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Abstract 

Insect societies utilize advanced chemical communication systems to organize many 

aspects of their social life, which among others, include reproduction, thus 

maintaining colony homeostasis.  The queen pheromone complex (QMP), dominated 

by (E)-9-keto-2-decenoic acid (9ODA) is of integral importance in regulating worker 

reproductive development. Unique characteristics, associated with reproductive 

dominance, enabled the successful establishment of Apis mellifera capensis workers 

as social parasites (or pseudoqueens) in colonies of the neighbouring A. m. scutellata. 

This suggested that producing a queenlike pheromonal bouquet is one of the 

proximate factors in their success. 

In this study we attempted to address the pheromone communication dilemma by 

investigating whether the phenotypic expression of mandibular gland signals in 

honeybee workers are under genetic and/or environmental influence. It was 

hypothesized that the mandibular gland profiles of queens and workers may be closely 

correlated to specific genotypes in the colony. However, different ageing and rearing 

environments (social context) can ultimately influence gene expression with respect to 

mandibular gland signals, highlighting the fact that environmental influences are not 

necessarily non-significant. In our experiments, both environmental/social conditions 

and genotypes of our test individuals were manipulated.  

The capensis workers used in our experiment from their native range (Western Cape 

area are refered to as native workers, while capensis parasitic workers, from the clonal 

parasitic lineage, were obtained from the Gauteng area. A. m. scutellata workers were 

obtained from their native range, north of the hybrid zone.  
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Both native and parasitic workers showed the potential to become reproductively 

active, but the rapid pheromonal development of parasitic workers placed them at a 

reproductive advantage. Parasitic workers started producing low levels of 9HDA, the 

precursor to the queen substance 9ODA, between 12-24 hrs, while native workers 

only did so after 24 hrs. Despite this, rapid signal development did not culminate in 

the parasitic clones always pheromonally out-competing native workers. Withinin 

groups of native workers and a single clonal parasitic worker, the   mandibular gland 

profiles of most workers were dominated by 9ODA and 9HDA (> 80% of extracts) 

with only 43% of the single parasitic workers producing higher amounts of 9ODA 

than native workers.  

Mandibular gland pheromone profiles converged in groups of workers sharing a 

greater proportion of genes, providing support for a link to genotypic affects. Workers 

that were 75 – 99% related diverged significantly from groups with lower levels of 

relatedness was largely due to the presences of 9ODA (Spearman’s rank correlation r 

= 0.66, p < 0.0001). Despite the tendency for signal to convergence in groups of 

closer relatedness a considerable amount of signal variability was also observed under 

varying social conditions. Workers originating from a single capensis queen but aged 

under queenright and queenless conditions had very distinct mandibular gland profiles 

(Wilks’ lambda λ = 0.118, χ2 = 331.002, p < 0.0001). This variability was thus a 

result of the social environment that the workers were exposed to. The physiological 

traits, namely mandibular gland pheromone production, linked to reproductive 

potential in honeybee workers seem to be determined by a combination of 

environmental and genetic factors. Queen mandibular gland pheromone biosynthesis 

is genetically predisposed in certain workers however the final oxidation step to 

9ODA is strongly influenced by the social environment. The signal plasticity 
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observed in this study is adaptive and assists workers to realize their reproductive 

potential. 

Uittreksel 

Insek gemeenskappe gebruik gevorderde chemiese kommunikasie sisteme om 

verskeie aspekte van sosiale lewe, onder andere reproduksie, te organiseer en 

sodoende word korf homeostasis handhaaf. Die feromoon kompleks van die 

koninginby, wat hoofsaaklik uit (E)-9-keto-2-decenoic acid (9ODA) bestaan speel ŉ 

belangrike rol in die regulering van reproduksie in heuningby werkers. Die 

suksesvolle vestiging van Apis mellifera capensis werkers as sosiale parasiete (pseudo 

koninginne) in die korwe van die naburige A. m. scutellata, is bewerkstellig deur hul 

unieke kenmerke, wat met reproduktiewe oorheersing verband hou. Dit suggereer dat 

die produksie van ŉ tipiese koningin feromoon sein een van verskeie beduidende 

faktore is in capensis werkers se sukses. 

In hierdie studie het ons die dilemma van feromoon kommunikasie probeer aanspreek 

deur te ondersoek of die fenotipiese uitdrukking van seine van die mandibulêre kliere 

deur genetiese en/of omgewings faktore beïnvloed word. Die hipotese was dat die 

mandibulêre klier profiele van koninginne en werkers korreleer met spesifieke 

genotipes in die korf. Die verskillende omgewings waarin werkers groot gemaak word 

en verouder (sosiale konteks), kan uiteindelik die uitdrukking van gene, raakende 

mandibulêre kliere, beïnvloed. Dit beklemtoon die feit dat omgewings faktore nie 

noodwendig onbeduidend is nie. Beide omgewings/sosiale toestande and genotipes 

van toets individue is in ons eksperimente gemanipuleer.  

Die capensis werkers afkomstig uit hul natuurlike habitat (Weskaap area) wat in ons 

eksperimente gebruik is word na verwys as inboorling werkers, terwyl parasitiese 

capensis werkers, van klonies parasitiese afkoms, vanuit die Gauteng area verkry is. 
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A. m. scutellata werkers was vanuit hul natuurlike habitat, noord van die, hybried 

sone, verkry.   

Beide inboorling en parasitise werkers het die potensiaal getoon om reproduktief 

aktief te word, maar versnelde feromoon ontwikkeling van parasite werkers het hulle 

ŉ reproduktiewe voordeel gegee. Parasiet werkers het reeds lae hoeveelhede 9HDA, 

die voorganger van 9ODA, begin produseer tussen 12 – 24 uur, terwyl inboorling 

werkers produksie eers na 24 uur begin het. Ten spyte van die versnelde ontwikkeling 

in parasiet werkers het dit nie gelei daartoe dat kloniese parasiete altyd feromonies die 

oorhand oor inboorling werkers gekry het nie. In groepe bestaande uit inboorling 

werkers en ŉ enkele parasite werker, was die mandibulêre klier profiele altyd deur 

9ODA en 9HDA (> 80% van ekstrakte) gedomineer. Slegs 43% van parasite werkers 

het groter hoeveelhede 9ODA as inboorling werkers geproduseer. 

In groepe werkers, wat ŉ groter proporsie gene in gemeen gehad het, het mandibulêre 

klier profiele konvergeer. Dit ondersteun die bestaan van ŉ verband met genotipiese 

invloed. Werkers van 75 – 99% verwantskap het beduidend verskil van groepe met 

laer verwantskapsvlakke, hoofsaaklik as gevolg van die teenwoordigheid van 9ODA 

(Spearman’s rank korrelasie r = 0.66, p < 0.0001). Ten spyte van die konvergerende 

neiging van profiele, van meer verwante groepe, was aansienlike veranderlikheid 

onder verskillende sosiale toestande waargeneem. Werkers, afkomstig vanaf ŉ enkele 

capensis koninginby, maar òf in die teenwoordigheid òf afwesigheid van ŉ koningin 

verouder is, het baie kenmerkende mandibulêre klier profiele getoon (Wilks’ lambda 

λ = 0.118, χ2 = 331.002, p < 0.0001). Die veranderlikheid was dus ŉ gevolg van 

die sosiale omgewing waaraan die werkers blootgestel was. Dit blyk asof die 

fisiologiese kenmerke wat met reproduksie potensiaal in heuningbye verband hou, 

naamlik mandibulêre klier feromoon produksie, deur ŉ kombinasie van genetiese – en 



VI 
 

omgewings faktore beïnvloed word. Sekere werkers is meer geneig tot die biosintese 

van koningin mandibulêre klier feromoon as gevolg van hul genetika, terwyl die 

finale oksidasie na 9ODA onder sterk omgewings invloed is. Die plastisiteit in 

mandibulêre seine waargeneem in hierdie studie, is aanpasbaar en help werkers om 

hul reproduksie potensiaal te bereik. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 
 
Eusociality is an extensively studied social system (Michener, 1974; Wilson, 1971) 

and is found in three main insect orders: Hymenoptera (ants, bees, wasps), Isoptera 

(termites) and Homoptera (aphids). These insects live in societies that rival that of 

humans’ in complexity and internal cohesion. Eusocial insects are recognized by three 

main characteristics: 1) the mother is assisted by  individuals that may or may not be 

directly related,  to care for the  young; 2) a reproductive division of labour exists  

with the so-called sterile worker caste possessing certain propensities or 

characteristics associated with helping behavior in which the members must do the 

work required at the appropriate time; 3) there is an overlapping of generations which 

allows for the older generations of offspring to help related, younger generations 

(Wilson, 1971; Fletcher et al., 1985; Hölldobbler et al., 1990). It is of utmost 

importance that the needs of the society be communicated to the individual members 

who respond appropriately (behaviourally or physiologically) to achieve success of 

the society. Thus communication, whether it is visual or chemical, is the glue which 

bonds these societies. The sum of current evidence indicates that pheromones play the 

central role in the organization of honeybee societies. 

A typical honeybee (Apis mellifera) colony contains three adult castes each 

morphologically specialized to perform certain functions. A single fertile queen, 

whose primary function is to produce offspring, thousands of functionally sterile 

workers who do all the work and a few drones that serve a singular but important role 
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as mates for queens (Winston, 1987; Page et al., 2007). Insect societies utilize 

advanced chemical communication systems to organize many aspects of their social 

life, which among others include brood care, defence, foraging and reproduction 

(Robinson, 1987b; Huang et al., 1994).  Pheromones, chemical messengers that 

convey information from one member of a colony to another, therefore act as the main 

source of information transmission. Pheromones can be grouped into releaser 

pheromones with short term effects that change the behaviour of the recipient and 

primer pheromones with long term effects that change the physiology of the recipient 

(Slessor et al., 1988; Slessor et al., 2005; Winston et al., 1992; Hoover et al., 2003). 

In the honeybee colony the single queen secretes a suite of important pheromones 

from the cephalic mandibular gland, which is taken up by the workers and passed 

throughout the colony (Velthuis, 1970; Crewe et al., 1980; Winston et al., 1992a; 

Pankiw et al., 1996; Slessor et al., 2005). The mandibular gland secretion (MGS) is 

composed of a large number of compounds, however the major signal of queen 

presence is conferred by a five compound blend coined the queen mandibular gland 

pheromone complex (QMP, Slessor et al., 1988). This pheromone complex (QMP) is 

responsible for controlling and regulating many activities important for maintaining 

colony homeostasis.  QMP consist of (E)-9-keto-2-decenoic acid (9ODA), two 

enantiomers of (E)-9-hydroxy-2-decenoic acid (9HDA), methyl-p-hydroxybenzoate 

(HOB) and 4-hydroxy-3-methoxyphenylethanol (HVA, Slessor et al., 1988). It acts as 

a releaser pheromone that attracts workers to the queen, resulting in a retinue around 

the queen (Slessor et al., 1988; Kaminski et al., 1990) and inhibits queen rearing by 

workers (Pettis et al., 1995; Winston et al., 1989, 1990). It also acts as a primer 

pheromone, regulating ovarian development of workers, thus regulating worker 

reproduction (Butler, 1959; Hepburn 1992; Hoover et al. 2003, 2005). Butler (1959) 
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was the first to show direct inhibition of worker reproduction by the queen mandibular 

gland in the honeybee. To date Apis mellifera is the only case for which this primer 

function of mandibular gland pheromones has been empirically demonstrated. 

QMP is dominated by the queen substance, 9ODA (Barbier et al., 1960; Butler et al., 

1961; Pain, 1961) while that of workers are dominated by 10-hydroxy-2-decenoic 

acid (10HDA) and 10-hydroxydecanoic acid (10HDAA; Winston et al., 1992; Plettner 

et al., 1993).  These biosynthetic pathways are however not fixed and depending on 

the age and social environment of the worker she can produce the queen substance 

(Crewe et al., 1980; Page et al., 1988). This implies that workers producing 9ODA are 

also able to prevent other workers from developing reproductively. Most of the 

variation in mandibular gland secretions hinge on a quantitative difference in the 

relative proportions making up the mixture. It has been shown that mandibular gland 

signal production varies within subspecies but variability also exists between 

individuals, queens as well as workers (Crewe, 1982; Moritz et al., 2000). To date it 

remains uncertain whether this is as a consequence of genetic and/or environmental 

factors. 

 

1.1.1 South African honeybees  

 
South Africa is home to two neighbouring honeybee subspecies. Native to the fynbos 

biome we find the black Cape honeybee (Apis mellifera capensis Escholtz, hereafter 

capensis) (Tribe 1983, Hepburn et al., 1991) while the more yellow African honeybee 

(Apis mellifera scutellata Lepeletier, hereafter scutellata) inhabits most of sub-

Saharan Africa. The latter is the honeybee on which the majority of commercial 

beekeeping is based in South Africa. On the basis of the number of ovarioles and sex 

ratio of laying worker offspring, Hepburn et al. (1991) defined the geographical 
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location of capensis and scutellata and a hybrid zone separating these two subspecies. 

This natural occurring 200km hybrid zone confines capensis to the southern and 

scutellata to the northern regions of the country and has apparently remained stable 

for decades with neither subspecies increasing its range, despite mixing of these 

subspecies (Hepburn et al., 1990; 2002). 

The fact that capensis can establish themselves as social parasites of scutellata, 

produce clonal offspring in the host colonies, eventually leading to colony death 

(Allsopp, 1992; Martin et al., 2002; Neumann et al., 2002) makes the hybrid zone and 

the stability thereof very interesting. Beekman and colleaugues (2008) hypothesized 

that the capensis-scutellata hybrid zone is really a tension zone formed between the 

two parental populations, which prevents gene flow between the two populations, 

resulting in less fit hybrids (Barton et al., 1985).  The proposers of this tension zone 

premised their idea on the basis of the pheromonal imbalances between the two 

subspecies (Wossler, 2002). Hybrid colonies are less fit due to capensis workers 

having higher levels of 9ODA and ovary activation which is not sustainable and 

ultimately leads to the death of the colony (Martin et al., 2002b), effectively 

preventing gene flow between capensis and scutellata across the hybrid zone. 

 

1.2 The Capensis problem in South Africa 

The ability of capensis workers to successfully establish themselves as social parasites 

of scutellata has led to the death of thousands of scutellata colonies (Allsopp, 1992; 

1995; Allsopp et al., 1993). Parasitism starts when a capensis worker enters a 

scutellata host colony where she develops a so-called pseudo-queen phenotype with 

both high ovarian development and a queenlike pheromonal bouquet (Ruttner, 1988; 

Crewe et al., 1980; Velthuis et al., 1990), a key characteristic of capensis workers. 
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Unlike other honeybee subspecies, in which workers produce males by arrhenotokous 

parthenogenesis (development of males from unfertilized eggs), workers of the Cape 

honeybee produce female offspring through thelytoky (development of females from 

unfertilized eggs) (Onions, 1912; Anderson, 1963; Verma et al., 1983). Genetic 

analysis using microsatellites (Kryger, 2001; Neumann et al., 2002; Baudry et al., 

2004; Hartël et al., 2006a, b) has shown that the billions of capensis workers now 

parasitizing South African honeybee colonies are all parthenogenetic descendants of a 

single worker lineage and can therefore correctly be regarded as a clonal population. 

Consequently, thelytoky results in the number of capensis workers in the host 

colonies increasing. While capensis pseudoqueen brood is preferentially nurtured by 

host workers (Beekman et al., 2000; Calis et al., 2002), the host queen is eventually 

lost and the scutellata host colony is progressively taken over by the parasite 

(Hepburn et al., 1998; Martin et al. 2002b). Since the parasitic workers do not 

participate in normal hive duties such as foraging, brood rearing, etc (Allsopp 1998; 

Martin et al., 2002), infected colonies become less efficient and dwindle down to a 

few host workers and eventually die.  

The dynamics of colony usurpation is not yet clearly understood, but it would seem 

that the problem is largely one of communication. A.m. capensis are very plastic in 

their production of pheromones, since they are capable of rapidly switching their 

biosynthetic pathways from producing workerlike to more queenlike pheromones 

when placed in queenless scutellata colonies (Crewe et al., 1980; 1990; Moritz et al., 

2000).  
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1.3 Mandibular gland pheromones and reproductive dominance 

In queens the mandibular gland biosynthetic pathway leads to the so-called “queen 

substance” (9-oxo-2-(E)-decenoic acid; 9ODA) while the pathway in workers 

produces a secretion that is dominated by 10HDAA and 10HDA, the “worker 

substance” (Plettner et al., 1996, 1998). The ratio between queen and worker 

substances is a highly sensitive indicator of reproductive hierarchy status (Moritz et 

al., 2000, 2002). Consequently not only the queen’s but also the laying worker’s 

pheromonal mandibular gland signals suppress ovary development (Velthuis et al., 

1965) and the production of a 9ODA dominated signal in other workers (Velthuis et 

al., 1965; Velthuis, 1970; Crewe et al., 1980; Crewe, 1984, 1988). 

Queenright capensis workers are unique in that they are able to produce queenlike 

mandibular secretions, dominated by 9ODA (Ruttner et al., 1976; Hemmling et al., 

1979: Crewe et al., 1980; Plettner, et al., 1993, 1996). Consequently capensis workers 

have a reproductive advantage over other subspecies. The establishment of capensis 

workers as social parasites of scutellata colonies in the northern regions of South 

Africa drew renewed attention to the unique characteristics of capensis workers. On a 

queen-worker continuum, parasitic workers (workers of the invasive clonal lineage) 

are possibly more queenlike than workers from the native capensis populations 

(workers found in the Western Cape and Southern parts of the Eastern Cape) with 

regards to characteristics that promote reproductive dominance (Beekman et al. 2000; 

Calis et al., 2002; Allsopp et al. 2003). The production of typical queen pheromones 

forms an important basis for the reproductive success of laying capensis workers. 

Initial studies of signal variation focused on the variation of 9ODA in queens and 10 

HDA in workers (Pain et al., 1960, 1967, 1976; Barbier et al., 1960). Boch and 

Shearer (1982) were the first to investigate whether the relative composition or the 
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total quality of the mandibular gland secretion varied with the age of the bee. They 

selected 5 components to correlate mandibular gland secretion composition with the 

age of the bee. They showed that the quantity of the 5 selected acids increased over 

time (with age) and reached a plateau around 17 days. Pain et al. (1967) however 

found great variability in the production of acids by similar aged workers and queens. 

The literature on age-dependent changes in mandibular gland ontogeny in the various 

castes of honeybees is extensive (Lensky et al., 1985; Allsopp, 1988; Whiffler et al., 

1988; Crewe et al., 1989; Slessor et al., 1990; Engels et al., 1997; Wossler et al., 

2006). The parasitic population north of the hybrid zone has been separated from their 

native capensis population for approximately 20 years and almost certainly has 

experienced different selection pressures. On a queen-worker developmental 

continuum, capensis parasitic workers are possibly more advanced than native 

workers for characteristics that promote reproductive dominance and social 

parasitism. In capensis workers the expression of queenlike characteristics is strongly 

affected by larval feeding. Larvae that receive food containing more royal jelly as 

well as receiving a greater amount of food develop into more queenlike individuals 

(Allsopp et al., 2003; Beekman et al., 2000; Calis et al., 2002). A. m. capensis brood 

reared by scutellata or capensis-scutellata hybrids receive more and better food than 

when they are reared by their own sisters (Allsopp et al., 2003; Calis et al., 2002). As 

a result capensis workers reared by scutellata nurses have a strong tendency to 

develop a queenlike phenotype (Allsopp et al., 2003; Beekman et al., 2000). 

More recently however, it has been shown that parasitism by the clonal parasitic 

capensis lineage is not unique to scutellata colonies since it has been found that native 

capensis workers, expressing the correct suite of characteristics, also parasitize their 

own colonies in the Western Cape (Härtel et al., 2006a; Jordan et al., 2008). Of 
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interest however, is how far the parasitic population up north has diverged from their 

natal sister population in the last 20 years or so? Ultimately, the key to successful 

parasitism is getting into the host colonies. During a number of field trials, 

irrespective of method of introduction, we were unable to introduce very young 

parasitic workers into colonies. The literature suggests that these parasitic workers 

possess very queenlike pheromone signals, but this begged the question how quickly 

do they develop these signals and how different are they from that of native capensis 

workers? In this study we thus investigated worker mandibular gland secretions from 

the time of emergence, to track developmental changes over time (from emergence to 

60 hours).  Building on this we also investigated whether parasitic workers always 

win the pheromone arms race when compared to native workers. 

A.m. capensis workers in queenright colonies show higher levels of signal and ovary 

development than workers of other races (Anderson, 1963). It is possible that these 

dominant workers, who do not follow an age polyethism (age-based division of 

labour), are waiting for the chance to reproduce, and on queen loss they would have a 

head start in egg laying (Moritz et al., 1985; Hillesheim et al., 1989). In queenless 

colonies the question arises: who becomes dominant? Dominance hierarchies in 

capensis have been studied by Moritz et al. (1996), who showed that certain patrilines 

had a greater probability of becoming reproductively dominant. However, the sample 

size was small, raising the question is dominance hierarchies really patriline based?  

These dominant workers synthesize both qualitatively and quantitatively queenlike 

amounts of 9ODA, the queen substance, in their mandibular glands (Hemmling et al., 

1979; Crewe et al., 1980; Crewe 1982). Within patrilines there is individual 

competition for dominance since only a few workers develop into laying 

workers/pseudoqueens (Martin et al., 2004; Robinson et al., 1990; Oldroyd et al., 
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1994; Moritz et al., 1996). Reproductive dominant workers suppress the reproductive 

capacity of subordinate workers, which consequently do not develop their ovaries or 

produce queenlike signals in the presence of dominant workers (Velthuis et al., 1965; 

Velthuis, 1970; Crewe et al., 1980; Crewe, 1984, 1988; Moritz et al., 2000).  A.m. 

capensis workers placed in pairs compete to produce the strongest queenlike signal 

and the production of 9ODA, which inhibits further 9ODA production in subordinate 

workers, and consequently 9ODA may therefore be an important signal in 

pseudoqueen selection (Moritz et al., 2000). Thus, mandibular gland signal production 

varies within subspecies but variability also exists between individuals (Moritz et al., 

2000).  

Owing to the polyandrous nature of honeybee queens (Adams et al., 1977; Koeniger 

1987; Koeniger et al., 2000) the colony is characterised by a high intracolonial 

genotypic variance. It is composed of many subfamilies each sired by a different 

father (drone). Within a subfamily the workers are related by r = 0.75 and termed 

super-sisters (Page et al., 1988). Workers of two different subfamilies are half-sisters 

and consequently related by r = 0.25 (Ratnieks, 1988; Pirk et al., 2003).  In order to 

resolve the suggested pheromone communication problem, the extent to which the 

environment and/or genotype affects the mandibular gland signals produced by 

workers needs to be determined. The parasitic clonal capensis population, on account 

of their very low genetic variance, offers us an opportunity to highlight the 

environmental influences on mandibular gland signal production.  Previous 

experiments indicated that worker dominance was largely genetically based (Moritz et 

al., 1985; Hillesheim, 1987, Hillesheim et al., 1989) with the expression of the 

pseudoqueen phenotype in capensis workers particularly well expressed and under 

strong genetic influence (Moritz et al., 1985). The high genetic variance in natural 
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colonies and the clonal nature of parasitic workers as well as the use of artificially 

inseminated queen offspring (to limit the number of patrilines) allowed us to 

investigate the potential influence of genotype on  mandibular signal production. By 

altering the environmental variables we attempted to ascertain whether the expression 

of worker mandibular gland signals contain genetic information or whether genetic 

predispositions are overridden by environmental influences.  

