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Summary 

The relationship between various land management practices, soil properties and the soil 

microbial communities are complex and little is known about the effect of these interactions 

on plant productivity in agricultural systems. Although it would be advantageous to have a 

single organism or property that can be used as a measure of soil health, it may not be 

possible. Soil organisms which include both the microorganisms as well as soil fauna are 

subjected to the effect of their immediate environment. This microenvironment in turn is 

determined by the soil properties as well as above ground flora and their interactions. Most 

soil indicators interact with each other, and these interactions can modify or influence the soil 

properties. The complexities of the interactions between critical soil indicator values often 

preclude its practical use by land managers and policy makers. However, soil microbial 

communities (e.g. diversity and structural stability) may serve as a relative indicator of soil 

quality. These communities are sensitive to land management practices and changes in the 

microenvironment. 

The objective of this study was to gain an understanding of the complex relationships by 

investigating the effect of conventional, integrated and organic apple production systems on 

the physical, chemical and biological (particularly soil microbial diversity) properties of the 

soil. Automated Ribosomal Intergenic spacer analysis (ARISA) was used to characterise 

fungal (F-ARISA) and bacterial (B-ARISA) communities from soil samples obtained from an 

experimental apple orchard in Elgin, Grabouw. The intergenic spacer (ITS) region from the 

fungal rRNA operon was amplified using ITS4 and fluorescently FAM (6-

carboxylfluorescein) labelled ITS5 primers. Similarly, the 16S-23S intergenic spacer region 

from the bacterial rRNA operon was amplified using ITSR and FAM-labelled ITSF primers.  

The sensitivity of the technique allowed us to discriminate between the soil microbial 

communities of the different treatments. From our results we observed significant increase (p 

< 0.05) in the fungal community diversity between the February and April samples, while the 

bacterial community diversity was consistent (p > 0.05). Also, treatments with mulch showed 

a significantly higher microbial diversity than the other treatments at a 5 % significance level. 

Fungal communities showed significant correlation with the potassium concentration in the 

soil, while bacterial communities depicted a significant correlation with the soil phosphorous 

concentration. 
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Based on the results we concluded that different management practices have a significant 

effect on the soil microbial communities and that these communities are particularly sensitive 

to small changes in the environment. However, there is still a need to determine what the 

composition of the soil microbial communities are to be able to correlate our observations 

with soil health. 
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Opsomming 

Die verhouding tussen verskillende landboubestuurspraktyke, grondeienskappe en die 

mikrobiese gemeenskappe in grond is kompleks en weinig is bekend oor die uitwerking van 

hierdie interaksies op die produktiwiteit van landboustelsels.  Alhoewel dit voordelig sou 

wees om ‘n enkele organisme of eienskap te kan hê wat die gesondheid van grond kan meet, 

sal dit dalk nie moontlik wees nie.  Grondorganismes wat die mikroörganismes sowel as die 

grondfauna insluit, is onderworpe aan die invloed van hulle onmiddelike omgewings.  

Hierdie mikro-omgewings op hulle beurt word weer beïnvloed deur die grondeienskappe 

sowel as die die oppervlak flora en hulle wisselwerkinge.  Meeste van die grondaanwysers 

toon ook wisselwerkinge met mekaar, en hierdie wisselwerkinge kan die grondeienskappe 

beïnvloed or selfs verander.  Die kompleksiteit van die wisselwerkinge tussen kritiese grond 

aanwysers is meestal die rede waarom dit nie deur grondbestuurders en beleidsmakers 

gebruik word nie.  Dit is ongeag die feit dat grond mikrobiese gemeenskappe (bv. diversiteit 

en stukturele stabiliteit) mag dien as ‘n relatiewe aanwyser van grondkwaliteit.  Hierdie 

gemeenskappe is sensitief vir bestuurspraktyke en veranderinge in die mikro-omgewing.   

Die doel van die studie was om die ingewikkelde verhoudings in die grondgemeenskappe te 

bestudeer en die uitwerking van konventionele, geïntegreerde en organiese appel produksie 

sisteme op die fisiese, chemiese en biologiese eienskappe (veral die grond mikrobiologiese 

diversiteit) te bepaal.  Geoutomatiseerde Ribosomale Intergeniese Spasie Analise (ARISA) is 

gebruik om die fungus (F-ARISA) en bakteriese (B-ARISA) gemeenskappe van 

grondmonsters wat vanaf ‘n proef appelboord in Elgin (Grabouw) verkry is, te bepaal.  Die 

intergeenspasie (ITS) area van die fungus rDNA operon is vermeerder deur die ITS4 en 

fluoresserende FAM (6-karboxylfluorescein) gemerkte ITS5 inleiers te gebruik. Soortgelyk is 

die 16S-23S intergeenspasie area van die bakteriese rDNA operon vermeerder deur ITSR en 

FAM-gemerkte ITSF inleiers te gebruik.  

Die sensitiwiteit van die tegniek laat ons toe om te onderskei tussen die grond mikrobiese 

gemeenskappe vanaf verskillende grondbehandelings.  Vanuit die resultate kon ons aflei dat 

daar ‘n toename (p < 0.05) in die fungus gemeenskap diversiteit vanaf Februarie to April was 

terwyl die bakteriese gemeenskap ‘n konstante diversteit getoon het (p > 0.05).  Behandelings 

met grondbedekking het ook ‘n beduidend hoër mikrobiese diversiteit getoon as ander 

behandelings.  Fungus gemeenskappe het beduidende korrelasies getoon met kalium 
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konsentrasies in die grond, terwyl bakteriese gemeenskappe ‘n beduidende korrelasie getoon 

het met grond fosfor konsentrasies.   

Gebaseer op die resultate kon ons aflei dat verskillende bestuurspraktyke ‘n uitwerking kan 

hê op die grond mikrobiese gemeenskappe en dat hierdie gemeenskappe sensitief is vir klein 

veranderinge in die omgewing.  Dit sal egter nog nodig wees om die spesifieke samestelling 

van die grond mikrobiese gemeenskappe te bepaal voor ons hierdie waarnemings kan 

korreleer met grondgesondheid.   
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INTRODUCTION 
 

1.1. Commercial farming practices with emphasis on apple production 

Sustainability of agricultural systems has become an important issue in both developed and 

developing countries. Globally there has been a tremendous increase in the number of 

commercial farmers and the total land area practicing organic and integrated farm 

management systems in apple (Malus domestica Borkh.) orchards, to meet the increasing 

demands of consumers for healthier and more environmentally sustainable agricultural 

products (Glover et al., 2000; Peck et al., 2005). Organic and integrated farm management 

practices for apple production offer an alternative approach compared to the conventional 

farm management systems, which involve the use of synthetic pesticides, herbicides and 

fertilizer inputs (Conacher and Conacher, 1998; Peck et al., 2006; Tu et al., 2006). According 

to Korsaeth (2008), an ideal cropping system should maximize the production of human 

nutrients per unit area, while minimizing the impact on the environment, thus resulting in a 

low ratio between emitted pollutants and food produced. Both organic and integrated 

management systems strive towards this ideal state, by improving soil quality and minimizing 

environmental degradation while maximizing economic returns and productivity (Reganold 

et al., 2001).  

Organic farming is becoming a major consideration for sustaining soil quality damaged by 

intensive use of synthetic chemicals to enhance crop production (Srivastava et al., 2007). It 

relies on recycling and organic input for nutrient supply, and concentrates on biological 

control for pest management and cropping system design (Rigby and Cáceres, 2001). Well-

established organic systems have been shown to reduce incidence and severity of phyto-

pathogenic infections caused by soil borne pathogens compared to conventional systems (van 

Bruggen and Termorshuizen, 2003). Similarly, increased biodiversity, microbial biomass and 

enzymatic activity have been reported under organic farming systems (Tiquia et al., 2002). A 

comparative study of organic and conventional arable farming systems was conducted by van 

Diepeningen et al. (2006), to determine the effect of management practices on soil biological 

and chemical properties, as well as on soil health. They observed among others, that soils 

from organically managed farms had significantly lower levels of total soluble nitrogen and 

nitrate in the soil, and a higher number of bacteria of different trophic groups. Species 

richness of bacteria and nematode communities were equally higher in the organic soils 
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sampled compared to the conventional soils. The organic soil was also more resilient to 

drying–rewetting disturbances (van Diepeningen et al., 2006). 

Conventional management practices on the other hand, also referred to as industrial 

agriculture, relies mostly on inputs of off-farm products such as pesticides, herbicides and 

fertilizers (Horrigan et al., 2002; Tu et al, 2006). Although this management practice has 

played a major role in the improvement of fibre and food quality as well as productivity, 

practices employed have raised numerous public health and environmental concerns 

(Horrigan et al., 2002). Studies have shown that current conventional management practices 

have an adverse effect on biodiversity (Moffat, 1998), soil microbial biomass and activities 

(Doran and Zeiss, 2000), agricultural ecosystems and its immediate environment (Aigner et 

al., 2003), agricultural workers and their relatives (Curl et al., 2002) and the safety and health 

of consumers (Curl et al., 2003). 

On the other hand, integrated farm management systems, utilize both conventional and 

organic production systems in an effort to optimize both economic profit and environmental 

quality (Glover et al., 2000). The integrated farming approach has been successfully adopted 

in some of the major apple farming regions in Europe (Sansavini, 1997).  Studies have 

demonstrated that microbial (carbon and nitrogen) biomass was significantly higher in an 

integrated farming system compared to organically and conventionally farmed plots 

(Gunapala and Scow, 1998; Glover et al., 2000). 

A long-term study carried out by Peck et al. (2006) compared the orchard productivity and 

fruit quality of apples under organic, conventional and integrated farm management systems. 

In the first year of their study, organic crop yields were two thirds of the conventional and 

almost half of the integrated yields. During the two year study conventional treatments had a 

larger yield than the organically managed farm. The organic farm yield was inconsistent, 

which was attributed to higher pest and weed pressure, limited satisfactory crop load, lower 

nitrogen levels in leaves and fruit tissue, and deficiency of zinc in leaf tissue (Peck, 2004). 

Despite all production difficulties encountered with organic farming. They observed that 

organic apples had the highest flesh firmness compared to conventional and integrated apples 

after storage treatments in 2002 and 2003. Similarly the total antioxidant activity was highest 

in organic apples. For 200g of apple, organic apples had 10% to 15% greater total antioxidant 



4 

 

activity in its edible portion than conventional apples and 8% to 25% more than integrated 

apples (Peck, 2004). 

Reganold et al. (2001) investigated the effect of organic and conventional farming systems on 

energy efficiency, environmental and soil quality, orchard profitability, and horticultural 

performance. They observed no significant difference in the cumulative yields for all three 

systems. However, from the soil quality assessment organic and integrated systems were 

significantly higher than those for the conventional system. This observation was attributed to 

the earlier addition of organic matter in the form of mulch and compost. Organic matter is 

known to have a significant impact on soil quality, increasing water infiltration and storage 

and enhancing soil fertility and structure (Brady and Weil, 1999). Furthermore, from their 

assessment of the impact of the three production systems on the environment using a rating 

index, the total environmental impact rating was highest for conventional farming systems 

compared to organic and integrated systems, while, organic systems were the most energy 

efficient based on the cumulative energy inputs and outputs over the six year study period. 

 

1.2. Apple production in South Africa 

Apple production in South Africa dates back to 1652 when the first apple farm was 

established (Crouch, 2003). Presently, approximately 20,736 hectares of land is under apple 

production with the main growing area in the Western Cape (DFPT, 2009). Apples are one of 

the most important deciduous fruit exported from South Africa. Constituting about 30 % of 

the total deciduous crop produce in South Africa on the basis of volume produced (NDA, 

2000) (Fig. 1). Furthermore, within the deciduous fruit industry, apple farming generated 

about 28,068 employments as at year 2003 (OABS, 2003) (Table 1). In 2008, the apple 

industry contributed more than R1.2 billion within the local market and approximately R1.8 

billion in export earnings (DFPT, 2009; NDA, 2008; OABS, 2008; PPECB, 2008), with over 

26 million cartons of apples exported (PPECB, 2008). With such financial and employment 

benefits, an adequate and appropriate land management practice is required for the 

sustainability of apple production in South Africa. 
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Table 1. Deciduous fruit production: Land in use, job created, and dependent population. 

 
Source: OABS, 2003 

 

 
Figure 1. Land area used in the production of deciduous crops in South Africa (NDA, 2000). 

 

1.3. Land management is South Africa 

Historically, soil conservation and land management practices in South Africa, has focused 

more on preventing soil loss through erosion rather than soil quality (Mills and Fey, 2003). 

Since 1923, policies and bodies have been set up to mitigate erosion in agricultural farmlands 

in South Africa. In 1928 the Drought Investigation Commission stressed the alarming rate of 

soil erosion across the country. This was followed in 1930 by the Soil Erosion Advisory 

Council. However, soil depletion became more pronounced resulting in wide spread erosion 

and desiccation. The implementation of the Soil Conservation Act (No. 45 of 1946) and 

various polices was effective enough to control erosion in many parts of the country 

(Donaldson, 2002). The sustainability of apple production systems in South Africa is of great 

importance, both economically and environmentally, to be able to meet the demands of the 

Type Area (ha) Employments (Farm workers) Dependents (persons)
Apples 22,454 28,068 112,272
Pears 12,912 16,140 64,558
Table grapes 20,643 35,093 140,371
Plums 4,962 6,699 26,796
Peaches 9,575 11,490 45,959
Nectarines 1,379 1,724 6,896
Apricots 4,751 5,226 20,904
Total 76,676 104,439 417,756
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ever-increasing global population and maintain the global ecosystem. Similarly, 

understanding the ecology, physiology and biochemistry of soil microorganisms and their 

interactions, will enable us to adequately comprehend their role in the soil and in all the 

biogeochemical processes in the soil. 

 

2. Soil 

Soil plays a crucial role in the survival of terrestrial life, and serves as a habitat for a wide 

range of organisms (Doran et al., 1996). The biological, chemical, and physical properties of 

soil give it a unique characteristic that enhances or influences its overall biodiversity. These 

properties also vary with time and space, resulting in various microhabitats or micro-niches 

with soil organisms exhibiting spatial and aggregated distribution patterns (Ettema and 

Wardle, 2002). In addition, the ability of the soil to absorb important biological molecules 

such as extracellular enzymes and nucleic acids helps to prevent these bio-molecules from 

degradation and enable their uptake by competent microbial populations (Nannipieri et al., 

2003). This section explores the role of soil as a microhabitat and the significance of 

microorganisms in the ecosystem. 

 

2.1. Soil as a microhabitat 

Soil is the foundation of natural and agricultural plant communities. The thin layer of soil 

covering the earth surface represents the difference between survival and extinction for most 

terrestrial life (Doran et al., 1996). Soil is a structured, heterogeneous, and discontinuous 

system. It is generally poor in energy sources and nutrients (compared to optimal growth 

conditions in vitro). The different components of its solid fractions (organic matter, clay, sand 

and silt content) provide a myriad of different microhabitats (Stotzky, 1997). Higher 

organisms range over wide territories of habitat which may be on the scale of a landscape or 

watershed and beyond. On the other hand, microorganisms’ habitat occurs on a micro-scale. 

They occupy less than 5% of the overall available space in the soil (Ingham et al., 1985; 

Voroney, 2007). These microhabitats or micro-zones support an enormous biomass, with 

approximately 2.6 × 1029 prokaryotic cells, and a gram of soil contains about a kilometre of 

fungal hyphae and over 109 bacterial cells (Voroney, 2007).  
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Biological, chemical and physical properties of these microhabitats vary in both time and 

over space (Nannipieri et al., 2003). This spatial characteristic of the soil resources is an 

important contributor to the coexistence of species in the soil microbial communities because 

of better resource partitioning (Giller, 1996; Ettema and Wardle, 2002). This enhances 

overall soil biodiversity by promoting the persistence of individual populations (Ellner, 

2001). Soil organisms usually occur in predictable spatial and aggregated patterns over wide 

scales ranging from square millimetres to hectares (Fig. 2) (Ettema and Wardle, 2002), in 

contrast to the aboveground biota (Wardle et al., 2004). 

Several ecological factors (abiotic or biotic) can influence the activity, ecology and 

population dynamics of microorganisms in soil. Associated with biodiversity of the soil is the 

soil resilience to endure disturbance (Nannipieri et al., 2003) and an increase in the microbial 

diversity of the soil increases its resilience capacity (Arias et al., 2005). Abiotic factors 

include pH, oxidation-reduction potential, mineral nutrients, ionic composition, the 

availability of water and carbon, temperature, pressure, composition of air, and 

electromagnetic radiation (Pardue et al., 1988; Killham et al., 1993; Chenu et al., 2001; 

McLean et al., 2001; Singh et al., 2003). Biotic factors include the genetics of the 

microorganisms and the interactions between these organisms (Nannipieri et al., 2003). 

 

Figure 2. Predictable spatial distribution of soil organisms on nested scales (Ettema and 
Wardle, 2002). 
 

