of the wavelet coefficients. The iterations of the

algorithm are illustrated in Figure 4.11. As stopping condition we can use a target bitrate

Figure 4.11: EZW algorithm

or some minimum threshold to encode the coefficients at full precision leading to perfect

image reconstruction. The dominant pass is responsible for encoding the significance

map, with the coefficients processed in the selected scanning order and treated as shown

in Figure 4.12. Coefficients that have been identified as significant in previous dominant

passes, should not be coded again; therefore, once identified as significant, we label these

CHAPTER 4. WAVELET IMAGE COMPRESSION 51

Figure 4.12: Dominant pass

coefficients as such, and no output is generated for them in later dominant passes. No

output is generated for insignificant coefficients that descend from zerotree roots, since

they are predictably insignificant. The subordinate pass is responsible for outputting the

remaining significant bits for coefficients c that are deemed significant. Therefore the

value |C| − t, holding the remaining bits (bits that have not yet been output), is placed

in the subordinate list by the dominant pass for each new significant coefficient. The

subordinate pass processes the items on the subordinate list as shown in Figure 4.13.

We see therefore that the EZW algorithm produces symbols over the 6-element alphabet

{0,1,P,N,T,Z}. These symbols are then compressed using arithmetic coding and we

can terminate the algorithm as soon as a target bitrate is reached.

CHAPTER 4. WAVELET IMAGE COMPRESSION 52

Figure 4.13: Subordinate pass

On a final note, this form of progressive (embedded) coding is similar in nature to the

binary representation of a number like π: The more bits we add, the more accurately we

represent the number. Similarly, the more scans (passes) we add to the encoding of the

image, the more accurately we represent the original image. And in both cases we can

stop as soon as our “bit budget” is exhausted. A good informal explanation of the EZW

algorithm can also be found in [9].

Chapter 5

Fractal Image Compression

Fractal image compression is motivated by the observation that fractals, which are usually

visually complex and intricate and contain detail at all resolutions, also have simple

algorithmic descriptions. Of particular importance are those generated by collections of

affine transformations wi, i = 1, . . . , n, with

wi(x) = Ax+ b =


 ai bi

ci di


x+


 ei

fi


 , x ∈ R

2.

A classic example is of the Sierpinski triangle, specified by the three affine transformations

for x ∈ [0, 1]× [0, 1]

w1(x) =




1
2

0

0 1
2


x,

w2(x) =




1
2

0

0 1
2


x+


 0

1
2


 ,

w3(x) =




1
2

0

0 1
2


x+




1
2

0


 .

The process can informally be interpreted as taking the unit square as input, applying

the three transformations to the set and “pasting” the results together, giving a mapping

from the unit square into itself, as illustrated in Figure 5.1. All three transformations

53

CHAPTER 5. FRACTAL IMAGE COMPRESSION 54

reduce the unit square by 1
2
, as a result of the matrix multiplication, and w2 and w3

translate it with offsets


 0

1
2


 and




1
2

0


, respectively. The resulting output is then used

as input, i.e. the process is run in a feedback loop. The image that this converges to, the

Sierpinski triangle, is shown in Figure 5.2.

PSfrag replacements

w1
w3

w2

Figure 5.1: Affine transformations of the unit square

Figure 5.2: Sierpinski triangle

Notice that storing this fractal as a 256 × 256 digital image would require 524288 bits

(65536 bytes), but its algorithmic description consists of only three affine transformations.

If we represent each of the numbers specifying an affine transformation with 32 bits,

CHAPTER 5. FRACTAL IMAGE COMPRESSION 55

storing them would only require 6× 3 numbers × 32 bits/number = 576 bits (72 bytes).

The idea of fractal image compression is that, given a “real life” image, hopefully a small

number of affine transformations could be also found that would approximate it, enabling

us to store it compactly similar to the Sierpinski triangle.

5.1 Mathematical Background

The affine transformations noted above are examples of contractive mappings: two points

in the unit square, and R
2 in general, are brought closer together by the transformation.

Definition: A metric space (X, d) is a set X on which a distance function d : X×X → R,

called a metric, is defined, such that, for any a, b, c ∈ X

1) d(a, b) ≥ 0,

2) d(a, b) = 0⇔ a = b,

3) d(a, b) = d(b, a),

4) d(a, c) ≤ d(a, b) + d(b, c).

Thus, R
2 with the Euclidean metric d(x,y) =

√
(x1 − y1)2 + (x2 − y2)2 = ||x − y||2 is a

metric space.

Definition: Let (X, d) be a metric space. A mapping w : X → X is Lipschitz with

Lipschitz factor s, if there exists a positive real number s such that

d(w(x), w(y)) ≤ sd(x, y), x, y ∈ X.

If s < 1, w is said to be contractive with contractivity s.

Thus an affine transformation

w(x) = Ax+ b, x ∈ (R2,Euclidean)

is Lipschitz with Lipschitz factor s = ||A||2, where ||A||2 denotes the induced 2-norm of

matrix A. This is so because

d(Ax+ b, Ay + b) = ||Ax+ b− Ay − b||2

CHAPTER 5. FRACTAL IMAGE COMPRESSION 56

= ||Ax− Ay||2 = ||A(x− y)||2 ≤ ||A||2||x− y||2 = sd(x,y).

We see furthermore that such an affine transformation is contractive if ||A||2 < 1. There-

fore, the transformations w1, w2, w3 of our introductory example, are contractive map-

pings in (R2, Euclidean). Similarly, the collection of the contractive mappings w1, w2, w3

(w1, . . . , wn in general) applied to compact subsets of R
2 (in this case, the unit square) is

a contractive mapping, as we will see.

Definition: A subset of a finite dimensional metric space is compact if it is closed and

bounded.

Definition: Let (X, d) be a metric space, and let w1, . . . , wn be contractive mappings.

Then H(X) := {S ⊂ X : S is compact}, and the mapping W : H(X)→ H(X) is defined

by

W (S) =
n⋃

i=1

wi(S), S ∈ H(X).

We will now introduce the Hausdorff metric as a way of measuring the distance between

two compact subsets of a metric space. Given a metric space (X, d), the Hausdorff distance

between two compact subsets A and B is calculated as follows: For each x ∈ A, find the

y ∈ B closest (in terms of metric d) to it. For each x ∈ B, find the y ∈ A closest (in

terms of metric d) to it. Choose the maximum of these minimal distances as the distance

between the sets A and B. Examples of such subsets of R
2 (with the Euclidean metric) are

illustrated in Figure 5.3. The Hausdorff distance between them is indicated by a straight

line. The Hausdorff metric is formally defined as follows.

Definition: Let (X, d) be a metric space and let A and B be compact subsets of X.

With the notation

δd(x,A) = inf
y∈A

d(x, y), x ∈ X,

the Hausdorff distance between A and B is defined as

hd(A,B) = max

{
sup
x∈A

δd(x,B), sup
y∈B

δd(y, A)

}
.

We now have the following result; see e.g [10].

CHAPTER 5. FRACTAL IMAGE COMPRESSION 57

Figure 5.3: Examples of the Hausdorff metric

Theorem: If wi : R
2 → R

2 is contractive with contractivity si for i = 1, . . . , n, then

W : H(R2) → H(R2) is contractive in the Hausdorff metric hEuclidean with contractivity

s = max {si, i = 1, . . . , n} .

Notice that the Sierpinski triangle is the limit set (or “limit image”) of the contractive

mapping W = w1 ∪ w2 ∪ w3, in other words, iterating the mapping W , converges to the

Sierpinski triangle. Also notice that applying the mapping to the limit image leaves it

unchanged, i.e.

W (Sierpinski) = Sierpinski.

Furthermore, starting the iteration with different initial images seems to have (and indeed

has) no effect on the limit image, as shown in Figure 5.4, where the mapping is applied to

a square and a circle. We call such a limit the fixed point or the attractor of the mapping.

The metric space (H(R2), hEuclidean) should be thought of as a space of (black-and-white)

images. As we will see, contractive mappings in this space, such as the one yielding the

Sierpinski triangle, then converge to a unique limit image in this space.

Before stating the main result, we need two more definitions and an auxiliary result.

Definition: A sequence of points {xn} in a metric space (X, d) is called a Cauchy sequence

if, for any ε > 0, there exists an integer N such that

d(xm, xn) < ε, ∀ m,n > N.

CHAPTER 5. FRACTAL IMAGE COMPRESSION 58

Figure 5.4: Using a square and a circle as initial images

Definition: A metric space (X, d) is complete if every Cauchy sequence in X converges

to a limit point in X.

Theorem: Let (X, d) be a complete metric space. Then H(X) with the Hausdorff metric

hd is a complete metric space.

For a proof of this theorem, see e.g. [11].

According to a standard result in real analysis, the metric space (R2,Euclidean) is a com-

plete metric space; therefore we have, from the previous theorem, that (H(R2), hEuclidean)

is a complete metric space. We are now ready to state the main result, as proved in [10].

Theorem (The Contractive Mapping Fixed-Point Theorem): Let (X, d) be a complete

metric space and f : X → X be a contractive mapping. Let f on denote the nth iterate of

the mapping f . Then there exists a unique point xf ∈ X such that for any point x ∈ X

xf = f(xf) = lim
n→∞

f on(x).

Such a point is called the fixed point or the attractor of the mapping f .

Thus, given any initial image in our space of images (H(R2), hEuclidean), a contractive

mapping, such as the set of affine transformations specifying the Sierpinski triangle, is

guaranteed to converge to a unique limit image.

Definition: Let (X, d) be a complete metric space. An iterated function system (IFS) is

a collection of contractive maps wi : X → X, for i = 1, . . . , n.

CHAPTER 5. FRACTAL IMAGE COMPRESSION 59

The problem of fractal image compression can thus be stated as follows: Given an image,

we would like to find an IFS with a fixed point or attractor that is a good approximation

to the image.