In their investigation of reproductive capensis workers, Moritz and Hillesheim (1985) 

found that the production of 9ODA is influenced by genotype with an estimated 

heritability value of 0.89. This heritability value was estimated by an analysis of 

variance comparing variation within and between offspring of capensis laying 

workers. Heritability is the proportion of the total phenotypic variance due to the 

additive genetic effects in a specific population (Falconer, 1981). Heritability values 

can be used to estimate the relative importance of the genetic effects subtracted from 

the environmental effects in the regulation of a certain trait’s manifestation (Milne, 

1985a; 1985b). Using Moritz and Hillesheim’s protocol, Wossler (unpublished 

results) found that mandibular gland secretions were strongly dependent on 

environmental influences with minimal genetic influences. Heritability estimates for 

9ODA production was determined to be approximately 0.18. These contradictory 

findings highlight the need to establish the extent of the role of genes and 

environment on the production of mandibular gland signals.   

All behaviours are modulated by interactions between genes and the environment. In 

social organisms, social interactions are a key component of the environment. To 

understand the link between genotypes and phenotypes, therefore, requires an 

understanding of how the individual's phenotype is influenced by its own genes 

(direct genetic effects) and the phenotype expressed in its social partners (indirect 
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effects) (Moore et al. 1997; Linksvayer et al., 2005; Keller, 2009). The ability of 

organisms to change their appearances, behaviour or physiology in response to 

environmental conditions is well known. Such environmentally induced changes in 

the phenotype of an organism are referred to as phenotypic plasticity. The genetic 

control of plastic responses on the other hand has not received that much attention. 

Two classes of genetic effects that influence plastic responses have been proposed: 

firstly, allelic sensitivity, where some alleles may be expressed in several different 

environments with varying effects on phenotype and secondly, gene regulation, where 

regulatory loci cause genes to turn off or on in certain environments (Schlicting et al., 

2002; Via et al., 2005). They suggested that regulatory plasticity, with the potential 

for controlling multiple trait responses, is the likely mechanism for adaptive plasticity. 

The genetic influences on the production of mandibular, tergal and Dufour’s gland 

pheromones are not well studied; however the same cannot be said for the 

hydrocarbon profiles produced by wasps, ants and bees. Dani et al. (2004) found that 

the cuticular hydrocarbon profile of the wasp, Polistes dominulus, does contain 

genetic information, since the composition of the hydrocarbons strongly correlated to 

the level of relatedness. It was also found that the cuticular hydrocarbon profiles in 

honeybees are partly genetically based (Page et al., 1991b; Arnold et al., 1996). Page 

et al. (1991b) found differences in the lipid composition between two worker 

patrilines in honeybee colonies headed by artificially doubly mated queens. Moreover, 

workers in a honeybee colony with a single queen, mated 16 times, could be correctly 

assigned to their patriline on the basis of their cuticular lipid composition, both when 

the workers were isolated and when they were allowed to remain in their colony 

(Arnold et al., 1996). It is therefore possible that mandibular gland secretions could 
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also be genetically derived since, like cuticular hydrocarbons (produced by either 

modified epidermal cells or tegumentary glands), it is also from exocrine origin.  

Since the advent of the strong analytical molecular tools of microsatellites, the genetic 

influences on physiological and biochemical characters can now be positively 

determined. Microsatellite markers are a class of DNA markers that involve a variable 

number (up to 100) of short tandemly repeated simple sequences, 1-6 base pairs (bp). 

Microsatellites, which are polymorphic and abundant co-dominant markers, are ideal 

to determine parentage relationships between individuals (Queller et al., 1993; Blouin 

et al., 1996). Variation at microsatellite loci is readily assessed by polymerase chain 

reaction (PCR) amplification using primers complementary to the unique sequences 

flanking specific repetitive arrays (Ashley et al., 1994). For honeybees, a vast array of 

primers and loci has been described in the literature (Estoup et al., 1994; 1995; Haberl 

et al., 1999; Solignac et al., 2003). Demonstrating that signal phenotype has a strong 

correlation to genotype, lays the first steps for establishing a honeybee breeding 

programme. 

 
 
1.4 Objectives 

Due to the opposing outcomes reached for heritability values of 9ODA production in 

honeybees (Moritz et al., 1985; Wossler, unpublished) this study aims to determine 

whether the phenotypic expression of pheromonal signals that honeybee workers 

express, more particularly the mandibular gland secretions, are more strongly 

influenced by genes or environment. It is hypothesized that the mandibular gland 

profiles of queens and workers may be closely correlated to specific genotypes in the 

colony. However, different ageing and rearing environments can ultimately influence 

gene expression with respect to mandibular gland signals (Wossler, 2002; Jones, 
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unpublished PhD thesis), highlighting the fact that environmental influences are not 

necessarily non-significant. Due to the format of this thesis, some repetition and 

consequential overlapping within the introductions and in the materials and methods 

sections of chapters may occur.   

In chapter 1 the study organism, Apis mellifera (honeybee) was introduced and its 

biology briefly discussed. It specifically focuses on the Cape honeybee (capensis), 

which through its ability to become facultative social parasites in colonies of 

conspecifics have caused large scale damage to the apicultural industry in South 

Africa. Each of the following chapters covers more relevant topics in further depth.  

In chapter 2, the mandibular gland signal variation between native capensis and 

parasitic capensis workers were compared. The objective was to determine whether 

mandibular gland secretion development within the first 60 hours differed between 

natal and parasitic populations, while minimizing environmental effects. Moreover, 

different aged bees from the two populations were introduced into capensis 

discriminator colonies to determine whether their acceptance rates could be linked to 

the mandibular gland profiles.   

Pseudoqueen development was investigated in chapter 3. The objective was to 

determine whether the parasitic workers (clone) always pheromonally out-compete 

the native workers.   

In chapter 4 we compared the mandibular gland signal variation between worker 

groups of varying degrees of relatedness.  Consequently, the objective was to 

determine whether mandibular gland profile variability would increase within worker 

groups of decreasing levels of relatedness. 

The mandibular gland secretions of clones, which are near-identical, were compared 

to native workers in chapter 5. The objective was to determine whether native 
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capensis workers showed more signal variability than clones and also how near 

identical clone signals are. This would hopefully indicate whether mandibular gland 

secretions had a stronger genetic or environmental component.  

In chapter 6 we investigated the relationship between mandibular gland profiles and 

genotype, but more specifically the link between profile and patriline. The 

polyandrous nature of the honeybee queen results in the production of genotypically 

diverse offspring in monogynous colonies. This facilitates the detection of possible 

genotypic effects because offspring, of similar age cohort, fathered by different drones 

(patrilines) within a colony share the same maternal genotype on average, the same 

maternal effects, and the same environmental rearing conditions and differ only in 

their paternal genotype. If respective patrilines within a colony express a specific 

signal phenotype, it would indicate that the expression of the mandibular gland signals 

contain genetic information. However, if all workers within a colony express a more 

homogenous signal, it would indicate a stronger environmental influence. 

In chapter 7 we investigated whether workers from capensis patrilines (sired by 

capensis drones) are more likely to become reproductively active compared to 

capensis-scutellata hybrid workers (sired by scutellata drones). If workers of capensis 

paternity are more likely to become reproductively active, it would suggest that 

genetically mixed colonies may suffer from a breakdown in reproductive division of 

labour and that the hybrid zone is indeed a tension zone. Under our experimental 

conditions, similar aged pure capensis and hybrid workers shared all environmental 

influences and the same maternal genotype on average. They therefore only differ in 

their paternal genotype which allowed us to determine whether the expression of the 

reproductive traits can be influenced by paternity. This chapter has been submitted as 

a multi-authored paper to Behavioural Ecology and Sociobiology (Appendix 1). 
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Chapter 8 summarizes and discusses the main results of this study. 
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CHAPTER 2 

 

AGE-DEPENDENT CHANGES IN MANDIBULAR GLAND PROFILES OF 
NATIVE AND PARASITIC WORKERS OF A. M. CAPENSIS 
 
 

2.1 Introduction 

Social insects possess several pheromone producing exocrine glands involved in 

priming or releasing various biological functions (Hölldobbler et al., 1990). In 

honeybee colonies the complex social organization is largely regulated by 

pheromones from the monogynous queen. Honeybee queens and workers produce 

caste-specific mandibular gland pheromones (Blum, 1992; Plettner et al., 1997). To 

date the most extensively researched is the queen mandibular gland pheromones 

(QMP) dominated by (E)-9-keto-2-decenoic acid (9ODA), refered to as the queen 

substance, and (R,E)-(-) and (S,E)-(+)-9-hydroxy-2-decenoic acid (9HDA; Slessor et 

al., 1998). Under queenright conditions, workers’ mandibular gland secretions are 

characterized by the dominant “worker substance”, 10-hydroxy-2-decenoic acid 

(10HDA) and 10-hydroxydecanoic acid (10HDAA; Plettner et al., 1996; 1998). 

However, both castes are capable of producing the other’s compounds depending on 

their social context (Naumann et al., 1991; Plettner et al., 1997) and consequently the 

biochemical pathways are not mutually exclusive.  

Chemical analysis of the mandibular gland extract has demonstrated that the 

composition of the secretion is affected by age and race of honeybees in both queens 

(Engels, et al., 1997) and workers (Crewe, 1988; Crewe et al., 1989; Simon et al., 

2001). Early studies investigating signal dissimilarity focused on the variation of 

9ODA in queens and 10 HDA in workers (Pain et al., 1960, 1967, 1976; Barbier et al., 

1960). For example, Pain and his colleagues (1967) found great variability in the 
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production of acids by individual workers and queens, with the selected acids shown 

to increase with age (Boch et al., 1982). Queens of several Apis species, including A. 

m. scutellata (hereafter refered to as scutellata), show a definite ontogenetic pattern in 

the development of their mandibular gland secretions (Crewe, 1988; Crewe et al., 

1989). The 9ODA level in virgin queens increases from trace levels at emergence to 

nearly one third queen equivalent prior to mating (Slessor et al., 1990; Pankiw et al., 

1996) while A. m. capensis (hereafter refered to as capensis) queens differ in that they 

produce large quantities of 9ODA at emergence (Crewe, 1982, 1988).  

In Apis mellifera subspecies, removal or loss of the queen leads to either queen 

rearing or the development of laying workers (Sakagami, 1954, 1958; Page et al., 

1988; Van der Blom 1991). In capensis such laying workers act as false queens that 

produce queenlike mandibular gland secretions. These workers behave queenlike and 

are treated as such and are even capable of regulating the reproductive development in 

other workers (Sakagami 1958; Velthuis, 1970 Velthuis et al. 1990; Hemmling et al. 

1979; Hepburn et al., 1991; Neumann et al., 2002; Moritz et al., 2000; Dietemann et 

al., 2007). The mandibular gland signal of capensis workers undergo a transition from 

workerlike to more queenlike under queenless conditions with the increased 

production of 9ODA and 9HDA (Crewe et al., 1980; Simon et al., 2001; 2005). The 

production of these queen substances is not unique to queenless workers as detectable 

amounts are found in queenright workers, of capensis and other A. mellifera 

subspecies (Crewe et al., 1989; Plettner et al., 1993, 1997). However, Cape honeybee 

workers are particularly prone to switching their biochemical pathway from worker- 

to more queenlike.  

The Cape honeybee is native to the southern parts of South Africa and possesses a 

suite of distinguishing characteristics related to worker reproduction. On queen loss 
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workers of all subspecies are able to develop reproductively. Cape honeybee workers 

are unique in that they produce almost clonal female offspring through thelytokous 

parthenogenesis while worker reproduction in other subspecies results in male 

offspring (Onions, 1912, 1914; Anderson, 1963, Hepburn et al., 1991; Ruttner, 1992; 

Moritz et al., 1994; Hepburn et al., 1998; Neumann et al., 2000; Radloff et al; 2002). 

These workers display high reproductive potentials in that they develop their ovaries 

more rapidly and possess a larger number of ovarioles than other subspecies (Hess, 

1942; Velthuis et al., 1988; Hepburn et al., 1991; Hepburn et al., 1994). Moreover, as 

mentioned earlier, Cape workers are able to produce queenlike mandibular secretions, 

dominated by 9ODA, by switching from a worker biosynthetic pathway to a queen’s 

biosynthetic pathway (Ruttner et al., 1976; Hemmling et al., 1979, Crewe et al., 1980; 

Plettner, et al., 1993, 1996). Consequently these traits put Cape workers at a 

pheromonal and reproductive advantage over other subspecies. 

The success of capensis workers as social parasites, following their anthropogenic 

movement into the range of scutellata, emphasized their ability to become dominant 

reproductives. Since the first recorded invasions, almost two decades ago, it has been 

found that the parasitic workers currently infecting colonies in the north of South 

Africa are from a single lineage (Kryger, 2001; Neumann et al., 2002; Baudry et al., 

2004; Hartël et al., 2006a, b). On a queen-worker continuum parasitic workers are 

possibly more queenlike than workers from the native capensis populations (workers 

found in the Western Cape and Southern parts of the Eastern Cape) with regards to 

characteristics that promote reproductive dominance (Beekman et al., 2000; Calis et 

al., 2002; Allsopp et al., 2003).  

This queenlike phenotype in dominant workers is recognized by other less dominant 

workers and consequently results in the less dominant workers taking on a 
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reproductively subordinate role. The pheromone signal produced by dominant 

workers allows other workers to assess the reproductive status and quality of 

dominant workers and sets the stage for the evolution of fertility and reproductive-

dominance primer pheromones (Malka et al., 2009). Reproductive competition in the 

honeybee is linked to two major pheromones: the mandibular gland pheromones 

which was the first primer pheromone demonstrated to inhibit ovarian development in 

workers (Butler 1959; Butler et al., 1963; Hoover et al., 2003) and also mediates 

dominance hierarchies in workers (Malka et al., 2008; Moritz et al., 2004), and the 

Dufour's gland that signals fertility due to its tight correlation with ovarian 

development (Katzav-Gozansky et al., 2004). 

In this study we set out to ascertain whether the mandibular gland profiles of parasitic 

capensis workers develop more rapidly over time compared to native workers. Ageing 

workers from these two populations in a controlled environment allowed us to follow 

mandibular signal development across age groups, while minimizing environmental 

effects. Furthermore we also investigated whether mandibular gland profiles were in 

any way correlated to acceptance rates of the two populations by introducing both 

native and parasitic workers of various age cohorts into two discriminator colonies. 

We had observed exceptionally low acceptance rates for both native and parasitic 

workers introduced into A. m scutellata host colonies during field trials and thus we 

predicted that their high rejection rates were a consequence of queenlike mandibular 

gland signal development.  
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2.2 Materials & Methods 

2.2.1 Experimental setup 

Frames with sealed parasitic worker brood were obtained from a commercial 

beekeeper in Gauteng while sealed native capensis brood frames were obtained from 

the Agriculture Research Council in Stellenbosch, South Africa. These frames were 

incubated at 35°C and 60% relative humidity until adult emergence and the freshly 

emerged workers of the same age cohort were group-specific labelled (native and 

parasitic capensis) on the thorax with non-toxic paint (Posca Paint Pens, Mitsubishi 

Pencil Co., Japan). The experiment was conducted over a 60 hour period and 15 

newly emerged bees were marked at 6, 12 and 24 hour intervals depending on the 

numbers that emerged (see table 1 for final sample sizes). This resulted in 4 age 

groups: 0-6 hrs, 6-12 hrs, 12-24 hrs and 24-60 hrs. Marked workers from each of the 

two test populations were: 1) placed on a food frame containing honey and pollen in a 

specially constructed frame box to simulate a natural environment and then placed in 

an incubator and allowed to age, and 2) introduced into queenright capensis field 

colonies to ascertain acceptance rates of different age groups of native and parasitic 

workers. The number of workers introduced into each discriminator colony was 

dependent on emergence rates. For emergence, < 6 hrs and 12-60hrs, 40 workers of 

each population were introduced into the respective colonies, while only 20 workers 

from 6-12 hrs of each population were introduced. During field trials we observed 

exceptionally low acceptance rates of both native and parasitic workers when 

introduced into scutellata host colonies, therefore we used capensis colonies as 

discriminators. We predicted that their high rejection rates were a consequence of 

queenlike mandibular gland signal development.  
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On termination of the experiment all bees were decapitated and individually labelled 

heads placed in 200µl dichloromethane (DCM) for gas chromatographic (GC) 

analyses. Bodies of each bee were correspondingly labelled and frozen for ovary 

dissections. 

 

2.2.2 Chemical Analysis 

The heads of individual workers were removed from the solvent which was 

evaporated with a stream of N2 to dryness. The residue was redissolved in 15µl 

internal standard solution (tetradecane and octanoic acid, Sigma) and derivitised in 

15µl bis-(trimethylsilyl) trifluoroacetamide (BSTFA, Sigma). One microlitre of this 

solution was injected into a gas chromatograph (Hewlett Packard 6850) equipped with 

a split-splitless injector and a flame ionization detector. Compound separation was 

achieved on a cross-linked methyl silicone HP-1 column (25m x 0.32mm) under a 

temperature programme: 60°C (1 min), 50°C/min to 90°C, 3°C/min to 220°C (10 

mins) using helium as the carrier gas. The injection port was set at 230°C and the 

flame ionization detector at 320°C. Peak areas were determined using HP 

Chemstation software and the mandibular gland compounds were identified based on 

the retention times of authentic compounds (Sigma) and were quantified using peak 

area (Simon et al., 2001). 

The compounds quantified in this study included: methyl p-hydroxybenzoate (HOB), 

9-keto-(E)-2-decenoic acid (9ODA), 4-hydroxy-3-methoxyphenylethanole (HVA), 9-

hydroxydecanoic acid (9HDAA), 9-hydroxy-2-decenoic acid (9HDA), 10-

hydroxydecanoic acid (10HDAA), 10-hydroxy-2-decenoic acid (10HDA), stearic 

acid, and some minor aliphatic acids, palmitoleic acid, palmitic acid and oleic acid. 

Due to the similar levels of abundance of oleic acid in both native and parasitic 
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workers masking subtle but possibly important differences in other mandibular gland 

compounds it was excluded from the analyses. Authentic purchased compounds were 

used to determine the relative mass ratios of all the tested compounds (Gehrke et al., 

1971) and tetradecane was used to calculate the absolute amounts. A standard solution 

was run every day to insure that the relative mass ratios were within the variability 

range of the series of standard runs (Crewe et al., 1989). 

The quantitative ratio of (9ODA + 9HDA)/(9ODA + 9HDA + 10HDA+10HDAA) 

was calculated to determine how queenlike the mandibular gland pheromone profiles 

were (Moritz et al., 2000, 2004; Schäfer et al., 2006). A ratio close to one indicates a 

queenlike blend, whereas a ratio close to zero indicates a workerlike blend.  

 

2.2.3 Statistical Analysis 

The chemical data were analysed using PRIMER (Version 5.2.9, Plymouth Marine 

Laboratory, Clarke et al., 1994). Before analysis the data of absolute amounts were 

double square root transformed in order to limit the effect of zeros and the contrast of 

extreme high and low values. Non-metric multidimensional plots (MDS) were 

generated using Bray-Curtis similarities as distance measures. This allows for 

complex data to be graphically presented in two dimensions such that the relative 

distances between all points are in the same rank order as the relative similarities 

(Clarke et al., 2001). The interpretation of the MDS is in accordance with the 

similarity matrix: samples that are close together are more similar than those that are 

far apart. Stress values generated by MDS indicate the degree to which ranks are not 

preserved. A general rule for the interpretation of stress values is that a value less than 

0.15 represent a good ordination with no real chance of misinterpretation (Clarke et 

al., 1994).  
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To determine whether mandibular gland profiles differed between native and parasitic 

workers per age group, Analysis of Similarities (ANOSIM) was performed with 

Bonferonni correction for multiple pairwise comparisons. ANOSIM is a non-

parametric permutation procedure that is applied to the distance matrix underlying the 

ordination of samples. This procedure is an approximate analogue of the one- and 

two-way ANOVA (analysis of variance) test, testing only the similarity of samples 

rather than variation about the mean (Clarke et al., 1994). This implies that fewer 

assumptions about the data are required. ANOSIM produces a global R value that can 

range between -1 and 1. A value of 0 or lower indicates no differences between test 

groups while values greater than 0 indicates differences between test groups. Mann-

Whitney pairwise comparisons were carried out to determine significant differences in 

compounds produced per age group between native and parasitic workers. The ratio of 

queen to worker substances was determined as this has been suggested to be a good 

indicator of reproductive dominance. 

Chi-square tests (with Yates correction) were performed to determine significant 

differences in acceptance rates between native and parasitic workers. To determine if 

there was any relationship between signal profile and acceptance rates of workers, a 

Spearman rank correlation was performed. 

 

2.3 Results 

2.3.1 Ontogeny of mandibular gland profiles of A. m. capensis and parasitic workers 

over time 

The mandibular gland extracts of worker samples revealed that three aliphatic 

compounds, palmitoleic-, palmitic- and stearic acid, were consistently present in all 

age groups (table 1). From emergence to 12 hrs the differences between native and 



- 35 - 
 

parasitic workers were as a result of quantitative differences in the abovementioned 

compounds. The levels of stearic acid, the entry point to both queen and worker 

biochemical pathways, was consistently significantly higher in parasitic workers for 

all age groups. Parasitic workers started producing 9HDA, the precursor to the queen 

substance 9ODA, between 12-24 hrs, albeit in very low levels (table 1) while native 

workers only did so after 24 hrs. The mandibular gland profiles of parasitic workers 

changed markedly after 24hrs with individuals producing the full suite of identified 

queen compounds while native workers only started producing very low levels of 

9HDA. At this age parasitic workers produced significantly more 9ODA (MW: U55,58 

= 1210, p < 0.0001) and 9HDA (MW: U55,58 = 1017.5, p < 0.0001)  than native 

workers (table 1). No ovary development was detected in any of the sampled workers. 

The production of the worker compounds, 10HDA and 10HDAA was inconsistent 

and present in very low levels in both native and parasitic workers. 

Pairwise one-way ANOSIM revealed that mandibular gland profiles of native and 

parasitic workers were significantly different for all age groups (see fig. 1 for global R 

values). From emergence to 24 hrs the separation between the two test populations 

was consistent with no or little overlap of profiles (fig.1a-c). After 24 hrs there was 

discernible variability in signal development between individuals from both 

populations resulting in a greater overlap of profiles between individuals, yet parasitic 

workers were still distinguishable from native workers (fig.1d). No ovary 

development was observed in any of the sampled workers. 
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Table 1: Absolute amounts (mean ± SE, µg) of compounds in the mandibular gland extracts of A. m. capensis native and parasitic workers of 
various age groups. 

Compounds 

Age 
(hrs) 

A. m. 
capensis 
workers N 9ODA HVA 9HDAA 9HDA 10HDAA 10HDA PALMOL  PALM STEARIC 

0-6 Native 18 - - - - 0.02 ± 0.02 - 0.81 ± 0.04 7.4 ± 0.28 3.88 ± 0.47 
Parasitic 19 - - - - - 0.03 ± 0.03 0.59 ± 0.04 5.43 ± 0.42 8.14 ± 0.82 

6-12 Native 11 - - - - - - 0.97 ± 0.09 7.38 ± 0.47 4.88 ± 0.39 
Parasitic 14 - - - - - - 0.78 ± 0.06 6.18 ± 0.48 9.83 ± 0.88 

12-24 Native 13 - - - - - - 0.86 ± 0.05 6.18 ± 0.32 3.1 ± 0.27 
Parasitic 26 - - 0.01 ± 0.01 0.14 ± 0.12 - 0.09 ± 0.08 0.61 ± 0.04 4.29 ± 0.23 6.87 ± 0.33 

24-60 Native 55 - - - 0.04 ± 0.02 - 0.01 ± 0.01 0.46 ± 0.06 5.1 ± 0.17 3.12 ± 0.23 
  Parasitic 58 4.24 ± 1.92 0.03 ± 0.02 0.03 ± 0.02 2.87 ± 1.2 0.01 ± 0.01 0.04 ± 0.02 0.79 ± 0.13 4.53 ± 0.46 8.06 ± 0.83 

Abbreviations for the compounds are as follows: 9ODA = (E)-9-oxodec-2-enoic acid; HVA = 4-hydroxy-3-methoxyphenylethanol; 9HDAA = 9-hydroxydecanoic acid; 
9HDA = (E)-9-hydroxydec-2-enoic acid; 10HDAA = 10-hydroxydecanoic acid; 10HDA = (E)-10-hydroxydec-2-enoic acid; PALMOL = palmitoleic acid; PALM = Palmitic 
acid; STEARIC = Stearic acid. 
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Figure 1: Multidimensional scaling ordination of the mandibular gland secretion 
profiles of four age groups (a-d) of A. m. capensis native (▲) and parasitic workers 
(▼). Distance between markers indicates similarity between profiles of individuals. 
The stress value (< 0.15) indicates the plot is suitable to be interpreted in two 
dimensions. 
 

