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Abstract 

Landscape transformation is one of the leading causes of global biodiversity decline. This 

decline is seen in terms of loss of species of ecological importance, and the collapse of 

important ecological interactions in terrestrial ecosystems. Ecological interactions are highly 

sensitive to environmental changes, as they are more vulnerable to disruptions than the species 

involved. Understanding the stability of these interactions in the face of growing environmental 

changes is key to identifying suitable conservation strategies for ameliorating species loss in 

transformed landscapes. This is of major conservation concern for the Greater Cape Floristic 

Region (GCFR), a globally important biodiversity hotspot and rich floral kingdom, which is home 

to many endemic species.  

I assessed here the response of plant-pollinator interaction networks to landscape 

transformation in the GCFR. I examined the influence of changing abiotic and biotic conditions 

across elevation zones, and I further investigated the influence of fire and invasive alien trees 

as drivers of environmental change on plant-pollinator interactions. I used a multi-taxon 

approach to highlight the effects of these drivers on these interactions. I sampled insects and 

flowering plants, as well as their interactions in areas impacted differentially by fire, invaded 

areas, and in areas with stratified elevation zones.  

My results showed a significant response of bees and beetles to environmental factors 

influencing species distribution across elevation gradients. Ecotones were an area of high 

conservation interest, as they were the most diverse in terms of species abundance and 

richness, although there was a mismatch between bees and flowering plant abundance peaks. 

Furthermore, species restricted to the highest elevation, peak zone are most at risk of local 

extinction, especially for the insect pollinators, as shown by interaction networks here having 

the lowest Shannon diversity index, generality, and interaction evenness.  

Fire influences plant-pollinator interactions and species dispersion patterns through its direct 

effect on flower abundance and nest provision. Bees were the only group associated with flower 

abundance. Results showed the importance of flower-rich fire refuges for the persistence of 

insect pollinators, especially the specialized species during fire events. Finally, increases in 

alien pine tree age and density were associated with a decline in plant-pollinator interactions, 
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species abundance, and richness. However, dense, tall pine tree patches supported unique 

interactions involving large-sized pollinators.  

Overall, this study highlights the important response of plant-pollinator interaction networks to 

different drivers of environmental change. Habitat physical structure that sustains plant-

pollinator interactions, especially those involving specialized species, holds important solutions 

for conservation action in this region. Controlled burning of overgrown areas should be 

encouraged for the proliferation of flowering plants. In addition, careful consideration should be 

given to trade-offs when instigating important conservation actions, such as restoration, 

especially when these actions can lead to local loss of some endemic species.  
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Opsomming 

Landskapstransformasie is een van die belangrikste oorsake van afname in globale 

biodiversiteit. Hierdie afname is as gevolg van die verlies van ekologiese belangrike spesies 

sowel as die ineenstorting van belangrike ekologiese interaksies in terrestriële ekosisteme. 

Hierdie ekologiese interaksies is hoogs sensitief vir omgewingsveranderinge, aangesien hulle 

meer vatbaar is vir veranderinge as die betrokke spesies. In die aangesien van toenemende 

omgewingsveranderinge, is dit belanrik om die stabiliteit van hierdie interaksies te verstaan, 

want hulle is kritiek tot die identifisering van geskikte bewarings-strategieë vir die voorkoming 

van spesieverlies in getransformeerde landskappe. Hierdie is ‘n groot bewarings-bekommernis 

vir die breër Kaapse Floristiese Streek (KFS), ‘n globale belangrike biodiversiteit-hotspot en ŉ 

weelderige blommeryk wat die tuiste van verskeie endemiese spesies is. 

Ek het hier die reaksie van plant-bestuiwer interaksie-netwerke op landskapstransformasie in 

die KFS geëvalueer. Ek het die invloed van veranderde abiotiese- en biotiese toestande op die 

hoogte bo seespieël-sones ondersoek, en het verder ondersoek ingestel na die invloed van 

brande en indringerplante as drywers van omgewingsveranderinge op plant-bestuiwer 

interaksies. Om die effek van dié drywers op hierdie interaksies te beklemtoon, het ek ‘n multi-

takson metode gebruik. Ek het monsters van insekte en blomplante geneem, asook hul 

interaksies ondersoek in gebiede wat deur verskillende tipes brande beïnvloed word, gebiede 

wat binnegedring is deur indringerplante, en in gebiede met verskillende hoogte bo seespieël-

sones. 

My resultate het getoon dat bye en kewers model bestuiwer-takson is, vir die evaluering van 

omgewingsveranderinge, veral dié met betrekking tot ruimtelike of hoogte bo seespieël 

gradiënte. Die grens ekotone was areas van hoë bewaringsbelang, aangesien hulle die mees 

divers was in terme van die aantal individue en spesies-rykheid, alhoewel daar was ‘n 

wanverhouding tussen die hoeveelheid bye en blomplante. Verder, spesies wat beperk is tot 

die hoogste areas bo seespieël, die piek-sone, is die kwesbaarste vir plaaslike uitwissing, veral 

die insekbestuiwers, soos bewys deur die interaksie-netwerke met die laagste Shannon 

diversiteits-indeks, algemeenheid, en interaksie-gelykheid. 
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Brande beïnvloed plant-bestuiwer interaksies en spesies-verspreidingspatrone deur sy direkte 

effek op blom-hoeveelheid en nes-bepaling. Bye was die enigste groep wat deur blom-

hoeveelheid gedryf word. Die resultate het ook die belangrikheid van blom-ryke brand-skuiltes 

vir die deursettingsvermoë van insekbestuiwers aangetoon, veral vir die gespesialiseerde 

spesies gedurende brand gevalle. Ten slotte, ‘n styging in die ouderdom en digtheid van 

indringer dennebome het ‘n afname in plant-bestuiwer interaksies, aantal individue, en spesies-

rykheid veroorsaak. Nietemin, digte, hoë denneboom plate het unieke interaksies ondersteun 

waarin groot bestuiwers betrokke is. 

Dus, in opsomming, hierdie studie beklemtoon die belangrike reaksie van plant-bestuiwer 

interaksie-netwerke tenoor die verskillende drywers van omgewingsveranderinge. Die fisiese 

strukture van habitatte wat plant-bestuiwer interaksies ondersteun, veral dié waarby 

gespesialiseerde spesies betrokke is, bevat belangrike oplossings vir bewaringsaksie in hierdie 

gebied. Beheerde verbranding van toegegroeide areas moet aangemoedig word vir die 

verspreiding van blomplante. Versigtige oorwegings ten opsigte van potensiële voor- en nadele 

moet ook geneem word wanneer belangrike bewaringsaksies van stapel gestuur word, soos 

byvoorbeeld restorasie, veral wanneer hierdie aksies na ‘n plaaslike verlies van sekere 

endemise spesies kan ly. 
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Chapter 1 

General Introduction 

 

 

Biodiversity crisis 

The variety of life forms and all their interactions determine the well-being and resilience of 

ecosystems globally. However, biodiversity is declining at an alarming rate (Sala et al., 2000) 

with further decline predicted in the future. One of the most understood mass extinction 

events was the loss of dinosaurs that occurred about 65 MYA (Cretaceous-Palaeocene). 

Nevertheless, extinction in this present age is 1 000 times the former background rate (Pimm 

et al., 2014; de Vos et al., 2014). For example, 10, 533 species were classified as threatened 

by IUCN in 1996, and this has grown by approximately 100% in 20 years, with a total of 24, 

307 threatened species in 2016 (IUCN Red list, 2018). Consequences of biodiversity loss 

include the failing delivery of ecosystems services (Myers, 1996), decreased productivity 

(Hector et al., 1999), altered nutrient cycles (Hooper and Vitousek, 1998), and changed 

trophic interactions (Hooper et al., 2005), among other functions. Thriving biodiversity 

provides functional ecosystem processes (Balvanera et al., 2006), with species functions 

established in food-webs at different trophic levels (Cardinale et al., 2006). 

 

One of the most important tools for effective conservation of species is the availability of 

ecological information such as life history, distribution etc. According to Pimm and Joppa, 

(2015), several species have already gone extinct before they could be identified and 

studied. Insects constitute the highest diversity among life forms on earth. However, due to 

their small size and limited niche range, most species are still undiscovered or understudied. 

Usually, loss of important species yields loss of essential interactions and ecosystem 

services on which other species depend for nutritional requirement, reproduction or shelter 

(Koh et al., 2004; Colwell et al., 2012). Loss of such species may result in co-extinction of 

different species in the ecosystem. This is highly pronounced in insect-flower interactions, 

where the flowering plants are highly dependent on the visitation rate of insect pollinators 

for reproduction (Ollerton et al., 2011). Disruption of interaction due to decline of pollinators 

usually results in reduced productivity in both natural- and agro-ecosystems (Anderson et 

al., 2011; Garibaldi et al., 2013).  
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Pollinator crisis and causes 

Pollinators are responsible for 75% of food consumed by humans (Dirzo et al., 2014), with 

insects alone contributing approximately a 35% increase to agricultural yield through 

pollination (Klein et al., 2006). Pollination services from insects are crucial in African 

terrestrial ecosystems, as they are elsewhere in the world, for maintenance of natural 

biodiversity on the one hand, and production of insect-pollinated food plants on the other. 

The economy of some countries is partly dependent on pollination services provided by 

insects. For example, pollination by insects yields about £430 million of agricultural output 

in the UK (Smith et al., 2011) and about $361 billion globally (Lautenbach et al., 2012). Also 

in South Africa, honeybees are responsible for the pollination of about 27% of herbs, 44% 

of shrubs and 28% of trees in the Cape Floristic Region (Hepburn and Radloff, 2013). 

Pollinators are essential component of natural biodiversity, and threats to this group have 

cascading effects on various components of biodiversity. Viera et al. (2013) found a decline 

in phylogenetic diversity of flowering plants in response to co-extinction simulation of 

pollinators. Furthermore, community composition of flowering plants may also be 

determined by their pollinators. Overall, ecosystem service delivery of pollination is 

compromised in situations of pollinator decline and this affects the integrity of many 

ecosystems (Chapin et al., 2000; Hopper and Gioia, 2004). 

  

Honeybees, which are the most important pollinators, are declining rapidly in different parts 

of the world, with highest documentation in America and Europe (vanEngelsdorp et al., 

2008; Potts et al., 2010a). Varroa destructor, an invasive parasitic mite is the major cause 

of colony collapse disorder (Yang and Cox-Foster, 2007; Berthoud et al., 2010; Dainat et 

al., 2012), a major threat to beehives causing major declines in bee populations. Different 

attempts have been made to ameliorate this decline, largely by increasing the number of 

beehives globally. Although beehives have been increased by 45% since 1961, the increase 

in human population and demand on agriculture, has increased by about 300%, and has 

been recorded on a number of crops that depend on bees and other insects for pollination 

(Aizen and Harder, 2009). This increasing demand for agricultural production has also been 

predicted to increase by 70% by 2050 (FAO, 2010). The constant dependence on bee 

pollination services and increased demand on agricultural products have masked the effort 

of conservationists and beekeepers in different regions of the world to conserve important 

insect pollinators.   
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Another major driver of pollinator decline is the application of harmful pesticides, especially 

in agricultural ecosystems (Brittain et al. 2010; Mullin et al. 2010; Henry et al. 2012; 

Whitehorn et al. 2012). Most of these chemicals were not designed to target pollinators. 

However, through direct exposure, pollinators, most especially bees, have shown various 

responses (Thompson, 2002; Romeis et al., 2008). Neonicotinoids are some of the leading 

harmful substances causing a decline in bee health and population levels (Henry et al., 

2012; Whitehorn et al., 2012). While some of these pesticides can extinguish an entire 

generation of bees in a colony, some influence the foraging activities of pollinators by 

altering brain function (Desneux et al., 2007; Henry et al., 2012). Brittain et al., (2010) 

showed how wild bees are highly vulnerable to the application of pesticides, leading to a 

major decline in bee populations within a short period of the use of pesticide. Also, according 

to Park et al., (2015), pollinator abundance declines with increased application of pesticides. 

However, this may be ameliorated by the availability of natural patches where pollinators 

may seek refuge away from treated areas. In the era of increased dependence on 

agriculture, it is essential to apply more sustainable management practices that are 

pollinator friendly. 

 

In the face of growing ecological threats to natural and agricultural ecosystems, great 

transformation in various terrestrial ecosystems is highly evident. These transformation 

events are often accompanied by habitat destruction and loss of nutrient requirements for 

important insect pollinators (Biesmeijer et al., 2006; Potts et al., 2010b; Winfree et al., 2011). 

Over time, pollinator species are displaced from transformed ecosystems, creating a 

temporal loss until suitable conditions are restored (Kormann et al., 2016). Kaiser-Bunbury 

et al. (2017) showed how vegetation restoration could restore high visitation rate and 

pollinator activity to previously degraded habitat. Patches of natural habitat are of great 

importance for the persistence of bee species in urban areas (Bates et al., 2011). Winfree 

et al., (2009) illustrated the correlation of bees and habitat loss, where decline in quality 

habitat yields a strong decline in the population of bees. Several factors such as global 

warming, land use type and invasive alien species are responsible as drivers of global 

change and influence ecological process in natural ecosystems and the relative success of 

pollination activities (Memmott et al., 2007; Didham et al., 2007; Tylianakis et al., 2008; 

Grass et al., 2013). Some of these drivers also act in synergy, usually increasing their impact 

on the ecosystem, as well as their effect on natural biodiversity (Schweigr et al., 2010; Grass 

et al., 2013; Rafferty, 2017). It is important to assess the extent and intensity of the declines 

associated with important drivers in Africa’s region of high plant diversity: the Greater Cape 
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Floristic Region (GCFR), with its high concentration of rare and threatened plants. A total of 

1 805 plant species are on the IUCN Red List as threatened taxa (South African National 

Biodiversity Institute (SANBI) 2014, Cowling and Hilton-Taylor 1994). 

 

Greater Cape Floristic Region Biodiversity Hotspot 

A biodiversity hotspot is a biogeographical region that is both home to biodiversity of global 

significance and also under severe threat for possible destruction (Myers 1990; Ginsberg, 

1999). Overall, 36 biodiversity hotspots have been identified globally, and the Greater Cape 

Floristic Region (GCFR) is one of the richest in terms of plant diversity. The GCFR, although 

the smallest of the six recognised floral kingdoms, is also the richest floral kingdom in the 

world. In addition, the GCFR is a point where the pollinator diversity meets plant diversity 

(Kuhlmann et al., 2012). This region supports over 9 000 vascular plant species, of which 

69% are endemic to the region (Odendaal et al., 2008). The fynbos biome is one of the 

unique vegetation classes of the region, and this has contributed greatly to the economy of 

the country, with about R77 million yield from harvested fynbos (Odendaal et al., 2008). The 

GCFR is also where the biodiversity hotspot overlaps with UNESCO biosphere reserves. 

Five main biosphere reserves have been identified in this region, with Kogelberg Biosphere 

Reserve being one of the most diverse biosphere reserves in the world, with about 1 300 

plant species per 10 000 sq km (Pool-Stanvliet et al., 2018). 

 

The central zone of the GCFR is confined to the Cape Fold Mountains and adjacent montane 

valleys and coastal plains. However, combining this region with other diverse areas in the 

south-western tip of South Africa constitute a greater biodiversity of higher ecological 

significance. According to Born et al., (2007), the central zone of the GCFR, known as the 

Cape Floristic Region, is the most diverse in this region.  However, combining the vegetation 

here with the unique endemism of Hantam‐Tanqua‐Roggeveld Region and the 

Namaqualand Region constitutes the Greater Cape Floristic Region (GCFR).  

 

This region of great endemism is under threat from different types of transformation through 

direct human-mediated activities such as alien species invasion, altered fire regimes, and 

increased land use. Overall, these events alter the local distribution of biodiversity in this 

region, and are of great ecological significance. This has attracted recent intensive research 

to fill knowledge gaps, and to make recommendations on how to conserve what is left of the 

region’s biodiversity. I now discuss various considerations and transformation events that 

are significant for making conservation recommendations with regards to pollinators. 
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Topographic elevation 

Several plant lineages are known to radiate from different heterogeneous topographic 

landscapes, for example Gentiana, Globularia and Soldanella are known to radiate from the 

European Alps (Kadereit et al., 2004), Lupinus from the Andes (Hughes and Eastwood, 

2006), Rhododendron from the Himalayas (Milne et al., 2010) and Macowania originating 

from the Draskensberge (Bentley et al., 2014). The GCFR is known for the unique 

complexity of its toposcape, consisting of the small hills and undulations (microtopography), 

the large hills (mesotopography) and the mountains (macrotopography). These complex 

topographic patterns of the GCFR are known to be ten times older than the European Alps, 

and six times older than the Himalayas and Andes. A great diversity of plants has been 

observed in the Andes, Himalayas and the Cape Fold Mountains (Mittermeier et al., 2004; 

Mutke and Barthlott, 2005; Kier et al., 2009). Complex topography is an important driver of 

the diverse fynbos vegetation in this region, which supports a wide range of nectar sources 

for bird and insect pollinators, and made up of three plant families: the Proteaceae, 

Restionaceae and Ericaceae (Johnson et al., 2006). With no glaciations for tens of millions 

of years, and a complex topography with complex orographic patterns and soil types, there 

has been considerable speciation (Ellis et al., 2013), leading to very high levels of GCFR 

endemism among both the plants and the fauna.  

 

While the topography has led to high levels of endemism, it is still unclear how biodiversity 

at different elevations responds to changing climate conditions associated with increased 

elevation. On a latitudinal scale, species richness has been shown to increase towards the 

equator (Willig et al., 2003; Armbruster, 2006). Similarly, for elevation gradients, species 

richness usually increases to a certain level in the middle elevation and then decreases with 

further increases in elevation. However, this pattern of response is different among different 

taxa and functional traits (Rahbek, 2005; Kessler et al., 2011; Guo et al., 2009; Sundqvist et 

al., 2013). Air temperature has been established as a major factor driving species 

distribution in this era of increased in global warming (Barry, 2008). At high elevations, 

weather conditions can become extreme and relatively unstable, which limits the species 

that can survive at high elevations (Guo et al., 2013). Lefebvre et al. (2018) showed that bee 

and beetle populations decrease rapidly above 1 500 m elevation on the Alps, which limits 

pollination activities. Warren et al., (1988) found a similar pattern in the distribution of 

anthophilous insects across various mountain ranges, with hymenopterans being the 

dominant flower visitors at lower elevations, but flies dominant at higher elevations, and a 

great decline in all insects at the peak.  
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Several studies have shown how changes in air temperature across elevation gradients 

influence biodiversity response to elevation (Kessler 2000; Yu et al., 2013; Kearns et al. 

2017). While temperature should yield a monotonic decline in species richness and 

abundance, the pattern of abundance and richness is often humped-shape across elevation 

gradients. This suggests other factors apart from simply temperature are also playing a role, 

such as soil moisture, sunshine exposure, season length, among others (Körner, 2000). 

Indeed, topographic attributes alone could play a major role in determining the distribution 

of biodiversity across elevation gradients. Bertuzzo et al., (2016), found that connectedness 

of topographic features was the main factor determining the number of species that can 

occupy certain elevations on a topographic gradient, while most features of topography, 

such as peaks and valleys, are isolated, yielding few dominant species.  In contrast, the mid-

zone elevation has more connected patches forming a larger land area. This characteristics 

feature of mid-elevations is the main factor driving highest species richness at this zone 

compared to other elevations across the topographic gradient. In a sensitive ecosystem like 

the GCFR, where the complex topography is a key driver for species radiation and 

distribution, understanding the pattern of species assemblages may require a multi-

directional approach, where many environmental factors associated with elevation are 

considered. 

 

Land use change 

Land use change, which results from the conversion of natural areas for other human uses, 

is one of the leading causes of pollinator decline globally (Kremen et al., 2002; Cairns et al., 

2005; Potts et al., 2010b). With continuous increase in the global human population, the rate 

of habitat modification and destruction from landscape fragmentation, as well as habitat loss, 

is continually increasing.  A total of 40% of ice-free land surface area was being used by 

humans in the year 2000, and an additional 37% was bordered by anthropogenic agricultural 

activities and modified areas (Eliss et al., 2010). These figures have been predicted to 

increase further as time passes (Tilman et al., 2001). Bellard et al., (2014) suggested non-

natural habitats might increase by 8% in the next decade, and important biodiversity 

hotspots globally, including the Succulent Karoo, will lose about 20% of their herbaceous 

cover. 

 

The current trend in global decline of natural areas will incur co-extinction of flowering plants 

and pollinators, and lead to loss of important ecosystem interactions. Weiner et al., (2014) 

showed the dependence of specialist insect pollinators on floral hosts, where loss of the 
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flowering plant yielded a decline in pollinator diversity. Species sensitivity to loss of partners 

in mutualisms usually differs among taxonomic groups, based on how easily species adapt 

to transformation by choosing from other options available for their basic requirements. This 

is mostly influenced by ecological traits such as tongue length, dietary requirement, range 

size etc. (Murray et al., 2010; Roulston and Goodell, 2011). Species with limited dispersal 

ability relative to niche, time, interactions etc. are more vulnerable to displacement (Kassen, 

2002). For example, sensitive specialist pollinators with a limited range of floral requirement 

are most vulnerable to increase land use intensity (Weiner et al., 2014). De Palma et al., 

(2015) showed how bee species respond to different degrees of land use, based on their 

traits, which include foraging range, niche breadth, reproductive strategy and phenology. 

Thus, understanding the species basic requirements based on functional traits in an 

ecosystem with diverse land use intensity may help develop conservation strategies for 

important species. 

 

In the GCFR, common land use types include the conversion of natural areas for agricultural 

purposes (Heydenrych et al., 1999). One-third of the region has been transformed by 

agricultural practices (Rouget et al., 2003), and vineyards in the region constitute about 95% 

of the total vineyards in South Africa. This has contributed to the loss of important flora and 

fauna in this area of great ecological significance (Fairbanks & McGwire, 2004). Predictive 

land use modelling showed a total of 14 849 ha of threatened habitat is necessary for a 

viable vineyard, thus predicting 89.3% irreplaceable loss of fynbos/renosterveld mosaic in 

this region (Dean et al., 2004). Restoring degraded habitat may yield undesirable outcomes, 

as it may eventually be impossible to restore the food web and species composition to its 

initial state (Whitmore and Sayer, 1992; Novacek and Cleland, 2001). In a system where 

conservation plans are weighed against human needs through agriculture, it may be 

important to apply management strategies that optimise both requirements. For example, 

Kehinde and Samways (2014) found higher diversity of flower-visiting insects in organic 

vineyards that are bordered by natural land compared to the highly disturbed conventional 

vineyards in the CFR. Moderately managed agricultural lands, with patches of natural areas 

that act as refuges for pollinators may be the key factor in conserving pollinator diversity in 

this era of increased demand on agriculture (Tucker and Rehan, 2017). 

 

Invasive alien species 

Invasive alien plant species often compete with the indigenous species for resources, and 

can cause a decline in abundance and diversity of native plant species. Invasive alien 
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species are often regarded as the second greatest cause of biodiversity decline globally 

(Mooney and Hobbs, 2000). Sometimes, alien species are characterized by floral traits that 

attract a variety of pollinators away from native species, resulting in more pollinator visits to 

alien than to indigenous plants (Aizen et al., 2008), resulting in a decline in visitation of 

pollinators to native species (Dietzsch et al., 2011; Montero-Castano and Vila, 2012). Impact 

of invasive alien plants is a major threat to biodiversity in South Africa, as many alien plants 

have invaded ecosystems and continue to spread (Kotze et al., 2010). Alien plants usually 

flower earlier than native species (Lake and Leishman, 2004), and some species of alien 

plants that flower after the native species are usually more abundant and colonize the habitat 

faster than native ones (Lloret et al., 2005). This may increase the competition rate for 

pollinators, and result in a decrease in pollinator visitation rate to the native plants, reduced 

seed set, and pollen deposition for native species (Brown and Mitchell, 2001).  Competition 

for flowering plants among pollinators may also alter species composition of pollinators in 

invaded areas; in this case, pollinator species that are attracted to alien plants dominate the 

pollinator composition of the habitat and yield fewer visitations to native species (Muñoz and 

Cavieres, 2008). However, some studies have shown positive influence of alien species on 

the visitation rate of pollinators to native plants (Moragues and Traveset, 2005; Bartomeus 

et al., 2008). Both negative and positive impacts of alien plants result in alteration of 

composition and evolutionary trends of native species and pollinators in an ecosystem 

(Schlueter et al., 2009). 

  

Sometimes, invasive alien trees are highly successful in colonised environments, and they 

can replace the native flowering plants in a short period (Harding, 2001). The long-term 

effect of flowering alien plants on pollinators and native plants has received little attention, 

and is poorly understood, especially in the CFR. Invasive alien trees have the greatest 

significant influence on biodiversity community composition and distribution of water in the 

CFR (Le Maitre et al., 2000; Gaertner et al., 2012). Pine (Pinus spp.) trees are significant 

group of alien trees in this region with features that enable species of this genus to invade 

new areas. These trees often form a closed canopy when fully grown, and they reduce the 

amount of sunlight reaching the understorey, thereby causing a loss in flowering plants and 

shrubs in invaded areas (Leege and Murphy, 2010; Franzese et al., 2017). Pine trees also 

have a higher water consumption rate compared to native fynbos shrubs, and they are highly 

significant in spreading wild fires quickly, especially in areas with high invasion intensity (van 

Wilgen et al., 2008; Wilson et al., 2018).  
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The GCFR has the highest proportion of tree invasion in the whole of South Africa 

(Henderson, 2007). The invasive trees (Pinus, Eucalyptus, Acacia, etc.) in this region 

compete with other native flowering plants for nutritional requirements, water and land area. 

Overall, the shrub-like native vegetation of the region is being displaced, leading to a decline 

in flower resources for insect pollinators. While more attention has focused on native 

flowering plants facing competition from flowering invasive plants for pollinators (Gibson et 

al., 2012; Gibson et al., 2013), little is known on the proportion of the native shrubs that are 

being lost to shade from invasive trees in the GCFR. With increasing transformation of 

landscapes in the GCFR through invasion and tree plantation, assessing how endemic 

native flowering shrubs respond to shading effect of the alien trees is important to quantify, 

not just in terms of the loss of native plants, but also the effect on stability and diversity of 

plant-pollinator interaction networks in the GCFR.  

 

Fire and plants in the Greater Cape Floristic Region 

Fire is a disturbance that has a major influence on landscapes, both in terms of their physical 

and biotic components (Bond et al., 2005), and has a major effect on terrestrial ecosystems 

globally (Keeley, 2012; Keeley and Brennan, 2012). While fire has always been affected by 

local climatic conditions, it is of particular concern in this era of rapid, anthropogenic climate 

change (Wilson et al., 2010; Trouet et al., 2010; Moritz et al., 2012). Recent global climate 

change patterns have a major effect on fire intensity and frequency (Westerling et al., 2006; 

Wilson et al., 2010; Aldersley et al., 2011).  In many regions of the world, especially 

Mediterranean-type ecosystems (MTEs), warmer and drier weather conditions are 

predicted, resulting in an increase in frequency and intensity of fire in MTEs (Gitay et al., 

2001). 

 

The frequency of fire, its intensity, and its severity are important factors of fire regimes 

(Keeley et al., 2011) that impact various components of the ecosystems differently. The 

species assemblages of an ecosystem may be altered following increased exposure to 

increasing fire intensity (Schaffhauser et al., 2008; Vilà-Cabrera et al., 2008). Also, an 

increase in phylogenetic clustering (Ojeda et al., 2010) and hierarchy of well adapted 

species may be influenced by differential fire intensity among localities. This is particularly 

evident in the GCFR, where fire is a major factor driving plant diversity (Kraaij and van 

Wilgen, 2014). Most of the plants in this region have traits that encourage the spread of fire, 

and the smoke from fire is essential for seed germination of many fynbos plant species 

(Brown et al., 2004).  
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While fire and smoke greatly influence the composition of plant communities, plant-pollinator 

interaction networks are prone to disruption from fire events. The flowering of plants 

following a fire event may precede the recovery of pollinators in the habitat, and this may 

affect the pollination process (Geerts et al., 2012) causing a mismatch. This is because the 

recovery of pollinators may be affected by the intensity and extent of the fire, and also 

availability of patches of unburned areas within the habitat (Watson et al., 2012). The 

pollinator assemblage may also differ after the fire event, and this may impact the effective 

pollination of the plants. Pryke and Samways (2009) found differences in composition of 

butterflies assemblages between recently burned and unburned areas in the GCFR. 

Although there is paucity of information on how pollinating insects respond to fire, there are 

reports of changes in butterfly composition after fire (Vogel et al., 2007), with fire listed as 

the major threat to three South African butterfly species that are on the IUCN Red List 

(Henning et al., 2009).  

 

Response of biodiversity to fire differs among species and taxonomic groups. While fire can 

result in population decline of some group, other species may thrive better during and post 

fire. Species life cycle process and physical features can mediate both immediate and post-

fire response in terms of survival, reproduction, and recolonization in fire prone landscape. 

For example, some plants are fire tolerant as they resprout after fire Most of these 

resprouters are adapted to multiple fire cycles and are mostly perennials (Pausas and 

Keeley, 2014). Most animal groups with positive immediate survival response to fire are 

vertebrates, with a few reptiles and amphibians showing population increases soon after fire 

in burned areas (Greenberg et al., 2008). For many insect species, the immediate response 

is emigration from fire area, or they perish (Silveira et al., 2010). However, some insects do 

exhibit positive long-term recovery with higher diversity post-fire in burned landscape. For 

example, Galbraith et al., (2019) found a higher diversity of bees in areas with highest fire 

severity in a burned landscape. However, the study also showed that some cavity nesting 

bees hid in insect-mined holes and among flower patches to enhance their survival during 

fire. Thus, for insects, especially the less mobile groups, in addition to their life cycle traits 

which differ among species and taxonomic groups, other environmental factors which 

include habitat quality, nesting, and niche selection may influence insect survival and 

recolonization of burned areas during fire. 

 

Protecting these interacting insect species during periods of fire requires a feature of the 

ecosystem that can withstand the impact of the fire and other adverse environmental factors 
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(such as loss of nectar resources, and increased exposure to the elements). This feature is 

usually specific land areas that escape fire, known as refuges (Lindenmayer et al., 2009; 

Brennan et al., 2011). In fire prone areas like the GCFR, refuges are important in retaining 

the original species composition and characteristics of the landscape, despite the changes 

brought on by fire in the surrounding area. The effectiveness of refuges to do this however, 

depends on the intensity, re-occurrence, and size of the fire (Nimmo et al., 2013). Most 

refuges, such as patches of unburned forest (Perera et al., 2007), have sufficient resources 

to sustain species of flora and fauna, and their interactions, after the fire. The size and 

number of these refuges depends on the severity of the fire and its dynamic behaviour (e.g. 

in response to wind intensity and direction), and this in turn, determines the percentage of 

species that can survive in the refuges. 

 

The presence of refuges may influence ecosystem stability, and the occurence of these 

refuges in ecosystems may be related to post-fire successional trends (Banks et al., 2015). 

