
The Butler Matrix as a Multiple Beam
Beamforming Network

by

Pieter Böning

Thesis presented in partial fulfilment of the requirements
for the degree of Master of Engineering (Electronic) in the

Faculty of Engineering at Stellenbosch University

Supervisor: Dr. C. Van Niekerk

March 2020

The financial assistance of the National Research Foundation (NRF) and Cobham Aerospace Communi-
cations towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are 

solely those of the author.



Declaration

By submitting this thesis electronically, I declare that the entirety of the work
contained therein is my own, original work, that I am the sole author thereof
(save to the extent explicitly otherwise stated), that reproduction and pub-
lication thereof by Stellenbosch University will not infringe any third party
rights and that I have not previously in its entirety or in part submitted it for
obtaining any qualification.

Date: .March 2020

Copyright © 2020 Stellenbosch University 
All rights reserved.

i

Stellenbosch University https://scholar.sun.ac.za



Abstract

The Butler Matrix as a Multiple Beam Beamforming
Network
P. Böning

Department of Electric and Electronic Engineering,
University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.
Thesis: MEng (Elec)

March 2020

High bandwidth communication has become an essential part of modern so-
ciety. The increasing demand for data requires engineers to implement inno-

vative solutions to utilise the finite electromagnetic spectrum. Methods such as 
time, frequency, and spatial division have been adopted to increase the ef-

fective use of the spectrum. Time and frequency-division reduces the amount of 
bandwidth, the property that needs to be maximised, available to a single user. 

To implement spatial division efficiently and cost-effectively is a complex 
problem which has received a lot of attention lately as communication devices 

are now more than ever, accessible to the average person.

To address the spatial division problem, multiple beam beamforming net-
works (MBBFN) is the suggested solution, but are expensive and technically 
difficult to implement. There is a direct correlation between the proposed But-
ler Matrix and the Fast Fourier Transform, in that both are an optimal solution 
to the underlying calculation, requiring the least amount of operations. In the 
case of the Butler Matrix, these operations refer to power dividers and com-
biners, and phase shifters. This poses a viable solution in terms of efficiency and 
cost-effectiveness.

There are many implementations of the Butler Matrix, two of which are 
analysed, constructed, and measured. One implementation was done at a higher 
frequency to effectively increase the operational bandwidth. The higher 
frequency posed significant challenges resulting in unacceptable performance 
degradation, but still proved a working concept. The lower frequency im-
plementation was easier to design and implement with very low cost, and 
successfully demonstrated the ability of the Butler Matrix as a MBBFN.
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ABSTRACT iii

The theoretical analysis of the Butler Matrix concept provides a better
understanding of MBBFN’s, which is supported by simulated and measured
results.
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Uittreksel

Die Butler Matriks as Meervoudige
Straalvormingsnetwerk

(“The Butler Matrix as a Multiple Beam Beamforming Network”)

P. Böning
Departement Elektriese en Elektroniese Ingenieurswese,

Universiteit van Stellenbosch,
Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: MIng (Elek)
Maart 2020

Kommunikasie met ’n hoë bandwydte is ’n wesenlike deel van die moderne 
samelewing. Die toenemende vraag na data, vereis dat ingenieurs innoverende 
oplossings moet implementeer om die eindige elektromagnetiese spektrum te 
gebruik. Metodes soos tyd, frekwensie en ruimtelike verdeling word toegepas 
om die effektiewe gebruik van die spektrum te verhoog. Tyd en frekwensie-

verdeling verminder die hoeveelheid bandwydte, die eienskap wat gemaksimeer 
moet word, wat beskikbaar is vir ’n enkele gebruiker. Om ruimtelike verdeling 

doeltreffend en koste-effektief te implementeer, is ’n ingewikkelde probleem wat 
die afgelope tyd baie aandag geniet, aangesien kommunikasietoestelle nou meer 

as ooit tevore vir die gemiddelde persoon toeganklik is.

Om die ruimtelike verdeling probleem aan te spreek, is meervoudige stra-
lingsvormende netwerke (MSVN) die verkose oplossing, maar is duur en tegnies 
moeilik om te implementeer. Daar is ’n direkte verband tussen die voorge-stelde 
Butler Matriks en die Vinnige Fourier-transformasie, deurdat beide ’n optimale 
oplossing vir die onderliggende berekening is, wat die minste hoeveel-heid 
bewerkings benodig. In die geval van die Butler Matriks, verwys hierdie 
bewerkings na kragverdelers, kragkombineerders en faseverskuiwings. Dit bied 
’n haalbare oplossing ten opsigte van doeltreffendheid en koste-effektiwiteit.

Daar is baie implementerings van die Butler Matriks, waarvan twee ontleed, 
gekonstrueer en gemeet word. Een implementering is met ’n hoër frekwensie 
gedoen om die operasionele bandwydte effektief te verhoog. Die hoër frekwen-
sie het uitdagings opgelewer wat tot onaanvaarbare agteruitgang van verrigting 
gelei het, maar kon steeds ’n werkende konsep illustreer. Die implementering
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UITTREKSEL v

van die laer frekwensie was makliker om te ontwerp en met baie lae koste te
implementeer en het die vermoë van die Butler Matriks as ’n MSVN suksesvol
getoon.

Die teoretiese analise van die Butler Matriks-konsep bied ’n beter begrip
van MSVN’s, wat ondersteun word deur gesimuleerde en gemete resultate.
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Chapter 1

Introduction

1.1 Overview
Beamforming networks have established their importance in modern radio sys-
tems. There are ever increasing requirements for higher bandwidth communi-
cation, especially with the rise of Internet of Things (IoT) and Fifth Generation
(5G) networks over the last few years.

1.2 Problem Statement
The number of users requiring high bandwidth communication systems are
ever increasing, which poses a significant problem. There is a finite amount of
frequency spectrum available, which can only be divided into a finite amount
of usable channels when multiple users want to occupy a specific band of
frequencies at the same time. Dividing the limited frequency spectrum into
channels lowers the available bandwidth per user.

A method employed to divide access even more, is time division. The
concept of time division is that a certain frequency channel is divided into
timeslots, where the number of timeslots depend on the number of users trying
to use the same frequency channel. This also lowers the data throughput each
user can have.

The third method employed is space division. When multiple users are
located in separate locations, in an angular space, a phased array can be used to
point the main beam of the antenna towards the current active user. This will
maximise the possible gain of the antenna, and separate the signal of interest
from the interferers (other users). Many phased arrays can be incorporated
in a single system to allow multiple users to simultaneously use the same
frequency channel, given they’re spatially separated. Using multiple phased
array systems in this way is inefficient, instead, a multiple beam beamforming
network (MBBFN) is proposed.

1
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CHAPTER 1. INTRODUCTION 2

1.3 Objectives
The main aim of this thesis is to analyse the Butler Matrix concept as a
MBBFN. The secondary aim of this thesis is to quantify the scalability of the
Butler Matrix. The third aim is to implement the Butler Matrix in a practical
way and demonstrate its ability as a MBBFN. In order to reach these aims,
the following objectives will need to be achieved:

1. Introduce antennas and antenna arrays, as well as some methods for
beamforming.

2. Analyse the Butler Matrix theoretically and establish its mathematical
operation.

3. Compare different implementations of the Butler Matrix to discover its
viability as a beamforming network.

4. Draw a conclusion that is supported by simulated and measured results.

1.4 Thesis Outline
The following chapter introduces some basic properties of antennas, and ex-
plains how the simplest antenna radiates electromagnetic energy into space.
Some examples of widely adopted antenna elements are discussed. Antenna
arrays are then introduced, followed by the concept of beamforming and leads
into multiple beam beamforming. Digital beamforming is also briefly dis-
cussed.

Chapter 3 introduces the Butler Matrix, which is a MBBFN. An in depth
derivation is done, and some limitations are highlighted. The Butler Matrix
and its Fourier Transform relationship is analysed.

Chapter 4 introduces implementations of the Butler Matrix in microstrip
technology. At first an ideal circuit is defined, which is followed up by a mi-
crostrip circuit that is simulated, manufactured, and measured. Two different
use cases are analysed, one to operate at 1.5 GHz, the other at 15 GHz.

Chapter 5 analyses the results obtained from the implementations in Chap-
ter 4.

This body of work concludes with Chapter 6, evaluating the results from
Chapter 5 and how the objectives were achieved.

Stellenbosch University https://scholar.sun.ac.za



Chapter 2

Literature Study

2.1 Antennas
Antennas are an integral part of any radio system, it performs the transfor-
mation of electromagnetic waves in free space to voltages and currents on a
transmission line, and vice versa (Huang and Boyle, 2008). This transforma-
tion needs to be as efficient as possible, as the power density of a propagating
electromagnetic wave typically gets very small over large distances. A lot of
effort goes into designing antennas and the circuits that feed them, also known
as feed networks.

Electromagnetic waves propagate radially from its source. When observing
the waves at a large distance r, the radiating source is considered as a point,
and the fields are real. The Poynting vector is defined by the cross product
of the electric and magnetic fields, and is used to quantify the flow of power
density.

S = E×H∗
(
W

m2

)
(2.1.1)

Consider an ideal radiating point source, radiating uniformly in all direc-
tions. The power flowing through a spherical surface, with the point source
as origin, will be uniform over the sphere. The surface area of the sphere
increases at a rate r2, as the radius r of the sphere increases. The power
density decreases at a rate 1

r2
because the same total power (Poynting vector)

is now integrated over a larger area. This 1
r2

relation is commonly known as
the inverse-square law, and it is present in many natural laws like gravity,
electrostatics and sound (Blake and Long, 2009).

According to Blake and Long (2009), an ideal antenna will radiate all
incoming power (from a transmission line) in the desired directions and with
the desired polarisation. In reality an antenna radiates some energy in all
directions, similar to the point source discussed earlier, meaning that some
energy propagates in an undesired direction and is lost. An antenna parameter

3
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CHAPTER 2. LITERATURE STUDY 4

used to quantify the proportion of energy that is radiated in a specific direction,
is called the beam or radiation pattern. Radiation pattern is a more general
term, which could refer to field or power pattern. This body of work is only
concerned with the power pattern, which is represented in decibel scale as a
function of angular space (Balanis, 2012). When referring to the radiation
patterns of antennas, they are classified within 3 major classes:

• Isotropic - Radiates equally in all directions

• Omnidirectional - Radiates equally in a plane

• Directional - Radiates in one direction

Isotropic radiation patterns are purely theoretical, but are widely used
to analyse antenna arrays. The advantage of using an isotropic pattern when
analysing arrays is that it leaves out the radiation characteristics of the antenna
element (Sidelobes, HPBW, etc.), and considers only the characteristics of the
array. Omnidirectional and Directional antennas will be discussed in section
2.1.2 and section 2.1.3.

It should be noted that here it is referred to as a radiation pattern, but
antennas are reciprocal devices, they capture energy in the same way that they
radiate energy. In the next couple of subsections, some well-understood an-
tenna elements will be discussed, which will lead to a discussion about antenna
arrays and beamforming.

2.1.1 Hertzian Dipole
The simplest radiating element is the Hertzian Dipole. It is also known as
an infinitesimal, or elemental electric dipole. The Hertzian dipole is a dipole
that is considerably shorter than a tenth of the wavelength. The current
distribution on the wire is uniform but still varies with time, oscillating at
some frequency. Blake and Long (2009) also mentions a short dipole, which is
one of about a tenth of the wavelength and does not necessarily have uniform
current distribution.

The Hertzian dipole is a radiating element which can be analysed relatively
easily. Cheng (2014) proposes three steps to analyse the electromagnetic fields
from a current distribution. The first step is to determine A, the vector mag-
netic potential from J, the volume current density, using equation 2.1.2. The
second step is to find H, the magnetic field intensity, from A using equation
2.1.3. The final step is to calculate E, the electric field intensity, from H using
equation 2.1.4. The equations used here follow lengthy derivations by Cheng
(2014) which will not be discussed in this thesis.
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Figure 2.1: Hertzian dipole

A =
µ

4π

ˆ
V′

Je−jkR

R
dv′ (2.1.2)

H =
1

µ
∇×A (2.1.3)

E =
1

−jωϵ
∇×H (2.1.4)

Where:

V′ = Source volume
R = Distance from any point in V′ to the observation point

Equation equation 2.1.2 can be simplified by applying the infinitesimal
dimensions of the source:

J =

{
I0δ (x

′) δ (y′) ẑ −l
2
≤ z′ ≤ l

2

0 elsewhere

This integral is evaluated over z′, meaning R is dependent on dz′, making
the integral more difficult to solve. Since l is very small, R can be approximated
as r, which greatly simplifies the integral:
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A = ẑ
µI0
4π

(
e−jkr

r

) ˆ l
2

−l
2

dz′

= ẑ
µI0l

4π

(
e−jkr

r

)
(2.1.5)

From equation 2.1.5, step 2 can be followed to calculate H. It is much
easier to evaluate H and E in a spherical coordinate system (Balanis, 2012).
The transformation matrix in equation 2.1.6 is used to transform A = Axx̂+
Ayŷ + Azẑ to A = Arr̂+ Aθθ̂ + Aϕϕ̂.

