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Abstract

Surrogate Modelling of Performance Metrics of a
Wideband Feed for the SKA Reflector Antenna

R. Louw
Department of Electrical and Electronic Engineering,

University of Stellenbosch,
Private Bag X1, Matieland 7602, South Africa.

Thesis: MEng (EE)
December 2017

The focus of this thesis is on a design methodology for a pyramidal sinuous
antenna for use as a wideband feed in the SKA reflector antenna system. The
design objective is to maximise the receiving sensitivity of the feed, while main-
taining a reflection coefficient of at most -10 dB over the entire band.

Acquiring accurate solutions of the antenna’s performance metrics for each
geometric variation in the design space requires a full wave solution for each
possibility. This is a time consuming task. Thus, the focus in this thesis is
on finding accurate surrogate models that are fast to evaluate, on which the
design can be done. Surrogate models require the availability of a coarse model
that is less accurate, but faster to evaluate than the fine model. Truncated
models of the antenna structure that operate at the band edges of the full
fine model are used. These provide a good approximation of the behaviour
of the pyramidal sinuous antenna. A simple surrogate model is suggested for
the sensitivity of the system, which makes use of an output space mapping
technique where a second-order polynomial regression term is applied to the
difference between the sensitivity of the coarse and fine models, using only a
few fine model evaluations.

A rational interpolation model is used to find the input impedance of the an-
tenna from which the reflection coefficient is calculated. Rational interpolation
of high-fidelity data, acquired from the fine model, is done first. Low-fidelity
data, acquired from the coarse model, are subsequently added to the rational
interpolant so as to improve the accuracy of the model without the need for
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adding additional high-fidelity data points. The constraint which ensures a
pole-free rational interpolant restricts the solution of the model. This leads
to the introduction of a blended rational interpolation method that locally
models the trend of the low-fidelity data and is then blended together into a
global interpolant using quadratic B-spline functions. A comparison of this
model to other interpolation methods shows this blended rational interpolant
to perform well.

Brief consideration is given to the application of these surrogate modelling
methods on a 5:1 bandwidth pyramidal sinuous antenna. This example illus-
trates the significant speed-up that is achieved for the design, where a speed-up
factor close to 16 is achieved.

The design of a 3:1 bandwidth is then considered with two geometric pa-
rameters as input to the design. Using very few high-fidelity data points, the
blended rational interpolation method leads to a predicted region of where
the reflection coefficient is less than -10 dB that has an 11.9% error. From
this region, the antenna with the maximum sensitivity is identified, with the
surrogate predicting an average sensitivity of 3.651 m2/K. Validation of the re-
sults shows the average sensitivity to be equal to 3.7139 m2/K and a reflection
coefficient below -10.52 dB over the entire band.
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Opsomming

Surrogaat-Modellering van die
Werksverrigtingsmaatstawwe van ’n Wyeband Voer vir

die SKA Weerkaatsingsantenna
(“Surrogate Modelling of Performance Metrics of a Wideband Feed for the SKA 

Reflector Antenna”)

R. Louw
Departement Elektries en Elektroniese Ingenieurswese,

Universiteit van Stellenbosch,
Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: MIng (EE)
Desember 2017

Die fokus in hierdie tesis is op die ontwerp van ’n piramidiese siniese antenna 
vir gebruik as ’n wyeband voer in die SKA weerkaatsingsantenna. Die mikpunt 
vir die ontwerp is om die ontvangersensitiwiteit van die voer te maksimeer, ter-
wyl daar gelyktydig aan ’n maksimum weerkaatskoëffisiënt van -10 dB oor die 
hele band voldoen word.

Om akkurate oplossings van die antenna se werksverrigtingsmaatstawwe vir 
elke geometriese variasie in die ontwerpsruimte te bekom, word volgolf simu-
lasies vir elke moontlikheid verlang. Hierdie is ’n tydrowende proses. Daarom 
fokus hierdie tesis daarop om akkurate surrogaatmodelle te bou wat vinnig is 
om te evalueer en waarop die ontwerp dan gedoen kan word. Surrogaatmodelle 
verlang die beskikbaarheid van ’n growwe model wat minder akkuraat is as 
die fyn model, maar wat vinnig is om te evalueer. Afgesnyde modelle van die 
antenna struktuur wat werkend is op die rante van die frekwensiebande van 
die volle fyn model word gebruik. Hierdie modelle gee ’n goeie afskatting van 
die gedrag van die piramidiese siniese antenna. ’n Eenvoudige surrogaatmodel 
word voorgestel vir die sensitiwiteit van die stelsel, wat gebruik maak van ’n 
afvoerruimtekartering tegniek waar ’n tweede-orde polinomiese regressieterm 
verkry is op die verskil tussen die sensitiwiteit van die growwe en fyn modelle, 
deur van net ’n paar fyn model evaluasies gebruik te maak.
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A rasionele interpolasie model word gebruik om die intree impedansie van
die antenna te vind, waarvan die weerkaatskoëffisiënt bereken word. Eerste
word rasionele interpolasie van hoë-getrouheid data wat van die fyn model
afkomsitg is gedoen. Dan word laë-getrouheid data by die interpolant gevoeg
sodat die akkuraatheid van die model verbeter word sonder om addisionele
hoë-getrouheid datapunte by te voeg. Die beperking wat toegepas word om
te verseker dat die model nie pole bevat nie, perk die oplossing van die model
in. Dit lei na die bekendstelling van ’n gemengde rasionele interpolasie metode
wat plaaslik die tendens van die laë-getrouheid data modelleer en dan saam-
gemeng word in ’n globale interpolant deur middel van kwadratiese B-spline
funksies. ’n Vergelyking van hierdie model met ander interpolasiemetodes wys
dat hierdie gemengde rasionele interpolant goed werk.

Die aanwending van hierdie surrogaatmodelle op ’n 5:1 bandwydte pirami-
diese siniese antenna word kortliks oorweeg. Hierdie voorbeeld illustreer die
merkwaardige versnelling wat verkry word vir die ontwerp, met ’n tydsbespa-
ringsfaktor naby aan 16.

Die ontwerp van ’n 3:1 bandwydte piramiede siniese antenna word oorweeg
met twee geometriese parameters as intreë tot die ontwerp. Deur van net ’n
paar hoë-getrouheid datapunte gebruik te maak, voorspel die gemengde rasi-
onele interpolant ’n area waar die weerkaatskoëffisiënt onder -10 dB is met ’n
11.9% fout. Uit hierdie area word die antenna met die maksimum sensitiwiteit
geïdentifiseer en die surrogaatmodel voorspel die sensitiwiteit by hierdie punt
as gemiddeld 3.651 m2/K. Validasie van die resultate wys dat die sensitiweit
gelyk is aan ’n gemiddeld van 3.7139 m2/K en dat die weerkaatskoëffisiënt oor
die hele bandwydte onder -10.52 dB is.
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Chapter 1

Introduction

1.1 SKA background
The Square Kilometre Array (SKA) project is a massive scientific and en-
gineering undertaking to construct the world’s largest radio interferometer,
about 50 times more sensitive than any currently in existence [1]. It will see
farther and wider into the universe than currently possible and aims to answer
questions such as, among others [2]:

• "how old is the universe?"

• "what is dark matter?"

• "when did the first stars form?"

• "what are gravitational waves?"

In order to do this, it is necessary for extensive research into a wide range of
engineering fields, which includes, but are not limited to, wideband feeds, low-
cost dish antennas, shielding of component radio frequency interference (RFI),
mitigation of external RFI, and low-cost, reliable remote operation of the tele-
scope [3]. The SKA is divided into two site entities, one in Western Australia
and one in Southern Africa, namely SKA1-mid. A precursor to SKA1-mid is
the MeerKAT [3], which is currently under construction in the Karoo, about
90 km from the town of Carnarvon in the Northern Cape. It consists of 64
offset Gregorian dish antenna structures each with a 13.5 m effective diameter
main reflector and a 3.8 m diameter subreflector. The equivalent F/D ratio is
0.55 which is equal to a 48.9◦ subtended half angle [4]. Figure 1.1 shows an
illustration of the final design.

1
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CHAPTER 1. INTRODUCTION 2

Figure 1.1: An artist’s impression of the final design of the MeerKAT antenna.
SOURCE: Figure 2a) [5].

MeerKAT will be integrated into SKA1-mid, along with a further 133
dishes. Each dish is capable of handling five cryo-cooled receiver packages,
each of which can be moved to the focal position. The 5 different frequency
bands for SKA1-mid is listed in Table 1.1.

Table 1.1: Frequency bands for SKA1-mid.

Band Range [GHz] Bandwidth

1 0.35 - 1.05 3:1
2 0.95 - 1.76 1.85:1
3 1.65 - 3.05 1.85:1
4 2.80 - 5.18 1.85:1
5 4.6 - 13.8 3:1

For the narrower bands, a wide flare angle axially corrugated conical horn
was designed in [6] and further optimised for sensitivity in [7]. Table 1.2 lists
some of the key performance metrics of this corrugated horn.
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Table 1.2: Performance metrics of the corrugated horn used in the MeerKAT
system [7], [6].

Metric Value

Reflection Coefficient < -18 dB
Aperture efficiency > 74%

Sensitivity > 4.7 m2/K
Second sidelobe level < -25 dB

XPOL (-1 dB main beam contour) < -25 dB
XPOL (-3 dB main beam contour) < -30 dB

The 3:1 bands are already wideband compared to conventional octave band
horns. Furthermore, the development of an ultra wideband (UWB) feed that
could cover a much wider bandwidth than the current best feeds would greatly
reduce system costs, as well as having scientific benefits. Several feeds with
operating bandwidths up to a decade have recently been developed around the
world, but with inferior performance compared to the octave band horn used
in the MeerKAT system. These include the eleven feed [8], the quad-ridged
flared horn (QRFH) [9], the log-periodic antenna used in the Allen Telescope
Array [10], the quasi-self-complementary (QSC) ultrawideband feed [11] and
the sinuous feed [12], all shown in Figure 1.2.

(a) (b)

(c) (d) (e)

Figure 1.2: Wideband feed technologies being researched for the SKA: (a) The
quad-ridged flared horn [9]; (b) The log-periodic antenna [10]; (c) The quasi-self-
complementary feed [11]; (d) The sinuous feed [12]; (e) The eleven feed [13].
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CHAPTER 1. INTRODUCTION 4

Feeds (b)-(e) of Figure 1.2 are all log-periodic type antennas over a ground
plane. Their log-periodicity is what gives these feeds their wideband behaviour,
while the ground plane ensures a uni-directional radiation pattern.

The requirements for a wideband feed are strict, including a constant beamwidth
over frequency, a circularly symmetric radiation pattern, small phase center
variation, low cross-polarisation levels and a low reflection coefficient in order
to realise a high aperture efficiency and system sensitivity. In addition to these
requirements, the feed needs to have a compact size so that it can be cooled
inside a cryostat, which ensures low system noise temperature. For Band 1
of SKA1-mid an optimised design of the QRFH has been done [14]. As the
horn will be too large at these frequencies, the horn itself will be at room tem-
perature, with its electronics cryogenically cooled. Its performance is listed in
Table 1.3.

Table 1.3: Performance metrics of the QRFH used for Band 1 of SKA1-mid
[14].

Metric Value

Reflection Coefficient < -10 dB
Aperture efficiency > 70%

Sensitivity 4.2 m2/K average

1.2 Goal of the Project
There are always trade-offs to be considered in engineering design tasks, since
the improvement of a certain performance metric could lead to the degradation
of another. To be a suitable candidate for the SKA, a wideband feed design
must adhere to strict requirements. In this case, it is worthwhile to perform
formal multi-objective optimisation on the various feeds that are considered,
to ensure that the best possible solution is used. Unfortunately this becomes a
very difficult task, attributed to the long simulation time of full wave electro-
magnetic solvers which is required for a large number of different evaluations
of each antenna technology, in order to find the best candidate from a high
dimensional design space. Surrogate based optimisation (SBO) is a technique
which is often used to overcome such restrictions. It involves the search for
a suitable coarse model, which is much faster to evaluate than the full, ac-
curate fine model. The coarse model needs to retain the underlying physical
behaviour of the fine model. A surrogate model is then constructed by aligning
the coarse model to the fine model, using only a few fine model evaluations.
The idea is to speed up the design process while maintaining model accuracy.
In this project, the design of a pyramidal sinuous antenna is considered. A
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CHAPTER 1. INTRODUCTION 5

design is sought that provides the maximum sensitivity, while simultaneously
adhering to an adequate reflection coefficient over the entire band. A simple
surrogate modelling method is considered which approximates the sensitivity of
the feed. For the reflection coefficient, the use of rational interpolation models
is explored, since rational functions are known to be well-suited for modelling
the output behaviour of antenna structures as a function of frequency [15],
[16], [17].

Rational interpolation methods which make use of high-fidelity (HF) data from
the fine model antenna structure are considered first. In order to improve the
accuracy of the models without excessively increasing the design time, con-
sideration is given to rational interpolation models that utilise multi-fidelity
(MF) data. In these cases, the low-fidelity (LF) data is found from truncated
coarse model antenna structures that provide information of the output of the
antenna at the band edges at a reduced computational cost. These coarse
models are suitable candidates for log-periodic type structures such as the
pyramidal sinuous antenna, since the geometry of the structure repeats itself
log-periodically. The output from such antennas are also log-periodic.

Pole-free rational functions which ensure that the rational interpolants do
not contain any unattainable points are desirable. The multi-fidelity ratio-
nal interpolants are made to follow the low-fidelity data in a least-squares
(LS) sense by calculating appropriate weights for the model. Applying the
sufficient condition for ensuring a pole-free model to these weights leads to a
restricted rational interpolant that is unable to adequately follow the trend
of the low-fidelity data. This problem is overcome by the introduction of a
rational interpolant that locally models the trend of the low-fidelity data with
a Bèzier curve. These local models are then blended together with quadratic
B-spline functions into a global rational interpolation function.

An in-depth discussion of the univariate (one-dimensional) rational interpo-
lation methods are provided. These are then extended to the multivariate
(n-dimensional) case. The blended rational interpolant which makes use of
B-splines is applied to the input impedance of the antenna, first only as a
function of frequency and then it is extended to include variations in the ge-
ometric parameters that describe the pyramidal sinuous antenna. The reflec-
tion coefficient of the structure is calculated from these models. The thesis
concludes with a design example of the antenna over a 3:1 bandwidth which
provides the maximum sensitivity, while maintaining an acceptable reflection
coefficient over the entire band.
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1.3 Contents of the Thesis
Chapter 2 gives an overview of reflector antennas. Approximate calculations
of the aperture efficiency and noise temperature of the system are discussed.
Both components are required for calculation of the sensitivity of the system.

Chapter 3 describes the pyramidal sinuous antenna, with specific attention
given to its design parameters. The design objectives of the feed is discussed
and the coarse models that are used to approximate the fine model is intro-
duced.

In Chapter 4, a simple surrogate modelling method is introduced that models
the sensitivity of the system. Three surrogate models with different coarse
models are described. A comparison of the computation times for the fine and
surrogate models are provided.

Chapter 5 provides an extensive description of rational modelling techniques
and finally a method is arrived at which adequately models the input impedance
of the antenna, from which the reflection coefficient is then calculated. The
chapter ends off by comparing this method with other interpolation schemes.

Chapter 6 considers the design of the pyramidal sinuous antenna by using
the surrogate modelling methods which are discussed in Chapters 4 and 5. An
optimal design is found from a domain which simultaneously varies two of the
geometric parameters of the antenna.

Chapter 7 provides conclusions which can be drawn from this thesis, as well
as a discussion of possible future work that can be done to improve upon it.
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Chapter 2

Reflector Antenna Theory

Reflector antenna systems consist of one or more curved reflectors which are
designed to collimate an incident plane wave to a focal point. The feed is
placed at this location. In transmit mode, the feed illuminates the reflector in
order to generate a desired field distribution in the aperture in front of the main
reflector. The emerging beams are highly directional, well-suited for low noise
applications such as radio astronomy. A single reflector system will normally
consist of a paraboloidal dish, while typical dual-reflector systems either utilises
the Cassegrain form, which includes a hyperboloidal subreflector in addition to
a paraboloidal main reflector, or the Gregorian form, which has an ellipsoidal
subreflector surface. The MeerKAT system makes use of an offset Gregorian
configuration, as mentioned in Chapter 1, while the SKA will make use of a
shaped offset Gregorian configuration. In a shaped system, the designer has
more control over the amplitude and phase of the radiation pattern produced
in the aperture.

2.1 Single Paraboloidal Reflector Antenna
Reflector antenna problems are commonly analysed by two different approx-
imation methods, namely the Physical Optics (PO) approximation, and the
Geometrical Optics (GO) approximation. These are asymptotically correct
for large reflector surfaces. The following approximations are made in both
methods [18]:

1. There are no fields on the shadow side of the reflector.

2. The discontinuity of the current density on the rim of the reflector is not
considered.

3. Direct radiation from the feed and aperture blockage by the feed are not
taken into account.

7
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CHAPTER 2. REFLECTOR ANTENNA THEORY 8

In the PO approximation, the surface current at a point on a curved, perfectly
conducting scatterer is considered equal to what the surface current would
have been on an infinite planar surface tangent to this point, according to the
formula

Js = 2n̂×Hi (2.1)

where Js is the surface current density, n̂ is a unit vector normal to the surface
and Hi is the incident magnetic field. This is a good approximation for a
scattering surface which is large in terms of wavelengths, as the condition can
be considered to be met locally. For the GO approximation, electromagnetic
fields in free space are considered to propagate along straight lines or rays. The
rays are reflected at the surface of the reflector according to Snell’s reflection
law.

Figure 2.1: Geometry of a paraboloidal reflector.

Following the derivation in [18], with reference to Figure 2.1 and from the
definition of a parabola, we have

OP + PQ = constant = 2F

where F is the focal length of the parabola. So

r′ + r′ cos θ′ = 2F
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CHAPTER 2. REFLECTOR ANTENNA THEORY 9

and
r′ =

2F
1 + cos θ′

= F sec2(θ′/2) θ′ ≤ θ0

or in Cartesian coordinates√
(x′)2 + (y′)2 + (z′)2 + z′ = 2F

or
(x′)2 + (y′)2 = 4F(F− z′).

