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Opsomming

Ons beskou evaluering van gepaste modelle deur middel van risikoberam-

ing. Verskeie benaderings tot risikoberaming word in ’n verenigde raamw-

erk oorweeg. Hierdie raamwerk is ’n uitbreiding van ’n beslissingsteoretiese

raamwerk oorspronklik deur David Haussler voorgestel. Punt- en interval-

beraming gebaseer op toets- en evalueringssteekproewe word bespreek, met

’n onderverdeling van intervalberamers op grond van die afwykingsmaatstaf

wat die beramer probeer begrens.

Die hoofbydrae van die tesis is in die gebied van evalueringssteekproef inter-

valberamers, spesifiek bedekkingsgetal-gebaseerde en PAC-Bayesiaanse in-

tervalberamers. Die tesis bespreek ’n aantal benaderings tot die verkryging

van sulke beramers. Die eerste tipe evalueringssteekproef intervalberamer

om aandag te ontvang is beramers gebaseer op klassieke bedekkingsgetal

argumente. ’n Aantal sulke beramers is op verskeie maniere veralgemeen.

Tipiese veralgemenings het die volgende ingesluit: uitbreiding van resul-

tate vir misklassifikasieverlies na algemene verliesfunksies; uitbreiding van

resultate om ’n arbitrêre spooksteekproefgrootte toe te laat; uitbreiding van

resultate om arbitrêre resolusie van die betrokke bedekkingsgetalle toe te

laat; en uitbreiding van resultate om arbitrêre keuse van β in die gebruik

van simmetriseringslemmas toe te laat.

Hierdie uitbreidings is op bedekkingsgetal-gebaseerde beramers vir verskeie

afwykingsmaatstawwe toegepas, asook vir die spesiale gevalle van misklas-

sifikasieverlies beramers, beramers vir die haalbare geval, en spelingsgrense.

Uitgebreide resultate is ook vir die geval van besluitklasse gestratifiseer op
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grond van (algoritme- en data-afhanklike) funksiekompleksiteit.

Om toepassing van hierdie bedekkingsgetal-gebaseerde intervalberamers aan

te help, is ’n oorsig van verskeie kompleksiteitsdimensies en benaderings tot

die verkryging van bogrense op bedekkingsgetalle aangebied.

Die tweede tipe evalueringssteekproef intervalberamer wat in die tesis be-

spreek word is Rademacher-bogrense. Hierdie resultate gebruik gevorderde

ophopingsongelykhede, wat ons in ’n aparte hoofstuk bespreek. Ons be-

spreking van Rademacher-bogrense lei tot die aanbieding van ’n alternatiewe,

effens sterker, vorm van die kernresultaat wat gebruik word om plaaslike

Rademacher-bogrense af te lei, deur ’n paar onnodige verslappings in die

afleiding te omseil.

Daarna begin ons met ’n bespreking van PAC-Bayesiaanse bogrense. Ons

gebruik ’n metode ontwikkel deur Olivier Catoni om nuwe PAC-Bayesianse

bogrense gebaseer op Hoeffding se ongelykeheid af te lei. Deur Catoni se

idee van “verwisselbare priors” te gebruik, kon ons hierdie resultate verder

veralgemeen om ’n uitbreiding van ’n bedekkingsgetal-gebaseerde resultaat

te verkry wat ook op middelmaatklassifikasietegnieke toegepas kan word.

Verder kon die ooreenstemmende algoritme- en data-afhanklike resultate

soortgelyk uitgebrei word.

Die laaste bydrae van hierdie tesis is die ontwikkeling van ’n meer buigsame

peulontbindingsgrens: deur Hoeffding se stertongelykheid in plaas van Ho-

effding se relatiewe entropie ongelykheid te gebruik het ons die grens uitge-

brei om op algemene verliesfunksies van toepassing te wees, om die gebruik

van ’n arbitrêre hoeveelheid busse toe te laat, en deur tussen-bus en binne-

bus “priors” in te voer.

Laastens, om die berekening van hierdie intervalberamers te illustreer, het

ons van hierdie grense bereken vir beslissingsbome en opgejaagde stompe

toegepas op die UCI gemorspos klassifikasie probleem.



Abstract

We consider the problem of model assessment by risk estimation. Various

approaches to risk estimation are considered in a unified framework. This

framework is an extension of a decision-theoretic framework proposed by

David Haussler. Point and interval estimation based on test samples and

training samples is discussed, with interval estimators being classified based

on the measure of deviation they attempt to bound.

The main contribution of this thesis is in the realm of training sample in-

terval estimators, particularly covering number-based and PAC-Bayesian

interval estimators. The thesis discusses a number of approaches to obtain-

ing such estimators. The first type of training sample interval estimator

to receive attention is estimators based on classical covering number argu-

ments. A number of these estimators were generalized in various directions.

Typical generalizations included: extension of results from misclassification

loss to other loss functions; extending results to allow arbitrary ghost sam-

ple size; extending results to allow arbitrary scale in the relevant covering

numbers; and extending results to allow arbitrary choice of β in the use of

symmetrization lemmas.

These extensions were applied to covering number-based estimators for var-

ious measures of deviation, as well as for the special cases of misclassifi-

cation loss estimators, realizable case estimators, and margin bounds. Ex-

tended results were also provided for stratification by (algorithm- and data-

dependent) complexity of the decision class.

In order to facilitate application of these covering number-based bounds,
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a discussion of various complexity dimensions and approaches to obtaining

bounds on covering numbers is also presented.

The second type of training sample interval estimator discussed in the thesis

is Rademacher bounds. These bounds use advanced concentration inequal-

ities, so a chapter discussing such inequalities is provided. Our discussion

of Rademacher bounds leads to the presentation of an alternative, slightly

stronger, form of the core result used for deriving local Rademacher bounds,

by avoiding a few unnecessary relaxations.

Next, we turn to a discussion of PAC-Bayesian bounds. Using an approach

developed by Olivier Catoni, we develop new PAC-Bayesian bounds based

on results underlying Hoeffding’s inequality. By utilizing Catoni’s concept

of “exchangeable priors”, these results allowed the extension of a covering

number-based result to averaging classifiers, as well as its corresponding

algorithm- and data-dependent result.

The last contribution of the thesis is the development of a more flexible

shell decomposition bound: by using Hoeffding’s tail inequality rather than

Hoeffding’s relative entropy inequality, we extended the bound to general

loss functions, allowed the use of an arbitrary number of bins, and introduced

between-bin and within-bin “priors”.

Finally, to illustrate the calculation of these bounds, we applied some of them

to the UCI spam classification problem, using decision trees and boosted

stumps.
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Chapter 1

Introduction

1.1 Motivation

The practice of fitting models to data is ubiquitous in modern science, en-

gineering and business. Predictions made using such fitted models are often

employed for automated decision-making, or as a source of information for

higher level manual decision making. As a result, the problem of assessing

the quality of fitted models is vitally important.

The perceived quality of a fitted model is dependent on the purpose for

which it is employed. This is particularly understandable in certain business

contexts, where one may be able to calculate an exact financial cost incurred

by a suboptimal prediction. Perhaps the most natural approach in this

context is to attempt to select a fitted model which almost minimizes the

expected cost of future predictions. This expected cost, which we shall call

the risk of the fitted model, seems a good indicator of the quality of the

fitted model.

In this thesis, we investigate various approaches to estimating the risk of a

fitted model.

Traditionally, the risk of a fitted model is estimated by means of a test

sample, or holdout sample: a data set which is representative of expected

future data points, and which is independent of the fitted model. Since risk

1
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assessment is so important, it is standard practice to remove such a test

sample from an initial data sample, fit a model on the remainder of the

data, and then assess the model on the test sample. A number of good,

well-established estimators of the fitted model’s risk are available in this

scenario.

A criticism of this approach is that one would generally expect a model

fitted on the full data sample to perform better than the one fitted on the

reduced data sample. If one could effectively assess the model fitted on the

entire data sample without reserving a portion for testing, better models

could be employed in practice.

Methods for assessing models in this way do exist. However, mere existence

of such techniques is not adequate. The quality of these estimators needs

to be competitive with those obtained using the test sample, if such an

approach to model fitting and assessment is to be widely adopted.

However, even in cases where such estimators are not competitive with tradi-

tional estimators based on a test sample, these estimators are practically use-

ful: such approaches have been employed for showing consistency of various

model-fitting procedures, model selection, and designing new model-fitting

procedures. Recent model-fitting procedures inspired by such estimators

feature among the most successful model-fitting procedures available.

1.2 Problem statement

The statistical problem we face is that of estimation: we desire an estimate

for the risk of a fitted model. More generally, we may be interested in the

expected risk of a model fitting procedure (or algorithm) in a given context.

The main problem we shall consider can be stated as:

Generate an estimator of the risk rD(w,L) of a fitted model (or decision

rule) w, given that w was determined by employing an algorithm Θ on a

sample S.
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Note that this problem statement includes estimating the risk of regression

models and classifiers.

In the statement above, L is an encoding of the cost of suboptimal predic-

tions, known as a loss function, and D denotes the distribution of future

data points. Furthermore, we are primarily interested in estimators which

are functions of S — what we shall call training sample estimators.

The simplest form of estimation is point estimation. However, point esti-

mators do not reflect the level of confidence one has in an estimate, whether

from its desirable statistical properties, or the reliability obtained from us-

ing a large sample to obtain the estimate. For this reason, an estimate of

the variance of the estimator is often provided together with an estimator,

to give an indication of the variability of the estimator. This naturally leads

one to consider interval estimation: providing an interval which typically1

contains the value being estimated. Such interval estimators are generally

called confidence intervals.

Construction of training sample interval estimators is a difficult problem,

and an extensive literature exists, with further focus on the simpler case

of interval estimation of the misclassification rate (or error) of the model.

Much of our work is also focused on this case, although more general loss

functions will not be neglected.

Generally, we are more interested in cases where the risk is unusually large,

rather than cases where it is unusually small. As a result, we will often be

interested in one-sided confidence intervals for the risk: bounding the risk

from above with a certain level of confidence.

1.3 Objectives

The first objective of this thesis is to provide an overview of various ap-

proaches to risk estimation within a common framework. This involves the

1By typically, we mean that the probability of obtaining a sample for which the interval
contains the underlying value exceeds some prescribed value.
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development of a single framework in which various approaches to risk esti-

mation can be described, and the presentation of a number of tools which

are used for developing these estimators.

An auxiliary objective is to attempt to make training sample interval es-

timators more accessible to the newcomer by presenting as much of the

relevant background as is practical, and attempting to keep the learning

curve shallow. Until recently, most of the research in this direction has been

done by the theoretical computer science and machine learning communi-

ties. My aim in this regard is to make the material more statistician-friendly

by presenting the material from a different viewpoint.

Other objectives of the thesis require a little historical background. The

foundation of training sample interval estimators was laid with the devel-

opment of statistical learning theory by Vladimir Vapnik and Alexey Cher-

vonenkis from the late 1960s. Their work focused on obtaining analogues

of the laws of large numbers which hold uniformly over an infinite function

class. Such results only hold under certain conditions, and the theorems

stating these conditions can be restated to obtain training sample interval

estimators.

The key realization here is that early workers were interested in (various

modes of) convergence of sequences of empirical quantities to correspond-

ing quantities of an underlying distribution. Later work investigated the

asymptotic rate of convergence of these sequences, but at no point were the

precise value of constant factors considered important. When precise con-

stants were presented, they were not generally as tight as possible. While

this had no impact on their investigations, the values of the constants are

relevant for obtaining training sample interval estimators.

A related issue is that bounds were derived for their asymptotic form, rather

than for finite sample purposes. As a result, many variable parameters were

set at values convenient for the derivations under consideration, but which

may not be near optimal for finite sample considerations.

The third objective of this thesis is therefore to present generalized forms of
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such results, where the variable parameters can be specified by the practi-

tioner. In addition, we will pay much more attention to values of constants

than is typically done in much of the classical literature.

Our fourth objective will be to evaluate the impact of these extra param-

eters, and the focus on constants, on the bounds which can be achieved.

Many classical training sample interval estimators are traditionally summar-

ily dismissed in practice, since they are thought to invariably yield trivial

bounds on risk. We will investigate if our generalizations help to address

the situation.

Our fifth objective is to compare the performance of training sample interval

estimators to interval estimators based on an independent test sample.

Hopefully, these investigations will make it clear whether training sample

bounds are competitive enough for practical use yet.

1.4 Thesis outline

Regarding the scope of the thesis, we consider only the case where samples

contain independent, identically distributed observations from the same dis-

tribution generating future data points. Furthermore, we restrict ourselves

to the case of bounded loss.

Chapter 2 introduces the concepts of risk estimation, and presents a frame-

work for considering risk estimation problems. This framework is a general-

ization of a framework presented in Haussler (1992), the main modification

being the introduction of a strategy, which allows one to deal with stochas-

tic decision rules and thresholding classifiers. We show that this framework

encompasses traditional results on risk estimation by employing a type of

projection argument.

Chapter 3 considers various approaches to risk estimation using a test sam-

ple. We focus on the case of misclassification rate, where the number of mis-

classified points on the test sample has a binomial distribution. We present
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a view of interval estimators in terms of various measures of deviation: an

interval estimator is obtained by inverting a bound on some measure of de-

viation. We discuss various criteria for evaluating interval estimators, and

consider various test sample interval estimators.

Before turning to training sample estimators, we introduce inequalities based

on the concept of concentration of measure in Chapter 4. The results in the

first half of this chapter enable us to obtain test sample interval estimators

for other loss functions. The second half of the Chapter provides more

sophisticated machinery which we will use for some of the more refined

training sample interval estimators.

Chapter 5 is the longest chapter in the thesis. It presents a few approaches

to training sample point estimation by employing the bootstrap and the

jackknife, before turning to the problem of training sample interval estima-

tion. The Occam’s razor method for countable function classes is presented,

followed by the idea of approximating a function class by a suitable cover.

Combining these two concepts allows one to obtain interval estimators in

terms of the size of a cover of the class. We present and generalize a number

of such estimators based on bounding various measures of deviation. The

chapter also considers margin bounds and bounds based on the (generic)

chaining method from empirical process theory2. Finally, we consider var-

ious approaches to obtaining bounds on the covering numbers employed in

the estimators presented in this chapter.

The bounds presented in Chapter 5 are data-independent in the sense that

the bounds obtained on the relevant measure of deviation do not depend on

the training sample employed. Chapter 6 presents data-dependent bounds,

which allow one to take advantage of a “lucky” training sample.

Chapter 7 explores the use of the advanced concentration inequalities pre-

sented in Chapter 4 to obtain training sample interval estimators. This

approach allows us to replace the mean covering numbers employed in ear-

lier chapters by the realized covering number on the training sample under

2Bounding the regular measure of deviation uniformly over a function class can be
viewed as bounding the supremum of an empirical process.
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consideration. The main focus of the chapter, however, is on Rademacher

bounds, which are based on a symmetrization lemma from empirical pro-

cesses.

The PAC-Bayesian approach to obtaining training sample interval estima-

tors, which began in the late 1990s, is the focus of Chapter 8. This ap-

proach provides interval estimators for decision rules employing the Gibbs

strategy. Extensions of this approach to obtain margin bounds and data-

and algorithm-dependent results are also presented. Shell decomposition

bounds, which are based on a similar style of argument, are presented next,

before the chapter is concluded with an overview of Occam’s hammer, a

recently discovered approach due to Gilles Blanchard.

Chapter 9 applies a number of these estimators to risk estimation on a

benchmark data set for spam classification and the results of the various

approaches are discussed and compared. We review and summarize our

findings and contributions in Chapter 10, and suggest a number of avenues

for further investigation.

1.5 Technical issues and notation

It would be fair to say that the general attitude toward precision and excep-

tional cases in the field of statistical learning theory (the basis of training

sample interval estimators) could in the past be summarized by the following

quote of Hector Hugh Munro, the British writer better known as Saki:

A little inaccuracy sometimes saves tons of explanation.

This observation holds true on two major levels.

First, many of the foundational results are measure theoretic in nature. In

order to apply them, a number of technical restrictions on various function

classes are necessary in order to ensure measurability of certain sets and

functions. Once it was discovered that these restrictions generally hold on

the function classes usually considered in practice, it became the norm to
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simply note that measurability issues would be ignored, and to refer those

with a taste for detail to the work of Richard Dudley (e.g. Dudley, 1978)

and David Pollard (Pollard, 1984) for conditions under which they would

hold. This pragmatic point of view is exemplified by the following excerpt

from Talagrand (1995):

. . .measurability questions are well understood, and are irrele-
vant in the study of inequalities. Since it would be distracting
to spend time and energy on routine considerations, we have felt
that it would be better to simply ignore all measurability ques-
tions, and treat all sets and functions as if they were measurable.
This is certainly the case if one should assume that Ω is Polish,
µ is a Borel measure, and that one studies only compact sets,
which is the only situation that occurs in applications.

As noted by Talagrand in the same article, results which hold in the mea-

surable case can often be extended to cases where measurability does not

hold by replacing integrals/probabilities with outer integrals/probabilities,

although proofs are complicated by the lack of an equivalent of Fubini’s the-

orem for outer integrals. We shall also avoid measurability questions as a

general rule, but note that this requirement of only studying compact sets

is what motivates the requirement of bounded loss functions in our work.

The second level on which this attitude manifests is a disregard for precise

values of constants. Many foundational results in the field were convergence

theorems, where constants were of no consequence. Later work investigated

the asymptotic rate of convergence, and constants were still of no conse-

quence. The following excerpt from Alexander (1984) clarifies the view at

the time:

We have not attempted to obtain best numerical constants in
the above and following results; techniques which depend on the
metric entropy3, which is usually known only up to an asymptotic
rate, do not lend themselves to this. Our results are intended for
asymptotic use.

3The metric entropy is the natural logarithm of the covering number.
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As a result of this view, many results are presented with very large or un-

specified constants. A number of these results in turn form the foundation of

modern results, which are still provided with poor or unspecified constants.

However, if one is interested in training sample interval estimators, good

constants become valuable. Devroye et al. (1996) present an example where

a result from Alexander (1984) is outperformed by an asymptotically weaker

result in Devroye (1982) for all sample sizes less than 26144. The question

which is unanswered by this approach is what sample size would be neces-

sary if both results employed optimal constants. Such questions are highly

relevant when one makes the transition from asymptotic results to finite

samples. In this thesis, we investigate the question of obtaining practical

training sample interval estimators.4 As a result, the values of constants

are treated as important. This necessarily means that results which are

asymptotically attractive could not be employed in this thesis, unless the

underlying constants could be extracted from the proof of the result.

A number of other details are glossed over in this thesis. When an oper-

ation is performed on elements of a class, we assume that the appropriate

operation is defined on the function class. Similarly, when we work with

the density of a measure, we implicitly assume the measure is absolutely

continuous w.r.t. an appropriate measure.

1.5.1 Notation

Probability is denoted by P, with a subscript typically indicating the variable

and distribution under consideration. Similarly, E denotes expectation, and

V denotes variance. The mode and median of a random variable E are

denoted by mode(E) and M(E) respectively.

Ent(Q) denotes the entropy of Q. KL(Q1||Q2), where Q1 and Q2 are dis-

tributions, denotes the Kullback-Leibler divergence (relative entropy) of

4Alexander’s quote seems fatalistic with regards to bounds based on covering numbers.
It seems to posit that training sample interval estimators based on covering number ap-
proaches will never be practically useful. In a sense, then, portions of this thesis can be
seen as an investigation of the validity of this claim.
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Q2 from Q1; KL(v1||v2), where v1, v2 ∈ [0, 1], is used as shorthand for

KL (Bin(1, v1)||Bin(1, v2)), the divergence of a Bernoulli distribution with

parameter v2 from one with parameter v1.

The uniform distribution on a set A is denoted by Unif A, Bin(k, p) de-

notes the binomial distribution with parameters k and p, N(µ, σ2) denotes

the normal distribution, and χ2
i denotes the chi-square distribution with i

degrees of freedom.

IR, IN are used for the real and natural numbers, IN0 = IN ∪ {0} for the

counting numbers, and ZZ for the integers. ln denotes the natural logarithm,

logarithms with base b are denoted by logb. v+ and v− denote the positive

and negative parts of v respectively. I is used for the indicator function of

a set or predicate. supp denotes the support of a function or a distribu-

tion, while domain and range denote the domain and range of a function

respectively.

sgn denotes the sign function mapping into {−1, 1}, with sgn(0) = −1. erf

denotes the Gauss error function,

erf(v) =
2

π

∫ v

0
e−t2 dt .

Lik denotes a likelihood function.

We use convA to denote the convex hull of a set A, and absconvA to

denote the absolute (symmetric) convex hull of A, defined by absconvA =

conv(A ∪ −A).

supv∈A φ(v) is used as shorthand for sup{φ(v) : v ∈ A}, and the infimum

is handled similarly. The expression v ∈ A may be replaced by another

condition defining a set of suitable v. When A is clear from the context, it

may be omitted.

We denote the cardinality of a set A by |A|. The power set of A is written as

2A, and the set of functions from A1 to A2 is written as A2
A1 . vT denotes the

transpose of a matrix v. 〈v1, v2〉 denotes the inner product of v1 and v2. For

a multi-dimensional quantity or sequence v, v(i) denotes the i-th component

or coordinate of v. For multi-dimensional quantities or sequences v1 and
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v2, inequalities such as v1 > v2 are to be understood as holding for each

component of v1 and v2. We use traditional interval notation, and extend

it to represent sets of integers. To illustrate, [v1 : v2) represents the set of

integers i such that v1 ≤ i < v2. Finally, (i↔ j) indicates the transposition

of i and j.

A list of symbols used in the thesis appears in Appendix A, and Appendix B

contains a list of abbreviations.



Chapter 2

Risk estimation: the setting

This chapter introduces the model in which we shall consider the problem of

risk estimation, and briefly discusses the importance of the risk estimation

problem.

2.1 Introduction

Broadly speaking, one can make two major groupings of techniques used

for bounding the risk of some statistical procedure. The first, and far more

traditional group, is for techniques which make use of performance on a

hold-out sample (test sample bounds5) to evaluate a model selected using

a training sample. The second, more modern group, is based on evaluating

models directly on their performance on the training sample (training sample

bounds). There is also a hybridization technique which uses the performance

on the training sample to improve estimates based on performance on a hold-

out sample.

Generally, training and test sample bounds should use any other informa-

tion available besides the performance on these sets, if possible. This may

include, for example, prior knowledge about the distribution generating the

5It is traditional to speak of training and test sets. Since nothing in general precludes
such samples from having identical entries, I shall however consistently use the term sample
instead.

12
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data, knowledge about the distribution generating the data inferred from

the training or test sample (or even unlabeled data), and even knowledge

about the structure of the set of possible fitted models.

It will become quite clear in this work that using a hold-out sample for as-

sessing fitted models is a much simpler approach than doing so without a

hold-out sample. However, in many settings data are simply not plentiful,

whether because of financial, natural, or other considerations. In such set-

tings, one would like to be able to use as much of the data as possible to

fit an accurate model, rather than having to reserve data for the exclusive

purpose of model assessment. With hybrid techniques available to combine

training sample bounds and test sample bounds, one is faced with a trade-off

in the size of the training and test sample. Clearly, improving either type

of bound, or techniques for combining them, will improve the status quo.

The ideal however, is to have tight bounds based only on training sample

performance.

2.2 Some concepts, definitions and notation

Our focus shall be on the traditional supervised learning scenario in machine

learning, but the setting we shall use is based on David Haussler’s powerful

decision-theoretic generalization (Haussler, 1992) of the probably approxi-

mately correct (PAC) learning model (Valiant, 1984). This model is closely

related to what Vidyasagar (2002) presents as his “model-free” setting. A

variety of other models for the learning problem exist, but investigating these

is beyond the scope of this work, and in this regard we restrict ourselves to

referring the interested reader to Haussler (1996, Part 1), Vidyasagar (2002,

Chapter 9), Goldman (1999), and Angluin (1992) for overviews of other

models with more extensive references.

In the model we shall employ, the predictors (inputs) are located in a space

X , and the response variables (outputs) in a space Y. Predictor-response

(input-output) pairs are sampled according to an underlying joint distribu-

tion D ∈ S on Z = X ×Y, where S is a family of distributions over Z. For
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most of this work we shall assume that S is the class of all distributions over

Z, that is

S = QZ ,

where we shall generally write QA for the class of all distributions over a set

A. An independent, identically distributed6 (i.i.d.) sample of input-output

pairs (or labelled inputs) is provided, and the goal is to make good decisions

based on the inputs, when actions are evaluated with respect to the output.7

By far the most common example is when the action consists of predicting

the output from the input.

Typically, we have an action class, A, consisting of possible actions. The

quality of an action with respect to an output is evaluated by a loss function,

which we shall discuss in the next section.

Example 2.1. In the common example of predicting the output from the
input, the action class can be identified with the output space, e.g. we can
identify the action “predict 0” with the value 0, and the action “predict 1”
with the value 1, so that A = Y = {0, 1}. ut

The approach to modeling the relationship of actions, inputs and outputs

we shall study employs an hypothesis class and a strategy. The hypothesis

class H is a class of functions h : X → QR called hypotheses8, each mapping

each input x ∈ X to a distribution over some set R. If the distribution

is entirely concentrated on a single value for every hypothesis in the class,

we call the hypothesis class deterministic. Otherwise we call the hypothesis

class stochastic. For a deterministic hypothesis class, if we have that h(x)

is entirely concentrated on r ∈ R, we shall also write h(x) = r. In addition,

6For the Bayesian, an assumption of the sample coming from an (infinitely) exchange-
able sequence is almost always adequate for our results, thanks to the de Finetti (de Finetti,
1931) and Hewitt-Savage (Hewitt and Savage, 1955) theorems (Lauritzen, 2007). We will
not go into these details in this work, however.

7The i.i.d. assumption is technically convenient, but rather restrictive. Work has been
done on relaxing this assumption by using the concepts of mixing processes. The interested
reader is referred to Vidyasagar (2002, Section 2.5) and the references therein for more on
this topic.

8Note that this is a different concept from the traditional statistical use of the term in
hypothesis testing. We will refer extensively to hypothesis testing later, but the context
should make it clear which meaning we have in mind.
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we shall consider a class of functions into R to be a valid hypothesis class,

by assuming that a function mapping to r ∈ R corresponds to an hypothesis

with a distribution concentrated entirely on r. We shall mostly deal with

these “deterministic” hypothesis classes.

Together with the hypothesis class, we define a strategy for obtaining an

element of the action class from an hypothesis h, an input x, and a potential

source of stochasticity. We represent the strategy as a function g : H ×
[0, 1] ×X → A, mapping an hypothesis h, a value in [0, 1], and an input x,

to the action class. In practice, it is most common that we have R = A.

The value in [0, 1] represents an external source of stochasticity, which we

assume corresponds to a random variable (r.v.) U ∼ Unif[0, 1]. Thus,

given an hypothesis h and a strategy g, the corresponding action is a r.v.

g(h,U, x). The choice of strategy is often linked to the loss function for a

given problem. We shall discuss loss functions in Section 2.3.

Example 2.2. The strategy g may be deterministic, such as the common case
where we define g(h, u, x) = Er∼h(x) r for all u ∈ [0, 1] (assuming that such
a mean is defined). ut

Example 2.3. A very common and important example, which is a special
case of the previous example, is when we have R = A, and the hypothesis
class is deterministic. In this case, we define the identity strategy idA by
g(h, u, x) = h(x) ∈ R. ut

Example 2.4. More generally, g may be the realization of a random variable
based on u ∈ [0, 1]. In this case, we say g is stochastic. An example is
when g(h, u, x) is obtained by sampling from h(x): defining hu(x) as the
100u-th percentile of h(x) (assuming a meaningful concept of percentile in
this context), the strategy employed is g(h, u, x) = hu(x). ut

For a deterministic class H′ of functions from X into A, we define an associ-

ated stochastic hypothesis class, the Gibbs class GH′(Q) associated with H′,

indexed by Q (which is a class of distributions over H′):

GH′(Q) = {hQ : Q ∈ Q} ,
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where hQ : X → QA is defined by

[hQ(x)] (A) = Ph′∼Q

{
h′(x) ∈ A

}

for all subsets A ⊆ A. Finally, we write GH′ = GH′(QH′). We call h′ ∈
H′ a base hypothesis of GH′(Q), and H′ the base hypothesis class. Gibbs

classes are important stochastic hypothesis classes, which we shall consider

in Chapter 8.