2.3.2 Acceptance rates of A. m. capensis and parasitic workers 

Native and parasitic workers were not differentially accepted by host colonies from 0-

12 hrs. Acceptance rates of native capensis workers were significantly higher than 

that of parasitic workers when aged 12-24 hrs (fig.3, χ2 = 35.28, df = 1, p < 0.0001) 

and 24-60hrs (χ2 = 6.84, df = 1, p ≤ 0.01). The mean ratio of (9ODA+9HDA)/ 

(9ODA+9HDA+10HDAA+10HDA) was only significantly different between native 

and parasitic workers aged 24-60 hrs (MW: U55, 58 =. 1090.5, p < 0.0001). As 

mandibular profiles became more queenlike, the acceptance of workers declined (fig. 
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3). This relationship was significant for both native workers (Spearman: rho = -0.21, p 

≤ 0.04) and parasitic workers (Spearman: rho = -0.34, p < 0.0001). 

 

 
 
Figure 2: Combination plot of % individuals accepted (bars: native     & 
parasitic    ) & mean ratio (9ODA+9HDA/9ODA+9HDA+10HDAA+10HDA) 
(native – dashed line & parasitic – solid line) plotted against age at introduction. 
Acceptance rates of native and parasitic workers were significantly different after 
12 hrs (* χ2), while significant differences in queen/worker compound ratio were 
only detected after 24hrs (   Mann-Whitney). Numbers in bars indicate the actual 
number of individuals retrieved. See table 1 for sample sizes used in ratio calculations. 

 

2.4 Discussion 

Native and parasitic capensis workers produce significantly different mandibular 

gland signals from emergence to 60 hrs, with parasitic workers showing a faster signal 

development than native workers. Parasitic workers started producing 9HDA, the 

9ODA precursor, after 12 hrs while native workers only did so after 24 hrs. Moreover, 

parasitic workers produced almost the full range of the QMP after 24 hrs, while native 

workers did not advance to producing any 9ODA. The absence of 9ODA in native 

workers suggests that they fail to complete the final oxidation of 9HDA to 9ODA 

* 

* 
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(Plettner et al., 1996, 1998). These findings support previous studies that illustrated 

how capensis workers swiftly change their mandibular gland signal from workerlike 

to queenlike under queenless conditions (Crewe et al., 1980; Pankiw et al., 1996). The 

early onset of 9HDA and 9ODA production we detected in parasitic workers suggests 

an even more rapid signal development in parasitic workers. This production of 

typical queen compounds forms an important basis for the reproductive success of 

these workers and this superior ability of parasitic workers to dominate other capensis 

lineages was also demonstrated by Dietemann et al. (2007). They showed that 

emergent parasitic workers housed in pairs with either capensis queen or worker 

offspring produced pheromones associated with reproduction at a much faster rate, 

enabling them to dominate capensis worker- as well as queen offspring within four 

days. Our data suggest that this pheromone arms race start as early as 24 hrs.  

An interesting observation was the virtual absence of worker compounds (10HDA, 

10HDAA) from the majority of sampled workers. This is similar to what has been 

observed in the mandibular gland secretions of A. mellifera queens (Crewe, 1982). In 

most A. mellifera subspecies, developing queenlike pheromones involves changes in 

the ratio of queen to worker compounds (Crewe et al., 1980; Crewe, 1988). The 

virtual absence of worker compounds in our sampled workers suggests that for 

capensis workers to become queenlike the signal development simply requires an 

increase in queen compound production. In addition, the expression of these queenlike 

signals was found to be independent of reproductive status as no sampled worker 

showed any ovary activation. Despite the fact that capensis workers have a short 

latency period of approximately 4 – 6 days (Ruttner et al., 1981) workers in this study 

(< 3 days old) might still have been too young and phsyiologically underdeveloped to 

activate their ovaries.  
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Only 24 % of the 58 parasitic workers, older than 24 hrs, produced queen compounds 

in highly variable amounts (0.3 - 70µg). The higher observed variability in parasitic 

profiles, specifically in 9ODA, suggests competition among parasitic workers for 

access to reproduction in host colonies (Moritz et al., 1996). It is likely that those with 

a head start in 9ODA production inhibit their sisters from developing pheromonally 

(Velthuis, 1976; Crewe et al., 1980; Crewe, 1981; Free, 1987; Moritz et al., 2000; 

Martin et al., 2002). 

The rapid production of queen compounds by parasitic workers also has a negative 

effect in that their acceptance by host colonies decreases significantly. Native workers 

not yet producing 9ODA were more likely to be accepted than the more queenlike 

parasitic workers. This supports the findings by Wossler and colleagues (2006) who 

found that 9ODA was positively correlated to aggression with virgin queens, ≥ 3 day 

old, eliciting more aggressive behaviour from nestmates than 1 day old virgin queens. 

Thus lower levels of QMP have been suggested to assist or exaggerate worker 

acceptance in a colony (Pettis et al., 1998). In our study native workers produced 

significantly lower quantities of queen compounds and were consequently more 

readily accepted by host colonies, supporting the view that worker acceptance is 

partly related to mandibular gland signal profiles. The fact that parasitic workers 

become established as a result of queen-like signals yet are the individuals most 

aggressed is paradoxical. This could be explained by the fact that these parasites gain 

entry into host colonies prior to signal development or another possibility could be 

that they enter colonies that have suffered queen loss or are preparing to swarm. There 

are no data to support these claims and therefore further experimentation is necessary.  
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Our findings show that the mandibular gland profiles of native and parasitic workers 

are age-dependent and diverge significantly at a very young age. The most marked 

compositional differences appear right after 24 hrs. Signal ontogeny was found to be 

more rapid in parasitic workers.  Although both native and parasitic workers have the 

potential to become reproductively active, faster pheromonal development of parasitic 

workers place them at an advantage, even though ability to infiltrate host colonies is 

correspondingly decreased. This suggests that there needs to be a balance between 

signal development and successful infiltration. 
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CHAPTER 3 

 

PSEUDOQUEEN ESTABLISHMENT IN GROUPS OF A. M. CAPENSIS 
WORKERS 

 

3.1 Introduction 

Social insect societies are often characterized by extreme reproductive skew where 

reproduction is monopolized by one or a few females. Non-reproductive females fulfil 

worker roles (Butler, 1957) and are consequently the main contributor to colony 

success. In many species, the sterility of workers is only functional as they are able to 

start reproducing at certain stages of colony development or when orphaned. The 

social milieu (i.e. queen presence and quality) affects the reproductive development of 

workers (Keller et al., 1993; Strauss et al., 2008). Reproductive plasticity is thus 

highly context dependent (Bourke et al., 1995; Crozier et al., 1996, Katzav-Gozansky 

et al., 2004). In addition, workers can enhance their inclusive fitness under certain 

conditions of kinship by reducing the reproduction of other workers through worker 

policing (Ratnieks, 1988; Crozier et al., 1996). 

Due to the inability of workers to mate, as in many social insect species, honeybee 

workers produce males, arrhenotokously. However it has been unambiguously 

demonstrated that reproduction by workers of some ant species (Heinze et al., 1995; 

Schilder et al, 1999; Grasso et al, 2000; Fournier et al, 2005) and also capensis 

honeybees (Onions, 1912; Anderson, 1963), give rise to female offspring through a 

process of thelytokous parthenogenesis. A. m capensis workers exploit this ability to 

reproductively parasitize colonies of both other (Allsopp 1993; Neumann et al. 2001; 

Baudry et al. 2004; Dietemann et al. 2006) and their own subspecies (Härtel et al., 

2006a; Jordan et al., 2008).  
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The population of capensis workers parasitizing scutellata colonies are clonal 

(Kryger, 2001a,b) and have been separated from their native population for close to 

20 years, and are thus different from more recent demonstrations of capensis workers 

parasitizing capensis colonies (Härtel et al., 2006a; Jordan et al., 2008). In both the 

latter studies, the parasitic capensis workers are still part of the native population 

while our reference to clonal parasitic workers points to those capensis workers 

infesting scutellata colonies in Gauteng. An important difference between these two 

groups of capensis workers would be their feeding regimes. Cape larvae reared in 

scutellata host colonies develop into worker-queen intermediates with large numbers 

of ovarioles and enlarged spermathecae (Beekman et al., 2000; Calis et al., 2002) and 

their pheromone bouquet is expected to be even more queen-like, which will further 

enhance parasitism (Calis et al., 2002).  

It is believed that reproductive specialization in social insects is mediated by caste-

specific pheromones, particularly queen pheromones. Research has shown that queens 

regulate worker ovary activation through mandibular gland pheromones (QMP, 

Slessor et al., 2005, Hoover et al., 2003). QMP consists of five compounds namely 9-

keto-2(E)-decenoic acid (9ODA), (R,E)-(−) and (S,E)-(+)-9-hydroxy-2-decenoic acid 

(9-HDA), methyl p-hydroxybenzoate (HOB) and 4-hydroxy-3-methoxyphenylethanol 

(HVA, Slessor et al, 1988; Winston et al., 1989, 1992). Although queens 

preferentially synthesize 9ODA (queen substance) and workers do so for 10HDA, 

these biosynthetic pathways are plastic, and each caste can produce the dominant 

compound of the other (Crewe, 1982; Naumann et al., 1991; Plettner et al., 1995). 

Virgin queens of most Apis mellifera sp. typically produce a mandibular gland signal 

that is more worker-like with lower amounts of 9ODA and higher amounts of 

10HDA, but ageing and mating ultimately induces changes to the signal (Crewe, 
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1982; Slessor et al., 1990; De Grandi-Hoffman et al., 1993; Plettner et al., 1995; 

Pankiw et al., 1996; Wossler et al, 2006). 

 Under queen- and broodless conditions workers can change their mandibular gland 

signal to a more queen-like signal by producing 9ODA. This switch in biosynthetic 

pathways is, in particular, strongly expressed in capensis workers (Hemmling et al., 

1979; Crewe et al., 1980). Strong reproductive competition among workers ultimately 

results in pseudoqueen establishment of only a very few workers (Moritz et al., 1985, 

1996; Hillesheim et al., 1989). Although workers of other honeybee races are also 

able to produce 9ODA, production in capensis workers is greater and under certain 

social conditions they can change their signal very rapidly (Crewe et al., 1980, Crewe, 

1988, Velthuis et al., 1990, Plettner et al., 1993; Ruttner et al., 1981, Simon et al., 

2001). These unique characteristics put capensis workers at a reproductive advantage 

over workers from other subspecies (Crewe et al., 1980; Allsopp, 1988; Hepburn et 

al., 1994; Wossler, 2002). This possibly aided their establishment as social parasites 

in colonies of scutellata and also their own subspecies (Allsopp, 1992; Allsopp et al., 

1993; Hepburn et al., 1994; Martin et al., 2002; Härtel et al., 2006a, b).  

The movement of capensis colonies to the northern parts of South Africa, the native 

range of scutellata, led to their establishment as social parasites of scutellata, 

resulting in the losses of thousands of colonies (Hepburn, et al., 1991; Allsopp, 1993, 

1995; Allsopp et al., 1993). Since then research has shown that a single clonal lineage 

are infesting the colonies in the north (Kryger, 2001a, b; Baudry et al., 2004; Härtel et 

al., 2006b). Similar to native capensis workers, parasitic workers rapidly develop a 

queenlike mandibular gland secretion assisting them in acquiring reproductive status 

and suppressing reproductive development in other workers (Crewe et al., 1980; 

Velthuis et al., 1988; Hepburn, 1992; Moritz et al., 2000, 2004; Simon et al., 2005).  
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Native capensis workers and clonal parasitic workers share characteristics that place 

them at a reproductive advantage over workers from other subspecies and both groups 

of capensis workers behave as parasites. We therefore wanted to determine if clonal 

parasitic workers have developed (during 20 years of isolation) more queenlike 

mandibular gland signals allowing them to out-compete native parasites. To achieve 

this we assessed how queenlike the mandibular gland profiles of native and clonal 

parasitic workers are. In this study a single parasitic worker was placed in a Liebefeld 

cage together with a group of native workers. We tested whether the single capensis 

parasitic worker always produced greater amounts of queen substance than the native 

workers. If parasitic workers consistently outcompete native workers pheromonally, 

this may suggest that on the queen-worker development continuum parasitic workers 

are even more queenlike, thus aiding their parasitic lifestyle.  

 

 
3.2 Materials & Methods 

3.2.1 Experimental setup 

Sealed capensis parasitic brood frames were obtained from a commercial beekeeper in 

the Gauteng province of South Africa and native capensis brood frames from the 

Agriculture Research Councils’s Plant Protection and Research institute (ARC-PPRI, 

Stellenbosch). Frames were incubated overnight at 34°C and 60% relative humidity 

until adult emergence. One hundred Liebefeld cages were set up with a single clonal 

parasitic worker (< 24 hrs old) together with a cohort of 50 native workers (< 24 hrs 

old). Cages were set up in a temperature controlled room at the PPRI of the 

Agriculture Research Council in Stellenbosch. Bees were fed pollen enriched candy 

and water ad libitum. Dead bees were removed from cages daily and water and food 

replenished when necessary. The experiment was terminated at 10 days since this is 
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sufficient time to develop mandibular gland signals (supported by Dietemann et al., 

2007) and all surviving bees were collected, decapitated and individually labelled 

heads placed in 200µL dichloromethane (DCM, Sigma) for gas chromatographic 

(GC) analyses. Bodies of each bee were correspondingly labelled and frozen for ovary 

dissections. 

 

3.2.2 Ovary Dissections 

In order to analyse the reproductive status of the sampled workers, the abdomens were 

dissected and the developmental stage of the ovaries was assessed using standard 

criteria (adapted from Velthuis, 1970): 1 = no development; 2 = round or bean shaped 

eggs visible (early stage of activation), 3 = fully developed ovarioles with mature 

eggs. 

 

3.2.3 Chemical Analysis 

Individual heads were removed from the solvent and the extract evaporated under a 

stream of nitrogen to dryness and then redissolved in 15µl internal standard 

(tetradecane and octanoic acid in DCM) and derivatised in 15µl (bis-trimethylsilyl) 

trifluoroacetamide (BSTFA, Sigma). One microlitre of this solution was injected into 

a gas chromatograph (Hewlett Packard 6850) equipped with a split-splitless injector 

and a flame ionization detector. Compound separation was achieved on a cross-linked 

methyl silicone HP-1 column (25m x 0.32mm) under a temperature programme: 60°C 

(1 min), 50°C/min to 90°C, 3°C/min to 220°C (10mins) using helium as the carrier 

gas. The injection port was set at 230°C and the flame ionization detector at 320°C. 

Peak areas were determined using HP Chemstation software and the mandibular gland 

compounds were identified based on the retention times of authentic compounds 
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(Sigma) and were quantified using peak area and the relative mass ratios (for 

methodological details see Simon et al. 2001). 

Since we were interested in a worker’s ability to develop a queenlike mandibular 

gland signal, only compounds of the QMP (methyl p-hydroxybenzoate (HOB), 9-

keto-(E)-2-decenoic acid (9ODA), 4-hydroxy-3-methoxyphenylethanole (HVA), 9-

hydroxydecanoic acid (9HDAA), 9-hydroxy-2-decenoic acid (9HDA) and worker 

compounds (10-hydroxydecanoic acid (10HDAA), 10-hydroxy-2-decenoic acid 

(10HDA)) were quantified. Tetradecane was used to determine the relative mass 

ratios of all the tested compounds (Gehrke et al., 1971) and the absolute amounts 

calculated. A standard solution was run every day to insure that the relative mass 

ratios were within the variability range of the series of standard runs (Crewe et al., 

1989).  

The quantitative ratios of (9ODA + 9HDA)/ (9ODA + 9HDA + 10HDA+10HDAA) 

were calculated to assess how queenlike mandibular gland pheromone bouquets were 

(Moritz et al., 2000, 2004; Schäfer et al., 2006). A ratio close to one indicates a 

queenlike blend, whereas a ratio close to zero indicates a workerlike blend.  

 

3.2.4 Statistical Analysis 

Results are reported as absolute amounts, percentages, ratios for individual workers or 

means (± sd) for groups. 

 

 
3.3 Results 

The ratio of queen to worker substance in all clonal parasitic workers was typically 

queenlike, > 0.9 (fig.1a). This also held true for the majority of native workers, but 

more variation was observed between individuals from the native range with ratios 
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ranging from approximately 0.6 – 0.99 (Crewe, 1982; Strauss et al., 2008). In addition 

there were three native workers with typical workerlike mandibular gland profiles. 

 

 

 
Figure 1: a) Ratio of (9ODA + 9HDA)/(9ODA + 9HDA + 10HDA+10HDAA) of 
native(*) and parasitic (□) A. m. capensis workers. Parasitic workers of only 14 trials 
(cages) survived to day 10 therefore only workers from these surviving trials were 
used in the analyses; b) Scatterplot of the absolute amounts of queen substances in the 
mandibular gland secretions of caged native (*) and parasitic (□) workers. Sample sizes 
of native capensis workers per trial: 1 = 13; 2 = 19; 3 = 25; 4 = 34; 5 = 8; 6 = 14; 7 = 29; 8 = 20; 9 = 
18; 10 = 7; 11 = 10; 12 = 15; 13 = 15; 14 = 23 
 

In all trials the mandibular gland profile of groups of native workers and the single 

clonal parasitic worker was similar in composition, containing almost the full suite of 

compounds of the queen pheromone complex (fig. 2). The two queen substances, 

9ODA and 9HDA, were found to be the dominant compounds in the secretions of 

both worker groups, contributing > 80% to the total secretion of individuals. The 

worker compounds 10HDA and 10HDAA were virtually absent in the majority of 

sampled workers. 

a b 
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Figure 2: Relative abundance of mandibular gland compounds in the secretions of 
groups of native (C) and single parasitic (P) A. m. capensis. Data for native workers 
represents the group average per trial. 
 

In 6 out of the 14 trials the single parasitic workers produced higher amounts of 

9ODA. The production of 9ODA in the clonal parasitic lineage (n = 14) ranged from 

1.29 – 30.01µg and in natives (n = 250) from 0 – 26.69µg. Combining the two queen 

compounds (9ODA + 9HDA) we found that parasitic workers only outcompeted 

native workers in 4 trials (trials 1, 2, 3 and 10, see fig. 3). . From figure 1b it is clear 

that native workers are very variable in their production of queen compounds. 

Similarly, the parasitic workers also produce variable amounts of queen pheromone 

across the 14 trials and in many instances the native workers often produced higher 

levels of these queen compounds compared to the clonal parasitic worker as well as 

the remaining native workers. No ovary activation was detected in any of the test 

groups. 
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3.4 Discussion 

Even though the mandibular gland secretions of clonal parasitic workers are very 

queenlike, these workers are not always pheromonally superior to native workers with 

regard to the production of queen mandibular gland substances. Similar to the findings 

of Hepburn (1992) we found the worker compounds, 10HDA and 10HDAA, were 

virtually absent from native and parasitic workers. These compounds are the major 

components of most workers of Apis mellifera subspecies and their absence in 

capensis workers, both native and parasitic, suggests that these workers readily utilize 

the queen- rather than the worker biochemical pathway (Plettner et al., 1996; 1997; 

Moritz et al., 2000). The absolute amounts of 9ODA and 9HDA showed high 

variation in groups of native workers, yet still overlapped with that of the introduced 

parasitic worker in most trials. This variability in queen substance production is 

probably an expression of genetic variation in the native capensis population since 

9ODA is reported as having a high degree of heritability (Moritz et al., 1985). Since 

the level of queen compound production is a reliable indicator of worker reproductive 

success it supports previous reports of high genetic variance for worker reproduction 

(Moritz et al., 1985; Hillesheim, 1987; Hillesheim et al., 1989; Moritz et al., 1996), 

suggesting that capensis workers do not all have the same potential to develop into 

successful laying workers. In fact most workers remain sterile. This variation in 

dominance can be explained by certain patrilines expressing greater reproductive 

dominance and outcompeting less dominant patrilines. Moritz et al. (1996) studied the 

genotypic composition of four queenless splits of each of two capensis colonies over a 

9 week period using single locus DNA fingerprinting and found that the workers of 

only a few patrilines were able to produce offspring. Moreover, the same patrilines of 

a colony appeared to become reproductively dominant in all splits. Similarly in their 
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study on reproductive dominance in groups of queenless capensis workers, Simon and 

colleagues (2005) found that worker reproduction had a high repeatability among 

subfamilies with 3 out of 30 patrilines producing > 50% of the offspring. 

Considering the clonal nature of parasitic workers, less variability is expected due to 

reduced genetic variance. We however observed high variation in compound 

production between trials. The resulting hierarchies observed in each trial are likely 

the result of self-organised mechanisms of worker-worker interactions in response to 

varying levels of queen compounds (Moritz et al., 2005). The process ultimately 

results in a reproductive division of labour between reproductive and non-

reproductive workers. Although both native and parasitic workers seem to utilize the 

queen biochemical pathway, as suggested by the absence of worker compounds, the 

oxidation of 9HDA to 9ODA is inhibited in some workers, who ultimately become 

subordinate workers. 

The ratio of queen- to worker substances failed to show that parasitic workers are 

pheromonally superior with respect to the mandibular gland secretions since a number 

of native workers showed comparable proportions of queen substances to that of 

parasitic workers. This is in contrast with the findings of Dietemann et al. (2007) who 

established that offspring of parasitic capensis pheromonally dominates offspring of 

capensis queens and laying workers within four days after emergence. They evaluated 

pheromonal dominance between pairs of individuals (i.e. queen offspring vs parasitic 

offspring; native laying worker offspring vs parasitic offspring; etc.) under standard 

laboratory conditions. In our study groups of native workers were caged with a single 

parasitic worker. Therefore our results may reflect worker-worker competition for 

access to reproduction in the absence of a queen (Moritz et al., 1996). Workers are 

thus inhibiting each other from developing as pseudoqueens (Velthuis, 1976; Crewe et 
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al., 1980; Crewe, 1981; Free, 1987; Moritz et al., 2000). Although Dietemann et al. 

(2007) found that queen offspring were dominated by parasitic workers in most test 

pairs; there were instances where they were not. This is in line with our observations 

where the production of (9ODA+9HDA) was higher in parasitic workers in only some 

of our trials supporting the view that the reproductive success of certain patrilines (in 

this instance the single clone) in one colony may not be duplicated in another when 

other potentially more dominant patrilines are present (Dietemann et al., 2007; Martin 

et al., 2004; Moritz et al., 2000). In support of earlier analyses of Cape worker 

pheromones (Hemmling et al., 1979; Velthuis et al., 1990; Hepburn 1992) these 

findings corroborate the existence of a queen-worker development continuum along 

which pseudoqueens are intermediates, possessing a queenlike pheromonal bouquet 

but remain  reproductively workerlike.  