Spatial heterogeneity in soil organisms is influenced by environmental factors, disturbance 

and population processes (Fig. 2). Disturbance plays a crucial role at all scale levels and can 

be a major stimulator of spatial heterogeneity (Ettema and Wardle, 2002). The complexity of 



8 

 

interaction between spatial patterns of soil organisms’ activity and environmental activity are 

represented with dotted arrows in Figure 2. In addition to the spatial patterns and ecological 

factors of the soil as a microhabitat, the ability of the soil solid fractions to absorb important 

biological molecules such as nucleic acids, proteins and organic compounds plays an 

important role in the maintenance of genetic information (Nannipieri et al., 2003; Huang et 

al., 2005; Levy-Booth et al., 2007). Extracellular enzymes are some of the biological 

molecules entrapped by humic molecules or absorbed by clay minerals, and they become 

more resistant to extreme pH and high thermal denaturation, heavy metal deposition, and 

microbial degradation (Huang and Shindo, 2000; Nannipieri et al., 2002; Klitzke and Lang, 

2007). Studies have been carried out to characterize activities and absorption of some 

important biological molecules on pure clay minerals, intercalated clay minerals by metal 

ions, and clay-organic compound complexes (Cai et al., 2007; Helassa et al., 2009). Helassa 

et al. (2009) investigated the absorption and desorption of monomeric Bt (Bacillus 

thuringiensis) Cry1 Aa toxin on montmorillonite and kaolinite. The absorption isotherm 

obtained for sodium saturated clay were low, but suggested that an optimal condition is 

required for maximal adsorption.  

In another report, Cai et al. (2007) observed that nucleic acid, Deoxyribonucleic acid (DNA) 

adsorption on soil colloids and clay minerals was enhanced in the presence of Ca2+. They 

compared organic-mineral complexes (organic clays) and fine clays (< 0.2 mm). Kaolinite 

(organic clay) exhibited the highest adsorption affinity for DNA among the examined soil 

colloids and clay minerals. The presence of minerals and soil colloids was shown to provide 

protection to DNA against degradation by DNase I, and montmorillonite, organic clays and 

fine clays showed stronger protective effects for DNA than inorganic clays and coarse clays. 

The efficient adsorption of nucleic acid materials on soil colloids and minerals lower the 

chances of degradation and enhance transformation of extracellular DNA in soils (Cai et al., 

2007; Levy-Booth et al., 2007). Therefore, extracellular or naked DNA released into the soil 

via sloughing-off of the root cap cells or pollen dispersal of transgenic plants (de Vries et al., 

2003), decomposing crop residues (Ceccherini et al., 2003), pathogens colonising plant roots 

(Kay et al., 2002), and soil microorganisms (Backert and Meyer, 2006) can be transformed 

into the genetic populations. The natural transformation of extracellular or foreign DNA 

through their uptake by competent microbial population through horizontal or lateral gene 

transfer in the soil is an important component of prokaryotic evolution (Levy-Booth et al., 
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2007) and acquisition of various resistance genes (Kay et al., 2002). This extracellular DNA 

cycle in soil is an open system, which serves as a source of energy and nutrient for 

microorganisms and plants in nutrient deficient soils. It also help to maintain the genetic pool 

of information carried in DNA molecules via their natural transformation (Levy-Booth et al., 

2007).  

 

2.2. Significance of soil microbial communities in soil processes 

About 80-90% of all the biogeochemical processes carried out in the soil are reactions 

mediated by microorganisms (Nannipieri and Badalucco, 2003). Due to their high surface 

area-to-volume ratio, microorganisms have more intimate interactions with their immediate 

environment (Douglas and Beveridge, 1998; Ledin, 2000), compared to higher organisms 

(Gömöryová et al., 2009). Soil microorganisms respond rapidly to changes, hence they adapt 

to environmental conditions (Nielsen and Winding, 2002), and the microorganisms that are 

best adapted will be most dominant. This adaptive character allows microbial analyses to be 

discriminating in soil health assessment, and changes in microbial populations and activities 

may, therefore, function as an excellent indicator of change in soil health (Kennedy and 

Papendick, 1995; Pankhurst et al., 1995). In some instances, changes in microbial community 

structure or function can precede detectable changes in soil chemical and physical properties, 

thus providing an early sign of soil improvement or an early warning of soil degradation 

(Pankhurst et al., 1995).  

Extracellular enzymes of soil microorganisms help to break down complex polymers of soil 

organic matter into monomeric units, which are readily available to other microbes that can 

break it down further into simple compounds (Wolf and Wagner, 2005). This is a classic 

illustration of metabiosis, and interspecies metabolism of soil organic complexes (Waid, 

1999). The decomposition of soil organic matter such as plant litter, polymers and humic 

substances releases nutrients to the soil, which is essential for the survival of the above 

ground biomass. This also helps to stabilize the net carbon equilibrium of the terrestrial 

ecosystem (Liski et al., 2003). Under anaerobic conditions, carbon dioxide is used as an 

electron acceptor while reduced organic compounds serve as the donor (Fuhrmann, 2005). 

The anaerobic respiration process enables anaerobic and fermentative bacteria (methanogens) 
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to breakdown complex organic substrates into simple substrates that are subsequently 

mineralized releasing methane (Tate, 2000).  

Soil microorganisms also play a crucial role in the bioremediation of toxic organic waste. 

Bioremediation involves the use of plants and naturally occurring soil microorganisms in 

processes such as biostimulation, bioaugmentation, biopiling, bioventing, bioreactors and 

land farming, to degrade organic waste into less toxic forms (Vidali, 2001; Bento et al., 2005; 

Marin et al., 2005). Xenobiotic compounds including petroleum hydrocarbons, nitro-aromatic 

compounds, aromatic and aliphatic compounds, polychlorinated biphenyls (PCBs), 

pesticides, and surfactants. These compounds are wide-spread environmental pollutants in the 

soil, which can be degraded by soil microorganisms and soil microbial processes (Zhang and 

Bennett, 2005; Lambo and Patel, 2007; Rein et al., 2007; Fallgren and Jin, 2008; Nitu and 

Banwari 2009; Tigini et al., 2009). 

Soil microorganisms have a profound effect on the transformation of other biogeochemical 

cycles such as nitrogen (N), phosphorus (P) and sulphur (S), as well as various micronutrients 

and heavy metals (Stevenson and Cole, 1999; Rawlings, 2002; Morton and Edwards, 2005; 

Robertson and Groffmann, 2007). They also serve as a strong integrator of the various 

elemental cycles in the soil. Carbon, nitrogen, sulphur, phosphorus and other metal element 

cycles are integrated through the selection of alternative electron acceptors under different 

redox conditions by soil microbes and the stoichiometry of biomass production (Bottomley 

and Myrold, 2007). An example of this is the autotrophic facultative anaerobe Thiobacillus 

denitrificans, which is capable of oxidizing sulphide to elemental sulphur using nitrate as its 

electron acceptor and carbon dioxide as carbon source under anoxic conditions (Kelly and 

Wood, 2000). Schink and Friedrich (2000) reported a process of phosphite oxidation by 

sulphate reduction observed among the strain FiPS-3 genera Desulfobacter, Desulfobacula, 

Desulfospira, and other representatives of major lineages of the δ-subclass of Proteobacteria.  

 

3.0. Concept of soil quality and soil health 

Various definitions of soil quality have been suggested over the last decade, which embody 

similar elements (Arshad and Martin, 2002). The most general accepted is that by the Soil 

Science Society of America Ad Hoc Committee on soil quality (S-581). They define soil 
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quality as the capability of a specific type of soil to function, within managed or natural 

ecosystem boundaries, to be able to sustain biological productivity, enhance or maintain air 

and water quality as well as support human habitation and health (Karlen et al., 1997). 

However, the term soil health is most preferred by some researchers because it describes the 

soil as a living entity with a dynamic system. The soil functions are controlled by its 

biological diversity and require maintenance for sustainability (Doran et al., 1996, 1998). Soil 

health in a broader concept, identifies the functionality of a soil to promote environmental 

quality, preserve plant and animal health, and sustain biological productivity, while the term 

soil quality is associated with the fitness of the soil for a specific purpose (Doran and Zeiss, 

2000). 

 

3.1. Soil Quality: indicator(s) of sustainable management  

According to Doran (2002), good soil quality is a requirement for the conservation of water 

resources as well as the basis for a sustainable agricultural production and the improvement 

of soil ecosystem functions. Thus, there should be a balance in the relationship between soil 

function and quality for optimal production of agricultural products. This requires a 

sustainable soil management approach as well as a dynamic indicator to monitor changes. 

These indicators must be sufficiently diverse in order to give a descriptive representation of 

the chemical, biological and physical processes and properties of the soil (Snakin et al., 1996; 

Karlen et al., 2003). The indicators for characterizing the quality of soil are grouped into two 

major categories: qualitative (descriptive), and quantitative (analytical) indicators (Arshad 

and Cohen, 1992). 

 

3.2. Qualitative indicators 

The importance of qualitative soil quality information is not often covered in scientific 

literature (Arshad and Cohen, 1992). They are generally considered of limited value and soft 

by technical experts and other natural scientists (Harris and Bezdicek, 1994). Information 

obtained with the qualitative component is considered soft because they are associated with 

basic visual and morphological indicators that are inherently qualitative and subjective 

(Harris and Bezdicek, 1994; Dang, 2007). Farmers often describe soil quality based on their 
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perception of its smell, look, feel and taste (Harris and Bezdicek, 1994). Farmers’ experience 

and indigenous knowledge offer a simple approach to characterising the status of a healthy 

soil and to monitor observable changes in soil quality (Romig et al., 1995). However, its 

potential has not been fully explored in both developed and developing countries (Pawluk et 

al., 1992). 

Arshad and Cohen (1992) proposed that qualitative data and information should form an 

essential part of soil quality monitoring programs. The data and information indicate 

morphological and visual observations, which can be used by both farmers and scientists in 

the field to identify decline in soil quality and health. This qualitative data include: (i) soil 

crusting, reduced aggregation, and surface sealing as indicators of loss of organic matter; (ii) 

observation of rills, gulleys, stones on surface, uneven topsoil, and exposed roots as 

indicators of water erosion; (iii) ripple marks on topsoil, sand against plant stems, and 

damaged plants as indicators of wind erosion; (iv) growth of salt-tolerant plants and salt 

crusting as indicator of soil salinization; (v) growth of acid-tolerant plants and lack of plant 

response to fertilizer application as indicators acidification and chemical degradation of the 

soil; and (vi) water stagnation and poor and patchy crop stands as indicators of poor drainage 

and compact-hardpan structure of the soil (Arshad and Cohen, 1992). 

Dang (2007) conducted a survey with 42 randomly selected farmers with at least 15 years 

working experience on tea farms, where soil samples were collected. From the information 

gathered, the farmers ranked soil organic matter content, soil compaction and fertility as the 

key indicators of soil health and quality. Their assessments of some of these indicators were 

in agreement with data obtained with a quantitative approach. The criteria used by the 

farmers to evaluate changes in soil quality are described in Table 2. 

Table 2. Farmers’ perceptions of selected soil quality indicators, adapted from Dang (2007). 

 

 

 

 

 

Indicators Description used by farmers
Soil organic matter Soil feels good to touch and dark in colour
Soil chemical fertility Based on observable plant growth and yeild response
Soil acidity Observation of the presence of specific weed species in the field
Soil compaction Soil feels tough or hard when hoeing or ploughing
Soil moisture  Observing the leaves at noon and evening and soil feels moist when touched 
Surface (A horizon) thickness The depth of dark coloured soil when hoeing or ploughing
Soil erosion  Observable changes in the soil surface after rain and 

year to year comparison of topsoil depth when ploughing at upper and lower slope positions
Soil structure Based on observable changes during hoeing or ploughing
Earthworm population Based on observed earthworm casts at the soil surface in the morning or after rainfall
Weed incidence  Based on evidence of weed species and communities in the field 
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3.3. Quantitative indicators 

Analytical indicators are quantitative and precise, using specific units as descriptors. 

Quantitative indicators of soil quality are based on measurable diagnostic properties (Harris 

and Bezdicek, 1994). Therefore, analytical indicators are more accepted by scientists and 

technical experts (Harris and Bezdicek, 1994). However, due to the fact that it is not possible 

to measure all inherent properties and attributes that influence soil quality, Larson and Pierce 

(1991) suggested a basic minimum data set (MDS). This data set consists of soil physical, 

chemical and biological properties for assessing the quality of soils, which can be of practical 

use to farmers, scientists as well as to policymakers.  

Subsequently, Doran and Parkin (1994) proposed a specific set of criteria to guide farmers, 

scientists and policymaker in the choice of indicators. According to Doran and Parkin (1994) 

indicators of soil quality should integrate soil physical, chemical, and biological processes 

and properties, which include ecosystem processes and relate to process-oriented modelling. 

Furthermore, it must be accessible to many users and applicable to field conditions and most 

importantly, it must be sensitive to variations in management and climate, and where 

possible, soil indicators should be components of existing soil databases. Table 3 summarizes 

sets of basic indicators of soil quality that meet the criteria of Larson and Pierce (1991) and 

Doran and Parkin (1994). These indicators are grouped into physical, chemical and biological 

indicators. 

Table 3. Key soil analytical indicators of soil quality. 

Doran and Parkin, 1994; Larson and Pierce, 1991.  

 

3.3.1.  Physical indicators 

Soil physical properties such as texture, bulk density, soil depth, water infiltration rate and 

holding capacity can serve as indicators of healthy soils. The roles of several of the physical 

Physical Chemical Biological
Bulk density pH Microbial biomass
Soil Texture Electrical conductivity Potentially mineralizable N
Water infiltration rate Nutrient availability Soil respiration
Soil and rooting depth Organic matter
water holding capacity
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indicators are influenced by other parameters or inherent properties of the soil. For instance, 

water infiltration rate can influence chemical properties such as pH, electrical conductivity 

and nutrient availability. 

 

3.3.1.1. Bulk density 

Bulk density is used as an indicator to investigate soil compaction or loosening, which is 

directly related to soil porosity. This parameter expresses the relationship between dry soil 

mass and its bulk volume (Grossman and Reinsch, 2002). Likewise, it enables gravimetric 

moisture content to be put in terms of volumetric moisture (Are et al., 2009). This, in turn, 

gives insight into the water storage profile, structural condition and compactness of the soil 

(Hernanz et al., 2000). However, optimal and critical limits of soil bulk density are dependent 

on the soil texture, particle size, management practices and organic matter content (Etana et 

al., 1999; Are et al., 2009; Reichert et al., 2009).  

Bulk density has great influence on the soil structure, the movement of air and water, as well 

as mechanical resistance of the soil. Various cultivars and crops respond differently to 

variation in soil bulk density or its degree of compactness (Stirzaker et al., 1996; Guimarães 

et al., 2002). At critical bulk density the growth of plant roots is inhibited or crop yield is 

reduced (Stizaker et al., 1996; Beutler and Centurion, 2004; Beutler et al., 2004; Secco et al., 

2004). 

 

3.3.1.2. Soil Texture 

Soil texture refers to the relative amounts of sand, silt, and clay in a specific type of soil (Gee 

and Bauder, 1986). Soil textural properties vary in relation to initial mineralogy parent 

weathering material and weathering rates. Thus, soil texture tends to vary at local scales 

along topographic gradients and at regional or landscape scales, in association with changes 

in parent material or the rate at which weathering occurs (Silver et al., 2000). In total, there 

are twelve generic soil textural classes, based on the United State Department of Agriculture 

(USDA) classification, however, soil texture can be classified under three major size classes 

namely clay (< 0.002 mm), silt (0.05 -0.002 mm), and sand (2.0-0.05 mm) (Gee and Bauder, 

1986). 
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Several studies have shown that soil texture influences characteristics of the soil 

microenvironment. Campbell et al. (1996) reported a positive correlation between clay and 

soil organic matter (SOM) content with greater SOM observed in non-tilled soil than in the 

conventional tillage soils at three sites in western Canada. Similarly, soil texture influences 

soil aggregation (Schlecht-Pietsch et al., 1994; Lado et al., 2004; Mamedov et al., 2007) in 

such a way that increased clay content was associated with increased soil aggregation. 

Increasing soil aggregation directly affects soil carbon storage by occluding organic 

materials, making them inaccessible to enzymatic or microbial degradation (Plante et al., 

2006). 

 

3.3.1.3. Water infiltration rate 

Water retention and flow dynamics in soil is a major stimulant of crop growth, nutrient 

cycling, and transportation of contaminants (Haws et al., 2004). Infiltration is one of the most 

important processes in the water cycle. It controls the soil-water available for plants, the 

transportation of nutrients and pesticides as well as the amount of runoff and soil erosion 

(Haws et al., 2004; Lado et al., 2005). Increased organic matter is known to correlate with an 

increase in soil infiltration and water-holding capacity. This has a major impact on soil water 

management. Under this condition, organic matter (crop residues) reduces the rate of runoff 

water and facilitates infiltration via macropores, plant root holes and earthworm channels 

(Edwards et al., 1988).  

Studies have shown that water infiltration is faster in soils with earthworms than in soils 

without earthworms (Willoughby et al., 1997). Soil organic matter primarily helps to stabilize 

soil aggregates, and the extent of aggregation within soil influences porosity of the soil and 

its capacity to retain plant-available water (Karlen and Stott, 1994). Nonetheless, agricultural 

management practices, especially soil tilling, disrupts soil surface aggregates, resulting in 

various degrees of crusting, increased runoff and a subsequent increase in soil erosion 

(Agassi et al., 1981; Karlen and Stott, 1994; Ben-Hur and Assouline, 2002; Assouline, 2004; 

Gregory et al., 2005; Lado et al., 2005). A crust develops when soil aggregates disintegrate 

and its fine particles block pore spaces in the soil.  
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3.3.1.4. Soil and rooting depth 

Soil depth provides a direct measure of the ability of a specific soil to support plants (Singer 

and Ewing, 1999). The distance from the soil surface to restrictive layers can be referred to as 

the effective soil depth (ESD). Most soil processes that affect soil quality are confined within 

this depth (Rhoton and Lindbo, 1997). An effective soil depth provides adequate zones for 

plant roots to explore for nutrient and has greater capacity to retain water and plant nutrients 

compared to shallow soils (Singer and Ewing, 1999; Troeh and Thompson, 2005). For 

instance, plants can survive a long period of drought when they grow on soils with effective 

depth, due to the ability of the soil to retain more water (Troeh and Thompson, 2005). 