5.2 Generalization to Grayscale Images

So far, since the images we have considered have been subsets of R
2, they have been

restricted to being black-and-white: If an x ∈ R
2 is in the set, we colour it black, otherwise

we leave it white. A grayscale image, on the other hand, can be interpreted as a graph of

a function, say f , on some or other subset of R
2 (viewed from above); in other words, it is

a subset of R
3 of the form {(x, y, f(x, y))}. Our affine transformations therefore have to

be generalised to 3D affine transformations. However, since we want the output of such

a transformation to once again be a graph of a function defined on a subset of R
2, we

restrict our 3D affine transformations to those of the form

wi







x

y

z





 =




ai bi 0

ci di 0

0 0 si







x

y

z


+




ei

fi

oi


 .

This can also be viewed as a combination of the affine transformations

ui




 x

y




 =


 ai bi

ci di




 x

y


+


 ei

fi




and

vi(z) = siz + oi.

The first of these transformations, ui, is an affine transformation of the subset of R
2 on

which f is defined, while vi is an affine transformation of the function values themselves

— it is a contrast and brightness adjustment of the grayscale values.

Notice, furthermore, that the attractors of such transformations as the one generating the

Sierpinski triangle, are usually fractals — they are self-similar. Natural (real life) images

CHAPTER 5. FRACTAL IMAGE COMPRESSION 60

do not contain such self-similarity and using IFSs to approximate them would therefore

not work very well. Such images do, however, often contain a different, more limited,

sort of self-similarity, as illustrated by the highlighted regions of Figure 5.5. Whereas the

Figure 5.5: Self-similar portions of Lenna

Sierpinski triangle is formed by transformed copies of its whole self, we want to encode

images so that their approximations will be formed by transformed parts of themselves.

To do this, we generalize the concept of an IFS to that of a partitioned iterated function

system (PIFS), thereby restricting the domains of the transformations ui.

Definition: Let (X, d) be a complete metric space, and let Di ⊂ X, for i = 1, . . . , n. A

partitioned iterated function system is a collection of contractive maps wi : Di → X, for

i = 1, . . . , n.

Fisher says in [10] of a PIFS: “It partitions an image into pieces which are each transformed

separately. By partitioning the image into pieces, we allow the encoding of many shapes

CHAPTER 5. FRACTAL IMAGE COMPRESSION 61

that are impossible to encode using an IFS.” During each iteration of the contractive

mapping defined by a PIFS, each wi will now map a portion, Di, of the spatial region of

the input image, to some portion, Ri, of the spatial region of the output image. At the

same time, each wi also applies a contrast and brightness transformation to the grayscale

values of the transformed Di, thus yielding the grayscale values of the corresponding Ri.

The Dis are called the domains or domain blocks, and the Ris are called the ranges or

range blocks. Notice that ui(Di) = Ri. Furthermore, we require that the Ris are disjoint

(non-overlapping) and that they tile the spatial region of the input and output image of

the contractive mapping. Thus, if the image to be compressed has spatial region D ⊂ R
2,

we have that
⋃
Ri = D.

5.3 The Encoding Procedure

The image to be encoded is firstly partitioned into a set of disjoint (non-overlapping)

range blocks Ri. For each range block Ri we would like to find a domain block Di so that

the error between the pixel values of Ri and the pixel values of ui(Di) is small. To this

end, a domain pool is kept and for each Ri a search is performed through the domain pool

to find a domain block minimizing the resulting error.

Consider for example the following encoding of the 256× 256 Lenna image: As ranges we

could choose the 1024 8×8 non-overlapping subsquares of the image, i.e. R1, R2, . . . , R1024.

We want both transformations ui and vi that will make up wi to be contractive; therefore

domains are always chosen larger than ranges to ensure contractivity of the first. They

are typically larger by the following possible factors: 2× 2, 2× 3, 3× 2, and 3× 3. Let us

choose for this example all 16× 16 subsquares of the image as domain pool; thus for this

example domains are larger by a factor of 2 × 2. Since domains and ranges are square

(rectangular in general), the matrix multiplication of ui is restricted to the eight possible

ways of mapping one square to another (four rotations or a reflection combined with

one of four rotations). The contractivity of the mapping is implemented by subsampling

CHAPTER 5. FRACTAL IMAGE COMPRESSION 62

(reducing) a domain block when mapping it to a range block. Thus, before a domain-

range comparison is done, a candidate domain is subsampled to match the dimensions of

the range in question.

A domain-range comparison is then done by calculating, for each of these eight reorienta-

tions, the optimal values of si and oi in a least squares sense: If Di (after reduction) and

Ri contain n grayscale values, d1, d2, . . . , dn and r1, r2, . . . , rn, respectively, we seek si and

oi to minimize the squared error E2i given by the formula

E2i =
n∑

k=1

(sidk + oi − rk)
2.

The solutions are

si =

n

n∑

k=1

dkrk −

n∑

k=1

dk

n∑

k=1

rk

n
n∑

k=1

d2k −

(
n∑

k=1

dk

)2 ,

and

oi =
1

n

[
n∑

k=1

rk − si

n∑

k=1

dk

]
,

and the resulting squared error is

E2i =
1

n

[
n∑

k=1

r2k + si

(
si

n∑

k=1

d2k − 2
n∑

k=1

dkrk + 2oi

n∑

k=1

dk

)
+ oi

(
noi − 2

n∑

k=1

rk

)]
.

The minimized error Ei is then the square root of this value.

Once the Di yielding the smallest such Ei has been found, the transformation wi is

completely specified, in this example, by the corresponding values of si and oi, a 3-bit

value indicating which reorientation was chosen, and two values specifying the position

of the lower left corner of Di relative to the lower left corner of the image — representing

the values ei and fi of the transformation. Such a domain Di is said to cover the range

Ri. This information is then stored sequentially in the output file for each wi (and thus

sequentially for each corresponding Ri), thereby implicitly storing the positions of each

Ri in this ordering. Since we also want the transformation vi to be contractive, we require

CHAPTER 5. FRACTAL IMAGE COMPRESSION 63

that |si| < 1. Any |si| larger than some value smax is truncated to smax, where smax < 1

is specified by the user. According to [10] 7 bits are generally optimal for storing an oi

and 5 bits are sufficient for storing an si. In the case of this example, the offset values

ei and fi can be represented by 8-bit values each. This results in an output file of 3968

bytes, and thus a compression ratio of 16.5:1.

The image can be decoded by iterating the map W starting with any initial image. More

or less ten iterations are usually sufficient for the convergence to stabilize. Figure 5.6,

taken from [10], shows an initial image f0, the first iteration W (f0), the second iteration

W o2(f0), and the tenth iteration W o10(f0).

The above example is the simplest fractal encoding scheme and does not allow us to

manipulate the quality versus compression trade-off. In more sophisticated schemes, this

is done by choosing a covering tolerance that each approximation Ri ≈ ui(Di) should

satisfy. If the optimal wi for the Ri in question satisfies this criterion, it is accepted and

written to the output file; if not, it is rejected and the range Ri is partitioned further

(subdivided) and its subblocks are then used as potential range blocks instead. To this

end one also selects a partitioning scheme, and it is therefore the partitioning scheme that

determines how the range blocks are chosen.

We can now summarize the encoding algorithm as shown in Algorithm 5.1.

5.4 Partitioning Schemes

The two most popular partitioning schemes are quadtree partitioning and HV partitioning.

5.4.1 Quadtree Partitioning

Fisher [10] explains quadtree partitioning as follows: “In a quadtree partition, a square

in the image is broken up into four equal-sized sub-squares when it is not covered well

enough by some domain. The process repeats recursively starting from the whole image

CHAPTER 5. FRACTAL IMAGE COMPRESSION 64

a) Initial image b) First iteration

c) Second iteration d) Tenth iteration

Figure 5.6: Several iterations of the decoding process [10]

and continuing until the squares are small enough to be covered within some specified rms

tolerance.” The quadtree scheme will not be discussed further here, since it is somewhat

limited (limited to square images) and does not perform as well as HV partitioning.

5.4.2 HV Partitioning

Fractal encoding with HV partitioning gives the best results of all fractal image compres-

sion schemes. A rectangle in the image (to be encoded) is partitioned either horizontally

CHAPTER 5. FRACTAL IMAGE COMPRESSION 65

Data: rmax = maximum allowable size of a range

Data: rmin = minimum allowable size of a range

(* In the case of rectangles, size(Ri) = length of the longest side *)

Data: ε = covering tolerance

Data: list of uncovered ranges (initially empty)

Insert whole image in list of uncovered ranges;

while there are uncovered ranges Ri do

Extract first Ri;

if size(Ri) > rmax then

Partition Ri into smaller ranges that are inserted into the list;

else

Find the Di and corresponding wi that best cover Ri;

if Ei < ε or size(Ri) ≤ rmin then

Write out wi;

else

Partition Ri into smaller ranges that are inserted into the list;

end
end

end
Algorithm 5.1: Fractal encoding algorithm

or vertically to form two new rectangles, and is done in such a way that partitions tend

to be along strong vertical or horizontal edges in the image and that narrow rectangles

are avoided. Once again partitioning repeats until a covering tolerance is satisfied. The

partitioning is selected using the following technique: Given a range to be subdivided, a

horizontal or vertical position needs to be selected at which to make the partition. If the

range consists of the pixels ri,j , 0 ≤ i ≤ M, 0 ≤ j ≤ N , this is done by calculating the

biased horizontal differences

hj =
min(j,N − j − 1)

N − 1

(
∑

i

ri,j −
∑

i

ri,j+1

)
,

CHAPTER 5. FRACTAL IMAGE COMPRESSION 66

and biased vertical differences

vi =
min(i,M − i− 1)

M − 1

(
∑

j

ri,j −
∑

j

ri+1,j

)
.

The terms 1
N−1

(
∑

i

ri,j −
∑

i

ri,j+1

)
and 1

M−1

(
∑

j

ri,j −
∑

j

ri+1,j

)
represent successive

differences between the horizontal and vertical averages, whereas the terms min(j,N −

j − 1) and min(i,M − i− 1) represent their distances from the nearest side of the range.

