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Abstract

Biological invasion remains a major threat to biodiversity in general and a dis-

ruptor to mutualistic interactions in particular. While a number of empirical

studies have directly explored the role of invasion in mutualistic pollination

networks, a clear picture is yet to emerge and a theoretical model for compre-

hension still lacking. Here, using an eco-evolutionary model of bipartite mutu-

alistic networks with trait-mediated interactions, we explore invader trait,

propagule pressure, and network features of recipient community that con-

tribute importantly to the success and impact of an invasion. High level of

invasiveness is observed when invader trait differs from those of the community

average, and level of interaction generalization equals to that of the community

average. Moreover, multiple introductions of invaders with declining propagules

enhance invasiveness. Surprisingly, the most successful invader is not always the

one having the biggest impact on the recipient community. The network struc-

ture of recipient community, such as nestedness and modularity, is not a pri-

mary indicator of its invasibility; rather, the invasibility is best correlated with

measurements of network stability such as robustness, resilience, and disrup-

tiveness (a measure of evolutionary instability). Our model encompasses more

general scenarios than previously studied in predicting invasion success and

impact in mutualistic networks, and our results highlight the need for coupling

eco-evolutionary processes to resolve the invasion dilemma.

Introduction

Rapid global changes induced by anthropogenic distur-

bance constitute a major threat to networks of ecological

interactions (Tylianakis et al. 2008; Burkle and Alarc�on

2011), of which biological invasion represents one

important component (Morales and Traveset 2009;

McGeoch et al. 2010). Mutualistic networks of pollina-

tion and seed dispersal are key service providers in

ecosystems (Bronstein 2001); understanding how their

structures and stabilities respond to biological invasions

is paramount to safeguarding ecosystem function and

service in a changing world (Traveset and Richardson

2006; Lurgi et al. 2014; Campbell et al. 2015). For

efficient prevention and control, the challenge is to fore-

see the invasiveness and impact of potential invaders in

given ecosystems. This is a challenge of complexity as no

universal rules, except for the amount of propagules

introduced (known as the propagule pressure; Wil-

liamson, 1999; Jeschke and Strayer 2006; Simberloff

2009), govern the process and success of invasion which

are nearly exclusively contingent on the taxa and context

(Williamson and Fitter 1996).

When introduced into a new environment, an alien

species needs to compete for space and resources with

native resident species, simply by possessing certain

phenotypic and behavioral traits (Romanuk et al. 2009).

The strength of ecological interactions is often mediated
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by matching between functional traits of interacting

species (Jousselin et al. 2003; Santamar�ıa and

Rodr�ıguez-Giron�es 2007; Stang et al. 2009). A certain

degree of similarity between the trait of invasive and

resident species often indicates a strong mutualistic

interaction (Gibson et al. 2012). Nevertheless, species

with high invasiveness and impact in pollination net-

works acquire traits atypical of native (Aizen et al.

2008; Campbell et al. 2015; but see Morales and Trave-

set 2009). As such, features of both invaders and recipi-

ent communities play critical roles in predicting the

success and impact, two interdependent elements, of an

invasion (Shea and Chesson 2002; Gurevitch et al.

2011).

Such interdependence of invasiveness and impact

could be further amplified in an ecological network

because of cascading interactions (Bascompte and Stouf-

fer 2009; Dunne and Williams 2009; Traveset and Richard-

son 2014). Species with a high level of interaction

generalization, that is, high-degree nodes in a network, has

been shown to determine the invasion success in both food

webs (Romanuk et al. 2009; Lurgi et al. 2014) and mutual-

istic networks (Traveset and Richardson 2014). Functional

traits, such as body size and diet breadth that are indicative

to species’ trophic position in a food web and thus its level

of interaction generalization, are good predictors of inva-

sion success. For instance, consumer species with a wide

diet breadth or a large body size experience more invasion

success in a food web (Lurgi et al. 2014). Invasive plants in

pollination networks often have higher levels of interaction

generalization than natives (Albrecht et al. 2014). The over-

all interactions in a pollination network can even be

monopolized by super-generalist invaders (Aizen et al.

2008; Bartomeus et al. 2008; Vil�a et al. 2009).

Characteristics of a recipient ecosystem responsible for

its susceptibility to the establishment and spread of inva-

sive species defines its invasibility (Lonsdale 1999; Alpert

et al. 2000). Besides physical factors such as habitat suit-

ability and heterogeneity, other major characteristics con-

sidered in literature include the network architecture of

biotic interactions. For example, a high level of network

connectance – the proportion of realized interactions

among possible ones – has been predicted to enhance the

resistance of food webs to invasion (Romanuk et al.

2009), although contested by others (Baiser et al. 2010;

Lurgi et al. 2014). Modularity – the extent to which a

network is organized into groups of species interacting

more strongly with species from the same group rather

than from other groups – is observed to be lower in

invaded pollination networks and food webs than in

uninvaded ones (Albrecht et al. 2014; Lurgi et al. 2014).

Empirical studies have also revealed that invaded pollina-

tion networks are more nested – where specialists interact

only with a subset of species with which generalists inter-

act – and normally contain a higher number of species

than uninvaded networks (Padr�on et al. 2009; Stouffer

et al. 2014).

Mutualistic interactions normally have a facilitative

effect on the establishment of alien species (Traveset

and Richardson 2014). Successful invaders in mutualistic

networks have been shown to interact with either the

most specialist natives (Stouffer et al. 2014) or the most

generalist ones (Padr�on et al. 2009). However, empirical

observations do not allow for discerning whether some

network features could have triggered the invasion or

are indeed resulting from the invasion. By comparing

the pre- and postinvasion architectures of simulated

pollination networks, Campbell et al. (2015) managed to

fill the gap in literature and found that, while net-

work connectance decreased, nestedness increased from

invasions.