Since (x′)2 + (y′)2 = (ρ′)2, this can be written as

(ρ′)2 = 4F(F− z′) with 0 ≤ ρ′ ≤ D/2.

D is the diameter of the paraboloid. Further useful formulas relating the
geometry of the paraboloid include

ρ′ = r′ sin θ′ = F sec2(θ′/2) sin θ′ = 2F tan(θ′/2) (2.2)

and
dρ′/dθ′ = F sec2(θ′/2). (2.3)

The following equations relate the variables θ0, F and D of the parabola,
with θ0 the subtended half-angle of the paraboloid. Since θ′ = θ0 when ρ′ =
D/2, from equation (2.2),

D = 4F tan(θ0/2) (2.4)

or
F =

(
D
4

)
cot(θ0/2). (2.5)

2.2 Dual-Reflector System
In a dual-reflector antenna configuration, fields emanating from the feed travel
equal distances towards a subreflector and are reflected to the main reflector
where it is further reflected towards the aperture as parallel rays. As men-
tioned, two popular configurations are the Cassegrain and Gregorian forms.
Both utilise a paraboloidal main reflector, but the Cassegrain’s subreflector is
a hyperboloid, while the Gregorian subreflector is an ellipsoid. As illustrated
in Figure 2.2, the feed is placed to coincide with one of the focal points of
the ellipsoid/hyperboloid at F1, while the other focal point coincides with the
paraboloid’s focal point at F2.
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(a) Symmetrical Cassegrain (b) Symmetrical Gregorian

Figure 2.2: Geometry of dual-reflector antennas.

2.2.1 The Equivalent Paraboloid

A useful concept in the analyis of dual-reflector systems is that of the equivalent
parabola. In this case, the subreflector acts as a magnifier, resulting in an
equivalent parabolic surface with a larger effective focal distance Fe. This
surface can be found through ray tracing, as illustrated in Figure 2.3 from
[18]. The dual-reflector system can now be approximated by its equivalent
paraboloid if blockage caused by the subreflector, as well as diffraction from
its edges are taken into account.
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CHAPTER 2. REFLECTOR ANTENNA THEORY 11

Figure 2.3: The concept of the equivalent parabolic surface.
SOURCE: Fig. 15.30, p. 931 [18] (edited).

2.2.2 Offset Gregorian Dual-Reflector Antenna

An offset configuration is beneficial as blockage from the feed, supporting struts
and subreflector surface are eliminated. Figure 2.4 illustrates the offset Gre-
gorian configuration which can be described in terms of five parameters [19] if
the Mizugutch condition for minimum cross-polarisation is satisfied [20]. Since
the feed is not in the path of the optical rays, multiple feeds can be installed
to cover all the frequency ranges listed in Table 1.1.
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Figure 2.4: The offset Gregorian configuration.

2.3 Aperture Efficiency
An important performance metric used to characterise a reflector antenna sys-
tem is the aperture efficiency. The aperture efficiency is the ratio of the ra-
diation intensity in the desired polarisation on axis, to the radiation intensity
that would be produced by an aperture radiating the same total power, but
having a uniform constant phase aperture field with no cross-polarisation [21].
From this definition an effective aperture area is derived according to

Aeff = ηapAph (2.6)

where ηap denotes the aperture efficiency and Aph is the physical area of the
aperture. For the case of a paraboloidal main reflector Aph = π

(D
2

)2, where
D is the aperture’s projected diameter. ηap is dependent on the far-field radi-
ation pattern of the feed. For an accurate measure of ηap, simulations can be
done using the software package GRASP [22], which uses physical optics (PO)
and physical theory of diffraction (PTD). Improved accuracy is obtained by
incorporating PTD, since it compensates for the discontinuity of the currents
on the edges of the reflector, which is not done in PO, as mentioned previously.

The far-field radiation pattern of the feed can be expressed as

E(r, θ, φ) =
1

r
e−jkrG(θ, φ) (2.7)
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where
G(θ, φ) = Gθ(θ, φ)θ̂̂θ̂θ +Gφ(θ, φ)φ̂̂φ̂φ (2.8)

and k = 2π
λ
. Furthermore, the φ-variation of the far-field function can be

expanded in a Fourier series, because φ is periodic with a period of 2π:

G(θ, φ) =
∞∑
n=0

[An(θ)sin(nφ) +Bn(θ)cos(nφ)]θ̂̂θ̂θ

+
∞∑
n=0

[Cn(θ)cos(nφ)−Dn(θ)sin(nφ)]φ̂̂φ̂φ

(2.9)

When simulations are done or measurements are taken, the far-field function
will only be available in a finite number of N φ-planes,

Gθ(θ, k∆φ), Gφ(θ, k∆φ), k = 0, 1, ..., N − 1

where ∆φ = 2π
N
. Thus, the Fourier coefficients can be calculated with the

inverse Fourier transform as

An(θ) =
2

N

N−1∑
k=0

Gθ(θ, k∆φ)sin(kn∆φ)

Bn(θ) =
2

N

N−1∑
k=0

Gθ(θ, k∆φ)cos(kn∆φ)

Cn(θ) =
2

N

N−1∑
k=0

Gφ(θ, k∆φ)cos(kn∆φ)

Dn(θ) =
2

N

N−1∑
k=0

Gφ(θ, k∆φ)sin(kn∆φ)

(2.10)

with n = 0, ..., (N − 1)/2 [23].

If an accurate solution of the far-field radiation pattern is available, for ex-
ample, after simulating the system in GRASP, then the aperture efficiency is
calculated by taking the ratio of on-axis gain to the maximum possible gain
which is available for an aperture antenna, given as

|G|2max =
4π

λ2
A =

(
πD

λ

)2

, (2.11)

and then
(ηap)dB = 20 log

(
|G(0, 0)|
|G|max

)
. (2.12)
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To calculate ηap by using the GO approximation, the aperture efficiency is
broken up into sub-efficiency factors to account for different losses as [24]

ηap = ηBOR1ηspηillηphηpolηd (2.13)

where ηBOR1 is the Body of Revolution Type-1 (BOR1) efficiency, ηsp is the
spillover efficiency, ηill is the illumination or taper efficiency, ηph is the phase
efficiency, ηpol is the polarisation efficiency and ηd is the diffraction efficiency.
Note that losses caused from aperture blockage by the feed and struts are
ignored. This is valid for the offset Gregorian configuration.

BOR1 Efficiency

Many antennas are mechanically rotationally symmetric or bodies of revolution
(BOR), such as paraboloidal reflector antennas. When only the n = 1 φ-
variation of (2.9) is excited, the antenna is referred to as a BOR1 antenna and
the n = 1 terms are referred to as the BOR1 component [25]. For any antenna,
only the n = 1 terms of the Fourier φ-series contributes to on-axis radiation,
while the higher order φ-modes represent power lost in sidelobes. Thus

ηBOR1 =

´ 2π

0

´ π
0

[|Gθ1|2 + |Gφ1|2] sinθdθdφ´ 2π

0

´ π
0

[|Gθ(θ, φ)|2 + |Gφ(θ, φ)|2] sinθdθdφ
(2.14)

where
Gθ1 = A1(θ)sin(φ) +B1(θ)cos(φ)

Gφ1 = C1(θ)cos(φ)−D1(θ)sin(φ).

The calculation of the BOR1 efficiency implies that the antenna can be excited
for at most 2 polarisations orthogonal to the axis of symmetry. For a linear
y-polarisation, B1 and D1 will be zero. Similarly for an x-polarised antenna,
A1 and C1 will be zero. For the y-polarised case

E(r, θ, φ) =
1

r
e−jkr

(
A1(θ)sinφθ̂̂θ̂θ + C1(θ)cosφφ̂̂φ̂φ

)
(2.15)

whereas for the x-polarised case

E(r, θ, φ) =
1

r
e−jkr

(
B1(θ)cos(φ)θ̂̂θ̂θ −D1(θ)sin(φ)φ̂̂φ̂φ

)
. (2.16)

The y-polarised case is considered here. A useful relationship exists between
the co- and cross-polarised radiation functions in the φ = 45◦ plane, and the
radiation functions in the E- (A1(θ)) and H-plane (C1(θ)). Using Ludwig’s
third definition [26], the unit vectors for the co- and cross-polar directions for
a y-polarised antenna are

ûco = sinφθ̂̂θ̂θ + cosφφ̂̂φ̂φ
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ûcx = cosφθ̂̂θ̂θ − sinφφ̂̂φ̂φ

which gives the co- and cross-polar components of the radiation field as

GCO = G(θ, φ) · ûco = CO(θ)−XP (θ)cos(2φ) (2.17)

GXP = G(θ, φ) · ûxp = CO(θ)sin(2φ) (2.18)

where
CO(θ) =

A1(θ) + C1(θ)

2
(2.19)

XP (θ) =
A1(θ)− C1(θ)

2
(2.20)

are seen to be the co- and cross-polar patterns in the φ = 45◦ plane. The
BOR1 notations for the far-field are advantageous, since for further efficiency
factors the φ-integral does not need to be evaluated.

Spillover Efficiency

The spillover efficiency is a measure of how much of the radiated power from
the feed is captured by the reflector surface, i.e. the power within the sub-
tended half-angle θ0. This is a very important metric, as the amount of power
which goes past the reflector surface increases the system noise temperature,
as explained in the next section. It is given by

ηsp =

´ θ0
0

[|CO(θ)|2 + |XP (θ)|2] sinθdθ´ π
0

[|CO(θ)|2 + |XP (θ)|2] sinθdθ
. (2.21)

Illumination Efficiency

The illumination efficiency is sometimes called the taper efficiency and is a
measure of the uniformity of the amplitude distribution of the field over the
surface of the reflector.

ηill = 2cot2 (θ0/2)

[´ θ0
0
|CO(θ)|tan (θ/2) dθ

]2
´ θ0
0
|CO(θ)|2sinθdθ

. (2.22)

Note that there is a trade-off between the illumination and spillover efficien-
cies, since a more uniformly illuminated reflector surface implies that more
power will be spilled past the reflector surface. For a given half-angle θ0,
there is a unique solution to the edge taper which gives the optimal combined
illumination and spillover efficiency factors.
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Polarisation Efficiency

Polarisation efficiency is defined as the power of the co-polar field relative to
the total power within θ0 and for linear polarisation is given as

ηpol =

´ θ0
0

[
|CO(θ)|2 + 1

2
|XP (θ)|2

]
sinθdθ´ θ0

0
[|CO(θ)|2 + |XP (θ)|2] sinθdθ

. (2.23)

Phase Efficiency

Phase efficiency is a measure of the uniformity of the field’s phase over the
aperture plane, given by

ηph =

∣∣∣´ θ00
CO(θ)tan (θ/2) dθ

∣∣∣2[´ θ0
0
|CO(θ)|tan (θ/2) dθ

]2 . (2.24)

This is the only sub-efficiency which is dependent on the feed’s location relative
to the focal point of the reflector. The phase center of the feed is uniquely
defined as the feed location which maximises the phase efficiency.

Diffraction Efficiency

For dual-reflector systems it is necessary to account for the effects of diffraction
from the edges of the subreflector. The subreflector is typically much smaller
than the main reflector, thus diffraction from its edges become notable. An
analytical expression is provided in [27] for a far-field function approximated
by the expression

G(θ) = (n+ 1) cos2n(θ/2). (2.25)

The value of n can be determined by fitting G(θ) onto the simulated far-field
function, up to the subtended half-angle θ0. The diffraction efficiency can then
be calculated as

ηd =

∣∣∣∣1 +
n sin2(θ0/2) cosn(θ0/2)

1− cosn(θ0/2)

(j − 1)√
2π

∆ρ

D

∣∣∣∣2 (2.26)

where D is the projected aperture’s diameter and

∆ρ =

√
λρm0 + σρs0

π

∣∣∣∣ρm0

ρs0

∣∣∣∣, (2.27)

with ρm0 and ρs0 the distances along the central ray from the virtual focal point
to the main and sub- reflectors, respectively. These are indicated in Figure 2.4,
where the virtual focal point corresponds to the origin and the central ray is
indicated by θc. In equation (2.27), λ refers to the wavelength and the value
of σ is set to 1 for Gregorian systems and to -1 for Cassegrain systems.
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2.4 Sensitivity
The sensitivity is a measure of the minimum detectable signal that the system
can receive. For the SKA, the primary objective is to maximise the sensitivity
over multiple octave bandwidths for all the feed antennas to be used. Since
radio astronomy sources are light years away, they are particularly difficult
to detect. For a radio interferometer composed of multiple reflector antenna
systems, the sensitivity of the entire system is dependent on the sensitivity
of each reflector antenna system. Thus by increasing the sensitivity of each
single system, even if only by a few percent, fewer reflector antenna systems
are required to achieve the same total sensitivity, leading to large cost savings.

The sensitivity of the system is defined as the ratio of the effective aperture
area to the system noise temperature, i.e.

Sensitivity =
Aeff
Tsys

=
ηapAph
Tsys

=
ηapπ (D/2)2

Tsys

(2.28)

where Tsys is the system noise temperature, which is a combination of the
antenna and the receiver noise, i.e.

Tsys = TA + Trec. (2.29)

The SKA will make use of cryogenic cooling to ensure a low receiver noise.
For the purposes of this thesis, it assumes a fixed value of Trec = 25 K. For
the antenna noise temperature TA, the derivation and notation from [28] is fol-
lowed. This requires integration of the product of the radiation pattern of the
antenna P (f, θ, φ|̂r0) (at a frequency f and when pointing in the direction r̂0)
with the surrounding scene brightness temperature Tb(f, θ, φ) over the entire
4π steradian sphere. This is normalised by the total power to give the an-
tenna noise temperature. The calculation of Tb(f, θ, φ) is as suggested in [29],
supplemented by the approximation referred to as Model 3 in [28]. Sensitivity
calculations were implemented from in-house code available at Stellenbosch
University.

The antenna noise temperature is given by

TA(f |̂r0) =

˜
4π
N(f, θ, φ|̂r0) sin θdθdφ˜

4π
P (f, θ, φ) sin θdθdφ

, (2.30)

where
N(f, θ, φ|̂r0) = Tb(f, θ, φ)P (f, θ, φ|̂r0). (2.31)
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The brightness temperature distribution of the scene surrounding the antenna
is illustrated in Figure 2.5 from [29].

Figure 2.5: Illustration of the antenna radiation pattern and the brightness
temperature of the surrounding scene. SOURCE: Figure 1, p. 1 [29] (edited).

To account for different pointing directions of the antenna, the brightness
temperature model is rotated around a horizontal angle by the tipping angle
θp. It can now be described in terms of the rotated coordinates θ′(θp, θ, φ).
The brightness temperature model is rotationally symmetric and therefore
independent of φ. Equation (2.31) can be seperated into contributions from the
sky and the ground, where the ground contribution is a polarisation dependent
process. Thus

N(f, θ, φ|̂r0) =

{
T skyb (f, θ′)P (f, θ, φ), θ′ ∈ [0, π/2]

Tb‖(f, θ
′)P‖(f, θ, φ) + Tb⊥(f, θ′)P⊥(f, θ, φ), θ′ ∈ [π/2, π].

(2.32)
The contribution from the sky is calculated as

T skyb (f, θ′) = Tbo(f)e−τf,θ′ (0,sa) +

ˆ sa

0

κa(f, z
′)T (z′)e−τf,θ′ (0,z

′)√
1− (sin θ′/(1 + (z′/re)))2

dz′ (2.33)

which includes the effects of absorption by water vapor and oxygen as

κa(f, z) = κH2O(f, z) + κO2(f, z) (2.34)
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and where atmospheric variations in pressure and temperature with altitude
are implicitly included from the z-variation in (2.33). The background bright-
ness temperature Tbo(f) consists of emission from the cosmic microwave back-
ground (CMB) and a directional averaged emission from the galaxy, so

Tbo(f) = TCMB + Tgo(f0/f)β (2.35)

where TCMB = 2.73 K, Tgo = 20 K, f0 = 408 MHz and β = 2.75, as sug-
gested in [29]. The opacity of the medium, compensated for a curved earth, is
calculated as

τf,θ′(0, z) =
1√

1− (sin θ′/(1 + (sa/re)))2

ˆ z

0

κa(f, ζ)dζ (2.36)

with the integral taken over the path length through the atmosphere at the
angle θ′. As in [28], a curved earth model with an earth radius of re = 6370.95
Km and an atmosphere height of sa = 100 Km is assumed. Any convenient
standard atmospheric temperature profile T (z) can be used as well as for the
pressure κa(f, z). In order to speed up the calculation, interpolants were ex-
tracted for the sky temperature, as was done in [29]. The polarisation depen-
dence of the ground temperature contribution due to scattering and emission
is expanded as

Tb‖(f, θ
′) = T sky‖ + T gnd‖

= Γ‖(θ1)T
sky
b (f, θ1) +

[
1− Γ‖(θ1)Tgnd

]
Tb⊥(f, θ′) = T sky⊥ + T gnd⊥

= Γ⊥(θ1)T
sky
b (f, θ1) + [1− Γ⊥(θ1)Tgnd]

(2.37)

where θ1 = π − θ′, and the reflection coefficients are

Γ‖(θ1) =

∣∣∣∣∣cos θ1 −
√
ε2 − sin2 θ1

cos θ1 +
√
ε2 − sin2 θ1

∣∣∣∣∣
2

Γ⊥(θ1) =

∣∣∣∣∣ε2 cos θ1 −
√
ε2 − sin2 θ1

ε2 cos θ1 +
√
ε2 − sin2 θ1

∣∣∣∣∣
2

(2.38)

with ε2 ≈ 3.5 for dry land. Here, ‖ and⊥ refer to the parallel and perpendicular
polarisations with respect to the plane of incidence at the surface interaction.
The ground temperature is assumed to be Tgnd = 270 K. The simplification
of the brightness temperature model, presented as Model 3 in [28], is valid for
unpolarised sources and a high-gain antenna not pointing at the ground. A
polarisation-averaged reflection coefficient is defined as

Γ̄(θ1) =
Γ‖(θ1) + Γ⊥(θ1)

2
(2.39)
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which simplifies (2.31) to

N(...) =

{
T skyb P, θ′ ∈ [0, π/2][
(1− Γ̄)Tgnd + Γ̄T skyb

]
P, θ′ ∈ [π/2, π]

(2.40)

where the frequency and angular dependencies are understood to be similar as
in (2.31).

