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Abstract 

Marine living-resources such as dusky kob, (Argyrosomus japonicus) are particularly 

vulnerable to overfishing as this species has been targeted for decades by commercial, 

recreational and subsistence fisheries, which has led to the steady decline in the natural 

populations. A shift towards aquaculture as a sustainable alternative supply to the market 

has been initiated, with considerable efforts being made to understand the fundamental role 

that genes play in the biological processes influencing complex traits such as growth rate. 

Although a few studies have been conducted on the species, they have been hindered by 

the limited number of genomic resources, which is an issue that affects many non-model 

species. Therefore, this study aimed to investigate the transferability of a model organism’s 

exon capture kit in a non-model species for the development of SNP markers associated 

with growth. By using 16 dusky kob individuals for exome sequencing this study was able to 

capture 6,623 of the 346,263 exons found within the model organisms, zebrafish, as well as 

a large number of exons that could potentially be species-specific. Overall, the exome data 

proved to be a valuable resource for the identification of variants, with variant detection 

identifying 4.5 million potential molecular makers with a total of 2.8 million putative SNPs 

and 3,276 tandem repeats. These variants were spread across the exome regions with a 

SNP occurring approximately every 1000 nt. Using the candidate gene approach and a 

selection of 15 gene regions, 263 putative SNPs were identified, of which 38 SNPs in nine 

genes were confirmed using Sanger sequencing and identified as having a potential 

association to the trait of interest. Association of these markers was analysed by performing 

both case-control and quantitative analyses using 80 individuals (classified as large and 

small) of dusky kob. These analyses were able to identify eight SNPs in three key genes. 

This study demonstrated the ability of exon capture to be customised for cross-species 

capture to assist in molecular marker discovery for non-model organisms with limited or no 

genomic resources. Resources which could be used for the development of markers which 

could assist in the implementation of marker assisted selection (MAS), which will aid in the 

development and effective utilisation of the species. 
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III 

Opsomming 

Mariene lewende hulpbronne soos die boerkabeljou (Argyrosomus japonicus) is veral 

kwesbaar vir oorbevissing, aangesien hierdie spesie al dekades lank deur kommersiële, 

ontspannings- en bestaansvisserye geteiken word, wat gelei het tot die bestendige afname 

van die natuurlike populasie. Akwakultuur bied 'n volhoubare alternatiewe oplossing aan die 

mark, en toenemende pogings word aangewend om die fundamentele rol van gene  in 

biologiese prosesse van komplekse eienskappe, soos groeitempo,  te verstaan. Ongelukkig 

word studies in hierdie spesie, net soos in ander nie-modelspesies, belemmer deur die 

beskikbaarheid van ‘n beperkte aantal genomiese hulpbronne. Daarom het hierdie studie 

ten doel gehad om die oordraagbaarheid van die eksonvangsstel (“exon capture kit”) van 'n 

modelorganisme in 'n nie-modelspesie te ondersoek, met die oog op die ontwikkeling van 

ENP-merkers wat met groeitempo geassosieer word. Hierdie studie het deur middel van 

eksoomvolgordebepaling op 16 boerkabeljou individue daarin geslaag om 6,623 uit 346,263 

eksone van die model organisme, zebravis, sowel as ŉ groot aantal moontlike spesie-

spesfieke eksone vas te vang. Die ontdekking van 4.5 miljoen potensiele molekulere 

merkers, waarvan 2.8 miljoen moontlike ENP merkers en 3,726 tandem herhalings, dui 

daarop aan dat die eksoomdata ŉ waardevolle hulpbron vir die identifisering van genetiese 

variasie is. Hierdie variante was verspreid oor die eksoomareas, met ŉ ENP wat ongeveer 

elke 1000 nt voorkom. Met behulp van die kandidaatgeenbenadering en ŉ seleksie wat 15 

geenstreke behels, is 263 veronderstelde ENPs geidentifiseer, waarvan 38 ENPs in nege 

gene van sanger-volgorde bevestig was, en getoon het om moontlike assosiasie met die 

eienskap van belangstelling, groei, te toon. Bimodale gevallestudie en kwantitatiewe 

analises is uitgevoer deur gebruik te maak van 80 boerkabeljou individue (wat geklassifiseer 

is as klein en groot) om die assosiasie tussen merkers en groei te ondersoek. Hierdie 

analises het gelei tot die identifisering van ag ENPs in drie sleutelgene. Hierdie studie het 

getoon dat dit moontlik is om ŉ eksonvangsstel aan te pas vir gebruik in ander spesies om 

te help met die ontdekking van molekulere merkers in nie-model organismes met beperkte 

of geen genomiese hulpbronne. Daarmee help hierdie studie om genomiese hulpbronne op 

te bou, wat kan lei tot die ontwikkeling van molekulere merkers wat gebruik kan word om 

merker bemiddelde seleksie (MBS) toe te pas, om sodoende die optimale benutting van 

hierdie spesie te bereik.  
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CHAPTER 1 

Introduction: Literature Review, Aims and Objectives 

____________________________________________________________________ 

1.1) Species biology: An introduction to dusky kob (Argyrosomus japonicus) 

1.1.1) Classification and Evolution of Dusky Kob 

As a member within the Actinopterygii class in the phylum Chordata, the Sciaenidae family 

is vast with about 280 species in 90 genera worldwide. They are primarily tropical and warm 

temperate coastal marine fishes with some species found to be confined to fresh water rivers 

(Chao et al., 2015). While the large majority live inshore over sandy or muddy bottoms, a 

few species are found in deep water and others have adapted to special habitats such as 

coral reefs and surf zones (Chao,1986). The genus Argyrosomus, found within the 

Sciaenidae family is represented by at least nine recognised species (Griffiths and 

Heemstra, 1995). The sciaenid species found in this genus all display a high degree of 

conservative morphology, which has resulted in the misidentification of many species, 

particularly those that inhabit a wide range of coastal areas. Argyrosomus japonicus has 

been known by at least 51 different common names and three trade names throughout its 

Indo-Pacific distribution occurring in the coastal waters of i.e., Australia, Africa, India, 

Pakistan, China, Korea and Japan (Bernatzeder and Britz, 2007; Griffiths and Heemstra, 

1995; Kailola et al., 1993; Trewavas, 1977) (Figure 1.1). A study performed in 1990 indicated 

that A. japonicus had been misidentified and referred to as A. hololepidotus in both Australia 

and South Africa. This misidentification was discovered by pre-forming an in-depth study 

comparing the habitat distribution, morphometrics, otoliths and anatomical structure of the 

species within the genus. However, this was further complicated by the confusion of A. 

japonicus with A. inodorus (Griffiths and Heemstra, 1995) a species with which A. japonicus 

may occasionally hybridise within South Africa (Mirimin et al., 2014). 

The wild populations of A. japonicus in South Africa and Australia have been considered 

conspecific as the populations could not be differentiated from one another following the 

revision of the genus Argyrosomus by Griffiths and Heemstra, (1995). The life history and 

biology of A. japonicus has been well studied in South Africa (Griffiths, 1996; Griffiths and 

Heemstra, 1995), and more recently in Australia (Bernatzeder and Britz, 2007; Ferguson et 

al., 2014; Silberschneider and Gray, 2007; Taylor et al., 2006). These studies have shown 

there to be significant differences in the life-history traits (e.g. growth, age at sexual maturity, 
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time of spawning) amongst the geographical locations. Using mitochondrial DNA, a study 

confirmed that there had been a long period of isolation between the South African and 

Australian populations, with each population potentially representative of a different species 

(Farmer, 2008). A revision of the taxonomy A. japonicas is, therefore, justified. For this thesis 

the focus will be on the South African A. japonicus, commonly known as dusky kob.  

 

 

 

 

 

 

 

 

 

 

1.1.2) Ecology, Distribution and Life-History in South Africa 

Dusky kob are known to be predatory fish that hunt using lateral line senses and smell 

instead of relying on their sight; this is a specialised adaption which is ideal for hunting in 

their muddy and murky environments (Griffiths, 1997). Adult fish have the ability to hunt 

throughout the water column, predominantly making use of an ambush strategy when 

feeding along the ocean floor. While the adults are mainly piscivorous, they are known to 

sometimes feed on squid and octopus when given the opportunity. The juveniles’ diet 

however consists mainly of crustaceans and smaller fish (Bergamino et al., 2014; Griffiths, 

1997). Over time this species has developed adaptive traits to fit their feeding style, such as 

a large mouth, sharp teeth for gripping, widely spaced gill rakers and a large rigid distensible 

stomach (Kailola et al., 1993). A notable trait of sciaenids is the ability to produce drumming 

sounds by vibrating their swim bladder. However, the pitch and use of croaking varies 

between species, with some males using it as a mating call (Ramcharitar et al., 2006). This 

phenomenon is linked to territorial display and spawning behaviour, and may reflect 

Figure 1.1. The Indo-Pacific distribution of Argyrosomus japonicus i.e., Australia, 

Africa, India, Pakistan, China, Korea and Japan. The figure was adapted from the 

original by Silberschneider and Gray (2007). 
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adaptation to spawning at night and communication in habitats that are turbid, announcing 

hazards and location (Blaber, 2000; Roach et al., 2005). In some species the sonic muscle 

fibres are only present in males. These muscles which atrophy throughout the year, only 

strengthen during the mating season to assist in finding a mate. The croaker mechanism in 

other species such as dusky kob and A. regius, is found to be present in both sexes 

throughout the year (Griffiths and Heemstra, 1995; Lagardere and Mariani, 2006), with 

individuals able to produce up to several call variations (Parsons and McCauley, 2017). This 

ability allows for constant communication between individuals and populations, assisting in 

the survival reproductive success of the species; it can however be detrimental as constant 

acoustic communication allows for predators such as the bottlenose dolphin, to easily locate 

large groups of croaker and drum as they broadcast their position (Roach et al., 2005). 

Dusky kob is the largest South African sciaenid reaching up to two meters in length and 

achieving a record weight of 75 kilograms (Griffiths 1997a; Griffiths and Hecht ,1995b). They 

are long-lived animals with some individuals being recorded to reach a maximum of 42 years 

of age. This longevity does however result in a late onset of sexual maturity, with silver and 

squaretail kob (Argyromus thorpei) maturing in less than half the time required for dusky 

kob. While silver and squaretail kob females attain sexual maturity at a length of 35cm, which 

is reached at approximately one and a half years of age. While dusky kob females only 

mature once reaching 1.1m in length or six years of age, male kob reach sexual maturity 

earlier at approximately 5 years of age or 900mm in length (Griffiths, 1997a). One of the 

main reasons for the species late onset of sexual maturity, is that unlike other kob species 

which show a consist growth rate post-maturity, dusky kob only divert their energy towards 

reproduction once the individual achieves a length greater than one meter, allowing the 

species to focus solely on growth. Dusky kob are migratory, spawning fish that are found to 

be abundant within South African waters. The primary distribution of the homogeneous 

genetic stock occurs between Cape Agulhas, located in the Western Cape and the southern 

Mozambique border (Griffiths, 1995b; Mirimin et al., 2015) with the species being particularly 

abundant between Cape Agulhas and KwaZulu-Natal as a result of warmer waters (Griffiths 

and Heemstra, 1995) (Figure 1.2). During the mating season the majority of the adult 

population migrate northward of the Cape to the warmer waters of KwaZulu-Natal where 

spawning activity coincides with the utilisation of predator-poor estuarine nurseries. This 

usually occurs between August and November, although dusky kob eggs have been 

observed in the coastal waters of KZN as early as July and as late as February (Connell et 

al., 2007). Due to differences in water temperature and oceanography along the coast, the 

Stellenbosch University https://scholar.sun.ac.za



4 
 

Figure 1.2. Areas of distribution and abundance of dusky kob in South African waters. 

The figure was adapted and modified from Mirimin et al., (2015) in Jenkins (2018). 

 

time of spawning varies, with spawning commencing in the northern regions above 

KwaZulu-Natal between winter and spring (August to November). While during the summer 

months (October to January), spawning commences in the southern and southern-eastern 

Cape Regions when adults return from KwaZulu-Natal (Griffiths, 1996). Some adult fish do 

not migrate to KwaZulu-Natal, but remain in the southern and southern-eastern Cape 

Regions to spawn in the summer months. Spawning occurs at night on shallow inshore 

reefs, pinnacles and wrecks at depths of 10-15m. The Sciaenidae family has adapted its 

spawning strategy to reduce predation on eggs by zooplanktivores whom primarily feed 

during the daylight as light intensity has been shown to directly affect successful foraging 

(Connell, 2007; Griffiths, 1996; Griffiths, 1997a; Skibinski, 2005). The dispersal of the eggs 

and larvae in and out of estuaries (<50m depth) along the South African coastline have been 

shown to be facilitated by the Agulhas Current which moves in a downward direction 

(Beckley 1993; Beckley, 1995; Harris et al., 1995). Dusky kob typically remain within their 

estuaries until reaching maturity but as they grow, they start to gradually move into deeper 

waters (5-120m) consisting mainly of soft substrata of sand or mud (Cowley et al., 2007).  
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1.2) Aquaculture of the Finfish, Dusky Kob 

1.2.1) History and Development of the Industry 

The marine ecosystems along the South Africa coastline, support a well-established fishery 

sector that is responsible for exploiting a variety of indigenous living resources; however, 

this resource is continuously under threat from poaching, pollution, estuarine habitat 

degradation, inappropriate developments and poor management (Branch and Clark, 2006; 

Mead et al. 2013). As such, seafood production, via mariculture has been characterised as 

an emergent industry in South Africa (Bolton et al., 2013) and is developing at a faster rate 

than the freshwater aquaculture sector, with particular emphasis on Mytilus galloprovincialis 

and Choromytilus meridionalis (mussels), Crassostrea gigas (oysters), Haliotis midae 

(abalone), seaweeds and Macrobrachium rosenbergii (prawns) [Department of Agriculture, 

Forestry and Fisheries (DAFF), 2012]. The significant Increase in the production of farmed 

fish over the last few decades has resulted in marine species becoming of great economic 

importance. Aquaculture species have been targeted by commercial, recreational and 

subsistence fisheries for decades (Childs and Fennessy, 2013; Hutchings and Lamberth, 

2003), which has resulted in collapse of the natural populations and exploitation far beyond 

optimal levels. Marine living resources such as dusky kob are particularly vulnerable, as it 

is currently one of the most commercially, ecologically and culturally important aquaculture 

species in South Africa. The wild stocks of dusky kob have come under extreme pressure 

as a result of having to sustain both commercial and recreational fisheries for decades 

(Brouwer et al., 1997; Childs and Fennessy, 2013; Pradervand et al., 2007). The spawner 

biomass is an estimate used to determine the total weight of the fish in a stock that are old 

enough to spawn, with populations considered unsustainable if they have an estimated 

value of 20% or less than pristine levels (Griffiths et al., 1997; Otgaar et al., 2012). The 

spawner biomass of dusky kob was estimated to be well below the threshold with the 

estimated value falling between 1.0 and 4.5%. This is the result of fishing efforts being 

shifted towards estuarine nursery areas in response to the predictable distribution patterns 

of the species (Cowley et al., 2013; Dunlop and Mann, 2012; Griffiths et al., 2000) as well 

as the late onset of sexual maturity, which has resulted in the majority of the populations 

being removed by anglers before having the opportunity to spawn. This was only further 

aggravated by the mismanagement of the species, caused by the taxonomic confusion 

within Argyrosomus (Griffiths and Heemstra, 1995), which was only rectified in 2004 when 

regulations for recreational fishers were changed (Sauer et al., 2003). Prior to this dusky 

and silver kob were managed as a single species “A. holopidotus” (with legal size set at 40 
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cm. In an effort to better manage the species and allow for the restock of wild populations, 

dusky kob is listed as red on the South African Sustainable Seafood Initiative’s (SASSI) 

Customer Seafood List if caught from linefish or trawl and is considered to be a threatened 

species. 

On-shore production of dusky kob in South Africa has been fairly well-established in 

response to the declining wild stocks and ever-growing demand for seafood (Saker and 

Griffiths, 2000). Since the commencement of dusky kob production in South Africa, a 

number of research efforts have been initiated to gain a better understanding of the 

biological determinants such as growth, disease resistance and fecundity, which influence 

this finfish. These traits are three of the main production limiting factors caused by a lack of 

understanding, e.g. traits such as growth and fecundity are often investigated individually 

however recent studies have shown that egg production increases exponentially with size 

(Barneche and Andrew, 2018). Therefore, understanding the biological role that genes play 

in the influence of commercially important traits of the species, the information can be 

utilised for stock assessment and improved management strategies to develop a sustainable 

fish-farming industry (Bernatzeder et al., 2007; Collett et al., 2007; Daniel et al., 2004; Kaiser 

et al., 2011; Musson and Kaiser, 2014). Fortunately, studies have shown that dusky kob 

compares well to Sciaenops ocellatus (red drum), an established Sciaenid species cultured 

in China (Hong and Zhang, 2003) and in the United States (Lee and Ostrowski, 2001). Thus, 

information obtained over the years through the establishment of this species can assist in 

the accelerated production of dusky kob. This comparison between the individuals assisted 

in accessing the candidacy of dusky kob for aquaculture with criteria such as, a fast initial 

growth rate, good feed conversion ratio, tolerance to low salinity and low oxygen levels, high 

crowding densities and disease resistance being assessed (Collett et al., 2008; Fielder and 

Heasman, 2011; Fitzgibbon et al., 2007, 2011; Griffiths et al., 1996; Whitfield, 1998).  

The South African marine finfish industry, which is currently centred around dusky kob and 

yellowtail (Seriola lalandii), is still underdeveloped and will take a number of years before 

reaching its full potential. In 2011, a significant investment was made to establish the 

aquaculture of marine finfish within South Africa, (i.e. 42% of the total aquaculture 

investment; DAFF, 2012) and although this is still a developing field, the Food and 

Agriculture Organization of the United Nations (FAO) showed that while marine catch has 

been plateauing, marine production within South Africa has been experiencing a steady 

growth (6% per year) (DAFF, 2016). The total aquaculture production during 2015 and 2016 

in South Africa was 7430 tons and 7819 tons, respectively. The total value of aquaculture 
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production during these years was USD 52 million for 2015 and USD 46 million for 2016. 

During 2016 the marine aquaculture production in South Africa amounted to 6160 tons with 

a value of USD 42 million. Of this, aquatic plants and mussels were the top contributors 

totalling 4300 tons. Other contributors to the total marine aquaculture production during 2016 

consisted of abalone (Haliotis midae, 1500 t), oysters (Crassostrea gigas, 280 t) and finfish 

(various species, 80 t). Unfortunately, in 2017 there was a 23% decline in the production by 

aquaculture, with South Africa only producing a total of 6047 tons. This is likely the result of 

a number of factors which include but are not limited to the labour-intensive nature of 

Recirculation Aquaculture Systems (RAS), transport costs to major cities such as Cape 

Town, Durban and Johannesburg, the increasing cost of imported feed, and the increasing 

cost of electricity (Viljoen, 2019).  

1.2.2) Current Perspectives and Practices  

Around the world there are multiple methods used to culture fish, cages, RAS and ponds. 

Of these the most recent method is cage culture which is used to culture fish in natural or 

artificial water bodies. With one of the main advantages being that they do not require land-

ownership and can be moved around to the most suitable area for the target species (Viljoen, 

2019). Another advantage is that cages allow for the fish to be kept in groups which 

facilitates the size-sorting and can prevent unwanted reproduction. However, there are a 

number of disadvantages to this method that should be considered. In cages the fish are 

unable to access the bedrock from which they can feed or seek refuge and there is also the 

ever-present risk of losing the entire group should the fish escape from the cage. It is also 

known that in certain waterbodies cages suffer from fouling of the mesh, thus preventing the 

free-flow of water through the cage, resulting in poor water quality at times. Some 

waterbodies could potentially be polluted by the accumulation of uneaten feed and fish 

waste gathered below the cage (Pearson and Black, 2000; Viljoen, 2019). Although there 

are various advantages to this method, the main reason for their exclusion from the South 

African aquaculture sector is the turbulent seas. The coastline of South Africa lacks 

protective locations such bays or deep lagoons meaning the cages would be exposed to 

harsh conditions which would result in the loss or damage of cages. Therefore, production 

practices in South Africa rely on the use of ponds or RAS.   

The RAS systems are used worldwide for the commercial production of aquaculture species. 

These systems can be divided into categories based on their complexity and water use 

strategies. Systems can vary from flow-through, to partial flow-through, to a complete water 

recirculation system. Most systems incorporate the use of a water treatment plant that 
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recirculates and cleans the water to maintain a high level of water quality as sustaining a 

high density of aquatic animals in a confined space requires the exceptional maintenance 

of water quality, oxygen content, ammonia control and nitrate dilution (Rurangwa et al., 

2011). This can be achieved using biological, mechanical and even sometimes chemical 

methods. In order to try and maximise profitability high value species are generally farmed 

using these systems to try and counteract the production cost. However, the high risk, 

complexity and energy consumption of RAS systems have led to other systems being 

implemented such as pond culture. These earthen ponds are used to produce fish and other 

aquatic organisms particularly in developing countries as it is often used for polyculture, the 

culture of more than one species. Although these ponds are cost-effective the design 

principles are essential, as large volumes of free-flowing water are required with a gravity 

supply being best. The fertilisation of these ponds has also been proven to increase the 

natural productivity of the water as the increased nutrient load supports the increased growth 

of algae which can be of benefit to species such as Oreochromis aureus (tilapia) which feed 

on the algae (Stoneham et al., 2018). This fertilisation can be achieved by the administration 

of animal manure into the water. The low running costs and simplicity make pond farms a 

very attractive alternative to current RAS.  

Open reproduction systems utilise undomesticated broodstock (wild) to produce seed 

animals for culture; these cultured animals are not kept for breeding purposes as the system 

relies entirely on the use of wild individuals. To induce reproduction in fish, aquaculture 

farms generally rely on one of two methods. The first method is to provide an environment 

similar to that in which spawning naturally occurs. This is achieved by simulating the species 

preferred environment through the manipulation of photoperiod in the hatchery and an 

increase of the water temperature among various other things. The second method utilises 

one or more naturally occurring reproductive hormones, which is injected into the fish. 

However, this method is only effective in fish that are already in breeding condition, requiring 

these fish to have mature eggs where the germinal vesicle has already migrated. These two 

methods are often used sequentially: the first being used to manipulate maturation, while 

the second is used to induce ovulation (Griffiths, 1996). However, given the extreme 

sensitivity of adult fish when coerced into an artificial breeding and the high costs involved 

in the maintenance of a large number of fish, future expansion of this industry is likely to use 

a closed reproduction system that utilises cultured fish with favourable production 

characteristics to replace wild broodstock. Therefore, the use of a selective breeding 

programme would assist in increased production and more efficient resource utilisation. For 
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this specific reason a first-stage selective breeding programme has been implemented. 

During the initial phase of domestication, it is essential to maintain the genetic diversity 

within the breeding population. This can be achieved by maximizing the founder population 

and avoiding excessive inbreeding thus maximising the response to selection. It is possible 

to reduce chances of inbreeding in the initial generations of selection by establishing a large 

breeding population which has a low level of average relatedness but high levels of allelic 

variability (Hayes et al. 2006; Sekino et al. 2004). The stock performance of breeding 

programmes in aquaculture can be optimised as other economically important traits can be 

developed through artificial selection, such as traits relating to growth and disease 

resistance (Lillehammer et al., 2011). The ability to maintain a high quality broodstock 

population has greatly contributed to the improvement of biological efficiencies in many 

aquaculture species, including finfish species such as carp (Cyprinus carpio L) (Spasić et 

al. 2010; Dong et al. 2015) and Atlantic salmon (Salmo salar L) (Gjedrem et al., 1991; 

Skaalav et al., 2004). 

