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ABSTRACT: Organisms have evolved a diversity of life-history strate-
gies to cope with variation in their environment. Persistence as adults
and/or seeds across recruitment events allows species to dampen the
effects of environmental fluctuations. The evolution of life cycles with
overlapping generations should thus permit the colonization of envi-
ronments with uncertain recruitment. We tested this hypothesis in
Leucadendron (Proteaceae), a genus with high functional diversity
native to fire-prone habitats in the South African fynbos. We analyzed
the joint evolution of life-history traits (adult survival and seed-bank
strategies) and ecological niches (climate and fire regime), using com-
parative methods and accounting for various sources of uncertainty.
In the fynbos, species with canopy seed banks that are unable to sur-
vive fire as adults display nonoverlapping generations. In contrast,
resprouters with an underground seed bank may be less threatened
by extreme climatic events and fire intervals, given their iteroparity
and long-lasting seed bank. Life cycles with nonoverlapping gen-
erations indeed jointly evolved with niches with less exposure to frost
but not with those with less exposure to drought. Canopy seed banks
jointly evolved with niches with more predictable fire return, com-
pared to underground seed banks. The evolution of extraordinary
functional diversity among fynbos plants thus reflects, at least in part,
the diversity of both climates and fire regimes in this region.

Keywords: functional traits, niche evolution, comparative analyses,
bet hedging, seed bank, fire.

Introduction

The evolution of life histories is thought to be largely shaped
by environmental variability and its predictability (see
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Schaffer 1974, Iwasa and Kubo 1997, Tuljapurkar et al.
2009, and Fischer et al. 2011 for some theoretical predic-
tions). Organisms have evolved various traits to cope with
temporarily harsh conditions, to exploit temporarily fa-
vorable conditions, and to cope with uncertainty in when
these occur. Bet-hedging strategies, for example, the evolu-
tion of seed banks in plants (Childs et al. 2010), reflect such
adaptations to variable environments. Bet-hedging strate-
gies trade mean performance against reduced temporal
variance or reduced correlations in reproductive success
among individuals of the same lineage (Starrfelt and Kokko
2012; Tufto 2015). Iteroparous organisms, which reproduce
repeatedly during their lifetime, spread their reproductive
effort across several recruitment events, while semelparous
ones, reproducing once in their lifetime, rely on a single
recruitment event to leave successful progeny. In the pres-
ence of variable juvenile survival, iteroparity should be
favored over semelparity as a bet-hedging strategy (see
Schaffer 1974 and Orzack and Tuljapurkar 1989 for theo-
retical predictions and Morris et al. 2008 for empirical data).
Iteroparity is also predicted to evolve in environments
where the mean recruitment rate is low relative to mean
adult survival (Charnov and Schaffer 1973). Seed banks
and adult survival strategies should, furthermore, coevolve
along environmental gradients (Koons et al. 2008; Scott
and Otto 2014). Despite an abundant theoretical literature
on how life histories evolve in variable environments, there
are still few microevolutionary empirical tests of such pre-
dictions (e.g., Gremer and Venable 2014; Rajon et al.
2014; Cayuela et al. 2016) and even fewer tests at the macro-
evolutionary scale (Simons 2011). Here, we take advantage
of an exceptional data set for the genus Leucadendron from
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the South African fynbos to test the theory in a quantitative
comparative framework. In particular, we test predictions
of life-history theory by studying the joint evolution of
both persistence and regeneration traits with both climate
and disturbance regime in a macroevolutionary context.

Extreme climatic events and disturbances, such as fires,
strongly affect survival rates and fecundities in natural pop-
ulations. Such events also vary in predictability. We there-
fore expect species’ life-history traits to evolve in response
to prevailing disturbance regimes and climatic conditions.
On the other hand, life-history traits are increasingly recog-
nized as playing an important role in how climatic niches
evolve. The ecological niche of a species is defined by the
set of environmental conditions in which a species can grow
and persist (Hutchinson 1957). Changes in a species niche
are often characterized as a change in its niche position
along a specific environmental gradient (e.g., mean annual
temperature within the species’ range). Comparative anal-
yses of niche macroevolution in plants have revealed that
the evolution of some key morphological traits can allow
the colonization of stressful environments within arid or
cold climates (Boucher et al. 2012; Evans et al. 2014; Zanne
et al. 2014). The evolution of specific life histories indeed
seems to facilitate niche evolution toward extreme climates,
such as perenniality at high altitudes (e.g., Boucher et al.
2012; Kostikova et al. 2013; Ogburn and Edwards 2015), vi-
viparity in cold environments (Mesquita et al. 2016), and re-
sprouting in the presence of drought after fire (Litsios et al.
2014). Macroevolutionary tests of the joint evolution of life-
history traits and niche position along gradients of distur-
bance, however, are scarce, reflecting in part the rarity of
long-term data on disturbance events for many species.

In Mediterranean-type fire-prone ecosystems, plants dis-
play life-history traits (called “fire-related traits”) that en-
able populations to regenerate after fire through either seed
storage in fireproof locations or the ability of some adults
to survive the fire (reviewed in Keeley et al. 2012). Non-
sprouters are killed by fire, whereas resprouters regenerate
after fires from protected buds (Bond and Midgley 2001).
Seed recruitment in fire-prone environments mostly oc-
curs immediately after a fire (Cowling and Lamont 1987).
The successful reproduction of nonsprouters thus relies on
a single recruitment period, similar to that of species with
semelparous life histories (Bond and van Wilgen 1996; see
the recent review by Pausas and Keeley [2014]). In fire-prone
environments, plants can store their seeds either in persis-
tent underground seed banks or in “serotinous” seed banks,
defined as stored within the canopy (Lamont et al. 1991).
Germination in species with underground seed banks is usu-
ally triggered by fires (Brown 1993), but some proportion
may fail to germinate after a first fire, remaining dormant
until the next (Auld and Denham 2006; van Wilgen 2013;
see, however, Holmes 2002). In contrast, serotinous seeds ac-

Joint Evolution of Traits and Niches 221

cumulate in the canopy over successive years and then are
simultaneously released after a fire and germinate with the
following rains (Crawford et al. 2010). In some serotinous
species, including our genus of interest (Leucadendron),
plants must allocate resources (e.g., water) to the cones for
them to stay closed (Cramer and Midgley 2009; Treurnicht
et al. 2016), which makes the seed bank viability highly sen-
sitive to adult morbidity.

