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Abstract 

Furfural is a renewable platform chemical produced from lignocellulosic biomass. 

Many chemicals are derived from furfural including furfuryl alcohol, cosmetic 

ingredients & fragrances, flavour ingredients, nematocides & other agricultural 

chemicals, biofuels/fuel additives, solvents, resins, nylon, spandex (PolyTHF), etc.  

Furfural is mostly produced by an acid catalysed dehydration of the xylan in the 

biomass. The same acid catalyst also catalyses furfural degradation reactions which 

are known to convert furfural into formic acid and solid, insoluble, heterogeneous, 

carbonaceous, furan-rich macromolecules known as humins. 

In this study, furfural degradation was investigated, considering reaction 

temperatures of 140 °C - 200 °C, initial furfural concentrations of 1.5 wt% - 6 wt% 

and the sulfuric acid catalyst concentration of 0.5 wt% - 2 wt%. The reaction kinetics 

of degradation were established by fitting experimental data to the Arrhenius 

equation.  

The results showed formic acid as a significant product of furfural degradation. It was 

found that for each mol of degraded furfural, 0.86 mol formic acid was formed under 

the conditions of this study. 

Humins were primarily composed of bifurylic and trifurylic structures and the humins 

composition was independent of reaction conditions and was uniform under all 

reaction conditions in the present study. 

Combustion of humins provides a route to valorise humins but generates only 1.3 % 

of the energy required for furfural production. In a scenario where furfural is 

produced from biorefinery pre-treatment stages or from pulp mill pre-hydrolysis liquor 

(not directly from biomass) combustion of humins is a viable application as it 

facilitates removal of humins which otherwise block up the system. 

In this study, it was found that initial furfural concentration was the most influential 

factor towards furfural degradation. Increasing the initial furfural concentration 

caused an increase in the rate of degradation, more humins were formed and more 

formic acid was formed. Increasing reaction temperature caused an increase in the 

amount of humins formed and an increase in the rate of degradation. Increasing the 

concentration of sulfuric acid caused an increase in the rate of degradation. 
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Opsomming 

Furforaal is ŉ hernubare platform chemikalie wat vervaardig word uit 

lignosellulosiese biomassa. Baie chemikalieë word geproduseer uit furforaal 

insluitend furfurielalkohol, skoonheidsbestanddele en geure, geurbestanddele, 

nematodedoder en ander landbouchemikalieë, biobrandstowwe of brandstof 

bymiddels, oplosmiddels, hars, nylon, spandeks (PolyTHF), etc.    

Furforaal word meestal vervaardig deur ŉ suur gekataliseerde dehidrasie van die 

xilaan in die biomassa. Dieselfde suurkatalis kataliseer ook furfuraal 

afbrekingsreaksies wat bekend is om furfuraal na metanoësuur en soliede, 

onoplosbare, heterogene, koolstofryke, furaanryke makromolekules, genaamd 

humien, om te sit. 

In hierdie studie is furforaal afbreking ondersoek met inagneming van 

reaksietemperature van 140–200 °C, aanvanklike furfuraalkonsentrasies van 1.5–

6wt.% en die swawelsuur kataliskonsentrasie van 0.5–2 wt.%. Die reaksie kinetika 

van afbreking is bepaal deur eksperimentele data op die Arrhenius vergelyking te 

pas. 

Die resultate het gewys dat metanoësuur ŉ beduidende produk van furfuraal 

afbreking is. Dis gevind dat vir elke mol van afgebreekte furfuraal, 0.86 mol 

metanoësuur gevorm is onder die toestande van hierdie studie. 

Humien het hoofsaaklik bestaan uit bifurkaat en trifurkaat strukture en die humien 

samestelling was onafhanklik van reaksiekondisies en was uniform onder alle 

reaksiekondisies in die huidige studie. 

Verbranding van humien verskaf ŉ roete om humien te valoriseer, maar genereer 

slegs 1.3% van die energie benodig vir furfuraalproduksie. In ŉ scenario waar 

furfuraal vervaardig word uit bioraffinadery voorbehandelingstadia, of uit pulpmeul 

voorhidrolise vog (nie direk uit biomassa nie) is verbranding van humien ŉ haalbare 

toepassing as dit verwydering van humien fasiliteer wat andersins die sisteem sou 

blokkeer. 

In hierdie studie is gevind dat reaksietemperatuur die mees beduidende faktor tot 

furforaal-afbreking was. Verhoging van reaksietemperatuur het ŉ verhoging in die 

kwantiteit van furforaal wat afbreek, ŉ verhoging in die hoeveelheid humien gevorm 

Stellenbosch University  https://scholar.sun.ac.za



vi 
 

en verhoging in die tempo van afbreking, tot gevolg gehad. Verhoging van die 

aanvanklike furforaal-konsentrasie het ŉ verhoging in die tempo van afbreking 

gehad, meer humien is gevorm en meer mieresuur is gevorm. Verhoging in die 

konsentrasie van swaelsuur het ŉ verhoging in die tempo van afbreking gehad en ŉ 

verhoging in die hoeveelheid furforaal wat gereageer het. 
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Nomenclature 

Symbol Description Unit 

FF furfural - 

HMF 5-hydroxymethylfurfural - 

FOL furfuryl alcohol - 

PFA polyfurfuryl alcohol - 

FA formic acid - 

LA levulinic acid - 

AA acetic acid - 

HHV higher heating value - 

LCV lower calorific value - 

MIBK methyl isobutyl ketone - 

DHH 2,5-dioxo-6-hydroxyhexanal - 

DMC dihydroxy-2-methylchromone - 

BT 1,2,4-benzenetriol - 

TP 1,2,5-tripentanon - 

HCl hydrochloric acid - 

H2SO4 sulfuric acid - 

GVL γ-valeracetone - 

Xn mass fraction of component “n” % 

CFF concentration of FF wt% 

𝐂𝐅𝐅,𝐦𝐚𝐱  maximum FF concentration wt% 

k rate constant s−1  

A pre-exponential factor s−1  

Ea activation energy kJ ∙ mol−1  
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R universal gas constant J ∙ mol−1 ∙ K−1  

T temperature K 

𝐊𝐚𝐇𝟐𝐒𝐎𝟒,𝟏  1st dissociation constant for H2SO4 M 

𝐊𝐚𝐇𝟐𝐒𝐎𝟒,𝟐  2nd dissociation constant for H2SO4 M 

𝐩𝐊𝐚𝐇𝐂𝐥  acidity index of HCl - 

𝐩𝐤𝐚𝐇𝟐𝐒𝐎𝟒,𝟏  acidity index of H2SO4 (−log(KaH2SO4,1))  - 

𝐩𝐊𝐚𝐇𝟐𝐒𝐎𝟒,𝟐  acidity index of H2SO4 (−log(KaH2SO4,2)) - 

𝐂𝐅𝐅𝟎
  initial FF concentration M 

𝐂𝐗𝟎
  initial xylose concentration M 

[𝐇+]  hydrogen ion concentration M 

[𝐇𝐒𝐎𝟒
−]  hydrogen sulfate ion concentration M 

[𝐇𝟐𝐒𝐎𝟒]  H2SO4 concentration M 

[𝐇𝟐𝐒𝐎𝟒,𝟎]  initial concentration of H2SO4
 M 
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1. Introduction 

Currently, fossil fuel refineries are still our main source for energy and materials. Due 

to their future availability and mainly because of environmental concerns, the 

feasibility and desirability of oil-based products is on the decline. Alternative, 

renewable solutions are necessary to mitigate climate change. Replacing oil with 

biomass for fuels and chemicals requires new production technology. Lignocellulosic 

biomass, which is abundantly available, is a potential and sustainable feedstock for 

production of green fuels and chemicals such as furfural (FF). 

Green chemistry is also known as sustainable chemistry and it is the design of 

chemical products and processes that reduce or eliminate the use or generation of 

substances hazardous to humans, animals, plants and the environment. The 

integration of green chemistry into biorefineries and the use of technologies with a 

low environmental impact has made it possible to use sustainable production chains 

for biofuels and high value chemicals from biomass (Cherubini, 2010). The 

transformation of FF to different products is an excellent example of an 

environmentally friendly methodology that fulfil the principles of green chemistry 

(Mariscal et al., 2016). 

Furfural is a diverse, useful platform chemical with reportedly, more than 80 

chemicals being derived from it directly or indirectly (Mariscal et al., 2016). Due to 

FF’s conjugated double bonds, FF hooks on to molecules containing double bonds 

while ignoring molecules without double bonds. It is therefore used in the following 

applications: to remove aromatics from lubricating oils to improve the 

viscosity/temperature relationship, to remove aromatics from diesel fuels to improve 

the ignition characteristics and to obtain unsaturated compounds from vegetable oils 

such as soybean oil to make "drying oils" suitable for paints and varnishes 

(Zeitsch, 2000). Industrial FF production started in 1922. As early as 1923, it was 

found that FF is a very effective fungicide. FF inhibits the growth of wheat smut and it 

is much more effective than formaldehyde (which is a cheaper way to treat wheat 

smut through seed treatment) (Kiesselbach & Lyness, 1993).Formaldehyde is, 

however, known to be a human carcinogen(Council, 2014) and soaking seed in 

0.5 % aqueous formaldehyde, completely destroyed the germination power (Zeitsch, 

2000). In recent years the global annual FF production has grown to about 300-
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700 kton (Cai et al., 2014; de Jong & Marcotullio, 2010). Worldwide, plant-parasitic 

nematodes cause an estimated agricultural loss of 60 billion U.S. dollars per annum 

and FF has been found to be a very effective nematode control agent (Zeitsch, 

2000). FF is cheaper for equal effect than other nematocides, nontoxic for humans, 

safely and easily applicable and it is not taken up by the plant to be protected, so 

that it can be applied until harvest (Zeitsch, 2000). Interest in using FF as a 

feedstock for biofuels and bio-based chemicals is currently increasing, as proved by 

the number of publications on catalytic technologies for FF production and/or 

transformation, particularly in the past eight years (± 65 publications in 2010 

compared with 245 publications in 2014) (Mariscal et al., 2016). 

Furfuryl alcohol (FOL), currently the main product of FF which is generated from 

65 % of the overall FF produced, can be produced via the catalytic hydrogenation of 

FF, either in gas or liquid phase process. The gas-phase Cu-catalysed 

hydrogenation of FF is the preferred industrial route for FOL production (Mariscal et 

al., 2016). FOL is the precursor to the following: resins, biofuels, fragrances, 

solvents, tetrahydrofurfuryl alcohol (organic solvent in the production of resin, paint 

and lipid.), ethyl furfuryl ether (food additive), ranitidine (medication which decreases 

stomach acid production), levulinic acid and γ-valerolactone (potential fuel and green 

solvent).  

A typical FF production process includes the following steps:  

1. Pentosan containing biomass (such as corn stover, sugarcane bagasse, oat 

hulls, flax shives and other agricultural residues or wood) and dilute acid are 

charged to a reactor.  

2. Steam is fed to the reactor to heat the reactants to the desired conversion 

temperature and simultaneously strip the FF into the vapour phase, which 

then continues to a recovery system (Dunlop, 1948) and  

3. Whilst this is a simple production process, used since 1922, its disadvantage 

is that FF degrades to form humins via condensation and resinification and 

formic acid (FA) via fragmentation (Mariscal et al., 2016). These degradation 

reactions are mainly responsible for the low yields in FF production reactions 

and they begin to occur as soon as FF is formed. 

Furfural has been produced from biomass for nearly a century. However, for most of 

this time, its production could be considered as niche because of the economically 

competitive alternatives that are not renewable. At present, industrial processes rely 

on inefficient production processes with around 50 % FF yields, compared to the 
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theoretical maximum, which reduces the capacity of the FF industry. Other 

challenges include high energy consumption, expensive downstream processing, 

corrosion and lack of co-products (Peleteiro et al. 2015) . 

To improve the industrial potential of FF as a product, a better understanding of the 

aforementioned degradation and the kinetics of this reactions is required. The 

degradation reaction kinetics have a substantial influence over the final yields and 

that is why it is necessary to consider them. Degradation reactions contribute to yield 

losses. Therefore, it is important to study how they occur and what the products of 

these reactions are. This requires identification of the reaction conditions that result 

in higher yield loss, in order to control the loss reactions or to establish operating 

conditions to maximise FF production. 

The experimental work of this study is conducted with pure FF, subjecting it to acidic 

conditions and temperatures that are similar to the conditions of FF production, in 

order to study their influence on FF degradation. 

Degradation of FF occurs via 3 mechanisms which occur simultaneously.  

1. Condensation is the reaction that occurs between FF and intermediates of the 

xylose to FF dehydration reaction (Root et al. 1959).  

2. Resinification is the reaction between two FF molecules (Zeitsch, 2000) and in 

this study, it is the only possible degradation mechanism which produces 

humins, since experiments were only done with pure FF. In actual FF-from-

biomass processes, both condensation and resinification are responsible for 

the formation of humins which are solid insoluble, heterogeneous, 

carbonaceous, furan rich macromolecules that form during degradation.  

3. Fragmentation is the first-order conversion of FF to FA. It is known that FA is 

a degradation product of FF, as a product of the hydrolytic fission of the 

aldehyde group of FF (Dunlop, 1948; Williams & Dunlop, 1948). 

Fragmentation receives less attention in literature; however, it is significant 

under the conditions of this study. 

The goal of this study is to explore the kinetic aspects of FF degradation reactions in 

the absence of xylose and intermediates in the xylose-to-FF reaction, to generate an 

industrially relevant understanding of the contribution of resinification and 

fragmentation to FF degradation. In previous studies, condensation was not 

excluded (by excluding xylose from the reaction mixture) and so there is novelty in its 

exclusion because the reaction kinetics discovered in this study reflect only 

fragmentation and resinification. This is practical and feasible because in 
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conventional biomass-based FF production, the humins are an integral part of the 

lignocellulosic residue that is used as boiler fuel. However, if hydolysate from 

biorefinery pre-treatment stages or from pulp mill pre-hydrolysis liquor is used to 

make FF, humins will be available for valorisation and it will be necessary to remove 

them so that they don’t block up the system. By combusting humins, the issue of 

their presence as waste is resolved and they are turned into a bio-based fuel. 

Humins (also referred to by the industry as “polymers”) are the other product of the 

degradation reaction. They have the potential to block up pipes (AVA Biochem AG, 

2018) and stick to reactor walls (Buzzard, 2003). The reaction by which humins are 

formed and their composition isn’t clearly understood. It is therefore important that 

the mechanism of their formation is researched and that humins are either valorised 

(as a co-product) or their formation is reduced. 

First-order kinetics have generally been applied successfully to the FF degradation 

reaction. A few studies have indicated that the reaction may not be exactly 

first-order, so there is room to explore the reaction kinetics of the reaction. The 

factors that affect degradation are mentioned by a few authors but a single concise 

interpretation of the various factors and their impact on the FF degradation reaction 

is missing.  

Using pure FF as feedstock, this study will elucidate the reaction kinetics for FF 

degradation (without condensation or the interference of other sugars from the 

biomass). This allows us to determine whether the reaction is indeed first-order or 

whether there is a slight variation from unity. In addition, the factors which contribute 

to the rate of FF disappearance will be clarified. The factors which affect humin 

formation (temperature, initial FF concentration and sulfuric acid concentration) are 

discussed.  

2. Literature Review 

2.1 Furfural degradation 

FF degradation reactions have been investigated by previous researchers because 

there is no clear understanding about which reactions occur and to what extent they 

occur. The reaction kinetics are also not clearly understood and a first order 

approximation is the best representation of the kinetics at present. 
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Danon, Marcotulio and de Jong (2013) conducted a detailed review of the 

mechanistic and kinetic aspects of FF formation in aqueous acidic media. Their 

review considers a reaction mechanism for FF formation that consists of a few 

reaction routes from acyclic xylose. The key steps involved are 1,2-enolization, β-

elimination or isomerization via 1,2-hydride shift (See Figure 1). 

Zeitsch (2000) identified 2 types of FF degradation reactions, namely resinification 

(See Equation 5) and condensation (See Equation 4) (Zeitsch, 2000). The products 

of these reactions are solids referred to as humins. An example of condensation is 

illustrated in Figure 1 where pentoses may be degraded to low molecular weight 

products, generated from the fragmentation of intermediate 3e and 4. These side 

products are mainly organic acids and aldehydes and they may react with FF to form 

humins. This degradation route entails the loss of already formed FF and reduced FF 

yield from xylose.  

 

Figure 1: Proposed mechanism of xylose reaction to furfural in acid media. X− 

indicates halides ions, and M3+ indicates metal cations. (sourced from 

Danon, Marcotulio and de Jong (2013)) 

Choudhary et al. (2011) found that in order to produce FF from xylose, an Sn-beta 

zeolite as well as a Brønsted acid are required in an organic solvent to catalyse the 

reaction. Under these conditions, the reaction proceeds at much lower temperatures 

than the typical temperature of this reaction. (100°C) Unfortunately the cost of 
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separating the FF from the solvent is too high and makes the process uneconomical 

(Choudhary et al., 2011) 

O’neil et al. (2009) proposes a variation of the condensation mechanism. The 

reaction proceeds as follows: isomerization of xylose to lyxose, dehydration of both 

pentoses to FF, rehydration of FF to organic acids, oligomerization of FF to two- and 

tridimensional Furilic oligomers and complete dehydration of organic acids to 

carbonaceous deposits (humins). It should be noted that the catalyst used in the 

study was a solid ZSM-5 zeolite and the reaction mechanism might be specific to this 

catalyst. 