Main Reflector Masking

Imbriale suggested an approximation method for rapid calculation of the an-
tenna noise temperature of offset Gregorian reflector systems in [30] which
was refined in [28]. The idea consists of removing the main reflector from the
calculation domain. Since the main reflector is electrically large, its removal
significantly speeds up the calculation time. This approximation method as-
sumes that all the energy scattered towards the main reflector is reflected into
the main beam and thus towards the cold sky. Figure 2.6 from [28] illustrates
the radiation patterns of the full system in 2.6a) compared to the pattern when
only the feed and subreflector is included in the calculation domain in 2.6b).

(a) Full dual-reflector system. (b) Only the feed and subreflector.

Figure 2.6: Radiation patterns in dBi at 1.5 GHz. The region inside the white line
corresponds to the main reflector region. SOURCE: Figures 5 and 6, p. 1567 [28].

Note that the radiation behind the main reflector is not suppressed in
Figure 2.6b) and also that the main beam in Figure 2.6a) around θ = 0◦

is missing. Figure 2.7 shows the brightness temperature distribution when
using Model 3 from [28]. Since multiplication of the brightness temperature
distribution with the radiation pattern of Figure 2.6b) will force the fields in
the main reflector region to zero, it gives a good approximation to the fields
shown in Figure 2.6a). Note that this is a far-field approximation, even though
the main reflector is normally in the near field of the subreflector.
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Figure 2.7: Brightness temperature distribution in K for the main reflector
masking approximation when pointing at zenith. SOURCE: Figure 7, p. 1567
[28].

The accuracy of this approximation method can be further improved by
taking edge diffraction effects into account. This is important when the elec-
trical size of the system is reduced, as illustrated by the radiation pattern in
Figure 2.8 which is at 500 MHz and where an increase in the energy den-
sity behind the main reflector can be seen. This happens as a result of edge
diffraction from the main reflector, which causes energy to be spilled towards
its shadow side that is typically pointed towards the hot ground. Thus, the ap-
proximation that all the energy in the main reflector region is reflected towards
the main beam which points at the cold sky, becomes invalid.

Figure 2.8: Radiation patterns in dBi at 500 MHz. The region inside the white
line corresponds to the main reflector region. SOURCE: Figure 8, p. 1568 [28].

Since the main reflector is omitted in the simulation, information about
the diffracted energy is not available. In [28], this is compensated for in an
average sense by defining a correction factor α(f, θp) ∈ [0, 1], which is a small
positive number that allows some of the brightness temperature distribution
from the hot ground behind the main reflector to be added to the approximate
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masked model where it is assumed that the energy reflected towards the main
reflector will be reflected into the main beam and thus towards the cold sky.
The derivation to follow, from [28], shows that in order to find α, a solution
for the antenna noise temperature TA is required. Since this is not available,
TA is evaluated at a few frequency points only, after which an approximate
solution for α is formulated.

The effective brightness temperature Tα(f, θp) for all the energy which prop-
agates towards the main reflector mask, can be defined as

Tα = [1− α(f, θp)]T
r + α(f, θp)T̄ d (2.41)

with

T̄ d =
T d‖ + T d⊥

2
. (2.42)

T d is the approximate brightness temperature behind the main reflector

T d‖ (f, θp) = Tb‖(f, θd) (2.43)

T d⊥(f, θp) = Tb⊥(f, θd) (2.44)

with θp the tipping angle and θd = θp+π, and T r is the brightness temperature
in the direction of the main beam, i.e.

T r(f, θp) = T skyb (f, θp). (2.45)

Equation (2.32) can be separated to account fo the masked and unmasked
region as

N = P [MTα +WTb] (2.46)

where the frequency and angular dependence is implied and M indicates the
masked region, so

M(θ, φ) =

{
1, inside main reflector mask
0, outside main reflector mask

(2.47)

and W (θ, φ) = 1−M(θ, φ). As before in equation (2.40)

Tb =

{
T skyb , θ′ ∈ [0, π/2][
(1− Γ̄)Tgnd + Γ̄T skyb

]
, θ′ ∈ [π/2, π].

(2.48)

Substituting equation (2.41) into (2.46) gives

N = P [MTα = [1− α(f, θp)]T
r + α(f, θp)T̄ d +WTb] (2.49)

which can then be substituted into equation (2.30). From this a solution for
α is found as

α(f, θp) =
TAIt − Iw − Ir

Id − Ir
(2.50)
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where

It(f, θp) =

¨
4π

P sin θdθdφ

Iw(f, θp) =

¨
4π

WPTb sin θdθdφ

Ir(f, θp) =

¨
4π

MPT r sin θdθdφ

Id(f, θp) =

¨
4π

MPT̄ d sin θdθdφ.

(2.51)

As noted above, equation (2.50) is evaluated at a few frequency points only
in order to find an approximation for α. In [28], TA is evaluated at the lowest
frequency point of interest f1, thereby minimising the calculation time. An
approximate solution α′(f, θp) ≈ α(f, θp) is then found by letting

α′(f, θp) = α(f1, θp)

(
f1
f

)
(2.52)

with f1 chosen as the lowest frequency point of interest. An improvement to
this approximation method is introduced in [31] where three frequency points
are used to give an approximation α′′′. The frequency points are chosen at the
beginning, middle and end of the frequency band. Then

α′′′(f, θp) = α(f1, θp)

(
f1
f

)n(f)
, (2.53)

with
n(f) =

n1 − n2

f2 − f3
f +

f2n2 − f3n1

f2 − f3
, (2.54)

where

n1 =

log

(
α(f2, θp)

α(f1, θp)

)
log
(
f1
f2

) (2.55)

and

n2 =

log

(
α(f3, θp)

α(f1, θp)

)
log
(
f1
f3

) . (2.56)

Thus, α′′′ is found from the calculation of TA at three frequency points f1, f2
and f3, which is then used in (2.41) for the effective brightness temperature in
the masked region M , and then N is calculated from equation (2.46) in order
to find the approximated antenna noise temperature T ′′′A from (2.30). Once
again, note that in-house code was used to realise the above calculations.
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Chapter 3

The Pyramidal Sinuous Antenna

3.1 Design Parameters
The log-periodic sinuous antenna was first introduced by DuHamel in 1987 [32].
Sinuous antennas are suitable for UWB applications, since they are frequency
independent structures in the infinite size and self-complementary limits. The
condition for a frequency independent antenna can be understood from the
principle of frequency scaling which is used in model measurements, where a
decrease in the model size of the antenna leads to a proportional increase in
the operating frequency. For a wideband antenna, a structure that can be its
own scale model is required [33]. This is done by removing any characteristic
length of the antenna by specifying it in terms of angles only [34], leading to an
infinite structure. Practically, a wideband antenna must be truncated with lit-
tle effect on the radiation pattern over the operating bandwidth. The sinuous
antenna can be specified by two angles, two dimensions and a scaling factor
which determines the geometric progression of elements of a similar shape.
Since its shape is not solely specified by angles, it is not truly frequency inde-
pendent. Rather, its radiation characteristics, such as the impedance, pattern,
directivity, beamwidth and sidelobe levels, vary periodically with the loga-
rithm of frequency [18]. The antenna can be designed to make these variations
sufficiently small, resulting in a wideband antenna.

The sinuous curve is defined by

φ(r) = (−1)Pα sin
π ln

r

rP
ln τ

(3.1)

with φ and r the spherical coordinates of any point along the curve. The
angular width of the curve is defined by α. The curve is then rotated by ±δ
to form the sinuous arm illustrated in Figure 3.1. The arm is then rotated
in 360/N degree increments to form an N -arm antenna, each consisting of P

24
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radiating cells. τ defines the growth rate from cell to cell, i.e. τ = rp/rp+1. rP
is the maximum radius, which determines the antenna’s low cut-off frequency.

Figure 3.1: One arm of the sinuous antenna.

The radiation characteristics are periodic, where two frequencies that are
a period apart are related by [18]:

τ =
f1
f2

(3.2)

where f2 > f1. Practically, all log-periodic type antennas display finite band-
width performance with degradation at the band edges due to physical trun-
cation of the structure. This is known as the "end effect". The antenna should
be designed so that there exists three regions, the definitions of which can be
found in [35]:

• The Transmission-Line Region: In this region the elements do not radi-
ate, since its size is much smaller than the wavelength at a frequency f .
These elements function as a transmission line.

• The Active Region: This is the region where the elements radiate at a
frequency f . The active region passes from the shorter to the longer
elements as the frequency decreases.

• The Stop Region: This is the region after the active region where the
elements do not radiate at a frequency f , even though its size is compara-
ble to the wavelength at that frequency. The current on the elements in
the stop region vanishes, since the current passed through the previous
element and the current induced by mutual couplings from the active
radiating elements are of the same amplitude and 180◦ out of phase [36].
The effect of these elements on the radiation pattern and reflection co-
efficient should be as low as possible.
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The active region at a frequency f , corresponding to a wavelength λ, is where
the path length is equal to λ/2 [18]. This occurs where

r(α + δ) = λ/4. (3.3)

The minimum and maximum values of the projected radius r1 and rP (where
P is the total number of sinuous cells) can thus be derived, determined from
the required bandwidth as

r1 =
λH

8(α + δ)
(3.4)

and
rP =

1.2λL
4(α + δ)

(3.5)

with λH and λL the respective wavelengths at the high and low cut-off fre-
quencies. These values ensure that the end effects are small.

Mushiake [37] has shown that an antenna that is a self-complementary struc-
ture has a constant input impedance that is independent of the frequency and
shape of the structure. A self-complementary structure is one that remains
unchanged when the metallic and dielectric parts are interchanged. The pla-
nar self-complementary antenna from [32], shown in Figure 3.2, has a constant
beamwidth, fixed phase center, constant input impedance, low loss and dual
uncoupled orthogonal senses of linear polarisation.

Figure 3.2: A self-complementary planar sinuous antenna.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. THE PYRAMIDAL SINUOUS ANTENNA 27

The input impedance of one arm of the planar self-complementary sinuous
antenna with respect to ground was given by Deschamps [38] as

Zm =
30π

sin

(
180m

N

) (3.6)

where m is the excitation mode and N is the number of arms. The pla-
nar sinuous antenna gives a bi-directional radiation pattern. The requirement
for a self-complementary antenna is that 2δ + α = π/2 [39]. In addition,
for an N -arm sinuous structure the requirement is δ = π/2N [32] and thus
α = π/2−π/N . Design procedures are often relatively simple in that the only
parameters involved are the truncation sizes which controls the bandwidth,
since all the angles are fixed to provide a self-complementary structure. When
the self-complementary constraint is relaxed, uni-directional radiation patterns
may be achieved. Projecting the sinuous antenna onto a suitable geometry,
such as a cone or pyramid, allows it to be used as a wideband reflector antenna
feed, where the addition of a ground plane ensures a stable phase center in ad-
dition to a relatively frequency stable uni-directional radiation pattern [12],
[40]. The cost of this relaxation is increased design complexity, since typically
all the angular and truncation parameters of the antenna now become free
design variables.

In this thesis the focus is on a 4-arm structure mounted onto a square pyra-
mid over a ground plane which forms the pyramidal sinuous antenna shown in
Figure 3.3. θ defines the angle of the pyramid’s elevation and h the distance
to the ground plane. A realistic feeding network is not considered, since the
added layer of complexity is beyond the scope of this thesis, therefore an ideal
feed port is used in all simulations.

(a) Front view. (b) Isometric view.

Figure 3.3: The pyramidal sinuous antenna.

The 4-arm antenna allows two orthogonal senses of polarisation on each
opposing pairs of arms [39]. If the cross-polarisation is sufficiently low, the
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antenna allows separate reception or transmission of each polarisation. Table
3.1 lists the design parameters of the antenna.

Table 3.1: Design parameters for the pyramidal sinuous antenna.

Design Parameters

τ Growth rate ratio
α Angular width of sinuous curve
δ Rotation angle
θ Elevation angle of pyramid
h Distance between the arms and ground plane

3.2 Design Objectives
Sensitivity

As noted previously, often the main objective in the design of a radio interfer-
ometer such as the SKA, is to maximise the receiving sensitivity. Doing so can
lead to huge cost savings, while still maintaining system performance. Since
optimisation of antenna systems over a large parameter space becomes compu-
tationally prohibitively expensive when using full wave electromagnetic solvers,
a simple method to approximate the average sensitivity as a function of the ge-
ometrical input parameters is presented in Chapter 4. This method is broken
down into three different models of varying computational cost. In engineer-
ing design problems, it is often the case that optimising different performance
metrics simultaneously leads to a trade-off in the design. Since maximisation
of the receiving sensitivity is of the utmost importance in this case, bounds
can be placed on the rest of the performance metrics which provides a min-
imally acceptable design. The complexity of the design increases along with
the number of simultaneous conditions that must be met. In this thesis only
one other performance metric is considered, namely the reflection coefficient
of the feed.

Reflection Coefficient

In transmit mode the reflection coefficient of an antenna provides a measure of
how much of the power that is transmitted from a port is reflected back into
that port, caused by a mismatch of the impedance between the antenna and
the feeding network. Since the input impedance of the wideband pyramidal
sinuous antenna to be considered varies over frequency, it becomes difficult to
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match it to the feeding network over the entire band. The reflection coefficient
in decibels (dB) is calculated from the impedance of the antenna as follows:

S11(f) = 20 log

(
Z(f)− Z0

Z(f) + Z0

)
(3.7)

with the input impedance taken as Z0 = 267 Ω. This value is chosen from
Deschamps’ formula in (3.6), in other words, it is the value of the input
impedance of two arms of a self-complementary sinuous antenna. As noted
before, relaxation of the self-complementary constraint leads to variation in
the input impedance of the antenna as a function of frequency. For an accept-
able design, a maximum cut-off value of -10 dB is specified for the reflection
coefficient of the antenna, which corresponds to 10% of the transmitted power
being reflected back into the port. For different geometries, the value of Z0

that provides the optimal reflection coefficient over the entire band will vary.
However, since the specific value of Z0 which accomplishes this is not available
when accurate values for Z(f) are only available over a sparse sample space,
the constant value of Z0 = 267 Ω is used for all geometries. Note however
that after a specific design is chosen, the best input impedance value for that
geometry can be found, leading to a possible improvement in the reflection
coefficient of the chosen design.

To ensure that the maximum of S11(f) is below -10 dB, accurate values of Z(f)
is required over the entire band of interest. This is expensive to generate, thus
a technique is sought which approximates Z(f) with sufficient accuracy when
using only a few full wave evaluations. For this purpose, use is made of rational
interpolation methods, which is discussed in Chapter 5. Electromagnetic wave
equations naturally lead to pole series in the frequency domain. This arises
from complex-frequency resonances, however, the response is not necessarily
described by pole terms alone, as discussed in [15]. A general rational function
may be well-suited for fitting the input impedance of the antenna as a function
of frequency, since it is related to the physics of the problem. In [15], the Padè
rational function is used for curve fitting of various electromagnetic responses
in the frequency domain. The extension of this technique to the spatial domain
is presented in [16]. In [17], Thiele continued fractions are used along with an
adaptive sampling technique to create accurate models of microwave circuits.
An adaptive sampling algorithm achieves a specified model accuracy with a
minimum number of interpolation points by iteratively choosing each consecu-
tive sample point at the point of maximum error, according to some predefined
error function. In Chapter 5 of this work, the formulation of a rational func-
tion that is well-suited to the application at hand is presented. Sampling is
done over a grid of interpolation points, however, it would be highly beneficial
for this method to be extended for use in an adaptive sampling scheme.

For convenience, the design objects are summarised in Table 3.2.
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Table 3.2: Design objectives.

Performance Metric Objective

Reflection coefficient A maximum value of -10 dB over the entire band.
Sensitivity Maximise given the constraint on the reflection coefficient.

The design space to be explored is listed in Table 3.3. The distance of the
antenna to the ground plane is kept constant at h = 5 mm throughout. This
value was found in [40] to yield favourable results for the reflection coefficient.

Table 3.3: Input parameters for the design space exploration.

Parameter Range

τ 0.75 - 0.9
δ/α 0.4 - 0.8
δ + α 28 - 44◦
θ 47 - 59◦

3.3 Coarse Model
Accurate simulations of the antenna requires a full wave computational elec-
tromagnetic (CEM) solver, such as FEKO [41]. In order to find an optimal
design, exploration of a large parameter space over a wide frequency band is
considered. This becomes very expensive in terms of time and computational
complexity. Therefore, there is a need for a design strategy which speeds up
the optimisation process. Surrogate based optimization (SBO) is used for this
purpose, where a coarse model is sought that approximates the behaviour of
the full fine model. The coarse model must be quicker to evaluate than the
fine model. In this case it is based on the physical structure of the expensive
fine model, so it provides information about it. The fine model is the full
antenna over a 3:1 bandwidth, from 350 - 1050 MHz, with solutions found in
FEKO. Since the sinuous antenna is a complicated structure, the coarse model
also utilises solutions from FEKO. These are found from truncated antennas
at the band edges over a 2:1 bandwidth. Thus, one antenna is truncated to
operate from 350 - 700 MHz, while the other antenna is truncated to operate
from 525 - 1050 MHz. In addition to operating over a narrower band, these
models are electrically smaller, so the number of CEM unknowns are decreased
as illustrated in Figure 3.4.
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(a) (b) (c)

Figure 3.4: Illustration of the fine and coarse models used in FEKO simulations. (a)
Fine model. (b) Coarse model at the low band edge. (c) Coarse model at the high
band edge. Note that these coarse models are exaggerated for illustration purposes.