ArAθ
Aϕ

 =

sin θ cosϕ sin θ sinϕ cos θ
cos θ cosϕ cos θ sinϕ − sin θ
− sinϕ cosϕ 0

AxAy
Az

 (2.1.6)

In this case, Ax and Ay is 0, leading to an easier solution for A, in spherical
coordinates:

Ar = cos θ
µI0l

4π

(
e−jkr

r

)
Aθ = − sin θ

µI0l

4π

(
e−jkr

r

)
Aϕ = 0 (2.1.7)

To evaluate the curl in spherical coordinates, equation 2.1.8 is used.

∇×A =
1

r2 sin θ

∣∣∣∣∣∣
r̂ rθ̂ r sin θϕ̂
∂
∂r

∂
∂θ

∂
∂ϕ

Ar rAθ r sin θAϕ

∣∣∣∣∣∣ (2.1.8)

There is no ϕ-variation in both Ar and Aθ, and Aϕ = 0. This significantly
simplifies the curl operation.

Hr = 0

Hθ = 0
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Hϕ =
1

µ r

[
∂

∂r

(
− sin θ

µI0l e
−jkr

4π

)
− ∂

∂θ

(
cos θ

µI0l e
−jkr

4πr

)]
=

1

µ r

[
sin θ

jkµI0l e
−jkr

4π
+ sin θ

µI0l e
−jkr

4πr

]
=

I0l

4π r
sin θ e−jkr

[
jk +

1

r

]
(2.1.9)

= −I0l
4π
k2 sin θ

[
1

jkr
+

1

(jkr)2

]
e−jkr (2.1.10)

Rewriting equation 2.1.9 as equation 2.1.10 is mostly for aesthetic reasons.
This is an “easier to read” formula, seperating the constants neatly from the
oscillating and decaying parameters. Now that H is determined, the final step
can be approached using equation 2.1.4:

∇×H =
1

r2 sin θ

∣∣∣∣∣∣
r̂ rθ̂ r sin θϕ̂
∂
∂r

∂
∂θ

∂
∂ϕ

Hr rHθ r sin θHϕ

∣∣∣∣∣∣
Hϕ is the only component of H that is not 0.

Eϕ = 0
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E =
1

jωϵ

1

r2 sin θ

[
∂

∂θ
(r sin θHϕ) r̂− r

∂

∂r
(r sin θHϕ) θ̂

]
Er =

1

jωϵ

1

r2 sin θ

∂

∂θ

(
−r I0l

4π
k2 sin2 θ

[
1

jkr
+

1

(jkr)2

]
e−jkr

)
= − I0l

4π sin θ

1

ωϵ

1

jr
k2

∂

∂θ

(
sin2 θ

) [ 1

jkr
+

1

(jkr)2

]
e−jkr

= − I0l

2π
k2 cos θ

η

jkr

[
1

jkr
+

1

(jkr)2

]
e−jkr

= − I0l

2π
ηk2 cos θ

[
1

(jkr)2
+

1

(jkr)3

]
e−jkr (2.1.11)

Eθ = − 1

jωϵ

1

r sin θ

∂

∂r

(
−r I0l

4π
k2 sin2 θ

[
1

jkr
+

1

(jkr)2

]
e−jkr

)
=
I0l

4π
k2 sin θ

1

ωϵ

1

jr

∂

∂r

([
1

jk
+

1

(jk)2 r

]
e−jkr

)
= −I0l

4π
k2 sin θ

1

ωϵ

1

jr

[
1 +

1

jkr
+

1

(jkr)2

]
e−jkr

= −I0l
4π
ηk2 sin θ

[
1

jkr
+

1

(jkr)2
+

1

(jkr)3

]
e−jkr (2.1.12)

Where:

η =
ωµ

k

In the same way as Hϕ was rewritten to be “easier to read”, equation 2.1.11
and equation 2.1.12 is also written in this way. It can be seen that the different
terms that are inversely proportional to kr will decay at different rates. Hϕ

has the terms 1
jkr

and 1
(jkr)2

, of which 1
(jkr)2

decays faster as r increases. It
can then be stated that for a significantly large r, 1

(jkr)2
becomes much smaller

than 1
jkr

. This approximation is known as the far field approximation or
the Fraunhofer region. This is also applied to Er and Eθ, and since Er has

1
(jkr)2

and 1
(jkr)3

terms only, it can be approximated that Er ≈ 0. These
approximations simplify E and H to:

E ≃ jI0l

4πr
ηk sin θe−jkrθ̂ (2.1.13)

H ≃ jI0l

4πr
k sin θe−jkrϕ̂ (2.1.14)

An interesting observation to make is that:

Eθ
Hϕ

= η (2.1.15)
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The are various definitions for what are considered “significantly large r”.
According to Huang and Boyle (2008), there two definitions for this that de-
pend on the largest dimension of the antenna, D.

r >

{
3λ D < λ
2D2

λ
D > λ

When r is not significantly large, the far field approximation cannot be
made, and the field is known as near field. The near field is not as important
for the purposes of this piece of work.

To view the power pattern, the power density function must be calculated.
The time-averaged version (over one period, sinusoidal excitation) of equation
2.1.1 is used, along with equation 2.1.13 and equation 2.1.14.

S̄ =
1

2
Re [E×H∗] (2.1.16)

=
1

2
Re
[(

jI0l

4πr
ηk sin θe−jkrθ̂

)
×
(
jI0l

4πr
k sin θe−jkrϕ̂

)∗]
=

(I0lk)
2

32 (πr)2
η sin2 θr̂ (2.1.17)

From equation 2.1.17 it can be seen that S̄ only has an r̂-component, mean-
ing power is propagating in the r̂-direction. In the angular space the only
dependency is on θ, resulting in a symmetry in the ϕ-plane. This equation
follows an inverse square law with distance, as noted in section 2.1. The radia-
tion intensity is a parameter similar to radiation density, but instead measures
the power per unit solid angle, or steradian. The radiation intensity will assist
in calculating directivity.

U = r2S̄

=
(I0lk)

2

32π2
η sin2 θ (2.1.18)

The total power radiated by the dipole can be determined by integrating
S̄ over a closed spherical surface with radius r.
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P =

‹
S

S̄ · ds (2.1.19)

=

ˆ 2π

0

ˆ π

0

S̄r r
2 sin θ dθdϕ

=

ˆ 2π

0

ˆ π

0

(I0lk)
2

32π2
η sin3 θ dθdϕ

=
(I0lk)

2

32π2
η

ˆ 2π

0

[
− cos θ +

cos3 θ

3

]π
0

dϕ

=
(I0lk)

2

32π2
η

[
8π

3

]
=

(I0lk)
2

12π
η
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Figure 2.2: Hertzian dipole radiation pattern(Cartesian in dB, Normalised)

The directivity of an antenna is the radiation intensity in a certain direction
divided by the average radiation intensity (Also given as P

4π
). The direction

implied is almost always the direction of maximum radiation intensity (Balanis,
2012).
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Umax = U
(π
2

)
=

(I0lk)
2

32π2
η

D =
4πUmax
P

(2.1.20)

=
1
8
1
12

= 1.5

= 1.7609 dB

The Hertzian dipole is the simplest antenna to analyse in such a closed form
solution. Most antenna elements are extremely difficult or impossible to be
analysed in closed form and requires numerical solutions. The analysis of the
Hertzian dipole in this section is merely to demonstrate some of the properties
of antennas that will be referred to in this body of work. However, the Hertzian
dipole has no practical value. The current distribution was assumed to be
constant, which is practically impossible according to Balanis (2012). This is
however helpful for analysing larger wire antennas that can be represented by
many small Hertzian dipoles.

2.1.2 Omni-directional Antennas
Omnidirectional antennas, as mentioned before, radiates equally in a plane.
The Hertzian dipole is an example of an omnidirectional antenna, even though
it’s purely theoretical. The finite length dipole is similar to the Hertzian dipole,
although much harder to analyse mathematically and will not be derived here.
According to Balanis (2012), the E-field for a finite length dipole is given in
the far-field region which simplifies to:

Eθ ≃ jη
I0e

−jkr

2πr

[
cos
(
kl
2
cos θ

)
− cos kl

2

sin θ

]

Then from equation 2.1.15:

Hϕ ≃ j
I0e

−jkr

2πr

[
cos
(
kl
2
cos θ

)
− cos kl

2

sin θ

]

S̄ can then be calculated from equation 2.1.16:
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S̄ =
1

2
Re
[
Eθ θ̂ ×H∗

ϕϕ̂
]

S̄r =
1

2
Re

[(
jη
I0e

−jkr

2πr

[
cos
(
kl
2
cos θ

)
− cos kl

2

sin θ

])(
−j I0e

jkr

2πr

[
cos
(
kl
2
cos θ

)
− cos kl

2

sin θ

])]

=
1

2
Re

η I20
(2πr)2

[
cos
(
kl
2
cos θ

)
− cos kl

2

sin θ

]2
= η

I20
8 (πr)2

[
cos
(
kl
2
cos θ

)
− cos kl

2

sin θ

]2
U = r2S̄

= η
I20
8π2

[
cos
(
kl
2
cos θ

)
− cos kl

2

sin θ

]2
The next logical step would be to analyse the total radiated power using

equation 2.1.19, however this yields a very complicated integral. Instead of
solving this integral in closed form, numerical solutions will be obtained.

P =

ˆ 2π

0

ˆ π

0

η
I20

8 (πr)2

[
cos
(
kl
2
cos θ

)
− cos kl

2

sin θ

]2
r2 sin θ dθdϕ

= η
I20
8π2

(2π)

ˆ π

0

[
cos
(
kl
2
cos θ

)
− cos kl

2

]2
sin θ

dθ

= η
I20
4π

ˆ π

0

[
cos
(
kl
2
cos θ

)
− cos kl

2

]2
sin θ

dθ (2.1.21)

Table 2.1 shows solutions of equation 2.1.21 for some values of l. These
values can be used in equation 2.1.20 to calculate the directivity. For example,
for l = λ

4
:
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Dipole Length Umax P D D [dB]

l = λ
4

η
I20
8π2 (0.0858) η

I20
4π

(0.112) 1.5321 1.8529

l = λ
2

η
I20
8π2 (1) η

I20
4π

(1.21883) 1.6409 2.1508

l = 3λ
4

η
I20
8π2 (2.9142) η

I20
4π

(3.09681) 1.8821 2.7464

λ η
I20
8π2 (4) η

I20
4π

(3.31813) 2.411 3.822

1.25λ η
I20
8π2 (2.9142) η

I20
4π

(1.77562) 3.2825 5.162

Table 2.1: Finite length dipoles

D (θ, ϕ) = 4π
U (θ, ϕ)

P

= 4π

η
I20
8π2

[
cos (π

4
cos θ)−cos π

4

sin θ

]2
η
I20
4π

(0.112)

=

1
2π

[
cos (π

4
cos θ)−cos π

4

sin θ

]2
1
4π

(0.112)

= 17.8571

[
cos
(
π
4
cos θ

)
− cos π

4

sin θ

]2

2.1.3 Directional Antennas
When looking at figure 2.3 and figure 2.4, it would seem that the dipole ex-
hibits some directionality. It should be noted that the directivity has no ϕ-
dependency, meaning it is completely symmetrical in the ϕ-plane.

A directional antenna typically has only one axis-symmetry.
One of the most well-understood and widely used directional antennas is

the helical antenna. This antenna was first proven to work and subsequently
popularised by Kraus (1950). The geometry of the helical antenna is fairly
simple, consisting of a wire wound in a helical shape as shown in figure 2.5. At
the base of the helix, there is a circular ground plane. The wire is fed through
the ground plane by some coaxial method, where the ground is attached to
the ground plane.

The helical structure has a spacing S between N turns. The diameter of
the turns is D. Figure 2.5 also shows the relationship between S, D and L,
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Figure 2.3: Finite length dipoles directivity(Cartesian in dB)
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Figure 2.4: Finite length dipoles directivity(Cartesian in dB, normalised)

the length of wire in one turn, and α, the pitch of the wire. By changing D,
S, and N , the radiation characteristics can be controlled.

