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ABSTRACT

This study investigates the implementation of the finite volume numerical

method applicable to non-orthogonal control volumes and the application of

the method to calculate the thermo-flow field within the collector area of a

solar chimney power generating plant. The discretisation of the governing

equations for the transient, Newtonian, incompressible and turbulent fluid

flow, including heat transfer, is presented for a non-orthogonal coordinate

frame. The standard k - E turbulence model, modified to include rough

surfaces, is included and evaluated in the method.

An implicit solution procedure (SIP-semi implicit procedure) as an alternative

to a direct solution procedure for the calculation of the flow field on non-

staggered grids is investigated, presented and evaluated in this study. The

Rhie and Chow interpolation practice was employed with the pressure-

correction equation to eliminate the presence of pressure oscillations on non-

staggered grids.

The computer code for the solution of the three-dimensional thermo-flow

fields is developed in FORTRAN 77. The code is evaluated against simple

test cases for which analytical and experimental results exist. It is also

applied to the analysis of the thermo-flow field of the air flow through a

radial solar collector.

KEYWORDS:

NUMERICAL METHOD, FINITE VOLUME, NON-ORTHOGONAL, k+-e

TURBULENCE MODEL, SIP
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OPSOMMING

Die studie ondersoek die implementering van 'n eindige volume numeriese

metode van toepassing op nie-ortogonale kontrole volumes asook die

toepassing van die metode om die termo-vloei veld binne die kollekteerder

area van 'n sonskoorsteen krag aanleg te bereken. Die diskretisering van die

behoudsvergelykings vir die tyd-afhanlike, Newtonse, onsamedrukbare en

turbulente vloei, insluitende hitteoordrag, word beskryf vir 'n nie-ortogonale

koordinaatstelsel. Die standaard k - E turbulensiemodel, aangepas om growwe

oppervlakrandvoorwaardes te hanteer, is ingesluit en geevalueer in die studie.

'n Implisiete oplossings metode (SIP-semi implisiete prosedure) as alternatief

vir 'n direkte oplossingsmetode is ondersoek en geimplimenteer vir die

berekening van die vloeiveld met nie-verspringde roosters. 'n Rhie en Chow

interpolasie metode is gebruik tesame met die drukkorreksie-vergelyking ten

einde ossilasies in die drukveld in die nie-verspringde roosters te vermy.

Die rekenaarkode vir die oplossing van die drie dimensionele termo-vloeiveld

is ontwikkel in FORTRAN 77. Die kode is geevalueer teen eenvoudige

toetsprobleme waarvoor analitiese en eksperimentele resultate bestaan. Die

kode IS ook gebruik om die termo-vloeiveld binne 'n radiale son

kollekteerder te analiseer.

SLEUTELWOORDE:

NUMERIESE METODE, EINDIGE VOLUME, NIE-ORTOGONAAL, k - E

TURBULENSIE MODEL, SIP
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1. INTRODUCTION.

1.1 The Numerical Modeling Field.

The numerical analysis of fluid dynamics and heat transfer mechanisms associated with fluid

flows forms an integral part of the modem study of fluids. This field of research, also known

as Computational Fluid Dynamics (CFD), contributes to our understanding of the phenomena

and interactions involved by providing field solutions of the properties of fluid flow in the

flow domain. The analytical approach to solve fluid dynamic fields usually requires

simplifications and assumptions regarding the properties of the flow and its behaviour and

interaction with domain boundaries. Although this often leads to accurate predictions and

valuable engineering insights into many problems, it becomes mathematically challenging to

obtain results for problems in complex domains and where detailed visualization is required

of the fluid flow and the heat transfer mechanisms at work.

CFD provides field solutions for complex computational domains and enables a more detailed

evaluation of the field behaviour if required. This is only possible by numerically solving the

governing equations in the computational domain. Furthermore, the numerical modeling is

neither a more expensive nor a more time consuming alternative as compared to experimental

work. It is by no means a tool to replace experimental or analytical work but rather a method

to complement the existing research in fluid dynamics and heat transfer.

The present study implements a general three-dimensional non-orthogonal finite volume

numerical method in a FORTRAN 77 computer code to solve fluid dynamic and heat transfer

problems. This code is similar to software codes found in various commercially available

CFD software. The performance of the present code is evaluated against simple test cases and

also applied to a typical large scale solar collector such as the collector found in solar

chimney technology. The numerical modeling of a solar collector is intended to complement

the concurrent analytical and experimental research being done on solar chimney technology.

1.1
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1.2 Numerical Analysis of Solar Collector.

The solar chimney power generating principle is currently under investigation as a potential

economical and renewable energy source. A typical solar chimney power generating plant is

depicted in Figure 1.1. It consists of mainly three components namely a solar collector and a

central chimney with a turbo-generator at its base. The solar collector consists of a circular

glass cover supported above the ground surface. The glass cover allows solar radiation to pass

through and to be absorbed in the ground. This absorbed solar energy leads to an increase in

the soil temperature which in turn results in the heating of the surrounding air through

convection. The change in air temperature near the bottom surface results in an upward

buoyancy force in the air due to a density gradient in the air. Air rises as a result of this

buoyancy force generating a draft of air from the outer perimeter of the glass collector,

through the collector area and up the chimney.

Hot air out

Turbine
Cold outside
alf In

~-------------

Ground

Figure 1.1. The solar chimney power plant

/ Chimney

Solar radiation

I rCollector glass roof

------~------.~

Essentially the principle can be simplified as illustrated by Von Backstrom (1999). Two

columns of air, one representing the outside air and the other representing the air inside the

chimney, are connected by a channel represented by the collector. A difference in density

1.2
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exists between the two columns due to temperature differences of the fluid contained in the

two columns: the fluid contained in the column of outside air being colder and therefore more

dense. This density difference manifests itself as an available potential head pressure driving

the flow between the two columns and along the channel or collector. By placing a turbine in

the channel, one may capitalise on this available pressure difference to generate power,

similar to a hydro-power plant. It is evident that the performance of the plant as a power

generating mechanism depends on the performance and power output of the turbine which in

turn relies upon the efficiency of the collector and chimney or in other words, its capability to

transform solar energy into a draft of heated air. Typical dimensions proposed for a large

scale solar chimney power plant includes a collector diameter of 4000 meters, raised 10

meters above the ground, a chimney diameter of 160 meters and a chimney height of more

than 1000 meters.

The present study focuses on establishing a general numerical model and CFD code and the

application of this code to solve the thermo-flow field in a solar collector. It is meant to

provide insights into the complexity of numerical modeling, in particular the modeling of the

thermal behaviour of a solar collector of the dimensions envisaged.

1.3 Contents of the Thesis

In the following chapter (Chapter 2) the goverrung equations related to the numerical

modeling of fluid flows and heat transfer are discussed. It also presents the forms of these

equations which lend themselves to the finite volume numerical method.

In Chapter 3 the finite volume discretization scheme employed is presented as well as the

interpolation practices associated with this procedure. This study is meant to result in the

generation of a general computational fluid dynamics code which can be applied and extended

to model various fluid dynamic phenomena.

Chapter 4 contains the solution algorithm employed as well as an explanation of the strongly

implicit iterative solver (SIP) employed to solve the sets of non-linear governing equations.

l.3
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In Chapter 5 various grid dependent parameters and geometrical calculations are explained.

The chapter also contains the description of the formulation of the code in a general non-

orthogonal coordinate frame. This formulation assists the future extension of the code to other

problems within more complex fluid domains.

Chapter 6 deals with the verification of the results found by applying the code to simple

problems for which analytical, experimental or other numerical results are available. Each

verification problem contains the key mechanisms incorporated in the code which need to be

evaluated i.e., such as the modeling of turbulence and the prediction of the thermal and

hydrodynamic boundary layer development.

Chapter 7 gives a more detailed description of the operating principles of the solar chimney.

The application of the code to the solar collector model is discussed and the results from the

field solution presented and evaluated.

In Chapter 8 the structure and contents of the general CFD code are presented and discussed.

Chapter 9 provides a conclusion to the present study as well as recommendations for future

research.

1.4
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2. GOVERNING DIFFERENTIAL EQUATIONS

2.1 The Basic Concepts of Fluid Flow

The basis for the understanding of the behaviour of fluid flow and its interaction with its

surroundings is rooted in the assumption that it is a continuous medium. An Eulerian

description of the continuum is followed in this study i.e. one where the attention is focused

on the velocity field in a control volume rather than the displacement of the control volume in

space, Frederick and Chang (1972). This Eulerian approach complements the finite volume

method followed in this study.

Three-dimensional, incompressible, VISCOUS fluid flow, characterised by the three basic

conservation equations, is considered. These conservation equations are:

conservation of mass (continuity equations),

conservation of momentum (Newton's second law) and

conservation of energy (first law of thermodynamics).

Other important auxiliary relations describe the properties of the continuum such as density,

viscosity, conductivity and enthalpy. Lastly, equations for turbulent kinetic energy and

turbulent dissipation allow for the investigation of the turbulent behaviour of the fluid.

2.2 Conservation of Mass

The differential coordinate free form of the continuity equation for compressible, transient

fluid motion is

ap -( -)at+Y' pV =0 (2. 1)

For incompressible flow the equation becomes

- -Y'·V=O (2.2)

2.1
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Although the flow considered may be assumed incompressible, equation (2.1) is employed in

this study to allow for variable density due to changes in temperature.

2.3 Conservation of Momentum

The three-dimensional momentum conservation or Navier Stokes equations for a general,

incompressible and Newtonian fluid are derived from Newton's second law which expresses

the proportionality between a force applied to a particle and the resulting acceleration of that

particle. In a Cartesian coordinate frame these equations for transient fluid flows, as presented

by White (1991), are,

x-mornentum conservation equation:

au au au au
p- + pu- + pv- + pw- =

Ot ax Oy êz

_ Op + _Q_ (2f.l Ou) + _Q_ [f.l( Ou + av)] + _Q_ [f.l( Ow + Ou)] + pgax ax ax Oy Oy ax oz ax oz x

(2.3)

y-momentum conservation equation:

av av av av
p-+pu-+pv-+pw-=

Ot ax Oy oz
(2.4)

z-mornentum conservation equation:

Ow Ow Ow Ow
p-+pu-+pv-+pw-=

Ot ax Oy Oz

_ Op + _Q_ [f.l( Ow + au)] + _Q_ [f.l( av + Ow)] + _Q_ (2f.l Ow) + pgozax ax oz Oy oz Oy oz oz z

(2.5)
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The treatment of these Cartesian equations in a global coordinate free frame with non-

orthogonal grids is discussed in chapter 5. These equations can be presented in the more

convenient conservative form by employing the continuity equation

(2.6)

~(pv) + ~(puv) + ~(pvv) + ~(pwv) _ ~(Il av) _~(Il av) _~(Il av) =
Ot Ox By Ox Ox Ox By By 8z 8z

_ ap +~(Il au) +~(Il av) +~(Il aw) + pg
By Ox By By By 8z By Y

(2.7)

8 8 8 8 8 (aw) 8 (aw) 8 ( aw)-(pw)+-(puw)+-(pvw)+-(pww)_- Il- _- Il- _- Il- =
Ot Ox By Ox Ox Ox By By 8z 8z

(2.8)
_ ap +~(Il au) +~(Il av) +~(Il aw) + pgz
8z Ox 8z By 8z 8z 8z

The terms on the left hand side of the momentum equations represents the time dependent

velocity differential, the differentials of convection of momentum, normal and perpendicular

to the flow direction, as well as the differentials of diffusion of momentum through normal

stresses and Newtonian shear stresses. The terms on the right hand side represent the pressure

gradient, additional differentials of normal stresses due to viscosity variations as well as other

momentum sources. The velocity differentials present can be grouped in a viscous stress

tensor defined as the product of the viscosity and a strain rate tensor. This grouping of

differentials will be discussed later in this chapter in the context of turbulence modeling. An

additional body force term such as that due to buoyancy effects is also included on the right

hand side of these momentum equations.
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The conservative form of the equations allows the rewriting of equations (2.6) to (2.8) as

~(pw) + V .(pVw) - V. (~Vw) = _ ap + ~(~ au) + ~(~ av) + ~(~ Ow) + pgz (2. Il)
Ot 8z ax. 8z 8y 8z 8z 8z

or in a general form

!(p~) + V· j(~)= S(~) (2. 12)

(2. 13)

where j is a flux vector with convection and diffusion parts, ~ being the transported scalar

and I' being the diffusion constant.

This general form of equation (2.12) simplifies the discretization of the equations since the

flux vector terms will contribute to the influence coefficients of the discretized equation while

all other terms are classified as source terms and will be treated as explicit scalars.

2.4 Conservation of Energy

The energy conservation equation derived from the first law of thermodynamics and as

presented by Rohsenow, Hartnett and Ganic (1985) is
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DT Dp - ( - ) '"pCp - + pT - = V· kVT + <1> + q
Dt Dt

(2. 14)

D a --
where - = - +V .V denotes the substantial derivative, <1> is a viscous dissipation function

Dt at

and q is an energy source term. For incompressible flows with variable density from

temperature changes, negligible transient pressure changes and in the absence of any energy

sources such as radiation, equation (2.14) simplifies to

(2. 15)

with the dissipation function being

(2. 16)

Considering continuity it is clear that the second group of terms in square brackets in equation

(2.16) will disappear for incompressible flows.

2.5 Auxiliary Equations

The previous mass, momentum and energy conservation equations constitute primary and

secondary variables. Primary variables are properties of the flow namely velocity (u, v

and w), pressure (p) and temperature (T). Secondary variables constitute fluid properties such

as density, viscosity and conductivity to be found from auxiliary relations of the form

p = P(p,T)
Il = Il(P, T)

k = k(p, T)

(2. 17)
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2.6 Turbulence

2.6.1 Background

Turbulent fluid motion is characterized by fluctuations of field quantities, such as pressure,

velocity and temperature, superimposed upon mean quantities, as well as the presence of

eddies of variable size. The eddies present in the shear layer move in three-dimensional

directions causing the rapid diffusion of mass, momentum and energy and leading to the

increase in mixing and heat transfer associated with turbulent flows.

The presence of turbulence in fluid flows may prove advantageous where increased mixing

and heat transfer is required but these mixing forces also contribute to an increase in the

frictional forces with subsequent increase in pressure drop. Thus, turbulent modeling is an

important aspect of understanding and solving engineering problems. Ferziger and Perié

(1996) list a number of categories for predicting phenomena of turbulent fluid flows including

empirical correlations, correlations derived from integral analysis, time averaging of the

conservation equations, large eddy simulation (LES) and direct numerical simulation (DNS).

Our present understanding of turbulent motion leads us to the assumption that the Navier-

Stokes equations include the momentum conservation of turbulent flows. The present study

employs time averaging of the momentum conservation equations with a two equation, k - E

turbulence model since it eliminates the need for supercomputing resources (DNS) and, as

mentioned by Mohammadi and Pironneau (1994), presents a good compromise between

simplicity and generality. The two equation turbulence models are usually found to be

accurate for high Reynolds number flows and when they are not applied to predict near wall

flows, Sarkar and So (1997), So, Zhang and Speziale (1991). However, the presentk - E

turbulence model, applied to large Reynolds numbers such as evaluated in this study, was

found to be accurate and compares well with experimental results as well as with direct

numerical simulation results, Henkes (1998).
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2.6.2 Reynolds averaged Navier-Stokes (RANS) equations

Reynolds introduced averaging concepts for turbulent flows of which three are most pertinent

to turbulent flows namely, the time average, the spatial average and the ensemble

average, Wilcox (1994). For the purpose of this discussion we refer only to the time average.

An instantaneous value of the general transported property $(Xi' t) can be written as the sum

of a mean and a fluctuating part

(2. 18)

The mean component in equation (2.18) is the time average of the transported scalar defined

by

(2. 19)

where the time averaging interval T, is large compared to the time scale of the fluctuations.

It can be shown that the time average of the mean scalar value is the same as the time-

averaged value leading to the conclusion that the time average of the fluctuating part is zero

(2.20)

For the purpose of time averaging the conservation equations, we need to consider the time

average of two properties such as u$. Since the product of a mean quantity and a fluctuating

quantity has zero mean we can write this as

u$ = (IT+ u')($ + $') = IT$+ IT$'+ $u' + u'$' = IT~+ u'$' (2. 21)
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The last term in equation (2.21) is zero when the terms are said to be uncorrellated and since

this is rarely the case, additional terms present themselves in the conservation equations.

By replacing the instantaneous variables in the continuity, conservation of momentum and

general scalar transport equations by a mean variable quantity with a fluctuating part, one

finds the Reynolds-averaged conservation equations which are similar to the equations for the

instantaneous velocity except for additional Reynolds stress terms. These equations for

incompressible flow in a Cartesian coordinate frame can subsequently be given as

- -
V·V=O (2.22)

(2.23)

(2.24)

8 ( ) - ( .z: ) - ( -) ap 8 (ou) 8 (av) 8 ( ow)- pw +V· pVw -v· j.lVw=--+- j.l- +- j.l- +- j.l- +
at 8z ax 8z ay 8z 8z 8z

+(! (- pw'u')+ ~ (-pw'v')+ !(-PW'W')) - pg, (2.25)

The additional terms are dependent on factors such as fluid properties, flow conditions,

geometry, roughness and upstream history of the flow, all complicating our modeling since

their solution is not known a priori. The basis for the k - E turbulence model is the
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Boussinesq eddy-viscosity approximation of the Reynolds stress tensor as the product of an

eddy viscosity Jlt and the mean strain rate tensor.