Reducing the coarse model bandwidth to lower than 2:1 causes significant
end effects and make the models highly inaccurate. However, even these models
introduce end effects which would not be present in the full fine model, as
shown for the reflection coefficient in Figure 3.5. Thus, for the low band
coarse model, the values from 525 - 700 MHz are highly inaccurate, similarly
for the high band coarse model, the values from 525 - 787,5 MHz are unusable.
This means that the coarse model only provides information at the band edges,
however, a log-periodic behaviour is expected in between these edges.

Figure 3.5: Figure illustrating the coarse model end effects. The black line is the
fine model data. The blue line is the low band coarse model and the red line is the
high band coarse model. The dashed parts of both models are not simulated as it
contains end effects not present in the fine model.
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Regarding the FEKO simulations, the Method-of-Moments solver was used
in all cases. For the fine model, an adaptive solver was used to acquire an accu-
rate solution, whereas for the low band coarse model, 36 frequency points were
evaluated, linearly spaced over the band of interest from 350 - 525 MHz. The
upper half of the band does not require simulation, since it does not represent
the fine model behaviour. Similarly, the high band coarse model was evaluated
at 53 frequency points, linearly spaced over the band from 790 - 1050 MHz.

The mesh sizes of the antenna was determined from a concurrent study in
[42]. Since the inner cells of the antenna operate at higher frequencies than
the outer cells, it is possible to use a coarser mesh for the outer cells. A transi-
tion boundary for the mesh sizes was placed at the radius of the active region
at the geometrical mean frequency, giving by

fmean =
√
fLfH (3.8)

where fL is the low cut-off frequency of 350 MHz and fH is the high cut-off
frequency of 1050 MHz. This results in fmean = 606.2 MHz. This boundary
was used in the fine model and the coarse models. For the inner conducting
cells, a mesh element size of λH/20 was used and for the outer cells a mesh
element size of λH/16 was used. For the ground plane, a coarser mesh element
size of λH/8 was sufficient.

In addition to the models operating over a smaller bandwidth, the num-
ber of CEM unknowns are also decreased. The combined effect is that the
two coarse models in combination requires less CPU time than the full fine
model. A comparison of a representative sample is shown in Table 3.4. Here
τ = 0.8, δ = 22.5◦, α = 13.5◦ and θ = 53◦.

Table 3.4: Comparison of fine and coarse models.

Model Frequency Mesh CPU time
(MHz) (#triangles) (hours)

Fine 350 - 1050 4716 15.985
Coarse (Low) 350 - 700 3677 1.275
Coarse (High) 525 - 1050 3553 2.890

Even for this modest bandwidth design a significant speed-up is observed
for the coarse model evaluation - implying 4 coarse model samples can be
obtained for each fine model sample. When the bandwidth of the fine model
is increased this improvement factor rapidly grows since the number of CEM
unknowns in the fine model scales with bandwidth squared, while the coarse
model simulation time remains constant.
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Chapter 4

Fast Parametric Modeling of the
Sensitivity

In this chapter different simplifications which can be used to model the sen-
sitivity of the antenna are considered. Surrogate based modelling is used for
this purpose. The fine model radiation pattern of each antenna feed is found
from FEKO. This is then imported into GRASP in order to find the full ra-
diation pattern of the total reflector antenna system. The fine model for the
sensitivity is then calculated as explained in Chapter 2, which corresponds to
using equation (2.12) for the efficiency calculation and Model 3 from [28] for
the calculation of the noise temperature where the main reflector is omitted
from the calculation domain. A coarse model of the sensitivity is introduced
that removes the need for the dish antenna system to be simulated and only
requires integration of the antenna feed patterns. Three distinct surrogate
models of the sensitivity are developed and compared.

4.1 Space Mapping

4.1.1 Overview

The goal is to find the optimal sensitivity over a large parameter space, namely
the domain indicated in Table 3.3. Since accurate computation of the sensitiv-
ity at each point in the parameter space is expensive, space mapping (SM) is
utilised as a design framework to find the surrogate models. SM was first intro-
duced in 1994 by Bandler, et al. [43]. Since that time considerable research has
been done to expand the method for various applications, for example, in the
design of non-radiating microwave systems [44], [45], [46], radiating microwave
systems [47], [48] and more recently in the design of reflector antenna systems
[49], [50]. In the SM design framework, solutions from the low-fidelity (LF)
coarse model is aligned to the high-fidelity (HF) fine model solution in sub-
regions of the design space by using a suitable mapping. From this mapping a

33
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surrogate is found which combines the fast simulation time of the coarse model
to the accuracy contained in the fine model. Thus, design space exploration
and optimisation can be done reasonably quickly with reasonable accuracy.
Figure 4.1 illustrates the procedure. It is up to the designer to specify an ac-
ceptable level of accuracy and design time. Note that there are several forms
of the SM framework that can be applied, including input SM, output SM, im-
plicit SM, and a combination of these. The general concepts of the output SM
framework follow. Thereafter, 3 different models of varying complexity and
cost are introduced which the designer can choose from in order to explore the
sensitivity of the system.

Figure 4.1: Illustration of the space mapping procedure.

4.1.2 Design Framework for Output Space Mapping

Output SM applies a correction term to the coarse model in order to find a
surrogate which matches perfectly at the available fine model points. This
correction factor can be multiplicative or additive. In this case the surrogate
is found by adding a polynomial regression function to the coarse model.

Let Rf : Xf → Rm, Xf ⊆ Rn denote the response vector of the fine model
and Rc : Xc → Rm, Xc ⊆ Rn denote the response vector of the coarse model,
where R is the set of real numbers. Then the goal is to solve

x∗f = arg min
x∈Xf

U(Rf (x)) (4.1)

where U is an objective function. Since many coarse model evaluations are nor-
mally available compared to the number of fine model evaluations, a surrogate
is constructed from

Rs = Rc(x) + r(x) (4.2)
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where x is a vector of the design parameters. The procedure in [51] is followed,
where the correction term r(x) is found by fitting a second order polynomial
regression term on the residuals of the coarse and fine models, sampled over
a star distribution from the full parameter space. Thus there is a training set
xi where fine model evaluations are available and

ri(xi) = Rf (xi)−Rc(xi), (4.3)

with

r(x) = a0 +
N∑
n=1

[anxn + bnx
2
n] (4.4)

trained in a least squares sense on xi to find the coefficient vectors a and b.
The regression model r(x) assumes independent input variables. In order to
include coupled variables, the number of samples from the fine model would
need to be increased.

4.1.3 "The 5% Problem"

An important aspect to consider when constructing different surrogate models
is the choice of error function to be used for evaluating the model accuracy.
There are two categories of error functions, namely absolute and relative. En-
gineers normally prefer relative errors over absolute errors, since it is unit-free
and thus more intuitive to interpret. It is often simply stated that the required
model accuracy is 5%, however, in practice this is not always straightforward
to implement. This has become known as "the 5% problem", which Gorissen,
et al. discussed in length in [52]. Care must be taken when interpreting a value
like "5% percent", since different error functions have different characteristics,
and even though a relative error is unit-free, it is not context-free. Lin [53] also
noted that an error value on its own cannot necessarily give information about
how well a model is performing - error functions can, however, be used to
compare the accuracy of different models. A discussion of a few of the options
which are available for the choice of error function follows, which highlights
some advantages and disadvantages of each.

Absolute Errors

The most popular absolute error measure is the Root Mean Squared Error,
defined as

RMSE(y, ỹ) =

√∑n
i=1(yi − ỹi)2

n
(4.5)

where yi is the real response value, ỹi is the predicted response value from the
surrogate model and n is the number of response values which are available.
The RMSE is one

√
n-th of the true arithmetic average euclidean distance
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between the prediction ỹ and the true value y, thus the Average Euclidean
Error is preferred, defined as

AEE(y, ỹ) =
1

n

n∑
i=1

√
(yi − ỹi)2. (4.6)

Both the RMSE and the AEE are known as pessimistic error functions, since
large errors are penalised severely, while small errors are virtually ignored.
This is the main disadvantage of their use. The advantage of their use is that
they are simple to interpret. Average errors can often be misleading, since
there may be areas where the prediction is very poor. Thus it is useful to
specify the maximum absolute error, i.e.

MAX(y, ỹ) = max|yi − ỹi| i = 1, ..., n. (4.7)

For design space exploration purposes, average errors are useful since it gives
an idea of the overall accuracy of the model. When optimisation is the goal,
the maximum error may give a better idea of the local accuracy of the model.

Relative Errors

Relative errors are often preferred, since they are unit-free and thus seemingly
easier to interpret. The Average Relative Error is defined as

ARE(y, ỹ) =
1

n

n∑
i=1

|yi − ỹi|
|yi|

(4.8)

and the corresponding Maximum Relative Error is

MRE(y, ỹ) = max
(
|yi − ỹi|
|yi|

)
i = 1, ..., n. (4.9)

Note that if yi is very small then the ARE will tend to infinity, giving a biased
result. In these cases the ARE should not be used. Another option is the Root
Relative Squared Error, defined as

RRSE(y, ỹ) =

√∑n
i=1(yi − ỹi)2∑n
i=1(yi − ȳ)2

(4.10)

where ȳ is the mean over all true values y. The RRSE gives a measure of how
much better a model fits the data when compared to the mean. In this chapter,
the ARE and the MRE are used to compare the different models. In [52] it
was noted that the only true, unbiased way to assess the accuracy of a model
is to compare it with a very dense test set of expensive data, however, this
is not always readily available. The figures shown in the next section can be
used along with these error metrics to give insight into each model’s accuracy.
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4.2 Simplifications to the Surrogate Model for
Sensitivity Calculations

In this section, the three different surrogate models are described that model
the sensitivity. Table 4.1 gives an overview of the differences between the
models, as well as that of the fine model.

Table 4.1: Overview of the difference between the different surrogate models.

Model Radiation
Pattern Sensitivity Surrogate

Fine Full antenna.
Calculated in GRASP
with main reflector
masking technique.

N.A.

1 N.A. N.A.
Fits a polynomial to a
star distribution of the
fine model.

2 Full antenna.
Approximate
calculation from
equation (4.12).

Fits a polynomial as
correction term over a
star distribution of the
difference between the
coarse and fine models.

3

Truncated
antennas
at the band
edges.

Approximate
calculation from
equation (4.12).

Fits a polynomial as
correction term over a
star distribution of the
difference between the
coarse and fine models.

Model 1

For Model 1, a surrogate is produced by applying a functional approximation
directly to the fine model data. Thus no coarse model is evaluated for Model
1. A polynomial is applied to a star distribution of the fine model data, thus

Rs = a0 +
N∑
n=1

[anxn + bnx
2
n] (4.11)

where a and b are found from training the surrogate in a least squares sense
over the function values Rf (xi). The design parameters are x = [τ, δ/α, α +
δ, θ]T . When only one parameter is varied, at least 3 fine model evaluations are
required. Three different objective functions U (a), U (b) and U (c) are considered.
In each case the average sensitivity over variations of the tipping angle are first
found and then the objective functions to be considered are
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a) the average over frequencies larger than 650 MHz,

b) the average over the entire frequency band and

c) the worst case over frequency, i.e. the minimum sensitivity over the
entire band.

Figure 4.2 indicates why U (a) is chosen as the average over frequencies larger
than 650 MHz. It is seen that the sensitivity decreases rapidly for frequencies
smaller than this value. This happens as a result of increased sky noise at the
low frequency end caused by the inverse relation in equation (2.35). Since the
sky noise dominates at these frequencies, variations in the antenna radiation
pattern due to geometric parameter variations no longer leads to significant
changes in sensitivity. Including these values in the calculation of the average
sensitivity will flatten the resulting average values, thus making optimisation
more difficult. It is thus preferred to discard these values. Surrogate models
were built for U (a), U (b) and U (c), however, since U (a) is used for further design
purposes, its results are presented here, with the results for U (b) and U (c)

included in Appendix A. Figure 4.3 shows the results for Model 1.

Figure 4.2: Sensitivity as a function of frequency for two different geometries.
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(a) Variations in τ . (b) Variations in δ/α.

(c) Variations in δ + α. (d) Variations in θ.

Figure 4.3: Sensitivity surrogates for Model 1.

The ARE and MRE of each model is listed in Table 4.2 and the total
number of fine model points which were evaluated for each parameter over the
entire band is listed in Table 4.3.

Table 4.2: Percentage errors for Model 1.

Parameter ARE [%] MRE [%]

τ 0.86 4.26
δ/α 0.30 2.50
δ + α 0.81 1.97
θ 0.20 0.63
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Table 4.3: Number of fine model points required for Model 1.

Parameter #points

τ 108
δ/α 93
δ + α 93
θ 93

Model 2

Model 2 makes use of a coarse model for the sensitivity calculation. The
radiation pattern from the feed is once again calculated from the full fine
model of the pyramidal sinuous antenna. So

Sensitivityc(x) =
(ηap)cAph

(Tsys)c
(x) (4.12)

where once again x = [τ, δ/α, α + δ, θ]T and the same objective functions as
in Model 1 are considered. Here (ηap)c makes use of the GO approximation
from equation (2.13), but with the diffraction efficiency ignored, i.e.

(ηap)c = ηBOR1ηspηillηphηpol, (4.13)

with all sub-efficiencies as explained in Section 2.3 and the system noise tem-
perature is approximated as

(Tsys)c = ηsp(Tsky)c + (1− ηsp)(Tgnd)c (4.14)

with
(Tsky)c = TCMB + Tgo(f0/f)β (4.15)

where, as before, TCMB = 2.73 K, Tgo = 20 K, f0 = 408 MHz and β = 2.75,
and

(Tgnd)c = 270 K. (4.16)

The surrogate is found as explained in Section 4.1.2 by evaluation of the dif-
ference of the coarse and fine model points over a star distribution for each
parameter (in other words, 3 points are required when only one parameter is
varied) and then a second order polynomial regression term is fitted through
it, to be used as a correction factor. So

Sensitivitys(x) = Sensitivityc(x) + r(x), (4.17)

with r(x) found as in equation (4.4). The regression terms for Model 2 are
shown in Figure 4.4 and surrogates are shown in Figure 4.5.
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(a) Variations in τ . (b) Variations in δ/α.

(c) Variations in δ + α. (d) Variations in θ.

Figure 4.4: Regression terms for Model 2.
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(a) Variations in τ . (b) Variations in δ/α.

(c) Variations in δ + α. (d) Variations in θ.

Figure 4.5: Sensitivity surrogates for Model 2.

Note that the surrogate is only available where coarse model evaluations
were done. Table 4.4 lists the error values for Model 2 and Table 4.5 indicates
the number of fine and coarse model points which were evaluated.

Table 4.4: Percentage errors for Model 2.

Parameter ARE [%] MRE [%]

τ 0.49 3.07
δ/α 0.33 0.81
δ + α 0.94 1.68
θ 0.29 0.89
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Table 4.5: Number of points required for Model 2.

Parameter # fine points # coarse points

τ 108 1066
δ/α 93 1271
δ + α 93 527
θ 93 403

Model 3

Model 3 makes use of the same surrogate model as described for Model 2, but
in this case the radiation patterns are found by simulating the coarse models
at the band edges in FEKO as described in Section 3.3. Since U (a) is found
by calculating the average for frequencies larger than 650 MHz and the low
band coarse model is only available up to 525 MHz, in this case only the high
band coarse model feed radiation patterns are required and these averages are
calculated for frequencies higher than 787,5 MHz, where the data from these
models are valid. The polynomial regression function is found from evaluating
the difference between the coarse and fine sensitivity models at 3 points for
each parameter variation. Figure 4.6 shows the results for Model 3.
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(a) Variations in τ . (b) Variations in δ/α.

(c) Variations in δ + α. (d) Variations in θ.

Figure 4.6: Sensitivity surrogates for Model 3.

Table 4.6 lists the ARE and the MRE for Model 3 and Table 4.7 lists the
number of points which were required.

Table 4.6: Percentage errors for Model 3.

Parameter ARE [%] MRE [%]

τ 1.44 4.07
δ/α 0.34 2.59
δ + α 0.28 1.28
θ 0.27 0.78
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Table 4.7: Number of points required for Model 3.

Parameter # fine points # coarse points

τ 108 711
δ/α 93 861
δ + α 93 357
θ 93 273

4.3 Comparisons of the Different Models
In this section, a comparison between the different models are made. For
convenience, Table 4.8 provides a summary of the specifics of each model.

Table 4.8: Summary of the different models which were described.

Model Description
1 Fits a second-order polynomial to the fine model data using a star distribution

as support points.
2 Equation (4.14) is used to get the noise temperature, as opposed to Model 3

from [28], along with equation (4.13) for the aperture efficiency. A coarse
sensitivity model is then evaluated according to equation (4.12) on the
radiation patterns found from the full fine model structure of Figure 3.4a).
The surrogate is built by finding the difference between the sensitivity of the
coarse and fine models over a star distribution and applying a second-order
polynomial regression term through these points to be used as a corrective
function on the available coarse model data.

3 In this case the coarse sensitivity model of equation (4.12) is applied to the
radiation patterns of the coarse model structures shown in Figures 3.4b) and
3.4c). The same correcting procedure as described for Model 2 is applied on
this coarse model data.

In the designs to follow, the objective function U (a) is used for optimisation
of the sensitivity of the system. Table 4.9 repeats the error values for this
objective using the different models, so that an easier comparison can be made.
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Table 4.9: Percentage errors for the different models.

Model
1 2 3

Parameter ARE [%] MRE [%] ARE [%] MRE [%] ARE [%] MRE [%]
τ 0.86 4.26 0.49 3.07 1.44 4.07
δ/α 0.30 2.50 0.33 0.81 0.34 2.59
δ + α 0.81 1.97 0.94 1.68 0.28 1.28
θ 0.20 0.63 0.29 0.89 0.27 0.78

For further comparison purposes, the CPU times of a representative exam-
ple is shown in Table 4.10 for variations over δ + α. This is broken up into
the time required to simulate the radiation patterns of the feed and the time
required to get the sensitivity. For fine model evaluations of the sensitivity,
GRASP simulations of the reflector antenna is required, whereas the coarse
model evaluations require only integral calculations.