Example 2.5. A number of strategies shall be relevant in Chapter 8 when
the hypothesis class is a Gibbs class.

A deterministic strategy in this scenario is the maximum a posteriori (MAP)
strategy: let mode(·) denote the mode9 of a distribution. Then the MAP
strategy corresponds to the choice10

g(hQ, u, x) = mode(hQ(x)) .

A second deterministic alternative is the Bayes strategy, determined by

g(hQ, u, x) = Er∼hQ(x) r .

It can be shown that this strategy corresponds to making the average predic-
tion of h′ on x when the base hypothesis h′ is sampled from the distribution
Q, i.e.

g(hQ, u, x) = Eh′∼Q h
′(x) .

A third strategy is the stochastic Gibbs strategy, which shall receive plenty
of attention later. In this case, we use u to sample from the distribution hQ.
Let ru ∈ R be the 100u-th percentile of hQ(x). Then the Gibbs strategy,
defined by

g(hQ, u, x) = ru ,

corresponds to sampling an hypothesis h′ according to the distribution Q,
and predicting h′(x). ut

9We assume a deterministic method for selecting a unique mode.
10This does not correspond exactly to the MAP strategy outlined in, for example,

Definition 3.6 of Herbrich (2002). Their definition could be exressed as hmode(Q)(x), but
we may not have direct access to Q, since more than one Q may map to the same hQ.
The differences between our approaches disappear for the Bayes and Gibbs strategy we
consider next.
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We call the combination of an hypothesis with such a strategy,

gh(x, u) = g(h, u, x) ,

a decision rule (since we can make a decision, i.e. select an action from A,

based on an input x by applying the strategy to h, u and x). We call the

set of decision rules W = {gh : h ∈ H} the decision class. A decision class

is said to be stochastic when the decision rules gh are stochastic. When the

decision rules are deterministic, the value of u is irrelevant, and we shall

simply write gh(x) = gh(x, u).

Example 2.6. A large class of statistical and machine learning techniques
known as thresholding classifiers perform binary classification by calculat-
ing a real value from the input, and then comparing the real value to a
specified threshold s. One notable class is the class of (binary) voting clas-
sifiers, which includes (the two-class versions of) the well-known techniques
of bagging (Breiman, 1996) and boosting (Schapire, 1999).

For such a prediction problem, we can assume A = Y = {0, 1}. However,
the hypotheses output real values.11 In this case, the strategy function is
simply g(h, u, x) = I(h(x) ≥ s), and the decision rule is thus

gh(x) = I(h(x) ≥ s) .

ut

In many cases, for a given hypothesis class H and strategy g, we can find a

transformation φ such that, for every h ∈ H, we have gh = gφ(h). In such a

case, we call φ(H) = {φ(h) : h ∈ H} a surrogate hypothesis class for H.

In many cases, it will turn out to be useful to consider a simpler hypothesis

class obtained as a surrogate hypothesis class. The intuition underlying the

use of surrogate classes is based on the fact that many results we derive

for training sample based estimates include a term reflecting complexity

of the hypothesis class. Modifying each function by replacing it with a

“less complex” function which has identical loss behaviour, but a simpler

structure, thus provides one with tighter bounds.

11Equivalently, they output distributions concentrated entirely on a real value.
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Example 2.7. In the case of thresholding classifiers with a threshold s, a
surrogate hypothesis class that is often used is a trimmed class corresponding
to H.

In general, consider a class H of functions over X , and two functions, γ− ≤
γ+. Define the (γ−, γ+)-trimming of a class H by

π(γ−,γ+)(H) =
{
π(γ−,γ+)(h) : h ∈ H

}
,

where π(γ−,γ+)(h) is defined pointwise by

π(γ−,γ+)(h)(x) =





γ−(x), h(x) ≤ γ−(x)
h(x), γ−(x) < h(x) < γ+(x)
γ+(x), h(x) ≥ γ+(x)

. (2.1)

Effectively, we trim the functions h to lie in a band specified by γ− and γ+.
When γ− = −γ+, we shorten π(γ−,γ+) to πγ+ .

One common choice is a constant γ. This is a suitable surrogate class
for thresholding classifiers when the strategy involves thresholding at zero.
More generally, if the threshold is at s, a suitable surrogate class is π(s−γ,s+γ)(H)
for a constant γ. ut

Example 2.8. Trimmed classes with constant upper and lower functions can
be viewed in another light. Specifically, we can write

π(γ−,γ+)(h) = π(γ−,γ+) ◦ h ,

where the function π(γ−,γ+) is a piecewise linear function mapping into
[γ−, γ+].

More generally, for an arbitrary function φ, one may be interested in the
class of functions obtained by composing each function in H with φ.

When φ maps into a subset of the range of the functions in H, we call φ a
squashing function. A useful property for squashing functions is Lipschitz
continuity12, as this typically means the squashed function class can not be
much worse behaved than the original class.

An example: consider a thresholded classifier thresholding real values of
functions in H at 0. Then composing the hypothesis class with the translated
logistic function

φ(v) =
1

1 + e−v
− 1

2

12A function φ is said to be Lipschitz continuous if, for some constant K, |φ(v1) −
φ(v2)| ≤ K‖v1 − v2‖ for all v1, v2 ∈ domain(φ). If this holds, we also say that φ satsifies
a Lipschitz condition with (Lipschitz) constant K.
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before applying the strategy does not change any of the decision rules.

In addition φ maps into [− 1
2 ,

1
2 ], so that the squashed class φ(H) is a surro-

gate class for H. ut

For an hypothesis class H, an H-algorithm is any procedure which selects an

hypothesis h in H together with a strategy g. A wide variety of classical sta-

tistical techniques and machine learning approaches match this description.

Specifically, an H-algorithm Θ is a mapping Θ :
⋃∞

i=1 Zi → H×AQR×[0,1].

Θ is called stochastic or deterministic based on the nature of the decision

class. Note that a technique may be an H-algorithm for a certain class H,

but not for another. In fact, many procedures inherently specify an hypoth-

esis class for which they are an H-algorithm. Generally the hypothesis class

is clear from the context, and we shall simply refer to an algorithm. More

generally however, an algorithm is any procedure which is an H-algorithm

for some hypothesis class H.

Generally, the labelled inputs are used to guide the selection of an hypoth-

esis from the hypothesis class, but they are typically also used to assess

the quality of the selected hypothesis. A sample of l input-output pairs is

typically split into a so-called training sample S and a test (hold-out) sam-

ple T . Traditionally, the training sample is used to select an hypothesis,

and the test sample is used to assess the quality of the selected hypoth-

esis. More recent advances in techniques for assessing hypothesis quality

means that these names may soon be rendered outdated: now, methods for

using the training sample to assess the hypothesis selected on the base of

the same data, as well as bootstrap and cross-validation (CV) approaches

of the past decades, mean that explicit hold-out samples are becoming less

common for problems where data sets are small. Such problems are being

tackled much more often by modern statisticians, as theoretical advances

and more powerful computers allow high-dimensional problems to be tack-

led, even with relatively small samples — a typical example is the analysis

of microarray data in genetics, where there are often thousands of predic-

tors (typically 20000 or more), but the sample sizes are typically less than

a hundred (Dougherty, 2001). In any case, the training sample size will be
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denoted by m, while the hold-out sample size, k = l −m, may be zero.

Choosing an appropriate hypothesis from an hypothesis class is the subject

of the learning problem. There are hundreds, if not thousands, of proposed

approaches to the learning problem, but the relative merits of these tech-

niques are outside the scope of this study. This study will focus on the

problem of assessing decision rules.

Example 2.9. Consider the linear model Y = β0+β
TX+ε with E ε = 0. If we

assume that X and ε are independent and distributed normally, it follows
that Y is distributed normally. Suppose furthermore that we know the
variance of ε, and the covariance matrix of X. In that case, the distribution
of Y |X is a function only of β0 and β. In this scenario, we could regard each
distribution for Y |X implied by a specific (β0, β) as an hypothesis, and the
hypothesis class could be the collection of distributions for all combinations
of (β0, β).

Suppose an hypothesis h(β∗
0 ,β∗) corresponding to (β∗

0 , β
∗) is selected, and

that the action class is Y. Now we consider two strategies, and the result-
ing decision rules. The most familiar to statisticians will be to select the
mean of the conditional distribution, Eh(β∗

0 ,β∗)(X). This strategy results in
regression. The other strategy mentioned briefly above involves obtaining a
decision by sampling from h(β∗

0 ,β∗)(X). ut

The framework sketched so far is rather more general than is commonly

needed. Particularly, it is very common that R = A = Y, that we use the

identitity strategy, and that H is deterministic. In this case, the hypotheses

simply map into Y rather than to a distribution over Y. This is, of course,

a special case of the general framework, where the conditional distributions

place all their mass on single points. In this scenario, the decision class is

of course deterministic.

When the cardinality of A is two, and the decison class W is determinis-

tic, we can define the concept classes C0(W) and C1(W) corresponding to

W (without loss of generality, we assume A = {0, 1}). Then C0(W) =

{cw : w ∈ W}, where cw = {x ∈ X : w(x) = 0}. C1(W) is identical, but with

cw = {x ∈ X : w(x) = 1}. The sets cw are called 0-concepts and 1-concepts

respectively. It is common that C0(W) = C1(W), in which case we write
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C(W) for both — this is the concept class corresponding to W. When W is

clear from the context, it is often omitted.

2.3 Loss functions

To assess the quality of a decision rule, we make use of a loss function.

In real-world situations, the cost involved in deviations between predicted

and actual outcomes can sometimes be quantified exactly, and often at least

estimated. More generally, we can quantify the loss incurred for an actual

outcome when a certain action or decision was made.

Specifying these costs is usually done by means of a loss function L, mapping

an action-output combination to the associated cost: L : A×Y → IR. Note

that since the loss function is defined on the decision rules, replacing an

hypothesis class by a surrogate hypothesis class does not affect the loss

on any point. When L is bounded, we shall (without loss of generality)

assume its range is [0, 1] unless it is explicitly stated otherwise. A one-to-one

correspondence of the range and this interval is easily achieved by translation

and scaling, and all the results we derive for loss functions mapping into

[0, 1] apply to more general loss functions by merely appropriately scaling

and translating any estimates obtained. If the loss function is unbounded

above, we assume its range is [0,∞), again without loss of generality. Unless

stated otherwise, we shall assume that the loss function is bounded. This is

necessary in order to obtain the results we desire for arbitrary distributions

on Z (Talagrand, 1994).

If two loss functions L1, L2 satisfy

L1(r, y) ≥ L2(r, y)

for all actions r and outputs y, we say that L1 dominates L2.

In the common case when the action class equals the output space, the loss

function often has a form mapping to zero when both elements are equal,

i.e. L(y, y) = 0 for all y ∈ Y. In this case, L is a prametric on the output
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space: a generalization of the concept of a metric, requiring only positivity

and that (y, y) be mapped to zero for all y.

Specifying a loss function is not always practical, though, and complicated

loss functions are mathematically inconvenient. Thus it is common practice

to use simpler loss functions than the real-world ones, functions which are

better behaved mathematically, and still generally give a good indication of

the relative quality of hypotheses. Some examples of such simplifications

follow.

Example 2.10. In standard regression techniques, the sum of squared errors
criterion is minimized. This corresponds to minimizing empirical risk (see
below) with the squared-error loss function L(y1, y2) = (y1 − y2)

2. In many
cases this loss function may not be appropriate, but it is still commonly
used and accepted since it has desirable mathematical properties, and it is
believed that small empirical risk with this loss function usually corresponds
to small empirical risk for most other real-world loss functions. If this is not
the case for some problem, standard regression approaches may yield a very
poor solution.

Note that the strategy discussed in Example 2.9, of using the mean of
h(β∗

0 ,β∗), flows naturally from this approach: the underlying strategy is to
minimize the empirical risk under an appropriate loss function. Using the
same underlying strategy with other loss functions will lead to other strate-
gies, as the next example shows. ut

Example 2.11. In classification problems, the misclassification rate is often
used to compare hypotheses. This corresponds (as we shall see in what
follows) to the use of the loss function L(y1, y2) = I(y1 6= y2). Clearly this
loss function would not be very sensible in a regression setting.

Minimizing the empirical risk here leads to the strategy of selecting the mode
of the selected hypothesis evaluated at the input. ut

Example 2.12. Consider the loss function Lε(y1, y2) = (|y1 − y2| − ε)+. This
is called the ε-insensitive loss function, where ε is an accuracy parameter
which can be selected depending on the problem. This loss function is pop-
ular in robust approaches to regression, and support vector (SV) regression.
It should be clear that this loss function may be a more suitable approxi-
mation to the real-world situation than the squared error loss in some cases,
although its mathematical behaviour is more inconvenient. ut
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Example 2.13. Now consider Lε(y1, y2) = I(|y1−y2| > ε). This loss function
corresponds to the previous loss function, except that any positive loss in
the previous case is now assigned a value of 1.

This loss function and that in Example 2.11 are related in that they are
both indicator functions for some event. All loss functions of this form
“punish” all predictions which do not meet some criterion equally, while
those that do meet the criterion are not punished. For the loss function
of Example 2.11, the criterion is that the predicted value must be exactly
correct. This criterion is common in situations where Y is a finite set, usually
with small cardinality (typically two elements). Such problems are called
classification problems.

On the other hand, the loss functions in this example, as well as the first and
third example above, are more appropriate for situations where Y is infinite,
such as the extremely common case Y = IR. These problems are generally
called regression problems13. The criterion to be met in this example is
that the predicted value must be sufficiently accurate (where the required
accuracy is determined by ε). ut

Loss functions of the form in Examples 2.11 and 2.13 are referred to as

zero-one loss functions.

Example 2.14. Selecting an hypothesis by optimizing risk with respect to
a zero-one loss function usually involves a combinatorial problem which is
computationally intractible.14 Thus, many algorithms in use today make
use of a so-called proxy loss or dominating loss — this is an alternative func-
tion which is an upper bound on the original loss function. The proxy loss
function is then used as a replacement loss function in order to simplify the
search for good hypotheses. One desirable property of such proxy loss func-
tions is convexity. The convexity yields many computational and theoretical
advantages, but at the expense of the loss function being less representative
of the underlying problem.

There are a number of popular convex proxy loss functions, an example
being the hinge loss L(y1, y2) = (1−y1y2)+ used in SV classification. A cost-
benefit analysis of using some of these convex proxy loss functions, which
actually led to a suggestion for an alternative to the hinge loss traditionally
used for SV classification, was performed in Bartlett et al. (2003a). Further
work by Peter Bartlett and his co-workers in this regard is Bartlett (2003)
and Bartlett et al. (2003b). ut

13This terminology is actually a misnomer, since regression technically refers to finding
the mean response given the predictors.

14In general, this type of problem is NP-hard (Goldman, 1999).
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2.3.1 Loss classes and the modified learning problem

Given a loss function L and a decision rule w = gh, one can define a function

fw,u : Z × [0, 1] → range(L) by fw,u(z) = L(w(x, u), y), where z = (x, y).

We can also define the stochastic function fw : Z → Qrange(L) with fw(z)

the distribution of L(w(x,U), y), when U ∼ Unif[0, 1]. If fw(z) is entirely

concentrated on v ∈ range(L), we will also write fw(z) = v.

We define the loss class F associated with the decision class W as

FW = {fw : w ∈ W} .

If W is clear from the context, the subscript may be omitted. Note that

although the notation does not make it explicit, the loss class FW is also

dependent on the loss function. Once again, the loss class is unaffected when

an hypothesis class is replaced by a surrogate.

The modified learning problem

In the framework we have sketched so far, a learning problem can be specified

by a tuple {X ,Y,S,A,H, L}. An algorithm then selects a strategy g and

an hypothesis h ∈ H.

It is often useful to consider a specific transformation of a general learning

problem, which we shall describe in this section. The resulting modified

learning problem can almost be seen as a projection of the problem into

a manageable portion of the framework sketched above (by fixing certain

choices). A simple analogy in classical statistics is when results can be

derived for variables with zero mean without loss of generality: similarly,

results derived with the fixed choices arising from this transformation yield

results for the entire framework without loss of generality.

This modified setting is convenient because, regardless of the structure of

the original output space and action class, the modified output space and

action class lie on the real line, allowing the use of analytic tools which may

not be available for general sets.
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The modified learning problem is a tuple {X ′,Y ′,S ′,A′,H′, L′} obtained

from the original problem as follows. We set X ′ = Z, Y ′ = A′ = range(L),

and H′ = FW (remembering that W is defined in terms of H and g). As

such, a modified hypothesis in H′ evaluated on a point x′ = (x, y) ∈ X ′

is a distribution over range(L) (or a specific value in range(L) if H and g

are deterministic). We shall employ the identity strategy g ′ = idA′ , so that

W ′ = H′. The modified loss function, L′, has domain range(L) × range(L):

we define L′(l1, l2) = l1 (so the second argument is irrelevant). Finally, S ′ is

the set of all couplings between an element of S and any distribution over

range(L). In this modified problem, it is assumed the modified input-output

pairs in Z ′ = Z × range(L) are generated by a distribution D ′ such that

the marginal distribution of the modified input is D. Finally, we associate

any modified predictor-response pair ((x, y), y ′) ∈ Z ′ with the predictor-

response pair (x, y). In the modified setting, the strategy is fixed as idA′ ,

and an algorithm need only select an h ∈ H′.

In this setting, consider an arbitrary predictor-response pair (x, y) ∈ Z, an

arbitrary h ∈ H, and an arbitrary y′ ∈ Y ′. Then,

L′(g′h′(x′), y′) = g′(h′(x′))

= h′(x′)

= fg,h(x, y)

= L(gh(x), y) ,

showing that both approaches behave identically with respect to their losses

on points in Z (regardless of the value of y ′, and thus the exact form of the

distribution D′).

This result means that estimates of risk for the modified learning problem

apply directly to estimates of risk for the original problem. This is very

useful, especially because many results have been obtained for problems of

the form of the modified learning problem.



Chapter 2. Risk estimation: the setting 26

2.4 Risk and error

For m, k ∈ IN, consider the training sample

S = J(x1, y1), (x2, y2), · · · , (xm, ym)K

and the test sample

T = J(x∗1, y
∗
1), (x

∗
2, y

∗
2), · · · , (x∗k, y∗k)K .

We also denote the empirical distribution w.r.t. the elements of the training

sample by S, and w.r.t. the elements of the test sample by T , i.e.

S(x, y) =
1

m

m∑

i=1

I ((x, y) = (xi, yi)) ,

and

T (x, y) =
1

k

k∑

i=1

I ((x, y) = (x∗i , y
∗
i )) .

In general, we shall use the same symbol for a sample and the empirical

distribution w.r.t. the elements of that sample, in order to reduce notational

clutter. In addition, we shall sometimes use the symbol to denote the set of

elements of the sample. In all cases, the context should make it clear which

use of the symbol we are employing.

First consider a deterministic hypothesis class H with strategy function g =

idA. For an hypothesis h ∈ H, we define the (true) risk rD(h,L) of h as the

expected loss of h, with the expectation over the distribution D,

rD(h,L) = E(x,y)∼D fh(x, y) = E(x,y)∼D L(h(x), y) .

We define the apparent (or training) risk rS(h,L) and the test risk rT (h,L)

of h in the same way, but with the expectation over S and T respectively.

The training and test risk are sometimes also known as the holdout and

resubstitution estimates, respectively (e.g. Devroye et al., 1996).

We define the (true) error eD(h,E ) of h w.r.t. the predicate E as the risk

of h when using the zero-one loss function I(E (h(x), y)), with the appar-

ent (or training) error eS(h,E ) and test error eT (h,E ) of h similarly as the
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apparent and test risk of h using the zero-one loss function I(E (h(x), y)), re-

spectively. Since the criterion E (h(x), y) within the indicator function of the

zero-one loss function is generally an indication of inadequate performance

for a decision rule, then the error of h,

eD(h,E ) = rD(h, I(E (h(x), y)))

= E(x,y)∼D I(E (h(x), y))

= P(x,y)∼D {E (h(x), y)} ,

is simply the probability that the decision rule h performs inadequately

on a future point, or the long-term proportion of predictions which are

inadequate.

Example 2.15. The most common choice of E is

E (y1, y2) = [y1 6= y2] .

This choice is appropriate whenR = A = Y, and the corresponding indicator
function is the misclassification loss — see Example 2.11.

Another example is the choice of E corresponding to the ε-insensitive loss
of Example 2.13. Again, this choice is appropriate for R = A = Y, and the
corresponding choice of E is

E (y1, y2) = [|y1 − y2| > ε] .

ut

Similarly,

eS(h,E ) = P(x,y)∼S {E (h(x), y)}

=
1

m

m∑

i=1

I(E (h(xi), yi))

is the proportion of training sample points inadequately predicted, and

eT (h,E ) = P(x,y)∼T {E (h(x), y)}

=
1

k

k∑

i=1

I(E (h(x∗i ), y
∗
i ))

is the proportion of test sample points inadequately predicted.
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Note that we can also define the risk and error according to any other

distribution Q over Z similarly: rQ(h,L) = EQ L(h(x), y), and eQ(h,E )

as the risk using the zero-one loss function I(E (h(x), y)). When Q is an

empirical distribution w.r.t. a sample Q, we refer to rQ(h,L) (eQ(h,E )) as

the empirical risk (empirical loss) w.r.t. the sample Q. It is clear that if L1

dominates L2, we have

rQ(h,L1) ≥ rQ(h,L2)

for every hypothesis h.

When L or E is implicit in the context, or arguments hold for all loss or

indicator functions, we shall often omit them, referring simply to rQ(h) or

eQ(h).

Next, we consider the general case when H is stochastic, and the strategy

need not be the identity function. The resulting definitions generalize those

above. Consider a stochastic decision rule w(x, u). We define the true risk

of a decision rule w ∈ W as

rD(w,L) = E(x,y)∼D Eu∼Unif[0,1]L(w(x, u), y) .

The rest of the definitions above can be simply extended similarly. For

example,

eQ(w,E ) = E(x,y)∼Q Eu∼Unif[0,1] I(E (w(x, u), y)) .

We will also be interested in the risk associated with an algorithm Θ. Con-

sider rD(wS), where wS is the decision rule selected by Θ for a training

sample S. Then the risk of an algorithm Θ is the mean of rD(wS) over

training samples drawn from Dm:

rD(Θ) = ES∼Dm rD(wS) .

With these definitions in mind, and our finding in Section 2.3 that the modi-

fied form of the original problem behaves identically to the original problem

in terms of evaluations of loss, it follows that any results for the risk or
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error of the modified form of the problem can immediately be converted

directly into results on the original problem. Which approach is more useful

shall depend on the situation. In particular, some cases where the strategy

function is not the identity function (such as thresholded classifiers, to be

studied later) will benefit from the (more powerful) original setting. When

the strategy function is the identity function, the modified setting is gener-

ally the preferable approach. Furthermore, we can in all cases replace any

hypothesis class with a surrogate hypothesis class, since this does not affect

any decisions made.

We conclude this chapter by referring the reader to the problem statement in

Section 1.2, now that the relevant concepts have been properly introduced.



Chapter 3

Test sample estimators

Suppose an algorithm selected an hypothesis h and strategy g using a train-

ing sample S. The decision rule w = gh has true risk rD(w) with respect to

a loss function L.

Test sample estimators focus on the use of the behaviour of h and w on a

test sample T to obtain information about rD(w).

For general loss functions, the distribution of the loss on future data points

is generally unknown, so that traditional statistical methods can not easily

be applied. Therefore, most of the results presented focus on the error with

respect to zero-one loss functions. In this case, the number of errors on a

sample consisting of k = |T | data points, has a binomial distribution with

parameters k and p = eD(w): each prediction has a fixed probability of

“success” (error), p, so the error status of each prediction is a Bernoulli

variable; these predictions are independent, so the total number of errors

is a sum of independent Bernoulli random variables. Specifically, if r of

the k points in the test sample yield errors, then r is the realization of

a binomial variable with parameters k and p, i.e. r ∼ Bin(k, p). This

situation corresponds to the large volume of classical statistical literature

on estimating a proportion.

30
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3.1 Test sample point estimators

An excellent resource on point estimation in classical statistics is Lehmann

and Casella (1998).

3.1.1 UMVU estimator

The most well-known estimator of a population mean from a sample is un-

doubtedly the sample mean. This estimator is unbiased as the method of

moments (MM) estimator of the mean. Furthermore, it is the maximum

likelihood (ML) estimator of the mean for a number of distributions, includ-

ing the binomial distribution.

In this case, the test sample mean loss is rT (w), the test risk. For a zero-

one loss function, we write p̂ = r
k

= eT (w), the test error of w. Besides p̂

being the unique ML estimator of p, we note that it is a function of r, which

is a complete, sufficient statistic for the Bernoulli proportion (Dudewicz

and Mishra, 1988, Example 8.2.21). Since p̂ is an unbiased estimator of p

derived from a complete, sufficient statistic, it follows from the Lehmann-

Scheffé theorem (Lehmann and Scheffé, 1950; Lehmann and Casella, 1998,

Lemma 2.1.10) that p̂ is the unique best (or uniform minimum-variance)

unbiased (BU or UMVU) estimator15 of p.

3.1.2 The bias-variance trade-off

The analysis above does not consider the so-called bias-variance trade-off (Ge-

man et al., 1992). In general, the most traditional measure of the quality of

a point estimator is the mean square error (MSE). For an estimator r̂D(w)

15Here “best” means that p̂ exhibits minimum expected risk of all unbiased estimators,
for any convex loss function on the parameter.
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of rD(w), we have

MSE
(
r̂D(w)

)
= ET∼Dk

(
r̂D(w) − rD(w)

)2

= ET∼Dk

[
(r̂D(w) − ET∼Dk r̂D(w)) + (ET∼Dk r̂D(w) − rD(w))

]2

= ET∼Dk

(
r̂D(w) − ET∼Dk r̂D(w)

)2
+
(
ET∼Dk r̂D(w) − rD(w)

)2

(3.1)

since the cross-product term falls away after expansion. In the last line, the

first term is the variance of the estimator, VT∼Dk(r̂D(w)), while the second

term is the square of the bias of the estimator,

Bias(r̂D(w)) = ET∼Dk r̂D(w) − rD(w) .

More generally, decision theory specifies a loss function, which we shall call

an optimality function16, for evaluating the suitability of an estimator. In

that scenario, the MSE corresponds to the optimality function L(y1, y2) =

(y1 − y2)
2.

An UMVU estimator may not necessarily be the best estimator in terms of

MSE (or mean error with respect to another optimality function): in our

case, a biased estimator of p with lower variance than p̂ may have a lower

MSE. To complicate matters, the MSE of an estimator is usually a function

of the unknown parameter rD(w). For example, p̂ is unbiased, so its MSE

is simply its variance. Since the number of errors, r, is a binomial variable,

its variance is kp(1 − p) and the variance of p̂ is thus

kp(1 − p)

k2
=
p(1 − p)

k
,

a function of p. For fixed k, we see that the MSE of p̂ is largest when p = 0.5,

and smallest when p is zero or one.

A number of alternative point estimators have been introduced, many em-

ploying Bayesian ideas to “shrink” or bias the estimator to some prior esti-

mate of the parameter. These estimators are usually called shrinkage esti-

mators. Two other important groups of point estimators are minimax esti-

mators and minimum risk equivariant (MRE) estimators. All the techniques

16The term loss function here is distinct from our usage so far. However, the decision-
theoretic foundations of our framework are the reason why the two concepts share a name.
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which follow are in principle capable of dealing with general optimality func-

tions, but we shall restrict ourselves to the squared error optimality function

and MSE.