The depth of a plant rooting system can also serve as a good indicator of soil quality. Plant 

roots are mostly restricted to the zone of stored water in the soil (Rhoton and Lindbo, 1997), 

and their growth is influenced by soil compactness (Aggarwal et al., 2006). Aggarwal et al. 

(2006) investigated the variation in soil strength and rooting properties of wheat in relation to 

soil management systems. They observed a significantly higher root volume density and root 

surface area density in a bed planting system compared to that of the conventional method. 

Likewise, the root length density of 0-30 cm soil layers in bed planting was about 22 % 

higher than conventional flat planting system. These observed differences were attributed to 

the tilling of the soil, which reduced the degree of soil’s compactness, improved soil depth, 

and enabled more root growth or root penetration (Aggarwal et al., 2006). 

 

3.3.1.5. Water holding capacity 

The water holding capacity of a soil is the volume of water that can be stored in a form 

accessible or available for plants use. Often, most soil profiles are able to store between 2.0 to 

10.0 inches of available water (Troeh and Thompson, 2005). The ability of a specific type of 

soil to hold or retain water depends greatly on the texture of the soil. The finer the soil’s 

texture, the higher its ability to hold or retain water for plant use (Lavelle and Spain, 2001; 

Troeh and Thompson, 2005). Fan et al. (2005) investigated the long-term effect of fertilizer 

application, and available-water on soil chemical properties as well as cereal yield in 

Northwest China. Water availability was reported to have had a great influence on wheat and 

corn grain yields over the six years. However, the addition of organic matter to some of the 

treatments resulted in an improved water-holding capacity and improved grain yield. 
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3.3.2.  Chemical indicators 

Soil chemical indicators hold a crucial link between the physical properties and fertility or 

productivity of soil. The various chemical reactions that maintain soil pH, electrical 

conductivity, nutrient availability, and organic matter content are indispensable for sustaining 

soil quality. Similar to the physical indicators, soil chemical indicators are interdependent. 

One indicator can modify or influence other indicators.  

 

3.3.2.1. Soil pH 

Soil pH has been identified as the principal indicator of the chemical characteristic of a 

particular soil (Sinsabaugh et al., 2008). It plays a significant role in all biogeochemical 

processes, as well as in microbial and enzymatic activity in the soil (Brady and Weil, 2002; 

Pietri and Brookes, 2008a; Sinsabaugh et al., 2008). Soil pH influences the solubility of soil 

macronutrients, micronutrients or essential trace elements including aluminium (Al), that can 

be potentially toxic to plants at elevated concentrations (Gramss and Bergmann, 2007; 

Naramabuye and Haynes, 2007). Acidification of the soil results in leaching of nutrients and 

releases aluminium in solubilized forms from its insoluble state (Marschner, 1995), which, in 

turn affects plant’s uptake of cations, induces organic acid secretion, and inhibits cell division 

and growth in the roots (Minocha and Minocha, 2005). This change in pH invariably affects 

the availability of plant nutrients, microbial processes in the soil (Plante, 2007; Pietri and 

Brookes, 2008b), as well as the rate of organic compound decomposition within the soil 

(Leifeld et al., 2008; Yao et al., 2009). 

 

3.3.2.2. Electrical conductivity 

Electrical conductivity (EC) of a soil is a measure of the number of ions or dissolved salts 

present in the soil solution (Arias et al., 2005). A salty or saline soil will have a very high 

electrical conductivity (Troeh and Thompson, 2005). Increased soil salinity suppresses plant 

growth, reduces crop yield, and the soil-water balance (Fitter and Hay, 1981; De Pascale and 

Barbieri, 1997; Ahmed, 2009). Salinity of soil reduces water up-take by plants due to 

reduction in the osmotic potential. This may cause an upset in the nutritional balance or result 



18 

 

in ionic toxicity (Fitter and Hay, 1981; Corwin and Lesch, 2003). Furthermore, the 

composition of the salt in soil water affects the soil’s cation exchange capacity. This, in turn, 

influences soil tilth and permeability, depending on the exchangeable cation composition and 

the level of the soil salinity (Corwin and Lesch, 2003). 

 

3.3.2.3. Nutrient availability 

Generally, there are seventeen essential elements associated with plant growth and 

productivity, of which carbon, hydrogen, and oxygen are obtained by plants through water 

and air (Troeh and Thompson, 2005). The other elements are further divided into six 

macronutrients and eight micronutrients. The macronutrients are the elements required in 

large quantities by plants, and include nitrogen, phosphorus, potassium, calcium, magnesium, 

and sulphur (Troeh and Thompson, 2005; Naramabuye and Haynes, 2007). The 

micronutrients are those elements required in trace amounts by plants and include boron, 

chlorine, copper, iron, manganese, molybdenum, nickel and zinc (Troeh and Thompson, 

2005). 

Nutrient availability is a crucial soil property. It influences plant productivity, water quality 

and can serve as an indicator of soil health (Soltanpour and Delgado, 2002; de Rouw and 

Rajot, 2004; da Silva et al., 2008). For instance, grape production and the quality of wine are 

directly affected by nutrient availability. Elements such nitrogen (N) affects both the 

production and quality of berries; boron (B) influences the size and number of berries; and 

zinc (Zn) favours the retention of bunches onto the branches (da Silva et al., 2008). 

Furthermore, in a three year field experiment conducted by De Rouw and Rajot (2004), on a 

pearl millet field with different farming systems, they observed a reduction in nutrient levels 

and grain yield over time, with the exception of the fields exposed to dung treatment. Dung 

input maintained a yield of 350 Kg ha-1 and a stable nutrient supply under prolonged 

cropping of 10 to 17 years. The observable differences in nutrient levels and grain yield was 

attributed to dung application early in the season. It protected the soil mechanically, by 

reducing crusting and trapping mobile soil during storms.  
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3.3.2.4. Organic matter 

Soil organic matter plays a crucial role in the functioning of agricultural ecosystems, 

ecosystem productivity and in the global C cycle (Loveland and Webb, 2003; Weil and 

Magdoff, 2004; Pan et al., 2009). It comprises organic materials, such as tissues of living 

organisms, altered plant and animal organic residues, and decomposed plant and animal 

tissues. Soil organic matter is subdivided into three groups, humic acid, fulvic acid, and 

humin substances (Wander, 2004). Humic acid occurs in soluble state in alkali solvent, but is 

precipitated on acidification of the alkaline extract. Fulvic acid is the humic fraction which 

remains in solution after the acidification of the alkaline extract and it is soluble in both 

alkaline and acidic dilute, while, humin, is the fraction of the humic substances that can not 

be extracted from the soil by alkaline or acidic solvent (Schnitzer, 1978). However, a 

descriptive approach can also be used to group soil organic matter into pools or stages; this 

includes active, intermediate and passive pools (Wander, 2004). This division is dependent 

on the biological, physical, and chemical processes taking place within the soil organic 

matter. The functional importance of soil organic matter of different ages varies, with the 

youngest organic matter being most biologically active and intermediate age influences the 

physical status of soil (Wander, 2004). 

The role of soil organic matter in the quality and health of soil is significant because it 

influences other important physical, chemical, and biological properties of soil (Rahimi et al., 

2000; Oorts et al., 2003; Abu-Zahara and Tahboub, 2008), as well as crop productivity (Pan 

et al., 2009). Rahimi et al. (2000) investigated the effect of varying amounts of organic 

matter on soil electrical conductivity (EC) and its sodium adsorption ratio (SAR). They 

observed among others a significant correlation between the soil tensile strength and the 

amount of organic matter input. The soil with a higher amount of organic matter showed 

greater tensile strength and had a higher EC and SAR compared to soil with low input of 

organic matter. The study confirms the role and influence of organic matter on soil chemical 

properties. Similarly, Oort et al. (2003) reported a significant contribution of soil organic 

matter to the cation exchange capacity (CEC) of a tropical soil. In their study, soil samples 

were collected from a twenty year old arboretum established on a Ferric Lixisol with seven 

multipurpose tree species. Upon chemical analysis of the soil pH and CEC, they observed 

about 85 % variation among soil samples and this was associated with carbon content to 

which organic matter content plays a major role. 
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3.3.3. Biological indicators 

Biological indicators or soil organisms are sensitive to anthropogenic disturbance, and 

climate change. Indicators such as microbial biomass, potentially mineralized nitrogen, and 

soil respiration are sensitive to various induced stress factors over a period of time, and have 

served as a good measure of the quality and health of soil (Ritz and Wheatley, 1989; Dai et 

al., 2004; Kruse et al., 2004). 

 

3.3.3.1. Microbial biomass 

Soil microbial biomass is the active component of soil organic pool (Henrot and Robert, 

1994). It plays a crucial role in organic matter decomposition as well as in nutrient 

transformation and consequently influences ecosystem productivity (Maithani et al., 1996; 

Franzluebbers et al., 1999). According to Insam (2001), microbial biomass is an important 

indicator of soil productivity and its evaluation is invaluable in soil ecological studies. The 

knowledge acquired is also fundamental to sustaining the environment and productivity. 

Studies have shown that soil microbial biomass is often influenced by soil depth, seasonal 

fluctuation, pH, heavy metal deposition and land management practices (Dai et al., 2004; 

Calbrix et al., 2007; Vásquez-Murrieta et al., 2007). High concentrations of heavy metals are 

known to affect the morphology, metabolism and growth of microorganisms in soils (Giller et 

al., 1998), as they disrupt the integrity of their cell membranes and cause protein denaturation 

(Leita et al., 1995). Furthermore, microbial biomass has been reported to correlate positively 

with yield in organic farming compared to conventional farming systems (Mäder et al., 

2001). 

 

3.3.3.2. Potentially mineralizable nitrogen (N) 

Nitrogen (N) is an essential plant nutrient, and significantly influences agricultural 

productivity (Picone et al., 2002). In most soils, a significant ratio of available N is derived 

from mineralization of the soil organic matter (Cabrera et al., 1994; Kerek et al., 2003). Soil 

organic N is trapped in an heterogeneous mixture of components which includes stable humic 

substances, microbial metabolites adsorbed to soil colloids, microbial biomass, as well as 
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animal and crop residues (Campbell, 1978). Microorganisms play a part in the mineralization 

or release of the organic N. 

Potentially mineralizable nitrogen is the amount of soil organic nitrogen that is mineralized 

and available during plant growth (Stevenson and Braids, 1968). Other than organic matter 

residues, factors such as soil pH, heavy metal deposition, temperature, water content, and 

excessive fertilizer N input affects N mineralization (Higby and Bell, 1999; Khan and 

Scullion, 2002; Kruse et al., 2004). Changes in soil water content due to drying and rewetting 

have been reported to affect N mineralization. In a study conducted by Kruse et al. (2004), 

they observed after 185 days that cotton (Gossypium hirsutum L.) leaves decomposing in 

continuously moist soils resulted in mineralization of 30 % of the applied N. In contrast, 

cotton leaves subjected to a 14 day drying-rewetting cycle after 185 day resulted in reduced 

N mineralization. Research has also shown that an increase input of fertilizer N increases the 

amount of N mineralized from soil organic matter (Higby and Bell, 1999). 

 

3.3.3.3. Soil respiration 

Soil respiration involves the oxidation of organic matter to the eventual production of carbon-

dioxide (CO2) and water as end products. The oxidation process is mostly mediated by soil 

aerobic microorganisms, which makes use of oxygen as electron acceptor. Thus, the 

metabolic activities of soil microbial communities can be quantified by measuring the amount 

of carbon-dioxide produced or oxygen (O2) consumed in a given soil (Nannipieri et al., 

1990). Soil respiration can be subdivided into basal respiration and substrate-induced 

respiration (Alef, 1995). Basal respiration refers to respiration that occurs without the 

addition of organic substrate to the soil (Ritz and Wheatley, 1989; Vanhala et al., 2005), 

while substrate-induced respiration refers to respiration that occurs in the presence of added 

substrate (Ritz and Wheatly, 1989; Alef, 1995). The measurement of soil respiration rates has 

been used in the assessment of the side effects of heavy metals and pesticide accumulation, 

and various amendments such as, addition of sewage sludge or other forms of substrates in 

the soil (Doelman and Haanstra, 1979; Debosz et al., 1985; Ritz and Wheatley, 1989; Prasad 

et al., 1994; Lin and Brookes, 1999; Fernandes et al., 2005).  
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4.0.  Assessments of soil microbial communities 

Understanding the response of soil microbial community composition to agricultural 

management practices over time will help to evaluate the effect of the practices on soil 

quality. However, the qualitative and quantitative description of soil microbial communities 

is one of the most difficult challenges facing microbial ecologists (Crecchio et al., 2007). 

Thus, there is the need for accurate and reliable mechanisms to study soil microorganisms 

before we can focus on how changes in microbial community structure affect ecosystem 

functions (Kirk et al., 2004). Several microbiological and molecular methods have been 

adopted over time to study microbial diversity in agricultural soil (Turco et al., 1994; Ibekwe 

and Kennedy, 1998; van Elsas et al., 1998; Muyzer and Smalla, 1999; Classen et al., 2003; 

Keer and Birch, 2003), and can be grouped into culture-dependent and –independent 

methods. 

 

4.1. Culture-dependent methods for assessing microbial diversity 

Culture-based techniques currently are insufficient to answer all questions posed by microbial 

ecologists. It is often observed that direct microscopic counts exceed the total viable cell 

counts by several orders of magnitude. One gram of soil may contain more than 1010 bacteria 

as counted under a fluorescence microscope after staining with fluorescent dyes (Torsvik et 

al., 1990). Culturing conditions often select a distinct subpopulation of the microbial 

community, which only accounts for 1-10% of total microbial communities (Torsvik et al., 

1998). 

 

4.1.1.  Viable cell count 

Traditionally, analysis of soil microbial diversity depends on the ability of cells to grow and 

form visible colonies on solid media. This involves the use of a wide array of selective media 

and direct viable cell counts on plates (van Elsas et al., 1998; Keer and Birch, 2003). This 

approach is fast, inexpensive and can provide basic information about the active, 

heterotrophic microbial diversity within the population (Kirk et al., 2004). However, under 

certain circumstances the number of viable microorganisms is often under-represented by this 
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method. For instance the fastidious unculturable section of the population (Ward et al., 1990; 

Trevors, 1998), sub-lethally damaged organisms (Blackburn and McCarthy, 2000), and viable 

cells that have lost their ability to form colonies under the culturing conditions (Keer and 

Birch, 2003) will not be detected. Growth conditions such as light, pH, temperature, lowering 

level of oxygen concentration, substrate concentration, as well as depth of media in plates 

equally influence the outcome of viable cell counts (Xenopoulos and Bird, 1997; Olson et al., 

2000; Bussmann et al., 2001; Keer and Birch, 2003). 

 

4.1.2.  Sole carbon source utilization (SCSU) 

Sole carbon source utilization technique or community-level physiological profiles (CLPP) 

was developed originally for the characterization of clinical bacterial isolates, using 

commercially available ninety-six well microtitre gram-negative (GN) and gram-positive 

(GP) bacterial plates (Garland and Mills, 1991). Subsequently, the Eco-plate system was 

introduced by Biolog (Hayward, CA, USA) containing three replicas of thirty-one different 

environmentally important carbon sources and one control well per replicate (Choi and 

Dobbs, 1999). The indicator substrate, tetrazolium salt changes colour as the carbon source is 

metabolized. However, many fungal species are not able to reduce this indicator salt. Hence, 

fungal specific plates SFN2 and SFP2 without the tetrazolium were developed by Biolog 

(Dobranic and Zak, 1999; Classen et al., 2003).  

In addition, substrate utilization in fungal plates is measured turbidimetrically (Buyer et al., 

2001), and antibiotics are added to the inoculating media to reduce the impact of bacteria on 

the fungal substrate utilization pattern (Dobranic and Zak, 1999; Buyer et al., 2001). The 

inoculated microbial populations are monitored over time for their ability to utilize the carbon 

source and the speed at which the carbon source is utilized. The data generated is subjected to 

multivariate analysis and relative differences between soils functional diversity can be 

inferred (Kirk et al., 2004). 

Sole carbon source utilization technique, has been used successfully to characterize potential 

metabolic diversity of microbial communities in soil treated with herbicides (Lupwayi et al., 

2009a; Mijangos et al., 2009), soil amended with calcium cyanamide (CaCN2) and other 

forms of fungicides (Lupwayi et al., 2009b; Shi et al., 2009), soil contaminated with heavy 
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metal (Harris-Hellal et al., 2009) and in compost biofilters (Grove et al., 2004) among others. 

Lupwayi et al. (2009a) used the Biolog Ecoplate® with enzyme-linked immunosorbent assay 

(ELISA) plate reader to characterize soil microbial community response to herbicides applied 

to glyphosate-resistant canola. They observed significant differences in the functional 

structure of the bacteria community.  

Sole carbon source utilization has advantages over plate counts in that, it can differentiate 

between microbial communities (Grove et al., 2004; Harris-Hellal et al., 2009; Shi et al., 

2009). It is relatively easy to use, and a large volume of data can be generated reflecting the 

potential metabolic characteristics of the soil metabolic diversity (Garland and Mills, 1991; 

Zak et al., 1994). However, the methods still rely only on culturable microorganisms with 

their ability to grow under experimental conditions (Garland and Mills, 1991). It is sensitive 

to microbial or inoculum load (Garland, 1996), and often favours fast growing microbial 

communities (Yao et al., 2000). 