Table 4.10: CPU time required for the different models for variations in δ+α.

Model CPU time [Hours] Feed [Hours] Sensitivity [Hours]

Fine 117.6 108.5 9.1
1 24.3 22.7 1.6
2 110.2 108.5 1.7
3 38.7 37.0 1.7

In this thesis, Model 3 is used for design purposes, since the coarse model
data is available as it is used in the rational modelling scheme, as discussed
in Chapter 5. From the error values in Table 4.9, it is not clear that adding
coarse model data improves the surrogate model, when compared to Model 1.
However, as the number of dimensions are increased, a simple polynomial may
not model the response of the sensitivity of the system as accurately, thus the
coarse model data is more trustworthy.
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Chapter 5

Rational Interpolation Scheme
Used to Model the Input
Impedance of the Pyramidal
Sinuous Antenna

In this chapter the use of rational interpolation to model the input impedance
of the antenna is investigated. The goal is to design the pyramidal sinuous
antenna for a reflection coefficient below -10 dB. The reflection coefficient is
found from the input impedance according to equation (3.7). The objective
function on which designs are implemented is the worst case scenario for each
geometry over the frequency range of interest, i.e. the maximum S11. First
the framework for rational interpolation is introduced. Improvements were
required in order to obtain a sufficiently accurate model. The interpolation
methods are investigated extensively in the univariate case, by keeping the
geometric parameters of the antenna constant and investigating changes over
frequency. Specific drawbacks of the simpler methods are discussed and mod-
els which improve upon these drawbacks are introduced. Finally, a method
that combines all desired behaviours is suggested. A few of the models are
then extended to the multivariate case, first in two dimensions only, thus one
geometric parameter is varied along with frequency. In chapters 6 and 7,
variations in more dimensions are considered. This chapter concludes with a
comparison of the rational interpolation method with other available surrogate
models.

5.1 Univariate Rational Interpolation
In general, for real or complex function values fi := f(xi) given at certain
points over the parameter space {x0, x1, x2, ...}, the rational interpolation prob-

47
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lem consists of finding a function

rn,m(x) =
p(x)

q(x)
(5.1)

with p(x) and q(x) polynomials of the form

p(x) =
n∑
i=0

aix
i, q(x) =

m∑
i=0

bix
i, (5.2)

such that
f(xi) =

p

q
(xi), i = 0, ..., S = n+m. (5.3)

Equation (5.3) can be solved by rewriting it as

p(xi)− f(xi)q(xi) = 0, i = 0, ..., S = n+m. (5.4)

This can be written in matrix form as
x0

0 ... x0
n −f0x00 ... −f0x0m

x1
0 ... x1

n −f1x10 ... −f1x1m
...
...

xm+n
0 ...





a0
...
an
b0
...
bm


=


0
...
...
...
0

 (5.5)

Equation (5.5) is a homogeneous system ofm+n+1 equations andm+n+2
unknowns. It therefore always has a nontrivial solution. All solutions of the
system have the same irreducible form [54]. The matrix is assumed to have
full rank equal to (m+ n+ 1) and so, without loss of generality, set b0 = 1 to
obtain the following linear system:


x0

0 ... x0
n −f0x01 ... −f0x0m

x1
0 ... x1

n −f1x11 ... −f1x1m
...
...

xm+n
0 ...





a0
...
an
b1
...
bm


=


f0
...
...
...

fm+n

 (5.6)

The coefficients ai and bi can be solved in MATLAB [55] using the ’\’ operator.
For real function values fi ∈ R, the coefficients are also real and for complex
function values fi ∈ C, the coefficients are complex valued. Note that applying
the model on the complex function values results in the computational cost
halving so, in general, this is preferred.
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In Equation (5.2), the monomial basis function xi is used. To improve the
conditioning and sensitivity of the problem, it is better to use orthogonal basis
functions, such as the Chebyshev polynomials Ti(x), defined by the recursive
relationship

T0(x) = 1,

T1(x) = x,

Tn+1(x) = 2xTn(x)− Tn−1(x).

(5.7)

Thus, the matrix equation to be solved becomes


T0(x0) ... Tn(x0) −f0T0(x0) ... −f0Tm(x0)
T0(x1) ... Tn(x1) −f1T0(x1) ... −f1Tm(x1)

...

...
T0(xm+n) ...





a0
...
an
b1
...
bm


=


f0
...
...
...

fm+n


(5.8)

Rational interpolants of this form were implemented on a representative ex-
ample where the independent variable x is the frequency variation, first over
the low band from 350 - 525 MHz and then in the high band from 790 - 1050
MHz. This domain for the high band was chosen to ensure that sampling from
FEKO can be done at equidistant points. The geometric parameters are kept
constant, with τ = 0.7825, δ/α = 0.6, δ + α = 36◦ and θ = 53◦. Figure
5.1 illustrates the rational interpolants when two separate models were imple-
mented for the real function values of the imaginary and real parts of the input
impedance, respectively, in each frequency band, whereas Figure 5.2 illustrates
the rational interpolants when the complex values of the input impedance was
used.

The figures show the interpolation points f(xi) as circled black dots, the ratio-
nal interpolant rn,m(x) calculated as explained above and shown as the black
line and validation data obtained by using FEKO’s adaptive solver, shown in
the figures as the blue dashed line. The validation data provides a quick visual
verification of how closely the rational approximant follows the true underly-
ing physical behaviour under consideration. In all cases, the degree n of the
numerator was set equal to the degree m of the denominator.
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(a) n = 2, m = 2. (b) n = 1, m = 1.

(c) n = 2, m = 2. (d) n = 1, m = 1.

Figure 5.1: Rational interpolants of the input impedance of the pyramidal sinuous
antenna for variations in frequency when using equations (5.1) and (5.8) with the real
and imaginary parts modeled separately. Here τ = 0.7825, δ/α = 0.6, δ + α = 36◦

and θ = 53◦.
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(a) n = 2, m = 2. (b) n = 1, m = 1.

(c) n = 2, m = 2. (d) n = 1, m = 1.

Figure 5.2: Rational interpolants of the input impedance of the pyramidal sinu-
ous antenna for variations in frequency when using equations (5.1) and (5.8) with
complex function values. Here τ = 0.7825, δ/α = 0.6, δ + α = 36◦ and θ = 53◦.

As can be seen, the rational interpolant often contains undesirable poles. It
is also possible with this formulation for certain interpolation points to become
unattainable. This arises from the cancellation of a common factor (x − xi)
in p and q, or in other words, where there is a common zero in the numerator
and denominator at an interpolation point of the interpolant. The next section
addresses these issues.

5.2 The Barycentric Formula
A polynomial of degree n that interpolates fi at the points {x0, ...xn} can be
written in the Lagrangian representation [56] as

pn(x) =
n∑
i=0

fiwili(x) (5.9)
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with
l(x) = (x− x0) . . . (x− xn), (5.10)

li(x) = l(x)/(x− xi) (5.11)

and
wi =

1∏
j 6=i(xi − xj)

, i = 0, . . . , n. (5.12)

For example, the polynomial of degree 2 is

p2(x) =
f0(x− x1)(x− x2)
(x0 − x1)(x0 − x2)

+
f1(x− x0)(x− x2)
(x1 − x0)(x1 − x2)

+
f2(x− x0)(x− x1)
(x2 − x0)(x2 − x1)

.

It is easy to see that this is a second degree polynomial that equals fi at xi.

Now let the wi equal any nonzero weights and let

qn(x) =
n∑
i=0

wili(x), (5.13)

then the rational function rn(x) = pn(x)/qn(x) interpolates n + 1 mutually
distinct points {x0, ...xn} at the function values {f0, ..., fn}. Thus

rn(x) =

∑n
i=0 fiwili(x)∑n
i=0wili(x)

=

∑n
i=0 fi

wi
x− xi∑n

i=0

wi
x− xi

, wi 6= 0. (5.14)

Equation (5.14) is called the barycentric rational interpolation formula. In this
form, the interpolant is immune to rounding errors from the computation of
the coefficients [57]. The function li(x) can be viewed as a blending function
that blends the very simple local models - the samples fi in this case -into the
global interpolation function. This is achieved by designing li(x) to be zero at
all sample points j 6= i, thereby ensuring the interpolation property rn(xi) = fi.
An illustration of these functions are shown in Figure 5.3. Note that lj(xi) = 0
for j = 0, ..., n, j 6= i. Also note that the values of each consecutive function
at its respective interpolation point oscillates in sign, as indicated in Figure
5.3a). Thus if rn(x) is to be pole-free on [x0, xn], a necessary condition for the
barycentric weights to satisfy is

wiwi+1 < 0, i = 0, ..., n− 1. (5.15)

If x0 < x1 < . . . < xn, then the choice wi = (−1)i ensures that rn(x) is pole-
free on the entire real line, as noted in [56]. It also ensures that the problem of
unattainability no longer exists, since qn(xi) 6= 0 on the entire real line. The
appropriate weights are indicated in Figure 5.3b).
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(a) Blending functions li(x).
Note that lj(xi) = 0 with j = 0, ...n,

j 6= i.

(b) Letting the weights wi = (−1)i

ensures a pole-free region on the real
line.

Figure 5.3: Visual illustration of the barycentric rational interpolant with its blend-
ing functions li(x). The choice of weights wi = (−1)i ensures a pole-free region on
the real line.

This choice was implemented for the same interpolant values as in Section
5.1 and the results are illustrated in Figure 5.4. Note that applying equation
(5.14) with the constraint in (5.15) leads to exactly the same results when
modelling real and imaginary parts separately, as when interpolating com-
plex values, since the denominator is real valued and thus the rational model
becomes additively separable in its real and imaginary components.
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(a) n = 5. (b) n = 3.

(c) n = 5 (d) n = 3.

Figure 5.4: Rational interpolants of the input impedance of the pyramidal sinuous
antenna for variations in frequency when using equation (5.14) with condition (5.15)
used to ensure a pole-free model. τ = 0.7825, δ/α = 0.6, δ + α = 36◦ and θ = 53◦.

It is possible to control the shape of the rational function by using more
refined choices for the barycentric weights. See [58] for a discussion on how
to control the comonoticity as well as the coconvexity of the interpolant in
addition to a pole-free region. As variations of the input impedance will be
considered over frequency as well as the four geometric parameters in Table
3.3, the shape of these functions are uncertain, thus shape control for this
application is superfluous.

Presented here is a different form of the barycentric weights as from [59],
to illustrate how the function changes. Let wi = (−1)iσi, and

σi =

min(i,n−d)∑
j=max(i−d,0)

(
d

i− j

)
, n > 2d, d = 1, 2, . . . (5.16)
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Figure 5.5 shows the results of using these weights. As can be seen, there
is no easily identifiable advantage of the use of these weights over the pre-
vious example. The next section investigates weights that can improve the
interpolant.

(a) n = 5. (b) n = 3.

(c) n = 5 (d) n = 3.

Figure 5.5: Rational interpolants of the input impedance of the pyramidal sinuous
antenna for variations in frequency when using equation (5.14) and (5.16). τ =

0.7825, δ/α = 0.6, δ + α = 36◦ and θ = 53◦.

5.3 Rational Modeling of Multi-Fidelity Data
This section looks at combining data with variable fidelity levels, in order to
build a rational model over the entire design space. In antenna engineering
problems the cost of highly accurate models is often prohibitively computa-
tionally expensive, especially when design space exploration and optimisation
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are required. In these cases, lots of different antennas with varying parame-
ters need to be simulated in order to get a clear representation of the trends
followed by the different performance metrics under consideration. Because of
this, it is useful to model data by combining different levels of fidelity. High
fidelity (HF) data which is very accurate, but time consuming to produce, can
be simulated sparsely over the parameter space, while low-fidelity (LF) data is
less accurate, but it can be more densely captured over the parameter space.
LF data captures the trend in the overall performance of the antenna.

The so-called fine model is the full antenna model over the entire frequency
range. This was used to create the high-fidelity data. The coarse model
consists of two smaller antennas simulated over a shorter frequency range, re-
spectively at the low and high ends of the frequency spectrum, as described
in Section 3.3 and illustrated in Figure 3.4. These models are used to obtain
the low fidelity data. These two antennas combined take less time to simulate
than the full antenna over the entire frequency range. Figure 5.6 illustrates the
output of the real part of the input impedance for just one geometric variation
of the antenna, namely θ = 53◦, δ + α = 36◦, δ/α = 0.6 and τ = 0.75.

Figure 5.6: Illustration of the fine and coarse models used to create the low- and
high-fidelity data.

As seen here, the coarse model data follows the trend of the fine model, but
it is not completely accurate. Also, the coarse models only provide information
at the band edges, however, as noted in Section 3.3, this should not affect the
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results, since the outliers in S11 are expected to occur at either the high or low
end of the frequency spectrum, with a log-periodic behaviour in the middle of
the band.

Figure 5.7 provides a closer look of how the LF data follows the trend of
the fine model output, with HF data sampled sparsely over the output range.

Figure 5.7: Illustration of the low- and high-fidelity data.

As seen in Figure 5.7 there are rarely points from the LF data that coincide
with the HF data. Thus, the first step in building the rational model would
be to calibrate the LF data so that it coincides more accurately with the HF
data. This is done by calculating the difference between each HF and LF data
point over the set of HF data points that are available and then interpolating
this difference function with a spline in order to approximate the difference
between the data where only LF data points are available.

For this purpose, two disjoint data sets are distinguished, namely

HF = {xHk , fH(xHk )}KHk=1

LF = {xLi , fL(xLi )}KLi=1

where the subset of LF data points that coincide with the domain of the HF
data points are denoted as fL(xLk ) ∈ fL(xLi ). HF is sparse when compared to
LF (KH < KL) and the shorthand notation fHk := fH(xHk ), fLi := fL(xLi ) is
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used throughout. The calibration step is performed by finding the difference
function s(x) by interpolating

sk(xk) = fHk − fLk , k = 1, ..., KH (5.17)

with a spline. In (5.17), xHk = xLk . Then the calibrated LF data set is found
from

LFc = fLi + s(xi) = {xLi , fLc(xLi )}KLi=1. (5.18)

Note that xLi ≡ xLci . Figure 5.8 illustrates the process. After applying this
calibration to the low fidelity data, the improved set can be seen in Figure 5.9.
Note that in general, the LF data still contains inaccuracies compared to the
fine model solution.

Figure 5.8: Spline interpolant through the difference between the HF and LF data
points used to calibrate the LF data.
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Figure 5.9: Data LFc found by calibrating the LF data. Note that for each inter-
polation point, fHk and fLck coincides.

The algorithm to find a rational function R, which approximates the be-
havioural response of a system f follows a two-step modelling approach, as
suggested in [60]:

1. Use a barycentric rational model to interpolate the HF data exactly.

2. Calculate the weights of the model, wk, such that the calibrated LF data
is approximated in a least squares (LS) sense.

The rational model fixes the interpolation points of the HF model, such that
R(xHk ) = fH(xHk ) for k = 1, . . . , KH , for any non-zero barycentric weights
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(w = [wk] ∈ RKH×1 with wk 6= 0). Equation (5.19) is used in [60]:

R(x,w) =
P (x,w)

Q(x,w)

=

∑KH
k=1

wk
x− xHk

fH(xHk )

w0 +
∑KH

k=1

wk
x− xHk

=

l(x)
∑KH

k=1

wk
x− xHk

fH(xHk )

l(x)(w0 +
∑KH

k=1

wk
x− xHk

)

=

∑KH
k=1wkl

H
k f

H(xHk )

l(x)w0 +
∑KH

k=1wkl
H
k

.

(5.19)

However, the l(x)w0 term deviates from the true barycentric form in equation
(5.14), thus redefine:

R(x,w) =
P (x,w)

Q(x,w)
=

∑KH
k=1wkl

H
k f

H(xHk )∑KH
k=1wkl

H
k

=

∑KH
k=1

wk
x− xHk

fH(xHk )∑KH
k=1

wk
x− xHk

. (5.20)

As mentioned in Section 5.2, the choice of w can be exploited to enforce
additional properties on the model. It is used here to approximate the LFc
data in a LS sense. In other words, that w which minimises the sum of the
squared residuals of the function R at each point fLc is found by solving

argmin
w

KL∑
i=1

∣∣∣∣P (xLi ,w)

Q(xLi ,w)
− fLc(xLi )

∣∣∣∣2 . (5.21)

However, (5.21) is a non-linear problem which is difficult to solve in a fast and
accurate way. So it is preferred to solve the linear approximation

argmin
w

KL∑
i=1

∣∣P (xLi ,w)− fLc(xLi )Q(xLi ,w)
∣∣2 (5.22)

which is equal to

argmin
w

KL∑
i=1

∣∣∣∣∣
KH∑
k=1

wk
x− xHk

fH(xHk )− fLc(xLi )

(
KH∑
k=1

wk
x− xHk

)∣∣∣∣∣
2

. (5.23)

Equation (5.23) leads to a homogeneous system of the form Ax = 0, where w
is found by solving the LS optimisation problem in (5.23) with the MATLAB
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operator ’\’ (mldivide). This is an overdetermined system, since KL > KH .
The elements of the system are given by

A = [aik] ∈ CKL×KH with aik =
fH(xHk )− fLc(xLi )

(xLi − xHk )

and x = w ∈ RKH×1.

(5.24)

Equations (5.20) and (5.24) were implemented in MATLAB on the same data
sets as previously, first on the real and imaginary data sets separately and
then on the complex data sets, with results shown in Figures 5.10 and 5.11
respectively.

(a) KH = 5,KL = 36. (b) KH = 3,KL = 53.

(c) KH = 5,KL = 36 (d) KH = 3,KL = 53.

Figure 5.10: Rational interpolants of the input impedance of the pyramidal sinuous
antenna for variations in frequency when using equations (5.20) and (5.23) with the
real and imaginary parts modelled separately. τ = 0.7825, δ/α = 0.6, δ + α = 36◦

and θ = 53◦.
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(a) KH = 5,KL = 36. (b) KH = 3,KL = 53.