From the mixing length hypothesis of Prandtl (1925), as presented by Wilcox (1994), the

specific turbulent kinetic energy (per unit mass) of the turbulent fluctuations may be used as

basis for the velocity scale for turbulence i.e.

(2.26)

Equation (2.26) may be rewritten as

2pk = pu'u' + pv'v' + pw'w' (2.27)

Following a Boussinesq approximation the Reynolds stress terms in equations (2.23) to (2.25)

are written as a gradient diffusion or shear term, analogous to the laminar diffusion gradient,

and the Reynolds stress tensor becomes, as given by Wilcox (1994) and presented in tensor

notation for economy

2
"t .. = -pu'u' = 2tl S - -pk8

IJ I J rt IJ 3 IJ
(2.28)

where the mean strain rate tensor is given as

1 (au; aUj]S=- -+-
IJ 2 ax ax

J I

(2.29)

and where the presence of the second term in equation (2.28) ensures that the condition of

equation (2.27) is met. Since one has found substitutions for the Reynolds stress terms in

equations (2.23) to (2.25) in terms of eddy viscosity and turbulent kinetic energy one finds,

after some algebra, that the original form of the conservation equations, equations (2.9) to

2.9

Stellenbosch University http://scholar.sun.ac.za



(2.11), remams generally unchanged except for the substitution of the viscosity with an

effective viscosity defined as

(2.30)

The resultant solution of the pressure field now contains an additional contribution evident

from the pressure gradient in the primary source term given by

(2. 31)

The conservation equations can therefore be solved once a relation for the eddy viscosity and

specific turbulent kinetic energy is established. A dimensional argument indicates that the

eddy viscosity is proportional to the kinetic energy and a length scale,

(2.32)

Since we now have additional variables we require additional equations which can be found

from taking moments of the Navier-Stokes equations i.e. multiplying the conservation

equation by a fluctuating property and time averaging the result. Substituting the resulting

double velocity fluctuations with equation (2.28) and assuming that

1---- ~ak"2pu;u;uj +p'uj =- cr: 8x
j

(2.33)

where crk is a turbulent Prandtl number close to unity, one finds after considerable algebra as

presented by Wilcox (1994) and explained by Thiart (1998)

(2.34)
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The rate of production of turbulent energy Pk, or the rate at which kinetic energy is transferred

from the mean flow to turbulence, is given by

(2. 35)

The rate of dissipation E, can be found from solving

(2.36)

and introducing the turbulent Prandtl/Schmidt number

(2. 37)

From a dimensional argument the eddy viscosity equals

k2
Il = pC -

t J.I E
(2.38)

After the solution of the discretized momentum conservation and pressure correction

equations, the k and E nodal values are found from the solution of equations (2.34) and

(2.36). The momentum and pressure correction equations are solved with previous iteration

values of effective viscosity calculated from k and E. The five parameters encountered in the

k - E equations are given commonly accepted values namely

cr~ = 1.3 (2.39)
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To ensure that k and E remain positive during the solution one can simply linearise the source

terms in equations (2.34) and (2.36) as follows

(2.40)

and

(2. 41)

where the terms in brackets on the right hand side of equations (2.40) and (2.41) are added to

the implicit nodal influence coefficient in the discretised equation as discussed in chapter 3.

The boundary conditions for the k - E turbulence model require careful consideration. For

high Reynolds numbers as expected for the flows considered in this study, the viscous

sublayer of the boundary layer is extremely thin requiring many grid points to resolve. One

may employ wall functions to approximate the logarithmic region of the turbulent velocity

profile defined as

(2.42)

where u, is the mean velocity parallel to the wall, u, ~~ is the shear velocity, '. is the

shear stress at the wall, K ~ 0.41 is the Von Karman constant, B ~ 5.2 is an empirical constant

and n + = uS W is the dimensionless distance from the wall. By assuming that the rate of
v

dissipation of turbulent kinetic energy equals the rate of production at the first node from the

wall one may find the boundary conditions for the turbulence quantities. Furthermore it is

au
assumed that all the mean velocity gradients, except for a: ,are zero at the wall (On being

the normal distance from the wall). It can be shown that these assumptions lead to
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(
OU)2 2 4w 't W UT

Pk = PE w = Il t an = -L- = C k2 PE w
~t Jl W

(2.43)

by employing a simplification of the Boussinesq approximation of equation (2.28) at the wall

i.e.

(2.44)

Rewriting equation (2.43) one finds

(2.45)

Furthermore, by differentiating equation (2.42) in terms of normal distance from the wall (n),

the velocity gradient at and normal to the wall may be defined as

On Kil
(2.46)

which together with equations (2.43) and (2.45) may be used to provide a second equation

namely

u3

E =_T
w Kil

(2.47)

Equations (2.45) and (2.47) now provides the turbulent dissipation and production rates at the

first node from the wall. The shear velocity term in each of these is found by iteratively

solving equation (2.42). Thus, one can solve the field kinetic energy and dissipation rates with

wall boundary conditions at the first node away from the wall and subsequently calculate the

field effective viscosity. Since the turbulent computational domain excludes the wall nodes
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one finds the effective viscosity at the wall as the larger value of the laminar viscosity or the

viscosity calculated from

(2.48)

It should be noted that the normal velocity gradient terms at the wall found in the turbulent

conservation equations should be replaced by equation (2.46). This will ensure that the

gradients are consistent with the law of the wall definition. The above formulation of the

k - £ turbulence model is valid if the first node lies within the logarithmic

region (30 < n' < 100), White (1991 ). Various authors have studied other turbulence models

that introduce other modeling functions directly into the k - £ equations to predict the

turbulence near and at the walls, Chien (1982), Nisizima and Yoshizama (1986) and So,

Zhang and Speziale (1991). The application of such methods was beyond the scope of the

present study. Henkes (1998) also showed that for high Reynolds number flows with zero

pressure gradient the present k - £ turbulence model gives accurate results and compares

well with direct numerical simulation.

For turbulent flows over rough surfaces the logarithmic law, equation (2.42), still holds for the

velocity distribution outside the viscous sublayer, Schlichting (1968). However the empirical

constant, B ~ 5.2, requires modification to represent flow across rough surfaces. The

modifications to the logarithmic law and its application to turbulence modeling are

extensively studied and applied by various authors, Nikuradse (1933), Schlichting (1968),

White (1991), Yoon et. al. (1996), Sajjadi and Waywell (1997), Lakehal (1999). The wall

roughness length, ks, may be grouped in a dimensionless term, White (1991) i.e.

k Uk ' =_5 _,
5 V

(2.49)

which is a Reynolds number formed from with the sand grain size and the shear velocity,

Schlichting (1968). The roughness length in equation (2.49) is the equivalent sand roughness,

i.e. the length value which is determined experimentally from actual measured friction
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resistance values for a given rough surface, Schlichting (1968). For the present study this is

assumed to be equal to the roughness height.

This Reynolds number given by equation (2.49) defines three roughness regimes:

Hydraulically smooth regime: O:s k;:S 5

Transition regime: 5:S k; :s 70

Completely rough regime: k; > 70

Equation (2.42) may be re-written to incorporate k; and to facilitate its modification and

application to the k - E turbulence model wall functions for rough surfaces, Sajjadi and

Waywell (1997) i.e.

(2.50)

where

(2. 51)

The roughness coefficient, E, is given by the following expression

(2.52)

where the new empirical constant, Bs, for an equivalent sand roughness, Nikuradse (1933), is

given by Sajjadi and Aldridge (1995) and Sajjadi and Waywell (1997) i.e.
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(2. 53)

White (1991) shows that for the completely rough regime equation (2.52) may be substituted

with

(2.54)

where the empirical constant is given by

B s ( k; ) = 5.2 - ~ In(1+ O.3k; )
K

(2. 55)

Sajjadi and Waywell (1997) showed that the roughness method mentioned above combined

with the k - £ turbulence model gave excellent agreement with experimental results. Yoon

and Patel (1996) also found good agreement with experimental results by combining the

above method with the a k - ill turbulence method. Apart from the accuracy of the method, it

is also simple to implement since the only the modification required is the calculation for the

roughness coefficient, E, by employing equation (2.52).

2.6.3 Turbulent heat transfer

Similarly to the previously mentioned Boussinesq approximation applicable to the Reynolds

Averaged Navier Stokes equations, one can formulate a Boussinesq analogy for eddy

conductivity i.e.

(2.56)

As mentioned by White (1991) the turbulent eddy viscosity and conductivity are not physical

flow properties but can be grouped in a dimensionless turbulent Prandtl number namely
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(2.57)

Reynolds (1874), as mentioned by White (1991), postulated that the turbulent momentum and

heat flux are equivalent phenomena of the same order of magnitude

Pr, = f{Pr) = 0(1) (2.58)

which is one form of the famous Reynolds analogy. The use of a constant turbulent Prandtl

number in modeling turbulent flow has been very successful and is employed in many

commercially available CFD codes such as CFX of AEA Technology. A value of Prt=0.9 is

recommended for 0.7<Pr<1.0 by White (1992). This study found consistently accurate results

with 0.7<Prt<1.0. With a known constant Pr, and calculation of III from the turbulence

models one easily finds

(2.59)

and replace the conductivity values with an effective conductivity

(2.60)

similar to the effective viscosity.
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3. DISCRETIZATION OF THE GOVERNING EQUATIONS

3.1 Introduction

Various methods are available for the numerical solution of fluid flow problems and their

associated heat transfer, the three most often encountered being the finite element, finite

difference and finite volume approach. The finite volume method has been used extensively

in computational fluid mechanics and complements the understanding and interpretation of

fluid flows. It was selected for the present study based on comments made by Harms (1995)

in this regard. The finite volume approach is an essentially simple mathematical approach

whereby the strong coupling between the mathematical model and the physical nature of the

problem can easily be recognised. The method is also widely used in commercially available

computational flow software such as, among others, CFX of AEA Technology. The

computational grid defines control volume boundaries rather than nodes. In the finite volume

approach the governing equations are integrated over a finite number of control volumes.

These integrals are then discretized in terms of nodal values represented by the centres of the

control volume, and interfacial values at control volume boundaries. The interfacial values

required may be found from a suitable interpolation between neighbouring nodal values.

3.2 Interpolation Schemes

The numerical approach of the finite volume method requires the approximation of a

transported scalar $, and the derivatives at control volume interfaces. The interpolation

scheme selected for this study is a central difference, flux blended, deferred correction

approach as suggested by Perié (1985) and based on a similar concept by Khosla and

Rubin (1974). As pointed out by Perié (1985), the finite discretization requires that the

discretized equations satisfy certain conditions of an exact solution of the governing equations

namely,

Conservativeness:

Conservativeness of a discretization scheme refers to the conservation of properties within

control volumes. The finite volume discretization employs integration over discrete control
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volumes resulting in cell face fluxes. When summed, these interfacial fluxes, as well as the

addition of possible internal sources should cancel, leading to the conservation of a property

such as heat or mass. This conservative condition should be reflected in the numerical scheme

in order to achieve realistic results.

Boundedness:

The set of discretized conservation equations are bounded by the scalar properties on the

domain boundaries. Thus, in the absence of source terms in these equations, the converged

results should be within the minimum and maximum limits set by the boundary conditions.

The diagonally dominant coefficient matrix generated by a discretized conservation equation

should also satisfy the bounded condition ensuring that all the neighbouring coefficients are of

the same sign. A change in the scalar property at one neighbouring node with other

neighbouring nodes constant, would subsequently be reflected in a central node property

change in the same direction i.e., if the temperature at only one neighbouring node increases,

then the central nodal temperature would also increase. A discretization scheme that does not

satisfy the boundedness condition is said to be unbounded and would tend to produce

overshoots, undershoots or 'wiggles' in the solution. The boundedness criterion is a powerful

code evaluation parameter whereby discretization and programming errors may be traced.

Transportiveness:

The propagation of properties in a given flow field is dependent on the ratio of convection and

diffusion i.e., by the local Peclét number

(3. 1)

V; is the projection of the interfacial velocity vector in the direction of the nodal vector as

discussed in chapter 5. This implies that all interfacial velocities entering the control volume

will be negative since all nodal vectors have been assigned direction of positive outward. For

high Peclét numbers, convection processes start to dominate and the influence of diffusion

3.2

Stellenbosch University http://scholar.sun.ac.za



becomes smaller. Thus at high Peclét numbers the behaviour of the central node N will have

little effect on its upstream neighbours. The discretized equations should reflect this

behaviour.

The general central difference interpolation scheme is

(3.2)

where fn is a linear interpolation factor and the subscripts Nand NN denote the central node

and neighbouring node respectively. The interpolation factor can be found from

(3.3)

where 8(~N) and 8(~NN) denote the absolute distances from nodes Nand NN respectively,
_

along the local nodal vector l; , to the interpolation point at the control volume interface as per

figure 3.1.

Local non-orthogonal
vector

~li
\
\
\

Interpolation
point

Neighbouring node
NN 7

-----_
~ Local orthogonal

vector

N
Central node Control volume

interface

Figure 3.1. The formulation of the interpolation function
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The central difference scheme is widely used but has an inherent weakness since transportive

conditions are not always realistically met, as indicated by Perié (1985). Even at high Peclét

numbers (Pe ~ (0), equation (3.2) allows upstream propagation of properties at downstream

nodes which is physically unrealistic. However, the scheme is conservative and for small

Peclét numbers stable and accurate.

An upwind scheme approximates the interfacial scalar value by the upwind nodal value only.

Although a robust scheme, it lacks accuracy and is not an appropriate scheme where diffusion

processes dominate. The formulation of such an interpolation scheme is

(3.4)

The [II] -operator denotes the maximum of the values within the brackets similar to the

Fortran function AMAX1[a},a2,a3, ...,anJ as suggested by Patankar (1980). The disadvantage of

the upwind scheme is that it is due to lead to false diffusion where the flow is not grid aligned.

In such a situation an unrealistic diffusion "like" solution would result.

Spalding (1972) showed that a stabilizing feature of fluid flows, due to convection, is that

downstream events in flows become less influential than upstream ones when the local Peclét

number exceeds approximately 2, Harms, von Backstrom and du Plessis (1996). A deferred

correction scheme combines a higher order scheme such as the central difference scheme with

a lower order scheme such as the upwind scheme. The lower order scheme is usually treated

implicitly while the higher order scheme is treated explicitly or 'deferred' to the source terms

in the discretized equation, Khosla and Rubin (1974). The explicit term may also be

multiplied by a factor 0.0 ~ y ~ 1.0, thus blending the two schemes.

The formulation is
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~n = [Iv~;0.01] ~~ ~N + [1- v; ;0.01] _ ~~ ~NN
n n

(3.5)

or,

(3.6)

(3.7)

where S2 is the interfacial secondary source term ansmg from the deferred correction

approach. The first two terms in equation (3.6) represent an upwind scheme and the remaining

source terms account for a central difference scheme and upwind corrections. From the

equation it is evident that the upwind scheme corresponds to y = 0.0 and a purely central

/' /' Neighbouring node
/'

/'
/'

/'/' I
/'/' I

/'~ ~ <l>n from centra~ difference
/' /' /' + interpolation I

/' \_ I
/' /' /' I <l>n from flux blended central

N'::~ - - - - - - - ~ - - - <Ëf_fe~~~ - ~

:Central node I \__ <l>n from upwi~d interpolation
I I
I I
I I
I

exact value of transported scalar value

I[ NN

N NN

Figure 3.2. Upwinding, central difference and flux blending interpolation schemes.
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difference scheme corresponds to y = 1.0. Usually values of y = 0.9 would suffice. During

discretization, the secondary source terms are treated explicitly while the calculation of the

implicit influence coefficients employs the upwind scheme. Figure 3.2 is a graphical

representation of the interfacial scalar value obtained with the three interpolation schemes

mentioned above.

Timin and Esmail (1983) presented a similar scheme where the convective terms are

approximated by partial upwind differencing, leading to accurate and stable simulations for

y = 0.9 i.e. a small upwind contribution balanced by the predominantly central differenced

approximati on.

The interfacial values of all the explicit quantities, with exception of the interfacial velocity

V;, are found from a central difference approximation. For the Navier-Stokes equations they

include the interfacial density

(3.8)

and the interfacial diffusion coefficient

(3.9)

3.3 Discretization ofthe Momentum Conservation Equations

While most references consulted and listed below always illuminate one aspect or another

relation to the subject, the main sources here are Patankar (1980), Perié (1985), Harms (1995)

and Ubbink (1997).
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3.3.1 Discretization of the flux vector

By employing the integral divergence theorem of Gauss as presented by Greenberg (1998) a

volume integral of the divergence of the flux vector J(~) in equation (2.12) may be

transformed into a surface integral of its projection normal to that surface. Equation (2.12)

may then be rewritten for a steady state solution as

fV.J(~) dV = fJ(~)·ïidA = fS(~) dV (3. 10)
v A v

where ii is an unit normal vector to surface A. Thus, for a hexahedral control volume the

volume integral is converted into six surface integrals, one for each face of the control

volume. These flux vector surface integrals can be approximated for the orthogonal control

volume as

6 6

fJ(~)·ïidA = IJ(~)·ïi An = IJ~(~) A~
A n>I n;1

(3.11)

where J~(~) is the projection of the interfacial flux vector in the direction of the nodal vector

Ï; as per equation (5.16) and A~ denotes the projection of the area vector in the direction of

the nodal vector as per equation (5.21). For the non-orthogonal formulation the only addition

is a second component or projection of the area and flux vectors along a directional vector

( ~) normal to the nodal vector (~). This non-orthogonal formulation will be discussed in

chapter 5. The interfacial terms in equation (3.11) are subsequently discretized in terms of

nodal properties by means of an interpolation scheme.