Sole carbon source utilization gives an idea of the potential metabolic diversity and not the 

real metabolic diversity in situ (Garland and Mills, 1991). For instance, the carbon sources 

may not be an adequate representative of the carbon sources available in the soil (Yao et al., 

2000). Furthermore, species representing only a minority in the microbial community 

population in situ may possess a competitive edge within the Biolog well and the data 

obtained may overestimate the contribution of this species in the soil (Kirk et al., 2004). This 

questions the interpretation and reliability of the data and the information. Nonetheless, sole 

carbon source utilization is useful when investigating the functional diversity of soils and is a 

valuable tool especially when used together with other methods, such as the combination of 

Biolog Ecoplates and PCR-DGGE technique (Mijangos et al., 2009). 

 

4.2. Culture-independent methods for assessing microbial diversity 

Culture-independent methods such as phospholipid fatty acid analysis (PLFA), and fatty acid 

methyl ester (FAME) analysis, and various advancements in molecular biology, have 

enhanced our ability to investigate the unculturable soil microbial communities. Culture-

independent approaches give a greater resolution of microbial diversity and are more 

sensitive compared to the culture-dependent methods. The various culture-independent 
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approaches provide more information on the soil microbial community structure in 

comparison to culturing techniques (Muyzer et al., 1993; Ibekwe and Kennedy, 1998; 

Schwieger and Tebbe, 2000; Donegan et al., 2001). 

 

4.2.1.  Biochemical methods 

Phospholipid fatty acids make up a relatively constant proportion of cell biomass of 

organisms in naturally occurring communities (Lechevailer, 1989). Each taxonomic group 

possesses a unique fatty acid or signature fatty acid, which serves as a marker to differentiate 

a taxonomic group from other groups within a population. Thus, a change in the phospholipid 

fatty acid pattern in a soil sample would indicate a change in microbial population of that soil 

sample (Ibekwe and Kennedy, 1998; Kirk et al., 2004). This technique in principle does not 

rely on culturing of soil microbes, but provides information on the soil microbial community 

structure based on grouping of fatty acid profiles (Ibekwe and Kennedy, 1998).  

There are two approaches to this technique, namely fatty acid methyl ester (FAME) or 

phospholipid fatty acid (PLFA) analysis. FAME profiles are based on all fatty acids 

extracted, which include both polar and non-polar fatty acids. With FAME analysis, fatty 

acids are extracted directly from soil samples, methylated and quantified by gas 

chromatography (Ibekwe and Kennedy, 1998; Zelles, 1999; Buyer, 2006). In PLFA profiles, 

the polar phospholipids are separated from the non-polar lipids via exchange columns (Bååth 

et al., 1995).  

Fatty acid methyl ester analyses have been used to compare microbial community structures 

and populations of different soil types, such as soil contaminated with heavy metals (Ellis et 

al., 2001), chemically perturbed soil (Zelles et al., 1994; Kozdrój and van Elsas, 2001) as 

well as soil exposed to different agricultural practices (Ibekwe and Kennedy, 1998; Steger et 

al., 2003). Ellis et al. (2001) combined community fatty acid methyl ester (C-FAME), 

dehydrogenase enzyme activity measurements, CLPP, and plate counts to investigate the 

impact of long term heavy metal contamination on soil microbial communities. Community 

fatty acid methyl ester (C-FAME) analysis revealed a distinct difference between sampling 

stations and these results were correlated well with other techniques used in the study. 
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FAME analysis has shown relative success in the study of microbial diversity composition. 

However, the technique is burdened with limitations. For example, cellular fatty acid 

composition may be influenced by factors such as availability of nutrients and temperature 

(Graham et al., 1995). Fatty acids extracted from soil samples may also include that of dead 

microorganisms, plant residues and roots or other soil organisms (Jandl et al., 2005), 

resulting in a complex FAME profiles. In addition, when studying fungal diversity, fungal 

biomass may be underestimated due to the limited number of signature fatty acids for fungi 

(Marschner, 2007). FAME profiles have no taxonomic significance because individual fatty 

acids cannot be used to represent specific species and microbial populations can have similar 

fatty acids (Bossio et al., 1998). 

 

4.2.2. Polymerase Chain Reaction (PCR)-based methods 

Molecular-based approaches for ecological studies initially relied on cloning of target genes 

isolated from environmental samples (Muyzer and Smalla, 1999), which is a tedious and time 

consuming routine. Advancement in the field of molecular biotechnology, has aided the 

development of cutting-edge methodology in the field of microbial ecology. These molecular 

approaches are generally based on PCR or real time (RT)-PCR, targeting generic or specific 

rRNA (16S and 18S) subunits, internal transcribed spacer (ITS) regions or their rDNA genes 

which serves as useful molecular markers for prokaryotes and eukaryotes. 

 

4.2.2.1. Denaturing gradient gel electrophoresis (DGGE) or temperature gradient gel 

electrophoresis (TGGE) 

Denaturing gradient gel electrophoresis (DGGE) was originally developed by the medical 

community to investigate point mutations in DNA sequences (Lerman et al., 1984; Borresen 

et al., 1988). However, Muyzer et al. (1993) extended the use of DGGE to study genetic 

diversity in microbial populations. This approach is based on separation of PCR-amplicons 

via electrophoresis in polyacrylamide gel containing a linearly increasing gradient of 

denaturants urea and formamide. DNA fragments of similar length but different base-pair 

sequences can be separated based on the melting point of their double-stranded DNA 

(Lerman et al., 1984; Miller et al., 1999; Muyzer, 1999). A GC clamp is added to the PCR-
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amplicons during amplification process to ensure that part of the DNA remains double 

stranded. Thereby, improving the quality of bands obtained on the gel. Upon denaturation the 

DNA fragment melts at specific points, and moves differentially through the gel (Torsvik et 

al., 1998; Muyzer, 1999; Shishido et al., 2008). Temperature gradient gel electrophoresis 

(TGGE) works on the same basic principle as DGGE, but the gradient denaturant is 

temperature and not chemical (Muyzer, 1999). 

These techniques have been successfully applied in microbial ecology, to characterize genetic 

diversity of microbial communities in the rhizosphere of soil exposed to diverse 

anthropogenic disturbances such as herbicide applications (Mijangos et al., 2009), 

agricultural practices (Liu et al., 2007; Postma et al., 2008; Shishido et al., 2008), and soil 

contaminated or amended with heavy metal or sludge (Sheppard et al., 2005; Anderson et al., 

2008; Harris-Hellal et al., 2009). 

DGGE or TGGE have various advantages over the culture-base methods. It is a rapid and 

reproducible technique. Multiple samples can be run concurrently, making it possible to 

follow shifts in microbial community composition (Muyzer, 1999). After electrophoresis 

visible bands on the gel can also be excised and sequenced (Yang and Crowley, 2000; 

Nakatsu et al., 2005; Joynt et al., 2006). This reduces the ambiguity of band identification, 

and help to identify specific populations potentially responsible for observable changes 

(Nakatsu et al., 2005; Joynt et al., 2006). 

However, there are several limitations in using PCR-DGGE for microbial community 

assessments. The biggest challenge when performing DGGE is gel to gel comparisons. It is 

very difficult to accurately reproduce gel gradients, and a reproducible result can only be 

achieved by minimizing variation between gel gradients (Fromin et al., 2002). This can be 

achieved by the use of computer-assisted characterization of the banding patterns and the 

application of statistical approach to data obtained (Fromin et al., 2002). DGGE markers 

often have an insufficient number of bands to span the whole gradient, making gel-to-gel 

comparison difficult (Nakatsu, 2007). Therefore, sufficient diversity of organisms most be 

chosen when making standard markers, to ensure that marker bands will span the whole 

gradient (Nakatsu, 2007).  

Being a PCR-based approach, DGGE is influenced by PCR biases such as the choice of 

primers, numbers of cycles, annealing temperatures, formation of chimaeric PCR products, 
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and inhibition of the polymerase enzyme by humic substances within the reaction mix (von 

Wintzingerode et al., 1997). This can result in inconsistent variation in copy numbers and the 

inclusion of artefacts that can influence data interpretations of DGGE profile. Another 

limitation of DGGE is the inability of the technique to resolve complex microbial 

communities. For example, a complex microbial community such as that found in soils may 

contain numerous populations of approximately 1010 colony forming units (Torsvik et al., 

1990). This results in a smear which makes it difficult to identify individual bands on the gel 

(Nakatsu et al., 2000). It is impossible for DGGE to detect the entire microbial diversity in a 

given soil sample. Similarly, the number of observable bands in a profile cannot be 

interpreted to be the exact numbers of populations in a community. Studies have revealed that 

a single microbial isolate can produce multiple banding patterns on DGGE (Nübel et al., 

1996; Satokari et al., 2001). In addition, variation in DNA extraction efficiency can influence 

the banding patterns on DGGE gels (Maarit-Niemi et al., 2001). 

 

4.2.2.2. Single strand conformation polymorphism (SSCP) 

Similar to DGGE/TGGE, the single strand conformation polymorphism (SSCP) technique 

was initially developed to detect point mutations in DNA (Orita et al., 1989a, 1989b). SSCP 

has been used extensively in the medical field (Walsh et al., 1995; Donnelly et al., 2002; 

Jeffery et al., 2007), and in the identification of plant-pathogenic fungi (Kumeda and Asao, 

1996; Kong et al., 2003). SSCP is a gel-based approach and relies on electrophoretic 

separation of DNA fragments. A single stranded DNA is separated on a polyacrylamide gel 

based on differences in mobility due to folded secondary structure (Nishigak et al., 1986; Lee 

et al., 1996). This technique has been extended to study microbial diversity such as 

rhizosphere microbial community structure (Schwieger and Tebbe, 2000; Dohrmann and 

Tebbe, 2005), microbial communities’ population and genetic dynamics in contaminated soils 

(Klenistenber et al., 2006; Witzig et al., 2006), and bacterial community changes during milk 

and cheese production (Duthoit et al., 2003; Delbés et al., 2007). 

The high rate of reannealing of DNA strands after an initial denaturation during 

electrophoresis is one of the major limitations of SSCP for the analysis of microbial 

communities (Selvakumar et al., 1997). This is crucial if high concentrations of DNA might 

be required for analysis of high-diversity communities, and loaded onto the gels. Another 
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disadvantage of SSCP is the appearance of multiple bands from a double stranded PCR 

product after electrophoresis. Characteristically, three bands are detected; two single strands 

and one double stranded DNA molecule (Schwieger and Tebbe, 1998), and multiple 

conformations of one single stranded may coexist in one gel (Tiedje et al., 1999). SSCP also 

has the same setbacks associated with DGGE or TGGE (Kirk et al., 2004). 

 

4.2.2.3. Restriction fragment length polymorphism (RFLP) 

Restriction fragment length polymorphism (RFLP), also referred to as amplified ribosomal 

DNA restriction analysis (ARDRA) is another molecular technique use in the study of 

microbial diversity. This technique, which relies on rDNA fragment length polymorphisms, 

involves the digestion of the amplicons or rDNA sequences obtained via PCR using 

restriction enzymes. Different restricted fragment lengths obtained are separated on agarose 

or non-denaturing polyacrylamide gel electrophoresis (Ranjard et al., 2000; Kirk et al., 

2004). The technique has been used to characterize changes in microbial community structure 

as a result of changes in environmental conditions and different soil types (Donegan et al., 

2001; Sheppard et al., 2005; Soares et al., 2006; Matsuyama et al., 2007), as well as, 

exposure of soil to toxic compounds (Donegan et al., 1995; Smit et al., 1997).  

Similar to DGGE, RFLP bands can be used for the taxonomic identification of microbial 

communities. Either by hybridization of the RFLP profile to specific probes (Ranjard et al., 

2000) or by excising, purifying and re-amplification of bands from gels (Soares et al., 2006). 

However, it does not measure community diversity (Liu et al., 1997), and banding patterns in 

a highly diverse population may become too complex to analyse (Tiedje et al., 1999). In 

addition the choice of restriction enzymes is crucial for obtaining optimal resolution of rDNA 

fragment lengths. Preliminary test on enzyme(s) of choice must be conducted to ensure that 

optimal resolution is obtained in detecting shifts in microbial communities (Ranjard et al., 

2000). 

 

4.2.2.4. Terminal restriction fragment length polymorphism (T-RFLP) 

Terminal restriction fragment length polymorphism (T-RFLP) follows the same principle as 

RFLP/ARDRA, except that fluorochrome-labelled primers, such as 6-FAM (phosphoramidite 
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fluorochrome 5-carboxyfluorescein), HEX (5-hexachloroflourescein) or TET (4, 7, 2', 7'-

tetrachloro-6-carboxyfluorescein)-labelled primers are used instead of non-labelled primers. 

This makes it possible to detect the labelled terminal restriction fragment (Liu et al., 1997; 

Tiedje et al., 1999; Tiquia et al., 2002). The banding profiles obtained are simpler based on 

the numbers of bands, as the use of labelled primers limits the analysis to only the terminal 

fragments of the digestion (Marsh, 1999). This enables the analysis of complex communities 

and provides information on community diversity as each visible band represents an 

operational taxonomic unit (OTU) or ribotype (Liu et al., 1997; Ranjard et al., 2000). A 

sequence database of the 16SrDNA terminal restriction fragment for specific restriction 

enzymes on bacterial species has been generated and this makes it possible for profile to 

profile comparison of the bands in a given community profile (Marsh, 1999).  

The T-RFLP approach has been automated, through the use of automated sequencing systems 

with laser detection of fluorescently labelled DNA fragments. This allows a high-throughput 

in which a large number of samples can be processed simultaneously (Osborn et al., 2000; 

Forney et al., 2004). The automated approach has significantly greater resolution and 

sensitivity compared to the electrophoretic systems of DGGE or SSCP (Marsh, 1999). 

Like every other PCR-based method, T-RFLP is not exempted from biases associated with 

PCR reactions and products (von Wintzingerode et al., 1997). Often amplification of 

numerically dominant species may be favoured more than other species, due to the large 

quantity of available DNA template and in some instances different species have different 

genes in multiple copies (Liu et al., 1997). T-RFLP outcome can equally be influenced by 

DNA extraction techniques (Maarit-Niemi et al., 2001). They observed variation in band 

profile and resolution due to different DNA extraction and clean-up techniques. Similarly, a 

decrease in concentration of the template DNA can result in poor band resolution and a 

decline in the complexity of fragments obtained in the T-RFLP community profile (Osborn et 

al., 2000). 

The choice of universal primers is not as universal as initially believed, they are based on 16S 

rRNA, 18S rRNA, or ITS database which until recently, contained only sequences obtained 

from culturable microorganisms (Baker et al., 2003; Forney et al., 2004). For instance, Baker 

et al. (2003) investigated the specificity of primers and the total number of 16S ribosomal 

database sequences available, which are complementary to primers developed for the 
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amplification of bacterial 16S rRNA genes. They observed that 16S rDNA library does not 

completely represent the true biodiversity of prokaryotes, and most of the primers were non-

specific for Eubacteria. Therefore, data obtained may not be representative of the true 

microbial diversity in environmental sample (Liu et al., 1997; Baker et al., 2003; Forney et 

al., 2004), which results in underestimation of community diversity. In addition, incomplete 

restriction enzyme digest could result in an overestimation of microbial diversity (Osborn et 

al., 2000). Nonetheless, T-RFLP has been used to investigate the changes in soil microbial 

communities in response to agricultural amendments (Tiquia et al., 2002), to measure the 

impact of biotic and abiotic interactions of soil microbial community structure (Singh et al., 

2007, 2009), and to distinguish between bacterial communities of two contrasting forest soils 

treated with lincomycin (Čermák et al., 2008). 

 

4.2.2.5. Ribosomal intergenic spacer analysis (RISA) and Automated ribosomal 

intergenic spacer analysis (ARISA) 

Ribosomal intergenic spacer analysis (RISA) is a PCR-based approach similar to RFLP and 

T-RFLP. It involves PCR amplification of the intergenic spacer (IGS) region between the 

small (16S) and large (23S) subunit rRNA operon with oligonucleotide primers. The region 

between the 16S-23S subunit rRNA, may encode tRNAs which display significant 

heterogeneity in both length and nucleotide sequence depending on the bacterial species 

(Fisher and Triplett, 1999). In RISA, the length heterogeneity of the intergenic spacer is 

detected using polyacrylamide gel electrophoresis, and the DNA fragments or bands are 

visualized by silver staining. This generates a complex banding pattern that provides a 

microbial community-specific profile and each DNA band represents one organism 

assemblage or operational taxonomic unit (OTU) (Fisher and Triplett, 1999).  

RISA has been used to explore microbial diversity in soils, such as the impact of 

rhizodeposition on the spatial and temporal variation of bacterial communities along maize 

roots (Baudoin et al., 2002), the effect of seasonal fluctuations on the diversity of bacterial 

communities in agricultural soil (Meier et al., 2008), and the influence of heavy metal 

deposition on soil microbial communities in forest soil (Hartmann et al., 2005). Meier et al. 

(2008) were able to confirm a T-RFLP profile using RISA. Nonetheless, RISA is a very 

cumbersome, time-consuming, and relatively cost efficient. The preparation of the 
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polyacrylamide gel takes time and requires technical know-how. Also a large amount of PCR 

products is required for analysis in order to obtain a good resolution on the polyacrylamide 

gel, and silver staining is relatively insensitive in the detection of DNA fragments (Fisher and 

Triplett, 1999). 

ARISA overcomes the some of limitations existing with the use of RISA. It involves the use 

of a fluorescence-labelled oligonucleotide primer for PCR amplification, and the 

electrophoresis step is subsequently automated using laser detection (Fisher and Triplett, 

1999; Ranjard et al., 2001; Mora et al., 2003). The high resolution of the gels and sensitivity 

of the laser detection of fluorescence fragments makes the number of peaks detectable by 

ARISA much higher compared to RISA profile. Also, differences in the intensity of the bands 

can be estimated accurately with ARISA, which enables a better profile to profile comparison 

(Ranjard et al., 2001). From the profile obtained each band or peak represents different 

fragment sizes in base pairs, and are each regarded as operational taxonomic unit (OTU) 

(Fisher and Triplett, 1999; Hewson and Fuhrman, 2006). 