(c) KH = 5,KL = 36. (d) KH = 3,KL = 53.

Figure 5.11: Rational interpolants of the input impedance of the pyramidal sinuous
antenna for variations in frequency when using equations (5.20) and (5.23) on the
complex data sets. τ = 0.7825, δ/α = 0.6, δ + α = 36◦ and θ = 53◦.

As can be seen, the rational interpolant follows the calibrated LF data
between the HF data points. However, Figures 5.10a) and 5.10c) indicate
poles in the solutions of the rational approximants. Note that this is possible
for both data sets, i.e. real and imaginary parts separately, as well as the
complex data set. This is unwanted and so the next section addresses this
issue.

5.4 Getting Rid of the Poles in the Rational
Approximant of the Multi-Fidelity Data

In this section multi-fidelity (MF) data is used in the rational approximant,
but with an additional constraint that ensures it contains no poles. In the
previous section, the barycentric weights are solved by training the rational
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approximant to follow the LF data in a LS sense. However, since no constraints
are imposed on the model, naturally, the solution may contain poles. The
sufficient condition to ensure that R(x,w) is pole-free on [x0, xn] is given in
Section 2.3 of [58], namely that if x0 < x1 < ... < xn, wk = (−1)kφk, φk > 0
and a < x0, b > xn, then

φj−1
b− xj−1

<
φj

b− xj
, j = 1, ..., n,

φj
xj − a

>
φj+1

xj+1 − a
, j = 0, ..., n− 1.

(5.25)

This constraint can be imposed on the homogeneous system of (5.24) by using
MATLAB’s ’lsqlin’ function, however, this function cannot handle complex
values, thus the real and imaginary parts of the matrix A must be separated,
resulting in

A =

[
<(aik)
=(aik)

]
∈ R2KL×KH with aik =

fH(xHk )− fLc(xLi )

(xLi − xHk )
. (5.26)

This is valid since∣∣∣∣fHk − fLcixLi − xHk

∣∣∣∣2 =

∣∣∣∣∣
(
<(fHk )−<(fLci )

)
+
(
=(fHk )−=(fLci )

)
i

xLi − xHk

∣∣∣∣∣
2

=

∣∣∣∣<(fHk )−<(fLci )

xLi − xHk

∣∣∣∣2 +

∣∣∣∣=(fHk )−=(fLci )

xLi − xHk

∣∣∣∣2 .
(5.27)

Applying the constraints first to the real and imaginary parts separately
and then on the complex valued functions lead to the results shown in Figures
5.12 and 5.13 respectively. Note that there are differences between the resulting
models, however, these are very small, so in general, it is preferred to build
the rational models directly on the complex valued functions.
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(a) KH = 5,KL = 36. (b) KH = 3,KL = 53.

(c) KH = 5,KL = 36 (d) KH = 3,KL = 53.

Figure 5.12: Rational interpolants of the input impedance of the pyramidal sinuous
antenna for variations in frequency when using equations (5.20) and (5.23) with the
constraint (5.25) used to ensure a pole-free model. Real and imaginary parts are
modelled separately. τ = 0.7825, δ/α = 0.6, δ + α = 36◦ and θ = 53◦.
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(a) KH = 5,KL = 36. (b) KH = 3,KL = 53.

(c) KH = 5,KL = 36. (d) KH = 3,KL = 53.

Figure 5.13: Rational interpolants of the input impedance of the pyramidal sinuous
antenna for variations in frequency when using equations (5.20) and (5.23) with the
constraint (5.25) used to ensure a pole-free model. Models are on the complex data
sets. τ = 0.7825, δ/α = 0.6, δ + α = 36◦ and θ = 53◦.

All approximants are now pole-free, as desired, however, the ability of the
model to follow the LF data is poor. The constraints on the weights wk might
have become too strict to give the most useful results. An explanation for this
is illustrated in Figure 5.14.
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Figure 5.14: Solutions to the weights w2 and w3 when the sufficient condition of
equation (5.25) to ensure a pole-free model is applied (blue dot) compared to when
the necessary condition of equation (5.15) to ensure a pole-free model is applied
(yellow dot). The green area indicates the possible solution space of equation (5.15),
while the red area indicates the possible solution space of equation (5.25).

The illustration considers w2 and w3 only, but the principle extends to all
the weights wi. The necessary condition (5.15) for a barycentric rational in-
terpolant free of poles is restricted to the fourth quadrant indicated by the
green area where w2w3 < 0. The sufficient condition (5.25) restricts the solu-
tion space to the area indicated in red. The yellow dot indicates the optimal
solution to the least squares problem of equation (5.23) with the necessary
condition applied, while the blue dot indicates the optimal solution when the
sufficient condition is imposed. Thus this constraint may lead to sub-optimal
results.

To assess the performance of the method, two different error measurements
are associated with each interpolant: the average euclidean error and the max-
imum absolute error, computed on n samples of the validation data. These
errors are defined in equations (4.6) and (4.7) respectively and are restated
here for clarity:

AEE =
1

n

n∑
j=1

√
(R(xj,w)− f(xj))2 (5.28)
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and
MAX = max |R(xj,w)− f(xj)|nj=1 . (5.29)

Table 5.1 lists these errors for the interpolants in Figures 5.12 and 5.13,
where for the low band n = 351 and for the high band n = 521. For com-
parison purposes, the separate real and imaginary models are combined before
calculating the errors.

Table 5.1: Error values for interpolants of Figures 5.12 and 5.13.

Model AEE MAX

(5.20) with f(x) ∈ R 28.1048 116.2225
(5.20) with f(x) ∈ C 29.6041 121.6738

The next section introduces an improved rational model that requires a
relaxed constraint, while still guaranteeing a pole-free model.

5.5 Pole-Free Rational Interpolation of
Multi-Fidelity Data Using B-Splines

B-Splines

In the previous section lHk (x) = l(x)/(x−xHk ) with l(x) = (x−xH0 ) . . . (x−xHk )
is used as a so-called blending function in the rational approximant R(x,w)
as in (5.20). This function changes sign at each HF (interpolation) point, and
thus the weights wk are required to oscillate in sign as well, in addition to
the constraint (5.25), resulting in that the denominator never changes its sign,
thus ensuring a pole-free approximant. The possible solutions of wk under
these constraints might become too limited to provide meaningful results, as
illustrated in Figure 5.14. In other words, the rational approximant might not
follow the LF data as well as it possibly could. In this section the quadratic
B-spline function is used as an improved blending function as was done in [61].
It is always positive, and so the only constraint required for a pole-free solution
is that wk > 0.

The B-spline functions are defined recursively [62] as:

B0
i (x) =

{
1 ti ≤ x < ti+1

0 otherwise
(5.30)

and

Bk
i (x) =

(
x− ti
ti+k − ti

)
Bk−1
i (x) +

(
ti+k+1 − x
ti+k+1 − ti+1

)
Bk−1
i+1 (x). (5.31)
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It is defined on the infinite set of knots {ti} with ... < t−2 < t−1 < t0 < t1 <
t2 < ... Figure 5.15 shows the first four B-spline functions.

Figure 5.15: The first four B-Spline functions.

As mentioned, in this section the quadratic B-Spline function is used to
replace the blending functions lHk (x) in equation (5.20).

Bèzier Curves

In addition to using an improved blending function, firstly the HF data points
fH(xHk ) in (5.20) are replaced by a Bèzier curve which follows the trend of
the mk − 2 LF points between fH(xHk ) and fH(xHk+1), while interpolating at
each HF point. These local models reduce the responsibility on the weights to
ensure that the models follow the trend of the LF points.

Bernstein proved in 1912 that for a continuous function g(x) defined on [0, 1],
the sequence of polynomials

pni(x) =
n∑
i=0

g(i/n)ψni(x) (n ≥ 1) (5.32)

with
ψni(x) =

(
n

i

)
xi(1− x)n−i (0 ≤ i ≤ n). (5.33)

converges uniformly to g(x), while interpolating at the endpoints at x = 0
and x = 1. Thus, a local Bèzier curve pk(x) can be constructed on the data
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points by rescaling every interval between two consecutive HF points [xHk , x
H
k+1]

with the mk − 2 equidistant LF points in between it to [0, 1]. Note that
equidistant LF points are required for the Bèzier curve. Thus g(0) = fH(xHk )
and g(1) = fH(xHk+1), with the curve pk(x) following the trend of the LF points
on the interval [0, 1]. Figure 5.16 illustrates the concept.

Figure 5.16: Illustration of a Bèzier curve for approximation of data on an interval
between [0, 1].

The Rational Interpolant

For the improved rational interpolant, define the domain of each interval Ik
from every two consecutive HF points, fH(xHk ) and fH(xHk+1), including the
LF points between it. Thus

Ik = [xHk , x
H
k+1] = {xHk = xLk,1 < . . . < xLk,mk = xHk+1} (5.34)

with
∑KH−1

k=1 (mk− 1) = KL− 1. These intervals are mapped to [0, 1] and then
approximated by a Bézier curve
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pk(x) =

mk∑
j=1

fLkjψij(z),

fLkj = f
(
xLk,j
)
, z =

x− xHk
xHk+1 − xHk

, (5.35)

ψkj(z) =

(
mk

j

)
zj(1− z)mk−j.

So the improved rational expression, which now has a piecewise polynomial
numerator and denominator, is defined as

R(x,w) =
P (x,w)

Q(x,w)
=

∑KH−1
k=1 wkB

2
k−1(x)pk(x)∑KH−1

k=1 wkB2
k−1(x)

(5.36)

with B2
k−1(x) the quadratic B-spline function, supported by the two LF points

outside of the interval Ik, i.e. its supports are at [xLk−1,mk−1−1, x
L
k+1,2]. Note

that B2
k−1(x

H
k ) = B2

k−1(x
H
k+1), as evident from Figure 5.17.

Figure 5.17: Illustration of the quadratic B-Spline blending functions and the local
models pk(x). The dashed parts are multiplied by zero and thus do not contribute
to the interpolant.
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To see that equation (5.36) interpolates at f(xHk ), consider equations (5.37)
and (5.38):

R(xHk ,w) =

∑KH−1
k=1 wkB

2
k−1(x

H
k )pk(x

H
k )∑KH−1

k=1 wkB2
k−1(x

H
k )

=
w1B

2
0(xHk )p1(x

H
k ) + ...+ wkB

2
k−1(x

H
k )pk(x

H
k ) + ...+ wKH−1B

2
KH−2(x

H
k )pKH−1(x

H
k )

w1B2
0(xHk ) + ...+ wkB2

k−1(x
H
k ) + ...+ wKH−1B

2
KH−2(x

H
k )

(5.37)
Now since all B2

i goes to zero at xHk , except for B2
k−1 and B2

k−2, the above
becomes

R(xHk ,w) =
wk−1B

2
k−2(x

H
k )pk−1(x

H
k ) + wkB

2
k−1(x

H
k )pk(x

H
k )

wk−1B2
k−2(x

H
k ) + wkB2

k−1(x
H
k )

=
wk−1B

2
k−2f(xHk ) + wkB

2
k−1f(xHk )

wk−1B2
k−2 + wkB2

k−1

= f(xHk ).

(5.38)

The weights wk are once again found by solving the linearised LS optimi-
sation problem from

arg min
w

KH−1∑
i=1

mk∑
j=1

∣∣∣∣∣fLij
KH−1∑
k=1

wkB
2
k−1,2(x

L
i,j)−

KH−1∑
k=1

wkpk(x
L
i,j)B

2
k−1,2(x

L
i,j)

∣∣∣∣∣
2

(5.39)
where the only constraint to ensure a pole-free model is that the weights must
be positive, i.e. wk > 0. Equation (5.39) is solved using MATLAB’s ’lsqlin’
function, where once again the real and imaginary parts must be separated
for complex function values. Applying the newly defined R(x,w) of equation
(5.36) to the data as previously, gives the results as shown in Figure 5.18 with
the real and imaginary parts modelled separately and in Figure 5.19 on the
complex data.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. RATIONAL INTERPOLATION SCHEME 72

(a) KH = 5,KL = 36. (b) KH = 3,KL = 53.

(c) KH = 5,KL = 36 (d) KH = 3,KL = 53.

Figure 5.18: Rational interpolants of the input impedance of the pyramidal sinuous
antenna for variations in frequency when using equations (5.36) and (5.39) with the
constraint that wk > 0, ensuring a pole-free model. Real and imaginary parts are
modelled separately. τ = 0.7825, δ/α = 0.6, δ + α = 36◦ and θ = 53◦.
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(a) KH = 5,KL = 36. (b) KH = 3,KL = 53.

(c) KH = 5,KL = 36. (d) KH = 3,KL = 53.

Figure 5.19: Rational interpolants of the input impedance of the pyramidal sinuous
antenna for variations in frequency when using equations (5.36) and (5.39) with the
constraint that wk > 0, ensuring a pole-free model. Models were applied directly to
the complex data sets. τ = 0.7825, δ/α = 0.6, δ + α = 36◦ and θ = 53◦.

The error values for this method are listed in Table 5.2. In this case, the
models performed the same when built separately as when built on the complex
values, to within 10 decimal places, thus the errors for both models are the
same. Once again, the low band n = 351 and the high band n = 521.

Table 5.2: Error values for interpolants of Figures 5.18 and 5.19

Model AEE MAX

(5.36) 8.8381 48.023

A significant improvement is seen in the error values of this model when
compared to those of Table 5.1. The accuracy of this model is strongly de-
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pendent on how accurately the LF data represents the HF data. Of course,
increasing the number of HF points would lead to an improved model. It is up
to the designer to trade off an acceptable amount of computational time re-
quired to simulate HF data with an acceptable level of accuracy for the rational
models. In the next section, the above method is extended to the multivariate
case.

5.6 Multivariate Rational Interpolation

5.6.1 The Barycentric Formula

The extension of the univariate rational interpolation to the multivariate case
is straightforward. Firstly, the multivariate case of the barycentric formula
of equation (5.14) is defined. Increasing this formula to higher dimensions is
simple. The focus is on a grid of interpolation points fi1...in(x1, . . . , xn) with
ij = 0, ...,mj and j = 1, ..., n, with n being the number of dimensions. The
multivariate barycentric formula is then

rm(x) = rm1,...,mn(x1, . . . , xn)

=

∑m1

i1=0 . . .
∑mn

in=0 li(x)wifi(x)∑m1

i1=0 . . .
∑mn

in=0 li(x)wi

=

∑m1

i1=0 . . .
∑mn

in=0 li1...in(x1, . . . , xn)wi1 . . . winfi1...in(x1, . . . , xn)∑m1

i1=0 . . .
∑mn

in=0 li1...in(x1, . . . , xn)wi1 . . . win(x1, . . . , xn)

=

∑m1

i1=0 . . .
∑mn

in=0

wi1 . . . winfi1...in(x1, . . . , xn)

(x1 − xi1) . . . (xn − xin)∑m1

i1=0 . . .
∑mn

in=0

wi1 . . . win
(x1 − xi1) . . . (xn − xin)

=

∑m1

i1=0

wi1
(x1 − xi1)

. . .
∑mn

in=0

win
(xn − xin)

fi1...in(x1, x2, . . . , xn)∑m1

i1=0

wi1
(x1 − xi1)

. . .
∑mn

in=0

win
(xn − xin)

(5.40)

where
li =

l(x1, . . . , xn)

(x1 − xi1) . . . (xn − xin)
(5.41)

l(x1, . . . , xn) =

m1∏
i1=0

(x1 − xi1) . . .
mn∏
in=0

(xn − xin) (5.42)

and the weights wi1 , . . . , win are nonzero and as before must oscillate in sign,
since the necessary condition for a pole-free region is

wijwi+1j < 0, i = 0, ...,mn − 1, j = 1, ..., n. (5.43)
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The weights wij = (−1)ij for j = 1, ..., n are known to ensure a pole-free region,
as in the univariate case [56].

5.6.2 Using Multi-Fidelity Data with B-Splines

As the benefits of equation (5.36) are known, this is extended immediately to
the multivariate case.The multi-dimensional Bèzier interpolant is defined as

pm1,...,mn(x1, . . . , xn)

=

m1∑
i1=0

. . .

mn∑
in=0

g (i1/n1, . . . , in/mn)ψm1i1,...,mnin(x1, . . . , xn)
(5.44)

with (m1, . . . ,mn ≥ 1) and

ψm1i1,...,mnin(x1, . . . , xn)

=

(
m1

i1

)
. . .

(
mn

in

)
xi11 (1− x1)m1−i1 . . . xinn (1− xn)mn−in .

(5.45)

Here (0 ≤ i1 ≤ m1), . . . , (0 ≤ in ≤ mn) and g : I := [0, 1] × . . . × [0, 1] → Rn.
The Bèzier interpolant pm1,...,mn(x1, . . . , xn) converges pointwise to g(x1, . . . , xn)
for m1, . . . ,mn → ∞. It interpolates at the corners of the [0, 1] × ... × [0, 1]
grid for any m1, . . . ,mN . Figure 5.20 illustrates an example for n = 2.

Figure 5.20: Illustration of Bèzier interpolation in two dimensions.

In two dimensions each grid of four HF points with LF points between it
is mapped to the region [0, 1] × [0, 1] so that it can be approximated locally

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. RATIONAL INTERPOLATION SCHEME 76

with a Bèzier interpolant pk1k2(x1, x2) on every interval
Ik1k2 := [fH(xHk1 , x

H
k2

), fH(xHk1+1, x
H
k2+1)].