Current reproduction practices of dusky kob rely on the mass spawning of broodstock (i.e. 

each male reproducing with many females and each female reproducing with many males 

in a single tank). The broodstock are housed underneath photoperiod control to ensure the 

continuous production of eggs throughout the year. Prior to the commencement of 

spawning, the female broodstock are sedated and cannulated for the collection of oocytes 

using a catheter. Generally, oocytes with a diameter of 0.5mm or more are considered 

optimal, increasing the chance of successful spawning (Jenkins, 2018). Following this test, 

the male and female broodstock individuals are hormonally induced and the water 

temperature raised (>22⁰C) to initiate the spawning process. With a spawning female being 

able to produce anything between 2 million and 12 million eggs at a time. Upon completion 

of spawning, all the viable (floating) fertilised eggs are collected and placed into incubation 

tanks for hatching, with hatching taking place at approximately 24-30 hours after spawning. 

During the first 48 hours the larvae feed on the yellow yolk sac, after which they are 

transferred to a larval rearing system which consists of circular tanks that are on a 

recirculation aquaculture system. These recirculating systems filter and clean the water for 

recycling back through to the fish, recovering waste products that can supply nutrients for 

vegetable production in an aquaponics system reducing the amount of water required. After 

this period live feeds are introduced beginning with Branchionus spp. (rotifers), followed by 

Artemia (brine shrimp) until the larvae are fully weaned and then transferred to the nursing 

tanks (juvenile stage). Although there are various options, the best choice for first live larval 
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food in hatcheries is rotifers. This is due to a number of reasons, such as the organism’s 

small size (130–320l), calorie value, relatively low mortality, slow swimming velocity and its 

ability to rise in high-density conditions (Lubzens et al., 2001; Yoshimatsu et al., 2014). Even 

at high densities, the rotifers reproduce rapidly, building up large quantities of live food in a 

very short period of time. It has also been suggested that marine fish larvae only have a 

partially developed digestive tract after hatching. These larvae therefore depend strongly on 

exogenous enzymes, provided by the live food which they consume, for digestion of their 

prey, meaning that the rotifers or brine shrimp are partly digested by their own enzymes, 

which are released as they reach the gut of the larvae (Kolkovski et al., 1993; Munilla-Moran 

et al., 1990; Walford and Lam, 1993). Between 30 to 35 days, the weaned larvae 

metamorphosize to become fully developed. Once reaching an average size of 1.6g, these 

fingerlings are moved to the grow-out section, where they are fed according to specific 

feeding charts, temperature calculations and growth rate indicators (Griffiths, 1996). 

At approximately several months of age, the juveniles of similar age are pooled and divided 

into two or more independent size grades, depending on their body weight and length. With 

the slower-growing juveniles often being culled before and/or after grading, or alternatively 

when tank space is limited. These practices are necessary in order to maintain standard 

growth rates throughout harvest (which can range from 400g to 3kg), and subsequently 

minimising detrimental behavioural effects such as aggression (Jenkins, 2018). Aggressive 

behaviour in the aquaculture of dusky kob is a common occurrence, often resulting in 

cannibalism and can occur in as little as 18 days post hatching (O’Sullivan and Ryan, 2001). 

Cannibalism has also been reported for other aquaculture species, including Lates calcarifer 

(barramundi) (Loughnan et al., 2013), Epinephelus lanceolatus (giant grouper) (Hseu et al., 

2007), Clarias gariepinus (sharp tooth catfish) (Baras et al., 2001), Paralichthys olivaceus 

Japanese flounder (Dou et al., 2004) and Sciaenops ocellatus (red drum) (Liao and Chang, 

2002). Although aggression can arise regardless of the situation, the degree of cannibalism 

has been shown to be more pronounced in groups where offspring from multiple families 

are raised in a communal environment (Baras and Jobling, 2002; Liu et al., 2017). Factors 

such as inadequate food source, low feeding frequency, crowding density and light intensity 

have also been shown to increase the level of aggression (Collett et al., 2008; Fessehaye 

et al., 2006; Hecht and Pienaar, 1993; Kestemont et al., 2003; Timmer and Magellan, 2011; 

Qin et al., 2004).  
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1.3) Molecular Markers 

Genetic variation is necessary in an ever-changing environment, where transformation and 

adaption are essential for the survival of the species (Bailey et al., 2010). Genetic variation 

arises between individuals when evolutionary forces such as mutation, selection and genetic 

drift causes differentiation at the level of population, and in extreme cases the creation of 

new species. Molecular markers are genetic polymorphisms that arise through mutation and 

is subject to demographic and/or functional effects population effects, and can be used to 

deduce population dynamics, familial relationships, or for studying the genetic mechanisms 

that underlie phenotypic traits.  These markers are classified into two types, type I and type 

II. Type I markers are associated with genes of known function, while type II markers are 

associated with anonymous genomic regions (O’Brien, 1991). Type II markers can be 

converted to type I markers once a marker has been associated with genes of known 

function. The significance of type I markers is becoming extremely important for aquaculture 

genetics (Chauhan and Rajiv, 2010). During the early stages of aquaculture, all the 

molecular work was performed using allozymes (enzyme products of genes, type I marker) 

and despite the known limitations of allozymes it did have a profound effect on the 

management and research of fisheries, as this research demonstrated the usefulness of 

genetic markers in stock identification that has a direct functional link (Grant et al., 1999; 

May, 2003). These markers, do however, have a limited power in detecting genetic 

variability, and require large amounts of tissue from organs (i.e. liver and heart) for their 

assay, resulting in the death of the animal. 

The use of allozymes were followed by the development of Type II DNA markers, which 

include amplified fragment length polymorphism (AFLP), random amplified polymorphic 

DNA (RAPD), and minisatellites (Carvalho and Pitcher, 1995; Clifford et al., 1998; Vos et al., 

1995). These simple methods are rapid, cheap, and only require a small amount of DNA, 

with no prior knowledge regarding the genetic make-up of the organism being necessary 

(Hadrys et al., 1992). The weakness is that these are all dominant markers, making them 

difficult to analyse (Ignal and Ilan, 2002; Liu and Cordes, 2004). One of the main criticisms 

of minisatellites and AFLPs is that the allele frequencies for a given locus cannot be 

determined as multiple loci are assayed simultaneously (Magoulas et al., 1998). As a result 

of these limitations, molecular genetic studies performed on aquaculture species have 

expanded to include the use mitochondrial DNA (mtDNA) markers, microsatellites, and more 

recently SNPs. Markers using mtDNA, represent a single locus, is a very popular marker 

which has been prevalent in genetic studies looking at phylogeny and population structure 
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in fish for more than a decade (Billington, 2003) at inter-specific level, but it is still not the 

most effective for assessing genetic variability within commercial stocks (Hurst and Jiggins, 

2005). This is because mtDNA was strictly a marker for historical processes in females, 

therefore should male and female history differ in a species (such as the interdiction of wild 

broodstock), then this marker would not reflect the history of the species as a whole, but 

only that of the maternal lineage.  

The development of genetic markers has transformed molecular studies with microsatellites 

and single nucleotide polymorphisms (SNPs) playing a fundamental role in this 

transformation. Microsatellites are co-dominant markers that consist of short tandem repeats 

which are located mostly within the non-coding regions of DNA. Each of the repeat motifs 

generally consist of two to four base pairs, with the number of repeat regions varying 

between individuals and populations (Morin et al., 2004). On the other hand, SNPs are 

caused by, a base pair substitution resulting in two alleles differing at a particular position 

on a locus, by a single base pair, in otherwise identical sequences. Each of these markers 

have slightly different advantages and disadvantages that make them ideal for studying 

populations, however, microsatellites have been the marker of choice for aquaculture 

development as they are highly polymorphic, simple and cheap to score and exhibit cross-

species utility in closely related species (Dawson et al., 2000; Dawson et al., 2005). Recently 

though, SNPs have emerged as a viable marker for use in non-model species as advances 

in technology have led to reduction in the time and cost involved in the location and 

genotyping of these markers (Hansson et al., 2005; Syvänen, 2005). As a result of these 

advances there has been an increased use of SNPs despite their predominately biallelic 

nature, which means that in comparison to the highly polymorphic microsatellites, SNPs 

provide relatively less information per locus. Thus, making linkage between markers more 

difficult to detect as SNPs are unable to identify as many informative meiosis as would be 

possible with microsatellites. Therefore, a larger number of evenly spaced makers can be 

utilised to cover a higher proportion of the genome in order to compensate for this reduction 

(Xing et al. 2005).  

Although microsatellites are highly polymorphic in comparison to SNPs, they are known to 

be relatively prone to genotyping errors therefore generating potentially a lower ‘quality’ of 

data. The quality of data is only further affected by the use of semi-automated microsatellite-

based methods of genotyping and allele-calling, which can introduce human-based errors. 

While modern SNP genotyping platforms are almost fully automated and error rates tend to 

be much lower resulting in data of a higher quality (Heaton et al., 2002; Lindblad-Toh et al., 
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2000; Wang et al., 1998). This is an important factor to consider when selecting markers as 

these genotyping errors can have a large impact on parentage inference and population 

structure analyses (Bonin et al., 2004; Slate et al., 2008). Of the many benefits involved in 

utilising SNP markers, reproducibility is one of the most important. This reproducibility is 

only possible due to universal nucleotide calls and the flexibility of SNP detection protocols, 

which is not possible for microsatellites, which rely on the migration of microsatellite 

fragments during electrophoresis for comparison to known standards. This can be a very 

unreliable method for size-based allele determination as the migration rate can differ 

between electrophoresis methods, making it extremely difficult and time consuming for 

laboratories to compare the genotype data (Kim et al., 2008). 

1.4) SNP development strategies and genotypic technologies 

Approaches for the detection and development of SNP markers relies on the comparison of 

sequence data from multiple individuals and detecting sequence polymorphism in multiple 

alignments. Historically this was done by generating BAC - (bacterial artificial chromosome) 

(random genomic DNA fragments) or EST libraries (from cDNA) (Chauhan and Rajiv, 2010). 

However, there has been significant advances made in high throughput sequencing 

technology (HTS) over the last decade, which has resulted in the cost of sequencing being 

reduced while simultaneously improving the usability and accuracy of the sequence data. 

Some of the most significant innovations have been made in whole genome studies, which 

use a combination of de novo assembly, re-sequencing, and bioinformatic approaches to 

identify a large number of SNPs for many organisms with complex genomes (Bertioli et al., 

2016; Lee et al. 2015; Yang et al. 2012). Along with this mass sequence data being produced 

there has also been significant development in SNP genotyping technology, with recent 

advances including PCR-based fluorescently-labelled high-throughput methods, high-

resolution melting (HRM) curve analysis, TaqMan® and KASP™ assay (Martino et al., 

2010), fixed array systems such as Illumina Infinium (Mason et al., 2017), Affymetrix Axiom 

(Allen et al., 2017), and high throughput sequencing (HTS) enabled approaches such as 

restriction-enzyme-based genotyping by sequencing (GBS) (Thomson, 2014). One of the 

most popular approaches that is currently used for the detection of SNPs is the use of HTS 

technologies in combination with genotyping arrays (Ganal et al., 2014). However, a 

requirement for commercial SNP-genotyping platforms is information regarding the target 

organism, resulting in an increased cost and duration required for sequencing, making this 

an ineffective approach for non-model organisms (Ekblom and Galindo, 2010). 

Stellenbosch University https://scholar.sun.ac.za



14 
 

Although identification through HTS in comparison to conventional SNP detection methods, 

does reduce the duration and simplify the scoring of data, there is still a significant amount 

of research required for the development of new markers in non-model organisms (Chung 

et al., 2017). Methods such as whole genome resequencing (WGR) and reduced-

representation sequencing (RRS) are constantly being improved to try and overcome 

limitations.  These approaches have been successfully used in several species to identify 

multiple loci, genome wide, which has been essential to understanding and answering a 

variety of molecular ecology questions (Hohenlohe et al., 2010; Foote et al., 2016; 

Lamichhaney et al., 2017). Whole-genome sequencing can be classified in two categories, 

de novo whole-genome sequencing (WGS); and whole genome resequencing (WGR). The 

aim of WGS is to determine the complete DNA sequence of an organism's genome for the 

first time, which can be challenging depending on the level of completeness which is desired, 

the complexity and size of the genome, computing resources and bioinformatics experience. 

However, the completeness and the accuracy of the genome assembly will determine 

whether the draft genome is suitable for further analyses and applications (Fuentes-Pardo 

and Ruzzante, 2017). Despite the usefulness of this approach in some applications, the 

general consensus is that incomplete draft genomes can create more problems than 

solutions, particularly for accurate SNP calling where high coverage and accurate 

alignments are essential (Li and Wren, 2014). Unlike WGS, the aim of WGR is to rather 

compare the genomic variability among individuals or populations than sequence the entire 

genome. However, for read mapping and variant identification this approach does require 

the availability of a reference genome. This is why many researchers have implemented the 

use of WGR using the genome sequences of a closely related species (Dennenmoser et al., 

2017; Lamichhaney et al., 2012). Differences in the genomic organisation can occur (e.g. 

copy number variation, structural variants) even between closely related species, thus 

restricting this approach to conserved regions between the species (Ekblom and Wolf, 

2014). There are three main techniques which are used for reduced-representation 

sequencing namely Restriction site Associated DNA sequencing (RAD-seq; Andrews et al., 

2016), Sequencing of cDNA obtained from mRNA (RNAseq; Ozsolak and Milos, 2011) and 

Whole-exome sequencing (WES; Warr et al., 2015). 

All these techniques have their strengths and weaknesses which make them better suited 

for specific applications. For RAD-Seq methods (e.g. traditional RAD, ddRAD, ezRAD) the 

marker density is limited by the selection of the restriction enzyme, which can be either be 

a frequent or rare cutter, as this method evaluates the genetic variation that is present 
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around restriction cut sites. However, this does make it a flexible and customisable method 

for examining thousands of low-density SNPs, genome wide in multiple individuals and 

populations. Although with RAD-seq, the marker density and levels of linkage disequilibrium 

(LD) are important considerations (Andrews et al., 2016). The RNA-seq technique is a 

transcriptome sequencing method which is not restricted by the target size; however, this 

technique is limited with regard to distinguishing nonsense mutations and in the discovery 

of genomic lesions that affect splice sites (Bowen et al., 2011; Leshchiner et al., 2012; 

Obholzer et al., 2012) as this technique focuses on the genetic variants that are being 

transcribed in specific regions of the genome at the time of sampling. Therefore, this 

approach is mostly used as a cost-effective approach for gene expression quantification and 

for the comparison of variants within genes being transcribed in a particular tissue or at a 

specific time (Ozsolak and Milos, 2010). Thus, causing the genome to have regions where 

there is little to no coverage as a result of gene expression at the time of sampling. This 

does not only affect the coverage, but introduces an ascertainment bias where highly 

expressed genes are given a greater chance of detection during sequencing, thus skewing 

downstream gene ontology (Costa et al., 2012; Ozsolak and Milos, 2010).  

Thus, targeted sequencing of the genome using high throughput sequencing has become a 

powerful method for identifying variants (Albert et al., 2007; Hodges et al., 2007; Hodges et 

al., 2009; Okou, 2007). Exome sequencing also known as whole-exome sequencing (WES) 

is the most widely used targeted sequencing method. For the identification of causal variants 

this method has quickly become the strategy of choice, as it is rapid and cost-effective. This 

is due to the ability of this method to only sequence the coding regions of the genome, 

therefore focusing on the genes that are most likely to have a causative effect on the 

phenotype (Belkadi et al., 2016; Warr et al., 2015). Normally obtaining this information would 

require the genotyping of thousands of gene-targeted-loci across the genome. However, 

with the coding gene sequences (the exome) within the typical eukaryotic genome, only 

comprising of 2% and the advances made in the development of techniques for the isolation 

exome DNA, thousands of informative gene markers can be simply and cost-effectively 

located and identified within the genome (Luikart, 2003). WES is a powerful tool but it has 

been precluded in studies as a result of its non-uniform exon coverage across the genome. 

However, in recent years there has been a significant increase in the utilisation of this 

strategy with the release of commercial exon capture kits, which has enabled researchers 

to target exons from non-human organisms for resequencing. These kits are found to be 

easily adaptable to high-throughput workflows and do not require any sort of investment in 
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array-processing equipment, making them particularly useful and important (Parla et al., 

2011).  

In humans, approximately 85% of known phenotypically associated mutations can be found 

within the coding region or splice sites of protein-coding genes (Ng et al., 2010). Whilst this 

number is most likely the bias of studies which have only focused on protein-coding genes, 

exome sequencing has still become the standard tool for the identification of variants in 

humans (Bilguvar et al., 2010; Raffan, et al. 2011; Worthey et al., 2011). While exome 

capture was initially performed using microarrays (Albert et al., 2007; Hodges et al., 2007), 

newer methods, such as Agilent’s SureSelect and Nimblegen’s SeqCap EZ systems rely on 

solution-based capture (Bainbridge et al., 2010; Gnirke et al., 2009). Until recently, exon 

capture had only been tested almost entirely in model species (Raca et al. 2010; Wang et 

al., 2010), usually performed by baiting a single chromosomal or the entire exome region 

using the available genome sequences of the target organism. Probe design for exome-

wide capture requires knowledge of thousands of exon sequences, as such, studies have 

not yet tested the potential of exon capture to a wider variety of organisms. This information 

is not available for many eukaryotic species as only a small portion of these species have 

had their genomes fully sequenced. Although there would still be tens of thousands of 

vertebrate species without genome sequences or any genomic resources, even if 

researchers were able to eventually sequence a large number of eukaryotic species. Hence 

the need to investigate the potential of cross-species exome capture. As such, studies have 

been performed using whole-exome sequencing in combination with solution-based exon-

capture kits, which have been designed specifically for model organisms such as, cattle and 

humans (Cosart et al., 2011; Vallender, 2011). Using these kits in closely related species, 

the researchers were able to achieve a high number of quality on-target reads as well as 

providing a reliable set of SNPs. This allowed for the accurate determination of critical 

genomic intervals while reducing the number of candidate mutations requiring evaluation. 

Due to the high success of these kits in closely related species there is a large amount of 

potential in the utilisation of model organisms, capture kits in non-model organisms, as the 

functional elements tend to be highly conserved despite millions of years of divergence. The 

inclusion of the exome capture kits in WES strategies will enhance the ability of this method 

to identify genetic markers, with or without the availability of a reference genome thus aiding 

in the rapid development of genomic resources (Warr et al. 2015).  
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1.5) Application of SNPs in aquaculture 

1.5.1) Individual identification, Pedigree inference and Population Assessments 

Fish are known to have some of the most complex mating systems within the animal 

kingdom. Meaning that effective methods are required for the traceability of these animals, 

methods which can also be utilised not only for research purposes but for controlling the 

trade and management of marine animals/products. Most marine species are accurately 

traced by inferring parentage, kinship and population structure, which are most effectively 

estimated using molecular markers such as SNPs and microsatellites (Liu and Cordes, 

2004). Although there has been an exponential growth in the use of SNPs over the last 

decade for such analyses, (Guichoux et al., 2011) these markers are not yet widely used for 

parentage assignment. This is largely due to the fact that there are still many questions 

regarding ascertainment (SNP discovery and selection) methods (Aitken et al., 2004; 

Rosenblum and Novembre, 2007; Smith et al., 2007) and the large discrepancy observed 

between the statistical power of SNPs and microsatellites. Some studies have tried to 

address these questions in terms kinship (Krawczak, 1999), individual identification 

(Chakraborty et al., 1999) and parentage inference (Anderson and Garza, 2006), with a 

study performed by Glaublitz et al., (2003) showing that a single microsatellite appears to 

have the same resolving power of ~6 SNPs making SNP markers extremely costly for this 

application. This issue was also addressed in terms of population structure by Kalinowski 

(2002), which showed that the statistical power of genetic markers for detecting 

differentiation as a result of genetic drift is not related to the number of loci but rather 

primarily to the total number of independent alleles. Therefore, this can be used to provide 

a rough estimation as to how many SNP loci are required to obtain the same statistical power 

as a given set of microsatellite loci. This was determined to have quite a wide range, with 

the effects of ascertainment bias, allele frequency and linkage still needing to be taken into 

consideration when determining the statistical power of the loci (Smith and Seeb, 2008). In 

general, the statistical power of a certain marker set varies depending on the purpose and 

application, thus the markers should be tested in advance to assure sufficient power for the 

application (Vignal et al., 2002). 

Due to the aforementioned advantage of microsatellites, this marker has been frequently 

used in population genetics. However, this is rapidly changing as an evaluation of these two 

markers for inferences such as hybrid detection (Väli et al., 2010), inbreeding (Santure et 

al., 2010), and parentage or kinship analyses (Hauser et al., 2011; Ross et al., 2014) has 

shown SNPs to be far superior to that of microsatellites. Although, when solely looking at a 
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per-locus basis, microsatellites do retain advantages over SNPs, advantages which include 

a lower ascertainment bias, higher allelic richness, and higher statistical power (Guichoux 

et al., 2011; Haasl and Payseur, 2010; Payseur and Jing, 2011; Sun et al., 2009). With 

studies having shown microsatellites to be better or relatively similar to SNPs in regards to 

population structure inference (Ciani et al., 2013; Granevitze et al., 2014; Livingstone et al., 

2010; Ross et al., 2014).  However, these studies only evaluated a modest number of 

markers, and it has been stated that the use of a large number of SNP loci, which can be 

obtained using high-throughput sequencing is likely to overcome many of the markers’ 

weaknesses. A study by Haasl and Payseur (2010) evaluated the utility of microsatellites 

and SNPs for addressing various population genetics questions and what they determined 

is that SNPs were generally found to have a greater power in detecting population structure 

in comparison to microsatellites, as only a few SNP loci were needed to detect structure 

between populations with moderate divergence times. Although, this study did show that as 

divergence times decreased, significantly more SNP loci were required in comparison to 

microsatellites (Haasl and Payseur, 2010). The stability of SNPs is however, considered to 

be a major advantage in evolutionary, population biology and pedigree studies, as theses 

markers are not limited to the non-coding regions of the genome and are therefore likely to 

be subjected to evolutionary selective forces (Stoneking, 2001). However, microsatellites 

may still be more appropriate for studies on short temporal or spatial scales, where the 

applications require both cross-species range and good resolution, (Buschiazzo and 

Gemmell, 2010; Dawson et al., 2013; Seeb et al., 2011) in taxa that are highly clonal or 

slowly evolving (Stolle et al., 2013).  

However, it is important to understand that the majority of the studies used for these 

comparisons, focused on breed/stock identification of well-studied systems (e.g. salmon), 

meaning that the set of loci used for these studies were developed prior to the genomic era. 