The ratio of (9ODA + 9HDA) / (9ODA+ 9HDA + 10HDAA+10HDA) has been used 

as an indicator of reproductive dominance (Moritz et al., 2004). However, the 

secretion of a queenlike mandibular gland pheromone in this study was not associated 

with concomitant ovary activation in workers.  The reason for the lack of ovary 

development is not clear but it could be attributed to numerous factors. Proteins are 

essential for oogenesis whereas a lack of proteins will limit it (Wheeler, 1996). In this 

study workers were fed on candy patties mixed with pollen however it is possible that 

insufficient pollen was added to the food source. The ability of workers to develop 

their ovaries and lay eggs is dependent on the amount and quality of nourishment they 

receive both as adults and larvae. Young workers are thus dependent on older workers 

for food resources. Lin et al (1998) observed that when caged workers were fed a 

protein rich diet, ovary development increased correspondingly.  Although the effect 

of age on ovary development is not clear, Hepburn et al. (1994) found that capensis 
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workers underwent some ovary development within 14 days of losing their queen.  

Since workers in this study were only aged under queenless conditions for 10 days, 

this could also be a contributing factor for the lack of ovary development. However it 

is largely the complex blend of mandibular pheromones that inhibit the development 

of workers’ ovaries in the presence of a dominant individual (Moritz et al. 1996; 

2000). It is thus also possible that mutual inhibition between workers in this caged 

experiment could account for the lack of ovary development. 

Previous studies investigating pheromone production in pseudoqueens (Velthuis, 

1970; Crewe et al., 1980; Plettner et al., 1993) showed that the production of a 

queenlike pheromonal bouquet may precede ovary development. Thus pseudoqueens 

do not necessarily have to have developed ovaries to switch their mandibular gland 

signal from workerlike to queenlike. Malka et al. (2008) suggested that queen absence 

triggers the onset of queen pheromone production in workers with compound 

production being independent of ovarian development. The continued production of 

these pheromones is however dependent on ovarian development. Studies focussing 

specifically on Cape honeybees have demonstrated a relationship between ovary 

activation and a more queenlike mandibular gland substance production (Crewe et al., 

1980; Moritz et al., 1985; Crewe, 1987; Allsopp, 1988; Velthuis et al., 1990) while 

others failed to do so (Hemmling et al., 1979; Hepburn et al., 1988). In our study we 

found no link between ovary activation and queen pheromone production. 

In summary therefore, genetic variance among workers facilitates QMP production 

and it is thus inevitable that those workers which are genetically predisposed to 

become pseudoqueens will become dominant over others. The fact that native 

capensis workers parasitize colonies of their own subspecies can be explained by the 

presence of dominant patrilines which are likely to express the right combination of 
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traits to become local-based parasites. Consequently some dominant native workers 

are capable of pheromonally outcompeting clonal parasitic workers. So although 

clonal parasitic workers rapidly develop their mandibular gland signal in the first 2-3 

days, post-emergence, this does not equate them to winning the pheromonal 

dominance contest over native workers over time. 
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CHAPTER 4 

 

DO THE MANDIBULAR GLAND PROFILES OF APIS MELLIFERA 

CAPENSIS WORKERS VARY WITH LEVELS OF RELATEDNESS?  

 

4.1 Introduction 

In the darkness of the honeybee colony an intricate chemical communication system 

exists that maintains the cooperation between colony members and the organization of 

various colony tasks. The achieved colony cohesion is largely maintained through 

pheromone emissions from the resident queen. The honeybee queen produces 

pheromones that prompt workers to feed and groom her, attract drones on mating 

flights (Gary, 1962; Kaminski et al., 1990) as well as regulating worker reproductive 

development (Hepburn 1992; Wossler et al., 1999a, 1999b, Katzav-Gozansky et al. 

2001; Hoover et al. 2003, 2005). These pheromones are dispersed through the colony 

via worker-worker transmissions (Naumann et al., 1992; Winston et al., 1992; Pankiw 

et al., 1994; Slessor et al., 2005). Thus, workers who normally refrain from 

reproducing will often on queen loss start to develop reproductively. 

Workers of Apis mellifera capensis (hereafter capensis) are unique in that they 

produce unfertilized eggs that results in clonal female offspring, through a process of 

thelytokous parthenogenesis (Verma et al., 1983; Baudry et al. 2004; Oldroyd et al. 

2008). This is in contrast to other subspecies in which worker reproduction gives rise 

to male offspring (arrhenotoky; Ruttner, 1992; Crozier et al., 1996). Thelytoky is 

determined by a single gene which also affects egg-laying and pheromone production 

(Lattorf et al., 2005, 2007). In addition, capensis workers have increased reproductive 

potential due to the large numbers of ovarioles (10-20) compared to other subspecies 
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(3-5) (Ruttner, 1977; Allsopp et al., 2003) and reproductively dominant individuals 

produce a very queenlike mandibular gland signal, dominated by the queen substances 

9ODA and 9HDA (Crewe et al., 1980; Moritz et al., 2000). 

Average relatedness levels used in this study were based on the assumption of the 

haploid-diploid sex determination mechanism present in honeybees (and generally in 

Hymenoptera). Queens and workers have two sets of chromosomes making them 

diploid while drones only have one set, and are thus haploid (Harbo et al., 2002). 

Consequently, due to the polyandrous nature of honeybee queens (Adams et al., 1977; 

Koeniger, 1987; Koeniger et al., 2000; Palmer et al., 2000), natural colonies consist of 

a mixture of super-sisters and half sisters (Page et al., 1988). As a result of thelytoky, 

workers are related to their offspring by unity (r ≈ 1) and on average, equally related 

to the female offspring of their sister workers (r ≈ 0.3, assuming an effective paternity 

of 10, Greeff, 1996; Ratnieks, 2002) as they are to the queen’s offspring (Ratnieks, 

1988; Pirk et al., 2003). According to Ratnieks (2002) honey bee queens mate with 

approximately 10 males so that the workers in a colony are mostly half sisters, with an 

average relatedness of 0.30. If the queen only mated with one male then the workers 

would all be super-sisters and be related by 0.75, whereas if every worker had a 

different father then workers would all be half sisters and be related by 0.25 (Pirk et 

al., 2003) 

In this study our aim was to determine whether groups, characterized by different 

levels of relatedness (0-99% average relatedness) could be delineated on the basis of 

their mandibular gland profiles. In essence this is not a novel idea, with a study by 

Dani et al. (2004) demonstrating that the cuticular hydrocarbon profile of the wasp, 

Polistes dominulus, contains genetic information, due to the strong correlation found 

between hydrocarbon composition and the level of relatedness. Moreover, it was also 
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found that the cuticular hydrocarbon profiles in honeybees are partly genetically based 

(Page et al., 1991b; Arnold et al., 1996). Page et al. (1991b) found differences in the 

lipid composition between two worker patrilines in honeybee colonies headed by 

artificially doubly mated queens. In addition, workers in a honeybee colony with a 

single queen, mated 16 times, could be correctly assigned to their patriline on the 

basis of their cuticular lipid composition (Arnold et al., 1996). Consequently 

mandibular gland secretions, also of exocrine origin, are probably also genetically 

determined. This was indeed established by Moritz et al. (1985) in their investigation 

on reproductive dominance in capensis workers, and they showed that queenlike 

mandibular pheromone secretions in honeybee workers were genetically determined 

(Moritz et al., 1985; Lattorff et al., 2007). More recently however, Härtel and his co-

workers demonstrated that the regulation of the final synthesis from the precursor 

9HDA to the end product 9ODA is strongly influenced by the social environment 

(Härtel et al., in review). 

The findings of Jordan et al. (2008) suggested that the expression of the queen 

phenotype in workers is under both genetic and environmental control. They 

investigated traits (number of ovarioles, number of basitarsal hairs, and size of 

spermatheca) advocated to be associated with reproductive potential in capensis 

workers. These traits were found to be influenced by the genotype and rearing 

environment of the individual except for the number of ovarioles which was less 

affected by the rearing environment. In chapter 7 we studied the effect of genotype on 

the reproductive potential of workers of the pure capensis and hybrids of capensis and 

scutellata. Our findings support the view that the worker genotype affects the 

reproductive potential of workers in queenless colonies, particularly the production of 

typical queen compounds but realizing this in the context of the social environment. 
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In light of this we expected that mandibular gland profiles of workers sharing a 

greater proportion of genes would converge, and those sharing less would show more 

profile variability when we controlled for environmental variables. 

 

4.2 Materials & Methods 

4.2.1 Experimental setup 

Single capensis workers (< 24 hrs) of various origins and estimated levels of 

relatedness (proxy for the proportion of shared genes on average) were distinctly 

marked on the thorax with non-toxic paint (Posca Paint Pens, Mitsubishi Pencil Co., 

Japan) and introduced into respective Liebefeld cages containing 50 1-day old A. m. 

scutellata (hereafter scutellata) workers. The single introduced capensis workers 

originated from: i) a parasitized scutellata colony (Clones; r ≈ 0.99 - group 1); ii) a 

colony of which the queen was artificially inseminated with the semen of a single 

drone (r ≈ 0.75, group 2); iii) a colony of which the queen was artificially inseminated 

with the semen of five  drones, however a functional paternity of two (r ≈ 0.5, group 

3); iv) workers were collected  from a single, naturally mated capensis native colony 

(r ≈ 0.3 - group 4, assuming an effective mating of 10); v) a single worker from 50 

geographically separated capensis native colonies (r = 0, group 5). The intention was 

that workers from group 3 had a functional paternity of five, however microsatellites 

analysis (see chapter 6) revealed that three of the five drones were related and the 

other two were also related. Therefore for the purpose of our analysis, group 3 

consisted of two patrilines with average relatedness of workers in this group ≈ 0.5. 

Fifty Liebefeld cages per group were set up. A. m. scutellata (< 24 hrs) were collected 

from emerging brood frames sourced from the same donor colony to eliminate host 

worker effects. Workers for group 5 were collected from their respective natal 



- 76 - 
 

colonies as they were emerging. Bees were fed a pollen enriched candy pattie and 

water ad libitum. Dead bees were removed daily and cages cleaned. Dietemann et al. 

(2007) established that capensis queen and worker offspring pheromonally dominated 

scutellata workers within 4-7 days, thus all bees were aged for 10 days. All surviving 

individuals (capensis and scutellata) were harvested from the cages and placed in a 

fridge until immobile. Heads of individual workers were removed and placed in 

distinctly labeled vials with 200µl of dichloromethane (DCM, Merck) for gas 

chromatographic analyses. Abdomens of individuals were correspondingly labeled 

and frozen for ovary dissections. 

 

4.2.2 Ovary Dissections 

In order to analyse the reproductive status of the sampled workers, the abdomens were 

dissected and the developmental stage of the ovaries was assessed using standard 

criteria (Velthuis, 1970): 1 = no development; 2 = round or bean shaped eggs visible 

(early stage of activation), 3 = fully developed ovarioles with mature eggs. 

 

4.2.3 Chemical analysis 

The heads were removed from the vials and the DCM evaporated under a stream of 

nitrogen just to dryness. The residue was redissolved in 15µl internal standard 

(octanoic acid and tetradecane in 4 ml dichloromethane) and 15 µl bis-(trimethylsilyl) 

triflouroacetamide (BSTFA, Merck). One microlitre was injected into a gas 

chromatograph (HP 6850) with a split-splitless inlet and a 25mm x 0.32 mm methyl 

silicone coated fused silica capillary column. Helium was used as carrier gas at a flow 

rate of 1.9ml/min. The oven temperature was programmed  as follows: the 

temperature was kept for 1 min at 60 °C; followed by a heating phase of 50°/min to 
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110°C, and subsequently another of 3°C/min to 220°C. Finally the temperature was 

held at 220°C for 10 min. Peak areas were determined using HP Chemstation 

software. The mandibular gland compounds were identified based on the retention 

times of synthetic compounds or their retention time relative to the internal standards, 

and were quantified using peak area.   

The compounds quantified in this study and used in the subsequent analyses included: 

methyl p-hydroxybenzoate (HOB), 9-keto-(E)-2-decenoic acid (9ODA), 4-hydroxy-3-

methoxyphenylethanole (HVA), 9-hydroxydecanoic acid (9HDAA), 9-hydroxy-2-

decenoic acid (9HDA), 10-hydroxydecanoic acid (10HDAA), 10-hydroxy-2-decenoic 

acid (10HDA), stearic acid, and some minor aliphatic acids, palmitoleic acid and 

palmitic acid. Oleic acid was excluded from the analysis as it was the most abundant 

compound in all sampled individuals and its inclusion masked subtle but important 

differences. 

 

4.2.4 Statistical Analysis 

The total peak area for all quantified compounds per sample was standardized to 

100% and a multivariate analysis (using SPSS 17.0) was performed to assess the 

divergence/convergence of the chemical profiles of the various family groups. Peak 

areas represent compositional data and were thus transformed to logcontrasts 

(Aitchinson, 1986) prior to the analysis. The original transformation procedure makes 

it necessary to exclude compounds that do not occur in all samples. We therefore 

modified the transformation (log10 (relative peak area/ (geometric mean of all peak 

areas) + 1)) to avoid undefined values for peaks with an area of zero.  

The transformed peak areas were subjected to a discriminant analysis (DA) to assess 

whether groups with different relatedness levels could be separated on the basis of 
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their mandibular gland pheromone profiles. The DA also produces a classification 

matrix which reports how well the cases (individuals) have been placed in their 

known groups based on the discriminant functions. 

 

4.3 Results 

The discriminant analysis revealed a significant separation of the individuals 

according to their levels of relatedness (Wilk's λ = 0.117 χ2
 = 273.44 df = 40 p < 

0.0001. fig. 1) with 76.5% of all individuals correctly classified to their respective 

groups. 

Discriminant function 1 explained 51.9% of the variation and largely separated groups 

1 and 2 from 3. Although some overlap was observed, it also separated groups 4 and 5 

from group 3. This function was highly correlated with the queen substance 9ODA 

(Spearman’s rank correlation r = 0.66, p < 0.0001). Function 2 explained 29% of the 

variation and separated groups 1, 2 and 3 from groups 4 and 5.This function was 

associated with stearic acid and palmitic acid. 

The profiles of groups 1 and 2 showed a high tendency to cluster with the lowest 

degree of variation in their profiles and this is also reflected in the classification 

results (table 1). Ninety six and 92% of groups 1 and 2, respectively, were correctly 

classified. The variability in profiles increased in group 3 and 4 individuals with 79% 

and 78% of group members assigned to their correct groups. The profiles of group 5’s 

individuals were the most variable with only 44% correctly classified. (table 1).  

The mandibular gland profiles of the scutellata host workers used in this study were 

distinctly workerlike, with no 9HDA or 9ODA present in their extracts. We observed 

no ovary development in any of the sampled individuals. 
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Figure 1: Discriminant analysis of the five test groups of A. m. capensis workers. 
Despite some overlap, the groups were significantly separated on the basis of the 
relative areas of ten pheromones peaks: group 1, n= 42; group 2, n = 13;          

group 3, n = 17; group 4, n = 28; group 5, n = 34, ■ group centroids. 
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 Table 1: Classification results of the discriminant analysis for the  
  five test groups.  

                Predicted group   

Actual group 1 2 3 4 5 

1 96 2 0 2 0 

2 0 92 0 0 8 

3 5 0 79 5 11 

4 4 4 7 78 7 

5 6 12 6 32 44 

Data are the proportions of classifications to the different test groups (%).  
See Materials and Methods for levels of relatedness for each group 

 

4.4 Discussion 

Our data supports the existence of a link between the level of relatedness and 

mandibular gland profile. The results show that that mandibular gland profiles became 

more variable as relatedness decreased. The assumption that parasitic workers’ (group 

1) profiles would show a high degree of signal convergence, due to their clonal 

nature, was definitively confirmed. Under queenless conditions, the mandibular gland 

secretions of parasitic individuals become increasingly queenlike, with the production 

of 9HDA and 9ODA (Dietemann et al., 2007; Moritz et al., 1996). This is true for our 

data and was supported by the fact that the first discrimant function which was 

associated with the queen substance, 9ODA, and was responsible for ≈ 52% of the 

observed variation. Although parasitic individuals might acquire a queenlike 

pheromone phenotype more rapidly and frequently than native capensis workers (see 

chapter 2), not all parasitic individuals fully progress to becoming pseudoqueens (see 

chapter 3), thus a range of intermediates between worker and queen phenotypes are 

possible (Beekman et al., 2008; Calis et al., 2002).  
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The lack of ovary development observed in this study could be attributed to the 

potentially low protein diet that sampled workers consumed (Wheeler, 1996), their 

age ( ± 10 days old, Hepburn et al., 1994) or the inhibition by more dominant 

individuals  (Moritz et al., 1996; 2000). 

Since individuals shared all maternal genes on average as well as ageing environment, 

the variability observed can be ascribed to patriline differences. Within honeybee 

colonies members of certain patrilines are more likely to develop into pseudoqueens 

(Moritz et al., 1996; Martin et al., 2004; Härtel et al., 2006a; Makert et al., 2006), 

suggesting high genetic variance for reproductive dominance among worker 

subfamilies. Reproductive dominance hierarchies are largely mediated by workers’ 

mandibular secretions, and the more queenlike the secretions, the higher the worker's 

position in the hierarchy (Moritz et al., 2000, 2004; Simon et al., 2005; Dietemann et 

al., 2006, 2007). Unfortunately not all individuals were genotyped and therefore we 

cannot assign dominance to a given patriline.  

Our experimental setup also presented us with a social environment (queenless with 

scutellata workers) ideal for pseudoqueen development. This is in contrast to ageing 

clones or capensis with their own subspecies in queenless colonies. In these social 

environments, reciprocal suppression is evident with a large proportion of these 

workers failing to complete the final oxidation step from 9HDA to 9ODA (see chapter 

2).  This supports the recent work by Härtel and his co-workers (in review) who found 

that the final synthesis from the precursor 9HDA to the end product 9ODA is strongly 

influenced by the social environment. 

While this may be true in field-based colonies, when clones and capensis workers 

aged together in small Liebefeld cages all but a few advanced to producing 9ODA 

(see chapter 2). Thus, in this confined space workers are more likely to interact, 
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creating the opportunity for worker-worker competition for pheromonal dominance. 

Simon et al. (2001; 2005) found that the mandibular gland amounts in paired bees 

were three times higher than in isolated workers. Also the composition of the 

secretion differed, with isolated bees producing an average of 7.9% of 9ODA whereas 

bees kept in groups produce 44.2% 9ODA. Therefore the production and composition 

of the mandibular gland components certainly are affected by the social environment 

but laboratory and field-based trials may not always render similar trends.  Isolated or 

spatially separated workers are not enforced into pheromone competition with other 

workers and as a result their pheromone signals will remain workerlike. 

The results provide support for our hypothesis that workers having a higher 

proportion of genes in common have a more similar mandibular gland profile than 

workers sharing a lower proportion of genes. We observed that pheromone 

composition is more similar within than among family groups. Breed et al. (1988) 

showed that workers aged in lab (from pupae) were able to discriminate sisters from 

non-sisters, using hydrocarbon cues. However, these workers were rejected when 

introduced into parental colonies, so hydrocarbons did not provide the entire 

explanation for honeybee nestmate recognition. Bees use secretions from mandibles 

containing fatty acids which are used to modify comb wax. Nestmate recognition 

bioassays with fatty acids yielded significant results, providing information to 

differentiate kin and are thus active in a recognition pheromone bioassay (Breed, 

1998). Thus being a suggested means of nestmate recognition in honeybees our results 

demonstrate that mandibular gland secretions possibly possess the necessary 

prerequisites of sufficient variation and genetic determinism for use as labels in 

patriline recognition. 
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CHAPTER 5  

 

MANDIBULAR GLAND SIGNAL VARIABILITY WITHIN AND BETWEEN 

NATIVE AND PARASITIC A. M. CAPENSIS WORKERS AGED IN 

QUEENLESS A M. SCUTELLATA COLONY SPLITS 

 

5.1 Introduction 

In most social Hymenoptera (ants, bees and wasps) individuals are morphologically 

specialized for the performance of reproductive and helper roles: queens produce eggs 

while functionally sterile workers perform a range of activities (Wilson, 1971; 

Hölldobler et al., 1990). Honeybee queens exhibit extreme levels of polyandry 

(Adams et al., 1977; Koeniger 1987, Koeniger et al., 2000; Palmer et al., 2000) which 

drastically reduce the average relatedness between nestmate workers. Within the 

monogynous honeybee colony workers sired by the same drone are on average 75% 

related while those sired from different drones are approximately 30% related (Pamilo 

et al., 1982; Page et al., 1988, Breed et al., 1994; Estoup et al., 1994). 

Insect societies require a highly developed communication system due to their 

complex organization. The organization of group-level behaviour in social insects is 

mediated by pheromone signals that regulate social behaviour (Wilson, 1971). 

Pheromones are synthesized and stored in exocrine glands and behave either as primer 

or releaser pheromones (Free, 1987). The mandibular gland secretion (MGS) is 

composed of a large number of compounds, however the major signal of queen 

presence is conferred by a five compound blend, namely (E)-9-keto-2-decenoic acid 

(9ODA – queen substance), two enantiomers of (E)-9-hydroxy-2-decenoic acid 

(9HDA), methyl-p-hydroxybenzoate (HOB) and 4-hydroxy-3-ethoxyphenylethanol 

(HVA) (Slessor et al., 1988). 
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The mandibular gland signals of queens are dominated by 9ODA while that of 

workers are dominated by 10-hydroxy-2-decenoic acid (10HDA), and 10-

hydroxydecanoic acid (10HDAA) (Plettner et al. 1996, 1998). As a primer 

pheromone, queen mandibular pheromone (QMP) regulates worker reproduction 

(Butler, 1959; Hepburn 1992; Hoover et al. 2003, 2005) and as a releaser pheromone, 

it elicits behaviours such as retinue formation and attracts drones during queen mating 

flights (Gary, 1962; Kaminski et al., 1990).  

Through pheromone signalling the queen exerts her influence over colony members, 

thus maintaining harmonious and functional cohesion of the unit. However, this 

system is not flawless, as the presence of reproductively active workers in queenright 

colonies suggest (Ratnieks et al., 1989). The mandibular gland secretions of these 

workers have a similar composition to that of queens and as a result elicit behaviours 

from workers as would a queen (Crewe et al., 1980; Velthuis et al.; 1990). These 

pseudoqueens inhibit other workers from activating their ovaries and developing a 

queenlike mandibular gland signal (Moritz et al., 2000). Worker reproduction is 

generally tightly regulated, whether by control or honest signalling, through queen 

pheromones (Keller et al., 1993). The mechanisms underpinning this process are not 

fully understood and several lines of evidence have been proposed (Mohammedi et 

al., 1998; Wossler et al., 1999b; Hoover et al. 2003). In spite of the existing evidence, 

according to Katzav-Gozansky et al. (2006) the data on pheromone regulation of 

worker exocrine expressions are limited.  

Apis mellifera capensis (Cape honeybee, hereafter capensis) are native to the Western 

Cape region of South Africa. Workers of this subspecies have the ability to establish 

themselves as social parasites in colonies of other subspecies as well as their own 

(Allsopp, 1992; Allsopp et al., 1993; Hepburn et al., 1994; Martin et al., 2002; Härtel 
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et al., 2006a, b, Jordan et al., 2008). These workers have a unique set of traits that 

possibly aided their establishment as social parasites among which include the 

capacity to produce a queenlike pheromone signal (Hemmling et al., 1979; Crewe et 

al., 1980). Through their unique thelytokous mode of reproduction they produce 

females that are almost clonal (pseudoclones) in nature (Moritz et al., 1994; Baudry et 

al., 2004). These distinctive traits have contributed to capensis workers successfully 

establishing themselves as social parasites in Apis mellifera scutellata (hereafter 

scutellata) colonies after their anthropogenic movement into the native range of the 

latter (Allsopp, 1992; Allsopp et al., 1993; Greeff, 1997; Neumann et al., 2002). 

Genetic analyses suggest that the current parasitic population is derived from a single 

worker lineage (Kryger 2001a, b; Baudry et al., 2004; Dietemann et al., 2006; Härtel 

et al., 2006a).  

In this study we investigated the mandibular gland signal variability within and 

between capensis native and parasitic populations in queenless colonies of scutellata 

so as to optimize signal development. The native population is a natural population 

that grows through polyandrous reproduction leading to high genetic variability 

(Crozier et al., 1985; Keller et al., 1994; Oldroyd et al. 1998; Cole et al., 1999; Palmer 

et al., 2000) among colony members, while on the other hand the parasitic population 

originated from one (or a few) workers parthenogenetically and are as a result almost 

clonal thus displaying low genetic variability.  

