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Abstract

In an effort to improve the fuel efficiency and to reduce emission levels of automobiles, the 

development of Hybrid Electrical Vehicles (HEVs) has been a major focus area of the 

automotive industry. The Centre of Automotive Engineering (CAE) at the University of 

Stellenbosch in conjunction with the Electric and Industrial Engineering Departments are 

currently developing an HEV. For this thesis, however, the focus is limited to the utilization 

of Pulsating Heat Pipes (PHPs) for the purpose of the thermal management and control of 

HEV components.

As part of the study of PHPs a theoretical model is developed to simulate the heat transfer 

rate of PHPs. Several experiments were devised to assist in the understanding of the 

operating principles of PHPs.

An experiment was conducted to determine the average thickness of the liquid film deposited 

at the trailing end of a liquid plug as it moves down a vertically orientated glass capillary tube 

under gravity. It was found that the average liquid film thickness varied between 100 and 

200 |im for water.

The movement of a liquid plug in a vertically orientated U-shaped capillary tube due to 

gravity and heat transfer was experimentally investigated. It was possible to observe the 

deposition and the evaporation of a liquid film at the trailing end of the liquid plug with the 

naked eye. The movement of the liquid plug was then theoretically determined and 

compared to the experimental results. The theoretical model did not predict the exact 

movement of the liquid plug but the final steady state values was predicted within 7.39%.

The movement of a liquid plug in a horizontally orientated straight capillary tube was 

experimentally investigated. It was noticed that the plug exhibited a wide variety of 

movement ranging from irregular oscillations with amplitudes of ~ 50 mm to more steady 

oscillations with amplitudes of ~ 1 mm. Again it was possible to observe the deposition and 

evaporation of a liquid film at the trailing end of the liquid plug with the naked eye.

A PHP was manufactured using glass and filled with pentane as the working fluid. This 

made it possible to visually observe the fluid motion inside the PHP. It was found that the 

liquid plugs moved in an irregular oscillatory manner. It was also observed that two plugs
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sometimes coalesce to form a single plug and that a plug can split up to form two separate 

plugs.

The heat transfer rate was determined for a stainless steel closed end PHP and an aluminium 

closed loop PHP for different working fluids, power inputs, filling ratios and inclination 

angles. It was found that the overall heat transfer coefficient varied between 100 and 500 

W /m  K for the stainless steel closed end PHP using water. The overall heat transfer 

coefficient varied between 0 and 400 W /m2K for the aluminium closed loop PHP using 

water. It was found that the stainless steel closed end PHP with ammonia as working fluid 

was not able to transfer heat in the top heat mode. The inside diameter of the tube (3.34 mm) 

exceeds the required diameter of 2.96 mm which prevents liquid plugs and vapour bubbles to 

form  causing the PHP to operate similarly to a thermosyphon. The overall heat transfer 

coefficient varied between 170 and 3000 W /m2K. It is concluded that the experimentally 

determ ined heat transfer coefficients can be used to design similar PHPs in the future.

The theoretical model was used to predict the heat transfer rate of the stainless steel closed 

end PHP. The experimental heat transfer rate in the top heat mode was 61 W compared to 60 

W predicted by the theoretical model. In the bottom heat mode the experimental heat transfer 

rate was 63 W compared to the predicted value of 90 W.

The theoretical model currently only caters for closed end PHPs. It is recommended that the 

model be extended to include closed loop PHPs.

The internal diameter of the PHPs is too great for ammonia to be used as working fluid. It is 

recom mended that a PHP be constructed with dt < 2.5 mm to allow for ammonia to be used as 

working fluid.

Concepts were generated for the thermal management of selected HEV components. A 

concept was developed for the thermal management of the HEV batteries. It was found that a 

Stereo-type heat lane can provide promising solutions for the thermal management of 

Insulated Gate Bipolar Transistors (IGBTs).

Stellenbosch University http://scholar.sun.ac.za/



Opsom ming

In ‘n poging om voertuie se brandstof-benuttingsgraad te verbeter en die vlakke van 

uitlaatgasse te verminder word daar deur die motorvoertuigindustrie gefokus op die 

ontwikkeling van ‘n Hibriede Elektriese Voertuig (HEV). Die Centre of Automotive 

Engineering (CAE) aan die Universiteit van Stellenbosch in samewerking met die Elektriese - 

en Bedryfsingenieurswese Departemente is tans besig met die ontwikkeling van ‘n HEV. Die 

fokus van hierdie tesis is egter beperk tot die gebruik van Pulserende Hittepype (PHPe) vir 

die doel van die termiese beheer van HEV komponente.

As deel van die studie van PHPe is ‘n teoretiese model ontwikkel waarmee die warmte 

oordragstempo van PHPe simuleer kan word. Verskeie eksperimente is prakseer om die 

beginsels waarvolgens PHPe werk, beter te verstaan.

‘n Eksperim ent was uitgevoer om die gemiddelde dikte van die vloeistof-film wat gedeponeer 

word by die agterkant van ‘n vloeistofprop wat in ‘n vertikaal georienteerde kapillere pypie 

onderworpe aan gravitasie, beweeg. Dit was gevind gewees dat die gemiddelde dikte van die 

vloeistof-film het gewissel tussen 100 en 200 (im vir water.

Die beweging van ‘n vloeistofprop in ‘n vertikaal georienteerde U-vormige kapillere pyp as 

gevolg van gravitasie en warmte-oordrag was eksperimenteel ondersoek. Dit was moontlik 

gewees om die deponering en verdamping van ‘n vloeistof-film by die agterkant van die 

vloeistofprop met die oog te sien. Die beweging van die vloeistofprop was teoreties bepaal 

en vergelyk met die eksperimentele resultate. Die teoretiese resultate het nie die presiese 

beweging van die vloeistofprop voorspel nie maar die finale gestadigde posisie was voorspel 

binne 7.39%.

Die beweging van ‘n vloeistofprop in ‘n horisontaal georienteerde reguit kapillere pyp was 

eksperimenteel bestudeer. ‘n Wye verskeidenheid van beweging van die vloeistofprop was 

waargeneem wat wissel van onreelmatige ossilasies met amplitudes van ~ 50 mm tot meer 

reelmatige ossilasies met amplitudes van ~ 1 mm. Die deponering en verdamping van die 

vloeistof-film by die agterkant van die vloeistofprop was weereens met die oog waargeneem.

‘n PHP was van glas vervaardig en met pentaan gevul as die vloeier. Dit het dit moontlik 

gemaak om die vloeistofbeweging binne die PHP visueel waar te neem. Dit was gevind 

gewees dat die vloeistofproppe in ‘n onreelmatige ossilerende wyse beweeg. Dit was ook

iv
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waargeneem dat twee vloeistofproppe somtyds saamsmelt om een vloeistofprop te vorm en 

dat ‘n vloeistrofprop kan opbreek om twee aparte vloeistofproppe te vorm.

Die warm te oordragstempo was bepaal van ‘n vlekvrye-staal geslote ent PHP en van ‘n 

aluminium geslote lus PHP vir verskillende vloeiers, drywing insette, vulverhoudings en 

inklinasie hoeke. Die algehele warmte oordragskoeffisient was tussen 100 en 500 W /m2K vir 

die vlekvrye-staal geslote end PHP gevul met water en tussen 0 en 400 W /m2K vir die geslote 

lus aluminium PHP gevul met water. Dit was gevind gewees dat die vlekvrye-staal geslote 

ent PHP gevul met ammoniak nie in staat was om warmte oor te dra in die boonste 

verhittingsmodus nie. Die binnediamter van die pyp (3.34 mm) is groter as die vereiste 

diameter van 2.96 mm wat verhoed dat vloeistofproppe en gasborrels gevorm word wat 

veroordaak dat die PHP soortgelyk aan ‘n termoheuwel werk. Die algehele warmte 

oordragskoeffisient was tussen 170 en 3000 W /m2K. Die eksperimentele bepaalde waardes 

vir die warmte oordragskoeffisiente kan gebruik word vir ontwerpdoeleindes van soortgelyke 

PHPe in die toekoms.

Die toeretiese model was aangewend om die warmte oordragstempo van die vlekvrye staal 

geslote end PHP te bepaal. Die eksperimentele warmte oordragstempo in die boonste 

verhittingsmodus was 61 W in vergeleke met die teoretiese waarde van 60 W. In die 

onderste verhittingsmodus was die eksperimentele warmte oordragstempo 63 W in vergeleke 

met die voorspelde waarde van 90 W.

Die teoretiese model kan huidiglik slegs geslote ent PHPe simuleer. Dit word aanbeveel dat 

die model uitgebrei word sodat dit geslote lus PHPe ook kan simuleer.

Die binne diameter van die PHPe is te groot om ammoniak te gebruik as vloeier. Dit word 

aanbeveel dat ‘n PHP vervaardig word met d, < 2.5 mm sodat ammoniak ook gebruik kan 

word as vloeier.

Verskeie konsepte was gegenereer vir die termiese beheer van geselekteerde HEV 

komponente. ‘n Konsep was ontwikkel vir die termiese beheer van die HEV batterye. Dit 

was gevind gewees dat ‘n Stereo-type heat lane belowende oplossings kan bied vir die 

termiese beheer van Insulated Gate Bipolar Transistors (IGBTs).

v
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1 INTRODUCTION

In an effort to improve the fuel efficiency and to reduce emission levels of automobiles, the 

development of Hybrid Electrical Vehicles (HEVs) has been a major focus area of the 

automotive industry. The Centre of Automotive Engineering (CAE) at the University of 

Stellenbosch in conjunction with the Electric and Industrial Engineering Departments is 

currently developing an HEV. HEVs typically consist of a conventional internal combustion 

engine combined with an electrical motor to serve as the vehicles propulsion system. To 

increase the fuel efficiency of the vehicle, the vehicle is driven by the internal combustion 

engine during parts of the drive cycle when the efficiency of the internal combustion engine 

is high and to switch to the electrical motor when the efficiency of the internal combustion 

engine is low. During braking energy is also stored in the batteries and made available later 

during acceleration. Due to the fact that the vehicle is powered by the electrical motor during 

stages of the drive cycle, the overall emission levels are reduced.

For this thesis the focus will be on the development of a theoretical model of Pulsating Heat 

Pipes (PHPs) and the utilization of PHPs for the thermal management of the HEV 

components. Patented by its inventor H. Akachi in 1990 in the USA (USA Patent Number 

4,921,041), PHPs are a relatively new innovation in heat transfer technology and, like its 

more conventional counterparts such as thermosyphons and heat pipes, owe its low thermal 

resistance to the evaporation and condensation processes taking place in the device.

A literature survey was conducted to gain insight into ITEVs and PHPs. Information 

regarding the hardware configurations and thermal requirements o f HEVs was studied. Since 

there are no useful PHP theoretical models available, a major part of the thesis is dedicated to 

the development of a theoretical model of a PHP. The literature survey covers the 

mechanisms believed to be important for the purpose of developing a theoretical model of a 

PHP.

To assist in the development of a theoretical model several experiments were devised to 

visualise the typical fluid motion inside a PHP. A PHP was also constructed to study the 

effect of various parameters on the heat transfer rate of the PHP. The experimentally 

determined heat transfer rate is then compared with the heat transfer rate predicted by the 

theoretical model. A heat transfer coefficient was also defined and correlated with the 

different parameters affecting the heat transfer rate, to assist in the design of future PHPs.
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Following the comparison of the theoretical results with the experimental results and the 

determination of the PHP heat transfer coefficient, several concepts are developed in which 

PHPs are used for the thermal management of selected components of the CAE’s HEV.

After the generation of concepts for the thermal management of HEV components the results 

o f the thesis will be discussed with conclusions. Recommendations regarding the 

improvement of the current experimental set-ups, the thermal management of HEVs and the 

course of action to be taken for future theoretical modelling of PHPs are made after the 

discussions and conclusions.
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2 LITERATURE SURVEY

As part of the literature survey, literature regarding HEVs and PHPs was studied. 

Information for HEVs regarding typical hardware configurations and the thermal 

requirements of thermal critical components was studied. Several existing schemes for the 

thermal management of these components using heat pipes as well as PHPs were also 

obtained.

Only a few existing theoretical models of PHPs are available at present and will be discussed 

later in more detail. The physical phenomena that are relevant to the modelling of PHPs were 

studied and include the mass transfer across the interface between a liquid and vapour 

interface (interfacial mass transfer), the wall shear stress of a liquid plug moving in a 

capillary tube, capillary forces experienced by a liquid plug moving in a capillary tube and 

the behaviour of a liquid film sandwiched between its vapour and a solid. In addition, the 

chaotic nature of PHPs and the parameters affecting the performance of PHPs were studied. 

Parameters affecting the performance are the tube diameter, the number of channels, the 

filling ratio, the operating (or inclination) angle, the latent heat of the working fluid and the 

relationship between the saturation pressure and temperature of the working fluid.

2.1 Hybrid Electrical Vehicles

HEVs consist of a conventional petrol or diesel internal combustion engine combined with an 

electrical motor to serve as the propulsion system of the vehicle. Several hardware 

configurations exist. Depending on the hardware configuration used the thermal critical 

components and the associated thermal requirements can be determined.

2.1.1 Hybrid Electrical Vehicle Hardware Configurations

Several hardware configurations exist whereby the internal combustion engine is combined 

with the electrical motor to form the hybrid propulsion system. The major hardware 

configurations are series, parallel and series/parallel arrangements. The hardware 

configuration adopted by the CAE is the parallel configuration as shown in Figure 2.1. From 

Figure 2.1 it can be seen that in addition to the internal combustion engine, which is the sole 

source for mechanical power in conventional motor vehicles, an electrical system is added 

consisting of batteries, a motor controller and an electrical motor/generator. Part of the motor 

controller is the inverter electrical circuit which converts the direct current of the batteries to 

alternating current to run the electrical motor and converts alternating current from the
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generator to direct current to store electrical energy in the batteries. At the core of the 

inverter circuit is insulated gate bipolar transistors or IGBTs

Wheel

Wheel

Figure 2.1 Parallel configuration of Hybrid Electrical Vehicle (Richter, 2000)

2.1.2 Thermal Requirements of Hybrid Electrical Vehicle Components 

The thermal requirements of selected components are as follows

NaS batteries. During normal operation and rapid recharge heat, due to internal resistance 

heating, must be removed from the batteries. During quiescent periods the heat transferred to 

or from the battery must be adequate to maintain the temperature of the battery at an ideal 

temperature range in order to minimise the losses of stored energy. Ideally, the temperature 

of the batteries must be maintained in the region of 320 -  350°C (Burch et al., 1995).

Lead acid batteries. According to Richter (2000) the ideal operating temperature range for 

lead acid batteries is between 15 - 35°C.

IGBT modules. It is desirable that heat at a rate of 15 W /m2 be removed from IGBT modules 

in order to maintain an ideal temperature of less than 80°C (Akachi and Polasek, 1997). 

According to de Villiers (2000) the case temperature of IGBTs should not exceed 100°C.

2.1.3 Thermal Management of Hybrid Electrical Vehicle Components

In order to maintain the temperature of batteries in the specified range Burch et al. (1995) 

uses a variable conductance insulator (VCI). A VCI basically consists of a multilayer-
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vacuum insulation, similar to a Dewar flask, with a temperature dependent hydrogen source. 

As the temperature increases more hydrogen is supplied to the originally vacuumed space. 

The thermal resistance is therefore reduced by introducing thermally conducting hydrogen. 

At lower temperatures the hydrogen is removed to return the insulation to its original high 

thermal resistance state.

Figure 2.2 Thermal management of batteries using a VCI

Kawabata et al. (1997) uses variable conductance heat pipes (VCHP) to address the same 

problem. The VCHPs are connected to the batteries at the one side and to fins at the other 

sides as shown Figure 2.3. The difference between VCHP and a conventional heat pipe is 

that a reservoir of non-condensable gasses is attached to the heat pipe as shown in Figure 2.3. 

Due to the presence of non-condensable gasses the thermal resistance of the heat pipe will be 

low if the battery temperature is high but will be high when the battery temperature is low, 

thereby maintaining the battery temperature in the desired range.
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Non-condensable

Figure 2.3 The use of variable conductance heat pipes to control the temperature of 
batteries (Kawabata et al., 1997)

To control the temperature of IGBTs Akachi and Miyazaki (1997) used a Stereo-type heat 

lane, which consists of a flat plate-like PHP, or heat lane, bent and sandwiched between two 

heat input plates as shown in Figure 2.4. The IGBTs are then attached to the heat input plates 

as shown in Figure 2.5 and are cooled using forced convection. De Villiers (2000) has 

evaluated the Stereo-type heat lane and concluded that the use of this device dramatically 

reduces the size of cooling systems currently used for the same application.

Figure 2.4 Construction of Stereo-type heat lane (Akachi and Miyazaki, 1997)
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•Heat Receiving Plate

I GB~i 
(5 0 0 W ),

Forced Convection 
Heat Lane

Figure 2.5 Cooling of IGBT’s using a Stereo-type heat lane (Akachi and Miyazaki, 1997)

2.2 Pulsating Heat Pipes

A major part of the thesis is dedicated to the development of a theoretical model of a PHP. 

The mechanisms that are important for the purpose of developing a theoretical model of a 

PHP as well as paramaters affecting the performance of PHPs will follow.

A PHP consists of a long meandering tube filled with a working fluid as shown in Figure 2.6. 