Extreme climates, associated, for instance, with intense
drought or frost, jeopardize adult survival between fires
and/or seedling establishment after fire (Enright and Lamont
1992; Jump et al. 2006; Enright et al. 2015). Serotinous non-
sprouters display nonoverlapping generations. Because their
reproduction relies on a single recruitment event and their
seed bank does not persist beyond the death of the parents,
they should be vulnerable to extreme climatic events. In con-
trast, resprouters with an underground seed bank may be
less threatened by such events, given their iteroparity and
long-lasting seed bank (Orzack and Tuljapurkar 1989; Childs
et al. 2010). We therefore hypothesize that serotiny and
nonsprouting evolved in association with ecological niches
characterized by mild climates with less intense drought
and frost (fig. 1a). Furthermore, we hypothesize that plant
life histories evolved jointly with fire regimes. We expect
resprouters to tolerate shorter mean fire return intervals than
nonsprouting species, as the former can better tolerate im-
maturity risk, that is, fires occurring before first reproduc-
tion (Iwasa and Kubo 1997; Ojeda et al. 2005). In contrast,
serotinous nonsprouters follow a risky strategy sensitive to
both very long and very short fire intervals (Tonnabel et al.
2012). We therefore expect that resprouting should jointly
evolve with ecological niches characterized by short, and
variable, mean fire intervals (fig. 1b). Finally, we expect se-
rotiny to jointly evolve with niches with lower variance in
fire return intervals (fig. 1b).

The genus Leucadendron (Proteaceae) presents an en-
ticing opportunity to explore the joint evolution of life-
history traits and ecological niche. Leucadendron harbors
a high diversity of such traits as well as many independent
transitions among these traits in its phylogenetic history
(Tonnabel et al. 2014a). This genus is distributed in a re-
stricted area, the South African fynbos biome, which is
known to display important ecological variation in both cli-
mate and fire regimes (Schulze 1997; Wilson et al. 2015).
The spatial distribution of each Leucadendron species has
been fully described in a citizen science project (Rebelo
2001). We also have data on climatic variation in this re-
gion and previously published predictions about the varia-
tion in fire regimes across the ranges of most species (Merow
et al. 2014). To test our hypotheses about how plant life-
history traits should coevolve with ecological niches, we
use a recently published phylogeny for Leucadendron that
includes most species in the genus (Tonnabel et al. 20144).
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Figure 1: Summary of our hypotheses for the joint evolution of life-history traits with the climate (a) and the fire regime (b) within the
species niche. Species with an underground seed bank or able to resprout after fire should be less affected by extreme climatic events and
should evolve niches with a harsher optimal climate than serotinous or nonsprouting species, respectively. Species with an underground seed
bank should evolve niches with an optimal fire regime less predictable than that of serotinous species. Species able to resprout should evolve
niches with higher frequency of fire than those of nonsprouters. Note that mean fire intervals and variance in fire intervals are correlated in

our data set.

We apply process-based models of niche evolution and re-
cent comparative approaches that have proven successful
in previous investigations of joint evolution of life-history
traits and niches (Cooper and Purvis 2010; Boucher et al.
2012; Kostikova et al. 2013; Litsios et al. 2014; Onstein
et al. 2016). We evaluate the robustness of our conclusions
by explicitly considering uncertainties in the phylogeny,
niche values, and reconstructed life-history trait evolution.
We also compare our results to simulations where niche evo-
lution is independent of life history, following recent rec-
ommendations for these types of analysis (Boettiger et al.
2012; Miinkemdiller et al. 2015; Silvestro et al. 2015; Cooper
et al. 2016). Our analyses provide evidence for an evolution-
ary association between combinations of life-history traits
and niche position along gradients of climate harshness, fire
frequency, and their predictability. Finally, we discuss the
mechanisms underlying these evolutionary associations
and their implications for the evolution of diversity in fire-
prone ecosystems.

Material and Methods
Study Group and Phylogenetic Relationships

Leucadendron R. Br. is a dioecious genus in the Proteaceae
that inhabits a biodiversity hotspot known as the Cape Flo-

ristic Region (Rebelo 2001). This Mediterranean-climate
region covers a range of climatic conditions and fire re-
gimes (Wilson et al. 2010). Fires typically cover large areas,
burn most aboveground biomass, and occur, on average,
every 10-21 years (Kraaij et al. 2013). Leucadendron prob-
ably originated between 28.5 and 30.3 million years ago
(Sauquet et al. 2009). Tonnabel et al. (2014a) provided
DNA sequence data on nine markers for 81 of the 96 spe-
cies in the genus. They used eight low-copy nuclear markers
designed by Tonnabel et al. (2014c) and Illing et al. (2009),
plus the standard internal transcribed spacer region (avail-
able in the Dryad Digital Repository: http://dx.doi.org
/10.5061/dryad.18g80.1; Tonnabel et al. 2014b) to recon-
struct phylogenetic relationships in a maximum likelihood
(ML) framework. A chronogram was derived with penal-
ized likelihood rate smoothing (Sanderson 2002).