The role of particular network architectures in stabiliz-

ing networks has been hotly debated, especially regarding

mutualistic networks. On one hand, patterns of con-

nectance and nestedness observed in mutualistic networks

can facilitate the coexistence of species and thus con-

tribute positively to network stability (Bastolla et al.

2009; Th�ebault and Fontaine 2010; Rohr et al. 2014).

Network complexity, measured as network size and con-

nectivity (number of interactions), can enhance network

resilience (Okuyama and Holland 2008). On the other

hand, some theoretical studies have shown that these typ-

ical features specific to mutualistic networks can also be

detrimental to network stability. For instance, the stability

of a mutualistic network declines with extreme levels of

nestedness (Campbell et al. 2012) or modularity

(Th�ebault and Fontaine 2010). The stability of a mutual-

istic network was also found to be negatively correlated

with connectance especially when interaction strength is

taken into account (Allesina and Tang 2012; Vieira and

Almeida-Neto 2015).

Inconsistency of the correlation between network struc-

ture and network stability is somewhat caused by the con-

fusion in choosing appropriate measures of network

stability. Each metric of network stability only measures

one specific facet of stability and thus often leads to con-

tradictions when interpreted as the general stability for

comparison (Vallina and Qu�er�e 2011). Among these met-

rics of network stability/instability, network invasibility is

a recent emergent concept particularly relevant to inva-

sion biology; it is defined as the amount of opportunity

niches in the trait space that allow for positive per-capita

population growth of rare aliens (Hui et al. 2016). It is

therefore necessary to explore how the concept of invasi-

bility relates to these other measures of network stability/

instability, as well as how these stability measures
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(including invasibility) are correlated with network archi-

tectures and the invasiveness of aliens.

Although the literature in invasion ecology is domi-

nated by empirical and experimental studies, theoretical

works are needed to explore general rules for predicting

invasiveness and impacts of alien species. Models with

trait-mediated biotic interactions represent an ideal theo-

retical framework for exploring issues of biological inva-

sion. For example, Campbell et al. (2015) formulated

the interaction strength between newly introduced spe-

cies and resident species by the similarity between their

phenotypic traits such as between corolla depth of

plants and proboscis length of pollinators. In these stud-

ies, traits of resident species are static and either ran-

domly assigned (Romanuk et al. 2009; Lurgi et al. 2014)

or empirically inferred (Campbell et al. 2015). However,

resident traits are often adaptive and results from long-

term ecological and evolutionary processes. The role of

such adaptive nature of resident traits in invaded net-

works needs to be assessed. Here, we deploy a theoreti-

cal approach to explore the process of biological

invasion in mutualistic networks. Mutualistic networks

are described using an eco-evolutionary model depicting

simultaneously ecological dynamics of population densi-

ties happening at a faster timescale and evolutionary

dynamics of functional traits happening at a slower

timescale, using the framework of adaptive dynamics

(Metz et al. 1992; Dieckmann and Law 1996). In these

networks, each species is identified by its trait (i.e., as

morphospecies) which determines the intensity of both

intraspecific competition and mutualistic interaction.

Our previous work using a similar model has shown

that properties of emerged mutualistic networks are

comparable to features of empirical networks (Minoariv-

elo and Hui 2016). However, we did not explore how

an introduced species performs and how emerged mutu-

alistic networks, in terms of their architectures and sta-

bility, respond to the incursions of these introduced

species. Here, we first use the model to generate mutu-

alistic networks as recipient communities, into which we

then introduce an alien species. By examining a wide

range of possibilities for both invaders and recipient

communities, we investigate how they respond to each

other. In particular, we study (1) how the invasiveness

and the impact of an introduced species depend on

whether or not its trait and its level of interaction gen-

eralization are relatively similar to the average of the

recipient community; (2) how the success of an invasion

depends on the way the invasive species is introduced,

that is, propagule pressure; and (3) how the invasibility

and other metrics of network stability depend on the

structure of recipient communities.

Materials and Methods

Evolutionary and ecological processes are coupled.

Evolutionary changes in functional traits can affect

ecological processes such as the way species interact

with each other and subsequently the behavior of pop-

ulation dynamics and demography (Hui et al. 2015).

In return, functional traits evolve in response to vary-

ing frequency-dependent selection from changing pop-

ulation densities. As such, we design a model of

mutualistic network emergence, implementing exactly

such coupling of population dynamics and trait evolu-

tion. Specifically, we assume that resource competition

becomes intense when the two species involved have

similar traits, as illustrated in the limiting similarity

theory stating the existence of a threshold for the sim-

ilarity between two species above which coexistence

cannot be guaranteed due to competitive exclusion

(Abrams 1983). We also assume that matching traits

between a pair of mutualistically interacting animal

and plant species (i.e., assortative interactions) can

expect high fitness rewards. For pollination syndromes,

pollinator trait could be its proboscis length, and flo-

ral trait could be the length of pollen tube. For seed

dispersal syndromes, traits could be the body size of

animal dispersers or the fruit size of the plant. Follow-

ing the framework of adaptive dynamics, traits can

evolve either directionally or disruptively, and the lat-

ter case allows a single trait to diversify adaptively

into two, eventually forming an ecological network.

The resultant network from such trait evolution will

be considered as a resident native mutualistic network

into which we introduce an alien species. We generate

multiple mutualistic networks with different character-

istics to explore the role of network architectures in

resisting invasions. We further vary the trait value of

the introduced species to examine the potential char-

acteristics of a successful invader.