The position j or i for the maximum |hj| or |vi|, depending on which is larger, is chosen

as the position along which to make the partition.

To quote Fisher [10], “The range position is stored implicitly by specifying the partition

type, horizontal or vertical, and its position, an offset from the upper or left side. This

offset requires fewer bits to store as the partition gets refined. The range partitions are

stored recursively from the top left to the bottom right, so the position information can

be derived from the partition direction and offset ... The domain position is specified by

specifying an index into a list of all possible domains”.

5.5 Choosing the Domain Pool

Since the ranges can be rectangles of a wide variety of dimensions, the domain pool can

be, for instance, chosen to be all sub-rectangles of the image. This would, however, result

in a very large domain pool, leading to very high encoding times, so it is not done. The

domain pool is instead chosen as some subset of this set. Three major types of domain

pools are conventionally used. One of these is selected by the user and its number is

specified at the beginning of the output file to notify the decoder.

In all three cases the domain pools are determined by a lattice spacing determined by a

parameter l: the upper left corners of the domains are positioned on the lattice. (The

parameter l is chosen by the user and written to the output file.) The first type, D1,

has every spacing equal to l, resulting in a more or less equal number of domains of each

CHAPTER 5. FRACTAL IMAGE COMPRESSION 67

size. D2 has more large domains and fewer small domains — the lattice spacing is the

domain size divided by l. For D3 the lattice spacing is calculated the same way as for

D2, but the assignment of a spacing to a domain is done in the reverse order: The largest

domains have a lattice corresponding to the smallest domain size divided by l, and vice

versa. Therefore D3 has more small domains and fewer large domains.

Domain-range comparisons can be further sped up by classification techniques: only do-

mains in the same class as the range in question are compared with it. Various classifica-

tion schemes are discussed in [10].

5.6 Resolution Independence

An interesting attribute of fractally encoded images is that they are resolution indepen-

dent — they can be decoded at any resolution. This is a result of the encoding affine

transformations generating detail at all scales. Thus, just like the Sierpinski triangle,

which was the attractor of a set of affine transformations, had detail at all scales, the

attractor constituting a decoded fractally encoded image will have “detail” at all scales.

For instance, the encoding of an image of resolution 256×256 can be decoded at resolution

512 × 512. Examples of such “artificial” detail are shown in Figure 5.7, taken from [10],

where portions of an encoding of Lenna are shown decoded at four times the original size.

Magnifications of the original portions are shown as well, showing pixellation.

CHAPTER 5. FRACTAL IMAGE COMPRESSION 68

Original portions Decoded counterparts

Figure 5.7: Artificially created detail [10]

Chapter 6

Image Compression using Weighted

Finite Automata

Similarly to fractal image compression, encoding images with weighted finite automata

(WFA) is a “fractal-type” technique: Subimages are described in terms of other subimages

(and sometimes themselves), and fractals are thus very naturally described by WFA. Here

subimages are related through linear combinations instead of through affine transforma-

tions. Although this technique is limited to 2n×2n images, when used in conjunction with

a wavelet transform, it is alleged in [12] and [13] to give better results for such images

than any other image compression technique. On its own, it is alleged to give results

comparable to those obtained with fractal image compression with HV partitioning. (As

we will see in the next chapter, the latter does not appear to be true.) This is also the

technique that has been implemented for this thesis, and a detailed description of the

implementation will be given in Section 6.6.

69

CHAPTER 6. IMAGE COMPRESSION USING WFA 70

6.1 Finite State Machines

A finite state machine (FSM) or finite automaton is a model used in theoretical computer

science to describe the execution of an algorithm. Its behaviour is specified by a finite

set of input symbols, Σ, called an alphabet, a finite set of states, Q, and a state function,

fst : Σ × Q → Q (and sometimes also a finite set of output symbols, O, and a machine

function, fma : Σ×Q→ O). At any given time the FSM is in exactly one state; when the

machine receives an input, it will alter its state according to the state function (and in

the case of an output set, generate an output symbol according to the machine function).

One of the states is called the initial state — given it and a sequence of input symbols,

the behaviour of the FSM can be determined. Some of the states can also be defined as

final states— once in one of these states, the machine can never reach other states. Final

states model the successful termination of an algorithm (or sometimes the acceptance of

an input sequence).

(Here we will restrict our discussion to FSMs that do not generate an output and hence

have no machine function.)

An FSM is represented graphically by a transition graph. Each state is represented by a

vertex in the graph, and a directed edge from say state si to state sj is used to indicate

that an input symbol, say a ∈ Σ, causes the machine to change from state si to state

sj. This is referred to as a transition, and it is labelled by the symbol a that causes it.

(If input symbol a ∈ Σ causes the output o ∈ O, the transition is labelled by a → o.)

The vertex representing the initial state is often indicated by a square, while the vertex

representing a final state is indicated by two concentric circles.

Consider, for example, an FSM with Σ = {0, 1}; Q = {s0, s1, s2, s3}, where s0 is the initial

state and s3 is the final state; and a state function defined by the state table shown in

Table 6.1. (If the FSM had had a machine function, it too would be defined by a similar

state table.) This FSM is then represented by the transition graph shown in Figure 6.1.

The information contained in a transition graph can also be specified with a transition

CHAPTER 6. IMAGE COMPRESSION USING WFA 71

s0 s1 s2 s3

0 s1 s3 s2 s3

1 s2 s1 s3 s3

Table 6.1: Example state table

0

1

1

0

0

1

0

1

PSfrag replacements
s0

s1

s2

s3

Figure 6.1: Example transition graph

matrix. Given an FSM consisting of n states, a transition matrix will consist of n × n

entries, with each entry (i, j) recording the input symbol(s) causing a transition from

state si to state sj. (In the case of an FSM that generates output symbols, each generated

output symbol would also be recorded in the entry (i, j) next to the input symbol that

caused it.) The transition matrix for our example FSM above, and thus corresponding to

the graph in Figure 6.1, is illustrated in Table 6.2. A ’-’ in an entry (i, j) indicates that

no input symbol causes a transition from state si to state sj.

The number of symbols in Σ is denoted by |Σ|. A word w over Σ is any finite sequence of

symbols from Σ. The empty word, ε, is the word consisting of no symbols. The length of

a word w is denoted by |w|. Σk is the set of all words of length k over Σ, while Σ∗ is the

CHAPTER 6. IMAGE COMPRESSION USING WFA 72

s0 s1 s2 s3

s0 - 0 1 -

s1 - 1 - 0

s2 - - 0 1

s3 - - - 0;1

Table 6.2: Example transition matrix

set of all words over Σ, including the empty word ε.

6.2 Weighted Finite Automata

We now generalize the concept of a finite automaton to that of a weighted finite automaton

(WFA). Each transition is labelled by both an input symbol and a real number, known as

the weight of the transition. Instead of initial and final states, we have an initial and final

distribution value associated with each state. An example of a transition graph for a WFA

with Σ = {0, 1, 2, 3} and two states is shown in Figure 6.2. Initial and final distribution

values are written inside each state.

PSfrag replacements

1; 1 0; 1

3; 1

2; 1
2

1; 1
2

0; 1
2

1; 1
2

2; 1
2

3; 1
2

0; 1

1; 1

2; 1

3; 1

Figure 6.2: Example WFA

CHAPTER 6. IMAGE COMPRESSION USING WFA 73

Given a WFA over an alphabet Σ consisting of n states, it is represented by |Σ| transition

matrices Wa, a ∈ Σ, each of size n× n, a 1× n row vector I, and an n× 1 column vector

F . The entry Wa(i, j) is the weight of the transition from state i to state j for input

symbol a, if it is non-zero. If the value is zero, there is no transition from state i to state

j for input symbol a. The ith elements of vector I and F denote the initial and final

distribution values, respectively, of state i.

A WFA can be used to specify a grayscale image of resolution 2n×2n. Let Σ = {0, 1, 2, 3}

and let each a ∈ Σ denote a quadrant of a square (our image), as shown in Table 6.3. This

1 3

0 2

Table 6.3: Quadrant addressing

is applied recursively until the square has been divided into 2n × 2n sub-squares; a word

w of length n over Σ then represents the address of one such sub-square. An example

of the sub-squares addressed by words of length 2 is shown in Table 6.4. In general, if a

11 13 31 33

10 12 30 32

01 03 21 23

00 02 20 22

Table 6.4: Addresses specified by words of length 2

sub-square is addressed by word w, its quadrants will be addressed by w0, w1, w2 and

w3. The empty word ε is used to address the entire image. This also leads to a quadtree

representation of such an image: The root of the tree has address ε, the four quadrants

of the image correspond to the four children of the root, etc. Thus, each word of length

k is the address of a unique node in the tree at depth k.

CHAPTER 6. IMAGE COMPRESSION USING WFA 74

We now define a function f : Σ∗ → R by

f(w) = f(a1a2 . . . ak) = IWa1
Wa2

. . .Wak
F, w ∈ Σ∗, |w| = k.

In other words, f specifies the grayness value of any square lying in resolution 2k × 2k,

therefore defining a multiresolution image. For the different resolutions to be compatible,

we require f to be average preserving:

f(w) =
1

4
[f(w0) + f(w1) + f(w2) + f(w3)].

The example 4×4 image shown in Table 6.5 will therefore have the corresponding quadtree

representation shown in Figure 6.3.

8 8 9 10

8 8 9 9

9 7 7 8

10 8 9 7

Table 6.5: Example 4× 4 image

PSfrag replacements

67
2

17
2 8

31
4

37
4

777 888888 99999 1010

Figure 6.3: Quadtree representation of example 4× 4 image

The grayness value of a square with address w is thus the average of the grayness values

of its four quadrants (sub-squares) w0, w1, w2 and w3. Specifically, the value of f(ε) is

the average grayness of the entire image.