Life-History Traits

Species in the genus Leucadendron vary greatly in seed stor-
age traits and the ability of adults to survive fire (Williams
1972; Rebelo 2001). Our focal group includes species that
are either serotinous and nonsprouting (SN; 45.7%) or se-
rotinous and resprouting (SR; 8.6%). An additional 42.0%
of the species are nonsprouters with a seed bank stored in
the soil (underground seed bank [UN]), while 3.7% are
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resprouters with an underground seed bank (UR). Data on
life-history traits were obtained from the literature (Rebelo
2001; Barker et al. 2004; Tonnabel et al. 2014a; see ta-
ble A1, available online, for life-history trait codings). Sta-
tistical power in comparative analyses increases with the
number of independent transitions among traits along the
phylogeny. Tonnabel et al. (20144) showed that transitions
from serotiny to underground seed banks and vice versa
occurred on average 7.0 (2.1) times across the Leucaden-
dron phylogeny. Independent transitions from resprouting
to nonsprouting occurred on average 10.4 (*4.6) times,
and the reverse transitions occurred 7.1 ( = 2.6) times (fig. 2).

Species Distributions and Ecological Niches

We obtained spatial distributions of our 81 Leucadendron
species based on 81,909 occurrences from the Protea Atlas
Database (Rebelo 2001). Because of its high spatial and tax-
onomic resolution, the Protea Atlas Database is a unique
tool for studying species distributions (Schurr et al. 2012).
For each presence point, we extracted several climatic
variables reflecting frost and drought intensities from the
WORLDCLIM database (Hijmans et al. 2005) at a spatial
resolution of 30 arc seconds and from the South African
Atlas of Agrohydrology and Climatology (Schulze 1997) at
a spatial resolution of 1 arc second. We selected the vari-
ables most directly expressing these climatic constraints,
avoiding highly correlated variables (i.e., with absolute val-
ues of Spearman correlation coefficients > 0.7). We charac-
terized frost exposure by the number of frost days—the
average number of days per year with a minimum temper-
ature lower than 0°C (from Schulze 1997). We character-
ized drought intensity by the mean precipitation of the dri-
est month (from Hijmans et al. 2005).

To characterize disturbance regimes, we used the most
recent estimate of the spatial variation in fire return inter-
val (Merow et al. 2014). Merow et al. estimate, for the first
time, the distribution of intervals between fires outside
nature reserves, allowing us to keep most Leucadendron
species in our analyses. Merow et al.’s (2014) analysis com-
bines satellite-derived postfire vegetation recovery trajecto-
ries (Wilson 2012) with data on fire return intervals. The
latter represent nearly complete coverage from 1980 to
2010, originating from CapeNature and MODIS (moderate-
resolution imaging spectroradiometer; see van Wilgen et al.
2010; Wilson et al. 2010; de Klerk et al. 2012). Merow et al.
(2014) estimated the statistical relationship between post-
fire vegetation recovery and the distribution of fire return
intervals. They later used this same statistical model to esti-
mate the distribution of fire intervals in areas characterized
solely by postfire vegetation recovery. However, Merow
et al. (2014) estimated spatial variation in only one of the
two parameters of the Weibull distribution. Estimated mean
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fire intervals are thus perfectly correlated with estimated
standard deviation in fire intervals. We therefore interpret
the mean fire interval predicted by Merow et al. (2014) in dif-
ferent locations both as a proxy inversely related to the fre-
quency of fires and as a proxy for the variance in fire intervals.

Estimates of environmental variables were not available
for all populations identified by the Protea Atlas. This led
to different sample sizes for our three ecological variables.
For the number of frost days, precipitation in the driest
month, and mean fire interval, we had 81, 81, and 78 spe-
cies and 69,609, 70,411, and 40,942 populations, respec-
tively (see table Al for details). All three ecological vari-
ables displayed distinct variation among species (fig. 2):
average number of frost days (0-40.5), mean precipitation
in the driest month (5.0-56.6 mm), and mean fire return in-
terval (13.8-18.7 years). Spearman correlation coefficients
were also below our threshold (between mean precipitation
in the driest month and number of frost days,—0.22; be-
tween this mean precipitation and mean fire return interval,
—0.66; and between number of frost days and the mean fire
return interval, 0.51). We thus performed all subsequent
analyses separately for each ecological variable.

Joint Evolution of Ecological Niches
and Life-History Traits

Following several recent studies (e.g., Evans et al. 2011;
Litsios et al. 2014; Ogburn and Edwards 2015), we mod-
eled the evolution of species’ niche position along different
environmental gradients across the phylogeny. In particu-
lar, we modeled niche position as a quantitative character
along three gradients (variation in frost exposure, drought
intensity, and fire frequency). We then compared the rela-
tive support for several alternative models describing niche
evolution along the phylogeny (table 1). For each ecolog-
ical variable, we modeled the evolution of niche position
(1) at random, (2) toward a single optimum for all species,
or (3) toward several optima that depended on ancestral
fire-related traits along the branches of the phylogenetic
trees (table 1). We then evaluated the relative support
for these models by comparing their Akaike weights. We
calculated the mean optimal niche position for each combi-
nation of life-history traits (i.e., SN, SR, UN, and UR) by
averaging these model predictions, weighting each estimate
by its Akaike weight. Finally, we investigated whether the
resulting differences in optimal niche position among these
various combinations of fire-related traits supported our a
priori hypotheses. We interpret our results as reflecting a
joint evolution between niches and life-history traits. Our
analyses, however, do not allow us to discriminate between
(1) a scenario where life history would change first and then
allow the colonization of a new environment and (2) a sce-
nario where the environment would change first and then
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Figure 2: Maximum likelihood phylogeny for the genus Leucadendron, showing life-history traits and environmental niche values for 81
extant species. Pie charts on internal nodes show the estimation of ancestral life-history traits based on best-fitting Markov models. Phylo-
genetic node support is expressed by bootstrap values, indicated on the left-hand tree when greater than 60. Species mean environmental
values, averaged over all occurrences of each species, are indicated as follows: darker blue corresponds to higher numbers of frost days
(i.e., intensity of frost), darker red indicates higher precipitation of the driest month (i.e., inversely related to the intensity of drought),
and darker green corresponds to less frequent fires.
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Table 1: Description of models of quantitative traits evolution used to compare various scenarios of niche evolution