Ecological dynamics

Let there be n morphospecies of animals and m morphos-

pecies of plants. Each morphospecies, indexed by i for

animals and j for plants, is further characterized by its

population density Ai (for i 2 1, . . . ,n) and Pj (for

j 2 1, . . ., m), respectively. We denote the trait of animal

morph i by xi and the trait of plant morph j by yj. The

population dynamics of the system is governed by

the per-capita population growth rates, dependent on the

intrinsic growth rate, intratrophic competition, and cross-

trophic mutualistic interactions (following Holling’s type

II functional response (1959)) (Holland et al. 2006;
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Zhang et al. 2011; Nuwagaba et al. 2015; Minoarivelo and

Hui 2016):

dAi

Aidt
¼ fAðxiÞ ¼ rA � rA

P
k cðxi; xkÞAk

KAðxiÞ þ
P

j bAiPjwAiPjPj

1þ h
P

j wAiPjPj

(1a)

dPj

Pjdt
¼ fPðyjÞ ¼ rP � rP

P
k cðyj; ykÞPk
KPðyjÞ þ

P
i bPjAi

wPjAi
Ai

1þ h
P

i wPjAi
Ai

(1b)

where r is the intrinsic population growth rate, and h the

handling time that animals spend for visiting a plant and

digesting the nutrients extracted from the plant; both are

assumed to be trait-independent to avoid overparameteri-

zation of the model (rA = rP = 1; h = 0.1). Note that

parameter values provided below in brackets are used as

reference for sensitivity tests. In the following, all terms in

eq. (1b) can be mirrored from the specified formulation

in eq. (1a). Descriptions of all parameters in eqs. (1a)

and (1b) are summarized in Table 1.

The carrying capacity, KA and KP, varies between

morphs, representing trait-mediated resource accessibility.

Following Doebeli and Dieckmann (2000), we used a

Gaussian function for the carrying capacity:

KAðxiÞ ¼ kANðxmax
A ; rA; xiÞ (2)

where kA (=400) is a scaling constant, and

Nðxmax
A ; rA; xiÞ the Gaussian density function of trait xi

with the maximum carrying capacity at xmax
A (=3) and

the standard deviation rA. This means that there exists

an optimal trait value for accessing resources at a maxi-

mum level kA. Species with trait deviating from the opti-

mal trait suffer from lower resource accessibility and

thus lower carrying capacity. Similarly, we set the base-

line values of kP (=300) and ymax
P (=2) for the plant spe-

cies in the following analysis.

The intratrophic competition function c is set to let

morphs with more similar traits suffer stronger competi-

tion. We used a Gaussian function for depicting the com-

petition intensity between morphs (Doebeli and

Dieckmann 2000; B€urger et al. 2006; Raimundo et al.

2014):

cðxi; xkÞ ¼ expð�ðxi � xkÞ2=2r2CÞ (3)

where rC controls the width of the competition kernel.

This means that intratrophic competition becomes less

sensitive to trait difference between the two competing

species as the width of competition kernel rC becomes

larger. In such a case, species can compete with a wider

range of other species for resources.

The cross-trophic mutualistic benefit, bAP, reflects the

assumption of assortative interactions that matched traits

bring to each other high profit and is also assumed to fol-

low a Gaussian function of trait difference:

bAPðxi; yjÞ ¼ c � expð�ðxi � yjÞ2=2r2mÞ (4)

where c (=0.1) is a parameter controlling the magnitude

of the maximum mutualistic support, and the parame-

ter rm controls the tolerance level of successful interac-

tions to the dissimilarity of involved traits (Nuismer

et al. 2010). This means that a species having

trait value similar to its mutualistic partner gains the

highest mutualistic benefit. As the tolerance level to

trait difference (rm) becomes smaller, mutualistic

benefits can only be assured for partners having

very similar traits. A high level of tolerance to trait

difference means that partner species with dissimilar

traits can also gain rewards from their mutualistic

interactions.

The interaction preference of two morphs wAP determi-

nes the possibility of interaction after the encounter and

is assumed to follow adaptive foraging strategies, depend-

ing on both the benefit and abundance of involved

morphs (Doebeli and Dieckmann 2000; Zhang and Hui

2014). Modifying the expression which describes the

strength of mutualistic support in Doebeli and Dieck-

mann (2000), we have the following function for the

adaptive interaction preference:

wAiPj ¼
bAiPj

RkAk

RkAkbAkPj

(5)

where the summation term ΣkAk in the numerator is for

normalization. This means that an animal prefers to

interact with plants that are common and with matching

traits.

Table 1. A summary of model parameters.

Parameter Description

Ai, Pj Population density

xi, yj Trait value

rA, rP Intrinsic population growth rate

KA(xi), KP(yj) Carrying capacity, functions of the trait value

c(xi, xk), c(yj, yk) Intratrophic competition, functions of the

trait values of two involved species

bAiPj ; bPjAi
Cross-trophic mutualistic benefit, functions of

the trait values of two involved species

wAiPj ;wPjAi
Interaction preference after encounter,

functions of both mutualistic benefit and

population abundance

h Handling time
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Evolutionary dynamics

Functional traits of interacting morphs are subject to muta-

tions. This can also be interpreted as the replacement and

reassembling of local species through colonization of regio-

nal species with different traits to these local residents.