3.1.3 Bayes and minimax estimators

The starting point for a Bayes estimator is a prior distribution for rD(w).

Since the flexible family of Beta(α, β) distributions is a conjugate family of

priors for the binomial distribution, it is a very popular choice of prior for

estimating error.17

To obtain a Bayes estimator, the parameters α and β of the Beta distribution

need to be specified in some way. There are three major approaches to doing

this:

• traditional Bayes, where α and β must be fully specified before ob-

taining the sample;

• empirical Bayes, where the sample itself is used to determine values of

α and β in the prior; and

• hierarchical Bayes, where further priors, known as hyperpriors, with

fully specified distributions, are used to model α and β.

Since the Beta distribution is a conjugate family of priors for the binomial

distribution, the posterior distribution of p after seeing the test sample is

also a Beta distribution. If the prior has parameters α and β, the posterior

distribution’s parameters are r + α and (k − r) + β. To obtain a point

estimate, we minimize the MSE using the posterior distribution. It can be

shown quite easily that the optimal point estimate from this perspective

is the mean of the posterior distribution18. This mean turns out to be a

weighted average of the empirical error p̂, and the prior estimate of the

error α
α+β

. The weight depends on k, with an increase in k causing more

17For risk, the Bayes estimation procedure will not generally be practical, unless one
has information on the distribution of rT (w).

18The proof is analogous to the derivation of the bias-variance trade-off above.
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weight to be assigned to the empirical error. Specifically, the mean of the

posterior Beta(r + α, (k − r) + β) distribution is

r + α

r + α+ (k − r) + β
=

r + α

k + α+ β
=

k

k + α+ β

r

k
+

α+ β

k + α+ β

α

α+ β
.

Another approach to deriving a point estimator from a Bayesian approach

is the MAP estimator. Although this estimator is not optimal with respect

to MSE in a Bayesian scenario, it is popular due to its similarities to the

ML estimator. The MAP estimator of a parameter is, as the name suggests,

the value of that parameter maximizing the posterior likelihood function

derived in the Bayesian framework.

In our case, assuming a Beta(α, β) prior, the posterior likelihood of p is

(from the Beta posterior distribution)

Lik(p) = pα+r−1(1 − p)β+(k−r)−1 .

Setting the partial derivative of the log-likelihood to zero and solving for p

reveals an extremum at p̂MAP = α+r−1
α+β+k−2 . Further differentiation reveals

the extremum to be a maximum at least when α+r > 1 and β+(k−r) > 1.19

We see that the MAP estimate for given parameters α, β, is equal to the

posterior mean estimate with parameters (α− 1), (β − 1). As such, in what

follows, we shall restrict our attention to estimators based on the posterior

mean.

Traditional Bayes

If there is no prior information available about the distribution of p, various

approaches to selecting a prior exist. The maximum entropy (ME) con-

tinuous distribution on [0, 1] is the uniform distribution on [0, 1], which is

also a Beta(1, 1) distribution. As a result, the ME principle for selecting a

non-informative prior suggests using this prior. This leads to the maximum

entropy point estimator p̂ME = r+1
k+2 .

19In fact, the extremum is a maximum when (α + r − 1)−1 + (β + (k − r) − 1)−1 > 0.
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Another popular non-informative prior is the Jeffreys prior, since it is in-

variant to reparameterization (Agresti and Min, 2005). Once again, it turns

out that this prior is a Beta distribution, specifically a Beta(0.5, 0.5) dis-

tribution, yielding the estimator p̂J = r+0.5
k+1 . Note that the Jeffreys prior

shrinks p̂ towards the same value as the ME estimator (0.5), but the extent

of the shrinkage is less. In addition, the reference prior, which is determined

by maximizing the expected information gain (or Kullback-Leibler (KL) di-

vergence) of the posterior relative to the prior, happens to yield the same

distribution as the Jeffreys prior in our case (Agresti and Min, 2005).

Finally, it is worth noting that the physicist and Bayesian statistician,

Edwin T. Jaynes, derived an improper prior (corresponding roughly to a

“Beta(0,0)” distribution), based on an argument involving Lie groups (Jaynes,

1968). This prior results in the usual unbiased estimator r
k
.

Empirical Bayes

The empirical Bayes approach uses the data sample under consideration to

guide selection of appropriate parameters for the prior distribution, i.e. hy-

perparameters. In this scenario, one considers the marginal distribution of

the data sample. This can be written as the integral of the joint distribu-

tion of the parameters and the data sample, with respect to the parameters.

Since the parameters are based on the prior distribution with certain hy-

perparameters, the marginal distribution of the data sample is a function of

these hyperparameters. Empirical Bayes then selects the hyperparameters

to maximize the marginal probability of the observed sample, so that this

is effectively a kind of ML approach.

In our case, assume the random parameter W of a Bin(k,W ) variable V has

a Beta distribution, with parameters α and β, and k is known. Then the

joint distribution function of V and W is

fV,W (v, w) =

(
k

v

)
1

B(α, β)
wv+α−1(1 − w)(k−v)+β−1 ,

where B denotes the Beta function. Integrating this with respect to w yields

a marginal distribution for V which is a function of α and β. Maximizing
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this function is easily seen to be equivalent to maximizing the ratio of Beta

functions,
B(v + α, (k − v) + β)

B(α, β)
.

Finding the optimum choice of α and β is then generally done numerically.

Hierarchical Bayes

One can take the Bayesian approach even further: rather than specifying α

and β in a Beta prior distribution, we can consider α and β as realizations

of random variables A and B, each with their own underlying (usually

parametrized) distributions. One can then try to estimate the parameters

of these distributions instead of α and β themselves. This approach, called

hierarchical Bayes, is clearly somewhat more complicated than the Bayes

methodologies outlined above, but in turn yields a more flexible model.

3.1.4 Minimax estimator

The minimax estimator is an estimator which minimizes the maximum value

of the optimality function over all possible values of the estimand, in our

case, rD(w). That is, a minimax estimator p̂MM of p satisfies

sup
p

MSE(p̂MM ) = inf
p?

sup
p

MSE(p?) ,

where the infimum on the right is over all point estimators p?. Thus, a

minimax estimator, as the name implies, tries to optimize the worst-case

scenario. It turns out that the minimax estimator typically has a Bayesian

interpretation: the minimax estimator is the Bayesian estimator under a

least favourable prior. When a Bayesian prior generates a constant MSE for

all values of p, the prior is least favourable (Lehmann and Casella, 1998,

Chapter 5). In the binomial estimation case, this occurs for α = β =
√

k
2 .

As such, the minimax estimator of p is

p̂MM =
r +

√
k

2

k +
√
k
.
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3.1.5 Minimum risk equivariant estimators

For many loss functions, it may be reasonable to expect an estimator of risk

to be equivariant with respect to φ(v) = 1 − v. Put another way, we may

expect an estimator to satisfy

1 − ̂rD(w,L) = ̂rD(w, 1 − L) . (3.2)

The implications of this assumption depend on the distribution of the loss,

but in the case of a zero-one loss function, one obtains that the estimator

satisfying (3.2) with minimum MSE is simply p̂.20

3.1.6 Estimators for thresholded classifiers

Further point estimates are available for thresholded classifiers. These esti-

mates make use of the value of h(x) before the strategy g thresholds it at

s.

The first estimator we shall discuss is the Glick smoothed estimate. This

estimator, based on work in Glick (1978), is presented as a training set

point estimator in Chapter 31 of Devroye et al. (1996), but the definition

applied there could equally well be applied to a test set. We further modify

their presentation by generalizing the smoothing function to cases where the

underlying value is not necessarily a probability estimate.

Note that the regular estimator eT (w) is not robust to the classification of

a point near the threshold in the following sense: a small perturbation of

the input can lead to eT (w) abruptly changing by an amount of 1
k
. The

Glick smoothed estimate is defined in terms of a smoothing function φ. The

idea of the smoothed estimate is that the classification of sample points for

which h(x) is close to the threshold are sensitive to perturbations, so their

contribution to the determination of the error rate should not be as large as

that of those for which h(x) is distant from s. This smoothed estimate is

thus more robust and exhibits a lower variance than eT (w). This is the same

20This follows since p̂ is an equivariant UMVU estimator — see Lehmann and Casella
(1998, Lemma 1.23).
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intuition we shall encounter in Section 5.6 when we discuss margin bounds.

The smoothing function φ encodes our understanding of the relationship

between robustness of classification and distance from the threshold.

Specifically, for a decision rule w = gh, we define

p̂G =
1

k

k∑

i=1

(y∗i (1 − φ(h(x∗i ))) + (1 − y∗i )φ(h(x∗i ))) ,

where the G stands for Glick, and the (x∗i , y
∗
i ) are the elements of the test

set T . Generally, we expect φ to be monotonically increasing with range

[0, 1]. Note that setting φ(v) = I(v ≥ s) yields the standard test sample

estimate.

One common application area of this approach is when h(x) is an estimate

of the regression function E(Y |X = x), and s = 1
2 . Since s is the midpoint of

possible values of h(x), and the distance of h(x) from s seems equally relevant

on both sides, it is typical to expect φ to satisfy φ(s− v) = 1 − φ(s+ v) in

this case. It is common to choose φ to be the identity function or a sigmoid

function. In general, this estimator is only as good as the choice of the

smoothing function.

The final estimate of error we shall consider is also for the case where h(x) is

an estimate of the regression function, and the strategy involves thresholding

h(x) at 1
2 . Put another way, h(x) is an estimate of P(Y = 1|X = x). Suppose

we had access to the true conditional probabilities. Then

p = eD(w) = eD(gh) = E(X,Y )∼D L(g(h(X)), Y )

= E(X,Y )∼D I(g(h(X)) 6= Y )

= EX∼DX
EY ∼DY |X I

(
I

(
h(X) ≥ 1

2

)
6= Y

)
,

where DX denotes the marginal distribution of the input, and DY |X denotes

the conditional distribution of the output for a given input. Expanding the

inside expectation, the expression equals

EX∼DX

[
P{Y = 0|X}I

(
I

(
h(X) ≥ 1

2

)
= 1

)
+ P{Y = 1|X}I

(
I

(
h(X) ≥ 1

2

)
= 0

)]
.
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It is easy to verify that I(I(E ) = 1) reduces to I(E ), and similarly that

I(I(E ) = 0) reduces to I(Ē ), where the bar denotes the complement of the

predicate E . Thus, we obtain

EX∼DX

[
P{Y = 0|X}I

(
h(X) ≥ 1

2

)
+ P{Y = 1|X}I

(
h(X) <

1

2

)]
.

This formulation leads to the so-called posterior probability estimator (PPE):

the estimate is based on two approximations: first, approximating DX by

TX , the marginal of X with respect to the uniform distribution over the

test set; second, we use h(x) to approximate P{Y = 1|X = x}. These

approximations result in the estimate

p̂PPE =
1

k

k∑

i=1

[(1 − h(x∗i ))w(x∗i ) + h(x∗i ) (1 − w(x∗i ))] .

For more on the origin and development of this and similar estimators, the

reader is referred to Chapter 31 of Devroye et al. (1996) (but note that the

context there is for training sample point estimators).

In this section, we have introduced and discussed a number of point estima-

tors. As mentioned, the main criterion for evaluation of a point estimator is

its MSE (or more generally, its mean optimality), while some other criteria

are briefly mentioned. There are however, a variety of other criteria (outside

the scope of this work) for evaluating point estimators, such as the efficiency,

consistency, admissibility, stability, and the (asymptotic) distribution of the

estimator.

3.1.7 Summary

Each of the point estimators discussed here has its merits and drawbacks,

being more suitable in some situations, and less so in others. The most

relevant issue for us in determining which point estimator is most suitable

is the approximate range one expects p to lie in: since the MSE of an

estimator is usually a function of p, the best estimator (in terms of MSE)

will depend on where we think p lies (Botha, 1992): p close to 0.5 will yield
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a different selection of good estimators to a situation where p is probably

smaller than 0.05. When there is no indication of which value of p is more

likely, the minimax estimator is typically the best option. However, if you

do expect your parameter to lie in a certain region, it’s no good having an

estimator that performs poorly there. The idea is then to rather improve

it there, at the cost of other regions (assuming one can not get uniform

improvement). This is what the Bayes estimator does, where the prior

represents the statistician’s opinion of the relevant values of p. The minimax

estimator also does this — it improves the performance of an estimator at

all the values of p where it performs poorly, at the expense of the values of

p exhibiting better performance: this is why a minimax estimator typically

has constant risk.

3.2 Test sample interval estimators

As discussed earlier, point estimates are often not sufficient indicators of

locality of a parameter, even in combination with the variance of the esti-

mator. Interval estimators are an alternative method of specifying locality,

which address some of the shortcomings of point estimators.

In what follows, we shall be considering various approaches to constructing

interval estimators for risk on the basis of a test sample T . That is, for a

given decision rule w, we hope to be able to construct a region A(T,w) such

that, with high confidence, the region contains the true risk rD(w) of the

decision rule.

Thus, we seek a statement of the form

PT∼Dk {rD(w) ∈ A(T,w)} ≥ 1 − δ .

Concepts from statistical hypothesis testing will be prominent in what fol-

lows, since there is a duality between statistical hypothesis testing and con-

fidence intervals. Loosely speaking, a statistical hypothesis test for a param-

eter t determines a confidence interval: the 100(1 − δ)% confidence interval

associated with a statistical hypothesis test consists of those values v for
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which a null hypothesis t = v would not be rejected. More details on this

duality are available in Dudewicz and Mishra (1988, Section 10.8). In addi-

tion, an excellent resource on statistical hypothesis testing is Lehmann and

Romano (2005).

3.2.1 Measures of deviation

The expression rD(w) ∈ A(T,w) will often be represented by

ψ (rD(w), rT (w)) ≤ ε(T,w) (3.3)

or a similar expression, where ψ is some measure of deviation (typically a

prametric) between rD(w) and rT (w). Furthermore, ε(T,w) is not a func-

tion of rD(w) or rT (w), and ψ does not depend on T or D. ψ need not be

analytically invertible, but to be practically useful, some technique for ob-

taining the corresponding A(T,w) from ε(T,w), given ψ, is necessary. Some

of the measures of deviation ψ we shall consider are presented in what fol-

lows, along with a derivation of the corresponding intervals for t implied by

ψ(t, v) ≤ ε.

• (Upper) regular deviation: ψ (t, v) = t − v; this leads to a one-sided

interval (−∞, v + ε]. A lower regular deviation and absolute regular

deviation can also be used, yielding the intervals [v − ε,∞) and [v −
ε, v + ε] respectively.

• (Upper) relative deviation: ψ (t, v) = t−v√
t
; this measure of deviation as-

sumes that t > 0. Inverting this measure of deviation involves solving

a quadratic equation in
√
t. The resulting interval is


0, v +

ε2
(
1 +

√
1 + 4v

ε2

)

2


 . (3.4)

A lower and absolute relative deviation are defined similarly. The

upper relative deviation is a special case of the upper Bartlett-Lugosi

(B-L) ν-deviation, which we shall discuss later.
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• (Upper) Rao deviation: ψ (t, v) = t−v√
t(1−t)

; this measure of deviation

assumes that t ∈ (0, 1). Inverting it once again involves solving a

quadratic equation, which results from multiplying ε by the denomi-

nator here, and squaring. The resulting interval is


0,

v + ε2

2 + ε
√
v(1 − v) + ε2

4

1 + ε2


 . (3.5)

Once again a lower and absolute deviation can be defined. The result-

ing interval for the lower deviation is


v + ε2

2 − ε
√
v(1 − v) + ε2

4

1 + ε2
, 1


 .

This is the measure of deviation used, for example in the Wilson score

interval, which is based on the Rao score hypothesis test.

• (Upper) Wald deviation: ψ (t, v) = t−v√
v(1−v)

; results for this measure

only apply for v ∈ (0, 1). Multiplying ε by the denominator leads to

the interval (−∞, v + ε
√
v(1 − v)]. Results for a lower and absolute

deviation follow similarly. This is the measure of deviation employed

in the Wald interval for a binomial proportion, based on the corre-

sponding Wald hypothesis test.

• (Upper) Pollard ν-deviation: ψν (t, v) = t−v

ν+
√

t+
√

v
, with ν > 0. Here,

t and v are assumed to be positive. Lower and absolute deviations

are analogous. This measure of deviation was apparently proposed

in Pollard (1986), together with the following measure of deviation.

The intervals resulting from the upper and lower deviations can be

obtained by solving quadratic equations.

• (Upper) Pollard-Haussler (P-H) ν-deviation: ψν (t, v) = t−v
ν+t+v

, with

ν > 0. Again lower and absolute versions can be defined. This devi-

ation measure, proposed by Pollard to address inter alia his concern

with the behaviour of relative deviation when rD(w) = 0, was further

investigated in Haussler (1992). The interval resulting from the upper

deviation is (0, (1+ε)v+εν
1−ε

]. The lower interval can be obtained similarly.
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One useful feature of this measure of deviation is that the two-sided

P-H deviation measure is a metric on IR+.

• (Upper) B-L ν-deviation: ψν (t, v) = (t−v)−ν√
t

. Again, it is assumed

that t > 0. The lower B-L ν-deviation is ψν (t, v) = (v−t)−ν√
v

. An abso-

lute B-L deviation is not defined. Note that the upper B-L 0-deviation

is the upper relative deviation above. These deviation measures were

proposed in Bartlett and Lugosi (1999). By the upper bound’s simi-

larity to the upper relative deviation, we easily see that substituting

v + ν for v in (3.4) will provide an interval here, yielding


0, (v + ν) +

ε2(1 +
√

1 + 4(v+ν)
ε2

)

2


 .

An interval for the lower B-L ν-deviation is easily obtained as

[v − ε
√
v − ν,∞) .

The following inequality derived in Corollary 1 of Bartlett and Lugosi

(1999) is useful21: if the upper B-L ν-deviation ψν (t, v) ≤ ε, then, for

any η > 0,

t ≤ (1 + η)

[
v + ν +

ε2

η

]
.

A similar result can be obtained from the lower B-L ν-deviation. A

notable use of these inequalities is converting results for the P-H ν-

deviation to results for the B-L ν-deviation.

• Inverse distribution deviation:

ψ (t, v) = PV ∼Qt {V ≤ v} .

This measure seems rather obscure at first. However, generally it is

applied where Qt is the (approximate) distribution of a statistic, when

the value of some unknown parameter is t. It follows that ψ (t, v) ≤
ε when FQt(v) ≤ ε, where FQt denotes the cumulative distribution

function (c.d.f.) of Qt. Thus one obtains the interval {a : Qt(v) ≤ ε}.
21The result in the reference is actually a little stronger.
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There are no specific one-sided or absolute versions of this deviation

measure: instead, the nature of the resulting interval will depend on

the statistic used. We note that the inverse distribution deviation

generally underpins confidence sets which are generated by inverting

hypothesis tests. More details on this are in Section 3.2.3.

• (Lower) binomial tail deviation: ψL (t, v) = PV ∼Bin(k, t
k
) {V ≤ v}. Clearly,

this is just a special case of the inverse distribution deviation, where Qt

assumes a binomial distribution. This can be seen as the most natural

measure of deviation for the number of errors of a decision rule. This

measure of deviation naturally leads to a (lower) one-sided interval —

however, this interval must be found numerically for a specific value

of t22. Since the binomial tail deviation is non-increasing in t, one can

find the root of ψ (t, v) = ε by employing a line search technique such

as the secant method or Brent’s method (Brent, 1973). We denote this

root by LBT( v
k
, k, ε) where LBT stands for lower binomial tail. The

upper binomial tail deviation is

ψU (t, v) = PV ∼Bin(k, t
k
) {V ≥ v} .

This is obtained from the inverse distribution deviation for a transfor-

mation of the binomial variable: the interval obtained corresponds to

that obtained by the lower binomial tail deviation ψL (k − t, v). One

can obtain an upper interval from an upper binomial tail deviation,

and the upper bound is denoted by UBT( v
k
, k, ε).

• Kullback-Leibler deviation: ψ (t, v) = KL(t||v); here it is assumed that

t ∈ [0, 1], and to apply it, we need v ∈ (0, 1). Once again, this mea-

sure of deviation is not analytically invertible, but can be inverted

with a line search. This measure of deviation inherently provides two-

sided intervals, but the interval is usually not symmetric. We denote

22In order to evaluate the deviation for a given t, a cumulative binomial probability must
be evaluated. For large k, many of these binomial probabilities are extremely small, leading
to potential underflow problems when evaluating the probabilities on a computer. One
of the most important techniques for addressing this issue is that of instead evaluating
the log of the cumulative probability function. Another technique for speeding up the
calculation of these intervals is the use of Stirling’s approximation to calculate factorials.
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the lower and upper endpoints obtained by inverting KL(t||v) = ε by

LKL(v||ε) and UKL(v||ε) respectively.

Given a deviation measure ψ, the problem of obtaining a confidence set

reduces to finding appropriate (approximate) value of ε(T,w).23 Generally,

a standard approach to constructing confidence intervals will indeed specify

ψ — we shall see this later. First we turn our attention to the desirable

properties of an interval estimator.

3.2.2 Criteria for interval estimators

There are a wide variety of generic interval estimation techniques, and for

most common problems, there are a number of additional techniques de-

signed to generate suitable interval estimators. The reason for this plethora

of interval estimators is that the ideal interval estimator is typically unattain-

able. Instead, there are a variety of characteristics which are considered de-

sirable for an interval estimator (some parameter- or problem-specific), and

most interval estimators offer a trade-off between these criteria.

Coverage

The first issue is a rather philosophical one, and is related to the concept of

coverage of an interval. An interval estimator typically contains a parameter

of interest with a certain probability, but often that probability is a function

of the underlying parameter value. Thus for a given parameter value, we

can calculate the probability of the interval estimator containing that value.

This is the coverage of the interval at that parameter value. The confidence

coefficient of the interval estimator is the infimum of the coverage over all

parameter values, and traditionally, an interval estimator is said to be a

100(1 − δ)% confidence interval if the confidence coefficient is at least 1 −
δ. However, many interval estimators which are actually only approximate

confidence intervals, due to the use of asymptotic results, for example, have

23Although our notation does not make it explicit, note that this value is dependent on
the value of δ.
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become ubiquitous in practice. Many of these approximate intervals may

have a confidence coefficient well below 1−δ, yet, for various reasons (such as

ease of use) they remain popular. When an interval estimator is described as

a 100(1−δ)% confidence interval, but its confidence coefficient is actually less

than 1− δ, we say undercoverage occurs. In this case, for certain parameter

values, the interval estimator will not contain the actual parameter with

probability at least 1 − δ.

At this stage it may seem clear-cut to support the traditional view of in-

terval estimation. But sometimes, as in the case of the problem under

investigation here, the issue is not so clear: sometimes the available interval

estimators which exhibit a confidence coefficient of at least 1 − δ have a

significantly higher coverage for almost all of the possible parameter values,

while an interval estimator with an only slightly lower confidence coefficient

may remain much closer to a coverage of 1 − δ for most of the possible pa-

rameter values. Surely, as supporters of this view say, the second type of

estimator should be preferable, especially since the use of a frequentist prob-

ability over a sample space, when only one sample is available, is a rather

arbitrary concept for evaluating an interval estimator. Proponents of the

second view suggest other measures of coverage quality, such as the mean

squared deviation between the coverage and the nominal confidence level24,

or the maximum deviation in coverage from the nominal confidence level.25

We shall not go into detail here, but note that representative statements of

both groups can be found in the discussion of Brown et al. (2001).

Troubling issues in estimators exhibiting undercoverage are: gross under-

coverage, where the coverage for certain parameter values are far below the

nominal confidence level, especially when the coverage approaches zero for

some parameter values; and consistent undercoverage, where an estimator’s

coverage is consistently below the nominal confidence level for an extensive

continuous range of a parameter value. The first issue is self-explanatory.

The second issue is less clearly defined: in the binomial proportion case,

24A generalization of this idea is a weighted mean squared deviation based on a Bayesian
prior over the parameter space.

25A related idea is the use of Bayesian credible intervals instead of classical confidence
intervals.
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suppose an estimator exhibits only coverage of 0.85 when the nominal confi-

dence level is 95%, for all p ≤ 0.05 and p ≥ 0.95, and has adequate coverage

for all other p. This is not likely to be an issue for a problem seeking

an estimator for the proportion of males in a typical mammal population.

However, for the problem of estimating the proportion of defects in a man-

ufacturing process, this interval estimator is unlikely to be suitable. (Note

that this is effectively the same consideration which should guide one’s hand

in choosing a point estimator.) Thus, the nature of the undercoverage, and

the practitioner’s expectations of a problem are factors in the acceptance of

estimators exhibiting undercoverage.26

Two important concepts for the study of coverage of intervals employing

distributional assumptions are n-th order correctness and n-th order ac-

curacy (Efron and Tibshirani, 1993, Section 22.2). An interval endpoint

estimator is said to be n-th order correct if the asymptotic deviation of the

endpoint estimator and the ideal endpoint estimator (based on the exact dis-

tribution of the statistic used as the basis for the interval) is Op(k
−n−1

2 ). n-th

order correctness is usually studied by employing Edgeworth expansions. It

is generally expected that a confidence interval be first-order correct, and

preferably second-order correct. Obtaining third-order correctness (or more)

is almost always impractical. n-th order accuracy is a weaker condition than

n-th order correctness, which considers the deviation in coverage of an inter-

val from the nominal coverage, regardless of the relationship of the endpoint

estimators to the ideal endpoint estimators. An example of these concepts

being employed to study bootstrap confidence intervals is Hall (1988). Due

to our focus on smaller sample sizes, and the asymptotic nature of these

concepts, we will not be considering correctness and accuracy as factors in

what follows.

26However, estimators exhibiting overcoverage may also be unsuitable if they lead to
over-conservatism and/or financial losses.
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Length

Clearly, for a given confidence level, the shorter of two interval estimators

is preferable.

Symmetry

This refers to estimators which are centred around some point estimator

of the parameter under investigation. In the one-sided case, this property

obviously becomes irrelevant. Symmetry is desirable for an interval estima-

tor if the underlying statistic has a symmetric distribution, otherwise it is

not. In the case of a binomial proportion, the statistic p̂ generally has a

non-symmetric distribution with mean p and variance p(1−p)
k

. In this case,

it is not desirable to obtain a symmetric interval estimator.

Equal tails

This is another property which is not relevant in the one-sided scenario. It

refers to an estimator where the probability that the parameter falls below

the lower bound of the interval is (sometimes approximately) equal to the

probability that the parameter exceeds the upper bound.

There is sometimes an interesting interplay between this requirement and

that of length, when a shorter interval can be obtained by violating this

condition.

It is customary to either set the tail probabilities equal, or to construct

one-sided intervals. However, there is generally no reason why this must be

the case, and intervals for arbitrary upper and lower tail probabilities can

generally be constructed just as easily27.

Example 3.1. To illustrate, consider the case where it is desired that the
lower tail probability be 0.025 and the upper be 0.075. Then, given a method
for constructing an equal-tailed confidence interval, an appropriate interval

27At least in any case where two-sided intervals can be constructed.
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will be [L0.95,U0.85], where [L0.95,U0.95] and [L0.85,U0.85] are 95% and 85%
equal-tailed intervals respectively. ut

Bayesian highest posterior density (HPD) credible intervals are perhaps the

most well-known form of interval estimators which do not generally have

equal tails.

Equivariance

This section is related to Section 3.1.5.

Equivariance refers to a kind of desired symmetry in the construction of

the estimator. In the binomial proportion case, equivariance means that a

100(1−δ)% interval estimator for p constructed on the basis of r “successes”,

will also generate a 100(1 − δ)% interval estimator for 1 − p if k − r is

substituted for r. Informally, one could say that an interval is equivariant

in this sense if the interval does not depend on which of two outcomes is

considered a “success” when taking a sample or performing an experiment.

Equivariance with respect to other transformations can also be desirable.

Once again, the inherent asymmetry of one-sided intervals typically makes

this property irrelevant in that case.