The helical antenna can operate in normal and axial mode. When operat-
ing in normal mode, the radiation pattern is similar to a dipole and is more
omnidirectional. This is accomplished when NL ≪ λ. Axial mode is of more
interest for this section as it exhibits directional radiation patterns. In order
to operate in axial mode, the following parameters are suggested by Kraus
(1950) and similarly by Balanis (2012):
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DGP

D

S

S
L

D
α

Figure 2.5: Geometrical description of the helical antenna

C = πD

3

4
<
C

λ
<

4

3
12◦ <α < 14◦

n ≥ 4

DGP >
λ

2

Closed form solutions for this type of antenna are almost impossible to
obtain. Kraus (1950) also suggests some design equations that approximate
some performance parameters and are very useful as a starting point. De-
sign equations need to be supported by simulations, and especially full wave
3D simulations. 3D electromagnetic simulation software is much more avail-
able nowadays, making the use of complicated closed form solutions mostly
redundant.

HPBW ≃ 52

C
λ

√
nS
λ

Directivity ≃ 15
CnS

λ3

R = 140
C

λ

The real part of the input impedance dominates and is typically between
100 Ω and 200 Ω. By paying close attention to the feed structure, this can be
lowered, even to 50 Ω (Balanis, 2012).
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Another very widely used directional antenna is the microstrip antenna,
also known as the patch antenna. It consists of a planar conductor in some
geometric shape placed parallel above a ground plane. The distance between
the shape and the ground plane is typically between 0.003 and 0.05 free-space
wavelengths (Balanis, 2012), and is usually filled with a substrate with 2.2 ≤
ϵr ≤ 12.

There are a variety of shapes that have good radiation characteristics but
the most common shape is a rectangular patch. The four most widely used
feed methods, according to Balanis (2012), are the microstrip line, coaxial
probe, aperture coupling and proximity coupling. Figures 2.6 and 2.7 show
rectangular patches with two different feed structures that are easy to optimise
and are widely used due to their low cost and ease of implementation. The
important parameter to optimise in these feed structures is the inset position,
indicated with i, which directly influences the input impedance.

In the case of the probe-fed patch, a hole is required at the inset position
to attach the centre conductor of a coaxial cable. The ground of the coaxial
cable must be attached to the ground plane. In the case of a line-fed patch, a
microstrip transmission line attaches to the inset position.

Probe Feed

W

L

i

Figure 2.6: Geometrical description of a probe-fed, rectangular microstrip
patch antenna

Design equations exist and are used with very good results for the design
of a patch antenna. These equations, along with the design, simulation and
prototyping of a probe-fed rectangular patch are covered in section 4.3.3.

2.1.4 Antenna Arrays
Many different antenna elements were discussed in sections 2.1.1, 2.1.2 and
2.1.3. The elements listed are some of the most widely used and well under-
stood elements. Using each element on its own may not necessarily provide
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W

L

i

Figure 2.7: Geometrical description of a line-fed, rectangular microstrip patch
antenna

the performance that is required in a system. This leads to the concept of
antenna arrays, where multiple antenna elements (typically of the same type),
are arranged in certain ways to sum up to one larger antenna element. There
are many different ways to arrange the individual elements, some of which will
be discussed.

The simplest array is the linear array, which consists of multiple antenna
elements spaced along an axis, separated by a distance d.

x

z

1 2 3 n

r

θ

d

Plan
e wave

s

Figure 2.8: Linear array (far-field approximation)

Each element is excited with the same amplitude Em, but the phase in
element 2 leads that of 1 by ξ2 (Cheng, 2014). Similarly, the phase in element
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n leads that of 1 by ξn. F (θ) is the element pattern, that describes the
radiation pattern of a single element. In the case of the Hertzian dipole, it is
equation 2.1.13. An array can be analysed irrespective of its element patterns,
by separating the element pattern from the array factor. The array factor is a
function that describes the behaviour of the array as a result of the following
properties of the array, as suggested by Balanis (2012):

• Geometrical placement

• Spacing

• Number of elements

• Element excitation (Magnitude and phase)

Consider the array shown in figure 2.8. The E-field in the far field for each
element is:

E1 = EmF (θ)
e−jkr

r

Analysing this array in the far field (in the xz/θ/elevation plane), the total
E-field can be written as:

Et = Em
F (θ)

r
e−jkr

[
1 + ejkd sin θejξ2 + ej2kd sin θejξ3 + · · ·+ ej(n−1)kd sin θejξn

]
(2.1.22)

= Em
F (θ)

r
e−jkr

n∑
N=1

ej(N−1)kd sin θejξN

Thus the array factor is:

AF =
n∑

N=1

ej(N−1)kd sin θejξN (2.1.23)

The phase term introduced by the array, ej(N−1)kd sin θ, originates from the
extra distance that a plane wave needs to travel (after reaching element n)
when approaching from an angle θ, to reach element 1, the reference element.
In this section it will be assumed that all the excitations are in phase, thus
ξ2 to ξn is zero. Arrays with non-zero phase excitations are known as phased
arrays and are discussed in section 2.2.1.

To see the individual effect of the array factor, simply plot the magnitude,
|AF |:
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Figure 2.9: |AF | for varying d, n = 4

Figure 2.9 and figure 2.10 shows |AF | for different steps of d and n. In-
creasing d increases the amount of sidelobes that are introduced, and decreases
the HPBW . Increasing n increases gain at the cost of HPBW . These two
figures only plot the pattern from −90◦ to 90◦. The array factor in this case is
mirrored through the xy-plane, so it will have the pattern repeated from 90◦

to 270◦. When the main lobe is pointing perpendicular to the axis on which
the array is arranged, it is a broadside array, and when it is pointing along the
axis, it is an endfire array.

A derivation of the array factor of a planar array, which will be useful in
further sections can be found in Appendix A.

2.2 Beamforming
The concept of antenna arrays were introduced in section 2.1.4. The term
phased arrays was used to describe arrays with non-zero phase excitations.
Most arrays, especially phased arrays, need some form of feed network, that
manipulate the signals that are fed to the antenna elements. This can consist
of amplitude weighting, time delays, phase shifts, and splitting and combining
of power, as suggested by Mailloux (2005). The feed network that does this is
commonly referred to as a beamforming network (BFN).
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Figure 2.10: |AF | for varying n, d = 0.5λ

2.2.1 Phased Arrays
Phased arrays are the simplest BFN’s, aside from what was discussed in section
2.1.4, which could be considered a BFN as it involves a power combiner to
combine the signals from the individual elements. In this section the concept
is expanded and a phase shift is added.

Σ

1

ξ1

2

ξ2

3

ξ3

4

ξ4
BFN

Figure 2.11: 4-element BFN

Figure 2.11 shows a basic 4-element BFN, on which the following analy-
sis will be based. Element 1 is chosen as the phase reference, thus ξ1 = 0.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. LITERATURE STUDY 21

The phase shift ξN is chosen to cancel out its corresponding phase term,
ej(N−1)kd sin θ, in the array factor equation 2.1.23. Cancelling out the afore-
mentioned phase term makes it appear from the point of the antenna that the
direction of arrival of a plane wave approaching from θ0 is actually θ = 0◦.

ξN = − (N − 1) kd sin θ0 (2.2.1)
ξ2 = −kd sin θ0
ξ3 = −2kd sin θ0

ξ4 = −3kd sin θ0

To illustrate an example, |AF | is shown in figure 2.12, with different values
for θ0. Some interesting things to note, with θ0 = 0◦, the array is a broadside
array, and for θ0 = 90◦, the array is an endfire array.

−180 −135 −90 −45 0 45 90 135 180
−10

−5

0

3

6

θ

|A
F
|[

dB
]

θ0 = 0◦

θ0 = 10◦

θ0 = 30◦

θ0 = 45◦

θ0 = 60◦

θ0 = 90◦

Figure 2.12: |AF | for varying θ0, n = 4, d = λ
2

The difference between ξ2 and ξ1, or more generally, ξp = ξN − ξN−1, is
known as the progressive phase difference. For a uniform phased array, ξp is
constant between all elements, which will be the case for most arrays.
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There are limitations to what values can be chosen for θ0. Solving for θ0
in equation 2.2.1:

ξN = − (N − 1) kd sin θ0

ξp = ξ2 = −kd sin θ0 (2.2.2)

θ0 = sin−1

[
−ξp
kd

]
(2.2.3)

The argument in the arcsin function is bound to the conditions:

−1 ≤−ξp
kd

≤ 1 (2.2.4)

−kd ≤− ξp ≤ kd (2.2.5)

k is the wavenumber, thus k = 2π
λ

, and d is almost always chosen in terms
of wavelength, thus kd is replaced with 2πi, where i is the spacing d in terms
of wavelengths:

i =
d

λ

Rewriting equation 2.2.5:

−2πi ≤ξp ≤ 2πi

Figure 2.13 shows some possible combinations of i and ξp for a resulting
θ0.

Any type of device that has a structure that is related to wavelength will
be frequency-dependent. The phased array is no exception. If a system is
designed to operate at a centre frequency fc, with bandwidth B, then two
frequency points can be defined as the lower and upper edges of the operating
frequency band:

fL = fc −
B

2

fH = fc +
B

2

Which leads to their respective wavelengths λL and λH .
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Figure 2.13: Limits of scan angle θ0 for varying i

λL =
fL
c0

=
fc − B

2

c0

= λc −
B

2c0

λH =
fH
c0

=
fc +

B
2

c0

= λc +
B

2c0

With bandwidth as a percentage of the centre frequency:

B% =
B

fc

λL =
fL
c0

=
fc − B%fc

2

c0

= λc

(
1− B%

2

)
λH =

fH
c0

=
fc +

B%fc
2

c0

= λc

(
1 +

B%

2

)
Since the system is designed to operate at fc, it will have a corresponding

spacing d related to the wavelength of fc, and subsequently a progressive phase
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difference ξp will be calculated as in equation 2.2.2, for a given θ0. equation
2.2.3 can be rewritten to include the effect of frequency change:

θL = sin−1

[
−ξp
2π
λL
iλc

]

= sin−1

 −ξp
2π

λc
(
1−B%

2

)iλc


= sin−1

−ξp
(
1− B%

2

)
2πi
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−20

0

20

40

ξp

θ 0

fc
fL
fH

Figure 2.14: Change in scan angle θ0 over frequency, i = 0.5, B% = 0.2

Figure 2.14 shows an example of a phased array, designed for 20% band-
width. The spacing between elements is d = λ

2
. The scan angle with ξp = −60◦

is about 2◦ below and above its normal value for fL and fH respectively.
This might seem like a small error, but as the bandwidth increases, or the
beamwidth decreases, this effect becomes significant.

2.2.2 Multiple Beam Array
One of the simplest BFN’s, the phased array, is discussed in section 2.2.1.
Figure 2.15 shows a multiple beam array, which is very similar to the phased
array, except that it has multiple beam ports, according to Mailloux (2005).
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Basically, power from the antenna element is divided equally by N (for N
beams), and every beam is fed through its own phased array network.

1 2 3 4

Beam 1 Beam 2 Beam 3 Beam 4

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Figure 2.15: Example of a 4-element Multiple beam beamformer

Every Σ block is a power splitter/combiner, and every dashed line has a
phase shifter. This network uses 4 power splitters, 4 power combiners, and 12
phase shifters, which is a high component count as stated by Bhattacharyya
(2006). The Butler Matrix is a multiple beam BFN (MBBFN) that can im-
plement the network in figure 2.15 much more efficiently, and will be discussed
in detail in Chapter 3.

An important parameter of multiple beam BFN’s is beam crossover level,
which is the point at which two adjacent beams cross. BFN’s should be de-
signed in a way to maximise angular coverage, but still consider the beam
crossover level as not to cause dips in gain.

2.2.3 Digital Beamforming
A digital beamformer is a BFN that exists mostly in the digital domain. Where
a conventional BFN employs phase shifters and power dividers and combiners
in the RF domain, a digital BFN (DBFN) digitizes the signal, and through
complex algorithms apply phase shifts and other mathematical operations to
have the desired beam formed.

The digitizing section requires an analog-to-digital converter (ADC) for
each antenna element. Due to limitations in ADC technology, it is not always
feasible or possible to directly convert the radio frequency (RF) signal into
the digital domain. A downconverter needs to be placed after the antenna
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element, converting the RF to an intermediate frequency (IF). The downcon-
verter, along with low noise amplifiers (LNA) and IF filters are included in the
RF block in figure 2.16.

1

A/D

RF

2

A/D

RF

N

A/D

RF

Digital processor

Beam 1 Beam 2 Beam M

Digital domain

Figure 2.16: Digital beamformer - receive array

The designer of such a system will go to many lengths to insure that every
one of the RF and digitizing chains are identical, but practically speaking
this is extremely hard to achieve. However, since most of this beamformer is
digital, thus the errors in the physical system can easily be calibrated out, or
corrected for in software, as suggested by Litva and Lo (1996).

The “beam” formed by a DBFN is different from a conventional beam,
as it exists in the digital domain only. This can be a great advantage, as
most processing (demodulating, correlating, etc.) that is done on RF signals
nowadays is done in the digital domain anyway. Since this digital beam is now
already in the digital domain, it can easily be passed on to many endpoints.