ARISA as a fingerprinting tool has been used in various sectors of microbial ecology. These 

include the characterization of bacterial communities in aquatic environments (Arias et al., 

2006; Fisher and Triplett, 1999), comparison of fungal communities from different salt marsh 

plants (Torzilli et al., 2006), investigation of the effect of heavy metal deposition on soil 

microorganisms (Gleeson et al., 2006; Ranjard et al., 2008), and to assess the effect of 

agricultural practices or land amendments on soil microbial community structure (Peixoto et 

al., 2006). 

As a molecular tool that depends on amplification of DNA fragments, ARISA is also not 

exempted from familiar biases introduced by DNA extraction procedures and PCR 

amplification (von Wintzingerode et al., 1997; Maarit-Niemi et al., 2001). ARISA may 

underestimate microbial diversity by grouping similar ribotypes of unrelated origin together 

because of the similarity in length of the intergenic spacer (ITS) region (Fisher and Triplett, 

1999; Crosby and Criddle, 2003). Similarly, the microbial genome may consist of multiple 

copies of the ITS region this results in an overestimation of microbial diversity, when a single 

organism contributes more than one peak to the ARISA profile (Nagpal et al., 1998; Crosby 

and Criddle, 2003). Despite all the shortcomings stated above, ARISA has proven to be a 
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relatively cost efficient, rapid, sensitive, and highly reproducible technique (Fisher and 

Triplett, 1999; Ranjard et al., 2001; Arias et al., 2006; Ranjard et al., 2008).  

 

5.0. Purpose of study 

Biodiversity is often associated with soil resilience to endure disturbance, and increase in the 

soil microbial community diversity has been reported to increase soil resilience capacity. The 

aim of this study is to evaluate the effect of various soil management practices on the soil 

microbial communities in apple orchards. This will be achieved by assessing the direction of 

change in the soil microbial community in relation to soil management practices. The crucial 

goal is to gain an understanding of the relative microbial diversity patterns of the different 

soil management systems in relation to their physical and chemical properties.  
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Chapter 2 
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2.1. Site description 

Samples were collected from an apple orchard on the Agricultural Research Council (ARC) 

Infruitec-Nietvoorbij experimental farm in Elgin, Western Cape, South Africa (34º 11' S; 19º 

19' E). The 0.7 ha experimental apple orchard is planted with Cripps pink apple trees. Eight 

different land management treatments were applied within different experimental plots. The 

treatment plots were set up in the orchard using a randomized block design with four 

replications for each treatment (Fig. 1). Each treatment plot of 9 by 4.5 m2 consisted of a 

single row of nine trees (tree row) and two working rows (Fig. 1). The treatment plots were 

separated by buffer zones. The land management treatments consisted of different 

combinations of chemical control, slashing of weed, use of cover crops and mulching along 

the working rows and bench rows (Table 1). Herbicides (glyphosate) were sprayed in the 

chemical control plots, while weeding was done by mechanical slashing of the weed in the 

working rows when overgrown. Mulch treatments were replaced each year during bud-break 

by applying a mixture of compost and wheat straw of approximately 50 mm thick and 1.5 m 

wide on the tree row. Wheat and legumes were planted in alternative years as cover crops. 

 

Figure 1. Experimental design of the apple orchard indicating the randomized pattern for soil 

treatments numbered 1 to 8, and replicated 4 times across the experimental field with buffer 

zone between treatments. *Sampled plots. 

 

Working row Tree row Working row

8 (2)* 7 (2) 4 (3)* 2 (4)* 7 (4)*

8 (1) 6 (2)* 3 (2)* 2 (3) 1 (4) 3 (4)

1 (1)* 2 (2) 6 (3) 1 (3)* 8 (4)

6 (1) 2 (1)* 5 (3) 8 (3)* 5 (4)

7 (1)* 5 (1)* 4 (2) 3 (3)* 7 (3) 6 (4)*

3 (1) 4 (1) 1 (2) 5 (2)* 4 (4)*

N

S

W E
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Table 1. Land management practice adopted on experimental field. 

 
*Spray EM: Spray effective microorganisms. Treatment 1 was the control plot in this study. 

 

2.2. Sampling and Storage 

Soil samples were collected in February and April 2008. Samples were collected from three 

specific points (A-I) along working row 1 (W1), working row 2 (W2), and between apple 

trees in the bench/tree rows (TR). Samples were taken at depths of 10 cm and 20 cm. 

Samples obtained from each of the rows (W1, W2 and TR) was combined separately for each 

of the rows into 10 cm and 20 cm respectively (Fig. 2). For plots treated with mulch, the 

mulch layer was carefully removed from the soil surface by hand to prevent the 

contamination of core samples with surface organic matter. Soil samples were homogenized 

and sieved with a 2 mm mesh sieve (United wire test sieves, Nigel, South Africa) to remove 

plant material and large pieces of debris. Homogenised soil samples were kept in cold storage 

at 40C for 3 months, during which genomic DNA were extracted. 

 

Figure 2. Description of the experimental plot sampling pattern indicating the working rows, 

tree rows, and the buffer zones. 

Growing season Winter season
1 Slash weeds when necessary Slash weeds when necessary Chemical control

2 Chemical control of cover crop in spring & growing Cover crop Chemical control

3 Chemical control of cover crop in spring & growing Cover crop Mulch
4 Mulch Mulch Mulch
5 Flatten cover crop in spring; slash weed when necessary Cover crop Mulch
6 Flatten cover crop in spring; slash weed when necessary Cover crop Mulch, spray EM*
7 Slash weeds when necessary Slash weeds when necessary Mulch
8 Slash weeds when necessary Slash weeds when necessary Mulch, spray EM*

Treatment
Working row

Bench/Tree row

N

S

W E

Working row Tree row Working row

A

B

C
D

E

F
G

H

I

#

#

#

#

#

#

#

#

#

#

#

#

#

#

Buffer zones/rows
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2.3. Soil characteristics 

The physical and chemical properties of the homogenized and sieved soil samples for each of 

the sampled blocks were conducted by Bemlab, Somerset West, South Africa. The soil 

properties investigated were, soil pH, resistance, percentage volume of rock, hydrogen (H), 

phosphorous (P), and potassium (K) concentrations, exchangeable cations of sodium (Na), K, 

calcium (Ca), and magnesium (Mg), carbon (C) concentration, % base saturation of Na, K, 

Ca, and Mg, as well as the T-value. 

 

2.4. Molecular Characterisation 

2.4.1. Genomic DNA extraction 

DNA was extracted from 0.30 g of soil from each pooled sample using the ZR soil microbe 

DNA kit (Zymo Research, U.S.A) according to the specifications of the manufacturer. 

Extracted DNA was separated on a 1% (w/v) agarose gel stained with ethidium bromide and 

visualized using ultraviolet light. The electrophoretic separation was run with a 10kbp ladder 

(Hyperladder 1, Bioline). 

 

2.4.2. Polymerase Chain Reaction (PCR) 

The ITS region of the genomic DNA was amplified using fungal and eubacterial specific 

primer sets. For fungal-ARISA (F-ARISA), the genomic DNA was amplified using fungal 

specific ITS4 (5’-TCCTCCGCTTATTGATATGC-3’) and fluorescently FAM (6-

carboxylfluorescein) labelled ITS5 (5’-GGAAGTAAAAGTCGTAACAAGG-3’) primers 

(White et al., 1990). Similarly, for bacterial-ARISA (B-ARISA) the sequences located 

between the 16S and 23S rRNA subunit for the bacterial genomic DNA were amplified with 

eubacterial specific primers ITSReub (5’-GCCAAGGCATCCACC-3’) and FAM-

fluorescence labelled 5’-end of ITSF (5’-GTCGTAACAAGGTAGCCGTA-3’) (Mora et al., 

2003; Cardinale et al., 2004). 

PCR reactions were carried out using GeneAmp PCR system 2400 (Applied Biosystems, 

USA). The reagent mix contained 1µl of DNA, 500 nM of each of the primers, 5 µl of 

KapaTaq Readymix (Kapa Biosystems, South Africa) and 3.5 µl of double distilled water, in 
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a total volume of 10 µl. The PCR conditions for F-ARISA included an initial denaturing step 

of 3 min at 95 ºC followed by 40 cycles of extension [95 ºC, for 45 sec, 54 ºC for 30 sec and 

720C for 70 sec] and a final extension reaction at 720C for 5 min. For B-ARISA an initial 

denaturing step of 3 min at 95 ºC followed by 40 cycles amplification [95 ºC, for 45 sec, 55 

ºC for 30 sec and 720C for 80 sec] and a final extension reaction at 720C for 5 min. A 

negative control sample containing double distilled water was included in each set of 

reactions. After amplification, the PCR reactions were kept at 4 ºC and aliquots were run on a 

1% (w/v) agarose gel containing ethidium bromide. Three different 10 µl reactions were 

prepared for every sample and then pooled, in order to increase the resolution of low copy 

number operational taxonomic units (OTU) (Jones and Thies, 2007).  

 

2.4.3. Automated Ribosomal Intergenic Spacer analysis (ARISA) 

Products for each sample were run on ABI 3010xl Genetic analyser. The ARISA-PCR 

fragments were separated via capillary electrophoresis according to different fragment 

lengths and fluorescent intensities. LIZZ 600 and ROX 1.1 were run as internal size standards 

for the F-ARISA and B-ARISA respectively (Slabbert, 2008). The ARISA profiles obtained 

were analysed using the GeneMapper 4.1 software (Applied Biosystems, USA). GeneMapper 

4.1 converts fluorescent data into electropherograms using a bin size of 3 for all analysis. Bin 

size of 3 was adopted based on previous studies, where a bin size of 3 had the highest number 

of shared peaks in comparison to other bin sizes, and an increase in bin size above 3 resulted 

in a decrease in the total number of operational taxonomic units (Slabbert, 2008). The length 

of each amplicon or fragment is registered as a peak and each peak represents a theoretical 

operational taxonomic unit. For further analysis, peak heights were preferred over peak size, 

because peak sizes for larger peaks may be inconsistent due to variation in the area. Outputs 

from GeneMapper were transferred to Excel software (Microsoft Corporation) for further 

analysis. Peak heights less than 0.5 % of total fluorescence intensity were discarded as they 

were regarded as background noise according to Hewson and Fuhrman (2004). 
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2.5. Microbial community diversity 

For the microbial community diversity analysis, the Shannon diversity index (H') was 

calculated for each sample point at depths 10 and 20 cm within each plot. The index takes 

into consideration the evenness and the abundance of species, and assumes that individual 

species are randomly sampled from an infinitely large population (Price, 2004). It is defined 

as the negative sum of each species (OTU’s) proportional abundance (pi) multiplied by the 

logarithmic value of the same proportional abundance (Hill et al., 2003). A higher value of 

Shannon index correlates to higher species diversity in the sample analysed (Magurran, 

2004). 

ᇱܪ ൌ  െ ෍ ௜݌

௡
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where, pi represents the fraction of each peak (OTU’s) of the total integrated peak area (Hill 

et al., 2003; Legendre and Legendre, 1998). The Shannon diversity index was tested for 

normality using the Shapiro-Wilk test for normality.  

Furthermore, Simpson’s index (D) was calculated for each sample point within each plot for 

the sampled depths. The Simpson’s index reflects the influence of the most abundant species 

on the overall diversity within a sample (Price, 2004). This index measures the probability 

that two species selected at random from a sample population, will be the same species 

(Legendre and Legendre, 1998; Hewson and Fuhrman, 2004; Hewson et al., 2007). The 

higher the Simpson’s index the larger the probability that two species randomly selected will 

be the same. 
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2.6. Variation within treatment plots 

The influence of sampling depth on microbial diversity was investigated for the treatment 

plots. The difference between the microbial community (as measured by the Shannon index) 

at depth of 10 and 20 cm was tested by performing an Analysis of variance (ANOVA) on 
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STATISTICA ver. 8 (Statsoft). This was done separately for the two treatment plots. The 

Kruskal-Wallis test, which is a non-parametric approach, was used to confirm the ANOVA 

results, where deviations from normality were observed. 

 

2.7. Variation between replicated plots  

The possibility that the diversity and structure of the replicated control treatment plots (T1R1 

and T1R3) should have similar microbial community diversity was tested, as both 

experimental plots were exposed to the same treatment. The difference between the microbial 

communities between the replicated plots was tested using the Shannon index values by 

performing an ANOVA in STATISTICA. 

 

2.8. Microbial community structure amongst treatments 

To investigate the patterns of similarity between all plots, Whittaker similarity index (Sw) was 

calculated in Microsoft Excel, comparisons were separately done for the fungal and bacterial 

profiles and for each sampling date. Whittaker similarity index reflects the association 

between samples with indices scaled from 0 (being completely dissimilar) to 1 (being 

completely identical). 
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The variables bi1 and bi2 are fractions of the peak value of profile samples 1 and 2 being 

compared (Hewson and Fuhrman, 2004). The Sw index was used to generate a distance matrix 

and cluster analysis was conducted with STATISTICA. The distance linkage between 

treatment plots was illustrated via the complete linkage clustering analysis using the 1-

Pearson r value of the Whittaker similarity indices. 

 

2.9. Effect of different soil treatments on microbial diversity 

A 3-way ANOVA was performed to observe the main effects and the interactions of the 

treatments, rows and sampling depths as factors that influence the microbial diversity 
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observed. Least significance difference (LSD) and Tukey tests were performed to identify 

specific differences in factor levels. 

 

3.0. Relationship between soil microbial diversity and soil physicochemical properties. 

The possible relationship between the soil microbial diversity and soil properties was tested 

by Pearson correlation coefficient (PCC) analysis.  The PCC measures the strength of 

association between two variables. The correlation coefficient (r) value could be either 

positive, zero, or negative, and r can never be greater than 1.0 nor less than -1.0 (Zar, 1999).  

A positive correlation indicates that for an increase in the value of one of the variables, the 

other variable also increases in value, while, a negative correlation implies that an increase in 

value of one of the variables is followed by a decrease in the value of the other variable. If r = 

0, this denotes that there is no linear relationship between the magnitudes of the two variables 

(Zar, 1999). However, Pearson correlation assumes normality of values and it is sensitive to 

outliers. The soil physical and chemical properties assessed in relations to microbial diversity 

were soil pH, resistance, exchangeable cations (Na, K, Ca, and Mg), percentage saturation of 

C, Na, K, Ca, and Mg, as well as the T-value. The Spearman Rank order correlation test, 

which is a non-parametric analysis, was used to confirm the PCC results, in cases where 

deviations from normality were observed or outliers suspected. 

 

4.0. Relationship between apple yield and soil microbial diversity 

To relate fungal and bacterial community diversity to apple yield, the relationship between 

the microbial diversity index and the mass-ton yield of apples (provided by ARC Infruitec-

Nietvoorbij) for each treatment plot was determined. A multiple correlation coefficient was 

performed to measure the strength of association, with the assumption that the yield of apples 

is functionally dependent on both fungal and bacterial diversity.    
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3.1. Soil characteristics 

The soil physical and chemical properties of the pooled soil sample for each treatment plot 

are presented in Table 1. The pH across all treatments ranged from pH of 4.7 to 6.2, with the 

highest pH value of 6.2 recorded for the mulch treated plot T4R3 and lowest in chemically 

treated plot T1R1. Bulk soil resistance ranged from 1080 to 2750 Ohms across treatments. 

Mulch treated plot T4R3 recorded the lowest penetration resistance value of 1080 Ohms, 

while the highest penetration resistance was on plots exposed to mechanical flattened cover 

crops (T5R2). Similarly, T4R3 had the highest value of phosphorus (mg/kg), exchangeable 

cations [sodium (Na), potassium (K), and calcium (Ca)]. However, different values were 

obtained from the replicated plot sampled for treatment 4 (T4R4).  
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Table 1. Measured physical and chemical properties of soil samples from the different treatment plots. 

 

(a) : Treatment; (b): Replicate(s); (c): Resistance; (d): Exchangeable cations 
 
 

Na K Ca Mg  C Na K Ca Mg
(a)T1 (b)R(1) 4.7 2060 1.77 46 15 164 0.15 0.42 5.33 1.41 2.45 1.69 4.6 58.68 15.55 9.09

T1 R(3) 5.3 2450 1.07 38 25 168 0.14 0.43 5.98 1.01 2.11 1.63 4.98 69.29 11.71 8.64
T2 R(1) 5 2450 1.29 38 39 105 0.14 0.27 5.29 1.03 2.36 1.73 3.37 66 12.8 8.01
T2 R(4) 5.5 1870 0.8 40 40 166 0.16 0.42 8.98 1.31 2.96 1.37 3.64 76.9 11.24 11.68
T3 R(2) 5.1 2160 1.07 43 62 185 0.12 0.47 5.39 1 2.19 1.46 5.89 66.99 12.37 8.05
T3 R(3) 5.2 2150 0.96 50 23 174 0.17 0.45 5.27 0.88 2.11 2.22 5.77 68.17 11.43 7.73
T4 R(3) 6.2 1080 0 32 47 346 0.19 0.89 9.54 0.71 2.5 1.69 7.82 84.25 6.24 11.32
T4 R(4) 5.3 1930 0.91 38 29 267 0.09 0.68 4.62 0.62 2.12 1.31 9.83 66.72 9.01 6.93
T5 R(1) 5.4 2640 0.8 36 26 209 0.12 0.53 5.9 1.06 2.23 1.45 6.35 70.1 12.59 8.41
T5 R(2) 5 2750 1.13 55 25 113 0.12 0.29 3.63 0.63 2.07 2.1 4.99 62.54 10.89 5.8
T6 R(2) 4.8 1800 1.55 58 41 300 0.12 0.77 5.17 0.95 2.97 1.36 8.97 60.44 11.1 8.55
T6 R(4) 4.9 3060 1.18 51 46 136 0.13 0.35 4.06 0.74 2.04 1.99 5.37 62.9 11.45 6.45
T7 R(1) 5.3 2610 0.91 56 43 194 0.12 0.5 6.14 1.08 2.42 1.36 5.67 70.21 12.36 8.75
T7 R(4) 5.4 2100 0.91 68 25 214 0.13 0.55 7.22 1.09 3.03 1.35 5.53 72.91 11.02 9.9
T8 R(2) 5.5 1410 0.7 56 32 280 0.21 0.72 7.09 1.33 2.09 2.09 7.12 70.56 13.26 10.05
T8 R(3) 5 2330 1.18 41 23 241 0.18 0.62 6.74 0.84 2.1 1.86 6.47 70.55 8.76 9.55

K (mg/kg) T-Value (cmol/kg)

(%)(d)EC (cmol/Kg)

Plots pH(KCl) (c)Res.(Ohm) H (cmol/kg) Rock (Vol %) P (mg/kg)
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3.2. Molecular characterization 

 

3.2.1 Genomic DNA extraction 

High molecular weight DNA above 100ng/nl was obtained for all the samples extracted (Fig. 