In Figure 2.6 two different PHP configurations are shown, a closed loop PHP in which the 

tube forms a closed loop and a closed end PHP in which the tube does not form a continuous 

loop (Charoensawan et al., 2000). The internal diameter of the tube is in the region of the

capillary length, given by L = ( tr / (p ( -  p v) g )°5 . Due to the small inside diameter and 

surface tension discrete liquid plugs and vapour bubbles co-exist. In the heated section 

evaporation takes place causing the pressure in the vapour bubbles to increase. This increase 

in pressure in the vapour bubbles causes pressure differentials across some of the liquid 

plugs. Due to these pressure differentials some of the liquid plugs will move. In the cooled 

section condensation takes place causing the pressure to decrease in the vapour bubbles. 

These decreases in pressure also causes pressure differentials across some of the liquid plugs 

causing those plugs to move as well. Due to the fact that all the liquid plugs and vapour 

bubbles are interconnected by a single tube the movement of any plug will cause 

neighbouring liquid plugs to move as well, causing all the liquid plugs to oscillate in an 

irregular aperiodic manner. The liquid plugs do not move as discrete entities all the time and 

some of the liquid plugs can coalesce to create a single plug or some split up to form two 

separate liquid plugs.
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Figure 2.6 Two different PHP configurations

2.2.1 Theoretical Modelling of Pulsating Heat Pipes

Up to date very limited research has been carried out on the theoretical modelling of 

pulsating heat pipes. A number of theoretical modelling attempts are, however, summarised 

below.

Dobson and Harms (1999). In this model an open ended PHP is modelled. The PHP consists 

of a tube with its open ends submerged in water as shown in Figure 2.7. The tube is initially 

filled with liquid water. Due to symmetry only the one half of the PHP as shown in Figure

2.8 is modelled. In each half a liquid plug is present with one end exposed to vapour and the 

other end exposed to the water. It is assumed that a thin liquid film is present on the inner 

tube wall on the end where the liquid plug is exposed to the vapour. As the heat is transferred 

from the inner tube wall to the liquid film, the film is heated causing evaporation to take 

place. The portion of the film that evaporates enters the vapour causing the mass and 

consequently the pressure of the vapour to increase. At this stage the vapour is exposed to 

the heated end only. The increase in pressure causes the liquid plug to move into the water. 

At some stage the liquid plug moves far enough so that the vapour is exposed to the cooled 

end also so that vapour condenses. The mass of the vapour decreases and consequently the 

pressure o f the vapour also decreases. At some stage the external pressure is higher than the 

internal vapour pressure causing the liquid plug to move back towards the evaporator section. 

The process is repeated causing the liquid plug to move in a chaotic oscillatory fashion. Heat
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is therefore transferred from the evaporator section to the condenser section by liquid 

evaporating in the evaporator section and condensing in the condenser section.

Figure 2.7 Physical configuration of the PHP model by Dobson and Harms (1999)

Figure 2.8 Liquid plug in one halve of PHP (Dobson and Harms, 1999)

Maezawa et al. (2000). In this model the PHP is modelled as a single loop as shown in 

Figure 2.9. The flow is approximated as homogeneous flow and not as discrete liquid plugs 

and vapour bubbles. Heat is transferred to the liquid in the evaporator section causing the 

liquid to evaporate and hence the vapour and quality inside the loop increase. The quality of 

the fluid is determined as a function of position and time. The main goal of this work was to 

investigate the chaotic characteristics of the theoretical developed model. The theoretical 

model was not experimentally validated.

Cooled end
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Figure 2.9 Pulsating heat pipe model by Maezawa et al. (2000)

Zuo et al. (2001) The approach used by the authors was to simplify the PHP as a structure 

consisting of two branches as shown in figure Figure 2.10 and to represent the liquid plugs 

and vapour bubbles by a single point situated at the centre of mass of the working fluid. As 

evaporation and condensation take place the vapour and liquid content will change in both 

branches. Due to the change in the amount of vapour and liquid in both branches the centre 

of mass changes. The PHP is therefore simulated by determining the position of the centre of 

mass as a function of time due to the heat transfer taking place.

\
Branch #1

N
Branch #2

n t n r r tn

Figure 2.10 Pulsating heat pipe model by Zuo et al. (2001)

Wong et al. (1999). The model consists of discrete liquid plugs and vapour bubbles inside a 

tube as shown in Figure 2.11. The plugs were given an initial velocity to study the effect of 

this initial movement on the other plugs. The movement of the liquid plugs was therefore not 

induced by any heat transfer processes and the model seems of little use from a heat transfer
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point of view. The modelling of the movement of the liquid plugs might be useful when 

modelling a PHP as a tube containing discrete liquid plugs and vapour bubbles.

Evaporator Condenser

Figure 2.11 Pulsating heat pipe model by Wong et al. (1999)

2.2.2 Background Theory

It was opted to model the PHP as a tube containing several discrete liquid plugs and vapour 

bubbles (more or less) as shown in Figure 2.11 and to adopt a similar model for the heat 

transfer processes taking place as that by Dobson and Harms (1999). The mechanisms that 

form the building blocks for the model are the interfacial mass transfer, the wall shear stress 

experienced by the liquid plug as it moves, the capillary forces experienced by the liquid plug 

due to surface tension and the behaviour of a thin liquid film exposed to its vapour. These 

aspects will now be addressed.

2.2.2.1 Interfacial Mass Transfer

For a liquid film-vapour system the interfacial mass transfer is derived from the kinetic gas 

theory and is given by Carey (1992), Mills (1992) and Khrustalev and Faghri (1995) as:

In equation (2.1) it is assumed that p v and correspond to the saturation pressures

evaluated at Tv and Te respectively. Paul (1962) has compiled a list of accommodation

coefficients, d , for different substances (Carey, 1992). According to Paul (1962) the value 

of the accommodation coefficient for water is 0.02 < & <  0 .04, but according to Mills (1992)

m 2& 1 p v p e
(2.1)
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it is now generally accepted that a  ~  1 provided that the water surface is not contaminated. 

According to Carey (1992) the lower values of a  are attributed to either the failure of the 

kinetic gas theory used to define a  or system contamination. According to Sukhatme and 

Rohsenow (1966) for a system with relatively constant contamination levels a relatively 

constant value of 6  is attainable (Carey, 1992). From the statements above it can be 

concluded that although values of a  for the working fluid are known, almost unavoidable 

contamination levels in typical practical engineering applications will result in lower values 

of a .

According to Khrustalev and Faghri (1995) the pressure p ( in equation (2.1) must be

corrected for the effect of the disjoining and capillary pressure in the case of a non-horizontal 

liquid vapour interface where the liquid layer is relatively thin. The disjoining pressure is the 

difference between the liquid film pressure and the vapour pressure (Adamson, 1990) and is 

induced by van der Waals attractions (Burelbach et al., 1988). The corrected pressure is then 

given by

For a horizontal surface the curvature K = 0. Holm and Goplen (1979) gives the following 

expression for the disjoining pressure for water (Khrustalev and Faghri, 1995)

Several other equations were found in the literature which predict the mass transfer due to 

phase change. The following equation is given by Kobayashi et al. (1996):

P (=  Psa,(T()™  P
P e - P Sa,(Tt ) + P ,-< yK  

P(RT(
(2.2)

e  x  0.0243
O c,

Pj = P(RT( In 1.5336 (2.3)

ti (2.4)

The interfacial mass flux is given by Bankoff (1990) as

(2.5)
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Dunn and Reay (1994) give the interfacial mass flux as

" ' * = 7 ( 2 -6 )

For relatively high heat fluxes, the heat flux due to phase change is attributed to Solov’ev and 

Kovalev (Khrustalev and Faghri, 1995) as

q = 3 . 2 ^ R ^ ( p ( - p v) (2.7)

2.2.2.2 Wall Shear Stress

Dobson and Harms (1999) estimated the shear stress between a moving liquid plug in a tube 

and the tube wall from the relation Tw = Cfpp , x p / 2 . The coefficient of friction is given by 

Cfp= 16/Re  if Re = p (x pd / n ,  < 1180 otherwise C/p -  0.018Re'°25.

For the wall shear stress Wong et al. (1999) used the same correlation Tw = C Spp , x p / 2

where the friction coefficient is given by Cfp = 16/Re if Re < 2000 but otherwise Cjp = 

0.25(0.0056 + 0.5 R e 032).

Zuo et al. (2001) give the expression Fft = -8 ju( R2L7i/diXp for the total frictional force 

experienced by the liquid phase, where R is the fill ratio and L the length of the tube

2.2.2.3 Capillary Forces

The Young-Laplace equation relates the capillary pressure drop across the liquid vapour 

interface to the surface tension and the shape of the interface described by principle radii n  

and r// (Carey, 1992):

Ap = crr l  1 N— + — 
\ r > r n  J

(2.8)

Equation (2.8) can be used to estimate the capillary force experienced by a moving liquid 

plug in a capillary tube. A similar analysis is done by Peterson (1994) to calculate the 

maximum length of a stationary liquid plug in a vertical tube that can be supported against 

gravity, by the capillary force. Consider a moving liquid plug with the geometry as shown in 

Figure 2.12. It is assumed that the principle radii of the liquid plug-vapour interface at both
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the receding and advancing end are the same, therefore r/ = r// = r/ and n  = ru = rj for the 

receding and advancing end respectively. From Figure 2.12 it can be seen that (if the liquid 

plug-vapour interface is spherical) r/ = r/cos9r and r2 = r/cosOa. Substituting these 

relationships for rj and r2 into equation (2.8) and simplifying, the capillary pressure 

difference across the vapour liquid plug interface at the receding end is Ap r = -2<rcos0r !ri

and the capillary pressure drop for the advancing end is Ap a = 2crcos#n //*. The pressure

difference across the plug due to capillary pressure across the two vapour liquid-interfaces is 

given by

Ap = Apa + Apr = 2<r(cos#r - c o s # n)//- =4cr(cos0r - c o s 0 a) / d i (2.9)

Figure 2.12 Liquid plug moving in capillary tube

The line formed where the vapour, liquid and solid phase meet is termed the contact line 

(Kandlikar et al., 1999). If the liquid plug is moving, 0r and 9a in equation (2.9) are termed 

dynamic contact angles. The typical variation of the contact angle with the velocity of the 

contact line, is shown in Figure 2.13 (Kandlikar et al., 1999). From Figure 2.13 it can be seen 

that the value of the static contact angle depends on the history of the movement of the 

contact line of the system and can therefore be taken as any value between 6r and 0a 

(Kandlikar et al., 1999). This nonuniqueness of the static contact angle is referred to as 

contact-angle hysteresis. The history of the surface across which the contact line moves can 

also influence the value of the advancing contact angle, i.e. the advancing contact angle of a 

contact line moving across a dry surface will be different from that of a contact line moving 

across an already wetted surface. As the velocity of the contact line increases a critical
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velocity xa cr is reached where the advancing contact angle is 6a = 180°. Similarly a critical 

velocity x r cr exists where the receding contact angle attains a value of 9r = 0°.

6
180°

a ,c r

6,

0 °
*

0 m/s
r , c r

Figure 2.13 Typical variation of the contact angle with the contact line velocity (Kandlikar 
et al., 1999)

Some empirical correlations exist for the dynamic contact angle but it is not advisable to use 

them unless good similarity exists between the actual system and the one used to obtain the 

experimental data (Kandlikar et al., 1999). One such a correlation for the advancing contact 

angle, which was determined from a liquid plug moving in a capillary tube, is given by Friz 

(1965) and is valid only for velocities greater than 0.01 m/s (Gutoff and Kendrick, 1982)

For velocities less than 0.01 m/s the correlation attributed to Blake and Haynes (Gutoff and 

Kendrick, 1982), but which is not given there, can be used.

tan#n = 3 .4 (2.10)

The advancing and receding static contact angles for several systems are shown in Table 2.1. 

Note that these contact angles are for horizontal surfaces.
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Table 2.1 Advancing and receding contact angles for several systems. The higher values 
are for the advancing and lower values for the receding contact angles (Faghri, 
1995).

Acetone Water Ethanol R-113
Aluminium 73/34
Beryllium 25/11 63/7 0/0
Brass 82/35 18/8
Copper 84/33 15/7
Nickel 16/7 79/34 16/7
Silver 63/38 14/7
Steel 14/6 72/40 19/8 16/5
Titanium 73/40 18/8

2.2.2.4 Liquid Film Behaviour

As a liquid film evaporates it becomes thinner until a certain point where, after some 

perturbation or disturbance of the liquid film vapour interface, the interface becomes 

unstable, ruptures and droplets are formed. When the stability of thin liquid films is 

investigated, typically an initial perturbation is applied to the shape of the liquid film vapour 

interface so that the shape of the interface is sinusoidal as shown Figure 2.14 (Burelbach et 

al., 1988).

Figure 2.14 Thin liquid film with sinusoidal shaped liquid vapour interface

Several coupled mechanisms that governs the stability of the liquid film after the initial 

perturbation are the mass loss (evaporation) or gain (condensation) by the liquid film, vapour 

recoil, thermocapillary flow (Marangoni effect), disjoining pressure, surface tension and 

viscous forces (Burelbach et al., 1988). The contribution of these mechanisms is as follows 

(Burelbach et al., 1988):
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Evaporation. The liquid film evaporates (blowing) until it reaches a thickness whereby other 

mechanisms cause the film to rupture. Evaporation also contributes to vapour recoil which 

has a destabilising effect on the liquid film as will be explained later.

Vapour recoil. A liquid particle moves slowly at the liquid vapour interface but accelerates 

when it becomes vaporised. The backward reaction on the liquid film vapour interface is 

termed vapour recoil. A disturbance in the liquid film vapour interface can cause an increase 

in the evaporation rate at a surface trough, resulting in a normal force on the interface due to 

vapour recoil. The pressure gradient existing due to the vapour recoil causes liquid to flow 

away from the trough to neighbouring crests amplifying the disturbance.

Condensation. The mass gained by the liquid film due to condensation (suction) has a 

stabilising effect on the liquid film. However, vapour recoil also occurs during condensation 

which has a destabilising effect on the liquid film (the stabilising effect of the condensation is 

greater than the destabilising effect of the vapour recoil).

Thermocapillary flow. If a surface tension gradient is maintained along the liquid film 

surface, liquid flow is induced so that the liquid flows from regions of low surface tension to 

regions of higher surface tension. This flow is called the Marangoni effect. If the film is 

heated the temperature is higher in a trough than on a crest, causing liquid to flow away (from 

the trough) to neighbouring crests therefore accentuating the instability, provided that for the 

liquid d a / dT  < 0 .  During condensation the temperature of the film is higher on the crest 

than in a through causing the direction of flow to reverse and therefore the thermocapillary 

flow then has a stabilising effect on the liquid film.

Disjoining pressure. As an initially thick film evaporates, it reaches a certain thickness where 

the disjoining pressure can cause rapid rupture of the film.

Surface tension. In an isothermal liquid film on a smooth solid substrate, the surface tension 

has a stabilising effect. If the surface is not smooth the radius of curvature of the film is 

smaller at sharp edges than at more smooth regions. Due to the difference in curvature flow 

is induced towards the sharp edges causing film break-up and liquid drops to form at the 

sharp edges.

Viscous forces. Viscous forces retard the destabilisation of the liquid film.
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Gravity. For thin films (less than 0.1 mm) the effects of gravity on the stability of the film 

can be neglected.

2.2.3 Chaotic Behaviour of Pulsating Heat Pipes

Strogatz (1995) defines a chaotic system as follows: “When a deterministic system exhibits 

aperiodic behaviour that depends sensitively on the initial conditions thereby rendering long­

term prediction impossible, the system is chaotic.” This definition suggests that PHPs are 

possibly chaotic due to the observed irregular aperiodic oscillations of the liquid plugs. 

Indeed, it was found by Maezawa et al. (1997) that PHPs exhibit chaotic behaviour. The 

approach followed by Maezawa et al. (1997) can be summarised by the paragraph below.

To determine whether a system is chaotic from experimental data it is first necessary to 

determine whether the measured data is not periodic. This is done by determining the 

frequency spectrum by applying a Fast Fourier Transform (FFT) analysis to the data. If the 

frequency spectrum does not have a specific peak it can be concluded that the data is not 

periodic. The fact that the frequency spectrum does not have a specific peak can also signify 

white noise. To determine whether the data is white noise or not, attractors, using Takens’ 

embedding theorem, are plotted. If the attractors expand indefinitely then the data is white 

noise. To determine whether the attractors are strange attractors, the sensitivity of the system 

to initial conditions has to be determined. The Liapunov exponent determines the sensitivity 

or dependence of the system on initial conditions. If the Liapunov exponent is positive then 

the system is sensitive to different initial conditions. If the system is sensitive to initial 

conditions then the attractors are strange attractors and hence the system is chaotic.

2.2.4 Performance Parameters of Pulsating Heat Pipes

Several parameters affect the performance of PHPs. These parameters are closely coupled 

and should not be considered isolated. The parameters can be summarised as follows

Tube diameter. To ensure that liquid plugs and vapour bubbles co-exist the maximum 

internal diameter of the tube should be less than twice the capillary length (Dobson and 

Harms, 1999)

(2.11)
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If the internal tube diameter is too small, the pressure required to overcome the capillary 

forces might be too great. From hearsay the internal diameter of the tube should be

1.8  -------- > d, > 0.7 ----------------  (2.12)
] ( p * - p , ) g v ( P i - P M

The lower value should be used where the PHP is subjected to a body force field of the order 

of 12 g ’s, which is typical for the aerospace industry.