The nodal positioning system used in this study follows the B-type grids as per

Patankar (1980) and as shown in figure 3.3.
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• •

Figure 3.3. B-type grids

For the purpose of the discretization of the momentum equations, assume that a suitable

approximation of the interfacial velocity VI; exists. The detailed approximation of this term

will be discussed together with the pressure-velocity coupling. The approximation of the

interfacial flux scalar is as follows.

The flux scalar as per equation (3.11) is

(3. 12)

Since integration takes place along the nodal vector one can approximate the interfacial

diffusion term by

(3. 13)

where d~ denotes the magnitude of the distance between the central node and the

neighbouring node along the interpolation line in question as per Figure 3.1. This formulation

ensures the correct sign for the gradient term since the local coordinate system has its zero

reference at the central node. Substituting equations (3.1), (3.6), (3.8), (3.9) and (3.13) into

equation (3.12) one finds
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(3. 14)

where the Pen denotes the local interfacial Peclét number.

3.3.2 Discretization of the source terms

The source term in equation (2.12), the primary source term, contains a pressure gradient,

cross diffusion terms and additional body force terms as discussed in chapter 2. All source

terms are treated explicitly during the solution algorithm, implying that each term within the

primary source term needs to be expressed in terms of fluid and flow properties at control

volume nodes which remain constant within each iteration. Approximations for the first

derivative of nodal pressure (nodal pressure gradient) as well as second derivative terms for

nodal diffusion contained within the primary source are to be found from local

transformations of projection formulas dealt with in chapter 5.

Approximation of first derivative of pressure.

Each of the three Cartesian momentum conservation equations contains a pressure gradient

term in global Cartesian coordinates. Since these terms are integrated over the control volume

one needs to find the Cartesian pressure gradient at each node for a given pressure field. At

this stage it is necessary to assume that a pressure field was solved by means of a suitable

pressure-velocity coupling scheme as discussed later in the text. All the local pressure

gradients are found by using equation (5.10) which are then, in tum, used in equation (5.9) to

transform the local pressure gradient into a global Cartesian pressure gradient :i at each

node. Thus after finite volume integration the pressure gradient term in the primary source

term is

f ap dV = (ap) Vol
ax' ax' Nv N

(3. 15)
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where the superscript (i) denotes the Cartesian index.

Approximation of second and mixed differentials

The pnmary source term m the momentum conservation equations (2.9) to (2.11) also

contains second derivatives and mixed derivatives. These account for additional normal

stresses due to viscosity gradients. These terms are treated explicitly and are found as

derivatives of derivatives as per equation (5.11). The momentum contribution from these

terms are usually negligible but are relevant for boundary layer flows as well as for turbulent

flows where severe viscosity gradients might occur in the vicinity of wall regions.

3.3.3 The discretized equation

After some algebra, the steady state momentum conservation equation for a hexahedral

control volume can be written in the following form

6

aN~N = I aNN~NN+ SJ + S2
n=J

(3. 16)

where the influence coefficients aN and aNN denote central node and neighbouring node

coefficients defined as

(3. 17)

(3. 18)

The primary source term derived from the pressure gradient and secondary diffusion terms,

can be written as
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(3. 19)

Furthermore, the secondary source term arising from the deferred correction interpolation can

by written as

(3.20)

The algebra involved in the above discretization can be found in appendix A. The only

additional terms required in equation (3.16) are those arising from the inclusion of the

transient terms which will be dealt with below as well as additional interfacial convection and

diffusion terms arising from a non-orthogonal control volume formulation. These non-

orthogonal convection and diffusion terms are included as tertiary source terms and are

explained later in the text.

3.3.4 Discretization of the Transient Term

The transient term in equation (2.12) when integrated over time and volume is

(3.21)

assuming isentropic nodal property values of p and ~ throughout the control volume.

When integrating the remainder of equation (2.12) across the control volume and over time

we need to make an assumption as to the time dependent behaviour of the nodal and

interfacial properties. Various possibilities exist but the one used in the present study follows
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an implicit scheme i.e. one where the "new" values of ~ prevail at time t + L\t. Such

integration of equation (2.12) can be written as

1+"'1 a 1+6t t+"'1f f -(p~)dtdV + f fv. j(~)dtdV = f fS(~)dtdV
Vlat VI VI

(3.22)

or ultimately using equation (3.21) as

6

[(PN~~rW-(PN~~td]VOIN+ L)H~irW A~L\t = s(~irWVoINL\t
n~1

(3.23)

Again after discretization and grouping similar terms, the discretized governing equation for a

transient solution of the momentum equation becomes

6

aN~~ = I aNN~~ + s; + s~
n~1

(3.24)

aNN = ~~([1- Pen ;0.01]+ 1.0)A~ (3.25)

(3.26)

(3.27)

(3.28)

where an explicit transient term containing "old" scalar properties was added to the primary

source term and the contribution from the "new" values added to the nodal influence

coefficient.
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3.4 The Pressure-Velocity Coupling

3.4.1 Background

The general momentum conservation equations provide the set of equations required to solve

the velocity field assuming that a pressure field is known. This pressure field can be indirectly

specified via the continuity equation as mentioned by Patankar (1980). Thus a coupling

should be established between the momentum and mass conservation equations to ensure that

once convergence is reached, the velocity field determined by means of the momentum

conservation equations, satisfies continuity and presents an exact pressure field. The present

study implements a pressure-velocity coupling algorithm employing the Rhie and

Chow (1983) interpolation method as presented by Bums and Wilkes (1987).

3.4.2 The pressure correction equation

The discretization of the momentum conservation equations establishes a relation for the

nodal transported scalar value, equation (3.24) which can be rewritten as

(3.29)

where S' are the remaining source terms from equation (3.24) after terms containing the

Cartesian pressure gradient source term have been extracted and the remainder divided by the

nodal influence coefficient aN. The remaining source terms are terms arising from the

deferred correction practice and terms from a non-orthogonal formulation. The coefficient Gt
are the matrix multiplier or the inverse Jacobian matrix It, found from the local

transformation of the physical space derivative of pressure, as described in chapter 5, divided

by the nodal influence coefficient aNand integrated over the control volume i.e.,

. Ij
GJ =-' Vol'a N

N

(3.30)
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where subscripts i and j indicate the Cartesian index.

Assuming that a suitable approximation of the interfacial velocity components exists and

discretizing the momentum equation on a staggered grid i.e. one where the control volume

centers are the faces of the scalar mass control volumes, one finds

(~i) = (~ aNNn ~~n J + (S') _ (Gj ap)
Nn L.. a Il la~/

1l~1 N Il Il

(3.31)

The crux of the Rhie and Chow method is approximating the interface velocity components

on a collocated grid and this will be discussed later. Assuming for the moment that a suitable

approximation exists we employ another approximation

(3. 32)

and differentiate equation (3.31) in terms of pressure changes to find

(3. 33)

(3. 34)

As proposed by Rhie and Chow (1983), the cross differentials appearing in equation (3.33)

disappear for nearly orthogonal grids leaving us with

(3.35)
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thus equation (3.33) but without summation convention. In this study the cross differentials

were kept during the update of the interfacial velocity values according to equation (3.33).

The Rhie and Chow interpolation scheme approximates the interfacial properties of equation

(3.35) by linear weighted interpolation i.e.

(3. 36)

Rewriting the discrete continuity equation in terms of interfacial velocity corrections we have

(3.37)
11=1 n=1

where the second summation term accounts for non-orthogonal mass flux terms which remain

uncorrected. The magnitude of the component of the interfacial velocity correction vector in

the direction of the nodal interface vector are found from the scalar product

(3.38)

Substitution of equation (3.36) and (3.38) into (3.37) leads to the discrete pressure correction

equation

6 r 6 6
P I _ '" p n A~ "P I "V'lA'laNPN - L..,. en - n + L..,.aNNnPNN + L..,.Pn n n

n=1 cS~ n=1 n=1

(3.39)

(3.40)
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(3.41)

(3.42)

pv _ [(1 f)G2 f G2 ] I~y
aN - -~ - n )N + n 2NN -1--1 -

n - I;DS (3.43)

(3.44)

3.4.3 The Rhie and Chow interpolation method

The above discrete form of the pressure correction equation, equations (3.39) to (3.44), relies

upon the suitable approximation of the interfacial velocity vector. A traditional approach to

find the interfacial velocity values contained in equation (3.31) would be simply a linear

weighted interpolation scheme namely

(3.45)

Such an approximation of the interfacial velocity components with linear weighted

interpolation is well known to lead to pressure and velocity oscillations since it effectively

decouples the pressure gradients at even and odd grids. However, the Cartesian velocity

components at control volume centers satisfy the momentum conservation as per equation

(3.29). These can be written for a control volume with center at node N and for a

neighbouring control volume with center node NN

(3.46)
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(3.47)

or in short hand as

(3.48)

(3.49)

The chequerboarding phenomena can be avoided by using a staggered grid on which velocity

components are obtained by discretizing the momentum equations on control volumes whose

centers are the faces of the mass control volumes. This leads to a discretized equation of the

form

(3.50)

similar to our equation (3.31) already established in determining the pressure correction

equation.

The staggered grid has the distinct disadvantage in that it makes discretisation more difficult

for complex, non-orthogonal three-dimensional grids. The Rhie and Chow interpolation

method overcomes this by maintaining the collocated computational grid by employing

weighted linear interpolation of terms in equations (3.46) and (3.47) to approximate the

terms on the right hand side of equation (3.50)

(3.51)

where the overbar denotes weighted linear interpolation. Assuming that Bn = Bn and that

(BVP)n ~ Bn VPn we find the Rhie and Chow interpolation
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(3. 52)

or

(3.53)

Equation (3.53) is used to update the interfacial velocity values after the new nodal values

were calculated from the discretized momentum equations. It was found that this formulation

effectively eliminated the appearance of a pressure-velocity decoupling or chequerboarding,

as present when a purely central difference interpolation scheme was employed.
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4. SOLUTION ALGORITHM

4.1 Solving the Discretized Equations

The preceding chapters dealt with the discretization of the governing transport equations and

the conservation of mass by means of a pressure-velocity coupling scheme. The result of the

discretization of the conservation equations is a set of non-linear algebraic equations which

needs to be solved repeatedly by means of some iterative scheme. Various methods exist to

compute the field solution and these methods may be divided into direct and iterative

methods. Direct methods such as Gauss elimination, LU-decomposition and the Thomas

Algorithm (TDMA) can be employed to solve systems of linear equations but are usually

computationally intensive. The solution of non-linear equations require iterative methods but

these methods may be applied to linear sets as well. As mentioned by Ferziger and

Perié (1996), the discretization errors arising from different interpolation schemes are usually

much higher than the accuracy of the computer arithmetic and an iterative solution may be

used as an alternative to the direct solution. The present study employs the strongly implicit

procedure (SIP) of Stone (1968) as extended and presented by Leister and Perié (1994) and as

explained in this chapter. This extended iterative solver is applicable to seven-diagonal

influence coefficient matrices arising from the central difference approximations employed in

the discretization of the three-dimensional governing equations. Due to the non-linear

coupling of the set of partial differential equations, outer iterations are required to update the

influence coefficients and the source terms. Solutions for each of the primary field variables

are iteratively calculated within inner iterations within the solver. As available in many

commercial CFD codes, the code presented here employs the SIMPLE algorithm with the SIP

solver to calculate the primary field variables.

4.2 The SIP Solver

The linear algebraic set of equations resulting from the discretization of the three-dimensional

conservation equations for a hexahedral control volume has the general form
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6

aN~N + I aNN~NN= QN
NN=I

(4. 1)

or

A(~)= Q (4.2)

where aNN denotes the influence coefficient for neighbouring node NN, A is the square

matrix of influence coefficients, (~) is the vector matrix of the transported scalar while the

primary, secondary and tertiary source terms are grouped in matrix Q.

o o
5 o

o

2
o

o
CJ

3

0) 4

o

6 o
o·

k ---
o

j

Figure 4.1. Computational molecule

All the terms with a similar neighbouring index number may be stored in a one-dimensional

vector according to a index numbering scheme given by Ferziger and Perié (1996) namely,
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(4.3)

where N, and N, denote the maximum number of nodes in the j and k direction respectively.

As illustrated by figure 4.1, node 1 of the computational molecule lies in the direction of

increasing j-index, node 3 along increasing k-index and node 5 along increasing i-index. The

conversion of grid indices (j,k,i) into one-dimensional storage locations for the vectors are as

per table 4.1

Table 4.1 Conversion of grid indices

Grid location Corresponding Storage location

face number

j,k,i p e =(i-1)NjNk+(k-1)Nj+j

j+ 1,k,i 1 e+1
j-1,k,i 2 e-1
j,k+ 1,i 3 e+Nj

j,k-l,i 4 e..Nj

j,k,i+ 1 5 e+NjNk

j+ l,k,i-l 6 e-NjNk

Other formulations are also possible. Equation 4.2 can be rewritten 10 terms of one-

dimensional index numbering as

ae-NkNj~e-NkNj + ae-Nj~e-Nj + aH~e-l + at~e

+ ae+l~e+l + ae+Nj~t+Nj + ae+NkNj~e+NkNj = Qt (4.4)

This formulation for the ordering or indexing of matrix terms allows one to store the influence

coefficient and nodal source term information in one-dimensional arrays rather than three-
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dimensional arrays. Following the index ordering scheme as per table 4.1 and equation (4.4)

the structure of equation (4.2) is as illustrated by figure 4.2, Leister and Perié (1994).

<1>5

'~

I+Nj

<1>3

<1>1
6, a4 ' az -aN ar- a) , - -a5

* <l>N QN
<1>2

<1>4

I-Nj
<1>6

I-NjNk

"

Figure 4.2. Structure of matrix for seven point computational volume

A general iterative scheme for a linear system of equations may be written as

(4.5)

where n is the inner iteration counter. Equation (4.5) must satisfy equation (4.2) when

convergence is reached. Since at convergence one finds

one may write

A = M - N and Q = B.

4.4
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Equation (4.5) may also be written as

Mb" = o" (4.7)

where

(4.8)

denotes the change of the transported variable $ from iteration n to n+ 1 and

p" =B-(M-N)$"

= Q _ A($")
(4.9)

is the residual after the nth iteration. An iteration matrix M needs to be approximated from

matrix A. The closer the matrix M is to A, the more efficient the scheme will be. The SIP

method of Stone, approximate the matrix A by means of an incomplete LU-decomposition

M=L·U=A+N (4. 10)

where L and U are the upper and lower triangular matrices which has non-zero diagonals only

on the corresponding diagonals of matrix A. Setting the main diagonal on the upper triangular

matrix U equal to unity, the elements of the L and U matrices can be calculated. Such an

incomplete LU-decomposition results in extra diagonals in the L· U product matrix M.

Therefore the resultant matrix N is not zero. The essence of the SIP solver of Stone is

minimizing matrix N by providing a contribution in N( $) such that the contribution of the

additional non-zero diagonals in M, not present in A, is partially canceled leading to

(4. 11)
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The key to ensuring that the condition of equation (4.11) is met is to find the elements of N

by approximating the additional nodal values found in M in terms of the principal nodal

values. This gives the elements of matrix N in equation (4.11) in terms of the additional

elements ofM. Finally, since all the elements ofM are found from the LU decomposition and

by using equation (4.10) one finds the elements of L and U as given by Leister and

Perié (1994)

AL = 2,e

2,e [1+u(Uu_J + U3,H)]

(4. 12)

U = AI,e -Hl
l,e L

N,e

where 0 ~ u ~ 1. These equations are solved in the order given above. The matrix M in

equation (4.7) now consists of the upper and lower triangular matrices, L and U, and equation
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(4.7) may be solved by the standard LU-decomposition solution procedure, firstly calculating

the vector matrix

(4. 13)

where the residual error is

(4. 14)

and then calculating the increment vector matrix,

(4. 15)

The primary variable required may now be found by employing equation (4.8) and (4.15). The

elements of the upper and lower triangular matrices L and U are calculated once and then

equations (4.13) to (4.15) are solved iteratively until the convergence criteria based on the

residual error is met. Itwas found that the most accurate results were obtained when the inner

iterations were continued until the residual error had decreased to approximately 10% of its

initial value at the start of iterations.

4.3 The SIMPLE Algorithm

The solution algorithm applied in this study follows the Semi Implicit Method for Pressure-

Linked Equations or SIMPLE algorithm as presented by Patankar (1980) and described by

Patankar and Spalding (1972).
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The sequence of operations performed during the calculation of the field solution is,

1. Assign initial field primary variables

2. Calculate the influence coefficients and source terms of the momentum equations and

solve these to obtain the three Cartesian velocity components u', v', wo.

3. Compute the interfacial velocity values

4. Calculate the pressure correction equation influence coefficients and source terms and

solve the solution matrix to find the pressure correction values p.

5. Update the pressure field with the new pressure correction values.

6. Calculate the interfacial velocity correction values and update the interfacial velocity

values.

7. Solve the discretization equations for other variables such as temperature and

turbulence quantities.

8. Evaluate the global convergence criteria and if they have not been met then return to

step 2.

4.4 Boundary Conditions

The boundary conditions found and applied in this study includes boundary conditions for

primary variables i.e. temperature, pressure, velocity, turbulent kinetic energy and turbulent

dissipation rates. These boundaries are found at and classed as either inlet, outlet, wall or

symmetry boundaries. The boundary conditions are updated after the momentum equations

have been solved as well as after the new pressure field has been calculated during the

solution algorithm.