Monotonicity

Generally, monotonicity means that it is undesirable for the interval end-

points to move in the opposite direction to the statistic they are based on.

Consider again the case of interval estimation for the true error. First,

monotonicity in the number of successes means than an increase in the

number of successes for a fixed sample size (and hence in p̂) should not lead

to a decrease in either endpoint of the estimator. Second, monotonicity in

the sample size means that an increase in sample size while the number of

successes remains constant (hence a decrease in p̂) should not lead to an

increase in either endpoint of the estimator.
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Clearly, this property is still relevant in the one-sided case.

Summary

Our main criteria for evaluating interval estimators are coverage, length, and

monotonicity. We shall disregard equality of tails: if they are desired, they

can be obtained from any two-sided interval. Symmetry will not be consid-

ered a benefit for interval estimators of error, since it is generally unusual

for the statistics we consider to have a symmetric distribution. Equivari-

ance with respect to φ(v) = 1− v is desirable for error estimation, while for

general loss functions we shall disregard equivariance.

We briefly mention three other considerations for interval estimators.

• Overshooting refers to the situation where the interval estimator con-

tains a value which it is impossible for the estimand to attain. A

classic example is an interval estimator for variance with a negative

endpoint. Since the true risk in our case is assumed to lie in [0, 1], any

interval generating endpoints outside this interval can be improved by

trimming the endpoints.

• Degenerate or (zero-width) intervals occasionally occur. This may not

seem very useful, but theoretically these degenerate intervals are per-

fectly valid.

• The assumptions underlying an interval estimator are, of course, very

important. The most common assumption used in constructing com-

mon confidence intervals are distributional assumptions, typically re-

garding asymptotic normality. The validity of these assumptions should

be considered.

3.2.3 Employing the inverse distribution deviation

Consider an hypothesis test for the simple null hypothesis H0 : rD(w) = t0,

relative to the composite alternative hypothesis Ha : rD(w) < t0. Suppose
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the hypothesis test employs a statistic V such that (V |rD(w) = t) has a

distribution Qt with c.d.f. FQt . Generally, the realization v of V on the

sample is compared to a threshold value sδ for the test. This threshold

value is typically the 100(1 − δ)-th quantile of Qt0 . It is common that the

null hypothesis is rejected if v > sδ. One can obtain a confidence set by

inverting this hypothesis test. That is, if the test would not reject the null

hypothesis rD(w) = t for the realized statistic, t is included in the confidence

set, since it can be considered “reasonable” in such a sense. The confidence

interval thus consists of all values of t for which PV ∼Qt {V ≤ v} ≤ 1 − δ.

But this expression is the inverse distribution deviation, so we can rewrite

this expression simply as

ψ(t, v) ≤ 1 − δ ,

where v is the realization of V for the sample T .

In practice, Qt is generally not known. When the loss function is zero-one,

Qt is related to a binomial distribution, and we will focus on that case.

3.2.4 Employing the binomial tail deviation

The upper and lower binomial tail deviations are applications of the inverse

distribution deviation, where Qt is a binomial distribution. Results employ-

ing the binomial tail deviation follow from inverting the binomial test. For

a zero-one loss function, the number of errors has a binomial distribution

with parameters k and eD(w), so this method can be employed to obtain a

confidence set for eD(w).

The resulting interval is known as the Clopper-Pearson interval or the max-

P interval (Clopper and Pearson, 1934, Vollset, 1993). Since the result is

derived from the exact distribution of the hypothesis statistic eT (w), the

interval is sometimes called exact (as opposed to approximate/asymptotic).

We use the following reasoning to construct an upper 100(1−δ)% confidence

interval: the binomial test employs r = keT (w) as a statistic, and compares

it to sδ, the 100(1 − δ)-th quantile of the binomial distribution with param-

eters k and t0, where t0 is the null hypothesis probability of error. Thus, if
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ψU denotes the upper binomial tail deviation, the corresponding confidence

interval consists of the points t satisfying

ψU (kt, r) ≤ 1 − δ ,

namely [0,UBT(eT (w), k, 1 − δ)].

For a given δ, this interval has a guaranteed coverage of 1 − δ, i.e. the

probability that eT (w) lies outside the interval is strictly less than δ.

The binomial test is theoretically well-motivated: if the c.d.f. of the statistic

V used in an hypothesis test has a monotone likelihood ratio (LR), the

Neyman-Pearson lemma implies that the test is a uniformly most powerful

(UMP) test at the specified level, if the critical function is of the form

I(V > sδ).

It is known (see, for example, Dudewicz and Mishra, 1988, Theorem 9.3.70)

that the c.d.f. of any distribution in the one-parameter exponential family

has a monotone LR in V , where V is the coefficient of the natural parameter

of the distribution. This family includes the binomial, Poisson, normal, and

one-parameter Gamma and Beta distributions28. For the binomial distribu-

tion in particular and our one-sided alternative hypothesis, this means that

the number of errors r employed above is an appropriate statistic.

Following this reasoning to its conclusion yields in essence the binomial test

described above. The complication is that a UMP test needs to have level

exactly δ, but the discrete nature of the binomial distribution means that

this cannot be done. Theoretically, therefore, there may be a uniformly

better test than the binomial test above, with corresponding improved con-

fidence intervals. However, it is more likely that a number of alternative

tests exist, with improved power for only a restricted set of parameter val-

ues. Inverting such tests would generally yield confidence sets which are

only improvements for certain parameter values. However, due to its rela-

tionship to an “almost” UMP test, the Clopper-Pearson interval is generally

considered the “gold standard” for binomial confidence intervals.

28These one-parameter distributions are special cases of the regular distributions where
the two parameters are equal.
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Next, we consider three popular general hypothesis tests and the intervals

they produce: the LR test, the Rao score test, and the Wald test.

3.2.5 The likelihood ratio test

Along with the Wald interval and the score interval, the LR method for

interval estimation is very popular (Brown et al., 2001). This method is

based on inverting the LR test.

In our case of the simple null hypothesis H0 : rD(w) = t0, and the composite

alternative hypothesis Ha : rD(w) < t0, the test statistic is −2 lnΛ(T ),

where

Λ(T ) =
Lik(t0|T )

supt<t0
Lik(t|T )

is the LR.

Clearly we cannot directly apply this test for general loss functions, as

we do not have a parametric form for the distribution of L(w(x), y) when

(x, y) ∼ D. Once again, we consider the zero-one loss function, where that

distribution is known to be Bernoulli with parameter eD(w).

The resulting likelihood is

Lik(t|T ) = tr(1 − t)k−r , (3.6)

so that the LR is

Λ(T ) =
t0

r(1 − t0)
k−r

supt<t0
(tr(1 − t)k−r)

.

The supremum in the denominator occurs at p̂ if p̂ < t0, else as t→ t0. The

resulting statistic for p̂ ≥ t0 is

V (T ) = −2 lnΛ(T )

= −2 ln

(
t0

r(1 − t0)
k−r

t0r(1 − t0)k−r

)

= 0 ,

so that no t0 ≤ p̂ will be rejected. Assuming p̂ < t0,

V (T ) = −2[r(ln t0 − ln p̂) + (k − r)(ln(1 − t0) − ln(1 − p̂))] .
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We see that V (T ), given t0, depends on a k-sample T only through r, so

that we can equivalently write V (r). Thus, the distribution of V (T ) given

t0 can easily be obtained. The LR test then proceeeds by comparing V (T )

to an appropriate quantile of the distribution of V (T ). The 100(1 − δ)%

confidence set obtained by inverting this test is then

[0, p̂] ∪
{
t : r ln t+ (k − r) ln(1 − t) ≥ r ln p̂+ (k − r) ln(1 − p̂) − 1

2
sδ(t)

}
,

where sδ(t) denotes the 100(1 − δ)-th quantile of V (T ) given t.

Obtaining the exact distribution of the statistic −2 lnΛ for general LR tests

is generally very difficult. Traditionally, applications of the LR test employ

an asymptotic approximation to the distribution of −2 lnΛ. In our case of

testing a single parameter, −2 lnΛ asymptotically has a central χ2
1 distribu-

tion. This asymptotic approximation is so prevalent that it is assumed as

the de facto standard when speaking of a LR test. The test using the exact

distribution of −2 lnΛ is then typically called an exact LR test.

The hypothesis test using the asymptotic distribution is performed by com-

paring the test statistic to an appropriate quantile of the χ2
1 distribution.

The resulting upper interval with confidence 1 − δ is then described by

[0, p̂]∪
{
t : r ln t+ (k − r) ln(1 − t) ≥ r ln p̂+ (k − r) ln(1 − p̂) − 1

2
χ2

1(1 − δ)

}
,

where χ2
1(1 − δ) denotes the 100(1 − δ)-th quantile of the χ2

1 distribution.

The solution to this equation is generally found numerically, using a line

search technique.

We next turn our attention to a closely related test, the Rao score test.

3.2.6 The score interval

The Rao score test is based on the fact that, for a small value of c,

ln
Lik(t|T )

Lik(t− c|T )
= lnLik(t|T ) − ln Lik(t− c|T )

≈ ln Lik(t|T ) − (ln Lik(t|T ) − c
∂

∂t
ln Lik(t|T ))
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= c
∂

∂t
ln Lik(t|T )) ,

by means of a first-order Taylor expansion. The test is then constructed

using V (T ) = ∂
∂t

ln Lik(t|T )|t=t0 , the score at t = t0, as the statistic. Since

the statistic is based on an approximation to a ratio of log-likelihoods, it

is not surprising that the intervals obtained by inverting the score test are

generally very similar to those obtained from the LR test.

Once again, we note that this cannot be applied to general loss functions,

but that it can be done for zero-one loss functions.

By taking the logarithm of (3.6), one obtains the log-likelihood

r ln t+ (k − r) ln(1 − t) .

Taking the partial derivative and evaluating at t0 yields

V (T ) =
∂

∂t
ln Lik(t|T ))|t=t0 =

r

t0
− k − r

1 − t0
.

A similar argument to that in the previous section allows the derivation

of an exact score interval, employing quantiles of the exact distribution of

V (T ).

For an i.i.d. k-sample, the likelihood can be expanded as a k-product; hence

the log-likelihood can be expanded as a k-sum. The result is that the central

limit theorem can be applied to conclude that the asymptotic distribution

of a log-likelihood is normal. Since the log-LR here is simply the difference

between two log-likelihoods, it also has an asymptotic normal distribution.

Non-exact (i.e. standard) score tests thus use a normal distribution to ap-

proximate the distribution of V (T ).

Given t = t0, by rewriting V (T ) as r−kt0
t0(1−t0) , we note that ET∼Dk V (T ) = 0

and VT∼Dk V (T ) = kt0(1−t0)
t02(1−t0)2

= k
t0(1−t0) . (Note that VT∼Dk V (T ) is the

Fisher information given t = t0.) In this case, the score test rejects the null

hypothesis if V (T ) is less than the 100δ-th quantile of the normal distribution

with mean 0 and variance k
t0(1−t0) , or equivalently, if

√
t0(1 − t0)

k

[
r − kt0
t0(1 − t0)

]
< −zδ ,
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where zδ denotes the level-δ critical value of the standard normal distribu-

tion. Rewriting this condition, we obtain that the t satisfying

t− p̂√
t(1 − t)

≤ zδ√
k

are those which will not be rejected by the test, and thus form the score

interval. Note that this is of the form

ψ(t, p̂) ≤ zδ√
k

where ψ is the upper Rao deviation.

The resulting score interval (see (3.5)), also known as Wilson’s score inter-

val (Wilson, 1927), is


0,

p̂+ zδ
2

2k
+ zδ√

k

√
p̂(1 − p̂) + zδ

2

4k

1 + zδ
2

k


 ,

or the more popular equivalent formulation


0,

r + zδ
2

2 + zδ

√
r − r2

k
+ zδ

2

4

k + zδ2


 .

Due to the symmetry of the normal distribution, the corresponding lower

interval is of the same form, with upper bound 1 and lower bound the

same form as the upper bound, except that the term containing the square

root is subtracted. As a result, the centre of a two-sided score interval is

r+
zδ

2

2
k+zδ

2 . This expression has a clear interpretation in terms of shrinkage: it

is a weighted average of p̂ and 1
2 , with the weights dependent on k and the

critical value z δ
2

(and hence the required confidence):

r + 1
2z

2
δ
2

k + z2
δ
2

= p̂


 k

k + z2
δ
2


+

1

2




z2
δ
2

k + z2
δ
2


 .

A similar shrinkage interpretation applies to the width of the interval — for

details, see Agresti and Coull (1998). As such, the 1−δ confidence level score

interval displays a remarkable similarity to the Bayesian credible interval for
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the Beta

(
1
2z

2
δ
2

, 1
2z

2
δ
2

)
prior distribution. Bayesian credible intervals will be

discussed later.

The last well known interval we shall discuss is the Wald interval. We shall

see that in its standard application, the resulting formulae are much simpler

than the score interval, but the resulting interval is also less accurate.

3.2.7 The Wald interval

This section discusses the interval estimators arising by (approximately)

inverting the Wald test. The Wald test for a parameter t begins with the

statistic

V (T ) =
t̂− t0√

V t̂
,

where t̂ is the ML estimate of t.

Yet again, we are restricted to particular loss functions, most notably zero-

one loss functions. As a result, we focus on obtaining an interval by inverting

the hypothesis test for the case of estimating eD(w). In this case, t̂ = r
k

is

the ML estimate of t, and V t̂ = t(1−t)
k

. Thus

V (T ) =
√
k

t− t̂√
t(1 − t)

=
√
kψ(t, t̂) ,

where ψ denotes the upper Rao deviation. We note that this is the same as

the test statistic for the (regular) score interval. Inverting this test directly

is possible in this case because V t̂ is a simple function of t. For general

parameters, however, this is not the case, and the Wald test would have to

be inverted numerically, even if normality of the test statistic is assumed.

We shall refer to the test outlined here as the exact-variance Wald test, and

the resulting intervals as either an exact exact-variance Wald interval, or a

(standard) exact-variance Wald interval, to distinguish it from the (regular)

Wald interval which follows.

To simplify the inversion of the test for general parameters, it is customary

to assume that V t̂ is constant for the hypothesis test, regardless of the

choice of t, and that the appropriate constant is V t̂ = V t̂|t=t̂, which for our
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purposes is t̂(1−t̂)
k

. Inverting the resulting test is much easier, since the test

statistic

V ′(t) =
√
k

t− t̂√
t̂(1 − t̂)

=
√
kψ(t, t̂)

(where ψ is the upper Wald deviation) is merely a linear transformation of

t.

The exact (regular) Wald interval can be derived by considering the exact

distribution of V ′(T ). If normality of the test statistic is assumed, as is

customary, the (regular) Wald interval consists of those t satisfying

ψ(t, t̂) ≤ zδ√
k
.

Inverting ψ, one obtains the interval

0, t̂+ zδ

√
t̂(1 − t̂)

k


 .

3.2.8 Discussion

In our discussion of the LR test, the score test, and the Wald test, we

have outlined four types of potential intervals: the LR interval, the score

interval, the exact-variance Wald interval, and the (regular) Wald interval.

Each interval can be derived in a one-sided manner to obtain upper or lower

bounds, which can be combined to obtain two-sided intervals. Furthermore

each interval can be obtained based on the exact distribution of the test

statistic — the exact test/interval; or as is more customary, assuming that

an asymptotic distribution result is accurate — the (standard) test/interval.

All the exact intervals have guaranteed coverage of at least 1 − δ, by their

construction, while the standard intervals may potentially exhibit undercov-

erage.

We have seen that it is not generally possible to calculate these intervals

for an arbitrary loss function, since the distribution of the loss, given the

true risk, is unknown. The important class of zero-one loss functions allows

calculation of these intervals, though.
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For all the upper one-sided tests we have outlined here, we find that the

statistic V (T ) is increasing for zero-one loss functions. It follows that the

sets obtained by inverting these tests are upper intervals. Similar results

hold for lower and two-sided intervals. Now, suppose some hypothesis test

yields a shorter upper interval than the binomial interval when inverted, for

some confidence level 1 − δ. Specifically the new test yields [0, t1] while the

binomial test yields [0, t2] with t2 > t1. Since the derivation of t2 implies

t2 = inf {t ∈ [0, 1] : PT∼Dk {eT (w) ≤ t} ≥ 1 − δ} ,

it follows that

PT∼Dk {eT (w) ≤ t1} < 1 − δ ,

i.e. the alternative hypothesis test exhibits undercoverage. Since inversions

of exact tests can not undercover, any exact interval is no better than the

binomial interval. A similar result holds for lower intervals. Furthermore,

the intervals for all the tests outlined here turn out to be the same as the

binomial test in these cases. This is not so for two-sided intervals — we

discuss this issue further in Section 3.2.10.

The confidence intervals arising from the inversion of the (regular) tests

all rely on distributional assumptions, and hence the quality of the inter-

vals relies on how accurate the approximation is to the exact distribution.

Important in this regard is that when using a normal distribution to ap-

proximate a discrete distribution, a continuity correction (CC) is necessary.

Applying CCs to the tests above is discussed in Section 3.2.9.

For very large n, it would appear we have nothing to worry about, since

the central limit theorem would appear to take care of everything (and the

effect of the continuity correction would be negligible). However, the cen-

tral limit theorem does not guarantee uniform convergence for all values of

p ∈ [0, 1]: in other words, for any n, there are (extreme) values of p for

which the normal approximation is not good. This partially explains the

poor performance of the approximate tests for values of p near 0 and 1. The

regular guidelines given for the required sample size to be sufficient for the

normal approximation for the Wald test to be adequate are generally too lib-

eral (Brown et al., 2001). The result is that Wald intervals are consistently
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too narrow, as has been repeatedly noted by various authors. The devel-

opment of this discussion can be found in Blyth and Still (1983), Vollset

(1993), Agresti and Coull (1998), Brown et al. (2001), and Brown et al.

(2002), amongst others. These authors consistently note the superiority of

the score interval over the Wald interval for the binomial case, with Blyth

and Still (1983, Section 3) showing that the approximation of the variance

of p̂ by a constant makes the (CC) Wald interval consistently too narrow.

In addition, the (CC) Wald interval may overshoot and yields zero-width

intervals when p̂ is zero or one. The CC score interval does not have these

problems, and exhibits equivariance and monotonicity, among several desir-

able features (see the discussion in Blyth and Still, 1983, Section 2).

3.2.9 Continuity corrections

The lack of a CC in the development of the (regular) tests above leads to

undercoverage: when a Bin(k, p) variable is approximated by a N(kp, kp(1−
p)) variable, we note that we are approximating

PV ∼Bin(k,p){V = v}

by

PV ∼N(kp,kp(1−p))

{
v − 1

2
< V < v +

1

2

}
.

It follows that comparing the statistic to a critical exact value should be

equated to comparing the statistic to a modified approximate value. Ap-

plying such a modification to the tests leads to CC intervals, which remove

such consistent undercoverage.

Furthermore, Hall (1982) points out that a correction for skewness is also

necessary when approximating the asymmetric binomial distribution with

the symmetric normal distribution. For two-sided intervals, this correction is

of a lower order than the continuity correction, but when one is constructing

one-sided intervals, this correction can have an even larger impact than the

traditional continuity correction.



Chapter 3. Test sample estimators 61

Wald interval

The most accepted form of the CC Wald interval, which we shall employ, is

Conf1−δ(p) =

[
p̂±

(
z δ

2

√
p̂(1 − p̂)

k
+

1

2k

)]
.

As noted in Section 3.2.8, even the CC Wald interval is too narrow. Blyth

and Still (1983) provide an improved alternative, which we name the Blyth-

Still-Wald (BSW) interval

p̂±




z δ
2√

k − z2
δ
2

−
2z δ

2√
k
− 1

k

√
p̂(1 − p̂) +

1

2k





 .

Note that this interval multiplies the variance estimate by a factor. This

attempts to undo the damage done by using a constant estimate of the

variance, which tends to be an underestimate.

Score interval

The score interval also needs a continuity correction, leading to the CC score

interval

Conf1−δ(p) =




(r ± 0.5) + 1
2z

2
δ
2

± z δ
2

√
(r ± 0.5) − (r±0.5)2

k
+ 1

4z
2
δ
2

k + z2
δ
2




This modification addresses most of the score interval’s undercoverage issues,

and is considered far superior to the Wald intervals: it has been popular

amongst practitioners for many years (Blyth and Still, 1983). Furthermore,

Blyth and Still (1983) recommended the use of the CC score interval for

k > 30 due to its desirable properties (probably due to the limitations of

computers at the time), with just one modification. They suggest using

appropriate one-sided binomial tail intervals when p̂ = 0 or p̂ = 1 to address

undercoverage at the endpoints. We call the resulting interval the Blyth-Still

(BS) score interval.
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Despite this modification, however, the interval still does not provide guar-

anteed coverage of 1 − δ for all values of p. On the other hand, in the 95%

case, Vollset (1993) report that the coverage is about 94% for all p, with

coverage below the nominal 95% level only occuring for p within 1
10k

of 0 or

1.

3.2.10 Improvements to the two-sided binomial interval

We mentioned above that the binomial interval yields shortest possible one-

sided confidence intervals for binomial proportions. It follows that the same

holds for two-sided intervals where the minimum tail probabilities for each

tail are individually specified. However, two-sided intervals resulting from

inverting hypothesis tests do not necessarily have equal tail probabilities.

Thus, a better two-sided interval than a simple Bonferroni combination of

equal-tailed binomials may be possible.

The two-sided exact LR interval

The question thus arises whether it is possible that the exact intervals from

the hypothesis tests we have already considered may be improvements on the

binomial interval. It turns out that two-sided exact versions of the Wald,

exact-variance Wald, and score tests, are basically a combination of two

one-sided tests, so that the resulting two-sided intervals are identical to the

two-sided binomial interval. However, the two-sided LR test uses a single

comparison to reject the null hypothesis for both too-large and too-small

error rates. The result is a test for which the tail probabilities need not be

nearly equal.

It turns out that the two-sided exact LR interval is uniformly better than

the two-sided binomial interval (Brown et al., 2001, Comments by Corcoran

and Mehta). In this regard, we note that the two-sided binomial interval’s

overcoverage is worst when p < 0.1 or p > 0.9 (exceeding 98% for large

portions of these ranges for a 95% interval), and this overcoverage is heavily

reduced by the two-sided exact LR interval.
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The Blyth-Still-Casella interval

Improving the Clopper-Pearson interval was also the focus of the work

in Blyth and Still (1983): as an alternative, the authors suggested a confi-

dence interval based on Edwin Crow’s refinement (Crow, 1956) of Sterne’s

method (Sterne, 1954) for constructing hypothesis tests. Sterne’s method

constructs acceptance regions by using a method analagous to Bayesian HPD

intervals. Crow’s correction ensures that inverting the modified tests yield

confidence regions which are intervals.

It is shown that the suggestion of Blyth and Still also guarantees coverage

of 1 − δ, while generally being of a slightly shorter length. Although this

interval is more difficult to understand and implement, implementations

should be more widely used in practice as an improvement on the two-sided

Clopper-Pearson interval.

In 1986, (Casella, 1986) proposed a method to enhance any equivariant pro-

cedure for generating confidence intervals for a binomial parameter. This

method can be seen as a generalization of the proposal of Blyth and Still

to improve the Clopper-Pearson interval, in the sense that the BS inter-

vals are obtained as a special case of Casella’s technique. In addition,

Casella’s method easily yields confidence intervals for arbitrary confidence

levels, while Blyth and Still only performed their construction for 95% and

99% confidence levels (and used the score interval for k > 30 as an approxi-

mation). Thus, the interval of the BS type obtained by Casella’s method is

known as the Blyth-Still-Casella (BSC) interval.

3.2.11 Randomized hypothesis tests

Up to now, all the hypothesis tests we have considered have been determin-

istic; i.e. for a specific value of the test statistic, the decision whether to

accept or reject the null hypothesis is always the same. This is the cause

of the overcoverage in the case of hypothesis tests for the parameter of the

Bernoulli distribution: the overcoverage of exact intervals derives from the

fact that the values on the boundary of the acceptance region for the test
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are (by definition) never used to reject the hypothesis p = p0. However,

these boundary values have a non-zero probability of occurring29, resulting

in overcoverage.

One solution to this dilemma is to consider randomized hypothesis tests: if

the realization of the statistic lies on the boundary of the acceptance region,

it is only accepted with a certain probability. Specifically, if v is on the

boundary of the acceptance region R(t0) of an hypothesis test, and we have

P{V (T ) ∈ R(t0)} = 1 − δ1 ≥ 1 − δ

and

P{V (T ) ∈ R(t0) \ {v}} = 1 − δ2 < 1 − δ ,

we wish to reject the hypothesis on realization of V (T ) = v with probability

(1 − δ1) − (1 − δ)

(1 − δ1) − (1 − δ2)
=

δ − δ1
δ2 − δ1

.

The resulting test then has level exactly δ.

Randomized tests present one with a new challenge: the inversion of the

randomized test. If one inverts them in the same manner as the determinis-

tic tests discussed earlier, including the boundary values in the acceptance

region, one obtains the same intervals as for a corresponding deterministic

test, and nothing is gained. However, if in the inversion, at any stage one

excludes a boundary value from the rejection region, the resulting confidence

interval will sometimes exhibit undercoverage. However, the undercoverage

will never exceed the maximum point probability of V (T ). Thus the cov-

erage of such an interval is asymptotically equal to the required coverage.

A similar argument shows that the overcoverage will also become negligible

asymptotically.

The mid-P interval

This serves as a motivation for the so-called mid-P interval, which is obtained

from a randomized version of the binomial test. For the purpose of inverting

29This is the general problem with inference based on discrete variables
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the test, a point on the boundary of the acceptance region is considered

included in the acceptance region when the probability of rejecting the point

is less than c = 0.5. This approach leads to an interval estimator. Using

other constants also leads to interval estimators — notably c = 1 leads to the

max-P interval, and c = 0 yields an interval with consistent undercoverage

(which we could call the min-P interval).30

Mid-P intervals are, as expected, generally slightly shorter than the max-P

interval, with substantially less overcoverage, but which exhibits undercov-

erage.

In principle, one could construct a randomized version of any hypothesis

test, and invert it using some constant c. If the original test generated

interval estimators, so will this process. We shall call such an interval a

c-randomized interval. As an example, the mid-P interval could be called a
1
2 -randomized Clopper-Pearson (or binomial) interval. Specifically, one may

be interested in constructing 1
2 -randomized BSC and exact LR intervals.

3.2.12 Approximations to the binomial intervals

Pratt’s approximation

Pratt’s approximation (Vollset, 1993) is a closed form approximation to the

max-P interval: the upper limit of the two-sided Pratt interval is31

UP (r, δ) =

[
1 +

(
r + 1

k − r

)2

(φ(r, k, δ))3

]−1

,

where φ(r, k, δ) equals

81(r + 1)(k − r) − 9k − 8 − 3z δ
2

√
9(r + 1)(k − r)

(
9k + 5 − z2

δ
2

)
+ k + 1

81(r + 1)2 − 9(r + 1)

(
2 + z2

δ
2

)
+ 1

.

30Other methods for inverting the test could be considered, but they may not necessarily
yield interval estimators.

31The subscript P here refers to Pratt.



Chapter 3. Test sample estimators 66

The corresponding lower limit is derived from the same formula, as LP (r, δ) =

1 − UP (k − r, δ). A one-sided interval with confidence level 1 − δ can be

obtained as [0,UP (r, 2δ)].

A modification of Pratt’s max-P approximation for the mid-P interval was

proposed in Vollset (1993), and essentially consists of linear interpolation

between two max-P approximations: the upper bound is

UP (r, δ) + UP (r + 1, δ)

2

and the lower bound is

LP (r, δ) + LP (r − 1, δ)

2
.

The realizable case

When p̂ = 0, we can derive a rather strong bound, since the probability

that p̂ = 0 is simply (1 − p)k. Hence, an unlikely p, given zero empirical

error, will be one such that (1 − p)k ≤ δ. This yields the one-sided (exact)

realizable interval

Conf1−δ(p) =
[
0, 1 − k

√
δ
]
.