Number of channels and inclination angle. According to Akachi and Polasek (1996). The 

thermal resistance is practically independent of the inclination angle of the PHP if the number 

of channels is greater than a certain minimum number of channels. For the L-KENZAN fin 

the minimum number of channels is nchan = 80. According to Charoensawan et al. (2000) the 

performance of the PHP decreases as the inclination angle, as defined in Figure 2.15, is 

increased. The range of inclination angles tested was 0 < (/)< 90°. The number of channels 

of the PHPs tested by Charoensawan et al. (2000) for different inclination angels is 24, 56 

and 82.

Cooled Section 

Adiabatic section

Heated section

Figure 2.15 Inclination angle (j> of the PHP as defined by Charoensawan et al. (2000)

Working fluid filling ratio. The filling ratio R is defined as the ratio of the total volume of 

working fluid to the total inner volume of the PHP. According to Akachi and Polasek (1996) 

R should be more than 50%. For their PHP configuration, Charoensawan et al. (2000) found 

that a filling ratio of 50 to 70% gave optimal performance. M aezawa et al. (1997) obtained 

good results with R = 40 - 50%.
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Latent heat. According to Schneider et al. (2000) it is reasonable to believe that an optimum 

latent heat exists. The growth of vapour bubbles in the evaporator section is inversely 

proportional to the latent heat. If the latent heat of the working fluid is too high the rate of 

change of the volume of vapour bubbles in the evaporation section is low, which causes 

insufficient pressure pulses, leading to reduced oscillations. If the latent heat is too low, 

vapour bubbles form very fast in the evaporator section causing all the working fluid to 

collect in the condenser section. This problem can be overcome by increasing the fill ratio.

Saturation Curve. The relationship between the pressure and temperature at saturated 

condition plays a significant role in the performance of a PHP. If (d P /d T ) sat is high it 

implies that small change in temperature will cause a significant change in pressure. Since 

the movement of the liquid plugs in a PHP is caused by the pressure differentials across the 

plugs, a working fluid with a high (d P /d T ) sal ratio will perform better. The ratio

(dP / dT )sal is much higher for ammonia than for water and is therefore preferred, to say 

water, from a performance point of view.
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3 THEORETICAL MODELLING OF PULSATING HEAT PIPES

The pulsating heat pipe is modelled as a tube of a length L,ube, inside diameter d, and outside 

diameter da, containing several liquid plugs with a vapour bubble at each end of a liquid plug, 

as shown in Figure 3.1. Portions of the tube may be heated, cooled or insulated and a liquid 

film of varying thickness S (f may be present on the inner wall of the tube.

For a portion of the wall covered with a liquid film, heat may be transferred from the tube 

wall to the liquid film. The temperature of the liquid film then increases causing evaporation 

to take place. The portion of the liquid film that evaporates enters the adjacent vapour bubble 

causing the mass and the internal energy of that vapour bubble to increase. For portions of 

the wall not covered with a liquid film, heat is directly transferred from the wall to the vapour 

bubble for the case where the wall is hotter than the vapour bubble and vice versa. If the wall 

is cooler than the vapour bubble, condensation can take place causing a liquid film to form on 

the tube wall.

The increase in the mass and internal energy of the vapour bubble causes the pressure in the 

vapour bubble to increase. The change in pressure is not the same for all the vapour bubbles. 

A situation therefore arises where the vapour pressure difference across a liquid plug causing 

the plug to move. As the liquid plug moves it experiences a frictional shear stress exerted by 

the tube wall, a force caused by the capillary pressure that exists across the liquid plug due to 

surface tension and a gravitational force.

Figure 3.1 Pulsating heat pipe model
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3.1 Derivation of the Governing Equations of Change

The governing equations are derived by considering the conservation of energy, momentum 

and mass.

3.1.1 Conservation of Energy

Consider the vapour bubble between the two liquid plugs as shown in the squared area of the 

tube in Figure 3.1 and shown enlarged in Figure 3.2. Consider the liquid film in Figure 3.2 as 

shown in Figure 3.3. Heat is transferred from the tube wall to the liquid film and from the 

liquid film to the vapour bubble. Evaporation of the liquid film can also take place causing 

mass, and hence energy, to leave the film. An energy balance on the liquid film gives

dU is

dt
hpjwApj {lw Tif) hlfvAlf[Tlf Tv) thfjAfj i v (3.1)

where

dUef dT(f i \
— ^ , A(j  — 7idtLff , rtipj — p ^ V and V^ [d0 — (di — 2o ^ )  )L(j

dt dt

Wall temperature T„ Liquid film  
temperature Tff

Figure 3.2 Enlarged view of a vapour bubble with adjacent dry wall and film
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Figure 3.3 Energy balance on a liquid film

Figure 3.4 shows the heat transfer between the wall and the vapour bubble, the liquid film 

and the vapour bubble and the energy transfer due to mass transfer. Also shown is the work 

done by the vapour bubble as it expands. An energy balance on the vapour bubble gives

^  = K A ( r „ ~ T ,)+  hlt,A„(T„ - T , ) + m ’lfAlfi . - m '„ A , iv - p , ^  (3.2)

where

d[J dT1
^  m vcm , Av 7tdi Lv , ml i , inv pV \ and Vv — ■j 71~d- + Lv)

(Note that the effect of the volume of the liquid film is ignored in determining the vapour 

bubble volume)
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Figure 3.4 Energy balance on the vapour bubble shown in Figure 3.2

3.1.2 Conservation of Momentum

Consider a liquid plug of mass mp as shown in Figure 3.5. A net force is exerted on the liquid 

plug causing it to move. As the liquid plug moves it experiences a shear stress due to friction 

against the tube walls. A capillary force due to surface tension, and the effect of gravity is 

also taken into account. A momentum balance on the liquid plug gives

d~x , ,
mp — f -  = p vXAc -  p vlAc -  TwAf + m pg -4cr(cos0r - c o s 0 a )Ac / d i (3.3)

where A /=  nd,Lp and Ac = nd, /4

P Vl A c

4cr(cos9r -  c o s0a)Ac / d i -l

P V2A c

/ .

V i

I—  V 2

Figure 3.5 Momentum balance on a liquid plug
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3.1.3 Conservation of mass

A mass balance on the liquid film shown in Figure 3.6(a) gives

dm(f . „
-------= - m e/A(f

dt
(3.4)

where m(f = p lfLlf \n {d^  -  (d, -  2 Stf f )

A mass balance on the vapour bubble shown in Figure 3.6(b) gives

dm
dt

(3.5)

where rnm = 0 if Tw > Tv, mv = pVv , Vv = \ n d ; ( l (/ + L v), A,f = ndiL(/ and Av = nd,Lv

r Lv

7  y w  / / /  / / / , /  / V  /  Z / /  /  /  /
m = 0

. ff i 
m wv

I

r m f f • ff
m(f

1f

• •
mx Tv m v Tv

(a) (b)

Figure 3.6 Mass balance on the liquid film and the vapour bubble

3.1.4 Liquid plug and liquid film interaction

Consider a plug moving at speed vp as shown in Figure 3.7. Due to the curvature of the 

interface of the liquid plug and the liquid film with the vapour, liquid will be pumped  from 

the liquid film into the liquid plug. The mass flowing into the liquid plug from the leading 

end will be different from that flowing into the liquid plug from the trailing end because of 

the difference in shape of the interface between the vapour and liquid. In addition to the 

pumping of liquid into the liquid plug, liquid is deposited onto the tube wall at the trailing 

end of the plug. To model this phenomenon it will be assumed that a film of a prescribed 

thickness is deposited at the trailing end, and at the leading end that a portion of the liquid

3.5

Stellenbosch University http://scholar.sun.ac.za/



film is sucked into the liquid plug. These approximations will be explained later in more 

detail in section 3.2.

Liquid film deposited 
at

Vapour

Tube wall

Vapour

Figure 3.7 Liquid plug and liquid film interaction 

3.1.5 Mass Transfer Rate

A number of different equations are given for the mass transfer rate in the literature survey 

(refer to section 2.2.1). Two basic types of equations are given, the one type asserts that 

evaporation takes place mainly as a result of a pressure difference between the liquid and 

vapour pressure and is derived from kinetic gas theory. For the second type the evaporation 

is proportional to the difference between the liquid and vapour temperature.

These two basic types of equations will be considered, a pressure difference controlled 

equation given as

2& 1
m f ----- - ----

f 2 - 0  7tR
P v  Ptf (3.6)

and a heat transfer controlled equation given as

™if  00 Tef -  T, (3.7)

The proportionality term in equation (3.7) is determined experimentally, but may be 

approximated as U/ifg where U is the overall heat transfer coefficient and i/g is the latent heat 

of vaporization.
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3.1.6 Wall Shear Stress

The shear stress between the liquid plug and tube wall is correlated by

T* = CjpP evp2 / 2 (3.8)

where Cjp = 16/Re if Re = p ivpd l / jue < 1180 otherwise C/p = O.Ol&Re'0 25.

3.1.7 Capillary Force

In order to determine the capillary force experienced by a liquid plug it is necessary to know 

the contact angles at the leading and trailing end of the plug. The only information available 

that can be easily implemented in the theoretical model is the correlation of the advancing 

contact angle with the plug velocity speed (refer to section 2.2.2.3). No similar information 

could be obtained for the receding contact angle. A simple relationship will therefore be 

derived for the capillary forces. From equation (2.10) it can be seen that due to the tangents 

in the equation that the equation break downs as the contact angle approaches 0a -  90°. 

Taking the advancing angle as 6a = 80° and solving equation (2.10) for the velocity of a water 

liquid plug at 40°C it is found that the speed of the liquid plug is vp = 492 m/s. The 

maximum speed of a liquid plug rarely exceeds vpmax = 10 m/s (see section 3.3) it is therefore 

reasonable to believe that 6a < 80°, but it will be taken as 0a = 90° as a worse case 

assumption. The smallest receding contact angle possible is 6r = 0°. Substituting these 

values into equation (2.9) the pressure difference will be the maximum value possible Ap max = 

4 a/di Pa. If a liquid plug is stationary 0a = Gr rendering the pressure difference Ap = 0. The 

actual pressure difference between the leading and trailing end will therefore be 0 < A/? < 

APmax depending on the velocity of the plug. It will be assumed that the relationship between 

the plug velocity and the capillary pressure difference due to surface tension is linear as 

follows

A/? = kvp (3 .9 )

where k = Ap maxl v,pmax

3.1.8 Fluid Properties

The specific heat of vapour at constant pressure is given by Yaws (1999) as
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Cpv = ^ t ( a + B T ' + C T ' + D T * + E T ^ [J/kgK] (310)

where Tv is in Kelvin and M (molar mass of the fluid) and the coefficients are given by

Fluid A B C D E M
[g/mole]

Pentane 26.671 0.32324 4.282E-5 -1.664E-7 5.6E-11 72.15
Water 33.933 -0.008419 2.991E-5 -1.783E-8 3.69E-12 18.015
Ammonia 33.573 -1.258E-2 8.891E-5 -7.178E-8 1.86E-11 17.03

The specific heat at constant volume is determined from the specific heat at constant pressure 
as

cw = R ~ CPV [J/kgK] (3.11)

where R is the specific gas constant

The specific heat of the liquid is given by Yaws (1999) as

Cpe = ^ ( A + BTe +C Te + D T ?)  [J/k§K] (3 1 2 )

where Te is in Kelvin and M (molar mass of the fluid) and the coefficients are given for 

different fluids by

Fluid A B C D M  [g/mole]
Pentane 80.641 6.2195E-1 -2.2682E-3 3.7423E-6 72.15
Water 92.053 -3.9953E-2 -2.1103E-4 5.3469E-7 18.015
Ammonia -182.157 3.3618 -1.4398E-2 2.03715E-5 17.03

The density of the liquid is given by Yaws (1999) as

p t = 1000Afl~(1_V7;r [kg/m3] (3.13)

where Te is in Kelvin and A, B, Tc (critical temperature) and n are given for different fluids 

by

Fluid A B Tc [ K] n
Pentane 0.23143 0.26923 469.65 0.28215
Water 0.3471 0.274 647.13 0.28571
Ammonia 0.23689 0.25471 405.65 0.2887
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The viscosity of the liquid is given by Yaws (1999) as

Mi = 0 .0 0 M 0 /'+s/r'+CT,+Dr'2 [Pas] (3.14)

where T( is in Kelvin and the coefficients for different fluids are given by

Fluid A B C D
Pentane -7.1711 747.36 2.1697E-2 -2.7176E-5
Water -10.2158 1.7925E3 1.773E-2 -1.2631E-5
Ammonia -8.591 8.764E2 2.68 IE-2 -3.612E-5

The surface tension of the liquid is given by Yaws (1999) as

a e = 0 .0 0 l A ( l - T '/T 'Y  [N/m] (3.15)

where Te is in Kelvin and the coefficients for different fluids are given by

Fluid A Tc n
Pentane 52.09 469.65 1.2054
Water 132.674 647.13 0.955
Ammonia 100.098 405.65 1.2222

The enthalpy of vaporization is given by Yaws (1999) as

106
ifg = - A { l - T / T c)n [J/kg] (3.16)

M

where T is in Kelvin and the coefficients for different fluids are given by

Fluid A Tc [K] M  [g/mole] n
Pentane 39.854 469.65 72.15 0.398
Water 52.053 647.13 18.015 0.321
Ammonia 31.523 405.65 17.03 0.364

3.2 Solution of Equations

Equations (3.1) to (3.5) are numerically solved using an explicit finite difference numerical 

scheme. To solve these equations numerically the PHP is divided into elements of length AL 

each that L,ube = neiemeMS x AL. The energy equation for a liquid film element in explicit finite 

difference form is (note that for convenience only the new superscripts t + Ar are included in 

the equations)
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T, r  = — —— l / v A / t 7"" ~T,/)~hfftAf^Ty - T . j - W A v d + T , ,
m ( f C v (f

(3.17)

In (3.17) the mass flux mif can be given by either the kinetic mass transfer model

(pressure difference controlled) equation (3.6) or the heat transfer controlled mass transfer 

model equation (3.7). If the kinetic mass transfer model is used it is assumed that the 

pressure o f the liquid film, p (f , is the saturation pressure evaluated at the liquid film

temperature T(f . For both mass transfer models the mass flux is positive for evaporation and

negative for condensation. When evaporation takes place, i.e. the mass flux is positive, the 

enthalpy of the vapour iv is assumed to be the enthalpy of vapour at Tsat = Ttf and p sat = p t f .

When condensation takes place, i.e. the mass flux is negative, the vapour bubble can be 

superheated and therefore it is necessary to account for the superheat. For condensation the 

enthalpy is then given by

where c pv is the specific heat of the vapour at constant pressure and is approximated by

The enthalpy as calculated from (3.18) is compared to values obtained from thermodynamic 

tables in (^engel and Boles (1989) in APPENDIX D. For the case where a wall element is 

exposed to a vapour bubble and the wall temperature is cooler than the vapour temperature it 

is assumed that condensation will take place. But since there is not a liquid film present, it is 

not possible to do an energy balance on the liquid film. It is therefore assumed that in this 

case the temperature of the newly formed liquid film can be taken the same as the vapour 

bubble temperature

The kinetic mass transfer model is derived from the kinetic theory of gases and is therefore 

only valid at the interface of a liquid-vapour system. For the case where there is no film 

present the vapour is now in contact with a solid and not a liquid. Equation (3.6) is therefore 

not valid when condensation takes place on a wall element. The following will be used to 

model the condensation onto a dry tube wall element

(3.18)

(3.19)
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l fg

(3.20)

where hc is the heat transfer coefficient between the vapour and the wall

The latent heat i/g, in (3.20) has to be adjusted to take into account that the vapour bubble 

might be in a superheated state and is given by the following

The energy and mass transferred from all the wall and liquid film elements to the vapour 

bubble must be summated to obtain the total energy and mass transferred to the vapour 

bubble. The energy equation of the vapour bubble is expressed in the form of the following 

finite difference equation:

where nwc is the number of areas where heat is transferred from the wall to the vapour 

bubble, nlf is the number areas where the film is in contact with a vapour bubble and nwm is

the number o f dry areas onto which condensation may take place.

From the momentum equation, equation (3.3), the new velocity of the plug in explicit finite 

difference form is

(3.21)

The mass of a film element at the new time step is obtained from (3.4)

Apf A t +  m (3.22)

V

(3.23)

y

(3.24)
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The wall shear friction ,^ , in (3.24) is taken as Tw = \ C fpp tx p2 where the liquid plug friction 

coefficient is C/p = 16/Re if Re = /  pit <1180 and cjp = O.OlSRe'0 25 if Re > 1180. If

xp = 0 the Reynolds number is taken as Re = 0.0000001.

From (3.24) the plug position, xp +A' , is determined as follows

t+Ai - . _
xp = t + xp (3.25)

To take into account the interaction of the liquid plug with the liquid film the mass of the 

liquid film element is modified depending on how much the plug moved during a time step.