Model type, name Parameters

Biological interpretation

Brownian motion (dX(t)
BM

o - dB(t)):

0N, SR, UN, UR

Ornstein-Uhlenbeck dX(t) = « -
(6 — X(¢)) - dt + o - dB(t))

Osn,sr,un, ur and

ousS O = Oz = Oun = Our
OUM1 Osn.sr # Oun,ur

OUM2 OSN,UN i GSR,UR

OUM3 On # Osx # Oun # Our
OUM4 Osn # Oseun £ Our
OUMS esN ¢ GSR,UN,UR

OUM6 Osn.sr.un # Our

OuUM7 Osn,sk # Oun # Our
OUMS8 Osn # Osr # Oun,ur
OUM9 Osnoon # O £ Our
OUMIO OSN ¢ OUN ¢ OSR,UR

Environmental drift or selection under fluctuating
environments

Selection toward an optimum regardless of the trait
combination

Serotinous species are more sensitive to stressful niche
values than species with underground seed banks

Nonsprouting species are more sensitive to stressful
niche values than resprouting species

Each combination of fire-related traits evolved toward
different optimal niche values

Serotinous nonsprouting species and resprouting spe-
cies with underground seed banks are extreme com-
binations that are respectively more and less sensitive
to stressful niche values

Serotinous nonsprouting species are extreme combina-
tions that are more sensitive to stressful niche values

Resprouting species with underground seed banks are
extreme combinations that are less sensitive to
stressful niche values

Serotinous species are more sensitive to stressful niche
values than nonsprouting species with underground
seed bank, which are in turn less sensitive than
resprouting species with underground seed banks

Serotinous nonsprouting species are more sensitive to
stressful niche values than serotinous resprouting
species, which are in turn less sensitive than species
with underground seed banks

Nonsprouting species are more sensitive to stressful
niche values than serotinous resprouting species,
which are in turn less sensitive than resprouting
species with underground seed banks

Serotinous nonsprouting species are more sensitive to
stressful niche values than nonsprouting species with
underground seed banks, which are in turn less sen-
sitive than resprouting species

Note: In the equations, dX(t) corresponds to the variation of the quantitative trait of interest (i.e., the niche variable), dB(f) is a random deviate of mean 0, o is
a parameter corresponding to the strength of drift, § is the optimum niche value, and « is the strength of the attraction toward this optimum. Subscripts of
0 parameters describe the combinations of life-history traits for which such parameter is estimated. The test of our three hypotheses is based on the comparison
of the estimated 6 values for different combinations of fire-related traits of selected models: SN = serotinous nonsprouting species; SR = serotinous

resprouting species; UN = underground seed bank nonsprouting species; UR = underground seed bank resprouting species.

select for a different life history. Both scenarios can be en-
visioned.

The Brownian motion (BM) model describes the uncon-
strained evolution of niche position along the phylogenetic
branches as a random walk with a constant rate ¢ but no
preferred direction (table 1). It was used to model the ran-
dom evolution of niche position (case 1 above). Ornstein-
Uhlenbeck models (OU; table 1) combine the stochastic
component of a BM model with a parameter formalizing

attraction o toward an optimal niche position 6 (Hansen
1997). In the case of multioptima OU (OUM) models, spe-
cies with different characteristics (combinations of life-
history traits) can be attracted toward distinct 6 optima.
OU models allow translation of hypotheses regarding adap-
tation to different selective regimes into explicit models
(Butler and King 2004). Although OU models are usually
aimed at describing stabilizing selection, the patterns they
generate can also result from constraints, such as bound-
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aries on trait values (Boucher et al. 2014). We used OU
models with one or several optima to model cases 2 and
3 noted above.

In total, we compared 12 models describing the evolution
of niches: one BM and 11 OU models of evolution (table 1;
fig. 3). Our BM model included a single evolutionary rate
parameter o for all species (table 1), and all OU models in-
cluded only one value for ¢ and o, common to all species
(table 1). Our first OU model (OUS) included a single pa-
rameter 0 for all species, describing the optimal niche posi-
tion. Multioptima OU models (OUM1-10) comprised two
to four 6 parameters corresponding to different niche posi-

tion optima for different combinations of fire-related traits.
Each model thus corresponds to a different scenario of joint
evolution between fire-related traits and niches (table 1).
Life-history theory allows predictions contrasting the niche
evolution for different adult survival strategies or for dif-
ferent seed bank types (fig. 1). However, we lack precise
predictions about how specific combinations of adult and
seed traits affect niche evolution. While serotinous non-
sprouters appear to adopt the most risk-averse strategy, it
is unclear whether different forms of bet-hedging strategy
(underground seed bank vs. resprouting) or their combi-
nation allows colonization of different niches. We therefore