It is important to note that FF degrades under the same conditions of pH and 

temperature at which it is usually formed, yielding other products such as reductic 

acid and FA. It was postulated that FA is formed via hydrolytic fission of the aldehyde 

group on FF (Williams & Dunlop, 1948).  

In general, there are consistent trends amongst degradation mechanisms, but 

certain attributes of each mechanism differ. In Figure 1, the “Loss reactions” arrow 

from FF consists of resinification and fragmentation reactions. The mechanisms of 

FF degradation will be discussed with the goal of expanding on the “Loss reactions” 

and “Humins” pathways in Figure 1. In summary 3 types of degradation reaction are 

assumed for FF degradation: 

1. Resinification: FF and FF react to form humins (Equation 5)  

2. Condensation (Equation 4): FF and xylose dehydration intermediates react to 

form humins  

3. Fragmentation (Equation 6): FF is broken down into FA via hydrolytic fission 

of the aldehyde group on FF 

Lamminpaa, Ahola & Tanskanen (2014) found that when FF was studied without the 

presence of xylose, FF reacted with itself, forming polymeric resins (resinification). 

FF can also undergo destruction reactions to smaller molecules (fragmentation) 

(Lamminpaa, Ahola & Tanskanen, 2012). Zeitsch (2000) classifies FF degradation 

as a reaction of FF with itself, commonly called "FF resinification" and a reaction of 

FF with an intermediate of the pentose-to-FF conversion, this reaction being 

commonly called "FF condensation" (Zeitsch, 2000). O’Neil et al. (2009) note that FF 

reacts with the fragmentation of FF to organic acids (O’Neil et al. 2009).  
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The following sections on humins and fragmentation will deal with the reaction 

mechanisms that have been proposed for these degradation reactions. The 

corresponding kinetics representations are subsequently discussed. 

2.2. Humins 

Humins and “polymers”, are the names given to the solid, insoluble, heterogeneous, 

carbonaceous, furan rich macromolecules that precipitate as a by-product of acid-

catalysed conversion of biomass containing C6 and C5 sugars, hereinafter referred to 

as humins (Hoang et al. 2015; Hu & Ragauskas, 2014; Sanchez, Hernandez & 

Keresztury, 1994). The pathway to humin formation has not been established 

unequivocally. The structure of humins has also not been established but it is known 

that the structure depends strongly on the feedstock. The yield of humins is 

dependent on the feedstock and processing parameters such as temperature, 

glucose and acid concentration (Van Zandvoort et al. 2013). 

Humins are by-products of FF formation and in order to deal with this issue, two 

strategies have arisen; humins are valorised or their formation is avoided under 

certain (usually expensive) biphasic processing conditions. At present, the 

valorisation of humins is not established and biphasic reactors are not yet 

economical or practical.  

2.2.1 Valorisation 

Recent literature has focussed on the valorisation of these insoluble by-products. 

The following are some of the valorisation options: 

1. Humins can be combined with Polyfurfuryl Alcohol (PFA) to give a lower cost 

resin composite with decreased brittleness and higher tensile strength 

compared to pure PFA resins (Pin et al. 2014). 

2. Hydrogen and synthesis gas can be produced through catalytic dry reforming 

of humins (Hoang et al., 2015). 

3. Humins can be functionalized and used as solid acid catalysts (Patil, Heltzel & 

Lund, 2012; van Zandvoort, 2015). 

4. Humins can be converted to biochar which reduces the pH of saline soil and 

increases the available phosphorous in the soil (Wu, Xu & Shao, 2014). 

None of these applications, however, have reached the level of industrial 

implementation. Another valorisation option, that is currently practiced on 

conventional FF plants, is to combust the humins formed during degradation and to 
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contribute to the energy for the operation of the FF plant. Combustion of humins (as 

part of the FF residue) formed amongst biomass fibres in conventional FF reactors is 

currently the only method of valorisation that is practiced. Based on the equation to 

calculate the higher heating value (HHV) of humins (Equation 1), knowing their 

elemental make up, it was determined that humins have an average HHV of 23.9 

MJ/kg which is just less than half of the HHV of butane. (Sokhansanj, 2011) This 

value is calculated on a dry basis, so it is an overestimation of the energy that will be 

available from combusting humins.  

HHV =  0.35XC + 1.18XH + 0.10XS − 0.02XN − 0.10XO − 0.02Xash 1 

HHV =  0.35(63.75) + 1.18(4.07) − 0.10(32.17) = 23,898 MJ ∙ kg−1 

where X is the mass fraction (dry basis) for Carbon (C), Hydrogen (H), Sulfur (S), 

Nitrogen (N), Oxygen (O), and ash content (ash). The unit of HHV is MJ/kg dry 

mass. 

The calculated calorific value of humins is shown in Appendix III. It was determined 

that combusting humins would generate 1.3 % of the energy required to produce 

FF. When producing FF from biomass, the humins are trapped in the processed 

biomass fibres (known as FF residue), which are used as boiler fuel. In the 

scenario where FF is produced from biorefinery pre-treatment stages or from pulp 

mill pre-hydrolysis liquor, the water-insoluble humins would have to be removed by 

filtration for use as boiler fuel. 

2.2.2 Biphasic systems 

To prevent the formation of humins, FF can be extracted continuously (in situ 

extraction) from the severe (aqueous acidic) environment where it is formed. This 

can be achieved by increasing stripping or by using a biphasic reaction system, 

where formed FF is rapidly extracted from the aqueous reaction mixture into a 

separate organic layer, such as water-methyl isobutyl ketone (MIBK) (Weingarten et 

al., 2010). The organic layer thus serves as “storage” for the extracted FF where no 

further decomposition occurs and in their model, it was assumed that the FF 

decomposition occurred only in the aqueous phase (Weingarten et al., 2010). 

Mandalika and Runge (2012) described a process of reactive batch distillation where 

a portion of the vapour is continuously removed from the reactor headspace 
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(Mandalika & Runge, 2012). This method results in high FF yields (85 %) and 

recovery of a highly porous cellulose stream during fractionation that can be further 

processed for production of pulp or cellulosic ethanol. Sener et al. (2018) conducted 

xylose dehydration in a sustainable solvent system composed of GVL and water and 

observed FF yields up to 93 % (Sener et al. 2018) 

Cai et al. (2014) state that FF production is not economically viable without a low-

cost feedstock and coproduction of other higher-value chemicals, such as bio-

ethanol or carboxylic acids from the remaining lignin and cellulosic residues (Cai et 

al., 2014). This further supports the incentive for an extractive reaction system. 

However, they also note that these biphasic systems require costly recovery 

operations to recycle the solvent and the solids loading must be reduced (to 

uneconomical levels) in order to maintain a distinct organic phase (Cai et al., 2014). 

These are the disadvantages of a biphasic system. 

Steam stripping, the status quo for conventional FF production from biomass, 

involves stripping with large quantities of steam (Lange et al., 2012) resulting in a 

dilute aqueous FF stream. Zeitsch (2000) observed that the FF output increases with 

increasing stripping steam input, but this effect levels out (Zeitsch, 2000). The goal of 

stripping is to remove FF into the vapour phase and halt degradation reactions. 

Industrial FF processes, operating at temperatures below 220 °C and featuring a 

continuous removal of FF by steam stripping, have typical yields below 60 % 

(Zeitsch, 2000). 

2.2.3 Mechanism & structure 

To characterise humins, the different proposed mechanisms for their formation are 

discussed along with the general “structure” of the resulting macromolecules. It is not 

possible to definitively identify a structure for humins, because they are highly 

complex, cross-linked structures. 

Sánchez, Hernández and Keresztury (1994) found that FF can take part in 

condensation reactions typical of aldehydes and that the furan ring can participate in 

addition, substitution, condensation and ring cleavage reactions (Sánchez, 

Hernández and Keresztury, 1994). The authors proposed that the formation of 

humins begins with (1) Brønsted acid catalysed protonation of the carbonyl oxygen 

in the FF molecule. (2) This molecule then attacks the (highly activated) 5-position of 

the furan ring of another FF and (3) the resulting (bifurylic) molecule then participates 
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in an aldol condensation with a third FF producing a trifurylic structure (Hoang et al. 

2015; Hu & Ragauskas, 2014; Sanchez, Hernandez & Keresztury, 1994; Sumerskii, 

Krutov & Zarubin, 2010). The FF resinification mechanism, as described to this point, 

is used by several authors and will be referred to hereinafter as the Sánchez 

mechanism (demonstrated in Figure 2). Various authors have, departing from the 

Sánchez mechanism, proposed various growth/propagation mechanisms. 

 

Figure 2: Sánchez mechanism for humin formation involving the formation of bifurylic 

and trifurylic structures. (sourced from Hoang et al. 2015; Hu & 

Ragauskas, 2014; Sanchez, Hernandez & Keresztury, 1994) 

Sánchez, Hernández and Keresztury proposed that the bifurylic, trifurylic and acyclic 

molecules react to give the network structure of a humin (Sánchez, Hernández and 

Keresztury, 1994). Structure VI (the humin network) in Figure 3 is a result of 

reactions between the bifurylic and trifurylic molecules formed in reactions 3 and 4 

(Figure 2) with acyclic species IV and V (Figure 3). 
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Figure 3: FF is transformed into acyclic species (IV & V) and structure VI is the 

humin network (more conjugated than in Figure 2) (sourced from 

Sánchez, Hernández and Keresztury, (1994)) 

Sanchez, Hernandez, Jalsovszky & Czira (1994) conducted a study to elucidate the 

structural units present in acid catalysed FF humins. The humins were obtained from 

fresh vacuum distilled FF. They used a strong mineral acid as catalyst and dried the 

humins under high vacuum. The humins were subjected to pyrolysis at 400 °C and 

FT-i.r. (Fourier transform infrared) was used to detect products of pyrolisis. They 

found that FF can behave as a cyclic ether, a diene or an aromatic compound 

(Danon et al (2013) also observed this behaviour),so many products are possible. 

There was an abundance of AA and 2-furylmethyl ketone in the pyrolysis of humins 

at 400 °C; these compounds can only be formed through structures with linear 

segments originating from species IV and V (See Figure 3) which form part of the 

postulated humin structure in the Sanchez mechanism. They detected O-H groups 

and normal vibration modes of C-H at positions 3 and 4 of a disubstituted furan ring. 

They also detected carbonyl groups present in the groups -CH2CHO and -

CH2COCHR- and they detected 2-substituted and 2,5-disubstituted furan rings. 
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These are all characteristic of the postulated humin structure in the Sanchez 

mechanism (see Figure 2). 

Gandini and Belgacem (1997) proposed that tertiary hydrogen atoms in the 

polyfurylic structures are particularly mobile and can leave the structures, generating 

radicals, which are stabilised as the structures become more conjugated (Gandini & 

Belgacem, 1997). Mariscal et al. (2016) found the same intermediate molecule and 

that the mechanism consists of hydrolytic ring opening, which generates aliphatic 

open-chain products. (Mariscal et al., 2016) The difference between the Sanchez 

mechanism and the Gandini mechanism is that the hydrogen atoms of the Gandini 

mechanism can leave the structure and generate radicals, whereas the Sanchez 

mechanism does not include these mobile hydrogen atoms. The Gandini 

intermediate is shown in Figure 4. 

 

Figure 4: Radical intermediate for the thermal resinification of FF. Tertiary hydrogen 

atoms in the polyfurylic structures generate radicals, which are stabilised as 

the structures become more conjugated (sourced from Gandini and 

Belgacem (1997)) 

Sumerskii, Krutov and Zarubin (2010) proposed that further resinification occurs via 

a mechanism similar to aromatic electrophilic substitution with the formation of 

carbon-carbon bonds between rings (Sumerskii et al., 2010). This growth 

mechanism is depicted in Figure 5. 
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Figure 5: Humin growth mechanism: Polycondensation occurs via electrophilic 

substitution with the formation of carbon-carbon bonds between rings  

O’Neil et al. (2009) initially believed that humins were formed through a reaction 

between FA and FF. This mechanism was then experimentally disproven in favour of 

the following: FF molecules react with each other to form oligomers. The 

oligomerization of FF has been demonstrated to occur via the aldolic condensation 

of FF which forms two- and three-dimensional furylic species The reactions occur 

either via ring opening or via addition reactions with the formyl group. The open ring 

binds with cyclic FF to form a short chain oligomer with many double bonds, which 

are very reactive and undergo further addition reactions. The oligomer structure can 

be seen in Figure 6. 

 

Figure 6: Ring opened furfural binds with cyclic furfural to form a short chain 

oligomer with many double bonds 

Danon, van der Aa and de Jong (2013) studied FF degradation with and without 

glucose present in the reaction mixture and found that an additional (second-order) 

reaction had to be added to the kinetics of the degradation reaction to satisfactorily 

predict the experimental data. They suggested that the second order humin 

formation reaction could be accounted for by a Diels-Alder reaction,(Danon, Van Der 

Aa & De Jong, 2013) i.e. a second order reaction between 2 FF molecules or a 

reaction between glucose or one of its degradation products: 5-hydroxymethylfurfural 

(HMF) or Levulinic Acid (LA) and FF. The proposed Diels-Alder reaction between FF 
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molecules is illustrated in Figure 7. For the Diels-Alder reaction, it is suggested that a 

second order formation reaction occurs between 2 FF molecules, followed by first 

order propagation. Mariscal et al. (2016) found that due to the electron-withdrawing 

effect of the carbonyl group, the furan ring of FF is less susceptible to hydrolytic ring 

cleavage and Diels–Alder cycloaddition reactions (Mariscal et al., 2016). This 

suggests that a Diels-Alder reaction is unlikely. 

 

Figure 7: Diels-Alder reaction between 2 FF molecules (sourced from Danon, 

van der Aa and de Jong (2013)) 

Literature has focused on C6-derived humins more than C5-derived humins and 

although it is not of direct relevance to FF degradation, it is potentially interesting to 

discuss these C6-derived humin formation mechanisms due to the similar nature in 

which C5 and C6 sugars react under dilute acidic conditions. 

HMF is an important, highly functionalized, bio-based chemical building block, 

produced from the dehydration of hexose sugars. It has been designated as the 

sister molecule of FF and it, like FF, can be converted to other valuable chemicals 

such as carboxylic acids and p-xylene (Tsilomelekis et al. 2016). Like the acid 

catalysed hydrolysis of hemicellulose, acid catalysed hydrolysis of cellulosic biomass 

is afflicted with the co-production of humins. The discussion hereinafter will involve 

comparisons between HMF- and FF-derived humins. 

Patil, Heltzel and Lund (2012) compared humins formed from glucose, fructose and 

HMF and found that these species must first be converted to HMF and then to the 

highly reactive intermediate 2,5-dioxo-6-hydroxyhexanal (DHH) via ring opening, 

before humins can form via subsequent aldol addition and condensation reactions 

(See Figure 8),(Patil et al., 2012) i.e. direct conversion of hexoses to humins is 
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insignificant. Hu and Ragauskas (2014) as well as Wang et al. (2016) reinforced the 

fact that FF and HMF are the key intermediates for humin formation (Hu & 

Ragauskas, 2014; Wang, Lin, Zhao, Chen & Zhou, 2016).  

 

Figure 8: Hydrolytic ring opening of HMF and possible aldol addition reactions 

(adapted from Patil, Heltzel and Lund (2012)) 

Rasmussen et al. (2014) proposed that humins form via polymerisation reactions 

from the key intermediate 3,8-dihydroxy-2-methylchromone (DMC) derived from FF 

(See Figure 9) (Rasmussen, Sørensen & Meyer, 2014).  

Shinde et al. (2018) supported this claim. DMC, a benzenoid derivative, was found to 

be a major aromatic product in the acid degradation of xylose (Shinde et al. 2018). 

Popoff & Theander (1970) found that DMC, isolated in small amounts after heating 

alginic acid and other polyuronides at 160 °C, was the only benzenoid compound 

that has been reported from acidic degradation of sugars (Popoff & Theander, 1970). 

In this study, no sugars are present, so it is unlikely that DMC is an intermediate for 

the humin formation reaction. 

Stellenbosch University  https://scholar.sun.ac.za



16 
 

 

Figure 9: 3,8-dihydroxy-2-methylchromone, potential intermediate in humins 

formation mechanism. 

Lamminpaa, Ahola & Tanskanen (2014) suggested that hydrolytic ring opening of FF 

produced 1,2,5-tripentanon (TP), which has eno and keto forms. Thus, it is plausible 

that FF can undergo the same kind of reaction scheme as HMF through aldol 

addition/condensation. This is notable and a potential reaction mechanism has been 

illustrated in Figure 10, which mimics the mechanism of Figure 8. 

 

Figure 10: Possible furfural ring opening, and aldol reactions as suggested by 

Lamminpaa, Ahola & Tanskanen (2014) 

Van Zandvoort et al (2015) found that xylose-derived humins differ in molecular 

structure from glucose-derived humins because of the free 5-position of FF which 

allows for resinification. The xylose-derived humin structure is a network of furanic 

units, linked by aliphatic CH2 and CH groups. Van Zandvoort et al. (2013) included a 

model representation of a C5 humin fragment (See Figure 11), which is similar to the 
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structure first proposed by Gandini and Belgacem (1997) (Gandini & Belgacem, 

1997; Van Zandvoort et al., 2013) .  