Mutation normally happens at a low rate so that the popu-

lations can be considered at their ecological equilibriums

when the mutation occurs (Geritz et al. 1998). We only

consider the nontrivial strictly positive and asymptotically

stable equilibrium points of the system (~Aiðxi; yjÞ and
~Pjðxi; yjÞ). When a mutation enters the system, the resident

morphospecies and the mutant undergo an intratrophic

competition determined by eq. (1). Let x0i and y0i be the

mutant trait of animal morphospecies i and plant mor-

phospecies j, and let X = (x1, . . ., xn) and Y = (y1, . . ., ym)

be the trait vectors of the resident morphospecies. We can

define the invasion fitness of the rare mutants at the equi-

librium points as their per-capita growth rates when setting

their initial densities to be negligible: fA(x
0
i) and fP(y

0
j). The

selection gradient, defined as,

gAi
¼ @fAðx0iÞ=@x0ijx0

i
¼xi

gPj ¼ @fPðy0jÞ=@y0j jy0
j
¼yj

(6)

determines the direction and speed of trait evolution, and

an evolutionary singularity is defined as the traits ð~xi;~yjÞ
when the selection gradient disappears.

The evolutionary dynamics of the functional traits can

be depicted by the canonical equations of adaptive

dynamics (Dieckmann and Law 1996):

dxi=dt ¼ mA
~AigAi

dyj=dt ¼ mP
~PjgPj

(7)

where mA and mP are parameters proportional to the rate

and variation of the mutation (set to 10�3) in the analysis.

An evolutionary branching is to occur in the system provided

that three conditions are satisfied. First, the singularity

ð~xi;~yjÞ should be an evolutionary attractor of directional

selection; that is, it is convergence stable. This happens when

all eigenvalues of the Jacobian matrix of eq. (7) have negative

real parts (see Doebeli and Dieckmann 2000); this means:

@gAi
=@xijxi¼~xi

\0

@gPj=@yjjyj¼~yj
\0

(8)

Second, the singularity should represent a fitness mini-

mum to induce disruptive selection and to allow the

mutant to invade (Geritz et al. 1998); that is,

@2fA=@x
0
i
2jx0

i
¼~xi

[ 0

@2fP=@y
0
j
2jy0

j
¼~yj

[ 0
(9)

Finally, the mutant and the resident morphospecies

need to coexist to insure the protection of dimorphism

from the evolutionary branching (Geritz et al. 1998); that

is, the two morphospecies can invade each other:

ð@2fA=@xi
2 þ @2fA=@x

0
i
2Þjx0

i
¼xi¼~x [ 0

ð@2fP=@y
2
j þ @2fP=@y

02
j Þjy0

j
¼yj¼~yj [ 0

(10)

Numerical analysis

We numerically solved the population dynamics (eq. 1)

and the canonical equations of adaptive dynamics

(eq. 7). It is worth noting that, although the trait of a

species can take any values (e.g., log-transformed body

size as a focal trait can range from negative to positive

infinity, theoretically speaking), only those that are feasi-

ble and can insure its own viability, that is, with a posi-

tive equilibrium in eq. (1), can be realized in the model.

Once the system reaches its singularity (i.e., when direc-

tional selection ceases, with populations also at the eco-

logical equilibrium), the three conditions for

evolutionary branching will be examined. If satisfied, a

new morphospecies will be added to the system with its

trait value slightly different from the resident trait

(+0.01) and having a low initial density (10% of its resi-

dent population density). The density of the resident

morphospecies will be simultaneously updated to be 90%

of its original. The process was repeated until we obtain

adequate number of morphospecies to form a network

and the system has reached its singularity. A morphos-

pecies was considered extinct when its population density

dropped below 10�8.

We distinguished three types of communities depend-

ing on their sizes. Small communities were generated by

allowing the system to branch four consecutive times, giv-

ing a maximum number of 16 (=24) morphs on each side

of animals and plants. An example of the formation of a

small community by trait evolution depicted as evolution-

ary trees is given in Figure 1. Medium-size communities

were generated by five consecutive branching events, giv-

ing a maximum of 32 (=25) morphs on each side. Large

communities were obtained by six consecutive branching

events with a maximum of 64 (=26) morphs on each side.

We obtained communities with different structures by

varying kernel parameters (Minoarivelo and Hui 2016):

the width of the intratrophic competition kernel (rC), the
tolerance to trait difference in a mutualistic interaction

(rm), and the width of resources accessibility (rA for ani-

mals and rP for plants; we keep rA = rP for simplicity).

These parameters were varied from e�3 (�0.05) to e, with

a multiplicative step of e1/4. We discarded the
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combinations of rC, rm, and rA that resulted in

monomorphic systems (no diversification).

Network analysis

We considered the bipartite mutualistic networks formed

by interactions between the two sets of animal and plant

morphospecies. Here, we depicted the network as a quan-

titative interaction matrix (Q) where its elements (qij)

represent the interaction strength between animal i and

plant j. Following Berlow et al. (2004), we define the

interaction strength as the nonlinear functional response

term of eq. (1), depending on both the number of

recruited animal i from interacting with plant j and the

number of recruited plant j from interacting with animal

i, per time unit:

qij ¼ 1

2

AibAiPjwAiPjPj

1þ hwAiPjPj
þ PjbPjAi

wPjAi
Ai

1þ hwPjAi
Ai

 !
(11)

When the element qij is less than 10�8, it was consid-

ered to be equal to zero, indicating a negligible interac-

tion. An illustration of such interaction network as a

bipartite weighted graph is given in Figure 1.