1), using the soil DNA extraction kit (Zymo Research, U.S.A). 

 

 
Figure 1. Extracted genomic DNA ran on 1 % agarose gel electrophoresis directly from the 

soil using the ZR soil microbe DNA kit (Zymo research, U.S.A). Lane 1 and 14: 10 kbp 

ladder (Hyperladder 1); lane 2-13: soil genomic DNA extracts from different soil sample 

points and treatment plots. 

 

3.2.2. PCR amplification 

All PCR reactions resulted in smears. For the fungal specific primers a smear of 

approximately 300 to 1200 bp was observed (Fig. 2), while the bacterial specific primers 

produced a smear within the range of 200 bp to 1500bp (Fig. 3). 
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Figure 2. Fungal-ARISA PCR products obtained from genomic DNA extracted from the soil 

sample using fungal ITS4 and FAM-labelled ITS5 primers. Lane 1 and 15: 10 kbp ladder 

(Hyperladder 1); Lane 2: negative control; lanes 3-14: amplicons from genomic DNA 

extracts for one of the treatment blocks. 

 

Figure 3. Bacterial-ARISA PCR products obtained from genomic DNA extracted from the 

soil sample using ITSF and FAM-labelled ITSReub primers. Lane 1 and 15: 10 kbp ladder 

(Hyperladder 1); Lane 2 and 14: negative control; lanes 3-13: amplicons from genomic DNA 

extracts for one of the treatment blocks. 

 

3.2.3. Automated Ribosomal Intergenic Spacer Analysis (ARISA)  

Fungal ARISA electropherograms resulted in peaks ranging from 150 to 800 bp as shown by 

the GeneMapper LIZZ 600 size standard. For the bacterial ARISA electropherogram peaks 
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ranges from 100 to 900 bp as shown by the GeneMapper ROX 1.1 size standard. The 

difference in fragment sizes observed on gel and those of the electropherograms is as a result 

of the limited size range of the internal size standards.  

 

3.3. Microbial community diversity 

The diversity index for the fungal community ranged from 0.60 to 1.20, the lowest value of 

0.60 was obtained in working row exposed to chemical (herbicide) control of cover crops and 

the highest diversity index were in plots treated with mulch and cover crops, respectively 

(Table 2, Addendum). Based on observations from the data show in Table 2, the working row 

2 (W2) had a consistently higher fungal diversity index compared to working row 1 (W1) in 

February. Investigating the influence of sampling dates on microbial diversity, the variation 

in the bacterial diversity index between the sampling dates was not significant (p < 0.05) 

(Fig. 4), compared to the fungal community composition for both sampled dates. In April a 

significant increase (p = 0.005) in fungal community composition was observed (Fig. 5). The 

bacterial diversity index was consistently higher than fungal diversity across all treatments, in 

the range of between 1.20 and 1.80. 

Figure 4. The effect of sampling seasons on bacterial diversity, as indicated by the Shannon 

diversity index obtained from the February and April 2008 sample. 

  Effect of sampling dates on bacterial diversity
Current effect: F(1, 30)=3.8677, p=.05854
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Figure 5. The effect of sampling seasons on fungal diversity as indicated by the Shannon 

diversity index obtained from the February and April 2008 sample. 

The Simpson’s index  measures the probability that two species selected at random from a 

sample population, will be the same species (Ambinakudige and Sathih, 2009). Therefore, the 

higher the Simpson’s index (D) the larger the probability that two species randomly selected 

will be the same. From the summary reported in Table 3 (Addendum), the Simpson’s index 

for bacterial community were consistently lower than that of fungal community in the 

February and April profile.  This observation further supported the Shannon index result, 

where in the bacterial community diversity were consistently higher than the fungal 

community diversity. The bacterial community diversity was consistent with no significant 

difference between the February and April index (Fig. 6). Simpson’s index for fungal 

community diversity was significantly higher in the February sample than that of April (p = 

0.0013) (Fig. 7). This results confirms the observations obtained from the Shannon diversity 

index. 
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Figure 6. The effect of sampling seasons on bacterial diversity, as indicated by the Simpson’s 

index obtained from the February and April 2008 sample.  

 

Figure 7. The effect of sampling seasons on fungal diversity, as indicated by the Simpson’s 

index obtained from the February and April 2008 sample.  
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Current effect: F(1, 15)=2.5366, p=.13209
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3.4. Variation within treatment plots 

On the sampled plots, the effect of different sampling depths does not seem to have any effect 

on microbial community diversity. The fungal diversity in T1R3 for April had a marginal p-

value of 0.0502 (Fig. 8, 9). However, the Kruskal-Wallis test confirmed the ANOVA result 

observed in T1R3 for fungal diversity to be significant  (p = 0.049). 

 

 

Figure 8. ANOVA comparison of Shannon diversity index at sample depth 10 and 20 cm for 

(T1R1 and T1R3) control plots for February 2008. Graphs; a: bacterial diversity in T1R1; b:  

fungal diversity in T1R1; c: bacterial diversity in T1R3; d: fungal diversity in T1R3. 
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Figure 9. Comparative Shannon diversity index at sample depth 10 and 20 cm for (T1R1 and 

T1R3) control plots for April 2008. Graphs; a: bacterial diversity in T1R1; b:  fungal 

diversity in T1R1; c: bacterial diversity in T1R3; d: fungal diversity in T1R3. 

 

3.5. Variation between replicated control plots 

Comparing the replicates T1R1 and T1R3, for the February and April samples from the 

ANOVA of their Shannon index, there was no significant difference (p < 0.05) in the fungal 

and bacterial diversity (Fig. 10).   
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Figure 10. Comparative Shannon diversity index of the control treatment plots for February 

and April. Graphs; a: fungal diversity in February 2008; b: bacterial diversity in February 2008; c 

fungal diversity in April 2008; d: bacterial diversity in April 2008.  

 

3.6. Microbial community structure amongst treatments 

Cluster analysis was performed to illustrate the distance or relationship between the fungal 

and bacterial communities based on the profile obtained from the GeneMapper analysis of the 

occurrence of operational taxonomic units. The dendogram obtained displayed no consistent 

similarity pattern between replicated plots, with the exception of treatment 1 and treatment 7 

for the fungal community structure in February and treatment 1, 3, 7 and 5 combined with 6 

in April. For the bacterial community structure treatment 4 clustered in the February profile 

and treatment 3, 5 and 6 in April (Fig. 11-14). 
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Figure 11.  The dendogram of the sixteen experimental plots based on the Whittaker similarity 

analysis for the fungal profile in February 2008. 

 

Figure 12. The dendogram of the sixteen experimental plots based on the Whittaker similarity 

analysis for the bacterial profile in February 2008. 
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Figure 13.  The dendogram of the sixteen experimental plots based on the Whittaker similarity 

analysis for the fungal profile in April 2008. 

 

Figure 14.  The dendogram of the sixteen experimental plots based on the Whittaker similarity 

analysis for the bacteria profile in April 2008.  

  Tree Diagram fungal profile (April 2008)
Complete Linkage

1-Pearson r

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

Linkage Distance

T6 R(4)
T5 R(2)
T6 R(2)
T5 R(1)
T8 R(3)
T4 R(4)
T2 R(1)
T7 R(4)
T7 R(1)
T4 R(3)
T3 R(3)
T3 R(2)
T2 R(4)
T8 R(2)
T1 R(3)
T1 R(1)

  Tree Diagram for bacterial profile (April 2008)
Complete Linkage

1-Pearson r

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

Linkage Distance

T7R(1)
T6R(2)
T6R(4)
T4R(3)
T8R(2)
T7R(4)
T5R(2)
T5R(1)
T2R(1)
T4R(4)
T3R(3)
T3R(2)
T1R(3)
T8R(3)
T2R(4)
T1R(1)



89 

 

3.7. Effect of different soil treatments on microbial diversity 

Table 6 summarizes the results from the 3-way ANOVA performed for the February samples 

to investigate the effect of treatments, rows, sampling depth and their interactions on the soil 

microbial diversity. The interaction between treatment and rows had a significant influence 

on fungal diversity (p= 0.0195), while other interactions and main effects had no significant 

effect on the fungal diversity (Fig. 15-18). The Post-hoc (LSD and Tukey) test performed 

confirmed this result and identified the specific significant interactions. Also, the test of 

treatment as one of the main effects on fungal diversity gave a marginal p-value of 0.059 

(Fig. 19). For the bacterial diversity index, out of the four possible interactions investigated, 

only the interaction between treatments and row had a significant influence on the microbial 

diversity with p value of 0.047 (Fig. 20, 21, 22, 23). From the three main effects, treatments 

and depth had a significant effect on the bacterial diversity with p values of 0.036 and 0.015, 

respectively (Fig. 24, 25). Although rows independently had no significant effect on bacteria 

diversity, combinations of treatment(s) with row(s) have a significant effect on bacteria 

diversity (Figure 20). Similarly, Post-hoc test performed confirmed this result and also 

identified significant interactions. 

Table 6. Summary of the effects of soil treatments, rows, and depths, with their interactions 

on fungal and bacterial diversity in February 2008. 

 

Shannon index Effect SS Degree of Freedom MS F p
Fungal Intercept 77.32360 1 77.32360 5840.626 0.000000

Treatments 0.19203 7 0.02743 2.072 0.059377
Rows 0.04727 1 0.04727 3.570 0.063348
Depths 0.00016 1 0.00016 0.012 0.911559
Treatment(s)*Row(s) 0.24215 7 0.03459 2.613 [0.019465]
Treatment(s)*Depth(s) 0.19222 7 0.02746 2.074 0.059128
Row(s)*Depth(s) 0.00096 1 0.00096 0.073 0.788299
Treatment(s)*Row(s)*Depth(s) 0.12264 7 0.01752 1.323 0.253937
Error 0.84729 64 0.01324

Bacterial Intercept 210.8511 1 210.8511 20739.71 0.000000
Treatments 0.1652 7 0.0236 2.32 [0.035590]
Rows 0.0108 1 0.0108 1.06 0.307149
Depths 0.0631 1 0.0631 6.21 [0.015319]
Treatment(s)*Row(s) 0.1553 7 0.0222 2.18 [0.047418]
Treatment(s)*Depth(s) 0.0085 7 0.0012 0.12 0.996726
Row(s)*Depth(s) 0.0285 1 0.0285 2.81 0.098695
Treatment(s)*Row(s)*Depth(s) 0.0219 7 0.0031 0.31 0.948227
Error 0.6507 64 0.0102
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Figure 15. The effect of treatments combined with rows on fungal diversity (February, 

2008). 

 
Figure 16. The effect of treatments combined with depths on fungal diversity (February, 

2008). 

Effect of treatment*row on fungal diversity
(February, 2008)

LS Means
Current effect: F(7, 64)=2.6129, p=.01947

Type III decomposition
Vertical bars denote 0.95 confidence intervals

T1 T2 T3 T4 T5 T6 T7 T8

Treatment(s)

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Sh
an

no
n 

in
de

x

 Row_C  Working row
 Row_C  Bench row

Effect of treatment*depth on fungal diversity
(February, 2008)

LS Means
Current effect: F(7, 64)=2.0742, p=.05913

Type III decomposition
Vertical bars denote 0.95 confidence intervals

T1 T2 T3 T4 T5 T6 T7 T8

Treatment(s)

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Sh
an

no
n 

in
de

x

 Depth_Num  10(cm)
 Depth_Num  20(cm)



91 

 

Figure 17. The effect of rows combined with depth on fungal diversity (February, 2008). 

 

 

Figure 18. The effect of treatments, rows combined with depths on fungal diversity 

(February, 2008). Treatment_C (T1) 
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Figure 19. The effect of the different treatments fungal diversity (February, 2008).  

 

Figure 20. The effect of treatments combined with rows on bacterial diversity (February, 

2008). 
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Figure 21. The effect of treatments combined with depths on bacterial diversity (February, 

2008). 

Figure 22. The effect of rows combined with depths on bacterial diversity (February, 2008). 
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Figure 23. The effect of treatments, rows combined with depths on bacterial diversity 

(February, 2008). 

 

Figure 24. The effect of the different treatments bacterial diversity (February, 2008). 
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Figure 25. The effect sampling depths on bacterial diversity (February, 2008). 

 

 

The April sampling (Table 7), showed that none of the interactions investigated had a 

significant influence on fungal diversity (Fig. 26-29). Treatment as a main effect, had a 

significant influence on fungal diversity with a p-value of less than 0.0000, and treatment 5 

and 6, were observed to be significantly different from the other treatments (Fig. 30). The 

post-hoc tests performed confirmed the ANOVA result of the interactions on fungal diversity. 

For the bacterial diversity, only the interaction between treatments and rows had a significant 

influence on the microbial diversity with p value of 0.01 (Fig. 31-34). Post-hoc tests 

confirmed this result and also identified those interactions with (p < 0.05). None of the main 

effects investigated had a significant effect on the bacterial diversity (p > 0.05). 
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Table 7. Summary of the effects of soil treatments, rows, and depths with their interactions 

on fungal and bacterial diversity in April 2008. 

 
 

 

 
Figure 26. The effect of treatments combined with rows on fungal diversity (April, 2008). 

 

Shannon index Effect SS Degree of Freedom MS F p
Fungal Intercept 104.1032 1 104.1032 2905.247 0.000000

Treatments 2.7226 7 0.3889 10.854 [0.00000]
Rows 0.0213 1 0.0213 0.596 0.443120
Depths 0.0003 1 0.0003 0.009 0.926442
Treatment(s)*Row(s) 0.1144 7 0.0163 0.456 0.862356
Treatment(s)*Depth(s) 0.1109 7 0.0158 0.442 0.871924
Row(s)*Depth(s) 0.0540 1 0.0540 1.508 0.223950
Treatment(s)*Row(s)*Depth(s) 0.1593 7 0.0228 0.635 0.725154
Error 2.2933 64 0.0358

Bacterial Intercept 222.3555 1 222.3555 22167.03 0.000000
Treatments 0.0755 7 0.0108 1.08 0.389484
Rows 0.0018 1 0.0018 0.18 0.675359
Depths 0.0068 1 0.0068 0.68 0.413122
Treatment(s)*Row(s) 0.2048 7 0.0293 2.92 [0.01032]
Treatment(s)*Depth(s) 0.0972 7 0.0139 1.38 0.227103
Row(s)*Depth(s) 0.0077 1 0.0077 0.77 0.383250
Treatment(s)*Row(s)*Depth(s) 0.0530 7 0.0076 0.76 0.626446
Error 0.6420 64 0.0100

Effect of treatment*row on fungal diversity
(April, 2008)

LS Means
Current effect: F(7, 64)=.45616, p=.86236

Type III decomposition
Vertical bars denote 0.95 confidence intervals

T1 T2 T3 T4 T5 T6 T7 T8

Treatment(s)

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Sh
an

no
n 

in
de

x

 Row_C  Working row
 Row_C  Bench row



97 

 

 
Figure 27. The effect of treatments combined with depths on fungal diversity (April, 2008). 

 

 
Figure 28. The effect of rows combined with depths on fungal diversity (April, 2008). 
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Figure 29. The effect of treatments, rows combined with depths on fungal diversity (April, 

2008). 

 

Figure 30. The effect of treatments on fungal diversity (April, 2008). 
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Figure 31. The effect of treatments combined with rows on bacterial diversity (April, 2008). 

 

 
Figure 32. The effect of treatments combined with depths on bacterial diversity (April, 

2008). 
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Figure 33. The effect of rows combined with depths on bacterial diversity (April, 2008). 

 

 

Figure 34. The effect of treatments, rows combined with depths on bacterial diversity (April, 

2008). 
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3.8. Relationship between soil microbial diversity and soil physicochemical properties 

The Pearson correlation coefficient (PCC) analysis reflects a weak relationship between the 

soil microbial diversity and the soil physical and chemical properties investigated with a few 

exceptions (Table 8). The potassium concentration in the soil was observed to have 

significant relationship with the fungal diversity (p < 0.05). As potassium concentration 

increases, an increase in fungal diversity was also observed (Fig. 35). Similarly, the bacteria 

diversity depicted a significant linear correlation with the phosphorous concentration (p-value 

0.013) (Fig. 36). Ca and soil penetration resistance correlated negatively with fungal and 

bacterial diversity, while a positive correlation was observed between the soil microbial 

communities and soil pH. 