Therefore, studies need to utilise high-throughput methods to develop both SNP and 

microsatellite markers in order to accurately determine the marker choice for future 

population genetics studies of non-model species. Overall, molecular genetic markers such 

as microsatellites and SNPs have a wide range of potential applications in the long-term 

management of farmed and wild populations, and with the continuous improvements being 

made to high throughput sequencing methods, microsatellite data are already available as 

a by-product of methods obtaining genome wide SNPs. Thus, the simultaneous use of these 

markers will assist in the greatest accuracy and resolution.  
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1.5.2) Loci Associated with Complex Traits in Aquaculture and Marker-Assisted Selection 

Aquaculture genetics programmes became prevalent in the 1900s due to the better 

understanding and knowledge obtained regarding breeding and inheritance. In the 1960s, 

the first selective breeding programmes for genetic enhancement of aquatic animals were 

implemented (Gjedrem and Baranski, 2009). At the same time there was a shift in animal 

breeding from classical quantitative genetics to more molecular approaches with an increase 

in molecular genetics research, particularly during the 1990’s, with the focus of animal 

breeding shifting in 1990 from quantitative to molecular genetics (Misztal, 2006). Yet despite 

the rapid growth in aquaculture production and the advances made in genetic tools, the vast 

majority of aquaculture facilities across the world still maintain and propagate stock without 

the assistance of advanced selective breeding programmes (Gjedrem et al., 2012; Janssen 

et al., 2016). Meaning that genetic markers are not being utilised to their full potential, with 

genetic tools only being applied for general stock assessments (of diversity) and to the 

pedigree reconstruction of many aquaculture species (Chavanne et al., 2016). Considerable 

scope remains for the use of molecular markers as a diagnostic tool in the identification of 

genetically superior animals even before the phenotypic trait is expressed (i.e. marker 

assisted selection). This however does require that the marker is associated with a 

phenotype of a trait of importance. Classically this was done via the construction of genetics 

linkage maps and investigating the co-segregation of phenotypes with marker loci in 

pedigrees (Slate, 2008). Historically, most linkage maps suitable for crude QTL analysis was 

based on microsatellite genotypes, however most high-density maps are now constructed 

using SNP markers. SNP markers have also become the marker of choice in other 

genotype-phenotype correlation strategies, including candidate gene- and whole genome 

association studies (also referred to as LD mapping), with each method having its own 

advantages and disadvantages.  

Genome-wide scanning usually proceeds without any assumptions regarding the specific 

functional features of molecular makers, which may be of importance to the traits of interest, 

making this a resource intensive approach. This intensive approach is much like QTL 

mapping in its ability to identify multiple regions within the genome that contain potential 

QTLs. The problem with this is that these regions are typically very large, containing 

thousands of putative genes, with a large number of candidate genes still remaining 

following fine scale mapping, making the investigation into all the genes unfeasible (Wayne 

and McIntyre, 2000). Therefore, due to the excessive data and cost involved with this 

approach, candidate gene approaches have been employed, with studies showing this to 
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be extremely powerful for studying the genetic architecture of complex traits (Hebert et al., 

2013; Pacitti et al., 2013; Tao and Boulding, 2003). This method is far more effective and 

economical for direct gene discovery, as this approach is able to narrow down the large 

number candidate genes to only a few genes that have been identified in literature as having 

an effect on the particular trait related to the biological function of interest, thus increasing 

the likelihood of identifying QTL which are directly linked to the trait of interest. Thus, allowing 

researchers to study the genetic architecture of complex traits, by focusing on a select 

number of gene regions where association with the trait of interest is typically located. This 

method is often employed in non-model organisms, which have limited genomic information 

or when the cost of QTL mapping is excessive as a result of the organism’s large genome. 

Although, this approach is largely limited by its reliance on existing knowledge about the 

known or presumed biology of the phenotype under investigation, which is generally limited 

in a large number of organisms (Korte et al., 2013). 

This provides a major challenge in relation to discovery of candidate genes in non-model 

species thus, making the candidate gene approach labour intensive. However, some studies 

have taken advantage of the available sequence information for related species to identify 

genetic variation in a non-model species (e.g. Aitken et al., 2004; Cosart et al., 2012; 

Hemmer-Hansen et al., 2011; Primmer et al., 2002), thereby increasing the number of 

potential target genes in species with limited genomic information. Although the candidate 

gene identified as having association to the trait of interest within the related species may 

not have the same association within the target organism (Aguirre‐Hernández and Sargan, 

2005). Nevertheless, this approach allows for the rapid development of markers, which can 

aid in the development of genomic resources in non-model organisms which previously 

would have been labour intensive and costly. Thus, despite the known limitations of this 

method, it is a powerful tool that will greatly assist researchers in understanding the 

biological role that genes play in the expression of economically important complex traits. 

Knowledge pertaining to the functional role of genes in the expression of desired traits, is 

essential for the improvement of future selection methods. The traditional selection of 

animals based solely on phenotypic quality, has shown to improve livestock populations, 

reducing production costs and improving the quality of the products however it has actually 

only assisted in the improvement of a very limited number of traits. Therefore, in order to 

meet the public demand and develop a sustainable industry, it is necessary to address the 

limitations that are associated with traditional selection approaches by utilising new 

technology, genetic markers, for the selection of genetically superior animals. Traditionally, 
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selective breeding of local livestock was aimed at improving the genetics to ensure survival 

and success in their surrounding environment, thus providing a food source to the local 

communities (van Marle-Köster and Visser, 2018). This selective breeding led to distinct 

breeds of livestock being formed as a result of characteristic phenotypes. These diverse 

phenotypes are controlled by equally diverse genetic elements, therefore providing the 

opportunity for the selection of animals with superior performance in specific desirable traits, 

such as growth rate, fertility, hardiness, product yield and quality (e.g. milk, meat, egg, etc.), 

and disease resistance. With countries where the economic environment supports high input 

agriculture or aquaculture, there has been a significant increase in the level of productivity 

from the selective improvement of livestock in simple production traits (Allaire and Gibson, 

1992; Broderick, 2003). This was achieved by utilising the latest technological advances 

such as artificial insemination (AI), to maximise selection for genetic gain (Hunt et al., 1974; 

McMahon et al., 1985; Wilcox et al.,1984). However, most of the economically important 

production traits are found to be more complex than these simple traits and have a very 

large range of variation within the observed phenotype. This could result in the 

improvements of one trait by selective breeding causing the loss or decreased performance 

of other traits (Williams, 2005). Therefore, to overcome this limitation, marker assisted 

selection can be employed where knowledge obtained regarding the genes involved in the 

underlying expression of the traits can be used for future improvements. This is possible by 

using the most beneficial loci to detect and identify a number of complex traits within the 

livestock, prior to breeding allowing for the most beneficial allelic combinations being passed 

on to the next generation. 

1.6) Study rationale, aims and objectives 

1.6.1) Problem Statement 

Dusky kob is a large estuarine-dependent sciaenid finfish that is found to be abundant within 

South African waters. For decades, this species has been targeted by commercial, 

recreational and subsistence fisheries, leading to the subsequent collapse of the natural 

populations. With the poor management and unsustainable harvesting of fisheries, a shift 

towards aquaculture as a sustainable alternative supply to the ever-increasing market, has 

been initiated. For many years, the primary focus of the South African marine finfish industry 

has been the improvement of dusky kob’s growth rate through the implementation of a 

selective breeding programme. However, there are currently no genomic resources 

available for dusky kob, resources which are necessary to understand the various genetic 

determinants influencing complex traits, particularly growth rate, as this will facilitate in the 
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effective utilisation of the species through selective breeding. The development and 

implementation of these genomics tools in the selection process of broodstock will 

potentially enhance commercial productivity as well as value for this species.  

A powerful method used to develop these genomic resources is targeted sequencing. This 

method is often used for the identification of variants associated with traits of interest using 

next-generation sequencing. This method is however limited by cost considerations hence 

the recent development of exon capture kits. These kits allow for studies to rapidly and cost-

effectively focus on the coding regions of the genome where variation with causative effects 

on the phenotype are likely to occur. Although there has been a significant increase in the 

use of these capture kits, their ability to sequence a non-model organism still remains 

unknown. Therefore, making it an untapped resource which could assist in the rapid 

development of genomic resources for organisms where no genomic resources are 

available. These resources, however, cannot be created without answers to key knowledge 

gaps pertaining to the transferability of these kits. Theoretically the use of a model 

organism’s capture kit in the exon capture of a non-model organism should be successful, 

as the functional elements of the genome tend to be highly conserved. However, there are 

a number of questions regarding this strategy that remain unanswered thus impeding the 

improvement of dusky kob’s selective breeding programme. 

1.6.2) Aims and Objectives 

This study aimed to describe the development of SNP markers to assess the genetic 

variation associated with growth rate for the species dusky kob (Argyrosomus japonicus), 

using an optimised whole-exome sequencing protocol. The transferability of the zebrafish’s 

solution-based exon-capture kit to the non-model organism dusky kob was assessed using 

sixteen individuals (in Chapter 2). The modified protocol used for the sequencing of the 

exomes was be discussed in detail to enable its replication in future studies. Additionally, 

the quality of the sequenced reads and the generated de novo assemblies was assessed, 

as well as their similarity to the model organism. Concluding this section with an evaluation 

of the capture kits ability to allow for the location and identification of variants within the 

genome. The identified variants were then be analysed (in Chapter 3) to identify genetic 

variation occurring within 15 candidate growth genes of two cohorts, with one of the cohorts 

consisting of 8 phenotypically characterised large individuals and the second cohort 

consisting of 8 individuals characterised as small. The identified genetic variants were then 

analysed in a case-control study to determine whether the loci are associated with the 

economically important trait, growth, in a larger cohort consisting of individuals from various 
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families generated a single spawning event. The obtained results (chapters 2 and 3) were 

then interpreted, and synthesised with the context of the broader body of knowledge and (in 

Chapter 4) discussed in terms of broad managerial recommendations related to the 

development of genetic resources and of genetic improvement strategies for the South 

African dusky kob were made and the development of genomic resources. As genotyping 

by sequencing becomes a more common method, this study therefore provides an accurate 

genetic resource which can aid in future genomics research and the acceleration of 

molecular breeding programmes. 
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CHAPTER 2 

Transferability of a model organism’s solution-based exon-capture kit, 
in the non-model organism the dusky kob 

 

Abstract 

The use of gene-targeted, genome-wide markers are essential for the advancement of 

evolutionary biology, animal production, and biodiversity conservation as it increases our 

understanding of genetic processes underlying complex traits, adaptation and speciation. 

Transcriptome sequencing, although gene targeted does have limitations, and thus a more 

flexible, gene-targeted method is required for the identification of genome-wide SNPs over 

a number of individuals and genes. This study demonstrates the usefulness of a recent 

technology, exome capture, in the discovery of genome-wide markers in a species with 

limited available genomic resources. Exome sequencing was performed in Argyrosomus 

japonicus using a model organism’s exome capture kit, (Danio rerio), zebrafish on the 

IonTorrentTM platform. By applying this method, the capture kit was able to successfully 

sequence, 6,623 of the 346,263 exons found within zebrafish as well as a large number of 

exons that could potentially be species-specific. Characterisation of the exon regions 

determined that the exons were distributed among the various functional classes of GO and 

KOG databases indicating how the exome data, even though not covering the entire 

genome, encompasses a broad gene functional diversity. The annotated exons were used 

to identify genomic regions involved in development and metabolic processes, gene 

expression, as well as regions involved in processes of stress response. Overall, the exome 

data proved to be a valuable resource for the identification of variants, with variant detection 

identifying 4.5 million potential molecular markers with a total of 2.8 million putative SNPs 

and 3,276 tandem repeats. These variants were spread across the exome regions with a 

SNP occurring approximately every 1000 nt. This study demonstrated the ability of exon 

capture to be customised for cross-species capture to assist in molecular marker discovery 

for non-model organisms with limited or no genomic resources.  
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Background 

2.1) Introduction 

Single nucleotide polymorphisms (SNPs) have become the marker of choice in numerous 

genomic studies focusing on population diversity, conservation genetics and functional gene 

identification for biological traits and selective breeding (Seeb et al., 2011). These variants 

are found to be the most frequent type of variation to occur within the genome, as their 

mostly biallelic nature increases their abundance and accurate high-throughput scoring, 

making these markers ideal for studying the genomic patterns of inheritance of biological 

traits (Schlötterer, 2004; Stickney, 2002). Due to the popularity of these markers, a variety 

of technologies were developed, which led to the development and application of SNP 

microarrays, which enabled researchers to study genome-wide SNPs in a high-throughput 

manner. However, without reference sequences, microarray approaches are unable to 

discover novel SNP loci thus, hindering the wider usage of this application in non-model 

species, particularly in endangered and emerging organisms, of economic importance for 

fisheries and aquaculture (De Donato et al., 2013; Xiao et al., 2016). Unfortunately, for many 

eukaryotic species with large and complex genomes, it remains costly and technically 

challenging to obtain and develop genome resources, such as whole genome assemblies 

or genome-wide SNP panels (Cosart et al., 2011). Thus, targeted sequencing of the genome 

using next-generation sequencing has become a powerful method for identifying DNA 

variation that is associated with traits of interest. Despite the continued advances made in 

sequencing technologies, there is still value in a gene-targeted, next-generation sequencing 

method, that can efficiently sequence a large number of genes from many individuals 

targeting functional regions of the genome (Schott et al., 2017). Conventionally, 

transcriptome sequencing is used (e.g. Wang et al., 2009), however this normally relies on 

fresh tissue and could also create an ascertainment bias, due to differential gene 

expression, in subsequent population genetic analyses (Ozsolak and Milos, 2010). A more 

flexible reduced complexity, targeted sequencing method might thus be warranted, and a 

variety of methods that can be utilised to target, enrich and capture specific sections of the 

genome are available. 

Targeted capture is a method that is able to selectively enrich genomic libraries for particular 

regions of interest, this is performed by using a set of DNA or RNA probes as bait (Gnirke 

et al., 2009). The utilisation of probes can be performed on microarray chips or in solution, 

although the principal remains the same (Albert et al., 2007; Gnirke et al., 2009; Hodges et 
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al., 2007; Okou et al. 2007). Once the regions of interest have been identified, probes can 

be designed, whether it is only for a small portion of the genome with specific features or for 

all the protein coding regions. The most widely used method for enrichment currently is the 

use of hybrid enrichment, which was originally proposed to capture and re-sequence the 

human exome (Albert et al., 2007; Gnirke et al., 2009; Hodges et al., 2007; Porreca et al., 

2007; Okou et al., 2007). Although it has since been applied to other model species for 

applications, such as variant discovery and population genetics (Jones and Good, 2015; 

Warr et al. 2015), it uses in non-model organism remains limited due to the limited ability of 

genome sequence for these species.   

A recent whole-exome sequencing study, utilising a solution-based exon-capture kit 

(designed specifically for the model zebrafish (Danio rerio)), demonstrated the utility of the 

approach in the finfish model species, generating a high number of quality reads as well as 

a reliable SNP-markers (Ryan et al., 2013). Against this background, the objective of this 

study was to evaluate the transferability of the zebrafish exon-capture kit to non-model finfish 

species, such as dusky kob (Argyrosomus japonicus). Theoretically, it is assumed to be 

possible, as despite the divergence between species within the same taxonomic grouping, 

the functional elements of the genome tend to be highly conserved (Dickmeis and Füller, 

2005). This has been successfully demonstrated in a study performed by Cosart et al. 

(2011), where SNPs were successfully identified by capturing the exomes of zebu cattle 

(Bos indicus) and American Bison (Bison bison) using a commercial cattle kit for Bos taurus. 

A similar approach involving the sequencing of Neanderthals and non-human primates using 

human capture kits (Burbano et al., 2010; Vallender, 2011). These studies have 

demonstrated the enhanced ability of WES strategies to identify genetic markers, without 

the availability of a reference genome when utilising the exome capture kits of model 

organisms therefore aiding in the accelerated development of genomic resources for non-

model species (Warr et al., 2015). 

2.2) Methods and Materials 

2.2.1) Study populations and DNA extraction 

Sixteen individual fish samples were collected, from a single commercially produced F1-

generation, at approximately two years of age (i.e. at marketable-size). All cultured animals 

were produced from a single spawning event through the mating of two broodstock 

individuals and were reared in a single tank. Fin clip tissue from all cultured individuals was 

preserved in 70% ethanol and stored at -20°C, after which genomic DNA extraction was 
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performed on each specimen as a single extraction using a standard CTAB DNA extraction 

protocol (Saghai-Maroof et al., 1984).  

2.2.2) Library construction and sequencing 

Sample preparation 

Library preparation and DNA sequencing was performed at the Sequencing Unit of the 

Central Analytical Facility of Stellenbosch University, Stellenbosch, South Africa. For library 

preparation, 1μg of gDNA was diluted in a low-TE buffer (10 mM Tris·Cl, pH 8.0. 1 mM 

EDTA) to a concentration of 7.7ng/μl in a final volume of 130μl. The diluted gDNA (130μl) 

was fragmented using the Covaris S2 in frequency sweeping mode, with the bath 

temperature between 4°C and 6°C, at 5% intensity, 20% duty cycle, 200 cycles/burst, for a 

60 sec treatment time across seven cycles. The volume of sheared gDNA was adjusted to 

158μl with a low TE buffer.  Forty microlitres of end-repair buffer and 2μl end-repair enzyme 

from the IonXpressTM Fragment Library Kit (ThermoFisherTM Scientific) was added to the 

gDNA, pipette mixed and briefly centrifuged, before incubating at room temperature (~21°C) 

for 20min.  To purify the sheared, end-repaired gDNA, 220ul AmpureTM XP reagent was 

added to each sample, incubated at room temperature for 5min and allowed to separate on 

a magnetic stand for a further 5min, before collecting 410μl of the eluate.  A further 143.5μl 

AmpureTM XP reagent was added to the 410μl eluate, homogenised and incubated at room 

temperature for 5 min.  The AmpureTM beads were allowed to separate on a magnetic stand 

and were washed with two steps of 500μl 70% ethanol.  The end-repaired, sheared gDNA 

was eluted from the beads in 27μl nuclease-free water.  One microliter of this DNA was 

assessed on the Perkin ElmerTM 3K Labchip to determine the fragment size distribution of 

each sample.  Lastly, platform-specific adaptors were ligated and samples barcoded using 

the SureSelectTM Target Enrichment System Protocol for Sequencing on Ion Proton, 

following the manufacturer’s instructions and purified with Agencourt AMPureTM XP beads 

(Beckman-Coulter) as described in SureSelectTM Target Enrichment System Protocol for 

Sequencing on Ion Proton (Version C0, December 2016).  The amplification reaction was 

set up in two sets of eight reactions. The reaction was performed across eight cycles of 

amplification on the SimplyAmpTM thermal (ThermoFisherTM Scientific) cycler.  The amplified 

library was assessed on the Perkin ElmerTM 3K Labchip to determine the fragment size 

distribution and concentration of each sample.   

Hybridisation and Capture 
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Exon capture was then performed using the Agilent SureSelectTM solution-based zebrafish 

exon-capture kit on the Ion PI™ Chip, following the manufacturer’s protocol as described on 

p.39-42 of the SureSelectTM Target Enrichment System Protocol for Sequencing on Ion 

Proton (Version C0, December 2016). The entire volume of the amplified library for each of 

the 16 samples was evaporated at 37°C and reconstituted in 3.4μl nuclease-free water.  The 

libraries were hybridised to the capture library at 65°C for 24hrs. The streptavidin-coated 

magnetic beads were then prepared and the hybridised DNA was captured using the 

streptavidin-coated beads.  

Post-Hybridisation Amplification and Sample Processing 

Post-capture amplification was performed using the SureSelectTM Target Enrichment 

System Protocol for Sequencing on IonProtonTM (Version C0, December 2016). Specifically, 

9 cycles of amplification were performed during the Post-capture Polymerase Chain 

Reaction (PCR).  The libraries were purified and primer dimers reduced by repeating this 

part of the protocol for a total of two AMPureTM XP bead purifications. This was done using 

the method described on p. 47 of the SureSelectTM Target Enrichment System Protocol for 

Sequencing on Ion Proton (Version C0, December 2016).  The purified, amplified libraries 

were assessed and quantified on the Bioanalyser DNA HS Chip and the templates prepared 

for sequencing using the Ion OneTouch 2 System with the Ion PITM Template OT2 200 Kit 

v2 and Ion PITM Sequencing 200 Kit v2.  

2.2.3) Assembly and analysis pipeline 

The raw reads of A. japonicus were aligned to the Danio rerio reference genome as a 

preliminary quality control (QC) step performed by the IonProtonTM software post 

sequencing. This step was necessary to assess the level of similarity between the two 

species and the ability of the capture kit to sequence a non-target organism. Upon 

completing the preliminary alignment, the raw reads were obtained and their quality 

assessed using two different platforms: FASTQC v. 0.11.4 (Andrews, 2010) and CLC GWB 

Genomics Workbench® v7.0.3 (CLC GWB, Aarhus, Denmark). During assessment the 

reads were quality-filtered and trimmed to remove all adapters and artificial duplications as 

well as the first 9nt of the reads, which showed a nucleotide composition imbalance. The 

reads were then trimmed from the 5’-end for a minimum average Phred score of Q12 over 

a window of 3nt and only sequences with a minimum length of 50bp were retained. These 

alterations were performed using both TRIMMOMATIC v. 0.33 (Bolger et al., 2014) and CLC 
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Genomics Workbench®.  The altered reads were visualised using FASTQC to ensure that 

the primers, barcodes, and adapter sequences had been sufficiently trimmed.  

De novo assembly and analysis of the trimmed reads was done, using two programs, to 

ensure that the assembly was not biased by the use of a single algorithm: Velvet v. 0.7.62 

(Zerbino and Birney., 2008) and CLC Genomics Workbench®. In order to accurately 

compare the assemblies, the parameters for each program were set as consistently as 

possible with the minimum contig length set at 1000bp, as to simplify mapping and 

downstream analyses of the contigs and a minimum of 8x coverage. Using VelvetOptimiser 

(Gladman and Seemannn, 2012) an optimal hash length of 69 was determined for the Velvet 

assembly, this step was not necessary for CLC GWB as the program determines the optimal 

hash length during assembly (Rahman and Pachter, 2013). All other parameters were kept 

at default for both programs. Upon completion of the assemblies, Bandage (Wick et al., 

2015) was used to visualise the de novo assembly graphs of both CLC GWB and Velvet to 

identify and manually resolve ambiguities within the assemblies. Bandage was also used to 

compare the assemblies by assessing each of the assembly’s individual quality scores 

which include the number of contigs, N50, average contig length, maximum contig length, 

minimum contig length, total length and median depth. 

After curating the assembled scaffolds, the assemblies were compared to the National 

Centre for Biotechnology Information (NCBI) DNA database using the BLAST algorithm 

(Basic Local Alignment Search Tool) (Altschul et al., 1997). The BLASTn function was used 

to classify contigs according to the entry that had the highest hit score on GenBank. Default 

parameters were used and an expectation value (E-value) of less than 10e-5. These results 

were filtered to determine the most significant result using the BLASTn option, max target 

sequences, which assigns the most significant result to each contig; this was set to one, with 

the result determined as most significant being selected. The quality of the assembled 

contigs were assessed by aligning them against the Genbank non-redundant (NR) protein 

database using the BLASTx algorithm. 

Functional annotation in the form of gene ontology (GO) was extracted from the NR 

database using Blast2GO v2.4.4 (Conesa et al., 2005) with an E-value threshold of 10e-10, 

as the matching of contigs to known proteins gives an indication of the quality of assembly, 

in assemblies where no reference sequences were available (Parchman et al., 2010). 

Blast2GO was then used to compare the consensus sequences of dusky kob against the 

reference genome of Danio rerio and the draft genome of Larimichthys crocea (yellow 

croaker), a species which had been identified in the initial BLASTn results and a known 
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sciaenid species. This was done to assess the similarity of the consensus sequence to the 

model organism, and to evaluate the method for assessing the accuracy and success of the 

exome kit’s transferability. Potential exons and genes on the final scaffolds were predicted 

using CLC GWB, while gene prediction, for zebrafish and kob were performed using 

ENSEMBL Zv9 (www.ensembl.org). 