We analyzed the architecture of the networks using

four metrics adapted for quantitative matrices. First, the

level of interaction specialization (SPE) of each network

was measured according to the quantitative index H0
2 of

Bl€uthgen et al. (2006). This index measures the overall

deviation of species’ realized degrees from their expected

ones, ranging from 0 (no specialization) to 1 (perfect spe-

cialization). Second, the quantitative connectance metric

(CON) was computed as the quantitative linkage density

(i.e., the mean number of interactions per species,

weighted by interaction strength) divided by the number

of species in the network (Tylianakis et al. 2007). This

index is directly related to the proportion of realized

interactions in the network when interaction strengths are

taken into account. Third, we used the metric WNODF

(weighted nestedness metric based on overlap and

decreasing fill) for depicting the level of nestedness

(NEST) (Almeida-Neto and Ulrich 2011). The WNODF

metric is based on the assumption that if species i is more

specialized than species j, then the interaction between

species i and k will only be counted when species j also

interacts with species k. Finally, the level of modularity

was measured using the algorithm QuanBimo (Dormann

and Straub 2014). By assuming that the average interac-

tion strength within a module is higher than between

modules, the Quanbimo algorithm forms a module by

assigning species that interact more strongly with species

within the module than expected by chance. All these net-

work metric measurements are implemented in the R

library bipartite (Dormann et al. 2008).

Invasion trial

As the model is symmetric regarding animals and plants

side, we introduced an alien animal species into the

native community, with the number of individuals intro-

duced equal to 5%, 10%, and 25% of the average popula-

tion density in the recipient community. Because effects

of biological invasion are generally studied at ecological

timescales, we fixed the phenotypic traits of the studied

community once the alien species was introduced and

only allowed population densities to change according to

eq. (1).

To test the dependence of invasion success on the par-

ticular ways that these propagules were introduced, we

randomly selected 100 medium-size networks and tested

five different ways of introducing the alien propagules.

First, all individuals of the alien species were introduced

only once before letting population dynamics to change.

Second, individuals of the alien species were divided into

two groups of equal size. The first group was introduced

at the initial time step while the second group after five

time steps. Third, individuals of the alien species were

Figure 1. Evolutionary dynamics of a mutualistic network. The trait

dynamics preinvasion is represented as two evolutionary trees and its

associated interaction network represented as a bipartite graph.

Parameters: rA = e0.75; rc = e�3; rm = e�2.25.
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introduced at three consecutive times separated by an

interval of five time steps. The number of individuals

introduced increased each time, representing 20%, 30%,

and 50% of the total propagule size. Fourth, individuals

were introduced three times but with declining numbers

each time (50%, 30%, and 20%). Finally, we introduced

the alien species five consecutive times with equal densi-

ties (20% each time), with introductions separated by five

time steps.

We further investigated the role of the trait and the

level of mutualism generalization of the invader, relative

to the resident species in recipient communities. First, we

introduced animal species with nine different trait values,

ranging evenly from the lowest to the highest trait value

of the natives. Hereafter, the trait value of the invader is

reported as the relative trait value (rtv) and scaled

between 0 (lowest trait value) to 1 (highest trait value),

relative to the traits of resident species. Second, the level

of mutualism generalization was measured as the toler-

ance of the invader to trait difference (i.e., rm) for feasi-

ble mutualistic interactions. A high tolerance to trait

difference (large rm) suggests that mutualistic benefits can

be assured by interacting with mutualistic partners with a

wide range of traits, making the focal species a generalist.

Nine levels of generalization of the invader were consid-

ered relative to the generalization level of the native com-

munity, with the generalization level ratio (glr) ranging

from one-fifth to five times the tolerance of native species

to trait difference (rm).
We considered two measurements of invasion success:

invasiveness of the alien species, and the impact it has on

the native community. Invasiveness (INVn) was defined

as the relative growth rate of the invader:

INVn ¼ lnðAinv
final=A

inv
initialÞ in which Ainv

final is the population

density of the invader measured after the last possible

introduction (i.e., at the 25th time step and after the fifth

introduction which was at the 20th time step) and Ainv
initial

the total density of propagules introduced. The impact of

the invasion (IMP) was measured as the magnitude of

change in the relative growth rate of the native species:

IMP ¼ j lnðAnat
final=A

nat
initialÞj in which Anat

final and Anat
initial

denote the total population size of all native animals at

the 25th time step and before the invasion, respectively.

As the population dynamics in such models are fairly

monotonic and smooth (e.g., see Okuyama and Holland

2008; Bastolla et al. 2009), measurements of invasiveness

and impact at the 25th time step are sufficient to be

indicative.

Network stability and invasibility

To assess the potential ability of native communities to

resist to biological invasions, we used a set of 1000

networks, including 350 small-, 370 medium-, and 280

large-size networks. We calculated all commonly used sta-

bility metrics for these 1000 networks. First, network resi-

lience (RES) was measured as the logarithm of the

absolute value of the dominant eigenvalue of the Jacobian

matrix at equilibrium (De Angelis 1980; Okuyama and

Holland 2008; Encinas-Viso et al. 2012): RES = ln |k|.
Specifically, the Jacobian matrix of the population

dynamics (eq. 1) was computed at system singularity

before alien introduction. Network resilience depicts how

quickly a system returns to its steady state after being per-

turbed (De Angelis 1980). Second, we calculated network

robustness (ROB) based on the concept of network

response (secondary extinctions) from species removal

(Dunne et al. 2002). Robustness is the fraction of species

that had to be removed, from generalist to specialist, to

result in the loss of more than 50% of all species. Finally,

disruptiveness (DIS), a measure of evolutionary instabil-

ity, was computed as the average of the strength of dis-

ruptive selection for all animal species (Br€annstr€om et al.