Consider the plug at time t and position xp as shown in Figure 3.8(a). From the figure it can

be seen that the second AL from the left hand side is partially covered by the liquid plug. The 

dashed lines indicate the portion of the AL where liquid would have been if it had not been 

covered by the liquid plug. The third AL is fully covered by the liquid plug and in effect does 

not contain any liquid. The first and fourth AL is fully exposed to the vapour bubble. As the 

plug moves to the new position xp +e* as shown in Figure 3.8(b), an additional mass of liquid 

is deposited at the trailing end of the liquid plug. The total mass of the second AL film has 

therefore increased. At the leading edge the liquid plug has now crossed a length xp,+̂  -  x ‘

of the fourth element resulting in the decrease of the mass of the fourth element. The mass of 

the second liquid film element is modified as follows after the new position of the liquid plug 

is known

(3.26)

The mass o f the fourth liquid film element is modified as follows

(3.27)
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(a)

Length AL partially 
covered by plug

Length AL fully 
covered by plug

Length AL fully exposed 
to vapour bubble

(b)

Liquid film deposited 
at trailing end

Figure 3.8 Approximation for the interaction of a liquid plug with the liquid film

The mass of a vapour bubble at the new timestep is obtained from equation (3.5) in explicit 

finite difference form

m„I+A1 E m  “ A(/ 
U -i /=1

At + m„ (3.28)

The new volume of each vapour bubble can be determined from the newly calculated plug 

position of the plugs j  and j+ 1 ,  at each end of a vapour bubble as follows

v r  = A r( ( x ' r - L r / l ) M - L „  12).) (3.29)

With the volume known the pressure of each vapour bubble can be calculated from the ideal 

gas law

t+6d
/+Af Tt rr  t+At

RX
v:

(3.30)
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The process is repeated for the next time step from (3.17) to (3.30).

3.3 Results of Theoretical Model

To investigate the behaviour of the theoretical model a single plug and a multi-plug PHP 

were simulated.

3.3.1 Single Plug Pulsating Heat Pipe

The single plug PHP consists of a tube with a single plug as shown in Figure 3.9. The initial 

conditions and geometry used in the program are shown in Table 3.1. The goal of the 

simulation is to investigate the characteristics of the heat and mass transfer taking place 

inside a vapour bubble for both the kinetic mass transfer model (filename: 

php3ver5H20_singleplug.pas) and the heat transfer controlled mass transfer model 

(filename: phplver6H20_singleplug.pas) and to investigate the effect of the initial plug 

position on the subsequent movement of the plug. Note that for the heat transfer controlled 

mass transfer model that the energy equation of the liquid film is ignored and that the 

temperature of the liquid film is taken as the wall temperature.

Llube

A/
V
1 ZL/>.Z-Z\ 7  7 7 7 7*7 )

t Twi rj '  /  
1 tf\

T w2 TW3 f >
T/J2

T v h  Pvl T v2, P v 2

"7 "7 7 ,/  /
[ 7  /

7 / 7 7 ' 7  '7 7
V 2

Lp

Figure 3.9 Single plug PHP model
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Table 3.1 Single plug PHP geometry and initial conditions

AL 56.25 mm

xpo 112.5 mm

Ltube 225 mm

Lp 112.5 mm

d, 3.34 mm

TvIO, TV20
T Tl tf 10 ’ 1 tf 20

40 °C

PV,0, Pv20 7238 Pa

Twi, Tw4 60 °C

Tw2, T 20 °C

S(f 0.00001 m

S sep 0.00001 m

To investigate the heat and mass transfer characteristics of a single vapour bubble the 

position of the liquid plug is chosen in the centre of the PHP thus enforcing symmetry so that 

the plug will remain stationary i.e. the rate of change of pressure in both vapour bubbles is 

the same so that the net force acting on the plug is zero. Figure 3.10(a) shows the change in 

the vapour bubble temperature and pressure as a function of time for the heat transfer 

controlled mass transfer model and Figure 3.10(b) shows the same for the kinetic mass 

transfer model. It can be seen that for the heat transfer controlled mass transfer model that 

the temperature increases quickly to that of the wall temperature. The pressure of the vapour 

bubbles also increases quickly to a steady pressure. Figure 3.10(b) shows that the vapour 

bubble temperature increases relatively slowly to that of the wall temperature. The vapour 

bubble pressure increases relatively slowly and settles at a steady pressure that is higher than 

that predicted by the heat transfer controlled mass transfer model. It can also be seen from 

Figure 3.10(b) that the temperature of the liquid film increases more slowly than that of the 

vapour bubble, but that it reaches the same temperature after t ~ 3 s.
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Figure 3.10 Variation of the vapour bubble temperature, liquid film temperature and 
vapour bubble pressure for different mass transfer models

Looking at Figure 3.11(a) it can be seen that the mass transfer rate shoots up rapidly to a 

maximum and then quickly reduces to zero. Consequently the mass of the vapour only 

slightly increases. From Figure 3.11(b) it can be seen that the mass transfer rate steadily 

increases to a maximum and then slowly decreases to zero. The mass of the vapour increases 

to higher value than that of the heat transfer controlled mass transfer model. The vapour 

pressure is calculated from the ideal gas equation given by (3.30). From equation (3.30) it 

can be seen that for constant Tv, R and Vv the pressure is directly proportional to the mass. 

Since the vapour mass for the kinetic mass transfer model is higher than for the heat transfer 

controlled mass transfer model the pressure will also be higher.
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S 2.00E-08

1.00E-08

o  O.OOE+OO
S-
> 0

6.00E-06

-- 3.00E-06 S

O.OOE+OO
c
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Time, t [s]

(a) Heat transfer controlled mass transfer model

2 4 6
Time, t [s]

(b) Kinetic mass transfer model

tiO

• £
<D

anh

Figure 3.11 The variation of vapour bubble mass and mass transfer rate for different mass 
transfer models

The movement of the plug for different initial plug positions is shown in Figure 3.12. From 

Figure 3.12(a) it can be seen that the movement of the plug for the heat transfer controlled 

mass transfer model is quite different for different initial positions. For the kinetic mass 

transfer model the movement of the plug is less dramatic and attains a steady position xp = 

0.1125 m for all the initial positions as shown in Figure 3.12(b). It can be seen in Figure
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3.12(a) for 0 < / < 2 s as the plug moves that small oscillations are superimposed on the 

general direction of movement. The increase in vapour mass in a very short time causes a 

higher pressure pulse (and consequently force) to be exerted onto the liquid plug for the heat 

transfer mass transfer controlled model. These pressure pulses might offer an explanation for 

the small oscillations.

Time, / [s] Time, / [s]

(a) Heat transfer controlled mass transfer model (b) Kinetic mass transfer model

Figure 3.12 The variation of the plug position for different initial positions and different 
mass transfer models

Besides the small oscillations described above it can be seen at t ~ 1.5 s (for x po = 0.16 m) 

that the plug suddenly shoots from xp ~ 0.13 to xp ~ 0.09 m and at t ~ 3.2 s the plug suddenly 

shoots in the opposite direction from xp ~  0.09 m to 0.14 m. This type of movement is even 

more pronounced at t ~ 6 s where the plug shoots from xp ~ 0.06 to xp ~ 0.176 m and then 

back in the opposite direction at t ~ 7.5 s from xp ~ 0.175 to xp ~ 0.06 m. Figure 3.13 shows 

the variation of the liquid plug position (for xpo -  0.16 m) and the mass of the liquid film on 

either side of the plug. It can be seen from Figure 3.13 that as a liquid film dries up ( m ff = 0

kg) that the plug shoots into the direction of the dried up film. When the mass of the liquid 

film becomes zero evaporation cannot take place and as a consequence the pressure of the 

vapour bubble adjacent to the dried up liquid film does not increase at the same rate as the 

other vapour bubble where evaporation may still be taking place. This brings about a great 

imbalance in the vapour bubble pressures causing the rapid movement of the plug.
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Figure 3.13 The variation of the liquid plug position and liquid film mass

The different forces exerted onto the liquid plug are shown in Figure 3.14. From Figure 3.14 

it can be seen that the force due to the difference in vapour bubble pressure Fp is the most 

dominant followed by the frictional force Ff and then the capillary force Fc. From Figure 

3.14 it can be concluded that the capillary force is negligible in comparison to the other force 

components.
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Figure 3.14 The contribution of the different forces exerted onto the liquid plug

The kinetic mass transfer model is more difficult to understand and interpret than the heat 

transfer mass transfer controlled model. To understand the heat and mass transfer 

characteristics of a vapour bubble better when using the kinetic mass transfer model the effect 

of hif„ and & on the Ttf , Tv, Pv, mv and m(f were investigated.
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Figure 3.15 shows the effect of fy/w on T(f , Tv, Pv, mv and m,f . It can be seen that as hijw

increases that the amount by which Tv “overshoots” the wall temperature becomes more 

significant but that Tv reaches a steady state condition more quickly. It can also be seen that 

T(f and p v attain a steady state condition more quickly as hy* increases. It can also be seen

that as hifw increases that the time it takes for mff to reach a maximum and decrease to zero

becomes shorter and that the maximum value for mff increases. The effect of increasing hyw

does not have a significant influence on the final p v and mv.
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Figure 3.15 The variation of the vapour temperature, vapour pressure, film temperature, 
vapour mass and mass transfer rate for different values of hy^
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Figure 3.16 shows the plug movement for an initial position of xp0 = 0.065 m. It can be seen 

that as hijyv increases that the liquid plug attains a steady state value of xp = 0.1125 m more 

quickly, although the difference in time for the plug to attain this position for hijw = 2000 and 

3000 W/m2K is less pronounced than for hiĵ , = 1000 W/m2K.

g1 0.225

c 0.15 
_o

o 0.075
CL,

M
£  o

0 2 4 6
Time, t [s]

Figure 3.16 The variation of the plug position for different values of fy/w

Figure 3.17 shows the effect of & on Tff , Tv, Pv, mv and mff. As as the case for hi/w it can be

seen that as d  increases that the amount by which Tv “overshoots” the wall temperature 

becomes more significant but that Tv reaches a steady state condition more quickly. It can 

also be seen that T(f and p v attain a steady state condition more quickly as & increases. It

can also be seen that as d  increases that the time it takes for m(f to reach a maximum and

decrease to zero becomes shorter and that the maximum value for m(f increases. The effect

of increasing <j does not have a significant influence on the final p v and mv.
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Figure 3.17 The variation of the vapour temperature, vapour pressure, film temperature, 
vapour mass and mass transfer rate for different values of a

Figure 3.18 shows the plug movement for an initial position of xpo = 0.065 m. It can be seen 

that as <7 increases that the liquid plug attains a steady state value of xp = 0.1125 m more 

quickly, although the difference in time for the plug to attain this position is less pronounced 

for <t= 10"4 and 10"5 than for <j= 10‘6.
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Time, t [s]

Figure 3.18 The variation of the plug position for different values of a  

3.3.2 Multi-plug Pulsating Heat Pipe

The PHP shown in Figure 3.19 was simulated using the theoretical model in which the 

evaporation and condensation processes were simulated using the heat transfer controlled 

mass transfer model. Table 3.2 gives values for the initial conditions and geometry used in 

the program.

^ L iq u id  
film

Vjapour bubbles Evaporator

Figure 3.19 Muliti-plug PHP simulated by theoretical model
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Table 3.2 Multi-plug initial conditions and geometry

{xPo)i (where i is the plug 
number) 270 x i mm

Tvo 40 °C

PvO 7238

Lpe 140 mm

Lpc 150 mm

L,/8 190 mm

Lel  8 190 mm

w a 80 mm

Ltube 4 320 mm

di 3.34 mm

Twe 60 °C

T1 Wf 40 °C

s (f 0.00001 m

htfw (evaporator and condenser) 1000 W/m2K

hm (evaporator and condenser) 10 W/m2K
h(fv (evaporator and condenser) 10 W/m2K

V  > ’ V  (adiabatic region) 0 W/m2K

The typical movement of the liquid plugs predicted by the theoretical model for water 

(filename: phplver6H20_multiplug.pas) is shown in Figure 3.20. Figure 3.21 shows the 

velocity of the liquid plugs as a function of time as predicted by the theoretical model. It can 

be seen in Figure 3.21 that the liquid plugs oscillate with a relatively small amplitude until 

before r ~ 4 s  where the amplitude of the oscillations increases. Just after t ~ 5 s the 

amplitude decreases until t ~ 12 s where it increases again. The same sudden increase and 

subsequent decrease in amplitude is also observed at t ~ 19 and 26 s. This behaviour is 

reminiscent of the pulsating movement of the liquid plugs observed experimentally. From 

Figure 3.21 it can be seen that the maximum plug speed is vp ~ 0.75 m/s which justifies the 

assumption made in section 3.1.7 regarding the estimation of the capillary force that vp < 10 

m/s.
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Time, t [s]

Figure 3.20 Typical movement of the liquid plugs as predicted by the theoretical model for 
water
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Figure 3.21 The velocity of the plugs predicted by the theoretical model for water

The PHP in Figure 3.19 was simulated using ammonia as the working fluid (filename: 

phplver6NH3_multiplug.pas). The same initial conditions and geometry were used as given 

in Table 3.2. The typical movement of the liquid plugs predicted by the theoretical model is 

shown in Figure 3.22. Comparing Figure 3.22 with Figure 3.20 it can be seen that the 

movement o f the liquid plugs for ammonia appears less dramatic than that of water. The 

displacement of the liquid plugs for ammonia is lower than that for water. However, looking 

at Figure 3.23 it can be seen that the velocity of the plugs for ammonia is higher than that of 

the water in Figure 3.21. From Figure 3.23 it is more difficult to identify pulsating 

movement than for water. From Figure 3.23 it can be seen that the maximum plug speed is vp
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= 1 m/s which again justifies the assumption made in section 3.1.7 regarding the estimation 

of the capillary force that vp < 10 m/s.

4.5
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c  2.7
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Figure 3.22 Typical movement of the liquid plugs as predicted by the theoretical model for 
ammonia
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Figure 3.23 The velocity of the plugs as predicted by the theoretical model for ammonia

Figure 3.24 shows the variation of the heat transfer rate as predicted by the theoretical model 

using water and ammonia. It can be seen that the predicted heat transfer rate is significantly 

higher for ammonia than for water. It can also be seen that the inclination angle does not 

have a significant effect on the heat transfer rate for ammonia.
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Figure 3.24 Variation of the heat transfer rate with inclination angle for different working 
fluids as predicted by the theoretical model

Figure 3.25 shows the variation of the heat transfer rate with the inclination angle for 

different filling ratios using water as the working fluid. To obtain different filling ratios the 

length o f the liquid plugs is varied. Table 3.3 shows the different plug lengths used to obtain 

the different fill ratios. From Figure 3.25 it can be seen that the theoretical model predicts 

that the heat transferred by the PHP is less in the top heat mode than in the bottom heat mode 

which is consistent with experimental observations and that the heat transfer rate increases as 

the filling ratio decreases.

Inclination angle, <j) [°]

Figure 3.25 Variation of the heat transfer rate with inclination angle for different filling 
ratio as predicted by the theoretical model for water (nchan = 16)

ammonia

water
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Table 3.3 Length of plugs for different fill ratios

R Lpe [mm] Lpc [mm]
0.41 110 124
0.48 130 147
0.56 151 170

Figure 3.26 shows the variation of the heat transfer with the inclination angle for different 

number o f turns for water. To simulate PHPs with different number of channels, channels are 

merely added or taken away from the model as shown in Figure 3.19 and L,ube is adjusted as 

necessary compensate for the channels added or taken away. For every channels a liquid 

plug is also added. From Figure 3.26 it is unclear what the effect of the number of turns is on 

the heat transfer rate.

Inclination angle, 0 [°]

Figure 3.26 Variation of the heat transfer rate with the inclination angle for different 
number of turns for water (R = 0.51)
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4 EXPERIMENTAL STUDY OF THE LIQUID FILM BEHAVIOUR

An experiment was set up to study the movement of a liquid plug inside a vertically 

orientated glass capillary tube under gravity. The aim of the experiment was to determine the 

thickness of the liquid film deposited on the wall at the trailing end of a liquid plug (as it 

moves through a capillary tube).

4.1 Experimental Set-up and Procedure

The experimental set-up consists of a capillary tube supported by a stand in a vertical position 

as shown in Figure 4.1. At the top end the capillary tube is connected to a syringe using a 

plastic tube. A video camera (JVC GV-DS1 and serial no. 082220222) is positioned as 

shown and is used to capture the movement of the liquid. A desk lamp is positioned behind a 

sheet of paper to attain the required lighting.

Before clamping the capillary tube to the stand the dry mass of the tube is measured (using a 

Precisa 40SM-200A, serial no. 73464 and store no. 248173 scale). The liquid to be tested is 

heated to the desired temperature and then positioned in a container at the bottom end of the 

capillary tube so that the end portion of the capillary tube is submerged in the liquid. The 

syringe is then used to suck the liquid into the capillary tube until the desired level of the 

liquid is obtained. The container with the liquid is then removed. The plastic tubing is 

quickly disconnected from the capillary tube and the liquid plug starts to move down the 

capillary tube due to gravity. This movement of the liquid plug is captured by the video 

camera.
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Syringe

Figure 4.1 Experimental set-up to study liquid film behaviour in a capillary tube 

4.2 Experimental Observations

The initial stationary position of the liquid plug of length Lpi is shown in Figure 4.2(a). After 

the plastic tube is disconnected the liquid plug starts to move and a liquid film is deposited at 

by trailing-end as shown in Figure 4.2(b). A portion of the liquid plug of a length Lpmin will 

remain in the tube depending on the magnitude of the momentum of the liquid plug, the 

friction and surface tension as shown in Figure 4.2(c). This length is determined by making a 

video “clip” of the movement and then to freeze the frame where the Lpmin can be measured. 