 

Table 8. Pearson correlation coefficient analysis between soil properties, fungal and bacteria 

diversity. 

 
 

 

 

Soil characteristic(s) Bacterial diversity
r-values p-values r-values p-values

pH(KCl) 0.012 0.965 0.379 0.148
Res.(Ohm) -0.269 0.314 -0.271 0.309

H (cmol/kg) -0.107 0.694 -0.426 0.099
Rock (Vol %) -0.011 0.968 0.235 0.382

P (mg/kg) 0.212 0.429 0.605 [0.013]
K (mg/kg) 0.236 0.379 0.095 0.728

Na (cmol/kg) -0.067 0.805 0.004 0.989
K (cmol/kg) 0.069 0.705 0.028 0.879
Ca (cmol/kg) -0.301 0.241 0.144 0.596
Mg (cmol/kg) -0.474 0.064 -0.066 0.807

C % -0.354 0.179 0.172 0.524
Na % 0.291 0.274 -0.038 0.889
K % 0.505 [0.046] 0.096 0.724
Ca % -0.192 0.475 0.267 0.318
Mg % -0.241 0.368 -0.118 0.663

T-value -0.383 0.143 0.04 0.882

Fungal diversity
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Figure 35.  Graph of Pearson correlation coefficient of K % against fungal diversity. 

 

 
Figure 36. Graph of Pearson correlation coefficient of P (mg/kg) against bacterial diversity. 
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3.9. Relationship between apple yield and soil microbial diversity. 

The multiple correlation coefficient analysis (Fig. 37) depicted a significantly negative 

relationship between apple yield and fungal diversity (p < 0.05) across all treatments. As the 

fungal diversity index increased there was a decrease in mass-ton apple yield. However, this 

result should be interpreted with caution due to the short term of study. Furthermore, the 

relationship between apple yield and bacterial diversity index reflected weak negative 

correlation with r-value of -0.061.  

 
Figure 37. Graph of multiple correlation coefficient of mass-ton of apple yield against fungal 

and bacterial diversity. 
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Introduction 

Soil microorganisms respond rapidly to anthropogenic disturbances (Zhong and Cai, 2007; 

Acosta-Martínez et al., 2008; Shishido et al., 2008). Hence they adapt to environmental 

conditions and the microbial communities that are best adapted will be most dominant 

(Nielsen and Winding, 2002). This adaptive characteristic allows microbial analyses to be 

discriminating in soil health assessment, and changes in microbial populations and activities 

may, therefore, function as an excellent indicator of change in soil health (Kennedy and 

Papendick, 1995; Pankhurst et al., 1995). In some instances, changes in microbial community 

structure or function can precede detectable changes in soil chemical and physical properties, 

thus providing an early sign of soil improvement or an early warning of soil degradation 

(Pankhurst et al., 1995). 

 

4.1. Soil characteristics 

Most agricultural soils have a pH in the range of 5.5 to 8.0 (Kyveryga et al., 2004). The 

optimal pH range for most crops is 6.0 to 7.5, while apple trees thrive best at pH of 5.6 to 6.9 

(Raese, 1995; 1992). However under different treatments or perturbations of agricultural 

soils, the pH values either increase or reduce (Tisdale et al., 1993; Iles and Dosmann, 1999; 

Ayansina and Oso, 2006). In our study, plots treated with a chemical control showed the 

lowest pH, while the mulch treated plots had the highest pH values. These results agree with 

previous studies that observed a reduction in pH in soil treated with herbicides (Ayansina and 

Oso, 2006). Mulching also has an influence on pH of soils. Non-mulched plots show lower 

pH values compared to mulched plots (Iles and Dosmann, 1999).  The increased pH observed 

under mulch treatments could have been due to the leaching of basic cations (NH4
+) from 

decomposing organic matter into the soil (Tisdale et al., 1993). Therefore, it is advised that 

mulch replacement should be regular, because the soil pH will decrease as ammonia is 

oxidized to nitrate by nitrifying bacteria within the soil.  

Soil pH is known to influence the solubility of soil macronutrients, micronutrients or essential 

trace elements (Gramss and Bergmann, 2007; Naramabuye and Haynes, 2007). 

Macronutrients and micronutrients are readily solubilized in soils within the pH range of 5.5 

to 7.0. High pH levels in the soil result in leaching of nutrients and releases aluminium in 
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solubilized forms from its insoluble state (Marschner, 1995). This, in turn affects the plant’s 

uptake of cations, induces organic acid secretion, and inhibits cell division and growth in the 

roots (Minocha and Minocha, 2005). Mulch treatment has been reported in literature to 

stabilize soil pH and increase nutrient availability (Buerkert et al., 2000; Tiquia et al., 2002). 

This could be attributed to the organic matter decomposition process (Tisdale et al., 1993). 

This was consistent with the findings in our study, where mulch treated plots recorded higher 

levels of phosphorus and potassium (mg/kg), exchangeable cations (Na, K and Ca), and base 

saturation in comparison to other treatments.  

An optimal bulk density or soil compactness in agricultural soils is of great importance to the 

growth of plant roots as well as crop yield (Beutler and Centurioun, 2004; Secco et al., 2004; 

Stizaker et al., 1996), and this also influences the penetration resistance of the soil (Stizaker 

et al., 1996). In this study flattening of cover crops was adopted as treatment and recorded 

highest soil penetration resistance, while the mulched plot recorded the lowest resistance 

value. This is consistent with literature as mulched plots have been reported to reduce soil 

penetration resistance by about 20 % below the plant rooting zone compared to other soil 

management practices (Edwards et al., 2000). The plots with the highest soil resistance value 

could be as a result of the use of heavy agricultural machinery in the flattening of the cover 

crops. In previous studies, the use of heavy agricultural machineries has been associated with 

increased compaction and resistance of the soil (Canarache et al., 1984; Kovačević et al., 

2004). Increased soil compaction is known to be one of the factors that impede water 

infiltration (Assouline, 2004; Lado et al., 2005). 

 

4.2. Microbial community diversity 

Managed ecosystems have less diverse microbial communities compared to the natural 

ecosystems (Torsvik et al., 2002). The decline in soil microbial diversity in managed 

ecosystems has been ascribed to reductions in soil organic C (Degens et al., 2000), and to 

various anthropogenic disturbances (Fox and MacDonald, 2003; Zhong and Cai, 2007; 

Acosta-Martínez et al., 2008; Shishido et al., 2008). For example, conventional farming 

systems, where pesticides, herbicides, and fertilizers are used (Horrigan et al., 2002), have 

been reported in literature to reduce biodiversity in soils (Lupwayi et al., 2001; Oehl et al., 
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2004). In organically managed farms soil microbial diversity and functional diversity is 

enhanced (Bucher and Lanyon, 2005; Tu et al., 2006).   

Similar to reports in previous studies, our treatment plots exposed to chemical control had the 

lowest fungal diversity and mulch treated plots had the highest fungal diversity. This 

observed difference was attributed to the choice of herbicide glyphosate used on this study. 

Glyphosate is known to inhibit protein synthesis via the “shikimate acid pathway”, a 

biochemical route present in microorganisms (Bentley, 1990), and have been reported to 

inhibit the fungal mycelial growth in in-vitro studies (Meriles et al., 2006). On the contrary, 

glyphosate has repeatedly been found to be inoffensive to soil bacterial communities (Stratton 

and Steward, 1992; Busse et al., 2001; Weaver et al., 2007), and even stimulates bacterial 

activity (Haney et al., 2000; Busse et al., 2001; Araújo et al., 2003; Mijangos et al., 2009). 

Furthermore, the increased fungal diversity under mulch treatments could be as a result of 

response to added carbon source (Wardle, 1992), conserved soil moisture and moderate soil 

temperature (Robinson, 1988; Hoitink and Boehm, 1999). The variation in fungal community 

composition between the working rows, suggests the possible impact of slope position or 

landscape gradient across the experimental plots, as fungal diversity was consistently higher 

in working row 2 (the lower end of the gradient) than in working row 1. Slope position and 

elevation have been reported to influence soil fungal community composition (Maggi et al., 

2005), however, the degree of slope needed for this observed change has not been 

investigated.  

 

4.3. Variation in microbial diversity with sampled depth within plots 

Soil microbial diversity has been shown to be lower in managed soil systems with the 

increase in sampling depth (Niemi et al., 2005; Yao et al., 2006). Soil organic matter may be 

a prime determinant of the reduction in microbial community diversity. As the reduction in 

soil organic matter was correlated with low soil carbon (Yao et al., 2006). From our study, no 

significant decrease in microbial diversity occurred within treatments in respect to the 

sampled depth. This finding is at odds with those reported by Niemi et al. (2005) and Yao et 

al. (2006). These authors stated that soil microbial community diversity is lower with 

increase in sample depth, Niemi et al. (2005) sampled at 30 cm and 40 cm, while in Yao et 

al. (2006) study soil samples were obtain from depth 5 to 15 cm. The insignificant shift 
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observed in this study could be as a result of a mono-cropping system with consistent soil 

treatments, while the study by Niemi et al. (2005) and Yao et al. (2006) involved soils 

exposed to alternating soil management practices. Furthermore, it is believed that a minimal 

number of species is essential for ecosystem functioning under steady conditions, while a 

larger number of species is critical in maintaining stable processes in a changing environment 

(Loreau et al., 2001). However, elucidating more on the soil microbial functional diversity 

could give a better resolution into the influence of sampling depth on the microbial diversity 

and changes in dominant microbial species (Aon and Colaneri, 2001; Griffiths et al., 2003; 

Niemi et al., 2005).  

 

4.4. Variation in microbial diversity between replicated treatments 

It is expected that soil microbial communities will respond in similar pattern to same 

treatment. However, it is not impossible to rule out the occurrence of hot spots (zones with a 

high concentration of nutrients) and the effect of spatial and temporal variation on soil 

microbial communities (Sexstone et al., 1985; Peterson et al., 1996). From this study, the 

comparison of replicated treatments showed no significant variation in microbial diversity 

between replicated plots (Fig. 10, Chapter 3). 

 

4.5. Microbial community structure amongst treatments 

Microbial community structures of distinct environmental samples, agricultural samples or 

soil sample from different locations when compared pair-wise using similarity indices, tend 

to assemble into distinct clusters in correlation to the sample source (Fisher and Triplett, 

1999; Hewson and Fuhrman, 2004; Cao et al., 2008; Slabbert, 2008). This suggests the 

possibility that the observed relationship between the microbial communities profile can not 

be attributed to chance alone. However, from our ARISA fingerprint analysis of the February 

profiles, no distinct assemblage of replicate treatments was observed with the exception of 

treatment 1 and 7 for the fungal community profile (Fig. 11, Chapter 3), and treatment 4 for 

the bacterial community profile (Fig. 12, Chapter 3). This suggests that the soil microbial 

composition in February was fairly homogeneously dispersed amongst the treatment plots. 

Furthermore, the microbial communities could have become stable at the time of sampling, 
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which was the peak of the summer without rainfall. Cruz-Matínez et al. (2009) demonstrated 

that microbial community composition was consistently stable over a five year rainfall 

manipulation experiment. The clustered replicates, suggests the probable involvement of a 

local selective factor such as presence of weeds or mulching as the cause of their 

assemblages. 

In April, cluster analysis (Fig. 13 and 14, Chapter 3) revealed distinct assemblages among 

treatments in the soil fungal and bacterial communities. This suggests that microbial 

communities seem to be sensitive to certain changes in their extrinsic factors (e.g. moisture). 

The April samples were collected few weeks after rainfall. For instance, from the study 

conducted by Cruz-Matínez et al. (2009) they only observed a shift in microbial composition 

when watering or rainfall was intensified to mimic the ambient climate.  

 

4.6. Effect of different soil treatments on microbial diversity 

In February, the interaction between treatment (mulch) and rows (working row and bench 

row) in treatment 3 and 4 for fungal and treatment 4 and 5 for bacterial profile, had a 

significantly higher diversity compared to other amendments (p < 0.05) (Fig. 15 and 20, 

Chapter 3). This supports previous studies in which increased soil microbial diversity was 

observed with the input of organic mulch (Huang et al., 2008). Mulch treatment has been 

proven to have a significant influence on soil respiration, organic matter content, the 

concentration of essential plant nutrients, soil pH, exchangeable cations and soil microbial 

biomass (Tiquia et al., 2002). While, other land management approaches such as weed 

slashing and flattening of cover crops have been reported to disrupt soil faunal communities, 

degrade soil structure, increase soil compaction, as well as accelerate the loss of organic 

matter (Canarache et al., 1984; Kovačević et al., 2004; Hoagland et al., 2008).  

The interaction between treatments and depths, rows and depths as well as the interaction of 

treatments, rows and depths, had no significant effect on both bacterial and fungal diversity 

(Fig. 16, 17, 18, 21, 22 and 23, Chapter 3) in February. This shows that either combination of 

treatment or rows with sampled depth had no influence on the microbial diversity and 

observable changes are due to treatments on rows. Furthermore, using treatments as a main 

effect it had a marginal p-value of 0.059 on the fungal diversity and a significant effect on the 
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bacterial diversity with treatment 4 (mulch) having the highest Shannon index values (Fig. 19 

and 24, Chapter 3). The marginal p-value observed for the fungal diversity could be attributed 

to the large standard deviation (SD) from the LS means, due to small sampled data points. It 

is believed that with more data points, the SD will be reduced and no overlapping SD-bars 

would have been obtained. 

In April, interaction between treatments and rows, as well as treatments and depth, fungal 

diversity was higher in treatment 5 and 6 (which involved the use of cover crops) but 

insignificant (Fig. 26-29, Chapter 3). Suggesting that combination of treatment with other 

factors had no significant influence on fungal diversity. However, applying treatments as the 

main effect the observed increase in treatment 5 and 6 was significant (Fig. 30, Chapter 3). 

This observation suggests a possible relationship between the cover crops and the fungal 

community. A previous study on cropping systems found that the variation in fungal fatty 

acid biomakers was higher in soil with cover cropping system compared to other practices 

(Schutter et al., 2001). Furthermore, cover crops have been reported to form mutualistic 

symbiosis with arbuscular mycorrhizal fungi (Cheng and Baumgartner, 2004). This could 

probably explain the surge in the fungal community diversity at the time when there was an 

improved growth of the cover crops in April.  

For the bacterial community in April, only combinations of treatments with rows had a 

significant influence on the bacterial diversity (Fig. 31, Chapter 3), although, bacterial 

diversity was greater in the mulch treatments (Treatment 4).  This was consistent with 

previous studies where various soil management practices (cover cropping and chemical 

control) were shown to have no significant effect on bacterial diversity (Peixoto et al., 2006; 

Lupwayi et al., 2009). Mulch treatment has been reported to increase soil microbial biomass. 

Tiquia et al. (2002) showed that mulching with composted yard waste significantly enhanced 

the rhizosphere bacterial community.   

Furthermore, the observed significant effect of treatment combined with rows, identifies with 

treatments T1 and T4. The higher bacterial diversity observed in the tree row of T1 could be 

attributed to the increase in microbial activity due to the utilization of the herbicide 

glyphosate as an available carbon source. Glyphosate has been reported in literature to 

stimulating bacterial activity (Haney et al., 2000; Busse et al., 2001; Araújo et al., 2003; 

Mijangos et al., 2009). The significant decrease in bacterial diversity on the tree row, 
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suggests a possible dominance of a few microorganisms in the rhizosphere community. It has 

been shown in the case of monoculture fruit trees such as apple, that root exudates and 

antagonistic relations in the rhizosphere may lead to the dominance of saprophytic phytotoxic 

microorganisms, which negatively affect the microbial equilibrium of the soil (Čatská, 1993). 

 

4.7. Relationship between soil microbial diversity and soil properties 

Various studies on both managed and natural ecosystem have reported diverse relationships 

between soil microbial communities and soil physical and chemical properties (Staddon et 

al., 1998; Anand et al., 2003; Pande and Tarafdar, 2004; Schipper and Lee, 2004; Fierer and 

Jackson, 2006; De Vries et al., 2007; Zhong and Cai, 2007; Slabbert, 2008).  Contrary to 

previous studies (De Vries et al., 2007) we observed a significantly positive correlation 

between potassium (K) concentrations and soil fungal diversity (Fig. 35, Chapter 3). This 

observation suggests that soil K, a chemical analogue of cesium and an essential 

macronutrient (Gyurica et al., 2008), plays a crucial role in the growth of fungi (Yuan et al., 

2005). As our mulch treated plots had the highest concentrations of available potassium and 

fungal diversity.  

Furthermore, bacterial communities showed a significant correlation to available phosphorus 

in soil (Fig. 36, Chapter 3). Our result agrees with previous studies, wherein microbial count 

correlated with soil phosphorous (Zhong and Cai, 2007). Phosphorus is one of the essential 

macronutrients for plants, and a large portion of the soluble inorganic phosphate applied to 

the soil as synthetic fertilizer is immobilized rapidly and becomes unavailable to plants 

(Goldstein, 1986). Soil bacterial communities are known to convert insoluble forms of 

phosphorous into an accessible form. This promotes bacterial community growth through the 

mutualistic symbiosis with the plant and improves phosphate availability to plants (Glick, 

1995; Chen et al., 2006). Adequate availability of phosphate, invariably improves plant 

growth and yield (Goldstein et al., 1999; Fasim et al., 2002).  