All the (electromagnetic) information that is incident on each of the an-
tenna elements, and within the operating range of the RF front-end and ADC’s,
is captured. This makes the DBFN the most flexible of any BFN, as any dig-
ital processing can be done on the incoming information, limited only by the
memory, speed and data bandwidth of the processor. There is also no need for
power splitters to implement multiple simultaneous beams, as the incoming
data can just be copied as many times as needed and processed in parallel,
given enough processing power.

In a conventional BFN, the time to process a signal from arriving at the
antenna until it exits the beam port happens at the speed of light. This is not
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the case with DBFN, as some time is required for analog to digital conversion
and processing. Most cases where BFN’s and DBFN’s are used, real-time
operation is required, but fields such as radio astronomy do not necessarily
require real-time operation. The data can be stored and processed over a
longer period of time. This has the advantage of being able to run different
algorithms on exactly the same data, especially when very complex algorithms
are utilised that require a lot of processing power and can thus not be run in
parallel. Storing the data also allows operations to be done on data sets from
different locations and even times, this is very useful in radio astronomy.

Processing power is one of the biggest obstacles for DBFN’s. This is be-
coming less and less of a problem as field programmable gate array (FPGA)
technology is becoming much more widely available, especially System-on-Chip
(SoC) technology. An SoC can incorporate a complete system from the RF
chain to the application processor in one single chip, greatly reducing on power
consumption and BOM cost.
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Chapter 3

The Butler Matrix

This chapter will describe the Butler Matrix concept and analyse the theory
behind it. The orthogonality principle will then be applied. A general deriva-
tion for a N th-order Butler Matrix will be done, followed by a brief discussion
about the equivalence between the Butler Matrix and the Fourier Transform.

3.1 Concept
The Butler Matrix is a BFN that was first described by Butler and Lowe
(1961). It is essentially a more efficient version of the BFN mentioned in
section 2.2.2. The number of beams, N , are equal to the number of antenna
elements, N = 2m, where m is a positive integer. According to Mailloux
(2005), the Butler Matrix is an implementation of the Fast Fourier Transform
(FFT), meaning it is also the most efficient implementation with regards to
computations (power combiners/splitters/phase shifters). One drawback of
this BFN is that the beams are fixed.

3.2 Derivation
Figure 3.1 is similar (if not identical) to figure 2.15. The concept is that beam
port 1, or B1, represents an 4-element phased array, with complex weights
a = [a1 a2 a3 a4]. Assuming uniform amplitude excitation at the element ports,
the array factor is:

AFB1 =
4∑

n=1

ej(n−1)kd sin θejψa(n−1) (3.2.1)

In equation 3.2.1, ψa is the progressive phase shift between element ports.
Similarly for B2 to B4, the array factor can be written, with ψb, ψc, and ψd
as the progressive phase shifts. There will be a total of 12 (the first element

28
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in the excitation vector is always 1) complex excitation vectors defined for a
4-element BFN like the one shown in figure 3.1.

a = [a1 a2 a3 a4] =
[
1 ejψa ej2ψa ej3ψa

]
(3.2.2)

b = [b1 b2 b3 b4] =
[
1 ejψb ej2ψb ej3ψb

]
(3.2.3)

c = [c1 c2 c3 c4] =
[
1 ejψc ej2ψc ej3ψc

]
(3.2.4)

d = [d1 d2 d3 d4] =
[
1 ejψd ej2ψd ej3ψd

]
(3.2.5)

E1 E2 E3 E4

B1 B2 B3 B4

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Figure 3.1: Example of a 4-element Butler Matrix

3.2.1 Orthogonality
The beams generated by the Butler matrix are orthogonal. When applying
a signal to a specific beam port on an orthogonal BFN, that signal will only
appear at the beam associated with that beam port, according to Hansen
(2009). In simple terms, the beam ports are isolated. For the BFN in figure
3.1 to be orthogonal, equation 3.2.6 must hold:

4∑
n=1

anb
∗
n =

4∑
n=1

anc
∗
n =

4∑
n=1

and
∗
n = 0 (3.2.6)

Equation 3.2.6 can be written in vector form, where b represents the com-
plex conjugate of the vector b.
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a · b = 0 (3.2.7)
a · c = 0 (3.2.8)
a · d = 0 (3.2.9)

From equation 2.2.1 the progressive phase difference is:

ψa = −kd sin θa (3.2.10)

where θa is the direction of the main beam associated with B1. Similar
steps can be followed for ψb, ψc, and ψd:

ψb = −kd sin θb (3.2.11)
ψc = −kd sin θc (3.2.12)
ψd = −kd sin θd (3.2.13)

Solve for a · b:

a · b = 1 + ejψae−jψb + ej2ψae−j2ψb + ej3ψae−j3ψb (3.2.14)
= 1 + ej(ψa−ψb) + ej2(ψa−ψb) + ej3(ψa−ψb) (3.2.15)

Equation 3.2.15 is a geometric series in the form
∑n−1

k=0 ar
k = a

(
1−rn
1−r

)
, and

can be written as:

3∑
n=0

ejn(ψa−ψb) =
1− ej4(ψa−ψb)

1− ej(ψa−ψb)
(3.2.16)

So to satisfy orthogonality between a and b:

a · b =
1− ej4(ψa−ψb)

1− ej(ψa−ψb)
= 0 (3.2.17)

Two conditions need to hold:

1. ej4(ψa−ψb) = 1

2. ej(ψa−ψb) ̸= 1
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The solution to condition 1 is:

4 (ψa − ψb) = 2mπ (3.2.18)

(ψa − ψb) =
mπ

2
(3.2.19)

m = 0, 1, 2 . . . (3.2.20)

Condition 2 will only be violated when:

m = 0, 4, 8 . . . (3.2.21)

Thus ψb can be rewritten in terms of ψa:

ψb = ψa −
mπ

2
(3.2.22)

To conclude, both conditions will be satisfied for any integer value of m,
except 0, and multiples of 4. The same steps followed from equation 3.2.17
onward can be followed for dot-products between all the excitation vectors.

ψc = ψa −
kπ

2
(3.2.23)

ψd = ψa −
pπ

2
(3.2.24)

The constants k and p are chosen in a similar fashion than m. Each beam’s
progressive phase shift must be different, thus m ̸= k ̸= p. As an easy example,
the constants are chosen as m = 1, k = 2 and p = 3.

ψa = −kd sin θa (3.2.25)

ψb = ψa −
π

2
(3.2.26)

ψc = ψa − π (3.2.27)

ψd = ψa −
3π

2
(3.2.28)

Following equations 3.2.11, 3.2.12, and 3.2.13, the beam angles associated
with the specific beam ports can now be calculated. An interesting observation
made by Bhattacharyya (2006) is that the beams are spaced equally in sin θ-
space, leading to:

∆sin θpeak =
π

2kd
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3.2.2 Limitations
The same limitation that was laid out in equation 2.2.5 for the progressive
phase shift ξp, applies to all the phase shifts ψa to ψd. To simplify the equations
further, kd = 2πi, where i is element spacing in terms of wavelength.

θa = sin−1

[
−ψa
2πi

]
(3.2.29)

sin θb =
−ψb
2πi

=

(
sin θa +

1

4i

)
(3.2.30)

sin θc =
−ψc
2πi

=

(
sin θa +

1

2i

)
(3.2.31)

sin θd =
−ψd
2πi

=

(
sin θa +

3

4i

)
(3.2.32)

The progressive phase shift that will be the first to fail the inequality is ψd.

−1 ≤ sin θd ≤ 1

−1 ≤
(
sin θa +

3

4i

)
≤ 1

Equation 3.2.32 shows the relationship between sin θd and sin θa for a given
i. The range of sin θd is shown in figure 3.2, over θa and for possible values
of element spacing. This illustrates the limitation when choosing the element
spacing and beam angle θa, as sin θd cannot violate the inequality in equation
3.2.33.

3.2.3 Generalised Derivation
It is possible to derive equations for progressive phase shift for a orthogo-
nal BFN with N beam ports (Bhattacharyya, 2006). Equation 3.2.16 can be
written for N antennas elements:

N−1∑
n=0

ejn(ψa−ψb) =
1− ejN(ψa−ψb)

1− ej(ψa−ψb)
(3.2.33)

Orthogonality must be proved between vectors a and b, a and c and be-
tween a and every N subsequent vector.

ψb = ψa −
2mπ

N
(3.2.34)

m = 1, 2, 3, . . . m ̸= 0, N, 2N, . . . (3.2.35)
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Figure 3.2: Valid region for orthogonality condition

Dot product Progressive phase shift Constant

a · b ψb = ψa − 2m1π
N

m1 = 1

a · c ψc = ψa − 2m2π
N

m2 = 2

a · d ψd = ψa − 2m3π
N

m3 = 3

· · ·

a · (Nthvector) ψNth
= ψa − 2mN−1π

N
mN−1 = N − 1

Table 3.1: Dot products for an N beam BFN

It can be seen that there is a constant difference between ψb and ψa, ψc
and ψb, and ψN and ψN−1. From table 3.1 this progression is 2π

N
. The spacing

of main beams can then be written as:

∆sin θpeak =
2π

Nkd

3.3 Fourier Transform Equivalence
The Fourier Transform is a well known transformation from the time domain
to the frequency domain. It has uses in transformations in other domains as
well. In the case of the Butler Matrix, it relates the beam port voltages and
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the element port voltages (Bhattacharyya, 2006). Examining figure 3.1 from
the element port side, with non-uniform amplitude excitations, yields:

E1 = V1e
jψa1 + V2e

jψb1 + V3e
jψc1 + V4e

jψd1 (3.3.1)

Similarly, for E2, E3 and E4:

E2 = V1e
jψa2 + V2e

jψb2 + V3e
jψc2 + V4e

jψd2 (3.3.2)
E3 = V1e

jψa3 + V2e
jψb3 + V3e

jψc3 + V4e
jψd3 (3.3.3)

E4 = V1e
jψa4 + V2e

jψb4 + V3e
jψc4 + V4e

jψd4 (3.3.4)

Which can be written in terms of progressive phase shifts:

E1 = V1 + V2 + V3 + V4 (3.3.5)
E2 = V1e

jψa + V2e
jψb + V3e

jψc + V4e
jψd (3.3.6)

E3 = V1e
j2ψa + V2e

j2ψb + V3e
j2ψc + V4e

j2ψd (3.3.7)
E4 = V1e

j3ψa + V2e
j3ψb + V3e

j3ψc + V4e
j3ψd (3.3.8)

...
En+1 = V1e

jnψa + V2e
jnψb + V3e

jnψc + V4e
jnψd (3.3.9)

= V1e
jnψa + V2e

jn(ψa−π
2 ) + V3e

jn(ψa−π) + V4e
jn(ψa− 3π

2 ) (3.3.10)

A value must be chosen for ψa. This can be chosen for a desired beam
angle of θa. A value of ψa = 3π

4
will be chosen, this will distribute the beams

evenly around 0◦.

En+1 = V1e
jn 3π

4 + V2e
jnπ

4 + V3e
−jnπ

4 + V4e
−jn 3π

4 (3.3.11)
(3.3.12)

Replace π
4

with the variable ω, which has no relation to frequency:

En+1 = V1e
j3nω + V2e

jnω + V3e
−jnω + V4e

−j3nω (3.3.13)

From Fourier transform tables:

F [δ (t)] = 1 (3.3.14)
F [f (t− t0)] = F (ω) e−jωt0 (3.3.15)

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3. THE BUTLER MATRIX 35

The terms in equation 3.3.13 can be written in a form that is similar to the
right-hand side of equation 3.3.15. A function f (x) can easily be constructed
using equation 3.3.14 and equation 3.3.15, of which the Fourier transform
would be:

F [f (x)] = F (nω) = En+1 (3.3.16)
f (x) = V1δ (x+ 3) + V2δ (x+ 1) + V3δ (x− 1) + V4δ (x− 3) (3.3.17)

F (nω) is actually a continuous function over nω, but since ω = π
4

and n
a discrete index, the only values of interest will be nω = 0, nω = π

4
, nω = π

2

and nω = 3π
4

. F (nω) is calculated as an example, with the following values,
and plotted in figures 3.4a and 3.4b.

• V1 = 1

• V2 = 1.5

• V3 = 2

• V4 = 0.5

−3 −1 0 1 3
0

V1

V2

V3

V4

x

f
(x
)

Figure 3.3: Excitation amplitudes as f (x)

The values from F (nω) represent actual excitations, and can be used as
excitation coefficients to plot an array factor. It should be noted that the array
factor is highly dependent on the spacing between the array elements. It does
not, however, effect the orthogonality. A couple of examples will be shown.