As the liquid film flows down the tube its thickness grows and several liquid plugs are 

formed along the tube. Droplets are also formed against the inside wall when film break up 

occurs. Some of the liquid film flows into the portion of the liquid plug at the exit as shown 

in Figure 4.2(c). The flow of the liquid film into the liquid plug will cause it to grow as 

shown in Figure 4.2(d). Only a certain mass o f liquid can be supported by the capillary 

forces against gravity, and liquid leaves the tube in the form of droplets as shown in Figure 

4.2(e) which are caught using a paper towel and weighed. After a while (± 1 second) 

equilibrium is achieved as shown in Figure 4.2(f).
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Figure 4.2 Experimental observations as a liquid plug moves in a capillary tube 

The average thickness of the liquid film 8 tf is correlated with the inside diameter dt of the 

tube, the surface tension a  and viscosity j i  of the liquid water and the average velocity vp of 

the exiting liquid plug with an equation of the form

s „  = a0</,/V"2v / V 4

The average film thickness 8 ffm equation (4.1) is defined by the following equation

(4.1)

rrifj — \^ { d t [di 28  ff) \ L pi Lpmin)p e (4.2)

The mass of the liquid film deposited m(f is determined by subtracting the dry mass o f the 

tube m,d and the mass of the liquid plug left in the tube due to surface tension ndi pLpmin/4 

from the mass of the tube partially filled with liquid mtf and adding the mass of the liquid 

drops Wldrops

m(f = m l( - m l d p (LpniD +m,drops (4.3)

The average velocity of the liquid plug leaving the tube is calculated as follows
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L - Lpi p min V = — ------ -----
p A t

(4.4)

4.3 Results

The natural logarithm are taken on both sides of equation (4.1) to give 

In 8 lf = In a0 + a, In d i + a2 In a  + In v + a4 In p (4.5)

The coefficients are then determined using a standard multi-linear regression technique to 

give

Stf =6.031 x 10 3d*™ G '™ vp°™ p ^ ™ (4.6)

This correlation is based on tube diameters of di = 1.5 to 2.86 mm, water as working fluid, 

surface tension of a  -  0.0671 to 0.078 N/m, average velocities of vp = 0.33 to 1.8 m/s and 

viscosity o f p  -  0.00049 to 0.00176 Pas. The film thickness as predicted by equation (4.6) is 

compared to the experimental values in Figure 4.3.

0.00005 0.0001 0.00015 
Experimental thickness, 5 ff [m]

0.0002

Figure 4.3 Film thickness as predicted by equation (4.6) compared to the experimental 
values

From the results in Figure 4.3 it can be seen that under the different testing conditions the 

average film thickness varies between 100 and 200 (im.
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5 EXPERIMENTAL VERIFICATION OF THEORETICAL MODEL

Several experiments were devised to verify the theoretical model. The experiments include i) 

a single plug moving in a vertical glass U-tube, ii) a single plug moving in a horizontal tube, 

iii) a PHP made from glass tubes and pentane as the working fluid, iv) a stainless steel closed 

end PHP with water as the working fluid, v) an aluminium closed loop PHP with water as 

working fluid and, vi) a stainless steel closed end PHP with ammonia as the working fluid. 

The glass tube experiments assisted in understanding the working fluid behaviour by being 

able to visually observe the fluid movement.

5.1 Single Plug Vertical Glass U-tube

The single plug vertical glass U-tube experiment was done to study the movement of a single 

plug in a capillary tube due to heat transfer and gravity.

5.1.1 Experimental Set-up and Procedure

The experimental apparatus consists of a liquid plug inside a vertically orientated U-shaped 

glass capillary tube (2mm ID) with two containers filled with cold and hot water to serve as 

the condenser and evaporator sections as shown in Figure 5.1. Pentane is used as the working 

fluid. A video camera (JVC model GV-DS1 and serial no. 08220222) and desk lamp are 

positioned as shown to record the movement of the liquid plug.

Cold water is water poured into the bottom container first and then hot water is poured into 

the top container. Heat transfer takes place and the liquid plug starts to move. The position 

of the liquid plug is determined as a function of time from the video recording by tracking the 

displacement of the liquid plug between every frame.

Cooling one of the legs results in different vapour pressures in the two legs of the U-tube. 

Due to the difference in pressure the plug will move to a different position. By using this 

technique the initial position of the liquid plug can be controlled.
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Figure 5.1 Study of movement of a liquid plug in a U-shape capillary tube

5.1.2 Experimental Observations and Results

It was found that the movement of the liquid plug is quite different for initial conditions that 

are apparently the same. Sometimes the liquid plug did not move while at other instances the 

liquid plug moved in a random oscillatory manner. However, after a while the liquid plug 

always stopped moving. It was also observed that a thin liquid film was deposited at the 

trailing edge of the liquid plug and the evaporation of the liquid film could also be noticed 

with the naked eye. No bubbles were seen in the liquid film while evaporation took place and 

it is therefore reasonable to believe that for this particular experimental set-up and testing 

conditions that nucleate boiling is not the mechanism whereby evaporation of the liquid film 

takes place.

5.1.3 Comparison of Experimental Results with Theoretical Results

The movement of the liquid plug was simulated using the theoretical model. The evaporation 

and condensation processes taking place were simulated using the kinetic mass transfer 

model. Figure 5.2 shows important dimensions of the experimental set-up as were used in 

the theoretical simulation (filename: php3ver2PentaanEksperiment2.pas). Table 5.1 gives 

numerical values for the initial conditions and geometry used in the program. Figure 5.3 

shows the liquid plug position as a function of time as was experimentally determined
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compared to the plug position as predicted by the theoretical model. From the figure it can be 

seen that the theoretical model does not predict the exact movement of the liquid plug, but it 

does predict the final stationary position of the liquid plug within (0.279 - 0.2598)/0.2598 x 

100 = 7.39%.

From Figure 5.3 it can be seen that the theoretical model predicts that the liquid plug will 

reach a maximum position, and become stationary at this position, after t = 0.25 s whereas for 

the experimental case the time it took to reach a maximum and become stationary was t = 1.8

s.

Figure 5.2 Important dimensions of experimental set-up

5.3

Stellenbosch University http://scholar.sun.ac.za/



Table 5.1 Initial values and geometry used in theoretical model to predict plug 
movement in vertical U-shape tube

XpO 192 mm

Tvo 20 °C

T(fo 20 °C

PvO 55816 Pa

LP 282 mm

Ltube 510 mm

di 3.34 mm

Tw for 30 < x <  120 and 330 < x 
< 420 mm

40 °C

Tw for all remaining x 0°C

Sff for 30 < * < 40 0.0001 m

5 dep 0.0001 m

hlfw for 30 < x < 120, 150 < x < 1000 W/m2K

hm for 30 <  x <  120, 150 < x < 10 W/m2K

h(fv f o r 3 0 < x <  120, 150 < x < 10 W/m2K

V  > h w v » h(jv for a11 remaining x 0 W/m2K

£
5  0.30 

|  0.25 

S 0.20 

|  0.15

■S' 0 0.5 1 1.5 2 2.5 
'3cr
3

Figure 5.3 Comparison of experimental and theoretical predicted plug position

5.2 Single Plug Florizontal Glass tube

The single plug horizontal glass tube experiment was done to study the movement of a single 

plug in a capillary tube due to heat transfer.

♦ Experimental----- Theoretical

Time, t [s]
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5.2.1 Experimental Set-up

The experimental apparatus consist of a liquid plug inside a glass capillary tube (2 mm ID) 

positioned in three containers as shown in Figure 5.4. The middle container is first filled with 

ice water which functioned as the condenser and the outer two containers are then filled with 

warm water and functioned as evaporators. Pentane was used as the working fluid. For the 

filling procedure refer to APPENDIX E.

Figure 5.4 Study of the liquid plug movement in a horizontal capillary tube 

5.2.2 Observations

When pouring the warm water into the outer containers the liquid plug starts to move. The 

movement o f the plug is quite unpredictable and it is very difficult to repeat a particular 

movement of the plug. The movement of the plug varied from irregular oscillations with 

amplitudes o f ~ 50 mm which stopped after ~ 2 s to more steady oscillations with amplitudes 

of ~ 1 mm which stopped after ~ 10 s. In some cases the liquid plug did not oscillate at all 

and moved relatively slowly from its initial position to a stationary position. During the 

movement a liquid film deposited at the trailing end of the liquid plug was observed. The 

evaporation of this film could actually be seen with the naked eye.

5.3 Glass Tube Pulsating Heat Pipe

A PHP was constructed from glass tubing to visually observe the operating mechanisms 

taking place inside the PHP.

5.3.1 Experimental Set-up

The experimental set-up consist of a capillary glass tube bent into the shape shown in Figure

5.5 to form a closed loop PHP. The PHP is filled with pentane as the working fluid (refer to 

APPENDIX F for filling procedure). Two containers are filled with water, cold water in the
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one container that functioned as the condenser and warm water in the other which functioned 

as the evaporator. The PHP is then inserted into the containers as shown in Figure 5.6. The 

PHP starts to operate and it is possible to observe the movement of the liquid plugs.

Figure 5.5 Glass pulsating heat pipe

Figure 5.6 Glass pulsating heat pipe inserted into containers with water 

5.3.2 Observations

When the PHP is inserted into the containers the liquid plugs move vigorously in what 

appears to be an irregular oscillatory manner. After ~ 10 s the movement of the plugs 

reduces drastically to a near standstill and move slowly back and forth. After a period of ~
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120 s the liquid plugs generally start to move vigorously again but some times it just remains 

moving slowly back and forth.

It was observed that some of the liquid plugs split up to form two separate plugs and that two 

plugs sometimes coalesce to form a single plug. It was also possible to see the liquid film 

deposited at the trailing end of a liquid plug and the evaporation thereof.

5.4 Water Charged Stainless Steel Closed End Pulsating Heat Pipe

A PHP was manufactured from stainless steel (4.76 mm OD and 3.34 mm ED) and filled with 

water as the working fluid. The aim of the experiment was to define and determine a heat 

transfer coefficient which can be used to design PHPs in future and to determine the amount 

of heat transferred by the PHP and to compare it to that predicted by the theoretical model.

5.4.1 Experimental Set-up

A closed end PHP as shown in Figure 5.7(a) was constructed from 304 stainless steel tubing 

and was cast into aluminium to form the condenser and evaporator sections as shown in 

Figure 5.7(b) with We = 110 mm, Wa = 80 mm, Wc = 110 mm and L = 355 mm. The 

aluminium thickness of both the evaporator and condenser sections was 25 mm. The total 

length o f the tube in the evaporator is Le = 1.957 m and the total length of the tube in the 

condenser is Lc = 1.435 m. The number of channels is Nchan = 16.

A heating element consisting of electrical resistance wire and insulated with ceramic beads 

was inserted into the groove as shown in Figure 5.7(b) to serve as the heat source. Several 

cooling channels were drilled through the condenser section through which water flowed 

from a constant head source to serve as the heat sink. The water outlets can be seen in Figure 

5.7(b). The PHP is mounted onto a stand as shown in Figure 5.8. The stand can rotate 

making it possible for the heat pipe to be rotated in order to evaluate its performance at 

different inclination angles. The inclination angle is defined as shown in Figure 5.9 to be 

consistent with the convention used in the theoretical model. The inclination angle of the 

PHP as shown in Figure 5.8 is therefore 0 = 0 ° ,  </>= + 90° would be bottom heat mode and (f) 

= - 90° would be top heat mode.

A voltage regulator (Yokoyama, model SB-10, serial no. 24653 and store no. 231568) is 

connected to the heating element in the evaporator section making it possible to vary the heat 

input. At the water outlet a needle valve is connected to control the mass flow rate of the
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cooling water. Temperature readings are taken at several locations in the evaporator and 

condenser sections, as well as the cooling water inlet and outlet using T-type thermocouples. 

The data is logged using a Hewlett Packard data logger (model 34970A, serial no. 

37008090). The PHP is filled with water liquid that is treated to remove any non- 

condensable gasses. For the treatment of the water liquid and the filling procedure refer to 

APPENDIX A.

Figure 5.7 Stainless steel PHP (4.76mm OD, 3.34mm ID)
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Figure 5.8 Experimental setup of stainless steel water charged PHP

Figure 5.9 Definition of the inclination (to the horizontal) angle of the PHP 

5.4.2 Results

Typical temperature readings obtained during the experiments are shown in Figure 5.10 for 

an inclination angle of (/> = -30° and a filling ratio of R = 0.56. Also shown in Figure 5.10 is 

the electrical power input, Qelec, and the energy transferred to the cooling water, Qcw . From
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Figure 5.10 it can be seen that as the average temperature of the evaporator section increases 

up to Te ~ 55 °C the PHP starts to transfer heat to the condenser section. The temperature of

the condenser section starts to increase up to a point where it is more or less constant at Tc ~

20 °C. At this point the operating temperature of the evaporator section is approximately Te ~

66 °C. From the results it can also be seen that the heat transferred to the cooling water 

follows the temperature of both the condenser and evaporator section. For example, at t = 

3000 s the temperature of the condenser section increases from Tr ~ 20 to 25 °C

accompanied by a drastic increase in the heat transferred to the cooling water from Qcw ~ 50

to 100 W. During this period the temperature of the evaporator decreases to Te ~ 63 °C. It is

clear from the results that heat is not transferred steadily, but in a “pulsating” fashion due to 

the very physical nature of the PHP.

70
60
50
40
30
20

60

40

1000 2000 3000 4000 
Time, t [s]

0 
5000

Figure 5.10 Typical results obtained for a water filled closed end PHP with a fill ratio of R 
= 0.56 operating at an inclination angle of 0 =  -30°

5.4.3 Pulsating Heat Pipe Heat Transfer Coefficient

A heat transfer coefficient will now be defined and determined. The heat transfer would 

assist in the design of similar PHPs in future. The important features of the PHP test set-up 

are shown in Figure 5.11. For convenience the important temperatures are shown separately 

in Figure 5.12. Based on these two figures a thermal resistance diagram of the PHP test set­

up is given in Figure 5.13. Electrical power QeUc = V2IReiec is supplied at a steady rate to the
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evaporator and heat is removed from the condenser section by the cooling water as 

Qcw = ™cwcpcw(T’o* ~ Tcm)- Heat is lost to the environment from the evaporator 

Qei ~ {re - Ta) / Rel, condenser Qcl = (Tc - T g) /Rcl and from the tubes between the evaporator 

and condenser Qwia = (TWI -  Ta)/ Rma .

TzzZzzi

Aluminium block Insulation 
Electrical (evaporator) Contact 
heat source I ________  I PHP

Cooling water ^  
channel in 
condenserresistance

Liquid plug
Vapour bubble Aluminium block 

(condenser)

Figure 5.12 Important temperatures of the PHP test set-up

Figure 5.11 Important features of the PHP set-up

Tn
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Figure 5.13 Thermal resistance diagram of the PHP test set-up

The thermal resistance diagram given in Figure 5.13 is still too complicated and may be 

further simplified. In APPENDIX C a sample calculation is done which illustrates that the 

difference in temperature between the evaporator and the inner wall of the PHP in the 

evaporator section is typically Te - Tem =0.08 + 0.169 = 0.249 °C and therefore Te ~Tewi. 

This will also be true for the condenser section so that T cwi —Tc ~ 0.229 °C and T c ~  T c w i. It is 

also shown that the loss Qwia ~ Qfw = 1.28 W. The heat conducted through the PHP walls 

from the evaporator to the condenser is therefore Q ewj = Qcwi -  (Tc - T c)l(Rew + RCW).  Taking

the above into account the thermal diagram in Figure 5.13 is further simplified as given in 

Figure 5.14.
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Figure 5.14 Simplified thermal resistance diagram of the PHP test set-up

The simplified thermal resistance diagram in Figure 5.14 allows a definition of a heat transfer 

coefficient hei between the inner wall and the working fluid for the evaporator as

Qphp= ^ ~ J~ (5.1)
fwie

where = -----------

Similarly a heat transfer coefficient /in between the inner wall and the working for the 

condenser is

T, - T
& » , = - £ — 1 (5.2)

Jwic

where Rjwic =
KndiLc

However, no indication exist as to what the temperature of the fluid is since it was not 

measured. Even if it was measured, the fluid temperature would still be ill-defined since the 

temperature at any position in the PHP will vary as liquid plugs and vapour bubbles pass this 

point. As a compromise a heat transfer coefficient hPHp is defined by the following two 

equations

T - T
Qphp= ^ S- (5.3)

K;
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where Rj = Rfwie + R ^  = ----------- + ------------
h jU 'L ,  hnndtLc

It is not possible to be able to define a constant temperature for the working fluid 7). 

Consequently it is defined that hei ~ hci ~ hPHP and equation (5.3) becomes

To calculate hPHp Qel or Qcl and Qw are required. Qel and Qd may be determined

experimentally. This is done by drawing a vacuum in the PHP and applying a constant 

electrical power input to the set-up. The cooling water is also turned off which results in a

shown in Figure 5.15. When steady conditions are reached the heat loss from the evaporator 

section is known for the temperature difference between the evaporator section and the 

ambient temperature and similarly the heat loss from the condenser is known for the 

temperature difference between the condenser section and the ambient. Different electrical 

power inputs are applied to the evaporator section to obtain different heat losses for different 

temperature differences between the evaporator and condenser sections and the ambient. The 

results of the heat loss calibration are shown in Figure 5.16 as Qe( = 0.2433(rf - T a) and

(5.4)
—  + —
L Le c

further simplification of the thermal circuit in Figure 5.14 to the thermal resistance diagram

4 ,  = 0 .1 9 2 6 (7; - r j .

The heat conducted by the tube walls may be given by

(5.5)
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Figure 5.15 Thermal resistance diagram for the heat loss calibration for PHP set-up
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Figure 5.16 The evaporator and condenser heat losses to the ambient

The PHP heat transfer coefficient can now be determined. The PHP heat transfer coefficient 

is determined for different operating conditions of which the results are shown in Figure 5.17. 