CHAPTER 6. IMAGE COMPRESSION USING WFA 75

The way the WFA defines an image should also be interpreted as follows: Each state i

in the WFA corresponds to some sub-image of the entire image, with F (i) equal to the

average grayness of that sub-image. One state in particular corresponds to the entire

image, and the vector I indicates which one that is: If state k corresponds to the entire

image, then

I(k) = 1, and I(l) = 0, l 6= k.

Furthermore, the weighted transitions indicate how quadrants of sub-images are expressed

as linear combinations of other sub-images (possibly including the sub-image that the

quadrant belongs to), with the weights specifying the coefficients of the linear combina-

tions, and the input symbol specifying the quadrant in question, i.e.

(φi)a = Wa(i, 1)φ1 +Wa(i, 2)φ2 + . . .+Wa(i, n)φn

where φi denotes the image associated with state i and (φi)a denotes quadrant a of φi,

for i = 1, . . . , n. Thus, the quadrant a of the image φi is the linear combination of images

φ1, φ2, . . . , φn with coefficients given by the ith row of matrix Wa.

Consider as an example the WFA shown in Figure 6.2 above. This WFA is specified by

I = [1 0], F =


 1

1


 ,

W0 =




1
2

0

0 1


 , W1 =




1
2

1
2

0 1


 ,

W2 =




1
2

1
2

0 1


 , W3 =




1
2

1

0 1


 .

This WFA is actually an encoding of the “linear grayness” function f(x, y) = x+y defined

on the unit square and shown (at resolution 128 × 128) in Figure 6.4(a). (The function

values range between 0 and 2; therefore they have been rescaled to pixel values in Figure

6.4(a) by multiplying them by 128.) Since the initial distribution is I = [1 0], φ1 (the

image of state 1) is also f (the entire image). The image of state 2, φ2, is shown in Figure

CHAPTER 6. IMAGE COMPRESSION USING WFA 76

a) Linear grayness function and φ1 b) φ2

Figure 6.4: Images of the states of the example WFA

6.4(b). (All of its function values are 1; therefore they have also been rescaled in Figure

6.4(b) by multiplication by 128. Had they been multiplied by 255, the image would have

been uniformly white.) The vector F states that the average grayness (average of the pixel

values) of φ1 (and thus the entire image) is 1 and that of φ2 is also 1. The information

contained in the first rows of matrices W0,W1,W2 and W3 is illustrated in Figure 6.5:

The first row of W0 states that quadrant 0 of the whole image is equal to the whole image

with grayness uniformly scaled by 1
2
, i.e.

(φ1)0 =
1

2
φ1.

According to the first rows of W1 and W2 both quadrants 1 and 2 of the whole image can

be expressed by the linear combination

(φ1)1 = (φ1)2 =
1

2
φ1 +

1

2
φ2.

Finally, quadrant 3 of φ1 = f can be written as

(φ1)3 =
1

2
φ1 + φ2.

The second rows of W0, . . . ,W3 (and the outgoing transitions from state 2 to itself) indi-

cate that all four quadrants of φ2 are identical to φ2. Notice that φ2 is perfectly self-similar

(completely described in terms of itself) — therefore WFA are in general a way of de-

scribing fractals.

CHAPTER 6. IMAGE COMPRESSION USING WFA 77

= 1
2

(φ1)0 φ1

= 1
2

+ 1
2

(φ1)1 = (φ1)2 φ1 φ2

= 1
2

+

(φ1)3 φ1 φ2

Figure 6.5: Quadrants of φ1 expressed as linear combinations of φ1 and φ2

Furthermore, the images described (encoded) by WFA can be decoded at any resolution

2n× 2n. Let us decode the image defined by the WFA in the example above at resolution

4 × 4; the addresses of the pixels are then shown by Table 6.4. The grayness values are

computed as

f(00) = IW0W0F = [1 0]




1
2

0

0 1






1
2

0

0 1




 1

1


 =

1

4
,

f(01) = IW0W1F = [1 0]




1
2

0

0 1






1
2

1
2

0 1




 1

1


 =

1

2
,

and similarly for f(02), . . . , f(33). The resulting decoded image is illustrated by Table

6.6. Therefore, just like fractally encoded images, WFA encoded images are resolution

independent. We see that fractal image compression and WFA image compression share

similarities — we can collectively refer to them as “fractal type” techniques. Indeed,

CHAPTER 6. IMAGE COMPRESSION USING WFA 78

1 5
4

3
2

7
4

3
4

1 5
4

3
2

1
2

3
4

1 5
4

1
4

1
2

3
4

1

Table 6.6: Decoded linear grayness function at resolution 4× 4

image compression with WFA is treated in its own chapter in [10].

6.3 Upsampling and Downsampling

Notice from the quadtree in Figure 6.3 that a 2n × 2n image is mapped to an array of

4n elements by associating it with the leaves of its quadtree representation. Furthermore,

given such an array of leaves, other vectors of nodes of the quadtree can be calculated by

downsampling the vector the required number of times. This downsampling is done by

averaging groups of four consecutive elements to form new elements. For instance, given

the array of leaves of the quadtree in Figure 6.3, shown in Table 6.7, downsampling it

once yields the array of nodes at depth 1, shown in Table 6.8, which are also the values

of the example image at resolution 2× 2, rearranged as an array.

10 9 8 7 8 8 8 8 9 7 7 8 9 9 9 10

Table 6.7: Array of leaves of the quadtree in Figure 6.3

17
2

8 31
4

37
4

Table 6.8: Array resulting from downsampling the array in Table 6.7

On the other hand, values of an image of resolution 2n × 2n at higher resolutions (equiv-

alently, nodes in its quadtree at depth further than n) can be artificially constructed by

CHAPTER 6. IMAGE COMPRESSION USING WFA 79

upsampling. The upsampling is done in such a way that the average preserving property

of the image is preserved: Given a node at depth n, its children (at depth n+ 1) inherit

its grayness value. For instance, the image of resolution 2 × 2 shown in Table 6.9 and

represented by the quadtree in Figure 6.6, will have the quadtree representation shown in

Figure 6.7 after upsampling once.

b d

a c

Table 6.9: Example 2× 2 image

PSfrag replacements

f

a b c d

Figure 6.6: Quadtree representation of example 2× 2 image; f = 1
4
(a + b + c + d)

PSfrag replacements

f

a b c d

a a a a b b b b c c c c d d d d

Figure 6.7: Resulting quadtree after upsampling once; f = 1
4
(a + b + c + d)

Equivalently, its array of leaves, shown in Table 6.10, yields the array shown in Table 6.11

CHAPTER 6. IMAGE COMPRESSION USING WFA 80

after upsampling once. Thus, in terms of an array, upsampling is done by replicating each

entry four times.

a b c d

Table 6.10: Array of leaves of the quadtree in Figure 6.6

a a a a b b b b c c c c d d d d

Table 6.11: Array resulting from upsampling the array in Table 6.10

Associating squares with arrays in this way, along with upsampling and downsampling,

will be fundamental when attempting to express a square as a linear combination of

other squares. These concepts will therefore play an important role in our encoding and

decoding algorithms (as will be seen in subsequent sections).

6.4 Encoding (Inference) Algorithms

Given a 2n× 2n grayscale image, we would like to find, or infer, a WFA approximating it.

The inference algorithms published by Culik and Kari (both iterative [14] and recursive

[12]) do this by setting the first state φ1 equal to the whole image. All four quadrants of

a state are processed by

1. trying to approximate the quadrant with a linear combination of existing states

(images) and/or

2. choosing the quadrant as a new state which is also processed.

In the case of the iterative (older) algorithm [14], if the quadrant is adequately approxi-

mated (in terms of some error tolerance), the linear combination is accepted; if not, the

CHAPTER 6. IMAGE COMPRESSION USING WFA 81

quadrant is chosen as a new state and is placed in a list of states that still have to be

processed. All four quadrants of a state are processed before moving on to a next state.

Once all newly created states have been processed, the algorithm terminates.

The recursive algorithm [12], on the other hand, is the more recent of the two, and is the

one implemented for this thesis. It also takes into consideration the increase in the size

of the compressed output file resulting from steps 1 and 2. The algorithm is recursive

because for each newly created state, a new instance of the algorithm is invoked to process

it. Each invocation attempts to minimize the quantity

cost = error +G.s.

Whichever alternative (1 or 2) gives the smaller value for cost, is chosen. The variable

error denotes the error in the approximation to the quadrant in question, and s denotes

the number of bits required to store the new information. The number G ∈ R is a

parameter controlling the quality versus compression trade-off. The larger the value of

G, the “smaller” the produced WFA will be and the poorer the approximation to the

original image. The smaller the value of G, the better the approximation will be and

the “larger” the WFA will be. In particular, choosing G = 0 will result in perfect image

reconstruction.

The recursive inference algorithm is given in pseudocode form in Algorithm 6.1 (make wfa).

At any given time during the execution of the algorithm, global variable n keeps track

of the number of states in the WFA thus far. The parameters i, k and max passed to a

recursive call indicate that the new invocation should attempt to approximate the image

φi at level k (resolution 2k× 2k) with a resulting cost no larger than max. If so, the value

of the cost is returned, otherwise ∞ is returned.

For the calculation of the value error we introduce the notation

dk(f, g) =
∑

w∈Σk

[f(w)− g(w)]2, k = 0, 1, 2, . . .

denoting the distance between two (sub)images f and g at level k (resolution 2k × 2k).

CHAPTER 6. IMAGE COMPRESSION USING WFA 82

The global variable n is initialized to n := 1. Given a 2k × 2k image to be encoded, a

call is then made to make wfa(1, k, ∞) indicating that the entire image, φ1, should be

approximated at level k with no restriction on the cost (∞). The initial distribution of

the WFA produced by the algorithm is

I(1) = 1, I(i) = 0, i = 2, 3, 4, . . .

and the final distribution is

F (i) = φi(ε), i = 1, 2, 3,

How the coefficients r1, . . . , rn are calculated when approximating ψ with r1φ1+ . . .+rnφn

depends on the implementation, as does the determination of the increase s in the size of

the WFA. They will therefore be discussed in Section 6.6.