 

Figure 11: Model representing the molecular structure of a xylose derived humin 

fragment, including the most important linkages (sourced from 

van Zandvoort et al. (2013)) 

Zeitsch only described the mechanism for FF condensation and proposed that 

resinification plays a much lesser role in humins formation. In condensation 

reactions, FF condenses with one of the pentose dehydration intermediates in either 

of the following ways: one molecule of FF reacts with the first intermediate to give 

“furfural xylose” or two FF molecules react with an intermediate to give “difurfural 

xylose”. The mechanism is illustrated in Figure 12; A summary of the proposed 

mechanisms discussed in this section is presented in Table 1. 
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p  

Figure 12: One molecule of FF reacts with the first pentose dehydration intermediate 

to give “furfural xylose”, Two FF molecules react with an intermediate to 

give “difurfural xylose” (sourced from Zeitsch (2000)) 
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Table 1: Summary of proposed mechanisms for FF degradation 

Description Reagents Resinification/
Condensation 

Key Intermediates Ref. 

FF condenses with itself to form difuryl ketonic 
aldehyde and trifurylic dialdehyde These structures 
are susceptible to hydrolytic ring cleavage to acyclic 
species and growth occurs through reactions 
between the acyclic and cyclic forms of these 
structures. 

FF+FF Resinification 

 

(Sánchez, 
Hernández 
and 
Keresztury , 
1994) 

FF condenses with itself to form difuryl ketonic 
aldehyde and trifurylic dialdehyde, tertiary hydrogen 
atoms in the molecule leave the structures and 
generate radicals, which are stabilised as the 
structures become more conjugated 

FF+FF Resinification (Gandini & 
Belgacem, 
1997), 
(Mariscal et 
al., 2016) 

FF condenses with itself to form difuryl ketonic 
aldehyde and trifurylic dialdehyde, growth occurs 
via electrophilic substitution 

FF+FF Resinification (Sumerskii 
et al., 2010) 

The free 5-position of FF allows for resinification. 
The humin structure is a network of furanic units, 
linked by aliphatic CH2 and CH groups. 

FF+FF Resinification (Van 
Zandvoort 
et al., 2013) 

FF molecules react with each other to form 
oligomers. The reactions occur either via ring 
opening or via addition reactions with the formyl 
group. The open ring binds with cyclic FF to form a 
short chain oligomer with many double bonds 

FF+FF Resinification 

 

(O’Neil et 
al., 2009) 

Diels-alder reaction between two FF molecules  FF, FF  Resinification 

 

(Danon et 
al., 2013) 
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 Polymerisation reactions involving FF and DMC FF, DMC Resinification 

 

(Rasmusse
n et al., 
2014) 

FF undergoes hydrolytic ring opening to form TP 
and then aldol addition occurs between TP and FF 

FF, TP Resinification 

 

(Lamminpaa
, Ahola & 
Tanskanen, 
2014) 

Either 1 or 2 FF molecules react with a pentose-to-
FF intermediate to give “furfural xylose” or 
“difurfural xylose” 

FF, Xylose 
dehydration 
Intermediate 

Condensation 

 

(Zeitsch, 
2000) 
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2.2.4 Other degradation reactions 

Another possible degradation product from FF is reductic acid, which is ultimately 

formed with the α-C atom of FF at C2 of reductic acid (Feather, 1969). Reductic acid 

was formed from FF at 150 °C in 5 % sulfuric acid as demonstrated in Figure 13.  

 

Figure 13: Reductic acid: a potential furfural degradation product 

Reductic acid was mentioned as a possible decomposition product by Feather 

(1968) but the reaction remains seemingly unexplored (Danon, Marcotullio & De 

Jong, 2013; Marcotullio, 2011; Marcotullio et al., 2009). It could be a humin precursor 

or intermediate. 

2.2.5 Catalyst, substrate and humin yields & composition 

Previous studies dealing with humins considering different conditions i.e. 

temperature, reaction time, catalyst and substrate as well as the resulting humins 

yield and the C:H:O elemental ratio of these humins, are listed in Table 2. Since 

characterisation of C5-derived humins has not received much attention in literature, 

most of these studies are based on humins derived from hexoses or HMF. 

In general, experiments with a higher severity (higher temperature (180 °C+), higher 

acid concentration (0.1 M+) and longer reaction time (1 h+)) lead to a higher yield of 

humins (Sannigrahi et al. 2011). The “yield” of humins varies between 0.4 wt% and 

30 wt% (see Table 2) based on total FF degraded and the yield is dependent on the 

severity and the substrate used. 

Weingarten et al. (2011) compared the yield of humins from xylose, FF and a 

combination thereof (Weingarten et al., 2011). They conducted dehydration 

experiments with heterogeneous acid catalysts HCl (Brønsted acid) and Yb(OTf)3 

(Lewis acid) at 88 °C. The temperature was very low, but the acids catalysed 5 % to 

30 % humins yields in 90 min reactions. In FF production, Brønsted acids are 
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generally used as a catalyst (HCl, and sulfuric acid(H2SO4)). They found that xylose 

dehydration did not occur at the low reaction temperature due to its high activation 

energy (Ea), relative to that of the condensation and resinification reactions. The 

condensation reactions were suppressed because of the negligible amounts of FF 

and xylose dehydration intermediates. However, even at relatively low severity, 

resinification humins formed (10.4 %) when FF only was reacted. This is the only 

study where FF was used as the sole precursor in humins formation reactions. There 

is a gap in literature in this regard. 

H2SO4 with a concentration of 1 wt% or ±0.1 M is common amongst humins studies 

and 180 °C is a common temperature. In all studies with these parameters, some 

humins are formed (See Table 2). Therefore, it is for this reason that these 

conditions were included in the range of the present study. 
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Table 2: Summary of humins studies 

Reference Temperature (°C) Catalyst Substrate C:H:O Humins Yield 

(Wang et al., 
2016) 

180 (3 h) H2SO4 (0.01 M) Glucose 
Xylose 

66.3:4.8:28.9 
66.9:4.4:28.7 

- 

(Wang et al., 
2015) 

150 (45 min) AlCl3.6H2O (0.025 M) Glucose 52.4:5.3:42.4 (insoluble) 
58.1:5.4:36.5 (soluble) 

0.67 wt% 
4.17 wt% 

(Hoang et al., 
2015) 

180 (6h) H2SO4 (0.01 M) Glucose 66.3:4.4:29.3 35 ± 1 wt%  

(Hu & 
Ragauskas, 
2014) 

180 (40 min) H2SO4 (0.1 M) Controlc 
O2

c 
N2

c 
DMSOc 
Tweenc 

- 7.94%a  
16.15% a 
9.30% a 
5.56% a 
6.93% a 

(Pin et al., 
2014) 

- - Fructose in methanol solvent 60.0:5.0:32.0 - 

(Van Zandvoort 
et al., 2013) 

180 (6 h) 
180 (6 h) 
180 (6 h) 
180 (6 h) 
180 (6 h) 
180 (6 h) 

H2SO4 (0.01 M) D-glucose 
D-fructose 
D-xylose 
D-glucose, D-fructose (1:1) 
D-glucose, D-fructose, D-xylose (1:1:1) 
D-glucose, HMF (1:0.2) 

64.7:4.3:31.1  
64.8:4.1:31.1 
66.8:3.8:29.4 
65.3:4.2:30.5 
66.0:4.1:29.9 
65.9:4.2:29.9 

30 wt% 
39 wt% 
32 wt% (26 wt% FF) 
36 wt% 
30 wt% (2 wt% FF) 
30 wt% 

(Patil et al., 
2012) 

125 (5 h) 
125 (2 h) 
125 (2 h) 

H2SO4 (0.1 M) Glucose 
Fructose 
HMF 

- 29% 
24% 
18% 

(Sannigrahi et 
al., 2011) 

160 (5 min) 
170 (20 min) 
170 (40 min) 
180 (40 min) 
170 (60 min) 
180 (60 min) 

H2SO4 (0.1 M) 
H2SO4 (0.1 M) 
H2SO4 (0.1 M) 
H2SO4 (0.1 M) 
H2SO4 (0.2 M) 
H2SO4 (0.2 M) 

Pretreated holocellulose - 0.4 wt%b  
0.8 wt% b 
8.8 wt% b 
9.3 wt% b 
11.7 wt% b 
19.3 wt% b 

(Weingarten et 
al., 2011) 

88 (1.5 h) HCl (0.01 M) 
 
 
Yb(OTf)3 (0.01 M) 

Xylose (3 wt%) 
Furfural (2 wt%) 
1:1 Mixture FF:X 
Xylose (3 wt%) 
Furfural (2 wt%) 
1:1 Mixture FF:X 

- 5.3% 
10.4% 
5.3% 
27.5% 
7.4% 
17.4% 

(Sumerskii et 

al., 2010) 
175-180 (2 h) H2SO4 (0.5 %) D-Glucose 

D-Mannose 
D-Galactose 
D-Arabinose 
D-Cellobiose 
Methyl-α-D-glucopyranoside 
5-hydroxymethylfurfural 

66.4:4.7:28.9 
65.7:4.7:29.6 
66.1:4.7:29.2 
68.3:4.9:26.8 
65.1:5.1:29.8 
66.1:4.9:28.9 
- 

21% 
24% 
26% 
29% 
25% 
23% 
7.4% 

awt% based on K-Lignin (acid insoluble) found in solids recovered       bwt% based on mass of K-lignin per mass pretreated holocellulose       cDilute Acid Pretreatment hydrolysis monosaccharides 
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2.3. Formic acid 

2.3.1 Formic acid as furfural degradation product 

Williams and Dunlop (1948) first mentioned the formation of FA during the course of 

FF destruction via hydrolytic fission of the aldehyde group on FF. They noted that it 

is formed in a small quantity and that it did not significantly alter the initial hydrogen 

ion concentration as a consequence of its low degree of dissociation (Williams & 

Dunlop, 1948). It is possible that FF fragmentation to smaller molecules can occur in 

acid catalysed dehydration conditions where only FF is present (Lamminpaa et al., 

2012). These smaller molecules may include formaldehyde, acetaldehyde, 

crotonaldehyde, lactic acid, dihydroxyacetone, glyceraldehyde, pyruvaldehyde, 

acetol, and glycolaldehyde (Antal et al., 1991; Rice & Fishbein, 1956). O’Neil et al. 

(2009), who studied the aqueous phase dehydration of xylose into FF, identified FA 

formation from decomposition of open chain xylose as well as rehydration of FF 

(O’Neil et al., 2009). Marcotullio et al. (2009) found that FA couldn’t be clearly 

identified and quantified for FF destruction in a coiled tube reactor at 150-200 °C and 

H2SO4 concentration between 36 and 145 mM. Quantitative analysis of HPLC-UV 

chromatograms deemed the presence of FA to be marginal (Marcotullio et al., 2009). 

Weingarten et al. (2010) mentioned that quantifiable amounts of FA were detected 

after 8 hours of FF dehydration (Weingarten et al., 2010). Sumerskii, Krutov and 

Zarubin (2010) found that FF decomposes with the formation of FA only upon 

prolonged heating in the presence of dilute acids(Sumerskii et al., 2010). However, 

Hongsiri et al. (2014) observed almost 20 % degradation of FF to FA when imposing 

conditions of 200 °C and 0.05 M HCl for 1 hr. They also found that at 180 °C, the 

concentrations of FA were very low and at 160 °C they were so low that they 

became immeasurable(Hongsiri, Danon & De Jong, 2014). Lamminpaa, Ahola & 

Tanskanen found that the decomposition reactions of FF impact more on the yield 

than reactions between xylose intermediate and FF, i.e. condensation played a 

lesser role than fragmentation and resinification (Lamminpaa et al., 2012). Antal et 

al. (1991) found that although FA had been stated to be a co-product of humin 

formation, it is produced in significant yield under relatively mild conditions in the 

absence of detectable resin 

formation (Antal et al., 1991), i.e. fragmentation is separate from 

condensation/resinification. FA formation, as a direct FF destruction product, is not 
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clearly understood and different sources have reported its presence or absence 

under similar reaction conditions. A summary of the works where FA is detected is 

presented in Table 3. 
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Table 3: Formic acid as direct degradation product of furfural 

Precursor Relative FF 

Concentration (M) 

Conditions Formic Acid 

Detected 

Ref 

FF 0.104 & 0.208 150-210 °C, 25 mM & 50 mM H2SO4, 50 mM & 

100 mM HCl, up to 270 min 

Small 

quantity 

(Williams & 

Dunlop, 1948) 

Xylose - Relatively long exposure at elevated temperatures is 

required to bring about extensive destruction by 

dilute aqueous acids 

Yes (Dunlop, 1948) 

Xylose 0.057 250 °C, 20mM formic acid catalyst Yes (Antal et al., 

1991) 

Xylose 0.076 220 °C, plain water (no acid), 50 min 7 % (Oefner et al. 

1992) 

Biomass - FF waste water is known to contain formic acid at 

roughly 10 % of the acetic acid load (5 %) 

±0.5 wt% (Zeitsch, 2000) 

FF 0.060-0.073 150-200 °C, 36-145 mM H2SO4  Marginal (Marcotullio et 

al., 2009) 

Xylose 0.784 200 °C, 3 wt% ZSM-5 zeolite Yes (O’Neil et al., 

2009) 
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Individual 

monosaccharides, 

disaccharides, 

and furan 

compounds 

- 0.5 % H2SO4, 2 h, 175–180 °C Yes (Sumerskii et al., 

2010) 

xylose, arabinose, 

and FF 

0.05 200 °C, 50 mM HCl for 1 hr ±18.4 % of 

FF 

(Hongsiri et al., 

2014) 

Xylose 0.417 180 °C, 0.17 M acetic acid for 24 hrs Yes (Chen et al., 

2015) 
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2.3.2 Furfural to formic acid degradation mechanism 

The mechanism by which FA is formed from FF was first suggested by Williams and 

Dunlop (Williams & Dunlop, 1948). The mechanism is hydrolytic fission of the 

aldehyde group (See Figure 14) (Dunlop, 1948). This mechanism is similar to the 

mechanism by which HMF is rehydrated. Yang et al. (2012) support the hydrolytic 

fission of the aldehyde group of FF towards FA, because FF waste water at Wuji 

Furfural Co. of China contained a lot of FA (7.8 g/L) (Yang et al. 2012). No other 

works have attempted to reconcile this mechanism since. 

 

Figure 14: Hydrolytic fission of the aldehyde group on furfural to form formic acid 

2.3.3 Alternate sources of formic acid in furfural production 

As mentioned in the FF degradation section, FA is a degradation product of xylose 

under dilute acidic conditions (Danon, Marcotullio & De Jong, 2013; Liu et al., 2013). 

Aldehydes, ketones, pyruvic acid, glycolic acid, FA, LA, and acetic acid (AA)are all 

products of xylose decomposition. These products are formed by “fragmentation” of 

xylose or its isomers (Liu et al., 2013). Oefner et al. (1992) & Antal et al. (1991) 

found that FA is a degradation product of xylose degradation (Antal et al., 1991; 

Oefner et al., 1992), so it is possible that the FA quantity found after a FF 

degradation reaction, where xylose is the starting material, is not exclusively 

generated by FF degradation but also by xylose degradation.  

In a genuine FF production plant, the Escher Wyss process, for example, is operated 

without a mineral acid by relying on the “innate” carboxylic acids that are liberated 

from the raw material (Zeitsch, 2000). This phenomenon of autohydrolysis occurs in 

the Illovo FF plant reactors in Sezela, KZN (Rushin, 1992). The only acids formed in 

large enough quantities to make a significant contribution to the hydrogen ion 

concentration are AA and FA. The two acids contribute evenly to the acidity because 

there is 10 times as much AA present as FA and FA is approximately 10 times as 

strong as AA (Rushin, 1992; Zeitsch, 2000). This autohydrolysis is only possible for 
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processes where the feedstock is biomass. As explained by Zeitsch (2000), the 

pentosan chains of different biomass materials contain acetyl and formyl groups (in a 

ratio of 10:1) to various extents. The hydrolysis of these lead to the liberation of AA 

and FA (Zeitsch, 2000). Xing, Qi and Huber (2011) found that FA and AA were 

mainly produced via the hydrolysis of formylated and acetylated xylose oligomers 

(Xing, Qi & Huber, 2011). Rivas et al. (2014) noted that FA was present in the 

autohydrolysis liquors of pine wood, due to hydrolysis of formyl groups present in the 

raw material (Rivas et al.2014). In a study of acid catalysed hydrolysis of sugar cane 

bagasse, insignificant amounts of AA were detected in the hydrolysates but FA is 

formed (Girisuta et al. 2013).  

In summary, FA can form during the production of FF in the following ways: 

1. Fragmentation of xylose and its isomers 

2. During dilute acid pretreatment of biomass, formyl and acetyl groups on the 

pentosan polymer are hydrolysed to their respective carboxylic acids 

3. Glucose (from the cellulose fraction of biomass) is converted to LA and FA via 

HMF under hydrolysis conditions 

4. FF decomposes to FA under the conditions of acid hydrolysis 

It is possible that the presence of FA can be attributed to the formylated xylose 

oligomers and polymers in the raw materials that are present in FF production 

reactors (Zeitsch, 2000). However, in the present study, the focus is on the direct 

degradation of FF to FA and no raw materials (biomass) is present so only one route 

to FA production is possible: fragmentation of FF. 