From the results it can be seen that the inclination angle has an effect on the performance of 

the PHP. The heat transfer coefficient in the top heat mode (0  = -90°) is less than when the 

heat pipe is operated in the bottom heat mode (qi = +90°). It can also be seen that the filling 

ratio, R, affects the performance of the PHP. The heat transfer coefficient is higher for R = 

0.56 than for both R = 0.61 and R = 0.46, suggesting that the optimum filling ratio for this 

PHP lies approximately in the range 0.45 < R < 0.6.
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Figure 5.17 Experimental results of the heat transfer coefficient hpnp of the water filled 
PHP at different inclination angles and electrical power input

The heat transfer coefficient was correlated with the temperature difference, Te -T c, (f>+ 92° 

(the reason for adding 92° will follow) and R as follows

hPHP = 9 2 2 4 .2 0 7 (Te - Tc)A m {<P + 92)°001 R~°095 (5.6)

— — T +T
The heat transfer coefficient was also correlated with Te - T c, (j) + 92°, R and -£—̂

follows

hPHP = 1.392(7; -  7; Y 304{<t> + 92)°043 R - 0.377 (5.7)

The coefficients in equation (5.6) (5.7) are determined by performing a multi-linear 

regression analysis on the data as was similarly done in section 4.3. In order to do the 

regression the numerical values of the inclination angle had to be changed to avoid taking the 

natural logarithm of negative numbers. The values of the inclination angles were therefore 

changed by adding 92°. The inclination angle is a convention defined to assist in visualising 

the experimental set-up more effectively. By adding 92°, the results are not effected in 

anyway and are still in agreement with the physical phenomena taking place. The values of 

hpnp predicted by equation (5.6) are compared to the experimental values in Figure 5.18 and
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that by equation (5.7) in Figure 5.19. It can be seen that the R2 value is higher for the 

correlation given by equation (5.7) than the correlation given by equation (5.6).

Looking at equation (5.6) and (5.7) it can be seen that the greater the temperature difference 

between the fluid temperature and the condenser section the lower the heat transfer 

coefficient. It can also be seen that the heat transfer coefficient is proportional to the 

inclination angle meaning that it will be higher when the PHP is operated in the bottom heat 

mode than when operated in the top heat mode. The correlations also predict that the heat 

transfer coefficient will be higher for a smaller filling ratio.

Experimental heat transfer coefficient, hPHP [W/m2K]

Figure 5.18 Heat transfer coefficient hPHp as predicted by Equation (5.6) compared to the 
experimental values
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750

Experimental heat transfer coefficient, hPHP [W/m2Kl

Figure 5.19 Heat transfer coefficient hPHP as predicted by Equation (5.7) compared to the 
experimental values

5.4.4 Comparison of Experimental Results with Theoretical Results

The closed end stainless steel PHP was numerically modelled using the theoretical model 

(filename: phplver6H20_multiplug_actual.pas). The values used for the geometry and 

initial conditions are summarised in Table 5.2. Refer to Figure 3.19 for the definition of the 

geometry. The geometry of the theoretical model does not match that of the actual model due 

to the restricted capabilities of the program to divide the PHP into finite elements. The heat 

transfer rate as a function of the inclination angle predicted by the theoretical model is 

compared to that experimentally obtained for the PHP with R = 0.46 and Qelec= 78 W in 

Figure 5.20. It can be seen that the theoretically predicted heat transfer rate compares good 

with the experimental results for the top heat mode (-90° < <p< 0°). In the bottom heat mode 

the theoretically predicted values are significantly higher than the experimentally determined 

values.
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Table 5.2 Initial conditions and geometry to simulate a closed end PHP

(xpo)i (where i is the plug 
number)

281.25 x i mm

Tvo 40 °C

PvO 7238 Pa

Lpe 135 mm

Lpc 140 mm

L J  8 181.125 mm

L J  8 221.375 mm

80 mm

Ltube 4 500 mm

dt 3.34 mm

Twe 60 °C

TWC
UoO

Stf 0.0001 m

hffw (evaporator and condenser) 800 W/m2K

hm (evaporator and condenser) 10 W/m2K

hfJv (evaporator and condenser) 10 W/m2K

V  > hm > Kfv (adiabatic region) 0 W/m2K

Figure 5.20 Comparison of the experimentally determined heat transfer rate with the 
theoretically predicted heat transfer rate
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5.5 Water Charged Aluminium Pulsating Heat Pipe

The PHP of section 5.4 was made of stainless steel. Another PHP was manufactured from 

3003 aluminium (4.76 mm OD and 3.34 mm ID) and filled with water as the working fluid. 

The aim of the experiment was to determine amount of heat transferred by the PHP and the 

PHP heat transfer coefficient as defined by equation (5.4).

5.5.1 Experimental Set-up

The PHP constructed was of the closed loop type and is shown in Figure 5.21(a). The PHP 

was positioned into grooves machined into aluminium blocks with L = 364 mm, We = 115 

mm, Wa = 80 mm and Wf = 111 mm as shown in Figure 5.21(b). The total length of the tube 

in the evaporator is Le = 1.953 m and the total length of the tube in the condenser is L, =

1.965 m. The number of channels is Nturns = 1 8 .  The grooves were filled with pure tin to 

ensure good thermal contact between the aluminium blocks and the outer wall of the 

aluminium tube. The assembly as shown in Figure 5.21(b) was insulated, mounted onto the 

rotating stand, connected to the data capturing system, electrical power and cooling water 

supply in the same manner as for the closed end stainless steel PHP (see section 5.4).

Aluminium

Figure 5.21 Aluminium closed loop PHP (4.76m OD, 3.34mm ID)
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5.5.2 Results

Typical temperature readings obtained during the experiments are shown in Figure 5.22 for 

an operating angle of (f> = 30 0 and a filling ratio of R = 0.46. The electrical power Qelec

supplied to the evaporator and the heat transferred to the cooling water Qcw are also indicated 

in Figure 5.22. It can be seen from the results that the temperature of the evaporator 

increases to Te ~ 43 °C where it starts to transfer heat to the condenser at Tc ~ 23 °C.

Time, t [s]

Figure 5.22 Typical results obtained for a water filled closed loop PHP with a fill ratio of R 
= 0.46 operating at an inclination angle of 0 =  30 °

5.5.3 Pulsating Heat Pipe Heat Transfer Coefficient

The heat transfer coefficient hPHp in the evaporator section as defined by equation (5.4) is 

shown in Figure 5.23 as a function of different inclination angles, filling ratios and electrical 

power inputs. As with the closed end stainless steel PHP it can be seen that the heat transfer 

coefficient is a minimum in the top heat mode (^ = -90°) and increases to obtain maximum 

values in the bottom heat mode {(j) -  30° - 90°). It can be seen that no results are available for 

R = 0.66, Qelec= medium at (j)= -90°, R = 0.66, Qdec= low at </>= -90°, -75°, -30°, 0° and R =

0-5, Qeiec -  l ° w at 0  = -90°, due to the fact that the PHP did not operate at these testing 

conditions. From the results it is unclear what the optimum fill ratio is.
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Figure 5.23 Heat transfer coefficient hPHP as a function of the incliniation angle for 
different filling ratios and electrical power inputs for the water filled 
aluminium closed loop PHP

The heat transfer coefficient hPHP was correlated with the temperature difference Te -  Tc , </) + 

92° and R as

hPHP = 7 .1 1 7 x lO 9( 7 ;- 7 ;) " 3 884(0 + 92)^  269 /?2304 (5.8)

-  -  T +T  
The heat transfer coefficient was also correlated with Te - T  <p+ 92°, R and —------ as

hPHP = 1 .932x  107 (Te -  Tc ) 6 383 (</> + 92)_0 205 R 1.882

/  — — \ 4.196

f Te +Tc  ̂

v 2
(5.9)

The coefficients in equation (5.8) and (5.9) are determined by performing a linear regression 

analysis on the experimental data. The values of hPHP predicted by equation (5.8) are

compared to the experimental values in Figure 5.24 and that by equation (5.9) in Figure 5.24.

From equations (5.8) and (5.9) it can be seen that the greater the difference between the 

evaporator and fluid temperatures the lower the heat transfer coefficient. According to 

equations (5.8) and (5.9) the heat transfer coefficient increases with decreasing inclination 

angle which means that the heat transfer coefficient will be higher in the top heat mode than

K = U.66, yelec = Jo w 
R = 0.66, Qelec = medium 
R = 0.66, Qelec = high 
R =0.5, Qelec =k>w 
R =0.5, Qelec = medium 
R =0.5, Qelec = high 
R = 0.46, Qelec = k) w 

R =0.46, Qelec = medium 
R = 0.46, Qelec = high
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in the bottom heat mode despite the fact that the PHP did not operate at some instances in the 

top heat mode.

Experimental heat transfer coefficient, hPHP [W/m2K]

Figure 5.24 Heat transfer coefficient as predicted by equation (5.8) compared to the 
experimental values

Experimental heat transfer coefficient, hPHP [W/m2K]

Figure 5.25 Heat transfer coefficient as predicted by equation (5.7) compared to the 
experimental values

5.6 Ammonia Charged Stainless Steel Pulsating Heat Pipe

The closed end stainless steel PHP as described in section 5.4 was filled with ammonia as the 

working fluid. The aim of the experiment was to determine the amount of heat transferred by 

the PHP and the PHP heat transfer coefficient as defined by (5.4).
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5.6.1 Experimental set-up

The experimental set-up for this experiment is exactly the same as described in section 5.4. 

The only difference is that the PHP is filled with ammonia now instead of water. For the 

filling procedure refer to APPENDIX B.

5.6.2 Results

It was found that the PHP was capable to transfer heat only in the range 0° < </>< 90°. Typical 

temperature readings obtained during the experiments with inclination angles of 30° < <j) < 

75° are shown in Figure 5.26. The results shown in Figure 5.26 are for an operating angle of 

(j> = 30° and a filling ratio of R = 0.46. Also shown in Figure 5.26 is the electrical power 

input, Qdec, and the energy transferred to the cooling water, Qcw . From Figure 5.26 it can be 

seen that the average temperature of the evaporator section slowly increases up to Te ~ 18 °C

where the PHP starts to transfer heat to the condenser section at a relatively steady rate. The 

temperature of the condenser section starts to increase up to a point where it is more or less 

constant at Tc~ 21 °C. At this point the operating temperature of the evaporator section is

approximately Te ~ 27 °C and also remains relatively constant.

Uo

<DJ-H 
•*—* cd 
<DQ*
£<L>

H

£
•O)

<u
Vh
Vh

<Z)C

03<Dx

Time, t [s]

Figure 5.26 Typical experimental results for an ammonia filled closed end PHP with a fill 
ratio of R = 0.46 operating at an inclination angle of Q = 30°

The typical results for an inclination angle of (j) = 90° and fill ratio R = 0.46 are shown in 

Figure 5.27. Comparing the results in Figure 5.27 to the results in Figure 5.26 it can be seen
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that the variation of the heat transferred to the cooling water, Qcw, is more erratic. This and

the fact that the PHP does not transfer heat in the range -90° < <p < 0° suggest that the 

mechanism by which heat is transferred by the ammonia PHP is similar to that of a 

thermosyphon. A thermosyphon cannot transfer heat in the top heat mode, and if too much 

working fluid is present flooding can occur in a thermosyphon causing relatively high 

fluctuations in the heat transfer. To investigate whether this is the case consider the results 

shown in Figure 5.28 for a PHP with different fill ratios and 0 =  90°. From Figure 5.28 it can 

be seen that the heat transfer rate is more smooth for R = 0.16 than for R = 0.46. Also, the 

operation of a PHP relies on the formation of liquid plugs and vapour bubble inside the tube. 

In order for liquid plugs and vapour bubbles to form inside the tube, the inside diameter must 

be less than d,i = l.8 (tr/(p t - p v)g )V2 = 1 .8(0.0181/(579.5-12)9.8)1/2 = 2 .9 6  mm at an

operating temperature of T = 40 °C. The inside diameter of the stainless steel PHP is J , = 

3.34 mm which means that the flow inside the PHP is mostly stratified like in the case for a 

thermosyphon. It can therefore be concluded that the ammonia filled PHP is in fact a 

thermosyphon consisting of various interconnected tubes.

1 0  T  T  --------------------- t ---------------------- 2 0
C CWO j I I T  '

0 --------------------i--------------------i------------------- ------------------------ 0

0  2500 5000  7500  10000

Time, t [s]

Figure 5.27 Typical experimental results for an ammonia filled PHP with a fill ratio of R = 
0.46 operating at an inclination angle of </>= 90 °
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Figure 5.28 Comparison of the heat transfer rate to the cooling water for (p = 90 °, 
Qeiec = 75 W and different fill ratios

5.6.3 Pulsating Heat Pipe Heat Transfer Coefficient

The heat transfer coefficient in the evaporator section hPHp as defined in equation (5.4) is 

shown in Figure 5.29 as a function of the inclination angle for different fill ratios and 

electrical power inputs. From Figure 5.29 it can be seen that the heat transfer coefficient is a 

minimum for (f> = 90° increasing to a maximum in the region 0  = 60 - 70° and then steadily 

decreases. The fact that the heat transfer coefficient is a minimum for (/) -  90° supports the 

suggestion that flooding occurs at this angle.
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Figure 5.29 Heat transfer coefficient hPuP as a function o f the inclination angle for 
different power inputs for the ammonia filled stainless steel PHP
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The heat transfer coefficient was correlated with the temperature difference Te - T c, <p and R 

as

hPHP = 6667.373(7; - 7;  J 0923̂ -0098/?-0112 (5.10)

-  — T +T  
The heat transfer coefficient was also correlated with Te - T c, <p,R and —----- - as

^  v 0'923
hPHP̂ 26.563(Te-T c} ]Am<l>~0040bR-0^ (5.11)

The coefficients in equations (5.10) and (5 .11) are determined by performing a linear 

regression analysis on the data. The values of hPHP predicted by the equation (5.10) are 

compared to the experimental values in Figure 5.30 and that by equation (5.11) in Figure 

5.31. From equations (5.10) and (5.11) it can be seen that the greater the difference between 

the fluid temperature and the evaporator section the lower the heat transfer coefficient. The 

heat transfer coefficient is also indirectly proportionate to the filling ratio. From Figure 5.30 

and Figure 5.31 it can be seen that the R2 values is slightly higher for the correlation given by 

equation (5.11) than that given by equation (5.10).

Experimental heat transfer coefficient, hPHP [W/m2K]

Figure 5.30 Heat transfer coefficient as predicted by equation (5.10) compared to the 
experimental values
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Figure 5.31 Heat transfer coefficient as predicted by equation (5.10) compared to the 
experimental values
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6 APPLICATION OF PULSATING HEAT PIPES IN H EV’s

An objective of this thesis is the investigation of the feasibility of using PHP technology for 

the thermal management of HEVs. Two components in particular were investigated namely 

the batteries and IGBTs. Several concepts were developed for the thermal management of 

these components and some problem areas were also identified regarding the thermal 

management.

6.1 Thermal Management of HEV Batteries

For the thermal management of HEV batteries a concept was developed using PHPs to 

control the temperature of the Optima Spirocell® (12 V, 65 Amp hour) lead acid batteries as 

used by CAE. Currently the batteries are positioned in the boot of the HEV as indicated in 

Figure 6.1. The batteries are covered with rubber sheets during the time this picture was 

taken and are therefore not visible in the figure. Figure 6.2 shows three batteries partially 

uncovered. As can be seen the batteries are in a confined space which is relatively well 

insulated. As a consequence the possibility exists that the temperature of the batteries could 

increase to above that of the desired temperature of 35 °C not only due to the normal 

operation of the batteries but also due to the heating o f the boot when driving in sunny 

conditions. The batteries are also stacked against one another which means that the heat 

transfer area is effectively decreased. A possible solution to this problem could be developed 

using flat lane PHPs. The PHPs could be inserted between the batteries as shown in Figure

6.3 so that the heat can be transported away from the batteries to the outside of the body of 

the car where the heat can be rejected by natural convection when the car is stationary and by 

forced convection when the car is moving. When the car is moving forward the air will flow 

over the PHPs as indicated in Figure 6.3. To minimise radiation heat transfer from the sun to 

the PHPs, the surface of the PHPs should be coated with high emissivity and low absorptivity 

paint, or if this is inadequate, the PHPs could be covered with radiation shields or louvres. 

These radiation shields should be designed to allow convective heat transfer to still take 

place.
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Figure 6.1 Positioning of the batteries and motor controller in the boot of the HEV

Figure 6 .2  Partially uncovered batteries
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Figure 6.3 Concept illustrating how PHPs can be used to transport heat away from the 
batteries to the outside surface of the boot of the HEV

Richter (2000) conducted experiments whereby Raylite model 647 batteries were charged 

with a current of 40 A to determine the temperature response of the battery. It was found that 

the conduction thermal resistance of the battery-casing wall alone constitutes 65%  of the 

thermal resistance from the middle of the battery to the environment. This means that the 

inside temperature of the battery could well exceed the specified 35 °C long before heat can 

be removed by the cooling concept described above due to the high thermal resistance of the 

battery-casing wall.

A solution to this problem might be that the PHP forms an integral part of the battery as 

shown in Figure 6.4. In Figure 6.4 the PHP is inserted into the battery so that it is in direct 

contact with the contents of the battery. This configuration will definitely be best from a heat 

transfer point of view, but it is unclear to what extent the performance of the battery will be 

influenced by the presence of the PHP. A more simple solution would be to manufacture the 

battery-casing from a material with higher thermal conductivity. The battery cell walls and 

casings may in fact be manufactured from casing material with PHPs embedded in the 

material itself. These suggestions would imply a redesign of batteries, which, for the present 

H EV project, is not practical or cost efficient.
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PHPs

Figure 6.4 Insertion of PHPs into battery to transfer heat to outside of battery

The current HEV configuration does not include any thermal management of the batteries. It 

is recommended that status quo be maintained but that the thermal behaviour of the batteries 

should be determined when the HEV enters its testing phase. It can then be decided from the 

data obtained during the testing phase what the future course of action should be.