The excitation magnitudes from figure 3.3 are used to demonstrate the
example. The array setup is similar to that in figure 2.8, with 4 isotropic
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Figure 3.4: Magnitude and phase of F [f (x)]

elements placed along the x-axis. The spacing is d = λ
2
. Figure 3.5 shows the

individual beams (only one excitation applied at a time), equal excitations are
used. Figure 3.6 shows the same but with different excitations, along with the
combined beam (all excitations simultaneously).

−90 −45 0 45 90
−10
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−4

−2

0
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θ

|A
F
|[

dB
]

V = [1, 0, 0, 0]
V = [0, 1, 0, 0]
V = [0, 0, 1, 0]
V = [0, 0, 0, 1]

Figure 3.5: |AF | - Single beams

Figure 3.7 shows certain pairs of excitations. This displays how the different
beams combine, and gives an indication that sidelobes and nulls have a big
effect on the resulting beam. Finally figure 3.8 shows 2 beams, but for varying
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Figure 3.6: |AF | - Single port excitations

amplitude of one of the beams. This confirms that the power on one port can
be varied, which results in power in the associated beam varying, without it
affecting the beam associated with another beam port.

It can be concluded that an orthogonal multiple beam BFN like the one dis-
cussed in this section computes the Fourier Transform of the beam excitation,
and delivers the output on the antenna element ports. The Butler Matrix is
efficient implementation of an orthogonal BFN (the Fourier Transform), which
is similar to a Fast Fourier Transform. (Bhattacharyya, 2006)
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Figure 3.7: |AF | - Different beam pairs
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Figure 3.8: |AF | - Increasing excitation on 1 beam
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Chapter 4

Implementation of the Butler
Matrix

This chapter will discuss how the Butler Matrix can be implemented, and 2
different implementations will be proposed, followed up by simulations and
practical implementations. These 2 implementations differ in both frequency
of operation and components.

4.1 Ideal Implementation
The Butler Matrix can be implemented using quadrature hybrids and phase
shifts to apply the necessary power division/combination and multiplication.
To illustrate a completely ideal implementation, a model was built in AWR
Microwave Office using phase specified transmission lines. This is the perfect
way to start off a design as it can confirm the core theory.

The model is based on the “Hybrid Matrix” derived by Bhattacharyya
(2006) using the FFT algorithm to implement equation 3.3.16, and on a sim-
ilar implementation done by Adamidis et al. (2019). Shown in figure 4.1, it
comprises of 4 interconnected hybrid couplers, with 2 45◦ phase shifts applied
using transmission lines.

This model is of course not practical, and the reasons will be discussed in
section 4.2. The results related to this model are discussed in section 5.1.

4.2 Practical considerations
The biggest concern with implementing the Butler Matrix is the two lines that
cross, shown in figure 4.2 and labelled b and c. Assuming that the implemen-
tation will be on a single layer microstrip transmission line, there is no way
that two lines can cross without breaking the ground plane by routing one of
the lines on the bottom of the substrate. The only option is then to break
the ground plane in some way, but to keep the disturbance to a minimum,
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Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4. IMPLEMENTATION OF THE BUTLER MATRIX 40

Figure 4.1: AWR circuit of ideal circuit

or have some compensation to restore the line impedance. With two lines
crossing, they will be in close proximity to each other, thus there is a risk of
coupling. However, if the lines cross perpendicularly, the coupling will be kept
to a minimum.

The second concern is that the line labelled b in figure 4.2 has zero length,
which is not realisable. When b is replaced with a finite length line, it will be
physically longer than line a because of the placement of the hybrids, as long
as a is a straight line. To realise the 45◦ phase difference, a must be meandered
that it is 45◦ electrically longer than b.

4.3 Microstrip Implementation at 1.5 GHz
The Butler Matrix can be implemented on a microstrip interface, which will be
the preferred interface for this piece of work due to its ease of manufacturing
and reduced cost. The first implementation will be designed to operate at 1.5
GHz. Most of the components used in this implementation, like the hybrid
couplers, rely on transmission-line lengths. This means its size scales inversely
with frequency, making it impractically large for lower frequencies (< 750
MHz) and small for higher frequencies (> 20 GHz).
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B1

B2

B3

B4

E1

E2

E3

E4

a

a

bc

Figure 4.2: Butler Matrix - Indicating non-zero and crossing lines

Frequency 1.5 GHz
Z0 50 Ω
Z0√
2

35.36 Ω

ϵr 3.5
Board thickness 0.508 mm

Line width (50Ω) 1.075 mm
Line width (35.36Ω) 1.834 mm

Quarter wavelength (50Ω) 30.18 mm
Quarter wavelength (35.36Ω) 28.717 mm

Table 4.1: Microstrip Implementation at 1.5 GHz - Design parameters

4.3.1 Simulation
A real implementation of Butler Matrix will have to overcome the shortcomings
of the ideal implementation mentioned in section 4.2. The first step to start
a microstrip implementation is to define the various parameters for microstrip
lines.

Table 4.1 lists the required line widths and lengths associated with the
operating frequency on the specified substrate for a characteristic impedance
of 50 Ω. A characteristic impedance of 35.36 Ω is also required for the hybrid
coupler.

Referring to figure 4.2, to overcome the issue of the crossing lines, line b is
cut about half of a 50 Ω-line width on both sides of line c. This allows just
enough space for an 0805 resistor to be soldered across line c. The resistor
only has conductive material on its ends, making it possible to mount it on
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top of line c without risk of having electrical contact with line c. A 0Ω resistor
is used. Figure 4.3a shows the crossing.

The length of line c (and consequently b), is chosen so that there is the
same length of separation between B2 and B3 than between B1 and B2, as can
be seen in figure 4.2. Line b and c cross with a 45◦ angle meaning that the
separation between B2 and B3 will directly influence the length of a. Extra
line length is added horizontally to create more separation between the hybrids
on the left side and on the right side, to create enough space for a meander.

The total length of a including the meander, is set to the electrical length
of c plus 45◦. The resulting circuit is shown in figure 4.3b.

(a) Microstrip implementation, b-c lines
crossing (b) Less ideal microstrip implementation

with folded line

Figure 4.3

Figure 4.4: 3D Model of Butler Matrix in CST
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Measured ports 50 Ω Terminated ports
Setup 1 1, 2, 3, 4 5, 6, 7, 8
Setup 2 1, 2, 5, 6 3, 4, 7, 8
Setup 3 1, 2, 7, 8 3, 4, 5, 6
Setup 4 3, 4, 5, 6 1, 2, 7, 8
Setup 5 3, 4, 7, 8 1, 2, 5, 6
Setup 6 5, 6, 7, 8 1, 2, 3, 4

Table 4.2: Microstrip Implementation - Measurement setup

AWR uses closed-form methods to solve these circuits, and doesn’t perform
a full-wave simulation. This is not as accurate as is required, especially in the
case with the crossing lines. To accurately simulate this, a full-wave simulation
is required. This layout was built in CST Studio, and a full wave simulation
of this network was performed, using the frequency domain solver. Figure 4.4
shows the 3D model in CST Studio, having the same dimensions as the model
in AWR, but more accurately modelling the fringing fields of the 0 Ω resistor
in the crossover. The 0Ω resistor is modelled with a strip of copper suspended
in air over the line that it crosses. The width, length and thickness of the strip
are the same as the conductive strip on the resistor.

The results of these two simulations will be discussed in section 5.2.

4.3.2 Physical Implementation
As indicated by the discussion in section 5.2, the results of the simulation
were adequate to motivate a physical implementation. The first step is to use
the same dimensions and properties defined in the simulation to manufacture
a physical printed circuit board (PCB). There already exists a complete 3D-
model that was constructed for full wave simulation, which was exported from
CST and manufactured. The manufactured PCB was finalised by soldering
the 0 Ω resistor and SMA connectors onto the board.

The network was then measured on a 4-port network analyser, but since
the network in question is an 8-port network, a set of 6 measurements had to
be done and recombined to construct the complete 8× 8 matrix of scattering
parameters. Table 4.2 lists the different ports that are measured with each
setup. The ports not being measured during a specific setup are terminated
with a 50 Ω SMA load.

The results will be discussed in section 5.2.2.

4.3.3 Antenna Integration
The results in section 5.2.2 seems to confirm that the microstrip circuit provides
all the necessary parameters:
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Figure 4.5: Microstrip implementation - measurement setup

• Good match (return loss)

• Isolation between beam ports

• Isolation between element ports

• Transmission magnitude

• Transmission phases/Progressive phase shifts

This gives confidence that the Butler Matrix (In this implementation) has
the multiple beam beamforming capabilities as discussed in Chapter 3. To
confirm this hypothesis, a pin-fed microstrip patch antenna array was designed,
consisting of 4 elements. As the design of the antenna is not the topic of this
thesis, only a brief explanation of the design will be given.

The design process of a transmission-line model rectangular patch, as out-
lined by (Balanis, 2012), was followed. The first step is to calculate the effective
dielectric constant, ϵeff of the substrate, using equation 4.3.1:
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L = a 52.8 mm
W = b 67.7 mm
d = λ

2
99.9 mm

c 16.5 mm

Table 4.3: Microstrip antenna array dimensions

W

h
> 1

ϵeff =
ϵr + 1

2
+
ϵr − 1

2

[
1 + 12

h

W

]−1
2

(4.3.1)

The next step is to calculate the effective length, Leff = L + 2∆L, which
is a result of fringing fields. For this application, Leff is λ

2
. ∆L is a function

of ϵeff and W
h

and can be approximated with equation 4.3.2:

∆L

h
= 0.412

(ϵeff + 0.3)
(
W
h
+ 0.264

)
(ϵeff − 0.258)

(
W
h
+ 0.8

) (4.3.2)

Finally the width W of the patch is calculated using equation 4.3.3.

W =
c0
2fr

√
2

ϵr + 1
(4.3.3)

The parameters used in these equations are:

W − Width of the patch
L − Length of the patch
h − Substrate height
fr − Resonant frequency
c0 − Speed of light
ϵr − Dielectric constant

This Butler Matrix was designed to operate at 1.5 GHz, thus fr = 1.5 GHz.
The substrate chosen was Rogers 4003C, h = 1.524 mm, ϵr = 3.5. Figure 4.6
shows the configuration of the array, along with the required dimensions listed
in table 4.3. The dimensions of the substrate on which the patches are located
is 2b× 9a.
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c

d

a

b

Figure 4.6: Microstrip antenna array dimensions

A model of a single patch was built in CST. Each patch is pin fed, and the
location where the pin is located (Distance c from the W -edge) greatly influ-
ences the input impedance of the antenna. The input impedance is required
to be around 50 Ω. The distance c was determined by optimisation in CST to
achieve the lowest return loss at 1.5 GHz. The resulting return loss (s11) is
shown in figure 4.7a. The match is good at 1.5 GHz, but falls off quickly, this
is expected as patch antennas are known to be narrow-band. The directivity
is shown in figure 4.7b, where the red line represents a single patch, and the
blue line represents the 4-element array.
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(b) Microstrip patch CST simulation -
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Figure 4.7

Following these results, the antenna was manufactured. The findings in
table 5.20 suggest that the element ports need to be connected to the antenna
array in a different order. Figure 4.8 shows the order in which the individual
patches were connected to the element ports on the Butler Matrix during
the measurement. The antenna was mounted in the anechoic chamber in the
antenna lab at Stellenbosch University, as shown in figure 4.9. The measured
results are discussed in section 5.2.3.
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A4 A3 A2 A1

B1B2B3B4

E1E2E3E4

Figure 4.8: Interconnection between microstrip patch and Butler Matrix

4.4 Microstrip Implementation at 15 GHz
Although the implementation in section 4.3 worked very well, there are some
points that need investigation, leading to this implementation at 15 GHz:

• Decrease the total size due to shorter wavelength

• Yield a much larger bandwidth

• Showcase an alternative to the 0 Ω resistor crossing method

• Prove the Butler Matrix can work for Ku-band applications

The first issue with this implementation is the 0Ω resistor. The wavelength
is only a tenth of what it was for the 1.5 GHz version, meaning that small
disturbance in path length now has a much bigger effect. Traii (2008) suggests
cascading two hybrid couplers to synthesise a crossover. Figure 4.10 shows an
example of such a crossover, with Q1 and Q2 denoting the couplers. P1 and
P2 denotes the signal passing in each transmission line between the couplers.
Pozar (2011) analyses the hybrid coupler, and the outputs can be written as:

P1 =
−jA1 − A2√

2

P2 =
−A1 − jA2√

2

B1 = jA2

B2 = jA1
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Figure 4.9: Microstrip patch array, mounted in anechoic chamber

The only issue with this implementation of a crossover is that its bandwidth
is now limited because a hybrid coupler is bandwidth limited. However, the
Butler Matrix already consists of 4 hybrids, meaning the bandwidth is already
limited.