2.4. Kinetics 

2.4.1 Reaction kinetics for this study 

In general, kinetic studies suggest a reaction mechanism including a single 

degradation reaction, with respect to FF that follows first order kinetics because the 

degradation of FF is referred to as pseudo-unimolecular (Jing & Lü, 2007; Rose et 

al., 2000; Weingarten et al., 2010; Williams & Dunlop, 1948). The rate of the FF 

degradation reaction is generally given by Equation 2 or some derivation thereof.  

dCFF

dt
= −kCFF

𝑛 × [H+]m 2 
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where CFF is FF molar concentration (M), k is the rate constant (min-1), n is the 

degradation reaction order and m is the index factor of the hydrogen ion 

concentration: a unitless hydrogen ion concentration exponent. 

The rate constant (k) is a function of temperature and the Arrhenius expression is 

used to define this relationship (See Equation 3).  

𝑘 = 𝐴′𝑒
−

𝐸𝑎
𝑅

(
1
𝑇

−
1
𝑇0

) 
 3 

where k is the rate constant (min-1), A′ is the pre-exponential factor (min−1), Ea is 

the activation energy (kJ ∙ mol−1), R is the universal gas constant (kJ ∙  mol−1 ∙  K−1), 

T is the temperature (K) and T0 is the reference temperature (453.15 K) 

and T0  

Table 4 is an overview of the various degradation studies to date and their 

Arrhenius parameters. Equations 4, 5 & 6 describe the condensation, 

resinification and fragmentation reactions as covered in section 2.1. 

 

FF + Intermediate → Condensation Product 4 

FF + FF → Resinification Product 5 

FF → FA 6 

The dehydration of xylose and FF degradation are acid catalysed reactions. For 

these reasons, the hydrogen ion concentration should be included in the rate 

expression (See Equation 2). Zeitsch (2000) noted that the temperature dependence 

of acidity differs from acid to acid and that to formulate an accurate kinetic model, the 

temperature must be accounted for both in the exponential factor (See Equation 3) 

as well as in the acidity. These two effects oppose each other because increasing 

temperature causes a decrease of acidity, but an increase in the energy of the 

reacting molecules (Zeitsch, 2000). The temperature dependency of acid 

dissociation can be taken into account either by using activity-based 

models(Hongsiri, Danon & de Jong, 2015; Marcotullio et al., 2009) or by empirical 

equations (Lamminpää, 2015) . For sulfuric acid, there are 2 protons (H atoms) per 

sulfuric acid molecule that can be donated and it is termed a “diprotic” acid. The 2 H 

Stellenbosch University  https://scholar.sun.ac.za



31 
 

atoms can be removed and made available to react with water to produce H3O+ 

which is what reacts with the contents of the solution. The first dissociation constant 

for sulfuric acid is high, meaning that the first proton dissociates almost completely in 

water, but the second proton dissociates less readily and the extent of the 

dissociation is very temperature dependent. The overall acidity of a sulfuric 

acid/water solution is equal to the sum of the acidity contributed by both dissociation 

constants. The temperature dependence of acid dissociation in the present study is 

accounted for by empirical equations (Zeitsch, 2000). 

2.4.2 Reaction kinetics for previous kinetic studies 

In Table 4, the activation energies (Ea) for the first order kinetic approximation of FF 

loss reactions are presented and the values range from 50 to 135 kJ/mol. The 

pre-exponential factor for these studies (A) varies between 3 s-1 and 27 s-1. It should 

be noted that the acid catalyst, catalyst concentration and temperature ranges differ 

between studies. Some studies have included the hydrogen ion concentration in the 

rate expression (Lamminpaa et al., 2014; Root et al., 1959; Rose et al., 2000; 

Williams & Dunlop, 1948). The reaction temperatures selected for the present study 

cover the range 140 °C-200 °C which is similar to the temperature ranges used in 

previous studies (See Table 4). The reaction temperature for the dehydration of 

pentose to form FF is ±175 °C (Dalinyebo, 2018) so the present study covers this 

temperature as well as temperatures above and below it. There is no apparent trend 

in terms of acid catalyst and activation energy/pre-exponential factor. 
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Table 4: Furfural degradation kinetics studies.  
𝐴 = pre-exponential factor (s−1); 𝐸𝑎 = activation energy (kJ∙mol−1); [𝐻+] = hydrogen ion 

concentration (M); 𝑎𝐻+ = hydrogen ion activity (−) 

Temperature 
Range (°C) 

Precursor Acid Catalyst (N) ln(𝐴) (𝑠−1) 𝐸𝑎(𝑘𝐽 ∙ 𝑚𝑜𝑙−1) Ref 

120 - 200 birchwood 
xylan 

H2SO4 (0, 0.038 & 0.38 N) 4.26∙ [𝐻+]0.09 49.6 (Lau et al., 
2015) 

150 - 210 FF H2SO4 (0.05 & 0.1 N) 
HCl (0.05 & 0.1 N) 

12.36 83.7 (Williams & 
Dunlop, 1948) 

150 - 200 FF H2SO4 (0.073-0.291 N) 𝑎𝐻+ ∙26.64 125.1 (Marcotullio et 
al., 2009) 

160 - 240 xylose H2SO4 (0.006, 0.025, 
0.05, 0.1, 0.2, 0.4 & 0.8 N) 

17.15∙ [𝐻+] 92.3 (Root et al., 
1959) 

130 - 200 FF & 
xylose 

FA (1.536-6.875 N) 9.72 
 
27.34∙ [𝐻+] 

75.5 
(Uncatalysed) 
135.0 
(Catalysed) 

(Lamminpaa et 
al., 2012) 

160 - 200 FF FA (0.435, 2.206 & 
6.906 N) 

-13 
 
24.22∙ [𝐻+] 

0 (Uncatalysed) 
113.6 
(Catalysed) 

(Lamminpaa et 
al., 2014) 

160 - 200 FF HCl (0.05 N) & NaCl 
(0.5 N) 

16.84 102.1 (Danon et al., 
2013)  

130 - 170 xylose HCl (0.1 N) 8.43 
(Resinification) 
13.5 
(Condensation) 

67.6 
(Resinification) 
72.5 
(Condensation) 

(Weingarten et 
al., 2010) 

180 - 220 FF/xylose High Temperature Liquid 
Water (Uncatalysed) 

7.59  58.8 (Jing & Lü, 
2007) 

130 - 170 FF HCl (0.1 N) 3.07 48.1 (Rose et al., 
2000) 

170 - 210 xylose AA (0.17 N) 22.08 64.4 (Chen et al., 
2015) 

Lamminpää (2015) presented results which show that the pH has a greater effect on 

the reaction rate when the temperature rises. Therefore, independent activation 

energies for uncatalysed and acid catalysed terms were used in kinetic modelling 

(See Equation 7) (Lamminpää, 2015). This technique was also used in an earlier 

study by the same author (See Table 4). The H+ concentration was calculated via an 

empirical equation for pKa (a measure of acid strength).  

dCFF

dt
= −k0CFF

n − kHCH+CFF
p

 7 

where k0 is the rate constant for an uncatalysed reaction(s-1) in the solvent, kH is 

the rate constant for an acid catalysed reaction (s-1), CH+ is the concentration of 

the H+ molecule and n and p are the order of uncatalysed and acid catalysed 

reactions, respectively. 
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The overall reaction order varied around one, indicating that multiple reactions with 

different reaction orders may exist but first order reactions are dominant. It is likely 

that resinification occurs because of the formation of humins. Lamminpää (2015) 

proposes that a polymerisation reaction is initiated with FF resinification and polymer 

growth occurs one FF molecule at a time (Lamminpää, 2015). If growth is dominant, 

the reaction order will be closer to unity (as it is). Danon, van der Aa and de Jong 

(2013) proposed a Diels-Alder reaction, which could be the second order initiation 

step for the described polymerisation (Danon et al., 2013). The main mechanisms 

proposed for the reaction of FF, including formation and degradation are illustrated in 

Figure 15, Figure 16 & Figure 17. 

 

Figure 15: Reaction scheme for FF formation in acidic conditions excluding 

condensation reaction. (Sourced from Lamminpää (2015)) 

 

Figure 16: Reaction scheme for FF formation in acidic conditions including 

condensation reaction. (Sourced from Lamminpää (2012)) 

 

Figure 17: Reaction scheme for FF formation in acidic conditions including 

condensation reaction and xylose decomposition reaction. (Sourced from 

Lamminpää (2012)) 
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Considering these reaction mechanisms, the mechanism of Figure 17 is most 

probable because it is known that xylose forms decomposition products in acidic 

conditions (Chen et al., 2015). Condensation and resinification are also known 

reactions (Root et al., 1959). In the present study, Figure 17 is supported with the 

understanding that the reaction of FF to decomposition products includes both 

resinification (Equation 5) and fragmentation (Equation 6). 

2.4.3 Studies where 1st or 2nd order reaction kinetics were detected 

So far, the discussion has centred on xylose and FF, but the reality is that the 

cellulose and hemicellulose constituents of lignocellulosic biomass are both 

hydrolysed under acidic conditions in a FF production plant. This means that FF 

degradation could involve intermediates from the cellulose. Danon, van der Aa and 

de Jong (2013) noticed second order FF degradation kinetics when glucose was 

included in the reaction mixture (Danon et al., 2013). Essentially it is not fully clarified 

whether condensation involves xylose, xylose dehydration intermediates towards FF, 

other xylose dehydration intermediates or even glucose. Due to this uncertainty, a 

few degradation studies have been tabulated (See Table 5) to determine what the 

general understanding is with regard to the order of the FF degradation reaction. 

One can observe that the order of the degradation reaction is not affected by the 

initial xylose/FF concentration (See Table 5). 
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Table 5: Studies which report 1st/2nd order reaction kinetics for the FF degradation 

reaction 

CFF0
 or CX0

  (M) 1st/2nd order Resinification/

Condensation 

Reference 

0.05 xylose 1st order Condensation (Antal et al., 1991) 

0.688 xylose 1st order Condensation (O’Neil et al., 2009) 

0.0478 FF 1st order Both (Root et al., 1959) 

0-0.08 FF 

0-0.2 xylose 

1st order resinification Both (Lamminpaa et al., 

2012) 

0.05, 0.1 & 0.16 FF 1st order / slightly 

above 1st order (high 

acid concentration) 

Both (Lamminpää, 2015) 

0.104 FF 1st order Resinification (Rose et al., 2000) 

0.688 xylose 1st order Both (Weingarten et al., 

2010) 

0.01-0.02 FF 1st order (suggested 

2nd order) 

Resinification (Williams & Dunlop, 

1948) 

0.533 xylose 

0.208 FF 

1st order Both (Chen et al., 2015) 

0.034 FF 1st order Condensation (Jing & Lü, 2007) 

0.05 FF 1st order resinification 

& 2nd order 

condensation 

Both (Danon et al., 

2013) 

0.05, 0.10 and 0.16 

FF 

Order varies around 

unity depending on 

the FA concentration 

Both (Lamminpaa et al., 

2014) 

0.0604 & 0.0725 FF 1st order Both (Marcotullio et al., 

2009) 
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0.05 xylose, 0.05 

L-arabinose & 0.05 

FF 

1st order Resinification (Hongsiri et al., 

2014) 

0.1 FF 1st order Resinification (Xu et al. 2017) 

2.5. Furfural degradation in xylose dehydration reactions 

Dussan et al. (2015) conducted kinetic experiments at temperatures between 130 

and 170 °C in various FA solutions (10-64 wt%) with hemicellulose-based sugars 

from the Formosolv pulping process. The goal was to elucidate the reaction kinetics 

of major components in the hemicelluloses fraction of biomass. Dussan et al. (2015) 

acknowledge that FF undergoes resinification and decomposition through hydrolytic 

cleavage of its saturated ring. The kinetics of FF degradation were modelled 

following a first-order reaction rate and the temperature dependence was 

represented by the Arrhenius equation. It was found that the best fitting reaction 

mechanism for dehydration of xylose to FF was the mechanism where xylose is 

converted to an intermediate, followed by dehydration to FF and then conversion of 

FF to resinification products. (Dussan et al. 2015)  

Sener et al. (2018) conducted xylose dehydration reactions in γ-valeracetone (GVL) 

and water (80:20) at temperatures of 200 -250°C in 1-10 mM HCl and found that a 

93 % FF yield was obtained in this GVL water solvent system. In this monophasic, 

environmentally benign solvent system, degradation is minimised, leading to 

maximum FF yields. Reaction orders with respect to FF and xylose were found to 

follow apparent first-order kinetics. The rates of xylose and FF disappearance are 

proportional to the hydrogen ion concentration in aqueous media using mineral acids 

as catalysts. It was found that reaction temperature has the greatest influence on FF 

yield. (Sener et al., 2018)  

Chen et al. (2015) found that the FF degradation rate only depends on the reaction 

time and is not affected by the FF concentration. This characteristic conforms to a 

first order reaction. Due to the very low ionization constant, the AA used in their 

study has little effect on the hydrogen ion concentration. It was found that increasing 

temperature could accelerate the transformation rate of xylose into FF but the FF 

yield was unaffected. (Chen et al., 2015)  
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Degradation of D-xylose in either plain water or aqueous sulfuric acid at 

temperatures ranging from 180–220 °C resulted in the production of up to 50 mol% 

of FF. During the reaction, pyruvic acid, glycolic acid, lactic acid, FA and AA were 

formed (Oefner et al., 1992). Oefner et al. (1992) also found that there was no 

significant difference between the activation energy of the hydrolysis of D-xylose in 

plain water or sulfuric acid which is strange because Dussan et al. (2015) found that 

there were different ranges of activation energies for different acid catalysts.  

Wang et al. (2018) found that chromium (III) enhanced the reaction rate of xylose 

conversion to FF in sulfuric acid solution. Chromium (III) addition favoured the main 

reaction to FF without significantly increasing the rate of the consecutive side 

reaction. Xylose conversion in sulfuric acid solution in a stainless-steel reactor was 

higher than xylose conversion in pure sulfuric acid (non-steel reactor). Wang et al. 

(2018) chose first order reaction kinetics for this analysis and the experimental data 

was shown to fit well. Wang et al. (2018) conducted the conversion of xylose to FF in 

50 mM sulfuric acid in both 316 stainless-steel and a reactor lined with glass and 

coated with Teflon. It was found that the reaction in 316SS has an apparent rate 

constant of almost three times that of the glass lined reactor. When using only 

chromium (III) sulfate, the reaction from FF to FF degradation products is greatly 

reduced and can be reduced to 0 when more chromium is used (Wang et al. 2018) . 

In summary of these FF degradation reactions in xylose dehydration reactions, the 

FF yield in biphasic reactors doesn’t exceed 50 % irrespective of temperature, 

mineral acid catalyst concentration and xylose concentration. FF degradation follows 

first-order reaction kinetics. FF is formed from xylose via an intermediate. Increased 

temperature increased the rate of xylose transformation but did not increase FF 

yield. Chromium (III) enhances the reaction rate of xylose conversion to FF but does 

not enhance the rate of degradation reactions and in fact reduces the FF 

degradation reactions. 316 stainless-steel also enhances the xylose conversion to 

FF. 

2.6 Extent of fragmentation, resinification & condensation reactions 

Based on the lack of a trend amongst the studies in Table 3 for the quantity of FA 

detected,it can be said that the fragmentation reaction is not affected by acid catalyst 

concentration, initial FF concentration or reaction temperature. The studies in Table 
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3 make use of various different acid catalysts but in the present study, the factors 

affecting fragmentation will be elucidated for sulfuric acid. 

Zeitsch (2000) believed that the propensity for resinification decreases with 

increasing temperature and that at higher temperatures, FF is more easily consumed 

in condensation reactions than in resinification reactions (Zeitsch, 2000). Sener et al. 

(2018) found the opposite, that condensation was negligible in their xylose 

dehydration reactions in GVL at 200 – 250 °C, 0.001 – 0.01 M H2SO4/HCl and 

0.066 - 0.66 M xylose concentration (7.2 – 72 g/L maximum FF yield) (Sener et al., 

2018). The present study covers initial FF concentrations of 15-60 g/L and sulfuric 

acid concentrations of 0.05 - 0.2 M, i.e. the acid concentration that Sener et al.(2018) 

used is ±5 % of the acid concentration used in this study and the reaction 

temperature that they used is ±50℃ higher. Sener et al.(2018) studied xylose 

dehydration (not pure FF degradation) in a biphasic reactor (GVL-water) and 

concluded that FF loss due to condensation of xylose and FF is minimized at 

elevated temperature. This conclusion was not tested in this study because a) pure 

FF was used and no xylose was present to facilitate condensation and b) a biphasic 

reactor was not used. If their postulation is correct, that FF loss due to condensation 

of xylose and FF is minimized at elevated temperature, then an interesting 

optimization problem exists. Elevated temperature causes more resinification but 

condensation is minimised. Karinen, Vilonen & Niemelä (2011) found that the 

selectivity of FF in xylose dehydration gradually increases with time, and at 140 °C, 

for example, a maximum selectivity is obtained after 9 h. Thereafter the selectivity 

starts to decrease because of degradation reactions of FF, such as the condensation 

(Karinen, Vilonen & Niemelä, 2011). The implication of this finding is that the reaction 

duration is also a factor that should be considered when optimizing degradation. 
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3. Objectives 

3.1 Problem Statement  

FF degrades in the same dilute acidic reaction medium in which it is formed. 