6.2 Thermal Management of IGBTs

The position of the IG BTs in the boot of C A E’s HEV is indicated in Figure 6.1. Figure 6.5 

shows a close-up view of the IG BTs and the cooling system. Figure 6.6 illustrates the 

cooling system more clearly. The method currently employed by the CAE to cool the IGBTs 

is to position the IG BTs on top of fins and to cool the fins using a fan. At the moment the 

cooling air is expelled back into the boot again, which theoretically will cause the air 

temperature to increase up to a stage where the IG BTs cannot be cooled. In practice, 

however, it is possible that a draft can exist in the boot which causes cooler air to enter the 

boot so that it is not a problem for the cooling air to be expelled back into the boot.
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Figure 6.5 Close-up view of the IGBTs, fan and fins

Fan

Cooling air in 
-►

Cooling air out 
------------------►

Figure 6.6 Cooling of the IGBTs using a fan and fins

It will be illustrated how a commercially available PHP product a “Stereo-type heat lane” can 

be used for the thermal control of the IGBTs. Figure 2.5, repeated below in Figure 6.7, 

shows the Stereo-type heat lane. It basically consists of a PHP sandwiched between two 

plates as was previously shown in Figure 2.4. The IGBTs are mounted on both sides of the 

Stereo-type heat lane as shown in Figure 6.7 and air is forced through the Stereo-type heat 

lane to cool the IGBTs. This concept of cooling is exactly the same as illustrated in Figure

6.6 except for the fact that in the case of the Stereo-type heat lane the fin temperature is more 

or less isothermal due to the low thermal resistance of the PHP so that the fin efficiency is 

much higher than traditional fins.
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Test equipment has been constructed to investigate whether the Stereo-type heat lane would 

be able to maintain the case temperature of the IG BT at the specified 100 °C. Figure 6.8 

shows the Stereo-type heat lane positioned in a testing duct with a metal block mounted onto 

the Stereo-type heat lane. A fan is connected to the duct to force air through the Stere-type 

heat lane. Electrical elements are inserted into the metal block to provide heat to simulate an 

IGBT. From tests conducted by De Villiers (2000) it was found that with an average air 

velocity o f 2 m/s and an electrical heat input of 1 000 W that the surface temperature of the 

metal block does not exceed 100 °C. A traditional fin assembly used by the Department of 

Electrical Engineering at the University of Stellenbosch for the same purpose is 5 times larger 

than the Stereo-type heat lane. This method is therefore an effective space saving way of 

cooling IG BTs.

Figure 6.7 Cooling of IG BTs using a Stereo-type heat lane (Akachi and Miyazaki, 1997)

(500W)
Forced Convection 

Heat Lane

IGBT 
(500W) <-

Metal blockHeating elements

Stereo-type heat lane

Figure 6.8 Test set-up for the evaluation of the Stereo-type heat lane
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7 D ISCU SSIO N  AND CONCLUSIONS

The major focus area of this thesis was the development of a theoretical model to simulate 

PHPs and to compare the theoretical predicted heat transfer rate to the experimentally 

determined heat transfer rate. A theoretical model was developed consisting of a tube 

containing liquid plugs, vapour bubbles and a liquid film on the inner wall of the tube as 

shown in Figure 3.1. The governing equations were derived by considering the conservation 

of energy of the vapour bubbles and the liquid film, the conservation of momentum of the 

liquid plugs and the conservation of mass of the vapour bubbles.

As a liquid plug moves in a tube a film is deposited at the trailing end and if a film is present 

at the leading end some complex interaction exist between the liquid plug and the film. A 

strategy was developed to model this interaction which is illustrated in detail in section 3.2. 

It was assumed that a liquid film of a prescribed thickness is deposited at the trailing end of 

the plug and that a portion of the film at the leading end is sucked into the liquid plug. The 

strategy did not take the conservation of mass into account, i.e. the mass of the liquid plug 

remained constant despite the fact that mass leaves the plug to be deposited as a liquid film at 

the trailing end and that mass enters the plug as it moves across a film at the leading end. It is 

believed that this approach is acceptable since the mass of the film is much smaller than that 

of the liquid plug and the mass deposited as a film nullifies the mass entering the plug at the 

leading end.

Closely related to the interaction of the plug with the liquid film is the capillary force 

experienced by the liquid plug due to surface tension. When a liquid plug moves across an 

already wetted surface the contact angle at the leading end will be lower than when it moves 

across a dry surface. According to equation (2.9) the capillary pressure difference between 

the leading and trailing of the liquid plug will decrease as the leading contact angle decreases. 

This implies that the capillary force experienced by a liquid plug moving in a capillary tube 

will be smaller when the liquid plug moves across an already wetted surface. Information 

regarding the magnitude of the capillary force is not available. A conservative approach was 

followed, in which it was assumed that the liquid plug moves across a dry surface and that the 

maximum possible value for the advancing contact angle is 90° and the minimum possible 

value for the receding angle is 0°, to derive an expression which relates the capillary pressure 

difference between the advancing and receding end of the plug to the velocity of the plug.
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To complete the theoretical model it is necessary to relate the vapour bubble pressure to its 

temperature, volume and mass and to model the evaporation and condensation processes. 

The vapour was modelled as an ideal gas. The pressure of the vapour bubble was therefore 

related to its temperature, volume and mass using the ideal gas equation. To model the 

evaporation and condensation processes two different equations were used. The one equation 

was derived from the kinetic gas theory which is mainly pressure difference controlled given 

by equation (3.6), and dubbed the kinetic mass transfer model, and the other equation is 

temperature difference controlled given by equation (3.7), and dubbed the heat transfer 

controlled mass transfer model.

The equations constituting the theoretical model were numerically solved using an explicit 

finite difference scheme as shown in section 3.2. A single plug PHP as shown in Figure 3.9 

was modelled to investigate the effect of the choice of mass transfer model on the heat and 

mass transfer characteristics of a vapour bubble. It was found that for the heat transfer 

controlled mass transfer model that the vapour bubble temperature and pressure reached 

steady state values of 60 °C and 8 000 Pa respectively after t ~ 200 jus. For the kinetic mass 

transfer model steady state values for the vapour bubble temperature and pressure of 60 °C 

and 18 000  Pa respectively, were attained after t ~ 3 s. The heat transfer controlled mass 

transfer model therefore attains steady state values for the temperature and pressure much 

faster than for the kinetic mass transfer model. The final pressure predicted by the heat 

transfer controlled mass transfer model is lower than predicted by the kinetic mass transfer 

model. The vapour bubble temperature overshot the temperature of the wall by ~ 8 °C in the 

case of the kinetic mass transfer model.

The single plug PHP shown in Figure 3.9 was used to investigate the effect of the initial 

position on the subsequent movement of the liquid plug for both the heat transfer controlled 

mass transfer model and the kinetic mass transfer model. It was found that the movement of 

the liquid plug is much more vigorous for the heat transfer controlled mass transfer model 

than for the kinetic mass transfer model as shown in Figure 3.12(a). On closer investigation 

it was found that the movement of the plug in the case of the heat transfer controlled mass 

transfer model is related to film dry-up as shown in Figure 3.13. The fact that the pressure of 

the vapour bubbles increases very quickly causing pressure pulses, also explains why the plug 

exhibits small oscillations. Numerical instabilities were encountered as the mass of the 

vapour bubbles became very small. A check was built into the program to ensure that the

7.2

Stellenbosch University http://scholar.sun.ac.za/



mass of the vapour bubble could not decrease below a specified minimum mass (i.e. not 

become negative). As the time step was decreased the minimum mass could also be 

decreased. The time step and minimum vapour mass were decreased until the computer 

running time was only just acceptable (25 minutes computer running time to simulate 10 s).

Despite the initial plug position the liquid plug always moved to the centre of the tube and 

became stationary for the kinetic mass transfer model as shown in Figure 3.12(b). To 

understand the heat and mass transfer characteristics of the vapour bubbles better when using 

the kinetic mass transfer model and to attempt to achieve similar plug movement as the heat 

transfer controlled mass transfer model, the effect of the heat transfer coefficient hijw and the 

accommodation coefficient a  were investigated. It was found that as these parameters were 

increased that the vapour bubble temperature overshoot became more pronounced but 

attained a steady state value more quickly. The maximum value of the mass transfer rate 

increased and was achieved in a shorter time period as /i/yw and a  were increased. Despite 

these efforts the liquid plug movement was still not similar to that predicted by the heat 

transfer controlled mass transfer model and to the movement of the liquid plugs 

experimentally observed (see sections 5.2, 5.3 and 5.1).

Also using the single plug PHP the magnitude of the capillary force was determined and 

compared to the pressure and friction force in Figure 3.14. The average pressure force for 

this simulation was found to be Fp = 7.03 x 10"3 N, followed by the friction force F/= 5.73 x 

10"4 N and then the capillary force F c = 1.56 x 10~5. It can be seen that the capillary force is 

negligible in comparison to the other forces.

The theoretical model, using the heat transfer controlled mass transfer model, was used to 

simulate a PHP consisting of several liquid plugs and vapour bubbles as shown in Figure 

3.19. The effect of several parameters on the heat transfer rate of the PHP was studied using 

the theoretical model. These parameters included the working fluid, gravity, the filling ratio 

and the number of channels. Water and ammonia were used as the different working fluids. 

It was found that the movement of the liquid plugs is more pronounced when water instead of 

ammonia is used (refer to Figure 3.20 and Figure 3.22), however referring to Figure 3.23 the 

velocity achieved by the liquid plugs was higher for ammonia than water (Figure 3.21). As 

shown in Figure 3.24 it was found for ammonia that the heat transfer rate is quite insensitive 

to the inclination angle (and hence gravity) in contrast with water for which the effect can 

clearly be seen, in the bottom heat mode {(p = 90°) the heat transfer rate is 1.4 times higher
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than in the top heat mode (0  = -90°). The average heat transfer rate for all the tested 

inclination angles for ammonia was 80 W and for water 34 W. The theoretical model 

predicts that ammonia is superior to water as a working fluid.

The multi-plug PHP model shown in Figure 3.19 was used to determine the effect of the 

filling ratio on the heat transfer rate. The filling ratio was varied by varying the length of the 

liquid plugs as shown in Table 3.3. It is reasonable to believe that more liquid is present in 

the condenser section; hence the length of the liquid plugs in the condenser was chosen to be 

longer than in the evaporator. As shown in Figure 3.25 it was found that the heat transfer rate 

increases as the fill ratio decreases. For the heat transfer controlled mass transfer model the 

mass transfer rate is a function of the temperature difference between the liquid film and the 

vapour bubble and the area across which heat transfer takes place. The heat transfer rate will 

therefore increase as the area increases. The filling ratio is decreased by shortening the 

length of the liquid plugs therefore increasing the area where heat transfer can take place. In 

retrospect just by investigating the heat transfer mass transfer controlled model the effect of 

the filling ratio could have been predicted.

The effect of the number of channels on the heat transfer rate was also investigated using the 

theoretical model. From Figure 3.26 no definite conclusion could be made from the results, 

although the heat transfer rate should increase with the addition of channels due to the 

increase of the heat transfer area.

Several parameters were found to have an influence on the heat transfer rate of the PHP 

predicted by the theoretical model but were not thoroughly investigated. These parameters 

include <af„ Le/Lc, SfJ, Sdep, Lpe and Lpr.

It was attempted to use the kinetic mass transfer model to simulate a multi-plug PHP but 

efforts to handle numerical instabilities that arose as the mass of the liquid film approached 

small values were unsuccessful. A strategy that was used to prevent this was to assign a 

minimum mass beyond which the mass of the liquid film was not allowed to decrease. 

Numerical instabilities still occurred despite considerably decreasing the time step. Efforts 

were then stopped due to the extremely long computer running times of 40 minutes for the 

simulation of 5 s (in hindsight this was the reason why the liquid film was taken to be the 

same as the wall temperature in the heat transfer controlled mass transfer model).
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In Chapter 4 an experiment was conducted to determine the average thickness of the liquid 

film deposited on the wall at the trailing end of a water plug as it moves through a capillary 

tube due to gravity. The average thickness was correlated with the inside diameter of the 

tube, surface tension, average velocity of the plug and viscosity. It was found that the 

average thickness varied between 100 and 200 îm. Although the derived correlation is 

limited to a certain range of parameters and for water in a glass tube, an average thickness of 

100 urn was used to model a stainless steel PHP with water as the working fluid. Since it 

was found that the film dry-up played an important role in the plug movement of a single 

plug PHP, an average film thickness of 10 (J.m was used to investigate the results of the 

theoretical model in section 3.3 to reduce computer run-time.

Several experiments were devised to verify the theoretical model and to visually observe the 

fluid motion. One such an experiment shown in Figure 5.1 was the investigation of the 

movement of a liquid plug in a vertically orientated U-shaped capillary tube and to predict 

the movement using the theoretical model. It was very difficult to control the initial 

conditions and it was found that the movement of the plug was quite different for similar 

initial conditions. However, it was possible to obtain initial conditions for which the plug 

movement was repeatable. The plug movement predicted by the theoretical model does not 

exactly match that observed experimentally as shown in Figure 5.3 but the final steady state 

position was predicted within 7.39% . For the theoretical model the kinetic mass transfer 

model was used. From the initial conditions shown in Table 5.1 it can be seen that only the 

one end of the liquid plug was exposed to the evaporator. In the actual experiment a liquid 

film was not observed on the tube inner wall. Evaporation initially occurred at the meniscus 

region of the liquid plug and not from a liquid film. To model the meniscus in the theoretical 

model an initial film was defined at the end of the liquid plug exposed to the evaporator as 

indicated in Table 5.1. As the liquid plug moved it was possible to see the liquid film 

deposited at the trailing end and to observe it evaporating.

An experiment was devised in which the movement of a liquid plug in a straight horizontal 

orientated tube was observed as shown in Figure 5.4. As was the case for the plug moving in 

the vertically orientated U-tube, it was very difficult to control the initial conditions of the 

plug. Different types of movement varying from regular oscillations with small amplitudes 

(~ 1 mm) to highly irregular oscillations with relatively large amplitudes (~ 50 mm) were
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observed. Again it was possible to observe the deposition and evaporation of the liquid film 

at the trailing end of the plug.

A glass tube PHP as shown in Figure 5.5 was manufactured to visually observe the fluid 

motion inside the PHP. The liquid plugs always started to move vigorously for about 10 s 

after which it moved slowly back and forth. After a while the plugs started to move again or 

just kept on moving slowly back and forth. It was observed that some of the liquid plugs split 

up to form two separate plugs and that it is possible for two plugs to coalesce to form a single 

plug. The deposition and evaporation of the liquid film at the trailing end of the plugs were 

observed.

A closed end PHP as described in section 5.4 was constructed from stainless steel and filled 

with water as the working fluid. The heat transfer rate of the PHP was determined for 

different inclination angles, electrical power inputs and filling ratios. From the experimental 

data (Figure 5.10) it was seen that heat is not transferred steadily but in a “pulsating” fashion. 

To assist in the design of future PHPs a heat transfer coefficient hpup was defined and 

determined. The ideal situation would be to define a hPHp in terms of the temperature 

difference between the inner wall of the tube and the internal fluid temperature and the heat 

flux. However, the internal fluid temperature was not experimentally determined and due to 

the very nature of the PHP the temperature of the internal working fluid is not constant. 

Some uncertainty surrounding the internal fluid temperature therefore exists. To compromise 

the heat transfer coefficient was defined in terms of the difference between the average 

evaporator and condenser temperature Te - T c, the heat transfer rate of the PHP QPHP and

some average area based on the length of tube in the evaporator Le and condenser Lc repeated 

here for convenience

transfer coefficient in terms of Le and Lc immediately implies that the usage of the heat 

transfer coefficient is restricted to PHPs with similar geometry as the tested PHPs, but with 

limited information available the determined values can be used for design purposes.

(7.1)
—  +

The heat transfer coefficient was found to be 100 < hPHP < 500 W/m2K. Defining the heat
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The heat transfer coefficient defined by equation (7.1) was first correlated with Te -  Tc , </> and 

R to give equation (5.6) and then with Tt —Tc , R and (Te +Tc) / 2 to get equation (5.7). It 

was found that the latter correlation fit the data better (R2 = 0.91) than the former (R2 = 0.84). 

The working fluid properties are related to (j'e +Tc) /2 .  Equation (5.7) therefore accounts for 

the properties of the working fluid and as a result is preferable to equation (5.6).

The theoretical model with the initial conditions and geometry in Table 5.2 was used to 

predict the heat transfer rate of the PHP as a function of the inclination angle. As shown in 

Figure 5.20 the theoretically predicted heat transfer rate compared well with the experimental 

values in the top heat mode (-90° < (/)< 0°) but not as good in the bottom heat mode (0° < (j)< 

90°). The average experimental heat transfer rate in the top heat mode (-90° < (J)< 0°) was 62 

W compared to 60 W predicted by the theoretical model. In the bottom heat mode (0° < tp< 

90°) the average experimental heat transfer rate was 65 W compared to the predicted value of 

86 W.

A closed loop PHP as described in section 5.5 was manufactured from aluminium and filled 

with water as the working fluid. The heat transfer rate of the PHP was determined for 

varying electrical power input, inclination angle and filling ratio as shown in Figure 5.23. 