4.4.1 Inlet boundary condition

The boundary values for all variables at the inlet are specified except for the pressure and the

turbulent quantities. These Dirichlet type boundary conditions include the velocity

components (u,v,w) and the inlet temperature (T). The pressure at the inlet node is found from

a linear extrapolation of the pressure values at the two inner nodes. For inlet turbulence

quantities Ferziger and Perié (1996) suggests that, in the absence of values found from
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experimental measurement or full field numerical models, an assumption can be made that the

inlet turbulent intensity is low and typically of the order 10-4 U2
• The inlet dissipation rate is

then calculated from equation (4.12) such that the length scale, L, is approximately one tenth

of the shear layer

(4. 16)

The turbulence quantities employed in this study and found to be suitable is similar to those

found in the CFX software from AEA Technology namely

(4. 17)

and

kl5
10E ---

in - OJd
e

(4. 18)

where ik is the turbulence intensity with values typically between 1% and 10%.

4.4.2 Outlet boundary condition

Neumann boundary conditions are specified at the outlet for all variables. This study employs

a forward difference interpolation for the approximation for the Neumann gradients. Zero

gradients along grid lines are assigned for the velocity field. The velocity component in the

direction of the flow is also mass flux corrected. This means that the velocity value at the

outlet node is multiplied by the ratio of the mass flux at the inlet and the outlet mass flux.

Pressure is again extrapolated from upstream values. Zero normal gradients are also specified

for outlet temperature values and turbulent quantities.
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4.4.3 Wall boundary condition

At the walls the no-slip boundary condition is applied which assumes that the fluid at the wall

assumes the velocity of the wall. It was found to be adequately accurate to apply a Dirichlet

type boundary condition, u = v = w = 0, for the velocity field at a stationary wall. The

Neumann boundary condition of zero normal gradient is applied to the wall pressure, again

using the forward difference interpolation for the approximation of the gradient. Wall thermal

boundaries may either be isothermal, adiabatic or with given heat flux and energy source

values. For adiabatic walls a zero normal temperature gradient is applied at the wall. For an

isothermal wall, a Dirichlet type boundary assigns a temperature value to the wall node. With

given heat flux and energy sources specified at the wall, the wall boundary condition is found

from the application of an energy balance at the wall node.

4.4.4 Symmetry planes

Zero normal gradients are applied to all variables at symmetry planes. Furthermore, zero flux

normal to the symmetry plane is enforced by assigning a zero magnitude to the interfacial

velocity vector normal to the symmetry plane. To eliminate possible shear stresses at the

symmetry plane a small viscosity value (1.OE-12) was assigned to the interfacial viscosity at

the wall.

4.4.5 Solid regions

Only the energy equation is solved for solid regions. Therefore only temperature boundary

conditions are required at solid/solid boundaries. At solid/fluid interfaces the temperature is

either given or calculated as mentioned in paragraph 4.4.3 for wall boundary conditions.

When a solid region temperature boundary is not explicitly given or calculated then the

Neumann boundary condition of zero normal gradient is applied.
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4.5 Relaxation

The relaxation factor employed for a typical transported variable ~ is similar to suggestions

by Patankar (1980) i.e.

(4. 19)

Multiplying equation (4.19) by aN / ~N and substituting the result into the discretized

equation, equation (3.16), one finds, as presented by Harms (1995)

(4.20)

which essentially introduces a larger central node influence coefficient into the solution

matrix. The same relaxation may be achieved by employing small time steps when solving the

transient state discretized momentum equation. This would also introduce larger central node

influence coefficients in the solution matrix as mentioned above.

Relaxation for the pressure correction is applied as per Patankar (1980) and modifying

equation (3.34) i.e.

(4.21)

No relaxation is applied to interfacial velocity corrections. It was found that the stability of

the solution is enhanced by adding relaxation to the outlet flux corrected velocity boundary

condition. This ensured that the upstream velocity field information has sufficient time to

influence the outlet velocity field during early stages of the iterations.

Relaxation was also added to the turbulence parameters wall boundary conditions. This

allowed the calculation of the wall kinetic energy and dissipation rates to be governed by the
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field solution thus ensuring that high temporary kinetic energy and dissipation rate gradients

at the walls are eliminated during early stages of the iterations.

The application of the SIMPLE algorithm with the SIP solver was found to be highly accurate

requiring very few inner iterations to reach convergence during the solution of the general

transport equations. These inner iterations rarely exceed 5 except during the solution of the

pressure correction equation. The pressure correction equation as applied in the present study

seemed highly susceptible to instabilities and difficulties were experienced in reaching

convergence within the set number of inner iterations. Relaxation of the pressure correction

central node influence coefficient relieved this problem at the cost of computing time. It is

suggested that future studies investigate the implementation of a combination of a multi-grid

method and the SIP solver. This may save considerable processing time and would not require

serious modification to the present code. The addition of another solution algorithm such as

SIMPLEC may also decrease the convergence time by establishing more effective coupling

between pressure and velocity corrections. Although somewhat time-consuming the present

solution algorithm, the SIP solver and the pressure correction scheme was found to be highly

accurate and generally robust for all the numerical simulations presented in this study.
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5. NON-ORTHOGONAL FINITE VOLUME FORMULATION

5.1 Introduction

The governing equations described in Chapter 2, are presented in the reference Cartesian

coordinate frame (x,y,z), as opposed to a general non-orthogonal coordinate system (~,'l1,~).

The latter coordinate system lends itself to the description of applications with complex

boundaries and non-orthogonal grid formations whereas the first is restricted to the

description of simple or simplified geometries. Since few of the problems encountered in the

numerical modeling field poses simple geometries one needs to address the transformation of

the governing equations to assist their solution in a non-orthogonal coordinate frame. The

physical space is described by the boundaries and for complex geometries these are often

discontinuous functions giving rise to difficulties in maintaining orthogonal control volumes.

One approach deals with the global transformation of the discretised equations in physical

space to a general, non-orthogonal space but has the limitation that the physical space or the

boundaries must be represented by a continuous mathematical description. On the other hand

the use of a Cartesian base vector system simplifies the discretised equations and facilitates

our understanding and interpretation of the physical quantities contained in them. The global

Cartesian coordinate frame can be maintained by employing a local transformation approach

i.e. one where interfacial quantities are obtained from vector projections. The present study

maintains a global Cartesian frame with local non-orthogonal transformations of control

volume vectors and source terms present in the governing equations as outlined by

Perié (1985) and Harms (1995)

5.2 The Control Volume Convention and Notation

The control volume conventions and notations used in this study are as illustrated by figure

5.1. The hexahedral control volume with central node (N) has six neighbouring control

volumes, each with neighbouring node (NN). A primary interfacial vector or nodal vector Ï;
extends from the central node N outwards towards each of the neighbouring nodes NN. Six

area vectors Á n' describe the magnitude and direction of each of the six interfacial areas
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encountered on the control volume. For an orthogonal control volume formulation these area

vectors would have the same directions as the nodal vectors i.e. their scalar products would

equal zero.

Z Ïll
n

~ Vn

\
i /

/ NN
ÏI;
n

---- -.---::.-,

'~ ,

-------~

x

Figure 5.1. Control volume conventions and notations

For fluid flow, the interfacial velocity vector Vn describes the interfacial direction and

velocity of the flow field in a global Cartesian coordinate frame. The coordinate convention

follows a right handed system where (~) denotes the nodal vector direction and (11) a

direction normal to that. Each local coordinate system has a zero reference position at the

control volume central node N.

5.3 Vector Algebra Fundamentals

The basis for the local transformation approach lies in the fundamentals of vector algebra as

described by various authors such as Kreyzig (1988) and Greenberg(1998). In this section the

basic principles of vector algebra will be reviewed.
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5.3.1 Divergence and the gradient vector

The divergence of a vector field V , can be expressed in the form

dive = V· V (5. 1)

with V being the vector differential operator given in Cartesian coordinates by

- 8. 8. 8
V=-l+-J+-kax- 8y- 8z-

(5.2)

It can also be shown that the gradient vector, V<I>,of the scalar field <I>(x,y, z), points in the

direction of maximum increasing <1>,its magnitude being equal to the directional derivative

8<1>. h di .an III t at irection.

The magnitude of the gradient in any direction from the maximum gradient vector is obtained

from the scalar product of the gradient vector and a unit vector in the required
-

direction ( ~ )i.e.

(5.3)

This study employs the following tensor notation for our description of the local coordinate

transformation as presented by Bums and Wilkes (1987).

(x i) = Cartesian physical space coordinates (5.4)

(~i) =General non-orthogonal computational space coordinates (5.5)
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= Jacobian matrix (5.6)

-Ji OSi (J_I)i In bi .i = axi = i = verse Jaco ian matnx (5.7)

The main importance of the Jacobian is that it relates geometrical derivatives in physical

space to derivatives in computational space as follows

~ _ axi o~ _ i o~
OSi - OSi axi - Ji axi (5.8)

and

~_ OSi~_ -i~
axi - axi OSi - Ji OSi (5.9)

of which equation (5.9) is the most important since it expresses derivatives in physical space,

as used in the discretised equations, in terms of derivatives in computational space. Thus it is

important to be able to obtain numerical approximations of the inverse Jacobian matrix. The

derivation of equation (5.9) can be found in appendix B.

5.3.2 Obtaining first, second and mixed derivatives

Once the local geometrical gradients in equation (5.6) are found, it is a matter of obtaining the

local nodal property gradients i.e. ::i' approximated by means of a suitable interpolation
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scheme, and transform those to the physical space by means of equation (5.9). The

approximation used in this study for the local nodal property gradients is a linear

interpolation, for example

(5. 10)

where $1 denotes the interfacial scalar property at face 1, $ 2denotes an interfacial scalar

property at face 2 and ~~ 1 the magnitude of the distance between interpolation points on

faces 1 and 2. The interfacial properties are again found from an approximation between

neighbouring nodal values by means of a suitable interpolation scheme. All other local first

derivatives present in equation (5.9) are found in a similar manner.

Second derivatives and mixed derivatives are found in the governing equations and may be

obtained from derivatives of derivatives which are again generated by means of equation

(5.9). Thus one initially finds the global Cartesian first derivative from equation (5.9), and

then proceeds to find the local second derivative or mixed derivative of this value by

employing equation (5.9) again. The resulting operation can be rewritten as,

(5. 11)

5.3.3 Calculation of interface fluxes

The interface flux vector j in equation (2.12) contains interfacial convection and diffusion

contributions. To ensure that the flux vector maintains the momentum conservation within the

control volume one needs to account for orthogonal as well as non-orthogonal components.

By aligning the interfacial area and velocity vector with the nodal vector there remains non-

orthogonal flux contributions that need to be accounted for. For orthogonal grids these
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contributions are eliminated since they lie in the interface plane and thus do not contribute to

the flux passing through that plane. The total flux contribution across an interfacial area can

be found from the scalar product of the flux vector and the vector normal to the area as per

equation (3.11). Since the orthogonal flux components and area vectors are aligned with the

interfacial nodal vectors, a non-orthogonal control volume requires a second non-orthogonal

flux component to be added to equation (3.11) namely

(5. 12)
n=1 n=1 n=1

The additional non-orthogonal components represented by the second term on the right in

equation (5.14) are treated explicitly as tertiary source terms in the discretized momentum

equations. After integration over the control volume, the non-orthogonal interfacial

convection contribution to the flux amounts to

(5. 13)

The interfacial scalar property ~n in equation (5.13) IS approximated by linear weighted

interpolation.

Since the orthogonal diffusion contribution in the flux vector has already been dealt with, we

only need to add the non-orthogonal component of the interfacial gradient vector to the

tertiary source i.e. the magnitude of the component of Y'~n in the direction of the non-

orthogonal vector. This is found from the scalar product

(5. 14)

The resultant tertiary source term that arises from the discretization can then be compiled as
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6 6

S3 = -I Pil[(1- fil )~N + f NN ~ NN ]V nil A ~+I ril V'~ ~A ~
Il=] n=]

(5. 15)

5.4 Calculation of Geometrical Parameters

5.4.1 Interfacial orthogonal and non-orthogonal directional vectors

As mentioned previously, one requires the interfacial directional vectors to facilitate the flux

split method represented by equation (5.12). The global Cartesian components of the

orthogonal interfacial vector Ï; is found from geometrical differences between the control

volume neighbouring node and the central node i.e.

(5. 16)

It has been shown by Jasak (1996), as reported by Ubbink (1997), that the non-orthogonal

interfacial vector may be found from the following vector difference

(5. 17)

This ensures that the resulting single non-orthogonal interfacial directional vector is normal to

the orthogonal directional vector and is eliminated for orthogonal grids. One does not require

the magnitude of the directional vectors since one merely employs these vectors in a

normalised form to facilitate the flux split method described above.
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5.4.2 Control volume face areas

For the calculation of the six facial areas of a hexahedral control volume refer to figure 5.2.

Each face, such as face 1 in figure 5.2, contains two triangles, each of which is enclosed by

two vectors.

--------------------~~ y

x

Figure 5.2. Control volume area cross vectors

The definition of the two cross vectors for each triangle is such that the cross product of them

results in a third vector pointing out of the control volume and of which the magnitude is

equal to the area of the parallelogram. It is important that the cross vectors are defined such

that their cross product point out of the control volume.
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Table 5.1. Control volume comer vector convention

Comer vector Spanning nodes Positive direction

C] 1,2 1~2
C2 1,4 1~4
C) 3,4 3~4
C4 3,2 3~2

Table 5.1 describes the convention for determining comer numbers, vectors and vector

directions, to ensure positive area vectors pointing outwards. The comer vertices are always

numbered from 1 to 4 in a rotational manner consistent with the right hand rule. For example,

the vector spanning comers 1 and 2 is vector C] which points from comer 1 to comer 2, and

vector C) spans comers 3 and 4 and pointing from 3 to 4.

The total area vector of the face is then defined as the vector sum of the area vectors of the

two triangles. This implies an underlying assumption that the area vector for a face is the

average of the two triangular area vectors defined by that face. Thus for a typical face (n), the

two triangular area vectors are

(5. 18)

(5. 19)

both pointing outwards according to the right hand rule. The total face area vector is simply

(5.20)

and the face area is the magnitude of the area vector. For the local transformation approach

one would typically require the projection of the area vector in the direction of the nodal

vector i.e.
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(5.21)

5.4.3 Three dimensional non-orthogonal control volume

A typical three dimensional control volume, as shown in figure 5.3, consists of six faces each

defined by four vertices that do not generally lie in the same plane but which are joined by

straight lines. Such a volume can be decomposed into six tetrahedral volumes as shown in

H

A

Figure 5.3. Three dimensional control volume

figure 5.4, by joining two opposite comers of the cell. Each tetrahedral volume represents half

the volume of a parallelepiped defined by the scalar triple product of three vectors, each of

which lie along different facial planes of the parallelepiped.
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Thus the volume of the parallelepiped defined by tetrahedral ABDH can be found from the

scalar triple product

(5.22)

and the volume of the hexahedral computational cell can be shown to be

(5.23)

All the vectors required for the calculation are found from the coordinates of their respective

vertices.
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6. VERIFICATION OF THE CODE

6.1 Introduction

This chapter deals with the verification of the results obtained from the application of the

present numerical code. The code is applied to simple problems for which analytical,

experimental or other numerical results are available. The verification problems were selected

to ensure that that the code accurately models important mechanisms present in the physical

flow such as the hydrodynamic and thermal boundary layer development of flows, heat

transfer characteristics and turbulence modeling. The results from the test cases are also

compared to radial flows within parallel plates under similar flow conditions. This is done to

evaluate the performance of the code to predict flow within geometries similar to those found

for application to the circular solar collectors discussed in chapter 7. Lastly, the performance

of the code to process geometries containing non-orthogonal control volumes is evaluated.

The verification problems are:

• Steady, laminar hydrodynamic and thermal developing flow between parallel plates

discussed in section 6.2.

• Steady, turbulent hydrodynamic and thermal developing flow between parallel plates

discussed in section 6.3.

• Radial flow within parallel plates discussed in section 6.4.

• Steady, turbulent hydrodynamic developing flow between parallel plates with non-

orthogonal control volumes.

All the evaluations reported were carried out using three grid configurations ranging from

coarse, medium and fine grid resolution to ensure that grid independent results were achieved.

The evaluation result was deemed grid independent and converged once it was found that the

difference for the results for the average pressure and temperature field deviated less than 1%

from the results from a previous and coarser grid evaluation. All the test cases reported

followed this procedure.
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6.2 Steady, Laminar Hydrodynamic and Thermal Developing Flow Between Infinite

Parallel Plates

6.2.1 The numerical model

The behaviour of laminar fluid flows in ducts and laminar flows between parallel plates has

been extensively investigated, both numerically and experimentally. The numerical model

verified in this study represents the physical model, the fluid properties and the flow

conditions as shown in figure 6.1 for air flow between parallel plates. The plates are W=O.1m

wide and H=O.1m apart. The plate length is L=3.0m.

A constant mass flow of uniform inlet velocity (U=O.0183m.s-1 ) was selected which permits

the investigation of the hydrodynamic and thermal flow development within the entrance

region. The Reynolds number based on an effective diameter of twice the plate height (2H) is

Re=240. The developing flow frictional pressure drop and heat transfer correlation

comparisons presented later in this chapter are also based on the effective diameter mentioned

above. The outlet velocity is mass-flux corrected. Both top and bottom plates are at constant

wall temperature (Tw=373K) and a uniform air inlet temperature profile (Tj=273K) is

selected. Axi-symmetric side boundaries (y-direction) ensure that the essentially two-

dimensional flow is maintained.