Degradation products (humins & FA) are formed in this study as a result of 

resinification and fragmentation reactions. A clear reaction order for FF degradation 

has not been established. The reaction conditions under which FA & humins form 

and the relationship between these conditions (temperature, catalyst concentration & 

FF concentration) and the amount of degradation products formed is unknown. Once 

humins are formed, there is no strategy to deal with them and no valorisation plan 

exists. 

3.2 Goals 

The following objectives have been identified for this study:  

To investigate FF degradation at industrially relevant conditions. To conduct mass 

balances which accounts for the products of pure FF degradation i.e. for the given 

reaction system. To establish the possible reaction mechanism, responsible for 

humins production based on elemental data of the humins. To determine how each 

degradation product is affected by the experimental factors. To select the 

appropriate kinetic scheme for pure FF degradation from literature. To establish what 

the reaction order of pure FF degradation is with respect to FF. To establish a 

valorisation method for humins. To determine whether a relationship exists between 

processing conditions and humins elemental composition. To determine whether 

functional groups are trapped in the humins structure by conducting a soxhlet wash 

and elemental analysis of the wash fluid.  
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3.3 Novelty  

Most literature which attempts to deal with yield loss has focussed on (expensive) 

extractive methods instead of attempting to bring clarity to the nature of the 

degradation reactions. Literature which has focused on understanding FF 

degradation has not been in harmonious agreement. By performing degradation 

experiments with FF alone (without xylose), it is possible to more accurately 

determine the kinetics of resinification and fragmentation of FF independently. This 

study involves the clarification of the extent to which degradation products are 

formed under various reaction conditions. Although degradation studies have been 

conducted before (See Table 6), using pure FF as precursor, this study makes use 

of industrially relevant operating conditions. Actual industrial operating conditions are 

Temperature:165−180°C, FF Concentration:3.0−5.0% & Acid 

concentration:0.3−1.0% (H2SO4) 
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Table 6: FF degradation studies from pure FF 

Reference Acid Acid Conc. 

(wt%) 

Furfural 

Conc. (wt%) 

Temp (°C) 

(Williams & Dunlop, 

1948) 

H2SO4 

& HCl 

0.48 (H2SO4) 

& 0.36 (HCl) 

0.10-0.21 150 - 210 

(Marcotullio et al., 

2009) 

H2SO4  0.36-1.43 0.58-0.70 150 - 200 

(Lamminpaa et al., 

2014) 

HCOOH  2.00-30.00 0.48-1.54 160 - 200 

(Danon, Van Der 

Aa, et al., 2013)  

HCl 0,18 0,48 160 - 200 

(Rose et al., 2000) HCl 0.36 1.00 130 - 170 

Present work H2SO4  0.50-2.00 1.50-6.00 140-200 
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4. Material & methods 

4.1 Experimental setup 

A Büchiglasuster Hastelloy C-22 polyclave reactor (6), as shown in Figure 18 and 

Figure 19, was used for this research. The volume of the reactor was 2.1 L. The 

C-22 alloy is highly corrosion and wear resistant compared to common iron alloys 

and for a boiling aqueous solution of 2 % sulfuric acid, the corrosion on Hastelloy 

C-22 is only 125 μm/y. Maximum allowable pressure and temperature were 60 bar 

and 250 °C, respectively. The reactor was surrounded with a jacket which was used 

for heating/cooling the reactor. The jacket was heated electrically and the reactor 

was cooled with cooling water which runs through the jacket. At the bottom of the 

reactor there was a flush valve (7) used to empty the reactor and at the top of the 

reactor there were 3 needle valves (4, 5 & 9). One of the needle valves was for the 

sampling system and the other two were for the dosing system. The sampling 

system was made up of a 1/8” stainless steel button filter to keep humins out of the 

samples (8), a 3 mm pipe running from the filter inside the reactor to the needle 

valve outside the reactor (9). After the needle valve, the 3 mm tubing was coiled (10) 

and placed in a small ice bath (11).  

The dosing system was made up of a nitrogen bottle (1), followed by a 3-way valve 

(2) which was open to the atmosphere on one side (which could be used to release 

excess nitrogen) and on the other side it was connected to a bomb (3). After the 

bomb there are two needle valves (4 & 5); one below the bomb (so that the bomb 

can be filled while it is closed) and one that opens to the reactor once the bomb has 

been prepared. 
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Figure 18: Schematic diagram of experimental setup for the polyclave reactor, 

labelled according to the legend. 

 

 

Figure 19: Photo of experimental setup, labelled according to the legend in the 

schematic diagram. 
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The bomb could be disconnected from the system and loaded with 100 mL fluid at 5, 

10 and 20 wt% H2SO4. For each run, the reactor was loaded with the required 

amount of FF and reverse osmosis water to give a total of 900 mL, thus bringing the 

total volume to 1 L. Once the FF water mixture had been prepared and loaded, it 

was mixed at 500 RPM for a few minutes before the first sample was taken 

manually. 500 RPM was chosen because it was a value that appeared in other 

literature and O’neil et al. (2009) found that for xylose degradation at 1200 RPM and 

at 800 RPM there was no difference in xylose concentration profile, therefore the 

reaction is not affected by increased stirring speed and so 500 RPM should suffice 

(O’Neil et al., 2009). After the first sample had been taken, heating began. The 

heating rate was not the same for the three reaction temperatures but acid was only 

added once the reactor was at the desired reaction temperature so the heating 

rate/duration had no effect on the reaction kinetics. 

The FF used in this work was from Illovo Sezela (KZN) and was 99.2 wt% FF. The 

H2SO4 used in this work was from Fluka Analytical (Sigma-Aldrich) with 95 – 97 % 

purity. 

The experiments were designed based on full factorial design with 3 parameters at 3 

levels, as shown in Table 7. 

Table 7: Factors of factorial design & naming convention 

Temperature 140 °C: A 170 °C: B 200 °C: C 

FF Concentration 1.5 wt%: X 3.0 wt%: Y 6.0 wt%: Z 

Sulfuric acid 

Concentration 
0.5 wt%: α 1.0 wt%: β 2.0 wt%: γ 

The investigated parameters include initial FF concentration (at the start of 

degradation), sulfuric acid concentration and temperature. The aim was to select an 

upper and lower level of (initial) FF concentration from previous studies that 

represents the current industrial operations. The solubility limit of FF is 83 g/L 

(8.23 wt%) and the average low FF concentration (of previous studies) is 3.3 g/L 

(0.33 wt%), so the three chosen concentrations were 1.5 wt% (±15.07 g/L), 3.0 wt% 

(±30.19 g/L) and 6.0 wt % (60.64 g/L). In this study, sulfuric acid was used as 

mineral acid catalyst because it is the most widely used homogeneous acid catalyst 
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commercially and academically. The sulfuric acid concentrations for experiments in 

the present study were 0.5 wt%, 1 wt% and 2 wt% (±0.1 N, 0.2 N & 0.4 N). The 

previous studies investigated catalyst concentrations of 0.04 - 8 N (See Table 4). 

Higher normality of acid was only used for the weaker acids (FA), most acid catalysts 

were used at concentrations of 0.04 - 0.8 N (H2SO4 & HCl). Since most industrial 

reactors operate between 140 °C and 200 °C and academic studies also fall into this 

range, 140 °C, 170 °C and 200 °C were selected for this research.  

4.2 Experimental Procedure 

The reactor was heated with electrical elements in the jacket which were controlled 

by a Programmable Logic Controller (PLC) which made use of proportional–integral–

derivative (PID) values that were determined for each of the reaction temperatures. 

As the temperature increased, the pressure in the reactor also rose due to the 

vapour pressure of the solution at increased temperature and due to the pressure 

increase from bombing in the acid catalyst with nitrogen from the nitrogen bottle (1). 

At reaction temperature, 10 samples were taken (one every 10 minutes) while the 

degradation reaction proceeded. The ice used to cool the samples was replenished 

for each run and it was necessary to cool each sample from the reactor temperature 

(140/170/200 °C) down to ambient temperature. The needle valve (8) was only 

opened to draw a sample and there was a pressure difference to push the sample 

out. Before the second sample was taken, the acid water mixture was bombed in 

with nitrogen gas so all the degradation that occurred during the heat-up process 

was uncatalyzed because the acid had not been added yet.  

After 10 samples had been taken, the cool-down process began. Once the reactor 

had cooled down significantly (60 °C), it was emptied through the flush valve and 

while this was happening the last sample was taken. It is noted that this final sample 

was not filtered and so it was darker than the other samples. The humins were 

collected at the end through the flush valve and then that solution was filtered using 

grade 1289 filter paper (8-12µm retention rate).  

The reactor was then rinsed with water until the water coming out after a rinse was 

clear. All the “dirty” water was collected and filtered through the same grade 1289 

filter paper. The first rinse with water was conducted at 60 °C and the reactor was 

stirred at 500 RPM. Once the rinse water ran clear (after 2 or 3 rinses with water), 
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sodium hydroxide was used to clean the reactor. A solution of approximately 0.1 M 

NaOH was used and after this NaOH wash, the reactor was rinsed again with water 

to remove residual NaOH so that the reactor was ready for the next experiment. The 

1289 filter paper was placed in a Büchner funnel and after all the rinse water had 

passed through it and only humins remained, the filter paper was removed (with 

humins) and dried overnight in a kiln at 70 °C. The dry humins were then weighed 

and stored for Elemental Analysis.  

Following this procedure, after each run 12 samples were prepared for High-

Performance Liquid Chromatography (HPLC). Each sample was diluted with water in 

the ratio of 1:20 into a 2 mL Eppendorf tube and filtered through a 0.22 micron 

syringe filter into the HPLC vial. The pH of this solution was between 0.674 and 

1.278. The HPLC apparatus made use of an RI detector which was calibrated to 

detect FA and FF.  

Before starting experimentation, each run was named according to Table 7 so the 

run named Ayβ, for instance, shows that the reactor is heated to 140 °C, contains 

3.0 wt% FF initially and is catalysed by 1 wt% H2SO4. All the runs were then 

randomized on Excel and a list of the 27 runs was produced in random order to 

remove bias. Once a fair number of runs had been completed for the first time, 

duplicate runs were performed to ensure repeatability of the experiments. 

4.3 Kinetic Modelling 

The study aimed to select a standard kinetic model of the acid catalysed FF 

degradation reaction from literature which best fits experimental data. The kinetic 

model allows for comparisons with previous work in this topic area and leads to 

understanding of the effects of the process conditions. Previous studies have 

generally focussed on the FF formation reaction and dealt with FF degradation 

simultaneously (Antal et al., 1991; Dunlop, 1948) but in this study, FF degradation is 

modelled separately.  

For the kinetic model (see Equation 2), 𝐴, 𝐸𝑎, 𝑚 and 𝑛 were directly estimated using 

a maximum-likelihood approach, based on the minimisation of the sum of squared 

normalized errors (SSNE) between the ensemble of all the experimental and 

predicted concentrations at the different temperatures, initial FF concentrations and 

acid catalyst concentrations. The SSNE equation is given by Danon, Van Der Aa & 
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De Jong, 2013 (Equation 10). The minimisation was implemented in Python 3.5 and 

the “odeint” module was used to calculate all integrations. 

The concentration data was entered as text in a text file and input into Python using 

the “NumPy” “genfromtxt” function which generates an array from a text file. Each 

integration used 100 points for the “odeint” integration. A function, outputting the 

hydrogen ion concentration was developed for sulfuric acid. The function considered 

the sulfuric acid concentration as well as the temperature to calculate the hydrogen 

ion concentration under the investigated conditions.  

The model accounts for the sulfuric acid concentration and the dissociation of 

sulfuric acid with respect to temperature and this relationship is given by Zeitsch 

(2000). Sulfuric acid has 2 available hydrogen ions to release per sulfuric acid 

molecule in an aqueous solution during dissociation, therefore it is referred to as 

diprotic. The first stage of dissociation produces a hydronium ion and a hydrogen 

sulfate ion. The second stage involves the reaction of the hydrogen sulphate ion with 

a second water molecule to produce a second hydronium ion and a sulfate ion. 

Since sulfuric acid is a strong acid, the first dissociation reaction goes almost to 

completion and has a high Ka value (Ka expresses how easily the acid releases a 

proton, in other words, its strength as an acid). The second dissociation reaction has 

a much lower Ka value (KaH2SO4,1 = 1 × 103 M and KaH2SO4,2 ≈ 6 × 10−5 M) and is 

influenced by temperature, i.e. as temperature increases, the dissociation constant 

for the second dissociation step decreases. At 50 °C, KaH2SO4,2 ≈ 5.6 × 10−2 M and 

at 200 °C KaH2SO4,2 ≈ 6 × 10−5 M (Zeitsch, 2000). 

To calculate the hydrogen ion concentration, the following equations were used: 

KaH2𝑆𝑂4,1 ≥ 1 

KaH2𝑆𝑂4,2 = f(T) ≈= ±6 × 10−5 

[H+][HSO4
−] − [H2SO4] × KaH2𝑆𝑂4

= 0 

[H+] − [HSO4
−] = 0 

KaH2𝑆𝑂4
=

[H+][H+]

[H2SO4]
 

[H2SO4] = [H2SO4,0] − [H+] 

8 
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∴ [H+]2 = (([H2SO4,0] − [H+]) × KaH2𝑆𝑂4,1) + (([H2SO4,0] − [H+]) × KaH2𝑆𝑂4,2) 

where KaH2𝑆𝑂4,1 is the first dissociation constant for sulfuric acid, KaH2𝑆𝑂4,2 is the 

second dissociation constant and KaH2𝑆𝑂4
 is a general term for H2SO4 dissociation 

that applies to both steps of dissociation. [H+], [HSO4
−] and [H2SO4] are the molar 

concentrations of each component and [H2SO4,0] is the initial concentration of 

H2SO4. The solution for [H+] is found by solving the quadratic equation. 

The differential equation which was integrated for each run was as follows: 

dCFF

dt
= −𝐴′e

−
Ea
R

×(
1
T

−
1

T0
)

× CFF
n × [H+]m 9 

where CFF is FF concentration, A’ is the pre-exponential factor (min−1), Ea is the 

activation energy (kJ∙mol−1), R is the universal gas constant (kJ∙mol−1∙K−1), T is the 

temperature (K) and T0 is the reference temperature (453.15 K). The reaction order 

is given by n, the hydrogen ion concentration is given by [H+] (M) and m is the 

index factor of the hydrogen ion concentration: a unitless hydrogen ion 

concentration exponent. 

The sum of squared normalized errors (SSNE) was then calculated by first passing 

the model FF concentrations (calculated by integrating Equation 9) through the 

“NumPy” “interp” function which gave the same FF concentrations but at discrete 

data-points, i.e. the 10 time values input via the “genfromtxt” function. Now 

comparing the 10 model FF concentrations and the 10 FF concentrations from 

experimental data, the SSNE could be calculated. For each set of FF concentrations, 

a SSNE value was calculated as follows: 

SSNE = ∑ (
CFFn

CFF0

−
CFFi

CFF0

)

2N

i=1

 10 

where CFFn
 is a FF concentration (data point), CFF0

 is the initial FF concentration, 

CFFi
 is a model FF concentration that comes from the “interp” function and N is the 

total number of values in that run. 

As the model fits the data more accurately, the SSNE for that run will be smaller. To 

find the best fit for all the runs, a minimisation was run with the goal of producing the 

lowest SSNE values for all runs. 𝐴′, 𝐸𝑎, 𝑚 and 𝑛 were the variables available to the 
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minimisation function to produce the lowest SSNE values. This method of estimating 

kinetic parameters was used by Danon et al. (2013) who estimated kinetic 

parameters using a maximum-likelihood approach, based on the minimization of the 

SSNE between all of the experimental and predicted concentrations for their work 

(Danon et al., 2013). 

For the minimisation process, the Nelder-Mead method was applied which is a 

commonly applied numerical method used to find the minimum or maximum of an 

objective function in a multidimensional space. It is applied to nonlinear optimisation 

problems for which derivatives may not be known. The “minimise” function is part of 

the “SciPy.optimize” package in Python and was limited to 1000 iterations. 

Coefficients of determination were calculated for each run to assess the accuracy of 

the fits. The coefficients of determination/ R2 were calculated as follows: 

R2 = 100 × (
∑ xy

√(∑ x2 × ∑ y2)
)

2

 11 

where ∑ x2 = ∑(Ci − mn)2
, Ci stands for each value within the experimental data 

set and mn shows the mean value for that data set. ∑ y2=∑(CFinterpi − CFmn)2
, 

CFinterpi is each value within the model data set which has been passed through 

the “interp” function to give 10 discrete FF concentrations and CFmn is the mean 

value of those 10 data points. ∑ xy=(Ci − mn) × (CFinterpi − CFmn). 