2.2.4) Putative Variant detection 

To investigate the utility of the exome sequences for potential type I molecular marker 

development, the sequences were mined for two classes of variants, single nucleotide 

polymorphisms (SNPs) and microsatellite repeats (also known as short sequence repeats, 

SSRs or short tandem repeats, STRs). For SNPs, the contigs were assessed to determine 

whether coverage was sufficient for accurate variant detection, this was achieved by filtering 

the contigs by excluding any contig that had a median depth of less than 8x, after mapping 

individual reads back to the contig consensus, used as reference sequence. Variant 

detection was performed on the filtered contigs across the genome by mapping the trimmed 

reads of sixteen samples back to the de novo assembly (used as the consensus, reference 

sequence) in CLC GWB. Upon completion of mapping, the fixed ploidy variant detection tool 

was run in CLC GWB to identify variants observed among the samples, with the required 

variant probability value being set at 0.9% and the ploidy at 2. The required variant 

probability is the minimum probability value required for the variant to be called, thus being 

stringent with this value should assist in the validity of the results obtained. This detection 

method relies on an error model estimation to identify and remove variants that are most 

likely the result of sequencing errors. Using a program called tandem repeat finder (Benson, 

1999), the contigs were screed for repeats motifs (di- to hexanucleotide repeats) with a 

minimum of four contiguous repeat units.  

2.3) Results 

2.3.1) Sequencing and capture efficiency  

The number of final library Ion Sphere Particles (ISP’s) amounted to a total of 56% of the 

total reads. DNA enrichment and resequencing yielded more than 567 million sequence 

reads (Table 2.1), with an average of 35.5 million sequence reads per sample (range: 29.1M 

– 41.6M), with the amplified library inserts having an average size distribution of 240bp, with 

a concentration varying between 277 and 790ng per µl. The percentage of low-quality reads 

varied between 15% and 27% across eight PI v3 chips with a mean read length of 137bp.  
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Figure 2.1.  Preliminary alignment of the raw reads of A. japonicus to the reference genome 

of D. rerio which was performed using the ion-torrent platform  

Table 2.1. Summary statistics of the reads and quality of the bases generated for dusky kob on the ion-

torrent platform using the P1 chip in combination with the zebrafish exon capture kit 

Total Reads 567,409,399 

Total Usable Reads [Final Library] 317,749,263 (56%) 

Total ≥ Q20 [bp] 63,504,893,735 (85%) 

Total Bases [bp] 74,667,689,870 

Mean Read Length [bp] 137 (124-142) 

Average Number of Reads Per Sample 35,463,087 (29,1M – 41,6M) 

Average Number of Bases Per Sample 4,666,730,617 (4,1Bn - 5,8Bn) 

Average ≥ Q20 Per Sample 3,969,055,858 (3,1Bn– 5,0Bn) 

The preliminary mapping of A. japonicus reads to D. rerio genome indicated that 

approximately 67.58% of the sequenced reads were able to be aligned to the reference, with 

approximately 32.42% of the generated reads being unable to map (Figure 2.1).  
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2.3.2) Assembly and analyses 

After trimming the raw sequences, which included the removal of low quality and N-

containing reads, a total of 112GB of clean reads were retained and used for de novo 

assembly. (Figure 2.2). For the Velvet assembly, 419,793,145 reads were retained following 

the quality control performed using both TRIMMOMATIC and FASTQC. Upon completion of 

QC, these reads were assembled into scaffolds, all of which were larger than 1,000 nt, with 

the largest scaffold being 3,169 nt in length (0.07% of the total length). For the second 

assembly performed by CLC GWB, a total of 499,014,555 reads were retained following the 

program’s quality control step and then assembled into scaffolds, which all were larger than 

1,000 nt, with the largest scaffold being 3,298 nt in length (0.23% of the total length) (Figure 

2.2). 

After filtering CLC GWB was found to have a higher number of contigs with a coverage of 

8x or greater, with 3,831 and 7,940 contigs identified in Velvet and CLC GWB, respectively 

(Table 2.2). The BLASTn results showed that from the 7,940 contigs produced using CLC 

GWB a total of 25,893 hits were obtained while the 3,959 contigs produced using Velvet 

obtained a total of 17,018 hits (Table 2.2). After filtering these results in BLASTn by applying 

a stringent e-value of <10e-10 and the max targeted sequences option being set to 1, a total 

of 3,925 and 7,911, significant hits were identified in Velvet and CLC GWB, respectively. 

The overall median depth for both assemblies was low, Velvet achieving a depth of 5.74x 

and CLC GWB a depth of 6.23x. Of the 346,263 expected exons found within zebrafish only 

a small portion of these exon-homologues were recovered by each assembler; CLC GWB 

was able to recover 1.3% of the exons while the Velvet assembly only contained 0.6% of 

the expected zebrafish exon-homologues.  
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Figure 2. 2. Comparison of results obtained from the de novo assemblies performed by CLC GWB and 

Velvet with main criteria: number of contigs, N50, average contig length, maximum contig length, 

minimum contig length and total length. 
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Table 2.2. BLASTn results for the contigs produced using CLC GWB and Velvet as well as the number 

of significant hits predicted to be Larimichthys crocea. Hits were regarded as significant when the E-

value was <10e-10. The median depth of each assembly as well as the number of contigs determined 

as having a depth of ≥8x are included.  

 
Velvet CLC 

Number of contigs 3,959 7,996 

Number of hits 17,018 25,955 

Number of contigs having a depth of ≥8x  3,959  7,940 

Number of hits for contigs having a depth of ≥8x 17,018 25,893 

Number of significant hits 3,925  7,911 

Significant hits to Larimichthys crocea 3,494 (89%) 7,120 (90%) 

Median depth of the assembly (contig coverage) 5.74x 6.23x 

Homologous Zebrafish exons detected (346,263) 2,177 (0.6%)  4,446 (1.3%) 
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Of the total 7,911 significant hits obtained from the CLC GWB data, 7,120 were to 

Larimichthys crocea, which is ~90% of all significant hits. Similar results were obtained using 

the contigs generated by Velvet with ~89% of the hits being to L. crocea. Using Blast2GO 

the consensus sequence generated for dusky kob was compared to the reference genome 

of the zebrafish, GCF_000002035.6, and the draft genome of the large yellow croaker, 

GCF_000972845.2. Of the 7,940 contigs belonging to dusky kob, a total of 2,560 and 5,553 

contigs had significant hits aligning to the zebrafish and the yellow croaker, respectively. 

(Table 2.3). The yellow croaker was found to have the highest overall similarity of 48.61%, 

while the zebrafish only had a 19.98% similarity to the dusky kob reference.  

Table 2.3. Results from Blast2GO assessing the similarity between A. japonicus contigs to the 

reference genome of D. rerio and the draft genome of L. crocea 

  Zebrafish Yellow Croaker 

Number of Significant Hits  2,560  5,553 

Similarity to A. japonicus 19.98% 48.61% 

Using Blast2GO in combination with a stringent E-value threshold of 10e-10, 3,116 out of 

7,940 contigs had a BLAST homologous match against the NR protein database. Of the 

3,115 sequences with BLAST matches, 886 sequences were successfully annotated 

associating them with 4,168 GO terms. Of these 2,711 were assigned to the functional 

category ‘Molecular Function’ (65.04%), 1,085 to ‘Cellular Component’ (26.02%), and 189 

to ‘Biological Process’ (4.53%) (Figure 2.3).  The distribution of contigs in various functional 

classes of Gene Ontology (GO) and EuKaryotic Orthologous Groups (KOG) databases are 

shown in Figure 2.4 

 

 

 

 

 

 

 

Figure 2.3. The assignment of the A. japonicus contigs to the three subcategories (Molecular 

function, Cellular component, and Biological process) of the GO database. The main GO 

categories are represented with different colours 
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Figure 2.4. The percentage distribution of Argyrosomus japonicus contigs to the 31 terms on the 

GO database within the 3 main subcategories (A) Biological Process, (B) Cellular Function and 

(C) Molecular Function 
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2.3.3) Variant detection 

A total of 4.5 million variants, of which, 2,840,198 were single nucleotide polymorphisms 

(SNPs) (Figure 2.5), were detected. Of the total number of putative SNPs, 386,266 were 

identified as being non-synonymous. A total of 31,525 transitions (A/G and C/T) and 22,415 

transversions (A/C, A/T, C/G and G/T) were detected, with C/T being the most common 

(16,077) and A/C the least common (2,914) substitutions observed (Figure 3.3). This 

represented a transition/transversion (ts/tv) ratio of 1.407 (Table 2.4).  

A total of 3,276 repeats with a minimum of four contiguous repeat units (motifs range from 

two to six) were identified using the 7,940 contigs generated by CLC GWB (Table 2.5). The 

most abundant tandem repeats were dinucleotide motifs (2,434), followed by tetranucleotide 

(560), trinucleotide (231), hexanucleotide (27) and pentanucleotide (22) motifs (Table 2.5). 

Among the dinucleotide motifs, the main repeats were the types AC (46.28%), AT (38.65%), 

AG (13.25%), and TG (1.82%) (Figure 2.6). Over all putative microsatellite loci, CA repeats 

had the highest frequency (~34%) of all sequence motifs in the A. japonicus genome, with 

the second most abundant microsatellite motif being TA, and in general, the dinucleotides 

were found to be the most abundant length motifs throughout the genome (Figure 2.7). It 

was determined that an informative marker was found at approximately every 500 nt, with a 

confirmed SNP at 1 in every 1000 nt. All polymorphic SNP loci showed two alleles and all of 

them agreed with those expected from the database information. 

Table 2.4. Summary statistics for the variants found in the exome data of A. japonicus. 

 

 

 

 

 

 

Total number of variants 4,546,626 

Putative SNPs 2,840,198 

Non-synonymous SNPs 386,266 

Identified tandem repeats  3,276 

Transitions in feasible SNPs 31,525 

Transversions in feasible SNPs 22,415 

Transition-transversion ratio 1.407 
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Figure 2.5. The number and type of variants discovered in the consensus sequence of dusky kob using 

the fixed ploidy variant detection tool available in CLC Genomics Workbench. Variants included are: 

replacements, multi-nucleotides, deletions, insertions, single nucleotides and the number of these 

variants found to be non-synonymous  
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Table 2.5. Summary of the tandem repeats found in A. japonicus as well as the percentage of each 

repeat type found within the exome data 

 

 

 

 

 

 

 

 

Figure 2.7. The distribution of tandem repeat sequence motifs across the identified repeat regions in 

the contigs of A. japonicus from di- to tetra-nucleotides 

2.4) Discussion 

Zebrafish and dusky kob both form part of a broad infraclass known as the teleosts, which 

is the largest infraclass in the class Actinopterygii, making up 96% of all existing species of 

fish. This infraclass originated in the Early Cretaceous period which occurred ~290 million 

years ago (mya). Throughout the years this class has diverged and evolved, resulting in the 

diverse number of species seen today. The model organism zebrafish is part of the order 

Cypriniformes, which was determined to originate approximately 250 mya, while dusky kob 

is a member of an order that originated much later in comparison, Perciformes, which first 

appeared and diversified in the Late Cretaceous period around 146 mya, more than 100 

mya after zebrafish. Despite the divergence of the orders, there are still a number of genes 
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Tandem repeat Count/percentage 

Dinucleotides 2,434 (74.3%) 

Trinucleotides 231 (7.1%) 

Tetranucleotides 560 (17.1%) 

Pentanucleotide 22 (0.67%) 

Hexanucleotide 27 (0.83%) 

Total 3,276 
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and functional clusters that have been observed as being highly conserved throughout the 

Teleosts (Dickmeis and Muller, 2004; Henzy et al., 2017; Paibomesai et al., 2010; Suzuki et 

al., 1999). Studies have shown that whole exome sequencing of related species has a 

decline in performance when faced with even limited divergence between species (Jones 

and Good, 2016; Vallender, 2011). However, success has also been reported in closely (e.g. 

Jia et al., 2013; Ryan et al., 2013) and even for more divergent species (e.g. Faircloth et al., 

2012; Lemmon et al., 2012;  McCormack et al., 2012), at a cost of losing comparative data, 

which could have been used for evolutionary and functional studies (Schott et al., 2017). 

Therefore, the use of the zebrafish kit in kob was tested for efficiency and as a method for 

developing genomic resources for resource scarce species.  

Library construction was performed utilising the exome capture kit, however during 

construction it was determined that the size selection estimations performed using the E-gel 

system or PippenPrep for purification, would result in the loss of up to 90% of the library 

yield. Library inserts used for exome sequencing are usually fragmented to a size of between 

200-700bp, however due to the potential yield loss and the fact that the libraries yielded 

fragments that were within the recommended sequencing range (~240bp) of the IonProtonTM 

platform, it was decided to sequence the 16 exome libraries without a size selection step. 

This decision, theoretically should not have negatively impacted the sequencing of the 

exome as a study was performed by Krasnenko et al. (2018) which showed that DNA 

fragments ranging between 250–330 bp demonstrated the highest enrichment efficiency. 

Showing that size selection is an important step for effective enrichment and subsequent 

sequencing but is greatly dependant on the species. The study performed by Krasnenko et 

al. (2018) was however based on human exome data and the size of the exome regions 

between fish species is highly variable (Henkel et al., 2012). Without this step, DNA 

enrichment and resequencing yielded sequences within the expected range for an average 

ion-torrent run which produces a maximum of 60 million reads per sample and a maximum 

read length of 200bps (Table 2.1).  

Preliminary mapping of the raw kob reads to the zebrafish reference genome was 

successful, however there were a significant amount of sequences that could not be 

mapped, which could have occurred due to a number of reasons. Mapping could have failed 

as a result of poor-quality sequences being generated, alternatively the sequences failed to 

map as they were specific to the target species, dusky kob. The generation of sequences 

that are not found to occur within the model organism could be indicative to the randomness 

of the capture kit as a result of divergence between the species. As the generation of non-

Stellenbosch University https://scholar.sun.ac.za



61 
 

targeted sequences would have been a result of the region-specific probes binding at non-

specified locations of the genome, which is most likely a consequence of divergence 

between the species, which inhibited the ability of the probes to bind to the specified location. 

Despite the apparent divergence between the species, the kit was still able to successfully 

produce a number of sequences, with the BLASTn results of the contigs produced by the 

assembly programs, shown to have approximately 89.5% of their significant hits belonging 

to Larimichthys crocea (Table 2.2). This was not an unexpected result as the Larimichthys 

crocea, commonly known as the large yellow croaker is a marine fish in the Sciaenidae 

family, making this finfish a closer relative to kob than that of zebrafish (Gui, 2018). However, 

what was unexpected, is that despite the lack of similarity between zebrafish and kob, the 

exome capture kit was still able to capture a large amount of gene sequences that appear 

to be specific to kob, thus explaining the high level of similarity seen with the yellow croaker, 

demonstrating the kits lack of bias towards genes that are found to be highly conserved 

between kob and zebrafish (Table 2.3). This was further validated by the low coverage seen 

throughout the contigs as it is most likely the result of probes being able to bind at non-

targeted regions across the genome, causing the probe placement to differ between each 

individual, thus resulting in a large number of sequences being generated in one sample 

that has not been generated in another and vice versa. However, non-uniform coverage 

across the exome is not unprecedented; this is one of the main limitations of standard whole-

exome sequencing methods, which can be predominantly overcome with the development 

of species-specific capture kits (Wang et al., 2017). The fact that this problem is seen in this 

study when using the model organism’s capture kit indicates that the level of divergence 

between the species is a more prominent limitation than initially anticipated. 

Inspection of the de novo assemblies revealed individual strengths and weaknesses for 

each assembly program (Figure 2.2). The results obtained for the assemblies were 

comparable with one another, with CLC GWB aligning a higher number of contigs with a 

greater median depth. Although CLC GWB was able to achieve a higher median depth than 

that of the Velvet assembly, it was still considerably low in comparison to what was expected. 

Using 16 samples to generate the exome data a minimum coverage of 16x was to be 

expected, as theoretically the capture kit should be binding to the same locations within each 

sample, thus resulting in at least 16x coverage of every coding region sequenced. A study 

performed by Nielsen et al. (2011) determined that despite previous sequencing methods 

requiring target regions to have a coverage of greater than 20x for reducing uncertainty 

associated with genotype and SNP calling, newer technology and the demand for larger 
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samples have suggested that medium (5–20x) or low-coverage is still able to accurately 

detect at least 70% of the true variants (Spence et al., 2019). For this reason, the contigs 

were assessed to determine which of the assemblies were able to achieve a higher number 

of contigs with a median depth of 8x or greater. The Velvet assembly was assessed and 

although this assembly did have a number of its contigs having a higher coverage of 10x or 

greater, there were not enough to reliably continue with variant calling and therefore the de 

novo assembly generated using CLC GWB, was used for downstream analyses. Similar 

results have been seen in previous studies, where assemblies generated using both CLC 

GWB and Velvet were found to differ in reference to number of contigs and median depth, 

which is most likely the result of the more stringent assembly parameters of the Velvet 

program (Ghangal et al., 2013; Kotwal et al., 2016). In general, it has been stated that a 

better assembler would be expected to produce a large number of contigs with a high 

coverage that are able to attain significant BLAST hits (Ashrafi et al., 2012; Jiang et al., 

2016). Even though the contigs from each assembler were able to return a large number of 

significant hits, the sheer number of CLC GWB produced contigs in combination with a 

slightly higher significant hit rate resulted in CLC GWB BLAST results being far superior to 

that of Velvet, making it a better assembler for this specific dataset (Table 2.2). This poor 

performance by Velvet for the Ion Torrent assembly, is a result of Velvet’s assembly 

methodology, which was designed to be used for Illumina sequences, (Zerbino, 2008) unlike 

CLC GWB which has been designed to run using the output data produced by multiple 

platforms.  

The coding genes of D. rerio has been described (26,247 protein-coding genes and 346,263 

exons) as making up 3.8% of the genome (Howe et al., 2013), but genomic studies on A. 

japonicus, are still in the early stages, and the percentage of its coding genes is still 

unknown. Since only a small portion of the zebrafish exomes were able to be sequenced 

(1.8%), this result could indicate to the fact that dusky kob has a significantly lower number 

of noncoding sequences than zebrafish, such as is the case with common carp, whom has 

a noncoding region that is approximately 1.7 times smaller than that of zebrafish (Henkel et 

al., 2012). This could be an indication that the genome size of dusky kob may be smaller 

than predicted, not being much larger than that of zebrafish. However, this low number could 

also be the result of divergence between the species, which resulted in a number of non-

exon regions being sequenced such as introns and untranslated regions (UTRs). However, 

with the kob genome still not sequenced, the gene predictions are purely based on the 

zebrafish data and cannot serve as a primary guide as it may not be accurate and needs to 

Stellenbosch University https://scholar.sun.ac.za



63 
 

be further investigated. This, together with the lack of genomic information in other kob 

species (e.g. Argyrosomus inodorus), it is difficult to predict how deep the de novo 

assembled exome sequences cover the dusky kob’s genome. Therefore, by characterising 

the consensus sequence, it will give an indication of how well the exome regions were 

presented by this sequence. Characterisation determined that the contigs were distributed 

among the various functional classes of GO and KOG databases indicating how the exome 

data, even though not covering the entire genome, encompasses a broad gene diversity 

(Figure 2.3 and 2.4), even though only a small number of the contigs were able to be 

annotated. The limited number of annotated contigs is most likely due to the fact that a 

number of sequences which were generated using the capture kit were not part of the 

protein-coding regions and as a result could not be annotated. Annotation of the contigs was 

then limited even further by the limited genomic resources available for the genus 

Argyrosomus, which could have led to a number of proteins remaining unidentified as a 

result of being species-specific. This result, however, was not directly comparable to other 

studies where the de novo assembly of non-model species was performed using high-

throughput sequencing (Carruthers et al., 2018; Yasuike et al., 2018; Lin et al., 2019). 

Previous studies, were able to detect a far higher number of GO annotations (~20,000 – 

40,000). This is largely due to the fact that these studies although not performed in the 

specific species under investigation, had genomic information regarding its close relatives 

and as a result most of the genes for the species had already been characterised allowing 

for a more informative result.  A large number of the annotations were assigned to molecular 

function rather than biological processes which is generally seen as the most well 

represented KOG category in other studies including that of zebrafish, which could be a 

potential indictor to the lack of exome regions sequenced (Figure 2.3) (Harney et al., 2016). 

Functional annotation against the GO database rendered 889 sequences that had BLAST 

matches with an E-value less than 10e-10 (Figure 2.4). These were uniquely assigned to the 

three main GO classes and each of their sub-categories were populated by at least eight 

different classes. The main represented sub-category was biological process with a total of 

15 different classes. The results of functional annotation showed that the sequences of 

dusky kob had a low proportion of annotated genes when compared to the database of 

zebrafish. Yet despite the low number of annotated contigs, the contigs that were able to be 

annotated did allowed identification of genomic regions responsible for development and 

metabolic processes, gene expression, and regions involved in processes of stress 

response. Subsequently, this data can be used as the basis for further biological studies in 

other areas of aquaculture or future breeding programmes in dusky kob. 
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In addition, tandem repeats were identified (3,276) through exome sequencing, although the 

number identified was significantly lower in comparison to SNPs, this is not unexpected as 

these repeat regions are normally found to be associated with non-coding DNA and their 

discovery in the coding regions of dusky kob is quite interesting. Although this is most likely 

evidence to support the fact that a number of the generated sequences were not exome 

regions but rather a result of the kits ability to sequence random regions of the genome as 

a consequence of divergence, whole genome sequencing has shown evidence for the 

prevalence of trinucleotides repeats in coding regions. A study performed the human 

genome determined that 17% of the genes contained in open reading frames, with similar 

results being seen in studies performed by Jansen et al. (2012) and Gemayel et al. (2010). 

Microsatellites, are found to be enriched in regulatory genes that encode for transcription 

factors, DNA-RNA binding proteins, and chromatin modifiers (Young et al., 2000). The use 

of gene-associated markers has become an important part of constructing genetic maps 

(Shin et al., 2012) because, based on comparative genomics, the use of a fish genome that 

has already been sequenced, it is possible to predicted the location of studied loci. However, 

given the lack of trinucleotide repeats identified within the sequences of A. japonicus, it is 

more likely that the majority of the tandem repeats identified are a result of non-coding 

regions being sequenced. This is because trinucleotides are found to be the most common 

repeat motif located within the coding regions of organisms as these repeats are often 

associated with inherited disorders, which result in changes to the DNA (Tan et al., 2012; 

Almedia et al., 2013; Li et al., 2017). Thus, their limited presence within the identified repeat 

motifs only further supports the notion that the sequences generated using the capture kit 

did not entirely consist of exome sequences, as would be expected. Besides the lack of 

trinucleotides, the distribution of the repeat motifs was found to be consistent with what is to 

be expected from most higher eukaryotes (Brooker et al., 1994; Li et al., 2017; Srivastava 

et al., 2019), such as the prevalence of dinucleotides. Of the dinucleotides, the CA repeats 

were identified as having the highest frequency of all the identified tandem repeats, as they 

demonstrate an overrepresentation of this repeat motif. The TA motifs were found to be the 

second most abundant dinucleotide following CA which complies with previous studies 

performed in teleost’s (Almedia et al., 2013 Li et al., 2017; Tan et al., 2012; Yang et al., 

2008) however this was not true for the low frequency of CG and apparent absence of 

CCG/CGG repeats, which significantly differed from these studies. The CpG-like motifs are 

usually frequently found in vertebrates as a means to regulate gene activity, these motifs 

are found to be located in the 5’-UTR where they serve as protein binding sites, that are 

regulated by DNA-methylation. This lack of CpG-like motifs is more commonly seen in 
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invertebrates, as they do not regulate gene activity by means of CpG islands (Rhode and 

Roodt-Wilding, 2011; Toth et al., 2000). This low frequency which is observed is therefore 

more likely to have occurred as a result of the limited sequence data created by the bias 

during the hybridisation step of sequencing, rather than being a true representative of the 

dusky kob sequence data and therefore requires further investigation. 