Mandibular gland signal variability exists not only between subspecies but also 

between individuals (Moritz et al., 2000). It has been suggested that the qualitative 

rather than quantitative differences are responsible for the variation in the relative 

proportions making up the mandibular gland extracts (Crewe, 1988, Velthuis, 1985; 

Velthuis et al., 1990; Pankiw et al., 1996). In their investigation of reproductive 
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capensis workers (clonal offspring) Moritz et al. (1985) found a high heritability 

estimate for the production of 9ODA (h = 0.82). In contrast Wossler (unpublished 

data) found that 9ODA was strongly dependent on environmental influences with 

minimal genetic influence. Recently however, Härtel et al (in review) proposed that 

the mandibular gland biosynthetic pathway chosen by workers are genetically 

determined but the regulation of the final synthesis from the precursor 9HDA to the 

end product 9ODA is strongly influenced by the social environment. 

Our results from chapter 4 suggest that the social environment of workers has a 

substantial influence on mandibular gland signal phenotype. We also observed lower 

variability in the profiles of clonal parasitic workers. We expect that similar trends 

will prevail in this field-based experiment owing to the clonal nature of these parasitic 

workers.   

 

5.2 Materials & Methods 

5.2.1 Experimental setup 

Brood frames were collected from a native capensis colony in the Stellenbosch area 

and clonal capensis brood frames were obtained from a commercial beekeeper in 

Gauteng. Frames were placed in an incubator at 34ºC and 60% relative humidity and 

workers allowed to emerge. The resident queens were removed from four queenright 

scutellata colonies (1-4) which were then split into two queenless halves (A, B). 

During the course of the experiment one colony split (4B) swarmed, therefore only 

the data from the three remaining colonies were included in the final analysis. For 

each discriminator colony the two halves (A & B) were genotypically the same 

therefore removing any genetic bias. Colonies were housed in 5 frame standard 

Langstroth boxes containing two brood frames and food frames in an apiary at ARC-
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PPRI (Stellenbosch, South Africa 33º56´S, 18º52´E). Three hundred emerging 

workers (<24 hrs old) of both test groups were distinctly marked with a non-toxic 

marker (Posca Paint Pens, Mitsubishi Pencil Co., Japan) on the thorax and introduced 

into each split of the experimental colonies. One split of a colony received only native 

workers (A) and the other split only parasitic workers (B). These workers were 

allowed to age undisturbed for ten days, the experiment was then terminated and 

samples harvested (Dietemann et al., 2007). Heads of individual workers were 

removed and placed in labelled vials with 200µl of dichloromethane (DCM, Merck) 

for gas chromatography. Bodies were stored and frozen in correspondingly labelled 

vials for ovary dissections to score stage of development.  

 

5.2.2 Ovary Dissections 

In order to analyse the reproductive status of the sampled workers, the abdomens were 

dissected and the developmental stage of the ovaries was assessed using standard 

criteria (Velthuis, 1970): 1 = no development; 2 = round or bean shaped eggs visible 

(early stage of activation), 3 = fully developed ovarioles with mature eggs. 

 

5.2.3 Chemical analysis 

The heads of individual workers were removed from the solvent and evaporated with 

a stream of N2 to dryness. The residue was redissolved in 15µl internal standard 

solution (tetradecane and octanoic acid, Sigma) and derivitised in 15µl bis-

(trimethylsilyl) trifluoroacetamide (BSTFA, Merck). One microlitre of this solution 

was injected into a gas chromatograph (Hewlett Packard 6850) equipped with a split-

splitless injector and a flame ionization detector. Compound separation was achieved 

on a cross-linked methyl silicone HP-1 column (25m x 0.32mm) under a temperature 
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programme: 60°C (1 min), 50°C/min to 90°C, 3°C/min to 220°C (10 mins) using 

helium as the carrier gas. The injection port was set at 230°C and the flame ionization 

detector at 320°C. Peak areas were determined using HP Chemstation software and 

the mandibular gland compounds identified based on retention times relative to 

authentic standard compounds (Sigma, Wossler et al., 1999). 

The compounds identified and quantified in this study included: methyl-p-

hydroxybenzoate (HOB), 4-hydroxybenzoic acid (4HBA), 9-keto-(E)-2-decenoic acid 

(9ODA), 4-hydroxy-3-methoxyphenylethanole (HVA), 9-hydroxydecanoic acid 

(9HDAA), 9-hydroxy-2-decenoic acid (9HDA), 10-hydroxydecanoic acid (10HDAA), 

10-hydroxy-2-decenoic acid (10HDA). Tetradecane was used to determine the 

relative mass ratios of all the quantified compounds (Gehrke et al., 1971) and the 

absolute amounts calculated. A standard solution was run every day to ensure that the 

relative mass ratios were within the variability range of the series of standard runs 

(Crewe et al., 1989). 

 

5.2.4 Statistical Analysis 

The variance in the quantity of the 8 selected compounds between native and parasitic 

workers was analysed using Mann–Whitney U tests, to determine whether differences 

in variation of compounds between worker types exist. The same procedure was used 

to examine the variance of the relative proportions (transformed to log contrasts, 

Aitchinson, 1986) of the measured compounds. A discriminant analysis was 

performed to determine whether the native and parasitic workers could be separated 

on the basis of their mandibular gland profiles. Similar trends were observed in 

compound production, for the respective worker groups in all three test colonies, 

therefore data for all native workers were pooled as was for parasitic workers. The 
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ratio of queen to worker substances was determined as this has been suggested to be a 

good indicator of reproductive dominance (Moritz et al., 2000; Strauss et al., 2008). 

 

5.3 Results 

5.3.1 Absolute amounts of mandibular gland compounds 

The combined total amounts of all eight identified mandibular gland compounds 

(HOB, 4HBA, 9ODA, HVA, 9HDAA, 9HDA, 10HDAA, 10HDA) showed a 

significant difference between native and parasitic workers (MW: U121, 212 = 19651.5; 

p < 0.0001). Native workers produced 6.92 ± 0.81µg while parasitic workers 

produced 23.56 ± 1.53µg of the 8 selected compounds of the mandibular gland 

secretions (mean ± SE).  

The absolute amounts of the individual compounds revealed specific differences 

between native and parasitic workers for all compounds except for 10HDA (table 1, 

fig.1, MW: U121, 212 = 13985.5, p = 0.06). This is however not very clear from figure 1 

due to the scale used necessary to accommodate the extreme values. Native and 

parasitic workers were significantly different with respect to the worker compound 

10HDAA (MW: U121, 212 = 11589.5, p = 0.001), with native workers producing higher 

levels and showing more variability. A similar trend was also observed for 4HBA. 

The significant differences between native and parasitic workers in HOB, 4HVA and 

9HDAA were largely due to their absence in native workers. 

 The most marked differences observed were in the typical queen compounds, 9ODA 

and 9HDA. Parasitic workers produced significantly more 9ODA than native worker 

(MW: U121, 212 = 20006.5, p < 0.0001, fig. 1) and in addition parasitic workers showed 

more variability (sd = 20.32) in 9ODA production than native workers (sd = 8.27). 

The same trend was observed in 9HDA production with parasitic workers producing 
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significantly higher amounts (MW: U121, 212 = 19470.5, p < 0.0001) and showing 

slightly more variability (sd: native workers = 1.88, parasitic worker = 2.54). No 

ovary development was detected in any of the individuals sampled. 
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Table 1: Absolute amounts (µg; mean ± SE) of compounds present in the mandibular gland extracts of native and parasitic workers of  
A. m. capensis aged in queenless splits of A. m. scutellata colonies.  

  

 

  

Compounds
    A.m 

capensis 
workers N HOB 4HBA 9ODA HVA 9HDAA 9HDA 10HDAA 10HDA 
Native 121 -* 0.14 ± 0.03* 5.47 ± 0.75* -* -* 0.87 ± 0.17* 0.15 ± 0.04* 0.32 ± 0.12* 
Parasitic 212 0.07 ± 0.01* 0.01 ± 0.005* 20.87 ± 1.4* 0.01 ± 0.003* 0.02 ± 0.004* 2.42 ± 0.17*  0.02 ± 0.01* 0.13 ± 0.06* 

Abbreviations for the compounds are as follows: HOB = methyl-p-hydroxybenzoate; 9ODA = (E)-9-oxodec-2-enoic acid; HVA = 4-hydroxy-3-
methoxyphenylethanol; 
 9HDAA = 9-hydroxydecanoic acid; 9HDA = (E)-9-hydroxydec-2-enoic acid; 10HDAA = 10-hydroxydecanoic acid; 10HDA = (E)-10-hydroxydec-2-enoic acid. 
* Denotes significant differences at p < 0.05 (Mann-Whitney). 
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    Figure 1: Absolute amounts of eight mandibular gland compounds extracted from the secretions of native (■) and parasitic (■) capensis workers. The black line  

inside each box marks the median of the distribution. The lower and upper hinges, or box boundaries, mark the 25th and 75th percentiles of each distribution, 
respectively. Whiskers appear above and below the hinges. Whiskers are vertical lines ending in horizontal lines at the largest and smallest observed values that 
are not statistical outliers. Outliers are identified with a circle (○) and extreme values are marked with an asterisk (*). N: native workers = 121, parasitic workers 
 = 212.
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5.3.2 Relative proportions of mandibular gland compounds 

In an attempt to ascertain whether the two groups showed qualitative differences, we 

compared their profiles using the relative proportions of mandibular gland compounds 

(Crewe 1982; Strauss et al., 2008). 9ODA was the major constituent in the secretions 

of both native and parasitic workers, but the relative proportions were higher in 

parasitic workers (MW: U121, 212 = 16661.5, p < 0.0001, fig. 2). The relative 

proportions were however more variable in native workers (sd = 43.48) compared to 

the profiles of parasitic workers (sd = 26.74). Statistically the presence of outliers 

tends to abnormally inflate values of standard deviations. 

 Although the mean relative proportion of 9HDA was similar in both the native and 

parasitic worker groups, the variation between groups was significantly different 

(MW: U121, 212 = 16049.5 p < 0.0001).  Figure 2 shows that the 9HDA levels of at 

least 50% of native workers were more variable (the box: interquartile range = 

14.53%) compared to the tighter clustering observed in parasitic workers (interquartile 

range = 4.97%). 

The relative proportion of 10HDA was similar in both worker groups (MW: U121, 212 = 

13780 p = 0.12) but native workers displayed more variability (fig.2). This trend was 

also observed for HVA. More than 86% of native and 96% of parasitic workers had 

no 10HDAA present in their extracts. Those individuals with 10HDAA present are 

seen as extreme outliers in figure 2.  

Our analysis of the ratio of queen to worker compounds yielded significant results 

(MW: U121, 212 = 14986.5, p = 0.002). Although both groups produced what is 

considered to be secretions that indicate queen specificity (≥ 0.64, Crewe, 1982; 

Moritz et al., 2004), parasitic workers were found to be more queenlike (0.95 ± 0.01, 

sd = 0.21) than native workers (0.64 ± 0.04, sd=0.47). 
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 Figure 2: Relative proportions of mandibular gland compounds extracted from the secretions  
            of native and parasitic capensis workers. The black line inside each box marks the median of      
            the distribution. The box marks the interquartile range of each distribution. Whiskers appear  
            above and below the box hinges and are vertical lines ending in horizontal  lines at the largest  
            and smallest observed values that are not statistical outliers. Outliers are identified with    
            circle (○) and extreme values are marked with an asterisk (*).N: native workers = 121,  
            parasitic workers = 212. 

 

   5.3.3 Discriminant Analysis 

A discriminant analysis was conducted as a multivariate approach to include the 

relative proportions of all eight mandibular gland compounds in a single test (fig. 3). 

This analysis produced one discriminant function that explained 100% of the variance 

and distinguished native from parasitic workers (Wilk's λ = 0.764 χ2
 = 87.98 df = 8 p 

< 0.0001), despite considerable overlap of individual profiles (fig. 3).  
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Figure 3: Box plots of the discriminant scores for native and parasitic workers.   
Discriminant scores are the scores for each case (individual) on the discriminant 
function. The single discriminant function produced by the discriminant analysis was 
able to distinguish groups on the basis of the profiles, despite the great deal of overlap 
observed in the profiles of the two groups. It also shows that variability in native 
workers is higher than in parasitic workers. The black line inside each box marks the 
median of the distribution. The lower and upper hinges, or box boundaries, mark the 
25th and 75th percentiles of each distribution, respectively. Whiskers appear above and 
below the hinges. Whiskers are vertical lines ending in horizontal lines at the largest 
and smallest observed values that are not statistical outliers. Outliers are identified with 
a circle (○). N: native workers = 121, parasitic workers = 212. 

 
 
Among the measured compounds, 9ODA showed the highest correlation with the 

single discriminant function. Overall 73.9% of workers were correctly classified. 

Misclassifications were highest for native workers with 58.7% classified as parasitic 

workers while only 7.5% of parasitic workers were misclassified as native.  
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5.4 Discussion 

Our results showed that the cumulative variation of all compounds in the mandibular 

gland extracts of workers resulted in native workers having a more variable profile 

than that of parasitic workers. The most marked difference was found in the queen 

compounds 9ODA and 9HDA. Although the extracts of native and parasitic workers 

were very queenlike with a high ratio of queen to worker compounds, and dominated 

by 9ODA, parasitic workers produced significantly higher amounts (µg) of both 

queen substances while the relative proportions were more variable in native workers. 

Our finding in this study corroborates that in chapter 4, where we demonstrated that 

workers produced more similar mandibular gland profiles when sharing a a higher 

proportion of genes; however here we show that social context ultimately affected the 

production of queen specific compounds probably due to reciprocal pheromone 

competition, with greater variability in mandibular profiles evident.  

In queenless colonies capensis workers are able to produce a pheromonal bouquet that 

is very similar to that of the queen (Crewe et al., 1980). Queenless workers change 

their typical worker signal dominated by 10HDA and 10HDAA to a queenlike signal 

with higher 9ODA content within a few days (see chapter 3). Like queens, workers 

with queenlike pheromones can inhibit the development of other workers’ ovaries 

(Hepburn et al., 1991), and the queen mandibular pheromone seems to be associated 

with reproductive dominance (Hillesheim et al., 1989). There is evidence for 

genotypic variance in worker reproduction under queenless conditions but the 

knowledge on pheromonal reproductive competition between workers with identical 

genotypes is sparse. Differential queen pheromone production is normally facilitated 

through genetic variance (Moritz et al., 1996; Martin et al., 2004; Härtel et al., 2006a; 

Makert et al., 2006). As a result workers that are genetically predisposed to become 



- 105 - 
 

reproductive active/pseudoqueens through the production of queenlike pheromones 

will dominate other (subordinate) workers (Moritz et al., 2000, 2004; Simon et al., 

2005; Dietemann et al., 2006, 2007). 

Moritz and colleagues (1985) showed that the ability to become reproductively 

dominant in populations of capensis is subject to a strong genetic variance. Dominant 

workers synthesize both qualitatively and quantitatively queenlike amounts of the 

queen substance, 9ODA (Hemmling et al. 1979; Crewe et al., 1980; Crewe 1982). 

Since only a few workers develop into pseudoqueens (Martin et al., 2004; Robinson et 

al., 1990; Oldroyd et al., 1994; Moritz et al., 1996), individual competition for 

dominance exists. These dominant workers inhibit the reproductive capacity of 

subordinate workers (Velthuis et al., 1965; Velthuis, 1970; Crewe et al., 1980; Crewe, 

1984, 1988). Pairs of emerging capensis workers placed together in the absence of a 

queen or synthetic 9ODA were found to gradually develop their mandibular gland 

signal (Moritz et al., 2000). Instead of just producing a pheromone signal independent 

of each other, workers were found to compete for the strongest signal, leading to 

distinct dominance hierarchies within 4 days. Subordinate workers produced a 

stronger signal when paired with a dominant worker. 

Although our results suggested that worker genotype does predispose them 

developing a queenlike phenotypic signal, the variability in queen substances, 

observed specifically in parasitic workers, suggest their production also has a 

substantial social component. The regulation of the final synthesis from the precursor 

9HDA to the end product 9ODA seems to be strongly influenced by the presence of 

established dominant reproductive workers. So workers that show rapid development 

of 9ODA quickly become the dominant individuals and consequently inhibit their 

sisters from developing reproductively, and as a result this worker-worker competition 
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leads to the development of dominance hierarchies in colonies. These findings are 

congruent with those of Härtel and his colleagues who also advocate a strong social 

environmental component in production of a queenlike signal (Härtel et al., in 

review). 

The effect of age, environment and genes was studied by Velthuis and colleagues 

(1988) and they stated that “the mandibular gland’s secretions express the progress an 

individual has made in the differentiation process leading to reproduction”. Although 

the impact of genes on the expression of the queen phenotype is strong (Moritz et al., 

1995), environmental effects clearly contribute to this expression. Similarly, the lack 

of ovary development was marked in this study. It is clear that for workers to achieve 

a typical queenlike signal and activate their ovaries they have to overcome the 

inhibition imposed by other, more dominant workers. In addition nutrition, age and 

developmental stage will also affect their mandibular gland secretions (Crewe, 1988; 

Crewe et al., 1989; Simon et al., 2001) and ovary development/activation (Wheeler, 

1996, Hepburn et al. 1994).  

Prudence is required with the interpretation of mandibular gland pheromone data 

since it depends on whether either the absolute or relative amounts of the tested 

components are being considered since the interpretation of results might lead to 

different conclusions. This is due to the fact that relative amounts are based on the 

total amount of secretions, of those compounds included in the analysis thus the 

proportions of each compound is relative to all others selected. Two individuals might 

have the same absolute amounts of a specific compound but depending on the total 

amount of secretions the representation of the compound might differ between said 

individuals.  Crewe et al. (1980) found that the percentage of the content of 9ODA in 

queenless workers was similar to that found in laying workers, but the absolute 
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amount was just half of it. I would suggest that both ways of interpretation should be 

taken into account depending on the objective of the experiments. 

Although queen pheromone biosynthesis seems to be genetically determined, with 

both native and parasitic workers being predisposed to utilizing the queen biochemical 

pathway, the expression of the queen phenotype depends on the social context of the 

workers.  The data supports this view since we found that the expression of a 

queenlike mandibular gland signal is strongly influenced by the presence of dominant 

workers (social environment). In parasitic workers rapid signal development (chapter 

2) resulted in dominant workers inhibiting their sisters before they could develop their 

signals, while in native workers, the same behaviour results from polyandry which 

facilitates reproductive variance. The lower production of queen compounds in native 

workers and higher levels in parasitic workers also suggests that the latter might have 

lower sensitivity/high response threshold (Crewe, 1982, 1988; Naumann et al., 1993; 

Magnuson, 1995) to the pheromone levels of other workers. As a result they are less 

inhibited by other workers. This could allow them a head start in becoming 

reproductively active. This mimicry of queen pheromones which leads to the 

establishment of pseudoqueens demonstrates the existence of the proposed ongoing 

worker-worker pheromonal arms race (Katzav-Gozansky et al, 2006, Malka et al., 

2008).  
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CHAPTER 6 

 

SIGNAL VARIATION IN MANDIBULAR GLAND PROFILES ACCORDING 

TO PATRILINE AND SOCIAL ENVIRONMENT 

 

6.1 Introduction 

The honeybee queen exhibits the most extreme degree of polyandry among the social 

insect genera (Koeniger et al., 2000; Palmer et al., 2000). Moritz and colleagues 

(1996) reported up to 44 matings per queen for Apis mellifera. Members of the same 

patriline, super sisters (Page et al., 1988), share genes from both the queen mother and 

a drone father and in the absence of inbreeding have a coefficient of genetic 

relatedness of 0.75 (Pamilo et al., 1982). Half-sisters belong to different patrilines and 

only share on average 50% of their genes from the mother, and have a genetic 

relationship of 0.3 (effective paternity of 10 males, Ratnieks, 1988; Pirk  et al., 2003). 

Due to this high genetic variability in honeybee colonies the potential for conflict over 

reproduction is high (Ratnieks, 1988; Greef, 1996).  If members of a patriline are able 

to recognize each other, they could increase their reproductive success by making sure 

that one of their full sisters becomes the next queen (Getz, 1981; Moritz et al., 1992; 

Oldroyd et al., 1994). Previous efforts attempting to prove such nepotism have 

however failed (Chaline et al., 2005). It has been shown that cuticular hydrocarbons 

are more variable among patrilines than within (Arnold et al., 1996; 2000). The 

question remains whether mandibular gland secretions show the same trend and could 

it thus be used for subfamily recognition? A recent study by Fan and colleaugues 

(2010) found that the queen pheromone complex (QMP) significantly changes the 

cuticular hydrocarbons of workers treated/exposed to QMP.  QMP-treated bees in 
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their study accumulated traces of the pheromone on their bodies which was rapidly  

internalized as the half-life on the cuticle surface is ≈13 min (Naumann et al., 1991). 

It thus indirectly affects nestmate recognition as treated workers are no longer 

recognized as nestmates. Colonies are generally harmoniously functioning units. This 

is achieved through social regulation via chemical signals of the mandibular gland 

signals of the queen (Slessor et al., 1988). Caste specificity and biosynthetic plasticity 

are known properties of mandibular gland secretions in the honeybee (Crewe, 1982, 

Plettner et al., 1993, 1997). Under queenright conditions the pheromonal bouquet of 

workers are typically queenright, with the dominant presence of 10-hydroxy-2-

decenoic acid (10HDA) and 10-hydroxydecanoic acid (10HDAA), while under 

queenless conditions certain workers  start producing the queen substances (E)-9-

keto-2-decenoic acid (9ODA) and (E)-9-hydroxy-2-decenoic acid (9HDA). Chemical 

analyses of the mandibular gland secretions of both female castes have been shown to 

regulate a variety of key functions acting both as primer and releaser pheromones 

(Free, 1987). Initial studies of signal variation focused on the variation of 9ODA in 

queens and 10HDA in workers (Pain et al., 1960; 1967; 1976; Barbier et al., 1960).  

The composition of the mandibular gland secretions in both queens (Engels, et al., 

1997; Wossler et al., 2006) and workers (Crewe, 1988; Crewe et al., 1989; Simon et 

al., 2001) are affected by age, caste, race and social context. A. m. capensis workers 

are unique in that they swiftly change their signal from workerlike to more queenlike 

under queenless conditions (Crewe et al., 1980; Simon et al., 2001; 2005). 

Furthermore it has been shown that mandibular gland signal production varies 

between subspecies but variability also exists between individuals (Moritz et al., 

2000).  
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The phenotype that an individual displays is influenced by both its genotype and 

environment. Moritz and Hillesheim (1985) found that the production of 9ODA is 

largely influenced by genotype. This study investigates the relationship between 

mandibular gland profiles and genotype, but more specifically the link between 

profile and patriline. The polyandrous nature of the honeybee queen results in the 

production of genotypically diverse offspring in monogynous colonies. This facilitates 

the detection of possible genotypic effects because offspring, of a similar age cohort 

fathered by different drones (patrilines) within a colony, share the same maternal 

genotype on average, the same maternal effects, and the same environmental rearing 

conditions and differ only in their paternal genotype. If respective patrilines within a 

colony express a specific signal phenotype, it would indicate that the expression of the 

mandibular gland signals contain genetic information. However, if all workers within 

a colony express a more homogenous signal, it would indicate a stronger 

environmental influence. 

 

6.2 Materials & Methods 

6.2.1 Queen rearing and artificial inseminations 

A large natural capensis colony, at the Agriculture Research Unit, Stellenbosch 

(33°56´ S, 18°51´E), was dequeened and the queenless workers were allowed to 

naturally initiate queen rearing. . Two capped queen cells were collected from the 

rearing colony and placed into an incubator (35°C, 60% relative humidity) to emerge. 