With increasing anthropogenic disturbances to ecosystems, the effect of fire is in synergy 

with other direct human impacts such as land degradation. This has led to indications that 

the higher impact of fire in recent times affects the components of ecosystems to a greater 

extent than it did prior to the Anthropocene (Brook et al., 2008). This implies a greater need 

for more effective refuges that can help preserve biodiversity during fire events. 

 

The recovery and reassembly of insect pollinators and plants in interactions after fire events 

depends on the nature of the fire in terms of size, frequency, and intensity (Lindenmayer et 

al., 2013). There is limited information on composition of a long-term post fire succession, 

but this will vary between pollinator and plant taxa, as the functional traits of species can 

define the rate of persistence despite fire events, or because of them. Also, recolonization 

of pollinators depends on the spatial isolation of the refuge (Driscoll et al., 2012; Robinson 

et al., 2013) and this may also be in synergy with some traits of the pollinators, such as 

mobility of the species. Often, after a fire, there is rapid expansion of populations from within 

the refuge, and this expansion spreads to the burned areas when conditions are suitable 

and habitable for the pollinators (Watson et al., 2012). The duration and success of the 

recolonization of the burned area however, depends on the severity of the fire, and also on 

the pollinator assemblages that have persisted in the refuge areas.  Importantly, the 

persistence of pollinators in refuges depends on how well the refuge is able to provide 

sufficient resources needed by the pollinators to sustain them until the burned area has 

recovered sufficiently for them to recolonize it (Watson et al., 2012).  
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Aims of this study 

Knowledge of species’ responses to factors driving community distribution in a transformed 

landscape is essential for the conservation of sensitive ecosystems. In the GCFR, 

topography, invasive alien trees, and fire are among the leading factors influencing species 

distribution across the CFR biodiversity hotspot (Brown et al., 2017; Verboom et al., 2015; 

Wilson et al., 2018). While response of flowering plants and other species of ecological 

significance to these drivers has been studied (Wilson et al., 2015; Kemp and Ellis, 2017), 

little is known about how mutualistic interactions, especially plant-pollinator interactions, 

respond to this pattern.  

 

In the GCFR, the high rate of ecological speciation and radiation of the fynbos vegetation in 

the Cape Fold Mountains has been well documented (Goldblatt, 1997; Goldblatt and 

Manning, 2002; Linder et al., 2003; van der Niet and Johnson, 2009; Verboom et al., 2015).  

However, no published study has shown how the complex topography and its features 

influence the diversity of different pollinator taxa in interactions with flowering plants in this 

region. Similarly, while competition for insect pollinators between flowering invasive and 

indigenous plant species in this region has been documented (Gibson et al., 2012; Gibson 

et al., 2013), the shading effect of invasive alien trees (which have occupied many parts of 

the GCFR) on native flowering shrubs and on important interactions, has received less 

attention. In the case of fire, the fynbos community depends largely on fire at moderate 

intervals for reproduction (Vlok and Yeaton, 2000). However, how pollinators and plant-

pollinator interactions persist during fire, and are recruited post-fire, has also received little 

attention in this region. These are important knowledge gaps in this region of great 

endemism, and where bee diversity matches plant diversity (Kuhlmann, 2005).  

 

This study aims to elucidate how important native flowering plant and endemic pollinator 

taxa respond to changes across GCFR landscapes. It also aims to determine the effect of 

these changes on plant-pollinator interaction networks, which have only recently received 

more attention in this region (Kehinde and Samways, 2012; Gibson et al., 2012, Gibson et 

al., 2013; Brown et al., 2017; Benadi and Pauw, 2018). The influence of drivers of global 

change on interaction networks may be observable from the network topology beyond what 

can be assessed through changes in abundance and species richness (Memmott et al., 

2007; Hegland et al., 2009). For example, some studies have shown the importance of 

conservation action through making inference from interaction network properties, even 

when the species richness is unaffected (Memmott et al., 2007; Aizen et al., 2008). A decline 
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in flowering plant species richness may have a direct consequence on loss of mutualistic 

interactions such as pollination (Biesmeijer et al., 2006). Generally, there is an increase in 

the awareness of incorporating ecological interactions between species in understanding 

biodiversity response to changes across landscape (Tylianakis et al., 2007). 

 

In this study, the impact of these drivers (topography, invasive alien trees and fire) will be 

assessed on four pollinator taxa (bees, beetles, flies and wasps), and on native flowering 

plant species diversity and abundance. Also, the response of plant-pollinator interaction 

network metrics that explain network stability, diversity and partitioning, based on floral 

requirements, will be assessed. In view of these aims, I ask the following research questions: 

 

 Insect-flower interaction networks vary among endemic pollinator taxa over an 

elevation gradient:  

- How does species composition of pollinators vary across an elevation gradient? 

- Does change in pollinator composition track flowering plant communities across 

the elevation gradient? 

- What are the most important factors predicting pollinator distribution across the 

elevation gradient? 

- What is the pattern of change in network topology across the elevation gradient? 

 

 Asynchrony among insect pollinator groups and flowering plants with elevation: 

significance for global climate change studies 

- How does abundance peak vary among pollinator taxonomic group and elevation 

zones? 

- How do flower and pollinator abundance and species richness vary among 

taxonomic group and elevation zones? 

 

 Time since fire strongly influences pollinator composition in a historically fire-prone 

landscape: 

- How do species composition of pollinator and flowering plants differ according to 

time since last fire? 

- Does the dispersion pattern of pollinators track that of flowering plants across 

habitats with different post-fire age?  
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 Refuges from fire maintain plant-pollinator interaction networks: 

- How do fire refuges encourage the persistence of plant-pollinator interaction 

networks in fire-prone landscape? 

- How does elevation influence the effectiveness of fire refuges for the 

conservation of pollinators during fire? 

- How do fire refuges affect plant-pollinator interaction networks and species 

specialization in fire-prone landscapes? 

 

 Trade-offs between retaining stands of alien trees and the conservation of indigenous 

flowering plants, pollinators, and rare vertebrates in a biodiversity hotspot: 

- What is the response of flower abundance to the proportion of shade from 

invasive alien trees in areas with different invasion density? 

- How does pine tree density influence plant-pollinator interaction network metrics 

and species diversity in invaded areas?  

 

Limitation of study design 

Like most ecological studies, the inference here may be limited by other site-specific 

conditions other than fire, elevation, and invasive alien trees. For instance, variation in other 

abiotic features such as soil structure, microclimate, etc. may influence observations here. 

Observation recorded from the clustering of sites at each elevation zone in chapters 2 and 

3 may be driven by other spatial factors not measured here. Also, while the distribution of 

medium-term and short-term burned sites reduces variation in other confounding spatial 

structures, the block design of the long-term burned area may be influenced by different 

spatial factors not associated with medium-term and short-term burned areas in chapters 4 

and 5. However, both small and tall alien trees sites were distributed randomly across the 

invaded landscape with limited influence of other cofounding variables on the observed 

pattern in chapter 6, and also showing site independence.  

 

To reduce the effect of other spatial environmental variables, sites in all fire classes and 

across elevation should be distributed evenly across the landscape. This may be possible 

in a controlled burning experiments, or where interactions were observed across a 

continuous elevation gradient rather than topographic block zones. However, the situation 

here reflects how topographic zonation influences species interactions in chapters 2 and 3, 

and also how natural fire creates uneven patches of vegetation distribution across burned 

area in chapters 4 and 5. In block design of spatial distribution experiments such as natural 
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fire and topographic zonation, caution is needed when drawing conclusion about the effect 

of measured environmental variables on pollinators and flowering plants across landscapes. 
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Chapter 2 

Insect-flower interaction networks vary among endemic pollinator taxa 

over an elevation gradient 

 

Abstract 

Interaction networks are sensitive to elevation gradients through changes in local distribution 

of interacting partners. Here, I use plant-pollinator interaction network metrics to assess the 

effect of elevation on flowers and flower-visiting insect assemblages on a sentinel mountain 

used for monitoring climate change in the flower- and insect-rich Greater Cape Floristic 

Region. I also use these interaction metrics to explain the effect of environmental factors on 

the interaction networks. I did this over four vegetation zones <1 640 m a.s.l., as determined 

by former botanical studies. Overall, bees were the dominant flower visitors, followed by 

monkey beetles (Hoplinii), and far behind were wasps and flies. The middle elevation zone 

(650-744 m a.s.l), which is also an ecotone between two distinct botanical zones, had the 

highest species richness and abundance of interacting plants and insects. Interaction 

frequency and size of network were also greatest in the middle zone, as were network 

diversity, generality, and linkage density, while lowest in the summit zone. In sum, there was 

distinct elevation zoning of flower-visiting insects. The greatest zonal change was between 

species at the middle compared with summit zone. Large monkey beetles, bees and flies 

characterized the unique assemblage in the summit zone (1 576-1 640 m a.s.l.). The insect 

zonation tracked that of plant assemblages, with air temperature (lapse rate) having a high 

influence on bee distribution, with lowest levels in the summit zone. In contrast, beetle 

distribution was mostly associated with flower assemblages as well as air temperature. In 

turn, wasp and fly interaction networks were not affected by any of the measured 

environmental variables. I conclude that increased elevation stress from reduced 

temperatures, changing abiotic weather conditions (e.g. strong winds at high elevations), 

and decline in flowering plant abundance and species richness across elevation zones 

cause breakdown of interaction networks involving bees and beetles but not that of flies and 

wasps. 

 

 

______________________ 
1Published as: Adedoja, O.A., Kehinde, T.O. & Samways, M. J. (2018). Insect-flower interaction networks vary 
among endemic pollinator taxa over an elevation gradient. PloS One, 13(11), e0207453. https://doi. 
org/10.1371/journal.pone.0207453 
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Introduction 

Plant-pollinator interaction networks are valuable for assessing biodiversity change and 

landscape quality in response to stressors (Heink and Kowarik, 2010).  Changes in these 

networks also lead to changes in the interaction metrics, most of which are defined by 

interaction frequency.  However, careful analysis and interpretation of these metrics are 

important for identifying particular stressors on communities (Soares et al., 2017). As there 

are several network metrics used to interpret stressors, it is necessary to identify the ones 

that best explain specific patterns of change in interaction networks.  

 

Natural ecosystems change across environmental gradients, as well as from turnover of 

mutualistic relationships among species (Devoto et al., 2005; Carstensen et al., 2014). 

Changes in mutualistic interactions, such as plant-pollinator interactions across latitudinal 

gradients, lead to interactions in the tropics being more specialised through high species 

diversity compared to that in temperate regions (Schleuning et al., 2012). Community 

composition and mutualistic interactions also respond to changes across elevation 

gradients, which illustrate how environmental stress influences biotic communities 

(Hodkinson, 2005; Beck et al., 2010). Responses of bee-plant interactions across elevation 

gradients have been explored (Miller-Struttmann and Galen, 2014; Widhiono et al., 2017). 

However, little information is available on bees compared to other pollinator taxonomic 

groups such as beetles, wasps and flies as regards their response to elevation gradients, 

especially in Africa. 

 

Elevation gradients are an important component of many natural landscapes, and can 

greatly affect environmental variables, even over short range (Körner, 2007). These 

gradients provide opportunities for studying biotic responses to changes in air temperature 

(the lapse rate), precipitation, solar radiation, soil properties, reduced land area, and other 

abiotic features of montane ecosystems (Körner, 2000; Hodkinson, 2005; Brown and 

Vellend, 2014). With every 100 m increase in elevation, there is a drop of 10C in air 

temperature (Rolland, 2003), resulting in delayed growth and flowering of plants. Decrease 

in growth and density of flowering plants especially at peak elevations may reduce the 

attraction of pollinators to these plants and thereby yield a negative effect on pollination 

(Hadley and Betts, 2012).  

 

Plant-pollinator interactions are sensitive to abiotic conditions that affect the interacting 

partners. Distribution of plant and insect pollinators across an elevation gradient determines 

Stellenbosch University https://scholar.sun.ac.za



25 
 

pollination success, especially as there is often an increase in frequency and intensity of 

adverse weather with increasing elevation. With the exception of some plant species (e.g 

Homogyne alpine, Primula farinose) which show higher flower longevity in response to harsh 

conditions at peak elevations especially in the Alps (Trunschke and Stöcklin, 2017), the 

warmer conditions at low elevations allow longer flowering times, as well as affecting the 

local distribution of various insect species (Koti et al., 2005; Radmacher and Strohm, 2011). 

This ‘low-elevation effect’ positively affects mass flowering of some plant species (Schauber 

et al., 2002), with experimental warming in the arctic increasing reproductive success of 

flowering plants through an increase in number of flowers (Arft et al., 1999; Inouye et al., 

2003).  

 

There are few studies on how insect pollinator taxa are differentially affected across 

elevation gradients with their differing environmental conditions.  However, there is some 

information on the differential effects of weather on various insect groups. For example, cold 

and wet weather positively influences the distribution of flies, while bees respond better to 

warm and dry conditions (Lázaro et al., 2008; González et al., 2009; Kovac and 

Stabentheiner, 2011; Nicolson et al., 2013). The response of different groups also depends 

on life history traits (Petanidou et al., 1995; Hodkinson, 2005; Purcell, 2011), including 

sociality, nesting behaviour, body size, reproduction pattern, diet requirements etc. Higher 

insect sociality is usually an attribute of warmer low elevations (Purcell, 2011), with voltinism 

depending on length of season and time of appearance of flowers, both of which decline or 

change with decreasing temperatures associated with increasing elevation (Chown and 

Gaston, 2010).  

 

Availability of interacting partners at various elevations is an important determinant of the 

types of mutualistic interactions present.  The local presence or absence of interacting 

partners is determined by temperature across the elevation gradient, as well as the 

respective, innate ability of the flowers to produce floral resources and the insects to 

pollinate at the various temperatures, as well as under particular weather conditions. 

Increase in temperature beyond the thermal tolerance level of a biotic community results in 

an upward shift along the elevation gradient to a cooler region (Deutsch et al., 2008; Hegland 

et al., 2009). Declines in abundance of ants and plants at high elevations result in fewer 

interacting partners high up, due to reduced richness and abundance of plant and ant 

species. At high elevations, there are fewer interactions, encouraging more connected 

networks, where they are less specialized (Plowman et al., 2017). 
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The bee fauna of the Cape Floristic Region (CFR) is among the most vulnerable to increased 

global warming due to the high level of endemism of most species, as well as the small size 

of this region in the southwestern tip of Africa (Kuhlmann et al., 2012). Bees, like most other 

pollinator taxa, are dependent on the environmental temperature for their activities. This may 

be a critical factor associated with foraging activities, body size at maturity, and the insect’s 

life span (Radmacher and Strohm, 2011). Large-bodied bees, such as megachilids and 

apids, are capable of generating internal heat to optimize foraging activities, even when the 

environmental temperature is low (Oyen et al., 2016).  However, smaller bees such as 

Lasioglossum spp. have to hibernate to avoid colder habitats during a temperature drop 

below thermal tolerance (Bishop and Armbruster, 1999). In Wyoming, USA, large 

bumblebees have high tolerance for low temperatures of about 1˚C at a high elevation of 3 

290 m asl. Conversely, bumblebee species at lower elevations are smaller, and have 

reduced tolerance to extreme temperatures (Oyen et al., 2016).  

 

Elevation has been used to assess the effect of climate change on pollinators (Morris et al., 

2015).  However, little is known about how elevation influences plant-pollinator interaction 

networks. Most studies have been in the northern hemisphere with its history of glaciation 

events, while there are no studies yet in southern Africa which has had no glaciation for 

>200 myr.  This is an important knowledge gap for a biodiversity hotspot like the CFR, where 

it is predicted that there will be a change in plant communities through a rise of 1.8oC by 

2050 (Midgley et al., 2003). 

 

I aim here to determine how different groups of insect pollinators and their interactions 

respond to changes in abiotic conditions with elevation. I hypothesize that: (i) species 

composition of flower-visiting insects will vary across the elevation gradient due to changing 

environmental conditions, (ii) change in flower-visiting insects species composition will track 

changes in flowering plant communities, (iii) flowering plant diversity and area of floral 

display will be the most important factors predicting changes in insect species composition, 

and (iv) since flower resource composition and diversity changes with elevation in my study 

area (Agenbag et al, 2008), network properties will also change across elevation zone 

 

Material and methods 

The study was conducted on Jonaskop Mountain (33°58'10.67''S, 19°30'21.96''E), Western 

Cape Province, South Africa, in the Greater Cape Floristic Region biodiversity hotspot with 

a research permit from CapeNature. The bee diversity of the GCFR is exceptionally high, 
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coinciding with that of plants (Kuhlmann, 2005). The focal study area is 1 640 m high, and 

supports many localized sclerophyllous fynbos plant species. The mountain has distinct 

vegetation zones, and is a sentinel mountain for recording climate change (Camill and Clark, 

2000).  

 

My study sites with increasing elevation on the mountain were based on previous vegetation 

profiling (Agenbag et al., 2008). Lower elevations (< 550 m asl, 33°55'03.8''S , 19°30'46.1''E, 

‘Base zone’) are characterized by succulent Karoo. Elevations 650-744 m asl (33°55'28.2''S, 

19°30'59.4''E ,‘Middle zone’) are ecotone areas between the lower elevations, and the third 

zone (33°57'06.5''S, 19°31'02.0''E‘High zone’), characterized by Mid-elevation Sandstone 

Fynbos at 953-1303 m asl.  The summit elevation (>1576 m asl, 33°58'09.0''S, 19°29'45.3''E, 

‘Summit zone’) is classified as High-elevation Sandstone Dwarf Fynbos (Mucina and 

Rutherford, 2005). 

 

Plant-pollinator interactions were recorded at 18 sites within each of the four zones of the 

mountain at the peak flowering season (August – October, 2017). Each site was a 50 m2 

plot, and plots within any one zone were 100-500 m apart. Groups of these sites, 

representing the four zones, were 0.8-2 km apart. I observed interactions fortnightly at each 

zone, with plant-pollinator interactions conducted during five visits to each zone, except the 

summit, where the short flowering period permitted only three visits. I conducted all 

observations on days with no rainfall and minimal wind (usually < 6 km/s). I computed Moran 

I index (Moran, 1950) to assess spatial autocorrelation for interaction frequency among 

study sites established in each elevation zone. Moran I index (0.284 ± 0.104, P = 0.009) 

showed a weak site clustering of interactions at each elevation zone across the mountain.  

 

Five replicate of 2 m2 subplot were established in each 50 m2 plot of a site. Timed 

observation of insect activity was standardized to 10 min/2 m2 plot to avoid over-emphasizing 

the specialization of flowering plants (Gibson et al., 2011). During this time, an interaction 

was noted when an insect visited the stamen of a floral unit of a plant. Flower-visiting insects 

were identified in the field, or caught for later identification.  Five replicates per 2 m2 sampling 

unit, made a total of 50 min observation time per site for each visit. Insects were identified 

to morphospecies level with reference to collections from this region and using appropriate 

taxonomic guide (The bee genera and sub-genera of sub-saharan Africa (Abc Taxa, Eardly 

et al., 2010), Wasps and Bees in Southern Africa (Gess and Gess, 2014) and Insects of 

Southern Africa (Scholtz and Holm, 1985)). Rare/new species (mostly singletons) were 
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identified as morphospecis by expert taxonomist in different insect taxon at the Department 

of Conservation Ecology and Entomology, Stellenbosch University. This enabled the 

effective comparison of network metrics and species composition in this study. 

 

Flower abundance of each plant species was estimated in each 2 m2 plot where insect 

activities were observed. A flower unit was defined here as the unit from which a honeybee-

sized insect will fly to the next unit rather than walk (Dicks et al., 2002). Area of floral display 

was determined for each open flowering plant species by measuring the diameter of 1-10 

flowers per plant species. Areas of flowers with circular outline was estimated using ݎߨଶ and 

L x B for rectangular surface outline flowers. A flower with visible depth, such as that of 

Protea repens, was estimated using 2	ݎߨଶ݀	 ൅  ଶ. The mean flower area for a plantݎߨ	

species, together with the total abundance of flowers, was used to estimate the plant flower 

area per site (Vrdoljak et al., 2016).  

 

Ambient air temperature was measured at each sampling period at the height of the flowers, 

and facing away from the direct radiation of sunlight in each 2 m2 subplot using hand held 

thermometer (Testo 410-1). Temperature reading was computed twice per sampling period, 

I made temperature reading between 09:00 and 11:00, and also between 13:00 and 14:30 

across sampling sites in each elevation per sampling period. I then computed the mean 

temperature per sampling period for each site visit. Plant indices included flowering plant 

species richness, estimated by counting the number of flowering plant species per 2 m2 

subplot and extrapolating this to the 50 m2 plot, plant species common to two or more 

subplots were regarded as the same entry for species richness per study site. The Shannon 

diversity index, which takes into account the flower abundance and richness, was used to 

estimate flowering plant diversity. 

 

Statistical analyses 

Web structure for plant-pollinator interaction networks was computed for each site visit. 

Eighteen interaction web structures and metrics were computed using the plotweb, network 

level and species level function in the bipartite package (Dormann et al., 2008) in R (R Core 

Team, 2017). Network qualitative properties, such as species richness and abundance of 

flower and insects, were also computed.   

 

I compared number of interactions, network size, and flower-visiting insect species richness 

across elevation zones using generalized linear mixed effect models. I applied the “glmer” 
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function and specified “poisson” family for my data. To account for overlap between 

sampling of each zone, I included the sites as a random variable in my model. I computed 

the square root for flowering plant species richness and I included this in a general linear 

model (glm) using the function ‘glm’ in R to compute differences in plant richness across 

zones. Network metrics, such as connectance, network nestedness, linkage density, 

network specialization (H2’), network generality, and interaction strength asymmetry were 

computed using the network level command in the bipartite package. 

 

Definitions used here are as follows: 1) Connectance: the proportion of realized interactions 

out of all possible interactions in a network (Blüthgen et al., 2008), 2) Generality: explains 

the number of plant species available for an insect in the interaction network (Bersier et al., 

2002), 3) Nestedness: describes the ability of specialist species in the network to interact 

with the species that also receive interactions from most generalised species in the network 

(Spiesman and Inouye, 2013), and ranges from 1 to 100, and usually confers stability to 

interaction networks where the higher the nestedness value, the more stable and resilient 

the network is to disruption (Tylianakis, et al., 2013), 4) Network specialization 

(H2’):estimates the selection and constancy of interaction between partners in a network by 

calculating the deviation of observed interaction from the expected null frequencies of 

interactions (Blüthgen et al., 2006), and ranges from 0 (generalized network) to 1 (perfectly 

specialized network), 5) Species level of specialization (d’): describes the deviation of 

observed visits to expected visits based on interaction of a focal species of insect in a 

network, and is determined by the availability of floral resources (Benadi et al., 2014), 6) 

Linkage density: describes the degree of distribution of interacting partners in a network, 

and takes into account species richness and evenness of the distribution. Linkage density 

may be a better descriptor of network stability compared to nestedness of a network, but 

this is only the case for large networks (Dormann et al., 2008), and 7) Interaction strength 

asymmetry (ISA): the strength and degree of interaction between partners is not usually the 

same in a network, which means that the effect of an interaction between an insect and a 

flowering plant is not the same as the effect of interaction that the plant has with the insect. 

This metric helps to understand the mismatch in the effect that a species has on interacting 

partner, and is reciprocal in an interaction network (Vázquez et al., 2007). 

 

Network indices were log transformed to fit into normal distribution following Shapiro-Wilk’s 

test, and data compared among zones using simple Analysis of Variance (ANOVA). Tukey 

HSD post-hoc test was computed to observe pairwise comparison among groups. I 
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computed linear model to assess how interactions of insect taxonomic groups are 

associated with flower diversity and area of floral display using log-transformed data. 

Difference in composition of flower-visiting insects and flowering plant species among zones 

was estimated using Bray Curtis distance between zones in Primer v6. Analysis of Similarity 

(ANOSIM) was then computed to determine the degree of separation or similarity of 

interacting species between zones of elevation. Principal Component Ordination (PCO) was 

also computed to visualize the separation of insect activities across elevations. 

 

The effect of area of floral display, flower richness, flower diversity, flower abundance, and 

temperature on frequency of interaction were computed using the Distance based linear 

model (Distlm) in Primer V6. Stepwise selection regression, together with Alkaike 

information criterion (AIC), were then used to assess the most important predicting variables 

that determine the frequency of interaction for individual taxonomic groups of flower-visiting 

insects. To see how changes in interaction, made by flower-visiting insects, tracks flowering 

plants, the RELATE function in Primer was used to compare the resemblance matrix of 

flower-visiting insects’ interaction to the resemblance matrix of flowering plants. This function 

is important for comparing similarity of two sets of multivariate data matrices by calculating 

the rank correlation coefficient of the element of the two matrices (Clarke and Warwick, 

2001). 

 

Results 

A total of 1 344 interactions were observed between 71 (Appendix 2a) flower-visiting insect 

morphospecies and 32 (Appendix 2b) flowering plant species. For all zones combined, 

interactions consisted of bees (53.5%), beetles (28.5%), wasps (9.1%), and flies (8.9%). 

This pattern was mostly consistent at each zone separately, with bees making up half of all 

interactions, except at the summit zone where bee interactions dropped to 36% and beetle 

interactions increased to 34%. 

 

There were significant differences in both flower-visiting insect species and plant species 

richness across all zones combined. The highest species richness of flower-visiting insects 

(z = 3.141, p = 0.008, df = 13, Figure 2.1) and plants (z = 3.532, p = 0.003, df = 14, Figure 

2.2) was recorded at the middle zone, and the lowest at the summit zone. 

 

There was also a significant difference in frequency of interaction and network size across 

zones. Highest number of interactions (z = 7.049, P<0.0001, df = 13, Figure 2.3) and largest 
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number of networks (z = 4.322, p<0.0001, df = 13, Figure 2.4) were in the middle zone, 

which differed significantly from the small-sized and few interactions in the summit zone. 

Most of the network metrics showed no significant differences across zones. However, 

network linkage density (F3,14 = 4.145, p=0.027, Table 2.1), network generality (F3, 14 = 5.528, 

p= 0.0101, Table 2.1), and network Shannon diversity (F3,14 = 18.11, p=0.00004, Table 1) 

showed significant differences across zones. At the species level, flower visitors were 

moderately specialized (bee=0.43±0.03, beetle=0.45±0.06, fly= 0.32±0.04, 

wasp=0.33±0.05).  However, mean specialization (d’) index did not differ significantly across 

zones (F3,129 = 0.795, p = 0.499), or among taxonomic groups (F3,129 = 1.506, p = 0.216). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Species richness of flower-visiting insects across elevation zones. Zones with common letters are 
not significantly different at P > 0.05. 
 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Species richness of flowering plants across elevation zones. Zones with common alphabets are 
not significantly different at P>0.05. 
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Figure 2.3. Interaction frequency across elevation zones. Zones with common alphabets are not significantly 
different at P>0.05. 
 

 

 

 

 

 

 

 

 

 

Figure 2.4. Interaction network size across elevation zones. Zones with common alphabets are not 
significantly different at P>0.05. 
 
 
Overall, insect taxa activity increased significantly with flower diversity (F1, 51 = 9.085, R = 

0.389, p = 0.004).  However, this varied among taxonomic groups. Only bees showed 

significant association with flower diversity (F1, 16 = 6.782, R = 0.546, p = 0.019). There was 

no significant association between flower diversity and other taxa. 

 

There was also a significant positive relationship between flower-visiting insect activity of all 

taxa and flower area (F1, 51 = 10.7, R = 0.417, p = 0.002), although the strength and direction 

of the relationship varied among insect groups. Similarly, only bees showed significant 

association with flower area (F1, 16 = 10.59, R = 0.631, p = 0.005). There was no significant 

association between flower area and other taxa.  
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Species separation across zones 

The ANOSIM indicated a significant separation in species of flower-visiting insects across 

zones (R = 0.516, p = 0.001, Table 2.2). The greatest separation was between insect 

species at the middle zone and the summit zone (R = 0.968, p = 0.018, Table 2.2). The 

degree of separation differed significantly among taxonomic groups. Bees showed the 

greatest separation (R = 0.454, p = 0.001, Table 2.2) across zones, followed by beetles (R 

= 0.25, p = 0.005, Table 2.2), then wasps (R = 0.115, p = 0.008, Table 2.2). However, none 

of the pairwise comparisons was significant. There was no significant separation in fly 

species across zones (R = 0.034, p = 0.204, Table 2.2). 

 

The PCO gives a visual representation of the separation among zones, as well as the 

direction of the environmental variables. Insect activities in the summit zone strongly 

separated out from those of all other zones (Figure 2.5). Temperature increased towards 

the base zone, which was similar to the direction of flow for flower richness, flower diversity, 

and flower abundance, while flower area increased towards the high zone (Figure 2.5) 

 

Table 2.1. Mean (±SE) of network metrics in the four elevation categories.  

 Base zone Middle zone High zone Summit zone F 
value 

P value 

Connectance 0.4±0.04 0.37±0.05 0.34±0.04 0.60±0.08 3.31 0.05 
Nestedness 42.88±5.07 39.80±4.39 30.21±4.56 32.21±4.10 1.68 0.22 
ISA 0.41±0.09 0.25±0.06 0.22±0.14 0.21±0.11 0.78 0.53 
Shannon 
diversity 

2.17±0.13 2.53±0.12 1.83±0.07 1.33±0.10 18.11 0.0004 

Generality 1.42±0.11 1.91±0.15 1.40±0.10 1.24±0.07 5.53 0.01 
Linkage 
density 

2.52±0.39 2.83±0.20 1.92±0.20 1.53±0.06 4.15 0.03 

Specialisation 
(H2’) 

0.73±0.06 0.57±0.08 0.80±0.11 0.89±0.03 2.41 0.11 

ISA =interaction strength asymmetry. 

 

Table 2.2. Analysis of Similarity showing pairwise comparison of interaction frequency of insect 
taxa for elevation categories. 
 

Elevation zones R P 
All insects  0.516 0.001 
Base Middle 0.478 0.008 
Base High 0.68 0.008 
Base Summit 0.41 0.036 
Middle High 0.236 0.040 
Middle Summit 0.969 0.018 
High Summit 0.559 0.018 

Beetles  0.25 0.005 
Base Middle 0.078 0.222 
Base High -0.002 0.444 
Base Summit 0.333 0.054 
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Table 2.2 (cont.) 

Middle High 0.014 0.373 
Middle Summit 0.846 0.018 
High Summit 0.462 0.036 

Wasps  0.115 0.008 
Base Middle 0.105 0.206 
Base High 0.118 0.111 
Base Summit 0.1 0.25 
Middle High 0.125 0.206 
Middle Summit 0.111 0.464 
High Summit 0.143 0.464 

Bees  0.454 0.001 
Base Middle 0.568 0.008 
Base High 0.65 0.008 
Base Summit 0.462 0.036 
Middle High 0.22 0.063 
Middle Summit 0.744 0.018 
High Summit 0.251 0.107 

Flies  0.034 0.204 
Base Middle -0.034 0.762 
Base High 0.154 0.167 
Base Summit -0.039 0.607 
Middle High 0.077 0.286 
Middle Summit -0.1 0.786 
High Summit 0.143 0.036 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 2.5. PCO showing separation of insect activities at different elevation zones, and the direction of 
environmental variables. 
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Effect of environmental variables on flower-visiting insects activities 

Of all the explanatory environmental variables in my model, air temperature was the only 

significant factor driving the pattern of interaction of flower-visiting insects across the 

elevation gradient with a prediction of 14.4% of total insect activity (Table 2.3). 