The 2 variables A and Ea, which were manipulated in the minimisation were used to 

calculate a value for lnA , the pre-exponential factor which can now be compared to 

literature values: 

lnA = ln(
𝐴′

60
∙

Ea

RT0 
   ) 12 

where A and Ea are the pre-exponential factor (s−1) and activation energy 

(kJ∙mol−1) respectively and T0 is the reference temperature (453.15 K) 

Finally, the fitted data is plotted against the experimental data with the coefficients of 

determination for each run displayed on the plot legend.  
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5. Results & discussion 

The aim of this study was to investigate the kinetics of FF degradation and evaluate 

the significance of different operating condition affecting the reaction. Therefore, a 

set of 27 runs was designed considering three different levels for temperature, initial 

FF concentration and sulfuric acid concentration. FF degradation was measured in 

terms of humins concentration, FA concentration and FF degradation rate. The 

products of degradation and the degradation rate are listed in Table 8 for each level 

of each experimental factor. 

Table 8: Experimental factors for FF degradation 

Temperature 

(°C) 

Initial Furfural 

concentration 

(wt%) 

Sulfuric acid 

concentration 

(wt%) 

Formic acid 

concentration 

(g/L) 

Humins 

(g/L) 

Furfural 

degradation 

rate 

(g/L/min) 

140 1.5 0.5 0.38 0.04 0.01 

140 1.5 1 3.29 0.56 0.01 

140 1.5 2 4.3 0.38 0.02 

140 3 0.5 4.86 0.55 0.02 

140 3 1 0.24 1.44 0.02 

140 3 2 9.92 1.42 0.04 

140 6 0.5 10.53 0.99 0.02 

140 6 1 11.78 2.39 0.02 

140 6 2 11.75 2.42 0.09 

170 1.5 0.5 3.57 0.61 0.01 

170 1.5 1 2.1 2 0.04 

170 1.5 2 3.95 1.91 0.07 

170 3 0.5 5.68 0.82 0.03 

170 3 1 6.33 4 0.09 
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170 3 2 7.29 5.04 0.17 

170 6 0.5 6.9 3 0.14 

170 6 1 13.69 6.32 0.19 

170 6 2 11.8 21.32 0.33 

200 1.5 0.5 1.13 1.75 0.07 

200 1.5 1 1.82 5 0.12 

200 1.5 2 2.8 6.55 0.1 

200 3 0.5 5.54 7.67 0.1 

200 3 1 6.94 11.86 0.21 

200 3 2 3.3 10.02 0.21 

200 6 0.5 12.04 17.36 0.36 

200 6 1 6.48 16.31 0.51 

200 6 2 12.36 33.77 0.54 

5.1. Mass balance 

A range of 3-30 % of mass was unaccounted for (due to analytical error or smaller 

components that were not detected by the HPLC). FA mass percentage varied in the 

range of 1.7-56%. Humins mass percentage varied in the range of 2.6-33%. 

Unreacted FF varied in the range of 14-88%. The most significant aspect of the 

mass balances was the fact that the portion of FF that reacted in degradation 

reactions to form FA (fragmentation) was much higher than what was reported in 

literature. 

 

5.2 Kinetics 

The solid lines in Figure 20 represent the model fit and the dots represent 

experimental data points. The coefficients of determination (R2 values) for all the 
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experiments are given in Figure 20, which indicates that the chosen model agrees 

well with the experimental data since the R2 values range from 69.33%−99.93%. 

It should be mentioned that the pre-exponential factor, activation energy and order 

(See Figure 20) are determined via minimisation of all the runs. Based on the results, 

FF degradation under the reaction conditions of this study showed an average 

reaction order of 1.15 with respect to FF and 0.926 with respect to the hydrogen ion. 

The natural log of the pre-exponential factor (lnA) detected for this study was 

20.221 s-1 and the activation energy was 93 630 J∙mol-1. These values are similar to 

those found in previous studies (See Table 4). Williams & Dunlop (1948) found that 

the destruction of furfural was first order with respect to hydrogen ion concentration 

as well as to FF concentration (Williams & Dunlop, 1948). They conducted 

experiments at 150 - 210 °C and acid catalyst concentrations of 0.025 & 0.05 M 

(H2SO4) and 0.05 & 0.1 M (HCl) (Williams & Dunlop, 1948). Rose, Epstein & Watkinson 

(2000) conducted FF degradation reactions at 130 - 170°C and acid catalyst 

concentration of 0.1 M (HCl) and observed that first-order reaction kinetics best 

described their experimental results (Rose et al., 2000). First-order kinetics for FF 

degradation have been detected by other studies (Jing & Lü, 2007; Marcotullio et al., 

2009; Weingarten et al., 2010) (See Table 5), both for pure FF degradation and for 

systems where xylose is present and degradation via condensation occurs. 

 

Figure 20: Kinetics for all runs 
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5.2.1 Kinetics for specified sulfuric acid and FF concentrations 

Figure 21-Figure 29 demonstrate the kinetics of the FF degradation at different initial 

FF and sulfuric acid concentrations. As can be seen from the results, considering 

reaction order of 1 for FF degradation is a reasonable assumption since the real 

value from the kinetic model is found to be 1.15 overall (See Figure 20). The results 

agree well with literature. Root et al. (1959)observed that when acidified aqueous FF 

was reacted for various lengths of time, FF degradation followed a first-order 

reaction (Root et al., 1959). 

However, Danon, Van Der Aa & De Jong (2013) reported uncertainty about a 

second-order or first-order model for their experimental data on FF degradation. 

(Danon et al., 2013). Danon, Marcotullio & De Jong (2013) found that the 

degradation reaction showed dependency on the FF concentration (which indicates 

a higher reaction order) at the following conditions: 36.4-145.5 mM sulfuric acid, 150-

200 °C, 60.4-72.5 mM FF (Danon, Marcotullio & De Jong, 2013). The present study 

was conducted using pure FF as precursor for degradation and high concentrations 

of FF were used (to mimic industrial operating conditions). (Close to) First order 

kinetics were discovered for rate of FF degradation with respect to FF concentration. 

The kinetic variables discovered in this work, compared to previous studies (See 

Table 4) which were conducted in the presence and in the absence of xylose showed 

similar results, indicating that resinification perhaps occurs to a greater extent than 

condensation as the occurrence of condensation doesn’t seem to greatly influence 

reaction kinetics. 
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Figure 21: FF degradation experimental data and fitted model values with 1.5 wt% 

FF and 0.5 wt% H2SO4 

 

Figure 22: FF degradation experimental data and fitted model values with 1.5 wt% 

FF and 1 wt% H2SO4 
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Figure 23: FF degradation experimental data and fitted model values with 1.5 wt% 

FF and 2 wt% H2SO4 

 

Figure 24: FF degradation experimental data and fitted model values with 3.0 wt% 

FF and 0.5 wt% H2SO4 
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Figure 25: FF degradation experimental data and fitted model values with 3.0 wt% 

FF and 1 wt% H2SO4 

 

Figure 26: FF degradation experimental data and fitted model values with 3.0 wt% 

FF and 2 wt% H2SO4 
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Figure 27: FF degradation experimental data and fitted model values with 6.0 wt% 

FF and 0.5 wt% H2SO4 

 

Figure 28: FF degradation experimental data and fitted model values with 6.0 wt% 

FF and 1 wt% H2SO4 
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Figure 29: FF degradation experimental data and fitted model values with 6.0 wt% 

FF and 2 wt% H2SO4 
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5.2.2 Repeatability 

The following figures show the concentration profiles of duplicate runs for the same 

set of reaction conditions. These duplicates demonstrate that the data exhibits good 

repeatability. In some of the previous datasets (e.g. Figure 26 & Figure 28), data was 

recorded where 
𝐶𝑓

𝐶𝑓,0
> 1which is not possible because FF degradation isn’t 

reversible, i.e. FF can’t be generated and so 𝐶𝑓,0 is the maximum FF concentration 

and the data points recorded above this concentration are erroneous. This error 

arose, most probably, in HPLC analysis of the samples or in sample preparation 

(dilution) of samples for HPLC analysis. It would have been ideal to repeat these 

runs, but unfortunately unforeseen circumstances did not allow for this. 

 

Figure 30: Experimental data from duplicate runs at 170 °C, 1.5 wt% FF & 2 % 

sulfuric acid 
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Figure 31: Experimental data from duplicate runs at 200 °C, 1.5 wt% FF & 1 % 

sulfuric acid 

 

Figure 32: Experimental data from duplicate runs at 200 °C, 3 wt% FF & 1 % sulfuric 

acid 
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Figure 33: Experimental data from duplicate runs at 200 °C, 6 wt% FF & 3 % sulfuric 

acid 
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5.3. Rate of furfural degradation 

The statistical analysis of the experimental data, via p-value (presented in Table 9) 

demonstrated that FF degradation rate was a function of temperature and initial FF 

concentration. Temperature and initial FF concentration significantly affect the rate of 

FF degradation (p<0.05). This relationship is shown in Figure 34 and as can be seen 

the degradation rate increased more with temperature at higher initial FF 

concentration.  

 

Figure 34: 3D Surface Plot of FF Degradation Rate (g ∙ L−1 ∙ min−1) against 

Temperature (°C) and Initial FF Concentration (wt%) 

Table 9: Asymptotic significance of experimental factors with respect to FF 

degradation rate 

Factor p-value 

Temperature 0,000038 

Initial FF Concentration 0,000111 

Sulfuric Acid Concentration 0,074267 

The relationship between FF degradation rate and sulfuric acid concentration/ initial 

FF concentration is shown in Figure 35. From this surface plot, it can be seen that 

sulfuric acid concentration has a far less significant effect on FF degradation rate 
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than initial FF concentration which agrees with the p-value of 0.074 (>0.05). 

However, the effects of sulfuric acid concentration on FF degradation rate should not 

be ignored. Williams & Dunlop (1948) found that “the rate of destruction of FF, at 

fixed initial acid concentration and temperature, was found to be directly proportional 

to the concentration of FF”(Williams & Dunlop, 1948). Dunlop (1948) established that 

the rate of FF degradation was proportional to the concentration of FF and to the 

hydrogen ion concentration (Dunlop, 1948). Chen et al. (2015) observed that higher 

FF concentration in their reaction system accelerated the degradation reaction rate 

of FF (Chen et al., 2015). Danon, Marcotullio & De Jong (2013) state that the rate of 

FF degradation showed dependency not only on the hydrogen ion concentration and 

the temperature, but also on the FF concentration (Danon, Marcotullio & De Jong, 

2013). Some researchers investiagted the effects of acid concentration in terms of 

pH. Lamminpaa, Ahola & Tanskanen (2012) found that for FA catalysed xylose 

dehydration into FF and FF decomposition, the pH of the reactant solutions has 

more effect on reaction rate of FF decomposition when temperature rises 

(Lamminpaa et al., 2012). Sener et al. (2018) found that the rate of FF 

disappearance was proportional to the hydrogen ion concentration in aqueous media 

using mineral acids as catalysts. (Sener et al., 2018). These sources, whether 

gaging the acidity of the degradation reaction by pH, hydrogen ion concentration or 

mineral acid concentration, all support the notion that the rate of FF degradation is a 

function of all 3 experimental factors (initial FF concentration, sulfuric acid 

concentration and reaction temperature). 
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Figure 35: 3D Surface Plot of FF Degradation Rate (g ∙ L−1 ∙ min−1) against Initial FF 

Concentration (wt%) and Sulfuric acid concentration (wt%) 

5.4. Humins 

 5.4.1 Humins composition 

The average C:H:O values for all the humins generated in this study was determined 

as 63.75:4.07:32.17. This value is very similar to C:H:O ratio of FF (62.5:4.2:33.3), 

which is logical since FF is the precursor to humins. This also agrees well with 

literature as the C:H:O content for humins formed from many sources was reported 

to be approximately 66:5:29 (See Table 2). 

The composition of humins formed in this study was fairly uniform and the 

composition was independent of processing conditions (temperature, acid and FF 

concentration). The mean composition of the humins is presented in Table 10 

(percentage C, H & O) as well as the variance and standard deviation for the 

percentages of C, H & O.  

The standard deviation (maximum 2.36 for O) and variance (maximum 5.68 for O) of 

the results shows that the experimental results do not vary much from the average 

values (See Table 10). 
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Table 10: Standard deviation, variance and mean for C, H & O elemental composition of 

humins formed in this study 

 C H O 

Mean 63.75 4.07 32.17 

Variance 5.20 0.02 5.68 

Standard Deviation 2.25 0.14 2.36 

5.4.2 Humins formation mechanism 

Based on the results, from the 5 potential mechanisms for humin formation (Table 11), 

the Sanchez mechanism describes the humin formation over the operating conditions 

examined in this study because the average C:H:O composition of the humins in this 

study (63.75:4.07:32.17) on the Van Krevelen diagram (demonstrated in Figure 36) 

was located very close to a propagation (±10 FF molecules) of the molecule formed 

through the Sanchez mechanism (64.74:4.00:31.26). This molecule is illustrated in 

Figure 2.

Stellenbosch University  https://scholar.sun.ac.za



66 
 

Table 11: Summary of possible FF degradation mechanisms which produce humins 

Qualifying/disqualifying factor Key molecule Mechanism name Ref. 

This molecule (trifurylic dialdehyde) is cited often in literature 

as the molecule that is repeated in the humins structure. The 

propagation of the molecule (±10 FF molecules) formed by 

the Sanchez mechanism is plotted in Figure 36 (green 

circles) and it can be seen that it is very similar to the 

average composition of the humins formed in this study. 

 

Sanchez mechanism (Gandini & 

Belgacem, 1997; 

Mariscal et al., 

2016; Sánchez, 

Hernández and 

Keresztury, 1994; 

Sumerskii et al., 

2010; Van 

Zandvoort et al., 

2013)  

The composition of the humin structure moves away from the 

C:H:O average composition of the humins in this study on the 

Van Krevelen diagram as it grows (becomes more 

conjugated) (See Figure 36 : yellow circles). 
 

O’Neil mechanism (O’Neil et al., 2009) 

The Diels-alder molecule formed from multiple FF molecules 

is plotted on the Van Krevelen diagram (Figure 36 : blue 

stars) and as the molecule becomes more conjugated, the 

composition moves away from the humins on the 

Van Krevelen diagram. 

 

Danon mechanism (Danon et al., 2013) 
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3,8-dihydroxy-2-methylchromone (DMC) was found to be a 

major product in the acid degradation of xylose and xylose is 

not involved in resinification so it seems unlikely that DMC 

forms part of the humin structure.  
 

Rasmussen mechanism (Rasmussen et al., 

2014) 

1,2,5-tripentanon (TP) has eno and keto forms and can 

(potentially) react with FF in aldol addition/condensation 

reactions. One molecule of TP is plotted on the Van Krevelen 

diagram as well as TP bonded to 1 FF molecule and the 

direction of the growth is away from the position of the 

average composition of humins in this study. 

 

Lamminpaa mechanism (Lamminpaa et al., 

2014) 
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A Van Krevelen diagram of FF, all the humins that were generated during degradation 

and the molecules formed by the potential humins formation mechanisms is plotted in 

Figure 36. A Van Krevelen diagram is a plot of the molar ratio O/C vs the molar ratio 

H/C (Wang et al., 2016). The solid line is the dehydration line (y = 
1

2
x) and components 

on the line are products of dehydration of components which are higher up on the line 

(i.e. loss of H2O which has 
O

H
=

16

16
2

1

=
1

2
 hence the gradient of the dehydration line). FF 

has the molecular formula C5H4O2 and thus has an O/C ratio of 
32

16
60

12

=
2

5
 and H/C ratio 

of 
4

1
60

12

=
4

5
 and 

2

5
=

1

2
∙

4

5
 hence FF falls on the dehydration line.  

As demonstrated in Figure 36, FF undergoes dehydration in the formation of humins 

because the humins fall on the dehydration line below and to the left of FF which 

indicates that this molecule is a product of dehydration of FF. Since the Sanchez 

mechanism involves a dehydration step (See Figure 2), it is further confirmed that 

the Sanchez mechanism is responsible for the formation of humins in this study. The 

composition of the molecules generated by the Sanchez mechanism, illustrated in 

Figure 36 (green circles), are very near the point which represents the average 

composition of humins in the present study (red triangle). 

Previous studies have also used a Van Krevelen diagram to determine the reactions 

leading to humin formation. Wang et al.(2016) explained that formation of humins was 

a result of severe dehydration and condensation reactions catalysed by strong acid, 

because humins in their study were located near the dehydration reaction line of the 

Van Krevelen diagram, below and to the left of FF (Wang et al., 2016). Rasrendra et 

al. (2013) found that the samples prepared in their study as well as literature data are 

near to the dehydration line, suggesting that dehydration reactions dominate in the 

course of the reactions (Rasrendra et al. 2013). 

In Figure 36(Van Krevelen diagram.), the compositions of the humins formed by the 

various mechanisms are plotted and where a solid line is plotted, the arrow points in 

the direction of the humin molecule as it becomes more conjugated (grows). 
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Figure 36: Van Krevelen diagram for humins formed during FF degradation 

The predicted conjugated molecule for the O’Neil mechanism is plotted in Figure 36, 

showing that this structure is not responsible for the humins formed in this study. The 

Danon mechanism involves a Diels-Alder reaction and the furan ring of FF is not 

susceptible to Diels–Alder reactions (See section 2.3.3). The composition of the 

molecule produced by the Danon mechanism moves away from the average 

composition of humins in this study (on the Van Krevelen diagram) as it becomes more 

conjugated (See Figure 36). The composition of the molecule formed in the 

Lamminpaa mechanism is far away from the average composition of the humins in 

this study on the Van Krevelen diagram so it is unlikely that it is the molecule involved 

in humin formation. The Rasmussen mechanism involves DMC as an intermediate in 

the humin formation reaction and it has been demonstrated that this molecule is an 

unlikely participant in the humin formation reaction (See section 2.2.3) 

In summary, the Sanchez mechanism was found to be responsible for the formation 

of the humins formed in this study by two criteria: 

• The humins formation reaction involves a dehydration reaction, this is clear 

because the humins on average are found below FF to the left on the 
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dehydration line (see Figure 36). The Sanchez mechanism involves a 

dehydration step. 