The two capensis virgin queens (4-6 days old) were artificially inseminated with the 

semen of 5 capensis drones (Laidlaw, 1978) and respectively introduced into two 

queenless 5-frame splits of the original rearing colony. The following day, queens 

were recaptured and anaesthetized with CO2 to stimulate egg-laying (Mackensen, 
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1947) and placed back into the colony. Drones used for inseminations were kept for 

genetic analysis to determine paternity of harvested workers. Colonies were inspected 

weekly for laying activity and removal of queen cells. Unfortunately only one queen 

survived.  Genetic analysis revealed that three of the drones used were related and the 

other two were also related. The molecular markers used in the analysis were not 

informative enough to distinguish between brothers, and therefore based on the 

relatedness between drones our analysis was in affect based on two patrilines (3 

brothers and 2 brothers). 

 

6.2.2 Experimental set up 

Once the surviving queen was established, a frame of her emerging brood was 

removed from the colony and placed in an incubator and allowed to emerge. 

Approximately 300 emerged bees were colour marked on the thorax with a non-toxic 

paint (Posca paint pens, Mitsubishi pencil Co., Japan) and returned to the natal 

colony. All marked bees were harvested 10 days after introduction. Heads were 

removed for mandibular gland GC analysis and individually labelled and stored in 

200µl dichloromethane (DCM, Merck) and bodies frozen for dissections to determine 

ovary development after which they were stored in alcohol until genetic analysis was 

done. 

Data for mandibular gland extracts of workers (with the same parental origins as 

workers in the abovementioned experiment) aged singly with a cohort of scutellata 

workers (chapter 4) was used in the analysis of this study. Individual capensis 

workers (< 24 hrs), distinctly marked on the thorax with paint, were introduced into 

50 respective Liebefeld cages containing 50 1-day old scutellata workers. The single 

introduced capensis workers originated from the same queen as for this experiment 
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(see chapter 4). The scutellata workers were collected from emerging brood frames 

sourced from the same donor colony to eliminate host worker effects. Bees were fed a 

pollen enriched candy pattie and water ad libitum. Dead bees were removed daily and 

cages cleaned. 

Thus, workers aged in a queenright capensis colony were compared to their sisters 

aged individually with queenless scutellata workers. The aim was to determine the 

affect of the social environment on mandibular gland profiles.  

 

6.2.3 Chemical analysis 

The heads of dissected workers were removed from the vials and the DCM evaporated 

under a stream of nitrogen just to dryness. The residue was redissolved in 15µl 

internal standard (octanoic acid and tetradecane in 4 ml DCM) and 15µl bis-

(trimethylsilyl)-trifluoroacetamide (BSTFA, Merck). One microlitre was injected into 

a gas chromatograph (HP-6850) with a split-splitless inlet and a 25mm x 0.32 mm 

methyl-silicone coated fused silica capillary column. Helium was used as carrier gas 

at a flow rate of 1.9ml/min. The oven temperature was controlled as follows: 1 min at 

60 °C; followed by a heating phase of 50°/min to 110°C, and subsequently another of 

3°C/min to 220°C. Finally the temperature was held at 220°C for 10 min. Peak areas 

were determined using HP Chemstation software and the mandibular gland 

compounds were identified based on the retention times of authentic compounds and 

were quantified using peak area and the relative mass ratios (for methodological 

details see Simon et al. 2001). Ten compounds were identified but only nine were 

included in the analysis (table 1). Oleic acid was excluded from the analysis as it was 

the most abundant compound in all sampled individuals and its inclusion masked 

subtle differences. 
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6.2.4 Genetic Analysis 

6.2.4.1 DNA Extraction 

DNA was obtained from the fathering drones and workers using an adaptation of a 

salt extraction method (Aljanabi et al., 1997). For drones and workers, 2 legs were 

homogenized in 500µL digestion buffer (0.1mg/mL Proteinase K (Roche), 10mM 

NaCl, 10mM Tris pH 8.0, 10mM EDTA pH 8.0, 0.5% sodium dodecyl sulphate) in a 

96 well 1ml  plate, each well containing a 3mm stainless steel ball bearing. Tissue was 

homogenized for 10min at 25Hz using a TissueLyser (Qiagen). Samples were 

incubated overnight at 55°C. After incubation, 20µL volume of 5M NaCl was added 

to each sample. Samples were mixed by inversion then incubated for 30-45min at -

20°C until cloudy. Samples were then centrifuged for one hour at 4300rpm at 4°C. 

Following centrifugation, 200µL of the supernatant was added to 400µL 99.7% 

ethanol, mixed by inversion and then incubated at -20°C overnight. Samples were 

again centrifuged at 4300rpm and 4°C for one hour before discarding the supernatant 

and rinsing once with 70% ethanol. Samples were air-dried and then resuspended in 

50µL 1 x Tris-EDTA buffer pH 8. 

 

6.2.4.2 Amplification of Genomic DNA 

The fathering drones and workers were genotyped at HB-SEX-01, HB-SEX-03, HB-

THE-01, HB-THE-03, HB-THE-04 (Shaibi et al, 2008). DNA was amplified in 5µL 

multiplex PCR reactions consisting of 0.2µM of each primer (reverse primers 5’ 

labelled); 0.3µM of dATP, dTTP, dCTP and dGTP; 2.5mM MgCl2; 1x TAQ-Ti 

Polymerase reaction buffer (Fisher Biotec); 0.2U TAQ-Ti DNA Polymerase (Fisher 

Biotec); 2.5%(w/v) glycerol and 1µL genomic DNA. PCR conditions were: 
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denaturation at 94°C for 10 min; 35 cycles of 94°C for 30s, 56°C for 30s, 72°C for 

30s and a final extension period at 72°C for 10 min. 

 

6.2.4.3 Capillary Electrophoresis of PCR Products 

PCR products were run on a 3130xl Genetic Analyser (Applied Biosystems) with 

capillary length 36cm and injection time of 15s at 1200V, for 41 minutes. Results 

were analysed using Genemapper software (Applied Biosystems) and the genotypes 

of drones and workers were determined.  

 

6.2.5 Statistical Analysis 

To overcome statistical problems associated with multicolinearity and non-normality 

of GC-derived data, we applied a standard procedure of normalisation of peak areas. 

Peak areas were transformed according to Aitchison (1986) and Reyment (1989). The 

original transformation procedure makes it necessary to exclude compounds that do 

not occur in all samples. We therefore modified the transformation (log10 (relative 

peak area/ (geometric mean of all peak areas) + 1)) to avoid undefined values for 

peaks with an area of zero.  

The transformed peak areas were subjected to a discriminant analysis (DA) to assess 

whether the two patrilines were separated on the basis of their mandibular gland 

pheromone profiles. The DA also produces a classification matrix which reports how 

well the cases (individuals) have been placed in their known groups based on the 

discriminant functions.  

In addition, we applied an alternative method to test for significant differences 

between patrilines. Using relative peak areas we computed an analysis of similarity 

(ANOSIM) based on between groups and within group comparisons.  To identify 
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compounds that contributed most to the differences across patrilines we compared the 

proportional peak areas with non-parametric Mann–Whitney-U pairwise comparisons 

of groups.  

In order to ascertain the affect of social environment on mandibular gland profiles, 

workers aged in a queenright capensis colony were compared to their sisters aged 

individually with queenless scutellata workers. Consequently this analysis allowed us 

to investigate differences in mandibular gland profiles between two groups sharing 

both maternal and paternal origins but differing in their social environment. The initial 

experiment plan was to age workers in their natal queenright capensis colony since 

mandibular gland signals could potentially be used as patriline signals and we wanted 

to ascertain if the affect was apparent in normal colonies. This was to be followed by 

removing the queen and ageing another cohort of her workers under queenless 

conditions and then comparing worker signals from the two environments. 

Unfortunately not enough brood could be obtained from the queen to continue with 

the queenless part of the experiment. 

 

6.3 Results 

Discriminant analysis was not able to distinguish workers from patriline 1 from those 

of patriline 2 (Wilks’ lambda λ = 0.961, χ2 = 5.515, p = 0.701) even though the 

classification results correctly classified 74.5% of all workers to their respective 

patrilines. The less conservative ANOSIM also resulted in overall non significant 

differences between patrilines (Global R = 0.005, p = 0.44; permutations = 999, 

random sample from a large number).  This is supported by the MDS (fig. 1) which 

shows overlap in profiles between workers from the two patrilines. Pairwise 
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comparisons only revealed significantly higher relative amounts of 9HDA (Mann-

Whitney: U37, 108 = 2452.5, p = 0.039) in workers from patriline 2 (table 1).  

 

      Figure 1: MDS ordination based on the mandibular gland profiles of patriline 1          
(▲, n = 37) and 2 (▼, n = 108) from queenright capensis colony. No clear 
separation between the two patrilines can be observed.  

  

However when comparing the groups of workers aged in different social 

environments a single discriminant function was responsible for the complete 

separation between the two groups (explaining 100% of the variation between groups, 

Wilks’ lambda λ = 0.118, χ2 = 331.002, p < 0.0001). The discriminant function was 

associated with the typical queen compounds, 9HDAA, 9HDA and 9ODA. 

Classification results showed that all individuals were correctly (100%) assigned to 

their respective groups.  
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      Figure 2: MDS ordination of the mandibular gland profiles of two groups of   
      workers aged under different social conditions, originating from a single capensis  
      queen inseminated with the semen of 5 capensis  drones in: queenright natal  
      capensis colony  = ▲ (n = 145), and Liebefeld cages in presence of queenless  
      scutellata workers = ▼(n = 16) shows a distinct separation between groups. 
 

The MDS ordination (fig. 2) shows a distinct separation between workers 

(irrespective of patriline) aged under queenless conditions in the presence of scutella 

workers and those aged under natural queenright conditions in the presence of 

capensis workers (ANOSIM Global R = 0.808, p = 0.001; permutations = 999, 

random sample from a large number).  Pairwise comparisons revealed a significant 

difference in the relative amounts of all compounds, except 10HDAA, between 

workers aged in different environments. No ovary development was found in any of 

the sampled workers.     

 

 



- 126 - 
 

Table 1: Comparison of the relative amounts of the identified mandibular gland compounds extracted from the test groups (mean proportion ± 
se). Significant differences in specific compounds between groups are denoted by ∗ (Mann Whitney, p < 0.05)    

  N 9ODA HVA 9HDAA 9HDA 10HDAA 10HDA PALMOL PALM STEARIC 

Level 1 analysis:  

Patriline  

Patriline 1 37 0.02 ± 0.02 0.02 ± 0.02 0.17 ± 0.1 5.83 ± 1*  0.18 ± 0.1 2.28 ± 0.73 0.67 ± 0.13 21.93 ± 0.44   68.9 ± 1.28 

Patriline 2 108 0.14 ± 0.05 0.06 ± 0.02 0.27 ± 0.05 8.42 ± 0.77*  0.12 ± 0.08 2.7 ± 0.48 0.74 ± 0.09  21.12 ± 0.42 66.43 ± 1 
Level 2 analysis:  

Social 

 environment                   

Queenright 145 0.11 ± 0.04* 0.05 ± 0.02* 0.24 ± 0.04* 7.76 ± 0.63* 0.13 ± 0.07  2.6 ± 0.4* 0.72 ± 0.07* 21.33 ± 0.33* 67. 06 ± 0.77* 

Queenless 16 8.94 ± 2.63 * 1.45 ± 0.31*  3.19 ± 0.32*   46.87 ± 4.42* - 0.09 ± 0.09*  4.05 ± 0.55*  13.17 ± 1.55*  22.14 ± 2.8 * 
Abbreviations for the compounds are as follows: 9ODA = (E)-9-oxodec-2-enoic acid; HVA = 4-hydroxy-3-methoxyphenylethanol; 9HDAA = 9-hydroxydecanoic acid; 
9HDA = (E)-9-hydroxydec-2-enoic acid; 10HDAA = 10-hydroxydecanoic acid; 10HDA = (E)-10-hydroxydec-2-enoic acid; PALMOL = palmitoleic acid; PALM = Palmitic 
acid; STEARIC = Stearic acid. 
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6.4 Discussion 

Our results clearly show that the social environment plays a major role in the 

production of mandibular gland compounds in honeybee workers which are not 

unexpected (Crewe et al., 1980; Härtel et al., 2006a, 2006b). Despite the presence of 

similar compounds in the mandibular gland extracts of queenright and queenless 

workers, the latter group had a distinctly different profile. It was not possible however 

to distinguish the mandibular gland profiles of workers on the basis of their patrilines 

in this study. Our results only showed a significant difference in the 9ODA precursor, 

9HDA. This does suggest that workers from certain patrilines are predisposed to 

following the queen mandibular pheromone biosynthetic pathway (Martin et al., 2004; 

Robinson et al., 1990; Oldroyd et al., 1994; Moritz et al., 1996) yet the final oxidation 

to 9ODA is dependent on the social environment (Hartel et al., in review; Moritz et al 

2000). We therefore tentatively suggest that the production of queen substance, 

9ODA, may initially hinge on paternal effects but the end point is very much 

dependent on the social environment of the workers.   

Investigating patriline differences in pheromone signal development can be important 

in the context of kin recognition. This is because the identification of relatives is 

required for organisms to favour close relatives in social interactions (Hamilton, 

1964). Recognition of true relatives requires among others a strong association 

between phenotype and genotype (Breed, 1998; Blaustein, 1983; Pfennig et al., 1995). 

Patriline differences in signal phenotype would allow workers to treat their sisters 

preferentially thus increasing their own reproductive capacity. However, if all 

subfamilies treated their full-sisters preferentially, colony production would decrease 

and those colonies would probably die out. Workers may therefore be selected not to 

show preferential treatment even though Arnold and his colleagues (1996, 2004) have 
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shown that hydrocarbon profiles are patriline specific. Our data however did not show 

distinct separation between the two patrilines which could either mean that 

mandibular gland secretions are not patriline specific or the subtle differences 

between patrilines were not detectable using our methods of analyses.  

Effective discrimination of kin and non-kin in birds and social insects can be 

accomplished through learning characteristics of individuals or groups and this 

recognition is dependent on phenotype matching, which enables the individual to 

form a template for discerning relatives (Lacy et al., 1983). A drawback of these 

recognition or discrimination methods is that it creates the opportunity for parasitic 

individuals to exploit the system. This appears to be the case for capensis workers 

which are very plastic in their production of pheromones, since they are capable of 

rapidly switching their biosynthetic pathways from producing workerlike to a more 

queenlike pheromone signal when placed in queenless scutellata colonies (Crewe et 

al., 1980; 1990; Moritz et al., 2000) as was evident in this study. This mimicry of 

queenlike pheromones enables capensis workers to establish themselves as 

pseudoqueens, that prime and release very similar reactions in sterile workers to those 

of true queens (e.g. suppress ovary activation; release retinue behavior; Wossler 

2002).  

The queen substance, 9ODA, is known to play an important role in worker 

reproductive hierarchies (Moritz et al., 1985; Hillesheim et al., 1989). The more 

queenlike the mandibular gland signal of a worker, the more that worker could 

dominate other workers, leading to the suppression of pheromone signal development 

in the subordinate workers as well as ovary inhibition (Hillesheim et al., 1989). It 

would appear that all capensis workers have a predisposition to selecting queen 

biosynthetic mandibular secretion biosynthetic pathways, but what may be under 
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strong selection is the speed of signal development which would give some patrilines 

a head start in the race to produce a more queenlike signal. The existence of 

reproductively dominant and subordinate patrilines in colonies (Martin et al., 2004; 

Robinson et al., 1990; Oldroyd et al., 1994; Moritz et al., 1996) suggests patriline 

differences in signal production is an important mechanism in establishing 

reproductive dominance hierarchies in colonies.  

It is apparent that there is a high degree of social influence on the production and 

composition of queen-specific mandibular gland compounds. Our results clearly 

reflect this with queenless workers producing distinctly different signals to queenright 

workers, despite similar genetic origins. In the presence of scutellata workers as well 

as the absence of a queen, capensis workers experienced no suppression, thus 

developing their signal. Although capensis workers have a genetic predisposition for 

developing a queenlike phenotype it is also well known that changes in mandibular 

gland secretions in both workers and queens (Crewe et al., 1989, Engels et al., 1997; 

Simon et al, 2001) are age and race dependent. Ontogenetic patterns also changes 

post-emergence, thus in queenright colonies the composition of the mandibular gland 

secretions coincide with the task that the honeybee worker is involved in at a given 

stage in its life (Free, 1965; Wilson, 1971, Seeley, 1982; Robinson et al., 1989). Thus 

both the physical environment and social context that the workers experience also 

impact on the mandibular gland secretions. 

 In this study we demonstrated that mandibular gland profiles are substantially 

affected by the social context of workers. This supports our findings from chapters 3 

and 4 where we found that althought capensis workers are genetically predisposed to 

developing a queenlike pheromone signal; it is their social context which ultimately 

determines the development.  
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CHAPTER 7 

 

GENOTYPE AFFECTS A. M. CAPENSIS AND HYBRID HONEYBEE 

WORKERS’ REPRODUCTIVE POTENTIAL 

 

7.1 Introduction 

Reproductive division of labour is a defining characteristic of insect societies. The 

ability of colony members to become reproductively active varies from species to 

species. In many social bees, wasps and ants, reproductive division of labour is 

determined by extrinsic (e.g. mating opportunities) or intrinsic (e.g. relative fighting 

ability) factors. Differences in reproductive ability among adults are typically 

established during larval development, but all adult females can, in theory, become 

breeders (O'Donnell, 1998). In other Hymenopteran species the differentiation 

between worker and breeder caste is rigidly determined by metamorphosis, by either 

genetic factors (Anderson et al., 2006), larval feeding (Wheeler, 1986), or a 

combination of both (Kerr et al., 1966; reviewed in Schwander et al., 2010). In these 

species there is a loss of totipotency early in the larval stage, if not before, that results 

in discrete reproductive (queen) and helper (worker) castes. Here, the queen is the 

only individual capable of sexual reproduction, while all other colony members are 

specialised workers. 

The loss of totipotency of colony members decreases the potential for reproductive 

conflicts within colonies as it results in divergent selection pressures such that helpers 

are selected to increase their inclusive fitness (Hamilton, 1964a, b) via becoming 

better workers, and breeders by increasing their direct fitness by massively increasing 

their reproductive output (Beekman et al., 2006). However, as insect societies rarely 
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consist of clones, the reproductive interests of colony members do not completely 

overlap (Beekman et al., 2003). Therefore, though the potential for conflict remains, 

the reproductive options for workers are severely limited because workers cannot 

mate; the best they can do is to produce a few males via arrhenotokous 

parthenogenesis if they reproduce at all (Bourke, 1988). 

When workers produce diploid female offspring without mating (thelytokous 

parthenogenesis), conflicts within the colony are expected to increase because the 

workers’ reproductive potential are greater since they are related to their female-

producing eggs by unity (Greeff, 1996). In the Cape honeybee, Apis mellifera 

capensis (hereafter capensis) the workers are capable of thelytokous parthenogenesis 

(Onions, 1914) and this leads to overt competition among workers and between the 

queen and the workers over reproduction (Hepburn, 1994; Jordan et al., 2008b; Moritz 

et al., 1996; Moritz et al., 2004). Selection for increased reproductive capacity in 

workers has resulted in capensis workers exhibiting morphological traits not found in 

workers of any other (sub)species of Apis. A. m. capensis workers have higher 

numbers of ovarioles compared with workers of other subspecies (Hepburn 2001; 

Hepburn et al., 1991) and often have a spermatheca, a sperm storage organ usually 

only present in queens (Hepburn 2001; Hepburn et al., 1991; Jordan et al., 2008a).  

Caste determination in honeybees is determined by larval feeding, with queen-

destined larvae receiving a greater amount of food that is nutritionally different to that 

received by worker-destined larvae (‘royal’ versus ‘worker’ jelly) (de Wilde et al., 

1982). The expression of queenlike characteristics in capensis workers is strongly 

influenced by larval feeding. Larvae that are fed more and better develop into more 

queenlike individuals relative to those fed a more frugal diet (Allsopp et al., 2003; 

Beekman et al., 2000; Calis et al., 2002).  
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The Cape honeybee is not the only honeybee present in South Africa. While capensis 

is confined to the southern part of the Western and Eastern Cape, the African 

honeybee A. m. scutellata (hereafter scutellata), is found throughout the rest of South 

Africa and in countries to its north (Ruttner, 1988). The two subspecies interact within 

a hybrid zone situated in the semi-arid areas of the Karoo ecotone (Hepburn et al., 

1991). This hybrid zone is particularly interesting because capensis can be a lethal 

social parasite of scutellata (Allsopp, 1992). Capensis workers are known to enter 

scutellata colonies and parasitise them with their eggs thus producing more clonal, 

parasitic workers (Martin et al., 2002a; Neumann et al., 2002). The end result of such 

invasion is the death of the host colony (Martin et al., 2002b). Despite its parasitic 

potential, capensis has not been found outside its natural range without artificial 

movement by humans (reviewed in Beekman et al., 2008). The stability of the 

honeybee hybrid zone is even more intriguing given that scutellata also has traits that 

make it highly invasive. Since its introduction into Brazil in 1956, scutellata has 

largely displaced all European A. mellifera subspecies in the Americas (Schneider et 

al., 2004).  

One hypothesis for the stability of the capensis-scutellata hybrid zone is that it is in 

fact a tension zone (Beekman et al., 2008). Tension zones arise when hybrids are less 

fit than either parental genotype (Barton et al., 1985). Due to the reduced fitness of 

hybrids, gene flow between the parental populations is curtailed or prevented (Barton 

et al., 1985). Within the honeybee hybrid zone of South Africa, queens of both 

capensis and scutellata may mate with drones of both subspecies, resulting in hybrid 

or ‘mixed’ colonies consisting of pure workers of the queen’s genotype and capensis-

scutellata hybrids (Beekman et al., 2008).  Beekman et al. (2008) suggested that 
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mixed colonies may be less fit than pure colonies of either capensis or scutellata due 

to pheromonal imbalances that lead to a breakdown in reproductive division of labour.  

The tension zone hypothesis (Beekman et al., 2008) is based on the pheromonal 

polymorphism between capensis and scutellata (Wossler, 2002). Pheromones are 

essential in regulating reproductive division of labour in honeybee colonies. For 

example, workers use the pheromones emitted by the queen and her brood to assess 

her fecundity (Mohammedi et al., 1998). Pheromones produced by larvae affect the 

amount and quality of food larvae receive and there is a strong interaction between the 

genotype (capensis or scutellata) of the larva and the genotype of the nurse workers 

(Allsopp et al., 2003; Beekman et al., 2000). This interaction is particularly important 

in colonies of mixed genotypes (Jordan et al., 2008a).  

A. m. capensis brood reared by scutellata or capensis-scutellata hybrids receive more 

and better food than when they are reared by their own sisters (Allsopp et al., 2003; 

Calis et al., 2002). Thus capensis workers reared by scutellata nurses have a strong 

tendency to develop queen-like characteristics (Allsopp et al., 2003; Beekman et al., 

2000). When these workers become reproductively active, colony productivity is 

likely to decline because reproductive workers work less than their sterile sisters 

(Hillesheim et al., 1989; Martin et al., 2002b). Thus, Beekman et al. (2008) 

hypothesised that colonies in which a large proportion of workers are reproductively 

active suffer a reduction in colony-level fitness relative to colonies of either capensis 

or scutellata genotype (in which most or all workers are functionally sterile). This 

suggests that genetically mixed colonies in the natural hybrid zone may have 

significantly lower fitness than ‘pure’ colonies, thus selecting against hybrids and 

hybridisation.  
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Here we investigate whether workers from capensis patrilines (sired by capensis 

drones) have a higher propensity in becoming reproductively active compared to 

capensis-scutellata hybrid workers (sired by scutellata drones). If we find that 

workers of capensis paternity are more likely to become reproductively active, it 

would suggest that genetically mixed colonies may suffer from a breakdown in 

reproductive division of labour and that the hybrid zone is indeed a tension zone. 