 

Similarly, when I assessed effect of these variables on interaction of different taxonomic 

groups, air temperature was the only significant factor explaining the variation of bee 

interactions across the elevation gradient, with a prediction of 15.6% (Table 2.3). In turn, 

variation in interactions involving beetles was more strongly influenced by flower abundance 

and flower area, with estimated predictions of 37.8% and 27.6% respectively, and a 

moderate prediction of 16.9% in the case of temperature (Table 2.3). None of the 

environmental variables in my model showed significant predictive ability for pattern of 

interaction observed in wasps and flies. 

 

Relationship between plant composition and insect activities 

The RELATE comparison showed a significant relationship between the resemblance matrix 

of plant composition and activities of flower-visiting insects across all zones (rho=0.418, 

p=0.001). 

 

Table 2.3. Distlm model showing important predictors of insect visitation frequency among 
taxonomic group. 
 

 Variable AIC SS(trace) Pseudo-F P Prop. Cumul. Res.df 

All 
insects 

Temperature 149.28 9711.3 2.697 0.001 0.144 0.144 16 

Beetles Temperature 149.25 1170.6 3.257 0.002 0.169 0.169 16 
 Flower area 148.78 7364.9 2.203 0.031 0.106 0.276 15 
 Flower 

abundance 
148.06 7051.9 2.291 0.023 0.102 0.377 14 

Bees Temperature 148.73 10319 2.955 0.003 0.156 0.156 16 
 

AIC =Akaike information criterion, SS = Sum of square, Prop.= Percentage variation explained by 
variable in model, Cumul. = Cumulative percentage variation explained by model, Res.df = Residual 
degrees of freedom  
 

Discussion 

Bees are important pollinators, with most species being actively dependent on floral 

resources. The CFR is the only biodiversity hotspot where high plant and bee diversity 

coincide (Kuhlmann, 2005); this explains the dominance of bees in interactions with 
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flowering plants, as seen here. The flower-visiting insect groups here showed a strong 

relationship with flower area and diversity, however, bees and beetles showed stronger 

association with flower area than with flower diversity in my result. Mass flowering, an 

attribute of several flowering plant species in the GCFR has a strong influence in attracting 

flower-visiting insect with wide area of display of compact inflorescence (Vrdoljak et al., 

2016, Lázaro et al., 2009). In my study, mass flowering Lobostemon, Helichrysum and 

Senecio were diverse with wide open areas at the base, middle and high zones. This may 

explain the association especially between beetles and flowering plants here. 

 

There was a significant difference in species richness of flower-visiting insects and flowering 

plants across the different elevation zones. Insects are usually highly sensitive to 

fluctuations in environmental factors, including those across different elevations. One of the 

major factors associated with elevation change is temperature, which usually influences 

foraging activities of flower visiting insects (Kilkenny and Galloway, 2008), and also the 

productivity of flowering plants (Zhao et al., 2012). Thus, flower visiting insects composition 

tracks flowering plant as I found here, and as reported by Winfree et al. (2009). This implies 

that the presence of different species of flowering plants at different zones of elevation in 

my study supports the distribution of different species of flower-visiting insects across the 

elevation gradient. 

 

Although quantity of floral resource available in an ecosystem is one of the most important 

factors driving flower visitation by insects (Carnicer et al., 2009), here I show that the species 

of plant available is also of great importance, especially in a system like this one, with its 

distinct zonation of flowering plants. This largely supports my second hypothesis. Also, for 

a mountain like in this study, with varying level of environmental stress and a unique 

distribution of flowering plants, loss of important flower species at any zone may have a 

direct effect on the displacement of flower-visiting insects across elevations. 

 

Interaction network properties 

Here I show significant changes in some network quantitative indices across elevation 

zones. There was a significant difference in interaction linkage density across zones. 

Linkage density, which is the average number of feeding links for a species, is dependent 

on availability of interaction partners. On my mountain, this decreased at the summit 

elevation, as also observed on Mt. Wilhelm, Papua New Guinea (Plowman et al., 2017). The 

decline in interacting partners at high elevation also drove the pattern of network generality 
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in my study. Highest network generality recorded in the middle zone is indicative of more 

floral resources, even though flower abundance was not significantly different across zones. 

Presence of highly rewarding flowering plants like Lobostemon glaber and L. trichotomus in 

high abundance at the base, middle and high zones may have led to higher generality at 

these elevations compared to the summit zone. Flowers of this genus are attractive to bees 

(Goldblatt et al., 2002; Gess and Gess, 2006) and received high visitation rate in my study. 

Highest network generality at the middle zone, which is also an ecotone, may be important 

for the stability of these networks and their resilience to environmental stress. As a link 

between zones, ecotones are evidence of rapid climatic transitions along gradients, and are 

important conservation areas in ecosystems (Kark, 2013). Furthermore, plant species 

richness was also highest in this zone. More flower resources may encourage selectiveness 

of flower-visitors, especially for more specialized insect species, and overall will confer 

stability and robustness to interaction networks (Bascompte et al., 2003; Olesen et al., 2007; 

Thébault and Fontaine, 2010). 

 

Network diversity accounts for the distribution of interaction frequency among interacting 

species (Montoya and Yvon-Durocher, 2007; Hass et al., 2018).  Communities rich in 

interacting partners are usually more stable than communities made up of few individual 

species (Cebrian, 1999; Dunne, 2006). In addition, network generality and linkage density 

were also highest at lower elevations, these also support more roboust networks at lower 

elevations compared to higher zones. Peak elevations are usually associated with extreme 

abiotic factors, and sometimes, these are associated with low species diversity in this zone. 

Although network diversity is low at the summit elevation zone here, nevertheless, some 

species are unique to this region and were not observed elsewhere on this mountain. This 

shows the resilience of these species to the harsh environmental conditions. While a few 

plants here are adapted to wind pollination, little is known about adaptive measures 

influencing the persistence of the unique insects at this zone. Understanding the ecology of 

these species at the summit zone may influence scientific knowledge of their distribution 

and preferred environmental conditions.  

 

Separation across elevation and effect of temperature 

Agenbag et al. (2008) showed a distinct separation in flowering plant species communities 

on this mountain. For the elevation-sensitive species here on this mountain such as P. 

repens, which prefers high rather than low zones, this plant species may be vulnerable to 
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climate change as warmer and drier conditions begin to prevail in this Mediterranean-type 

ecosystem (Westerling et al., 2006). 

 

Flower-visiting insect species at the middle zone were very different from those in the summit 

zone. Bees were the most sensitive to change in elevation, with significantly different 

species composition at each elevation zone. This suggests huge turnover in interactions 

among bees, determined mostly by temperature rather than flower indices, as explained by 

my model selection of environmental variables. In the case of ants, temperature was the 

major predicting factor for their distribution across a nearby elevation gradient (Longino and 

Colwell, 2011).  Body size is important for how bee species tolerate adverse climatic 

conditions with elevation (Oyen et al., 2016). Here, I observed Xylocopa spp. and moderate-

sized Megachilidae spp. across all elevations. However, Lasioglossum spp. and other small 

Halictidae differed in species composition at different elevations. Big Bombyliidae and the 

beetle Clania glenlyonensis were only recorded at the summit zone, with small monkey 

beetles only at the lower elevations. 

 

The greatest difference in species interactions was between middle and summit zones. 

However, there was also a significant difference between the base and middle zones. The 

middle, ecotonal zone had the highest number of bee species interactions, as well as highest 

species richness, indicating the presence of most suitable abiotic conditions necessary for 

a rich interaction between bees and flowers. It appears that such ecotonal zones in general 

are rich in species and interactions (Loehle, 2000; Evans and Brown, 2017).The summit 

zone here had the fewest interactions involving bees, indicating that it is the least climatically 

suitable zone for supporting bee-flower interactions. Although temperature was the major 

predicting factor for local bee elevation distribution, the decline in flower diversity at the 

summit elevation may also have acted in synergy with temperature to reduce bee diversity 

(Scaven and Rafferty, 2013). 

 

Beetles showed a weaker zonal difference than bees, although there was a highly significant 

difference in species composition between the lowest two zones and the summit, 

determined, as with bees, by temperature and flower composition. CFR plant diversity may 

explain the diversity of insect assemblages better than abiotic factors (Kemp and Ellis, 

2017), with monkey beetles being one of the most important pollinator groups for most 

flowers here (Colville et al., 2002). Although bees have highest flower visitation, monkey 

beetles carry higher pollen loads, at least of Asteraceae and Aizoaceae species (Mayer et 

Stellenbosch University https://scholar.sun.ac.za



39 
 

al., 2006). Decline in flower richness and diversity, especially in the summit zone, may be 

the most important factor, rather than temperature, influencing reducing beetle diversity over 

the elevation gradient.  Nevertheless, plant diversity may have been driven in part by 

temperature in addition to the underlying factors of soil types, low nutrients, and orographic 

patterns (Agenbag et al., 2008), which in turn, may influence beetle diversity. 

 

I found that flies and wasps were not significantly influenced by temperature or flower 

indices, and unlike bees, these groups are not obligate nectar feeders, and are less affected 

by flower abundance and composition (Lázaro et al., 2016). I show here that flies and wasps 

are less sensitive to changes in environmental factors, and so may be less suitable for 

monitoring of changes in flower indices and the abiotic effects of elevation. 

 

Conclusion 

As elsewhere, elevation stress here influenced interactions between plants and flower-

visiting insects, but with the various insect groups being influenced differentially, by the direct 

effect of temperature and the indirect effect of flowering plant diversity and area. With an 

anticipated overall temperature increase in the area of about 1.8˚C by 2050 (Midgley et al., 

2003), my results suggest that the current insect-flower interactions, especially those 

involving bees, are vulnerable to temperature changes where interactions decline with 

reduced temperature at summit elevation. This may not necessarily be negative in view of 

the richer and more robust interactions at the lower elevations where temperature is higher, 

and the presence of monkey beetles, wasps and flies.  However, there is likely to be loss of 

certain local species that are currently only at the summit elevation such as Clania 

glenlyonensis and Bombyliidae sp2.  Also, with flowering plants driving insect composition 

across the elevation gradient, loss of flowering plant species unique to any of the zones, 

especially the summit zone where very few flowering plant species are available, may 

eventually result in a local displacement of visiting insects on this mountain. Finally, I provide 

here some data against which interaction networks could be compared in the future. 
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APPENDIX 

 

Appendix 2a. List of flower-visiting insect species  

Taxa Family Genus Species/Morphospecies 
Bee Halictidae Allodapula melanopus 
Bee Halictidae Halictus sp.1 
Bee Halictidae Halictus sp.2 
Bee Halictidae Halictus sp.3 
Bee Halictidae Halictus sp.4 
Bee Halictidae Halictus sp.5 
Bee Halictidae Halictus sp.6 
Bee Halictidae Halictus sp.7 
Bee Halictidae Lasioglossum sp.1 
Bee Halictidae Lasioglossum sp.2 
Bee Colletidae Colletes sp.1 
Bee Colletidae Colletes sp.2 
Bee Colletidae Colletes sp.3 
Bee Colletidae Colletes sp.4 
Bee Colletidae Colletidae sp. 
Bee Megachilidae Megachile sp.1 
Bee Megachilidae Megachile sp.2 
Bee Megachilidae Megachile sp.3 
Bee Apidae Amegilla sp. 
Bee Apidae Anthophora sp.1 
Bee Apidae Anthophora sp.2 
Bee Apidae Anthophora sp.3 
Bee Apidae Anthophora sp.4 
Bee Apidae Apis mellifera 
Bee Apidae Apidae sp.1 
Bee Apidae Apidae sp.2 
Bee Apidae Xylocopa olivacea 
Bee Apidae Xylocopa sp.1 
Bee Apidae Xylocopa sp.2 
Bee Apidae Xylocopa sp.3 
Bee Apidae Xylocopa sp.5 
Bee Apidae Xylocopa sp.6 
Bee Apidae Apidae sp.3 
Bee Apidae Tetralonia sp.1 
Bee Apidae Tetralonia sp.2 
Bee Apidae Apidae sp. 
Beetle Cerambycidae Cerambycidae  sp.1 
Beetle Cerambycidae Cerambycidae  sp.2 
Beetle Cerambycidae Cerambycidae  sp.3 
Beetle Cerambycidae Cerambycidae  sp.4 
Beetle Cerambycidae Typocerus  sp. 
Beetle Scarabaeidae Heterochelus  sp. 
Beetle Scarabaeidae Hedybius  sp. 
Beetle Scarabaeidae Peritrichia  sp.1 
Beetle Scarabaeidae Peritrichia sp.2 
Beetle Scarabaeidae Peritrichia sp.3 
Beetle Scarabaeidae Clania  glenlyonensis 
Beetle Scarabaeidae Anisonyx  ursus 
Beetle Scarabaeidae Anisonyx sp. 
Fly Muscidae Muscidae sp.1 
Fly Muscidae Muscidae sp.2 
Fly Syrphidae Syrphidae  sp.1 
Fly Syrphidae Syrphidae  sp.2 
Fly Syrphidae Syrphidae  sp.3 
Fly Bombyliidae Bombyliidae sp.1 
Fly Bombyliidae Bombyliidae  sp.2 
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Fly Bombyliidae Bombyliidae  sp.3 
Fly Bombyliidae Bombyliidae sp.4 
Fly Calliphoridae Calliphoridae sp. 
Fly Culicidae Culicidae sp. 
Wasp Sphecidae Sphecidae  sp.1 
Wasp Sphecidae Sphecidae  sp.2 
Wasp Sphecidae Sphecidae  sp.3 
Wasp Sphecidae Sphecidae  sp.4 
Wasp Vespidae Vespidae sp.1 
Wasp Vespidae Vespidae sp.2 
Wasp Eumenidae Eumenidae  sp.1 
Wasp Eumenidae Eumenidae sp.2 
Wasp Pompilidae Pompilidae  sp.1 
Wasp Pompilidae Pompilidae  sp.2 
Wasp Icheumonidae Ichneumonidae sp. 
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Appendix 2b. List of plant species 

Family Genus Species 
Aizoceae Ruschia tecta 
Asteraceae Arctotis gousblom 
Asteraceae Oedera squarrosa 
Asteraceae Helichrysum  dasyanthum 
Asteraceae Oncosiphon grandiflorum 
Asteraceae Cullumia sp.1 
Asteraceae Cullumia sp.2 
Asteraceae Senecio sp.1 
Asteraceae Senecio sp.2 
Asteraceae Senecio sp.3 
Asteraceae Heterolepis aliena 
Asteraceae Dimorphotheca nudicaulis 
Asteraceae Othonna bulbosa 
Asteraceae Metalasia muricata 
Boraginaceae Lobostemum glaber 
Boraginaceae Lobostemum dorotheae 
Boraginaceae Lobostemum trichotomus 
Geraniacea Pelagonium sp. 
Malvaceae Hermannia alnifolia 
Montiniaceae Montinia sp. 
Montiniaceae Montinia sp.2 
Polygalaceae Polygala fruticosa 
Polygalaceae Muraltia sp. 
Proteaceae Protea repens 
Proteaceae Protea laurifolia 
Proteaceae Leucadendron laureolum 
Proteaceae Leucadendron salignum 
Ericaceae Erica sp.1 
Ericaceae Erica sp.2 
Ericaceae Erica sp.3 
Rhamnaceae Phylica  ericoides 
Fabaceae Acacia sp. 
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Chapter 3 

Asynchrony among insect pollinator groups and flowering plants with 

elevation: significance for global climate change studies 

 

Abstract 

Mountains influence species distribution through differing climate variables associated with 

increasing elevation. These factors determine species niche ranges and phenology. 

Although the distribution patterns of some insect groups relative to elevation have been 

established, how differing environmental conditions across elevation zones differentially 

influence the phenology of various insect groups is largely unknown. This is important in this 

era of rapid climate change. I assess here how species composition and seasonal peaks in 

abundance among different insect pollinator groups and flowering plants differ across four 

floristically distinct elevation zones up a sentinel mountain subject to strong weather events. 

I sampled insect pollinators in four major groups (bees, wasps, beetles and flies) over two 

spring seasons. Pollinator species composition across all elevation zones track flowering 

plant species composition. In terms of abundance, beetles were the dominant group across 

the three lower zones, but declined greatly in the summit zone, where flies and bees were 

more abundant. Bee abundance peaked earlier than the other groups across all four 

elevation zones, where there were significant peaks in abundance. Bee abundance peaked 

earlier than flowering plants at the middle zone and slightly later than flowering plants at the 

base zone, suggesting a mismatch. I conclude that, while elevation shapes species 

distribution, it also influences species phenology, and can lead to a mismatch as seen here. 

This may be of great significance in long-term assessment of species distribution in sensitive 

mountain ecosystems. 

 

Introduction 

Mountains are highly significant drivers of species diversity and dispersion patterns. They 

occur in about half of earth’s biodiversity hotspots (Spehn et al., 2010) and they are often 

rich in the diversity of endemic species. Different elevation zones have different degrees of 

exposure to weather and climate (Van Beusekom et al., 2015). Besides the standard lapse 

rate in temperature, there is great variation in wind, humidity, precipitation, and orographic 

patterns, differentially affecting the biota at various elevations (Körner, 2000), especially 

species abundance and distribution patterns across the elevation gradient (Hodkinson, 

2005).  
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There is not always a monotonic response in species diversity across elevation gradients. 

Sometimes, species richness and abundance increase and peak at mid-elevations (Kessler 

2000), then decrease with increasing elevation. This response pattern is however, 

dependent on taxonomic group. For example, the abundance of beetles show an arched-

relationship with elevation (Yu et al., 2013), as do bumble bees (Kearns et al. 2017) at mid 

elevations. However, army ants show a linear decline in abundance with increasing 

elevation (Kumar and O'Donnell, 2009). Rahbek (2004) found that 50% of the studies done 

on species response to elevation gradients show arch-shaped species richness patterns, 

while species richness with linear patterns made up only 25%.  

 

The determining factors of differential response among taxa to elevation gradients are not 

well understood, although bees track flowering plant diversity (Steffan-Dwenter and Schiele, 

2008; Winfree et al., 2009), which in addition to other abiotic factors, influence bee 

distribution in terms of species richness and abundance across elevation gradients. Flies on 

the other hand, are better associated with cold temperatures, and often dominate at high 

elevations beyond the limits of other taxa (Kearns, 1992; Zoller et al., 2002; Lefebvre et al., 

2018). 

 

In addition, elevation shapes abundance peaks and species composition (Benadi et al., 

2014). The adaptation of different taxa to differing air temperatures associated with elevation 

may influence species abundance and composition. For example, flies are well adapted to 

cool and wet areas, while bees are mostly in dry and warm habitats (Totland, 1993; Lázaro 

et al., 2008). In the case of flowering plants, Fitter and Fitter, (2002) showed how 

temperature influences first flowering day among plant functional groups, first flowering day 

of insect-pollinated plants were more prone to temperature fluctuation compared to wind 

pollinated plants. Furthermore, some flowering plant species have low flower abundance 

associated with increasing spring temperature (Inouye et al., 2003) especially at low 

elevations.  However, for some mass flowering species, high spring temperature drives high 

abundance (Schauber et al., 2002). In a sensitive ecosystem like the Greater Cape Floristic 

Region (GCFR) of South Africa, where bee diversity matches plant diversity (Kuhlmann, 

2005), high species seed set may ensue when mass flowering is associated with high bee 

abundance in warm elevation zones. Studies assessing influence of air temperature change 

on bee composition and diversity are few, yet there may be differences in species response 

influencing productivity across elevation zones. 
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Factors driving species distribution patterns across elevation gradients also influence their 

phenology over space and time (Hegland et al., 2009; Hodgson et al., 2011). Phenology 

usually describes species natural seasonal pattern, which may be associated with seasonal 

appearance (Fitter and Fitter, 2002; Menzel et al., 2006), abundance peaks (Waser, 1976; 

Lefebvre et al., 2018), flowering duration (Menzel and Fabian, 1999; Miller-Rushing and 

Primack, 2008), insect flight duration (Roy and Sparks, 2000; Sparks and Collinson, 2007), 

among other life activities. Shifts in phenology of important flower-visiting insect taxa provide 

evidence of global change (Roy and Sparks, 2000; Stefanescu et al., 2003). For example, 

butterflies are a model taxon for understanding climate change through shifts in phenology 

(Stefanescu et al., 2003; Dell et al., 2005; Menzel et al., 2006).  

 

Using temporal patterns of species phenology to understand environmental change is well 

established (Roy and Sparks, 2000; Forister and Shapiro, 2003; Hegland et al., 2009). 

However, studies assessing spatio-temporal response of phenology are few (Doi and 

Takahashi, 2008; Hodgson et al., 2011). Response of species phenology to spatial patterns 

may differ from year to year (influenced by time) with varying climate (Thompson and Clark, 

2006; Doi et al., 2008; Doi and Takahashi, 2008). Although global warming can bring about 

early onset in appearance of flowering plant and bee species (Hegland et al., 2009; 

Mohandass et al., 2015), little information is available on how elevation mediates this 

pattern.  

 

While most of the spatio-temporal studies addressing insect and plant diversity have been 

across latitudinal gradients (Doi and Takahashi, 2008), studies across elevation gradients 

have only recently been conducted (Benadi et al., 2014; Lefebvre et al., 2018).  I investigate 

this in the CFR, a Mediterranean-type ecosystem with a rich and complex topography across 

most of its expanse. The mountains are ancient (about 600 my at base to 300 my at 

summits), and support extensive species radiation of angiosperms, characterized by the 

sclerophyllous fynbos vegetation. Specifically, I focus on how elevation zones influence 

species composition and peaks in richness and abundance of different insect pollinator taxa 

in the CFR. I hypothesize that 1) since species sensitivity to abiotic conditions differ across 

elevation zones (Lefebvre et al., 2018), there will be differences in abundance and richness 

among taxa across elevation zones, 2) there will be differences in species composition of 

flowering plants and insect pollinators across elevation zones, since species niche range 

and flora requirement may differ across elevation zones, 3) since flower visiting insects 

especially pollinators track floral resources (Winfree et al., 2009), changes in species 
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composition of insect pollinators will track composition of flowering plants across the 

elevation zones, 4) since flowering peak period may differ among plant species, seasonal 

abundance peaks will also vary among insect pollinator taxa tracking flower distribution 

across elevation zones 

 

Material and methods 

The study was undertaken on Jonaskop Mountain (33°58'10.67''S, 19°30'21.96''E), Western 

Cape Province, South Africa, in the Cape Floristic Region biodiversity hotspot. The bee 

diversity of the CFR is exceptionally high, coinciding with that of plants (Kuhlmann, 2005). 

Jonaskop Mountain, my focal study area, reaches 1 640 m a.s.l., and supports many 

localized sclerophyllous fynbos plant species. The mountain is highly exposed to extreme 

weather events (cold, wet and windy in winter, and hot and dry in summer), has distinct 

vegetation zones (Agenbach et al. 2008), and is a sentinel mountain for monitoring climate 

change.  

 

Our study sites, with increasing elevation on the mountain, are those used previously in 

vegetation profiling (Agenbag et al., 2008). Low elevations (< 550 m asl, 33°55'03.8''S , 

19°30'46.1''E, ‘Base zone’) are characterized by succulent karoo. Elevations 650-744 m 

a.s.l. (33°55'28.2''S, 19°30'59.4''E ,‘Middle zone’) are an ecotone between the lower 

elevations, and the third zone (33°57'06.5''S, 19°31'02.0''E ‘High zone’) and is characterized 

by Mid-elevation Sandstone Fynbos at 953-1303 m a.s.l.  The highest elevation (>1576 m 

asl, 33°58'09.0''S, 19°29'45.3''E, ‘Summit zone’) is classified as High-elevation Sandstone 

Dwarf Fynbos (Mucina and Rutherford, 2006). 

 

Flower visiting insects in the area belong mostly to four major taxa: bees and wasps 

(Hymenoptera), beetles (Coleoptera: mostly Scarabaeidae, and also some beetle families 

whose roles as flower visitors have been identified from literature), and flies (Diptera: mostly 

Syrphidae, Bombyliidae and Muscidae, including other families whose role in flower-

visitation has been recorded). These taxa were sampled across 18 study sites (as in Chapter 

2) August-November 2017 and 2018, the flowering time of most plants in the area. Five 

study sites each were established in the first three zones with only three study sites 

established at the summit zone due to low flower distribution. Sites were selected with 

increasing altitude from 385 m – 550 m asl (Base zone), 712 – 740 m asl (Middle zone), 990 

m – 1 250m asl (High zone) and >1570 m asl (Summit Zone). Sites were selected along 

Stellenbosch University https://scholar.sun.ac.za



51 
 

increasing elevation at each zone based on their abundant flower cover to account for areas 

with highest composition of flowering plants at each elevation zone. 

 

Each site was a 50 m2 plot. Plots within any one zone were 100-500 m apart. Groups of 

these sites, representing the four zones, were 0.8-2 km apart. I made nine visits to each of 

the first 3 zones, each site was visited twice (once in each year) with the exception of one 

site in each of the middle, high and base zone which were partly or completely burned in the 

second year. I only made six visits to the summit zone with every site visited in the second 

year. These were the only areas with flowers at the summit elevation with zero flowers 

recorded elsewhere at this zone. Study sites were visited fortnightly in each sampling year, 

pooled insect and plant abundance data in each site were used to assess differences in 

species abundance across elevation zones. However, repeated collections in different 

sampling days in the same sites were used in assessing species phenology across sampling 

days and elevation zones.  

 

Insects were sampled with yellow pan traps at all elevation zones. I also included white and 

blue pan traps during a pilot study. However, these collected very few insects and were 

omitted from the study. At each collection time, 10 yellow bowls (2 000 ml) were half-filled 

with water, and raised to vegetation height at each elevation zones for a period of 24 hours. 

Insects caught in each bowl were collected, stored in 70% ethanol, and then sorted. Insects 

were identified based on morphospecies with reference to collections from this region and 

using appropriate taxonomic guild (The bee genera and sub-genera of sub-saharan Africa, 

Abc Taxa, (Eardly et al., 2010); Wasps and Bees in Southern Africa (Gess and Gess, 2014) 

and Insects of Southern Africa (Scholtz and Holm, 1985)). Rare/new species (mostly 

singletons) were identified as a new species/morphospecis by expert taxonomist in different 

insect taxon at the Department of Conservation Ecology and Entomology, Stellenbosch 

University. Morphospecies count was used as abundance measure in my statistical analysis. 

I estimated flower abundance at each study site in five replicates of 2 m2 plots. A flower unit 

was defined here as the unit from which a honeybee-sized insect will fly to the next unit 

rather than walk (Dicks et al., 2002). I counted the flower units of identified plant species in 

each plot, and I pooled these data over the entire 50 m2 plot. I also estimated flower species 

richness at each study plot across all elevation zones at each visit.  
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Statistical analyses 

To asses sampling adequacy, I estimated species rarefaction curves for flowering plants 

and anthophile species richness across study sites using the ‘rarefy’ function in ‘vegan’ R 

package (Oksanen et al., 2006). 

 

I used Analysis of variance (ANOVA) to test for difference in overall insect abundance and 

species richness across elevation zones and insect taxonomic groups. Pooled data for 

abundance and species richness of insects and flowering plants across site visits were 

normally distributed according to Shapiro-Wilk’s normality test. Tukey HSD post-hoc test 

was computed to observe pairwise comparison among groups. To assess how insect 

abundance and species richness differ among taxonomic group at each elevation, I used a 

generalised linear model (GLM) in R version 3.4.1 (R core team, 2017) and specifying 

Poisson distribution. Here I specified abundance and species richness as dependent 

variables in different models, insect taxa at each elevation was specified as the fixed factor. 

To investigate how species composition varied across elevation gradient, I used a Bray 

Curtis dissimilarity matrix, and compared this among elevation zones using PERMANOVA 

in Primer 6 software. I also repeated the same procedure for species composition among 

taxonomic group. The PERMANOVA was performed in both cases using the Bray-Curtis 

similarity index obtained from the square-root transformation of abundance data and 

selecting Type III SS sum of square to account for unbalanced design (Anderson et al., 

2008). Data were permuted 999 times for the analysis. 

 

I further tested for pairwise comparisons where significant differences were observed. 

Similarly, I used the same pattern to assess the difference in the species composition of 

flowering plants across elevation zones using square-root transformation of abundance 

data. To understand whether flower composition tracks insect composition, I compared the 

resemblance matrix of flower-visiting insects with that of flowering plants across elevation 

zones using the RELATE function in Primer 6 software as in Chapter 2. 

 

To determine the period of peak abundance during the sampling season and differences 

among taxonomic groups across sampling days (using abundance data collected in each 

site visit), I converted my sampling days to respective Julian days (continuous numerical 

values across the calendar year) for each elevation zone (Lefevbre et al., 2018). I then used 

GLMs (specifying Poisson distribution) to assess the relationship between abundance and 

Julian days of sampling. To establish the abundance peak at each zone among insect taxa, 
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I specified insect abundance as the dependent variable; Julian day and insect taxonomic 

group at each elevation zone were the fixed factors. I also included the quadratic term of 

Julian day (JD2), and I observed two-way interactions between JD and each insect taxon 

and between JD2 and each insect taxon. I also computed this using a stepwise model 

simplification and I removed the non-significant variables or interactions.  

 

Results 

A total of 4 912 insect individuals belonging to 253 morphospecies were sampled (Appendix 

3a). Beetles constituted 78.5% of the total collection, and far behind, were bees (9.7%), flies 

(8.9%) and wasps (2.3%). 52 flowering plant species were also recorded across all the 

elevation zones over the sampling period. The rarefaction curve for flowering plants (Chao 

= 82.30 ± 16.40, Jackknife2 = 90.63) across the study sites reached an asymptote (Appendix 

3b).  However, the rarefaction curve for insect species (Chao = 447.95 ± 46.25, Jackknife2 

= 470.77) across sampling sites did not reach an asymptote (Appendix 3c), as there were 

many rare taxa and singletons in the samples. 

 

Overall, there was a significant difference in insect abundance across the elevation zones 

(F3, 14 = 5.10, p = 0.014). Highest insect abundance was recorded in the middle zone, and 

lowest in the summit zone (Figure 3.1). There was no significant difference in species 

richness of insects across elevation zones (F3, 14 = 1.12, p = 0.373).  