Q1 Q2

A1

A2

B1

B2

P1

P2

Figure 4.10: Crossover, utilising 2 quadrature hybrids

4.4.1 Simulation
An ideal version (using phase specified transmission lines) of this implemen-
tation was simulated in AWR, the circuit is shown in figure 4.11. The results
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Frequency 15 GHz
Z0 50 Ω
Z0√
2

35.36 Ω

ϵr 3.5
Board thickness 0.203 mm

Line width (50Ω) 0.43 mm
Line width (35.36Ω) 0.72 mm

Quarter wavelength (50Ω) 2.9 mm
Quarter wavelength (35.36Ω) 2.58 mm

Table 4.4: Microstrip Implementation at 15 GHz - Design parameters

can be found in section B.4 and since it is almost identical to the results in
section 5.1, it won’t be discussed here.

Figure 4.11: Ideal AWR model, with hybrid crossover

A 3D model, similar to the one discussed in section 4.3.1 was constructed
and simulated using the frequency domain solver. There are only a couple
of differences. The obvious one is that it is much smaller. This can immedi-
ately be observed from the design parameters listed in table 4.4. The quarter
wavelength is not much longer than the track width, for this reason a thinner
substrate was chosen to keep the line width much narrower than the quarter
wavelength.

The 0Ω resistor crossover was replaced with the quadrature hybrid crossover.
The meander was also changed slightly to accommodate for the required phase
shift. The last change that was implemented is the feed lines. The physical
size of the Butler Matrix section was too small and there was not enough space
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to fit connectors, hence the feed lines were added. They are all electrically the
same length. Figure 4.13 shows the 3D model.

Figure 4.12: CST model, with hybrid crossover, feed lines

The simulation results are summarised and discussed in section 5.3.1. Much
higher losses were seen compared to other implementations. This can be at-
tributed to much longer path lengths due to the feed lines and thinner lines
because a thinner substrate was used, resulting in higher conduction losses.
Despite the higher losses, and greater phase length error, the average progres-
sive phase shift was still close to the ideal. The circuit was manufactured, and
will be discussed in section 4.4.2.

4.4.2 Physical Implementation
The circuit discussed in section 4.4.1 was manufactured. The manufactured
circuit can be seen in figure 4.13. An attempt was made to add a TRL (Thru-
reflect-line) calibration kit to the PCB, with the line lengths identical to the
feed lines. The purpose of the TRL circuit was to calibrate out the losses
and path lengths of the feed lines. However, the TRL circuit wasn’t designed
correctly and was thus not used during the measurement of this circuit. The
results are discussed in section 5.3.2.
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Figure 4.13: Manufactured PCB, with TRL calibration
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Chapter 5

Results

This chapter discusses the results obtained from the various simulations and
practical measurements discussed in Chapter 4. Conclusions are also discussed
regarding the results and the overall performance of the underlying circuits.

5.1 Ideal Implementation
Even though this is an ideal implementation that will have a perfect match to
50 Ω, it is still dependent on line lengths, so it will only have a good match
over a finite frequency range. For the purposes of bandwidth analysis in this
section, an operating bandwidth of 10% will be assumed, centred around the
centre frequency, 1.5 GHz. All of the scattering parameters are graphed in
Appendix B, but a reference will be made to a specific graph when the relevant
performance parameter is being discussed.

Table 5.1 summarises the input reflection on all the ports, as well as the
beam port and element port isolation. The worst cases at the centre, as well
as the upper and lower edges of the frequency band are listed. Figure B.1
shows the input reflection. Figure B.2 shows the beam port and element port
isolation.

Frequency Reflection Beam isolation Element isolation
fL = 1425 MHz −17.59 dB −16.05 dB −16.05 dB
fC = 1500 MHz < −50 dB < −50 dB < −50 dB
fH = 1575 MHz −15.88 dB −17.31 dB −17.31 dB

Table 5.1: AWR Ideal simulation - Reflection and Isolation

Figure B.3 shows the path loss and Figure B.4 shows the path length in
terms of phase. Table 5.2 summarises the path between beam port 1 and
element ports 1 to 4. The s-parameters that relate to these paths are s51, s61,
s71, and s81. The summarised phase lengths are not the actual lengths but

52
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rather the relative length, with s51 being the reference. The relative lengths
are important to know because they are equivalent to the progressive phase
shifts from equation 3.2.10.

The path loss in this ideal implementation is not really relevant as it only
explains the power splitter, and doesn’t take into account actual copper and
dielectric loss. Only 1

4
of the power going into the beam port reaches each

element port, which is trivial.

Frequency Transmission mag. [dB] s51 (ref) [◦] s61 [◦] s71 [◦] s81 [◦]
fL = 1425 MHz −6.57 dB 0 −89 −47.4 −137.4
fC = 1500 MHz −6.02 dB 0 −90 −45 −135
fH = 1575 MHz −6.52 dB 0 −91.1 −44.4 −134.6

Table 5.2: AWR Ideal simulation - Transmission phase, beam port 1

Figure B.5 shows the path length in terms of phase. Table 5.3 summarises
the path between beam port 2 and element ports 1 to 4. The s-parameters
that relate to these paths are s52, s62, s72, and s82. The summarised phase
lengths are not the actual lengths but rather the relative length, with s52 being
the reference.

Frequency Transmission mag. [dB] s52 (ref) [◦] s62 [◦] s72 [◦] s82 [◦]
fL = 1425 MHz −6.52 dB 0 −90 133.1 41.5
fC = 1500 MHz −6.02 dB 0 −90 135 45
fH = 1575 MHz −6.3 dB 0 −90.1 138.6 46.7

Table 5.3: AWR Ideal simulation - Transmission phase, beam port 2

Figure B.6 shows the path length in terms of phase. Table 5.4 summarises
the path between beam port 3 and element ports 1 to 4. The s-parameters
that relate to these paths are s53, s63, s73, and s83. The summarised phase
lengths are not the actual lengths but rather the relative length, with s53 being
the reference.

Frequency Transmission mag. [dB] s53 (ref) [◦] s63 [◦] s73 [◦] s83 [◦]
fL = 1425 MHz −6.52 dB 0 91.6 −131.5 −41.5
fC = 1500 MHz −6.02 dB 0 90 −135 −45
fH = 1575 MHz −6.3 dB 0 91.9 −136.8 −46.7

Table 5.4: AWR Ideal simulation - Transmission phase, beam port 3

Figure B.7 shows the path length in terms of phase. Table 5.5 summarises
the path between beam port 4 and element ports 1 to 4. The s-parameters
that relate to these paths are s54, s64, s74, and s84. The summarised phase
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lengths are not the actual lengths but rather the relative length, with s54 being
the reference.

Frequency Transmission mag. [dB] s54 (ref) [◦] s64 [◦] s74 [◦] s84 [◦]
fL = 1425 MHz −6.57 dB 0 90 48.5 137.4
fC = 1500 MHz −6.02 dB 0 90 45 135
fH = 1575 MHz −6.52 dB 0 90.3 43.6 134.6

Table 5.5: AWR Ideal simulation - Transmission phase, beam port 4

Table 5.6 summarises the progressive phase shifts measured within this
circuit. In order for the progressive phase shifts to be consistent, the columns
containing element ports 2 and 3 must be swapped. If beam port 1 was as-
sociated with progressive phase shift ψa from Table 3.2.26, then ψb would be
associated with beam port 3, ψc with beam port 2 and ψd with beam port 4.
This is the reason why the rows for beam ports 2 and 3 are also swapped.

Element port ψ

Beam port 1 3 2 4
1 0 −45 −90 −135 ψa = −45
3 0 −135 90 −45 ψb = −135
2 0 135 −90 45 ψc = 135
4 0 45 90 135 ψd = 45

Table 5.6: AWR Ideal simulation - Progressive phase shift

5.2 Microstrip Implementation at 1.5 GHz
The results of the ideal implementation of the Butler Matrix was discussed in
section 5.1. This section follows up with the results of an implementation on
microstrip, operating at 1.5 GHz. Firstly two simulations of the implementa-
tions on microstrip will be analysed and compared to the ideal case, then the
physical measurements will be discussed.

5.2.1 Simulated
Two versions of this implementation was simulated and is discussed in section
4.3.1. The first simulation utilises microstrip, dimension-based transmission
line models in AWR Microwave Office. The second simulation is a full wave
simulation of a 3D model, built in CST Studio, using the same dimensions as
with the AWR simulation. The results of these two simulations are discussed
in this section. Similar to section 5.1, an operating bandwidth of 10% will be
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assumed, centred around 1.5 GHz, and all the s-parameters are graphed in
Appendix B.

Tables 5.7, and 5.8 summarises the input reflection on all the ports, as
well as the beam port and element port isolation. Figure B.8 shows the in-
put reflection. Figures B.9 and B.10 show the beam port and element port
isolation.

The circuit is well matched and comparable to the ideal simulation. The
full wave simulation follows the closed-form solution very closely. This is a good
indication that the lengths and widths of the lines are calculated correctly. The
isolation tells the same story, and is comparable with the ideal simulation.

Frequency [MHz] Reflection
AWR CST

fL = 1425 MHz −16.31 dB −14.46 dB
fC = 1500 MHz < −50 dB −26.57 dB
fH = 1575 MHz −18.98 dB −19.53 dB

Table 5.7: Microstrip CST and AWR simulation - Reflection

Frequency [MHz] Beam isolation Element isolation
AWR CST AWR CST

fL = 1425 MHz −19.16 dB −18.59 dB −19.41 dB −16.8 dB
fC = 1500 MHz < −50 dB −30.16 dB < −50 dB −29.92 dB
fH = 1575 MHz −21.29 dB −25.34 dB −21.29 dB −23.72 dB

Table 5.8: Microstrip CST and AWR simulation - Isolation

Figure B.11 shows the path loss and Figure B.12 shows the path length
in terms of phase. Table 5.2 summarises the path between beam port 1 and
element ports 1 to 4.

The path loss in this implementation starts to become relevant as it takes
into account actual copper and dielectric loss. 1

4
(≈ −6dB) of the power going

into the beam port reaches each element port, the rest is attributed to losses.
The phase length of the AWR simulation differs from the ideal by up to 1◦,
and similarly for the CST simulation. The CST results are omitted from these
tables, as the results are similar to those of the AWR simulation, and it can
be found in Appendix B.

Figure B.13 shows the path length in terms of phase. Table 5.3 summarises
the path between beam port 2 and element ports 1 to 4.

Figure B.14 shows the path length in terms of phase. Table 5.4 summarises
the path between beam port 3 and element ports 1 to 4.
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Frequency Transmission mag. [dB] s51 (ref) [◦] s61 [◦] s71 [◦] s81 [◦]
fL = 1425 MHz −6.7 dB 0 −90.8 −49.3 −139
fC = 1500 MHz −6.26 dB 0 −90 −46 −136
fH = 1575 MHz −6.42 dB 0 −91.4 −43.8 −134.2

Table 5.9: Microstrip AWR simulation - Beam port 1 bandwidth

Frequency Transmission mag. [dB] s52 (ref) [◦] s62 [◦] s72 [◦] s82 [◦]
fL = 1425 MHz −6.47 dB 0 −89.9 −226.9 −318.5
fC = 1500 MHz −6.27 dB 0 −90 −226 −316
fH = 1575 MHz −6.42 dB 0 −90.4 −223.6 −312.4

Table 5.10: Microstrip AWR simulation - Beam port 2 bandwidth

Frequency Transmission mag. [dB] s53 (ref) [◦] s63 [◦] s73 [◦] s83 [◦]
fL = 1425 MHz −6.49 dB 0 91.6 228.2 318.1
fC = 1500 MHz −6.27 dB 0 90 225.6 315.6
fH = 1575 MHz −6.42 dB 0 88.7 221.6 312.1

Table 5.11: Microstrip AWR simulation - Beam port 3 bandwidth

Figure B.15 shows the path length in terms of phase. Table 5.5 summarises
the path between beam port 4 and element ports 1 to 4.

Frequency Transmission mag. [dB] s54 (ref) [◦] s64 [◦] s74 [◦] s84 [◦]
fL = 1425 MHz −6.7 dB 0 89.7 47.7 138.6
fC = 1500 MHz −6.26 dB 0 90 45.6 135.6
fH = 1575 MHz −6.42 dB 0 90.3 42.3 133.8

Table 5.12: Microstrip AWR simulation - Beam port 4 bandwidth

Tables 5.13 and 5.14 summarise the progressive phase shifts, similar to
Table 5.6 and the same column/row swaps are done. The progressive phase
shift is not consistent over element ports, thus the average of the phase shifts
are taken and the result is what is displayed in the ψ-column.

The CST simulation has a slightly worse progressive phase shift, which
can most likely be attributed to the little extra length introduced by the 0Ω
resistor.