CHAPTER 6. IMAGE COMPRESSION USING WFA 83

Data: Global variable n = number of states in WFA

Data: Global variable G = parameter given as input

function make wfa(i, k,max)

if max ≤ 0 or k = 0 then return ∞;

cost := 0;

forall a ∈ Σ do

ψ := (φi)a;

Approximate ψ with r1φ1 + . . .+ rnφn;

error := dk−1(ψ, r1φ1 + . . .+ rnφn);

s := increase caused by adding transitions from state i to states 1, . . . , n with

label a and weights r1, . . . , rn;

cost1 := error +G.s;

n0 := n; n := n+ 1;

New state φn := ψ;

Add transition from state i to new state n with label a and weight 1;

s := increase caused by new state and transition;

cost2 := G.s + make wfa(n, k − 1,min {max− cost, cost1} −G.s);

if cost2 ≤ cost1 then

cost := cost+ cost2 (accept new state);

else

cost := cost+ cost1;

Remove all outgoing transitions from states n0 + 1, . . . , n;

Remove transition from state i with label a and weight 1;

n := n0 (remove all newly created states n0 + 1, . . . , n);

Add the transitions from state i with label a to states 1, . . . , n with weights

r1, . . . , rn (accept linear combination approximation);

end

end

if cost ≤ max then return cost else return ∞;

Algorithm 6.1: Recursive inference algorithm (make wfa)

CHAPTER 6. IMAGE COMPRESSION USING WFA 84

6.5 Initial Basis and Subsequent New Decoding Al-

gorithm

The results achieved by the recursive algorithm above are further improved by introducing

an initial basis. A set of N initial “images” φ1, φ2, . . . , φN are added to the encoder (and

decoder) as global variables. The global variable n now refers to the number of non-

initial states in the WFA at any given time, and is still initialized to n := 1 before

calling make wfa for the first time. However, each ψ is now approximated with the linear

combination r1φ1+ . . .+rN+nφN+n. The initial images need not be and are not defined by

WFA. The choice of initial basis will be discussed in Section 6.6. The initial distribution

produced will now be

I(N + 1) = 1, I(i) = 0, i 6= N + 1

while F (i) is still φi(ε), i = 1, 2, . . ., in other words, including the initial images φ1, φ2, . . . , φN .

The matrices Wa, a = 0, 1, 2, 3, are affected as follows: Assuming that n (new) states

were created during the execution of the algorithm, the resulting WFA will consist of

N + n states (including the initial states). The matrices Wa will therefore all consist

of N + n × N + n entries. However, since the initial states are not specified by WFA,

their first N rows are meaningless. We therefore let the encoder produce matrices Wa

of dimensions n × N + n. We can now no longer decode by matrix multiplication, and

a new decoding algorithm is needed. The decoding algorithm published in [14] satisfies

our requirements. It does not make use of matrix multiplication, but instead “fills in”

the values in the quadtrees associated with each state in a WFA, from the root (lowest

resolution, i.e. level (depth) 0) to a desired level (depth) k, where the desired resolution

to decode the image at is 2k × 2k.

Let f(s, w) denote the function value of state s evaluated at word w. Let N denote the

number of initial states and n the number of additional states. The decoding algorithm

can then be stated in pseudocode form as shown in Algorithm 6.2. All resolution levels

for the initial images can be calculated from the matrices (images) specifying them. The

CHAPTER 6. IMAGE COMPRESSION USING WFA 85

other states (N +1, . . . , N +n) are reconstructed by calculating their values at any given

level i in terms of values at level i− 1 taken from states including the initial states.

for s := 1 to N + n do

f(s, ε) := F (s);

end

Fill in further levels for initial states by upsampling and downsampling;

for i := 1 to k − 1 do

for s := N + 1 to N + n do

forall w ∈ Σi−1 do

forall a ∈ Σ do

f(s, aw) :=
N+n∑

t=1

Wa(s−N, t)f(t, w);

end
end

end
end

(* Fill in level k for state N + 1 associated with entire image *)

s := N + 1;

forall w ∈ Σk−1 do

forall a ∈ Σ do

f(s, aw) :=
N+n∑

t=1

Wa(s−N, t)f(t, w);

end
end

Rearrange the values of f(s, w), s = N + 1,∀w ∈ Σk, into matrix form;

Algorithm 6.2: WFA decoding algorithm

Notice that we no longer need the initial distribution I — the decoder can determine

which state corresponds to the entire image since it knows the initial basis and thus the

number of initial states. Therefore the encoder does not need to write it to an output file

anymore.

Let us illustrate this decoding algorithm by decoding the example WFA of Figure 6.2 in

CHAPTER 6. IMAGE COMPRESSION USING WFA 86

Section 6.2 with it, at resolution 4× 4. The WFA was specified by

I = [1 0], F =


 1

1


 ,

W0 =




1
2

0

0 1


 , W1 =




1
2

1
2

0 1


 ,

W2 =




1
2

1
2

0 1


 , W3 =




1
2

1

0 1


 .

Notice that this WFA does not have any initial states (images); an example of decoding

such a WFA would be very similar to this one. Here we thus have N = 0, and, since we

wish to decode at resolution 4× 4 = 22 × 22, k = 2. Decoding proceeds as follows.

Level 0

f(1, ε) := F (1) = 1

f(2, ε) := F (2) = 1

Our decoded datastructure thus far is illustrated in Figure 6.8.

state 2state 1PSfrag replacements

ε ε

1 1

Figure 6.8: Level 0 decoded

CHAPTER 6. IMAGE COMPRESSION USING WFA 87

Level 1

i := 1:

s := 1:

w := ε:

a := 0:

f(1, 0ε) = f(1, 0) :=
2∑

t=1

W0(1, t)f(t, ε) = (1
2
)(1) + (0)(1) = 1

2

similarly for a := 1, 2, 3

s := 2:

w := ε:

a := 0:

f(2, 0ε) = f(2, 0) :=
2∑

t=1

W0(2, t)f(t, ε) = (0)(1) + (1)(1) = 1

similarly for a := 1, 2, 3

Our decoded datastructure now looks as illustrated in Figure 6.9.

0 1 2 3 0 1 2 3

state 1 state 2

PSfrag replacements

εε

1 1

1
2 1 1 3

2 1 1 1 1

Figure 6.9: Level 1 decoded

CHAPTER 6. IMAGE COMPRESSION USING WFA 88

Level 2

s := 1:

w := 0:

a := 0:

f(1, 00) :=
2∑

t=1

W0(1, t)f(t, 0) = (1
2
)(1
2
) + (0)(1) = 1

4

similarly for a := 1, 2, 3

w := 1:

a := 0:

f(1, 01) :=
2∑

t=1

W0(1, t)f(t, 1) = (1
2
)(1) + (0)(1) = 1

2

similarly for a := 1, 2, 3

w := 2:

a := 0:

f(1, 02) :=
2∑

t=1

W0(1, t)f(t, 2) = (1
2
)(1) + (0)(1) = 1

2

similarly for a := 1, 2, 3

w := 3:

a := 0:

f(1, 03) :=
2∑

t=1

W0(1, t)f(t, 3) = (1
2
)(3
2
) + (0)(1) = 3

4

similarly for a := 1, 2, 3

The decoded quadtree for state 1, which corresponds to the entire image, is shown in

Figure 6.10.

CHAPTER 6. IMAGE COMPRESSION USING WFA 89

0 1 2 3

10 11 12 1300 01 02 03 20 21 22 23 30 31 32 33

PSfrag replacements

state 1
ε

1

1
2 1 1 3

2

1
4

1
2

1
2

3
4

3
4 1 1 5

4
3
4 1 1 5

4
5
4

3
2

3
2

7
4

Figure 6.10: Level 2 decoded for state 1

Finally, rearranging the values calculated for level 2, state 1, according to the addressing

shown in Table 6.4, yields the same image (matrix) as the one shown in Table 6.6.

6.6 (Matlab) Implementation

Matlab was chosen as the platform to implement the WFA encoding and decoding al-

gorithms in for the following reasons. Matlab offers a very convenient environment for

processing images, due to the ease of opening images, displaying images, and accessing

pixel values that it provides. Dynamically adding and deleting states in a WFA can eas-

ily be implemented in Matlab by dynamically adding and deleting rows and columns in

matrices. Matlab is furthermore a powerful tool for approximating vectors with linear

combinations of other vectors, and has the built-in symbol ∞ (Inf), which is used in the

WFA encoding algorithm. Apart from the encoder and decoder each consisting of their

own separate m-file, three other auxilliary m-files were written. All m-files are attached

in Appendix A.

CHAPTER 6. IMAGE COMPRESSION USING WFA 90

6.6.1 Auxilliary m-files

The three auxilliary m-files are get leaves.m, upsample.m and downsample.m. The lat-

ter two are respectively responsible for upsampling and downsampling arrays a required

number of times, and their implementations are self-explanatory. The m-file get leaves.m

calculates the array of leaves associated with an image. It does this by recursively visiting

the four quadrants of a sub-image according to the addressing in Table 6.3. If an input

sub-image has dimensions 2× 2, we have arrived at a set of leaves, and they are entered

into the array in the addressing order. Otherwise, its quadrants are given as input to

recursive calls in addressing order.

6.6.2 The Encoder

The WFA encoding algorithm (Algorithm 6.1) is implemented in the m-file wfa encoder.m.

It takes as input a 2n × 2n grayscale image F and gives as output the final distribution

FF , the four transition matrices placed in a multidimensional array W , and the variable

bits, giving the number of bits that the compressed output file is estimated to occupy.