The values obtained for hPHP were in the range 0 < hPHP < 400 W/m2K. The heat transfer 

coefficient hPHP was then firstly correlated with Te - T c, <t> and R to give equation (5.8) and 

then with Te -T c, <j>,R and T̂e +Tr ) / 2 to give (5.9). It was found that equation (5.8) (R 2 = 

0.86) fitted the data slightly better than equation (5.9) (R 2 = 0.87). According to both 

correlations hPHP will increase as ^decrease which is in contrast with the experimental results 

where the PHP was unable to transfer heat in some instances for lower <p. Just from 

investigating the results in Figure 5.23 it appears that hPHP should increase with increasing 0. 

This contradiction indicates that the correlations given by equation (5.8) and (5.9) does

reflect reality and should not be used.

In section 5.6 the closed end stainless steel PHP was filled with ammonia as working fluid. 

The heat transfer coefficient hPHP was determined and is shown in Figure 5.29. It was found 

that the PHP was unable to transfer heat for (f> < 0°. From the experimental results it was 

concluded that the device is in fact not a PHP but operates as a thermosyphon. For the 

typical operating temperatures the internal diameter of the tubes should be less than 2.96 mm.
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The inside diameter of the tubes used to construct the PHP was 3.34 mm which exceeds the 

required diameter. It is postulated that due to the slightly larger internal diameter it was not 

possible for liquid plugs to form due to surface tension inside the tubes. The flow inside the 

tubes was therefore stratified and whence the thermosyphon-like behaviour. The heat 

transfer coefficient hPHp was then firstly correlated with Te — Tc , 0 and R to give equation

(5.10) and then with Te - T c, <p, R and {Te +Tr ) /2 to give equation(5.11). Equation (5.11) (R2 

= 0.92) fits the data better than equation (5.10) (R2 = 0.89). Equation (5.11) accounts for the 

properties of the working fluid by the inclusion of (Te +Tc)/2 and as a result is preferable to 

equation (5.10)

A testing facility was built to demonstrate/evaluate the ability of the Stereo-type heat lane to 

maintain the temperature of an IG BT at an acceptable temperature. It was found that the use 

of the Stereo-type heat lane heat sink significantly reduces the size of systems currently used 

for the thermal management of IG BTs by a factor of 5.
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8 RECOMMENDATIONS

In the theoretical model it was assumed that a liquid film of specified thickness is deposited 

at the trailing end of the liquid plug and that the film at the leading end is sucked into the 

liquid plug. Clearly this will cause the mass (and length) of the liquid plug to change. 

However, in the theoretical model the mass (and length) of the liquid plugs was constant. It 

is recommended that the effect of this assumption be further investigated.

The effect of LeILc, 8fJ , 8dep, Lpe and Lpc on the heat transfer rate predicted by the 

theoretical model should be investigated in more detail by varying the parameters and 

determine how the heat transfer rate predicted by the theoretical model is influenced.

For the heat transfer controlled mass transfer model the energy equation for the liquid film is 

neglected and the temperature of the liquid film is taken to be equal to the wall temperature. 

It is recommended that the implications of this assumption be investigated by including the 

energy equation for the liquid film and to compare the heat transfer rate then predicted by the 

theoretical model to the heat transfer rate predicted with TtJ = Tw.

Currently only the heat transfer controlled mass transfer model is used in the modelling of 

multi-plug PHPs. It is recommended that the kinetic mass transfer model should also be used 

and the predicted heat transfer rate be compared to that of the heat transfer controlled mass 

transfer model.

The theoretical model currently only caters for closed end PHPs. It is recommended that the 

model be extended to include closed loop PHPs.

The internal diameter of the PHPs is too great for ammonia to be used as working fluid. It is 

recommended that a PHP be constructed with dt < 2.5 mm to allow for ammonia to be used as 

working fluid.

To get an indication of the working fluid temperature it is recommended that the working 

fluid temperature be measured at several locations along the PHP. The results should be 

interpreted cautiously since at anytime liquid or vapour could be present at the position where 

a temperature reading causing different temperature readings.
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If it is found that the temperature of the IGBTs in C A E’s HEV exceeds its limit during the 

HEV’s testing phase, it is recommended that a study should be conducted to determine the 

feasibility of controlling the temperature of the IGBTs using a Stereo-type heat lane.

In the case of the batteries several cooling concepts have been proposed and should be 

considered if  it is found that the temperature of the batteries is out of the specified range 

during the testing phase of the HEV.
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APPENDIX A FILLING AND DISCHARGING PROCEDURE: W ATER

To fill the PHP with water the water is first treated to remove as much non-condensable 

gasses as possible. This is done by first boiling the water and allowing it to cool down. This 

cycle is repeated at least 5 times. After the boiling process sufficient water (fill ratio amount 

plus 10 g) is poured into the filling cylinder shown in Figure A .L  The filling cylinder is 

heated with the valve in the open position. After a while boiling of the water commences. 

The valve is firmly closed to prevent any non-condensable gasses from entering the cylinder. 

The mass of the remaining water in the cylinder is weighed using a Mettler P10 scale (serial 

no. 402455 and store no. 047287). The boiling-off of the water is repeated until the desired 

mass plus 2-5g is still in the cylinder to cater for wastage during the filling procedure. (From 

experience it was found that 2-5g is trapped in the piping and fittings during the filling 

procedure.)

Figure A. 1 Water filling cylinder

The diagram in Figure A.2 shows how the PHP is connected to a vacuum pump (Galileo 

model Vacsound D08, serial no. 200142 and store no. 308502) and the cylinder containing 

water. Valve 1 and 4 are closed and 2 and 3 are opened. A vacuum is then drawn. After 

drawing the vacuum valve 3 is closed. After closing valve 3 valve 4 is opened allowing the 

water to flow into the PHP. After the PHP is filled valve 2 is closed.

A.l
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Figure A.2 Diagram for the filling procedure of the PHP with water

At this stage the exact filling ratio is unknown. After carrying out the testing a cylinder 

containing pressurised nitrogen is connected to valve 2 as shown in Figure A.3. A container 

is positioned at the outlet valve and valves 1, 2 and 3 are opened. The liquid content of the 

PHP is emptied into the container. A lightweight container should be used to accurate 

determine the liquid mass. For this purpose a standard plastic cup was used. The water in the 

container is then weighed using a Precisa 40SM -200A  scale (serial no. 73464 and store no. 

248173), which is more sensitive than the Mettler scale, and the filling ratio is determined. 

Pressurized nitrogen is preferred above normal pressurized workshop air due to the 

possibility that unwanted elements such as oil might enter the PHP when using pressurized 

workshop air.

PHP

1LA
/

Container

Figure A.3 Diagram for discharging procedure of water filled PHP
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APPENDIX B FILLING AND DISCHARGING PROCEDURE: AMMONIA

The PHP is inserted into ice to further reduce the pressure and the cylinder containing 

ammonia is heated by inserting it in warm water until the pressure increases to 1500 kPa. 

The diagram in Figure B .l  shows how the PHP is then connected to a vacuum pump and 

cylinder containing ammonia. Valve 1 and 4 are closed and valve 2 and 3 are open. A 

vacuum is drawn in the PHP. Valve 2 is closed. Valve 1 is opened to fill the PHP. Valve 1 

and 3 are then closed.

The PHP is weighed before and after the filling procedure to determine the mass of ammonia 

in the PHP.

To determine different filling ratios a (strengthless) plastic bag of known volume is 

connected to valve 4. Valve 4 is opened to slowly fill the plastic bag. The mass of the 

ammonia vapour is estimated from the ideal gas law. Ammonia vapour is let out until the 

desired amount of vapour is still in the PHP and the PHP is then tested. To test the next 

filling ratio the process is repeated. This is repeated for all the desired fill ratios. The PHP is 

then emptied still using the bag. When the PHP is completely empty the mass per bag is 

determined by dividing the number of times the bag was filled into the mass of ammonia 

originally in the PHP. In this way a good estimation can be obtained for the filling ratios.

Am m onia

Figure B. 1 Diagram for the filling procedure of the PHP with ammonia

B.l
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APPENDIX C SAM PLE CALCULATION FOR THE PHP HEAT TRANSFER 
COEFFICIENT hPHP

The sample calculation hPHP will be done from the experimental calculations obtained for the 

stainless steel open loop PHP operated at and angle of <p- -30° and filling ratio of R  = 0.56. 

The experimental numerical values required for the calculation are summarised in Table C .L  

To determine hPnP the thermal resistance diagram in Figure 5.13 has to be solved. For 

convenience the diagram will be redisplayed below in Figure C .L

Figure C .l Thermal resistance diagram of the PHP test set-up

To solve the thermal resistance diagram in Figure C .l an estimation has to be made for the 

R Wia. The resistance R wia consists of the sum of the resistance due to conduction through the 

insulation and the convective heat transfer from the outer surface of the insulation to the 

environment

r  = — — — + — - —  ec n
""  kins2WaL, hc2WaL,

C.l
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In equation (C .l)  <$■„* is the thickness of the insulation, kins is the thermal conductivity of the 

insulation and hc is the convective heat transfer coefficient between the outer surface of the 

insulation and the environment. Rwia is determined by following an iterative procedure. It is 

assumed that the temperature of the inner surface of the insulation is equal to Twi and that TWi 

= 0 .5 (7 ; +TC) = 0.5(66.5 + 23.6) = 39.5°C. The outside surface temperature of the insulation

is guessed as Tio = 20.78°C. Rwia will be a minimum when the PHP is operated at an angle of 

(j) = ±90°. At this angle the heat transfer coefficient hc will be a maximum. Mills (1992) 

gives the Nusselt number for natural convection from a vertical heated surface as (Item 8 

Table 4.10)

Nu = 0.68 + 0.67 ' 0(T„-Tm)gW? 1+
f  0.492

9/16 ~-16/9 A

v2
V _ I Pr J _ /

The fluid properties in equation ( C.2) is calculated at the average temperature between the 

outer surface temperature and the ambient temperature Tave = 0 .5 (Tio + Ta) = 0.5(22.78 + 

17.3) = 20.04°C. From Table A.7 in Mills (1992) the fluid properties are Pr = 0.69, vair = 

14.77 x 10‘6 m2/s and kair = 0.0261 W/mK. The thermal coefficient of volume expansion is 

calculated as /?= 1 /(Tave + 273.15) = 3.411 x 10‘3 K '1. Substituting these values into ( C.2) the 

Nusselt number is Nu = 12.644. The heat transfer coefficient follows from the Nusselt 

number hc = kajr x Nu IWa = .0261 x 12.644/0.08 = 4.125 W/m2K. Substituting the numerical 

values into (C .l) Rwia = 19.174 K/W. With Rwia known the heat losses to the environment can 

be determined Qwin = (Twi -  Ta)t Rwia = (41.9 -  17.3)/19.174 = 1.28 W. With the heat losses

known the outside surface temperature of the insulation can be calculated by solving Qwia =

(Twi -  Tio)/(Sins/ktns2WaLt) for Tio to get Tw = Twi - Qma (8inJkins2WaLt) = 41.9 -  1.28 x

0.0254/(0.03 x 2 x 0.08 x 0.355) = 22.776°C . The difference between the calculated and 

guessed value for Tio is acceptable and therefore no further iterations are required. The heat 

loss Qwia is small relative to the electrical power input Qelec and is therefore negligible. 

Consequently Q^u may also be approximated as zero.

The conduction resistance Rec will now be estimated. It is assumed that the tubes may be 

approximated as a buried cylinder as in Item 8 in Mills (1992). Mills (1992) defines a shape 

factor S so that Q = kSAT = AT/(l/kS) = A77 Rec. The shape factor is given by

C.2
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where h is the depth at which the cylinder is buried

Substituting numerical values into (C.3) the shape factor is S = 2 x n x 1.957/(acosh'1(2 x 

0.01/0.00476) = 5.816 m so that Rec = 1 /ka,S = 1/(200 x 5.816) = 8.597 x 10'4. Rei is 

determined from the heat loss calibration curve in Figure 5.16 as Rei = 1/0.2433 = 4.11 K/W. 

The heat losses from the evaporator is determined as Qel = ( Te - T a )/Rec = (66.5 -  17.3)/4.11 

= 11.97 W. With the losses known the heat conducted to the outer wall of the PHP is 

Qe = Qetec ~Qei = 100 -  11.97 = 88.03 W. The temperature just before the outer wall 

temperature can now be determined by solving Qe = (Te - T ec)/Rec as Tec = Te - Qe Re, = 66.5

-  88.03 x 8.597 x 10"4 = 66.42°C. It can be seen that the temperature drop Te - Tec = 66.5 -

66.42 = 0.08°C is negligible. Since the tubes were cast into the evaporator section it will be 

assumed that good thermal contact exists between the evaporator section and the outer wall of 

the PHP tubes so that Rew0 ~ 0 and Tewo ~ Tec.

The resistance for the conduction through the tube wall is given by Rewi = \n(dcJdi)/(2nLek,) = 

ln(4.76/3.34)/(2 x n x 1.957 x 15) = 0.0019 K/W. The difference between the outer and inner 

wall temperature is determined from Tewo -  Tewi = Rewi Qe = 0.0019 x 88.03 = 0.169 K which 

is negligible. So far it had been shown that Te~ Tewi and that Qwia ~ Q ^ -  0 W. It can be

similarly be shown that Tc~ Tcwi. Taking these approximations into account the thermal

resistance diagram in Figure C .l reduces to that shown in Figure 5.14 repeated in Figure C.2 

for convenience.

From Figure C.2 the heat conducted by the wall is given by QK =\Te —Tc) /Rw where 

Rw =Wa /(*, \ n{d20 ~d?)nlubes) = 0.08/(200 x 0.25 x n x (0.004762 -  0 .003342) x 16) = 36.9 

K/W. The heat conducted by the tube walls is therefore Qw = (66.5 -  23.6)/36.9 = 1.163 W 

which is negligible but will be taken into account to maintain a generic approach for the 

solution of hpHP since Qw will not be negligible for the aluminium closed loop PHP where 

the conductivity of the aluminium tube is much higher than that of the stainless steel tube in
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The heat transferred by the PHP is now determined from Q PHP = Q elec ~ Q e, ~ Q W = 100 -

11.97 -  1.163 = 86.867 W. The PHP heat transfer coefficient is now determined from 

equation (5.4) as

QPHP

K "r

( 1 l 1 /
— + — 86.867

V\Le Lc )

1 1

1.957 + 1.435
7idi(66.5 -2 3 .6 )

= 233 W/m K

Table C. 1 Values required for sample calculation

T. 66.5 °C

Tc 23.6 °C

Ta 17.3 °C

Qelec 100 W

u 1.957 m

L c 1.435 m

wa 0.08 m

Pr 0.69

fttubes 16

k, 15 W/mK

kal 200 W/mK

di 0.00334 m

Ta
m-

Rel Qel
A / W —• -

a elec

Q*

Q p h p

Rfwie

Rw
AAAA-

Gn

AAAA-

Rfwii

Figure C.2 Simplified thermal resistance diagram of the PHP test set-up
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APPENDIX D COMPARISON BETW EEN  CALCULATED AND ACTUAL ENTHALPY 
VALUES

Table D .l shows the data obtained from steam tables in Qengel and Boles (1994), i v ,  

compared to the calculated values i v c . The percentage difference is defined as &diff = 100 ( i v c  -

i v t ) /  iv t■

Table D .l Comparison between calculated and tabulated enthalpy values for water 
vapour

Temperature
[°C]

Pressure
[Pa]

i v t [J/kgK] i v c  [J/kg/K] A d i f f

45.81 10 000 2584.7 2584.5 -0.0077
50 10 000 2592.6 2595.7 0.1196
100 10 000 2687.5 2774.2 3.2260
81.33 50 000 2645.9 2646 0.0038
100 50 000 2682.5 2710.6 1.0475
99.63 100 000 2675.5 2679.747 0.1587
100 100 000 2676.2 2681 0.1794
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APPENDIX E  FILLING PROCEDURE OF HORIZONTAL G LASS TU BE 
EXPERIM ENTAL APPARATUS

To fill the horizontal tube valve 1 is closed and valve 2 and 3 are open. A vacuum pump is 

connected to valve 3 and a vacuum is drawn. Valve 2 and 3 are closed. The middle 

container is filled with ice water. Pentane is poured into the feeding tube. Valve 1 is slowly 

opened and the pentane is allowed to flow into the u-section. Valve 1 is closed when the u- 

section is filled with pentane. Care should be exercised during this step to ensure that air 

does not enter the u-section. The indicated container is filled with water warm water (-4 0  

°C) and positioned to allow the u-section to be covered by the warm water. Valve 2 is slowly 

opened to allow the pentane to evaporate and condense in the cold region in the middle 

container. Valve 2 is closed when a liquid plug of the required length is obtained.

Feeding U-section

Figure E .l Diagram for the filling procedure of the horizontal tube experimental 
apparatus
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APPENDIX F  FILLING PROCEDURE OF GLASS TU BE PHP

To fill the glass tube PHP valve 1 is closed and valve 2 is open and connected to a vacuum 

pump. A vacuum is drawn in the PHP and valve 2 is closed. Pentane is poured into the 

feeder tube. Valve 1 is opened to allow the pentane to flow into the PHP. Care should be 

exercised during this step to prevent any air from entering the PHP via the feeder tube.

Figure F .l Diagram for the filling procedure of the glass tube PHP
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