5.2.2 Measured
This section will discuss the results obtained from measuring the Butler matrix
that was built, mentioned in section 4.3.2. Similar to section 5.1, an operating
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Element port ψ

Beam port 1 3 2 4
1 0 −46 −90 −136 ψa = −45.33
3 0 −134.4 90 −44.4 ψb = −134.8
2 0 134 −90 44 ψc = 134.7
4 0 45.6 90 135.6 ψd = 45.2

Table 5.13: Microstrip AWR simulation - Progressive phase shift

Element port ψ

Beam port 1 3 2 4
1 0 −46.5 −88.6 −136.3 ψa = −45.43
3 0 −133.3 90 −42 ψb = −134
2 0 132.1 −91.3 42 ψc = 134
4 0 47.9 89.9 136.4 ψd = 45.47

Table 5.14: Microstrip CST simulation - Progressive phase shift

bandwidth of 10% will be assumed, centred around 1.5 GHz, and all the s-
parameters are graphed in Appendix B.

Table 5.15 summarises the input reflection on all the ports, as well as the
beam port and element port isolation. Figure B.16 shows the input reflection.
Figures B.17 and B.18 show the beam port and element port isolation.

This is where real world effects start to become visible. Figure B.16 clearly
shows that the resonant part of the circuit, or the frequency point for which
it is supposed to be perfectly matched, is not on the design frequency of 1.5
GHz. It is shifted slightly to the left, likely an indicator that the wavelength
used in the design is very slightly too long. The match is still quite good,
especially at 1.5 GHz, but the circuit still achieves a match of < −12dB over
the entire operating band. The isolation is good, very similar to the AWR and
CST simulations.

Frequency Reflection Beam isolation Element isolation
fL = 1425 MHz −17.43 dB −17.95 dB −21.78 dB
fC = 1500 MHz < −21.61 dB < −23.54 dB < −23.18 dB
fH = 1575 MHz −12.84 dB −16.15 dB −16.06 dB

Table 5.15: Measured microstrip PCB - Reflection and Isolation

Figure B.19 shows the path loss and Figure B.20 shows the path length
in terms of phase. Table 5.16 summarises the path between beam port 1 and
element ports 1 to 4.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 5. RESULTS 58

The path loss is higher than what was seen in the AWR and CST simula-
tions, which is expected, especially considering the slightly worse match. This
is very significant at the high edge of the operating band, where the worst
match is −12.84 dB. The path length also starts to show significant errors
when compared to the ideal path length, having errors of multiple degrees.

Frequency Transmission magnitude [dB] s51 (ref) [◦] s61 [◦] s71 [◦] s81 [◦]
fL = 1425 MHz −6.81 dB 0 −86.3 −50.7 −140
fC = 1500 MHz −6.89 dB 0 −86.3 −48.5 −138.3
fH = 1575 MHz −7.48 dB 0 −86.8 −45 −136.5

Table 5.16: Measured microstrip PCB - Beam port 1 bandwidth

Figure B.21 shows the path length in terms of phase. Table 5.17 summarises
the path between beam port 2 and element ports 1 to 4.

Frequency Transmission magnitude [dB] s52 (ref) [◦] s62 [◦] s72 [◦] s82 [◦]
fL = 1425 MHz −6.73 dB 0 −94.4 125.7 36
fC = 1500 MHz −6.73 dB 0 −95.1 126.7 37.4
fH = 1575 MHz −7.24 dB 0 −97.8 126.7 39.6

Table 5.17: Measured microstrip PCB - Beam port 2 bandwidth

Figure B.22 shows the path length in terms of phase. Table 5.18 summarises
the path between beam port 3 and element ports 1 to 4.

Frequency Transmission magnitude [dB] s53 (ref) [◦] s63 [◦] s73 [◦] s83 [◦]
fL = 1425 MHz −6.82 dB 0 90.2 −131.8 −37.3
fC = 1500 MHz −6.82 dB 0 89.8 −135.2 −40.6
fH = 1575 MHz −7.1 dB 0 86.4 −141.2 −46

Table 5.18: Measured microstrip PCB - Beam port 3 bandwidth

Figure B.23 shows the path length in terms of phase. Table 5.19 summarises
the path between beam port 4 and element ports 1 to 4.

Frequency Transmission magnitude [dB] s54 (ref) [◦] s64 [◦] s74 [◦] s84 [◦]
fL = 1425 MHz −6.87 dB 0 89.9 51.4 137.8
fC = 1500 MHz −7.04 dB 0 90.1 49.8 136.1
fH = 1575 MHz −7.55 dB 0 91 48 133.3

Table 5.19: Measured microstrip PCB - Beam port 4 bandwidth
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Table 5.20 summarises the progressive phase shifts, similar to Table 5.6
and the same column/row swaps are done. The progressive phase shift is not
consistent over element ports, thus the average of the phase shifts are taken
and the result is what is displayed in the ψ-column.

Even though the relative phase shifts show significant errors (< 10◦), when
looking at the average progressive phase shift, it doesn’t differ that significantly
from the ideal case. To see what effect this error will have on the resulting
beam angle, ψa is used in equation 3.2.10. For an array spacing of d = λ

2
,

θa = −14.84◦, as opposed to θa = −14.48◦ when ψa = −45. This is just a
rough approximation, as ψa is an average.

Element port ψ

Beam port 1 3 2 4
1 0 −48.5 −86.3 −138.3 ψa ≈ −46.1
3 0 −135.2 89.8 −40.6 ψb ≈ −133.5
2 0 126.7 −95.1 37.4 ψc ≈ 132.5
4 0 49.8 90.1 136.1 ψd ≈ 45.4

Table 5.20: Measured microstrip PCB - Progressive phase shift

The results obtained from this measurement provides enough confidence
that this BFN will work as hypothesised. The next step is to connect this
circuit to an antenna and measure the resulting radiation patterns.

5.2.3 Measured Antenna Patterns
The setup is as described in section 4.3.3 and the measured radiation pattern
will be discussed in this section. Figure 5.1 shows the normalised gain pattern
that was measured. Each beam port had to be excited individually, because
a 2-port network analyser was used. This limited the measurement in that
simultaneous beamforming could not be evaluated.

The result is very similar to figure 3.5, which confirms that this implemen-
tation of the Butler Matrix works. The sidelobes are quite high, but this is an
issue that can likely be solved by increasing the number of elements (and the
order of the Butler Matrix).

5.3 Microstrip Implementation at 15 GHz

5.3.1 Simulated
This implementation was simulated and is discussed in section 4.4.1. The sim-
ulation is a full wave simulation of a 3D model, built in CST Studio. The
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Figure 5.1: Butler Matrix, patch antenna integration - Directivity, normalised

results are discussed in this section. Similar to section 5.1, an operating band-
width of 10% will be assumed, but this time centred around 15 GHz, and all
the s-parameters are graphed in Appendix B.

Figure B.31 shows the input reflection. Figure B.32 shows the beam port
isolation. Figure B.33 shows the path loss and figure B.34 shows the path
length in terms of phase. Table 5.21 summarises the path between beam port
1 and element ports 1 to 4.

The first thing to note is that the loss is significantly higher. The match
is surprisingly good, and the isolation is very good. The phase lengths seem
to be shifted in frequency. At the low end of the operating band, the phase is
closer to what is expected than at the centre frequency.

Frequency Transmission magnitude [dB] s51 (ref) [◦] s61 [◦] s71 [◦] s81 [◦]
fL = 14250 MHz −7.85 dB 0 −91.6 −45.6 −135.7
fC = 15000 MHz −7.79 dB 0 −86.9 −50.4 −140.9
fH = 15750 MHz −7.81 dB 0 −84.7 −54.8 −146.5

Table 5.21: CST Simulation - Beam port 1 bandwidth, 15 GHz
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Figure B.35 shows the path length in terms of phase. Table 5.22 summarises
the path between beam port 2 and element ports 1 to 4.

The phase lengths once again seem to be closer to the expected value at
the lower end of the operating band.

Frequency Transmission magnitude [dB] s52 (ref) [◦] s62 [◦] s72 [◦] s82 [◦]
fL = 14250 MHz −7.78 dB 0 268.9 135 46.1
fC = 15000 MHz −7.63 dB 0 −91.1 127.2 36.5
fH = 15750 MHz −8.25 dB 0 −92.6 122.6 29.8

Table 5.22: CST Simulation - Beam port 2 bandwidth, 15 GHz

Figure B.36 shows the path length in terms of phase. Table 5.23 summarises
the path between beam port 3 and element ports 1 to 4.

The phase lengths once again seem to be closer to the expected value at
the lower end of the operating band.

Frequency Transmission magnitude [dB] s53 (ref) [◦] s63 [◦] s73 [◦] s83 [◦]
fL = 14250 MHz −7.76 dB 0 88.9 221.9 −47.1
fC = 15000 MHz −7.64 dB 0 90.7 231.7 −37.4
fH = 15750 MHz −8.25 dB 0 92.75 236.8 −30.9

Table 5.23: CST Simulation - Beam port 3 bandwidth, 15 GHz

Figure B.37 shows the path length in terms of phase. Table 5.24 summarises
the path between beam port 4 and element ports 1 to 4.

The phase lengths once again seem to be closer to the expected value at
the lower end of the operating band.

Frequency Transmission magnitude [dB] s54 (ref) [◦] s64 [◦] s74 [◦] s84 [◦]
fL = 14250 MHz −7.81 dB 0 90 43.1 134.8
fC = 15000 MHz −7.77 dB 0 90.44 53.2 140
fH = 15750 MHz −7.81 dB 0 91.7 60.95 145.6

Table 5.24: CST Simulation - Beam port 4 bandwidth, 15 GHz

Table 5.25 summarises the progressive phase shifts, similar to table 5.6
and the same column/row swaps are done. The progressive phase shift is not
consistent over element ports, thus the average of the phase shifts are taken
and the result is what is displayed in the ψ-column.

In this case the phase lengths errors are quite significant, but the average
progressive phase shift doesn’t seem to be that far off of the expected value.
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Element port ψ

Beam port 1 3 2 4
1 0 −50.4 −86.9 −140.9 ψa ≈ −46.97
3 0 −128.3 90.7 −37.4 ψb ≈ −132.47
2 0 127.2 −91.1 36.5 ψc ≈ 132.17
4 0 53.2 90.44 140 ψd ≈ 46.67

Table 5.25: CST Simulation - Progressive phase shift, 15 GHz

5.3.2 Measured
This circuit is discussed in section 4.4.2. Similar to section 5.1, an operating
bandwidth of 10% will be assumed, but this time centred around 15 GHz, and
all the s-parameters are graphed in Appendix B.

Figure B.38 shows the input reflection. Figure B.39 shows the beam port
and element port isolation. Figure B.40 shows the path loss and figure B.41
shows the path length in terms of phase. Table 5.26 summarises the path
between beam port 1 and element ports 1 to 4.

The losses in this circuit are unacceptable. The match is also unacceptable,
which contributes to the bad losses. Isolation is acceptable. The path lengths
are off by, significantly more than was seen in section 5.3.1. In the same way,
the path length is much closer to the ideal at the bottom end of the operating
band. There is clearly a pattern emerging.

Frequency Transmission magnitude [dB] s51 (ref) [◦] s61 [◦] s71 [◦] s81 [◦]
fL = 14250 MHz −10.1 dB 0 −79.2 −38.2 −134.5
fC = 15000 MHz −9.44 dB 0 −85.5 −53.4 −148.8
fH = 15750 MHz −10.45 dB 0 −83.2 −59 −146.3

Table 5.26: Measured PCB - Beam port 1 bandwidth, 15 GHz

Figure B.42 shows the path length in terms of phase. Table 5.27 summarises
the path between beam port 2 and element ports 1 to 4.

The phase lengths once again seem to be closer to the expected value at
the lower end of the operating band.

Frequency s52 (ref) [◦] s62 [◦] s72 [◦] s82 [◦]
fL = 14250 MHz 0 272.9 129.2 41.4
fC = 15000 MHz 0 277.1 129.6 34
fH = 15750 MHz 0 269.5 114.9 23.17

Table 5.27: Measured PCB - Beam port 2 bandwidth, 15 GHz
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Figure B.43 shows the path length in terms of phase. Table 5.28 summarises
the path between beam port 3 and element ports 1 to 4.

The phase lengths once again seem to be closer to the expected value at
the lower end of the operating band.

Frequency s53 (ref) [◦] s63 [◦] s73 [◦] s83 [◦]
fL = 14250 MHz 0 88.1 226.5 −45.3
fC = 15000 MHz 0 95.7 238.1 −38
fH = 15750 MHz 0 90.7 241.2 −29.6

Table 5.28: Measured PCB - Beam port 3 bandwidth, 15 GHz

Figure B.44 shows the path length in terms of phase. Table 5.29 summarises
the path between beam port 4 and element ports 1 to 4.

The phase lengths once again seem to be closer to the expected value at
the lower end of the operating band.