Embedded in the m-file is the recursive function make wfa, using parameters ii, k and

maks and returning the value cost. After a sequence of initialization statements, the

m-file makes a call to make wfa.

A sequence of global variables are declared so that each invocation of make wfa is aware of

them. Variable tree is a cell-array implementation of the quadtree associated with input

image F , depth denotes the depth of the quadtree, and SymTable and SymCount are

used for estimating the increase in the size of the output file. Each subimage associated

with a newly created state corresponds to a sub-tree of the quadtree tree. The position

(coordinates) of such a sub-tree’s root node in tree is stored as a column of the variable

state. Finally, variables init states and init res indicate the number of initial states and

their resolution level, respectively. For instance, if the initial states (images) are defined

at resolution 2k × 2k, then init res equals k.

CHAPTER 6. IMAGE COMPRESSION USING WFA 91

Among the initialization statements, the following might require clarification.

1. The initial basis consists of 256 linearly independent arrays, each consisting of 256

elements. The values are calculated by sampling cosine functions of increasing fre-

quency and of amplitudes equal to 400 at uniformly spaced points in the interval

[0, π]. Any sub-square of 16× 16 pixels can therefore be written as a linear combi-

nation of these initial states. This is also the initial basis that was finally decided

upon.

2. The assumption is made that the numbers stored in W would be compressed with

arithmetic coding. We therefore want to keep track of the distinct numbers and their

probabilities to calculate the increase in the size of the output file (in bits) when

adding new information to W . The variables SymTable and SymCount are used

for this — SymTable contains each distinct number (symbol) in its first row and

the corresponding number of occurences of each in its second row, while SymCount

keeps track of how many numbers (symbols) there are in total. The four components

ofW are initialized to matrices of dimensions 1×init states+1 each filled with zeros

(representing the state in whichW occurs before any information has been added to

it). SymTable is therefore initialized to recording the number of zeros encountered

thus far, as is SymCount. The values in FF corresponding to non-initial states

also have to be written to the output file, but for the best results they should be

stored as (uncompressed) 16-bit values, and are thus not recorded in SymTable and

SymCount.

3. The values of the cell-array tree are filled in by repeatedly downsampling the array

of leaves assciated with the image F ; the leaves are acquired by making a call to

get leaves.m and the downsampling is performed by downsample.m.

4. Variable state is initialized to column [1 1]T, recording the root position of state 1

(entire image) in the quadtree.

CHAPTER 6. IMAGE COMPRESSION USING WFA 92

Finally, after theWFA has been built (upon completion of the overhead call tomake wfa),

the variables SymTable and SymCount contain all the statistics necessary to calculate

the entropy of the output file. This is then calculated, with 16n added to it, yielding the

approximate file size stored in variable bits.

make wfa

Each quadrant ψ of a sub-image φi is approximated with a linear combination of images

(states) φ1, φ2, . . . , φinit states+n (at level k) in a least squares sense. To do this, the array

representing quadrant ψ at level k is read from tree into variable psi, by retreaving the

root position of phii stored in column ii of the variable state. This, combined with the

quadrant number a and the level k enables us to read the required number of values at the

required depth and offset in tree. The arrays representing states φ1, φ2, . . . , φinit states+n

at level k are used to form the columns of matrix PHI, with those corresponding to

non-initial states read from tree similarly to psi. The arrays representing the initial

states at level k, on the other hand, are calculated by upsampling or downsampling

the initial states/images the appropriate number of times, and are stored in variable f

before being placed into matrix PHI. The coefficient vector r is then calculated by using

the “backslash”-operator, whereafter the coefficients are quantized by storing them with

reduced precision (reduced number of bits).

The increase in the size of the output file that would result from entering r into W is

calculated next. Variables s1 and s2 are used to represent how many bits the file would

comprise of before and after, respectively, not taking into account 16n. The potential new

statistics are placed in NewSymTable, from which s2 is calculated. The increase s in the

filesize is then s = s2− s1, and cost1 is calculated. NewSymTable is retained in case the

decision is made to accept the linear combination approximation.

The quadrant psi is now added as a new state: Its starting position in tree is added to

state and its final distribution value is added to FF . This causes each component of W

to gain an extra row and column (filled with zeros), and a transition with weight 1 to be

CHAPTER 6. IMAGE COMPRESSION USING WFA 93

added to component a+ 1 of W at row ii and column init states+ n. These extra rows

and columns cause an increase in SymCount, but since we might reject this new state,

the old value of SymCount is saved in OldSymCount. Furthermore, the transition with

weight 1 causes the number of occurences of ones to increase by one and the number of

occurences of zeros to decrease by one. The increase in the occurences of zeros is therefore

4(n0 + init states) + 4n− 1. SymTable is updated with this information.

Variable s2 once again designates the new entropy, and the increase s is now s = s2+16−

s1. A recursive call is then made to make wfa, and cost2 is calculated. If cost2 ≤ cost1

we accept the new state and all the states created during the recursive call; thus variables

SymTable, SymCount, n, FF , W and state are left as they are. Otherwise, we accept

the linear combination approximation and reject all newly created states; the variables

SymCount, n, FF , W and state therefore refer back to the way they were before the

recursive call was made. The coefficients in r are then entered into W and SymTable is

assigned the information in NewSymTable.

6.6.3 The Decoder

The WFA decoding algorithm (Algorithm 6.2) is implemented in the m-file wfa decoder.m.

It takes as input the data structures FF and W that were output by the encoder, as

well as the resolution level n to decode at. It returns as output the decoded image F .

The decoder has the same knowledge of the initial basis as the encoder; thus variables

init states and init res are assigned the same values as in the encoder, as are the initial

states themselves.

The m-file proceeds more or less the same way as the pseudocode in Algorithm 6.2, filling

in the values of the quadtrees of each state. A cell-array named level is used to store

the array of quadtrees, and the values of the initial states at each resolution level are

filled in the cell-array by appropriately upsampling and downsampling. The values of the

last level, level n, for the state corresponding to the entire image, state init states + 1,

CHAPTER 6. IMAGE COMPRESSION USING WFA 94

are not written into the cell-array, but rather directly into an array named leeves. This

array therefore contains the leaves associated with the entire image. Finally, these values

have to be entered into the output image F , in addressing order. To do this, the decoder

contains an embedded recursive function (procedure — it returns nothing) named pixel,

which basically performs the opposite task of auxilliary m-file get leaves.m.

Each invocation of pixel attempts to fill in the pixel values of a sub-square of F , and

therefore takes as input the size (nn refers to a size of 2nn × 2nn), starting row position

and starting column position (relative to F) of the sub-square. If the sub-square has

dimensions 2× 2 (if nn = 1), the applicable pixel values are written into it in addressing

order, otherwise recursive calls are made to pixel to process its quadrants in addressing

order. Variable pos keeps track of the positions in leeves at which the next set of leaves

should be copied over. Since each invocation of pixel needs to have access to F , pos and

leeves, they are declared as global variables.

Chapter 7

Results and Conclusions

The compression results obtained by JPEG, fractal image compression with HV parti-

tioning and WFA image compression were investigated for six 256 × 256 images. These

images, shown in Appendix B, are Boat, Cameraman, Plane, Peppers, Bridge and Lenna.

Experiments were not conducted for any 512×512 images, because the Matlab implemen-

tations of the WFA encoder and decoder unfortunately have prohibitively long execution

times for such images. An implementation of the wavelet compression technique using the

EZW algorithm could also unfortunately not be located, and this technique is therefore

not included in this comparison.

It is known from the historical background of JPEG [1] that the quantized DCT con-

sistently gives better results than vector quantization (as well as the other techniques

it competed against), which led to it being adopted as the JPEG standard. Therefore,

vector quantization has also not been included in these comparisons; it was, however,

included in this thesis to give as wide as possible a perspective on image compression, as

was wavelet image compression. A VQ codebook was also experimented with as an initial

basis for WFA image compression, further motivating the inclusion of the VQ technique

in this thesis.

95

CHAPTER 7. RESULTS AND CONCLUSIONS 96

7.1 Quality Measure

When measuring the quality of a compressed image (relative to the original), the peak

signal-to-noise ratio (PSNR) is conventionally used. Given an image X = (x1, x2, . . . , xn)

and its approximation Y = (y1, y2, . . . , yn), the mean squared error (mse), which is also

sometimes used, is given by

mse =
1

n

n∑

i=1

(xi − yi)
2.

From this, the PSNR for an 8-bit grayscale image is defined by

PSNR = 10 log10

(
2552

mse

)
,

where 255 is the maximum value an 8-bit pixel can assume. The units for the PSNR are

decibels (dB).

We see that the PSNR is inversely proportional to the error made in an approximation;

thus the higher the PSNR, the better the image quality will be, and the lower the PSNR,

the poorer the image quality will be.

7.2 Results

The results of the experiments conducted on the aforementioned six images are presented

in Figure 7.1 below. Figures (a) to (f) show how the quality (in dB) decreases with

increased compression ratio for each of the three compression techniques in question when

applied to each of these images. Data points are shown interpolated by straight lines, with

the curves for JPEG coloured red, those for WFA image compression coloured black and

those for HV fractal compression coloured blue. (Discussion of results to follow Figure

7.5.)

CHAPTER 7. RESULTS AND CONCLUSIONS 97

0 10 20 30 40 50
22

24

26

28

30

32

34

36

38

40

42

compression ratio

qu
al

ity
 (d

B
)

WFA
JPEG
HV

a) Boat

0 10 20 30 40 50 60
20

25

30

35

40

45

compression ratio

qu
al

ity
 (d

B
)

WFA
JPEG
HV

b) Cameraman

0 5 10 15 20 25 30 35
24

26

28

30

32

34

36

38

40

42

compression ratio

qu
al

ity
 (d

B
)

WFA
JPEG
HV

c) Plane

0 5 10 15 20 25 30
23

24

25

26

27

28

29

compression ratio

qu
al

ity
 (d

B
)

WFA
JPEG
HV

d) Peppers

0 5 10 15 20 25 30
22

24

26

28

30

32

34

36

38

40

compression ratio

qu
al

ity
 (d

B
)

WFA
JPEG
HV

e) Bridge

0 10 20 30 40 50 60 70
20

25

30

35

40

45

compression ratio

qu
al

ity
 (d

B
)

WFA
JPEG
HV

f) Lenna

Figure 7.1: Graphical representation of compression results

CHAPTER 7. RESULTS AND CONCLUSIONS 98

In Figures 7.2 to 7.5 some decoded images are also compared; for each of the six test

images, a high fidelity encoding generated by each technique is shown in Figures 7.2 and

7.3, while a low fidelity encoding generated by JPEG and HV fractal compression each is

shown in Figures 7.4 and 7.5 for each of the test images.