It is common to use the bound (1 − p)k ≤ e−kp, since the resulting interval

will be more easily applicable in conjunction with other bounds we shall

encounter later. The resulting one-sided exponential realizable interval is

Conf1−δ(p) =

[
0,

1

k
ln

1

δ

]
. (3.7)

The motivation for naming these realizable intervals will become apparent

when we discuss training sample interval estimators.

3.2.13 Confidence intervals on transformations

A number of techniques involve deriving confidence intervals for a function

of p, and then inverting the function on the endpoints of the interval. This
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method can in principle be used in conjunction with any method for gen-

erating confidence intervals. Since this can not improve intervals based on

exact hypothesis tests, the techniques are generally only suitable for intervals

based on regular hypothesis tests. Here we outline some of the best-known

such transformations for estimating a binomial proportion.

This technique has two major benefits. When applying bounds such as the

Wald interval, which may overshoot, obtaining bounds on a transformation

of the parameter may be beneficial, when the range of the inverse transfor-

mation is the valid range of values for the parameter. This is the case for all

the transformations we shall consider, so that no intervals obtained based

on these transformations can overshoot. Another use of such transforma-

tions is that it can simply be easier to obtain intervals for the transformed

value: sometimes inverting the hypothesis test for the original parameter is

difficult, but much easier for the transformed parameter. We shall see an

example of this with the arcsine transformation.

In general, we will refer to an interval constructed by employing a trans-

formation by adding the name of the transformation to the name of the

interval. Thus one may speak of an arcsine Wald interval. If the hypothesis

test is not specified, it is assumed to be a Wald interval.

The key to obtaining such intervals is being able to find the variance of

the transformed empirical error rate. This is done by employing the so-

called delta method, which employs a first-order Taylor expansion of the

transformation φ about the true risk — see, for example, Bishop et al.

(1975, Section 14.4).

The logit transform

Perhaps the most well-known such transformation is the logit transform of

p (Vollset, 1993). The logit transform is a mapping φ : [0, 1] → IR, where

φ(p) = ln( p
1−p

). Suppose an interval [L ,U ] for t(p) can be derived from

some hypothesis test. This interval can then be converted into an interval
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for p by the inverse logit function, φ−1(v) = 1 − (1 + ev)−1, yielding

[φ−1(L ), φ−1(U )] =


1 −


1 + exp


ln

(
r

k − r

)
±

z δ
2√

r(k−r
k

)





−1
 ,

in the case of a logit Wald interval.

The probit transform

A similar approach is based on the probit transform. The probit transform

also maps [0, 1] onto IR, and is the inverse of the cumulative distribution

function of the standard normal distribution. Once again, a confidence in-

terval for the transformed p can be inverted to generate a confidence interval

for p itself: for an interval [L ,U ], the inverted interval is




erf
(

L√
2

)
+ 1

2
,
erf
(

U√
2

)
+ 1

2


 .

The arcsine transform

Finally, the arcsine transform (Brown et al., 2001, Section 4.2.2) of p,

arcsin(
√
p), is popular because the variance of the transformed p̂ is indepen-

dent of r. As a result, this transformation is sometimes said to be variance-

stabilizing (Brown et al., 2001). Note that this approach also differs from

the previous three since the range of the transformation is [−π, π] rather

than IR. The resulting Wald interval for the transformed parameter is

[L ,U ] =

[
arcsin

(√
p̂
)
±

z δ
2

2
√
k

]
,

and the final interval is obtained as [sin2(L ), sin2(U )].32

32Two classical drawbacks to intervals based on transformations such as these, are their
common lack of symmetry and equivariance. However, these issues are not relevant in the
one sided scenario.



Chapter 3. Test sample estimators 69

3.2.14 Bayesian credible regions

Bayesian methods are based on the posterior distribution of p, given the as-

sumption regarding its prior distribution. The Bayesian approach treats the

underlying parameter as a r.v. rather than an unknown constant, so that the

resulting regions can be interpreted by a probability statement with respect

to the parameter. To distinguish this interpretation from traditional confi-

dence regions, the regions resulting from Bayesian techniques are typically

called Bayesian credible regions.

While classical statisticians may not agree with the methodology and inter-

pretation of the estimators so obtained, these estimators generally have good

performance in practice, and their properties are well worth considering.

A number of approaches to obtaining such regions exist:

• choosing the narrowest interval with sufficient coverage;

• constructing the interval by choosing the points with HPD first;

• choosing the narrowest interval with fixed minimum posterior tail

probabilities (typically equal); and

• choosing an interval centred on the posterior mean.

When the HPD method yields an interval, it is also a narrowest interval

with sufficient coverage. This always occurs when the posterior distribution

is unimodal. Note also that the HPD and narrowest interval methods are

in conflict with the requirement of fixed tail probabilities: these methods

tend to shorten the interval at the price of making the tail probabilities

unequal. In comparison with the classical techniques above, the fixed tail

probabilities technique is analogous to the two-sided binomial interval, while

the HPD method is similar to the exact LR and BSC intervals. In the one-

sided case, only the narrowest one-sided interval option makes sense. This

helps explain why the binomial interval is the best in the one-sided case, but

not for general two-sided intervals.
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As discussed in Section 3.1.3, we shall consider a Beta(α, β) prior distribu-

tion for the case of zero-one loss functions. In this case, the posterior has a

Beta(α+r, β+(k−r)) distribution, which is unimodal for α+r, β+(k−r) < 1.

The most common form of Bayesian credible interval, or posterior probabil-

ity interval, is the HPD interval (Berger, 1985). This involves choosing those

values of p with HPD. If the posterior distribution is not unimodal, this di-

rect approach may not in general yield an interval, so various modifications

may be necessary to guarantee an interval.33

When the posterior has a Beta distribution, and α, β > 1, the posterior is

unimodal, so the 100(1 − δ)% HPD interval is

[B (δ1; r + α; k − r + β) , B (1 − δ2; r + α; k − r + β)]

where B(u;α;β) indicates the 100u-th percentile of a Beta(α, β) distribu-

tion, and we have that δ1 + δ2 = δ, and that the posterior Beta density is

equal at these two percentiles. Such an interval must typically be obtained

numerically.

A simpler alternative is the central Bayesian credible interval. This employs

equal tails on the posterior, so that the 100(1 − δ)% central interval is

[
B

(
δ

2
; r + α; k − r + β

)
, B

(
1 − δ

2
; r + α; k − r + β

)]
.

Note that for one-sided intervals, the distinctions between these approaches

disappear: generally a 100(1 − δ)% lower Bayesian credible interval for p is

[0, B(1 − δ; r + α; k − r + β)].

Interestingly, the popular HPD interval based on the Jeffreys prior turns out

to be almost equivalent to the mid-P interval, and can thus also be seen as a

continuity correction to the Clopper-Pearson interval (Brown et al., 2001).

However, this interval has poor coverage properties for very small and very

large values of p, because the intervals generated when r = 0 or r = k

are too narrow. Brown et al. (2001) suggest replacing the intervals for these

33Note that this approach has close links to Sterne-Crow intervals (Casella, 1986, Crow,
1956, Sterne, 1954).
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two values of r by the Clopper-Pearson values (which do not overcover here),

yielding an interval estimator with better properties.

3.2.15 Non-parametric bootstrap confidence intervals

The basic idea of the bootstrap is outlined for point estimation from the

training sample in Section 5.1.3. Readers not familiar with the bootstrap

would benefit by reading that section (stopping before the paragraph on the

.632 estimator) to get a feeling for bootstrap techniques before continuing

here. On the other hand, advanced readers familiar with the bootstrap confi-

dence intervals described below may be interested in Peter Hall’s comparison

of their theoretical properties (Hall, 1988).

One criticism common to the advanced bootstrap confidence intervals is

that the computational burden of creating these intervals is so high. In

general, two levels of bootstrapping needs to be done. Although some tricks

can be used to reduce the total amount of computation needed, bootstrap

confidence intervals can still be very time-consuming to calculate.

Intervals from the normal and Student t distributions

The approach used to generate bootstrap confidence intervals is based on an

extension of the basic approach used for the well-known interval estimators

based on the normal and Student t distributions.

Consider an estimator of p, say p?, and an estimator of the standard devia-

tion of p?, ŝe. Then, in essence, the Wald interval is constructed by assuming

that the statistic Z(p?, ŝe) = p?−p
bse has a standard normal distribution34. The

interval is then based on the δ
2 - and (1 − δ

2)-level quantiles of the normal

distribution.

In practice, even when p? and ŝe are unbiased estimates of p and the standard

deviation of p?, and p? is normally distributed, Z(p?, ŝe) still only has a

standard normal distribution asymptotically.

34For a specific choice of bse.
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In the above case, Z(p?, ŝe) will often have a Student t distribution35, which

for small samples is somewhat different to the normal distribution. Thus,

to get a more accurate interval, we should use the δ
2 - and (1 − δ

2)-level

quantiles of the Student t distribution, rather than those of the standard

normal distribution.

When p? does not have a normal distribution, finding the exact distribution

of Z(p?, ŝe) is typically not practical. However, it should be clear that if we

can accurately obtain the δ
2 - and (1− δ

2 )-level quantiles of that distribution,

it will enable us to generate a confidence interval for p. Further note that,

due to change of sign involved in the derivation of a confidence interval from

a probability statement, the (1− δ
2)-level quantile is used for the calculation

of the lower confidence limit, while the δ
2 -level quantile is used for the upper

limit — although for the symmetric normal and t-distributions this usually

goes by unnoticed.

Basic bootstrap-t confidence intervals

Consider the real-world procedure: select the δ
2 - and (1 − δ

2)-level quantiles

of the distribution of ZD(p?, ŝe). In general, we can not perform this di-

rectly (not even theoretically, because of the dependence on the unknown

distribution D).

In the bootstrap world, calculating the distribution, or the quantiles, of

ZT (p?, ŝe) is theoretically possible, since there are a finite number of pos-

sible bootstrap samples. Practically, one approximates the quantiles by

a Monte Carlo approximation: given B bootstrap samples, each with re-

alization zT ?b(p?, ŝe)36, we näıvely use the corresponding quantiles of the

empirical distribution arising from the B values zT ?b(p?, ŝe) arising from the

bootstrap samples.

This approach generates what is known as the bootstrap-t confidence inter-

val (Efron and Tibshirani, 1993). It can be shown that this interval performs

35The exact distribution, of course depends on the distribution of bse.
36It is important to realize that when a bootstrap sample is taken, p? and bse also need

to be recalculated, although the notation does not indicate the dependence.
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better than regular intervals based on normality assumptions — one of the

major sources of this improvement is that the intervals no longer have to

be symmetric about p?. However, this approach only yields improvements

when the Monte Carlo approximation is sufficiently accurate, and this can

require a large number of bootstrap iterations.37 In addition, the technique

can be erratic when the test sample T is small, or if it contains outliers. In

such cases, choosing a robust estimator p? may be useful.

Another problem with the bootstrap-t confidence interval is that it can also

overshoot. This is a symptom of the methodology used (i.e. extending

the Wald interval approach), but it can be addressed by constructing the

confidence intervals on transformations of the data which have a variance-

stabilizing effect on p?. Efron and Tibshirani (1993, Section 12.6) discusses

a method for finding such transformations automatically using bootstrap

methods, which also allows one to construct bootstrap-t confidence intervals

using bootstrap estimates of standard error without double bootstrapping

(i.e. two nested layers of bootstrapping).

Note that one can also construct confidence intervals by directly estimating

the quantiles of −G(p?) = p? − p, resulting in what Carpenter and Bithell

(2000) calls the non-Studentized pivotal bootstrap. However, this approach

is not recommended, for reasons outlined in the aforementioned article.

Percentile method bootstrap intervals

The motivation for the percentile interval is somewhat more complicated

than that of the previous two approaches, and typically this interval does

not perform as well as the bootstrap-t interval with variance-stabilizing. On

the other hand, it is very simple to compute. In addition this approach

yields transformation-respecting confidence intervals: if the data is trans-

formed by a monotone transformation, and the percentile method interval

is calculated on the transformed data, the resulting interval corresponds to

the transformation being applied to the endpoints of the original interval.

37Furthermore, when bse itself is a bootstrap estimate of the variance of p?, it is necessary
to perform a bootstrap estimate within each main bootstrap iteration.
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Furthermore, the resulting intervals can not overshoot38.

Put simply, the percentile method constructs intervals based on the distri-

bution of a centred version of p?, G(p?) = p− p?, using quantiles obtained

by a bootstrap approximation to G(p?). The procedure of approximating

the ideal bootstrap distribution GT (p?) by an empirical distribution aris-

ing from Monte Carlo replications, and obtaining the quantiles from this

distribution is analagous to that outlined in the previous section.

Note that the sign of G(p?) is the opposite of the statistic used in the non-

Studentized pivotal bootstrap. As a result of this, we use the “opposite

quantiles” of the distribution of GT (p?). This idea is based on an argument

involving a monotone transformation of p, say φ, such that φ(p) − φ(p?)

has a standard normal distribution. Since such a transformation often does

not exist (and specifically does not exist when p? is a biased estimator), the

resulting confidence interval can behave quite poorly. In fact, the analysis

in Hall (1988) leads the author to say that using the percentile method to

construct confidence intervals is akin to constructing a confidence interval

by “looking up (critical points in) the wrong (statistical) tables backwards.”

BCa intervals

As mentioned above, the percentile method does not work very well for

biased estimators. However, improvements to the percentile method to ac-

count for bias and for skewness in the distribution of G(p?) have led to a

more popular bootstrap interval, the BCa interval. BC stands for bias-

corrected, and the a stands for accelerated. This modified technique still in-

volves “looking up the wrong tables backwards”, exactly as before, but now

adjusts the specific quantiles to be used in the construction of the interval

to account for the bias and the skewness (the value of a, the acceleration

constant, is related to the skewness of G(p?).

Bias correction is done by effectively compensating for “median bias” of p?

— an adjustment is made depending on where p? fits into the bootstrap

38Strictly, they can not overshoot if the underlying estimator can not overshoot.
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approximation of the distribution of p? (a biased estimator will tend to have

p? away from the median of the estimated distribution).

Acceleration takes into account that the standard deviation of p? may depend

on the value of p (something not catered for in the simpler percentile and

bias-corrected methods). The acceleration is quantified by an estimate of
∂
∂p
se(p?) (traditionally computed as a jackknife estimate — see Section 5.2).

This value turns out to be related to the skewness of the distribution of p?

— for details, see Hall (1988), and in particular Peter Bickel’s comments on

the article.

The BCa interval performs well in practice, but involves a lot of compu-

tation, and the two phases of correction (calculation of the bias correction

and the acceleration values). The computational overhead can be addressed

by calculating an approximation to the BCa interval, which Efron and Tib-

shirani (1993) terms the ABC interval. However, Hall (1988) and others

maintain that despite its good performance, it is based on a poor approach

(the percentile method) which is then being patched up by sophisticated

techniques.

The BCa interval provides consistent coverage close to the desired level, and

is transformation-respecting, which has the additional benefit of eliminat-

ing overshooting. As a result, the BCa interval is the recommended non-

parametric bootstrap method for constructing confidence intervals (Carpen-

ter and Bithell, 2000).

The parametric bootstrap

The bootstrap techniques described above are all examples of the so-called

non-parametric bootstrap: no assumptions are made about the distribution

of the points in the sample.

A popular alternative is the parametric bootstrap: in this case, the points

in the sample are assumed to come from some (parametrized) class of dis-

tributions. The sample is then used to estimate the parameters of the dis-
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tribution. The resulting distribution (employing the estimated parameters)

is then employed as an approximation to the underlying distribution for

the calculation of bootstrap statistics, instead of the empirical distribution.

Thus, bootstrap samples are taken by sampling from the estimated distri-

bution, rather than the empirical distribution.



Chapter 4

Concentration Inequalities

A final source of interval estimators based on the test sample are concen-

tration inequalities (sometimes known as deviation inequalities). The esti-

mators above generally use simple concentration inequalities, but the more

advanced inequalities will be central to the training sample bounds which

follow. Furthermore, developments in the fields of concentration inequalities

have been a major source of the improvements in training sample bounds

over the last 15 years. As such, this chapter will discuss the various such

inequalities available to us, while presenting some test set-based interval

estimators where applicable. Specifically, Sections 4.4 to 4.7 present test

sample interval estimators for general loss functions which provide strict

coverage of 1− δ. None of the results of the previous chapter achieved this.

A statistic is said to be concentrated about its mean if the statistic is close

to its expectation with high probability. Concentration about the median is

analagous. The extent of concentration of a statistic is usually specified by

means of a concentration inequality. In the context of test sample bounds,

the statistic under consideration is the test risk of an hypothesis — thus an

application of a concentration inequality to this case yields a result of the

form39

PT∼Dk {|rD(w) − rT (w)| ≥ ε} ≤ C(k, ε)

39Note that rD(w) = ET∼Dk (rT (w)).

77
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for some function C. The ideal is that C exhibits exponential decay in k.40

We shall also call bounds for the one-sided case, with the absolute value sign

removed, concentration inequalities. Confidence intervals can be obtained

by setting C(k, ε) = δ, and then solving for ε in terms of δ.

The chapter begins with introductory concepts being presented in Sec-

tions 4.1 to 4.3. Sections 4.4 to 4.7 consider concentration inequalities for

sums of independent r.v.’s. Since the risk on a sample for a given decision

rule is such a sum, these results allow us to obtain test sample intervals for

a given decision rule. The last part of the chapter, from Section 4.8 to Sec-

tion 4.11, considers the four major approaches to obtaining concentration

inequalities for other functions of independent r.v.’s besides sums.

A large body of complex work has been done in this respect, but we limit our

attention to results which will be relevant later in the thesis. For the reader

interested in further study of this fascinating topic, we recommend Ledoux

and Talagrand (1991), Ledoux (2001), Massart (2006), and the many papers

on the topic by Michel Talagrand, notably Talagrand (1988, 1994, 1995,

1996b,c,d).

4.1 Chebyshev’s inequality

We begin by noting that almost all variables are concentrated about their

means in a way. This is exemplified by Chebyshev’s inequality (known in

earlier days as the Bienaymé-Chebyshev inequality — see Bennett, 1962,

Hoeffding, 1963), which states that

P {‖V − EV ‖ ≥ ε} ≤ VV

ε2

for any r.v. V and ε > 0 (Devroye and Lugosi, 2001).

A corresponding one-sided inequality is the Chebyshev-Cantelli inequal-

ity (Devroye and Lugosi, 2001, Exercise 2.1)41. One-sided inequalities are

often tighter than their two-sided counterparts, helping to offset their more

40This reflects the asymptotic behaviour which follows from the central limit theorem.
41Bennett (1962) attributes this version of the Chebyshev inequality to J. Uspensky.
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limited applicability. This is a good example:

P {V − EV ≥ ε} ≤ VV

VV + ε2
(4.1)

for any r.v. V and ε > 0. Confusingly, this one-sided version was known in

earlier days as Chebyshev’s inequality.

These results provide very loose bounds, applicable to highly variable statis-

tics, but the statistics we are interested in are much better behaved. For

example, the empirical risk is the sum of independent r.v.’s. Such sums

are more concentrated about their means than the individual risk on each

element of the sample. This allows the derivation of tighter bounds.

Chebyshev’s inequality follows from an application of Markov’s inequality

using the transformation φ(v) = v2. A generalization of this approach are

the so-called moment bounds, which employ the transformation φ(v) = vn

for larger natural numbers. We will not go into these bounds, but refer the

interested reader to Lugosi (2004) for more details.

4.2 The exponential moment method

Most concentration inequalities for sums of independent r.v.’s are based

on the Cramér-Chernoff, or exponential moment method (Chernoff, 1952),

which is based on the following inequality:

P {V ≥ ε} = P
{
eλV ≥ eλε

}
≤ E eλV

eλε
.

This result, which holds for any r.v. V and λ, ε > 0, also follows from

Markov’s inequality42. It seems this method for deriving probability in-

equalities was first used by Sergei Bernstein to derive Bernstein’s inequality,

which we shall discuss later (Hoeffding, 1963). The exercises in Lugosi (2004)

point out that the exponential moment method bound never outperforms

the best moment bound, but one cannot generally know what choice of n in

the transformation φ is optimal a priori.

42Since the exponential function is monotonically increasing for λ > 0.
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It follows for the test sample bounds that

PT∼Dk {rD(w) − rT (w) ≥ ε} ≤ e−λε ET∼Dk exp(λ(rD(w) − rT (w))) .

We can expand the right hand side of this to

e−λε ET∼Dk exp

(
λ

k

(
k∑

i=1

[rD(w) − L(w(x∗i ), y
∗
i )]

))
.

Converting the sum in the exponent to a product, and taking the expectation

into the product (since the terms in the sum are independent), we obtain

PT∼Dk {rD(w) − rT (w) ≥ ε} ≤ e−λε
k∏

i=1

E(x∗
i ,y∗

i )∼D exp

(
λ

k
[rD(w) − L(w(x∗i ), y

∗
i )]

)

= e−λε

[
E(x∗

i ,y∗
i )∼D exp

(
λ

k
[rD(w) − L(w(x∗i ), y

∗
i )]

)]k

.

It follows that a bound on the moment generating function (m.g.f.) of

Vi = 1
k
[rD(w)−L(h(x∗i ), y

∗
i )] would yield a bound on the difference between

the empirical and the true risk of w.

Example 4.1. Suppose L is a zero-one loss function. Setting p = eD(w), Vi

assumes the value p
k

with probability 1−p, and the value p−1
k

with probability
p. The m.g.f. for Vi is thus

E eλVi = (1 − p) exp

(
λp

k

)
+ p exp

(
λ(p− 1)

k

)

= exp

(
λp

k

)[
(1 − p) + p exp

(−λ
k

)]

= exp

(
λp

k

)[
1 + p

(
exp

(−λ
k

)
− 1

)]
.

Substituting this value into the above result gives us:

PT∼Dk {eD(w) − eT (w) ≥ ε} ≤ e−λε

[
exp

(
λp

k

)(
1 + p

(
exp

(−λ
k

)
− 1

))]k

= eλ(p−ε)

[
1 + p

(
exp

(−λ
k

)
− 1

)]k

.

Unfortunately, this bound is not very useful, since calculating it requires
the error we are trying to estimate. Substituting p = 1 into the expression
provides a trivial bound. We will need more sophisticated ways to get upper
bounds on the expression. ut
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4.3 Subgaussian and subexponential distributions

In the Cramér-Chernoff method, it is clearly beneficial to obtain the smallest

m.g.f. possible. One way of broadly categorizing variables in this case are

the classes of subgaussian and subexponential distributions.

Generally, the idea is that distributions whose m.g.f.’s are bounded by a

function similar in shape to the m.g.f. of a normal (exponential) distribution,

are said to have a subgaussian (subexponential) distribution.

Consider the m.g.f. of a normal distribution with parameters µ and σ2,

exp
(
µλ+ σ2λ2

2

)
. Based on this, we say a r.v. has a subgaussian distribution

if its m.g.f. does not exceed exp
(

cλ2

2

)
for some constant c.

An exponential distribution with parameter v has m.g.f. 1
1−λ

v

. Thus, we say

a r.v. has a subexponential distribution if its m.g.f. does not exceed 1
1−cλ

for some constant c.

Thus, our interpretation is that a variable with a subgaussian distribution is

more concentrated than some normal distribution, while one with a subex-

ponential distribution is more concentrated than some exponential distribu-

tion. Of course, it is beneficial if the constant c is small.

Much of what follows will be aimed at obtaining subgaussian distributions

for statistics with small values of c. This is because, if a r.v. V has a

subgaussian distribution with constant c, it follows from the exponential

moment method that

P {V > ε} ≤ exp

(−ε2
2c

)
.

For further properties of such variables, see Lugosi (2004, Exercises 2.3–2.6).

A centred normal distribution is subgaussian with c equal to its variance,

and we know that a sum of i.i.d. variables converges to a normal distribution

with variance nσ2, where σ2 is the variance of each variable. Since the risk

or error of a decision rule w is an average of i.i.d. variables, the best value

for c we can hope to obtain is c = σ2

n
, which would yield a test sample bound
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of

PT∼Dk {rT (w) > rD(w) + ε} ≤ exp

(−kε2
2σ2

)
.

In the case of error of a decision rule, σ2 = eD(w)[1 − eD(w)], and we have

that σ2 ≤ 1
4 . The following section discusses a bound where c = 1

4n
.

4.4 Additive Hoeffding bounds

Hoeffding (1963) implicitly provides a bound for bounded loss functions,

now commonly known as Hoeffding’s lemma43. We provide a more general

form we shall need later.

Theorem4.1 (Lemma 2.3 of Devroye and Lugosi, 2001). Let W1 and
W2 be r.v.’s with E(W1|W2) = 0 and φ(W2) ≤ W1 ≤ φ(W2) + c for some
function φ. Then, for λ ≥ 0,

E
(
eλW1 |W2

)
≤ exp

(
λ2c2

8

)
.

The proof of this theorem rests on results we shall introduce later, but

Hoeffding’s original result rested on Jensen’s inequality.

We can apply this result for a bounded loss function: we set W1 = Vi =
1
k
[rD(w) − L(w(x∗i ), y

∗
i )]. Then, for any W2 independent of W1

44, it is clear

that we can set φ(W2) = 1
k
(rD(w) − 1) and c = 1

k
. This yields a bound on

the m.g.f. showing that the test risk, rT (w), has a subgaussian distribution.

Using this bound with the exponential moment method, and optimizing over

all λ ≥ 0 yields

PT∼Dk {rD(w) − rT (w) ≥ ε} ≤ e−2kε2 , (4.2)

for ε > 0. We shall refer to this result as Hoeffding’s tail inequality. An
identical result holds for rT (w) − rD(w). These are applications of a more
general inequality commonly known as Hoeffding’s inequality:

43See his Equation 4.16.
44The usefulness of W2 will become apparent in later applications.
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Theorem4.2 (Hoeffding’s inequality: Theorem 2 of Hoeffding, 1963).
Let V1, V2, · · · , Vn be independent r.v.’s with Li ≤ Vi ≤ Ui for i ∈ [1 : n].
Then for ε > 0,

P

{
n∑

i=1

(Vi − EVi) ≥ nε

}
≤ exp

( −2n2ε2∑n
i=1(Ui − Li)2

)
.

Setting the right hand side in Hoeffding’s tail inequality equal to δ, and

solving for ε, yields the one-sided Hoeffding’s tail interval

Conf1−δ(rD(w)) =


0, rT (w) +

√
ln 1

δ

2k


 . (4.3)

Note that this result constitutes a bound on upper deviation with ε(T,w) =√
− ln δ

2k
. Note that by applying the same analysis to −W1 one can obtain a

corresponding lower interval.

These results were derived earlier in the case of zero-one loss, implicitly by

Herman Chernoff (Chernoff, 1952), and explicitly by Masashi Okamoto (Okamoto,

1958) — see Hoeffding (1963).

4.5 Relative entropy Hoeffding bounds

The proof of Hoeffding’s inequality in Hoeffding (1963) actually yields a

stronger result than Hoeffding’s tail inequality in our situation. Hoeffding’s

inequality only requires independence, not identical distribution, of the val-

ues being summed. The identical distribution of the losses in our case allow

a strengthening of the inequality. Modifying the statement slightly for our

purposes, Hoeffding points out (in his Theorem 1) that

PT∼Dk {rD(w) − rT (w) ≥ ε} ≤ exp(−kKL(rD(w) − ε||rD(w))) ,

for 0 < ε ≤ rD(w). We shall refer to this result as Hoeffding’s relative entropy

(r.e.) inequality. Again, Chernoff and Okamoto had derived this result for

error rates earlier. Unfortunately, the KL divergence is not analytically

invertible, leaving us with two options. One approach is to use an invertible

upper bound on the KL divergence to obtain bounds. Using the common
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upper bound KL(v − ε||v) ≤ 2ε2 (Langford, 2003), one recovers Hoeffding’s

tail inequality above. Thus, for test sample risk intervals, this improvement

is not very useful. However, the improvement will be vital for some of the

training sample bounds discussed later.