The rational interpolant which makes use of B-splines to blend the intervals
together in two dimensions is defined as

R(x1, x2,w) =
P (x1, x2,w)

Q(x1, x2,w)

=

∑m1−1
k1=1

∑m2−1
k2=1 wk1wk2B

2
k1−1(x1)B

2
k2−1(x2)pk1k2(x1, x2)∑m1−1

k1=1

∑m2−1
k2=1 wk1wk2B

2
k1−1(x1)B

2
k2−1(x2)

(5.46)

and where the number of HF points are KH = m1m2. Once again the only
constraint on the weights are that wk1 , wk2 > 0. These are solved as before by
following the LF data in the LS sense, thus by solving the linearised optimi-
sation problem

argmin
w

KL∑
i=1

∣∣P (xLi1 , x
L
i2
w)− fL(xLi1 , x

L
i2

)Q(xLi1 , x
L
i2
,w)

∣∣2 , (5.47)

with KL the number of LF data points.
The grids to be considered in the following examples are listed in Table

5.3.

Table 5.3: Grids on which interpolants are built for every geometric parameter.

x1 x2 m1 m2 KH KL

τ ∈ [0.75, 0.9] Frequency ∈ [350, 525] (MHz) 11 9 99 1116
τ ∈ [0.75, 0.9] Frequency ∈ [790, 1050] (MHz) 11 12 132 1643
δ/α ∈ [0.4, 0.8] Frequency ∈ [350, 525] (MHz) 8 9 72 1476
δ/α ∈ [0.4, 0.8] Frequency ∈ [790, 1050] (MHz) 8 12 96 2173

δ + α ∈ [28, 44] (Degrees) Frequency ∈ [350, 525] (MHz) 8 9 72 612
δ + α ∈ [28, 44] (Degrees) Frequency ∈ [790, 1050] (MHz) 8 12 96 901
θ ∈ [47, 59] (Degrees) Frequency ∈ [350, 525] (MHz) 3 9 27 468
θ ∈ [47, 59] (Degrees) Frequency ∈ [790, 1050] (MHz) 3 12 36 689

Figures 5.21 - 5.24 show the results of using equations (5.46) and (5.47)
for variations in τ , δ/α, δ + α and θ respectively, along with the low and high
frequency bands. It is used to model the input impedance on a grid which
is four times finer than the number of coarse samples in each dimension for
every geometric parameter. Thus the input impedance is available on a grid
that is sixteen times larger than the number of LF points. The interpolants
are applied to the complex data in each case.
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(a) KH = 99,KL = 1116. (b) KH = 132,KL = 1643.

(c) KH = 99,KL = 1116. (d) KH = 132,KL = 1643.

Figure 5.21: Rational interpolants of the input impedance of the pyramidal sinuous
antenna for variations in τ and frequency when using equations (5.46) and (5.39) on
the complex data. δ/α = 0.6, δ + α = 36◦ and θ = 53◦.
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(a) KH = 72,KL = 1476. (b) KH = 96,KL = 2173.

(c) KH = 72,KL = 1476. (d) KH = 96,KL = 2173.

Figure 5.22: Rational interpolants of the input impedance of the pyramidal sinuous
antenna for variations in δ/α and frequency when using equations (5.46) and (5.39)
on the complex data. τ = 0.825, δ + α = 36◦ and θ = 53◦.
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(a) KH = 72,KL = 612. (b) KH = 96,KL = 901.

(c) KH = 72,KL = 612. (d) KH = 96,KL = 901.

Figure 5.23: Rational interpolants of the input impedance of the pyramidal sinuous
antenna for variations in δ+α and frequency when using equations (5.46) and (5.39)
on the complex data. τ = 0.825, δ/α = 0.6 and θ = 53◦.
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(a) KH = 27,KL = 468. (b) KH = 36,KL = 689.

(c) KH = 27,KL = 468. (d) KH = 36,KL = 689.

Figure 5.24: Rational interpolants of the input impedance of the pyramidal sinuous
antenna for variations in θ and frequency when using equations (5.46) and (5.39) on
the complex data. τ = 0.825, δ/α = 0.6 and δ + α = 36◦.

After the models for the input impedance are available, the reflection co-
efficients can be calculated according to equation (3.7) and then the worst
case for each geometric parameter is determined. It is expected that the worst
case is within the available frequency bands for each antenna. The solution is
compared to the available validation data, shown in Figures 5.25 - 5.28.
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Figure 5.25: Worst case of the reflection coefficient for variations in τ determined
from the rational approximants of Figure 5.21.

Figure 5.26: Worst case of the reflection coefficient for variations in δ/α determined
from the rational approximants of Figure 5.22.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. RATIONAL INTERPOLATION SCHEME 82

Figure 5.27: Worst case of the reflection coefficient for variations in δ+α determined
from the rational approximants of Figure 5.23.

Figure 5.28: Worst case of the reflection coefficient for variations in θ determined
from the rational approximants of Figure 5.24.

Error values were calculated for each model of the input impedance from
equations (5.28) and (5.29) as well as on the data found for the reflection
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coefficient in each case. These are shown in Tables 5.4 and 5.5.

Table 5.4: Error values for interpolants of Figures 5.21 - 5.24.

Model AEE MAX

Figure 5.21 (τ) 18.4189 153.3619
Figure 5.22 (δ/α) 9.3188 134.3906
Figure 5.23 (δ + α) 11.0163 115.7045
Figure 5.24 (θ) 10.9438 180.9171

Table 5.5: Error values for the reflection coefficient of Figures 5.25 - 5.28.

Data AEE MAX

Figure 5.25 (τ) 0.4181 3.0280
Figure 5.26 (δ/α) 0.2679 0.9674
Figure 5.27 (δ + α) 0.3239 0.9945
Figure 5.28 (θ) 0.3208 0.7041

The validation data in Figures 5.25 - 5.28 are seen to contain a lot of noise
(note the rapid variations in the data). This is expected, since solutions in
FEKO are evaluated on a discrete number of mesh triangles. This discretisa-
tion is a source of noise. However, the rational models are capable of capturing
the general trend of the worst case of the reflection coefficient over variations
of each geometric parameter quite well. Note, however, that the maximum
error for the reflection coefficient over variations in τ is more than three times
larger than for the other geometric parameters. This is because of the rapid
variations which are observed in the general trend of Figure 5.25 for τ > 0.86
(thus, not the noisy variations). The pyramidal sinuous antenna contains a
discrete number of radiating cells which is exponentially dependent on the
value of τ . This discretisation introduces an additional source of noise to the
antenna’s performance as a function of τ and variations in the output vary
more and more rapidly as τ increases.

The data from Figures 5.25 - 5.28 can be used to determine the regions in
the parameter space where the reflection coefficient is below -10 dB over the
entire band. From this parameter space, the antenna with the maximum sen-
sitivity can be identified. Chapters 6 and 7 consider this where models are
built in higher dimensional spaces. The next section thoroughly compares the
above method with other available surrogate models.
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5.7 Comparisons of the B-Spline Blended
Rational Interpolant with Other Surrogate
Models

In order to assess the quality of the B-Spline blended rational interpolant, it
is necessary to compare its modelling capabilities with more obvious or well-
known modelling schemes which might be easier to implement than the above
method. A thorough investigation was done which compares this model to five
other interpolation methods. The most straightforward interpolation scheme
is to apply a spline function to the available data. This was considered on the
HF data alone, as well as on the calibrated LF data. Comparisons with these
models answer the question of whether it is worthwhile to apply a rational
interpolant to the available data. It is known that the underlying phenomena
of electromagnetic systems takes on the form of a rational function, as was
discussed in Section 3.2, thus the assumption is that a rational model would
perform better than applying a straightforward spline function to the data. In
particular, the error values were compared as the number of HF data points
were decreased. Comparisons were also made with the barycentric rational
interpolant of equation (5.14) when condition (5.15) is imposed, i.e. a rational
interpolant that makes use of HF data only. In addition, two well-established
surrogate modelling schemes were considered, namely Kriging and co-Kriging.
Kriging makes use of HF data only, whereas co-Kriging is an extension to the
Kriging interpolation scheme which makes use of multi-fidelity data. A brief
discussion of the basics of these models follow.

Kriging Interpolation

Kriging is a Gaussian process based surrogate modelling technique which is
commonly used in geostatistics. It was first described by Krige in his Master’s
thesis in 1951 [63] with the theoretical basis for the method developed in
1963 by Matheron [64]. The ooDACE MATLAB toolbox [65] was used to
implement the Kriging and co-Kriging models in this section. An overview of
the mathematical description is provided here - further details can be found in
the toolbox’s starting guide. For a data set of n function values y = {y1, ..., yn}
given at the samples points X = {x1, ...,xn} in d dimensions, the Kriging
model is defined as

Y (x) = f(x) + Z(x) (5.48)

where f(x) is a regression function and Z is a Gaussian process with mean
zero, variance σ2 and a correlation matrix Ψ. The function f(x) captures the
general trend of the data, while the Gaussian process Z is constructed so as
to interpolate through the residuals. Ordinary kriging, used here, assumes a
constant regression function f(x) = α0. The n×n correlation matrix is defined
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as

Ψ =

ψ(x1,x1) . . . ψ(x1,xn)
... . . . ...

ψ(xn,x1) . . . ψ(xn,xn)

 . (5.49)

The choice of correlation function ψ(x,x′) is a crucial step in building an
accurate Kriging model. In this case, a Gaussian correlation function was
used, defined as

ψ(x,x′) = exp

(
−

d∑
i=1

θi |xi − x′i|
p

)
(5.50)

with p = 2. A Gaussian correlation function is suitable for a smooth surface
response, while an exponential correlation function (p = 1) is better suited
for a rough response. The correlation function is dependent on the distance
between two points - points that are closer together have a greater influence on
each other, so the function values are closer together. As the distance between
points increase, their correlation goes to zero. The set of hyperparameters,
θ1, ..., θd, describes a sphere of influence that a point has on nearby points for
each dimension. It controls how fast the correlation function drops to zero,
with lower values corresponding to a larger sphere of influence and higher
values corresponding to a smaller sphere of influence. These are found by
Maximum Likelihood Estimation (MLE), details of which can also be found in
the ooDACE toolbox’s starting guide. Optimisation of the hyperparameters is
useful, since they control the amount of variation of the model in its different
dimensions, where lower values lead to smoother variations and higher values
lead to more rapid variations.

Co-Kriging

Co-Kriging is an extension of Kriging which exploits multi-fidelity data. Es-
sentially, the co-Kriging surrogate modelling technique constructs two Kriging
models - first on the LF data and then on the residuals of the HF and LF
data. This process increases the accuracy of the model. Some experimenta-
tion was done to determine the best correlation function and it was found that
the Matérn correlation function [66] provided the best results for the example
which was tested. It is defined as

ψ(x,x′)v=3/2 = (1 +
√

3l) exp(−
√

3l) (5.51)

with

l =

√√√√ d∑
i=1

θi(xi − x′i)2. (5.52)

When multiple surrogate modelling experiments were run with the number of
HF points varying, the correlation matrix of (5.49) was often ill-conditioned,
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and thus a model could not be built. In these cases the error values are not
available. This is a disadvantage of using co-Kriging surrogate models - some
experimentation or knowledge of the system is needed to determine the best
correlation function to be used. Table 5.6 lists the names and details of the
different surrogate models which were compared.

Table 5.6: Surrogate models used in the comparison study.

Model Name Data used Details
Spline on HF HF Fits a spline using only the high-fidelity data

which is available.
Spline on LFc MF Fits a spline using the calibrated LF data

(which coincides with the available HF data).
Barycentric HF Equation (5.40).
B-Spline blended MF Equation (5.46).
rational interpolant
Kriging HF Equation (5.48) with a Gaussian correlation

function.
Co-Kriging MF Makes use of the Matérn correlation function.

The figures to follow indicates the results of comparisons of the error values
of each model, for a varying amount of HF points.
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(a) # HF τ points = 9. (b) # HF δ/α points = 4.

(c) # HF δ + α points = 10. (d) # HF θ points = 9.

Figure 5.29: Comparisons of the AEE for the models listed in Table 5.6 as a function
of the number of HF frequency points for the different geometric parameters.

Figures 5.29a) and 5.29b) indicates that the B-Spline blended rational inter-
polant performs better than all other models and Figure 5.29d) shows that the
co-Kriging interpolant performs similarly to the B-Spline blended interpolant
when the number of frequency points are equal to 22 and 24. However, for
many cases the correlation matrix of the co-Kriging model was ill-conditioned
and thus no model could be built. In figure 5.29c), it is seen that when the
number of frequency points are more than 18, the spline interpolant on the
HF data performs the best, but as the number of HF points are decreased,
the B-Spline blended interpolant performs significantly better than the spline
on HF. Since our goal is to minimise the number of HF points required for
an accurate model, in order to reduce computation time, this is a favourable
result.
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(a) # HF τ points = 9. (b) # HF δ/α points = 4.

(c) # HF δ + α points = 10. (d) # HF θ points = 9.

Figure 5.30: Comparisons of the MAX for the models listed in Table 5.6 as a function
of the number of HF frequency points for the different geometric parameters.

For the maximum errors shown in Figure 5.30, the spline interpolant on
the calibrated LF data performs comparatively well to the B-Spline blended
interpolant, except in Figure 5.30c) where it is seen that the barycentric inter-
polant performs the best for the number of HF frequency points higher than
14. This is an unexpected result, but as seen in the other figures, it is not a
consistent result. Also, when the number of HF points decrease, once again
the B-Spline blended rational interpolant performs the best. It is expected
that the B-Spline blended rational interpolant would perform better than the
spline interpolant on the calibrated LF data if the number of LF data points
were decreased, however, this was not tested.
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(a) # HF frequency points = 16. (b) # HF frequency points = 16.

(c) # HF frequency points = 10. (d) # HF frequency points = 18.

Figure 5.31: Comparisons of the AEE for the models listed in Table 5.6 as a function
of the number of HF geometry points for the different geometric parameters.

Most of the results in Figure 5.31 indicates that the B-Spline blended ratio-
nal interpolant performs the best. In figure 5.31a) it is seen that the spline in-
terpolant on the calibrated LF data exceeds the results of the B-Spline blended
rational interpolant when the number of HF τ points are less than 8. In gen-
eral though, since the underlying physical behaviour of the input impedance
is known to be well modelled with a rational function, the B-Spline blended
rational interpolant is preferred.
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(a) # HF frequency points = 16. (b) # HF frequency points = 16.

(c) # HF frequency points = 10. (d) # HF frequency points = 18.

Figure 5.32: Comparisons of the MAX for the models listed in Table 5.6 as a function
of the number of HF geometry points for the different geometric parameters.

Figure 5.32a) shows the B-Spline blended rational interpolant performing
the best in most cases and a significant benefit of this model is seen in figure
5.32c). In figure 5.32b) it is difficult to point to a model which performs the
best, however the Kriging interpolant and the spline interpolant on the HF
data is seen to have very high errors in certain cases - the specific values are
not shown, in order to still be able to see the other error values. Figure 5.32d)
show co-Kriging performing very well when the number of HF θ points are
below 6, however, once again, in most cases, this model is unreliable.
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(a) Variations in frequency and τ .
δ/α = 0.6, δ + α = 36◦ and θ = 53◦.

(b) Variations in frequency and δ/α.
τ = 0.825, δ + α = 36◦ and θ = 53◦.

(c) Variations in frequency and δ + α.
τ = 0.825, δ/α = 0.6 and θ = 53◦.

(d) Variations in frequency and θ.
τ = 0.825, δ/α = 0.6 and δ + α = 36◦.

Figure 5.33: Comparisons of the AEE for the models listed in Table 5.6 as a function
of the total number of HF points for the different geometric parameters. For clarity,
the B-Spline blended rational interpolant is indicated by the red dots, and the model
which compared the best is shown in blue, with all other models shown as black dots.

In Figure 5.33 the benefit of using the B-Spline blended rational interpolant
can clearly be seen, especially when the number of HF data points become very
few. The spline interpolant on the calibrated LF data performs very well in
Figure 5.33a), however this result is not consistent.
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(a) Variations in frequency and τ .
δ/α = 0.6, δ + α = 36◦ and θ = 53◦.

(b) Variations in frequency and δ/α.
τ = 0.825, δ + α = 36◦ and θ = 53◦.

(c) Variations in frequency and δ + α.
τ = 0.825, δ/α = 0.6 and θ = 53◦.

(d) Variations in frequency and theta.
τ = 0.825, δ/α = 0.6 and δ + α = 36◦.

Figure 5.34: Comparisons of the MAX for the models listed in Table 5.6 as a
function of the total number of HF points for the different geometric parameters.
For clarity, the B-Spline blended rational interpolant is indicated by the red dots,
and the model which compared the best is shown in blue, with all other models
shown as black dots.

Once again, the benefit of the B-Spline blended rational interpolant is
clearly seen in Figures 5.34a) and 5.34b). Note that the black dots come from
different models, thus in Figure 5.34c) there is no clear contender to the B-
Spline blended rational interpolant. In Figure 5.34d), co-Kriging is seen to
perform very well. Careful design of a co-Kriging model could be a suitable
substitute for a surrogate model of the input impedance of the pyramidal sinu-
ous antenna, however, care must be taken to ensure that the correlation matrix
does not become ill-conditioned. The simplicity and general performance of
the B-Spline blended rational interpolant leads to the conclusion that this is
the most useful model to use.
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Chapter 6

Design Examples

In this chapter, the methods that were developed in the previous two chapters
are applied to two different design examples. Firstly, the surrogate models
that were constructed are applied to a pyramidal sinuous antenna with a 5:1
bandwidth. This is done to illustrate the significant reduction in design time
that is achieved when using these methods. Secondly, a design of the 3:1
bandwidth pyramidal sinuous antenna is considered where two geometric pa-
rameters are varied simultaneously. This design utilises very few HF points
over the frequency bands of interest. The region where the worst case of the
reflection coefficient is below -10 dB is found from three-dimensional rational
interpolants. The results are compared to those from the fine model valida-
tion data. It was found that only 1.13% of the true region is not covered by
the predicted region. It was also seen that these models erroneously predict
10.77% of the domain to be in this region. A surrogate model was built for
the sensitivity of the system and the maximum sensitivity was identified from
the region of interest.