A total of ~2.8 million SNPs were identified across the gene regions with a total of 386,266 

variants determined to be non-synonymous meaning these variants are found to have a 

direct effect on the amino acid, which can alter a phenotype or affect a trait of interest making 

these variants extremely useful in a variety of applications. The total number of SNPs 

identified across the genome from exome data alone is comparable to that of model 

organisms where whole genome sequencing detects roughly two to five million SNPs across 

the genome with a SNP occurring once in every 500 nt (Xiao et al., 2016). Following quality 

control SNPs were confirmed by setting the MAF to greater than 0.5, which resulted in the 

identification of 1,931,334 putative SNPs. Using these SNPs, the transition to transversion 

(ts/tv) ratio was calculated, which is typically reported as 2 in other fish species, with protein 

coding regions often even higher as the transversions in the protein coding regions are most 

likely to change the encoded amino acid. The dusky kob exome data represented a ts/tv 

ratio of 1.407 (Table 3.3; Figure 3.3). This ratio was lower than that observed by Vera et al., 

(2011) (1.885) and in silico (1.456) by Pardo et al., (2018), but it was very similar to that 

described for common carp (Cyprinus carpio) (1.310) (Zhu et al., 2012), gilthead seabream 

(Sparus aurata) (1.375) (Cenadelli et al., 2011) and turbot (Scophthalmus maximus) (1.354) 

(Vera et al., 2013). However, in other fishes, such as chum salmon (0.95), and sockeye 

salmon (0.98) (Smith et al., 2005), as well as zebrafish (1.20) (Stickney et al., 2002) the ts/tv 

ratios were significantly lower. The discrepancy seen in ts/tv ratios among the different 

species may suggest a biased codon usage or substitution rate as a result of fishes from 

different phylogenetic units being subjected to different selection pressures (Zhu et al., 

2012). However, the ts/tv ratio could have also been influenced by fact that the sequences 

obtained from the ion-torrent platform most likely did not consist entirely of exome regions, 

thus skewing the results making any comparisons drawn between this result and previous 

studies a futile exercise. 

Overall, the ion-torrent data proved to be a huge resource for discovering variants across 

the genome despite the low coverage, with studies demonstrating the use of large variant 

data in the identification of genetic markers, which can be correlated with production traits 

of interest, particularly for growth. In the fish Sparus aurata, a dinucleotide microsatellite in 
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the growth hormone gene (GH) is linked with faster growth rate, which can be used for 

breeding management and genetic selection for this trait (Almuly et al., 2005). In other fish 

species, such as rainbow trout and Salvelinus fontinalis (brook charr) (Salem et al., 2012; 

Sauvage et al., 2012), SNPs and QTL have also been reported to have association with 

traits of interest (growth and stress response). In general, the lack of knowledge regarding 

the genetic variation of stocks can cause inbreeding, leading to the fixation of deleterious 

genes, reduced growth rates, disease resistance problems and hinder the ability of the fish 

to adapt to new environments (Arkush et al., 2002; Gallardo et al., 2004; Hillen et al., 2017; 

Neira et al., 2006). Therefore, in addition to identification of QTL, which can assist in the 

selection of genotypes linked to traits of interest, by marker assisted selection (MAS), 

studies of microsatellites and SNPs are important for genetic monitoring, supporting dusky 

kob aquaculture and increasing its productivity.  

2.5) Conclusions 

This study was able to produce data that was more than sufficient, showing that exon 

capture can be used for genome-wide SNP discovery in non-model organisms, where there 

is limited genomic resources available. This method, unlike transcriptome sequencing, is 

able to sequence a large number of individuals while still being able to avoid ascertainment 

bias in subsequent population genetics analyses due to differential gene expression. 

Demonstrating it to be an affordable and reliable method, which can aid in the discovery of 

thousands of SNPs and in some cases a few thousand tandem repeats, which will greatly 

assist in marker development for the species. Overall, the cross-species targeted capture 

method used in this study was proven to be successful despite the non-uniform coverage 

across the genome. However, the unintended sequencing of non-protein coding regions, will 

have a significant impact on the reproducibility of this study, making the consolidation of 

data between projects extremely difficult. These singleton and non-coding sequences do 

require further investigation into their nature as these sequences could contain valuable 

information that is specific to dusky kob and therefore information obtained regarding these 

sequences’ can be applied to aid not only in marker development but also in future genomics 

research for the species. This study was able to successfully capture exome regions which 

assisted in the identification of ~4.5 million of variants, showing the benefits of a cross-

species sequencing approach in the development of markers which in turn could result in 

the acceleration of molecular breeding programmes in species where genomic resources 

are limited or not available.  
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CHAPTER 3 

The development and analysis of SNP markers associated with growth 

rate in dusky kob using exome data 

Abstract 

Growth rate is one of the most economically important traits in aquaculture, but the 

molecular mechanisms involved in the growth of dusky kob (Argyrosomus japonicus) is 

poorly understood. Therefore, the purpose of this study was to assess candidate genes in 

A. japonicus, to try and identify single-nucleotide polymorphism (SNP) markers associated 

with growth. The exomes of fast- and slow-growing individuals were previously obtained 

using a whole-exome sequencing approach, which identified a total of 4.5 million variants of 

which 2.8 million were SNPs. Using the candidate gene approach and a selection of 15 gene 

regions, 263 putative SNPs were identified, of which 38 SNPs in nine genes were confirmed 

and identified as having a potential association to the trait of interest. Association of these 

markers was analysed by performing both case-control and quantitative analyses using 80 

individuals (classified as large and small) of dusky kob. These analyses were able to identify 

eight SNPs in three key genes (Bone morphogenetic protein 2a, Myogenic differentiation 1 

and Tankyrase, TRF1-interacting ankyrin-related ADP-ribose polymerase a) to be 

associated with growth rate. This research was therefore able to provide important 

information regarding novel SNPs markers associated with growth and their key genes. 

Thus, providing essential information, which is necessary for understanding the molecular 

basis of growth in dusky kob and assisting in future studies 

3.1) Introduction 

In traditional selective breeding, individuals showing a desirable phenotype are selected as 

breeding candidates for the production of the next generation. This method, called 

individual- or phenotypic selection, has been used as the standard in terrestrial animal 

breeding, but also in aquaculture, and it has shown to rapidly improve economically 

important traits, such as growth rate and disease resistance (Gjedrem et al., 2012). 

However, phenotypic-based breeding schemes are often time consuming and based on trial 

and error resulting in increased costs, because it requires a large number of individuals, 

which have extensive phenotypic variation. Another disadvantage is that these 

phenotypically selected traits often require multiple generations before a significant 

response to selection in the trait mean is observed. This is particularly costly and time-
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consuming for species with long generation intervals, as is the case for many aquaculture 

species, including abalone (Haliotis midae) and dusky kob (Argyrosomus japonicus), which 

might take up to six years to reach sexual maturity (Griffiths, 1996). This is further 

complicated by the fact that the majority of commercially important traits in aquaculture are 

complex traits, meaning that these traits are normally governed by multiple genes with 

complex interactions occurring between multiple pathways, making the selection of multiple 

complex traits particularly difficult. Although studies have been conducted in certain 

aquaculture species such as salmonids, the genetic factors affecting complex traits of 

economic importance are still relatively unknown (Davidson et al., 2010). This is largely due 

to studies being hindered by the lack of genomic resources as well as information pertaining 

to the nature of the trait being investigated. Therefore, a fundamental goal of biological 

research is to gain understanding regarding the genetic basis of phenotypic variation (Tsai 

et al, 2015), as this will assist in determining how the underlying gene regulatory networks 

function and the way in which the environment impacts these traits.  

Growth rate is of particular economic importance within aquaculture as it directly contributes 

to fish production efficiency and outputs. Improvements in growth-related traits could allow 

for fish to reach a marketable size much earlier, spending less time within the production 

cycle, subsequently lowering production input costs (Elliot et al., 2002). Alternatively, the 

faster growing animals could be kept within the production cycle for the same period of time 

as the slower growers, generating a larger net weight at harvest thereby increasing the 

profitability of the end product (Slabbert et al., 2010). Consequently, this has resulted in 

multiple studies being performed in order to understand the genetic basis of growth, with 

genes in the somatotropic axis and transforming growth factor superfamily being targeted 

as candidate genes in finfish (De-Santis and Jerry, 2007; Li et al., 2017). The somatotropic 

axis refers to the hormonal signalling from the hypothalamus to the anterior pituitary gland 

resulting in the release of growth hormone (GH), which in turn stimulates the production of 

insulin-like growth factor-1 and 2 (IGF-1, IGF-2), growth hormone-releasing hormone 

(GHRH) and growth hormone inhibiting hormone (GHIH) (De-Santis and Jerry 2007; 

Renaville et al. 2002). This axis is responsive to the external environments, such as nutrient 

intake and culture conditions, which results in the accumulation of protein and adipose to be 

associated with growth rate and size (De-Santis and Jerry 2007; Richmond et al. 2010). 

Most of those genes have shown to be associated with growth enhancement in different fish 

species (Du et al. 1992; Hu et al. 2013; Kang et al. 2002; Tao and Boulding 2003; Tsai et 

al. 2015; Wargelius et al. 2005). In addition to these hormones and peptides, other genes 
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have been found to significantly affect growth through physiological networks modulating 

energy metabolism and muscle growth. Although it is not practical, feasible or cost-effective 

to detect every single gene and its function (Li et al., 2017), this knowledge can be utilised 

for the implementation of a candidate gene approach. This approach allows for the 

prioritisation genes considered to be highly relevant to the trait of interest as the 

polymorphisms within the targeted genes are believed to be functional (in that it may alter 

gene product functionality) and can be tested for association with phenotype in question, 

therefore assisting in the identification of markers associated with a specific trait of interest. 

Fulton’s conditioning factor (K), a trait derived from weight and length, reflects the body 

shape of the fish and could be of interest to dusky kob aquaculture if found to be significantly 

associated with the single nucleotide polymorphism (SNP) markers. Estimates of moderate 

to high heritability for K have frequently been observed in other fish (Nilsson, 1994; Kause 

et al., 2003; Kause et al., 2007) as well as the strong genetic correlations between K at 

different growth intervals (Saillant et al., 2007; Wringe et al., 2010). This factor is important 

and should be taken into consideration when testing for association between loci and growth 

rate as this factor has often been used for the estimation of growth patterns (Caldarone et 

al., 2012; Mozsár et al., 2014; Muchlisin et al., 2010).  

The aim of this study chapter was therefore to confirm putative SNPs and identify markers 

associated with growth rate in dusky kob through a candidate gene approach using the 

annotated exome sequence data from Chapter 2 as the underlying genetics of growth in 

dusky kob have not been studied with the majority of the South African aquaculture industry 

relying on quantitative phenotypic data for the selection process of broodstock. Associations 

between variants and growth were determined by assessing the genotypic association to 

the quantitative traits: wet weight, length, and conditioning factor. The resulting allele 

frequencies and corresponding phenotypic data were subsequently analysed to investigate 

genotype-phenotype associations. 

3.2) Methods and Materials 

3.2.1) Experimental study populations 

Fin clip tissue from five families each containing a number of F1 animals (~18 months of 

age) were derived from two mass spawning events, which occurred at two separate 

aquaculture facilities using wild individuals. The families from each facility, were reared 

communally and pedigrees were inferred (ten broodstock individuals, five sires and five 

dams) based on the msat data generated by Jenkins (2018). All the individuals were 
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Figure 3.1. Graphical summary of the methodological approach, detailing the construction of the 

study populations, the association analyses performed for the various cohorts and the assessment 

of allele-specific associations with size for significantly associated markers 

 

phenotyped for wet weight (W), standard body length (Ls), and Fulton’s conditioning factor 

(K) was derived (K = 106 W/Ls3, W = Weight of the fish in grams and Ls = Length of the fish 

in millimetres). For the association analysis the top and bottom eight individuals from each 

family were selected based on the length (mm) and live weight (g) to derive a family bias 

corrected (FBC) cohort, which consisted of large, fast-growing individuals (n=40) and small, 

slow-growing individuals (n=40) (Figure 3.1). The eight large and eight small animals used 

to generate the exome data in chapter 2 were from family C. DNA was extracted from the 

fin clip tissue using a standard CTAB method (Saghai-Maroof et al., 1984). 
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3.2.2) Variant detection in exome data and primer design 

Using the variant data generated for the 16 individuals in chapter 2, unique variants were 

identified in each cohort (large and small) using a fixed ploidy variant detection tool in CLC 

GWB that compares variants within and between groups. The frequency threshold for this 

analysis was set at 100%, ensuring that a variant is only considered identical in both cohorts 

when all 16 of the individuals contain the same variant. Due to the large number of variants 

a candidate gene approach was taken to locate specific genes of interest within the dusky 

kob sequence. This was made possible using CLC GWB to generate a consensus sequence 

with a chromosomal outline by aligning the de novo assembly of dusky kob to the reference 

genome of zebrafish. Using knowledge obtained from previous literature where genes were 

found to be associated with growth in aquaculture species, 15 gene regions were selected 

and their location determined using the known gene positions of zebrafish that are publicly 

available on NCBI (Table S3.1) (Han et al., 2018; Kamenskaya et al., 2015; Liu et al., 2014; 

Li et al., 2018; Opazo et al., 2017). These gene regions were located and extracted using 

CLC GWB, upon extraction the gene regions were BLAST against NCBI database using the 

BLASTn function to ensure correct identification. Once correctly identified these extracted 

gene regions served as a consensus for comparison in downstream analyses. Using 

Primer3Plus (Untergasser et al., 2007), primer pairs for the 15 gene regions were designed 

and assessed using the Primer Check function available on Primer3Plus. The specificity of 

each primer was then assessed using the NCBI’s Primer-Blast function and once the 

minimum requirements were met (Table 3.1), the primers were sent for development (Table 

S3.2). 

Table 3.1. The requirements for primer design of the 15 gene regions, with the major aspects of primer 

properties including: specificity (3’ stability), GC content, primer length, maximum temperature 

difference (between forward and reverse primers) and the melting temperature (Tm).  

Properties Requirement 

3’ stability Below 4 

GC content Between 45-65% 

Primer length [bp] 18 to 28 

Maximum temperature difference  2⁰C  

Tm  55-60⁰C 
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3.2.3) Putative SNP validation and Genotypic analysis 

The primers designed for the putative SNP markers identified in silico for the candidate gene 

regions, were tested by employing PCR and sanger sequencing. Using PCR, the 15 primer 

pairs were optimised using the genomic DNA of dusky kob. The stock DNA, which had 

previously been extracted, using a standard CTAB method (Saghai-Maroof et al., 1984), 

was evaluated for quantity and quality with the NanoDropTM ND 1,000 spectrophotometer 

(Thermo Fisher Scientific) and normalised to a final concentration of 20ng/μl. The 15 gene 

regions were amplified using the KAPA™ Taq PCR Kit, with all reactions being performed 

to a final volume of 10μl. Each reaction mixture contained 10X KAPA™ Taq buffer 

(containing 1.5μl of 25mM MgCl2), 0.5μl of 10mM dNTPs, 0.2μl of 10μM stock solution of 

each primer, 0.1μl of 5U/μL KAPA™ Taq DNA Polymerase3 and 20ng of DNA. The cycling 

parameters for PCR were identical for all the primer pairs with the exception of the annealing 

temperature (Ta), as optimisation was necessary for each primer pair, starting at a Ta of 

54⁰C. A touch down PCR was used for the optimisation process, as to simultaneously 

assess the effects of different Ta’s under the standard PCR conditions. The Ta was 

appropriately altered each round: increasing incrementally if non-specific products persisted 

or decreasing incrementally if no product could be observed. The PCR conditions were 

applied at an initial denaturing step at 95°C for 3 minutes, 35 cycles of denaturation at 95°C 

for 15 seconds, annealing ranging between 54-60°C for 30 seconds, extension at 72°C for 

20 seconds and a final extension step at 72°C for 7 minutes. 

After each successful round the PCR products were verified using agarose gel 

electrophoresis (1.5% w/v; 1 x TBE). Following successful amplification, bi-directional 

sequencing, was conducted via standard Sanger sequencing chemistry (BigDye® 

terminator V3.1 cycle sequencing kit, Applied Biosystems) and sent to the Stellenbosch 

University Central Analytical Facility (DNA sequencing unit) for capillary electrophoresis 

using the 3730xl DNA Analyzer. Upon receiving the sequences, the quality was assessed 

and the sequences edited in FinchTV 1.4.0 (Geospiza, Inc.; Seattle, WA, USA; 

http://www.geospiza.com) using the exome data as a reference to discriminate between 

variants and sequencing errors. Following quality control, the forward and reverse 

sequences (reverse compliment) were aligned in MEGA7 v7.0 (Kumar et al., 2016), using 

the ClustalW (Thompson et al., 1994) function for multiple alignments, to the consensus 

sequence of each gene to identify SNPs. False positive SNPs are found to commonly occur 

in HTS data, particularly when only partial sections of the genome are sequenced such as 

the exome. This is because partial sequences, which are often short segments, have an 
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increased chance of being misaligned. Meaning these sequences are able to align to areas 

of the reference sequence similar to that of their target sequence, thus potentially showing 

variation in positions where no true variation exists, hence the need for SNP validation. To 

validate the putative SNP markers, as identified in silico, an initial panel of four animals (two 

individuals phenotypically characterised as large and two as small, were obtained from 

family C from which the exome data were derived) were sequenced for each gene region, 

demonstrating in silico nucleotide variation. Visual identification of sequence variation in 

multiple alignments [MEGA7 (Kumar et al., 2016); ClustalW (Thompson et al., 1994)] was 

done and confirmed by investigating individual chromatograms. A SNP was confirmed if 

clear double peaks, could be identified in heterozygous individuals beyond any potential 

noise, and at least one of the homozygotes were also observed (Figure 3.2). For final 

confirmation of SNPs in alignments that showed polymorphism, an additional 76 individual 

offspring and 10 broodstock animals were sequenced, in the forward direction only, and 

scored; a minor allele frequency of greater than a 5% was prerequisite for final confirmation 

of a SNP marker. However, SNPs were not removed based on the Hardy-Weinberg 

Equilibrium (HWE) p-value as the extremes of each family were selected and therefore the 

population was not expected to conform to HWE. This was performed for all 15 gene regions, 

using the same reagents, sequencing- and PCR conditions as mentioned above, with the 

exception of Ta which varied for each primer pair (Table S3.2). Positions showing significant 

variation (e.g. when at least 50% of the individuals in either of the cohorts are shown to have 

an alternative genotype to the genotype commonly identified in the other cohort) were noted 

and genotypic data for all individuals (cultured and wild) were collected for these positions.  
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Figure 3.2. A) A multiple alignment depicting and A>G SNP, showing the two alternative homozygotes 

for the A and G allele respectively and the heterozygote coded, as the “R” ambiguity (Yellow frame). 

B) The electropherograms of two homozygous individuals (AA and GG respectively) and a 

heterozygous individual, demonstrating a clear double peak (Yellow frame). 
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3.2.4) Genetic data analyses 

Allele and genotypic frequencies for the FBC cohort as a whole and individually for the large 

and small groups for each of the validated SNP markers were estimated and conformation 

to Hardy-Weinberg equilibrium was tested (exact probability test, 1000 de-memorisation, 

100 batches, 1000 iterations per batch) in GenPop v4.2 (Rousset, 2008). Per marker case-

control association analysis, as implemented in SNPstats (Solé et al., 2006), was performed 

using a regression module, correcting for family structure as a categorical covariate. Size 

effects were determined by estimating odds ratios, and the most likely mode of inheritance 

was evaluated using the Akaike's- (AIC) and Bayesian Information Criterion (BIC). 

Additionally, quantitative association analysis was also done by setting wet weight, standard 

length, and conditioning factor, respectively, as the response variable. Correlations between 

these phenotypic measurements were evaluated by estimating Pearson’s correlation 

coefficients in XLStatistics v12.11.22 (Carr 2012). Because genotypic data for the 

broodstock was also available, it was possible to construct parental-offspring trio’s and 

therefore a transmission disequilibrium test (TDT), more robust if genetic structure is evident 
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within the study population, was performed in HAPLOVIEW software v4.2 (Barrett et al. 

2005) as an additional confirmation of genotype-phenotype associations. Haplotype-block 

structure was determined using the Solid Spine (SS) algorithm with a minimum D' value of 

0.8. The SS algorithm is internal to HAPLOVIEW, this method defines a block when the first 

and last markers are in strong LD with all the intermediate markers. When markers in 

particular genes showed significant associations, a haplotypic analysis was conducted to 

evaluate phenotypic associations with haplotypes within those genes. Linkage 

disequilibrium between genes were also assessed in order to detect any possible gene-by-

gene interactions and this was further assessed in terms of phenotypic association in 

UNPHASED v3.1.3 (Dudbridge 2003; Dudbridge 2008) (1000 permutations) using the gene-

by-gene interaction model. Bonferroni adjustment of the significant p-value was done to 

correct for multiple tests at a 5% nominal level (Dunn 1961). To further minimise the 

occurrence of false positive results, additional case-control analyses were performed, 

including exact G-tests for allelic and genotypic differentiation (Goudet et al. 1996) (1000 

de-memorisation, 100 batches, 1000 iterations per batch), which were performed in 

GenePop, and a permutation-based distance test using the FBC cohort to determine both 

allelic and genotypic association (using Prevosti’s distance estimate; significance testing 

1000 permutations) (Prevosti et al. 1975; Nielsen and Weir 1999), in PowerMarker v3.25 

(Liu and Muse 2005). Single-locus F-tests for associations with quantitative traits (weight, 

length and conditioning factor) were performed in PowerMarker. 

3.3) Results 

3.3.1) Identification of SNP markers  

The variant data generated in chapter 2, identified a total of 4.5 million variants, of which 2.8 

million were single nucleotide polymorphisms (SNPs). Using a within group variant detection 

tool, a total of 1,307,409 and 979,033 variants were identified as being unique to the large 

and small cohorts, respectively (Figure 3.3). This resulted in the elimination of 2,274,378 

variants from further analyses as these variants were determined to be identical across both 

cohorts. Of the uniquely identified variants a total of 1,428,740 were identified as SNPs, with 

263 being located within the 15 selected gene regions (Table 3.3), of which, 58 were 

identified as being non-synonymous (Table 3.2).  
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Table 3.2. The number of variants identified as SNPs across the exome sequences of A. japonicus, 

with the number of putative and non-synonymous SNPs within the candidate gene regions indicated. 

The table also includes the total number of confirmed SNPs following Sanger sequencing as well as 

the number of confirmed SNPs shown to have a possible association with growth. 

Total number of SNPs identified in the exome data 2,840,198 

Putative SNPs identified as unique 1,428,740 

Putative SNPs in candidate genes 263 

Non-synonymous SNPs 58 

SNPs confirmed in candidate genes following Sanger sequencing 97 

Confirmed SNPs showing potential association 38 

Figure 3.3. The number of unique variants identified in each cohort, large and 

small, as well as the number identical variants found to occur between the two 

cohorts. Variants detected using the within group variant detection tool in CLC 

GWB. Each cohort is represented by a different colour. 
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Gene  Gene symbol Role in growth 

Bone morphogenetic protein 2a bmp2a Responsible for the enzymatic delivery of aminoacyl tRNAs to the ribosome. 