Frequency s54 (ref) [◦] s64 [◦] s74 [◦] s84 [◦]
fL = 14250 MHz 0 96.7 51.6 129.5
fC = 15000 MHz 0 94.7 57.8 143.9
fH = 15750 MHz 0 85 56.7 138.8

Table 5.29: Measured PCB - Beam port 4 bandwidth, 15 GHz

Table 5.30 summarises the progressive phase shifts, similar to table 5.6
and the same column/row swaps are done. The progressive phase shift is not
consistent over element ports, thus the average of the phase shifts are taken
and the result is what is displayed in the ψ-column.

With the physical circuit, the losses are completely unacceptable, but some
information can still be derived by looking at the path lengths. The path
lengths at the center frequency are far off from the ideal, but at the low
end of the operating band they are much closer. For this reason the average
progressive phase shift is calculated for the low end of the bad as well, and is
shown in Table 5.31.

One explanation for this phenomenon is that the effective length is incor-
rect. This can be attributed to a mismatch in the dielectric constant design
value and the actual dielectric constant of the manufactured PCB. It can also
be manufacturing tolerances and defects, such as board height, or etch dimen-
sions. The interface to the board (SMA connectpr) is soldered on, and there is
some variation in the way each connector is soldered on, which causes a slight
variation in input impedance and phase length.
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Element port ψ

Beam port 1 3 2 4
1 0 −53.4 −85.5 −148.8 ψa ≈ −49.6
3 0 238.1 95.7 −38 ψb ≈ −132.67
2 0 129.6 277.1 34 ψc ≈ 132.337
4 0 57.8 94.7 143.9 ψd ≈ 47.97

Table 5.30: Measured PCB - Progressive phase shift, 15 GHz

Element port ψ

Beam port 1 3 2 4
1 0 −38.2 −79.2 −134.5 ψa ≈ −44.83
3 0 226.5 88.1 −45.3 ψb ≈ −135.1
2 0 129.2 272.9 41.4 ψc ≈ 133.8
4 0 51.6 96.7 129.5 ψd ≈ 43.17

Table 5.31: Measured PCB - Progressive phase shift, 14.25 GHz
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Chapter 6

Conclusion

The main aim of this thesis was to analyse the Butler Matrix as a simulta-
neous, multiple beam beamforming network. A brief discussion was done on
antennas and antenna arrays, to achieve a general understanding to the radi-
ation properties thereof. This helps the reader in understanding some of the
basics behind antenna arrays before the Butler Matrix was introduced.

The Butler Matrix concept was then broken down and analysed mathe-
matically to support one of the defining characteristics of the Butler Matrix,
orthogonal beams. Some of the limitations of the Butler Matrix were brought
to light, followed by a generalised derivation, indicating its scalability.

The viability of the Butler Matrix was then established through the inves-
tigation of 2 different implementations. The first implementation worked very
well. Good isolation was achieved between beam ports (and between antenna
ports), and the network was matched to 50 Ω over the operating bandwidth.
The progressive phase shifts were as expected, within some margin of error
and proved the viability of the Butler Matrix as a BFN.

The second implementation didn’t work as well, which was a result of man-
ufacturing tolerances. This issue can likely be solved with another iteration
of the same design, as the design did execute its function, just with degraded
results.

Finally the thesis concluded with a chapter discussing the results that
were obtained through simulation and practical measurement. The results
supported the theoretical analyses of the Butler Matrix that was discussed.

Future Work
• Higher order Butler Matrices - Some of the theory behind N th-

order Butler Matrices was briefly discussed, but the discussion didn’t
include any specific analyses or examples. No implementations were
suggested for Butler Matrices higher than 4th-order. There would be
value in investigating higher order Butler Matrices, as the effect of higher
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orders would probably be similar to the effect of increasing the number
of elements in a conventional array.

• More real world tests - Complex modulations - More measure-
ments could be done involving real world scenarios. One such a sce-
nario is the effect that complex modulated signals have on simultaneous
beams. It was proven in this thesis that changing the excitation ampli-
tude on one beam port has very little effect on the perceived gain in a
beam associated with a different beam port, which is a consequence of
the beams’ orthogonality. Applying complex modulated signals (mod-
ulation techniques utilising phase and amplitude) might have an effect
on orthogonality since orthogonality is established using phase related
components in the implementation.

• Two-dimensional/Cascaded Butler Matrices - The Butler Matrix
concept discussed in this thesis only considers it as a beamforming net-
work that can change the angle of the main beam in one angular dimen-
sion. Many practical applications require beams to be directed in more
than one angular dimension, for example Azimuth and Elevation. These
are known as 2D-BFN’s. Ding and Kishk (2018) have done research on
this topic.
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Appendix A

M ×N Planar Array Factor
Derivation

Similar to the analysis in 2.1.4, each element in the array is excited with
magnitude Enm and phase ξnm. The radiation pattern used for each element
is Fnm (θnm, ϕnm). The total E-field is:

Et =
N∑
n=1

M∑
m=1

EnmFnm (θnm, ϕnm)
ejξnme−jkrnm

rnm
(A.0.1)

The far-field approximation simplifies the following terms:

• θnm ≈ θ

• ϕnm ≈ ϕ

• 1
rnm

≈ 1
r11

= 1
r

Thus:

Et =
N∑
n=1

M∑
m=1

EnmFnm (θ, ϕ)
ejξnme−jkrnm

r
(A.0.2)

The rnm factor in the phase term
(
e−jkrnm

)
needs some other simplification

as a very small difference in in this term will lead to a significant difference in
phase. From figure A.1 a better approximation for rnm can be made (which
translates to a certain phase difference at a specific frequency).

Assume that the plane wave is arriving from angles θ and ϕ. With element
11 as reference, the differential distance can be calculated for each element in
the array, in terms of r11 (or just r) (Balanis, 2012). The differential distance
from the origin (for element 32 as example) is shown in figure A.1 as ∆rnm.

68
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Figure A.1: 2D Planar Array

The elements are spaced dx apart in the x-direction and dy apart in the y-
direction. The coordinates of element nm is (ndx,mdy, 0), where n and m
relates to the nmth element. The distance from the reference element to the
nmth element is thus:

dnm =

√
(ndx)

2 + (mdy)
2 (A.0.3)

The unit vector r̂ is the direction from which the plane wave is arriving(in
terms of θ and ϕ). The unit vector ρ̂ is the direction from the reference element
to element nm. The angle ψ between the unit vectors r̂ and ρ̂ can be found
by taking the dot-product of these unit vectors.
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r̂ = sin θ cosϕx̂+ sin θ sinϕŷ + cos θẑ (A.0.4)

ρ̂ =
mdx√

(ndx)
2 + (mdy)

2
x̂+

ndy√
(ndx)

2 + (mdy)
2
ŷ (A.0.5)

=
mdx
dnm

x̂+
ndy
dnm

ŷ (A.0.6)

r̂ · ρ̂ = cosψ (A.0.7)

The differential distance can then be calculated:

∆rnm = dnm cosψ (A.0.8)
= dnmr̂ · ρ̂ (A.0.9)

= dnm

(
sin θ cosϕ mdx

dnm
+

sin θ sinϕ ndy
dnm

)
(A.0.10)

= sin θ cosϕ mdx + sin θ sinϕ ndy (A.0.11)

rnm can now be written in terms of r:

rnm = r −∆rnm (A.0.12)

This is substituted back into the phase term
(
e−jβrnm

)
, in the E-field equa-

tion A.0.2:

Et =
N∑
n=1

M∑
m=1

EnmFnm (θ, ϕ)
ejξnme−jkrejk∆rnm

r
(A.0.13)

=
e−jkr

r

N∑
n=1

M∑
m=1

EnmFnm (θ, ϕ) ejξnmejk∆rnm (A.0.14)

To further simplify A.0.14, identical element patterns can be used, and
uniform amplitude excitation can be applied, thus:

Et = Emax
F (θ, ϕ)

r
e−jkr

N∑
n=1

M∑
m=1

ejξnmejk∆rnm (A.0.15)
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Results - Graphs

B.1 Butler Matrix results - Ideal
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Figure B.1: AWR Ideal simulation - Reflection
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Figure B.2: AWR Ideal simulation - Isolation
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Figure B.3: AWR Ideal simulation - Transmission magnitude, beam port 1
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Figure B.4: AWR Ideal simulation - Transmission phase, beam port 1
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Figure B.5: AWR Ideal simulation - Transmission phase, beam port 2
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Figure B.6: AWR Ideal simulation - Transmission phase, beam port 3
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Figure B.7: AWR Ideal simulation - Transmission phase, beam port 4
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B.2 Butler Matrix results - Microstrip, CST
and AWR simulation
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Figure B.8: Microstrip CST and AWR simulation - Reflection
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Figure B.9: Microstrip CST and AWR simulation - Beam port isolation
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Figure B.10: Microstrip CST and AWR simulation - Element port isolation
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Figure B.11: Microstrip CST and AWR simulation - Transmission magnitude,
beam port 1
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Figure B.12: Microstrip CST and AWR simulation - Transmission phase, beam
port 1
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Figure B.13: Microstrip CST and AWR simulation - Transmission phase, beam
port 2
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Figure B.14: Microstrip CST and AWR simulation - Transmission phase, beam
port 3
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Figure B.15: Microstrip CST and AWR simulation - Transmission phase, beam
port 4
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B.3 Butler Matrix results - Measured PCB
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Figure B.16: Measured microstrip PCB - Reflection

Stellenbosch University https://scholar.sun.ac.za



APPENDIX B. RESULTS - GRAPHS 82

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
−30

−25

−20

−15

−10

−5

0

f [GHz]

M
ag

ni
tu

de
[d

B
]

S12

S13

S14

S23

S24

S34

Figure B.17: Measured microstrip PCB - Beam port isolation
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Figure B.18: Measured microstrip PCB - Element port isolation
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Figure B.19: Measured microstrip PCB - Transmission magnitude, beam port
1
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Figure B.20: Measured microstrip PCB - Transmission phase, beam port 1

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

−200

−150

−100

−50

0

50

100

150

200

f [GHz]

Ph
as

e
[◦ ]

S25

S26

S27

S28

Figure B.21: Measured microstrip PCB - Transmission phase, beam port 2
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Figure B.22: Measured microstrip PCB - Transmission phase, beam port 3
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Figure B.23: Measured microstrip PCB - Transmission phase, beam port 4
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B.4 Butler Matrix results - Ideal, 15 GHz
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Figure B.24: AWR Ideal simulation - Reflection, 15 GHz
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Figure B.25: AWR Ideal simulation - Isolation, 15GHz
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Figure B.26: AWR Ideal simulation - Transmission magnitude, beam port 1,
15 GHz
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Figure B.27: AWR Ideal simulation - Transmission phase, beam port 1, 15
GHz
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Figure B.28: AWR Ideal simulation - Transmission phase, beam port 2, 15
GHz
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Figure B.29: AWR Ideal simulation - Transmission phase, beam port 3, 15
GHz
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Figure B.30: AWR Ideal simulation - Transmission phase, beam port 4, 15
GHz

B.5 Butler Matrix results - CST Simulation,
15 GHz

Stellenbosch University https://scholar.sun.ac.za



APPENDIX B. RESULTS - GRAPHS 91

12 13 14 15 16 17 18
−30

−25

−20

−15

−10

−5

0

f [GHz]

M
ag

ni
tu

de
[d

B
]

S11

S22

S33

S44

S55

S66

S77

S88

Figure B.31: CST simulation - Reflection, 15 GHz
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Figure B.32: CST simulation - Isolation, 15 GHz
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Figure B.33: CST simulation - Transmission magnitude, beam port 1, 15 GHz
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Figure B.34: CST simulation - Transmission phase, beam port 1, 15 GHz
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Figure B.35: CST simulation - Transmission phase, beam port 2, 15 GHz

12 13 14 15 16 17 18

−200

−150

−100

−50

0

50

100

150

200

f [GHz]

Ph
as

e
[◦ ]

S35

S36

S37

S38

Figure B.36: CST simulation - Transmission phase, beam port 3, 15 GHz
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Figure B.37: CST simulation - Transmission phase, beam port 4, 15 GHz

B.6 Butler Matrix results - Measured PCB,
15 GHz
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Figure B.38: Measured PCB - Reflection, 15 GHz
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Figure B.39: Measured PCB - Isolation, 15 GHz
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Figure B.40: Measured PCB - Transmission magnitude, beam port 1, 15 GHz
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Figure B.41: Measured PCB - Transmission phase, beam port 1, 15 GHz
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Figure B.42: Measured PCB - Transmission phase, beam port 2, 15 GHz
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Figure B.43: Measured PCB - Transmission phase, beam port 3, 15 GHz
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Figure B.44: Measured PCB - Transmission phase, beam port 4, 15 GHz
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