6.1 Surrogate Models of the Performance
Metrics of a 5:1 Pyramidal Sinuous
Antenna

In order to illustrate the significant speed-up that is possible when desgins are
done using the surrogate models introduced in Chapters 4 and 5, an example
was done on a pyramidal sinuous antenna with a 5:1 bandwidth, from 350 -
1750 MHz. Rational interpolants were built on the band edges, using coarse
model data from truncated antenna structures, as described in Section 3.3,
with the low frequency band from 350 - 525 MHz and the high frequency
band from 1315 - 1750 MHz. This starting value for the high frequency band
was once again chosen to simplify sampling of points on a grid for the coarse
model LF evaluations. Figure 6.1 illustrates the rational interpolants done
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in two dimensions, with variations of the geometric parameter τ ∈ [0.75, 0.9].
The number of HF and LF points that were used in each case are shown in
the figures.

(a) KH = 190,KL = 1116. (b) KH = 399,KL = 2728.

(c) KH = 190,KL = 1116. (d) KH = 399,KL = 2728.

Figure 6.1: Rational interpolants of the input impedance of a 5:1 pyramidal sinuous
antenna for variations in τ and frequency when using equations (5.46) and (5.39) on
the complex data. δ/α = 0.6, δ + α = 36◦ and θ = 53◦.

From these interpolants, the worst case of the reflection coefficient can be
evaluated. Recall that the worst case is expected to lie in the band edges for
a log-periodic antenna. Figure 6.2 shows the results against validation data
from the full fine model.
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Figure 6.2: Worst case of the reflection coefficient for variations in τ determined
from the rational approximants of Figure 6.1.

The error values for the above results are listed in Table 6.1.

Table 6.1: Error values for the rational interpolation model of a 5:1 pyramidal
sinuous antenna.

Performance metric AEE MAX

Input impedance 15.2 133.3
Reflection coefficient 0.332 1.57

The sensitivity surrogate model described as Model 3 in Section 4.2 was
then applied to this 5:1 example for variations in τ , where the radiation pat-
terns of the truncated antenna structures are used in the simplified equation
(4.12) to generate the coarse sensitivity model. The radiation pattern of the
full antenna structure is evaluated at three points for τ and the sensitivity is
evaluated at these points using the main reflector masking technique described
in Section 2.4. A surrogate is constructed by fitting a second-order polynomial
regression term to the difference between coarse and fine model evaluations at
these points. The objective function U (a) is used. Figure 6.3 shows the results
from this procedure, with error values listed in Table 6.2.
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Figure 6.3: Sensitivity surrogate for Model 3a) with variations in τ .

Table 6.2: Error values for the sensitivity surrogate model of a 5:1 pyramidal
sinuous antenna.

Performance metric AEE MAX

Sensitivity 0.622 2.04

Unfortunately, there are some outliers in the sensitivity surrogate model
which are seen not to follow the trend of the fine validation data. Searching
for the optimal sensitivity point in the region where the reflection coefficient
is -10 dB would lead to one of these outliers being chosen, as it lies above
the general trend of the sensitivity model. Once this point is chosen, upon
validating the design and seeing that it is largely erroneous, this point can be
used as an additional fine model data point, so that the design can be updated
and improved.

Table 6.3 lists the time required to build the above models. Specifically, the
time that would be required to build the full fine model for each performance
metric, namely sensitivity and the reflection coefficient, is compared to the
time that was required to build the respective surrogate models. Note that
the time is listed in days.
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Table 6.3: CPU time required for the different models for of a 5:1 pyramidal
sinuous antenna.

Model CPU time [Days]

Fine sensitivity model 166.6
Surrogate sensitivity model (Model 3) 29.8
Fine S11 model 654.5
Rational interpolants used to find the S11 22.8

A total speed up factor of 15.6 is achieved when making use of the surrogate
models as opposed to evaluating the full fine models in each case. This is a
significant reduction in design time. If, after finding an optimal design from
these models, the errors in the results are seen to be too large, the design
can be redone to include more fine model evaluations, leading to increased
accuracy.

6.2 Multi-Objective Optimisation of a 3:1
Pyramidal Sinuous Antenna

Ideally, the surrogate models that were introduced should be applied to find
an optimal design of the pyramidal sinuous antenna over all variations of the
geometric input parameters, i.e. for x = [τ, δ/α, δ+α, θ]. However, since eval-
uation of the the input impedance with a rational interpolant which makes use
of B-Spline blending functions requires evaluation of the coarse model struc-
ture on a grid of input parameters, the number of evaluations that are required
as the dimensions are increased, rapidly grows. Due to time constraints, it was
not possible to evaluate the design space over all parameters. An example was
considered in three dimensions, with x = [τ, δ/α] where δ + α = 36◦ and
θ = 53◦ for the same 3:1 bandwidth as in Chapter 5, i.e. from 350 - 1050
MHz, with the low band coarse model from 350 - 525 MHz and the high band
coarse model from 790 - 1050 MHz. The grid that was evaluated is listed in
Table 6.4, with τ ∈ [0.75, 0.9] and δ/α ∈ [0.4, 0.8]. As it is known that ratio-
nal interpolants are well-suited to modelling the output behaviour of antenna
structures as a function of frequency, it was possible to use very few HF points
over the frequency domains. On the other hand, a relatively high value of HF
points were required over the domains of the geometric parameters.

Table 6.4: Grid on which interpolants are built in three dimensions.

x1 x2 x3 m1 m2 m3 KH KL

τ δ/α Frequency ∈ [350, 525] (MHz) 22 22 5 2420 60516
τ δ/α Frequency ∈ [790, 1050] (MHz) 22 22 5 2420 89093

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 6. DESIGN EXAMPLES 98

The error values for these models are listed in Table 6.5. The maximum
error value for the worst case of the reflection coefficient is seen to be quite
high. Increasing the number of HF points reduced the average error, but the
maximum error remained high. A trade-off exists between the error values
and the design time. Figure 6.4 illustrates the absolute errors between the
validation data and the predicted reflection coefficients from these rational
interpolation models. It is seen that the error values are mostly below 2 dB
over the domain of interest, so this design was deemed to be acceptable.

Table 6.5: Error values from the rational interpolation models built on the
grid in Table 6.4.

Performance metric AEE MAX

Input impedance 17.2 202.8
Reflection coefficient 0.436 2.92

Figure 6.4: Worst case of the reflection coefficient for variations in τ and δ/α

determined from the rational approximants.
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Figure 6.5: Error values for the worst case of the reflection coefficient for variations
in τ and δ/α.

Since the design objective in this case is to maintain a reflection coefficient
below -10 dB over the entire band, Figure 6.6 shows where the areas where the
reflection coefficient is predicted to be less than -10 dB when using these ratio-
nal interpolation models, as opposed to the area where this is truly the case,
found from a set of fine model validation data. Table 6.6 lists the percentage
of the areas that are below -10 dB in each case.

(a) Predicted region. (b) True region.

Figure 6.6: Regions where the worst case of the reflection coefficient for variations
in τ and δ/α are less than -10 dB.
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Table 6.6: Percentage of the area that has a reflection coefficient less than -10
dB.

Area

Prediction from rational interpolants 33.4%
True evaluation 23.7%

Figure 6.7 illustrates the two areas shown in Figure 6.6 superimposed on
each other. It was found that the predicted region nearly encompasses the
true region, with only 1.13% of the true region not contained in the predicted
region, thus this method includes 98.87% of the viable choices for this design.

Figure 6.7: Comparison of regions where the worst case of the reflection coefficient
for variations in τ and δ/α are less than -10 dB. The orange region indicates the true
region below -10 dB and the red region indicates where the prediction is below -10
dB. The white areas are where the true region is below -10 dB, but the predicted
value is not.

Since the predicted area is larger than the true area, this method may
lead to an erroneous design. The method erroneously predicts 10.77% of the
domain to be below -10 dB, leading to a total error in the overall prediction
of 11.9%. If a faulty design is arrived at, the validation data found from the
design must be used as an additional HF point in an attempt to improve the
rational interpolant. This process can be repeated until an adequate design is
arrived at.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 6. DESIGN EXAMPLES 101

A sensitivity surrogate model was also built for this domain using Model 3
as described in Section 4.2 with objective function U (a). The results are shown
in Figure 6.8 with error values listed in Table 6.7.

Figure 6.8: Sensitivity surrogate for Model 3a) with variations in τ and δ/α. Fine
model validation data is indicated by black dots, coarse model data is indicated
by stars and the training set for the regression term is shown encircled over a star
distribution. The coloured surface indicates the surrogate model.

Table 6.7: Error values for the sensitivity surrogate models for variations in τ
and δ/α.

Performance metric AEE MAX

Sensitivity 0.346 2.93

From the above surrogate models, the maximum sensitivity value in the
region where the reflection coefficient is predicted to be below -10 dB was
found to be an average of 3.651 m2/K at τ = 0.87375, δ/α = 0.63, δ+ α = 36◦

and θ = 53◦. A full wave solution of the fine model structure revealed that
this antenna structure’s reflection coefficient is indeed below -10 dB over the
entire band, as shown in Figure 6.9.
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Figure 6.9: Reflection coefficient of the optimal design. τ = 0.87375, δ/α = 0.63, δ+

α = 36◦ and θ = 53◦.

The reflection coefficient can be renormalised to an optimal input impedance.
The results of doing this is shown in Figure 6.10. The optimal input impedance
was found to be 237 Ω. This makes the reflection coefficient less than -10.52
dB over the entire band.
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Figure 6.10: Reflection coefficient of the optimal design when renormalised to an
input impedance of 237 Ω. τ = 0.87375, δ/α = 0.63, δ + α = 36◦ and θ = 53◦.

The sensitivity of the antenna was validated and is shown in Figure 6.11
with the average sensitivity over the band equal to 3.7139 m2/K, which exceeds
the predicted value of 3.651 m2/K.
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Figure 6.11: Sensitivity as a function of frequency for the optimal design.
τ = 0.87375, δ/α = 0.63, δ + α = 36◦ and θ = 53◦. The average sensitivity is
3.7139 m2/K.
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Chapter 7

Conclusion and Further
Recommendations

In this thesis the design of a pyramidal sinuous antenna for use as a feed in
a reflector antenna system, such as the SKA, was considered. The focus was
on creating accurate and efficient surrogate modelling techniques that are able
to model the sensitivity as well as the reflection coefficient of the antenna
structure. For this purpose, coarse models of the structure are required that
are faster to evaluate than conventional full wave electromagnetic solver tech-
niques. These coarse models contain inaccuracies, but it provides information
about the performance of the antenna. Since the pyramidal sinuous antenna
belongs to the class of log-periodic antennas, truncated models of the antenna
structure that operate at the band edges of the full fine model are well-suited
for this purpose. These structures are electromagnetically smaller than the
fine model. Additionally, the operating bandwidth is reduced, leading to a
significant speed-up in the simulation time of these structures.

An approximation of the noise temperature model of the system that makes
use of a main reflector masking technique was used. The idea here is to re-
move the main reflector from the calculation domain, leading to a reduced
electromagnetic size of the system and a consequent reduction in evaluation
time. This method was used in the fine model of the sensitivity calculation.
For the coarse model of the sensitivity calculation, the radiation patterns from
the truncated antenna structures were used in an approximate equation of the
efficiency of the system, which derives from the geometrical optics technique
(equation (4.13)), along with a noise temperature equation that is dependent
only on frequency (equation (4.14)). Thus there is no need to do a simulation
of the dishes in GRASP. A surrogate model was then found from a simple
output space mapping technique, where a corrective second-order polynomial
regression term is applied to the differences between the fine and coarse model
data points, with the fine model data points sampled over a star distribution.
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Rational interpolation was used to model the input impedance of the pyramidal
sinuous antenna, from which the reflection coefficient is calculated. Rational
interpolants that make use of high-fidelity data only (acquired from the fine
model structure) was considered first. As the number of these evaluations need
to be minimised, in order to improve the accuracy of the models, multi-fidelity
data was subsequently utilised. A weighted barycentric rational interpolant,
which solves the weights by following the low-fidelity data (acquired from the
coarse model structures) in a least squares sense was considered. To ensure
that all interpolation points are attainable, it is necessary to have pole-free ra-
tional interpolation models. The condition which guarantees a pole-free region
was seen to restrict the barycentric weights too much to be able to give useful
results. A method was then constructed which makes use of Bèzier curves
as local models that follow the trend of the LF data in the interval between
each consecutive high-fidelity data points. These local models are then blended
into a global rational interpolant by making use of quadratic B-spline blending
functions. These interpolants were seen to perform well in one dimension. It
was then extended to multiple dimensions, with examples in two dimensions
where one dimension is a geometric parameter and the other is frequency. Us-
ing relatively few HF points, it was possible to predict the worst case of the
reflection coefficient over the bandwidth of interest for each geometric param-
eter variation, with average error values below 0.42 dB in each case.

An in-depth study was done which compares the accuracy of this rational
B-spline blending interpolation method to other well-known methods. Three
models which make use of HF data points only were considered, namely
spline interpolants, the barycentric rational interpolant and Kriging. Com-
parisons were made with multi-fidelity data models of spline interpolants and
co-Kriging. The results from this study showed that the blended rational
B-spline interpolant performed better than the other methods overall. Its sim-
plicity also makes this model attractive.

An example of a 5:1 bandwidth design was shown in order to illustrate the
significant speed-up that can be achieved using the surrogate models suggested
in this thesis. A speed-up factor close to 16 was observed.

An optimisation example was shown where two of the geometric parameters
were varied simultaneously - requiring a three-dimensional rational interpolant
for the variation in frequency to be included. A good prediction of the region
where the reflection coefficient is below -10 dB was found, with a total er-
ror of 11.9% over the domain. This was achieved by using only 5 HF points
over each frequency band edge for every variation of the geometric parame-
ters. From this predicted region, the geometric parameters of the antenna that
led to the maximum average sensitivity value was identified as 3.651 m2/K at
τ = 0.87375, δ/α = 0.63, δ+α = 36◦ and θ = 53◦. Validation of the sensitivity
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at this point showed the average sensitivity to be equal to 3.7139 m2/K and
the reflection coefficient was seen to be below -10.52 dB over the entire band.

Thus, in conclusion, the blended rational B-spline interpolation method looks
promising, especially for predictions of antenna outputs as a function of fre-
quency. A disadvantage of this method is that it requires the coarse model
to be evaluated over a grid. As the dimensions of the domain increase, the
number of evaluations that are required for accurate predictions increases expo-
nentially, making the use of this model unattractive. A variant of this method
that uses local models that do not require a grid of samples, as opposed to the
local Bèzier curve models, could be explored in order to overcome this lim-
itation. Additionally, an adaptive sampling technique that efficiently selects
the position of the HF data points over the domain of interest could lead to
improved accuracy of the model using fewer HF points. Since this method de-
pends on the reliability of the coarse model data, it is important for the coarse
model to be based on the physics of the problem. The truncated coarse model
antenna structures are well-suited for modelling the behaviour of log-periodic
structures in general, thus this interpolation method could easily be applied
to other wideband log-periodic antenna structures.

As was discussed, rational interpolation functions are well-suited to model
antenna behaviour in the frequency domain, so it is recommended to use as
little as possible HF points over the frequency ranges of interest, while sup-
plementing the method with more HF points in the domains of the geometric
parameters. Furthermore, it is expected that this method would be able to
accurately predict the output of other frequency-dependent performance met-
rics of the antenna, in addition to the input impedance.

A useful expansion of this work would be to include a realistic feed network to
the antenna structure. In a concurrent study, it was seen that adding a feed
network to the structure significantly complicates the design. Therefore, a sim-
plified approach would be to optimise the structure of the pyramidal sinuous
antenna first and then do a separate optimisation to find an appropriate feed-
ing network. A large study would be required to properly explore this problem.

Lastly, if it is required that the antenna be optimised for additional perfor-
mance metrics, then a formal multi-objective optimisation approach would be
beneficial.
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Appendix A

Results for Sensitivity Models

Results for the objective functions U (b) and U (c) of Chapter 4 are given below.

A.1 Model 1

(a) Variations in τ . (b) Variations in δ/α.

(c) Variations in δ + α. (d) Variations in θ.

Figure A.1: Sensitivity surrogates for Model 1 of the objective function U (b).
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(a) Variations in τ . (b) Variations in δ/α.

(c) Variations in δ + α. (d) Variations in θ.

Figure A.2: Sensitivity surrogates for Model 1 of the objective function U (c).

Table A.1: Percentage errors for Model 1.

Model Parameter ARE [%] MRE [%]

b) τ 1.46 3.50
δ/α 0.18 1.53
δ + α 0.53 1.24
θ 0.17 0.56

c) τ 2.54 6.03
δ/α 0.45 1.27
δ + α 1.83 5.29
θ 0.31 0.73
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A.2 Model 2

(a) Variations in τ . (b) Variations in δ/α.

(c) Variations in δ + α. (d) Variations in θ.

Figure A.3: Sensitivity surrogates for Model 2 of the objective function U (b).
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(a) Variations in τ . (b) Variations in δ/α.

(c) Variations in δ + α. (d) Variations in θ.

Figure A.4: Sensitivity surrogates for Model 2 of the objective function U (c).

Table A.2: Percentage errors for Model 2.

Model Parameter ARE [%] MRE [%]

b) τ 0.91 2.33
δ/α 0.23 0.62
δ + α 1.02 1.80
θ 0.27 0.75

c) τ 1.33 3.59
δ/α 1.08 2.78
δ + α 4.32 14.15
θ 1.25 2.25
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A.3 Model 3

(a) Variations in τ . (b) Variations in δ/α.

(c) Variations in δ + α. (d) Variations in θ.

Figure A.5: Sensitivity surrogates for Model 3 of the objective function U (b).
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(a) Variations in τ . (b) Variations in δ/α.

(c) Variations in δ + α. (d) Variations in θ.

Figure A.6: Sensitivity surrogates for Model 3 of the objective function U (c).

Table A.3: Percentage errors for Model 3.

Model Parameter ARE [%] MRE [%]

b) τ 1.36 3.94
δ/α 0.28 1.28
δ + α 1.35 2.45
θ 0.29 0.88

c) τ 1.25 6.16
δ/α 1.09 5.22
δ + α 3.92 12.63
θ 0.76 2.21
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