• The Sanchez mechanism is the only mechanism that moves closer to the 

humins composition of humins in the present study as the humin molecule 

becomes more conjugated, i.e. this conjugated humins molecule represents my 

humins. 

5.4.3 Humins soxhlet washing 

Humins were washed in a glass soxhlet extractor with water to determine the mass 

loss due to washing with water and to determine whether washing with water has 

any effect on humins composition. Washing with water had no major effect on the 

composition of the humins. The C:H:O values for humins, recorded every 8 hours 

are presented in Figure 37 and they are all very similar. The mass loss for the 

washing procedure is recorded in Table 12: 

In Table 12, it can be seen that there are no functional groups trapped in the humin 

structure because washing with water produces no significant mass loss. There was 

almost no change to the humins after each 8-hour washing period so one can 

conclude that there are no water-soluble components in the humins. Hoang et al. 

(2015) prepared humins from 1 M glucose in 0.01 M H2SO4 at 180 °C for 6 h. They 

also purified the humins via soxhlet extraction with water for 24 h to remove the 

sugar derivatives entrapped in the humins(Hoang et al., 2015). In the present study, 

sugars are not used so therefore no molecules are trapped in the humin structure. 

Table 12: Mass loss due to soxhlet washing of humins for 24 hours 

Repetition Mass Loss (%) 

Triplicate 1 1.19 

Triplicate 2 1.21 

Triplicate 3 1.17 
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Figure 37: C:H:O data for soxhlet washes 

5.4.4 Humins concentration 

The asymptotic significance (p-value) of each experimental factor on humin 

concentration which resulted from statistical analysis is given in In Table 13, which 

shows that temperature and initial FF concentration significantly affect the humins 

concentration (See Figure 38 & Figure 39). The effect of sulfuric acid is also 

important as demonstrated in Figure 38 even though the calculated ANOVA p-value 

is slightly larger than 0.05. 

Karinen, Vilonen & Niemelä (2011) found that the yields of humins in xylose to FF 

dehydration reactions was low at low temperatures, while it increased as a function 

of temperature. (Karinen et al., 2011). Atilio De Frias & Feng (2014) found that 

humins production increased by 30 % when increasing the reaction temperature 

from 170 °C to 180 °C for their reactions where sugarcane bagasse was converted in 

a batch reactor to FF via dilute sulfuric acid catalysis (Atilio De Frias & Feng, 2014). 

Wang, Balsara & Bell (2016) found that the formation of humins can be minimized by 

removal of FF, either by steam stripping or by liquid–liquid extraction, i.e. humins 

concentration is a function of initial FF concentration (Wang, Balsara & Bell, 2016).  
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Table 13: Asymptotic significance of experimental factors with respect to humins 

concentration 

Factor p-value 

Temperature 0,000430 

Initial FF Concentration 0,001887 

Sulfuric Acid Concentration 0,076333 

 

 

Figure 38: 3D Surface Plot of Humins Concentration (g/L) against Sulfuric Acid 

Concentration (wt%) and Initial FF Concentration (wt%) 
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Figure 39: 3D Surface Plot of Humins Concentration (g/L) against Temperature (°C) 

and Initial FF Concentration (wt%) 

5.5. Formic acid 

5.5.1 Overall quantity of formic acid produced 

The quantity of FA formed as a product of fragmentation was proportional to initial 

FF concentration and as demonstrated in Figure 40, FA concentration increases with 

an increase in the initial FF concentration. The p-values (ANOVA) for the 

experimental factors with respect to FA concentration reported in Table 14, prove the 

significant effect of initial FF concentration on FA concentration. The insignificant 

effect of temperature on FA formation has previously been reported by Rahubadda, 

Montoya & Haynes (2010)  

They found that for their study of the decomposition of C5 sugars under hot 

compressed water conditions (T=220-320 °C, P=200 bar), between 240°C and 

260°C, the FA yield increased up to 40 seconds and then started to decrease, i.e. FA 

formation is not directly related to temperature (Rahubadda, Montoya & Haynes, 

2010). The effect of initial FF concentration was not investigated previously. 
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Table 14: Asymptotic significance of experimental factors with respect to the mass 

of formic acid produced through fragmentation 

Factor p-value 

Temperature 0,645753 

Initial FF Concentration 0,000001 

Sulfuric Acid Concentration 0,174864 

 

 

Figure 40: 3D Surface Plot of Formic Acid Concentration (g/L) against Initial FF 

Concentration (wt%) and Temperature (°C) 

5.5.2 Extent of fragmentation reaction under studied conditions 

The results indicated that FA accounts for 1.7-56 % of the reacted FF which shows 

the significance of fragmentation in the FF degradation process under these 

(industrially relevant) reaction conditions. However, Marcotullio et al. (2009) stated 

that fragmentation played a small part in FF degradation (Marcotullio et al., 2009). It 

should be mentioned that the initial FF concentrations used by Marcotullio et al. 

(2009) was 0.0604 M & 0.0725 M compared to  
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0.157 M, 0.314 M & 0.631 M, applied in this study. The fact that their initial FF 

concentration was dilute was the reason that they found fragmentation to be less 

significant. 

As calculated in Equation 13, for each mol of FF degraded, 0.86 mol FA forms on 

average, which is slightly higher than the value reported in literature. Williams & 

Dunlop (1948) reported that the total formed FA never exceeded two thirds of a mole 

per mole of FF lost (Williams & Dunlop, 1948). It is worth mentioning that their 

experiments were conducted on FF only and xylose wasn’t present in the reaction 

mixture (like the present study). Their study was conducted with a FF loading of 

10 g/L and the present study was conducted with a FF loading of 15, 30 & 60 g/L 

hence more FA is formed via fragmentation. 

%FF(reacted)

mmFF
× x =

%FA

mmFA
 

1 − 0.5312

96.08
× x =

0.1931

46.03
 

13 

𝑥 = 0.86 

where 0.5312 is the average 53.12 % unreacted FF from mass balances 

5.5.3 Formic acid yield as a function of acid catalyst type 

Comparison of the results of this study and previous literature demonstrated that FA 

yield is a function of acid catalyst type (not just pH). In this study, the average FA 

yield for 51 mM H2SO4 (0.5 wt%), 156 mM FF (1.5 wt%) and 200 °C was 32.9 %. 

Hongsiri, Danon & De Jong (2014) determined the kinetics of FF (50 mM) 

degradation in an acidic medium (50 mM HCl) and they observed FA formation with 

a yield of almost 20 % after 60 minutes at 200 °C (Hongsiri et al., 2014). The initial 

FF concentration used in the present study was 3 times that of Hongsiri, Danon & De 

Jong (2014) and the reaction duration was 50 % (30 minutes) longer. Despite this, 

the FF yield under the same conditions of temperature and acid concentration was 

only 50 % higher than Hongsiri, Danon & De Jong (2014). Hongsiri, Danon & De 

Jong (2014) used HCl as acid catalyst which is a stronger acid than H2SO4 (pKaHCl =

−8, pkaH2SO4,1
= −3, pKaH2SO4,2(25° C) = 1.99 (Van Der Hagen & Järnberg, 2009)). This 

result highlights the effect that different acid catalysts have on FA production. 
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Acid activity has not been discussed in this study, but it may be an important factor in 

determining the extent of FF degradation. The lack of a trend for FA formed in the 

studies listed in Table 3 might have to do with the fact that the studies all make use 

of different acid catalysts (The other studies made use of H2SO4, FA, hot water (no 

acid), ZSM-5 zeolite and AA). 

Aqueous acid catalysts behave differently from each other (due to differing acid 

activity) and so the conclusions made in this study are specific to H2SO4 catalysed 

systems only.  
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6. Conclusions & Recommendations 

6.1 Conclusions 

FA mass percentage varied in the range of 1.7-56%. Humins mass percentage 

varied in the range of 2.6-33%. Unreacted FF varied in the range of 14-88%. A range 

of 3-30 % of mass was unaccounted for (due to analytical error or smaller 

components that were not detected by the HPLC). 

The mechanism that is responsible for the humins formed in this study is the 

Sanchez mechanism. This mechanism involves bifurylic and trifurylic structures. The 

C:H:O composition of a molecule of this mechanism is 64.74:4.00:31.26 and the 

average C:H:O composition of the humins formed in this study is 63.75:4.07:32.17, 

i.e. they are very similar, and humins in this study form via the Sanchez mechanism. 

The humins in this study are found lower down on the dehydration line than the FF 

molecule which indicates that there is a dehydration reaction in the formation of 

humins from FF and the Sanchez mechanism does involve a dehydration reaction.  

The reaction order discovered in this study is n = 1.15. For all runs, the average 

natural log of the pre-exponential factor has been established to be lnA = 20.22 s-1, 

and the average activation energy is Ea = 93.63 kJ∙mol-1, like previous values. 

Therefore, FF degradation is pseudo-unimolecular. The overall order is just greater 

than unity which supports the proposition that for degradation, a polymerisation 

reaction is potentially initiated with two FF molecules (second order) and polymer 

growth occurs one FF molecule at a time (first order). Growth is dominant because 

the reaction order is close to unity. Alternatively, this slight deviation from unity may 

simply be a result of experimental error. 

In a conventional FF production plant, humins are generated amongst the (pentosan 

containing) biomass fibres and combusting these humins alone (instead of coal) 

produces 1.3 % of the energy required to generate steam for the FF production 

process. When humins are generated in biorefinery pre-treatment stages or from 

processing pulp mill pre-hydrolysis liquor. A valorisation method should be explored 

so that humins do not remain in the system, blocking up pipes & adhering to reactor 

walls. Humins can be combined with PFA to give a lower cost resin composite with 

decreased brittleness and higher tensile strength compared to pure PFA resins. This 
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is the most promising valorisation route for humins that will be generated in pre-

hydrolysis units. 

There is very little mass loss for humins that are washed with water in a glass 

soxhlet extractor (1.2 %) which means that these humins are not water soluble. It 

also means that no functional groups are trapped in the humins structure. i.e. the 

elemental composition that is reported is only for the humin structure. 

The composition of humins formed in this study is fairly uniform and the composition 

is independent of processing conditions. The maximum standard deviation is 2.36 % 

for composition and the maximum variance is 5.68 %. 
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6.1.1 Summary of reaction conditions 

A summary of the influential factors in this study is presented in Table 15. 

Table 15: Summary of influential factors in this study 

Factor Condition causing an increase 

FA concentration Increased initial FF concentration  

Humins concentration Increased temperature & increased initial FF concentration 

Rate of FF 

degradation 

Increased temperature, increased sulfuric acid 

concentration & increased initial FF concentration 

In this study, it was found that initial FF concentration was the most influential factor 

towards FF degradation. Increasing the initial FF concentration caused an increase 

in the rate of degradation, more humins were formed and more FA was formed. 

Increasing reaction temperature caused an increase in the amount of humins formed 

and an increase in the rate of degradation. Increasing the concentration of sulfuric 

acid caused an increase in the rate of FF degradation. 

6.2. Recommendations 

It is recommended that FF production is conducted at the lowest possible 

temperature and sulfuric acid concentration (to minimise degradation). To produce 

the least amount of degradation products (FA & humins), the lowest initial 

concentration of FF should be exposed to degradation conditions. To decrease the 

initial FF concentration exposed to degradation conditions, either less FF should be 

produced by processing less biomass or more FF should be stripped. Decreasing FF 

production and increasing stripping are both uneconomical avenues to minimise 

degradation. Therefore, optimisation must include the managing of the extent of FF 

degradation, because FF degradation and the amount of FF that is produced are 

both dependent on the same reaction conditions (temperature, sulfuric acid 

concentration & reaction duration). The data presented in this study can be used in a 

FF production model to determine the extent of the degradation reaction under a 

given set of reaction conditions.  
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For acid catalysed hydrolysis of hemicellulosic pentose fractions of biomass and 

consecutive dehydration of the pentose monomers, it was found that the optimal 

reaction temperatures were 155, 160, and 180 °C for sulfuric acid, phosphoric acid, 

and FA, respectively (Yang et al., 2012). This confirms that an optimization of FF 

production by minimising degradation and maximising FF output would also be 

specific to the (mineral) acid selected as catalyst (as found in section 5.5.4). 

As discussed in 2.6, elevated temperature causes more resinification (as 

demonstrated in this study) but condensation is minimised at elevated temperatures 

(Sener et al., 2018). In order to optimize the production of humins, it is necessary to 

study condensation reactions over a range of temperatures (170 °C-230 °C). Note 

that FF formation temperature is 175 °C and Sener et al. (2018) found that 

condensation is minimised at high temperatures (>200 °C). Once an understanding 

exists of the conditions that facilitate condensation, an optimization can be 

conducted to determine the reaction conditions that produce the most FF at the 

lowest cost by minimising the humins formed through condensation or resinification. 

The aim of this study was to create understanding of the degradation reactions using 

pure FF. Using the same experimental conditions, it is now recommended to 

broaden the understanding of FF degradation obtained in this study by the inclusion 

of the other molecules present during FF production. For example: 

1. To included xylose in the reaction mixture so that condensation can occur. 

This will permit a comparison of the FF degradation kinetics with and without 

xylose so that the impact of the condensation reaction can be measured.  

2. A further study should then be conducted, extending the experimental setup 

to include lignocellulosic biomass. The aim of that study would be to observe 

additional FF degradation caused by e.g. the presence of lignins and or fibre. 

In both proposed studies, special focus should be given to comparing the elemental 

composition of humins to the composition of humins formed in the present study. 

Although it was discovered that the composition was independent of processing 

conditions, it is not known whether generating humins from xylose and/or biomass 

(not pure FF) would result in different humins compositions. 

Reaction duration is an important factor that affects the extent of FF degradation in 

combination with the experimental factors tested in the present study (initial FF 

concentration, sulfuric acid concentration and reaction temperature). O’Neil et al. 

(2009) highlights the significance of the reaction duration for the degradation reaction 
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(during aqueous phase dehydration of xylose to FF) and recommends that the 

reaction duration is optimised to minimise FA & humin formation, thus maximising FF 

production (O’Neil et al., 2009). Karinen, Vilonen & Niemelä (2011) found that the 

selectivity of FF in xylose dehydration was a function of the reaction duration 

(Karinen et al., 2011). In the present study, a constant reaction duration was used 

(90 minutes). Reaction duration is factor that should be optimised with the target of 

maximising FF production and minimising FF degradation. For future degradation 

studies, it is recommended to vary the reaction duration. 
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Appendix I 

Python code 

from __future__ import division 
from scipy.integrate import odeint 
from scipy.optimize import minimize 
from numpy import linspace, genfromtxt, interp, mean,zeros 
from math import exp, log, sqrt 
import matplotlib.pyplot as plt 
 
fn = 'thesis' 
data_file_name = 'Run Data\\'+fn+'.dat' 
d = genfromtxt(data_file_name,skip_header=(3)) 
conditions = genfromtxt(data_file_name, skip_footer=10) 
T_arr = conditions[0] #C 
CF_arr = conditions[1] #M 
CA_arr = conditions[2] #% 
CA_arr = CA_arr*100/98.079 #% to M 
t = d[:,0] #min 
d = d[:,1:]/96.09 #M 
n=len(d[0]) 
#Filter Data 
Filter_arr = [0,0,0] 
i=0 
while i<n and Filter_arr[0] !=0: 
    if T_arr[i] != Filter_arr[0]: 
        for j in range(i,n-1): 
            d[:,j] = d[:,j+1] 
            T_arr[j] = T_arr[j+1] 
            CA_arr[j] = CA_arr[j+1] 
            CF_arr[j] = CF_arr[j+1] 
        n -= 1 
    else: 
        i += 1 
i=0 
while i<n and Filter_arr[1] !=0: 
    if CF_arr[i] != Filter_arr[1]: 
        for j in range(i,n-1): 
            d[:,j] = d[:,j+1] 
            T_arr[j] = T_arr[j+1] 
            CA_arr[j] = CA_arr[j+1] 
            CF_arr[j] = CF_arr[j+1] 
        n -= 1 
    else: 
        i += 1 
i=0 
while i<n and Filter_arr[2] !=0: 
    if CA_arr[i] != Filter_arr[2]: 
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        for j in range(i,n-1): 
            d[:,j] = d[:,j+1] 
            T_arr[j] = T_arr[j+1] 
            CA_arr[j] = CA_arr[j+1] 
            CF_arr[j] = CF_arr[j+1] 
        n -= 1 
    else: 
        i += 1         
         
        
        
Fspan = zeros((100,1)) 
tspan = linspace(t[0],t[len(t)-1],100) 
 
A_1 = 1.55e-3 #min^-1 
Ea_1 = 1.021e5 #J/mol 
R = 8.314 #J/mol/K 
T_0 = 453.15 #K (180 C)  
 