Top and bottom plate:
Wall boundary

Side boundaries:
Symmetry plane

Outlet H

L

y

Figure 6.1. Flow between parallel plates
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The calculations were performed on three grids (9Ix3xII, 45x3xI7 and 33x3x13 grid points)

to ensure grid independent results. The results for the 45x3x 17 grid were found to be grid

independent and is shown here.

The number of iterations required to reach convergence on this grid is approximately 150 with

under-relaxation factors as per Table 6.1. The convergence history is shown in figure 6.2

where the normalised mass residual is defined as the absolute sum of mass residuals of all

control volumes divided by the inlet mass flux. Computational speed was 0.0045

secondsliterationl grid point.

Table 6.1 Solution parameters for laminar flow between parallel plates.

Under-relaxation factors Flux blending factor

ap av aT y

0.1 0.8 0.9 0.9

1.6
1.4
1.2

0.8
0.6

(ij
::l
-0
ën 0.4Cl)...
til
til
oj

E
-0
Cl)

.~ 0.2(ij

E...
0z

100
Iterations

o 50 200

Figure 6.2. Convergence history for laminar flow between parallel plates.
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6.2.2 Code results

Figure 6.3 shows the computational domain with the inlet at x=3.0m. The resultant vector

field plot is shown in figure 6.4. The velocity contours for the axial and normal velocity

components are shown in figure 6.5 and figure 6.6. The presence ofw-velocity components at

the inlet, shown in figure 6.6, indicates the flow development from a uniform inlet distribution

to the parabolic laminar velocity distribution. The pressure contours shown in figure 6.7

illustrates the pressure gradient across the width of the channel in the entrance region. As the

flow develops, this cross stream pressure gradient, ( ~~), disappears and only the

approximately linear axial pressure gradient from frictional effects remains. The temperature

contours are shown in figure 6.8. Figure 6.9 shows the dimensionless outlet axial velocity

(u/u.) profile across the width of the channel. The dimensionless outlet velocity is based on

the uniform inlet velocity (u.). Figure 6.10 shows the rise in the average temperature along the

channel associated with the thermal development of the flow between two plates of constant

temperature. The average cross stream temperature is calculated as shown in appendix C.
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Figure 6.3. Computational domain for 4Sx3x17 grid points
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Figure 6.4. Velocity vector plot at y=O.OSm
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Figure 6.5. U-Velocity contour plot at y=O.05m

W: -0.0021 -0.0017 -0.0014 -0.0010 -0.0007 -0.0003 -0.0000 0.0003 0.0007 0.0010 0.0014 0.0017 0.0021

0.1

0.05

o
() ;].5
().() ()·~.()15.l 3

Figure 6.6. W-Velocity contour plot at y=O.05m
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Figure 6.7. Pressure distribution contour plot at y=O.05m
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Figure 6.8. Temperature distribution contour plot at y=O.05m
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Figure 6.9. Outlet dimensionless axial velocity (u/Ui) profile

370

360

350

340

330

~ 320!-

310

300

290

280

0 2.5 5

Figure 6. 10. Axial average temperature distribution
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6.2.3 Verification of results

The friction factors for the code solution can be calculated from the Darcy Weisbach relation

as presented by Kroger (1998)

(6. 1)

where

d =2He (6.2)

~p = Pinlet - Px (6.3)

(6.4)

with fD denoting the Darcy friction factor.

Equation (6.1) requires the average values of pressure and velocity in determining the friction

factor and Reynolds number. This is found by integrating the pressure and velocity profile

found from the field solution. These relations for determining the average values from flow

field solutions can be found in appendix C.

The apparent friction factor in equation (6.1) includes the effects of an increased pressure

drop in the entrance region due to the increased in shear stress in the boundary layer from the

acceleration of the core fluid. The result as presented in figure 6.11, shows very good

agreement with the general correlation for laminar flow in ducts of various cross sections of

Du Plessis (1992) as presented by Kroger (1998) namely
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I

fa Re=[(fRe)n+{( 3.44 )"}n]-;;
pp L / (de Re) .

(6.5)

where n = 2.38 and f Re = 24.00 for parallel plates. The (f Re) term in equation (6.5) is the

friction factor contribution for fully developed flow.

260,-------,-------,-------,-------,-------,-------,-,

200

180

1 1_._---_-- ----_._ - CFDcode45x3x17grids
------ DuPlessis(1992)

240 - -- -- . _! - - _. - 1

1 1
- - - ~ - - - -~-

1 1- - -._._-- --_._----.--_-- -
1 1

1_._.~.

220

1 1
--- - ~ - - - -~-

160 ------J--------l ------J---------l-------J------ --L
u 140 ---- --1 ----- -~.-.- - 1 - -.- --~ ----- ~ - ---.-.~
O::il:
,-0 120 ._ . _j . _ . .1_ . . _j . 1 . __ _j . _ . _ .1_ .

1 1 1 1 1 1
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O~~~~~~~~~~~~~~~~~~~~~~~~~~
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(xlde)/Re

_____ _j _j L _j L.' ..,.

Figure 6.11. Friction factor for laminar flow between parallel plates, Re=240

An interesting observation can be made regarding the difference in friction factor values from

the code solution and equation (6.5) in the entrance region. The correlation of equation (6.5)

tends towards infinity near the entrance of the duct while the code results tend to some finite

value. The three-dimensional solution of the continuity and momentum conservation

equations in the entrance region captures a small increase in pressure near the wall at the

x
entrance (- ~ 0) . At the entrance, the pressure in the center of the duct drops linearly from

de

x = 0, whereas the pressure at the wall first shows a small increase in pressure before

dropping. This initial increase in pressure at the wall entrance region, forces a flow of mass

towards the center of the duct with a subsequent increase in duct centerline velocity consistent
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with the conservation of mass. Thus instead of having an infinitely small pressure drop near

the entrance, the small increase in pressure at the wall increases the average pressure slightly,

resulting in the lower finite values of friction factors as shown in figure 6.11. This does not

influence the fully developed friction factor values.

The theoretical hydrodynamic developing length may be calculated from the relation of Shah

and London (1978) as presented by White (1991) and rewritten in terms of a dimensionless

distance from the entrance i.e.

x ( 0.6 )( 1 )--~ - +0.056
de Re 1+ 0.035 Re Re

(6.6)

The dimensionless distance from the entrance for fully developed flow for Re=240 according

to equation (6.6) is x/(deRe)=0.0563. This theoretical value corresponds well to the code

prediction, as seen from the asymptotic behaviour of the curves in figure 6.11 at

approximately x/(deRe)=0.06.

The local dimensionless heat flux parameter or Nusselt number is found from the relation

(6.7)

which is derived by applying an energy balance across the channel. This local Nusselt number

is based on an effective diameter of twice the plate spacing with Ti and To denoting the inlet

and outlet fluid temperatures respectively, Tw being a constant wall temperature, Tf denoting

the mean bulk fluid temperature, m denoting the mass flow rate of the fluid, kf and C,

denoting the fluid thermal conductivity and specific heat at ambient temperature and A

representing the total plate area for the duct. Thus from the temperature field values obtained

from the code results one can compute the local Nusselt number from equation (6.7). Again

the temperature values required in equation (6.7) are found from the integration of the
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temperature profile as computed by the code. The mean Nusselt number is simply the average

value of the local Nusselt number along the plates between x=O.Oand x=L i.e.

1 L

Nu =- fNu dxm L
°

(6.8)

which may by found by simply substituting the temperature difference (Tw"Ti) III

equation (6.7) with the logarithmic temperature difference White (1991) i.e.

(6.9)

The values calculated from equations (6.7) and (6.9) are compared with the mean Nusselt

number values calculated from a correlation by Stephan (1959) as given by Kroger (1998) i.e.

NUm = 7.55 + ( 064
1+ 0.0358 Re Pr de / L)' Pr017

( )

1.14
0.024 Re Pr de / L

(6. 10)

for simultaneously developing flow between parallel plates with uniform inlet velocity and

constant wall temperatures. Figure 6.12 shows the comparison between the mean Nusselt

numbers found from the code solution and those calculated using equation (6.10).
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Figure 6.12. Mean Nusselt number for laminar flow between parallel plates, Re=240

The dimensionless distance from the entrance is defined as

(6. 11)

The prediction from equation (6.10) indicates that the flow is thermally developed at

x" ~ 0.03. This is smaller than the value predicted, x" ~ 0.05, by the code results. The latter

prediction from the code results compares better with the thermal entry length for pipes from

White (1991) i.e.

( Le,thennal) = 0.05
de RePr

(6. 12)
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The results, as shown by figure 6.11 and 6.12, indicates that the code accurately predicts the

friction factors and heat transfer coefficients for laminar simultaneously developing flow

between the parallel plates.
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6.3 Steady, Turbulent Hydrodynamic and Thermal Developing Flow between Parallel

Plates

6.3.1 The Numerical model

The turbulence modeling capabilities of the code is verified by applying the present code to

the modeling of hydrodynamic and thermally developing turbulent flow between parallel

plates. The properties of the flow within such a configuration has been extensively evaluated

experimentally and accurately predicted by analytical and numerical methods, Rhosenow et.

al. (1985), Schlichting (1968), Stephenson (1975), Comini and Del Guidice (1985).

Turbulent flow between parallel plates shows relatively short developing lengths [x/(deRe)],

both thermally and hydro-dynamically, in comparison with laminar flow. This is due to an

increased turbulent momentum transfer from the wall boundaries. This increased mixing

effect also leads to an increase in heat transfer from the boundaries as well as an increase in

shear stress, subsequently leading to higher friction factors or a larger pressure gradient.

The numerical model employs the standard k - e model as described in chapter 2 in

determining the turbulent kinetic energy and rate of diffusion. The model was solved with

three-dimensional orthogonal control volumes. The test case configuration, boundary

conditions and fluid properties are similar to the laminar flow case and as illustrated by

figure 6.1. The total length of the parallel plates was changed to L=10.0m to accommodate

fully developed flow conditions for large Reynolds numbers.

Initially an entrance region control volume refinement was applied in order to evaluate the

developing region properly. The difference in results for the refined grid and uniform grid

proved insignificant and a uniform grid was selected for the verification. Three uniform grid

configurations were evaluated namely 35x3x7 grid points, 65x3x17 grid points and 99x3x15

grid points. This ensured that a grid independent solution was reached and the results shown

are applicable to the intermediate grid, 65x3x17, since it was found to give grid independent

results. It was found that 8000 iterations were required for the solution as indicated by the

convergence history shown in figure 6.13. The normalised mass residual is defined as the
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absolute sum of mass residuals of all control volumes divided by the inlet mass flux. The

under-relaxation factors employed are shown in table 6.2. Computational speed was 0.0042

seconds/iteration/grid point.

Table 6.2 Solution parameters for turbulent flow between parallel plates

Under-relaxation factors Flux-blending

ap av ak ac aT y

0.2 0.8 0.2 0.2 0.9 0.9
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2000 4000
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6000 8000
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Figure 6.13. Convergence history

6.3.2 Code results

The code results shown are applicable to Re=196721. Figure 6.14 shows the computational

domain and the resultant vector field plot is shown in figure 6.15. The pressure contours are

shown in figure 6.16. The cross stream pressure gradient in the entrance region is not visible
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due to the presence of a much larger axial pressure gradient due to frictional effects. The

temperature contours are shown in figure 6.17. The velocity contours for the axial and normal

velocity components are shown in figure 6.18 and 6.19. Again figure 6.19 shows the w-

velocity contours in the entrance region where the flow develops from a uniform inlet

distribution to the fully developed turbulent velocity distribution.

The turbulent kinetic energy and dissipation rate contours are shown in figures 6.20 and 6.21.

The large velocity gradient near the wall at the entrance increases the turbulent kinetic energy

and dissipation rates in that region as shown by figures 6.20 and 6.21. The effective viscosity

contour plot is shown in figure 6.22 indicating the increase of the stream turbulence and

effective viscosity towards the outlet.

The code prediction of the dimensionless outlet turbulent kinetic energy profile is compared

to previous experimental and numerical results in figure 6.23. The dimensionless kinetic

energy is defined as

(6. 13)

where the shear velocity, u"' at the wall is found from equations (2.42), (2.44) and (2.46)

with the turbulent viscosity taken at the first node away from the wall. The z-dimension in

figure 6.23 is measured from the centerline. The code prediction compares well with

experimental results from Comte-Bellot (1965) although it shows an over-prediction in the

center of the flow. The numerical prediction of Comini and Del Guidice (1985) shows an

under-prediction of the dimensionless kinetic energy. This may be attributed to insufficient

allowance for the developing length for the turbulent kinetic energy. The Comini and Del

Guidice (1985) numerical model dimensionless duct length was, IIde=5.0 whereas the present

model yields a more acceptable value of IIde=50.0, typically associated with development of

turbulent flows. Although the numerical work of Comini and Del Guidice (1985) applied a

developed velocity profile for the inlet boundary condition, it employed a uniform inlet

kinetic energy and dissipation rate profile. A similar under-prediction of center line values

was also reported by Harms (1995) for fully developed turbulent flow. The numerical
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prediction by Stephenson (1976) shows an under-prediction largely due to a lower Reynolds

number employed. The turbulent kinetic energy prediction from the present code was found

acceptable due to its accurate prediction of the developing flow friction factors and heat

transfer coefficients, discussed below.

The dimensionless dissipation rate outlet profile is shown in figure 6.24. The dimensionless

dissipation rate is defined as

(6. 14)

The prediction from the code again shows larger values compared to the values from the

numerical predictions of Comini and Del Guidice (1985).

The normalised outlet axial velocity profile is shown in figure 6.25 indicating the flattened

velocity profile associated with turbulent flows. This profile is compared to the universal

velocity profile ofPrandtl as presented by Schlichting (1968) i.e.

(6. 15)

where u, is the outlet centreline velocity and R equals half the plate spacing. The distance

y=R-z, where z is measured from the centreline towards the plate wall. An exponent ofn=7 is

employed which corresponds to a Reynolds number of 1.IE-5, Schlichting (1968). The

velocity profile is also compared to the velocity profile calculated from the logarithmic law

for turbulent flows as given by White (1994) i.e.

(6. 16)
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where, similar to equation (2.42), u· is the wall shear velocity, K=0.41 is the Von Karman

constant, B=5.0 is an empirical constant and y=Hl2-z where z is measured from the centreline

towards the plate wall. Both the Nikuradse velocity profile and the logarithmic law velocity

profile corresponds well to the outlet velocity profile predicted by the code although the

logarithmic velocity profile gives slightly better results.
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Figure 6.14. Computational grid for 65x3x17 grid points
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Figure 6.15. Velocity vector plot at y=0.05m
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Figure 6.16. Pressure distribution contour plot at y=O.05m
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Figure 6.17. Temperature distribution contour plot
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Figure 6.18. If-Velocity contour plot
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Figure 6.19. W-Velocity contour plot at y=O.05m
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Figure 6.20. Turbulent kinetic energy contours plot at y=0.05m
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Figure 6.2l. Dissipation rate contour plot at y=0.05m
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Figure 6.22. Effective viscosity contour plot at y=O.05m
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Figure 6.23. Dimensionless outlet turbulent kinetic energy distribution
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Figure 6.24. Dimensionless outlet dissipation rate distribution
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6.3.3 Verification of results

The flow was evaluated at four Reynolds numbers namely, Re=131147, Re=196721, Re=

262295 and Re=655737. The friction factors from the code solution is again calculated as per

equation (6.1). Figure 6.26 shows the friction factor distribution along the length ofthe plates

for the above mentioned Reynolds numbers. Figure 6.26 also shows the fully developed

friction factors for parallel plate flows found from equation (6.17) from White (1991) i.e.

1 (0.5)
f05 = 2.010g10 Re fD -1.19
D

(6. 17)

which are plotted at their respective fully developed hydrodynamic entrance lengths

calculated from the relation given by White (1994) i.e.

(_x_) ~4.4Re-s/6
de Re

(6. 18)

The apparent friction factors shown in figure 6.26 are found from equation (6.4). Figure 6.26

indicates that the present code predicts the hydrodynamic developing length in the parallel

plates satisfactorily. The results from the present code and using equation (6.4) predicts

slightly higher friction factor values than those obtained from the equation for turbulent pipe

flow from Haaland (1983) as presented by Kroger (1998) i.e.

[ { }]

-277 3 / d 3.33

r, =2.7778 log., (~J+(~.75) (6. 19)

where the roughness factor, E, is assumed zero. The larger values predicted by the present

code and found from using equation (6.17) compared to the values found from equation (6.19)

are consistent with comments made by White (1991) that parallel plates show slightly higher

friction factors than those found by using equation (6.19). The fully developed friction factor

comparison for the various Reynolds numbers evaluated are shown in figure 6.27.
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Figure 6.26. Friction factor distribution along the plates for Re= 131147, Re= 196721,

Re=262295 and Re=655737.
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Figure 6.27. Fully developed friction factors for Re=131147, Re=196721, Re= 262295 and

Re=655737.

6.27

Stellenbosch University http://scholar.sun.ac.za



The inlet and outlet dimensionless distance from the wall at the first node away from the

wall, (y+), for the different Reynolds number solutions are shown in figure 6.28. The

maximum v: value is at the inlet due to the uniform inlet velocity and therefore the highest

velocity gradient and shear velocity at the wall.
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Figure 6.28. Dimensionless distance from the wall for Re=131147, Re=196721,

Re= 262295 and Re=655737.