a. Mean fire interval

1 Legend
1 8 oumi ‘ 0N
d. Simulated BM
2 oum2 ﬁ',ﬂ ﬁs

3 [ oums UN  /UR

b. Number of
4 R
frost days Hl ouwvs UN__/UR
L v
UR
6 OUM6 ﬁ: A
7 [ oum7 a A

8 [ ouwms

c. Precipitation of the 9 OUMY

driest month

. ! UN

UR

S B

10 [l oumio . ﬁR
UN R

11 [l BM  Brownian motion

y I

12 ous

Figure 3: Mean Akaike weights of the 12 models of evolution estimated on our three environmental variables of interest: mean fire interval
(a), number of frost days (b), and precipitation of the driest month (c). The hypotheses behind each model of niche evolution are schemat-
ically presented in the box to the right (see also table 1), showing how optimal niches vary, depending on life-history trait combinations
(SN = serotinous nonsprouting; SR = serotinous resprouting; UN = underground nonsprouting; UR = underground resprouting).
For instance, model OUM1 assumes that serotinous species have a different optimal niche position than species with an underground seed
bank but that resprouting does not affect optimal niche position. The fit of the 12 models of evolution was also estimated with the mean
Akaike weight for simulated environmental values and a Brownian motion (BM; d) or a single-optimum Ornstein-Uhlenbeck (OU; e) pro-
cess. To simulate the BM and OU processes, we estimated the parameters of the BM (o) and OU (o, «, and 6) models, using the maximum
likelihood tree, the marginal ancestral reconstruction of the life-history traits, and the mean value of the environment per species separately
for each environmental variable. The results shown in d and e are the ones generated with the parameters of the BM and OUS models es-
timated for the mean fire interval (patterns were similar for all simulated environmental variables; see fig. Al, available online). OUM and
OUS = multioptima and single-optimum OU models, respectively.
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chose to examine a large diversity of models making differ-
ent assumptions about the joint evolution of the niche and
combinations of adult and seed bank traits (table 1; fig. 3).
Hereafter, the subscripts of 6 parameters denote the com-
binations of fire-related traits for which they were esti-
mated. For example, the OUMI model had two different
optima (Osy,sr and Oyx, ur), contrasting species with seroti-
nous and ones with underground seed banks regardless of
their adult fire survival strategy. Conversely, the OUM2
model contained two 0 parameters (Osy un; Osrur) con-
trasting nonsprouting species and resprouting ones, re-
gardless of their seed storage strategy. Brief biological in-
terpretations of the 10 scenarios appear in table 1.

Accounting for Sources of Uncertainty

We accounted for different sources of uncertainty (de Ville-
mereuil et al. 2012) when comparing the relative support
for the 12 models of niche evolution. Phylogenetic uncer-
tainty was accounted for with a set of 100 bootstrap trees.
We generated 100 ancestral-state estimations of fire-related
traits per bootstrap tree, using Markov models (see Ton-
nabel et al. 2014a) to account for uncertainty in ancestral-
state estimation. Most comparative studies of niche evolu-
tion ignore the variability in environmental conditions
within the species range. Thus, we also compared the sup-
port of our models by using either the species niche position
(i.e., the mean of the environmental variable across all
occurrences of the species) or a resampling procedure of
environmental values per species at the tree tips (i.e., ran-
domly choosing one population per species and extracting
its environmental value; Boucher et al. 2012). For each eco-
logical variable, we examined the support of our 12 models
of evolution 10,000 times by randomly choosing one boot-
strap tree, one reconstruction of ancestral life-history traits,
and either the mean ecological value per species or one
value drawn at random from the species range.

Exploration of the Relative Support
and Estimation of Niche Optima

For each iteration of the resampling procedure, we calcu-
lated the Akaike weight of each model i, following equa-
tion (1), where j ranges from 1 to the total number of
models compared k (k = 12, in our case) and AICc,,, is
the AICc (Akaike information criterion corrected for small
sample sizes) of the model that yielded the lowest AICc
value (Burnham and Anderson 2002):

_ exp(—(1/2)(AICc; — AICcy))
3 _ lexp(—(1/2)(AICG, — AICc,,))]

i
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The Akaike weight is thus the probability that model i is
the best model for the observed data, given the candidate
set of models (Johnson and Omland 2004). Thus, for each
resampling iteration, we obtained one Akaike weight, w;, for
each of our 12 models. We then averaged each model Akaike
weight across all resampling iterations to obtain the mean
Akaike weight of the model. We further estimated the opti-
mum niche position per combination of life-history strate-
gies (i.e., SN, SR, UN, and UR) by calculating a weighted av-
erage of parameter estimates ¢ across all (R = 11) of our
OU models:

S
S 2)

We calculated these weighted average estimates of niche
position for each trait combination and resampling itera-
tion and then averaged these across all resampling iter-
ations. We further provide the standard deviation of these
estimates across resampling iterations.

Validating Our Model Comparison Approach

Several recent studies have highlighted potential pitfalls of
comparing BM and OU models. For instance, small tree
sizes and errors in phylogenetic reconstructions or high
errors in the quantitative character estimation can lead
to an unacceptable rate of selection of OU models when
a BM process is simulated (Boettiger et al. 2012; Silvestro
et al. 2015; Cooper et al. 2016). Inspired by these studies,
we performed several controls to check the robustness of
our biological inferences from model comparisons. First,
we evaluated the support of our 12 models of evolution, us-
ing simulated niche positions and following the approach
of Boettiger et al. (2012). Our simulations assumed that
niche position evolved as a neutral quantitative character
or that selection on niche position was unconstrained by life
history. The rationale was to check whether the relative sup-
port of multioptima OU models was higher for observed
niche positions than for niche positions simulated under
alternative models. To do so, we first estimated the param-
eters of the BM model (0) and of a single-optimum OU
model (o, o, and 0), using the ML tree and the mean value
of each of our three ecological variables per species. We
then used these estimated parameters to simulate 1,000
niche positions for a BM model or a single-rate OU model,
using the ML tree. We then examined the fit of the 12 mod-
els of evolution to these simulated niche data, using the re-
sampling procedure based on bootstrap trees and ancestral-
trait reconstruction. To determine whether our multioptima
OU (OUM) models had stronger support than a single-
optimum OU model or a BM model, we compared the re-
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sulting mean Akaike weight with the ones obtained with
simulated niche data. Second, we checked that « values,
expressing the strength of attraction toward 6, were not
so small that OU models would be actually indistinguish-
able from BM models (Hansen 1997; Miinkemiiller et al.
2015; Cooper et al. 2016). That is, we estimated the “phy-
logenetic half-time” (¢,,), defined as the time needed for a
species to evolve halfway toward its new expected opti-
mum niche value:

In2
tl/z = —. (3)
07

We checked to ensure that the phylogenetic half-time was
smaller when we fitted models on our ecological variables
than when we used data simulated under a BM model
(attesting to a stronger attraction toward an optimum than
expected at random). Third, we investigated whether error
in the estimation of the niche position could affect our re-
sults, as suggested by Silvestro et al. (2015). We compared
the relative support of our 12 models of evolution when er-
ror in estimating the niche position was accounted for and
when it was not, using 1,000 iterations of the resampling
procedure to bootstrap trees and ancestral-state reconstruc-
tions. We performed simulations of BM and OU models
and the fit of alternative models, using the OUwie package
(Beaulieu et al. 2012) implemented in R (R Development
Core Team 2012).

Results
Support for Different Niche Evolution Models

We found a clear signal for joint evolution of seed bank
type and niche position along a gradient of mean fire inter-
val. When fitted to observed mean fire intervals, the OUM1
model had the highest mean Akaike weight (i.e., 0.56; fig. 3a),
far higher than those for niches simulated under the BM
and OUS models (fig. 3d, 3e). The OUMI model differen-
tiates the optimal niche positions of serotinous species
and species with an underground seed bank, regardless of
their adult fire survival strategy (Ossz # Ounur). One
other model, OUM?7, served to differentiate serotinous non-
sprouting species with underground seed banks from re-
sprouting species with underground seed banks (Osysx #
Oux # Our). This model had a mean Akaike weight (0.12)
almost twice as high as those for niches simulated under
the OUS model (compare fig. 3a to fig. 3d, 3e). Both the
random BM and single-optimum OUS models had very
small mean Akaike weights (<107 and 1072, respectively),
contrary to the simulated niche data (compare fig. 3a to
fig. 3d, 3e). Support for the different evolutionary models
was similar whether we simulated the evolution of niche
position along gradients of mean fire interval, number of

frost days, or precipitation of the driest month (compare
fig. 3d, 3e to fig. Al; figs. A1-A5 are available online).

Our data support the hypothesis that niche position
along a gradient of exposure to frost jointly evolved with life
history in Leucadendron. When fitted to the observed num-
ber of frost days, the OUM1 model (Osxsx # Ounur, differ-
entiating serotinous and underground seed bank strate-
gies) had the highest mean Akaike weight (i.e., 0.29; fig. 3b).
The two next-best models, namely, OUMS8 (05 # 0z #
Ounor) and OUMI0 (s # Oun # Osgur), had mean
Akaike weights of ~0.1, almost twice as high as those for
simulated niches under OUS and BM models (compare
fig. 3b to fig. 3d, 3e). The BM model had almost no sup-
port (mean Akaike weight < 107*), in contrast to the sim-
ulated niche data (compare fig. 3b and fig. 3d). The single-
optimum OUS model had slightly higher support (mean
Akaike weight of 0.09) but still far less than the simulated
single-optimum OUS model (i.e., 0.19; compare fig. 3b and
fig. 3e).

For precipitation in the driest month, we found no ev-
idence of joint evolution of niche position along this gra-
dient with life history (fig. 3¢). As before, the BM model
had no support (mean Akaike weight < 107% compare
fig. 3¢ to fig. 3d). Here, however, the single-optimum OUS
model was well supported, with a mean Akaike weight
(0.16; fig. 3¢) similar to that obtained for niche data sim-
ulated with an OUS model (0.18; compare fig. 3¢ and 3e).
Two other models, OUM1 (fsyse # Gunur)> which differ-
entiates serotinous and underground seed bank strategies,
and OUM5 (fsy # Ospunur)> which differentiates seroti-
nous nonsprouters from all others, had comparable Akaike
weights of 0.16 and 0.14, respectively. These weights also
resembled those of models using niches simulated under
OUS simulations (compare fig. 3¢ and 3e). Overall, the rela-
tive support of the different models was quite similar to that
obtained for simulated niches (fig. 3¢ compared to fig. 3e).

The estimated phylogenetic half-times, t,/,, estimated by
OU models fitted to observed ecological variables ranged
from 0.02 to 0.1. These values are orders of magnitude
lower than those for simulated niche positions under
BM models (ranging from 2.46 to 3.99 x 107).

For all three ecological variables, the relative support of
our 12 models of evolution was similar whether standard
error in the estimation of the niche position per species
was accounted for or not (fig. A2). This likely reflects
the high number of locations per species and consequent
low measurement error on niche positions in our data.
Mean standard error per species across our data set was
0.07 years for mean fire interval, 0.45 days for the num-
ber of frost days, and 0.23 mm for the precipitation of the
driest month. Resampling ecological values within species
thus had only small effects on the relative support of our
12 models of niche evolution (fig. A3).
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Optimal Niche Position and Life-History Traits

Optimal niche position estimated across all trees and
ancestral-state reconstructions for different life-history strat-
egies showed that serotinous species evolved niches char-
acterized by lower mean fire intervals than species with
underground seed banks (fig. 4a). For species with an under-
ground seed bank, resprouters displayed slightly lower op-
timal mean fire return intervals than nonsprouters (fig. 4a).
Conversely, for serotinous species, resprouters and non-
sprouters displayed similar optimal mean fire return inter-
vals (fig. 4a). Serotinous nonsprouting species evolved
niches with fewer frost days, compared to all other life-
history strategies that could be grouped in one category
displaying similar optimal niche positions relative to frost
exposure (fig. 4b). The optimal precipitation of the driest
month did not differ significantly across life histories
(fig. 4¢). For all three ecological variables, the variance asso-
ciated with estimates of optimal niche position was higher
for resprouters than for nonsprouters (fig. 4).