Under our experimental conditions, similar aged pure capensis and hybrid workers 

shared all environmental influences and the same maternal genotype on average. They 

therefore only differ in their paternal genotype which allowed us to determine whether 

the expression of the reproductive traits can be influenced by paternity. 

 

7.2 Materials & Methods 

7.2.1 Queen-rearing 

Capensis queens were reared in the Stellenbosch area (33°56’ S, 18°51’E) in late 

September and early October 2008. Queen-cells were harvested from the rearing 

colonies nine days after grafting and emerged in an incubator at 35°C. Upon 

emergence, the queens’ wings were clipped and individually stored for genetic 

analysis. Newly emerged queens were placed with 20-30 young attendant bees in 

cages and stored in an incubator for 5-6 days until insemination. 

 

7.2.2. Artificial insemination of queens 

Two capensis queens were artificially inseminated with semen from five capensis 

(originating from a native capensis colony) and five scutellata drones (for details see 

Holmes et al., 2010). The queens therefore produced workers that were either pure 

capensis (sired by a capensis drone) or capensis-scutellata hybrids (sired by a 
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scutellata drone). As there are no diagnostic markers with which capensis and 

scutellata genotypes may be distinguished (Franck et al., 2001), drones used were 

kept for genetic analysis to allow us to determine the father of the workers sampled 

(see below).  

Immediately after insemination queens were introduced into a 5-frame hive with 

scutellata workers and brood only. The day after insemination, queens were retrieved 

from their colony, anaesthetized with CO2 to initiate egg-laying (Mackensen, 1947), 

and released into the colony. Colonies were subsequently checked every two to three 

days. Colonies with laying queens were checked weekly by removing each frame and 

checking the state of the brood. Queen-cells, if any, were removed to prevent 

supersedure.  

 

7.2.3 Test environment 

Newly emerged bees were collected by placing a frame of emerging brood in an 

incubator at 35°C.  Frames were inspected daily. All bees that had emerged overnight 

were marked on the thorax with non-toxic paint (Posca Paint Pens, Mitsubishi Pencil 

Co., Japan), using a different colour for each colony. After we marked 500 bees per 

colony, we checked each frame every hour and collected 100 emerged bees to 

determine their weight at emergence. These weighed bees were retained for 

genotyping to determine if paternity affects emergence weight. We wanted to 

maximise the probability that capensis and scutellata patriline workers would become 

reproductively active. Therefore we introduced the marked workers into the same   

queenless scutellata colony for both trials. In both trials the marked bees (n = 500) 

from both source colonies were placed in the same scutellata colony to control for 

host colony effects. All marked bees were harvested 12 days after introduction. Heads 
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were removed for mandibular gland gas chromatographic (GC) analysis and 

individually labelled and stored in 200µl dichloromethane (DCM, Merck). The 

abdomen and thorax (also individually labeled) were frozen for dissections and 

genetic analysis. This experiment was repeated with the same two queens two months 

later (January 2009 – trial 2).  

 

7.2.4 Ovary dissections 

We pinned each worker onto a wax plate through the thorax and separated the fifth 

and sixth dorsal tergites using fine forceps to expose the reproductive organs, under 

irrigation with water. In workers, the section of the ovary containing ovarioles is 

positioned above the hind gut, and the spermatheca below the hind gut (Dade, 1977). 

Spermathecae were scored by lifting the hind gut aside and recording whether a 

spermatheca was present or absent. We assessed the developmental stage of the 

ovaries using standard criteria (Velthuis, 1970): 1 = no development; 2 = slightly 

thickened ovarioles; 3 = round or bean shaped eggs visible (early stage of activation); 

4 = fully developed ovarioles with eggs greater than 50% of full size. To determine 

the father’s subspecies, the dissected bees were stored in alcohol in microcentrifuge 

tubes prior to genetic analysis. 

 

7.2.5 Chemical analysis 

The heads of dissected workers were removed from the vials and the DCM evaporated 

under a stream of nitrogen just to dryness. The residue was redissolved in 15µl 

internal standard (octanoic acid and tetradecane in 4 ml DCM) and 15µl bis-

(trimethylsilyl)-trifluoroacetamide (BSTFA, Merck). One microlitre was injected into 

a gas chromatograph (HP-6850) with a split-splitless inlet and a 25mm x 0.32 mm 
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methyl-silicone coated fused silica capillary column. Helium was used as carrier gas 

at a flow rate of 1.9ml/min. The oven temperature was controlled as follows: 1 min at 

60 °C; followed by a heating phase of 50°/min to 110°C, and subsequently another of 

3°C/min to 220°C. Finally the temperature was held at 220°C for 10 min. Peak areas 

were determined using HP Chemstation software and the mandibular gland 

compounds were identified based on the retention times of authentic compounds and 

were quantified using peak area and the relative mass ratios (for methodological 

details see Simon et al. (2001)). Of the 12 mandibular gland compounds identified, 

only the amount of 9ODA was quantified since this compound is a potential indicator 

of reproductive dominance in honeybee workers (Moritz et al., 2000; Simon et al., 

2005). 

 

7.2.6 Genetic Analysis 

DNA was obtained from the queen (wingtips), fathering drones and workers (2-3 legs) 

from each colony using a high salt extraction method (Aljanabi et al., 1997). The 

fathering drones were screened with seven A. mellifera microsatellite markers used in 

previous parentage studies: Am005, Am006, Am008, Am046, Am052, Am059 and 

Am061 (Solignac et al., 2003). For one colony one microsatellite locus (Am061) was 

sufficient to distinguish workers sired by capensis drones from those sired by 

scutellata drones. For the second colony two microsatellite loci (Am061 and Am008) 

were required.  

PCR products (0.4µl) from each reaction were added to 10µl formamide and 100nl 

LIZ DNA size standard (Applied Biosystems). Samples were run on a 3130xl Genetic 

Analyser (Applied Biosystems) with capillary length 36cm and injection time of 15s 

at 1200V, for 41 minutes. Results were analysed using Genemapper software 
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(Applied Biosystems) and the sire of the workers (capensis or scutellata) was 

determined. Microsatellite allele sizes were distinguishable due to a unique 

combination of dye colour and amplicon size range.  

 

7.2.7 Statistical Analysis 

We used a univariate Analysis of Variance to compare mean weight at emergence 

between capensis and capensis-scutellata hybrids. We also used a univariate Analysis 

of Variance to test if the absolute amount of 9ODA differed between capensis and 

capensis-scutellata hybrids. We tested the hypothesis that ovary activation (active or 

not active) and presence/absence of a spermatheca was independent of worker 

paternity with 2x2 contingency tables using G-tests (Sokal et al., 1995). Ovary 

activation was classified as ‘non-active’ (developmental stages 1 and 2) or ‘active’ 

(developmental stages 3 and 4). Differences between source colony and trial were 

tested using G-tests of heterogeneity. 

 

7.3 Results 

7.3.1 Emergence weight 

Workers of capensis paternity had significantly higher emergence weights than 

workers of scutellata paternity (F1,352 = 5.303, p < 0.001, fig. 1). There was no 

significant interaction of source colony (F1,352 = 2.827, p = 0.094) but workers in the 

second trial were significantly heavier than in the first trial (F1,352 = 4.730, p < 0.03).  
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Figure 1: Mean emergence weight of bees collected less than 1 hour after 
emergence per colony, per trial (trial 1 = ■; trial 2 = ■). ‘A. m. capensis’: 
workers sired by a capensis father; ‘hybrid’: workers sired by a scutellata 
father. Error bars are the standard errors of the means. Workers of capensis 
paternity had significantly higher emergence weights than workers of 
scutellata paternity (F1,352 = 5.303, p < 0.001). There was no significant 
interaction of source colony (F1,352 = 2.827, p = 0.094) but workers of both 
genotypes were significantly heavier in the second trail than in the first trial 
(F1,352 = 4.730, p < 0.03). Numbers denote number of bees successfully 
genotyped. 

 

7.3.2 Ovary activation 

Workers of capensis paternity were significantly more likely to have active ovaries 

than workers of scutellata paternity in both trials (table 1, fig. 2). A heterogeneity G-

test showed that ‘trial’ had a significant effect in both colonies (table 1) whereas 

‘colony’ only had a significant effect in trial 2 (table 2).  
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Figure 2: Percentage of capensis and scutellata patriline individuals with 
active ovaries per colony, per trial (trial 1 = ■; trial 2 = ■).  ‘A. m. capensis’: 
workers sired by a capensis father; ‘hybrid’: workers sired by a scutellata 
father. Workers of capensis paternity were significantly more likely to have 
active ovaries than workers of scutellata paternity in both trials (Table 1 and 
2). Numbers denote number of bees successfully genotyped. 

 

Table 1: G tests for the association between ovary activation and presence of a  
spermatheca with worker paternity. Heterogeneity tests were calculated by taking the 
absolute value of the difference of  ‘G of Total’ and the ‘Total G’. Here we test for the 
effect of ‘trial’. 
 Colony 1 Colony 2 
 G df p G df P 
Trial 1   10.432 1   0.001 10.653 1   0.001 
Trial 2   16.488 1 <0.001 18.151 1 <0.001 
G of Total   22.833 1 <0.001 22.573 1 <0.001 
Total G   26.920 2 <0.001 28.804 2 <0.001 
Heterogeneity     4.087 1   0.043  6.231 1   0.013 
Spermathecae       
Trial 1 23.022 1 <0.001 23.774 1 <0.001 
Trail 2  13.361 1 <0.001 21.025 1 <0.001 
G of Total 32.030 1 <0.001 44.450 1 <0.001 
Total G 36.383 2 <0.001 44.799 2 <0.001 
Heterogeneity   4.353 1   0.037   0.349 1   0.555 
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Table 2. G tests for the association between ovary activation and presence of a 
spermatheca with worker paternity. Heterogeneity tests were calculated by taking the 
absolute value of the difference of ‘G of Total’ and the ‘Total G’. Here we test for the 
effect of ‘colony’. 
 Trial 1 Trial 2 
 G df p G df P 
Colony 1   10.432 1   0.001 16.488 1 <0.001 
Colony 2   10.653 1   0.001 18.151 1 <0.001 
G of Total   21.674 1 <0.001 39.187 1 <0.001 
Total G   21.085 2 <0.001 34.639 2 <0.001 
Heterogeneity     0.589 1   0.442   4.548 1   0.033 
Spermathecae       
Colony 1  23.022 1 <0.001  13.361 1 <0.001 
Colony 2  23.774 1 <0.001 2 1.025 1 <0.001 
G of Total 151.717 1 <0.001 281.214 1 <0.001 
Total G  46.796 2 <0.001  34.386 2 <0.001 
Heterogeneity 104.921 1 <0.001 246.828 1 <0.001 
 

7.3.3. Presence of spermatheca 

Workers of capensis paternity were more likely than those of scutellata paternity to 

have a spermatheca in both trials (table 1; fig. 3). A heterogeneity G-test showed that 

‘trial’ had a significant effect in colony 1 only (table 1) whereas ‘colony’ had a 

significant effect in both trials (table 2). 
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Figure 3: Percentage of capensis and scutellata patriline individuals that 
possessed a spermatheca per colony, per trial (trial 1 = ■; trial 2 = ■). ‘A. m. 
capensis’: workers sired by a capensis father; ‘hybrid’: workers sired by a 
scutellata father. Workers of capensis paternity were more likely than those of 
scutellata paternity to have a spermatheca in both trials (Table 1 and 2).  
Numbers denote number of bees successfully genotyped. 

 

7.3.4 Mandibular gland extracts 

The 9ODA in the mandibular gland extracts of workers sired by capensis was 

significantly higher compared to those sired by scutellata (F1,309 = 13.500, p < 0.001, 

fig. 4). There was a significant effect of source colony (F1,309 = 18.263, p < 0.001) but 

not of trial (F1,309 = 1,722, p = 0.190). We found a positive correlation between ovary 

activation and the amounts of 9ODA (Spearman: r  = 0.329, p < 0.001). 
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Figure 4: Mean levels of 9ODA secreted by 12 days old workers per colony, 
per trial (trial 1 = ■; trial 2 = ■). ‘A. m. capensis’: workers sired by a capensis 
father; ‘hybrid’: workers sired by a scutellata father. Error bars are the 
standard errors of the means. Workers of capensis paternity had significantly 
higher levels of 9ODA than workers of scutellata paternity (F1,309 = 13.500, p 
< 0.001). There was a significant effect of source colony (F1,309 = 18.263, p < 
0.001) but not of trial (F1,309 = 1.722, p = 0.190). Numbers denote number of 
bees successfully genotyped. 
 

7.4 Discussion 

Pure capensis workers were heavier at emergence and showed higher rates of ovary 

activation and presence of spermatheca than hybrid workers. In addition their 

mandibular gland secretions were also more queenlike. Our results thus support our 

hypothesis that in colonies containing both pure capensis workers and capensis x 

scutellata hybrids, pure capensis workers receive more larval food (reflected in a 

higher weight at emergence) and as a result are more likely to become reproductively 

active than hybrid workers when reared in the same colony. 



- 150 - 
 

Because differential feeding of larvae is responsible for caste determination in 

honeybees (de Wilde et al., 1982), the amount and quality of larval food received has 

profound effects on a worker’s reproductive potential. In general, increased larval 

feeding leads to adult workers developing a more queenlike morphology. When 

capensis brood is reared by nurse workers of other subspecies, capensis larvae receive 

more nutritious and greater amounts of food resulting in bees with intermediate traits 

between those of workers and queens in that they develop faster and have more 

ovarioles (Allsopp et al., 2003; Beekman et al., 2000; Calis et al., 2002).  

Larvae produce pheromones that regulate the quantity of food they receive (Le Conte 

et al. 1995). Jordan et al. (2008a) postulated the existence of a single locus, Larva, 

which, when homozygous recessive, results in increased expression of reproductive 

traits via increased larval feeding. The recessive allele, l, is presumed to be present in 

high frequency in the capensis population and the dominant allele, L, in the scutellata 

population. An individual homozygous for l will receive more food than an individual 

homozygous for L or heterozygous and as a result becomes morphologically more 

queen-like. Our results are consistent with this hypothesis. Judging from the 

emergence weight data, it would appear that larvae from capensis patrilines (of 

putative genotype ll ) received more food and as a result were more likely to activate 

their ovaries than hybrid larvae (putative genotype Ll), as well as more likely to have 

a spermatheca. Based on the latter assumption, increased larval feeding could also 

have led to the higher levels of queen pheromones as pure capensis workers produced 

higher amounts of 9ODA compared with hybrid workers.  

This study simulated conditions under which capensis queens mate with both 

capensis and scutellata males. Such colonies contain a mixture of pure capensis and 

capensis-scutellata hybrid workers. The increased emergence weight observed in 
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capensis workers suggested increased feeding of these larvae supporting their 

proposed ‘feed-me’ signal that results from the existence of a single recessive allele 

(l) that influences the amount of food larvae receives (Jordan et al., 2008a). The lower 

emergence weights of hybrid workers suggest that they are heterozygous (Ll) and the 

“feed-me” signal they emit is therefore less pronounced. Due to this genetic 

predisposition to increased feeding, pure capensis have higher levels of 9ODA and 

higher rates of ovary activation. Levels of 9ODA production are a good indicator of 

reproductive potential (Simon et al., 2005).  Therefore in hybrid colonies capensis 

workers are more likely to become reproductively active, producing clonal offspring 

which in turn can produce their own clonal offspring (Martin et al, 2002a). Such 

worker reproduction is not sustainable and ultimately leads to the death of the colony 

(Martin et al., 2002b), effectively preventing gene flow between capensis and 

scutellata across the hybrid zone. 
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CHAPTER 8 

 

CONCLUSION 

 

8.1 Discussion 

One of the proximate factors for native and clonal parasitic capensis workers 

becoming reproductively active is the ability to produce queenlike mandibular gland 

pheromones. The switch to producing queen pheromone biosynthetic pathways is 

most likely genetically controlled while the conversion to a full queen signal is 

controlled by the social environment. Our initial objective was to determine if the 

mandibular gland profile of native and parasitic workers were influenced by genes 

and/or the social environment.  

Both native and parasitic workers showed a predisposition to produce queenlike 

mandibular gland compounds. An interesting observation was the fact that the onset 

of developing a queenlike pheromonal phenotype appears to be genetic, but the 

continued development to producing the end compound, 9ODA, seems to be 

influenced by the workers’ social context. When native and parasitic workers are aged 

with members of their own subspecies, only a few individuals are able to continue 

development by converting 9HDA to 9ODA. This suggests the presence of reciprocal 

suppression of workers on each other. It is clear from our data that under queenless 

conditions workers use queenlike mandibular gland pheromones to establish 

dominance hierarchies. Both the native and parastic capensis worker populations 

share characteristics that place them at a reproductive advantage over workers from 

other subspecies, despite the fact that these two populations have been separated for 

over 20 years. Workers from both populations are thus able to behave as social 
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parasites. Therefore in an appropriate social context, i.e. when workers of these two 

groups are aged together, the clonal parasitic workers do not necessarily 

pheromonally out-compete native workers. However, we have established that the 

speed of mandibular gland signal development is more rapid in parasitic workers than 

in native workers. This might be one trait in parasitic workers that has been selected 

for. Early and rapid production of queenlike mandibular compounds in parasitic 

workers confers a reproductive headstart on them (Dietemann et al., 2007). As a result 

these parasites can spread faster in the host population. It also enables them to 

suppress the onset of reproductive development in other workers (Velthuis et al., 

1990; Moritz et al., 2000, 2004; Simon et al., 2005). Production of queenlike 

mandibular secretions also allows workers to obtain food by trophallaxis with 

increased probability (Hillesheim et al., 1989) and this provides the necessary protein 

for their oogenesis (Schäfer et al., 2006). 

Moritz et al. (2005) proposed the existence of self-organised mechanisms of mutual 

worker interactions facilitated by differential response to 9ODA concentrations that is 

controlled by at least two feedback loops.  If workers are exposed to a level of queen 

pheromone (9ODA) lower than their suppression threshold, said workers will not be 

suppressed. The latter will now increase their queen pheromone production up to their 

genotypical physiological limit. Being exposed to queen pheromone levels higher than 

their own will however result in 9ODA production not being initiated or decreased, 

thereby altering the suppression threshold of the workers. The suppression threshold 

and 9ODA production are closely related, since it is important that workers do not 

inhibit themselves. So the production of 9ODA by workers raises their individual 

thresholds above the level at which they can commence production. Dominant 

workers thus enhance their pheromone production by suppressing other workers, and 
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through this they raise both their own suppression thresholds and the 9ODA exposure 

levels of other workers.   

Both native and parasitic workers utilize the queen biochemical pathway but the 

oxidation of 9HDA to 9ODA is inhibited. This results in workers remaining non-

reproductive and the reproductive division of labour is maintained within the colony. 

The production of 9ODA in capensis workers, like in capensis queens, has been found 

to be much higher than in other subspecies (Crewe, 1988; Velthuis et al., 1990; 

Plettner et al., 1993). This is particularly evident in the presence of scutellata workers. 

This might be linked to the fact that scutellata workers do not emit strong enough 

signals necessary to suppress the pheromonal development of capensis workers who 

have a high response threshold to queenlike signals (Crewe, 1982; 1988; Magnuson, 

1995). 

Unlike parasitic workers and pure capensis workers (offspring from capensis queen 

and capensis drone), hybrid workers (offspring from capensis queen and scutellata 

drone) do not show a strong queenlike predisposition to mandibular gland signals. It 

has been suggested that the production of 9ODA is pleiotropically linked to the gene 

that regulates the mode of reproduction in workers (Lattorff et al., 2007). Workers 

that are homozygous recessive for the Thelytoky (th/th) allele are thelytokous, produce 

high levels of 9ODA and initiate reproduction earlier compared with workers that are 

either heterozygous (th/+) or homozygous wild-type (+/+). Workers of the th/+ or +/+ 

genotype reproduce arrhenotokously. If we assume that Lattorff and colleagues’ 

(2007) genetic model is correct, our pure capensis workers are of th/th genotype 

whereas our hybrids would be th/+. Our results from these crosses suggest that 

paternity may have an effect on signal production. However to confirm this we would 

have needed to inseminate scutellata queens with the semen of capensis drones to 
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establish whether the resulting offspring also produces queenlike signals, but these 

signals may just as well be maternally inherited. 

Matching genotype to phenotype has been the standard approach to elucidate the 

genetic foundations of social insect phenotypes (Lynch et al., 1998; Robinson et al. 

2005; Hunt et al. 2007; Oldroyd et al., 2007). A flaw in this method is that it does not 

consider how interacting phenotypes are influenced by or are directly involved in 

social interactions (Moore et al., 1997). Interacting phenotypes are determined by the 

interplay of genes and the social environment. As such an individual’s phenotype is 

directly affected by its own genes (direct genetic effects), and indirectly affected by 

genes expressed in social partners (indirect genetic effects; Moore et al. 1997; 2003).  

Chemical and physical interactions with brood, other workers and the queen form the 

basis of the social regulatory network of the environment that individuals experience 

(Hölldobbler, 1992; Seeley, 1995; Slessor et al., 2005) and determine the 

developmental trajectories and expressed phenotypes. The social environment 

becomes critical in determining the reproductive success of individuals within the 

group due to social competition, age structure of the colony and the genetic 

relatedness among nestmates which affects the expression of phenotypic traits (West-

Eberhard, 1979; Wcsilo, 2000).  

A.m. capensis workers have a genetic predisposition to initiating queen biosynthetic 

pathways but the final product is strongly influenced by the social environment of the 

workers. Consequently, the physiological traits linked to reproductive potential (i.e. 

queen pheromone development, ovary activation) in honey bees seems to be 

determined by a combination of environmental and genetic factors that shift 

physiological parameters during development and result in altered physiological and 

behavioural responses (Arthur, 2000). 
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The advances in molecular biology have enabled the generation of accurate 

information on the genetics of insect social behaviour and much emphasis has been 

placed on kinship studies (Robinson et al., 1997). These advances may outpace our 

understanding of the ecological and behavioural contexts in which genes are 

expressed and hence in which phenotypes develop. Research must pay attention to the 

genetic control of developmental strategies to gain insight into how variation in gene 

expression produce canalized phenotypes yet simultaneously can be modified in 

response to environmental cues to influence the same character. The signal plasticity 

assists workers to realize their reproductive potential under changing social contexts. 

The genetic pathways underlying pheromone signalling may eventually reveal the 

evolving basis of sociality. 
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Abstract We studied the effect of genotype on the reproductive potential of workers of the 

Cape honeybee (Apis mellifera capensis) and hybrids of A. m. capensis x A. m. scutellata. 

We produced colonies in which workers were either sired by A. m. capensis or A. m. 

scutellata males by artificially inseminating A. m. capensis queens. This mimics the situation 

found in the natural hybrid zone in which both subspecies interbreed. We measured 

emergence weight and determined rates of ovary activation and the presence/absence of a 

spermatheca in workers sired by A. m. capensis and A. m scutellata males. We also 

calculated the quantity of the major component of queen madibular gland pheromone (E)-9-

keto-2-decenoic acid (9ODA), a potential indicator of reproductive dominance in honeybee 

workers. Workers sired by A. m. capensis drones weighed more and were more likely to have 

active ovaries than those sired by A. m. scutellata drones. Similarly A. m. capensis sired-

workers were more likely to have a spermatheca than A. m. scutellata sired-workers and had 

a more queen-like chemical profile. We discuss the implications of our findings on the stability 

of the hybrid zone in South Africa. 