Figure 6.28 indicates that the minimum limiting criteria s' > 30 for the application of the

k - ê model is met for all Reynolds numbers. The maximum limit is exceeded but does not

seem to influence the final solution. This is consistent with comments made by Thiart (1990)

that the y+ < 100 limitation need not be rigorously adhered to especially for higher Reynolds

numbers. White (1991) also shows that for small pressure gradients, as found for these test

cases, the logarithmic velocity relation employed for the k - ê turbulence modeling is

applicable within 35 ~ y+ ~ 1000.

It is important to note that the inlet boundary k - ê values contribute largely to the final

converged field solution. The inlet turbulent kinetic energy value is significant since it

influences the entry lengths, frictions factors and heat transfer properties by controlling the
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effective viscosity of the field. The results shown here were calculated with a turbulent

intensity value of 3.7%. However, it was found that lower inlet turbulence levels (1%), do not

significantly influence the friction factor and heat transfer characteristics since the turbulence

levels of the flow are predominantly controlled by the wall boundary conditions i.e. the wall

velocity gradient, wall shear velocity and law of the wall boundary condition. Similar remarks

was made by Stephenson (1975). Therefore, for other applications such as for the solar

collector numerical model, a turbulent intensity value of 1% will be employed.

1200

1100

1000

900

800

700
;::lz 600

500

400

300

200

100

00

-.- - ~ - - - ~ _.- - ~ - - - r -----r -----1- ----

__ . L __ __ _ 1_ _ I..,-- __ __L_ -'-- __ ----'-_---,-

I
--'----r-------r------ï
_______L. L _

Hausen (J 974)
CFD code 65x3x 17 grids

- ----~------ ~ ------~-- - -~ --- -~ ------1- ----1

I 1 1 1-- - - _------ - ----- - - _._- - ---- - ----------,
1 1

--- --~ ------~ ------~--.---~ - ---~ - - -1----- -I
1 I I

- - - ------- - ------- ---------.--,-----.- --- - _-
1 1 1

- - - I-- - - - - - 1- -- -- - 1- ,_ - -- 1- -- -- -- 1- -- -- -_ -I
I ••••••• -I- ••••••• , •••••••• ~ •••••••• '

--- --~-- --- ~ -
I I

5E-05 0_0001 0,00015
x

Figure 6.29. Nusselt number comparison for Re=196721

Figure 6.29 shows the code results of the heat transfer characteristics for Re=196721

compared to the results from an equation proposed by Hausen (1974) and as given by Kroger

(1998) for the Nusselt number for developing flow in ducts

[
()

0667 ]( ) 0.14
Nu=0.0235(Re08-230)(1.8Pr°.3-0.8) 1+ ~ - :w (6.20)
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where de, the effective diameter of the channel, equals twice the plate spacing. The viscosity

ratio in equation (6.20) accounts for temperature gradients across the duct where f.lw is the

fluid viscosity at the wall temperature and f.l evaluated at the bulk mean fluid temperature T f·

The temperature dependence of the air viscosity can be expressed by the relation from Kroger

(1998) i.e.

f.lf =2.287973.10-6 +6.259793.10-8 ·Tr -3.131956.10-
11 ·T~+8.15038.10-15 ·Ti (6.21)

The high heat transfer coefficients in the entrance region are due to a thin thermal boundary

layer and subsequently high temperature gradients at the wall and near the entrance consistent

with reports by Deisler (1954).

Table 6.3 and table 6.4 summarises the friction factor and heat transfer coefficient predictions

for turbulent flow calculated from the results of the present code.

Table 6.3. Friction factor prediction and comparison for fully developed turbulent flow in

a parallel duct.

Prediction from: Re fappRe % difference

Numerical code Equation (6.17) (a) - (b)

(a) (b) (b) %

Present code 196721 876.55 844.14 +3.84

Stephenson 192000 777.60 828.07 -6.09

Comini and Del Guidice 200000 796.00 855.41 -6.95
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Table 6.4. Nusselt number prediction and comparison for fully developed turbulent flow

in a parallel duct.

Prediction from: Re Nu % difference

Numerical code Equation (6.20) (a)(~)(b) %
(a) (b)

Present code, Prt=0.9 196721 334.89 348.88 -4.01

Stephenson, Prt=0.9 192000 321.21 348.51 -7.83

Table 6.3 indicates that although, as discussed earlier, the present code predicts larger outlet

turbulent kinetic energy values compared to other numerical work done by Comini and Del

Guidice (1985) and Stephenson (1976), it shows considerably better accuracy in predicting

the fully developed friction factor for parallel ducts. The same applies to the prediction of the

Nusselt number for turbulent flows in parallel ducts. The present code prediction shows very

good agreement with results calculated using equation (6.20) and marginally better than the

results from Stephenson (1976). The viscosity ratio in equation (6.20) was assumed one

during the calculation of the Nusselt number for Re=192000 presented in table 6.4.
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6.4 Steady, Turbulent Hydrodynamic and Thermal Developing Radial Flow between

Parallel Plates

6.4.1 The numerical model

The flow conditions and fluid properties are the same as for the test case for turbulent flow

between infinite parallel plates. The geometry is also of similar size except that the flow is

between two circular plates instead of infinite plates. Two configurations were evaluated, both

with a 65x7x17 grid. Both configurations have a plate length ofL=10.0m and plate spacing of

H=O.lm. The first test case models an axisymmetric circular wedge with an inlet to outlet area

aspect ratio, a= l.Ol . An outer radius of ro=1010.0m, inner radius of rj=1000.0m and an

included angle of8=0.0001 radians are specified. Test case 2 models an outer to inner area

Test case 1:
a,=l.Ol

Test case 2:
a=5.0

inlet

8=0.0001

-----:-5-- ~~ ro=IOOO.Om

H=O.lm__ r H=O.lm
_, r

~x

Figure 6.30. Geometries for test case 1 and test case 2.

aspect ratio of ar=5.0. This test case has outer radius of ro=12.5m., inner radius ri=2.5m. and

included angle of 8=0.1 radians. The test case geometries are shown in figure 6.30. The

parallel plates are also evaluated with both smooth and rough surfaces according to the

roughness model presented in chapter 2. The code results are compared to results from

equations presented by Kroger (1999) for radial developing and fully developed flow.
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Table 6.4 shows the solution parameters employed and figure 6.31 indicates the convergence

history for both test cases. Computational speed was 0.0043 seconds/iterationlgrid point.

Table 6.5 Solution parameters for turbulent flow between radial parallel plates

Under-relaxation factors Flux-blending

ap av ak ae aT y

Test case 1 0.2 0.8 0.2 0.2 0.8 0.9

ar=1.01

Test case 2 0.2 0.8 0.2 0.2 0.8 0.9

ar=5.0

--- Test case 2 (ar=5.0)
Test case 1 (ar=1.01)1.4

ta
;::l
"0.;;;
(\)....
'"i(j
E
"0
(\).~
ta -,
E 0.6 -,
0
Z

0.2 -

o 2000 4000
Iterations

6000

Figure 6.31. Convergence history for test case 1 and test case 2.
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6.4.2 Code results

Only the numerical code results for a smooth surface test case 2 is presented. Figure 6.32

shows the computational domain and the resultant vector field plot is shown in figure 6.33 to

figure 6.35. The pressure distribution contours are shown in figure 6.36. The temperature

distribution contours are shown in figure 6.37. The velocity contours for the axial velocity

components are shown in figures 6.38. Figure 6.39 shows the cross stream velocity contours.

The turbulent kinetic energy and dissipation rate contours are shown in figures 6.40 and 6.41

respectively. The effective viscosity contour plot is shown in figure 6.42 while the

dimensionless distance contours Cl) for the first node away from the wall are shown in

figure 6.43.
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Figure 6.32. Computational grid for 65x7x17 grid points
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Figure 6.33. Velocity vector plot on planes y=O.OOm and z=O.05m
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Figure 6.35. Velocity vector plot on plane z=O.05m
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Figure 6.36. Pressure distribution contour plot at y=O.Om
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Figure 6.37. Temperature distribution contour plot at y=O.Om

6.37

Stellenbosch University http://scholar.sun.ac.za



U: -73.9363 -69.0073 -640782 -59.1491 -54.22 -49.2909 -44.3618 -39.4327 -34.5036 -29.5745 -24.6454 -19.7164 -14.7873 -9.85818 -4.92909
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Figure 6.38. U-Velocity contour plot at y=O.Om
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Figure 6.39. W-Velocity contour plot at y=O.Om
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K: 1.87427 3.74853 5.6228 7.49707 9.37133 11.2456 13.1199 14.9941 16.8684 18.7427 20.6169 22.4912 24.3655 26.2397 28.114

Figure 6.40. Turbulent kinetic energy contours plot at y=0. Om
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Figure 6.41. Dissipation rate contour plot at y=O.Om
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Figure 6.42. Effective viscosity contour plot at y=O.Om
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Figure 6.43. Dimensionless distance (y+) from the wall at y=O.Om

6.40

Stellenbosch University http://scholar.sun.ac.za



6.4.3 Verification of results

Smooth radial parallel plates.

For test case 1, the flow is expected to behave very similar to the flow within the infinite

parallel plates since the flow acceleration due to the area contraction is very small. Test case 2

however has an area change ratio of ar=5.0 and consequently an average fluid flow

acceleration of approximately the same ratio. This increasing core velocity should result in

continuously increasing turbulence levels towards the wedge outlet.

Figure 6.44 shows the pressure loss coefficient due to friction for both test cases. The loss

coefficients for both these test cases are also compared to the frictional pressure drop results

from the turbulent infinite parallel plate predictions presented earlier in this chapter. The

pressure drop due to frictional effects is expected to increase for higher turbulent levels, a

phenomenon clearly shown in figure 6.44. Test case 1, compared to the results from the

infinite parallel plates, shows an insignificant increase in the frictional pressure loss due to the

slight increase in the velocity towards the outlet. Test case 2 shows a large increase in the

frictional pressure loss due to the large velocity acceleration through the duct.

1 1
-1'--- - ~ - - -~- - --

1 1----~ --- - ~-----~----_.~----._.-.-.-
1

- --. - -- Kroger (equation 6.24)
CFD code (Test case 2)
Equation (6.35) (Test case 2)
CFD code (Flat parallel plates)
CFD code (Test case 1)

- -0 - - Kroger (equation 6.36)

. . . I~- --_.~---_._~--_._~
i i i i. ~
1 1

0.2

Figure 6.44. Pressure loss coefficient for smooth radial parallel plates
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The pressure loss coefficient, Ko, due to friction on the two surfaces of the radial plates was

calculated from the average static pressure drop results of the CFD code. The static pressure

drop along the plates was calculated by subtracting the dynamic pressure from the total

average pressure as calculated by the code i.e.

(6.22)

The static pressure loss coefficient based on the inlet velocity then becomes

(6.23)

The loss coefficient due to wall friction in the entrance region between two surfaces of radial

plates and based on the inlet velocity was derived by Kroger (1999) i.e.

( H)O.l667( ) ( )
Ko = 0.08038 ~ ~oo r; ~ (6.24)

where,

(6.25)

The mass flow, rn , In equation (6.24) is the total mass flow through the plates,

m = 21troHpuo' The above formulation of Kroger (1999) allows for the variation of the top

plate height according to the relation

(6.26)
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where b is a parameter, O:s b s 1. For the present calculations b=O representing a parallel

radial plates.

Since the boundary layer for high Reynolds number flows is expected to be thin, the

approximate free stream velocity is inversely proportional to the radius, Kroger (1999), i.e.

1
u oc-

C r (6.27)

Ou
The shear stress at the wall is directly proportional to the velocity gradient (an) at and

normal to the wall and therefore from equation (6.27) one expects the shear stress also to be

inversely proportional to the radius (r). Based on the above assumption and by employing the

logarithmic law, equation (6.16), for the velocity distribution for fully developed turbulent

flow between the plates, one may find the wall shear velocity for fully developed accelerating

flows between radial parallel plates, (appendix D), i.e.

(6.28)

(6.29)

1 [ (1 (ZP(r))]Jx2 =- In(Z)-ln -In -(-)
P(r) P(r) In Z

(6.30)

P(r) = ue (r)· K (6.31)

EH
Z=-

2v
(6. 32)
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where E=0.91 and K = OA1. By assuming a thin turbulent boundary layer, the centerline flow

velocity in equation (6.31) may be approximated by

m
uJr}=--

2nrpH
(6. 33)

Kroger (1999) shows that the momentum balance on a control volume located between two

parallel discs as shown by figure 6.30 yields the radial frictional pressure drop i.e.

Or H (6.34)

Integrating equation (6.34) one may find the pressure loss coefficient due to wall shear and

based on the uniform inlet velocity as

Pro - Pr 1 rf 2K = = - -r (r )dr
o O.5pu~ O.5pu~ H W

ro

(6.35)

where the shear stress r w (r) is given by equation (6.28) and UT = J-r w / P .

Kroger (1999) presents another equation for the pressure loss coefficient for the fully

developed region for turbulent radial flows between smooth surfaces and based on the average

inlet velocity i.e.

l.4633. 10-3 rit LSI.! 0.2 [r:~b-OS) - r(3b-0.S) ] 1
Ko= 3 2

p(Hor~) (3b - 0.8) O.5puo
(6.36)

Figure 6.44 indicates that the present code prediction of the pressure loss coefficient

calculated using equation (6.23) compares well with the results from equation (6.24) for the

pressure loss coefficient for the entrance region, as well as with results calculated by

employing equation (6.36) for the fully developed region.
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Figure 6.45 shows the local heat transfer coefficient prediction calculated from results of the

present code. The results for test case 1 and 2 are also compared to the results for the infinite

parallel plates presented earlier in this chapter. The local heat transfer results for test case 1

again show an insignificant increase compared to the infinite parallel plates results while test

case 2 shows a considerable increase in heat transfer coefficient.
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Figure 6.45. Local heat transfer coefficient for smooth radial parallel plates

The accelerating radial flows between the parallel plates gives rise to higher turbulent levels

along the length of the plates which in tum increases the heat transfer from the walls due to

increased eddy conductivity. Kroger (1999) employs the Colburn analogy, Rohsenow and

Choi (1961), i.e.

hrPr2/3 'tw{r)
CppuJr) - p(uc{r)r (6.37)

to predict the local Nusselt number for flows within the entrance region of a smooth radial

collector based on the integral analysis of the boundary layer. The formulation is
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1/6

(6.38)

with the local heat transfer coefficient found from

h = NUr ·k
r (ro -r) (6. 39)

Furthermore, the fully developed local heat transfer coefficient may also be found by using

equation (6.37) i.e.

(6.40)

where the shear stress term 't w (r) is again found by employing equation (6.28).

An energy balance at the wall yields the formulation for the calculation of the heat transfer

coefficient from the present code results i.e.

(6.41)

where k, is the effective conductivity at the wall as per equation (2.60) and (or) is theOn w

local temperature gradient at and normal to the wall. The wall temperature gradient may be

found from the following approximation for orthogonal control volumes at the boundary
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(:)
w

= (6.42)

where TI and ZI are the temperature and z-coordinate at the first node away from the wall.

A second order approximation for the first derivative of temperature at the wall may also be

found from a parabola fit through a point on the wall and two inner points, given by Perié

(1996), i.e.

(:)
w

-T3(Z2 -zwf +T2(Z3 -zwf -TW[(Z3 -zwf -(Z2 -zw)2]
=

(Z2 - r; )(Z3- z ; )(Z3- Z2)
(6.43)

where the subscripts 2 and 3 refers to first and second grid points away from the wall

respectively. From figure 6.45 it is evident that equation (6.42) provides a more accurate

approximation of the local temperature gradient than equation (6.43). For turbulent flows the

local temperature gradient at the wall will generally be larger than the value given by equation

(6.42) but also smaller than the value from equation (6.43).

Kroger (1999) presents an equation for the fully developed local Nusselt number for radial

flows between smooth parallel plates i.e.

(fD / 8)(Re- 1000) Pr
(6.44)

where the local heat transfer may be found from

(6.45)

The Darcy friction factor for a smooth surface in equation (6.44) may be given by
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(6.46)

The local Reynolds number in equations (6.44) and (6.46) is based on the local centreline

velocity, equation (6.33) and a hydraulic diameter of twice the plate spacing. It is evident that

there exists good agreement between the code predictions of the local heat transfer coefficient

and those found by using equation (6.38) for the entrance region and equations (6.40) and

(6.44) for the fully developed region.

The above pressure drop and heat transfer correlations indicate that both the present code and

the analytical relations predicts a similar behaviour of radial air flow between smooth parallel

plates assuming that no flow separation occurs. It also suggests that the k-E turbulence model

is suitable for application to these types of flows.

Rough surface radial parallel plates.

The modified turbulence model for rough surface boundaries as described in chapter 2 is

employed to evaluate the effects of roughness on the frictional pressure drop and local heat

transfer coefficient. One expects the roughness to increase the turbulence level with

subsequent rise in the frictional pressure drop as well as local heat transfer from the walls. All

flow properties and test case geometries remain the same as for the smooth plate evaluation.

An equivalent sand roughness length of E = 1%. H = O.OOlmwas employed.