 

There was a significant difference in flower abundance across elevation zones (F3, 14 = 

3.637, p = 0.039). Highest flower abundance was in the base zone, and lowest in the summit 

zone (Figure 3.2). There was no significant difference in flowering plant species richness 

among elevation zones (F3, 14 = 3.186, p = 0.057) 

 

Abundance and richness among insect taxa 

There was a significant difference in insect abundance among taxonomic groups at the 

base, middle, high and summit zone. Beetles made up the dominant group at the three 

lowest elevations, especially at the middle elevation zone, but beetle abundance declined 

sharply at the summit, where bees and flies were more abundant (Figure 3.3a). Wasp 

abundance was the lowest among taxonomic group over all the elevation zones. Across 

taxonomic group, beetle were the most abundant and this was significantly different from 

the lowest abundance recorded for wasps at the base zone (z = -21.49, p < 0.0001, df = 16), 
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middle zone (z = -22.90, p < 0.0001, df = 16), high zone (z = -14.03, p < 0.0001, df = 16) 

and summit zone (z = -5.307, p < 0.0001, df = 8) 

 

Similarly, there was a significant difference in insect species richness among taxonomic 

groups across all elevation zones. Beetles were the most species rich taxon in the three 

lowest elevation zones, however, species richness of beetles declined at the summit where 

flies and bees had higher species richness (Figure 3.3b). Overall, beetle had the highest 

species richness among insect taxa and this was significantly different from the low species 

richness recorded for wasps at the base zone (z = -5.434, p < 0.0001, df = 16), middle zone 

(z = -7.300, p < 0.0001, df = 16), high zone (z = - 5.486, p < 0.0001, df = 16) and summit 

zone (z = -2.052, p = 0.04, df = 8) 

 

Phenology among taxonomic groups 

There was significant difference in species abundance across Julian days and taxonomic 

groups at the base elevation zone. While bees and beetles showed distinct abundance 

peaks, flies and wasps showed none. There was no significant difference in abundance of 

bees and beetles (z = 0.534, p = 0.593, df = 35); however, flowering plants peaked ~6 days 

earlier than bees (z = -2.611, p = 0.009, df = 35) and ~10 days earlier than beetles (z = -

7.800, p < 0.0001, df = 35, Figure 3.4a).  

 

Similarly, at the middle elevation zone, there was a significant difference in species 

abundance across sampling days and taxonomic group. At this zone, there was significant 

difference in abundance peaks of bees and beetles (z = -2.096, p = 0.036, df = 35) with bees 

reaching the peak of abundance 7.5 days before beetles. There was no significant difference 

in peak abundance of bees and flowering plants (z = -1.876, p = 0.06, df = 35). However, 

bees peaked in abundance 7.5 days earlier than flowering plants (Figure 3.4b). 

 

There was no significant difference in abundance across sampling days and taxonomic 

group at the high elevation zone (Figure 3.4c). Although, species abundance was 

significantly influenced by the interaction between Julian day and insect taxa at the summit, 

none of the insect taxa showed significant peak abundance over the sampling period (Figure 

3.4d). 
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Species composition 

There was a significant difference in species composition of insects across elevation zones 

(PERMANOVAF = 2.7114, p = 0.001). Species composition at any two of the elevation zones 

was significantly different.  However, the most significant dissimilarity in species composition 

was among species recorded at the summit and middle elevations, as well as in the summit 

and base zones (Figure 3.5a). Similarly, there was a significant difference in species 

composition of flowering plants across the elevation zones (PERMANOVAF = 4.5306, p = 0.001). 

Flowering plant species composition showed strong differences across any two of the 

elevation zones (Figure 3.5b). 

 

There was a significant correlation in resemblance matrix of flowering plant composition and 

flower-visiting insect composition across elevation zones (Rho = 0.138, p = 0.0008) 

 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Mean insect abundance (±SE) among elevation zones. Bars with common letters are not 
significantly different at p > 0.05. 
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Figure 3.2 Mean flower abundance (±SE) among elevation zones. Bars with common letters are not 
significantly different at p > 0.05. 
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Figure 3.3a. Abundance of flower-visiting insect at the (I) base zone (II) middle zone (III) high zone (IV) summit zone among taxonomic group. Taxon with common 
letters are not significantly different at p > 0.05 
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Figure 3.3b. Species richness of flower-visiting insect at the (I) base zone (II) middle zone (III) high zone (IV) summit zone among taxonomic group. Taxon with 
common letters are not significantly different at p > 0.05 
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Figure 3.4. Abundance of insect taxa and flowering plant across sampling days in the (a) base zone (b) middle zone (c) high zone (d) summit zone. Lines represent 
the best models for and the dots represents abundance recorded at each sampling period. 
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Figure 3.5. Canonical analysis of principal coordinate showing differences in (a) flower visiting insect species 
composition and (b) flowering plant species composition across elevation zones 
 
 
Species composition among insect taxa 

There was a significant difference in species composition of bees across elevation zones 

(PERMANOVAF = 2.268, p = 0.003). The most significant difference in species composition was 

among species in the middle and summit zones, base and summit zones, high and middle 

zones, as well as high and base zones. There was no significant difference in bee species 

composition in middle and base zones, and summit and high zones (Figure 3.6a). 

 

Similarly, there was a significant difference in species composition of beetles across the 

elevation zones (PERMANOVAF = 2.2405, p = 0.001), with the strongest difference being 

between the summit and middle zone. Species among other zones showed weak 

differences, with no significant difference in species composition in middle and base zones 

(Figure 3.6b). 

 

There was no significant difference in species composition of flies across the elevation 

zones (PERMANOVAF = 1.3217, p = 0.057). There was significant difference in species 

composition of wasps across the elevation zones (PERMANOVAF = 4.5306, p = 0.001). Pairwise 

comparison showed a significant difference in wasp species in summit and base zones, high 

and middle elevation zones, high and base zones, and summit and middle zones. There 

was no significant difference in species composition among other zone combinations (Figure 

3.6c).
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Figure 3.6. Canonical analysis of principal coordinate showing differences in species composition of (a) bees, (b) beetles and (c) wasps across elevation zones
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Discussion 

Abundance and species richness 

This study highlights differences in elevation response among individual groups of flower-

visiting insect taxa and flowering plants. Overall, flower abundance peaks at the middle 

elevation zone, with little or no flowers at the summit. Also, insects generally exhibited a 

mid-elevational peak in abundance with a major decline above the middle elevation zone. 

However, changes in environmental conditions across elevation zones shape abundance of 

insects differently among taxonomic groups.  

 

Abundance of beetles showed a distinct response to changes in elevation, which is usually 

common to this group of anthophilous insects (Gonzalez-Megias et al., 2007; Yu et al., 2013) 

compared to the relatively stable abundance of bees and flies across elevation zones. While 

beetle abundance constituted more than 70% of total insects collected at the first three 

elevation zones, beetle abundance dropped abruptly at the summit where there were high 

abundance of bees and flies. This supports studies that have shown great sensitivity of 

beetles to changes in environmental variables across elevation gradient (Bentz et al., 2016; 

Wardhaugh et al., 2018). This suggests that beetles are a more suitable indicator of 

elevation shifts and associated changes in environmental variables than the other three 

taxa. Monkey beetles are important pollinators in this region, contributing to agricultural 

productivity and ecosystem posterity (Mayer et al., 2006; van Kleunen et al., 2007; Kehinde 

and Samways, 2014). While the GCFR is a diverse and complex topographic landscape, 

patterns of beetle abundance observed here suggests limited contribution to pollination of 

flowering plants at higher elevations. This is a major concern for specialized beetle-

pollinated plants at higher elevations. However, the presence of flies and bees across all 

elevation zones at relatively equal abundance suggests that these taxa are important 

pollinators of flowering plants especially at elevations where beetles are absent. 

 

Phenology among taxonomic groups at elevation zones 

Patterns of temporal phenological peaks in abundance among taxonomic groups differed 

across elevation zones. At the start of sampling, there was snow in the summit zone, which 

only began to warm up towards the middle of the sampling season. Steady increase in 

abundance and richness of insects began towards the end of the sampling season, 

especially for flies and bees in the summit zone. This likely explains why insects showed no 

distinct abundance peak period across sampling time compared to other elevation zones. 
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Bee abundance showed a clear early peak compared to the other taxonomic groups at all 

elevations. This is important for the pollination of plants that flower early in the season. 

However, wasps showed a contrasting response to elevation shifts. Compared to bees, 

wasps showed no distinct peaks in abundance across elevation zones, except the high 

zone. One possible explanation is differences in ecosystem functional role of each taxon 

which may shape species distribution across these zones (Hoiss et al., 2012). While most 

adult wasps feed on nectar and can act as pollinators, they can also act as predators, 

parasitoids, or even parasites especially at larva stage utilizing ecosystem components 

differently. Floral and nesting resources may influence wasp abundance and richness 

across elevation gradient (Morato and Martins, 2006; Abrahamczyk et al., 2011). It is unclear 

what drove the lack of distinct wasp abundance peaks across elevation zones here.  

However, while other groups are expected to respond to peak flowering spring season, long-

term studies across all seasons might better reflect patterns of wasp abundance distribution 

across elevation zones. 

 

Beetles peaked in abundance later in the season than bees at all elevation zones. Beetles 

are sensitive to temperature changes (Bentz et al., 2016) and while bees and flies forage 

around flowers, monkey beetles here were mostly in the cone of P. repense flowers, 

especially in the high zone. In addition, bees and flies are strongly associated with flower 

abundance, as most are nectar feeders. However, monkey beetles eat mostly pollen, and 

sometimes bore into cavities of flowers where they also seek shelter (Goldblatt et al., 1998). 

Overall, species belonging to different taxonomic group may respond at different rate to 

environmental conditions which are distributed differentially across elevation gradients 

(Ovaskainen et al., 2013) 

 

In the GCFR with high plant species specialization (Pauw and Stanway, 2015), some insect 

pollinated flowering plants here are highly specialized to different species of pollinators. With 

respect to pollinator taxonomic group, some plants are pollinated only by bees, beetles, 

wasps or flies. For example, many species of the orchid genus Disa in South Africa are 

specialized to pollination by long-proboscid flies (Goldblatt and Manning, 2000; Johnson, 

2006). Also, Mormodes orchids are primarily pollinated by orchid bees (Euglossine) when 

the male bees collect oil from the plant (Yam et al., 2009; Hetherington-Rauth and Ramirez, 

2015). Reproductive success of the highly specialized flowering plants in this region may be 

dependent on the peak abundance period of insect pollinators. Since abundance peak 

period differs among insect pollinator groups as seen here, future studies addressing 
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phenologies of insect pollinators and flowering plants should also assess how variation in 

abundance peak period of insect pollinators influences reproductive success of highly 

specialized flowering plants in this region. 

 

This may explain differences in peak periods of flowering plants across elevation zones 

here. Future studies addressing the phenologies of insect pollinators and flowering plants 

should consider how flowering times of highly specialized plant species influence the peak 

periods of associated insect pollinators. 

 

Interestingly however, is the mismatch in peak periods of bee abundance at middle and 

base elevation zones, which contrasts with that of flowering plants. Bees are the most 

essential pollinators in several terrestrial ecosystems, and a delay in their appearance may 

result in some mismatch with the phenology of flowering plants, leading to poor pollination 

(Visser and Both, 2005; Gordo and Sanz, 2005; Sparks and Collinson, 2007). Bartomeus et 

al., (2011) found that phenological shifts in bee abundance over a period of 130 years keep 

pace with flowering plants. As one of the most important pollinator groups in this region, 

several plants in both natural and agro-ecosystem depend on bees for pollination. However, 

here I found a dyssynchrony in abundance peaks of bees and flowering plants at the base 

and middle elevation. Of further concern is the conflicting pattern of difference where bees 

peaked earlier than flowering plant at middle elevation, but later than flowering plants at the 

base. Such phenological mismatch between bees and angiosperms can result in poor 

productivity of flowering plants, especially when the plants are dependent on bees for 

pollination (Kudo and Ida, 2013). Although, mismatch observed at the middle zone was not 

statistically significant, a distinct early peak in abundance of bees was observed here. Long-

term monitoring of plant and bee phenology may establish the pattern observed at this zone.  

Contrasting abundance peaks of flowering plants and bees has been associated with climate 

change (Olliff-Yang and Mesler, 2018). Increasing spring temperature is a critical factor 

influencing early appearance of bees and flowering plants in most ecosystems (Hegland et 

al., 2009; Forrest and Thomson, 2011). Mostly, long-term phenological data have shown 

insects in general to be more sensitive to springtime temperature rise compared to flowering 

plants per se (Gordo and Sanz., 2005; Parmesan, 2007; Olliff-Yang and Mesler, 2018). 

While this may be the plausible explanation, the patterns observed here may also be 

influenced by species seasonal flight duration, which may contrasts with the flowering peak 

period (Sparks and Collinson, 2007).  
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The middle elevation zone is rich in flowering plants. However, the base zone is more flower 

abundant, suggesting mass flowering (Vrdoljak et al. 2016) at the base elevation zone. Since 

bees are known to track flower abundance (Winfree et al., 2009), bee species may migrate 

to the base later in the season and this may influence later abundance peaks recorded at 

the base zone. Possibly also significant, is that I found similar bee species composition in 

middle and base zones, suggesting indeed some movement between these zones.  

However overall, there may be a significant threat to pollination success in zones where 

mismatch in abundance peaks were recorded. Further long-term studies are now essential 

to understand the crucial factors driving this mismatch, and how it influences species 

reproductive output across elevation zones. 

 

Differences in species composition 

Species composition in all four groups of flower-visiting insects differed significantly across 

elevation zones. Species in the summit zone segregated distinctly from species in the middle 

and base zones. Similarly, there was a distinct segregation of species composition of 

flowering plants across all elevations. Each of the zones is characterized by a distinct 

vegetation type (Agenbag et al, 2008), suggesting some isolation among elevation zones in 

terms of flowering plant species. The summit zone here is characterized by dwarf mountain 

fynbos plants (mostly restios and ericas), most of which are wind pollinated, with the 

exception of a few insect pollinated flowering plants restricted to this zone. This shows some 

plants can be successfully pollinated even in the absence of pollinators which are low in 

abundance at this zone. The summit zone in particular is highly unstable in terms of weather 

conditions, with extreme weather at different seasons (cold and windy in winter, and hot and 

dry in summer). While certain plants in this region are adapted to these conditions, small 

halictid bees and bombyliid flies dominated the insects here that are able to tolerate these 

conditions.  

 

The resemblance matrix of insect composition correlated significantly with the resemblance 

matrix of the flowering plants. Although habitat size, in terms of flower abundance, 

influenced the abundance of flower-visiting insects, habitat quality in terms of flower 

composition is equally essential, as it is associated with the distribution of flower-visiting 

insect species across the elevation zones here. This may also support the floral 

specialization for insect pollinators as some highly specialized flowering plant species have 

adaptive measures of attracting important pollinators such as the Orchid and Orchid bees 

(Hetherington-Rauth and Ramirez, 2015). This means at each elevation zone here where 
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other abiotic factors are suitable for both floral and associated fauna, the presence of highly 

specialized plants may enhance the persistence of associated insect pollinators. This may 

increase the quality of ecological interactions and delivery of ecosystem functions across 

elevation zones. 

 

According to Agenbag et al., (2008), the lowest three elevation zones have some common 

plants species. However, in contrast, species in the summit zone, and which also occurred 

elsewhere on this mountain, displayed dwarfism such as the invasive Acacia sp., and Protea 

repense, which was common in both the summit and other elevation zones.  However, I 

found a higher proportion of flowering plant species common among other elevation zones, 

including P. repense, Metalasia muricata, Lobostemon sp., Senecio sp.1., Senecio sp.2., 

Muraltia sp., Cullumia sp. etc. While the lowest three elevation zones seem more connected 

in terms of flowering plant species composition, the peak zone here, although with low plant 

richness is more distinct in terms of unique plant species. The displacement or loss of a 

plant species from the summit zone on this mountain could result in a significant loss of 

interacting insects, most importantly specialist species. This shows the importance of 

conserving the limited but unique plant species here which may otherwise be prone to 

temporal loss and local extinction on this mountain.  

 

Conclusion 

While it is important to monitor species temporal shifts in response to climate change, 

elevation shifts may shape this response among various taxa, as seen here. Other studies 

have shown how insect and flowering plant phenology changes across temporal scales in 

the context of climate change. Here, for the first time, my results show how zonation across 

elevation gradients influences the abundance peak period of different taxonomic insect 

groups, and relative to that of flowering plants. Bee abundance peaked earlier than other 

taxa, with my results also showing early temporal peaks of bees at higher elevation zones. 

I also show how insect composition is strongly associated with flowering plant composition 

across the elevation zones. While low flower diversity at high elevations is driven by climatic 

factors and other elevation variables, it is also apparent here, that bee abundance declines 

earlier than flowering plants with increasingly high elevations. This may yield poor bee-

pollinated flower diversity as also predicted by previous studies.  

 

The results here are important for global studies addressing how species phenology is 

affected by climate change over time. There may be large fluctuations across years of 
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climate monitoring. However, the real-time changes across elevation zones may be of great 

significance. While some studies have shown temporal changes in species phenology at 

common elevation (Roy and Sparks, 2001; Forister and Shapiro, 2003), monitoring across 

elevation gradients over time may show some interesting patterns. Importantly, in-depth 

studies of the impact of climate change on biodiversity should also take into account the 

pattern of species phenology across elevation zones. 
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APPENDIX 

Appendix 3a. List of anthophilous insect species 

Taxa Genus Species/Morphospecies Family 

Beetles Amblymelauoplia  sp.1 Scarabaeidae 

Beetles Anaspis  sp. Scraptiidae 

Beetles Anisonyx  Proletorius Scarabaeidae 

Beetles Anisonyx  sp. Scarabaeidae 

Beetles Anisonyx  ursus Scarabaeidae 

Beetles Anthrenus  verbasci Dermestidae 

Beetles Apalochrus  sp. Melyridae 

Beetles Buprestidae sp.1 Buprestidae 

Beetles Buprestidae sp.2 Buprestidae 

Beetles Buprestidae sp.3 Buprestidae 

Beetles Buprestidae sp.4 Buprestidae 

Beetles Buprestidae sp.5 Buprestidae 

Beetles Buprestidae sp.6 Buprestidae 

Beetles Buprestidae sp.7 Buprestidae 

Beetles Buprestidae sp.8 Buprestidae 

Beetles Buprestidae sp.9 Buprestidae 

Beetles Buprestidae sp.10 Buprestidae 

Beetles Cantharidae sp. Cantharidae 

Beetles Carabidae sp. Carabidae 

Beetles Ceroctis  capensis Meloidae 

Beetles Chrysomelidae sp.1 Chrysomelidae 

Beetles Chrysomelidae sp.2 Chrysomelidae 

Beetles Chrysomelidae sp.3 Chrysomelidae 

Beetles Cleridae sp.1 Cleridae 

Beetles Cleridae sp.2 Cleridae 

Beetles Cleridae sp.3 Cleridae 

Beetles Cleridae sp.4 Cleridae 

Beetles Cleridae sp.5 Cleridae 

Beetles Cleridae sp.6 Cleridae 

Beetles Cloniocerus  kraussi Cerambycidae 

Beetles Coccinellidae sp. Coccinellidae 

Beetles Dermestidae sp.1 Dermestidae 

Beetles Dermestidae sp.2 Dermestidae 

Beetles Heterochelus  sp. Scarabaeidae 

Beetles Hippodamia  variegata Coccinellidae 

Beetles Hoplinii  sp.1 Scarabaeidae 

Beetles Hoplinii  sp.2 Scarabaeidae 

Beetles Hoplinii sp.3 Scarabaeidae 

Beetles Hoplinii  sp.4 Scarabaeidae 

Beetles Hoplinii  sp.5 Scarabaeidae 

Beetles Hoplinii  sp.6 Scarabaeidae 

Beetles Hoplinii  sp.7 Scarabaeidae 

Beetles Hoplinii  sp.8 Scarabaeidae 

Beetles Hoplinii  sp.9 Scarabaeidae 
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Beetles Hoplinii  sp.10 Scarabaeidae 

Beetles Hoplinii  sp.11 Scarabaeidae 

Beetles Hoplinii  sp.12 Scarabaeidae 

Beetles Hoplinii  sp.13 Scarabaeidae 

Beetles Hoplinii  sp.14 Scarabaeidae 

Beetles Hoplinii  sp.15 Scarabaeidae 

Beetles Hoplinii  sp.15 Scarabaeidae 

Beetles Lepitrix  dichropus Scarabaeidae 

Beetles Lepitrix  sp.1 Scarabaeidae 

Beetles Leucocelis  amethysina Cetoniinae 

Beetles Meloidae sp.1 Meloidae 

Beetles Meloidae sp.2 Meloidae 

Beetles Meloidae sp.3 Meloidae 

Beetles Meloidae sp.4 Meloidae 

Beetles Meloidae sp.5 Meloidae 

Beetles Melyris  sp.1 Melyridae 

Beetles Melyris  sp.2 Melyridae 

Beetles Neoeutrapela  sp. Tenebrionidae 

Beetles Nitidulidae sp.1 Nitidulidae 

Beetles Nitidulidae sp.2 Nitidulidae 

Beetles Nitidulidae sp.3 Nitidulidae 

Beetles Nitidulidae sp.4 Nitidulidae 

Beetles Peritrichia  nigrita Scarabaeidae 

Beetles Peritrichia  sp.1 Scarabaeidae 

Beetles Promeces  longipes Cerambycidae 

Beetles Rutelinae  sp. Scarbaeidae  

Beetles Trichostetha  fascicularis Cetoniinae 

Beetles Trichostetha  capensis Cetoniinae 

Bees Allodape sp. Apidae 
Bees Allodapula sp.1 Apidae 
Bees Andrena sp.1 Andrenidae 
Bees Anthidiini(Plesiamchidium) sp.1 Megachilidae 
Bees Anthidiini sp.2 Megachilidae 
Bees Anthidioma sp.1 Megachilidae 
Bees Anthidioma sp.2 Megachilidae 
Bees Anthophora sp.1 Apidae 
Bees Anthophora sp.2 Apidae 
Bees Anthophora sp.3 Apidae 
Bees Anthophora sp.4 Apidae 
Bees Anthophora sp.5 Apidae 
Bees Anthophora sp.6 Apidae 
Bees Anthophora sp.7 Apidae 
Bees Apis mellifera Apidae 
Bees Brausapis sp. Apidae 
Bees Lasioglossum sp.1 Halictidae 
Bees Lasioglossum sp.11 Halictidae 
Bees Lasioglossum sp.12 Halictidae 
Bees Lasioglossum sp.14 Halictidae 
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Bees Lasioglossum sp.10 Halictidae 
Bees Lasioglossum sp.8 Halictidae 
Bees Lasioglossum sp.2 Halictidae 
Bees Lasioglossum sp.3 Halictidae 
Bees Lasioglossum sp.4 Halictidae 
Bees Lasioglossum sp.5 Halictidae 
Bees Lasioglossum sp.13 Halictidae 
Bees Lasioglossum sp.15 Halictidae 
Bees Lasioglossum sp.6 Halictidae 
Bees Lasioglossum sp.7 Halictidae 
Bees Lasioglossum sp.16 Halictidae 
Bees Lasioglossum sp.9 Halictidae 
Bees Megachilidae sp. Megachilidae 
Bees Melitta sp. Melittidae 
Bees Osmiini sp.4 Megachilidae 
Bees Osmiini sp.1 Megachilidae 
Bees Osmiini sp.2 Megachilidae 
Bees Osmiini sp.3 Megachilidae 
Bees Pachymelus sp. Apidae 
Bees Patellapis sp. Halictidae 
Bees Plesianthidium sp.1 Megachilidae 
Bees Plesianthidium sp.2 Megachilidae 
Bees Pseudoanthidium sp. Megachilidae 
Bees Redivivoides sp. Melittidae 
Bees Seladonia sp.1 Halictidae 
Bees Seladonia sp.2 Halictidae 
Bees Seladonia sp.3 Halictidae 
Bees Seladonia sp.4 Halictidae 
Bees Seladonia sp.5 Halictidae 
Bees Tetraloniella sp.1 Apidae 
Bees Tetraloniella sp.2 Apidae 
Bees Xylocopa sp. Apidae 
Wasp Bethylidae sp.1 Bethylidae 

Wasp Bethylidae sp.2 Bethylidae 

Wasp Bethylidae sp.3 Bethylidae 

Wasp Braconidae sp.1 Braconidae 

Wasp Braconidae sp.2 Braconidae 

Wasp Braconidae sp.3 Braconidae 

Wasp Braconidae sp.4 Braconidae 

Wasp Braconidae sp.5 Braconidae 

Wasp Braconidae sp.6 Braconidae 

Wasp Braconidae sp.7 Braconidae 

Wasp Braconidae sp.8 Braconidae 

Wasp Chrysididae sp.1 Chrysididae 

Wasp Chrysididae sp.2 Chrysididae 

Wasp Eumeninae sp.1 Vespidae 
Wasp Eumeninae sp.2 Vespidae 
Wasp Ichneumonidae sp.1 Ichneumonidae 
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Wasp Ichneumonidae sp.2 Ichneumonidae 

Wasp Ichneumonidae sp.3 Ichneumonidae 

Wasp Ichneumonidae sp.4 Ichneumonidae 

Wasp Ichneumonidae sp.5 Ichneumonidae 

Wasp Ichneumonidae sp.6 Ichneumonidae 

Wasp Ichneumonidae sp.7 Ichneumonidae 

Wasp Ichneumonidae sp.8 Ichneumonidae 

Wasp Masarinae sp. Vespidae 
Wasp Pompilidae sp.1 Pompilidae 

Wasp Pompilidae sp.2 Pompilidae 

Wasp Pompilidae sp.3 Pompilidae 

Wasp Pompilidae sp.4 Pompilidae 

Wasp Sphecidae sp.1 Sphecidae 

Wasp Sphecidae sp.2 Sphecidae 

Wasp Sphecidae sp.3 Sphecidae 

Wasp Sphecidae sp.4 Sphecidae 

Wasp Sphecidae sp.5 Sphecidae 

Wasp Sphecidae sp.6 Sphecidae 

Wasp Sphecidae sp.7 Sphecidae 

Wasp Sphecidae sp.8 Sphecidae 

Wasp Sphecidae sp.9 Sphecidae 

Wasp Sphecidae sp.10 Sphecidae 

Wasp Sphecidae sp.11 Sphecidae 

Wasp Sphecidae sp.12 Sphecidae 

Wasp Sphecidae sp.13 Sphecidae 

Wasp Sphecidae sp.14 Sphecidae 

Wasp Sphecidae sp.15 Sphecidae 

Wasp Sphecidae sp.16 Sphecidae 

Wasp Vespidae sp.1 Vespidae 

Wasp Vespidae sp.2 Vespidae 

Wasp Vespidae sp.3 Vespidae 

Fly Asilidae sp.1 Asilidae 

Fly Asilidae sp.1 Asilidae 

Fly Bombyliidae sp.1 Bombyliidae 

Fly Bombyliidae sp.2 Bombyliidae 

Fly Bombyliidae sp.3 Bombyliidae 

Fly Bombyliidae sp.4 Bombyliidae 

Fly Bombyliidae sp.5 Bombyliidae 

Fly Bombyliidae sp.6 Bombyliidae 

Fly Bombyliidae sp.7 Bombyliidae 

Fly Bombyliidae sp.8 Bombyliidae 

Fly Bombyliidae sp.9 Bombyliidae 

Fly Bombyliidae sp.10 Bombyliidae 

Fly Bombyliidae sp.11 Bombyliidae 

Fly Bombyliidae sp.12 Bombyliidae 

Fly Bombyliidae sp.13 Bombyliidae 

Fly Bombyliidae sp.14 Bombyliidae 

Fly Calliphora sp. Calliphoridae 
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Fly Calliphoridae sp.1 Calliphoridae 

Fly Calliphoridae sp.2 Calliphoridae 

Fly Calliphoridae sp.3 Calliphoridae 

Fly Calliphoridae sp.4 Calliphoridae 

Fly Culicidae sp.1 Culicidae 

Fly Culicidae sp.2 Culicidae 

Fly Culicidae sp.3 Culicidae 

Fly Culicidae sp.4 Culicidae 
Fly Empididae sp.1 Empididae 
Fly Empididae sp.2 Empididae 
Fly Lasiopyrellia sp. Muscidae 
Fly Muscidae sp.1 Muscidae 

Fly Muscidae sp.2 Muscidae 

Fly Muscidae sp.3 Muscidae 

Fly Muscidae sp.4 Muscidae 

Fly Muscidae sp.5 Muscidae 

Fly Muscidae sp.6 Muscidae 

Fly Muscidae sp.7 Muscidae 

Fly Muscidae sp.8 Muscidae 

Fly Muscidae sp.9 Muscidae 

Fly Muscidae sp.10 Muscidae 

Fly Muscidae sp.11 Muscidae 

Fly Muscidae sp.12 Muscidae 

Fly Muscidae sp.13 Muscidae 

Fly Muscidae sp.14 Muscidae 

Fly Muscidae sp.15 Muscidae 

Fly Muscidae sp.16 Muscidae 

Fly Muscidae sp.17 Muscidae 

Fly Muscidae sp.18 Muscidae 

Fly Mydidae sp. Mydidae 

Fly Pliomelaena sp. Tephritidae 
Fly Pyrellia sp.1 Muscidae 

Fly Pyrellia sp.2 Muscidae 

Fly Sarcophagidae sp.1 Sarcophagidae 

Fly Sarcophagidae sp.2 Sarcophagidae 

Fly Sarcophagidae sp.3 Sarcophagidae 

Fly Stomoxys sp.1 Muscidae 
Fly Stomoxys sp.2 Muscidae 
Fly Syrphidae sp.1 Syrphidae 

Fly Syrphidae sp.2 Syrphidae 

Fly Syrphidae sp.3 Syrphidae 

Fly Syrphidae sp.4 Syrphidae 

Fly Syrphidae sp.5 Syrphidae 

Fly Syrphidae sp.6 Syrphidae 

Fly Syrphidae sp.7 Syrphidae 

Fly Syrphidae sp.8 Syrphidae 

Fly Tabanidae sp.1 Tabanidae 

Fly Tabanidae sp.2 Tabanidae 
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Fly Tabanidae sp.3 Tabanidae 

Fly Tabanidae sp.4 Tabanidae 

Fly Tabanidae sp.5 Tabanidae 

Fly Tabanidae sp.6 Tabanidae 

Fly Tabanidae sp.7 Tabanidae 

Fly Tabanidae sp.8 Tabanidae 

Fly Tabanidae sp.9 Tabanidae 

Fly Tabanidae sp.10 Tabanidae 

Fly Tabanidae sp.11 Tabanidae 

Fly Tachinidae sp.1 Tachinidae 

Fly Tachinidae sp.2 Tachinidae 

Fly Tachinidae sp.3 Tachinidae 

Fly Tachinidae sp.4 Tachinidae 

Fly Tephritidae sp.1 Tephritidae 

Fly Tephritidae sp.2 Tephritidae 

Fly Tephritidae sp.3 Tephritidae 
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Appendix 3b. Species richness rarefied curve for flowering plants sampled across study sites. The grey area 
represents the confidence interval from the standard error of estimates. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 3c. Species richness rarefied curve for insects sampled across sampling sites. The grey area 
represents the confidence interval from the standard error of estimates. 
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Chapter 4 

Time since fire strongly influences a range of flower-visiting insects in a 

fire-prone landscape 

Abstract 

Drivers of species productivity and ecosystem function are of great ecological significance. 