The second approach is a numerical inversion of the bound. Let us write

ε(t) = ε(t, k, δ) for the value of ε ≤ t satisfying

exp(−kKL(t− ε||t)) = δ . (4.4)

It follows that

PT∼Dk {rD(w) − ε(rD(w)) ≥ rT (w)} ≤ δ .

For the sample T , a 100(1 − δ)% confidence region thus consists of those t

for which

t− ε(t) < rT (w) .

If the left hand side is increasing, the resulting region will be an upper

interval. Now,
∂

∂t
(t− ε(t)) = 1 − ∂

∂t
ε(t)

so that we need ∂
∂t
ε(t) ≤ 1 to obtain an interval. Rewriting (4.4) as

KL(t− ε||t) =
− ln δ

k
,

expanding the KL divergence, and employing implicit differentiation allows

one to obtain

∂

∂t
ε(t) = 1 −

[
t−ε(t)

t
− 1−(t−ε(t))

1−t

]

[
ln t−ε(t)

t
− ln 1−(t−ε(t))

1−t

] .

Since ε(t) ≤ t, the numerator and denominator of the fraction are both

negative, which means that ∂
∂t

(t − ε(t)) ≥ 0, so that inverting the bound

yields an interval.

It follows that to invert the bound, we merely need to find the value of t,

say t?, for which t− ε(t) = rT (w). The resulting confidence interval, [0, t?],

is the upper Hoeffding’s r.e. interval, and we denote t? by URE(rT (w), k, δ).
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A lower interval can be obtained similarly, and the intervals can be com-

bined to obtain a two-sided interval if desired. It is important to note that

inverting this bound requires two embedded numerical inversions: to obtain

URE(rT (w), k, δ), t− ε(t) must be repeatedly evaluated in order to find the

point where it equals rT (w). To do this, for each t, ε(t) must be found by

inverting the KL divergence numerically.

Since Hoeffding’s r.e. inequality is tighter than Hoeffding’s tail inequality,

and the inversion described here is exact (up to the limits of numerical ac-

curacy), it follows that the Hoeffding’s r.e. intervals are strict improvements

on the corresponding Hoeffding’s tail inequality intervals.

4.6 Multiplicative Hoeffding bounds

Another popular set of bounds flow from Hoeffding’s r.e. inequality. These

bounds are known as multiplicative Chernoff bounds, and bound the relative,

rather than absolute, deviation between empirical and true means. One

complication, however, is that the bounds are again expressed in terms of

the true mean. The resulting intervals are not as tight as Hoeffding’s r.e.

intervals, since they employ upper bounds on portions of the KL divergence

before inverting the resulting probability statement.

Let V1, · · · , Vn be i.i.d variables with EVi = µ. Then, for µ < ε ≤ 1,

P

{
n∑

i=1

Vi ≥ nε

}
= P

{
n∑

i=1

Vi − nµ ≥ nε− nµ

}

≤ exp (−nKL(µ+ (ε− µ)||µ)) ,

with the final inequality an application of Hoeffding’s inequality. From the

definition of the KL divergence, we obtain

(µ
ε

)nε
(

1 − µ

1 − ε

)n(1−ε)

.

We can bound the second factor here by noting that

(
1 − µ

1 − ε

)n(1−ε)

=

(
1 +

n(ε− µ))

n(1 − ε)

)n(1−ε)
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and observing that the second term is strictly less than en(ε−µ). Since, for

v > 0, (
1 +

ε

v

)v

≤ eε ,

we obtain the bound (µ
ε

)nε

en(ε−µ) .

To obtain a relative deviation inequality, we set ε = µ(1 + κ) (i.e. a factor

multiplied by the mean) into the result above (for 0 < κ < 1−µ
µ

). This yields

P

{
n∑

i=1

Vi ≥ nµ(1 + κ)

}
≤

(
µ

µ(1 + κ)

)nµ(1+κ)

exp(n(µ(1 + κ) − µ))

= (1 + κ)−nµ(1+κ)enµκ

= exp (−nµ((1 + κ) ln(1 + κ) − κ))

= exp(−nµκΨ(κ)) ,

where

Ψ(v) = (1 +
1

v
) ln(1 + v) − 1

is a function which shall (not incidentally) crop up again when we later

discuss Bennett’s inequality. We shall refer to this result as the lower mul-

tiplicative Hoeffding inequality. When κ ≥ 1−µ
µ

the associated probability

is 0, so the inequality still holds. By a similar route, one obtains the upper

multiplicative Hoeffding inequality: for κ ∈ (0, 1],

P

{
n∑

i=1

Vi ≤ nµ(1 − κ)

}
≤ exp(nµκΨ(−κ)) .

These two bounds are special cases of Theorem 1 in Boucheron et al. (1999),

where h(v) = vΨ(v).

One can obtain test set interval estimators from these results by setting

n = k, and Vi = L(w(x∗i ), y
∗
i ), so that µ = rD(w).45 Solving for κ when set-

ting the right hand side to δ would generally need to be done numerically,

45It is important to note that these choices yield significantly tighter bounds than using

our default (until now), Vi =
L(w(x∗

i
),y∗

i
)

k
. This is because the multiplicative bound is

sensitive to the scale used. Since Hoeffding’s inequality only applies to variables Vi ∈ [0, 1],
we would like to use the largest scaling constant possible on our default Vi. Assuming L

maps into [0, 1] means that the largest scaling constant we can use is k.
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though. We are not interested in inverting this probability inequality nu-

merically, since it will be looser than Hoeffding’s r.e. intervals. Our reason

for investigating the multiplicative Hoeffding bounds is to obtain bounds

with closed forms, which are easier to analyse theoretically. Appropriate

upper bounds on Ψ may allow the probability statement to be inverted in

this manner. This is the focus of Angluin-Valiant (AV) bounds.

4.6.1 Angluin-Valiant bounds

Two useful inequalities involving Ψ are:

• for v ∈ (0, 1],

Ψ(−v) ≤ −v
2

;

• for v > 0,

Ψ(v) ≥ v

2 + 2v
3

. (4.5)

These follow from the equivalent formulae for h in Section 2 of Boucheron

et al. (1999).

Applying the first inequality along with the upper multiplicative Hoeffding

inequality, yields for 0 < κ < 1,

P

{
n∑

i=1

Vi ≤ nµ(1 − κ)

}
< exp

(
−nµκ

2

2

)
,

which we shall call the upper Chernoff inequality.

For a test sample interval estimator, we obtain

PT∼Dk {rT (w) ≤ rD(w)(1 − κ)} < exp

(
−krD(w)κ2

2

)
.

Setting the right hand side to δ and solving for κ, one obtains

κ =

√
−2 ln δ

krD(w)
.
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The expression inside the probability is then

rT (w) ≤ rD(w)

(
1 −

√
−2 ln δ

krD(w)

)
,

which can be rewritten as

ψ(rD(w), rT (w)) ≥
√

−2 ln δ

k
,

where ψ is the upper relative deviation.

Inverting this deviation measure yields the upper AV interval,

(
0, rT (w) − ln δ

k

(
1 +

√
1 − 2krT (w)

ln δ

)]
.

Machine learning Chernoff inequalities

One common formulation of the upper Chernoff inequality for risk in the

machine learning literature is (using κ = ε√
rD(w)

)

PT∼Dk

{
rD(w) − rT (w)√

rD(w)
> ε

}
< exp

(−kε2
2

)
.

A number of related results generally hold for exponential bounds on relative

deviations such as this one. We present a number of them below, and note

that the arguments generally hold for similar exponential bounds on relative

deviations. The results here are based on the similar results in Bartlett

(1998, Corollary 7) and Shawe-Taylor et al. (1998, Theorems 3.1 and 3.2).

Given rD(w) > ε, it can be seen that rT (w) = 0 implies

rD(w) − rT (w)√
rD(w)

>
√
ε .

Thus,

PT∼Dk {rT (w) = 0|rD(w) > ε} ≤ exp

(−kε
2

)
.
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This probability statement yields an interval estimator as follows: we use the

statistic rT (w). If this is non-zero, the statement gives us no information,

and the interval is [0, 1]. If rT (w) = 0, we obtain the interval
[
0,

−2 ln δ

k

]

from the equation δ = exp
(−kε

2

)
. We call the resulting confidence interval

the realizable risk interval. The probability statement above is as tight as the

upper Chernoff inequality, but it’s use is restricted to cases where we observe

rT (w) = 0. This scenario is more common for training sample bounds, when

it may be known a priori that a training error of zero will be achieved by the

training algorithm. This situation is known as the realizable case in machine

learning — see Section 3.2.12 for a further discussion.

More generally, given rD(w) > ε, if

rT (w) ≤ (1 − κ)rD(w)

for some κ, then

rD(w) − rT (w) ≥ κrD(w) .

Dividing by
√
rD(w) and using rD(w) > ε on the right hand side, we obtain

that
rD(w) − rT (w)√

rD(w)
≥ κ

√
ε .

It follows that

PT∼Dk {rT (w) ≤ (1 − κ)rD(w)|rD(w) > ε}

≤ PT∼Dk

{
rD(w) − rT (w)√

rD(w)
> κ

√
ε

}

≤ exp

(
−kκ

2ε

2

)
.

When κ = 1, the realizable case result above is obtained. Inverting this

probability statement is slightly more tricky. If rT (w) ≤ (1−κ)ε, we can set

δ = exp

(
−kκ

2ε

2

)

to obtain the interval [
0,

−2 ln δ

kκ2

]
.
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When rT (w) > 1−κ, the probability statement provides no information, so

we obtain the interval [0, 1]. For intermediate values of rT (w), we do not

generally know whether the probability statement provides information or

not, since we do not know whether rT (w) ≤ (1−κ)rD(w) or not. As a result,

we use the bound [0, 1] in this case as well. We call the resulting interval

the realistic risk interval — this is because the bounds apply to what we

shall call the realistic case in training sample bounds: where we expect a

low training error on the selected decision rule.

Another result is that, for all κ > 0,46

PT∼Dk {rD(w) > (1 + κ)rT (w) + ε} ≤ exp

(
− kεκ2

2(1 + κ)2

)
.

We provide a brief proof for this.

Proof. First, we suppose that

rD(w) − rT (w) ≤ ε0
√
rD(w) .

Select some κ > 0. Then, if κrT (w) ≥ ε0
√
rD(w),

rD(w) ≤ rT (w) + ε0
√
rD(w)

≤ rT (w) + κrT (w)

≤ (1 + κ)rT (w) +

(
1 + κ

κ

)2

ε0
2 .

On the other hand, if κrT (w) < ε0
√
rD(w),

rD(w) ≤ rT (w) + ε0
√
rD(w)

<
ε0
√
rD(w)

κ
+ ε0

√
rD(w)

=
1 + κ

κ
ε0
√
rD(w) .

Dividing throughout by
√
rD(w) and squaring yields,

rD(w) <

(
1 + κ

κ

)2

ε0
2

≤ (1 + κ)rT (w) +

(
1 + κ

κ

)2

ε0
2 .

46Note that Bartlett (1998) mistakenly uses κ < 0.
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It follows that

PT∼Dk

{
rD(w) > (1 + κ)rT (w) +

(
1 + κ

κ

)2

ε0
2

}

≤ PT∼Dk

{
rD(w) − rT (w)√

rD(w)
> ε0

}
.

Using ε0 = κ
√

ε
1+κ

, and applying the upper Chernoff inequality yields the result.
ut

Setting κ = 1 in this result, we obtain an upper confidence interval for

rD(w) of [0, 2rT (w) − 8 ln δ
k

]. Compared to, for example, the Hoeffding’s tail

interval, we see that the term involving k and δ decreases at a faster rate,

but at the expense of the factor 2 before rT (w). Since this interval is based

on a slackening of the upper Chernoff inequality, this interval is inferior to

the upper AV interval, which is also easily obtained analytically.

The lower multiplicative Hoeffding inequality with the second inequality for

Ψ yields for κ > 0,

P

{
n∑

i=1

Vi ≥ nµ(1 + κ)

}
< exp

(
− nµκ2

2 + 2κ
3

)
.

Setting the right hand side to δ and solving yields a quadratic equation, but

the resulting expression for κ is very difficult to handle when inverting the

resulting probability statement.

Clearly the denominator in the right hand side expression is always less than

2+κ, and for κ ≤ 1 < 1.5 the denominator is less than 3. Using these facts,

we obtain the lower multiplicative Chernoff inequalities, due to Angluin and

Valiant (1979) 47: for 0 < κ < 1,

P

{
n∑

i=1

Vi ≥ nµ(1 + κ)

}
< exp

(
−nµκ

2

3

)
;

and, for κ ≥ 1,

P

{
n∑

i=1

Vi ≥ nµ(1 + κ)

}
< exp

(
−nµκ2

2 + κ

)
.

47We note in passing that Vidyasagar (2002) presents an alternative bound when κ > 1,
in the case of i.i.d. Bernoulli r.v.’s.
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Applying this to the risk of a decision rule yields, for 0 < κ < 1,

PT∼Dk {rT (w) ≥ rD(w)(1 + κ)} < exp

(
−krD(w)

κ2

3

)
;

and, for κ ≥ 1,

PT∼Dk {rT (w) ≥ rD(w)(1 + κ)} < exp

(
−krD(w)

κ2

2 + κ

)
.

Setting the right hand side of the first probability statement to δ yields that

PT∼Dk

{
ψ(rD(w), rT (w)) <

√
−3 ln δ

k

}
≥ 1 − δ

when rD(w) > −3 ln δ
k

(otherwise, the value of κ exceeds 1 and the bound

does not apply), and where ψ now denotes lower relative deviation.

Inverting this deviation yields the interval


rT (w) +

ε2
[
1 −

√
1 + 4rT (w)

ε2

]

2
, 1




=


rT (w) −

3 ln δ
k

[
1 −

√
1 − 4krT (w)

3 ln δ

]

2
, 1


 .

However, this result does not, strictly speaking, provide a confidence inter-

val: this interval only applies when rD(w) > −3 ln δ
k

, so that instead we have

a confidence region

[
0,

−3 ln δ

k

]
∪


rT (w) −

3 ln δ
k

[
1 −

√
1 − 4krT (w)

3 ln δ

]

2
, 1


 .

Using the second probability statement to solve for κ again runs into a

quadratic equation, and the resulting expression inside the probability state-

ment must be inverted numerically. Thus, although the lower Chernoff in-

equality may be a useful source of bounds, obtaining a general lower (and

hence a two-sided) Angluin-Valiant bound is not an easy task, and we shall
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not pursue it further here. The difficulties we face result from the method

employed to upper bound the KL divergence in Hoeffding’s r.e. inequality,

which is asymmetric in its arguments. To obtain Hoeffding’s tail inequality,

a symmetric upper bound on the KL divergence was employed. For the mul-

tiplicative Hoeffding and Chernoff inequalities, the upper bound employed

is asymmetric (notably vΨ(v) is not symmetric in v).

We note that the upper Angluin-Valiant interval is narrower than the up-

per Hoeffding’s tail interval when the underlying risk rD(w) is small, even

though they both rely on the same result, due to the different natures of the

approximations used (Vidyasagar, 2002). This is because Hoeffding’s tail

inequality trades symmetry of the upper bound on the KL divergence for

tightness. As a result, it performs poorly when the distribution of the sum

of the Vi around nµ is not symmetric (in our case, when rD(w) is not near

0.5).

4.7 Bennett’s and Bernstein’s inequalities

We know that the empirical risk of a decision rule w on an i.i.d. sample P

of size n is asymptotically normally distributed, with mean rD(w). Let the

variance of the loss of w be σ2. Then the variance of rP (w) is σ2

n
, so that

asymptotically

PP∼Dn {rD(w) − rP (w) ≥ ε} ≈ PZ∼N(0,1) {Z ≥ φ(ε)} ,

where

φ(ε) =
ε
√
n

σ
.

The area under this normal tail equals48

1 − Φ(φ(ε)) <
ϕ(φ(ε))

φ(ε)

=
1√
2π

exp
(
−φ(ε)2

2

)

φ(ε)
.

48The first inequality, now known as Mills’ inequality, is based on a bound on the Mills’
ratio in Gordon (1941).
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It is instructive to compare the form of this asymptotic expression with

Hoeffding’s tail inequality (Devroye and Lugosi, 2001, Hoeffding, 1963). In

particular, we are interested in the rate of decay of the probability as the

sample size increases, i.e. the form of the exponent. For our asympotic

expression, this is
−φ(ε)2

2
=

−nε2
2σ2

.

Hoeffding’s tail inequality for error rates has an exponent of −2nε2. In-

spection reveals that this is simply an upper bound on the exponent in the

asymptotic expression, achieved when σ2 = 0.25 (such as for a zero-one loss,

with eD(w) = 0.5). Thus, Hoeffding’s tail inequality appears to use a uni-

form upper bound on the variance of rD(w) — this is once again a result

of its symmetry. We shall say that the effective variance of Hoeffding’s tail

inequality is 0.25.

An investigation of the exponent in the upper Chernoff inequality shows

that the expression corresponding to σ2 there, the effective variance of the

inequality, is rD(w), a simple upper bound on σ2. Furthermore, considera-

tion of rD(w) ≤ 0.25 shows that the upper Chernoff inequality is a stronger

result than Hoeffding’s tail inequality for rD(w) ≤ 1
4 .

One inequality incorporating the variance of sums of independent random
variables directly is the following:

Theorem4.3 (Theorem 3 of Hoeffding, 1963). Let V1, · · · , Vn be in-
dependent real-valued r.v.’s with zero mean, and assume that Vi ≤ c for
i = 1, · · · , n. Let

σ2 =
1

n

n∑

i=1

VVi .

Then, for 0 < ε < c,

P

{
n∑

i=1

Vi > nε

}
≤

((
1 +

cε

σ2

)− σ2+cε

σ2+c2
(
1 − ε

c

)− c2−cε

σ2+c2

)n

≤ exp
(
−nε
c
Ψ
( cε
σ2

))
,

where Ψ(v) = (1 + 1
v
) ln(1 + v) − 1, for v ≥ 0.

The second bound above was developed in 1962 by George Bennett (Bennett,

1962), and is now known as Bennett’s inequality. The derivation of Bennett’s



Chapter 4. Concentration Inequalities 95

inequality is closely related to the derivation of the multiplicative Hoeffding

inequalities from Hoeffding’s r.e. inequality.

Hoeffding’s article further discusses the relationship of Bennett’s inequality
to previous bounds. Particularly, Bennett’s inequality is a strengthening
of Bernstein’s inequality, which was derived in the 1920’s by Sergei Bern-
stein (Bernstein, 1924, 1927). The most simple form of Bernstein’s result
shows more clearly how the variance of the loss is being employed:

Theorem4.4 (p.34 of Bennett, 1962). Under the conditions of Theo-
rem 4.3, for any ε > 0,

P

{
n∑

i=1

Vi > nε

}
≤ exp

(
− nε2

2σ2 + 2cε
3

)
.

This result follows by employing the lower bound on Ψ in (4.5). The inter-

ested reader is referred to Hoeffding (1963) and Bennett (1962) for a more

extensive discussion of the relationships between these bounds and other

bounds, including earlier inequalities by Prohorov, Kolmogorov, Loève, and

Berry.

In fact, stronger forms of Bernstein’s inequality are available, although per-

haps not as widely recognised. For a collection of the major forms of Bern-

stein’s inequality for independent variables, the interested reader is referred

to Theorem 2.1 of Bousquet (2002b). The most basic result there is a slight,

but useful, strengthening of Bernstein’s inequality above, which we repro-

duce here.

Theorem4.5 (Theorem 2.1 of Bousquet, 2002b). Under the conditions
of Theorem 4.3, for any δ > 0,

P

{
n∑

i=1

Vi ≥ σ
√
−2n ln δ − c ln δ

3

}
≤ δ .

We would like to use Bernstein’s inequality to obtain a test sample interval

estimator for rD(w). To show that Theorem 4.5 provides an improvement

over Theorem 4.4, we shall illustrate both of Bernstein’s bounds above in this

scenario. From Theorem 4.4 one obtains (using Vi = rD(w) −L(w(x∗i ), y
∗
i ))

PT∼Dk{rD(w) − rT (w) > ε} ≤ exp

(
− kε2

2σ2 + 2ε
3

)
.
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Setting the right hand side equal to δ yields a quadratic equation in ε.

Solving for ε yields the one-sided interval

[
0, rT (w) +

(− ln δ) +
√

(− ln δ)2 − 18kσ2 ln δ

3k

]
, (4.6)

with the complication being that σ is typically dependent on rD(w).

On the other hand, Theorem 4.5 leads to the confidence interval

[
0, rT (w) +

(− ln δ) +
√
−18kσ2 ln δ

3k

]
, (4.7)

so that the (− ln δ)2 term has been eliminated from the square root term.

The effective variance of Bernstein’s inequality in Theorem 4.4 is σ2 + ε
3 ,

very similar to the desired σ2 (Lugosi, 2004). Bernstein’s bound thus in-

corporates information on the variance, but at a premium of ε
3 , which may

be undesirably large for some ε: when σ2 is close to 0.25, this premium

is typically not worthwhile compared to Hoeffding’s tail inequality, but for

smaller and larger values of rD(w) it becomes worthwhile. A further com-

plication is that σ2 is generally unknown, so a bound on σ2 must actually

be used. To get an improvement in bounding the error rate over Hoeffding’s

tail inequality from Bernstein’s inequality, we need a bound, ς 2, on σ2 to

satisfy ς2 + ε
3 ≤ 0.25. This is easily verified for a specific ε. However, when

constructing confidence intervals, we consider a range of values for ε, so that

this bound will generally not hold uniformly.

We now consider a simple bound on the variance and the resulting test

sample interval estimators. The corresponding confidence regions must be

obtained numerically, but they turn out to be intervals.

Bernstein interval based on rD(1 − rD)

The maximum variance of a r.v. taking on values in [0, 1], with mean µ is

µ(1− µ). This is achieved when the r.v. is Bernoulli, and it is easy to show

that it is the maximum by expanding the formula defining variance.
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This leads us to consider the bound on variance

ς2 = rD(w)[1 − rD(w)] ≥ σ2 .

With this choice, Theorem 4.5 yields

PT∼Dk

{
rD(w) − rT (w) ≥ (− ln δ) +

√
−18krD(w)[1 − rD(w)] ln δ

3k

}
≤ δ .

We can thus construct a confidence region by including the values of t for

which t− rT (w) < ε(t), where

ε(t) =
(− ln δ) +

√
−18kt(1 − t) ln δ

3k
.

So, if t − ε(t) is a nondecreasing function, the confidence region will be an

upper interval. Now

d

dt
[t− ε(t)] = 1 − 1

3k

[
1

2
(−18kt(1 − t) ln δ)−

1
2 (−18k ln δ)(1 − 2t)

]

= 1 − (−3 ln δ)(1 − 2t)√
−18kt(1 − t) ln δ

. (4.8)

It is easy to see that the derivative above exceeds 1 for t ≥ 1
2 . For t < 1

2 ,

the inequality

0 ≤ d

dt
[t− ε(t)]

= 1 − (−3 ln δ)(1 − 2t)√
−18kt(1 − t) ln δ

can be solved by multiplying throughout by the square root expression, plac-

ing the resulting free-standing square root alone on one side of the inequality,

and squaring both sides. The lower root of the resulting quadratic equation

satisfies t < 1
2 . It follows that t− ε(t) is increasing for

t ≥
1 −

√
1 − (− ln δ)

(− ln δ)+ k
2

2
> 0 ,

and decreasing otherwise, so that it seems we cannot always strictly be

guaranteed an upper interval by numerical inversion in this case.



Chapter 4. Concentration Inequalities 98

However, since t− ε(t) is decreasing over the interval


0,

1 −
√

1 − (− ln δ)

(− ln δ)+ k
2

2


 ,

it follows that

t− ε(t) ≤ −ε(0)

=
ln δ

3k
< 0

over that range. Thus, no

t ≤
1 −

√
1 − (− ln δ)

(− ln δ)+ k
2

2

will have t − ε(t) > rT (w), so that it turns out inverting the inequality

does indeed always yield an upper interval. We call the resulting confidence

interval the upper Bernstein interval based on rD(1− rD). When applied to

a zero-one loss, we shall call it the upper exact-variance Bernstein interval

for error.

Note that both Bennett and Bernstein’s bounds are applied to centred vari-

ables, so that lower and two-sided intervals can potentially be obtained by

applying the inequalities to the negated variables.

Bounding Pollard-Haussler deviation

The simple form of Bernstein’s inequality in Theorem 4.4 can be used to

obtain an interval estimator from the upper P-H ν-deviation between the

empirical and true risk of a decision rule w,

ψν (rD(w), rT (w)) =
rD(w) − rT (w)

ν + rD(w) + rT (w)
.
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We have

PT∼Dk {ψν(rD(w), rT (w)) > ε}

= PT∼Dk

{
k∑

i=1

L(x∗i , y
∗
i ) − krD(w) > ε

[
k(ν + rD(w)) +

k∑

i=1

L(x∗i , y
∗
i )

]}

≤ PT∼Dk

{
k∑

i=1

L(x∗i , y
∗
i ) − krD(w) > εk(ν + rD(w))

}
,

since the losses are all positive.

We wish to apply Bernstein’s inequality here to Vi = L(x∗i , y
∗
i )− rD(w) and

n = k, so c = 1. To do this we again need an upper bound for the variance

of Vi. Employing ς2 = rD(w), we obtain

PT∼Dk

{
k∑

i=1

L(x∗i , y
∗
i ) − krD(w) > kε(ν + rD(w))

}

≤ exp

(
− k[ε(ν + rD(w))]2

2rD(w) + 2ε(ν+rD(w))
3

)
.

The above result is dependent on rD(w), so that we can not evaluate it. We

can remove this dependence by maximizing the bound over potential values

of rD(w). This maximum occurs when

(ν + rD(w))2

rD(w) + ε(ν+rD(w))
3

is minimized. We thus solve

0 =
d

dt

(ν + t)2

t+ ε(ν+t)
3

=
2(ν + t)

t+ ε(ν+t)
3

− (1 + ε
3)(ν + t)2

[
t+ ε(ν+t)

3

]2 .

This reduces to

2[(3 + ε)t+ εν] − (3 + ε)(ν + t) = 0 ,

so that the bound is maximized when rD(w) = 3−ε
3+ε

ν. This yields a bound

of

exp


−

k
[
ε(ν + 3−ε

3+ε
ν)
]2

23−ε
3+ε

ν +
2ε(ν+ 3−ε

3+ε
ν)

3


 ,
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which simplifies to

exp

(−18kε2ν

(3 + ε)2

)
. (4.9)

This can in turn be bounded by

exp

(
−9

8
kε2ν

)
< exp(−kε2ν) ,

for ε < 1, the only case of interest. The exposition up to here roughly follows

that in Haussler (1992).

Setting (4.9) to δ yields a quadratic equation in ε. This equation has no

solution for 18kν ≤ − ln δ, so that for a specific k and δ, ν needs to exceed a

certain size to obtain meaningful bounds from this analysis. When 18kν >

− ln δ, we obtain

ε(δ) =
−3
(
1 +

√
18kν
− ln δ

)

1 − 18kν
− ln δ

. (4.10)

This bound on the P-H deviation can then be inverted to obtain a corre-

sponding test-set upper confidence interval for rD(w),

(
0,

[1 + ε(δ)]rT (w) + ε(δ)ν

1 − ε(δ)

]
.

It is also possible to invert the P-H deviation by employing other inequali-

ties. Haussler (1992, Lemma 9) presents a result for the Chebyshev inequal-

ity, for example, but the resulting bound is less tight than that employing

Bernstein’s inequality as above.