Figure 6.46 shows the code prediction of the frictional pressure drop along the plates for test

case 2. Kroger (1999) derived an equation for the frictional pressure loss coefficient for

developing radial flows between rough surfaces. This loss coefficient, based on the average

inlet velocity, is

(6.47)
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with

( )
0.797[ ( )0.797]

Fr = 1- ~ 1.97+ (2.1- 3.2Ib + 4.79q - 9.18bq) 1- ~ (6.48)

(6.49)

and for constant plate spacing b=O, as per equation (6.26). This loss coefficient is applicable

to radial developing flows. Kroger (1999) presents another equation for fully developed radial

flows between rough parallel plates i.e.

-3 0754. 2 [ ( ) 0.51{(2.7446b-0.49) (2.7446b-0.49)}
K = 0.632 ·10 E'- m 4.468 J.!Horo rfd - r

° p(Horof254 me (2.7446b - 0.49)

+ {r~254b-1_ r3254b-1} ] 1

(3.254b -1) 0.5pu~
(6. 50)

This equation describes the radial frictional pressure drop from the fully developed radius, r[d,

to any other smaller radius. From figure 6.46 it is evident that good agreement exists between

the present code prediction of the frictional pressure loss and the results calculated by using

equations (6.47) and (6.50).

Figure 6.47 illustrates the present code prediction of the local heat transfer coefficient

compared to results found by employing equations derived by Kroger (1999) for the local heat

transfer coefficient for developing and fully developed turbulent flows between rough radial

plates.
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Figure 6.46. Pressure loss coefficient for rough radial parallel plates, E = O.OOlm
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Kroger (1999) derived an equation for the local Nusselt number for developing radial flows

between rough surfaces i.e.

( )(
.)() 0.2026( ) I-b

NUr = 0.001325 Pr0333 1- ~ Il:o ~ r;

( r) O.5I(I-b)

4.953q - + 1
ro

(6.51)X----------------------------------------~0~20~26

(:,)'''-O''" _(J"""''' (:,)-(J'''_''''"
q + ---------------

2.550 - 6.787b 17.38 - 38.37b

where the local heat transfer coefficient is found from equation (6.39). The local Nusselt

number for the fully developed region is given by Kroger (1999) as

(fD / 8)(Re( r ) - 1000) Pr
NUr = [ 05 ]1+ 12.7(fD /8) . (pr067 -1)

(6. 52)

with the local heat transfer coefficient found from equation (6.45). The Darcy friction factor

in equation (6.52) may be found from an equation from Haaland as presented by Kroger

(1999) i.e.

[ { }]
~

69 / H UI

r, = 0.3086 log., ~e + ( E7.4 ) (6.53)

The local Reynolds number in equations (6.52) and (6.53) is based on the local centreline

velocity, equation (6.33) and a hydraulic diameter of twice the plate spacing. Good agreement

is found for the entrance region between the present code predictions of the local heat transfer

coefficient and the results found by using equations (6.52) and (6.53). However, towards the
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outlet, in the fully developed region, equation (6.52) predicts higher local heat transfer

coefficients than predicted by the present code. This may be attributed to the code prediction

of smaller local velocity and temperature gradients near the wall. The local heat transfer

coefficient prediction is again higher when approximating the local wall temperature gradient

by using equation (6.43) instead of equation (6.42). For turbulent flows, the actual local

temperature gradient will generally be higher than the value calculated by using equation

(6.42) and smaller than calculated from equation (6.43). Therefore the code predicted heat

transfer coefficient would fall between the values shown in figure 6.47.

For the purpose of this study the present code satisfactorily predicts flow properties, frictional

pressure losses and heat transfer characteristics for developing and fully developed turbulent

radial flows over rough surfaces. Chapter 7 will apply the present code to model the air flow

behaviour within an actual solar collector of similar geometry as modeled above.
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6.5 Steady, Turbulent Hydrodynamic Developing Flow Between Infinite Parallel Plates

with Non-orthogonal Control Volumes

6.5.1 The numerical model

A similar model geometry flow conditions and fluid properties are modeled and employed as

discussed in section 6.3. The exception being that non-orthogonal control volumes are

generated by moving the previously generated orthogonal control volume comers in alternate

directions. The results may be compared to those found for orthogonal control volumes since

the same flow conditions and fluid properties are employed.

Three grid configurations were evaluated namely 65x3x7, 99x3x17 and 121x3x17 to ensure

that a grid independent solution was achieved. Only the results for the 121x3x 17 grid, shown

in figure 6.49, are presented and discussed here. Figure 6.48 shows the convergence history

for this evaluation. The under-relaxation factors employed are shown in table 6.6

Table 6.6 Solution parameters for turbulent flow between parallel plates

for non-orthogonal control volumes

Under-relaxation factors Flux -blending

ap av ak ac aT y

0.2 0.8 0.2 0.2 0.9 0.9

6.53

Stellenbosch University http://scholar.sun.ac.za



1.3

1.1
-;;
:::
::2
<Il 0.9~
<Il
<Il

Ë
"0 0.7
Il.l
.~
-;;
ê 0.50z

0.3

0.1 -

0 3000 4000
Iterations

Figure 6.48 Convergence history

The minimum angle between the interface vector and the nodal vector ranged from 90° to 74°

while comer angles ranged from 75° to 90° and 90 to 104°. The control volumes near the

boundaries remained orthogonal since the non-orthogonal formulation for the present study,

as presented in chapter 5, were not extended to include non-orthogonality at boundary control

volumes.

6.5.2 Code results

The results shown in figure 6.50 to figure 6.59 indicate very good agreement and comparison

to the results found and discussed in chapter 6.3.2 for the same geometry but with orthogonal

control volumes.
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Figure 6.49. Computational grid X-Z plane at Y=0.05 for 121x3x17 grid points.
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Figure 6.51. Pressure distribution contour plot at y=O.05m
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Figure 6.52. Temperature distribution contour plot at y=O.05m
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Figure 6.53. U-Velocity contour plot at y=O.05m
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Figure 6.54. W-Velocity contour plot at y=O.05m

6.57

Stellenbosch University http://scholar.sun.ac.za



K: 0.102952 0.308857 0.514762 0.720667 0.926571 1.13248 1.33838 1.54429 1.75019 1.9561

0.1

0.08

0.06

0.04

0.02

o

Figure 6.55. Turbulent kinetic energy contour plot at y=O.05m
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Figure 6.56. Dissipation rate contour plot at y=O.05m
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Figure 6.57. Effective viscosity contour plot at y=O.05m
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6.5.3 Verification of results

From the code results presented in chapter 6.5.2 it is evident that the flow field results are

similar to the results as found for the similar test case but employing orthogonal control

volumes. The friction factor distribution along the length of the plates is shown in figure 6.60

for this non-orthogonal test case. The results compares favourably to the values for

Re= 196721 for the orthogonal control volumes.

3000
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Figure 6.61 Friction factor distribution along the length of the plates. Comparison between

results for Re= 196721 for orthogonal and non-orthogonal control volumes.

For the purpose of the present study it was therefore accepted that the code formulation for

non-orthogonal control volumes generates accurate results for friction factors and pressure

drop for turbulent flows. No Reynolds numbers other than Re= 196721 were evaluated.

The heat transfer characteristics are accurately predicted for the non-orthogonal control

volume geometry as shown in figure 6.61. Again the results of the non-orthogonal test case
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are compared to the earlier results from the orthogonal control volumes as presented and

discussed in section 6.3.3.
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Figure 6.62 Nusselt number companson for Re=196721 and non-orthogonal control

volumes.

Figure 6.62 does indicate the presence of temperature oscillations near the entrance of the

plates. This is due to the distorted control volumes in the region where the flow develops and

would be eliminated by refining the grids in that area. However, these local entrance

inaccuracies do not influence the final fully developed results downstream.

The above results indicate that the non-orthogonal control volume formulation as

implemented in this study ensures accurate results and shows excellent agreement with results

from similar but orthogonal test cases. It is therefore accepted that the formulation generates

accurate results for the radial parallel plate geometry presented earlier. In these radial parallel

plate problems non-orthogonal control volumes are generated in the radial direction since it is

generated in a general global Cartesian coordinate frame and not in polar coordinates.
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7. SOLAR CHIMNEY COLLECTOR

7.1 Introduction

The solar chimney power generating concept and principles were briefly discussed in

chapter 2. As mentioned, one of the main components of a solar chimney plant is the solar

collector. In general, the term solar collector defines a special kind of heat exchanger which

transforms solar radiation or solar energy into heat, Duffie and Beckman (1991). The

collector of the solar chimney plant is essentially a circular flat plate collector although the

transparent roof cover may be raised towards the center of the collector to limit friction losses

due to accelerating flows, as well as limiting separation of flow at the collector and chimney

transition region, Schlaich (1995). Figure 7.1 illustrates the solar collector of a solar chimney

power plant.

Chimney
~

Collector inlet
Cold air inChO / 11 Transparent roof supported

imney co ector b d. . ra ove groun
~-tranSltIOn /

I-----'\" ;
Heated air flow

I:' ",
." .~ . . . :

. :c,.' t.i·..:' ,

Ground

• ~ • .... • d " ::

'. '

'.. .~..
d" '"

,.. "

Figure 7.1 The solar chimney and collector

Air is heated inside the collector by the greenhouse effect and is subsequently drawn from the

collector perimeter towards the centre. At the base of the chimney a turbine uses this mass

flow of hot air exiting the collector, to generate electricity. Therefore, the collector initiates,
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maintains and heats the mass flow of air by receiving or collecting solar energy. Due to

various heat losses, not all of the solar radiation received, is available to heat the air. These

energy losses include, among others, radiation losses from scattering of radiation as it passes

through the atmosphere, losses from reflection of radiation from the glass roof and from the

ground, conduction losses in the ground and roof, and convection losses from the top of the

roof to the atmosphere. The radiation that is ultimately absorbed by the ground increases the

soil temperature which in turns transfers heat to the air by means of convection. Considering

an energy balance across the collector, the efficiency of the collector may be defined as the

energy absorbed by the air divided by the total solar energy received i.e.

(7. 1)

where G may be the total available solar energy received by the collector. Aeollis the surface

area of the collector, ill denotes the mass flow rate of air through the collector and Toutand Tin

are the bulk fluid temperatures at the outlet and inlet respectively. Schlaich (1995) and Haaf

(1984) defines similar solar collector efficiencies.

As shown by Gannon and Von Backstrom (1999) their exists a strong coupling between the

power output of the plant, the temperature rise in the collector and the mass flow rate of air

through the plant. These parameters also influence the operating range of the turbine. Thus,

the accurate prediction of the collector efficiency and the characteristics and properties of the

air flow through the collector is an essential part of the solar chimney power plant feasibility

study and design of an efficient solar chimney power plant and operating conditions. Some of

the more important characteristics that need attention include the heat transfer from the heated

ground to the air stream, the conduction of absorbed solar energy in the soil and subsequently

the inherent thermal inertia of the system and the friction losses occurring in the flow. The

present numerical evaluation of the solar collector intends to evaluate the resultant average air

temperature rise established by the collector as well as to provide the two dimensional

temperature, velocity and pressure profiles of the flow field within the collector.

The present study applies the numerical code to the solar collector as found in the Manzanares

solar chimney pilot plant and for which operational principles and experimental data is
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available Haaf (1984) and Haaf et al. (1983). The model assumes a flat plate circular air

collector, similar to the test cases presented in chapter 6 and as shown in figure 7.2. The

models consists of three regions namely the glass roof, the region of air flow and the soil

region. The boundary conditions and fluid properties applicable to the model are also shown

in figure 7.2. The flow through the collector is assumed to be incompressible and dry.
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s
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-- __j

l
soil bottom

Figure 7.2. The solar collector model

The mass, momentum and energy conservation equations are solved for the air flow region

while only the energy equation is applied to the glass and ground regions.
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7.2 The Manzanares Solar Collector

7.2.1 The model

The model representing the solar collector for the pilot plant built in Manzanares has an

outside diameter of do=245m and a chimney diameter of dchim= 10m. A collector inside

diameter of di=30m. and a wedge included angle of 8=0.01 radians was used in this model.

The transparent collector roof is raised H=2m above the ground. Typical operating values as

measured at the plant as extracted from Haaf (1984) and Haaf et al (1983) were employed as

boundary conditions for the model and the resultant numerical prediction of the temperature

rise across the collector compared to these measured values. For 10:00am, a chimney outlet

velocity of V=7.01m.s·1 was measured. The ambient temperature was Ta=20°C and the

surface temperature of the ground was Tw=56°. The measured temperature rise in the collector

was .IT=14.59°C. The measured surface temperatures given by Haaf (1994), are, for the sake

of simplicity, assumed constant throughout the collector. A solar radiation source term at the

soil and fluid interface was excluded in this model since the surface temperatures for the soil

is available and assumed constant. For simplicity, a zero temperature gradient roof/air

boundary was used. The Reynolds number for these flow conditions, based on the average

inlet velocity and an effective diameter of twice the roof height is Re=93718. The bottom soil

was assumed to be rough and with an equivalent sand roughness height of ks=5%H=0.lm.

The glass surface was assumed to be smooth.

Initially, the above mentioned test case was evaluated on three grid configurations namely

65x7x23 grid points, 95x7x33 grid points and 165x7x23 grid points. This ensured that a grid

independent solution was reached. The grid was refined towards the walls by employing a

series expansion with expansion factor of 0.9. This ensured that the / terms remain within

the limits set for the turbulence model from the inlet to the outlet of the collector. The grid

was also locally refined at the inlet and outlet. The inlet turbulent intensity value used was

ik=O.OI.

The number of iterations required to decrease the normalised mass residuals below 0.2 on the

finest grid is approximately 2000 with under-relaxation factors as per Table 7.1. The
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convergence history is shown m figure 7.3. The computational speed was 0.0042

seconds/iteration! grid point.

Table 7.1 Solution parameters for the Manzanares solar collector model

Relaxation factors

ap av ak aE aT y

0.2 0.8 0.2 0.2 0.8 0.9

1.8

1.4
0;
::>

""'e;;
il:!
~
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13
.~
0;

Eo
z 0.6r
DJ

0L_~-L~~~10LO-O~_L_J--L_20~0-0-b~--~~3~O~OO~~--~~4~000
Iterations

Figure 7.3. Manzanares model convergence history for 165x7x33 grid

7.2.2 Code results for the Manzanares collector

Figures (7.4) to (7.16) shows results from the CFD code solution for typical flow conditions

and fluid properties as discussed.

7.5

Stellenbosch University http://scholar.sun.ac.za



- - - f-- -
0.5-_-- == - I-

-
-- -

0
- -- -_ :: - - I- -

-
-

-0.5- - I- - •20 40 60 80 100 120

Y

Lx
Figure 7.6. Velocity vector plot on plane z=1.OOm
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Figure 7.7. Pressure distribution contour plot at y=O.Om
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Figure 7.8. Temperature distribution contour plot at y=O.Om
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Figure 7.9. U-Velocity contour plot at y=O.Om
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Figure 7.10. W-Velocity contour plot at y=O.Om

Figure 7. 11. Turbulent kinetic energy contours plot at y=0. Om
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Figure 7.12. Dissipation rate contour plot at y=0. Om
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Figure 7.13. Effective viscosity contour plot at y=O.Om
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Figure 7.14. Dimensionless distance (y+) from the wall at y=O.Om
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Figure 7.15. Outlet axial velocity (u) and temperature (T) distribution
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7.2.3 Discussion of results

The flow of air through the collector is expected to behave similar to the air flow through the

radial parallel plates as modeled and presented in chapter 6. We may also compare the

frictional pressure drop and local heat transfer coefficients predicted by the present code with

results found by using the equations derived by Kroger (1999). Figure 7.17 shows the local

heat transfer coefficient at the rough ground surface as predicted by the code and compared to

values found from equations (6.50) and (6.51). Again the code prediction in the entrance

region compares well with results found from equations (6.50) and (6.51).
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Figure 7.16. Rough ground surface local heat transfer coefficient prediction

Figure 7.16 indicates that the results from the code prediction of the heat transfer coefficient

corresponds reasonably compared to values calculated by using equations (6.51) and (6.52).

However, towards the outlet the difference between the code and the analytical results is as

high as 30%. Presently these results only indicate that both the present code as well as the

analytical equations from Kroger (1998), for radial developing and fully developed flows,

predicts similar trends in the thermal behaviour of the air flow within the collector.
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The code prediction of the bulk fluid temperature rise through the collector is shown in

figure 7.17. The total bulk fluid temperature rise of 10.8K is lower than the value of 14.5K

given by Haaf (1984). This may be attributed to various modeling assumptions and

simplifications.

304

303

302

301

300

299
f-o-

298

297

296

295

294

293

Figure 7.17.

I I I I I
- r - - T - --~-----,-- --r----

I I I I
- - - --------_ -----.-----------

I I I I
_ ~. 1__ ._1 .L._. ~ __ ~ 1 1 _

I
-- ~ - ---1- - -1- - - ~ ----+----

I I I I I I I.. .--~ - -·-,-·----1--- --r--'-'T--'-'~'- - -,- - -'r'- -
I I I I I I I

- - - - _.- - - - - -._---- --- - _ - -.----- -- - -
I I I I I I I

_.~._. I_._._I L ~ ~ 1_. I _. .
I I I

- ~---- -1-'- -,1- - - ~ -.- + -.- ~ - -'-I-'--~
I I I I I I I I

---~ - - -,-.- -1- ----r-- - T-- -.~-- - -I---'-r --
I I I I I_._.-.----_._---- - _.- _.- _.- _._._--.-.- -.---
I I I I I

0.4 0.5 0.6
rlro

0.7 0.8 0.9

Code prediction of bulk air temperaturerise through the collector.