3.35:1 PSNR = 37.44dB 3.29:1 PSNR = 37.24dB 3.29:1 PSNR = 31.99dB

3.30:1 PSNR = 42.07dB 3.34:1 PSNR = 35.07dB 3.34:1 PSNR = 34.73dB

3.00:1 PSNR = 41.31dB 3.07:1 PSNR = 39.45dB 3.07:1 PSNR = 34.15dB

Figure 7.2: Decoded high fidelity images; JPEG left, HV middle, WFA right

CHAPTER 7. RESULTS AND CONCLUSIONS 99

3.22:1 PSNR = 26.90dB 3.17:1 PSNR = 26.92dB 3.17:1 PSNR = 28.46dB

3.61:1 PSNR = 32.84dB 3.60:1 PSNR = 32.85dB 3.60:1 PSNR = 28.93dB

4.65:1 PSNR = 37.88dB 4.69:1 PSNR = 38.10dB 4.69:1 PSNR = 30.64dB

Figure 7.3: Decoded high fidelity images (continued)

CHAPTER 7. RESULTS AND CONCLUSIONS 100

31.16:1 PSNR = 25.30dB 31.22:1 PSNR = 25.63dB

30.27:1 PSNR = 25.77dB 30.24:1 PSNR = 24.18dB

16.28:1 PSNR = 28.00dB 16.29:1 PSNR = 28.26dB

Figure 7.4: Decoded low fidelity images; JPEG left, HV right

CHAPTER 7. RESULTS AND CONCLUSIONS 101

19.41:1 PSNR = 24.36dB 19.42:1 PSNR = 24.90dB

25.55:1 PSNR = 23.70dB 25.58:1 PSNR = 23.95dB

28.67:1 PSNR = 26.37dB 28.67:1 PSNR = 27.55dB

Figure 7.5: Decoded low fidelity images (continued)

The results for WFA image compression were acquired using the cosine initial basis as

used in wfa encoder.m and wfa decoder.m (Section 6.6.2). Of all the initial bases experi-

mented with, that one gave the best results; both in terms of “approximating power” and

distribution of the coefficients of the linear combinations. For the amplitude of 400 and

CHAPTER 7. RESULTS AND CONCLUSIONS 102

256 initial states, the coefficients consistently lie in the interval (−1, 1]. Those that are

not zero or one are of the form

c = ±0.b1b2b3 . . . ,

where b1, b2, b3, . . . are binary digits. When quantizing to n bits, they are reduced to

c = ±0.b1b2 . . . bn.

(This form of quantization has no effect on those coefficients that are zero or one.) It was

found that this distribution was more compressible, i.e. had a lower entropy, than those

resulting from different initial bases. More than 256 initial states and/or amplitudes

greater than 400 did not yield any better results, whereas fewer initial states and/or

smaller amplitudes yielded poorer results. The values used for parameter G differed

greatly, and finding a value of G giving an encoding of a certain quality (or filesize) was

a process of trial and error. Quantization was used as follows. For low compression (high

fidelity) encodings, coefficients were quantized to k+4 bits, where k refers to the resolution

level at which the particular approximation took place. This type of quantization was used

by Kari and Fränti in [13]. For medium fidelity encodings, the quantization parameter

was k+3; for low fidelity encodings, k+2 was used in some cases, and in others coefficients

were uniformly quantized to 8 bits, depending on which gave the best results. As stated

before, a VQ codebook was also experimented with as an initial basis. This codebook was

generated with the DCT-based technique explained in Section 3.2.3., and consisted of 64

8 × 8 elements, which were then converted to arrays of leaves with 64 entries. Another

initial basis experimented with consisted of six elements which were generated by sampling

the functions (of x and y) 255, 255x, 255y, 255xy, 255x2 and 255y2 on the unit square.

Both of these initial bases were found to be inferior.

The results for JPEG were obtained with the Linux program Gimp with settings chosen

to give optimal results:

1. No restart markers

2. Progressive coding (Baseline disabled)

CHAPTER 7. RESULTS AND CONCLUSIONS 103

3. Speed versus quality trade-off set in favour of quality

The HV fractal encoder/decoder used was written by Markus Fick, and can be obtained

from www.stud.uni-siegen.de/markus.fick. It has a parameter p ranging between

0 and 9 controlling the speed versus quality trade-off. For all experiments p = 3 was

chosen, since it gave encoding times comparable to those of wfa encoder.m. In both

cases (for both programs) higher compression ratios require shorter encoding times, while

lower compression ratios require longer encoding times. Even if we were to explore the

HV fractal encoder’s full potential, by setting p = 9, one would typically do so for high

compression ratios — for low compression ratios the encoding times for p = 9 might easily

be in terms of days! We therefore chose p = 3 in order to be consistent.

The filesizes for HV fractal compression and JPEG were the actual filesizes obtained.

Those for WFA compression correspond to the estimates given by wfa encoder.m and

would in practice be slightly larger (overhead for arithmetic coding, etc). Compression

ratios were calculated by dividing 65536 bytes (= 256 × 256 pixels × 8 bits/pixel) by

the actual filesizes (in bytes) in the case of JPEG and HV fractal compression, and the

estimated filesizes in the case of WFA compression.

7.3 Conclusions

Even with the slight “unfair advantage” in terms of the reported filesizes mentioned above,

WFA image compression consistently gave inferior results. Because of this, the quality of

the compressed images falls below anything useful, which is more or less 25dB, at what

are regarded as medium compression ratios. Experiments at higher compression ratios

have therefore not been conducted. A notable exception is the high fidelity performance

given for image Peppers, seen in Figure 7.1(d). The quality degredation soon falls far

below those of JPEG and HV fractal compression, however.

Results are, on the other hand, listed for HV fractal compression and JPEG for high

CHAPTER 7. RESULTS AND CONCLUSIONS 104

compression ratios, with Figure 7.1 thus showing how they compare for compression

ratios ranging from low to high. Let us discuss this.

For all images JPEG performs better at lower compression ratios (high fidelity) than HV

fractal compression. However, HV compression sooner or later “catches up” and eventu-

ally outperforms JPEG at high compression ratios (low fidelity). For most images these

two techniques give comparable results throughout medium compression ratios (Boat,

Plane, Bridge and Lena), while for Peppers HV compression starts outperforming JPEG

very early on. For image Cameraman, HV compression gives very poor results at low

and medium compression ratios before it starts to give better results than JPEG at very

high compression ratios. Looking at the decoded HV fractal encodings of Cameraman in

Figures 7.2 and 7.4, it appears that the implemented encoding and/or decoding had an

anomalous reaction to this image, which might account for the poor numerical results.

It is suspected that, for parameter p = 9, this implementation of HV fractal compression

would in most cases consistently yield results superior to JPEG, and in the case of high

compression ratios, vastly superior results.

Based on results reported in [8] and [10] one can expect wavelet image compression tech-

niques to slightly outperform JPEG for medium and high compression ratios and consid-

erably in the case of high fidelity encodings (low compression ratios). Furthermore, the

encoding (and decoding) times of these techniques appear to be comparable to those of

JPEG.

Thus, it would appear that, when short encoding times as well as high to medium fidelity

are of importance, wavelet image compression would be one’s first choice, with JPEG a

close second. If, on the other hand, one is willing to tolerate longer encoding times and

seeking the best low fidelity encodings, HV fractal encoding would be recommended. Until

WFA compression can be improved, it will remain a technique which is of no practical

importance, but only interesting from a theoretical point of view.

Appendix A

M-files

function leeves = get_leaves(A)

n = length(A(1,:));

if n == 2

leeves = [A(2,1) A(1,1) A(2,2) A(1,2)];

else

leeves = [];

leeves = [leeves get_leaves(A((n/2 + 1):end, 1:n/2))];

leeves = [leeves get_leaves(A(1:n/2, 1:n/2))];

leeves = [leeves get_leaves(A((n/2 + 1):end, (n/2 + 1):end))];

leeves = [leeves get_leaves(A(1:n/2, (n/2 + 1):end))];

end

function f = downsample(x, n)

len = length(x);

f = x;

for k = 1:n

x = f;

f = [];

for m = 1:length(x)/4

f(m) = mean(x(4*(m-1)+1:4*(m-1)+4));

end

end

function f = upsample(x, n)

if n == 0

f = x’;

elseif n < 0

f = downsample(x, -n);

else

len = length(x);

for m = 0:len - 1

f((4^n)*m+1:(4^n)*m+4^n) = x(m+1);

end

end

105

APPENDIX A. M-FILES 106

function [W, FF, bits] = wfa_encoder(F)

% recursive algorithm with cosine initial basis

disp(’running’)

global W FF n depth G tree state SymTable SymCount init_states init_res;

init_states = 256;

init_res = 4;

W = [];

W(:,:,1) = zeros(1, init_states + 1); W(:,:,2) = zeros(1, init_states + 1);

W(:,:,3) = zeros(1, init_states + 1); W(:,:,4) = zeros(1, init_states + 1);

FF = [];

for kk = 1:init_states

FF = [FF ; mean(400*cos((kk-1)*linspace(0, pi, 256))’)];

end

FF = [FF ; mean(mean(F))];

SymTable = [0 ; 4*(init_states + 1)];

SymCount = 4*(init_states + 1);

G = 180;

depth = log2(length(F(1,:)));

tree{depth + 1} = get_leaves(F);

for level = depth:-1:1

tree{level} = downsample(tree{level + 1}, 1);

end

n = 1;

state = [1; 1];

totalcost = make_wfa(1, depth, Inf);

% check for no zeros

if SymTable(2, 1) == 0

bits = SymTable(2, 2:end)*log2(SymCount./SymTable(2, 2:end))’;

else

bits = SymTable(2,:)*log2(SymCount./SymTable(2,:))’;

end

bits = bits + 16*n;

function cost = make_wfa(ii, k, maks)

global W FF n depth G tree state SymTable SymCount init_states init_res;

if maks <= 0 | k == 0

cost = Inf; return

end

APPENDIX A. M-FILES 107

cost = 0;

f = [];

for kk = 1:init_states

f = [f upsample(400*cos((kk-1)*linspace(0, pi, 256))’, k - init_res - 1)’];

end

for a = 0:3

pos = state(:, ii);

pos_psi(1) = pos(1) + 1;

pos_psi(2) = 4*(pos(2) - 1) + 1 + a;

psi = tree{pos_psi(1) + k - 1}(((4^(k-1))*(pos_psi(2)-1) + 1):((4^(k-1))* ...