It is natural to wonder whether we can improve this result by relying on the

more direct estimate of the variance, ς2 = rD(w)(1 − rD(w)). In a similar

manner to before, we obtain

PT∼Dk

{
k∑

i=1

L(x∗i , y
∗
i ) − krD(w) > kε(ν + rD(w))

}

≤ exp

(
− k [ε(ν + [rD(w)(1 − rD(w))])]2

2 [rD(w)(1 − rD(w))] + 2ε(ν+[rD(w)(1−rD(w))])
3

)
.
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To eliminate the dependence on rD(w), we maximize the bound on the right

over possible values of rD(w). A maximum on (0, 1) can only occur if

0 =
d

dt

(ν + t(1 − t))2

t(1 − t) + ε(ν+t(1−t))
3

.

This equation can be shown to have three solutions: t = 1
2 , and

t =
1 ±

√
1 − 4ν 3−ε

3+ε

2

(when ν 3−ε
3+ε

≤ 1
4 ). Substitution of the roots above into the original formula

shows that the last two roots yield a larger bound than that for t = 1
2 when

they exist. The last two choices of t lead to t(1 − t) = 3−ε
3+ε

ν, so that the

same bound is obtained as with the more näıve upper bound on the variance.

When ν 3−ε
3+ε

> 1
4 , the only root t = 1

2 can be shown to yield a minimum for

the bound, rather than a maximum. It follows that we can make the bound

uniform by substituting rD(w) = 0 or rD(w) = 1 into the bound (both

choices yield the same result): for ν 3−ε
3+ε

> 1
4 , we can improve the bound on

P-H deviation to

exp

(
−3

2
kεν

)
.

4.8 The martingale method

More generally, Hoeffding (1963) points out that Bennett’s inequality is

the best possible bound obtainable by directly employing the exponential

moment method, under general assumptions. Thus, the previous section

brings our consideration of bounds on the sums of independent random

variables to an end.

Until now, we have restricted our attention to those simple concentration

inequalities which can be applied directly to test sample bounds. In what

follows, we will discuss more sophisticated results, allowing us to construct

training sample bounds. The appeal of these results is that they can directly

provide bounds without resorting to the union bound, which we shall discuss

later.
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Lugosi (2004) presents an informal argument demonstrating that the sum of

independent random variables can be seen as the least concentrated of any

measurable function of those variables. The idea of the results we shall study

now will be to obtain stronger concentration results for other functions of

these variables.

The next four sections will briefly consider the major approaches to ob-

taining concentration inequalities, viz. the martingale, transportation, in-

duction, and entropy methods. Central to all of these approaches is the

exponential moment method, so all the approaches effectively consider so-

phisticated methods for obtaining bounds on m.g.f.’s.

The first approach we shall study employs the exponential moment method,

but uses martingales to obtain the m.g.f. of the relevant statistic. This

will be necessary to decompose the m.g.f. of a function into a product of

individual m.g.f.’s. We will also need to employ some advanced techniques

in order to obtain bounds on m.g.f.’s of certain statistics. The concentration

inequalities we discuss next will make use of the full power of Theorem 4.1.

4.8.1 Bounded differences and McDiarmid’s inequality

To obtain bounds on a function ϑ of independent variables E1, · · · , En from

some space E , we will need to make some assumptions about ϑ : En → IR.

The most popular and well-known such assumption is that of bounded differ-

ences. This assumption basically states that each variable Ei has a limited

influence on the realization of the statistic V = ϑ(E1, · · · , En). We say that

ϑ satisfies the bounded difference assumption with constants c1, · · · , cn if, for

each i ∈ [1 : n],

sup
η1,...,ηn,η′∈E

|ϑ(η1, · · · , ηn) − ϑ(η1, · · · , ηi−1, η
′, ηi+1, · · · , ηn)| ≤ ci .

We bound W = V −EV by expanding it into a telescoping series, with each

term the difference of two conditional expectations of V : defining

Vi = E(V |E1, . . . , Ei)
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and

Wi = Vi − Vi−1

we have

W =
n∑

i=1

Wi .

We note that the sequence of Vi’s are the Doob martingale derived from ϑ

and E1, · · · , En.

Now, it is clear that

inf
η∈E

E(V |E1, . . . , Ei−1, η) − Vi−1 ≤ Wi

≤ sup
η∈E

E(V |E1, . . . , Ei−1, η) − Vi−1 .

The difference between these upper and lower bounds on Wi is

sup
η∈E

E(V |E1, . . . , Ei−1, η) − inf
η∈E

E(V |E1, . . . , Ei−1, η)

which can be seen to be upper bounded by the value of ci in the bounded

differences assumption.

Thus, we can apply Theorem 4.1 to Wi, using

φ(E1, · · · , Ei−1) = inf
η∈E

E(V |E1, . . . , Ei−1, η) − Vi−1

and c = ci to obtain

E
(
eλWi |E1, . . . , Ei−1

)
≤ exp

(
λ2c2i

8

)
.

The next step is to apply Chernoff’s bounding method to W , but we can

not decompose the m.g.f. by using independence directly. Instead, we de-

compose the m.g.f. into the product of m.g.f.’s of conditional variables:

E eλW = E exp

(
λ

n∑

i=1

Wi

)

= E

(
exp

(
λ

n−1∑

i=1

Wi

)
E
(
eλWn |E1, . . . , En−1

))

≤ exp

(
λ2c2n

8

)
E exp

(
λ

n−1∑

i=1

Wi

)
.
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Repeating this process n times49, and optimizing the resulting bound over
λ provides the bounded difference inequality developed by McDiarmid in
198950:

Theorem4.6 (Theorem 2.2 of Devroye and Lugosi, 2001). If a func-
tion ϑ of r.v.’s E1, · · · , En, defining a random variable V , satisfies the
bounded difference assumption with constants c1, · · · , cn, then, for all ε > 0,

P {V − EV ≥ ε} ≤ exp

( −2ε2∑n
i=1 c

2
i

)
.

This result is easily shown to be a generalization of Hoeffding’s inequality:

Consider V defined by ϑ(E1, · · · , En) = 1
n

∑n
i=1 Ei, with Li ≤ Ei ≤ Ui for

i ∈ [1 : n], and the Ei independent. Note that ϑ satisfies the bounded dif-

ference assumption with constants Ui−Li

n
, allowing us to apply the bounded

difference inequality to V . The result is Hoeffding’s inequality.

Another inequality which yields a similar result is Azuma’s inequality (Azuma,

1967). Application of Azuma’s inequality to the Doob martingale corre-

sponding to ϑ(E1, · · · , En) in the previous paragraph yields a generalization

of Hoeffding’s inequality with the independence assumption replaced by a

bounded difference type assumption. A result of the generalization is a fac-

tor four weakening in the exponent of Hoeffding’s inequality. In contrast,

the bounded difference inequality here strictly extends Hoeffding’s inequal-

ity, but retains the independence requirement and the bounded difference

requirement.

Example 4.2. In our case, it will be useful to apply the bounded difference
inequality to V = ϑ(S) = supw∈W(rD(w) − rS(w)), where S is the training
sample. Since rS(w) cannot change by more than 1

m
when one element of

the training sample S is modified, regardless of w, it follows that V satisfies
the bounded difference assumption with ci = 1

m
for i ∈ [1 : m]. Using the

first bounded difference inequality, it follows that

P {V ≥ EV + ε} ≤ e−2mε2 .

Thus the maximal deviation between the empirical and true mean of a de-
cision rule for a given sample is, with high probability, close to the mean
maximal deviation. ut

49In this process, we show that W has a subgaussian distribution.
50A two-sided result can be obtained by applying the theorem to −ϑ.
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The approach used to derive the bounded difference inequality is based on

decomposing a function into a sum of martingale differences. This approach

is known as Yurinski’s method (named so, it seems, by Michel Talagrand (Ta-

lagrand, 1996c), with reference to the work in Yurinskii, 1974). Next, we con-

sider an alternative approach to deriving concentration inequalities, known

as the information-theoretic or transportation method.

4.9 The transportation method

This approach is again based on bounding an m.g.f. and applying the

Cramér-Chernoff method. This time, bounds on the m.g.f. of a statis-

tic follow from statements which relate the difference in expectation of the

statistic over two distributions to the Kullback-Leibler divergence between

the two distributions.

Massart (1998) uses this approach to derive an N -dimensional generalization

of Hoeffding’s inequality. One of the main ingredients was the following

result (stated in more generality in the reference):

Theorem4.7 (Lemma 2.2 of Massart, 1998). Let (E , Σ, τ) be a proba-
bility space. The following two statements are equivalent for any r.v. E ∈ E
and v > 0:

• EE∼τ exp (λ[E − EE]) ≤ exp
(

λ2v
2

)
, and

• For any probability measure τ ′ on E which is absolutely continuous51

with respect to τ ,

EE∼τ ′ E − EE∼τ E ≤
√

2vKL(τ ′||τ) .

Note that the first statement of the pair is similar to Hoeffding’s lemma in

that it posits a subgaussian distribution of E − EE: if we have a result

of this form, the Cramér-Chernoff method will yield a bound as desired.

Our approach is then to obtain such a bound by seeking a statement of

the second form. A source of results of this form are so-called transportation

51This is required for the Kullback-Leibler divergence to be defined.
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cost inequalities derived in the study of the transportation problem (Massart,

2006, p.36).

The most well-known such inequality for deriving concentration of measure

results is Marton’s inequality, named for Katalin Marton, who discovered

the basic form (Marton, 1986). We present a refined form here.

Theorem4.8 (Marton’s inequality: Proposition 2.5 of Massart, 1998).
Let (E , Σ, τ) be an N -dimensional product probability space, and let τ ′ be
absolutely continous with respect to τ . Denote by P(τ, τ ′) the collection
of couplings of τ and τ ′, i.e. probability measures over E 2 such that the
marginal distribution over the first N coordinates is τ , and over the second
N coordinates is τ ′. Then, for E ∈ E2,

inf
τ?∈P(τ,τ ′)

N∑

i=1

(
PE∼τ?

{
E(i) 6= E(N+i)

})2
≤ 1

2
KL(τ ′||τ) .

Combining these two ingredients leads to bounds on the m.g.f. of functions

exhibiting a generalized Lipschitz continuity, leading to a concentration of

measure results for such functions.

Theorem4.9 (Part of Theorem 3.2 of Massart, 1998). Let (E , Σ, τ) be
an N -dimensional product probability space, with E =

∏N
i=1 Ei, where (Ei, dEi

)
is a metric space of diameter52 Di for each i ∈ [1 : N ]. Let ϑ : E → IR be a
functional defining a r.v. V = ϑ(E).

If ϑ is Lipschitz in the sense that for any E1, E2 ∈ E,

|ϑ(E1) − ϑ(E2)| ≤
N∑

i=1

cidEi

(
E

(i)
1 , E

(i)
2

)
,

then, for ε > 0,

PE∼τ {V − EV ≥ ε} ≤ exp

(
−2ε2

∑N
i=1 c

2
i D

2
i

)
.

This result is slightly generalized from that in the article: the original had

ci = 1 for every i. We call (c1, · · · , cN ) the Lipschitz vector of ϑ, and call ϑ a

52The diameter of a metric space is the supremum of the distance between any two
points in the space.
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(c1, · · · , cN )-Lipschitz functional. If all the components of the Lipschitz vec-

tor of ϑ are equal to some constant c, we shall call ϑ a c-Lipshitz functional,

and c the Lipschitz constant of ϑ. This generalizes the standard meaning

of the term to product spaces by combining the distance measures using a

Manhattan metric.

Proof. We begin by considering any distribution τ ′ absolutely continuous
with respect to τ , and the collection of couplings P(τ, τ ′).

Our intent is to establish a relationship between EE∼τ ′ V − EE∼τ V and

min
τ?∈P(τ,τ ′)

N∑

i=1

(
PE∼τ?

{
E(i) 6= E(N+i)

})2
,

and then applying Marton’s inequality. Thereafter, Theorem 4.7, consti-
tuting the first ingredient of the transportation cost method, will deliver a
bound on the m.g.f. of V .

Let τ? ∈ P(τ, τ ′). Then,

EE∼τ ′ V − EE∼τ V = EE∼τ?

(
ϑ
(
E(N+1), · · · , E(2N)

)
− ϑ

(
E(1), · · · , E(N)

))

≤ EE∼τ?

(
N∑

i=1

cidEi

(
E(i), E(N+i)

))

≤ EE∼τ?

(
N∑

i=1

ciDiI
(
E(i) 6= E(N+i)

))

=

N∑

i=1

(ciDi) EE∼τ? I
(
E(i) 6= E(N+i)

)

=

N∑

i=1

(ciDi) PE∼τ?

{
E(i) 6= E(N+i)

}

≤
(

N∑

i=1

c2i D
2
i

) 1
2
(

N∑

i=1

PE∼τ?

{
E(i) 6= E(N+i)

}2
) 1

2

,

where we have used the definition of diameter, the fact that the expectation
of an indicator function reduces to probability, and the Cauchy-Schwartz
inequality. Noting that this argument holds for all couplings of τ and τ ′, we
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have that

EE∼τ ′ V − EE∼τ V ≤
(

N∑

i=1

c2i D
2
i

) 1
2

inf
τ?∈P(τ,τ ′)

(
N∑

i=1

PE∼τ?

{
E(i) 6= E(N+i)

}2
) 1

2

≤
(

N∑

i=1

c2i D
2
i

) 1
2 (

1

2
KL(τ ′||τ)

) 1
2

=

√√√√2

[
1

4
(

N∑

i=1

c2i D
2
i )

]
KL(τ ′||τ) ,

with the second step following from Theorem 4.8 after taking the infimum
into the (continuous) square root.

The result follows by applying Theorem 4.7 (noting that the above argument
holds for any τ ′ absolutely continuous with respect to τ), and applying the
Cramér-Chernoff method. ut

Example 4.3. We shall use the results above to derive the multi-dimensional
version of Hoeffding’s inequality in Massart (1998).

Let Ei be an axis-parallel rectangle in IRM for each i ∈ [1 : N ]. Specifically,

Ei =
{
η ∈ IRM : Li,j ≤ η(j) ≤ Ui,j∀j ∈ [1 : M ]

}
.

Consider the statistic V generated by the function

ϑ(E) = sup
j∈[1:M ]

N∑

i=1

E(i,j) ,

where E(i,j) denotes the j-th coordinate of E(i). Then

|ϑ(E1) − ϑ(E2)| =

∣∣∣∣∣ sup
j∈[1:M ]

N∑

i=1

E
(i,j)
1 − sup

j∈[1:M ]

N∑

i=1

E
(i,j)
2

∣∣∣∣∣

≤
∣∣∣∣∣

N∑

i=1

(
sup

j∈[1:M ]
E

(i,j)
1 − sup

j∈[1:M ]
E

(i,j)
2

)∣∣∣∣∣

≤
∣∣∣∣∣

N∑

i=1

sup
j∈[1:M ]

(
E

(i,j)
1 −E

(i,j)
2

)∣∣∣∣∣

≤
N∑

i=1

sup
j∈[1:M ]

|E(i,j)
1 −E

(i,j)
2 | .
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Thus, with respect to the `∞ metric over each Ei, we have that ϑ is a
1-Lipschitz functional. Furthermore, the diameter of Ei in this metric is
supj∈[1:M ](Ui,j − Li,j). Applying the above theorem thus yields, for ε > 0,

P {V − EV ≥ ε} ≤ exp

(
−2ε2

∑N
i=1 supj∈[1:M ](Ui,j − Li,j)2

)
.

This is an M -dimensional generalization of Hoeffding’s inequality, and hence
the Hoeffding tail inequality. ut

4.10 Isoperimetric inequalities and the induction

method

We now outline a third approach to deriving concentration of measure re-

sults, pioneered by Michel Talagrand. We begin by sketching the framework

in which we shall discuss the approach, known as the induction method. We

shall see that the distinguishing feature of this approach is the use of isoperi-

metric inequalities, despite the name of the method. The name refers to a

technique for proving such inequalities employing mathematical induction,

pioneered by Michel Talagrand in the late 1980s and early 1990s. For a

review, see Talagrand (1995).

This approach also employs the Cramér-Chernoff bounding method. How-

ever, the form of the bounds on m.g.f.’s derived with this technique means

that the results of the exponential moment method naturally bound the de-

viation of a statistic from its median, rather than its mean, as is the case

with the previous two methods. For highly concentrated variables, the mean

and median are typically very close, so results bounding deviation from the

mean can typically be obtained from the natural results at a small premium.

We will discuss this conversion at the end of this section.

Definition 4.1. For a prametric space53 (E , d), we define the point-set ex-
tension of d, as the function d̄ mapping η ∈ E and a set A ⊆ E to

d̄(η,A) = inf
η′∈A

d(η, η′) .

53A prametric space is a generalization of a metric space, with the metric being replaced
by a prametric. A prametric is a non-negative function satisfying d(η, η) = 0 for all η in
the space.
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Furthermore, we define the ε-blowup of A as

Bε(A) =
{
η ∈ E : d̄(η,A) ≤ ε

}
,

i.e. the closure of the set of points in E within “distance” ε of A.

We now consider functions of independent r.v.’s E1, · · · , En each from a

probability space (E , Σ, τ). It is convenient to view these r.v.’s a single r.v.

E in the product probability space54 (En, Σn, τ
n).

For some function ϑ of E defining a statistic V , consider the set

A(V ) = {η ∈ En : ϑ(η) ≤M(V )} ,

where M(V ) is the median of V . By definition, τ n(A(V )) ≥ 1
2 .

For certain functions ϑ, the measure of Bε(A(V )) can be related to the

probability that ϑ(η) ≤ M(V ) + ε, for an appropriate metric. Such rela-

tionships can be established by so-called isoperimetric inequalities, and the

use of isoperimetric inequalities is the distinguishing feature of Talagrand’s

approach. Such inequalities provide upper bounds on the measure of the

complement of an enlargement (such as the ε-blowup) of some set A in a

probability space (E ′, Σ′, τ ′). A typical blowup inequality (an isoperimetric

inequality with respect to a blowup enlargement) might state that for all

A ⊆ E ′ with τ ′(A) ≥ 1
2 ,

τ(Bε(A)) ≥ 1 − φ(τ, ε) ,

for some function φ. Ideally, φ should exhibit exponential decay.

Isoperimetric results developed when studying the question of which curve of

a fixed length encloses the largest area.55 (The term “isoperimetric” refers to

this fixed length.) Later the problem developed into higher dimensions (e.g.

which body of fixed area encloses the largest volume), and also into more

abstract spaces. Ironically, in this process, the problem statement converted

to the equivalent dual problem of finding, for a fixed area, the set of that area

54As is customary, Σn is the σ-algebra generated by the n-fold Cartesian product of
measurables sets.

55Of course, some mathematical sophistication was also necessary.
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with the shortest perimeter, or boundary. In Euclidean space with a Borel

measure, the solution is, intuitively, the sphere. Other classical results (see,

for example, Ledoux, 2001) are the spherical isoperimetric inequality of Paul

Lévy, which shows that geodesic balls are the solution to the problem on

a sphere using its geodesic metric and the normalized Haar measure; and

the closely related Gaussian isoperimetric inequality, which states that if

Euclidean space is endowed with a Gaussian measure, the solution becomes

halfspaces, instead of balls. In this case, it seems that the length of the

perimeter has become infinite. However, for generalization of the problem

to general measure spaces, the volume enclosed by and perimeter of a set

are defined with respect to the measure: the volume of the set is considered

to be its measure, while the perimeter is the so-called boundary measure

(or Minkowski content) of the set. For a set A in the space (E ′, Σ′, τ ′), the

boundary measure of A can be defined as

lim inf
ε→0+

1

ε
[τ ′(Bε(A)) − τ ′(A)] .

This derivative-type quantity can be seen as the rate of growth of the vol-

ume of R if the set is expanded along it’s boundary. The value inside the

limit inferior appears in most isoperimetric inequalities, which explains their

name. However, our applications of these inequalities will consider the non-

limiting behaviour of this quantity (i.e. when ε is a little distance away from

zero). This use of these inequalities was pioneered by Vitali Milman in his

simplified proof of Dvoretzky’s theorem in 1971.

We obtain our first isoperimetric inequality from the following bound on the
m.g.f. of the Hamming distance of a point from a set, based on Talagrand
(1995, Sections 2.1 and 2.2).

Theorem4.10. Consider the product probability space (En, Σn, τ
n), equipped

with the Hamming distance

d(η1, η2) =
∣∣∣
{
i ∈ [1 : n] : η

(i)
1 6= η

(i)
2

}∣∣∣ .

and its point-set extension d̄.
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Then, for A ⊆ En, a r.v. E ∈ En, and λ, v > 0,

E eλd̄(A,E) ≤ φ(v, λ)n

(τn(A))v

≤ (τn(A))−v exp

(
λ2n(v + 1)

8v

)
,

where

φ(v, λ) =
vv
(
exp(λ) − exp

(−λ
v

))1+v

(v + 1)v+1
(
1 − exp

(−λ
v

))
(exp(λ) − 1)v

.

Thus d̄(A,E) has a subgaussian distribution, and it follows from Cramér-
Chernoff bounding after setting v = 1 that

P
{
d̄(A,E) ≥ ε

}
≤ 1

τn(A)
exp

(−ε2
n

)
.

By optimizing over the choice of λ, one obtains the stronger result,

P
{
d̄(A,E) ≥ ε

}
≤ exp


− 2

n

(
ε−

√
−n ln τn(A)

2

)2

 ,

which, however, only applies for ε ≥
√

−n ln τn(A)
2 .

The proof of the first part is obtained by mathematical induction on n. Early

isoperimetric inequalities were proved using a sequence of transformations

known as rearrangements (Talagrand, 1995). Michel Talagrand was the first

to use induction on the number of dimensions to obtain isoperimetric in-

equalities (Talagrand, 1988), and discovered that this approach was very

useful. This approach has now been applied widely, and the proof technique

is commonly known as Talagrand’s induction method. Interestingly, the in-

duction on the number of coordinates can be seen as a generalization of the

martingale approach, explaining why the approach leads to more powerful

results (Talagrand, 1995).

We note that a theoretical improvement on this bound when E = {0, 1}
is also provided in Section 2.3 of Talagrand (1995). However, the resulting

bounds on error are expressed in terms of the error itself (in a similar fashion

to Example 4.1), and the bound depends on an unspecified constant. As

such, we shall not reproduce the result here.
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The following example shows that the sample error of a decision rule is

close to the median sample error with high probability by applying Theo-

rem 4.10.56

Example 4.4. Consider a decision rule w. The error of w on a point (x, y) ∈
Z drawn according to D then has a Bernoulli distribution with parameter
eD(w). Thus, a sample P = J(x1, y1), · · · , (xn, yn)K generates a sequence
of Bernoulli r.v.’s, Ei(P ) = L(w(xi), yi), i ∈ [1 : n]. We shall apply the
concentration result to V = ϑ(E1(P ), · · · , En(P )) =

∑n
i=1 Ei(P ) to obtain

an error bound.

To apply the bound, we set E = {0, 1} and τ({1}) = 1 − τ({0}) = eD(w).
Let M(V ) be the median of V with respect to the product measure τ n. Now
consider the set R(V ) = {η ∈ En : ϑ(η) ≤M(V )}. Then, by the definition
of median, τn(R(V )) ≥ 1

2 .

It is apparent, but will be convenient to note, that the function ϑ is 1-
Lipschitz with respect to the Hamming distance d:

|ϑ(η1) − ϑ(eta2)| ≤ d(η1, η2) .

Consider a point η1 6∈ R(V ) with ϑ(η1) = j ≥ M(V ). Then, for any
η2 ∈ R(V ), we have

d(η1, η2) ≥ |ϑ(η1) − ϑ(η2)|
= j − ϑ(η2)

≥ j −M(V ) ,

so that d̄(R(V ), η1) ≥ j −M(V ). It follows that

{η ∈ En : ϑ(η) ≥ j ≥M(W )} ⊆
{
η ∈ En : d̄(R(V ), η) ≥ j −M(V )

}
.

The set on the left corresponds to those loss sequences with j or more
components equal to 1. For a sample P generating such a loss sequence, we
thus have neP (w) ≥ j. We are thus interested in the measure of this set
for j = M(W ) + nε. But this is upper bounded by the measure of the set
on the right hand side, which can in turn be bounded by the isoperimetric
inequality presented above.

56It is interesting to note that the result obtained in this example can also be obtained
by an application of the transportation method results outlined earlier — see Massart
(1998, p.17).
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Applying the isoperimetric inequality above yields

PE∼τn

{
d̄(R(V ), E) ≥ nε)

}
≤ exp


−2n

(
ε−

√
ln 2

2n

)2



for ε ≥
√

ln 2
2n

.

Thus (for ε >
√

ln 2
2n

)

PE∼τn {V ≥M(V ) + nε} = PP∼Dm {eP (w) ≥M(eP (w)) + ε}

≤ exp


−2n

(
ε−

√
ln 2

2n

)2

 .

A similar treatment of a reversal of the loss function (which has value 1
when the original loss function has value 0, and vice-versa), yields the same
result with eP (w) and M(eP (w)) exchanged, as we desire (i.e. this approach
yields a two-sided result).

Note that applying this result to the test sample T allows us to obtain a
test sample interval estimator for the median error. ut

We now consider the problem of obtaining a bound on the regular deviation

from the mean, rather than the median. Suppose we have a function φ(ε)

such that for a r.v. V

P {|V −M(V )| ≥ ε} ≤ φ(ε) .

Then

|M(V ) − EV | ≤ E |M(V ) − V |

=

∫ ∞

0
P {|M(V ) − V | ≥ ε} dε

≤
∫ ∞

0
φ(ε) dε .

Now

|V − EV | ≤ |V −M(V )| + |M(V ) − EV | ,
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so that

P {|V − EV | ≥ ε} ≤ P {|V −M(V )| ≥ ε− |M(V ) − EV |}

≤ P

{
|V −M(V )| ≥ ε−

∫ ∞

0
φ(ε) dε

}

≤ φ

(
ε−

∫ ∞

0
φ(ε) dε

)
.

Finally, we present Talagrand’s convex distance inequality, which was orig-

inally proved using (a sophisticated form of) the approach outlined in this

section.

Theorem4.11 (Theorem 3.10 of Philips, 2005). For any probability mea-
sure τ on [0, 1]n, any convex function ϑ on IRn which is c-Lipschitz (w.r.t.
the `2n metric), and any ε ≥ 0,

PE∼τ{|V −M(V )| ≥ ε} ≤ 4 exp

(−ε2
4c2

)
,

where the statistic V is defined by V = ϑ(E).

4.11 The entropy method

Another approach, known as the entropy method, can also be used to ob-

tain concentration inequalities. The entropy method was popularised by

Michel Ledoux with his work in Ledoux (1996). This work attempted to

obtain better insight into the dramatically improved concentration inequal-

ities derived by Talagrand in the mid-1990’s with his induction method,

by simplifying the proofs. In addition, the entropy method has provided

bounds with optimal constants in important cases, whereas bounds from

the induction method typically employ unspecified constants. We shall see

an example of this later in the section.

Central to the basic entropy method is the so-called Herbst argument (Mas-

sart, 2006), which shows that a centred r.v. has a subgaussian distribution if

a certain relationship between the entropy and the m.g.f. of the underlying

r.v. holds (hence the name of the method).
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Theorem4.12 (Herbst argument: Proposition 2.14 of Massart, 2006).
Let E be an integrable r.v. on a probability space (E , Σ, τ).

If, for some v > 0, the inequality

EntE∼τ

(
eλE

)
≤ λ2v

2
EE∼τ e

λE

holds for all λ > 0, then, for all λ > 0,

EE∼τ e
λ(E−E E) ≤ exp

(
λ2v

2

)
. (4.11)

Proof. Suppose

EntE∼τ

(
eλE
)
≤ λ2v

2
E eλE ,

where EE∼τ E = 0. Expanding the formula for entropy and dividing by
λ2 EE∼τ e

λE yields

EE∼τ (Ee
λE)

λEE∼τ eλE
− ln EE∼τ e

λE

λ2
≤ v

2
.

Writing φ(λ) = EE∼τ e
λE , and noting that

φ′ ≡ dφ

dλ
= EE∼τ (Ee

λE)

(assuming the relevant integrals exist), we obtain a differential inequality:

φ′(λ)

λφ(λ)
− lnφ(λ)

λ2
≤ v

2
.