2011), with the strength of disruptive selection for a par-

ticular species i measured as the curvature of its invasion

fitness at the singularity trait value ~xi:

DIS ¼
Xn
i¼1

@2fA=@x
0
i
2jx0

i
¼~xi

: (12)

We calculated the network invasibility (INVb) as the

probability (proportion) of successful invasions (i.e., with

positive invasiveness) among all invaders with traits span-

ning across the entire native trait range. We calculated

the invasiveness and impact of an alien species when

invading these 1000 networks. We assign each invader a

trait as the average of native traits weighted by their pop-

ulation densities and a level of mutualistic generalization

similar to the native community (glr = 1). We further

assessed the relationship between network architecture

(Network analysis) and stability metrics, including invasi-

bility, using Spearman’s rank correlation. We conducted a

multidimensional scaling analysis of k-mean clustering

and hierarchical clustering (pvclust library in R, Suzuki

and Shimodaira 2015) based on the rank correlation

matrix to group closely related network metrics and

observables.

Results

Role of invasive trait

Both the generalization level of the invader and its trait

had an effect on the invasion success (Fig. 2). In general,

species having the level of generalization similar to that of

the natives are more likely to be invasive (vertically
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centered area of Fig. 2A). Species having extreme trait

values but a high level of generalization also have high

invasiveness (top-right and bottom-right corners of

Fig. 2A). Species that are extreme specialist with extreme

trait values also tend to be more invasive than those with

trait value similar to most of the native species (extreme

left area of Fig. 2A). Although the trait of the invader and

its level of generalization can affect the population density

of the native community, the overall impact of the inva-

sion is small, reducing the total population size of the

entire native community by about 1% (Fig. 2B). Highly

generalist species having trait values similar to those of

native species have the highest impact on the native com-

munity (center-right area of Fig. 2B). The impact is also

high for extreme specialist species having trait values sim-

ilar to natives (center-left area of Fig. 2B). The introduc-

tion of species having extreme trait values or having level

of generalization similar to those of the natives only

slightly affected native population densities (top, bottom,

and vertically centered areas of Fig. 2B). Moreover, when

the introduced species has a trait value that falls far out-

side the range of resident traits, its invasiveness and

impacts become trivial because it is situated far from the

resource optimum and thus suffers from the lack of

resources (Fig. S1). For 89% of the studied cases, the

introduction of the alien species made the total popula-

tion density decline (Fig. S2).

Role of introduction mode

Invasion success also depends on the way these alien indi-

viduals are introduced (e.g., once-off or multiple intro-

ductions), that is, the introduction mode. However, the

dependence of invasiveness on introduction mode is sen-

sitive to the level of generalization of the invader. First,

when an invader has the same level of generalization as

the native species, its invasiveness becomes the highest for

the mode of three introductions with decreasing propag-

ule sizes and becomes the lowest for the mode of three

introductions with increasing propagule sizes (Fig. 3A

and B). Second, when the invader is either more specialist

or more generalist than the native species, the invasive-

ness of the alien becomes highly dependent on the num-

ber of introduction events, with higher numbers of

introductions leading to high invasiveness (Figs. 3C and

D, S3).

The dependence of the invasion impact on the mode of

introduction is uniform regardless of the invader trait

value and its generalization level. The impact of the inva-

sion on the population of the native community is high-

est when the invader is introduced three times with

decreasing propagule sizes (Fig. 4). However, when the

invader species is highly specialist or highly generalist, the

impact of multiple introductions is not significantly dif-

ferent from the impacts caused by a once-off introduction

Figure 2. (A) Invasiveness and (B) impact of the invader as a function of its relative trait value and generalization level ratio, relative to those of

the native community. Invasiveness and impact values represent the average over 100 medium-size networks. Lines represent the zero level of

invasiveness under different introduction modes.
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(Fig. 4C and D). Regardless of the introduction mode

(Figs. S3, S4) and the initial propagule size (Fig. S5),

these patterns demonstrated in the previous section

regarding the dependence of invasiveness and impact on

the invader trait and its level of generalization remained.

Role of network structure and stability

Although most network architectural metrics had a signif-

icant relationship with network stability metrics (includ-

ing invasibility), these relationships are quite weak, with

the strongest being between modularity and invasibility

(Spearman’s rank correlation r = 0.33; Fig. 5). Network

connectance is the weakest related to network stability yet

still significant with network robustness (r = 0.13) and

invasibility (r = �0.10), regardless of the initial propagule

size of the invader (Figs. 5, S6). Specialization and modu-

larity affect all network stability positively (including posi-

tively with invasibility). In contrast, nestedness is

negatively correlated with most network stability metrics,

except for its positive relation with invasion impact

(Figs. 5, S6).

Network architectural metrics are more closely related

with themselves rather than with metrics of network sta-

bility or invasibility. In particular, modularity and special-

ization are strongly positively correlated (r = 0.96), while

nestedness forms a hook-shaped relationship with other

network architectural metrics. Network stability metrics

are also more strongly correlated within themselves rather

than with network architectural metrics. Specifically, we

noticed strong positive relationships among resilience,

invasibility, and disruptiveness, regardless of the initial

propagule size (Figs. 5, S6). Measurement of invasion

impact has the lowest correlations with metrics of net-

work stability (Figs. 5, S6). Of particular interest,

although invasibility, disruptiveness, impact, and invasive-

ness are conceptually measures of network instability, they

are nonetheless positively correlated with network robust-

ness and resilience. That is, the most robust and resilient

community is also the one that is the most disruptive and

Figure 3. Average (over 100 medium-size networks) of the invasiveness when the alien has the following: (A) typical trait and similar level of

generalization to the native species, (B) average trait and similar level of generalization to native species, (C) typical trait and is more specialist

than native species, (D) typical trait and is more generalist than native. Error bars represent tenth of the standard deviation. rtv stands for relative

trait value and glr for generalization level ratio. Bars with different characters are significantly different from each other.
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easy to invade, suggesting the existence of two conceptu-

ally related but distinct groups in network stability

metrics.