(pos_psi(2)-1) + 1 + 4^(k-1) - 1))’;

PHI = [];

for m = 1:n

pos = state(:, m);

if pos(1) + k - 1 <= depth + 1

PHI = [PHI ; tree{pos(1) + k - 1}(((4^(k-1))*(pos(2)-1) + ...

1):((4^(k-1))*(pos(2)-1) + 1 + 4^(k-1) - 1))];

else

overshoot = pos(1) + k - 1 - (depth + 1);

temp1 = tree{depth + 1}(((4^(k-1-overshoot))*(pos(2)-1) + 1): ...

((4^(k-1-overshoot))*(pos(2)-1) + 1 + 4^(k-1-overshoot) - 1));

PHI = [PHI ; upsample(temp1, overshoot)];

end

end

PHI = [f PHI’];

r = PHI\psi;

r = r’;

% quantize

r = double(int32(r*(2^(k + 4))))/(2^(k + 4));

s1 = SymTable(2,:)*log2(SymCount./SymTable(2,:))’;

NewSymTable = SymTable;

NewSymTable(2, 1) = NewSymTable(2, 1) - length(r);

file = unique(r);

for p = 1:length(file)

tablepos = find(NewSymTable(1,:) == file(p));

occur = length(find(r == file(p)));

if isempty(tablepos)

NewSymTable = [NewSymTable [file(p) ; occur]];

else

NewSymTable(2, tablepos) = NewSymTable(2, tablepos) + occur;

end

end

% check for no zeros

if NewSymTable(2, 1) == 0

s2 = NewSymTable(2, 2:end)*log2(SymCount./NewSymTable(2, 2:end))’;

else

s2 = NewSymTable(2,:)*log2(SymCount./NewSymTable(2,:))’;

APPENDIX A. M-FILES 108

end

s = s2 - s1;

cost1 = G*s + norm(psi - PHI*r’, 2)^2;

n0 = n;

n = n + 1;

state = [state pos_psi’];

FF = [FF ; tree{pos_psi(1)}(pos_psi(2))];

W(1, n + init_states, 1) = 0;

W(n, 1, 1) = 0;

W(ii, n + init_states, a + 1) = 1;

OldSymCount = SymCount;

SymCount = SymCount + 4*(n0 + init_states) + 4*(n);

tablepos = find(SymTable(1,:) == 1);

if isempty(tablepos)

SymTable = [SymTable [1 ; 1]];

else

SymTable(2, tablepos) = SymTable(2, tablepos) + 1;

end

SymTable(2,1) = SymTable(2,1) + 4*(n0 + init_states) + 4*(n) - 1;

s2 = SymTable(2,:)*log2(SymCount./SymTable(2,:))’;

s = s2 - s1 + 16;

cost2 = G*s + make_wfa(n, k - 1, min([maks - cost, cost1]) - G*s);

if cost2 <= cost1

cost = cost + cost2;

else

cost = cost + cost1;

FF = FF(1:n0 + init_states);

W = W(1:n0, 1:n0 + init_states, :);

state = state(:, 1:n0);

n = n0;

SymCount = OldSymCount;

SymTable = NewSymTable;

W(ii, :, a + 1) = r;

end

end

if cost > maks

cost = Inf;

end

function F = wfa_decoder(W, FF, n)

disp(’running’)

global F pos leeves;

init_states = 256;

init_res = 4;

APPENDIX A. M-FILES 109

total_states = length(FF);

level0 = FF’;

% level1 :

level{1} = [];

for kk = 1:init_states

level{1} = [level{1} downsample(400*cos((kk-1)*linspace(0, pi, 256))’, init_res - 1)];

end

for state = (init_states + 1):total_states

for a = 0:3

level{1}(4*(state-1) + 1 + a) = W(state - init_states, :, a + 1)*level0’;

end

end

% further levels :

for k = 2:(n-1)

level{k} = zeros(1,(4^k)*total_states);

end

for k = 2:(n-1)

assign = [];

for kk = 1:init_states

assign = [assign upsample(400*cos((kk-1)*linspace(0, pi, 256))’, k - init_res)];

end

level{k}(1:init_states*(4^k)) = assign;

end

clear assign;

clear level0;

for k = 2:(n-1)

k

for state = (init_states + 1):total_states

pos = 0;

aaa = 0;

for iterate = 1:4^(k-2)

for a = 0:3

aa = 0;

for i = ((state-1)*(4^k) + 1 : 4^(k-1) : state*(4^k)) + a + pos

thingy = level{k-1}((1 : 4^(k-1) : end) + aaa);

level{k}(i) = W(state - init_states, :, aa + 1)*thingy’;

aa = mod(aa + 1, 4);

if mod(aa, 4) == 0

aaa = aaa + 1;

end

end

end

pos = 4*iterate;

end

APPENDIX A. M-FILES 110

end

end

k = n

leeves = zeros(1, 4^k);

state = init_states + 1;

pos = 0;

aaa = 0;

for iterate = 1:4^(k-2)

for a = 0:3

aa = 0;

for i = (1 : 4^(k-1) : 4^k) + a + pos

thingy = level{k-1}((1 : 4^(k-1) : end) + aaa);

leeves(i) = W(state - init_states, :, aa + 1)*thingy’;

aa = mod(aa + 1, 4);

if mod(aa, 4) == 0

aaa = aaa + 1;

end

end

end

pos = 4*iterate;

end

clear level;

clear thingy;

pos = 1;

F = zeros(2^n, 2^n);

pixel(n, 1, 1);

function [] = pixel(nn, row, col)

global F pos leeves;

if nn == 1

F(row + 1, col) = leeves(pos);

F(row, col) = leeves(pos + 1);

F(row + 1, col + 1) = leeves(pos + 2);

F(row, col + 1) = leeves(pos + 3);

pos = pos + 4;

else

pixel(nn-1, row + 2^(nn-1), col);

pixel(nn-1, row, col);

pixel(nn-1, row + 2^(nn-1), col + 2^(nn-1));

pixel(nn-1, row, col + 2^(nn-1));

end

Appendix B

Test Images

Figure B.1: Boat

111

APPENDIX B. TEST IMAGES 112

Figure B.2: Cameraman

Figure B.3: Plane

APPENDIX B. TEST IMAGES 113

Figure B.4: Peppers

Figure B.5: Bridge

APPENDIX B. TEST IMAGES 114

Figure B.6: Lenna

Bibliography

[1] W B Pennebaker and J Mitchell. JPEG: Still Image Data Compression Standard. Van Nostrand-
Reinhold, New York, 1993.

[2] C E Leiserson T H Cormen and R L Rivest. Introduction To Algorithms. The MIT Press, Cambridge,
1990.

[3] Glen G Langdon. An introduction to arithmetic coding. IBM Journal of Research and Development,
28:135–149, 1984.

[4] Robert M Gray. Vector quantization. IEEE, ASSP Magazine, pages 4–28, 1984.

[5] Chaur-Heh Hsieh. DCT-based codebook design for vector quantization of images. IEEE transactions

on circuits and systems for video technology, 2:401–405, 1992.

[6] Johan M de Villiers. Subdivisie, golfies en latfunksies. Department of Mathematics, University of
Stellenbosch, 2002. Lecture notes.

[7] Barry Sherlock. Wavelets and Filter Banks. Department of Electrical and Electronic Engineering,
University of Stellenbosch, 2002. Lecture notes.

[8] Jerome M Shapiro. Embedded image coding using zerotrees of wavelet coefficients. IEEE Transac-

tions on Signal Processing, 41:3445–3459, 1993.

[9] C Valens. Embedded zerotree wavelet encoding, 1999. Tutorial, c.valens@mindless.com.

[10] Yuval Fisher. Fractal Image Compression — Theory and Application. Springer-Verlag, New York,
1994.

[11] M F Barnsley. Fractals Everywhere. Academic Press, San Diego, 1988.

[12] Carel Culik and Jarkko Kari. Image-data compression using edge-optimzing algorithm for WFA
inference. Information Processing and Management, 30:829–838, 1994.

[13] Jarkko Kari and P Fränti. Arithmetic coding of weighted finite automata. Theoretical informatics
and Applications, 28:343–360, 1994.

[14] Carel Culik and Jarkko Kari. Image compression using weighted finite automata. Computer and

Graphics, 17:305–313, 1993.

115

	Summary
	Opsomming
	Contents
	Introduction
	Data Compression Concepts
	JPEG and Vector Quantization
	Wavelet Image Compression
	Fractal Image Compression
	Image Compression using WeightedFinite Automata
	Results and Conclusions
	Appendix A
	Appendix B
	Bibliography