In fire-prone ecosystems, dispersion patterns of important pollinator species are driven by 

the various fire events over space and time. However, different species have varying 

responses to fire intensity and frequency. Here, I assess how time since last fire influences 

abundance, composition, and dispersion patterns of flowering plants and anthophiles in a 

highly fire-prone landscape. I classified study area into age since last fire, which were <1 

year (short-term burned), 2-3 years (medium-term burned) and 9-10 years (long-term 

burned). I collected insect anthophiles using yellow, blue, and white pan traps at sites 

established in each post-fire class. I also estimated flower abundance at each study site. 

Overall, anthophile abundance was highest in medium-term burned, while lowest in short-

term burned sites. Also, flower abundance was highest at medium-term burned, and lowest 

in long-term burned sites. Species composition of flowering plants and anthophiles, 

especially bees and flies, differed significantly across post-fire class. Overall, flower 

abundance had a significant positive effect on bee abundance. Of all the taxa, bees were 

the only group that showed dispersion patterns reflecting those of flower abundance. Other 

factors, such as the requirements for other resources, such as logs, drive the distribution of 

other anthophile taxa, especially flies. I conclude that fire drives the dispersion patterns of 

bees through its direct effect on flower abundance and composition in a fire-prone 

landscape. While high frequency of short-term fire may reduce flower abundance, flower 

rich areas with moderate time since fire may increase diversity of anthophiles in fire prone 

landscape. 

 

 

 

 

 

 

______________________ 
1Published as: Adedoja, O.A., Kehinde, T.O. & Samways, M. J. (2018). Time since fire strongly influence a 
range of flower-visiting insects in a fire prone landscape. Ecosphere, In Press. 
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Introduction 

The preservation of natural habitat for the persistence of important species, especially those 

responsible for the delivery of ecosystem services is of great importance (Chandler and 

King, 2011). Flower-visiting insects are critical biotic constituent of terrestrial ecosystems, 

as some species play crucial ecological roles in the pollination of flowering plants in both 

natural and agricultural ecosystems (Klein et al., 2007; Potts et al., 2010). Pollination by 

insects alone increases crop yields globally by 35% (Klein et al., 2007). However, despite 

the high level of dependence of human food security and ecosystem functions on pollination 

services (Vanbergen et al., 2013), there is an on-going decrease in the abundance and 

distribution of insect pollinators (Potts et al., 2010).  

 

Several drivers influence this decline through their impact on flower distribution in natural 

habitat. Understanding these drivers of species diversity and distribution is pertinent to 

designing important conservation strategies in disturbed landscapes. Drivers influencing 

species productivity and their ecological interactions are of great ecological significance 

(Rosenzweig, 1995). Furthermore, fire is one of the major factors driving floral diversity in 

many terrestrial ecosystems (New, 2014), and has a positive influence on plant productivity 

and diversity at various local and landscape scales (Pausas and Ribeiro, 2017).  

 

The Greater Cape Floristic Region (GCFR) biodiversity hotspot is the richest floral kingdom 

in the world (Myers et al., 2000), and its floral maintenance depends in part on fire events. 

Fire affects plant reproduction and diversity through complex processes, and although this 

is still not fully understood, a few processes relating to fire cues have been documented. In 

legumes with hard seeds, fire helps activate germination by breaking the seed coat through 

heat from the fire (Sabiiti and Wein, 1987; Saharjo and Watanabe, 1997), allowing water to 

penetrate into the seed, and enabling germination to begin. Smoke is also a major 

constituent of fire that also influences germination (Kulkarni et al., 2006; Sparg et al., 

2005; Tigabu et al., 2007), as well as the flowering of plants (Keeley, 1993) in fire-prone 

ecosystems (Staden et al., 2000). In a sensitive fynbos ecosystem like the GCFR, where 

about 6 000 plant species are endemic, the scleropyllous fynbos vegetation is highly 

dependent on smoke for germination cues (Brown, 1993). Germination cues from smoke for 

fynbos plants partly explains the vegetation dynamics (Light et al., 2004).  

 

In addition to direct influence of fire on plant diversity, fire also plays a critical role in the 

flowering of plants through its influence on other factors mediating plant growth and diversity. 
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Post-fire conditions influencing plant survival are usually different from pre-fire conditions. 

There is usually a change in soil composition, especially in microorganism composition and 

soil structure (Certini, 2005). Also, fire opens up closed habitats through reduction of canopy 

cover. This increases understorey access to sunlight, which is important for flowering plants 

(Quintano et al., 2013). Competition is reduced by the impact of fire in ecosystems (Perkins, 

2015). Fire mediated by human activities often influences the survival of target species by 

eliminating competitors in the ecosystem. 

 

Fire history is important in shaping biodiversity composition and distribution in flower rich 

ecosystems. Changes in fire history across time determine habitat suitability and dispersion 

patterns of flowering plants and insects in fire-impacted areas (Brown et al., 2017). Most 

often, insect activities and distribution vary with time since fire (Potts et al., 2006; Pauw, 

2007; Geerts et al., 2012), and this is influenced by important environmental factors driving 

insect diversity in fire-impacted ecosystems. Flowering plants as drivers of anthophilous 

insect diversity across landscapes has been well documented in relation to fire incidence. 

For example, while fire drives fynbos communities, short-interval fires may destroy the seed 

bank, and may eventually result in the loss of fynbos species and associated flower visitors 

(Vlok and Yeaton, 2000). On the other hand, habitat modification results from impact of fire, 

so creating patches of heterogeneous landscape (Perry et al., 2011). Fire history also 

modifies habitat structure, with ground cover often increasing with time since fire. This 

shapes species distribution based on functional traits influencing nesting requirements. 

However, while habitat selection is important for the distribution of anthophilous insects, this 

has received less attention. 

 

The recovery of vegetation post-fire is dependent on the timing of fire events. However, for 

flower-visiting insects, recolonization may be dependent on the availability of particular 

flowering plants providing high-quality floral rewards. Oftentimes, activity of adult 

anthophilous insects is dependent on floral resources used by the insects in the previous 

season (Potts et al., 2003), and this usually brings about differences in time required for 

restoration of floral and insect assemblages in flower rich landscapes. This pattern is of great 

importance for flower-dependent anthophiles, such as bees, as they track flower resources 

(Winfree et al., 2009). Here, I explore post-fire diversity and composition of different 

anthophile groups and flowering plants in a fire-prone landscape. I hypothesise that 1) sites 

with different times since last fire incidence will have varying species composition of 

flowering plants and anthophiles, this is due to period of germination until flowering which 
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differs among flowering plant species, which will also influence anthophile species with 

different floral requirements in different post-fire age classes, 2) abundance, diversity and 

species evenness of flowering plants and anthophilous insects will be highest at sites with 

intermediate times since fire, since there could be co-occurrence of fire-tolerant and fire-

intolerant species during vegetation recovery period, 3) I expect insect taxa with high 

dependence on floral resources (obligate anthophiles) to be most influenced across post-

fire age classes, these are associated with flowering plants which I also expect to vary with 

post-fire age classes, and 4) distribution patterns of anthophiles will track those of flowering 

plants across habitats with different post-fire ages.  

 

Materials and methods 

The study was conducted in the large natural set-aside areas on adjacent wine farms in the 

Western Cape Province, South Africa, in the Greater Cape Floristic Region (GCFR) 

biodiversity hotspot. Bee diversity in the GCFR is exceptionally high, coinciding with that of 

plants (Kuhlmann, 2005). Two contiguous wine estates were selected (Vergelegen: 

34.0764oS, 18.8899oE and Lourensford: 34.0719oS, 18.8886oE). These estates practice 

biodiversity-friendly agriculture, with extensive areas of the farms devoted to conservation 

of indigenous biodiversity, where my sites were positioned. The most recent fire in this 

landscape occurred between December 2016 and February 2017. This mostly occurred on 

Vergelegen wine estate, leaving a large proportion of Louresnford unburned. This location 

previously burned in 2014-2015, and the oldest fire in the area was in 2008-2009. 

 

I classified sites based on Time Since last Fire (TSF). Recently-burned sites (TSF=<1 year) 

were classified as ‘short-term burned’. Patches of vegetation left unburned during the fire 

incidence in the burned landscape (TSF = 2-3 years) were classified as ‘medium-term 

burned’. Sites located at Lourensford, where the last fire occurred in 2008-2009 (TSF = 9-

10 years), were classified as ‘long-term burned’. In addition, this area is also diverse in 

topographic position from small hills to valley.  

 

I defined a site as  50 m2, insects were collected in 6 sites in valleys and hillslopes in each 

fire class, except in long-term burned, where only three sites were available. Vegetation 

sampling was done also at every site where I collected insects and also in additional sites 

mostly at hilltops where I could not erect pan traps for insect collection but observed 

interactions for the next chapter (Chapter 5). This makes a total of 9 sites within each post-

fire class for vegetation sampling. Number of open flowers on each plant species were 
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estimated in five replicates of 2m2 plot at each site. Furthermore, I classified vegetation into 

three major classes (annual plants, short-lived and quick-growth perennial plants, and long-

lived, slow growth perennial plants). This was done by accessing ecological information on 

plant species from the literature.  
 

The recent fire created a mosaic vegetation structure in the burned area, leaving 

heterogeneous distribution of unburned patches within the burned landscape. Medium-term 

burned sites were the patches of unburned areas that fit the size of a study site within the 

short-term burned area (Figure 4.1). The minimum distance between a medium-term and 

short-term burned sites was 150 m, and minimum distance between sites in the same fire 

post-age class for medium-term and short-term burned was 250 m. The long-term burned 

sites are natural areas that border the medium-term and short-term burned sites. The 

minimum distance between sites located in the long-term burned area was 450 m. Long-

term burned area was located 3 000 m away from short-term burned area. Spatial-

autocorrelation of insect abundance among study sites was assessed using the Moran I 

index.  Here, Moran I index (0.135 ± 0.095, P= 0.031) showed a weak clustering of insect 

abundance in sites with similar time since fire.  

 

I used 30 pan traps (10 each of blue, yellow and white bowls) to collect flower-visiting insects 

at each site. Coloured bowls were half-filled with water, and few drops of liquid detergent 

were added to reduce water surface tension. Coloured bowls were raised to the immediate 

vegetation height, and were openly active for 24 hrs. Insects were collected twice at each 

study site within the period of late August to mid-September, and also within the first 2 weeks 

of October of 2018 (i.e. early-late spring). Insects acquired in each pan trap were rinsed and 

kept in 75% ethanol until sorting and identification. The insect groups sampled were bees, 

beetles, flies and wasps. Insect families included in my analysis are those with roles 

established as flower-visitors in literature as in previous chapters. Insects were also sorted 

to morphospecies level using taxonomic guides as in previous chapters.  

 

Statistical analyses 

Data collected in the two sampling rounds were pooled and overall abundance for all insect 

taxa and flowering plants were used in the analysis. To account for sampling adequacy, I 

estimated species rarefaction curves for flowering plants and anthophile species richness 

across study sites using the ‘rarefy’ function in ‘vegan’ R package (Oksanen et al., 2006). I 

assessed the difference in flower and pollinator abundance across post-fire age class using 
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generalised linear model (GLM) in R version 3.4.1 (R core team, 2017) and fitting Poisson 

distribution. I also used GLM to assess how flower abundance differs among vegetation 

types (annual plants, short-lived and quick-growth perennial plants, and long-lived, slow 

growth perennial plants) in different fire class fitting poisson family. Similarly, differences in 

anthophile abundance among taxonomic group in each fire class was assessed using GLM. 

Anthophile abundance or flower abundance was specified as the dependent variable with 

insect taxa or vegetation types as explanatory variable in different models. Furthermore, Z-

values for pairwise comparison between treatments in simplified models were recorded 

where overall significance was observed.  

 

The effect of flower abundance on each anthophile taxonomic group (bees, beetles, flies or 

wasps) was computed using a Generalised Linear Mixed-Effects Models (GLMM) fitting a 

Poisson distribution. I specified the abundance of each anthophile taxon as the dependent 

variable; flower abundance, post-fire age class and their interaction were specified as the 

explanatory variables. I used backward elimination to highlight the influence of explanatory 

variables and their interactions. I computed diagnostic checks for possible influential data in 

my model, one data point from one of my sampling site was high, however the removal of 

this did not influence my result. For bees, which are the most obligate anthophile/pollinator 

taxon here, I assessed how bee families responded to differences across post-fire age 

classes using the ‘glmer’ function specifying Poisson distribution. 

 

 I computed Simpson and Shannon diversity indices for species richness and diversity 

respectively for flowering plants and anthophiles. I also assessed species evenness using 

the Pielou's evenness index (Mulder et al., 2004). Differences in individual diversity index 

for anthophiles and flowering plants across post-fire age were assessed. To do this, I used 

simple ANOVA. Shapiro-Wilk’s test was computed to assess data normality. I also 

performed Bartlett’s test for homogeneity of variance before data was subjected to ANOVA. 

Tukey-HSD post hoc test was computed to analyse differences between groups. To 

understand how frequency of distribution for each anthophile taxon differ across post-fire 

age, I included evenness index for each taxon as dependent variable in different models 

and post-fire age class was specified as fixed factor.  

 

Finally, I assessed pollinator and flowering plant species composition across post-fire age 

class using canonical analysis of principal coordinates (CAP). I then analysed differences in 

species composition across post-fire age class using PERMANOVA. The PERMANOVA 
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was performed using the Bray-Curtis similarity index obtained from the square-root 

transformation of abundance data and selecting Type III SS sum of square to account for 

unbalanced design (Anderson et al., 2008). Data were permuted 999 times for the analysis. 

 

To understand the similarity in the pattern of distribution of flowering plants and anthophile 

species across post-fire age class, I used the RELATE function in primer 6 software to 

compare species composition for individual anthophile taxa with flowering plant composition.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Study sites at Lourensford and Vergelegen wine estate showing distribution of sites across fire 
class area 
 

Results 

A total of 9 492 insect individuals, belonging to four taxa (bees, beetles, flies and wasps) 

and 113 morphospecies were collected over the sampling period (Appendix 4a). Anthophile 

species estimator indices for all post-fire classes were: Chao = 349.25 ± 94.27, Jackknife2 

= 233.75. 61 species were recorded in short-term burned sites with species estimator scores 

of: Chao = 132.30 ± 35.45, Jackknife2 = 112.23. I found 63 insect species in medium-term 

burned sites with species estimator score of: Chao = 126.38 ±30.72, Jackknife2 = 113.70. 

Long-term sites had 50 species with estimator score of: Chao = 101.04 ± 25.97, Jackknife2 

= 83.67. Overall, the rarefaction curve for flowering plants across all sites reached an 

asymptote (Appendix 4b). However, the asymptotic level for the insect curve was less 

pronounced (Appendix 4c), because of the occurrence of many rare species in my samples, 

however, this richness did not differ across post-fire age class. 
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There was a significant difference in flower abundance across post-fire age classes. Highest 

flower abundance was recorded at the medium-term burned sites, which was significantly 

different from flower abundance recorded at long-term (z = -33.16, p < 0.0001, df = 24) and 

short-term burned sites (z = -38.32, p < 0.00001, df = 24). In addition, there was a significant 

difference in flower abundance among vegetation types in different fire class. In short-term 

burned sites, short-lived perennials had the highest flower abundance with lowest flower 

abundance recorded for annual plants (z = -16.467, p < 0.0001, df = 24, Figure 4.2I). 

Similarly, short-lived perennials had the highest flower abundance in medium-term burned 

sites and this was significantly different from lowest flower abundance recorded for annual 

plants (z = -22.924, p < 0.0001, df = 24, Figure 4.2II). However, in long-term burned sites, 

while short-lived perennials had the highest flower abundance, long-term perennials had the 

lowest flower abundance (z = -9.649, p < 0.0001, df = 24, Figure 4.2III). 

 

There was a significant difference in anthophile abundance across post-fire age class. 

Highest anthophile abundance was recorded at the medium-term burned sites, and this was 

significantly different from anthophile abundance recorded at the long-term burned sites (z 

= -32.08, p < 0.0001, df =12). In addition, there was a significant difference in anthophile 

abundance among taxonomic groups in each fire class. Beetles and flies were the most 

abundant group in short-term fire class with the lowest abundance recorded for wasps (z = 

-11.061, p < 0.001, df = 20, Figure 4.3I). Flies were the most abundant in medium-term 

burned sites and the lowest abundance here was also recorded for wasps (z = -21.37, p < 

0.0001, df = 20, Figure 4.3II). However, in long-term burned sites, beetles had the highest 

abundance followed by bees and flies and least for wasps (z = -11.78, p < 0.0001, df = 8, 

Figure 4.3III). 

 

Effect of flower abundance on insect taxon across fire post-age class 

Flower abundance was significantly associated with the abundance of bees (߯ଶ = 10.496, p 

= 0.01479, df= 3). There was no significant effect of post-fire age class on bee abundance 

(߯ଶ = 8.567, p = 0.089, df = 4). Although the slope of bee-flower abundance relationship was 

higher at medium-term burned and lower at short-term burned where a negative relationship 

was also observed (Z = -2.104, p = 0.0354), there was no overall significant interaction effect 

of flower abundance and post-fire age class on bee abundance (߯ଶ = 4.524, p = 0.104, df = 

2). 
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There was no significant effect of flower abundance on the abundance of beetles (߯ଶ = 

1.580, p = 0.664, df = 3), flies (߯ଶ = 2.119, p = 0.548) and wasps (߯ଶ = 6.454, p = 0.091, df 

= 3). In addition, there was no significant effect of post-fire age class on the abundance of 

beetles (߯ଶ = 3.354, p = 0.500, df = 4), flies (߯ଶ = 1.149, p = 0.886, df = 4) and wasps (߯ଶ = 

4.180, p = 0.382, df = 4). In addition, there was no interaction effect of post-fire age class 

and flower abundance on the abundance of beetles (߯ଶ = 0.728, p = 0.695, df = 2) and flies 

(߯ଶ = 1.081, p = 0.582, df = 2) and wasps (߯ଶ = 1.578, p = 0.454, df = 2). 

 

Bee family distribution across post-fire class 

Overall, Megachilidae (45.47%) accounted for highest proportion of bees followed by 

Halictidae (33.84%) and Apidae (20.47%). Only one occurrence of Andrenidae was 

recorded in one of the burned sites. There was a significant difference in the abundance of 

bees among families in different fire classes. While megachilid bees were highest in 

abundance in medium- (z = 6.519, p < 0.0001, df = 14) and short-term (z = 6.336, p < 0.0001, 

df = 14) burned sites, Halictidae (z = 5.118, p < 0.0001, df = 5) and Apidae (z = 4.698, p < 

0.0001, df = 5) were higher in long-term burned sites with low abundance of Megachilidae.  

 

Species composition 

There was a significant difference in species composition of anthophiles across post-fire age 

classes (PERMANOVA F = 1.9214, p = 0.036, Figure 4.4a). Species composition at the medium-

term burned (t = 1.7403, p = 0.014) and short-term burned sites (t = 1.4668, p = 0.049) were 

significantly different from species composition at the long-term burned sites. Similarly, there 

was a significant difference in species composition of flowering plant species sampled 

across the post-fire age classes (PERMANOVA F = 1.8907, p = 0.002, Figure 4.4b). Species 

composition of flowering plants at the medium-term burned (t = 1.4175, p = 0.012) and short-

term burned sites (t = 1.5615, p = 0.002) was significantly different from species composition 

at the long-term burned sites. There was no significant difference in species composition of 

flowering plant between medium-term and short-term burned sites (t = 1.135, p = 0.118). 

The RELATE function showed no significant relationship between the overall composition 

of anthophile and flowering plants across post-fire age class (rho =0.081, p = 0.235) 
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Figure 4.2. Flower abundance among vegetation classes in (I) short-term burned site (II) medium-term burned sites and (III) long-term burned sites. Fire class with 
common alphabets are not significantly different at p > 0.05 
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Figure 4.3. Anthophilous insect abundance among taxonomic groups in (I) short-term burned site (II) medium-term burned sites and (III) long-term burned sites. Fire 
class with common alphabets are not significantly different at p > 0.05
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Figure 4.4. Canonical analysis of principal coordinates showing differences in the composition of (a) insect 
anthophiles and (b) flowering plants across sites in different post-fire age classes 
 

Taxon response to post-fire classes  

There was no significant difference in bee species composition across post-fire age classes 

(PERMANOVAF = 1.275, p = 0.113). There was a significant difference in the species composition 

of flies across the post-fire age classes (PERMANOVAF = 3.2298, p = 0.008, Figure 4.5). Between-

(a

(
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pairs comparisons showed a significant difference in fly composition between short-term burned 

and long-term burned sites (t = 1.7037, p = 0.037), and also between medium-term burned and 

long-term burned sites (t = 2.2289, p = 0.008).  There was no significant difference between 

short-term burned and medium-term burned sites (t = 1.1929, p = 0.202). There was no 

significant difference in species composition of beetles across the post-fire age classes 

(PERMANOVAF = 0.78794, p = 0.651). Similarly, there was no significant difference in species 

composition of wasps across the post-fire age classes (PERMANOVAF = 0.99508, p = 0.539).  

 

Diversity among post-fire classes 

There was no significant difference in overall Simpson (F2, 12 = 0.167, p = 0.848) and Shannon 

(F2, 12 = 1.997, p = 0.178) diversity of anthophiles across post-fire age. Similarly, there was no 

significant difference in Simpson (F2, 24 = 0.600, p = 0.557) and Shannon (F2, 24 = 2.712, p = 

0.086) diversity indices for flowering plant across post-fire age. Also, there was no significant 

difference is overall evenness diversity index for flowering plant (F2, 24 = 1.37, p = 0.273) and 

anthophiles (F2, 12 = 2.721, p = 0.106) across post-fire age.  

 

 

 

 

 

 

 

 

 

 

Figure 4.5. Canonical analysis of principal coordinates showing differences in the composition of flies across sites 
in different post-fire age classes 
 
 
However, overall average species evenness for anthophiles (0.467) and for flowering plants 

(0.706) were moderately high. This showed that assemblages were fairly even in frequency of 

different species. 
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Evenness among post-fire classes  

Overall mean species evenness for anthophiles was highest for bees (0.721±0.039), followed 

by beetles (0.566±0.045), wasps (0.289±0.112), and flies (0.244±0.063). Flies were the only 

taxon that showed a significant difference in species evenness across the post-fire age classes 

(F2, 12 = 5.011, p = 0.0262). Highest evenness was recorded at long-term burned sites, and 

least at medium-term burned sites (Fig 8). There was no significant difference in the evenness 

diversity index of bees (F2, 12 = 0.423, p = 0.666), beetles (F2, 12 = 1.292, p = 0.31) and wasps 

(F2, 12 = 0.45, p = 0.648) across post-fire age classes. 

 

Discussion 

Fire influences the distribution patterns in terms of diversity and composition of flowering plants 

and the various anthophile taxonomic groups. Varying responses of different ecological 

communities in fire-impacted areas is often associated with uneven spread of fire across a 

heterogeneous landscape (Suding and Gross 2006, Pausas and Verdú 2008, Myers and Harms 

2011, Myers et al. 2015). Overall, short-lived perennial plants were highly successful in terms 

of flower abundance compared to other groups. Most of the perennial plants, such as Phylica 

buxifolia, Protea laurifolia, Oesteospermum sp. and Lobostemon dorothea, are important 

flowering plants in the GCFR, and provide quality floral reward for endemic insect anthophiles 

and birds (Anderson et al., 2014). Some of these plants take flowering cues from smoke, and 

then resprout during the next flowering season after fire (Staden et al., 2000). However, for 

slow growing, long-lived perennials, such as P. laurifolia, the germination from seed to first 

flowering after fire takes an average of seven years (Notten, 2009). This explains why flower 

abundance was low for slow growing, long-lived perennial plants. In area prone to fire, while 

short-lived perennials and annuals could recover within a short time, longer period of recovery 

of long-lived perennials may explain the low flower abundance of these plants especially in 

areas with high fire frequency. 

 

Similar to flower abundance across post-fire age classes, anthophile abundance was also 

highest at medium-term burned. However, while flower abundance was lowest at short-term 

burned sites, lowest abundance of anthophiles was recorded at long-term burned sites. This 

illustrates that flower distribution does not entirely track anthophile distribution across the post-

fire age classes. Contrary to my hypothesis, other factors may be responsible for the distribution 
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of anthophiles across post-fire age classes. One possible explanation is habitat selection on 

the part of different anthophile taxa. Flies dominated anthophile abundance in my study. 

Furthermore, fly composition was different between long-term burned and short-term burned 

sites. Flies were most abundant in medium-term burned and short-term burned sites, and 

lowest at long-term burned sites. This was contrary to the abundance of flowers among the 

post-fire age classes. Although flies can be important pollinators of flowering plants (Larson et 

al., 2001), in comparison with other anthophiles, most flies are also carrion feeders and may be 

driven by factors apart from flower availability. Drosophila spp. made up about 40% of my entire 

fly samples, and these flies breed in decaying logs and plant branches (Offenberger and 

Klarenberg, 1992). In my study, they are predominantly associated with short-term burned and 

medium-term burned sites with poor representation at long-term burned sites. The entire short-

term burned landscape has heterogeneous distribution of decaying burned logs and twigs, 

which may be the major factor driving their dispersion patterns in this region compared to the 

great reduction of flies at the long-term burned sites.  

 

Bees were very different from flies. They tracked flower abundance across post-fire age 

classes, with their highest abundance at long-term burned and medium-term burned sites, while 

lowest at short-term burned sites. In short, bees followed flowering plant dispersion patterns. 

This could be a mass movement of bees into the medium-term burned and long-term burned 

sites during the fire events, with the presence of more flowers here providing quality nectar 

rewards, which may drive this pattern (Wojcik, 2011). The presence of important nectar and 

pollen rewarding flowering plants here may drive the distribution of bees in the absence of other 

possible environmental factors which may influence species distribution. In response to natural 

fire, flower abundance across fire post-age class seems to be an important influence for bee 

abundance across sites with different time since fire. 

 

Unlike other taxonomic groups, where other ecological roles, such as parasitism and predation, 

have been discussed, several studies have shown pollination as the major functional role of 

bees in most ecosystems through their dependence on floral rewards. This also explains the 

differences in bee composition with distinct segregation of bee species among post-fire age 

classes. According to Van Nuland et al. (2013), flower abundance was the mechanism by which 

fire indirectly influences anthophile visitation. Overall, this implies that over a period of 
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succession in a heterogeneous fire mosaic landscape, the quality and abundance of flowering 

plants providing floral resources for anthophiles, especially bees, and the flower distribution 

patterns play a major role also in the distibution patterns of insect anthophiles. 

 

Bees also differed significantly in response to time since fire among families. Overall, 

megachilid bees are highest in abundance, however, this pattern was not observed across all 

post-fire age class. While megachilidae was highest in abundance in medium- and short-term 

burned, my results also showed highest abundance for apidae and halictidae in long-term 

burned. This shows that species-specific factors may be driving the distribution of bee in 

different families across fire post-age class. This could be dietary requirements, habitat 

selection, body size, specialization habit, tongue length among other factors. Several studies 

have shown how bee functional groups may influence their distribution across landscape 

(Winfree et al., 2007; Hoehn et al., 2008; Munyuli, 2012). However, studies showing how bee 

functional groups respond to time since fire are few. Fire regime, most especially fire frequency, 

filters biotic assemblage composition and abundance through its direct impact (Keeley et al., 

2011). While I show here how habitat modification in terms of fire influences the distribution of 

bees, future studies should address how species-specific requirements among families 

influence bee distribution across post-fire age classes. 

 

Evenness and diversity 

Simpson and Shannon diversity indices here showed no significant pattern for species richness 

and diversity across fire classes, or among insect groups and flowering plants. However, I found 

some differences in species evenness, especially among insect groups. Species richness and 

evenness are different diversity components, and the two do not necessarily show the same 

pattern of response when used to assess differences in ecosystems (Wilsey and Stirling, 2007). 

Overall, flowering plant and anthophile evenness indices are moderately high, suggesting that 

the frequency distribution is moderately even among species (Smith and Wilson, 1996).  

 

Species diversity response to disturbance is complex. However, a decline in species richness 

may lead to an offset in the distribution of different species and components of biodiversity in 

disturbed landscapes. Yeboah et al. (2016) showed a complex response by species diversity 

and evenness in a tree stand relative to time since last fire. My results show that annual plants 
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such as Oxalis spp. and a few perennial Asteraceae regrew quickly after fire, and dominated 

the entire landscape. I however recorded very low flower abundance of bushy Protea spp., 

Leucadendron spp., which are important for anthophile foraging and only a few other long lived 

perennials. The implication of this is that the full complement of anthophiles depends largely on 

plants with very low frequency of flowering. These long-lived fynbos plants are an important 

source of nectar for insect anthophiles, as well as for certain birds. Anthophilous insects, 

especially the specialised group, may compete for the low resources of a few rich nectar 

rewarding plant available across my post-fire age classes. This may overtime lead to temporal 

loss of these insect groups that are unable to find a replacement for the limited rich nectar 

flower across my study area.  

 

Bees showed the highest species evenness, followed by beetles. However, for flies and wasps, 

evenness was moderately low, illustrating differences in frequency of occurrence of species of 

these two groups. Here, as Drosophila spp. constituted almost 40% of all the flies collected, 

they created a major imbalance in the frequency of occurrence of flies. Wasps on the other 

hand, had very low abundance, with many rarely captured species. Across post-fire age 

classes, flies showed significant differences in species evenness. Highest evenness was 

recorded at long-term burned sites, and lowest at short-term burned and medium-term burned 

sites. One possible explanation for this is the mosaic nature of the burned landscape, with 

medium-term burned areas acting as refuge patches across areas impacted by fire. As 

mentioned above, flies may also be driven by decayed burned logs at my sites. However, these 

logs were in patches, and not evenly distributed across the landscape. This may explain a 

varying frequency of occurrence of fly species among sites across the heterogeneous burned 

landscape.  

 

Conclusions 

The effect of fire on the abundance of bees was influenced by flower abundance. In addition, 

other species-specific factors appeared to be influencing the distribution among families, 

especially for bees and flies. Overall flower abundance declined in association with a short-

interval fire frequency, and this was especially pronounced among long-lived perennial plants. 