STT3 oligosaccharyl transferase complex catalytic subunit B sttb3 Regulate protein interactions and stability 

Growth differentiation factor 6a gdf6a Embryonic development, cell growth, morphogenesis, tissue repair 

Myogenic factor 5 myf5 Induces cartilage and bone formation. Differentiation of myoblasts into osteoblasts 

Myogenic factor 6 myf6 Muscle development, commits undifferentiated cells to the muscle lineage 

Fibroblast growth factor 4 fgf4 Relays growth and stress signals to protein synthesis 

Growth hormone releasing hormone receptor A ghrhra Mediates co-translational and post-translational N-glycosylation of target proteins 

Eukaryotic translation elongation factor 1 alpha 1, like 1 eef1a1l1 Controls timing of retinal neurogenesis and growth 

Growth hormone regulated TBC protein 1a grtp1a Direct role in rib, spine, and extraocular muscle formation 

Tubulin, alpha 8 like 2 tuba8l2 Muscle growth and development 

Myogenic differentiation 1 myod1 Embryonic development 

Eukaryotic translation elongation factor 2, like 2 eef2l2 Role in cell growth and DNA damage control 

Tankyrase, TRF1-interacting ankyrin-related ADP-ribose 
polymerase a 

tnksa 
Microtubule cytoskeleton organization and mitotic cell cycle 

Cadherin 4, type 1, R-cadherin cdh4 Cell migration, cell adhesion, sorting and tissue morphogenesis 

Clock circadian regulator a  clocka Regulates cellular and developmental processes and provides higher fitness under 
diurnal conditions 

Table 3.3. The role that the 15 selected gene regions play in the growth and development of marine species is indicated. 

Stellenbosch University https://scholar.sun.ac.za



87 
 

0

2

4

6

8

10

12

14

16

bmp2 myod1 tnksa fgf4 myf5 myf6 tuba8l2 gf6a eef1a1l1

N
u

m
b

er
 o

f 
p

u
ta

ti
ve

 S
N

P
s

Genes

Putative SNPs indentified across the 15 gene regions

Figure 3.4. The number of SNPs identified across the 15 gene regions as potentially having a 

significant association with growth as determined by sanger sequencing 

Of the 263 putative SNPs identified using in silico exome data, a total of 97 were confirmed 

via Sanger sequencing in the 15 gene regions (Table 3.2). Of the 97 SNPs, a total of 38 

SNPs in nine genes were identified as having significant variation between the large and 

small cohort (e.g. when at least 50% of the individuals in either of the cohorts are shown to 

have an alternative genotype to the one commonly identified in the other cohort) (Figure 

3.4), therefore indicating possible association of these positions with the growth of dusky 

kob. Of the 38 SNPs, the BMP2A gene region showed the highest level of variation, with a 

total of 15 SNP positions while GDF6A and EEF1A1L1 had the least variation, each gene 

only showing a single SNP position.  

 

 

 

 

 

 

 

  

   

3.3.2) Association analysis 

Within the FBC cohort a total of eight SNPs were identified in three genes, which were found 

to be significantly associated with growth based on the case-control and quantitative 

analyses performed in SNPstats (Table 3.4). Additionally, it was determined that family was 

not a significant covariate, showing the successful correction of population substructure. 

These results were further validated by the additional analyses performed in PowerMarker 

and GenePop (G-tests, F-tests and distance test) (Table S3.3).  
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Table 3.4. The significant SNPs identified in the FBC cohort as determined by the case-control analysis performed in SNPstats using size (Large or Small) 

as the response. The correlating allele frequencies and HWE p-value determined in GenePop are indicated for each of the SNPs.

Name SNP Model Genotype Large Small OR (95% CI) p-value AIC BIC Allele 
Allele frequencies HWE p-value 

All Large Small Large Small 

tnksa-1 c.69T>C Dominant C/C 37 (92.5%) 16 (40%) 1.00 <0.0001 87.8 92.5 C 0.70 0.96 0.44 <0.0001 1.000 

   C/T-T/T 3 (7.5%) 24 (60%) 18.50 (4.86-70.36)    T 0.30 0.04 0.56   

tnksa-3 c.74C>T Dominant T/T 40 (100%) 18 (45%) 1.00 <0.0001 75.8 80.6 C 0.82 0.74 0.90 0.033 0.094 

   C/T-C/C 0 (0%) 22 (55%) 0.20 (0.07-0.57)    T 0.18 0.26 0.10   

myod1-1 c.34T>G Dominant G/G 33 (82.5%) 15 (37.5%) 1.00 <0.0001 97.2 102 T 0.61 0.56 0.65 0.037 0.520 

   G/T-T/T 7 (17.5%) 25 (62.5%) 7.86 (2.79-22.16)    G 0.39 0.44 0.35   

myod1-3 c.62T>G Over-dominant G/G-T/T 37 (92.5%) 19 (47.5%) 1.00 <0.0001 93.8 98.6 T 0.78 0.8 0.75 0.400 1.000 

   G/T 3 (7.5%) 21 (52.5%) 13.63 (3.60-51.55)    G 0.22 0.20 0.25   

bmp2-1 c.2T>G Dominant T/T 31 (77.5%) 11 (27.5%) 1.00 <0.0001 93.9 98.7 T 0.57 0.78 0.36 <0.0001 <0.0001 

   T/G-G/G 9 (22.5%) 29 (72.5%) 9.08 (3.29-25.08)    G 0.43 0.22 0.64   

bmp2-5 c.25G>C Over-dominant G/G-C/C 31 (77.5%) 17 (42.5%) 1.00 0.0012 104.4 109.2 G 0.65 0.74 0.56 0.350 0.011 

   C/G 9 (22.5%) 23 (57.5%) 4.66 (1.76-12.31)    C 0.35 0.26 0.44   

bmp2-
11 

c.109T>C Dominant T/T 18 (45%) 4 (10%) 1.00 0.0009 101.9 106.6 
T 0.59 0.69 0.5 0.000 0.720 

   C/T-C/C 22 (55%) 36 (90%) 7.36 (2.20-24.60)    C 0.41 0.31 0.50   

bmp2-
15 

c.123C>G Dominant C/C 20 (50%) 3 (7.5%) 1.00 <0.0001 95.7 100.4 
C 0.60 0.72 0.48 0.000 0.690 

     C/G-G/G 20 (50%) 37 (92.5%) 12.33 (3.26-46.63)     G 0.40 0.28 0.52   
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Of the eight SNPs, the majority (6) were determined as having a dominant mode of 

inheritance, while the two remaining SNPs were determined to be over-dominant (Table 

3.4). The estimates of HWE determined that only four of the eight SNPs were found to be 

significant, with a p-value of 0.001 or less (Table 3.4), while the remaining four SNPs 

deviated significantly from HWE. All eight of the SNPs were identified as non-synonymous, 

with the amino acid changes between the large and small cohorts displayed in Table 3.5. 

Table 3.5. Amino acid changes for the eight non-synonymous SNPs identified as significant in the 

case-control and quantitative analyses. 

SNP Nucleotide change 
Amino acids 

Small Large 

tnksa-1 T/C Phe Ser 

tnksa-3 C/T Ser Phe 

myod1-1 T/G Pro Arg 

myod1-3 G/T Gly Val 

bmp2-1 G/T Arg Ile 

bmp2-5 C/G Glu Gln 

bmp2-11 C/T Ser Phe 

bmp2-15 G/C Arg Thr 

3.3.3) Transmission disequilibrium test and Haplotypic associations 

The TDT results indicated the over transmitted allele for each of the SNP positions with the 

p-value for these markers ranging between 0.0000 and 0.0060 (Table 3.6). The minor allele 

frequency (MAF) at each marker ranged between 32 and 50% (Table 3.6), with all eight 

SNPs exhibiting heterozygosity. The corresponding estimated D′ values are depicted using 

a colour scheme in Figure 3.5, where the SS algorithm determined that both of the SNPs in 

TNKSA and three out of the four SNPs in BMP2A were identified as LD blocks in their 

respective genes. There was a lower-than-expected degree of LD observed for bmp2-1, in 

regards to the other SNPs within the same gene. Three major haplotypes for the TNKSA 

gene, accounted for all of the alleles: haplotype 1, –CT– (53.6%); haplotype 2, –TC– 

(32.1%), and haplotype 3, –CC– (14.3%). The BMP2A gene however, only had two major 

haplotypes which accounted for 83.8% of the alleles: haplotype 1, –GTC– (48.7%), and 

haplotype 2, –GCC– (35.1%) (Table 3.7). The assessment of the genes separately did not 

differ from the results when the genes was assessed simultaneously. The program was able 

to identify the same two LD blocks whether the data was combined or separated into 

individual genes. No linkage was observed between the genes (Figure S3.1). 
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Table 3.6. Transmission disequilibrium test results and the characteristics of the SNPs in the BMP2, 

TNKSA and MYOD1 genes. The over-transmitted allele, transmitted to non-transmitted (T:U) ratio, p-

value, alleles (A>B where B is the minor allele) and minor allele frequency (MAF) indicated for each 

SNP position.  

SNP Over-transmitted T:U p-value Alleles MAF 

bmp2-1 T 62.0:18.0 0.0000 G>T 0.500 

bmp2-5 G 43.0:23.0 0.0000 C>G 0.429 

bmp2-11 T 47.0:25.0 0.0000 C>T 0.464 

bmp2-15 C 47.0:17.0 0.0000 G>C 0.500 

tnksa-1 C 61.0:3.0 0.0060 T>C 0.464 

tnksa-3 T 48.0:0.0 0.0010 C>T 0.321 

myod1-1 G 57.0:7.0 0.0000 T>G 0.393 

myod1-3 G 57.0:7.1 0.0000 T>G 0.357 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Linkage disequilibrium (LD) block structures. LD block structure consisted of a total of 

ten SNPs in three different genes. Two SNPs were located in the (A) MYOD1 gene, two SNPs in the 

(B) TNKSA gene and four SNPs in (C) BMP2A gene. The LD block was defined by a D’ value threshold 

of 0.8. The colour scale ranges from red to white (colour intensity decreases with decreasing D’ 

value, and all of D’ values were = 1). 
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Table 3.7. Haplotype associations determine for the three LD blocks identified in TNKSA and BMP2A. 

The frequency of the haplotype, transmission to non-transmitted (T:U), Chi-Square and p-value are all 

indicated for each haplotype. The OR (95% CI) is given for the most frequent haplotype. 

Gene Haplotype Freq T:U OR (95% CI) Chi square p-value 

bmp2a           

 GTC 0.487 35.5 : 8.5. 13.33 (1.04 – 170.51) 16.600 0.0000 

 CCG 0.351 4.6 : 23.6.  12.691 0.0004 

tnksa          

 CT 0.536 61.0 : 1.0. 22.98 (1.20 – 438.87) 58.065 0.0000 

 TC 0.321 0.0 : 46.0.  46.000 0.0000 

  TT 0.143 1.0 : 15.0.   12.250 0.0005 

Gene–gene interaction analysis was performed for the six SNPs found in TNKSA and 

BMP2A to assess the combined effects of these genetic variants on growth. The interactions 

among all tested SNPs demonstrated a significant interaction between tnksa-3 and bmp2-

5, amounting to an OR for interaction of 1.743, X2 =2.387, p‑value=0.026 (Table 3.9). In 

addition to this finding, a p‑value of less than 0.05 was observed for one other combination: 

tnksa-3 and bmp2-11 (OR =1.413, X2 = 2.981, p-value = 0.049). However, these p‑values 

did not remain statistically significant after Bonferroni correction (p-value ≥0.001) (Table 

3.8). 

Table 3.8. Gene-gene interaction analysis between BMP2A and TNKSA, the corresponding OR (odds 

ratio), X2 and p-value are given for each genotype combination 

SNP   SNP  
OR (95% CI) X2 p-value 

Gene Identifier   Gene Identifier 

TNKSA tnksa1  BMP2A bmp2-1 1.216 0.370 0.543 

TNKSA tnksa1  BMP2A bmp2-5 0.938 0.172 0.678 

TNKSA tnksa1  BMP2A bmp2-11 0.812 1.575 0.210 

TNKSA tnksa1  BMP2A bmp2-15 1.259 2.254 0.133 

TNKSA tnksa3  BMP2A bmp2-1 1.186 0.781 0.377 

TNKSA tnksa3  BMP2A bmp2-5 1.743 2.387 0.026 

TNKSA tnksa3  BMP2A bmp2-11 1.413 2.981 0.049 

TNKSA tnksa3  BMP2A bmp2-15 1.042 0.036 0.884 
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Phenotypic correlations between Fulton’s conditioning factor K and the quantitative traits W 

and Ls were negative and not significant. The phenotypic correlation between Ls and W 

were significant, showing a high positive correlation between the traits (Table 3.9; Figure 

S3.2). 

Table 3.9. Correlation matrix (Pearson) showing the positive and negative correlations between the 

quantitative traits: Weight (g), Length (mm) and Conditioning factor (K). 

Variables Weight (g) Length (mm) Conditioning factor (K) 

Weight (g) 1 0.926 -0.040 

Length (mm) 0.926 1 -0.362 

Conditioning factor (K) -0.040 -0.362 1 

3.4) Discussion 

The exome sequence reads provided a significant amount of variant data, which was 

narrowed down using a candidate gene approach. This approach assisted in isolating 

genes, which have found to be associated with growth in other marine species, thus 

increasing the likelihood of SNPs identified within these regions being associated with the 

trait of interest in kob (Kwon and Goate, 2000). The use of a within group variant detection 

tool assisted in identifying variant rich regions within the data, which were most likely to have 

an association with growth (Figure 3.2). This was achieved through the elimination of 

identical variants (~2.2M) and the identification of variants found to be unique to either the 

large or small cohort. This elimination resulted in the loss of more than half of all the variants. 

The most likely cause for the large number of identical variants observed within the exome 

data, is due to the data being generated using a single family, thus introducing 

ascertainment bias. The use of a single family to generate the exome data was a necessary 

step to try and minimise the effects of additional factors on the sequence data, such as 

epistasis and differing parental genotypes. Thus, to achieve the most reliable consensus 

sequence possible, each individual from the family was theoretically supposed to be 

sequenced at the same positions, therefore each individual would validate another 

individual’s sequence data. Thus, the variation seen between the individuals of the two 

cohorts (large and small) could potentially be associated with the individual’s size rather 

than the result of differing parental genotypes, in the total population, for example. Differing 

parental genotypes is often a consequence of commercial mass spawning events, which is 

essential for species such as e.g. rainbow trout (Pante et al., 2001), Oreochromis niloticus 

(nile tilapia) (Fessehaye et al., 2009), abalone (Kobayashi and Kijima, 2010), shrimp (Moss 

et al., 2007) and dusky kob (Jenkins, 2018). These mass spawning species are unable to 
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use single pair mating designs, thus there is no control over the contribution of broodstock 

within a spawning event. In a typical spawn, the broodstock contributions is likely to be 

skewed as a result of certain individuals not contributing towards the offspring, meaning that 

a single mass spawning can result in multiple different broodstock combinations (Brown et 

al., 2005; Herlin et al., 2008; Hillen et al., 2017; Sekino et al., 2004). Therefore, the use of a 

single family, which had been determined via parentage analysis using microsatellites 

(Jenkins, 2018), was essential to eliminate the possibility of differing parental genotypes. 

This ensured that any variation observed to be occurring between the cohorts was in fact 

true and not a result of differing parental genotypes. 

Using sanger sequencing a total of 38 SNPs were verified, across nine of the 15 gene 

regions: Tankyrase (TNKSA), Bone morphogenetic protein 2a (BMP2A), Fibroblast growth 

factor 4 (FGF4), Myogenic differentiation 1 (MYOD1), Myogenic factor 5 (MYF5), Myogenic 

factor 6 (MYF6), Tubulin alpha 8 like 2 (TUBA8L2), Eukaryotic translation elongation factor 

1 alpha 1, like 1 (EEF1A1L1) and Growth differentiation factor 6a (GDF6A). By contrast, two 

gene regions, GHRHRA and GRTPA1, often identified in other studies as having variation 

associated with growth (Deane and Woo, 2009; Fuentes et al., 2013; Opazo et al., 2017), 

were devoid of SNPs in this present study. This unexpected result could be attributed to the 

fact that only a small section of each gene was able to be sequenced due to the uneven 

coverage of the exome data, resulting in variant dense regions remaining undetected. 

Therefore, showing these regions to have little to no variation between the cohorts, which is 

most likely not the case, but rather a consequence of the limited sample size, which 

consisted of only five different families. Despite the frequent mention of these genes in 

association studies, particularly in mammals, it is not uncommon for the sequence of genes 

such as the growth hormone releasing hormone (GHRH) gene to be fixed within a species. 

Meaning, that although this gene does play a critical role in the growth and development of 

the individual, any variation observed within this region, is unlikely to alter the phenotype of 

interest. It is also important to note that all though mammals and fish do share a number of 

similarities in regards to biological pathways they are remarkably different, meaning that 

although they do share the same hormones, the way in which their bodies utilise these 

hormones may differ. For example, in mammals both GHRH and pituitary adenylate cyclase-

activating polypeptide (PACAP) belong to the same family of regulatory peptides, which are 

responsible for the regulated release of the growth hormone. However, in fish PACAP is 

more pronounced, having a prolonged stimulatory effect on the release of the growth 

hormone, while GHRH has been observed as having little to no effect (Tao and Boulding, 
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2003). This observation has been made in numerous fish species such as rainbow trout 

(Oncorhynchus mykiss, Luo et al., 1990; Blaise et al., 1995), salmon (Oncorhynchus nerka, 

Parker et al., 1997), carp (Cyprinus carpio, Vaughan et al., 1992) and in a tilapia hybrid 

(Oreochromis niloticus / O. aureus, Melamed et al., 1995). So, despite the gene regions, 

GHRHRA and GRTPA, not exhibiting any variation, a large number of putative SNPs were 

observed in the less frequently mentioned BMP2A region. Currently, no other studies have 

linked SNPs found within this gene to growth rate, however, BMP2A has been identified as 

a initiator of bone formation, which is an essential component in the formation of vertebrates 

(Maegawa et al., 2007). 

Association analyses under different inheritance models revealed eight SNPs (tnksa-1, 

tnksa-3, myod1-1, myod1-3, bmp2-1, bmp2-5, bmp2-11 and bmp2-15) to be associated with 

size (Table 3.4; Table S3.3; Table S3.4), following Bonferroni correction (p-value <0.001). 

Bonferroni correction was essential following multiple tests, tests which were necessary to 

try and minimise the number of false positives. Although false positives are a common 

occurrence when performing multiple tests, there is currently no other genomic resources 

for dusky kob which can be used for verification and validation, making a stringent approach 

necessary. Thus, all SNPs identified to be associated with growth, were done so using the 

conservative Bonferroni correction. This method did reduce a number of identified genetic 

associations; however, may have resulted in a number of false negatives. Although the 

elimination of true SNPs may seem counterintuitive in an association study, these SNPs can 

all be reanalysed in future studies once the genomic resources of dusky kob are more readily 

available. Another major cause of false positive results in genetic association studies, is 

population substructure, particularly in case-control studies. This is because the cases and 

controls are often sampled from genetically different underlying populations, thus any 

associations found could be a result of the underlying structure of the population and not 

actually associated with the trait of interest (Satten et al., 2001; Tian et al., 2008). This issue 

is found to be particularly prevalent in aquaculture as parental contributions are skewed as 

a result of mass spawning, making pedigree inference essential as aforementioned to try 

and correct for any bias caused as a result of population substructure due to high variance 

in family sizes. However, this expected bias was not observed within the FBC cohort, as 

family was determined not to be a significant covariate. This illustrates that the sampling 

method utilised for size selection was able to eliminate or more likely reduce, the effect of 

population substructure on the association results and can therefore be incorporated into 

future aquaculture studies (Figure 3.1). 
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Out of all eight SNPs, seven deviated from HWE in either the large or small cohort, with the 

exception of bmp2-5 which was found to in HWE for both the large and small cohort (Table 

3.4). The HWE principle states that in the absence of migration, mutation, natural selection 

and assortative mating, genotype frequencies at any locus are a simple function of the allele 

frequencies (Wigginton et al., 2005; Wittke-Thompson et al., 2005). Therefore, deviation 

from these principles could result in disagreement for the HWE model. This disagreement 

could be indicative of genotyping errors (Wigginton et al., 2005). However, the results 

observed in this study, indicated that the genotypic differences were occurring between the 

case and control groups, with the genotypes verified using sanger sequencing. Thus, 

making it highly unlikely that the observed deviations from HWE were the consequence of 

genotyping errors. It is thus generally accepted that when a variant increases the chance of 

a particular phenotype occurring, it may cause a deviation from HWE, meaning the variant 

is associated with the phenotype. Therefore, deviations from HWE are generally expected 

to occur within the phenotype under investigation while HWE is met in the alternative 

phenotype. Although, the reverse is possible, as seen for three of the eight SNPs, bmp2-5, 

myod1-3 and tnksa-3. The assumption that can be made in these cases is that deviation 

from HWE in the small cohort is possibly still associated with size although it may not be for 

the desired phenotype but rather the small phenotype (Wigginton et al., 2005; Wittke-

Thompson et al., 2005). This hypothesis does correlate with the OR for tnksa-3, which does 

appear to be associated with the small phenotype rather than the large although this would 

need to be validated using a larger sample size. Interestingly though all eight SNPs were 

determined to be non-synonymous (ns), altering the encoded amino acid at the variable site, 

causing structural and functional changes in the coding protein, which may be affecting the 

phenotype of interest (Table 3.5). However, not all alterations are favourable, as there are 

structural or functional changes which could be deleterious or damaging. Therefore, it is 

important to identify these changes and determine whether any of the nsSNPs are 

deleterious. In this study, CLC GWB was able to identify the nsSNPs, which in this case 

were determined to be non-deleterious, meaning that these changes to the protein are more 

likely to have an association with the phenotype of interest. 

In this study, the gene identified as having the greatest number of significantly associated 

SNPs was BMP2A, with a total of four novel SNPs (bmp2-1, bmp2-5, bmp2-11 and bmp2-

15). By assessing the SNPs individually within this gene, the over transmitted alleles were 

determined for each SNP position: The T allele at bmp2-1, the G allele at bmp2-5, the T 

allele at bmp2-11 and the C allele at bmp2-15 (Table 3.6). Using this information, the mode 
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of inheritance was determined, where three of the four SNPs (bmp2-1, bmp2-11 and bmp2-

15) were identified as having a dominant mode of inheritance, where the large phenotype 

was observed to have a high prevalence for both the heterozygous and homozygous 

genotype containing the over transmitted allele. For these three SNPs the ORs ranged 

between 9.08 and 12.33 indicating that there was an increased likelihood of at least nine 

times or greater for the associated genotype to be present in the large phenotype. However, 

unlike the other SNPs in BMP2A, bmp2-5 was found to be over-dominant, meaning that the 

large phenotype was showing a high prevalence to the heterozygous genotype, with an OR 

of 4.66 indicating a greater than 4 times increased likelihood of the heterozygous genotype 

to be present within the large phenotype. It was not unexpected that a large number of 

significant SNPs were identified within the BMP2A gene, as bone morphogenetic protein 

genes (BMPs), include many genes that play a fundamental role in embryonic skeletal 

development, vertebrate development and postnatal skeleton homeostasis (Wu et al., 2016). 

Therefore, because of the diversity seen in the function of these genes there has been an 

increase in the number of studies performed, which have focused on the roles that BMPs 

play in a wide range of biological processes.  