Joint Evolution of Traits and Niches 229

Accounting for the standard error of the estimation of
the niche position per species or resampling ecological
values per species only slightly changed the estimations
of the optimal niche positions (fig. A4). However, the var-
iance associated with estimates of mean precipitation in
the driest month increased considerably when ecological
values were resampled (fig. A4f).

Discussion

Our macroevolutionary analysis of correlated evolution
among niches and traits in the genus Leucadendron al-
lowed us to test several predictions of life-history theory.
First, iteroparous life cycles should better buffer plants
against environmental variation affecting the success of re-
production and juvenile recruitment (Charnov and Schaffer
1973; Schaffer 1974; Orzack and Tuljapurkar 1989). Picking
up on our analogy of resprouters versus nonsprouters and
iteroparous versus semelparous life-history strategies (Pausas
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Figure 4: Optimal ecological-niche position estimates for different combinations of life-history traits. Estimates for optima result from
Akaike weight averaging using corrected Akaike information criterion (AICc) values of our 11 Ornstein-Uhlenbeck models. SN = serotinous
nonsprouting; SR = serotinous resprouting; UN = underground nonsprouting; UR = underground resprouting.
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and Keeley 2014), which is made possible by the fact that re-
cruitment mainly happens after fires in fire-prone ecosys-
tems, the evolution of resprouting should allow the coloni-
zation of environments with highly variable recruitment.
Second, seed banks persisting over several fire cycles and be-
yond the death of their parents should act to buffer environ-
mental variation, allowing species with this trait to be less
sensitive to conditions jeopardizing recruitment and adult
survival (Childs et al. 2010). The evolution of underground
seed banks (compared to canopy-stored seed banks via se-
rotiny) should therefore allow species to colonize environ-
ments with less predictable fire intervals and harsher climates.
Our results partly support these predictions. In the history of
Leucadendron, the evolution of an alternate seed bank type
is associated with the evolution of different fire regimes. Both
adult fire survival and underground seed banks evolved
jointly with niches characterized by greater exposure to frost.
Finally, contrary to our expectation, the evolution of niches
with different summer drought intensities was not associated
with the evolution of different life-history strategies.

Joint Evolution of Fire-Related Traits and Fire Regimes

To our knowledge, our study is the first to demonstrate a
macroevolutionary association between plant life-history
traits and quantitative variation in the fire regimes. He
et al. (2012) previously showed, in the genus Pinus, that
serotiny evolved with the appearance of crown fires. We
here report that variation in fire frequency has shaped
the evolution of seed bank types in Leucadendron. The
joint evolution of serotiny and shorter mean fire intervals
may have arisen because long fire intervals are predicted to
select against serotiny (Enright et al. 19984, 1998b; Ton-
nabel et al. 2012; see also Herndndez-Serrano et al. 2013
for microevolutionary empirical evidence). Indeed, in Leu-
cadendron, serotinous individuals need to stay alive until
the next fire to reproduce, unlike individuals producing
an underground seed bank. However, short interfire inter-
vals that allow fire to recur before sexual maturity would
also select against serotinous nonsprouters (Tonnabel
et al. 2012). This prediction is consistent with empirical
observations that short fire intervals negatively affect these
species (Enright et al. 2014). Characteristics of the Weibull
distribution used to model fire return in our fire niche
data set (Merow et al. 2014) imply that greater mean fire
return intervals are associated with less predictability in
fire return. Our finding is thus consistent with the predic-
tions of several models, showing that lower levels of se-
rotiny evolve when fire regimes become unpredictable
(Enright et al. 1998a, 1998b; Tonnabel et al. 2012). This
covariation makes it difficult to disentangle the effects of
fire frequency and variation in fire return intervals on
life-history evolution.

We hypothesized that resprouters should better tolerate
shorter fire intervals than nonsprouters because, by sur-
viving fires, they are less prone to “immaturity risks.”
While this hypothesis was supported for species with an
underground seed bank, we did not find support for it in
serotinous taxa. The uncertainty associated with niche evo-
lution in resprouters was large (fig. 4a). Theoretical studies
predict that relative investment in storage for regrowth
should be maximized at some intermediate disturbance fre-
quency (Iwasa and Kubo 1997). Indeed, fires that are too
frequent do not allow plants to accumulate enough resources
to reproduce between fires. Interestingly, studies relating
community composition to disturbance frequency have
also found mixed results concerning resprouters (Lloret
et al. 2005; Vila-Cabrera et al. 2008; Enright et al. 2014;
Clarke et al. 2015).

Joint Evolution of Life-History Traits
and Climatic Preferences

Our study is the first to report an evolutionary association
between frost exposure and fire-related traits. Mediterranean-
type fire-prone ecosystems occur in geographical areas
with mild winters, where the impact of frost could be un-
derappreciated (but see Langan et al. 1997 for evidence that
frost limits species distribution in chaparral shrubs). Our
analysis reveals both significant variation in frost exposure
among Leucadendron species and associations between
frost exposure and the evolution of life-history traits in
Mediterranean-climate ecosystems. The evolutionary as-
sociation we found between frost avoidance and the serot-
inous nonsprouting strategy could reflect the variety of pos-
sible consequences of frost on the life cycle of plants in
fire-prone environments. These include (1) reducing seed-
ling establishment, (2) decreasing adult plant survival be-
tween fires (Tonnabel et al. 2012 predict effects of reduced
adult survival on the evolution of serotiny), and (3) cone
opening of serotinous individuals under conditions that dis-
favor recruitment (Treurnicht et al. 2016).