 

Keywords: Apis mellifera capensis, Apis mellifera scutellata, hybrid zone, larval feeding, 

worker reproduction 
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Introduction 

Reproductive division of labour is a defining characteristic of insect societies. The ability of 

colony members to become reproductively active varies from species to species. In termites, 

helper and breeder castes arise from separate developmental trajectories, with the breeder 

caste being morphologically specialised for aerial dispersal and the foundation of new 

colonies (Noirot and Pasteels 1987; Roisin 2000). In many social bees, wasps and ants, 

reproductive division of labour is not determined by morphology but by extrinsic (e.g. mating 

opportunities) or intrinsic (e.g. relative fighting ability) factors. Differences in reproductive 

ability among adults are typically established during larval development, but all adult females 

can, in theory, become breeders (O'Donnell 1998). In other Hymenopteran species the 

differentiation between worker and breeder caste is rigidly determined by metamorphosis, by 

either genetic factors (Anderson et al. 2006), larval feeding (Wheeler 1986), or a combination 

of both (Kerr and Nielsen 1966) (reviewed in Schwander et al. (2010)). In these species there 

is a loss of totipotency early in the larval stage, if not before, that results in discrete 

reproductive (queen) and helper (worker) castes. Here, the queen is the only individual 

capable of sexual reproduction, while all other colony members are specialised workers. 

The loss of totipotency of colony members decreases the potential for reproductive 

conflicts within colonies as it results in divergent selection pressures such that helpers are 

selected to increase their inclusive fitness (Hamilton 1964a, b) via becoming better workers, 

and breeders by increasing their direct fitness by massively increasing their reproductive 

output (Beekman et al. 2006). However, as insect societies rarely consist of clones, the 

reproductive interests of colony members do not completely overlap (Beekman and Ratnieks 

2003). Therefore, though the potential for conflict remains, the reproductive options for 

workers are severely limited because workers cannot mate; the best they can do is to 

produce a few males via arrhenotokous parthenogenesis if they reproduce at all (Bourke 

1988). 

When workers produce diploid female offspring without mating (thelytokous 

parthenogenesis), conflicts within the colony are expected to increase because the workers’ 

reproductive potential are greater since they are related to their female-producing eggs by 

unity (Greeff 1996). In the Cape honeybee Apis mellifera capensis (hereafter ‘capensis’) the 
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workers are capable of thelytokous parthenogenesis (Onions 1914) and this leads to overt 

competition among workers and between the queen and the workers over reproduction 

(Hepburn 1994; Jordan et al. 2008b; Moritz et al. 1996; Moritz et al. 2004). Selection for 

increased reproductive capacity in workers has resulted in capensis workers exhibiting 

morphological traits not found in workers of any other (sub)species of Apis. Capensis workers 

have higher numbers of ovarioles compared with workers of other subspecies (Hepburn 2001; 

Hepburn and Crewe 1991) and often have a spermatheca, a sperm storage organ usually 

only present in queens (Hepburn 2001; Hepburn and Crewe 1991; Jordan et al. 2008a).  

Caste determination in honeybees is determined by larval feeding, with queen-destined 

larvae receiving a greater amount of food that is nutritionally different to that received by 

worker-destined larvae (‘royal’ versus ‘worker’ jelly) (de Wilde and Beetsma 1982). The 

expression of queen-like characteristics in capensis workers is strongly influenced by larval 

feeding. Larvae that are fed more and better develop into more queen-like individuals relative 

to those fed a more frugal diet (Allsopp et al. 2003; Beekman et al. 2000; Calis et al. 2002).  

The Cape honeybee is not the only honeybee present in South Africa. While capensis is 

confined to the southern part of the Western and Eastern Cape, the African honeybee A. m. 

scutellata (hereafter scutellata), is found throughout the rest of South Africa and in countries 

to its north (Ruttner 1988). The two subspecies interact within a hybrid zone situated in the 

semi-arid areas of the Karoo ecotone (Hepburn and Crewe 1991). This hybrid zone is 

particularly interesting because capensis can be a lethal social parasite of scutellata (Allsopp 

1992). Capensis workers are known to enter scutellata colonies and parasitise them with their 

eggs thus producing more clonal, parasitic workers (Martin et al. 2002a; Neumann and 

Hepburn 2002). The end result of such invasion is the death of the host colony (Martin et al. 

2002b). Despite its parasitic potential, capensis has not been found outside its natural range 

without artificial movement by humans (reviewed in Beekman et al. (2008)). The stability of 

the honeybee hybrid zone is even more intriguing given that scutellata also has traits that 

make it highly invasive. Since its introduction into Brazil in 1956, scutellata has largely 

displaced all European A. mellifera subspecies the Americas (Schneider et al. 2004).  

One hypothesis for the stability of the capensis-scutellata hybrid zone is that it is in fact a 

tension zone (Beekman et al. 2008). Tension zones arise when hybrids are less fit than either 
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parental genotype (Barton and Hewitt 1985). Due to the reduced fitness of hybrids, gene flow 

between the parental populations is curtailed or prevented (Barton and Hewitt 1985). Within 

the honeybee hybrid zone of South Africa, queens of both capensis and scutellata may mate 

with drones of both subspecies, resulting in hybrid or ‘mixed’ colonies consisting of pure 

workers of the queen’s genotype and capensis-scutellata hybrids (Beekman et al. 2008).  

Beekman et al. (2008) suggested that mixed colonies may be less fit than pure colonies of 

either capensis or scutellata due to pheromonal imbalances that lead to a breakdown in 

reproductive division of labour.  

The tension zone hypothesis (Beekman et al. 2008) is based on the pheromonal 

polymorphism between capensis and scutellata (Wossler 2002). Pheromones are essential in 

regulating reproductive division of labour in honeybee colonies. For example, workers use the 

pheromones emitted by the queen and her brood to assess her fecundity (Mohammedi et al. 

1998). Pheromones produced by larvae affect the amount and quality of food larvae receive 

and there is a strong interaction between the genotype (capensis or scutellata) of the larva 

and the genotype of the nurse workers (Allsopp et al. 2003; Beekman et al. 2000). This 

interaction is particularly important in colonies of mixed genotypes (Jordan et al. 2008a).  

Capensis brood reared by scutellata or capensis-scutellata hybrids receive more and 

better food than when they are reared by their own sisters (Allsopp et al. 2003; Calis et al. 

2002). Thus capensis workers reared by scutellata nurses have a strong tendency to develop 

queen-like characteristics (Allsopp et al. 2003; Beekman et al. 2000). When these workers 

become reproductively active, colony productivity is likely to decline because reproductive 

workers work less than their sterile sisters (Hillesheim et al. 1989; Martin et al. 2002b). Thus, 

Beekman et al. (2008) hypothesised that colonies in which a large proportion of workers are 

reproductively active suffer a reduction in colony-level fitness relative to colonies of either 

capensis or scutellata genotype (in which most or all workers are functionally sterile). This 

suggests that genetically mixed colonies in the natural hybrid zone may have significantly 

lower fitness than ‘pure’ colonies, thus selecting against hybrids and hybridisation.  

Here we investigate whether workers from capensis patrilines (sired by capensis drones) 

have a higher propensity in becoming reproductively active compared to capensis-scutellata 

hybrid workers (sired by scutellata drones). If we find that workers of capensis paternity are 
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more likely to become reproductively active, it would suggest that genetically mixed colonies 

may suffer from a breakdown in reproductive division of labour and that the hybrid zone is 

indeed a tension zone. Under our experimental conditions, similar aged pure capensis and 

hybrid workers shared all environmental influences and the same maternal genotype on 

average. They therefore only differ in their paternal genotype which allowed us to determine 

whether the expression of the reproductive traits can be influenced by paternity. 

Materials & Methods 

Queen-rearing 

Capensis queens were reared in the Stellenbosch area (33°56’  S, 18°51’E) in late September 

and early October 2008. Queen-cells were harvested from the rearing colonies nine days 

after grafting and emerged in an incubator at 35°C. Upon emergence, the queens’ wings were 

clipped and individually stored for genetic analysis. Newly emerged queens were placed with 

20-30 young attendant bees in cages and stored in an incubator for 5-6 days until 

insemination. 

Instrumental insemination of queens 

Capensis queens were artificially inseminated with semen from five capensis and five 

scutellata drones (for details see Holmes et al. (2010)). The queens therefore produced 

workers that were either pure capensis (sired by a capensis drone) or capensis-scutellata 

hybrids (sired by a scutellata drone). As there are no diagnostic markers with which capensis 

and scutellata genotypes may be distinguished (Franck et al. 2001), drones used were kept 

for genetic analysis to allow us to determine the father of the workers sampled (see below).  

Immediately after insemination queens were introduced into a 5-frame hive with scutellata 

workers and brood only. The day after insemination, queens were retrieved from their colony, 

anaesthetized with CO2 to initiate egg-laying (Mackensen 1947), and released into the colony. 

Colonies were subsequently checked every two to three days. Colonies with laying queens 

were checked weekly by removing each frame and checking the state of the brood. Queen-

cells, if any, were removed to prevent supersedure.  
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Test environment 

Newly emerged bees were collected by placing a frame of emerging brood in an incubator at 

35°C. Frames were inspected daily. All bees that had emerged overnight were marked on the 

thorax with non-toxic paint (Posca Paint Pens, Mitsubishi Pencil Co., Japan), using a different 

colour for each colony. After we marked 500 bees per colony, we checked each frame every 

hour and collected 100 emerged bees to determine their weight at emergence. These 

weighed bees were retained for genotyping to determine if paternity affects emergence 

weight. 

We wanted to maximise the probability that capensis and scutellata patriline workers 

would become reproductively active. Therefore we introduced the marked workers into a 

freshly dequeened scutellata colony. Young bees from both source colonies were placed in 

the same scutellata colony to control for host colony effects. 

All marked bees were harvested 12 days after introduction. Heads were removed for 

mandibular gland gas chromatography (GC) analysis and individually labelled and stored in 

200µl dichloromethane (DCM, Merck). The abdomen and thorax (also individually labeled) 

were frozen for dissections and genetic analysis. This experiment was repeated with the 

same two queens two months later (January 2009 – trial 2).  

 

Dissections 

We pinned each worker onto a wax plate through the thorax and separated the fifth and sixth 

dorsal tergites using fine forceps to expose the reproductive organs, under irrigation with 

water. In workers, the section of the ovary containing ovarioles is positioned above the hind 

gut, and the spermatheca below the hind gut (Dade 1977). Spermathecae were scored by 

lifting the hind gut aside and recording whether a spermatheca was present or absent. We 

assessed the developmental stage of the ovaries using standard criteria (Velthuis 1970): 

1=no development; 2=slightly thickened ovarioles; 3=round or bean shaped eggs visible 

(early stage of activation); 4=fully developed ovarioles with eggs greater than 50% of full size. 

To determine the father’s subspecies, the dissected bees were stored in alcohol in 

microcentrifuge tubes prior to genetic analysis. 
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Gas Chromatography 

The heads of dissected workers were removed from the vials and the DCM evaporated under 

a stream of nitrogen just to dryness. The residue was redissolved in 15µl internal standard 

(octanoic acid and tetradecane in 4 ml DCM) and 15µl bis-(trimethylsilyl)-trifluoroacetamide 

(BSTFA). One microlitre was injected into a gas chromatograph (HP-6850) with a split-

splitless inlet and a 25mm x 0.32 mm methyl-silicone coated fused silica capillary column. 

Helium was used as carrier gas at a flow rate of 1.9ml/min. The oven temperature was 

controlled as follows: 1 min at 60 °C; followed by a heating phase of 50°/min to 110°C, and 

subsequently another of 3°C/min to 220°C. Finally t he temperature was held at 220°C for 10 

min. Peak areas were determined using HP Chemstation software and the mandibular gland 

compounds were identified based on the retention times of authentic compounds and were 

quantified using peak area and the relative mass ratios (for methodological details see Simon 

et al. (2001)). Of the 12 mandibular gland compounds identified, only the amount of 9ODA 

was quantified since this compound is a potential indicator of reproductive dominance in 

honeybee workers (Moritz et al. 2000; Simon et al. 2005). 

Genetic Analysis 

DNA was obtained from the queen (wingtips), fathering drones and workers (2-3 legs) from 

each colony using a high salt extraction method (Aljanabi and Martinez 1997). The fathering 

drones were screened with seven A. mellifera microsatellite markers used in previous 

parentage studies: Am005, Am006, Am008, Am046, Am052, Am059 and Am061 (Solignac et 

al. 2003). For one colony one microsatellite locus (Am061) was sufficient to distinguish 

workers sired by capensis drones from those sired by scutellata drones. For the second 

colony two microsatellite loci (Am061 and Am008) were required.  

PCR products (0.4µl) from each reaction were added to 10µl formamide and 100nl LIZ 

DNA size standard (Applied Biosystems). Samples were run on a 3130xl Genetic Analyser 

(Applied Biosystems) with capillary length 36cm and injection time of 15s at 1200V, for 41 

minutes. Results were analysed using Genemapper software (Applied Biosystems) and the 

sire of the workers (capensis or scutellata) was determined. Microsatellite allele sizes were 

distinguishable due to a unique combination of dye colour and amplicon size range.  
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Statistical Analysis 

We used a univariate Analysis of Variance to compare mean weight at emergence between 

capensis and capensis-scutellata hybrids. We also used a univariate Analysis of Variance to 

test if the absolute amount of 9ODA differed between capensis and capensis-scutellata 

hybrids. We tested the hypothesis that ovary activation (active or not active) and 

presence/absence of a spermatheca was independent of worker paternity with 2x2 

contingency tables using G-tests (Sokal and Rohlf 1995). Ovary activation was classified as 

‘non-active’ (developmental stages 1 and 2) or ‘active’ (developmental stages 3 and 4). 

Differences between source colony and trial were tested using G-tests of heterogeneity.  

Results 

Emergence weight 

Workers of capensis paternity had significantly higher emergence weights than workers of 

scutellata paternity (F1,352 = 5.303, p < 0.001) (Fig. 1). There was no significant interaction of 

source colony (F1,352 = 2.827, p = 0.094) but workers in the second trial were significantly 

heavier than in the first trial (F1,352 = 4.730, p < 0.03).  

Ovary activation 

Workers of capensis paternity were significantly more likely to have active ovaries than 

workers of scutellata paternity in both trials (Table 1, Fig. 2). A heterogeneity G-test showed 

that ‘trial’ had a significant effect in both colonies (Table 1) whereas ‘colony’ only had a 

significant effect in trial 2 (Table 2).  

Presence of spermatheca 

Workers of capensis paternity were more likely than those of scutellata paternity to have a 

spermatheca in both trials (Table 1; Fig. 3). A heterogeneity G-test showed that ‘trial’ had a 

significant effect in colony 1 only (Table 1) whereas ‘colony’ had a significant effect in both 

trials (Table 2). 
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Mandibular gland secretions 

The 9ODA production by workers sired by capensis was significantly higher compared to 

those sired by scutellata (F1.309 = 13.500, p < 0.001) (Figure 4). There was a significant effect 

of source colony (F1.309 = 18.263, p < 0.001) but not of trial (F1.309 = 1.722, p = 0.190). We 

found a positive correlation between ovary activation and 9ODA production (Spearman: r = 

0.329, p < 0.001). 

Discussion 

Pure capensis workers were heavier at emergence and showed higher rates of ovary 

activation and presence of spermatheca than hybrid workers. In addition their mandibular 

gland secretions were also more queenlike. Our results thus support our hypothesis that in 

colonies containing both pure capensis workers and capensis x scutellata hybrids pure 

capensis workers receive more larval food (reflected in a higher weight at emergence) and as 

a result are more likely to become reproductively active than hybrid workers when reared in 

the same colony. 

Because differential feeding of larvae is responsible for caste determination in honeybees 

(de Wilde and Beetsma 1982), the amount and quality of larval food received has profound 

effects on a worker’s reproductive potential. In general, increased larval feeding results in 

adult workers developing a more queen-like morphology. When capensis brood is reared by 

nurse workers of other subspecies, capensis larvae receive greater amounts of food as well 

as more nutritious food resulting in bees with intermediate traits between those of workers 

and queens in that they develop faster and have more ovarioles (Allsopp et al. 2003; 

Beekman et al. 2000; Calis et al. 2002).  

Larvae produce pheromones that regulate the quantity of food they receive (Le Conte et 

al. 1995). Jordan et al. (2008a) postulated the existence of a single locus, Larva, which, when 

homozygous recessive, results in increased expression of reproductive traits via increased 

larval feeding. The recessive allele, l, is presumed to be present in high frequency in the 

capensis population and the dominant allele, L, in the scutellata population. An individual 

homozygous for l will receive more food than an individual homozygous for L or heterozygous 

and as a result becomes morphologically more queen-like. Our results are consistent with this 
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hypothesis. Judging from the emergence weight data, larvae from capensis patrilines (of 

putative genotype ll) received more food and as a result were more likely to activate their 

ovaries than hybrid larvae (putative genotype Ll), as well as more likely to have a 

spermatheca. Increased larval feeding also led to higher levels of queen pheromones as pure 

capensis workers produced higher amounts of 9ODA compared with hybrid workers.  

Levels of 9ODA production are a good indicator of reproductive potential (Simon et al 

2005). Lattorff et al. (2007) suggested that the production of 9ODA is pleiotropically linked to 

the gene that regulates the mode of reproduction in workers. Workers that are homozygous 

recessive for the Thelytoky (th/th) allele are thelytokous, produce high levels of 9ODA and 

initiate reproduction earlier compared with workers that are either heterozygous (th/+) or 

homozygous wild-type (+/+). Workers of the th/+ or +/+ genotype reproduce arrhenotokously. 

Although we did not ascertain whether our workers reproduced thelytokously or 

arrhenotokously, if we assume that Lattorff and colleagues’ (2007) genetic model is correct, 

our pure capensis workers are of th/th genotype whereas our hybrids would be th/+. Our 

results on emergence weight clearly show that workers of th/th genotype are fed more than 

bees of genotype th/+. This suggests that the traits of thelytokous reproduction and excessive 

larval feeding are most likely genetically correlated.  

This study simulated conditions under which capensis queens mate with both capensis 

and scutellata males. Such colonies contain a mixture of pure capensis and capensis-

scutellata hybrid workers. We observed increased feeding of capensis larvae supporting their 

proposed ‘feed-me’ signal that results from the existence of a single recessive allele (l) that 

influences the amount of food larvae receives (Jordan et al. 2008a). The lower emergence 

weights of hybrid workers suggest that they are heterozygous (Ll) and the “feed-me” signal 

they emit is therefore less pronounced. Due to this genetic predisposition to increased 

feeding, pure capensis have higher levels of 9ODA and higher rates of ovary activation. 

Therefore in hybrid colonies they are more likely to become reproductively active, producing 

clonal offspring which in turn can produce their own clonal offspring (Martin et al. 2002a). 

Such worker reproduction is not sustainable and ultimately leads to the death of the colony 

(Martin et al. 2002b), effectively preventing gene flow between capensis and scutellata across 

the hybrid zone.  
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Table 1. G tests for the association between ovary activation and presence of a  spermatheca 

with worker paternity. Heterogeneity tests were calculated by taking the absolute value of the 

difference of  ‘G of Total’ and the ‘Total G’. Here we test for the effect of ‘trial’. 

Active Ovaries       

 Colony 1 Colony 2 

 G df p G df p 

Trial 1   10.432 1   0.001 10.653 1   0.001 

Trial 2   16.488 1 <0.001 18.151 1 <0.001 

G of Total   22.833 1 <0.001 22.573 1 <0.001 

Total G   26.920 2 <0.001 28.804 2 <0.001 

Heterogeneity     4.087 1   0.043  6.231 

 

1   0.013 

       

Spermathecae       

Trial 1 23.022 1 <0.001 23.774 1 <0.001 

Trail 2  13.361 1 <0.001 21.025 1 <0.001 

G of Total 32.030 1 <0.001 44.450 1 <0.001 

Total G 36.383 2 <0.001 44.799 2 <0.001 

Heterogeneity   4.353 1   0.037   0.349 1   0.555 
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Table 2. G tests for the association between ovary activation and presence of a  spermatheca 

with worker paternity. Heterogeneity tests were calculated by taking the absolute value of the 

difference of  ‘G of Total’ and the ‘Total G’. Here we test for the effect of ‘colony’. 

Active Ovaries       

 Trial 1 Trial 2 

 G df p G df p 

Colony 1   10.432 1   0.001 16.488 1 <0.001 

Colony 2   10.653 1   0.001 18.151 1 <0.001 

G of Total   21.674 1 <0.001 39.187 1 <0.001 

Total G   21.085 2 <0.001 34.639 2 <0.001 

Heterogeneity     0.589 1   0.442   4.548 

 

1   0.033 

       

Spermathecae       

Colony 1  23.022 1 <0.001  13.361 1 <0.001 

Colony 2  23.774 1 <0.001 2 1.025 1 <0.001 

G of Total 151.717 1 <0.001 281.214 1 <0.001 

Total G  46.796 2 <0.001  34.386 2 <0.001 

Heterogeneity 104.921 1 <0.001 246.828 1 <0.001 

 
 
  



 

 

Figure 1. Mean emergence weight 

colony, per trial. ‘A. m. capensis’

by a scutellata father. Error bars are the standard errors of the means. Workers of 

paternity had significantly higher emergence weights than workers of 

(F1,352 = 5.303, p < 0.001). There was no significant interaction of source co

2.827, p = 0.094) but workers 

than in the first trial (F1,352 = 4.730, 

genotyped. 

 

Mean emergence weight of bees collected less than 1 hour after emergence

A. m. capensis’: workers sired by a capensis father; ‘hybrid’: workers sired 

Error bars are the standard errors of the means. Workers of 

paternity had significantly higher emergence weights than workers of scutellata

< 0.001). There was no significant interaction of source co

= 0.094) but workers of both genotypes were significantly heavier in the second trail 

= 4.730, p < 0.03). Numbers denote number of bees
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bees collected less than 1 hour after emergence per 

father; ‘hybrid’: workers sired 

Error bars are the standard errors of the means. Workers of capensis 

scutellata paternity 

< 0.001). There was no significant interaction of source colony (F1,352 = 

in the second trail 

< 0.03). Numbers denote number of bees successfully 



 

Figure 2. Percentage of capensis

colony, per trial.  ‘A. m. capensis’

by a scutellata father. Workers of 

active ovaries than workers of 

denote number of bees successfully genotyped.

 

capensis and scutellata patriline individuals with active ovaries

A. m. capensis’: workers sired by a capensis father; ‘hybrid’: workers sired 

Workers of capensis paternity were significantly more likely to have 

ovaries than workers of scutellata paternity in both trials (Table 1 and 2

successfully genotyped. 
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patriline individuals with active ovaries per 

father; ‘hybrid’: workers sired 

paternity were significantly more likely to have 

and 2). Numbers 



 

 

Figure 3. Percentage of capensis

spermatheca per colony, per trial

‘hybrid’: workers sired by a 

than those of scutellata paternity to have a spermatheca 

Numbers denote number of bees

capensis and scutellata patriline individuals that possessed a 

spermatheca per colony, per trial. ‘A. m. capensis’: workers sired by a 

‘hybrid’: workers sired by a scutellata father. Workers of capensis paternity 

paternity to have a spermatheca in both trials (Table 1

number of bees successfully genotyped. 
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that possessed a 

: workers sired by a capensis father; 

 were more likely 

(Table 1 and 2).  



 

 
Figure 4. Mean levels of 9ODA secreted by 12 days old workers per colony, per trial

capensis’: workers sired by a 

Error bars are the standard errors of the means. Workers of 

significantly higher levels of 9ODA

0.001). There was a significant 

trial (F1.309 = 1.722, p = 0.190

 
 

 

 

 

 

 

levels of 9ODA secreted by 12 days old workers per colony, per trial

: workers sired by a capensis father; ‘hybrid’: workers sired by a 

Error bars are the standard errors of the means. Workers of capensis

levels of 9ODA than workers of scutellata paternity (F1.309

significant effect of source colony (F1.309 = 18.263, p < 

= 0.190). Numbers denote number of bees successfully genotyped.
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levels of 9ODA secreted by 12 days old workers per colony, per trial. ‘A. m. 

father; ‘hybrid’: workers sired by a scutellata father. 

capensis paternity had 

1.309 = 13.500, p < 

< 0.001) but not of 

successfully genotyped.  