Previously, this group of genes was thought to only be involved in bone and cartilage 

formation, however, it has since been determined as playing role in embryogenesis, muscle 

growth, adipogenesis and reproductive system development (Brazil et al., 2015; Wang et 

al., 2014). The fundamental role of BMP2 was previously highlighted in a study performed 

in Sparus aurata by Rafael et al. (2006), where the BMP2 gene was suggested as playing a 

key role in fish development (Sekelsky et al., 1995). More recently, a study was performed 

in common carp by Chen et al. (2017), where the function and number of BMP genes were 

identified and although BMP2A was not specifically mentioned to be significantly associated 

with any role within this study. This gene was mentioned as playing a fundamental role in 

biological processes while being highly conserved across 20 different species, thus leading 

to this genes inclusion within this study. When assessing the linkage disequilibrium (LD) 

(>0.8) of the SNPs within the BMP2A gene (Figure 3.5), a single linkage block was identified, 

where three out of the four SNPs (bmp2-5, bmp2-11 and bmp2-15) showed strong LD (D’ 

>0.8 and r2 >0.8).  Within the linkage block two significant haplotypes were identified, GTC 

(bmp2-5, bmp2-11 and bmp2-15) and CCG (bmp2-5, bmp2-11 and bmp2-15), where the 

GTC haplotype was associated with a higher frequency within the large cohort, compared 

to small, indicating a 13.33-fold increase of displaying the desired phenotype (OR = 13.33) 

(Table 3.7). While the second haplotype, CCG, was associated with a higher frequency 
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within the small cohort, compared to large. This strong linkage disequilibrium seen between 

the SNPs of the BMP2A could potentially be utilised in marker assisted selection (MAS), as 

alleles of a few SNPs in a haplotype can suggest that the alleles of the other SNPs, provide 

redundant information. Therefore, a small number of common SNPs can be selected from 

each haplotype which would be sufficient to define the relevant haplotypes (Takeuchi et al., 

2005). 

In addition to the four SNPs identified in BMP2A, two novel SNPs were also identified in 

each of the TNKSA and MYOD1 genes, with both SNPs in TNKSA having a dominant mode 

of inheritance. However, unlike BMP2A, both the SNPs in TNKSA (tnksa-1 and tnksa-3) 

were not observed to be associated with the desired large phenotype. Unlike tnksa-1 which 

showed its over transmitted allele to have a high prevalence for the large phenotype (OR = 

18.50), tnksa-3 did not have a OR greater than 1 (OR = 0.20). When assessing the LD in 

the gene, the program was able to identify a single linkage block in TNKSA where both SNPs 

were found to be linked (Figure 3.5). This was an interesting result for the TNKSA gene as 

the SNP tnksa-3 had been identified as significant throughout the association tests including 

the case trios, despite it having an extremely low OR. The low OR in combination with the 

linkage results could indicate the probability of this SNP being inherited as a result of tnksa-

1 which is found to have an 18.5 greater chance of being found to occur within the large 

phenotype, rather than being directly involved in observation of the desired phenotype. 

Finally, the two SNPs in the MYOD1 gene (myod1-1 and myod1-3) were identified to be 

dominant and over dominant in terms of inheritance with the large phenotype with an OR of 

7.86 myod1-1 and 13.63 for myod1-3.Of the four novel SNP markers identified in TNKSA 

and MYOD1, two SNPs showed weak LD (D’ <0.8 and r2 <0.8) but yielded statistical 

significance for the individual SNPs among the case trios. In particular, the G allele at 

myod1-1 and the G allele at myod1-3, were shown to have a significant presence in the 

phenotypically large individuals (Table 3.6). However, under the standard confidence 

interval settings, no significant haplotype associations between the large and small cohorts 

were identified in the MYOD1 gene. Therefore, the only other gene found to have haplotype 

associations besides BMP2A, was TNKSA which showed three significant haplotypes, 

however, only the CT (tnksa-1 and tnksa-3) haplotype was found to have a higher 

association within the large cohort, compared to the small, indicating a 22.98-fold increase 

in displaying the desired phenotype (OR = 22.98) (Table 3.7). While the other two haplotypes 

TC (tnksa-1 and tnksa-3) and TT (tnksa-1 and tnksa-3) were not found to be associated with 

the large phenotype but rather the small. TNKSA and MYOD1, have been highlighted in 
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other studies for the fundamental role that these genes play in growth. Particularly, TNKSA, 

where a study performed by Chiang et al. (2008) on mice, showed that the knockout of this 

gene did result in a reduction in size of the individual, however, this knockout did not affect 

the development of the animal. So, although this gene has been observed to impact the 

growth of both humans and mice it is still under investigation within fish making this an 

interesting result. Unlike the other two genes, MYOD1 has been well investigated in fish 

such as flounder (Zhang et al., 2006), Sparus aurata (gilt-head seabream) (Tan and Du 

2002), Hippoglossus hippoglossu (Atlantic halibut) (Galloway et al. 2006) and the Takifugu 

rubripes (tiger pufferfish) (Macqueen and Johnston 2006), where this gene has been 

observed to influence the muscle development in growing fish. However, the normal 

stimulus for muscle growth in growing fish is still not well understood. Therefore, by 

understanding the regulation of muscle growth in fish, it can be of particular importance to 

aquaculture. This is because fish meat consists primarily of skeletal muscle, meaning that 

stimulation of muscle growth could result in fish having an increased growth rate or larger 

size (Zhang et al., 2006), making the Myod1 gene a pivotal part of this study.  

Interestingly all three genes (BMP2A, TNKSA and MYOD1) that were identified as having 

SNPs significantly associated with growth were part of large protein families, which are 

found to be highly conserved between different species (Hsiao and Smith, 2008; Rafael et 

al., 2006; Smith, 1992; Wozney, 1998). This conservation could explain why the exome data 

was able obtain a large number of sequences for these regions, enabling the identification 

of variant dense regions. However, despite identifying associated SNPs in all three genes, 

only two of the three genes (TNKSA and BMP2A) were determined as having haplotypes 

associated with the desired phenotype, CCG in the BMP2A gene and CT in the TNKSA 

gene. In addition to their identification, both haplotypes were determined to have a larger 

OR than the individual SNPs showing that there is variation across the gene rather than a 

single SNP. These genes do require further investigation, particularly, because of the 

diversity observed within BMP genes, these genes appear to have multiple biological effects 

on fish which, have not yet been fully studied leaving a large number of research questions 

unanswered. Also, the TNKSA gene is still in the early stages of investigation in fish species 

and therefore these results pertaining to LD and haplotype association are not precise 

largely due to the lack of chromosomal information. However, this preliminary test was able 

to assist in determining whether or not LD was occurring between the genes. In this case 

there appeared to be no interaction between the genes which was verified by the results 

obtained from gene-gene interaction performed in UNPHASED (Table 3.8), although this 
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result may change with the increase in genomic resources for the species as these results 

provide a basis for future studies.  

Marker-assisted selection (MAS) can be based on three type of molecular markers: markers 

in linkage disequilibrium with a QTL (LD-MAS), markers in linkage equilibrium with 

quantitative trait loci (QTLs) (LE-MAS), or the causative mutation itself as in gene-assisted 

selection (GAS). All three types of MAS are currently being used in the livestock industries 

(Dekkers, 2004). However, GAS leads to the highest genetic gain, however, the 

identification of the gene is not easy and is resource demanding. Thus, with advances being 

made in high-throughput genotyping technologies allowing for the identification of thousands 

of SNPs (Bers et al., 2010), there is a possibility of implementing LD-MAS directly using 

significant SNPs from genome-wide association studies. However, unlike SSRs (multi-

allelic) which have a polymorphism information content (PIC), SNPs are usually bi-allelic, 

meaning each marker provides less PIC, thus marker density must be increased. Various 

studies have promoted the use of haplotype-based analysis rather than single marker 

analysis as a means to overcome this limitation (Lu et al., 2012). A haplotype-based 

approach, however would not only assist in overcoming this limitation but could capture 

epistatic interactions between SNPs at a locus (Bardel et al., 2005; Clark, 2004), explain the 

exact biological role played by neighbouring amino-acids on a protein structure (Clark, 

2004), reduce the number of tests and hence the type I error rate (Zhao et al., 2007), and 

provide more power than single marker when an allelic series exists at a locus (Hamblin and 

Jannink, 2011; Gawenda et al., 2015). Simulation studies (Calus et al., 2009; Grapes et al., 

2004; Hayes et al., 2007), have already shown that in comparison to the individual SNP 

approach, a haplotype-based approach does improve the prediction accuracy (Cuyabano et 

al., 2014; Jonas et al., 2016; Ferdosi et al., 2016), which could be extremely beneficial when 

applied to the breeding programmes of dusky kob. Despite all the advantages of a 

haplotype-based approach a few studies have determined there to be no advantage in using 

one approach over another (Clark et al., 1998; Zhao et al., 2007b). However, this does 

require further investigation, which could potentially be performed utilising the significant 

haplotypes identified in this study as a basis for future studies in dusky kob.  

The appearance traits in fish are known to affect consumer acceptance at the point of sale, 

with body shape and skin pigmentation being the most significant factors affecting a farm’s 

profitability (Colihueque and Araneda, 2014). As a result, numerous studies have been 

conducted to determine the implications of the conditioning factor on traits affecting body 

shape as the fish length-weight relationship can provide important ecological insights 
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(Froese, 2006). Insights which can be useful for estimating community biomass or weight 

when only length and species data are available. This information is essential for fishery 

management, stock assessment, and conservation (Froese, 1998; Jellyman et al., 2013; 

Oscoz et al., 2005). When looking at the conditioning factor there is often an expectation 

that the genes influencing traits such as weight and length, from which the K is derived, may 

be similar and that the selection for growth, will lead to the indirect selection of K. However, 

this does not appear to be true, as the low underlying genetic correlations observed between 

the quantitative traits and K (Fishback et al., 2002; Martyniuk et al., 2003; Nilsson, 1994; 

Vandeputte et al., 2004). This suggests a non-linear relationship, indicating that a more 

complex interaction has not been accounted for, which is most likely due to epistatic or 

pleiotropic effects, which operates in a non-additive manner. Therefore, looking at the 

correlations between the K of dusky kob and the phenotypic growth traits (Figure S3.1), the 

conditioning factor was not found to be significantly correlated in a linear manner with either 

weight and length (Table 3.9), with p-values of 0.987 and 0.247 for weight and length, 

respectively (Figure S3.2). This observation can be attributed to the fact that the growth in 

dusky kob, as in most fish species, is non-linear, such that body mass at a given body length 

can differentially increase or decrease throughout an individual’s life time. Therefore, 

although the growth curve historically has been estimated using a linear regression 

approach (Huxley, 1924; Huxley, 1932; Le Cren, 1951; Cone, 1989), a generalised non-

linear approach and graphical methods are required for fish stock analysis particularly when 

looking at the conditioning factor (Akamine, 2009; De Giosa and Czerniejewski, 2016; Xin’an 

and Aijun, 2016). 

3.5) Conclusion 

Currently, the vast majority of the aquaculture facilities in South Africa are still making use 

of ineffective phenotypic based selection procedures which, have hindered the development 

of species. This has largely been due to the limited number of genomic resources available 

for the non-model organism dusky kob. However, this study represents one of the first in 

aquaculture to employ a candidate gene approach in the identification of novel and 

previously uncharacterised genetic variants associated with growth rate in a non-model 

species. Three of the 15 candidate genes assessed using both case-control and quantitative 

analyses, yielded significant variants associated with the growth rate of dusky kob. In 

conclusion, the work presented here yields important findings pertaining to the biological 

role that genes play in the development and growth of dusky kob, information which can be 

utilised for the effective management and utilisation of the species. The sample size remains 
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to be one of the most important limitations, requiring follow up in a larger sample for 

validation. Also, further assessment of the haplotypes is required as the utilisation of these 

haplotypes in the development of a MAS breeding programme can drastically reduce the 

generational interval of the species, while simultaneously improving the accuracy of 

broodstock selection. This is because MAS allows for the implementation of early selection 

procedures, which accelerates the improvement of the species through the genetic gain of 

commercially favourable traits. Overall, the candidate gene approach proved to be an 

effective method for the development of SNP markers in non-model species, providing a 

basis for all future studies aiding in the development of molecular markers. 
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CHAPTER 4 

Study Conclusions 
 

4.1) Overview 

Dusky kob, a marine finfish, is an emerging aquaculture species in South Africa. The shift 

towards aquaculture was initiated in response to the collapse of the natural populations, 

which has been a direct result of overexploitation of the species. In South Africa, cultured 

kob are currently derived from unimproved wild broodstock; but there has been a 

considerable amount of effort made to maintain the faster growing F1-generation animals, 

for the implementation of a selective breeding programme. However, this species’ late onset 

of sexual maturity does pose a problem for early selection, as currently, selection methods 

are based upon phenotypic traits rather than genetic data. Thus, for the broodstock to be 

accurately selected, the fish are required to be of a certain age for measurement and 

comparison, however this approach is often time consuming, unreliable and ineffective. 

Hence the shift towards the use of genetic markers in the selection process of economically 

important marine species, as it allows for early, reliable selection without negatively 

impacting the health of the animal. Also, the development of markers associated with 

growth, will assist in understanding the biological role that genes play in the growth rate of 

dusky kob, which is critical for the development of effective management and improvement 

strategies. 

Chapter 2 therefore investigated the transferability of a solution-based exome capture kit, 

designed for the model organism zebrafish, in the capture and sequencing of a non-model 

organism’s, the dusky kob’s, exome. The exome data were analysed and used for variant 

identification, specifically, single nucleotide polymorphisms (SNPs), which could assist in 

future marker development. Sequencing was performed using 16 individuals from a single 

F1 generation family. Although a recent study was performed in 2011 by Cosart et al., using 

a model organism’s capture kit in non-model species, the study was limited in its 

assessment, as it only assessed the ability of a commercial cattle kit to sequence a select 

few regions in closely related wild bovine species. Therefore, chapter 2 is the first to assess 

the full capability of a commercially available exome capture kit to sequence the entire 

exome of a non-model species such as dusky kob, which is considerably diverged from the 

model organism, zebrafish. 
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In chapter 3, a candidate gene approach was utilised for the selection of 15 gene regions 

observed to be associated with growth in other aquaculture species. Following primer 

optimisation and SNP confirmation, an additional four families, collected from two facilities, 

were used for the characterisation of SNP markers associated with the growth rate in dusky 

kob. Association was determined using both case-control and quantitative analyses which 

utilised the quantitative values: body weight (W), standard length (Ls) and Fulton’s condition 

factor (K) as well as the categorical measure, size (large or small). Lastly, to exploit the 

potential of a selective breeding programme, the correlations between these phenotypic 

measurements were evaluated by estimating Pearson’s correlation.  

4.2) Transferability of the exon-capture 

The use of gene-targeted, genome-wide markers are essential for the effective utilisation 

and management of species in areas such as animal production, and conservation. This is 

because the information obtained when developing such markers can assist in 

understanding the genetic processes underlying complex traits, adaptation and speciation. 

Unfortunately, one of the greatest challenges for developing genome wide resources such 

as genome-wide SNPs is the fact that many commercially important eukaryotic species have 

large genomes, making the development of resources costly. To overcome the limitation of 

cost, gene targeted method’s such as transcriptome sequencing have been utilised despite 

the methods known limitations, which includes ascertainment bias due to differential gene 

expression (Ozsolak and Milos, 2010). Ascertainment bias can negatively impact results as 

it decreases the power of tests of association between SNPs and complex traits, introducing 

false-positive inferences and has been shown to distort population genetic inferences 

(Lachance and Tishkoff, 2013). Therefore, a more flexible, gene-targeted method is required 

for the identification of genome-wide SNPs in multiple individuals of a non-model organism. 

This study thus demonstrated the usefulness of exome capture, in the discovery of genome-

wide markers, with exome sequencing performed in Argyrosomus japonicus using a model 

organism’s exome capture kit, zebrafish (Danio rerio), on the ion-torrentTM platform. With a 

significant amount of divergence between the study species, A. japonicus and D. rerio, the 

exome capture kit was able to be tested in order to determine the feasibility of using a model 

organism capture kit in future studies, for the development of genomic resources in resource 

scarce species. The efficiency of the kit required careful evaluation as studies have shown 

that the performance of whole exome sequencing does decline when faced with even a 

limited amount of divergence between species (Jones and Good, 2016; Vallender, 2011). 

However, by applying this method to sixteen F1-generation individuals, the capture kit was 
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able to successfully sequence millions of reads per sample, of which thousands were 

homologous exons of zebrafish as well as a large number of potentially species-specific 

exons. Similar success has been reported in studies where whole exome sequencing was 

performed using model organism’s capture kits, however the species used were closely 

related (e.g. Cosart et al., 2011; Jia et al., 2013; Ryan et al., 2013). Although additional 

studies have been previously performed in more divergent species, the success of these 

studies was shown to occur as a consequence of losing comparative data (e.g. Faircloth et 

al., 2012; Lemmon et al., 2012; McCormack et al., 2012). This reported loss of comparative 

data was observed in this study as regions other than the expected target regions had been 

sequenced as a result of divergence, affecting the reproducibility of the study. However, the 

kit was not limited by the divergence between the species and was still able to produce a 

large number of usable reads with a large majority of reads being exons which may 

potentially be species specific, although this does require further investigation. Overall, this 

study was able to produce data that was more than sufficient, showing that exon capture 

can be customised for genome-wide SNP discovery in non-model organisms without prior 

information regarding the species’ genome. Characterisation of the exon regions was able 

to determine that the exons were distributed among the various functional classes of GO 

and KOG databases indicating how the exome data, even though not covering the entire 

genome, encompasses a broad gene functional diversity. The exome data was shown to be 

a valuable resource for the identification of variants, which assisted in the discovery of 

thousands of SNPs and a few thousand tandem repeats, which will greatly assist in marker 

development for the species. 

4.3) SNP markers associated with growth  

In general, the limited resources for non-model organisms such as dusky kob, has hindered 

research efforts aiming to characterise and understand genetic variation. To circumvent this 

issue, early molecular work on dusky kob was based on microsatellite markers that did not 

require prior knowledge of the species’ genome (Archangi et al., 2009; Mirimin et al., 2013). 

Currently, microsatellite markers are still the only molecular marker being used in dusky kob 

for the evaluation of pedigree relationships (Liu et al., 2012; Vandeputte et al., 2014; 

Vandeputte and Haffray, 2014) and although these markers have been extremely useful in 

pedigree inferences, they are limited in regards to association. Therefore, in order to 

understand the genetic basis of phenotypic variation in complex traits (Tsai et al, 2015), SNP 

markers needed to be developed. Despite the need for gene-targeted genome wide SNPs 

the vast majority of the aquaculture facilities in South Africa are still making use of a 
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conditioning factor, for the selection of their broodstock (Kause et al., 2003). However, when 

dealing with complex traits such as growth rate, the implementation of genetic markers in 

the selection process can greatly assist in shortening generational intervals thus assisting 

the accelerated development of species. The results from this study showed the candidate 

gene approach to be an effective method for the development of SNP markers in non-model 

species as this approach was able to identify eight SNPs in three key genes to be associated 

with growth. These associations were made using both case-control and quantitative 

analyses, with all the markers found to be significant, reanalysed and verified using a TDT. 

Validation using TDTs is commonly seen in studies where the parental genotypes are 

available. This is because the method in which a TDT makes an association between the 

phenotype and SNP provides confidence in the result (McGinnis et al., 2002), showing that 

an observed SNP/phenotype association is not simply a result of a sampling error (Lander 

and Schork 1994). The linkage disequilibrium results for the three genes in which the SNPs 

were identified showed that the genes were not linked to one another, which was further 

verified using a gene-gene interaction analysis. Although no linkage appeared to be 

occurring between the genes, two of the three genes were identified as having a single 

linkage block with high LD correlations between markers within the respective genes. All 

these markers were in close proximity to one another, indicating their potential suitability for 

MAS (Abasht et al., 2009). Simple MAS often relies of the marker’s mode of inheritance, in 

relation to the desired phenotype, which was determined for each of the markers in this 

study when performing the case-control analyses. Although this method may be simple, the 

benefits of such MAS has been observed in a number of commercial populations such as 

tilapia (McAndrew et al., 1988), and rainbow trout (Blanc et al., 2006). In addition to 

association analyses this study was able to estimate the correlation between quantitative 

traits: wet weight, standard length and conditioning factor. These results were comparable 

to a study performed by Jenkins (2018) which showed the conditioning factor to have no 

linear correlation to the weight or length prediction of the fish. This candidate gene study 

was the first step in exploring the biological pathways between genetic determinants and 

growth in dusky kob. The findings from these studies will significantly contribute to further 

biological function analysis of the identified candidate genes and potential utilisation of these 

markers in MAS. 
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4.4) Considerations for the implementation of MAS in the breeding 

programmes of dusky kob 

The data generated in both experimental chapters highlights the need for gene-targeted 

genome wide SNPs for the improvement and effective utilisation of the species. Previously, 

the development of such markers would not have been feasible due to the large size of this 

species genome. However, chapter 2 was able to sufficiently demonstrate the use of exome 

capture in the identification of novel markers, which can potentially be used in the selective 

breeding programme of dusky kob. Over the last few years multiple authors have suggested 

the need for genetic markers in the selection of complex traits such as growth, disease 

resistance and fillet quality (Goddard and Hayes, 2009; Newton-Cheh and Hirschhorn, 2005; 

Midtlyng et al., 2001). Yet despite multiple studies concluding that the only reliable method 

for the selection of complex traits is the use of molecular markers, the majority of South 

Africa’s aquaculture farms still rely on only phenotypic traits. Although there is a chance of 

success using these traditional methods, the result is not always guaranteed as decisions 

are made on subjective observational data rather than factual genetic information. These 

traditional methods may appear to be more cost effective, as genotyping and the 

development of markers is an expensive procedure. However, for a species such as dusky 

kob, which does have such a long generation interval, the long-term genetic gains and 

benefits that can be achieved will greatly exceed any initial apprehension. As early selection 

methods are not possible using phenotypic measures, slow growing individuals are 

spending more time within the production cycle, using resources which could be better 

utilised on improved, faster growing individuals that will generate a considerable amount of 

profit for the farm. Thus, selection procedures are extremely important, because by 

incorrectly selecting poor broodstock can have detrimental consequences on the farm and 

the industry as a whole. Utilising genetic markers in the selective breeding programme of 

dusky kob will enable for the accurate selection of a variety of different traits at early 

developmental stages. In particular, genetic parameters for traits relating to growth could be 

estimated early on in the production cycle to reveal wild broodstock with superior growth 

which can be utilised for the production of faster growing F1 individuals. The implementation 

of such selection methods in selective breeding programmes will allow managers to 

effectively manage the population by constantly producing animals from only the best 

performing broodstock, while continually improving the broodstock individuals through the 

selection of multiple economically important traits, will assist in the long-term improvement 

of the species. 
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4.5) Shortcomings and perspectives on future undertakings 

Overall, the cross-species targeted capture method used in this study was shown to be 

successful despite the non-uniform coverage across the genome and the unintended 

sequencing of non-protein coding regions. Yet despite the significant impact this will have 

on the reproducibility of this study, making the consolidation of data between projects 

extremely difficult, these singleton and non-coding sequences do require further 

investigation into their nature, as these sequences could contain valuable information, which 

may be species specific. Thus, although the divergence between the species did affect the 

number of usable reads in this study, as a consequence of non-uniform coverage, which 

resulted in the elimination of multiple reads, the information obtained regarding these 

sequences’ could be applied to aid not only in the development of additional markers but 

also in future genomics research for the species. The development of more markers in these 

unique regions may prove to be extremely useful in applications such as linkage mapping 

and marker-assisted selection (MAS).  