Ka2_arr = [2.8e-4,1.1e-4,4.12e-5] #Zeitsch Approx 
Ka2_T_arr = [413.15,443.15,473.15] 
def H_func(T,CA):#CA is [H2SO4] in %        
    Ka1 = 1000 
    for i in range(3): 
        if T == Ka2_T_arr[i]: 
            Ka2 = Ka2_arr[i] 
    H_conc = sqrt(CA*Ka1)+sqrt(CA*Ka2) 
    return H_conc 
 
def Arr(T,A,Ea): 
    return A*exp(-Ea/R*(1/T-1/T_0)) 
     
def dCFdt(CF,t,T,A,Ea,CA,o,m): #CF in mM 
    return -Arr(T,A,Ea)*CF**o*H_func(T,CA)**m #mmol/L/min 
     
def SSNE(CF_0,T,A,Ea,CA,dd,o,m): 
    CFspan = odeint(dCFdt,CF_0,tspan,(T,A,Ea,CA,o,m),)[:,0] 
    CFspanInterp = interp(t,tspan,CFspan) 
    out = 0 
    for i in range(len(t)): 
        out += (dd[i]/CF_0-CFspanInterp[i]/CF_0)**2 
    return out  
     
def minfun(X): 
    A,Ea,o,m = X 
    SSNE_sum = 0 
    for i in range(n): 
        SSNE_sum += SSNE(d[0,i],T_arr[i]+273.15,A,Ea,CA_arr[i],d[:,i],o,m)      
    return SSNE_sum 
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def R_squared(X): 
    A,Ea,o,m = X 
    R_arr = [] 
    for i in range(n):     
        CFspan = 
odeint(dCFdt,d[0,i],tspan,args=(T_arr[i]+273.15,A,Ea,CA_arr[i],o,m))[:,0] 
        CFspanInterp = interp(t,tspan,CFspan) 
        mn = mean(d[:,i]) 
        CFmn = mean(CFspanInterp) 
        x_squared = [] 
        y_squared = [] 
        xy = [] 
        mod_dif = 0 
        mean_dif = 0 
        for j in range(len(t)): 
            if abs(CFspanInterp[j]-d[j,i])>mod_dif: 
                mod_dif = abs(CFspanInterp[j]-d[j,i]) 
            if abs(d[j,i]-mn)>mean_dif: 
                mean_dif = abs(d[j,i]-mn)  
            x_squared.append((d[j,i]-mn)**2) 
            y_squared.append((CFspanInterp[j]-CFmn)**2) 
            xy.append((d[j,i]-mn)*(CFspanInterp[j]-CFmn))   
        R_arr.append(100*(sum(xy)/sqrt(sum(x_squared)*sum(y_squared)))**2) 
    return R_arr 
     
# callback function 
eval_track = 0 
Nfeval = 1 
X_arr = [] 
Y_arr = [] 
YY_arr = [] 
YYY_arr = [] 
def callbackfunc(x): 
    global Nfeval 
    #print("%s, %.2f, %e" % (Nfeval, x[1], minfun(x))) 
    Nfeval += 1 
    if eval_track:         
        X_arr.append(Nfeval) 
        Y_arr.append(x[0]) 
        YY_arr.append(x[1]) 
        YYY_arr.append(x[2]) 
 
tryVals = [1e-02, 1.5e5, 1.08, 1] 
 
 
res = minimize(minfun, tryVals, 
               method='Nelder-Mead', 
               options={'maxiter':1e2,'maxfev':1e3, 
               'ftol':1e-4,'xtol':1e-4}, 
               callback=callbackfunc) 
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lnA = log(res.x[0]/60*res.x[1]/(T_0*R)) 
print(res.x) 
 
R_squared_ave = 0 
for i in range(n): 
    R_squared_ave+=R_squared(res.x)[i] 
R_squared_ave=R_squared_ave/n    
 
#Plot Data 
if eval_track:     
    fig, ax1 = plt.subplots() 
    ax1.plot(X_arr, Y_arr, 'b') 
    ax1.set_xlabel('Iterations') 
    ax1.set_ylabel('A', color='b') 
    for tl in ax1.get_yticklabels(): 
        tl.set_color('b') 
    ax2 = ax1.twinx() 
    ax2.plot(X_arr, YYY_arr, 'r') 
    ax2.set_ylabel('n', color='r') 
    for tl in ax2.get_yticklabels(): 
        tl.set_color('r') 
 
normalized_plot = 1 
''' 
import matplotlib 
c_list = [] 
for name, hex in matplotlib.colors.cnames.items(): 
    c_list.append(name) 
#print(c_list) 
''' 
plt.figure(2) 
c_list = [ 'red', 'gold', 'midnightblue', 'turquoise', 'blueviolet', 'darkslategrey', 
'darkslateblue', 'darkred', 'slategrey', 'cyan', 'darkkhaki', 'royalblue', 'olive', 
'mediumturquoise', 'green', 'slateblue', 'maroon', 'cornflowerblue', 'palegreen', 
'gainsboro', 'darkolivegreen', 'darkgrey', 'whitesmoke', 'palevioletred', 'aliceblue', 
'bisque', 'darkturquoise', 'snow', 'darkviolet', 'mintcream', 'gold', 'fuchsia', 'mistyrose', 
'palegoldenrod', 'plum', 'beige', 'rosybrown', 'olivedrab', 'honeydew', 'white', 
'darkgreen', 'indianred', 'antiquewhite', 'teal', 'mediumslateblue', 'orangered', 
'floralwhite', 'darkgoldenrod', 'darkgray', 'darkblue', 'lavender', 'darkcyan', 
'aquamarine', 'slategray', 'darksalmon', 'papayawhip', 'black', 'darksage', 'cadetblue', 
'violet', 'greenyellow', 'saddlebrown', 'orange', 'mediumorchid', 'lime', 'darkmagenta', 
'mediumblue', 'seagreen', 'blue', 'thistle', 'magenta', 'linen', 'purple', 'mediumvioletred', 
'peru', 'pink', 'wheat', 'limegreen', 'tomato', 'aqua', 'peachpuff', 'powderblue', 
'mediumpurple', 'khaki', 'darkslategray', 'skyblue', 'darkseagreen', 'brown', 
'yellowgreen', 'mediumspringgreen', 'orchid', 'azure', 'yellow', 'lavenderblush', 
'chartreuse', 'dodgerblue', 'lemonchiffon', 'darkorchid', 'burlywood', 
'mediumseagreen', 'darkorange', 'springgreen', 'forestgreen', 'cornsilk', 'indigo', 
'hotpink', 'ivory', 'sandybrown', 'salmon', 'moccasin', 'deeppink', 'red', 
'mediumaquamarine', 'dimgrey', 'sienna', 'oldlace', 'seashell', 'gray', 'sage', 'steelblue', 
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'lawngreen', 'blanchedalmond', 'dimgray', 'navajowhite', 'deepskyblue', 'goldenrod', 
'chocolate', 'firebrick', 'coral', 'paleturquoise', 'crimson'] 
 
for i in range(n): 
    #labstr = str(round(T_arr[i])).rstrip('0').rstrip('.')+'$^\circ$C, '+str(CA_arr[i])+'%, 
'+str(round(CF_arr[i])).rstrip('0').rstrip('.')+' wt%' 
    if normalized_plot: 
        plt.plot(t,d[:,i]/d[0,i],c=c_list[i],ls='',marker='.',markersize=10)#,label=labstr) 
    else: 
        plt.plot(t,d[:,i],c=c_list[i],ls='',marker='.',markersize=10)#,label=labstr) 
#Fit        
for i in range(n): 
      if normalized_plot: 
          plt.ylabel(r'$C_f/C_{f, 0}$ (M/M)', fontsize = 30) 
          Fspan = 
odeint(dCFdt,d[0,i],tspan,(T_arr[i]+273.15,res.x[0],res.x[1],CA_arr[i],res.x[2],res.x[3]))
/d[0,i] 
      else: 
          plt.ylabel('Furfural concentration (M)', fontsize = 10) 
          Fspan = 
odeint(dCFdt,d[0,i],tspan,(T_arr[i]+273.15,res.x[0],res.x[1],CA_arr[i],res.x[2],res.x[3])) 
      labstr = 'Fit '+str(round(T_arr[i])).rstrip('0').rstrip('.')+'$^\circ$C, 
'+str(CF_arr[i]).rstrip('0').rstrip('.')+'wt%, '+str(CA_arr[i])+'%, '+'$R^2: 
$'+str(round(R_squared(res.x)[i],2))+'%'            
      plt.plot(tspan,Fspan,c=c_list[i],linewidth=2,label=labstr) 
#plt.legend(loc=0, prop ={'size':25}) 
titleStr = r'$ln(A) = $'+ str(round(lnA,3)) + r' $ s^{-1}$' +'\t' +'Ea = '+ 
str(round(res.x[1]/1000,2)) +r' $ kJ \cdot mol^{-1}$'+'\t Order: '+ 
str(round(res.x[2],2))+'\t R'+r'$^2$'+r'$_{ave}=$'+str(round(R_squared_ave,2)) 
##r'$R^2: $'+str(round(100*(1-minfun(res.x)),2))+'\n' + 
plt.title(titleStr, fontsize = 30) 
plt.xlabel('Reaction duration (min)', fontsize = 30) 
plt.tick_params(axis='both', labelsize=20) 
mng = plt.get_current_fig_manager() 
mng.window.showMaximized() 
plt.show() 
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Appendix II 

Sketch of ice bath and sampling system 
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Appendix III 

Calorific value of humins 

Humins were collected with each experimental run, filtered with a Büchner funnel, 

dried overnight in a kiln at 70 °C and stored for elemental analysis. Once all the runs 

were completed, the humins were analysed using a CHNS elemental analyser. The 

remaining composition was assumed to consist entirely of oxygen as FF is made up 

of only carbon, hydrogen and oxygen so the oxygen constituent could be calculated 

in the following manner: 

%O = 100 − %C − %H 14 

where %C was, for example, the elemental percentage of the sample which was 

carbon. 

To reach the LCV of 9 688.64 kJ ∙ kg−1 , the following calculations were executed: 

The average C:H:O composition for these humins is 63.75:4.07: 32.17, so 100 kg 

humins contains 4.07 kg H which can form 36.63 kg H2O (See Equation 15) 

mmH2O

mmH2

× %H =
18

2
× 4.07 = 36.63 kg 15 

where 
mmH2O

mmH2

 is the ratio of the molar mass of water to the molar mass of hydrogen 

in the water molecule 

The LCV is calculated from the HHV which is 23.9 MJ ∙ kg−1 (See Literature Review 

Equation 1 for the equation used to calculate HHV) 

HHVwet = 23 900 kJ ∙ kg−1 − 50 % × 23 900 kJ = 11 950 kJ ∙ kg−1 

LCV = HHV −
1

100
×

mmH2O

mmH2

× %H × h20°C − 50 % × h20°C 

LCV = 11 950 − 0.01 ×
18

2
× 4.7 × 2450 − 50 % × 2450 

LCV = 11 950 − 1 036.36 − 1 225 = 9 688.64 kJ ∙ kg−1 

16 

where 2450 kJ ∙ kg−1 is the ASTM International Heat of Vaporization @T=20 °C 

From the steam tables, the enthalpy of 300 °C steam at a pressure of 40 bar is 

2961 kJ ∙ kg−1 (Cooper & Le Fevre, 1969). This is the specification for steam 
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produced by a boiler on a modern FF plant (Wilson, 2018) and working with a boiler 

efficiency of 70 %, the enthalpy required is 4230 kJ ∙ kg−1: 

h =
2961

0.7
= 4230 kJ ∙ kg−1 

The lower calorific value (LCV) of the humins formed in this study (at 50 % moisture 

content) is 9 688.64 kJ ∙ kg−1. To produce 1 tonne FF, approximately 30 tonnes of 

steam is required (Lange et al., 2012). Therefore, for every tonne of humins burnt, 

76.35 kg FF can be produced:  

1000 kghumins ×
9 688.64 kJ ∙ kghumins

−1

4 230 kJ ∙ kgsteam
−1 = 2 290.46 kgsteam 

2 290.46 kgsteam

30 kgsteam ∙ kgFF
−1 = 76.35 kgFF 

Under the studied conditions, 16.82 % of FF is converted to humins and therefore 

12.84 kg humins are also produced for 1 tonne of humins burnt (76.35 kg × 16.82 %). 

i.e. the net contribution energy is 1.3 % if humins are burnt (See Equation 17) 

1 tonne humins: 76.35 kg FF: 12.84 kg humins & 
12.84

1000
= 1.3 % 17 

For a FF plant, operating with a throughput of 10 000 t ∙ yr−1  

(The throughput of an average FF plant (Wilson, 2018)), 300 000 tsteam ∙ yr−1is 

required (To produce 1 tonne FF, approximately 30 tonnes of steam is required for a 

modern FF plant (Wilson, 2018)) which is  

300 000 tsteam ∙ yr−1 × 4230 MJ ∙ tsteam
−1 = 1.269 × 109 MJ ∙ yr−1. 

 1.296 × 109 MJ ∙ yr−1 ÷ 25 120.8 MJ ∙ tcoal
−1 = 50 515.91 tcoal ∙ yr−1  

where 25 120.8 MJ/t coal is the calorific value of coal exported via Richard’s Bay 

harbour (South Africa) (IndexMundi, 2018) and it costs ±100 $/𝑡. 

50 515.91 tcoal ∙ yr−1 × 100$ ∙ 𝑡𝑐𝑜𝑎𝑙
−1 = 5.0516 × 106 $ ∙ yr−1 

5.0516 × 106 $ ∙ yr−1 × 1.3 % = 6.567 × 104 $ ∙ yr−1 

Burning humins will save ±65 670 $ ∙ yr−1 on an average FF plant. 

It should also be pointed out that, currently, burning humins is the only established 

humins valorisation route that is plausible on a conventional FF plant because 
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humins are formed amongst the fibres of the biomass (biomass is referred to as FF 

residue after FF has been extracted from it). It is impossible to separate the humins 

from the fibres to produce products from the humins. However, it is possible to make 

products from humins when working with hydrolysates (newer technologies) It is then 

possible to separate the humins from the hydrolysate solution using conventional 

separation techniques (Sappi, 2017). 

FF residue (and humins) is combusted in the boilers on FF plants attached to sugar 

mills already so the question is “What contribution do humins make to the calorific 

value of this residue+humins fuel?” The LCV of FF residue (and humins) is 7.254 

MJ ∙ kg−1 for residue with a moisture content of 51.6 % and 4 % ash (Wilson, 2018). 

This value is reasonable because Naude, McIntyre & Field (1993) found that the 

HHV of FF residue is 9.8 MJ ∙ kg−1 for a residue that contains 54.9 % moisture and 

2.9 % ash(Naude, McIntyre & Field, 1993).  

Approximately 183 949 tresidue+humins ∙ yr−1 is generated in the production of 10 000 

tFF ∙ yr−1 (Wilson, 2018). The energy that can be generated by combusting the FF 

residue (and humins) is calculated as follows: 

183 949 tresidue+humins ∙ yr−1 × 7 254 MJ ∙ tresidue+humins
−1 = 1.334 × 109 MJ ∙ yr−1 

The steam required to produce 10 000 tFF ∙ yr−1 (for stripping FF and heating) is 

300 000 tsteam ∙ yr−1 and the thermal energy of the steam is: 

300 000 tsteam ∙ yr−1 × 4 230 MJ ∙ tsteam
−1 = 1.269 × 109 MJ ∙ yr−1 

i.e. 1.269 × 109 MJ ∙ yr−1 must be generated in the boiler to operate a FF plant that 

produces 10 000 tFF ∙ yr−1. 1.334 × 109 MJ ∙ yr−1 can be generated by combusting all 

of the FF residue+humins (1.05 times the required amount of energy). It is possible 

to operate a FF plant (attached to a sugar mill) without combusting additional 

coal/gas. The calorific value of the FF residue (and humins) is sufficient to run the 

boilers for the FF production process. Now to answer the question “What contribution 

do humins make to the calorific value of this residue+humins fuel?”: 

For a plant that produces 10 000 tFF ∙ yr−1, the contribution of the humins to the 

residue+humins fuel is calculated as follows (for a 45 % FF yield): 

0.55 ×
10 000

0.45
× 0.1682 = 2.056 thumins ∙ yr−1 
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The LCV of humins is 9 688.64 kJ ∙ kg−1 so the contribution of humins to the overall 

calorific value of the residue+humins fuel can be calculated as follows: 

9 688.64 kJ ∙ kg−1 × 2 056 kghumins ∙ yr−1 = 19 919.8 MJ ∙ yr−1 

The energy generated by combusting the humins+residue to produce 300 000 tsteam 

is 1269 × 109 MJ ∙ yr−1 

∴ the humins contribution =
19 919.8

1.269 × 109
= 1.54 × 10−5 = 0.00154 % 

In conclusion, humins make an insignificant contribution to the calorific value of the 

residue+humins fuel. 

It should be noted that this calculation is based on a 45 % FF yield as observed at 

the Illovo sugar mill/FF plant by Klusener (2018). The 45 % FF is collected by 

stripping and the 55 % yield loss is the FF that forms the basis for the present study. 

Although 53.12 % of this 55 % is unreacted FF, i.e. 6 398.33 t ∙ yr−1, it is 

unsalvageable because it is found amongst the fibres of the FF residue. 
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