Fierer and Jackson (2006) reported a positive correlation between soil microbial communities 

and the pH in agricultural soils. Their findings, agrees with that obtained from this study, as 

soil pH was found to correlate positively with bacterial diversity, although ours was not 

significant. The correlation between soil pH and microbial community could be a result of 
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soil pH integrating other variables e.g. nutrient availability (Plante, 2007). However, soil pH 

could be an independent driver of soil diversity, as the intracellular pH of most 

microorganisms is often within 1 pH unit of neutral (Madigan et al., 1997), and suboptimal 

pH, in various environments has been shown to have a significant effect microbial diversity 

(Schnittler and Stephenoson, 2000; Hornstrom, 2002; Bååth and Anderson, 2003). 

Furthermore, we observed a negative correlation between soil penetration resistance and soil 

microbial diversity. This observation suggests the possible impact of soil penetration on 

microbial diversity. Increased penetration resistance of the soil is influenced by the degree of 

its compactness or bulk density (Guimarães et al., 2002). At critical bulk density the growth 

of plant roots in inhibited (Stizaker et al., 1996; Beutler et al., 2004; Secco et al., 2004), and 

plant root inhibition could affect the rhizosphere community (Nannipieri et al., 2007). 

Moreover, increase in soil compaction is shown to impede water infiltration (Assouline, 

2004), and this could affect the transportation of much needed nutrients (Haws et al., 2004).  

From this study, soil available calcium (Ca) correlated negatively with fungal diversity and 

positively with bacterial diversity. This is consistent with previous studies. Anand et al. 

(2003), showed a positive correlation between soil Ca and bacterial diversity, and Pande and 

Tarafdar (2004), reported a negative correlation between fungal diversity and Ca in 

agroforestry systems. The negative correlations observed with Ca could be due to the ability 

of calcium carbonate to alter root morphology and root differentiation by enhancing 

lignification and suberization of root endodermis, thereby affecting possible arbuscular 

mycorrhizal root infections (Dehne and Schonbeck, 1997).  

 

4.8. Relationship between apple yield and soil microbial diversity 

Changes in rhizosphere microbial communities are among the numerous factors that 

contribute to improve apple growth (Yao et al., 2006; Rumberger et al., 2007). However, 

microbial diversities have not been directly linked to apple yield (Rumberger et al., 2004; 

Yao et al., 2006). From our study, neither the increase in fungal community diversity nor the 

weak negative bacterial community correlation translated into improved yield or productivity. 

This implies that other extrinsic factors play a crucial role in the productivity and quality of 

apples. Other production practices, such as thinning and pruning practices have been 
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identified to contributing to the yield and quality of apples (Glover et al., 2000). Furthermore, 

rootstock genotype and orchard planting location are other dominant factors influencing 

apple tree performance (Foote et al., 2001; Rumberger et al., 2004). After planting, 

rootstocks have been shown to modify their soil microenvironment and influence the 

microbial community composition making it more suitable for their own growth and 

development (Gu and Mazzola, 2003; Mazzola et al., 2004). 
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5.1. Conclusion and Future research 

This study highlights the possibility that soil microbial communities could serve as a good 

indicator of soil health, as shown from this study that the soil microbial community structure 

and composition of the apple orchard showed considerable variance to the land management 

practices and the landscape gradient. Furthermore, the soil microbial communities correlated 

positively to some essential soil properties, which could be linked to the land management 

practices adopted on those experimental plots. However, no correlation between microbial 

diversity and apple yield was established. This establishes the possibility that other extrinsic 

factors influence productivity. Future research should monitor the direction of shift in the 

microbial communities’ structures and compositions over a long-term cropping system, as 

well as a progressive evaluation of the soil properties. To increase the resolution of data 

obtained it is advised that sampling points should be increased, to reduce the standard 

deviations such as obtained in this study. 

Our results indicate that Automate Ribosomal Intergenic Spacer Analysis (ARISA) technique 

can be effectively used to estimate microbial community composition. Most importantly for 

comparative purposes and to detect microbial community shifts due to anthropogenic 

disturbances. However, ARISA can be further improved to investigate the dynamics of 

specific phylogenetic groups, by employing phylum-level oligonucleotide primers. Analysis 

of specific taxonomic groups such as methanotrophic bacteria, and the arbuscular mycorrhiza 

rather than the entire microbial communities, would give more insight into the functional 

diversity of the soils.  Furthermore, to elucidate more on the complex interaction between soil 

microbial communities, soil properties and land management practices a polyphasic approach 

should be employed. For instance, a combination of T-RFLPs with ARISA could improve 

identification of specific taxonomic groups. Similarly, ARISA approach could be combined 

with the sole carbon source utilization (Biolog Ecoplates) which is useful when investigating 

the functional diversity of soils. 

 

 
 



127 

 

 

 
 

 

 
 
 

 
 
 

Addendum 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



128 

 

Table 2. Summary of the Shannon diversity index February and April samples for bacterial and 

fungal profile. 

 

Treatment Row and depth
Fungal Bacterial Fungal Bacterial

T1R(1) W1(10) 0.8896 1.7018 0.8812 1.5824
W1(20) 0.8238 1.7231 0.8173 1.5297
BR(10) 0.9388 1.2875 1.1893 1.6509
BR(20) 1.0629 1.5574 0.9461 1.6328
W2(10) 0.9851 1.6207 1.2399 1.5046
W2(20) 0.9369 1.6515 0.7159 1.5524

T1R(3) W1(10) 0.8219 1.5288 0.9089 1.3531
W1(20) 0.9717 1.4825 1.0725 1.1515
BR(10) 0.7641 1.5128 0.7512 1.7212
BR(20) 0.978 1.5081 1.1044 1.6744
W2(10) 0.9789 1.2606 0.9027 1.5899
W2(20) 1.0568 1.4784 0.9559 1.6026

T2R(1) W1(10) 0.8843 1.5993 0.9719 1.6401
W1(20) 0.8421 1.5053 1.1254 1.5759
BR(10) 1.0005 1.6118 1.0486 1.6712
BR(20) 0.7139 1.6006 1.0212 1.5882
W2(10) 0.9877 1.1476 0.9106 1.4197
W2(20) 1.0638 1.5425 1.1137 1.6627

T2R(4) W1(10) 0.7532 1.6137 0.8931 1.6723
W1(20) 0.8624 1.3943 1.0552 1.6896
BR(10) 0.999 1.6033 1.1519 1.5447
BR(20) 0.798 1.6326 0.912 1.7372
W2(10) 1.0396 1.5558 0.7981 1.7386
W2(20) 0.9937 1.5925 1.0752 1.5783

T3R(2) W1(10) 0.6546 1.5941 1.2928 1.5311
W1(20) 0.6902 1.6334 1.0164 1.5445
BR(10) 1.0809 1.5434 1.3239 1.6941
BR(20) 1.0255 1.6567 1.0568 1.6637
W2(10) 0.6842 1.5637 0.9909 1.6093
W2(20) 0.8166 1.6203 1.6913 1.5499

T3R(3) W1(10) 0.9482 1.5378 1.0135 1.5667
W1(20) 0.9435 1.3815 1.0715 1.6602
BR(10) 1.1264 1.5648 0.9256 1.5947
BR(20) 1.0241 1.6087 1.0594 1.5195
W2(10) 0.7966 1.6164 0.9223 1.6078
W2(20) 0.8901 1.7047 1.1728 1.3967

T4R(3) W1(10) 0.8737 1.6979 1.0634 1.7336
W1(20) 0.9166 1.8071 1.0099 1.6672
BR(10) 1.1197 1.5589 1.1616 1.6838
BR(20) 1.0314 1.6535 0.7795 1.6651
W2(10) 1.1367 1.7645 0.7758 1.7568
W2(20) 1.0006 1.7435 0.7613 1.7314

T4R(4) W1(10) 0.8178 1.6483 1.0696 1.5816
W1(20) 0.9108 1.7196 1.1179 1.6149
BR(10) 1.1865 1.5489 1.022 1.6676
BR(20) 1.1277 1.6546 0.8436 1.0775
W2(10) 1.1231 1.7487 1.2604 1.6575
W2(20) 0.9464 1.7157 1.1812 1.6706

Shannon index (February) Shannon index (April)
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Table 2. Continues 

 
 

Treatment Row and depth
Fungal Bacterial Fungal Bacterial

T5R(1) W1(20) 0.8756 1.6054 1.6502 1.6765
BR(10) 0.7219 1.4703 1.3877 1.4017
BR(20) 0.942 1.4565 1.6621 1.4971
W2(10) 1.1417 1.6533 1.1812 1.5768
W2(20) 0.9753 1.6334 1.6705 1.6376

T5R(2) W1(10) 1.1172 1.6027 1.2001 1.5635
W1(20) 1.1359 1.6874 1.5363 1.5822
BR(10) 0.9833 1.4367 1.6478 1.6731
BR(20) 1.1988 1.6277 1.2443 1.6534
W2(10) 1.0559 1.6534 1.2669 1.5283
W2(20) 1.0782 1.6844 1.0812 1.6274

T6R(2) W1(10) 0.7714 1.4945 1.6406 1.5544
W1(20) 0.7162 1.7194 1.5596 1.7093
BR(10) 1.0898 1.5559 1.6493 1.5505
BR(20) 0.9273 1.5802 1.6254 1.5816
W2(10) 0.947 1.5425 1.3024 1.6975
W2(20) 1.0761 1.5405 0.9532 1.6835

T6R(4) W1(10) 0.9731 1.4951 1.213 1.6817
W1(20) 0.8868 1.4608 1.1424 1.7349
BR(10) 0.9544 1.5929 1.2294 1.6422
BR(20) 1.0967 1.6504 1.2372 1.5647
W2(10) 1.0603 1.6055 1.1476 1.7428
W2(20) 0.9843 1.6318 1.2232 1.6348

T7R(1) W1(10) 0.6191 1.5669 0.8245 1.6277
W1(20) 1.0207 1.6504 0.9278 1.6775
BR(10) 0.8915 1.5257 0.8233 1.5476
BR(20) 1.0149 1.6736 1.0755 1.6277
W2(10) 0.7728 1.4725 1.011 1.5612
W2(20) 0.9291 1.5734 1.1638 1.6858

T7R(4) W1(10) 0.8911 1.5913 0.8539 1.6454
W1(20) 0.8858 1.5731 0.9083 1.673
BR(10) 0.7307 1.5241 0.9579 1.5931
BR(20) 0.8952 1.6616 0.8756 1.6767
W2(10) 0.9302 1.6605 0.9521 1.6873
W2(20) 1.0366 1.415 0.9459 1.7642

T8R(2) W1(10) 0.7663 1.5593 0.8398 1.6667
W1(20) 0.9927 1.4391 0.8451 1.6553
BR(10) 1.0479 1.6258 1.1356 1.7688
BR(20) 0.9923 1.6772 1.2233 1.6358
W2(10) 1.0389 1.5512 0.9271 1.6774
W2(20) 0.7637 1.6245 0.8222 1.6512

T8R(3) W1(10) 1.0795 1.5148 1.0325 1.6078
W1(20) 0.8758 1.4482 1.2062 1.5799
BR(10) 1.0028 1.2798 0.892 1.6443
BR(20) 0.7467 1.4989 0.8866 1.6639
W2(10) 1.1056 1.571 1.0312 1.7283
W2(20) 1.016 1.5628 1.1147 1.6672

Shannon index (February) Shannon index (April)
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Table 3. Summary of the Simpson’s index February and April samples for bacterial and fungal 

profile.

 

Treatment Row and depth
Fungal Bacterial Fungal Bacterial

T1R(1) W1(10) 0.2764 0.0243 0.1858 0.0383
W1(20) 0.2836 0.0259 0.286 0.046
BR(10) 0.1656 0.1007 0.1066 0.0299
BR(20) 0.2514 0.0366 0.2264 0.0268
W2(10) 0.2176 0.0324 0.0917 0.0553
W2(20) 0.1615 0.0269 0.3657 0.0412

T1R(3) W1(10) 0.2538 0.0529 0.1743 0.0966
W1(20) 0.2137 0.0554 0.1346 0.1045
BR(10) 0.3028 0.0516 0.2722 0.022
BR(20) 0.1418 0.0453 0.1608 0.0245
W2(10) 0.2382 0.1159 0.1997 0.0363
W2(20) 0.1823 0.0548 0.1967 0.0316

T2R(1) W1(10) 0.2648 0.0344 0.1835 0.0298
W1(20) 0.2485 0.0449 0.1452 0.0372
BR(10) 0.1864 0.0292 0.1676 0.0244
BR(20) 0.3988 0.0303 0.1594 0.0377
W2(10) 0.1821 0.1187 0.1923 0.0934
W2(20) 0.1631 0.0401 0.1185 0.0259

T2R(4) W1(10) 0.3501 0.0368 0.2056 0.0241
W1(20) 0.2578 0.0866 0.1288 0.0262
BR(10) 0.1654 0.0308 0.1496 0.0406
BR(20) 0.3535 0.0283 0.1779 0.0213
W2(10) 0.1916 0.0364 0.2114 0.0203
W2(20) 0.2353 0.0332 0.1519 0.0359

T3R(2) W1(10) 0.4002 0.0329 0.1022 0.0454
W1(20) 0.4057 0.0299 0.1812 0.0404
BR(10) 0.1459 0.0449 0.0611 0.0227
BR(20) 0.1678 0.0273 0.1225 0.0263
W2(10) 0.3909 0.0344 0.1704 0.0374
W2(20) 0.3179 0.0316 0.0239 0.0385

T3R(3) W1(10) 0.2262 0.0486 0.1626 0.0397
W1(20) 0.1948 0.0579 0.1585 0.0273
BR(10) 0.1404 0.0428 0.265 0.0322
BR(20) 0.1444 0.0296 0.1292 0.0405
W2(10) 0.2492 0.0317 0.1918 0.0305
W2(20) 0.2393 0.0232 0.1317 0.0707

T4R(3) W1(10) 0.2152 0.0234 0.1715 0.0213
W1(20) 0.2131 0.0178 0.1586 0.0258
BR(10) 0.1285 0.0414 0.1122 0.0238
BR(20) 0.1474 0.0287 0.2535 0.0259
W2(10) 0.1385 0.0202 0.2282 0.0192
W2(20) 0.1615 0.021 0.2298 0.0221

T4R(4) W1(10) 0.3429 0.0292 0.1428 0.0419
W1(20) 0.2221 0.0231 0.1257 0.0293
BR(10) 0.1 0.0401 0.1637 0.0264
BR(20) 0.1169 0.0277 0.2275 0.2184
W2(10) 0.1378 0.0218 0.0798 0.0303
W2(20) 0.2536 0.0231 0.1175 0.0258

Simpson's index (February) Simpson's index (April)
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Table 3. Continues 

 

Treatment Row and depth
Fungal Bacterial Fungal Bacterial

T5R(1) W1(10) 0.2089 0.0286 0.0263 0.0248
W1(20) 0.2563 0.0385 0.0281 0.0269
BR(10) 0.3304 0.0638 0.0661 0.0651
BR(20) 0.2202 0.0635 0.0256 0.0487
W2(10) 0.1274 0.0289 0.143 0.0393
W2(20) 0.1834 0.0296 0.0252 0.0271

T5R(2) W1(10) 0.1084 0.0388 0.0995 0.0402
W1(20) 0.1132 0.0248 0.0387 0.0357
BR(10) 0.1763 0.0569 0.0307 0.0291
BR(20) 0.0919 0.0301 0.0731 0.0279
W2(10) 0.1441 0.0301 0.0763 0.0406
W2(20) 0.1551 0.0247 0.1318 0.0291

T6R(2) W1(10) 0.3522 0.0538 0.0317 0.0373
W1(20) 0.3966 0.0234 0.0357 0.0242
BR(10) 0.1732 0.0355 0.0304 0.0343
BR(20) 0.2288 0.0365 0.0347 0.0374
W2(10) 0.2012 0.0434 0.0832 0.0244
W2(20) 0.116 0.0389 0.1943 0.0262

T6R(4) W1(10) 0.2114 0.0707 0.0963 0.0346
W1(20) 0.2177 0.0532 0.1151 0.0205
BR(10) 0.1784 0.0391 0.0798 0.0319
BR(20) 0.1169 0.0283 0.0763 0.0428
W2(10) 0.1333 0.0444 0.1164 0.0232
W2(20) 0.1807 0.0285 0.0981 0.0303

T7R(1) W1(10) 0.4296 0.0358 0.283 0.0287
W1(20) 0.1588 0.0276 0.2274 0.0264
BR(10) 0.1844 0.0422 0.2318 0.0328
BR(20) 0.1781 0.0267 0.1801 0.0289
W2(10) 0.3324 0.0477 0.2108 0.0361
W2(20) 0.2027 0.0449 0.1378 0.0235

T7R(4) W1(10) 0.2485 0.0334 0.2598 0.0307
W1(20) 0.2295 0.033 0.2305 0.0271
BR(10) 0.311 0.0561 0.2259 0.0398
BR(20) 0.203 0.0284 0.2296 0.0249
W2(10) 0.2113 0.0259 0.1779 0.0237
W2(20) 0.1712 0.0573 0.1986 0.0194

T8R(2) W1(10) 0.3212 0.0359 0.2444 0.0257
W1(20) 0.1721 0.0503 0.259 0.0254
BR(10) 0.1567 0.0277 0.1248 0.01946
BR(20) 0.1601 0.0253 0.0812 0.0286
W2(10) 0.1473 0.04 0.2177 0.0262
W2(20) 0.2726 0.0307 0.2336 0.0263

T8R(3) W1(10) 0.1735 0.0619 0.2009 0.0364
W1(20) 0.2007 0.0534 0.1171 0.0385
BR(10) 0.1769 0.1206 0.2143 0.0304
BR(20) 0.3141 0.0465 0.2162 0.0282
W2(10) 0.1585 0.0444 0.1698 0.0239
W2(20) 0.1578 0.0368 0.1325 0.0248

Simpson's index (February) Simpson's index (April)
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