Numerous methods have been used for the development of markers associated with traits 

of interest, such as growth rate, with the candidate gene approach shown to be highly 

successful in this study. However, this strategy does limit the study to genes of known or 

suggested involvement in the trait, thereby excluding the discovery of novel genes that could 

influence the trait of interest. Yet despite the limitations regarding novel discovery, it is a 

good starting point for the development of SNP markers in non-model species (Alghamdi 

and Padmanabhan, 2014; Holloway et al., 2017). However, the discovery of novel genes in 

this study was not exclusively a result of the candidate gene approach but rather a 

combination of this approach with the large number of eliminated sequences. Future studies 

should however not only investigate the large number of presumed species-specific reads 

but should be directed towards the development of a SNP based linkage map as the 

construction of such a map will be useful in the further dissection of quantitative trail loci 

(QTL) (Lander and Botstein, 1989). Thus, bringing new genomic insights to poorly 

characterised species, while assisting in understanding the complex interaction between 

genetic factors and environmental effects. The discovery of large numbers of new genetic 

markers and the construction of a dense genetic map of the dusky kob genome using both 

available and newly discovered markers would be of great value for future breeding 

programmes. 

One clear limitation was the small sample sizes (i.e. few families and few individuals for 

each family) that were used. Many more samples will be needed to obtain a more accurate 
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correlation between the weight, length and conditioning factor of dusky kob. The conditioning 

factor showed no significant correlation to either quantitative measure, however these 

characteristics could impact the market acceptance in a developing and more competitive 

dusky kob industry, therefore this factor requires further investigation with studies looking 

into body depth (BD) and body shape index (H), as more reliable indicators of body 

conformation and condition. This could be promising for future studies as studies have 

shown a positive genetic correlation between the weight of the fish and BD or H (Domingos 

et al., 2013; Gjedrem and Thodesen, 2005). Estimation of genotype by environment (G x E) 

interactions for growth-related traits in dusky kob should also be conducted in order to fully 

exploit the potential of a selective breeding programme (Dupont-Nivet et al., 2008; 

Vandeputte et al., 2014; Vlok et al., 2016).  

4.6) Concluding statement 

This study is unique in regards to marker development as it evaluates the transferability of 

a model organisms exome capture kit in a non-model organism, for the development of 

genomic resources. Additionally, this study represents one of first attempts to develop SNP 

markers associated with an economically important trait of interest, growth rate, for dusky 

kob. The obtained results were able to identify eight associated SNPs, showing the 

successful combination of exome capture and a candidate gene approach in the 

development of SNP markers. While growth rate will always remain one of the most 

commercially important traits selected for in dusky kob culture, a selection programme for 

the species may also need to considered when expanding to include the simultaneous 

selection of multiple traits utilising MAS. Thus, molecular genetics is expected to play a major 

role in the development of aquaculture breeding programmes, particularly in dusky kob 

which should substantially benefit from any genetic improvement as a result of the species 

extremely long generation interval. 
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Appendix A  
 

Supplementary Information Chapter 3 
 

 

Table S3.1. The 15 gene regions identified through literature to be associated with growth in other 

aquaculture species. The genes name, gene symbol, accession number and location in the zebrafish 

genome is provided in the table. 

Table S3.2. Primers designed for the 15 gene regions. Sequence shown for the reverse and forward 

primer in the 5’-3’ orientation. The optimised annealing temperature (Ta) is indicated for each primer 

pair. 

Table S3.3. Summary of the quantitative analyses performed using the FBC cohort with altered 

responses: (A) weight (B) conditioning factor and (C) length. The genotypes for the large and small 

phenotypes are depicted with the correlating statistics. The odds ratio (OR) with a confidence interval 

(CI) of 95%, p-value, the Akaike’s Information Criterion (AIC) and Bayesian Information Criterion 

(BIC) are shown for each SNP. The HWE p-value and correlating allele frequencies are indicated for 

each of the significant SNPs. 

Table S3.4. Results from the association tests performed in PowerMarker. FBC cohort: Distance-

based test, F-tests for weight, length, and conditioning factor, and an exact G-test. 

 

Figure S3.1. Linkage disequilibrium (LD) block structures. LD block structure consisted of a total of 

ten SNPs in three different genes. Two SNPs were located in the MYOD1 gene, two SNPs in the 

TNKSA gene and four SNPs in BMP2 gene. The LD block was defined by a D’ value threshold of 

0.8. The colour scale ranges from red to white (colour intensity decreases with decreasing D’ value, 

and all of D’ values were = 1). 

Figure S3.2. Scatterplots illustrating correlation analysis for Fulton’s conditioning factor K versus 

body weight (A) and length (B). Trend line equations and R2-values are also indicated. 

Figure S3.3. Scatterplots illustrating correlation analysis weight versus length. Trend line equations 

and R2-values are also indicated. 
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Table S3.1. The 15 gene regions identified through literature to be associated with growth in other aquaculture species. The genes name, gene symbol, 

accession number and location in the zebrafish genome is provided in the table. 

 

 

 

Gene Gene Symbol GenBank Position 

Bone morphogenetic protein 2a bmp2a NC_007128.7 Chromosome 17 (4227274...4231388) 

STT3 oligosaccharyl transferase complex catalytic subunit B sttb3 NC_007127.7 Chromosome 16 (39385483...39477790) 

Growth differentiation factor 6a gdf6a NC_007127.7 Chromosome 16 (39125608...39131666) 

Myogenic factor 5 myf5  NC_007115.7 Chromosome 4 (21741228...21745107) 

Myogenic factor 6 myf6 NC_007115.7 Chromosome 4 (21717793...21720943) 

Fibroblast growth factor 4 fgf4 NC_007118.7 Chromosome 7 (54617076...54624873) 

Growth hormone releasing hormone receptor A ghrhra NC_007113.7 Chromosome 2 (50906106…50966124) 

Eukaryotic translation elongation factor 1 alpha 1, like 1 eef1a1l1 NC_007130.7 Chromosome 19 (43119014…43122337) 

Growth hormone regulated TBC protein 1a grtp1a NC_007112.7 Chromosome 1 (184908…191971) 

Tubulin, alpha 8 like 2 tuba8l2 NC_007112.7 Chromosome 1 (5402484...5419116) 

Myogenic differentiation 1 myod1 NC_007136.7 Chromosome 25 (31421253...31423459) 

Eukaryotic translation elongation factor 2, like 2 eef2l2 NC_007116.7 Chromosome 5 (41485467...41494872) 

Tankyrase, TRF1-interacting ankyrin-related ADP-ribose polymerase a tnksa NC_007132.7 Chromosome 21 (19926061...20110923) 

Cadherin 4, type 1, R-cadherin cdh4 NC_007122.7 Chromosome 11 (20371182...20826753) 

Clock circadian regulator a  clocka NC_007131.7 Chromosome 20 (22068860...22176005) 
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Table S3.2. Primers designed for the 15 gene regions. Sequence shown for the reverse and forward 

primer in the 5’-3’ orientation. The optimised annealing temperature (Ta) is indicated for each primer 

pair 

 

 

  

 

 

 

 

 

 

 

 

Name of primer Sequence (5’-3’ orientation) Number of bases Optimised Ta 

Ajap_cdh4_F TTCACAGGCATGGTTCTGCT 20 54⁰C 

Ajap_cdh4_R GGGTACTGCGACTCAGCATT 20  
Ajap_myf5_F GGACATTGCCTCCAGTGGG 19 60⁰C 

Ajap_myf5 R CGTCAGAGCAGTTGGACAGT 20  

Ajap_myf6_F TCTGCAAGAGGAAGTCAGCG 20 60⁰C 

Ajap_myf6_R GTCTTCTCCTGCTCGTCCAG 20  
Ajap_stt3b_F TTGTCGTAGAGGTTTCCGGC 20 56⁰C 

Ajap_stt3b_R TCTGTTTCCTTCCAGTGGCC 20  

Ajap_fgf4_F CAGTCCGTCAGAACCGTAGC 20 60⁰C 

Ajap_fgf4_R TACCAGCCAACACAACAGCA 20  
Ajap_bmp2_F TCCCTCCACCACCATATCCT 20 60⁰C 

Ajap_bmp2_R CCCTGGTTACGAGGCCTTTT 20  

Ajap_clocka_F GCACTCGTCTTCTCCACAGT 20 56⁰C 

Ajap_clocka_R GCTGTATGATGCTGCTGTTGA 21  
Ajap_tnksa_F CGGAGGTGTCTTCAGCAGAT 20 60⁰C 

Ajap_tnksa_R CGCTCGTTGTGATGGTTGTG 20  
Ajap_eef1a1l1_F GGCCTTCATCCATTTCCCCA 20 54⁰C 

Ajap_eef1a1l1_R AGGAGGGTAGTTGGAGAAGCT 21  

Ajap_ghrhra_F ACGATGTGGTCCATTGCAGT 20 54⁰C 

Ajap_ghrhra_R CGTCCAACCGAAACAGATGC 20  
Ajap_grtp1a_F AGTCCTCTCAGCCAATCGC 19 54⁰C 

Ajap_grtp1a_R GCACAGAACCTTCCCAGACA 20  

Ajap_gdf6_F CTACCTGCACCCACACTGC 19 58⁰C 

Ajap_gdf6_R GAGACACGGCAAGAAGTCCA 20  
Ajap_myod1_F TCACCATGCCATCAGAGCAG 20 60⁰C 

Ajap_myod1_R CAAGGCCTGCAAGAGGAAGA 20  
Ajap_tuba8l2_F AACCTGAACCGCCTCATCAG 20 60⁰C 

Ajap_tuba8l2_R CAGTGGGAGGCTGGTAGTTG 20  

Ajap_eef2l2_F TGATGATGGGCCGGTATGTG 20 56⁰C 

Ajap_eef2l2_R GCAAGCATGATCCTCCTCCA 20   
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Table S3.3. Summary of the quantitative analyses performed using the FBC cohort with altered responses: (A) weight (B) conditioning factor and (C) length. 

The genotypes for the large and small phenotypes are depicted with the correlating statistics. The odds ratio (OR) with a confidence interval (CI) of 95%, 

p-value, the Akaike’s Information Criterion (AIC) and Bayesian Information Criterion (BIC) are shown for each SNP. The HWE P-value and correlating allele 

frequencies are indicated for each of the significant SNP 

Weight 

SNP Model Genotype Large Small OR (95% CI) p-value AIC BIC Allele 
Allele frequencies HWE P-value 

All Large Small Large Small 

tnksa-1 Dominant C/C 53 461.08 (32.61) 0 0.001 1090.7 1097.8 C 0.7 0.96 0.44 <0.0001 1.000 

  C/T-T/T 27 292.96 (31.43) -168.11 (-268.00 - -68.23)    T 0.3 0.04 0.56   

tnksa-3 Dominant T/T 58 464.84(31.16) 0 0.0001 1084.6 1091.7 T 0.81 1 0.62 0.170 1.000 

  C/T-C/C 22 244.82 (17.8) -220.03 (-321.84 - -118.22)    C 0.19 0 0.38   

fgf4-2 --- C/C 56 346.29 (29.72) 0 0.0005 1087.9 1095.1 C 0.85 0.72 0.98 1.000 0.020 

  G/C 24 539.79 (37.57) 193.51 (92.21 – 294.80)    G 0.15 0.28 0.02   

fgf4-3 --- G/G 60 354.55 (28.58) 0 0.0005 1088.7 1095.9 G 0.88 0.76 0.99 1.000 0.082 

  G/C 20 553.7 (41.13) 199.15 (91.43 – 306.87)    C 0.12 0.24 0.01   

myod1-1 Dominant G/G 48 478.46 (35.06) 0 0.0002 1087.2 1094.4 C 0.61 0.56 0.65 0.037 0.520 

  G/T-T/T 32 293.16 (26.51) -185.30 (-279.64 - -90.96)    G 0.39 0.44 0.35   

myod1-3 Over dominant G/G-T/T 56 470.77 (30.91) 0 <0.0001 1083.3 1090.5 T 0.78 0.8 0.75 0.400 1.000 

  G/T 24 249.33 (25.6) -221.43 (-319.87 - -123.00)    C 0.22 0.2 0.25   

bmp2-1 Dominant T/T 42 501.9 (36.08) 0 <0.0001 1082.9 1090.1 T 0.57 0.78 0.36 <0.0001 <0.0001 

  T/G-G/G 38 296.5 (27.28) -205.40 (-295.49 - -115.32)    G 0.43 0.22 0.64   

bmp2-5 Over dominant G/G-C/C 48 462.94 (36.2) 0.00 0.0003 1092.7 1099.9 G 0.65 0.74 0.56 0.350 0.011 

  C/G 32 316.44 (27.68) -146.50 (-244.14 - -48.86)    C 0.35 0.26 0.44   

bmp2-8 Over dominant G/G-C/C 34 507.15 (43.91) 0 0.0004 1088 1095.2 G 0.61 0.7 0.52 0.004 0.720 

  C/G 46 328.35 (25.45) -178.80 (-272.75 - -84.84)    
C 0.39 0.3 0.48   

bmp2-10 Recessive A/A-A/G 62 353.89 (26.49) 0 0.0004 1086.3 1093.4 G 0.5 0.6 0.4 0.007 0.330 

  G/G 18 578.11 (50.27) 224.22 (114.22 – 334.23)    A 0.5 0.4 0.6   

bmp2-11 Codominant T/T 22 530.18 (49.53) 0.00 0.0003 1091.3 1100.8 T 0.59 0.69 0.5 0.000 0.720 

  
C/T 51 342.12 (25.15) -188.06 (-295.56 - -80.57) 

   C 0.41 0.31 0.5   

  
C/C 7 462.14 (139.16) -68.04 (-250.92 - 114.84) 

   
      

bmp2-15 Dominant C/C 23 538.48 (41.1) 0 0.0006 1089 1096.2 C 0.6 0.72 0.48 0.000 0.690 

    C/G-G/G 57 350.21 (29.05) -188.27 (-291.53 - -85.00)       G 0.4 0.28 0.52   

               

A 
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Conditioning Factor  

SNP Model Genotype Large Small OR (95% CI) p-value AIC BIC Allele 
Allele frequencies HWE P-value 

All Large Small Large Small 

tnksa-1 Codominant C/C 53 1.32 (0.03) 0 0.0009 -19.6 -10 C 0.7 0.96 0.44 <0.0001 1.000 
  C/T 6 1.37 (0.1) 0.05 (-0.12 - 0.23)    T 0.3 0.04 0.56   

  T/T 21 1.12 (0.05) -0.20 (-0.30 - -0.09)        
  

tnksa-3 Dominant T/T 58 1.32 (0.03) 0 0.00038 -15.8 -8.6 T 0.81 1 0.62 0.170 1.000 

  C/T-C/C 22 1.16 (0.06) -0.16 (-0.26 - -0.05)    C 0.19 0 0.38   

myod1-1 Codominant G/G 48 1.33 (0.03) 0 0.00087 -15 -5.4 C 0.61 0.56 0.65 0.037 0.520 
  G/T 31 1.21 (0.04) -0.12 (-0.21 - -0.02)    G 0.39 0.44 0.35   

  T/T 1 0.83 (0) -0.49 (-0.92 - -0.07)        
  

myod1-2 Recessive C/C-C/G 63 1.24 (0.03) 0 0.00057 -15 -7.9 G 0.82 0.91 0.74 0.039 0.017 
  G/G 17 1.41 (0.04) 0.17 (0.05 - 0.28)    T 0.18 0.09 0.26   

myod1-3 Recessive G/G-G/T 78 1.28 (0.03) 0 0.0011 -9.8 -2.6 T 0.78 0.8 0.75 0.400 1.000 

  T/T 2 1.02 (0.01) -0.26 (-0.57 - 0.05)    C 0.22 0.2 0.25   

myod1-4 Recessive T/T-C/T 78 1.26 (0.02) 0 0.001 -13.9 -6.8 T 0.74 0.79 0.7 0.072 0.160 
  C/C 2 1.67 (0.14) 0.41 (0.10 - 0.71)    C 0.26 0.21 0.3   

bmp2-1 Codominant T/T 42 1.31 (0.03) 0 0.001 -18.3 -8.8 T 0.57 0.78 0.36 <0.0001 <0.0001 

  T/G 7 1 (0.09) -0.31 (-0.48 - -0.15)    G 0.43 0.22 0.64   

  G/G 31 1.29 (0.04) -0.02 (-0.12 - 0.08)        
  

bmp2-5 Over dominant G/G-C/C 48 1.32 (0.03) 0 0.001 -13.1 -6 G 0.65 0.74 0.56 0.350 0.011 

  C/G 32 1.2 (0.04) -0.12 (-0.22 - -0.03)    C 0.35 0.26 0.44   

bmp2-6 Codominant T/T 28 1.29 (0.03) 0 0.001 -14.2 -4.7 T 0.63 0.72 0.54 0.054 0.690 

  C/T 45 1.23 (0.03) -0.06 (-0.16 - 0.04)    C 0.37 0.28 0.46   

  C/C 7 1.49 (0.09) 0.21 (0.03 - 0.38)        
  

bmp2-11 Dominant T/T 25 1.2 (0.05) 0 0.00047 -11.2 -4.1 T 0.59 0.69 0.5 0.000 0.720 

  C/T-C/C 55 1.31 (0.03) 0.11 (0.00 - 0.21)    C 0.41 0.31 0.5   

bmp2-14 Recessive A/A-A/G 71 1.29 (0.03) 0 0.0002 -12.7 -5.6 A 0.53 0.6 0.46 <0.0001 0.190 

    G/G 9 1.11 (0.04) -0.18 (-0.33 - -0.03)       G 0.47 0.4 0.54 
  

bmp2-15 Recessive C/C-C/G 73 1.29 (0.03) 0 0.00037 -11.6 -4.5 C 0.6 0.72 0.48 0.000 0.690 

  G/G 7 1.11 (0.09) -0.18 (-0.35 - -0.01)    G 0.4 0.28 0.52   

B 
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Length 

SNP Model Genotype Large Small OR (95% CI) p-value AIC BIC Allele 
Allele frequencies HWE P-value 

All Large Small Large Small 

tnksa-3 Over dominant T/T-C/C 66 317.58 (7.59) 0 0.001 885.7 892.8 T 0.81 1 0.62 0.170 1.000 

  C/T 14 260.36 (13.26) -57.22 (-91.73 - -22.71)    C 0.19 0 0.38   
fgf4-2 --- C/C 56 292.59 (8.56) 0 0.0009 884.5 891.6 G 0.85 0.72 0.98 1.000 0.020 

  G/C 24 342.5 (9.46) 49.91 (21.50 - 78.32)    C 0.15 0.28 0.02   
fgf4-3 --- C/C 56 292.59 (8.56) 0 0.0009 884.5 891.6 C 0.88 0.76 0.99 1.000 0.082 

  G/C 24 342.5 (9.46) 49.91 (21.50 - 78.32)    G 0.12 0.24 0.01   
myf5-1 --- A/A 36 281.53 (11.41) 0 0.0006 883.8 890.9 A 0.72 0.68 0.78 0.160 0.003 

  A/G 44 328.86 (7.58) 47.34 (21.29 - 73.38)  
  G 0.28 0.32 0.22   

myf5-2 --- T/T 46 288.91 (9.85) 0 0.001 885.7 892.9 T 0.79 0.75 0.82 0.580 0.081 

  T/G 34 332.79 (8.37) 43.88 (17.35 - 70.41)    G 0.21 0.25 0.18   
myf5-3 Over dominant T/T-G/G 46 288.04 (9.3) 0 0.001 884.7 891.8 T 0.78 0.72 0.82 1.000 0.020 

  
T/G 34 333.97 (9.28) 45.93 (19.56 - 72.29)    G 0.22 0.28 0.18   

myod2-1  C/C 45 287.89 (8.97) 0 0.001 885.1 892.2 C 0.61 0.56 0.65 0.037 0.520 

  C/G 35 332.86 (9.95) 44.97 (18.63 - 71.31)    G 0.39 0.44 0.35   
myod2-2 Over dominant A/A-G/G 54 292.5 (8.47) 0 0.001 885.7 892.8 G 0.82 0.91 0.74 0.039 0.017 

  A/G 26 338.85 (10.66) 46.35 (18.34 - 74.35)    T 0.18 0.09 0.26   
myod1-3 Over dominant G/G-T/T 56 324.2 (8.07) 0 0.0002 881.6 888.7 T 0.78 0.8 0.75 0.400 1.000 

  G/T 24 268.75 (10.86) -55.45 (-83.34 - -27.55)    C 0.22 0.2 0.25   
bmp2-1 Dominant T/T 42 330.12 (8.92) 0 0.0006 883.6 890.7 T 0.57 0.78 0.36 <0.0001 <0.0001 
  T/G-G/G 38 282.63 (9.8) -47.49 (-73.41 - -21.57)    G 0.43 0.22 0.64   

bmp2-5 Over dominant G/G-C/C 48 462.94 (36.2) 0.00 0.0043 1092.7 1099.9 G 0.65 0.74 0.56 0.35 0.011 

  C/G 32 316.44 (27.68) -146.50 (-244.14 - -48.86)    C 0.35 0.26 0.44   

bmp2-10 Recessive A/A-A/G 62 294.84 (8.05) 0 0.0006 883.7 890.8 G 0.5 0.6 0.4 0.007 0.330 

    G/G 18 351.39 (9.47) 56.55 (25.53 - 87.57)       A 0.5 0.4 0.6   

bmp2-11 Dominant T/T 22 336.82 (11.97) 0.00 0.001 889 896.1 T 0.59 0.69 0.5 0.000 0.72 

  C/T-C/C 58 296.47 (8.25) -40.35 (-70.34 - -10.37)    C 0.41 0.31 0.5   

bmp2-15 Dominant C/C 23 340.65 (11.51) 0.00 0.0025 886.4 893.5 A 0.59 0.54 0.65 0.013 0.01 

  
C/G-G/G 57 294.21 (8.2) -46.44 (-75.54 - -17.34)    

G 0.41 0.46 0.35 
  

C 
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Figure S3.1. Linkage disequilibrium (LD) block structures. LD block structure consisted 

of a total of ten SNPs in three different genes. Two SNPs were located in the MYOD1 gene, 

two SNPs in the TNKSA gene and four SNPs in BMP2 gene. The LD block was defined by 

a D’ value threshold of 0.8. The colour scale ranges from red to white (colour intensity 

decreases with decreasing D’ value, and all of D’ values were = 1). 

Table S3.4. Results from the association tests performed in PowerMarker. FBC cohort: Distance-based 

test, F-tests for weight, length, and conditioning factor, and an exact G-test. 

Marker 
F-test for Weight  

p-value 
F-test for Length  

p-value 
Distance (Prevosti) 

p-value  
F-test for K 

 p-value 
Exact G-test  

p-value 

tnksa-1 0.000 0.000 0.000 0.001 0.000 

tnksa-2 0.000 0.000 0.000 0.008 0.000 

tnksa-3 0.000 0.000 0.000 0.001 0.000 

myod-1 0.000 0.000 0.000 0.009 0.000 

myod-3 0.002 0.000 0.000 0.001 0.000 

bmp2-1 0.000 0.002 0.000 0.002 0.000 

bmp2-5 0.006 0.003 0.004 0.001 0.001 

bmp2-6 0.007 0.003 0.001 0.002 0.002 

bmp2-11 0.004 0.006 0.001 0.004 0.000 

bmp2-15 0.003 0.007 0.000 0.004 0.000 
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Figure S3.2. Scatterplots illustrating correlation analysis for Fulton’s conditioning factor K versus body 

weight (A) and length (B). Trend line equations and R2-values are also indicated 
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Figure S3.3. Scatterplots illustrating correlation analysis weight versus length. Trend line equations and 

R2-values are also indicated. 
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