While other anthophile taxonomic groups, aside from bees, may not be influenced much by the 

fire regimes, bees are mostly obligate flower-visitors, and are highly associated with flower 
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distribution pattern. Thus, flower rich area with moderate time since fire incidence may increase 

the diversity of bees in fire prone areas. 
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APPENDIX 

Appendix 4a. List of pollinator species 

 

Taxa Family Genus Species/Morphospecies 
Bee Halictidae Halictus sp.1 
Bee Halictidae Halictus sp.2 
Bee Halictidae Halictus sp.3 
Bee Halictidae Halictus sp.4 
Bee Halictidae Halictus sp.5 
Bee Halictidae Halictus sp.6 
Bee Halictidae Halictus sp.7 
Bee Halictidae Halictus sp.8 
Bee Halictidae Halictus sp.9 
Bee Halictidae Halictidae sp.1 
Bee Halictidae Halictidae sp.2 
Bee Halictidae Halictidae sp.3 
Bee Halictidae Halictidae sp.4 
Bee Halictidae Halictidae sp.5 
Bee Halictidae Halictidae sp.6 
Bee Halictidae Halictidae sp.7 
Bee Halictidae Halictidae sp.8 
Bee Halictidae Halictidae sp.9 
Bee Halictidae Halictidae sp.10 
Bee Halictidae Halictidae sp.11 
Bee Halictidae Halictidae sp.12 
Bee Halictidae Halictidae sp.13 
Bee Halictidae Halictidae sp.14 
Bee Halictidae Halictidae sp.15 
Bee Halictidae Halictidae sp.16 
Bee Halictidae Halictidae sp.17 
Bee Halictidae Halictidae sp.18 
Bee Halictidae Halictidae sp.19 
Bee Halictidae Halictidae sp.20 
Bee Halictidae Halictidae sp.21 

Bee Halictidae Halictidae sp.22 
Bee Halictidae Halictidae sp.23 
Bee Halictidae Halictidae sp.24 
Bee Halictidae Nomia sp.1 
Bee Halictidae Nomia sp.2 
Bee Halictidae Nomia sp.3 
Bee Halictidae Nomia sp.4 
Bee Halictidae Nomia sp.5 
Bee Halictidae Nomia sp.6 
Bee Halictidae Lasioglossum sp.1 
Bee Halictidae Lasioglossum sp.2 
Bee Halictidae Lasioglossum sp.3 
Bee Halictidae Lasioglossum sp.4 
Bee Halictidae Lasioglossum sp.5 
Bee Halictidae Lasioglossum sp.6 
Bee Halictidae Patellapis sp.1 
Bee Halictidae Patellapis sp.2 
Bee Halictidae Patellapis sp.3 
Bee Halictidae Pseudapis sp.1 
Bee Halictidae Pseudapis sp.2 
Bee Halictidae Pseudapis sp.3 
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Bee Megachilidae Lithurgus sp.1 
Bee Megachilidae Lithurgus sp.2 
Bee Megachilidae Lithurgus sp.3 
Bee Megachilidae Megachile sp.1 
Bee Apidae Anthophora sp.1 
Bee Apidae Anthophora sp.2 
Bee Apidae Amegilla sp.1 
Bee Apidae Amegilla sp.2 
Bee Andrenidae Andrena sp. 
Bee Apidae Apis mellifera 
Bee Apidae Allodapula sp. 
Bee Apidae Apidae sp.1 
Bee Apidae Apidae sp.2 
Beetle Scarabaeidae Hedybius  sp. 
Beetle Scarabaeidae Hedybius  sp.2 
Beetle Scarabaeidae Peritrichia  sp. 
Beetle Scarabaeidae Anisonyx  ursus 
Beetle Scarabaeidae Pachycnema sp.1 
Beetle Scarabaeidae Pachycnema sp.2 
Beetle Scarabaeidae Pachycnema sp.3 
Beetle Scarabaeidae Hoplinii sp. 
Beetle Scarabaeidae Scarabaeidae sp.1 
Beetle Scarabaeidae Scarabaeidae sp.2 
Beetle Scarabaeidae Scarabaeidae sp.3 
Beetle Cerambycidae Cerambycidae sp. 
Beetle Coccinellidae Coccinellidae sp.1 
Beetle Coccinellidae Coccinellidae sp.2 
Beetle Coccinellidae Coccinellidae sp.3 
Beetle Meloidae Meloinae sp. 
Beetle Curculionidae Scolytinae sp.1 
Fly Drosophilidae Drosophila  melanogaster 
Fly Muscidae Muscidae sp.1 
Fly Muscidae Muscidae sp.2 
Fly Syrphidae Syrphidae  sp.1 
Fly Syrphidae Syrphidae  sp.2 
Fly Syrphidae Syrphidae sp.3 
Fly Tabanidae Tabanidae sp.1 
Fly Tabanidae Tabanidae sp.2 
Fly Tabanidae Tabanidae sp.3 
Fly Tephritidae Tephritidae sp. 
Fly Bombyliidae Bombyliidae sp.1 
Fly Bombyliidae Bombyliidae sp.2 
Fly Calliphoridae Lucilia sericata 
Fly Calliphoridae Calliphoridae sp.1 
Fly Calliphoridae Calliphoridae sp.2 
Fly Culicidae Culicidae sp. 
Fly Asilidae Asilidae sp.1 
Fly  Asilidae Asilidae sp.2 
Wasp Sphecidae Sphecidae  sp.1 
Wasp Sphecidae Sphecidae  sp.2 
Wasp Sphecidae Sphecidae  sp.3 
Wasp Sphecidae Sphecidae  sp.4 
Wasp Pompilidae Pompilidae  sp.1 
Wasp Pompilidae Pompilidae  sp.2 
Wasp Braconidae Braconidae sp.1 
Wasp Braconidae Braconidae sp.2 
Wasp Masaridae Masaridae sp. 
Wasp Crabronidae Tachysphex sp.1 
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Wasp Crabronidae Tachysphex sp.2 
Wasp Scoliidae Scoliidae sp.1 
Wasp Scoliidae Scoliidae sp.2 
Wasp Ichneumonoidea Ichneumonoidea sp. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Appendix 4b. Species richness rarefied curve for flowering plants sampled across study sites. The grey area 
represents the confidence interval from the standard error of estimates. 
 

 

 

 

 

 

 

 

 

 

 

 

Appendix 4c. Species richness rarefied curve for insects sampled across sampling sites. The grey area 
represents the confidence interval from the standard error of estimates. 
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Chapter 5 

Refuges from fire maintain plant-pollinator interaction networks 

 

Abstract 

Fire is an important disturbance factor in many terrestrial ecosystems, leading to landscape 

transformation in fire-prone areas. Species in mutualistic interactions are often highly sensitive 

to disturbances like fire events, but the degree and complexity of their responses are unclear. 

I use bipartite insect-flower interaction networks across a recently burned landscape to explore 

how plant-pollinator interaction networks respond to a recent major fire event at the landscape 

level, and where fire refuges were present. I also investigate the effectiveness of these refuges 

at different elevations (valley to hilltop) for the conservation of displaced flower-visiting insects 

during fire events. Then I explore how the degree of specialization of flower-visiting insects 

changes across habitats with different levels of fire impact. I did this in natural areas in the 

Greater Cape Floristic Region (GCFR) biodiversity hotspot, which is species rich in plants and 

pollinators. Bees and beetles were the most frequent pollinators in interactions, followed by 

wasps and flies. Highest interaction activity was in the fire refuges, and least in burned areas. 

Interactions also tracked flower abundance, which was highest in fire refuges in the valley, and 

lowest in burned areas. Interactions consisted mostly of specialized flower-visitors, especially 

in refuge areas. The interaction network and species specialization were lowest in burned 

areas. However, species common to at least two fire classes showed no significant difference 

in species specialization. I conclude that flower-rich fire refuges sustain plant-pollinator 

interactions, especially those involving specialized species, in fire-disturbed landscape. This 

may be an important shelter for specialized pollinator species at the time that the burned 

landscape goes through regrowth and succession as part of ecosystem recovery process after 

a major fire event. 

 

 

 

 

______________________ 
1Published as: Adedoja, O.A., Dormann, C. F., Kehinde, T.O. & Samways, M. J. (2018). Refuges from fire maintain 
plant-pollinator interaction networks. Ecology and Evolution, In Press 
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Introduction 

Fire is a critical disturbance factor in many terrestrial ecosystems (New, 2014). It is especially 

prevalent through the recent increase in human-induced landscape transformation and rapid 

climate change, especially in Mediterranean-type ecosystems, where warmer and drier 

conditions are increasingly prevalent (Syphard et al., 2009; Bowman et al., 2011; Archibald et 

al., 2012; Steel et al., 2015). Immediate impact of fire usually results in high mortality of resident 

species, which increases with intensity and frequency of fire (Adeney et al., 2006; Silveira et 

al., 2010; Bennett et al., 2016). Flower-visiting insects, especially the less mobile species, are 

greatly affected by fire in natural landscapes. However, species functional traits may influence 

survival during fire; for example, while zoophagous and phytophagous arthropods are highly 

resilient to the effects of fire, mortality was higher for ground-litter saprophagous species 

(Moretti et al., 2006). Also, specialist bee species decline more than generalists in freshly-

burned habitat (Peralta et al. 2017). In addition, long-term recolonization of burned habitat may 

be affected by transformation processes of the habitat, as the newly transformed habitat may 

yield different species composition. Over the post-fire period, fire usually transforms landscapes 

into more open habitat, which may change species composition over time (Case and Staver, 

2017). This is seen in South Africa, where the composition of the butterfly community changed 

over the period of recovery following a major fire event (Pryke and Samways, 2009; Yekwayo 

et al. 2018). 

 

Most studies on fire show a positive influence of fire on flowering plant diversity and abundance 

of insect pollinators (Bond and Scott, 2010; Lamont and Downes, 2011; Ponisio et al., 2016). 

While this is important for the long-term biodiversity succession in fire-disturbed ecosystems, 

there is concern for the immediate species response during and after fire. Potts et al. (2003) 

showed a time lag of 2 years for burned area to reach full recovery and a flowering peak. 

Immediately after fire, decrease in pollinator abundance and floral resources is expected in 

burned areas, yielding a temporal decline in plant-pollinator interactions. During this time, while 

flowering plants are burned down, mobile insect pollinators seek refuge in areas not impacted 

by fire. Refuges are areas in an ecosystem where a disturbance affecting a larger region did 

not take place. As a consequence, they can buffer the effect of transformation events in natural 

landscapes (Mackey et al., 2002). Despite the great importance of refuges on the recovery 

process and resilience of populations, they are rarely studied (Robinson et al., 2013). In fire-
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prone areas, patches of vegetation that escape the absolute impact of fire can serve as refuges 

for individuals of certain insect species (Bradstock et al., 2005; Perera et al., 2007; Burton et 

al., 2008; Castro et al., 2010). However, for a patch to function effectively as a refuge, it must 

provide enough floral and nesting resources for survival of the locally lost or displaced flower-

visiting insect species (Watson et al., 2012; Brown et al., 2016). As fire ultimately leads to 

temporal displacement of flower-visiting insects during the fire event, refuge patches are 

essential for local survival and even persistence of flower-visiting insects. 

 

Insect pollinators forage in areas close to their nest (Gathmann & Tscharntke, 2002; Schweitzer 

et al., 2012). The location of important fire refuges in the disturbed landscape may be critical 

for the presence of specific pollinator species in fire-disturbed landscape. While some large 

bees can visit vegetation patches for floral resources over long distances, ground dwelling and 

less mobile groups may require nesting resources within patches around the burned area 

(Steffan-Dewenter, 2002). In addition to site-specific abiotic components, such as nutrient 

availability, canopy cover may influence the effectiveness of fire refuges and play a significant 

role in the conservation of insect pollinators during fire disturbance. For example, changes 

across elevation may influence flowering plant distribution, with plants at higher elevations 

having reduced growth (Boscutti et al., 2018) and low species richness (Jacquemyn et al., 

2005).  

 

Most times, pollinators are displaced from areas of few flowers at high elevations to flower rich 

lower elevations (Rahbek, 2005; Guo et al., 2013; Lara-Romero et al., 2019). Unlike hilltops, 

valleys sometimes contain riparian corridors with rich vegetation, and these rich vegetation can 

be effective nest provision and forage site for some insect pollinators, especially bees (Mader 

et al., 2011). In the context of fire refuges, it is expected that areas of sufficient requirements 

for nesting will make a better refuges during fire disturbance. However, there is little information 

on the effectiveness of fire refuges across heterogeneous topographic landscapes.  

 

Network metrics are used to describe properties of interaction networks. Most of the metrics 

are standardized ways of explaining the contribution of individual species and communities in 

a network leading to the success of interactions and delivery of ecosystem functions. For 

example, there is a simple approach to estimating species specialization in a network where it 
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is possible to directly link a species to all interacting partners by observation (Johnson and 

Steiner, 2003; Ollerton et al., 2007). However, this approach is limited by not taking into account 

estimates of resource diversity. A more inclusive index for species specialization is index d’, 

which takes into account diversity of interacting partners and their importance in a network 

based on observed and expected interacting frequencies (Blüthgen et al., 2006).  

 

Overall, network metrics can be applied to explore community structure, especially for 

mutualistic species. While abundance and distribution of interacting partners may be relatively 

stable in less disturbed areas, fire disturbance in fire-prone landscapes may facilitate 

fluctuations in species abundance and distribution. Over time, more generalized species 

become increasingly abundant in areas with frequent fires with short-term intervals (Peralta et 

al., 2017). Consequently, interactions consisting of more specialized species in burned areas 

may face a breakdown (García et al, 2018). For example, a specialist pollinator may be forced 

to explore other available floral resources in a smaller refuge patch when it is displaced from 

its extensive habitat. 

 

Despite the high impact of fire in changing natural landscapes and community interactions, 

there is little information on the response of plant-pollinator interactions to fire events, and how 

fire refuges alter species response to fire. Here, I explore how plant-pollinator interaction 

networks respond to recent fire at the landscape level where fire refuges are present. I also 

investigate the effectiveness of these refuges at different elevations for the conservation of 

displaced flower-visiting insects during fire events. Refuges may have an important relationship 

with elevation and rugosity of landscape. While there is no information on how topographic 

features influence fire refuge, features such as river in the valley, rocks and vegetation at 

hillslope or hill tops may contribute to the leaving of areas that escape being burned. 

 

I undertake this study in the flower- and pollinator-rich Greater Cape Floristic Region (GCFR) 

biodiversity hotspot. I also explore how the degree of specialization of flower-visiting insects 

changes across habitats with different levels of fire impact. To this end, I compile information 

from observations on bipartite insect-flower interaction networks from visitation to flowers by 

important flower-visiting insects across a recently burned landscape. I hypothesize that: i) like 

most disturbance events, the direct impact of fire is expected to aid the emigration of species 
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from burned to unburned area, thereby, I expect highest abundance of flowering plants and 

highest interaction frequency in unburned compared to burned and refuge habitats; ii) 

geographical valleys are often nutrient rich with streams running along them, and may have 

more flowering plant species that may act as refuges in the valley, and are therefore more 

effective in sustaining interactions compared to those on hilltops, and iii) since flower-visiting 

insects are associated with flowering plants, more specialised networks will be observed in 

unburned habitats with high flower abundance.  

 

Materials and methods 

The study was conducted in the large natural set-aside areas on wine farms in the Western 

Cape Province, South Africa, in the Greater Cape Floristic Region (GCFR) biodiversity hotspot. 

Bee diversity in the GCFR is exceptionally high, coinciding with that of plants (Kuhlmann, 2005). 

Two adjacent wine estates were selected (Vergelegen: 34.0764oS, 18.8899oE and Lourensford: 

34.0719oS, 18.8886oE). These estates practice biodiversity-friendly agriculture, with extensive 

areas of the farms devoted to conservation of indigenous biodiversity, where my sites were 

positioned.  The landscape varies in topography, with sites available in valleys, on hill slopes, 

and on hilltops. These natural areas on the estates burned, but left refuges December 2016-

February 2017.  

 

I classified my sampling sites into those in refuges (2 years since last fire), burned (6 months 

since last fire), and unburned areas (9-10 years since last fire) (Appendix 5a). I collected insects 

using pan traps from some of these sites and estimated flower abundance from all of the sites 

in chapter 4. These sites are however named differently here to fulfil the aim of this chapter. 

Refuge sites were defined as patches  50m2 and of unburned vegetation within the burned 

matrix. Unburned sites were those in extensive natural areas that were beyond the fire front. 

Sites were selected in the valleys (≤ 200 m a.s.l.), on hill slopes (200-350 m a.s.l.), and on 

hilltops (400-450 m a.s.l.). For every valley site, I also sampled matching hill slope and hilltop 

sites. Plant-pollinator interactions were recorded at 27 sites across the fire categories late 

August-November 2017.  

 

A total of nine sites (3 sites per elevation), each of 50 m2, were in each of the refuges, burned 

areas, and also unburned areas (i.e. 9 sites  3 fire classes = 27). Burned and refuge sites were 
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selected in pairs ≥100 m apart from the edge, which in turn, were 0.9-3 km from the unburned 

sites. For every burned site, I selected the closest refuge patch that matched the size of a study 

site (i.e. 50 m2) in each elevation category. The refuge and burned sites in each elevation 

category were visited on the same sampling day, and observation time was altered between 

fire classes in the second visit.  

 

I observed plant-pollinator interactions in five replicates of 2 m2 subplot within each 50 m2 plot 

as in previous chapters. Timed observation of insect activity was standardized to 10 min/2 m2 

plot to avoid over-emphasizing the specialization of flowering plants (Gibson et al., 2011), 

reducing sampling bias from variables such as flower abundance. During this time, an 

interaction was noted when an insect visited the stamen of a plant.  

 

Flower-visiting insects were identified in the field, or caught for later identification as 

morphospecies using identification guilds as in previous chapters. Five replicates per 2 m2 

sampling unit within each site yielded a total of 50 min observation time per site per sampling 

period. Every site was visited twice, with a total of 100 min observations per site, which were 

pooled as a single interaction network. Flower abundance of each plant species was estimated 

in each 2 m2 plot where insect activities were observed. A flower unit is defined here as the unit 

from which a honeybee-sized insect will fly to the next unit rather than crawl (Dicks et al., 2002).  

I also estimated flower area of display for each flowering plant species. Area of floral display 

was determined for each open flowering plant species by measuring the diameter of 1-10 

flowers per plant species. Areas of flowers with circular outline was estimated using ݎߨଶ and L 

x B for those flowers with a more rectangular surface outline. A flower with visible depth, such 

as that of Protea repens, was estimated using 2	ݎߨଶ݀	 ൅  ଶ. The mean flower area for a plantݎߨ	

species, together with the total abundance of flowers, was used to estimate the plant flower 

area per site.  

 

Statistical analyses 

Interaction matrices for plant-pollinator interaction networks were compiled for each site. Data 

were analyzed using the bipartite package (Dormann et al., 2008) in R as in previous chapters. 

Network- and species-level indices were computed for each of the 27 networks: connectance, 

weighted nestedness (NODF), network specialization (H2’), normalized degree (ND) and 
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species specialization (d’). Network and species specialization indices were selected for this 

purpose, as these are insensitive to diversity of interacting partners (Schleuning et al., 2012), 

and so are suitable for this kind of study where effect of fire is expected to influence flowering 

plant diversity across my study sites. 

 

To account for biases in estimates of interaction metrics, especially specialization which could 

result from differences in activities or attractiveness of interacting partners, I employed null 

models for the quantitative network metrics, based on the observed number of interactions for 

a species in a given network (using the Patefield algorithm: Dormann et al., 2009). I computed 

100 null models for each network, and calculated z-scores for each network metric (i.e. 

differences between observed and mean null model index values, divided by the standard 

deviation of the null model values). The application of null models here reduces the biases in 

estimating network indices, especially with differences in number of interactions across my 

study sites.  

 

To assess the differences in interaction frequency, abundance of flowering plants, and flower 

area across fire classes, and elevation, I used generalized linear model (GLM) with fire class 

and elevation category as fixed variables in different models. Similarly, I assessed how flower 

abundance and area of display influenced the pattern of interaction frequency across elevation 

and fire class using a GLM.  In addition, to understand how z-scores of network metrics change 

across elevation and fire classes, I used GLMs, with fire class and elevation as predictors. I 

computed a PERMANOVA to analyse the difference in species composition of pollinators 

observed in interaction among fire class and elevation. Analyses were carried out using the 

packages lme4 and vegan. 

 

To understand how interactions of pollinators are structured by availability of interacting partner 

across fire classes, I used the Normalised Degree function (ND) in the bipartite package. ND 

shows the degree of generalization of pollinator species through the sum of links scaled by the 

number of possible partners for individual species in a network. Here, I computed the 

relationship between interaction frequency and the ND of each species, and I observed how 

this changed across fire class. I used a generalized linear mixed effect model (GLMM) for this 

purpose using the ‘lme4’ package in R (Bates et al., 2014). I specified species as a random 
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factor, to assess the confounding effect of different ND and interaction values of the same 

species in different fire class. 

 

Finally, to understand the degree of specialization of individual species in the network across 

fire class, I computed each species’ d’-value. Species specialization index (d’) was used to 

measure the degree of discrimination of a species from random selection of partners in a 

network. Index d’ is constructed in such a way that it measures specialization in terms relative 

to the other pollinators and resource abundances (Blüthgen et al. 2006). I assessed how 

observed d’-values changed across fire class and elevation using a linear mixed effect model, 

specifying species as a random factor. I also used the z-scores of d’-value from the null model 

following the same approach. Then, to assess whether species change the degree of 

specialization in different fire classes, I selected species common to at least two fire classes, 

and I assessed how their d’-values changed across fire class. 

 

Results 

A total of 1 176 interactions were recorded among 67 insect (Appendix 5b) and 56 plant species 

(Appendix 5c). Interactions consisted of bees (55.6%), beetles (25.94%), flies (17.09%), and 

wasps (1.53%). There was a significant difference in overall interaction frequency among fire 

classes. Highest interaction was observed in fire refuges which was significantly different from 

the lowest interactions observed in burned areas (z = -9.524, p < 0.001, df = 24, Figure 5.1). 

There was no significant difference in interaction frequency across elevation. In addition, there 

was a significant difference in interaction frequency observed among fire classes at each 

elevation category. Interaction frequency was significantly highest at the refuge in the valley (z 

= 7.860, p < 0.001, df = 6) and hillslope (z = 2.185, p = 0.029, df = 6), however, unburned sites 

had highest interaction at the hilltop (z = 2.864, p = 0.029, df = 6, Figure 5.1).  

 

There was a significant difference in flower abundance across fire classes. Highest flower 

abundance was observed in fire refuges, while lowest in burned areas (z = -29.45, p < 0.001, 

df = 24, Figure 5.2I). Also, there was a significant difference in flower abundance across 

elevation. Flower abundance was highest in the valley, and lowest on the hilltop (z = -16.77, p 

< 0.001, df = 24, Figure 5.2II). However, there was no significant difference in flower area of 
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display across fire class or elevation. Also, there was no significant difference in flowering plant 

and pollinator species richness across fire class or elevation.  

 

There was no significant difference in species composition of pollinator assemblages across 

fire class (F2, 24 = 1.0668, p = 0.347) or elevation (F2, 24 = 1.1123, p = 0.273). In addition, there 

was no significant difference in flowering plant composition across elevation (F2, 24 = 1.1163, p 

= 0.211). However, there was a significant difference in species composition of flowering plants 

across fire class (F2, 24 = 1.4611, p < 0.01). 

 

Overall, flower abundance (F21, 22 = 85.92, p < 0.001) and flower area (F21, 22 = 13.14, p < 0.001) 

significantly influenced pollinator activities. However, while interaction between flower 

abundance and topography was significantly associated with pollinator activity (F21, 23 = 5.79, p 

< 0.01), pollinator activity was not significantly associated with the interaction between flower 

abundance and fire class (F21, 23 = 1.08, p = 0.34). In case of the relationship between pollinator 

activity and flower area, there was a significant association of pollinator activity with the 

interaction between flower area and fire class (F21, 23 = 12.07, p< 0.001). However, there was 

no significant association between pollinator activity and interaction between flower area and 

topography (F21, 23 = 1.27, p = 0.28) 
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Figure 5.1. Interaction frequency among fire classes in (I) valley, (II) hilltop and (III) hillslope. Fire class with 
common alphabets are not significantly different at p > 0.05 
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Figure 5.2. Flower abundance across (I) fire classes and (II) elevation category. Fire class with common alphabets 
are not significantly different at p > 0.05 
              

The average network specialization (H2’) value across the 27 study sites was high (mean = 

0.736, standard deviation = 0.214). There was a significant difference in z-scores of network 

specialization (H2’) among fire classes (F2, 24 = 4.30, p=0.025). Highest network specialization 

was at refuge sites, and this was significantly different from the lowest H2’ at the burned sites 

(Figure 5.3I). However, H2’ was not significantly different across elevation. Weighted 

nestedness (NODF) also differed significantly among the fire classes (F2, 24 = 5.581, p = 0.01). 

Networks at refuge sites were less nested than those at burned sites (Figure 5.3II). However, 

there were no significant differences in NODF across elevation. There were no significant 

differences in network connectance across fire and elevation classes (p > 0.05). 

 

Species-level specialization 

Overall mean of per-flower-visiting species d’ (mean=0.407, standard deviation= 0.323) 

indicates that the flower-visiting insects were moderately specialized. Flowering plants on the 

other hand, were highly specialized with overall mean per-species d’ (mean = 0.972, standard 

deviation = 0.167). There was no significant difference in d’-value across study sites in different 

fire classes (F2, 210 = 2.913, p = 0.0565). However, after correction by the null model, I found a 
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significant difference in d’-value across fire classes (F2, 210 = 7.123, p = 0.001). Highest z-scores 

for d’-values was observed at the refuge sites, and lowest at the burned sites. 

 

When I compared, for common flower-visiting insects, their specialization in the three fire 

classes, I found no significant differences among fire classes (F2, 77=1.983, p = 0.145) or 

elevation category (F2, 77 = 1.083, p = 0.344). 

 

There was a significant difference in pollinator normalized degree (ND) across fire class (F2, 97 

= 29.89, p < 0.001). ND was highest in unburned sites, followed by burned sites, and lowest at 

refuge sites (Figure 5.4). There was also a significant relationship between species interaction 

and generalization across fire classes (߯ଶ = 12.723, p = 0.002, df = 2). ND values was highest 

for pollinators involved in interactions at unburned sites, and lowest for interactions at refuge 

sites. 
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Figure 5.3. Z-scores of (I) network specialization (H2’) and (II) weighted nestedness (NODF) across fire classes. 
Fire class with common alphabets are not significantly different at p > 0.05 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Normalized degree (ND) across fire classes. Fire class with common alphabets are not 
significantly different at p > 0.05 
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Discussion 

The influence of fire across the landscape is usually uneven. Remnant patches are left behind 

after fire, creating a mosaic of biodiversity. I found that fire refuges had the highest flower 

resources, and plant-pollinator interactions, compared to the recently burned areas, and also 

compared to the unburned areas beyond the fire front.  

 

Overall, abundant floral resources, especially for mass flowering plants, were important for the 

high species interaction observed in the refuges. While generalization (quantified as normalized 

degree, ND) was high in unburned and burned sites, more specialized species were involved 

in interactions in fire refuges. This is surprising, as one would have expected a less 

discriminating behaviour as more individuals visit flowers (‘scramble competition’), compared 

to the lower-density unburned sites. However, species response to environmental stress such 

as fire is apparently complex. This may be explained by several factors, which I now discuss. 

 

Interaction frequency and species abundance 

Fire can impact plant-pollinator interactions in several ways, most of which hinge on resource 

availability in fire-prone landscapes (Brown et al., 2013). For a site to be an effective refuge, 

there must be sufficient nesting and floral resources for the survival and persistence of flower-

visiting insects (Robinson et al., 2013). While high flower abundance drives insect activities 

across elevation, surface area of flowers influences insect visitation activities across fire 

classes, as seen here.  

 

Although flower abundance plays a significant role in pollinator visitation, mass flowering, which 

is an essential feature of most flowering plant species of the GCFR, increases pollinator activity 

in this highly diverse hotspot (Vrodjilak et al., 2016; Simaika et al., 2018). In my study, flower 

abundance was highest in the refuges, and lowest at burned and unburned sites. The difference 

between refuge (two years fire history) and unburned areas (9-10 years fire interval) in my study 

is consistent with most studies on the impact of fire on flowering plant distribution. For example, 

Mola and Williams (2018) found a more prolonged time of interaction in recently burned areas 

where floral abundance persisted for a longer period of time compared to the unburned places. 

Also, Campbell et al. (2007) illustrated how pollinator abundance and richness increases with 

reduced canopy of natural areas and increased understorey vegetation. Here, I found that the 
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unburned habitat with fire interval of ten years was overgrown with more shrubs, weeds, and 

less visible flower units. However, not only did the refuges not have enough time to regenerate, 

these areas are relatively open, with fewer shrubs and without tree canopy, unlike the unburned 

areas. Flowering plants on Mt Carmel national reserve in Israel reached peak flowering two 

years after fire, so increasing pollinator diversity. However, this peak steadily declined over the 

next 50 years (Potts et al., 2003). This emphasizes the importance of flower-rich open habitat 

in the conservation of flower-visiting insects and their important role in ecological interactions 

(Holzschuh et al., 2007; Carvalheiro et al., 2011; Vrdoljak et al., 2016).   

 

The difference between the burned and the refuge areas in terms of flower resource abundance 

may in turn, also be linked to the time taken for resource re-distribution in this area. The burned 

habitat was sampled six months after the fire incidence, when most flowering plants here at this 

time are at an early emerging period. Full flower regeneration is essential for the visitation of 

associated pollinator in fire-impacted habitat (Potts et al., 2003). This is the key driver of low 

flower abundance and interaction in the burned area compared to the flower-rich refuge 

habitats. Overall, this shows the importance of nearby rich refuges, where insect pollinators can 

seek floral requirements, until full regeneration of the burned habitat following fire disturbance. 

 

Network and species specialization 

My results showed high network specialization in refuges in comparison with unburned and 

burned sites. Similarly, more specialized species were present in interactions in the refuge 

networks compared to unburned and burned networks. Also, species in two or more fire classes 

had similar d’-values, implying fire class did not alter species specialization behaviour in their 

response to the changes caused by fire. This means that specialized species then can remain 

associated with the most preferred flowers at sites with high flower abundance. However, at 

sites with limited floral resources, flower-visiting insect species cannot afford to be selective in 

seeking their most preferred flowers. This pattern was also observed by Peralta et al. (2017), 

where fewer specialist species were found in burned sites with low flower abundance. Similarly, 

Plowman et al. (2017) recorded a breakdown in interaction networks and reduced network 

specialization with a decrease in interacting partners. In my study, normalized degree, which 

explains species ability to establish links with multiple interacting partners, was highest at 
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unburned and burned sites. This is also supported by high ND values for species in interactions 

at unburned and burned sites compared to fire refuges.  

 

These findings emphasize the importance of fire refuges as a shelter for displaced pollinators, 

especially the specialized species with limited range of floral resources. Furthermore, resource 

availability plays an essential role in the persistence of specialized species at refuge sites. This 

implies that it is essential for refuges to be rich in required flowering plant species necessary 

for interacting insect species, especially specialists, while the burned area recovers from the 

effects of fire.  

 

Species composition of insects involved in interactions was not significantly different among fire 

classes. Although I could not assess community composition pre-fire across study sites, the 

largely similar insect species composition involved in interactions across fire classes supports 

the possibility of movement of insects among burned, refuge, and unburned sites. While 

ground-dwelling pollinators may find burned habitat most suitable as a result of less ground 

cover (Potts et al., 2005), species here are likely to use power flight to reach other sites (refuges 

and unburned) in search of suitable floral resources. This is expected to affect the pollinator 

network and species specialization across fire classes.  