Using multidimensional scaling analysis, we confirmed

that there are two groups of metrics for network architec-

ture and stability (Fig. 6). The k-mean clustering analysis

gave an optimal number of three clusters, irrespective of

the propagule size, with more than 95% variance

explained. There is an additional third group containing

nestedness, invasion impact, and the invasiveness (Fig. 6B

and C). When the initial propagule size of the invader is

small (5% of the average native density), invasiveness

became less related to nestedness but joined the group of

network stability metrics (Fig. 6A). Results from the hier-

archical clustering using a P-value >0.95 confirmed once

again about the two groups of network metrics, in agree-

ment with the grouping from the k-mean clustering anal-

ysis (Fig. 6). Members of the third additional group are

either divided into the other two main groups or left in

isolation. In particular, nestedness is generally weakly

related to both main groups of network metrics (Fig. 6A

and C).

Discussion

Trait-mediated invasiveness and impact

Ecological network approach in which interactions are

mediated by traits constitutes an interesting framework

to predict the success or the failure of an invasion. It

allowed us to test the invasion success for different com-

binations of invader characteristics (trait and level of

generalization) and the characteristics of the recipient

community. In contrast to previous studies (Aizen et al.

2008; Albrecht et al. 2014; Campbell et al. 2015), we

found that the effect of invader characteristics on its

invasion success is not unidirectional but intertwined.

However, our finding that alien species with traits

Figure 4. Average (over 100 medium-size networks) of the impact when the alien has the following: (A) typical trait and similar level of

generalization to the native species, (B) average trait and similar level of generalization to native species, (C) typical trait and is more specialist

than native species, (D) typical trait and is more generalist than native. Error bars represent tenth of the standard deviation. rtv stands for relative

trait value and glr stands for generalization level ratio. Bars with different characters are significantly different from each other.
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dissimilar to those of the natives are the most invasive

ones is consistent with previous studies (Aizen et al.

2008; Campbell et al. 2015). The importance of high

interaction generalization to invasiveness as observed by

others (Aizen et al. 2008; Bartomeus et al. 2008; Vil�a

et al. 2009; Albrecht et al. 2014) was only observed in

our results when the traits of the invader are dissimilar

to the average resident traits. Our results, thus,

encompass broader scenarios than those previously stud-

ied on mutualistic networks. The most invasive species is

not always the one that has the biggest impact, high-

lighting the need to differentiate highly invasive species

from those with big impact in management prioritiza-

tion. Invasive species should only be targeted by manage-

ment if their negative impacts outweigh their positive

effects.

Figure 5. Spearman’s rank correlations between network metrics. The lower triangular block gives the rank correlation coefficient (r) and the

P-values. Diagonal plots represent histograms of each network metric. Green, red, and black dots represent, respectively, small-, medium-, and

large-size networks.
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Besides trait distinctiveness, a high level of interaction

generalization is also a strong predictor for big impacts

(Aizen et al. 2008; Albrecht et al. 2014), often through

the cascading effect of interactions that are strongly asso-

ciated with generalists. Different from Campbell et al.

(2015) but consistent with Morales and Traveset (2009),

we found that invaders with traits atypical of the native

community have the least impact to native population

sizes. As the overall impact observed in our model is

detrimental rather than proliferating (Fig. S2), the impact

probably could have resulted from intraspecific competi-

tion in mutualistic networks, suggesting that the detri-

mental effect from competing with invaders has

overridden the proliferation from mutualistic interactions.

The impact of biological invasions on native population

densities is small in mutualistic networks and thus a neg-

ligible effect on network architecture (Fig. S8). Such small

impact has been previously documented (Padr�on et al.

2009; Vil�a et al. 2009) and can be caused by the periph-

eral role of the invader in the network. In particular,

Albrecht et al. (2014) found that the overall number of

modules in an empirical pollination network was not

altered by invasion, but only that modules were more

connected from the super-generalist invaders.

The trait value and node degree (level of interaction

generalization) of an invader decide its invasiveness and

impact in the recipient network. Our results can be

explained by the balance between two forces: the detri-

mental effect of competition and the beneficial effect from

mutualism. While a high level of interaction generaliza-

tion often means large benefits from mutualism, a trait

atypical of resident species means the escape from compe-

tition. Consequently, a generalist invader also possessing

traits atypical of resident species is the most invasive. By

contrast, to have the highest impact on the recipient net-

work, the invader’s trait should be similar to those of an

average resident species so that competition can be inten-

sified. The invader with big impact should either be an

extreme generalist so that mutualistic benefits from most

resident species can be monopolized, or be an extreme

specialist so that benefits from targeted mutualistic

partners can be deprived.

Propagule pressure and introduction mode

Both the number of introductions and the propagule size

at each introduction matter to invasion success. Even if

the dependence of invasion success on the number of

introductions showed contingent patterns on the level of

invader generalization, a general pattern still acknowl-

edges the importance of multiple introductions, especially

with decreasing propagule size, consistent with previous

studies (Jeschke and Strayer 2006; Simberloff 2009).

Indeed, a high number of introductions could help in

lessening environmental stochasticity (Simberloff 2009) or

rescuing the establishment of each introduction as in the

phenomenon of invasion meltdown (Traveset and

Richardson 2014). In our case, this is probably caused by

the indirect positive effect of mutualism: once some indi-

viduals of the invader establish in the system, they prolif-

erate the population densities of their mutualistic

partners and subsequently facilitate the establishment of

new arrivals from future introductions, potentially form-

ing a positive feedback between aliens and natives in

mutualistic networks (Memmott and Waser 2002; Bar-

tomeus et al. 2008; Traveset and Richardson 2014). More-

over, the additional effect of decreasing propagule size in

multiple introductions suggests that such proliferation

Figure 6. Multidimensional scaling representation of the relationship between all network metrics under different propagule sizes, in which

respectively (A) 95.5%, (B) 95.2, and (C) 96.3% of the variance was explained. The number of introduced individuals is respectively (A) 5%, (B)

10%, and (C) 25% of the average native population densities. Clusters formed by the k-mean clustering analysis are shown by solid circles and

those from a hierarchical clustering by dashed circles.
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from earlier introductions is diminishing or saturating

with the number of established individuals.