Like frost, drought can compromise seedling recruit-
ment, adult survival between fires, and the ability of plants
to maintain cones in the canopy (Treurnicht et al. 2016;
but see West et al. 2012). Consistent with this idea, Litsios
et al. (2014), using a comparative analysis similar to ours,
found that nonsprouting Restionaceae evolved preferences
for colder and less seasonal climates with less intense sum-
mer drought, relative to resprouting species. Contrary to
our expectation, the intensity of summer droughts within
species’ ranges did not appear to affect the evolution of
fire-related life-history traits in Leucadendron. Although
we performed analyses of mean precipitation at various
times of year, no values displayed a clear pattern of evolv-
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ing jointly with fire-related life-history traits (results not
shown). The relationship between exposure to drought and
the evolution of resprouting may be complex. Resprouters
have a competitive advantage when regrowth is rapid after
disturbance (see Iwasa and Kubo 1997 for theoretical pre-
dictions) and not limited by water. Accordingly, Pausas
and Keeley (2014) argued that the evolution of nonsprouters
is generally associated with aridification of ecosystems.

Our findings are consistent with the idea that riskier
semelparous-like strategies with nonoverlapping genera-
tions (i.e., serotinous nonsprouters) are disfavored when
extreme environmental conditions compromise juvenile re-
cruitment. Our study thus adds to the literature suggesting
that life-history evolution can facilitate or constrain the col-
onization of environments with extreme climates (e.g., Bou-
cher et al. 2012; Kostikova et al. 2013; Litsios et al. 2014;
Ogburn and Edwards 2015). Interestingly, in our case, it
is the combination of fire-related traits affecting both adult
and seed survival after fire that affects evolution of the cli-
matic niche. Underground seed banks and resprouting can
be interpreted as nonexclusive mechanisms of bet hedging.
Either mechanism seems sufficient to allow species to col-
onize sites with greater exposure to frost.

Robustness of Conclusions

Inferences about evolution of quantitative variables along
phylogenies, such as niche position here, derived from
model comparisons can suffer from biases due, for instance,
to measurement error in the characters or in the recon-
struction of phylogenies (Boettiger et al. 2012; Silvestro
et al. 2015; Cooper et al. 2016). Here, we thoroughly
checked for these biases by (1) explicitly considering differ-
ent sources of uncertainty in our resampling procedure,
(2) averaging different model predictions on the basis of
their support rather than considering only the model with
the highest support, and (3) confronting the support for
various models on the basis of observed niche data and sim-
ulated results that assumed that niche evolution does not
depend on life-history traits. This should make our conclu-
sions robust. However, the many models compared and the
large number of parameters associated with various trait
combinations in these models limited our ability to explore
more complex models.

In our analyses, we did not consider how the evolution of
different life histories could affect diversification rates
through their effects on generation time and possibly extinc-
tion and speciation rates (e.g. Smith and Beaulieu 2009;
Schnitzler et al. 2011; Kostikova et al. 2013; Litsios et al.
2014). Different rates of diversification, in turn, could alter
the reconstruction of ancestral trait values (Ng and Smith
2014). We tested the assumption that diversification rates
are unrelated to life-history traits (see fig. A5) by comparing
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models of life-history trait evolution that varied in their
assumptions about trait-dependent extinction and specia-
tion rates. We found no effect of seed bank type on diversifi-
cation (fig. A5). Results were more ambiguous for the effect
of resprouting. We found no support for different diversifi-
cation rates when using the maximum likelihood tree but
more frequent support for models assuming different speci-
ation rates in resprouters versus nonsprouters when using
bootstrap trees (fig. A5). Overall, our results concerning
the joint evolution of seed bank types and niches should
be robust to this issue. Results concerning how resprouters
evolve, which show some uncertainty, should be considered
with more caution.

Conclusions

In the history of Leucadendron, canopy seed banks coevolved
with niches characterized by predictable fire regimes. Life
cycles with nonoverlapping generations, combining a can-
opy seed bank and the inability to resprout after fire, evolved
together with ecological niches with milder climates. Distur-
bance regimes and extreme climatic events have thus shaped
the evolution of alternative life histories in this genus, sup-
porting predictions of life-history theory. Several researchers
have proposed that the high species diversity in the Cape
region, relative to similar regions, reflects the high climatic
heterogeneity associated with its complex topography (e.g.,
Litsios et al. 2014; Linder and Verboom 2015). Some authors
have also claimed that fire dynamics, more than climate,
have influenced South African vegetation and its diversity
(e.g., Bond et al. 2003). Our results support both of these
ideas. The evolution of an extraordinary diversity of life
histories and functional traits in the South African fynbos
is related to the variability of both climates and fire re-
gimes in this region. Preserving this heterogeneity of eco-
logical conditions, which fuels ecological and evolutionary
processes in the short and long terms, should therefore be
a goal of conservation policy (Cowling and Pressey 2001;
Olivieri et al. 2016). Finally, our study illustrates how life-
history evolution theory helps to predict aspects of the joint
diversification of ecological niches and functional traits, con-
necting fields of ecology and evolution that are rarely inte-
grated (e.g., Evans et al. 2011; Mesquita et al. 2016). This
improves our understanding of current and future patterns
of biodiversity as both climate and disturbance regimes change
under the pressure of anthropogenic activities (Wilson et al.
2015).
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