 

Overall, mean network specialization (H2’) was high in my study area, supporting high 

community specialization of plant-pollinator interaction networks in the GCFR (Pauw and 

Stanway, 2015). However, the low species specialization (d’) in my study may be linked to 

depleted resources resulting from fire disturbance. Since H2’ and d’ values are linked in 

interaction networks (Blüthgen et al., 2006), the high network specialization observed here can 

be influenced by the high d’ value for flowering plants compared to lesser mean d’ value of 

flower-visiting insects. This also supports Pauw and Stanway (2015), where higher d’ values 

was recorded for flowering plants in this region compared to visiting pollinators. Although overall 

I recorded few interactions, especially in burned areas, the d’ and H2’ metrics are less sensitive 

to sampling efforts and diversity of interacting partners (Schleuning et al., 2012) 

 

The difference in species specialization (d’) among fire class may be attributed to competition 

among flower-visiting insect species, especially in habitat with low or few flower resources. The 
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burned sites here were sampled six months after fire incidence, and this area had the first set 

of re-sprouting flowering plants, but in low abundance compared to refuges. This would 

increase competition of resident insect pollinators in this area for the scanty resources. 

Exclusivity of interactions among individual species is more prominent in habitats with more 

interacting partners, yielding higher species specialization (d’) values (Pauw and Stanway, 

2015) than were seen here.  

 

Globally, a trend of higher specialization in the species rich tropics has been reported with a 

decline towards temperate areas (Dyer et al., 2007; Dalsgaard et al., 2009; Pauw, 2013). This 

matches the limited resources in the burned areas here influencing the less specialized species. 

This means that over time, with less resources at the burned sites, the refuges may serve as 

an alternative for more specialized species until burned sites regrow with more floral resources. 

Species specialization (d’) values for common species across the fire classes was not 

significantly different. This shows that species remain in a specialized relationship with 

associated flowers across all fire classes. Flower-visiting insects, especially solitary bees, find 

floral resources in areas close to their nesting sites (Gathmann & Tscharntke, 2002). This could 

also be influenced by mobility of the various insect species, with large bees foraging >3 km, 

while small solitary bees seek floral resources <500 m of their nesting sites (Steffan-Dewenter 

& Tscharntke, 1999; Steffan-Dewenter, 2002). Since I found no significant differences in 

flowering plant species richness across fire categories, this means that specialized insect 

species find their preferred flowers within their maximum flight distance. 

 

Interaction network nestedness and species distribution 

I found networks to be more nested at burned sites, and least at refuge sites. Unlike H2’, where 

interacting species can be selective and retain unique partners, nestedness showed that 

generalists and specialists in my interaction networks share similar resources (Spiesman and 

Inouye, 2013). In habitats with high network nestedness, poorly-linked and rare species are 

able to secure interaction partners, as these are linked to more stable components of the 

network (Bascompte et al., 2003; Memmott et al., 2004; Gibson et al., 2006). Although, it is 

difficult to interpret nestedness in small networks (Olesen et al., 2007), my null models 

nevertheless corrected for this effect. The more nested networks at the burned sites, especially 

those located on hilltops, may be linked to low flower abundance and less resources for flower-
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visiting insects. This increases the opportunity for generalist and specialist species to interact 

with the same flower partner in the network. This also suggests that the presence of flowering 

plant species is able to maintain such interactions with insect mutualists in burned and less 

favorable habitat. Indeed, well-linked drought-resistant plant species are important to 

community resilience and network persistence during harsh conditions in the environment 

(Lance et al., 2017). 

 

Conclusions 

Reducing biodiversity loss involves understanding how different components of natural 

landscapes can be optimized for the conservation of biodiversity and ecological processes 

during transformation events. Refuges can be part of this loss reduction, with my fire refuges 

being, in effect, temporary holding areas into which the flower-visiting insects can retreat while 

the burned matrix goes through regrowth and succession as part of natural ecosystem 

recovery. This is likely to be a process that has been honed for many millennia in fire-prone 

systems such as the GCFR. It is also promoted by the cragginess of the topography in this 

system, which provides natural fire refuge areas. Conservation of flower-visiting insects, along 

with much other biodiversity (Pryke & Samways, 2012a, 2012b; Yekwayo et al. 2018), appears 

to be naturally adapted to these retreats from fire, enabling populations to survive in patches 

even when much of the area burns.  In turn, it is conceivable in evolutionary terms that this has 

not only contributed to the generation of high flower diversity in the area, but also that of their 

insect mutualists.  
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Appendix 

Appendix 5a: Details of study sites (coordinates) classification across fire class and elevation. 

 

Location Coordinates Fire class Elevation 
Vergelegen Wine 
Estate 

S: 34.079 
E: 18.933611 

Burned Valley 

S: 34.065917 
E: 18.937778 

Burned Valley 

S: 34.068722 
E: 18.931889 

Burned Valley 

S: 34.085167 
E: 18.924444 

Refuge Valley 

S: 34.067917 
E: 18.936389 

Refuge Valley 

S: 34.068417 
E: 18.930556 

Refuge Valley 

S: 34.063611 
E: 18.940278 

Burned Hilltop 

S: 34.064194 
E: 18.938056 

Burned Hilltop 

S: 34.073278 
E: 18.942778 

Burned Hilltop 

S: 34.063056 
E: 18.938056 

Refuge Hilltop 

S: 34.077778 
E: 18.931389 

Refuge Hilltop 

S: 34.062417 
E: 18.943917 

Refuge Hilltop 

S: 34.072389 
E: 18.927778 

Burned Hillslope 

S: 34.082722 
E: 18.950306 

Burned Hillslope 

S: 34.076556 
E: 18.937417 

Burned Hillslope 

S: 34.071028 
E: 18.925000 

Refuge Hillslope 

S: 34.075056 
E: 18.935083 

Refuge Hillslope 

S: 34.068889 
E: 18.933250 

Refuge Hillslope 

Lourensford Wine 
Estate 

S: 34.034986 
E: 18.931656 

Unburned Valley 

S: 34.035128 
E: 18.928052 

Unburned Valley 

S: 34.033634 
E: 18.934317 

Unburned Valley 

S: 34.025576 
E: 18.899001 

Unburned Hilltop 

S: 34.029722 
E: 18.911389 

Unburned Hilltop 

S: 34.027453 
E: 18.914271 

Unburned Hilltop 

S: 34.030366 
E: 18.916533 

Unburned Hillslope 
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S: 34.031701 
E: 18.915333 

Unburned Hillslope 

S: 34.031744 
E: 18.915995 

Unburned Hillslope 

 

 

Appendix 5b. List of flower-visiting insect species  

Taxa Family Genus Species/Morphospecies 
Bee Halictidae Halictus sp.1 
Bee Halictidae Halictus sp.2 
Bee Halictidae Halictus sp.3 
Bee Halictidae Halictus sp.4 
Bee Halictidae Halictus sp.5 
Bee Halictidae Halictus sp.6 
Bee Halictidae Halictus sp.7 
Bee Halictidae Lasioglossum sp.1 
Bee Halictidae Lasioglossum sp.2 
Bee Colletidae Colletes sp.1 
Bee Colletidae Colletes sp.2 
Bee Apidae Apidae sp.1 
Bee Megachilidae Megachile sp.1 
Bee Apidae Anthophora sp.1 
Bee Apidae Anthophora sp.2 
Bee Apidae Amegilla sp. 
Bee Apidae Apis mellifera 
Bee Apidae Apidae sp.2 
Bee Apidae Xylocopa sp.1 
Bee Apidae Xylocopa sp.2 
Bee Apidae Xylocopa sp.3 
Bee Apidae Xylocopa sp.4 
Bee Apidae Xylocopa sp.5 
Bee Apidae Xylocopa sp.6 
Beetle Cerambycidae Cerambycidae  sp.1 
Beetle Cerambycidae Cerambycidae  sp.2 
Beetle Cerambycidae Cerambycidae  sp.3 
Beetle Cerambycidae Cerambycidae  sp.4 
Beetle Cerambycidae Cerambycidae sp.5 
Beetle Cerambycidae Cerambycidae sp.6 
Beetle Cerambycidae Typocerus  sp. 
Beetle Scarabaeidae Hedybius  sp. 
Beetle Scarabaeidae Peritrichia  sp.1 
Beetle Scarabaeidae Peritrichia sp.2 
Beetle Scarabaeidae Peritrichia sp.3 
Beetle Scarabaeidae Clania  glenlyonensis 
Beetle Scarabaeidae Anisonyx  ursus 
Beetle Scarabaeidae Scarabaeidae sp.1 
Beetle Scarabaeidae Scarabaeidae sp.2 
Beetle Scarabaeidae Scarabaeidae sp.3 
Beetle Scarabaeidae Scarabaeidae sp.4 
Beetle Scarabaeidae Scarabaeidae sp.5 
Beetle Coccinellidae Coccinellidae sp. 
Beetle Meloidae Meloinae sp. 
Fly Drosophilidae Drosophila  melanogaster 
Fly Tephritidae Tephritidae sp. 
Fly Muscidae Ophyra sp. 
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Fly Muscidae Muscidae sp.1 
Fly Muscidae Muscidae sp.2 
Fly Syrphidae Syrphidae  sp.1 
Fly Syrphidae Syrphidae  sp.2 
Fly Tabanidae Tabanidae sp. 
Fly Bombyliidae Bombyliidae sp.1 
Fly Bombyliidae Bombyliidae  sp.2 
Fly Bombyliidae Bombyliidae  sp.3 
Fly Calliphoridae Lucilia sericata 
Fly Calliphoridae Calliphoridae sp.1 
Fly Calliphoridae Calliphoridae sp.2 
Fly Culicidae Culicidae sp. 
Fly Asilidae Asilidae sp. 
Wasp Sphecidae Sphecidae  sp.1 
Wasp Sphecidae Sphecidae  sp.2 
Wasp Sphecidae Sphecidae  sp.3 
Wasp Vespidae Vespidae sp.1 
Wasp Pompilidae Pompilidae  sp. 
Wasp Icheumonidae Ichneumonidae sp.1 
Wasp Icheumonidae Ichneumonidae sp.2 

 

Appendix 5c. List of plant species 

Family Genus Species/Morphospecies 
Asteraceae Heterolepsis aliena  
Asteraceae Euryops sp.1 
Asteraceae Gerbera linnaei 
Asteraceae Berkheya herbacea  
Asteraceae Helichrysum moeserianum 
Asteraceae Helichrysum sp.2 
Asteraceae Helichrysum sp.3 
Asteraceae Anthanasia crithinifolia  
Asteraceae Senecio sp.  
Asteraceae Artotheca calendula  
Asteraceae Cotula turbinata  
Asteraceae Metalasia muricata  
Asteraceae Osteospermum sp.  
Asteraceae Felicia sp.  
Asteraceae Hymenolepsis crithmoides 
Asteraceae Helichrysum cymosum  
Asteraceae Osteospermum sp.2 
Asteraceae Ursinia punctata  
Asteraceae Senecio sp.2 
Asteraceae Tanacetum sp.  
Asteraceae Euryops sp.  
Boraginaceae Lobostemon dorotheae  
Bruniaceae Brunia laevis 
Bruniaceae Berzelia abrotanoides  
Campanulaceae Lobelia sp. 
Campanulaceae Lobelia sp.2 
Ericaceae Erica  sp.1 
Ericaceae Erica labialis  
Fabaceae Acacia sp. 
Fabaceae Podalyria myrtillifolia  
Fabaceae Psorelea sp.  
Fabaceae Aspalathus  sp.  
Fabaceae Aspalathus  sp.2 
Fabaceae Aspalathus  sp.3 
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Fabaceae Aspalathus sp.4 
Iridaceae Morea sp.1  
Iridaceae Watsonia laccata  
Iridaceae Morea sp.2 
Iridaceae Bobartia indica  
Iridaceae Ixia odorata  
Iridaceae Ixia scillaris 
Iridaceae Dietes sp. 
Iridaceae  Morea sp. 
Montiniaceae Montinia sp.  
Oxalidaceae Oxalis obtusa 
Oxalidaceae Oxalis purpurea 
Oxalidaceae Oxalis luteola  
Oxalidaceae Oxalis sp.3 
Polygalaceae Muraltia heisteria  
Proteaceae Leucadendron  salignum 
Proteaceae Protea laurifolia  
Scrophulariaceae Pseudoselago  spuria  
Scrophulariaceae Oftia africana  
Scrophulariaceae Selago corymbosa  
Rutaceae Coleonema sp.  
Rhamnaceae Phylica buxifolia 
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Chapter 6 

Trade-offs between retaining stands of alien trees and the conservation of 

indigenous flowering plants, pollinators and rare vertebrates in a 

biodiversity hotspot 

 

Abstract 

Limited access to sunlight reduces plant productivity and foraging activities of pollinators. This 

can occur when alien trees shade out native flowering plants. In a conservation context, the 

immediate reaction is to remove the impoverishing effect of the alien tree canopy. But there can 

be trade-offs to this conservation action, as when alien tree stands provide scarce resources 

for vertebrates and pollinators of conservation concern. I investigate these trade-offs here in a 

natural open landscape at different level of invasion. I also assess how different insect pollinator 

groups respond to shading from young, small, open canopy alien pine trees vs. older, larger, 

closed canopy pine trees retained as refuges for certain rare vertebrates. I used coloured pan 

traps to sample pollinator species diversity within and at various distances from the pine stands 

of both sizes of trees in a matrix of low, sclerophyllous, natural vegetation. I then assess how 

plant-pollinator interactions differ according to position on the landscape using bipartite network 

plots. Overall, flower and pollinator abundance were higher in small pines. Furthermore, flower 

and pollinator abundance were higher outside pine stands, but decreased in the pine interior, 

down to zero flowers in the tall pine understorey. Also, pollinator species composition varied 

with distance from pine understorey in the case of tall pines. Interaction frequency also 

decreased towards both pine stand interiors. The flower-pollinator interactions associated with 

small pines were more specialized than those associated with tall pines. Significantly, large-

sized xylocopid bees, bombyliid flies, paper and spider wasps were associated with unique 

interactions among tall pines only. I conclude that while pine tree age and increasing 

development of a continuous canopy reduces the success of native flowering plant species, 

and a collapse of the natural interaction networks, alien pine stands nevertheless are important 

for some insect species that require trees for nesting, as it is for vertebrates that require wooded 

retreats in this open landscape which is so short of large tree resources.  
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Introduction 

Biological invasion is one of the leading drivers of biodiversity loss and extinction in many 

terrestrial ecosystems (Mooney and Hobbs, 2000). This is highly pronounced in sensitive 

biodiversity hotspots like the Greater Cape Floristic Region (GCFR) with typically low and 

sclerophyllous fynbos vegetation and limited trees (Van Wilgen et al. 2008). Most invasive 

conifer trees like pines have the intrinsic capacity to colonize new areas due to their rapid 

growth and biomass increase, most especially in ecosystems with low tree diversity (Higgins 

and Richardson, 1998; Richardson  et  al., 1994).  This is one of the leading characteristic 

features of this region yielding high susceptibility to pine invasion (Van Wilgen et al., 2008). 

Pines are the most commonly used tree species for plantations in the GCFR. Some of these 

pines are now invasive, and have successfully become an integral part of invaded terrestrial 

ecosystems (Richardson, 1998).  

 

Alien pine (Pinus spp.) trees (‘pines’) can rapidly colonize and invade ecosystems and displace 

local resident species, with natural grasslands being transformed into conifer forests in a short 

time (Harding, 2001), and also influencing the delivery of ecosystem services through important 

ecological interactions. Rapid replacement of native vegetation with alien conifers has a direct 

effect on local biodiversity and ecosystem processes (de Abreu and Durigan, 2011; Rolon et 

al., 2011). While little is known on how pine invasion influences ecological interactions, pine 

invasion may play a unique role in driving pollinator distribution through its direct impact on loss 

of flowering plants since pollinators are known to track flowering plants (Winfree et al., 2009). 

This is of great concern in the GCFR of South Africa where most native shade intolerant species 

have been lost to pine invasion as much of the region is transformed into conifer forests 

(Richardson et al., 1994). 

 

Shading is one of the most prominent means by which pine trees influence species diversity 

and composition of native flowering plants and insects (Franzese et al., 2016). The ecological 

ability of pine trees to out-shade the native grassland and shrub-like vegetation community 

encourages the rapid conversion of native vegetation into a conifer forests (Richardson 1998). 

Pine trees are fast growing with extensive canopy cover in highly dense area, thereby reducing 

light accessibility to understorey native vegetation. Low irradiance yields differences in air 

temperature and vapour pressure, all of which influence plant photosynthesis, respiration and 
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stomata conductance (Niinemets and Valladares 2004; Sellin et al. 2010). Overall, growth of 

understorey native vegetation is impaired with increase in the density of pine trees and shade 

level. Subsequently, important interactors that depend largely on the diversity of the native 

flowering plants may be affected indirectly by pine invasion through the loss of flowering plants. 

This creates a ripple effect across multiple ecosystem processes starting with the loss of native 

flowering plants to the shading effect.  For example, pollinators are known to track flowering 

plant diversity (Ebeling et al., 2008), and in an ecosystem when the basic floral requirement is 

lacking, subsequent loss of interacting pollinators is imminent. At community level, such loss of 

interacting partners may be irreplaceable, especially for highly specialized species where floral 

preference is restricted. Understanding how shade drives the decline of important plant-

pollinator interactions, especially those involving highly sensitive specialized species in invaded 

areas, is key to implementing adequate conservation measures in invaded area. 

 

In addition to the indirect effect of pine trees on pollinator diversity and their interaction with 

native plants, shade from pine trees may also directly influence the distribution pattern of 

pollinators and their activities in invaded areas (Liow et al., 2001; Kilkenny and Galloway, 2008). 

Most insect pollinators, especially bees, are more active in open areas with less trees and 

canopy cover. Flowering plants in open, sunlit areas receive 8-11 times more visitation from 

pollinators than those in shaded forest patches (Cao et al., 2017). This is because insects 

require high temperatures for flight and foraging activities (Kilkenny and Galloway, 2008). In 

addition, these pollinators respond to visual cues, some of which are restricted in low light 

environment (Kelber et al., 2005). Overall, reduced light accessibility influences the foraging 

ability of pollinators directly and may hinder the delivery of important service of pollination of 

native flowering plants in shaded understorey. 

 

While the significant loss of flowering plant and pollinators to tree invasion is evident, the 

presence of trees in ecosystems is also a major requirement for nesting by certain pollinating 

insects and other wildlife (Gardenfors, 2010, Homyack et al., 2005). Some pollinating wasps, 

bees and beetles are wood nesters, creating nests in trees or log cavities (Michener, 2007; Orr 

et al., 2015). Some of these species nest in the trees or burrow into the cool understorey or 

trees and search for flowers in areas within their foraging range (Steffan-Dewenter & 

Tscharntke, 1999; Steffan-Dewenter, 2002). Thus, in a sensitive ecosystem like the GCFR, with 

Stellenbosch University https://scholar.sun.ac.za



130 
 

its many endemic pollinators, some of which create nests in trees or dead wood e.g ‘carpenter 

bees’, an understanding of critically short resources is required to maintain effective populations 

of local populations requiring wood. 

 

I aim here to determine how different taxa of flower-visiting insects (‘pollinators’) respond to 

canopy size of alien pine trees. I hypothesize that 1) flower abundance will vary according to 

level of direct sunlight vs. shade reaching the understorey plant community due to the 

importance of light for plant and flower development (McConnaughay and Coleman, 1999), 2) 

pollinator species richness and abundance will change according to the changes in the 

understorey plant communities, since insect pollinators are known to track flower distribution 

(Ebeling et al., 2008; Winfree et al., 2009) 3) Since shade reduces understorey temperature 

(Valladares et al., 2016), insect foraging activity is expected to be influenced by temperature 

change with higher number of plant-pollinator interactions occurring outside pine areas 

compared with the closed canopy understorey and 4) degree of network specialisation will vary 

from the interior to outside the canopy area, since highly specialised insect species may decline 

rapidly in areas with loss of flowering plants (Biesmeijer et al., 2006) 

 

Materials and methods 

The study was conducted in the large natural set-aside areas on an extensive wine farm, 

Lourensford (34.0719oS, 18.8886oE) in the Western Cape Province, South Africa, in the Greater 

Cape Floristic Region (GCFR) biodiversity hotspot. The natural matrix also included two major 

protected areas (The Helderberg Nature Reserve and the Hottentot-Hollands Nature Reserve), 

as well as being in a biosphere reserve (Cape Winelands Biosphere Reserve). The wine estate 

practices biodiversity-friendly agriculture, with extensive areas of the farm devoted to 

conservation of indigenous biodiversity, where my sites were positioned. However, the farm is 

still invaded by pine trees, most of which started as a plantation but over time, were abandoned, 

and are now a distinct pine forest with a largely continuous canopy cover. This invaded but 

contained area is now set aside specifically for the conservation of important animals of 

conservation concern. The area is off limits to the public, and receives no/minimum human 

intervention. I refer to insects collected here as ‘pollinators’ as 1) they come into contact with 

the stamens and accumulate pollen, and 2) to avoid including the many species that visit flowers 
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for thermoregulation and as tourists or as predators of the pollinators. However, I recognize 

that I have not proved pollination through to seed set.  

 

The alien trees in the study area were at different stages of growth. Most of the trees were 

young, with a height of 4-7 m (‘small’), and enabled some development of a flowering plant 

understorey. Other pine trees were >10 m high (‘tall’), with well-developed canopies and little 

or no understorey vegetation. I estimated the height of pine trees using approaches in Samways 

et al. (2010). The pine stands I chose were in a natural vegetation matrix, and specifically 

retained for the conservation of certain mammals such as Cape baboon (Papio ursinus), Cape 

leopard (Panthera pardus melanotica), and Honey badger (Mellivora capensis), as well as for 

some reptiles. I computed Moran I index to assess spatial autocorrelation for observed insect 

abundance pattern among study sites established in each pine tree size category. Moran I index 

(-0.414 ± 0.19, P = 0.262) showed no significant correlation among study sites in each pine 

category which support independence of study sites. 

 

I selected pine stands which were either small pines or were tall pines. Pine stands belonging 

to different size category (Small vs Tall) were distributed randomly across the invaded 

landscape. These stands were within a near-natural matrix of sclerophyllous vegetation. Four 

sampling locations was established in each pine tree size category. Sampling location was 

classified as 1) in the pine stand interior, 2) at the edge of the pine stand/natural fynbos, 3) at 

30 m from the edge of the pine stand into the natural matrix, and 4) at 60 m from the edge of 

the pine stand into the natural matrix. Three replicates of each sampling location was 

established in each pine tree size category. A 50 m2 sampling sites was established in each 

sampling location, this gives a total of 12 sites (1 site per replicate of location) in tall pine and 

12 sites in small pine area distributed across sampling locations (Study design details in 

Appendix 6a). 

 

I observed plant-pollinator interactions (September – November 2017) in five replicates of 2 m2 

observation sampling units (OSUs) at each 50 m2 sampling site in each sampling location (i.e. 

a total of 24 x 5 = 120 OSUs). OSUs were about 10 m apart within each sampling site, and 

exact position of each was chosen to maximize the number of flowering plants within each of 

the 24 sampling locations. Observation of plant-pollinator interaction was conducted twice on 
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each study site. Observation was carried out between 9:30 and 12:00 in the first site visit and 

between 13:00 and 15:00 in the second visit. Interactions from both site visits were pooled for 

statistical analysis. 

 

During each site visit, timed observation of insect activity was standardized to 10 min/2m2 in 

each OSU to avoid over-emphasizing the specialization of flowering plants (Gibson et al., 2011), 

and to reduce sampling bias from variables such as flower abundance. During this time, an 

interaction was noted when an insect visited and interacted with the stamens of the flower unit. 

Five replicates per 2 m2 OSU within each site yielded a total of 50 min observation time per 

sampling site per visit, which were pooled as a single interaction network. Pollinators were 

identified in the field, or caught for later identification as morphospecies.   

 

At each sampling period, I also estimated flower abundance for each plant species in the 

individual 2 m2 OSUs where insect activities were observed. Here, I counted and recorded all 

open flowers for each plant species. Flower unit was defined as the visible unit of an 

inflorescence of a plant from which a honeybee-sized insect will fly to the next unit rather than 

crawl (Dicks et al., 2002). I also pooled these data across all plots to account for flower 

abundance and richness at each sampling location.  

 

After each observation, I also used 12 pan traps each of colour blue, white and yellow to 

estimate abundances of pollinators at each sampling location. This makes up 144 bowls for 

each of the two pine size classes. Coloured bowls (2 000 ml) were half filled with water and a 

little liquid detergent, and were raised to the general indigenous vegetation height in the 

immediate area. I left the pan traps on site for 24 hrs, after which insects collected were rinsed 

and stored in 70% ethanol until sorting and identification. Collection with pan traps was only 

conducted once at each study site during sampling period. Sampling was conducted on days 

with no rainfall, minimum cloud cover and wind (usually ≤ 6km/h). 

 

I estimated the percentage shade cover over the understorey of pine interior at each 

observation period for plant-pollinator interaction. I did this by measuring the average diameter 

of patches of illuminated area across the understorey at each site visit. I divided this value by 

50 m (edge length of a sampling location) and multiplied by 100%. This gave the average area 
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that had access to sunlight at each of my sampling locations, and I estimated the percentage 

shade cover from this value. 

 

Statistical analyses 

Web structure for plant-pollinator interaction networks were compiled for each site. Data were 

analyzed using the bipartite package in R (Dormann et al., 2008) version 3.4.1 (R core team, 

2017). Network-level specialization (H2’) was computed for each of the 21 networks (no 

interactions were observed in sites located at the interior of tall pines). To account for 

differences in activity, abundance, or attractiveness of different species in my study, I developed 

null models for the network specialization (H2’) index, based on the observed number of 

interactions for a species in a given network (using the Patefield algorithm: Dormann et al., 

2009). I computed 100 replicates of null models for each network, and calculated z-scores for 

H2’ metric value (i.e. differences between observed and mean null model index values, divided 

by the standard deviation of the null model values). 

 

The z-scores of H2’ was compared among distances (sampling locations) from pine edge in 

each category of pine size using simple ANOVA with data following normal distribution 

(Shapiro-Wilk’s test). Tukey HSD post-hoc test was computed to observe pairwise comparison 

among groups. I used Generalised Linear Model (GLM) to compare abundance and species 

richness of flowering plants and pollinators in pan traps among location category and pine size. 

Abundance and species richness were the dependent variables; location and pine size category 

were explanatory variables. I also assessed how dependent variables here differ across 

sampling location in each pine category in different models. I also included flower abundance 

in the model as a predictor of insect abundance. Then I assessed the response of pollinator 

abundance to the interaction between flower abundance and pine size class and also between 

flower abundance and sampling location. 

 

I also observed the influence of light accessibility on insect and flowering plant species richness 

and abundance (GLM) and specifying Poisson distribution in a separate model. I computed 

model simplification through a backward selection process for all models to assess the effect 

of explanatory variables or interactions. I included only one variable per model where a pair of 

Stellenbosch University https://scholar.sun.ac.za



134 
 

variable was highly correlated at (R > 0.6 and p < 0.05), this was observed between the pair of 

light accessibility and sampling location. 

 

I assessed pollinator species composition in both small and tall pine areas using canonical 

analysis of principal coordinates (CAP). I then analysed differences in species composition 

across sampling locations from the pine interior using Permanova in both small and tall pine 

stands. To assess sampling adequacy, I estimated species rarefaction curves for flowering 

plants and pollinators across all study sites using the ‘vegan’ package in R (Oksanen et al., 

2006). 

 

Results 

A total of 80 insect pollinator morphospecies (Appendix 6b), in four orders, and made up of 1 

144 individuals were collected in pan traps over the sampling period. A total of 65 species were 

collected at sites with small pines, and 36 species at sites with tall pines. Only 17 insect species 

were unique to tall pine areas, while 45 species were only in small pine areas, and 19 species 

common to both categories. Overall pollinator species estimator indices for all sites were : Chao 

= 136.89 ± 22.88, Jackknife2 = 147.91. A total of 29 species of flowering plants was recorded 

with species estimator indices: Chao = 39.37 ± 7.28, Jackknife2 = 47.26. Overall, the rarefaction 

curve for flowering plants across all sites reached a near asymptote (Appendix 6c). However, 

the asymptote for the pollinator curve was not reached (Appendix 6d) because of the 

occurrence of many rare species in my samples.  

 

Overall, there was a significant difference in insect abundance among to pine tree size category 

(Small vs Tall pine stands).   Higher abundance was recorded in the small pine tree stands, 

and abundance was lower for tall pine tree stands (z = -9.850, p<0.0001, df = 22, Figure 6.1I). 

In addition, there was a significant difference in insect abundance across sampling location in 

each pine size category. While abundance was highest at 30 m away from pine stand edge in 

the case of small pine trees, highest abundance was recorded 60 m away from pine edge in 

the tall pine tree stands (Figure 6.1II). There was a significant positive effect of percentage light 

accessibility on pollinator abundance in both small and big pine tree areas (z = 4984, p < 

0.0001, df = 22).  
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There was a significant difference in insect species richness between pine size classes. Higher 

insect richness was observed among the small pine trees compared to the tall pine trees (z = 

3.296, p = 0.0009, df = 22, Figure 6.2). There was no significant difference in insect species 

richness across sampling locations in each pine tree size category. Furthermore, there was no 

significant effect of light accessibility on insect species richness (z = 1.789, p > 0.074, df = 20).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1. Abundance of pollinator across sampling locations in (I) small pine tree stands and (II) tall pine tree 
stands. Sampling locations with common alphabets are not significantly different at p > 0.05 
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Figure 6.2. Species richness of pollinator among pine tree size. Pine size with common alphabets are not 
significantly different at p > 0.05 
 

There was a significant difference in flower abundance between pine tree size class. Higher 

flower abundance was observed in small pine tree stands, and this was significantly different 

from lower flower abundance at small pine tree stands (z = -22.789, p<0.0001, df = 22, Figure 

6.3II). There was also a significant difference in overall flower abundance across sampling 

locations. Highest flower abundance was observed at the 30 m from the edge of pine tree 

stands, and this differed significantly from the lowest abundance observed in pine stand 

interiors (z = -12.992, p<0.00001, df = 20, Figure 6.3II). While flower abundance was highest 

at 30 m from pine edge in both pine size categories, zero flower was recorded in the interiors 

of tall pine areas. There was a significant positive effect of light accessibility on flower 

abundance across distance along transects in both small and tall pine areas (z = 16.24, 

p<0.00001, df = 22).  