Network architecture and invasibility

Network structures, such as connectance, level of special-

ization, nestedness, and modularity, were shown to be

not of primary correlates of network stability. Conse-

quently, network architectures alone cannot capture the

overall functioning of ecological networks. More impor-

tantly, one measure of network stability would suffice for

predicting how a community responds to the perturba-

tion of biological invasions. We are certainly not discard-

ing the role of network architectures in stabilizing or

destabilizing mutualistic networks (Bastolla et al. 2009;

Th�ebault and Fontaine 2010; Allesina and Tang 2012;

Rohr et al. 2014; Vieira and Almeida-Neto 2015), but

simply state that inferring network function from struc-

ture could have been overemphasized. In particular, nest-

edness was negatively correlated with resilience and

robustness, consistent with previous studies (Allesina and

Tang 2012; Campbell et al. 2012), even though it has

been observed as one of the most prominent characteris-

tics of mutualistic networks. This counter-intuitive obser-

vation is reconciled by our results that highly nested

networks have a low invasibility, thus less likely to be

invaded.

The more robust and resilient a network is, the more

susceptible it is to invasion. Mutualistic networks which

are well posed (high robustness) can return quickly to a

steady state after perturbations (high resilience); such net-

work features also make it susceptible to invasion (high

invasibility; i.e., a high chance of invasion success). Intu-

itively, this is because the features of a network being well

posed also allow it to easily absorb newly introduced spe-

cies. That is, networks that are insensitive to perturba-

tions, especially to species removal (i.e., being robust) will

have a high chance to be invaded. The positive relation-

ships between network stability metrics (resilience and

robustness) and network instability metrics (invasibility,

invasiveness, disruptiveness, and impact) heighten the

necessity to use appropriate measures in network studies.

Stability metrics should therefore not be interpreted out-

side the context defining environmental drivers of change

(Ives and Carpenter 2007). Moreover, network resilience

and disruptiveness are strongly related to each other

(Fig. 6). As the former is widely used as a proxy of eco-

logical stability and the latter evolutionary instability, resi-

lient networks are disruptive. Ecological stability and

evolutionary stability could be two complementary states

for systems to handle perturbations.

Future works can expand the scope of our model in

two aspects. First, although we were able to vary the

interaction generalization level of the invader, the levels

of interaction generalization of all native species were

assumed to be the same (i.e., the tolerance to trait differ-

ence rm). This assumption could have oversimplified the

reality that species in real networks often have different

diet breadths. Second, we assumed a symmetric model

regarding the animal–plant interaction. Empirical studies

have often unveiled imbalanced roles of animal pollina-

tors and flowering plants in mutualistic networks, result-

ing in asymmetric interaction with plants strongly

dependent on the pollinators (Bascompte et al. 2006;

Aizen et al. 2008). Extension of our trait-based model to

encompass interaction asymmetry would certainly be

worth of further investigation.
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Supporting Information

Additional Supporting Information may be found online

in the supporting information tab for this article:

Figure S1. (a) Invasiveness and (b) impact (averaged over

100 medium-size networks) of the invader as a function

of invader characteristics when the invader is introduced

once. Traits of the alien species can be outside the range

of resident traits. White lines represent the zero level of

invasiveness.

Figure S2. Relative growth rate of the native species (aver-

age over 100 medium-size networks) as a function of the

invader characteristics for once-off introduction. The white

line near the bottom right represents the zero growth line.

Figure S3. Invasiveness (average over 100 medium-size

networks) as a function of invader characteristics when
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introduced (a) twice with equal propagule sizes, (b) three

times with increasing propagule sizes, (c) three times with

decreasing propagule sizes and (d) five times with equal

propagule sizes. White lines represent the zero invasive-

ness.

Figure S4. Impact (average over 100 medium-size net-

works) as a function of invader characteristics when intro-

duced (a) twice with equal propagule sizes, (b) three times

with increasing propagule sizes, (c) three times with

decreasing propagule sizes and (d) five times with equal

propagule sizes.

Figure S5. Invasiveness (a, b) and impact (c, d), average

over 100 medium-size networks, as a function of invader

characteristics when introduced once-off, under different

initial propagule sizes. (a) and (c): 5% of the average

native density; (b) and (d): 25% of the average native den-

sity. White line represents the zero invasiveness.

Figure S6. Relationships between all network metrics for

different initial propagule sizes. The lower triangular block

contains the Spearman’s rank correlation coefficient (r)

and the P-values. Diagonal plots represent histograms of

each network metrics. Green, red and black dots represent,

respectively, small-, medium-, and large-size networks.

Figure S7. Relationships between all network metrics for

different network sizes. The lower triangular block contains

the Spearman’s rank correlation coefficient (r) and the P-

values. Diagonal plots represent histograms of each of the

network metrics. Green, red and black dots represent,

respectively, small-, medium-, and large-size networks.

Figure S8. Comparison of network architectures between

pre- and postinvasion networks. Points represent the aver-

age values over all networks. Error bars are standard devia-

tions. Green, red and black colors represent, respectively,

small-, medium-, and large-size networks.
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