The assumptions that may lead to the prediction of lower air temperatures are the exclusion of

a radiative heat source in the glass roof and ground, the assumption that the glass roof is

smooth and the unavailability of actual roughrIess parameters for the ground. It is also not

clear from experimental data where the average temperature rise in the collector is measured

andhow the average temperature is determined.

Figure 7.18 shows the code prediction of the frictional pressure loss coefficient within the

Manzanares solar air collector.
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Figure 7.18. Frictional pressure loss coefficient for Manzanares solar collector

Since the glass roof is assumed smooth and the ground surface treated as rough, the frictional

pressure loss coefficient was found from the average of the values found from equations

(6.24) and (6.46) for the developing flow region and from the average of the values found

from equations (6.36) and (6.49) for the fully developed region. Figure 7.18 indicates that the

present code prediction of the pressure loss coefficient compares well with the values

calculated as mentioned above.
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8. COMPUTER PROGRAMS

8.1 Introduction

The code generated to solve the flow and heat transfer problems consists of four individual

programs, each running separately but in succession. Similar modules as proposed by Harms

(1995) are adopted. The FORTRAN 77 programming software was used on the DEC VAX

system of the University of Stellenbosch. The programs produced are TOWER.FOR,

GEOCALC.FOR, INIT.FOR and MAIN.FOR. This chapter describes the structure and

primary subroutines contained in each. The information calculated in each program is stored

in data files which is then read by the other programs. This saves processing time since, for

example, one does not recalculate the grid geometry and geometrical parameters each time

flow parameters are changed. These geometries are constant for a given computational

domain or geometry and do not require amendment. Effectively, in order to calculate the flow

field in any arbitrary domain one only needs to generate the control volume comer

coordinates. Once this is achieved all the subsequent computations such as calculation of

geometrical vectors and the solution of the field properties are processed automatically,

except for the changing of under-relaxation parameters and boundary conditions. Simply put,

if it becomes necessary to add a different more advanced grid generation package to the

existing code, one simply replace program TOWER.FOR and ensures that the control volume

central node and comer coordinates are stored in the same format as required by the

subsequent programs.

The main geometrical and solver parameters are also stored in a text file, INPUT.DAT, from

which each program reads the relevant information to either generate the geometry or to solve

the flow field.
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8.2 TOWERFOR

This program is responsible for grid generation. The structure of the program is shown in

figure 8.1.

The program TOWERFOR reads information from INPUT.DAT in subroutine INPUTD,

such as which geometry needs to be calculated and the number of nodes required in three

dimensional space. The available geometries include a radial flat plate collector and flat

parallel plates. Other geometries may be programmed or alternatively a more advanced grid

generating program may be employed instead.

: INPUTD

I PLATES

~
0
i:I...

I GRID~
~ I
0
E-<

I REFINE

: UNSTRUCT

Figure 8.1. TOWERFOR flow chart

Subroutine PLATES generates the flat parallel plates for the verification problems and

subroutine GRID generates the radial parallel plates for the solar collector test cases. Each of

the grid generators calculates the control volume comer coordinates and central node

coordinates based on the geometry parameters and number of nodes required and as read in

INPUTD. Subroutine REFINE applies local grid refinement, if required, by means of either a

geometrical series or by dividing a line describing the length of a boundary into unevenly

spaced or concentrated segments. The length of these segments may found from fitting a

third order polynomial through three coordinates and two gradients at the first and last
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coordinates. All coordinates are generated by sweeping the three dimensional domain (x,y,z)

and subsequently storing the central node coordinates and control volume comer coordinates

in structured three and four dimensional arrays, array(j,k,i) and array(n,j,k,i) respectively,

where n defines a face number from one to six.

Subroutine UNSTRUCT sweeps through the three-dimensional arrays, assigns unstructured

node numbers to each control volume central node and stores all information in unstructured

one or two-dimensional arrays. Thus, all geometrical information may be retrieved by only

sweeping from node 1 to the node N, the total number of nodes in the domain. The

information is saved in a data file for subsequent retrieval.

8.3 GEOCALC.FOR

This program reads the control volume central node and comer coordinates generated and

stored in program TOWER FOR Figure 8.2 shows a flow chart of the structure of the

subroutines of GEOCALC.FOR

~ SEEDAT
0~
cj

~
U
0~
CJ GEOMATH

Figure 8.2. GEOCALC flow chart

Subroutine SEEDAT reads the coordinate datil file generated by program TOWERFOR This

information is used to calculate geometrical parameters such as the volume of each of the

control volumes, the interfacial area vectors, interfacial interpolation factors and nodal vectors

among others. These are calculated in subroutine GEOMATH. These parameters are constants

and are only recalculated for different geometries. All the relevant information is stored in a

data file for subsequent use by the program MAIN.FOR for the solution of the flow field.
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8.4 INIT.FOR

This program initialises the flow field. It assigns the initial field flow conditions and initial

properties of the fluid. The structure of the program is shown in figure 8.3.

I SEEDAT

~
0 I FLOWPROP
r.x...
~
Z.....

I OUTPUT
I

Figure 8.3 INIT.FOR flow chart

Again subroutine SEEDAT reads data files containing relevant nodal information generated

by the previous programs. Subroutine FLOWPROP assigns initial values to each node such as

U, Vand W velocity values, temperature, density, viscosity and nodal pressure among others.

Subroutine OUTPUT writes all these nodal value data to file for subsequent retrieval by

program MAIN.FOR.

8.5 MAIN.FOR

This program is responsible for combining all the geometrical information and flow properties

and calculates the flow field within given boundary conditions. The structure of the

subroutines contained with MAIN.FOR is shown in figure 8.4

Firstly the geometrical information, initial flow conditions and flow solution parameters are

retrieved from the relevant files in subroutines INPUTD and SEEDAT. This includes

information such as the interfacial area vectors, nodal vectors, nodal gradient projection
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factors, volumes, interpolation factors, relaxation factors, flux blending factors, number of

iterations required, time step magnitude and other information.
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Figure 8.4. MAIN. FOR flow chart
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The field is again initialised with subroutines BOUND and INTERF which calculated the

initial boundary conditions and interfacial quantities required to calculate influence

coefficients for the discretised governing equations.

The outer iteration of the solution algorithm is then started with subroutine FLOW,

calculating the influence coefficients and source terms contained in the discretised three

dimensional momentum conservation equations. The momentum conservation solution matrix

is solved by means of the SIP solver in subroutines SIP3DUMOM, SIP3DVMOM and

SIP3DWMOM resulting in a new velocity field.

The boundary conditions are applied in BOUND and the interfacial properties such as

interfacial velocities are updated in subroutine INTERF.

The calculation of the influence coefficients and source terms required by the discretised

pressure correction equation are calculated in subroutine PRES COR. The pressure correction

solution matrix is solved in SIP3DPRES after which the nodal pressure field as well as the

interfacial velocity field are updated with pressure and velocity correction values.

If required, the influence coefficients and source terms present in the turbulent kinetic energy

and dissipation rate equation are subsequently calculated in subroutine TURBULENCE and

solved in subroutines SIP3DTKE and SIP3DEPS respectively. These values would later be

used to update the effective viscosity and conductivity values.

If an energy field solution is required, the subroutine ENERGY calculates the influence

coefficients and source terms required to solve a temperature field. The temperature field is

subsequently solved in subroutine SIP3DENER.

The algorithm follows with subroutine PROPDATE which updates the effective viscosity and

conductivity values in the case of a turbulent field solution and also, if required, recalculates

fluid properties such as density from equations of state.
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The boundary conditions are agam applied in subroutine BOUND after which the

convergence evaluation is made. If the convergence criteria are met or if the total number of

iterations specified has been reached then the algorithm exits the outer loop and stores the

results in data files for evaluation or restart purposes in subroutine RES OUT . If these

conditions are not met, the algorithm returns to the subroutine FLOW for another outer

iteration. If a transient solution is required, then once the convergence criteria are met for one

time step, the algorithm exists the outer loop, writes the results to file, updates the "old"

property values with the latest values in subroutine OLDMOM, resets the convergence criteria

and outer loop iteration number and returns to subroutine FLOW for calculation of the filed at

a new time step.

All resultant field data and residual error data are stored in the format specified by TECPLOT

7.5 for ease of evaluation and visualization.
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9. CONCLUSIONS AND RECOMMENDA nONS FOR FUTURE WORK

During the course of this study a non-orthogonal three-dimensional finite volume code was

established for the solution of incompressible, Newtonian, single phase fluid flows including

turbulence and heat transfer effects. The discretisation of the governing equations pertaining

to such fluids was formulated to complement this finite volume method in a general locally

non-orthogonal coordinate frame. The flux blended interpolation scheme employed in the

discretisation was found to be adequately robust.

The code generated was applied to simple test cases to evaluate the solution of laminar and

turbulent thermo-flow problems. The code was also applied to calculate the thermo-flow field

behaviour of the flow through a solar chimney collector. Although non-orthogonal

contributions remained active during the evaluation of the code, they still requires extensive

evaluation against benchmark problems and for flows in complex geometries where more

severe control volume distortions are present.

The Rhie and Chow interface velocity interpolation method for a non-staggered grid

arrangement was included in the discretisation and incorporated into the code. It was found

that this greatly reduces the occurrence of pressure oscillations in the flow field. However, the

limitations of the method still requires investigation and evaluation.

A strongly implicit solution procedure (SIP) was evaluated and incorporated in a SIMPLE

algorithm. This procedure was found to be highly efficient for inner iterations but that

problems in large computational domains and specifically ones with high aspect ratios still

require many outer iterations. The addition of a multi-grid solution method should be

investigated and incorporated into the existing implicit procedure to harness the full speed-up

capabilities associated with these methods. Another solution algorithm such as SIMPLEC

should be also be incorporated into the code.

The FORTRAN 77 code should be modified to run on FORTRAN 90 and the user interface

changed to one operating on WINDOWS. It is suggested that the main code remains an

executable FORTRAN code but these executables should be incorporated in a C++ or Delphi
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program to utilise its more enhanced user interface capabilities. Typically the existing code

could be upgraded to operate with software such as Pro-Fortran 6.0 of Absoft which can

automatically build dynamic link libraries compatible with Delphi and Borland C++

programming software. The flow visualisation software TECPLOT 7.5 was employed. The

use of this software should be extended by employing its macro capabilities in conjunction

with the user interface considerations mentioned above.

All the additions and modifications proposed above would greatly increase the code

efficiency to evaluate the flow phenomena present within the large scale solar collector. An

increase in the calculation speed of the code would also enable the prediction of the transient

flow phenomena such as the effects of thermal inertia on the collector efficiency. The addition

of another turbulence model should also be evaluated for its applicability to the solar collector

model. The code results shows a lack of penetration of heat into the free stream for the larger

radial collector. This is a specific problem that requires clarification and other turbulence

models should be investigated that may accurately predict turbulence quantities for

accelerating flows.
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FINITE VOLUME DISCRETIZATION OF MOMENTUM CONSERVATION

EQUATIONS
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When integrating the general orthogonal momentum conservation equation, equation (3.10)

i.e.

Iv .j(~) dV = fJ(~)·ïidA = IS(~) dV (A. 1)
v A v

over time and volume the flux vector is approximated as per equation (3.11) i.e.

(A.2)

where

(A.3)

The interfacial transported variable ~n in the convection term of equation (A.3) is substituted

with the flux blended interpolation formula given by equation (3.6) i.e.

(A.4)

Furthermore, the diffusion term in equation (A.3) is substituted with an approximation for the

interfacial diffusion given by equation (3.13). After these substitutions equation (A.3) may be

written as

(A. 5)

by grouping terms

(A. 6)
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By employing an artificial addition and subtraction one finds

artificial subtraction and addition

J ~ = ([Ipen;0.01]+ 1.0):~ ~N + ( - ([1- Pen ;0.01]+ 1.0):~ ~ N + ([1- Pen ;0.01]+ 1.0):~ ~N)

- ([1- Pen ;0.01]+ 1.0):~ ~NN + p, V;S2 (A.7)

and since

[([Ipen;0.01]+ 1.0)- ([1- Pen ;0.01]+ 1.0)]:~ ~N = p, Vl;~N

one may re-write equation (A 7) as

(A 8)

Equation (A8) is now the same as given by equation (3.14).When equation (A8) is summed

over the six faces of the hexahedral control volume one may assume that for the converged
6

solution the continuity "like" term, I (Pnv;A~)~N, disappears.
n=1

By combining equation (A.8) and equation (Al) i.e.

and grouping terms one finds

A3
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6

aN<I>N = I aNN<I>NN + S, + S2
n='

where

_rn ([I . I] ) I',aNN - d~ - Pen ,0.0 + 1.0 An

and where the primary and secondary source terms are SI and S2 respectively.

A4

(A 10)

(A 11)

(A 12)
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DERIV ATION OF THE NON-ORTHOGONAL PROJECTION EQUATIONS

B.I
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The solution of the governing equations requires the approximation of the orthogonal global

Cartesian gradients (:i ) of a transported scalar (~) in terms of local non-orthogonal

gradients. These local non-orthogonal gradients may be written by means of the chain rule in

terms of orthogonal gradient contributions i.e.

a~ ax a~ By a~ az a~-=--+--+--a~ a~ax a~By a~az (B. I)

a~ ax a~ By a~ az a~-=--+--+--e; e; ax e; By e; êz
(B. 2)

a~ ax a~ By a~ az a~-=--+--+--
Or] Or] ax Or] By Or] az (B.3)

where the local non-orthogonal coordinate system is denoted by (~,r;" Yl). In tensor form

equations (B. I ) to (B.3) may be written as

a~ axi a~
a~i = a~i axi (B. 4)

The set of linear equations represented by equation (B.4) may also be written as

(B.5)

where JJi is the Jacobian matrix ax
i

. with the i andj indexes denoting matrix columns anda~J
rows respectively. Since the Jacobian matrix is square and the Jacobian determinant is non-

zero one may prove from linear algebra, Greenberg (1998), that a unique solution,
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(B.6)

exists.

Equation (B.6) is easily simplified by employing Cramer's rule i.e.

(B. 7)

where the Ijl= det( J;) is the Jacobian determinant found by cofactor expansion as

(B. 8)

Thus all the global Cartesian gradients required so solve the governing equations may be

found only in terms of approximations of local non-orthogonal gradients by employing

equations (B.7) and (B.8).
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APPENDIXC

AVERAGING OF PRIMARY FIELD VARIABLES
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The primary variables found from the field solution of the governing equations need to be

averaged to evaluate the results properly.

The average fluid velocity across an interface is found from

. J pucdAc I v;An
V _ ~ __A-,-c ~ -'n"'--- __

m - Acp - Acp (C. 1)

The average or bulk fluid temperature is found from the average thermal energy state of the

fluid across the interface, Kays and Crawford (1993) i.e.

JTcPucCpdAc JTcucdAc ITnV;A~
T =

Ac Ac n (C. 2)
JUcAc

~
IV;A~

m mCp
Ac Il

where u, is the flow normal to the interface, Tc is the temperature at the interface, Ac is the

cross sectional interfacial area, m is the mass flux crossing the interface and n is the interface

numbering index.

The average pressure is also found from the energy flux crossing the interface i.e.

(C.3)

n

where Pn is the control volume interfacial pressure.
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APPENDIXD

DERIV AnON OF AN APPROXIMA TE EXPLICIT FORMULA nON OF THE SHEAR

VELOCITY FROM THE LOGARITHMIC LAW FOR THE VELOCITY DISTRIBUTION

IN TURBULENT FLOWS.
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The logarithmic law for the turbulent velocity distribution, equation (6.16), may be rewritten

as

uc{r) 1 ( +)--=-In Eyu, K
(D. I)

where

+ u,y
y =-

v
(D.2)

with the centreline velocity given by Uc (r) at distance y = H /2. Thus one may find the shear

velocity, u" from the implicit equation (D. I ) if the centreline velocity and the centreline

height is known. By substituting the function

1
(D.3)x=-

into equation (D. I) one finds after some algebra a new relation

x - eP(r)x - Z = 0 = k{x) (D.4)

where

p{r) = u c ( r) .K (D.5)

and

Ey
Z=-

v
(D.6)
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Thus the root, xo, ofk(xo) equals the inverse of the shear velocity. See figure D.l. A similar

yet simpler equation

p(x) = eP(r)x - Z (D.7)

yields its root, p(x))=O, at

In(Z)
x , = P(r) (D.8)

Substituting equation (D.8) into (D.4) one finds

(D.9)

Setting equation (D.9) equal to equation (D.7) yields

In(x4eP(r)x4 )

x3 = P(r) (D. 10)

Now, to find the difference in x-values where equation (D.7) equals (D.4) we have

p(xp) - k(x k ) = ° (D.ll)

and after some algebra

(D.12)

From equation (D.12) it is evident that the value
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[
ZP{r)]In --
In{Z)
P{r)

(D. l3)=

is near but not equal to the root, xo, of equation (D.4). The actual difference in X value

between p(x) and k(x) at XImay be found from equation (D.12) i.e.

(
ZP{r))

In(Xl) 1 In In{Z)
~X =--=--In ----

I P{r) P{r) P{r)
(D. 14)

Using equation (D.14) one will again find that another x-value

(D. 15)

will yield a value also near the root, xo, of equation (D.4) but not equal to XI. Since we now

have 2 coordinates, [x],k(xI)] and [x2,k(X2)], near the root, [xo,k(xo)], we find that a straight

line fit between the two coordinates yields at root of the straight line at

(D. 16)

which in turn gives a good explicit approximation of the shear velocity from equation (D.3).
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