 

There was a significant difference in species richness of flowering plant between pine tree size 

class. Higher species richness was observed overall in small pine tree stands, with lower 

species richness in tall pine tree stands (z = -3.459, p= 0.0026, df = 22, Figure 6.4). There was 

also a significant difference in species richness of flowering plants across sampling locations. 
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Highest species richness of flowering plant was observed at 30 m from the edge of pine trees, 

and this was significantly different from the lowest species richness in the pine interiors (z = -

4.316, p = 0.0004, df = 20). There was a significant effect of light accessibility on species 

richness of flowering plant (z = 3.064, p = 0.0022, df = 22).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3. Abundance of flowering plants across sampling locations in (I) small pine tree stands and (II) tall pine 
tree stands. Sampling locations with common alphabets are not significantly different at p > 0.05 
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Figure 6.4. Mean flowering plant species richness (±SE) among pine tree size. Pine size with common alphabets 
are not significantly different at p > 0.05 
 

Effect of flowering plant on pollinator abundance 

Pollinator abundance was significantly associated with flower abundance (z = 12.85, p < 

0.0001). Pollinator abundance was also significantly associated with the interaction between 

pine size and flower abundance (߯ଶ= 34.45, p < 0.0001, df = 2). Pollinators were more 

associated with flowering plants in small pine tree stands compared to tall pine tree stands. 

Similarly, Pollinator abundance was significantly associated with the interaction between 

sampling location and flower abundance (߯ଶ= 40.80, p < 0.0001, df = 2). Pollinators were 

strongly associated with flowering plants at 30 m from the pine tree edge in both pine class.  

 

Pollinator species composition 

There was a significant difference in insect species composition across sampling locations 

(interior through to 60 m into natural matrix) in tall pine areas (PERMANOVA F = 2.045, p= 0.013, 

Figure 6.5). The pairwise comparison showed weak separation in species composition across 

sampling distances, and there were no significant difference in species composition at any two 

sampling locations in tall pine tree areas. There was no significant difference in species 
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composition across sampling locations (interior through to 60 m into natural matrix) in the small 

pine tree areas (PERMANOVA F = 1.0791, p = 0.314). 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Figure 6.5. Canonical analysis of principal coordinates showing differences in pollinator species composition 
across sampling locations in tall pine stands 
 

Insect-flower interaction specialization 

A total of 501 interactions were observed between 45 insect and 29 plant species. 25 insect 

species were unique in interactions associated with small pine trees, while 12 species were 

only associated with large pine trees. Large-sized xylocopid bees, bombyliid flies, spider 

hunting wasps, and paper wasps were unique in interactions in association with tall pine tree 

stands only (Appendix 6e). Of the total interactions, bees constituted 66.6%, followed by beetles 

(20.6%), and far behind, were flies (9.8%) and wasps (3%). Because of absence of flowering 

plants in the tall pine tree stand interiors, no interactions were observed there. There was no 

significant difference in insect species richness in interactions across whole transects 

associated with both the small and tall pine stands (excluding the tall pine interior). There was 

a significant difference in number of interactions across locations associated with small pine 

trees (F3,8 = 8.519, p= 0.007). Highest number of interactions were recorded at 30 m into the 

natural matrix, and the least interactions in the small pine stand interiors (Figure 6.6I). Similarly, 

there was a significant difference in number of interactions across locations associated with tall 
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pine trees (F2,6 = 8.794, p= 0.017). Highest number of interactions was recorded at sites 30 m 

from the edge of small pines, and least interactions at the edge of tall pine areas (excluding the 

zero value for tall pine interiors) (Figure 6.6II) 

 

Network specialization (H2’) differed with pine tree size (i.e. small vs. tall trees) (F1, 16 = 9.797, 

p= 0.006). Higher H2’ values were recorded from locations associated with small pines, 

compared to those associated with tall ones (Figure 6.7). Furthermore, there was a significant 

difference in H2’ along distances associated small pines (F3, 8 = 6.566, p=0.015). Highest H2’ 

values was recorded 30 m into the natural matrix, and least in the small pine tree stand interior 

(Figure 6.8).  However, there was no significant difference in H2’ across all locations associated 

with tall pines (excluding tall pine interior) (F2, 6 = 0.081, p=0.923) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

abc 

b 

c 

c 

I 

Stellenbosch University https://scholar.sun.ac.za



141 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6. Mean (±SE) interaction frequency along sampling locations associated with (I) small pine tree stands 
and (II) tall pine tree stands. Bars with common alphabets are not significantly different at p < 0.05 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7. Mean (±SE) z-scores of H2’ between pine tree size class. Bars with common alphabets are not 
significantly different at p < 0.05 
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Figure 6.8. Mean (±SE) z-scores of H2’ along sampling locations in small pine tree stands. Bars with common 
alphabets are not significantly different at p < 0.05 
 

Discussion 

I found that flowering plants declined greatly in association with tall pine tree stands, with no 

flowers at all in the stand interiors. Although I did not test whether sunlight influences flowering 

plant reproductive output here, some studies have shown the importance of direct sunlight for 

sustaining the quality and abundance of flowering plant in natural ecosystems (Pierson et al., 

1990; Leege and Murphy, 2001). The small pine tree stands had reduced shade in the interior, 

with plants having more access to sunlight than in tall pine areas.  However, in both pine tree 

size categories, flowering plant abundance and richness increased away from the pine stand 

interiors in the direction of sunlit areas. Flowering plants require high irradiance to 

photosynthesize (Sellin et al. 2010). This means with increased pine height and canopy level, 

flowering shrubs, most of which are endemic to the GCFR are being shaded out as observed 

in the tall pine interiors here. As light is a critical factor for resource uptake in low vegetation 

communities (Jucker et al. 2015; Zhang et al. 2015), increased level of pine invasion in this 

region drives loss of local flowering plant communities, as seen here, and this may lead to 

extinction of important species in this region of high endemism. 
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Percentage light accessibility through shades from alien trees was significantly associated with 

pollinator abundance in this study. While light accessibility may have had no influence on insect 

species richness, there was a positive effect of light on total insect abundance. Insects generally 

require warm temperature to fulfil ecosystem function and ecological roles (Totland 2001; 

Kilkenny and Galloway, 2008; Cao et al., 2017). Since shade is directly linked to temperature 

with understorey cooler during the day (Tielbörger and Kadmon, 2000; Liow et al., 2001; 

Valladares et al., 2016,), this impact on insect distribution, as seen here, may be at the 

detriment of insect pollinated plants in the pine stand interiors (Totland 2001). This may also be 

highly pronounced in the tall pine tree stands where insect abundance was lower. While 

pollination service delivery at the level of the understorey may be reduced due to reduced light 

during the day, other ecosystem functions may be successful. For example, insect-herbivory 

interactions increase greatly in cool understories with reduced light access compared to open 

sunlit areas (Baraza et al., 2004). To understand how shade from pine invasion influences 

ecosystem multi-functionality and dynamics, research focused on multi-trophic interactions 

should be conducted especially in sensitive biodiversity hotspots like the GCFR. 

 

While only insect abundance was associated with percentage light, both abundance and 

species richness of flowering plant was associated with percentage light accessibility at the 

understorey. It would seem here that flowering plant abundance and richness among pine size 

category are more susceptible to the strong influence of shade of the alien pine trees than are 

insect pollinators. Although shade as a factor may not impact species richness of pollinators 

directly, nevertheless, the indirect effect of shade through loss of flowering plant species is a 

critical concern in terms of potential loss of endemic pollinator species in pine-invaded areas, 

as also seen from the association between flowering plants and pollinator abundance in my 

result. This is also supported by Andrieu et al., (2018), who found that flower cover is the main 

factor driving bee abundance with little or no effect of edge factors.  Thus, in a region with 

different levels of invasion and canopy cover, conservation action should be targeted towards 

ameliorating direct effect of shade on understorey flowering plants, as this in turn, may lead to 

the recovery of insect pollinators. 

 

Tall pine trees did not have a completely negative influence on the pollinators, with 17 species 

even unique to tall pine stands, and 19 species common to both small and tall pine tree stands. 
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Among the species common to both areas, these species may seek nesting sites in trees, which 

are much more readily available among tall pine trees than in the natural sclerophyllous fynbos 

vegetation. Also supporting this contention is my CAP analysis, which showed greater 

segregation of species in the interior of tall pine tree stands. It would seem there is a distinct 

difference between communities in the interiors of the pine stands compared to outside, and in 

the case of both small and tall pine trees. Although overall insect abundance was highest at 30 

m for small pine tree stands, and 60 m for tall pine, the second highest abundance was recorded 

in the pine stand interiors in both cases. It appears that while species recorded outside pine 

areas may be mediated by high flower abundance, other factors, such as nest requirements, 

may also determine the distribution of species recorded in the interior. 

 

Wood resources can often be a limiting resource for many taxa, leading to many species being 

threatened, as their nesting resources are in short supply (Tikkanen et al., 2006; Gardenfors, 

2010). About 30% of solitary bees and some aculeate wasps are wood nesters dwelling in 

hollows of tree branches or in dead logs (Westerfelt et al., 2015; Rubene et al., 2015). Eltz et 

al. (2003) recommended retaining many large trees to conserve the stingless bee populations 

that nest in large tree hollows. In an ecosystem like the natural vegetation fynbos, where natural 

vegetation is shrub-like, with very few trees, presence of tall pine trees may encourage cavity 

nesters and other species of flower visitors that require large trees for nesting. Some large 

insects such as the xylocopid bees, which make burrows in old trees, may nest in the trees 

here, yet forage in neighboring areas where there are floral resources (Steffan-Dewenter & 

Tscharntke, 1999; Steffan-Dewenter, 2002). 

 

Interaction networks and specialization 

As expected, bees were the most dominant interactors with flowering plants. Interactions track 

flowering plant abundance most closely, i.e. with the highest interaction frequency in 

association with the small pine tree stands compared to the reduced interaction frequency in 

the tall pine tree stands. These interactions follow the same trend observed for flowering plant 

abundance. For the insects, like the plants, it appears as if access to direct sunlight is extremely 

important. Bees, which are the most frequent insect group in insect-flower interactions, and 

also the dominant pollinator in this region, require optimum temperature and light intensity for 

foraging activities (Vicens and Bosch, 2000; Clarke and Robert, 2018). Furthermore, bees can 
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find it difficult to locate their nest entrance in dim light, which discourages foraging activities 

(Kelber et al., 2005). This is a major problem, especially for small-sized bees such as the 

solitary bees, with Streinzer et al. (2016) finding a negative relationship between body size and 

light intensity threshold in bees. The small proportion of interactions that I recorded in tall pine 

trees could be because of these limitations. Rare, small-sized Lasioglossum and other solitary 

bees in the tall pines, also may be at higher risk of displacement from these habitats compared 

to the larger Xylocopa and Megachile species.  

 

Network specialization was highest away from the pine canopy, but decreased at the edge of 

the small pine stand and its interior. The situation was even more extreme in the case of the 

tall pine trees, where network specialization was severely reduced. While pine tree shade 

reduces productivity of flowering plants and the activities of pollinators, the situation is acute for 

pollinators with restricted floral preferences. Network specialization here showed poor partition 

in networks among tall pine trees, with insect species behaving more as generalists compared 

to in the small pine tree stands, which had about three times better partition. Although I cannot 

be completely certain that there were more specialists in the small pine areas, owing to such 

low visitation frequency and the presence of several rare species (Williams, 2005), the 

presence of more flower resources in open areas, especially in small pines, means better 

chances for species to be associated with their most preferred flower. At tall pine edges, with 

few flowers, I observed more generalized interactions. With scarce resources, insect 

pollinators, especially those with restricted range of floral preference may need to fly farther 

away from the tall pine areas in search of suitable resources.  

 

One major finding here is that most species unique to tall pine areas were large-sized flower 

visitors, such as xylocopid bees, spider wasps, paper wasps, and bombyliid flies. According to 

Gottlieb et al. (2005), most species of xylocopid bees nest in dead or soft wood, except the 

subgenus Proxylocopa which nests in the soil. Paper wasps are also known to be closely 

associated with tree branches for nesting (Yamane and Ito, 1994). Little is known about the 

nesting habit of bombyliid flies. However, gravid females breed in the nest of the host 

(Westerfelt et al., 2015). With the exception of generalist xylocopid bees, which are largely 

dependent on floral resources from different plant species (Keasar, 2010), wasps and flies have 

wide range of dietary requirements, which include plant nectar, through which they function as 
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pollinators. These insects are largely generalist in nature, and are well adapted to the tall pine 

tree areas here. Although there were no interactions within the tall pine understorey due to 

absence of flowering plants, these insects nevertheless, may seek refuge in the tall pine tree 

canopy (tree dwellers) or understorey (ground dwellers).  

 

Conclusion and management implications 

My findings largely support the four hypotheses: that 1) flower abundance varies according to 

level of direct sunlight vs. shade reaching the understorey plant community, and declines with 

increasing shade, 2) pollinator abundance also changes in the same direction as understorey 

plant communities with increasing level of sunlight along sampling distance from the interior of 

the pine areas, there was also a shift in community composition to large-sized more generalized 

species away from small-sized insect species in associations with tall pine trees, 3) higher 

number of plant-pollinator interactions occur outside pine canopies compared to the interior, 

and 4) more specialized plant-pollinator networks occur outside pine canopies than under these 

canopies. 

 

This shows that there is great merit in removing pine trees at an early stage of growth before 

they become too large, too damaging, and difficult to remove. Plant invasion continues to 

adversely impact biodiversity, especially in lowland vegetation areas where invasive trees can 

dominate. This has both a direct and indirect effect on pollinating insect activity. I show here 

that pine tree age and increasing development of a continuous canopy reduces the success of 

native flowering plant species, and is associated with a great change in natural interaction 

networks. Also, with the sensitivity of the GCFR as a region with a high proportion of endemic 

species, species temporal loss may be happening in the invaded parts of this ecosystem, 

especially among species with a narrow habitat and resource preferences in terms of particular 

floral resources. I strongly recommend restoration management actions in areas with high 

densities of pine trees. 

 

However, there is strong rider here when I consider the conservation of biodiversity overall. 

Firstly, the pine tree stands were in effect, set-aside, contained, areas for vertebrate 

conservation. In other words, invasion had been halted, and these small stands were left as 

refuges for these vertebrates. Secondly, and something I was not expecting, is that the large-
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sized, highly mobile insect species also benefitted, not because of flowers but because of 

potential nesting sites, and like the vertebrates, had the best of both local worlds. In the case 

of many of the pollinators, flowers outside the pine interior stand for food, and pine trees within 

for nesting. While the footprint of pines adversely affected the pollinating insects, these pine 

stands were in confined area within the landscape and are bordered by natural habitats, 

including two major protected areas (The Helderberg Nature Reserve and the Hottentot-

Hollands Nature Reserve) as well as being in a biosphere reserve (Cape Winelands Biosphere 

Reserve). These points are of great significance when considering whether invasive alien trees 

are harmful or not. In sum, small and contained alien pine stands confer some distinct benefit. 

However, these stands must not be so extensive that they cannot be managed. 
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Appendix 

 

Appendix 6a. Details of study sites (coordinates) classification and sampling. 

 

Coordinates Pine size Location/Site 
Number of pan 

traps 

Total minutes for plant-
pollinator interaction 
observation (2 visits) 

S: 34.030366 
E: 18.91653 
 

Tall Pine Interior 12 100 
Edge 12 100 
30 m 12 100 
60 m 12 100 

S: 34.032357 
E: 18.91518 
 

Small Pine Interior 12 100 
Edge 12 100 
30 m 12 100 
60 m 12 100 

S: 34.027453 
E: 18.914271 

Tall Pine Interior 12 100 
Edge 12 100 
30 m 12 100 
60 m 12 100 

S: 34.031701 
E: 18.915333 
 

Small Pine Interior 12 100 
Edge 12 100 
30 m 12 100 
60 m 12 100 

S: 34.02992 
E: 18.91303 
 

Tall Pine Interior 12 100 
Edge 12 100 
30 m 12 100 
60 m 12 100 

S: 34.029722 
E: 18.911389 
 

Small Pine Interior 12 100 
Edge 12 100 
30 m 12 100 
60 m 12 100 
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Appendix 6b. List of pollinator species 

 

Taxa Family Genus Species/Morphospecies 
Bee Halictidae Halictus sp.1 
Bee Halictidae Halictus sp.2 
Bee Halictidae Halictus sp.3 
Bee Halictidae Halictus sp.4 
Bee Halictidae Halictus sp.5 
Bee Halictidae Halictus sp.6 
Bee Halictidae Halictus sp.7 
Bee Halictidae Halictus sp.8 
Bee Halictidae Halictus sp.9 
Bee Halictidae Halictus sp.10 
Bee Halictidae Halictus sp.11 
Bee Halictidae Halictus sp.12 
Bee Halictidae Halictidae sp.1 
Bee Halictidae Halictidae sp.2 
Bee Halictidae Halictidae sp.3 
Bee Halictidae Halictidae sp.4 
Bee Halictidae Halictidae sp.5 
Bee Halictidae Halictidae sp.6 
Bee Halictidae Halictidae sp.7 
Bee Halictidae Lasioglossum sp.1 
Bee Halictidae Lasioglossum sp.2 
Bee Halictidae Patellapis sp.1 
Bee Halictidae Patellapis sp.2 
Bee Halictidae Patellapis sp.3 
Bee Halictidae Patellapis sp.4 
Bee Halictidae Patellapis(Zonalictus) sp. 
Bee Halictidae Patellapis(Chaetalictus) sp. 
Bee Halictidae Pseudapis sp.1 
Bee Halictidae Pseudapis sp.2 
Bee Colletidae Colletes sp. 
Bee Megachilidae Lithurgus sp. 
Bee Apidae Anthophora sp. 
Bee Apidae Apis mellifera 
Bee Apidae Allodapula sp.1 
Bee Apidae Allodapula melanopus 
Bee Apidae Apidae sp. 
Bee Apidae Xylocopa albifrons 
Beetle Scarabaeidae Hedybius  sp. 
Beetle Scarabaeidae Peritrichia  sp. 
Beetle Scarabaeidae Anisonyx  ursus 
Beetle Scarabaeidae Pachycnema sp.1 
Beetle Scarabaeidae Pachycnema sp.2 
Beetle Scarabaeidae Scarabaeidae sp.1 
Beetle Scarabaeidae Scarabaeidae sp.2 
Beetle Scarabaeidae Scarabaeidae sp.3 
Beetle Coccinellidae Coccinellidae sp.1 
Beetle Coccinellidae Coccinellidae sp.2 
Beetle Meloidae Meloinae sp. 
Beetle Curculionidae Scolytidae sp.1 
Beetle Curculionidae Scolytidae sp.2 
Beetle Curculionidae Scolytidae sp.3 
Fly Drosophilidae Drosophila  melanogaster 
Fly Tephritidae Tephritidae sp.1 
Fly Muscidae Muscidae sp.1 
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Fly Muscidae Muscidae sp.2 
Fly Muscidae Muscidae sp.3 
Fly Syrphidae Syrphidae  sp.1 
Fly Syrphidae Syrphidae  sp.2 
Fly Tabanidae Tabanidae sp.1 
Fly Tabanidae Tabanidae sp.2 
Fly Tabanidae Tabanidae sp.3 
Fly Bombyliidae Bombyliidae sp. 
Fly Calliphoridae Lucilia sericata 
Fly Culicidae Culicidae sp. 
Wasp. Sphecidae Sphecidae  sp.1 
Wasp. Sphecidae Sphecidae  sp.2 
Wasp. Sphecidae Sphecidae  sp.3 
Wasp. Sphecidae Sphecidae sp.4 
Wasp Vespidae Vespidae sp. 
Wasp Pompilidae Pompilidae  sp.1 
Wasp Pompilidae Pompilidae sp.2 
Wasp Braconidae Braconidae sp.1 
Wasp Braconidae Braconidae sp.2 
Wasp Masaridae Masaridae sp. 
Wasp Crabronidae Tachysphex sp.1 
Wasp Crabonidae Tachysphex sp.2 
Wasp Crabonidae Tachysphex sp.3 
Wasp Scoliidae Scoliidae sp.1 
Wasp Scoliidae Scoliidae sp.2 
Wasp Scoliidae Scoliidae sp.3 
Wasp Scoliidae Scoliidae sp.4 

 

 

 

Appendix 6c. Species richness rarefied curve for flowering plants sampled across study sites. 

The grey area represents the confidence interval from the standard error of estimates. 
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Appendix 6d. Species richness rarefied curve for pollinators collected across sampling sites. 

The grey area represents the confidence interval from the standard error of estimates. 
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Appendix 6e. Pollinator species in interactions associated with different pine tree sizes.  

 

Taxa Family Genus Species/Morphospecies Small 
pine 

Tall 
pine 

Bee Halictidae Halictus sp.1 -  
Bee Halictidae Halictus sp.2  - 
Bee Halictidae Halictus sp.3 -  
Bee Halictidae Halictidae sp.1 -  
Bee Halictidae Halictidae sp.2 -  
Bee Halictidae Halictidae sp.3 -  
Bee Halictidae Halictidae sp.4 -  
Bee Halictidae Halictidae sp.5 -  
Bee Halictidae Halictidae sp.6  - 
Bee Halictidae Halictidae sp.7  - 
Bee Halictidae Lasioglossum sp.1 - - 
Bee Halictidae Lasioglossum sp.2  - 
Bee Halictidae Lasioglossum sp.3 -  
Bee Colletidae Colletes sp. -  
Bee Megachilidae Megachile sp. -  
Bee Anthophoridae Anthophora sp. -  
Bee Anthophoridae Anthophora sp.2 -  
Bee Anthophoridae Anthophora sp.3 -  
Bee Anthophoridae Anthophora sp.4 -  
Bee Anthophoridae Amegilla sp. -  
Bee Apidae Xylocopa sp.1  - 
Bee Apidae Xylocopa sp.2  - 
Bee Apidae Apis mellifera - - 
Beetle Scarabaeidae Hedybius  sp. - - 
Beetle Scarabaeidae Peritrichia  sp. - - 
Beetle Scarabaeidae Anisomyx  sp. - - 
Beetle Scarabaeidae Pachycnema sp. -  
Beetle Scarabaeidae Scarabaeidae sp. -  
Beetle Meloidae Meloidae sp.1 - - 
Beetle Meloidae Meloidae sp.2 -  
Beetle Coccinellidae Coccinellidae sp. -  
Beetle Cerambycidae Cerambycidae  sp. -  
Fly Syrphidae Syrphidae sp.1 -  
Fly Syrphidae Syrphidae sp.2 -  
Fly Muscidae Muscidae sp.1 - - 
Fly Muscidae Muscidae sp.2  - 
Fly Muscidae Muscidae sp.3 -  
Fly Calliphoridae Lucilia sericata - - 
Fly Bombyliidae Bombyliidae sp.  - 
Wasp Sphecidae Sphecidae  sp.1  - 
Wasp Sphecidae Sphecidae  sp.2 -  
Wasp Masaridae Masaridae sp.1 -  
Wasp Masaridae Masaridae sp.2  - 
Wasp Vespidae Vespidae sp.  - 
Wasp Pompilidae Pompilidae sp.  - 
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Chapter 7 

General conclusion and recommendations 

 

Global change and subsequent transformed ecosystems are having a major impact on 

biodiversity. This is particularly evident among species’ ecological interactions, leading to 

cascading effects across multiple trophic levels. While most studies have shown how landscape 

transformation influences species distribution patterns, studies focusing on response of 

ecological interactions to these changes are still relatively few. This is especially the case for 

the Greater Cape Floristic Region (GCFR), with its high level of endemism and important 

interactions between plants and pollinators (Khulmann, 2005). It is therefore essential to 

understand how flowering plants and their interactions with insect pollinators respond to 

important drivers of environmental change which are pertinent to this region, and hence this 

study. 

 

Plant-pollinator interactions are fundamental for providing essential pollination ecosystem 

services. This is not only critical for the maintenance of ecosystems globally, but is also 

essential in mediating the challenge of food security associated with growing human population. 

Furthermore, these interactions are as essential for stemming biodiversity loss as they are for 

meeting the needs of humans. However, landscape transformations influence pollinator and 

plant distribution and this may also affect the delivery of pollination services, especially among 

specialized species. This may be critical here in the GCFR where honeybees are responsible 

for the pollination of about 27% of herbs, 44% of shrubs and 28% of trees (Hepburn and Radloff, 

2013)  

I reported in Chapter 2 that an increase in elevation in the GCFR is associated with a decline 

in temperature and flowering plant diversity. These changes led to a breakdown in interaction 

networks involving bees and beetles, but not those involving flies and wasps. Bees and beetles 

are more associated with changes in air temperature and flower indices across elevation zones 

may be prone to temporal loss in interaction following the decline of interacting partner. 

 

Mountains are often important biodiversity hotspots with several high elevation specialized 

pollinators and flowering plants (Spehn et al., 2010). However, this often species rich montane 

ecosystem is fragile in species distribution in interaction across elevation zones with the lowest 
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representative of interacting partners at the summit. Although most flowering plant species at 

this high elevation are pollinated by wind, thereby reducing the chances of loss of flowering 

plants, however, some insects that are resilient to the conditions at high elevations, especially 

the specialized species may be at risk of possible future loss in the absence of interacting 

partners. While species which are highly adapted to cold and often wet conditions at the summit 

such as flies (Lázaro et al., 2008) may be at less risk of temporal displacement, some halictids 

which are abundant at the summit zone in my study and also obligate flower feeders may be at 

risk of future loss in areas with low diversity of nectar rewarding flowering plants. 

 

Lower elevation zones in this study were rich in flowering plants and insect pollinators, as shown 

in Chapters 2 and 3. Highest abundance and species richness of flowering plants, and 

pollinators, as well as their interactions, were recorded in the middle elevation zone in particular, 

which is also an ecotone. This further emphasizes the importance of an ecotone as area of 

great conservation interest. However, while abundance peaks of insect pollinators track those 

of flowering plants at each elevation zone, bees peak seasonally earlier in abundance 

compared to flowering plants at the middle (ecotone) elevation zone. This suggests a 

phenological mismatch between bees and interacting flowering plants at this zone. Also of 

importance is the differential phenological response among insect taxonomic group across 

elevation zone. This suggests species-specific traits playing a major role in influencing species 

phenology across elevation zone. In addition, species may have different response to varying 

environmental conditions across elevation gradient (Ovaskainen et al., 2013). Assessing 

species distribution patterns across elevation zones shows the middle zone (ecotone) to be an 

area with highest number of interacting species and interactions.  There is now, however, a 

necessity for assessing species temporal (phenological) response and how life history traits of 

different groups mediate species phenology towards conserving the sensitive montane 

ecosystems as with ongoing global climate change. While I encourage active conservation 

efforts, especially those directed at reducing the impact of climate change, I also encourage 

long-term future monitoring of species interactions, phenology, and productivity, especially at 

the ecotone to assess the effect of conservation efforts. 

 

In Chapter 4, I showed how fire frequency influences assemblages and distribution of 

pollinators and flowering plant species. Flower abundance was lowest in the short-term burned 
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areas, especially for long-lived perennials, while highest in the medium-term burned areas. Fire 

also structured the community composition and distribution of insect pollinators, especially 

bees, through its direct effect on flowering plants. Bees are highly dependent on quality floral 

rewards. However, other environmental factors such as nesting requirements seem to be 

driving the distribution of other taxa, especially flies. One would have expected areas with 

longer fire history to have the highest flower abundance. Yet, this was not the case here. Thus, 

while immediate impact of fire may bring about loss of important flowering plants and insect 

pollinators, as seen here, fire is also required to improve quality of flowers through reduction of 

shade from canopy cover. According to the literature, most Protea species require fire 

frequency of about 10-15 years for optimum reproduction (Van Wilgen and Forsyth, 1992). This 

means that it is necessary to put into practice controlled burning of overgrown natural areas, 

which is essential for rejuvenating the floral resources that will also indirectly increase pollinator 

visitation in this area.  

 

It is also important to note how fire influences species nesting requirements, as also seen in 

Chapter 4. Although floral resource availability plays crucial role in bee dispersal patterns, nest 

requirements are also of great significance. Megachilid bees mostly build their nests with leaves 

and soil particles, and so these bees require exposed soil surfaces and plant material for 

effective nesting, which are available in short-term burned and medium-term burned sites, 

thereby driving high abundance of megachilid bees here. On the other hand, other bee families, 

especially the Halictidae and Apidae, some of which require logs or tree branches for nesting, 

were most abundant in the long-term burned areas. Thus, management practice that takes into 

account species nest requirements should be considered, especially during controlled burning 

for conservation purposes.  

 

In addition, fire frequency also influences plant-pollinator interaction networks, as seen in 

Chapter 5. Here, I also showed how fire refuges may alleviate the immediate impact of fire in a 

fire-prone landscape. In this chapter, I showed that recently burned habitat was limited in flower 

resources, which yielded more generalized interactions compared to refuge patches. 

Surprisingly, there was also a refuge patch effect, accommodating more specialized species 

than the unburned natural areas.  
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Refuge patches in burned landscapes are overlooked important ecosystem physical elements. 

This suggests that conservation actions should include controlled burning for provision of 

flower-rich refuges in the burned landscape. In landscapes with complex topography, like the 

GCFR, more efforts should be focused on fire refuges in the valley, as these are more effective 

for the persistence of insect pollinators, especially the specialized species, while burned areas 

are recovering. 

 

In Chapter 6, I showed how alien pine trees influence plant-pollinator interactions, as well as 

their distribution across landscape at different stages of invasion. Invasion is one of the most 

prominent challenges facing biodiversity globally, and greatly influences assemblages and 

ecosystem function in different ways. Competition for resources between native and invasive 

species is highly pronounced in invaded areas, especially in the GCFR. As most endemic plant 

species in the GCFR are shrub-like, invasive trees, such as pines, are highly successful through 

their ability to out-shade native undergrowth. However, it is imperative to understand how 

important plant-pollinator interactions are affected through the indirect shading impact of alien 

trees on native flowering plants.  

 

More interactions were observed in areas during early invasion with small pine trees compared 

to areas that were invaded by high-density tall pine trees. Specialized insect pollinators also 

had higher number of interactions in small-sized pine tree areas. However, overall interactions, 

especially those involving specialized insect pollinators, were more frequent with increased 

distance outside the pine trees. This emphasizes the importance of restoration efforts, 

especially in areas with tall pines. Overall, I conclude that pine trees should be removed at the 

early invasion stage to reduce further loss of important native species, as well as their 

interactions.  

 

While it is essential to reduce the impact of pine trees on native species through restoration, it 

is also important to take into account the positive impact of these invasive pines, especially for 

insect groups that depend on them for nesting. Some large-sized wasps, bees and flies were 

only found in tall pine areas, where the trees are important as nesting sites. In addition, this 

area with tall pine trees is also aimed at preserving some mammals of conservation concern, 

some of which are endemic to this region. There is therefore a thin line in making conservation 
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decisions regarding these alien trees, which, while invasive, can also provide important 

resources both for certain insects and certain mammals.  

 

In conclusion, while this study has quantified the effect of these drivers of landscape 

transformation on important plant-pollinator interactions, there is urgent need for future studies 

addressing species productivity in the face of growing environmental threats, especially in 

sensitive biodiversity hotspots like the GCFR. More attention should be given to species-level 

analysis addressing pollinator importance and their effectiveness in interactions with flowering 

plants. This is of great importance for identifying species vulnerable to temporal loss in this 

region of high endemism, where loss of a species also means global extinction.  
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