This inequality is solved by noting that the left hand side equals

d

dλ

[
lnφ(λ)

λ

]
,

so that we obtain
lnφ(λ)

λ
≤ λv

2
.

Multiplying both sides by λ and exponentiating both sides yields the desired
result.

The proof is concluded by noting that if the condition in the theorem holds
with EE∼τ E 6= 0, it also holds for E − EE∼τ E. ut
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The second major ingredient of the entropy method is an appropriate log-

arithmic Sobolev inequality57. Probably the best-known such logarithmic

Sobolev inequality is Gross’ inequality (Gross, 1975).

Theorem4.13 (Gross’ inequality: Theorem 3.9 of Massart, 2006).
Let τ be the standard Gaussian measure on the Euclidean space IRN , and φ
be any continuously differentiable function on IRN . Then, if E ∼ τ ,

EntE∼τ ([φ(E)]2) ≤ 2 EE∼τ ‖[∇φ](E)‖2 ,

where ∇φ denotes the gradient of φ.

Comparing this result to the condition for the Herbst argument, it is natural

to consider φ = exp(λϑ
2 ), where ϑ defines a statistic V on IRN .58 In that

case,

‖[∇φ](E)‖2 =

∥∥∥∥exp

(
λV

2

)
λ

2
[∇ϑ](E)

∥∥∥∥
2

=
λ2eλV

4
‖[∇ϑ](E)‖2 ,

so that

EntE∼τ ([φ(E)]2) = EntE∼τ (e
λV )

≤ λ2

2
EE∼τ

(
‖[∇ϑ](E)‖2eλV

)
.

We note this is similar, but not yet the same, as the condition used in the

Herbst argument. To employ the Herbst argument, we need some further

condition on ϑ. The simplest assumption is that ϑ is c-Lipschitz. It follows

that ‖[∇ϑ](E)‖ ≤ c, so that one can apply the Herbst argument to V with

v = c2. The roots of this idea have been traced back to work in Davies and

Simon (1984), but it seems to have first been stated in roughly this form

in Ledoux (1996).

57A Sobolev space is a subset of an Lp space meeting certain requirements. A Sobolev
inequality is an inequality showing that a Sobolev space is also a subset of other Lp

spaces. A logarithmic Sobolev inequality is an inequality showing that a Sobolev space
can be embedded into an Orlicz space (Ledoux, 2001, Section 5.1)

58Technically, ϑ needs to be continuously differentiable, but this restriction can be
removed after the theorem has been proved (Massart, 2006, p.62).
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A major restriction of Gross’ inequality is the restriction to the Gaussian

measure. The major development presented in Ledoux (1996) was the idea

of using logarithmic Sobolev inequalities over other distributions to obtain

concentration results. A major contribution in this direction was Ledoux

(1996, Theorem 1.2) which showed that Gross’ inequality also holds for

smooth functions with respect to any product probability on [0, 1]N .

Example 4.5. Consider a decision rule w. The risk of w on a point (x, y) ∈ Z
drawn according to D then has some distribution τ on [0, 1] with mean
rD(w). An i.i.d. sample P = J(x1, y1), · · · , (xn, yn)K generates a sequence
of r.v.’s each with distribution τ , namely Ei(P ) = L(w(xi), yi), i ∈ [1 : n].
Thus the sequence (E1(P ), · · · , En(P )) ∈ [0, 1]n has the product measure
τn. Defining the function ϑ(η) = 1

n

∑n
i=1 η

(i) for η ∈ [0, 1]n, we note that ϑ

is
√

1
n
-Lipschitz (w.r.t. the Euclidean metric) and smooth. Thus we have

that Gross’ inequality holds for φ(η) = exp( λϑ(η)
2 ), which in turn yields, by

the Herbst argument (using v = 1
n
), that

EE∼τ e
λ(V −E V ) ≤ exp

(
λ2

2n

)
,

where V is the statistic generated by ϑ. Clearly, for a sample P , V = rP (w).
Applying the exponential moment method, and optimising for λ yields

PP∼Dn {rP (w) ≥ rD(w) + ε} ≤ exp

(−nε2
2

)
.

ut

In the mid-1990’s, Talagrand (1996b) derived a strong concentration inequal-

ity for the supremum of an empirical process, using the induction method.

The bound corresponds to a result of the form

PE∼τn{V ≥ EV + ε} ≤ K exp

( −ε2
2(c1ς2 + c2bε)

)
, (4.12)

where V = ϑ(E), with

ϑ(E) = sup
φ∈V

n∑

i=1

φ(E(i)) ,

the supremum of an empirical process indexed by a countable function class

V, the components of E are independent, b is a uniform bound on the norm
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of the elements of V, and ς2 is a bound on the variance of V . However, while

the result has good asymptotic properties, the constantsK, c1 and c2 implied

by the proof were rather poor. When Ledoux (1996) proposed the entropy

method, he showed that the same concentration inequality could be obtained

using the approach, and that the resulting constants were reasonable: K =

2, c1 = 42 and c2 = 8. Later work using the entropy method in Boucheron

et al. (1999), Massart (2000) refined the constants even further, obtaining

K = 1, c1 = 8, and c2 = 2.5.

If we consider (4.12) when V is restricted to a single function, we see that

the result corresponds to the simple form of Bernstein’s inequality in Theo-

rem 4.4, with V −EV here corresponding to
∑n

i=1 Vi there, and ε here equal

to nε there. Furthermore, the typical definitions of ς and b ensure that Bern-

stein’s inequality is a specialization of (4.12) with tighter constants: K = 1,

c1 = 1 and c2 = 1
3 . Based on results on concentration of the Gaussian mea-

sure in high dimensions, it was conjectured that it may be possible to obtain

the same constants in the general case (for further discussion, see Massart,

2000).

The work in Boucheron et al. (1999) made a significant step towards con-

firming this conjecture. However, they presented a concentration inequality

not directly for suprema of empirical processes, but instead for self-bounding

functions.

Definition 4.2 (Self-bounding function). A function ϑ : En → IR of
r.v.’s E1, · · · , En defining V = ϑ(E1, · · · , En) is self-bounding if there are
functions ϑi : En−1 → IR for i ∈ [1 : n] defining

Vi = ϑi(E1, · · · , Ei−1, Ei+1, · · · , En) ,

such that
0 ≤ V − Vi ≤ 1

for i = 1, · · · , n and
n∑

i=1

Vi ≤ V .

It turns out that for self-bounding functions, VV ≤ EV , which explains

their name. Details of this result, which is related to the Efron-Stein inequal-
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ity, can be found in Section 4.2 of Lugosi (2004). It turns out that the supre-

mum of a non-negative empirical process is self-bounding, but sumprema of

general empirical processes are not. However, the result still yielded bounds

on such suprema by considering squared variables (for details, see Massart,

2000).

Further work in Rio (2000, 2002) and Bousquet (2002a) resulted in confir-

mation of the conjecture by obtaining a functional equivalent of Bennett’s

inequality for the suprema of general empirical processes. In order to achieve

this, the concept of self-bounding functions needed to be generalized to in-

troduce new parameters. We present the general result below.59

Theorem4.14 (Theorem 2.1 of Bousquet, 2002a). Let E,E ′
1, E

′
2, · · · , E′

n

be r.v.’s in En, and E1, E2, · · · , En be r.v.’s in En−1. Assume there is a c > 0
such that

E′
i ≤ E −Ei ≤ 1

and
E′

i ≤ c

almost surely, and furthermore that

EE′
i ≥ 0 .

Let ς almost surely satisfy ς2 ≥ 1
n

∑n
i=1 E(E′

i)
2. Define ν = (1+c) EE+nς2,

h(v) = (1 + v) ln(1 + v) − v, and ψ(v) = e−v − 1 + v.

If
n∑

i=1

(E −Ei) ≤ E

almost surely, then
ln E eλ(E−E E) ≤ ψ(−λ)ν (4.13)

for all λ ≥ 0.

It follows that for all ε > 0,

P{E ≥ EE + ε} ≤ exp
(
−νh

( ε
ν

))
, (4.14)

and for all v ≥ 0,

P
{
E ≥ EE +

√
2νv +

v

3

}
≤ e−v . (4.15)

59A weaker, but more generally applicable result is provided in Theorem 2.2 of Bousquet
(2002a).
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The key to understanding the improvement in this result is to compare the

control on the m.g.f. of the centred variable in (4.13) to that for the basic

Herbst argument in (4.11). The improved formulation captures the non-

symmetric behaviour of the variables, with subexponential decay in certain

regions instead of subgaussian decay everywhere.

Consider the case where all the random variables E ′
i are identically zero,

and E = ϑ(W1, · · · ,Wn) for a self-bounding ϑ, and r.v.’s W1, · · · ,Wn. If we

set

Ei = ϑi(W1, · · · ,Wi−1,Wi+1, · · · ,Wn)

for each i (where the ϑi are specified by the definition of a self-bounding

function), these variables meet the requirements of the theorem with c = 0

and ς2 = 0. Applying the bound in this case yields Boucheron et al. (1999,

Theorem 1), so that this result is a generalization of that result to a wider

class of functions. Furthermore the result in Boucheron et al. (1999) also

provides a lower bound:

P{E ≤ EE − ε} ≤ exp
(
−EEh

( ε

EE

))
. (4.16)

Bousquet also showed that if E = supφ∈V
∑n

i=1 φ(Wi), where the functions

in V have zero mean, are square-integrable, and are upper bounded by one60,

the theorem above can be applied with c = 1 and any ς 2 ≥ supφ∈V Vφ(W1),

yielding bounds of

P{E ≥ EE + ε} ≤ exp

(
−[nς2 + 2 EE]h

(
ε

nς2 + 2 EE

))
, (4.17)

and

P
{
E ≥ EE +

√
2x[nς2 + 2 EE] +

x

3

}
≤ e−x . (4.18)

When V consists of a single function, the relaxed form of Bennett’s inequality

(Theorem 4.3), and the refined form of Bernstein’s inequality (Theorem 4.5)

are recovered from these results respectively. As a result, these concentration

60This assumption can be relaxed slightly. Again, the form of these results mean they
are sensitive to scaling — see footnote 45.
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inequalities are sometimes called the functional Bennett’s or Bernstein’s

inequality respectively. The same bound also holds for

E = sup
φ∈V

|
n∑

i=1

φ(Wi)|

if the functions are uniformly bounded by one.



Chapter 5

Training sample bounds

The dilemma with the test sample approach can be summarized in the fol-

lowing 3 points:

• more data for training generally means that a better hypothesis can

be selected61; but

• more data for training means less data for testing; and

• less data for testing implies higher variance of point estimates of, and

wider confidence intervals for, error rates.

There is thus a trade-off: one can, in general, either be more sure of worse

performance, or less sure of better performance. This balancing act is the

focus of the training sample bounds under investigation in the following

chapters.

As mentioned before, it is in many cases possible to use the training sample

to predict the performance of the hypothesis selected using that training

sample. There is, of course, a dependence between the training sample and

the chosen hypothesis, so one must work carefully. We shall once again begin

with point estimators, and later discuss interval estimators.

61A larger training sample typically provides better information about the distribution
generating data points.
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Section 5.1 discusses the optimism of estimating true risk using apparent

risk, and considers various classical techniques for taking this optimism into

account, including bootstrap point estimators of varying degrees of sophis-

tication. An overview of the related CV approach is given in Section 5.2.

Our consideration of interval estimators based on the training sample begins

in Section 5.3, and Section 5.4 presents the most basic tool for constructing

such interval estimators, the Occam’s razor method.

Section 5.5 contains the core of the chapter: we begin by introducing the

concept of covering numbers (Section 5.5.1), followed by the presentation

of symmetrization lemmas (Section 5.5.3) and dual sample bounds (Sec-

tion 5.5.4) for various measures of deviation. With these tools in place, we

construct covering number bounds based on the various measures of devi-

ation (Section 5.5.5). Next we present the random subsample lemma and

bound (Section 5.5.6), and use them to obtain a bound on regular deviation

(Section 5.5.7). We conclude the section with some results involving thresh-

olded classes, which relate general loss functions to zero-one loss functions

(Section 5.5.8).

Section 5.6 investigates obtaining bounds by employing dominating loss

functions. Our primary focus in the section is on various types of margin

bounds for thresholding classifiers.

In Section 5.7, we consider the chaining and generic chaining methodology,

and apply the methodology to present an alternative to the random sub-

sample bound.

The last part of the chapter considers the problem of obtaining the covering

numbers necessary for applying the results presented. We present a number

of dimension-like quantities in Section 5.8, and illustrate how they can be

used to bound covering numbers. Finally, we consider methods for obtaining

covering numbers for complex classes in terms of simpler classes, and other

methods of obtaining covering numbers directly in Section 5.9.
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5.1 Training sample point estimates

First, note that one should not simply use the apparent risk, rS(wS), as

an estimate of the true risk of a decision rule wS in our setting: since the

decision rule is selected based on the input-output pairs in S, we expect

the decision rule to perform better on them than on unseen examples —

in general, the apparent risk would thus be a (typically optimistic) biased

estimate of the true risk (see, for example, Hastie et al., 2001, Section 7.4).

We thus need a more sophisticated approach than simply using the apparent

risk.

5.1.1 Optimism

The most obvious approach to overcoming the objection just raised is to

estimate the risk of a decision rule by adjusting the apparent risk for the

bias introduced by the decision rule’s dependence on the sample. The extent

to which the apparent risk understates the true risk of a decision rule can

be broken up into a number of components. To do this, we write wS′ for

the decision rule selected by the algorithm Θ under consideration when a

sample S′ is chosen. Then, for a training sample S, we are interested in the

optimism of the algorithm-sample pair (Θ,S) (w.r.t. the distribution D):

opD(Θ,S) = rD(wS) − rS(wS)

= [rD(wS) − rD(Θ)]

+[rD(Θ) − ES′∼Dm rS′(wS′)]

+[ES′∼Dm rS′(wS′) − rS(wS)] .

The first and last terms in this expression have mean zero, so that the mean

deviation between apparent risk and true risk when employing Θ is

opD(Θ) = rD(Θ) − ES′∼Dm rS′(wS′)

= ES′∼Dm [rD(wS′) − rS′(wS′)] ,

which we call the optimism of Θ. It follows that rS(wS) + opD(Θ) is an

unbiased estimator of both rD(wS) and rD(Θ).
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This leads us to the problem of estimating opD(Θ). Let us write DX for

the marginal distribution of X, and S ′
X and S′

Y for the inputs and outputs

of S′ (as well as the corresponding empirical distributions over X and Y).

Then we can expand opD(Θ) into

ES′
X∼DX

m ES′
Y ∼DY m|S′

X




(
rD(wS′) − rS′

X×DY m|S′
X

(wS′)
)

+
(
rS′

X×DY m|S′
X

(wS′) − rS′
X×S′

Y
(wS′)

)




where DY m|S′
X

denotes the distribution obtained by independently selecting

each Yi in S′
Y conditionally on X = Xi, the i-th component of S ′

X .

The two terms in the expectation represent two distinct phenomena: con-

sider a fixed sample S ′, on which Θ yields a decision rule wS′ . Then the

second term represents the amount by which the apparent error rate un-

derstated the average error which would be obtained if wS′ were tested on

representative outputs for the given inputs (i.e. how much of the optimism

of (Θ,S′) is due to the specific values of the responses). We shall call this the

response-driven optimism of (Θ,S ′), and we shall call its mean the response-

driven optimism of Θ. The first term indicates how much the “representative

output” error rate for the given inputs understates the true error of wS′ (i.e.

how much of the optimism of (Θ,S ′) is due to the specific values of the

predictors). We shall call this the predictor-driven optimism of (Θ,S ′), and

its mean the predictor-driven optimism of Θ.

5.1.2 In-sample optimism

It is important to note that optimism in the sense above is measured relative

to the true risk of the decision rule (or the algorithm). It is common in other

texts to use the term optimism for the conditional mean (with respect to

S′
Y ∼ DY m|S′

X
) of the response driven optimism of (Θ,S ′). We shall call

this concept the in-sample optimism of Θ at S ′
X . The mean in-sample

optimism is the response-driven optimism of Θ.

This distinction is important to note, since many techniques which adjust for

optimism actually only make provision for in-sample optimism. Although

these techniques are valuable in other fields (notably model selection in
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regression problems62), they are not directly relevant to our problem, so

we shall restrict ourselves to mentioning a few popular techniques. With

their roots in model selection, these techniques generally assume some form

of model for the predictor-response relationship. These approaches have in

turn fathered a number of variants with benefits in certain situations.

• Adjusting the mean residual squared error63 (RSE) of a linear model,
RSE
m

, to take in-sample optimism into account, is common. The ad-

justed value employed is usually RSE
m−2v

, where v is the number of re-

gressors in the linear model (Efron and Tibshirani, 1993, Section 17.4).

The resulting estimate of in-sample optimism is

RSE

m− 2v
− RSE

m
=

2vRSE

m(m− 2v)
.

• Mallows’ CP , originally proposed in the 1960’s as a visual aid for

model selection, is now often used as an automated model selection

criterion. The resulting estimate of in-sample optimism here is 2vς2

m
,

where ς2 is an estimate of the variance of the residuals (losses). Using

the unbiased estimate ς2 = σ̂2 = RSE
m−v

, one obtains a result similar

to that from the adjusted mean RSE. Some relevant reading is Allen

(1974), Hastie et al. (2001), Mallows (1973).

• The Akaike information criterion (AIC) (Akaike, 1974), named for

Hirotsugu Akaike, is a generalized version of the CP criterion, based on

a log-likelihood instead of an estimate of the residual variance (Hastie

et al., 2001).

• The Bayes (or Schwartz) information criterion (BIC) (Schwartz, 1979)

is also popular, and as the name implies, arises from a Bayesian ap-

proach to model selection — see Hastie et al. (2001, Section 7.7). The

estimates of in-sample optimism from the BIC grow more quickly with

model complexity than those of AIC. Hastie et al. (2001, Section 7.8)

62In fact, most of these techniques are primarily for model selection, not adjusting for
optimism to obtain a risk estimate, since any risk estimates obtained would not apply to
the hypothesis or model selected on the basis of the criterion.

63This corresponds to the apparent risk under the squared error loss function.
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further discuss the relationship between the BIC and the minimum

description length (MDL) approach to model selection. The MDL ap-

proach to estimating model complexity is closely related to the sample

compression interval estimators we discuss in Section 6.5.

When we do not assume a model for relating predictor-response pairs, we

are more interested in the optimism of Θ than in the in-sample optimism.

Estimates of this optimism must generally be obtained numerically. The

major technique employed for this purpose is the bootstrap.

5.1.3 The bootstrap

The bootstrap (Efron, 1979, 1983, 1986, 1992, Efron and Tibshirani, 1997)

is based on the idea of inferring the statistical behaviour of a procedure in

a population (underlying distribution or real world) from the procedure’s

behaviour on a sample (empirical distribution or bootstrap world). In some

cases, the procedure’s behaviour on the sample can be calculated directly,

but usually the procedure’s behaviour on the empirical distribution must be

approximated by a kind of Monte Carlo approximation, involving taking a

number of so-called bootstrap samples.

This Monte Carlo-style approach to the bootstrap is, of course, usually quite

time-consuming.

The näıve bootstrap approach

Consider the following statistical procedure:

Procedure 5.1. Select a training sample S of size m from a population
(with underlying distribution D), and on the basis of S, select a decision
rule wS. Calculate the expected risk over D of wS, rD(wS).

Note that we can not perform the last step of this procedure, since we do

not know D.

The corresponding procedure in the bootstrap world would be:
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Procedure 5.2. Select a training sample (with replacement) S? of size m
from the bootstrap world S.64 On the basis of S?, select an hypothesis wS?.
Calculate the expected risk, over the distribution S, of wS?, i.e. rS(wS?).

Clearly, we can perform this entire procedure.

The most näıve bootstrap approach to estimating the true risk rD(wS) would

be to simply use rS(wS?) as an estimator. However, this estimator depends

on the specific bootstrap sample, which provides an undesirable source of

variance. Since all bootstrap samples are equally likely, it makes sense to

use the average bootstrap prediction as the estimate, i.e.

̂rD(wS) = ES?∼Sm rS(wS?) .

Calculating the expectation of the right hand side exactly is usually not

feasible. However, a Monte Carlo estimate of this expectation also helps

reduce the variability in the estimate of the expected error, yielding the

(still) näıve bootstrap estimator,

̂rD(wS) =
1

B

B∑

b=1

rS(wS?b) ,

where the S?b indicate the bootstrap samples for each of the B Monte Carlo

replications.65

Unfortunately, this näıve approach does not work very well. There are a

number of reasons for this, and we address them in turn, thus building a

better bootstrap estimator of true risk.

Estimating optimism with the bootstrap

Note that the approach described above does not in fact attempt to adjust

for optimism, but rather tries to estimate the error directly. Making use of a

64i.e. sampling is done from the empirical distribution generated by the points in S.
65For practical work, some more variation may often be eliminated by using balanced

bootstrap samples, as proposed by Davison et al. (1986), resulting in a more efficient
estimator for a fixed number of replications. Adjusting the process to utilise this idea is
usually rather straightforward, so we shall not elaborate on the method further.
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bootstrap estimate of the optimism is the next refinement for our bootstrap

approach. This modification removes some of the variability between the

Monte Carlo replications. Intuitively, the idea is that this approach will work

better because we extract more information from the real world directly, and

use bootstrapping on a smaller portion of the problem.66

Basically, the last step of the (real-world) Procedure 5.1 is modified to “Cal-

culate the expected error over D of wS as the sum of the apparent error

eS(wS) and the optimism of (Θ,S), opD(Θ,S) = rD(wS) − rS(wS)”. We

still can not perform this step directly, though.

However, in the bootstrap world, we can calculate the corresponding opti-

mism:

opS(Θ,S?) = rS(wS?) − rS?(wS?) , (5.1)

and the two terms on the right are the bootstrap world true error and

apparent error of an hypothesis chosen from a bootstrap sample.

Once again, we could use this value as the estimate of the optimism of (Θ,S),

but we can eliminate variance by using the expected value over all possible

bootstrap samples. Again, this value usually can not be obtained directly,

but must be approximated using a Monte Carlo estimate. This results in

the estimate of optimism

̂opD(Θ,S) =
1

B

B∑

b=1

opS

(
Θ,S?b

)
=

1

B

B∑

b=1

(rS (wS?b) − rS?b (wS?b)) ,

which leads to the true error estimate of wS ,

̂rD(wS) = rS(wS) + ̂opD(Θ,S) .

The .632 bootstrap estimator

In a typical problem with an infinite, or very large, population, the set of

training input points, SX = ∪m
i=1{xi}, typically has measure zero, or close

to it, relative to the marginal distribution over X defined by the distribution

66A full theoretical explanation can be found in Efron and Tibshirani (1993, Sec-
tion 17.6).
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D. On the other hand, in the bootstrap world, the set of input points in

any bootstrap sample, S?
X , has a distinct non-zero measure relative to the

marginal distribution over X defined by the distribution S. Specifically,

the measure of S?
X is 1

m
| {x ∈ SX : x ∈ S?

X} |. It turns out that the mean

measure of a bootstrap sample is 1 − (1 − 1
m

)m. As m becomes large, this

value converges to 1 − 1
e

= 0.632.

This observation is the key to the next refinement of the bootstrap estimator.

Our intuition tells us that, because of this higher degree of “overlap” between

the bootstrap sample and the bootstrap population (the original sample),

compared to that of the original sample with the population, overfitting

in the bootstrap world is likely to be more severe, thus yielding too-high

estimates of optimism, and thus of true error.

The solution proposed as the .632 bootstrap estimator is to use an estimate

of the risk on points not in the training sample to obtain an estimate of opti-

mism. However, since the points not in the training sample in the bootstrap

world are typically further away from the points in the training sample, than

is the case in the real world, this approach, if applied näıvely, will typically

overestimate the optimism. A compromise is reached by scaling this esti-

mate of optimism to account for the difference in average distance between

the training sample and test points in the bootstrap and real world. The

scaling factor turns out to be 0.632, due to the argument at the beginning

of this section.67

More precisely, for a bootstrap sample S?, we consider the average risk of

wS? on the points in the bootstrap world not in S?, i.e.68

rS\S?(wS?) =
1

|S \ S?|
∑

(x,y)∈S\S?

L(wS?(x), y)) .

This can be estimated by Monte Carlo replications. However, even using

balanced samples, another undesirable source of variation is present here:

the size of S \ S? can change for each bootstrap sample, giving the terms

67A full derivation of this estimator can be found in Efron (1983).
68We ignore the potential problem arising with this and later formulae if S contains du-

plicate points, as it can easily be circumvented with a slightly more cumbersome notation.
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in the Monte Carlo average different variances. This problem is resolved by

instead calculating69

ε0(Θ,S) =
1∑B

b=1 |S \ S?b|

B∑

b=1

∣∣∣S \ S?b
∣∣∣ rS\S?b(wS?b) .

Now, ε0(Θ,S) − eS(wS) can be seen as a kind of out-of-sample optimism

of Θ in the bootstrap world. As mentioned before, this optimism needs to

be scaled to take into account the difference between testing in a bootstrap

world and testing in the real world. With the scaling factor, we obtain the

.632 bootstrap estimator,

̂rD(wS) = rS(wS)+0.632(ε0(Θ,S)−rS(wS)) = 0.368rS(wS)+0.632ε0(Θ,S) .

A more thorough treatment of the .632 bootstrap estimator is in Section 17.6

of Efron and Tibshirani (1993)

The .632+ bootstrap estimator

In Efron and Tibshirani (1993), it is reported that the .632 estimator had

the best performance among a number of alternatives, including CV, on the

studies which had been performed until then. Although it is generally a good

estimator, it was later found that the performance of this estimator behaves

undesirably when overfitting is liable to occur. In cases like these, an adjust-

ment must be made to prevent overoptimistic error estimates. This is the

focus of the .632+ bootstrap estimator, introduced in Efron and Tibshirani

(1997).

To understand this estimator we consider a modification of the distribution

D: denote by D′ the distribution over Z with the same marginal distribu-

tions as D for X and Y , but where X and Y are independent.

Consider now the no-information risk of wS , rD′(wS). The name derives

from the fact that this is the error rate of wS when the predictor X contains

69Note that this formula assumes no bootstrap sample contains all the points in the
training set. If there are such samples, they are discarded, and B is reduced accordingly.
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no information about the response Y .70 Suppose ε0(Θ,S) is very close to

rD′(wS) (relative to rS(wS)). It would then seem reasonable to assume that

X does not contain “much” information about Y , so that the relatively low

value of rS(wS) is mainly due to overfitting.

On the other hand, if ε0 is instead closer to rS(wS) (relative to rD′(wS)),

it seems to imply that the value of rS(wS) is mainly due to it encoding the

actual information about Y present inX, indicating a low level of overfitting.

The intuition behind the 0.632+ estimator, then, is that the apparent risk,

rS(wS), becomes less reliable the more overfitting is present, so we should

rely more on ε0(Θ,S) in such cases. This is accomplished by a measure of

relative overfitting71,

R̂ =
ε0(Θ,S) − rS(wS)

rD′(wS) − rS(wS)
.

This relative overfitting rate is then used in replacing the constant 0.632 by

ω = 0.632
1−0.368R̂

, resulting in the estimator

̂rD(wS) = rS(wS) + ω(ε0(Θ,S) − rS(wS)) = (1 − ω)rS(wS) + ωε0(Θ,S) .

We now turn our attention to CV, which seemingly attempts to estimate

the true error directly, rather than adjusting for optimism.

5.2 Cross-validation

The concept of CV originally referred to the idea of validating a model

built from a training sample on an independent test sample, based on the

realization that apparent error was optimistic (Stone, 1974). Modern usage

of the term however, refers to partitioning a data set (either the full set for

model assessment, or the training sample for model selection) repeatedly in

order to make more efficient use of the data.

70This is not just an intuitive idea — the term is derived from information theory.
71In practice, some minor modifications are made to this formula to ensure R̂ lies in

[0, 1]. See Efron and Tibshirani (1997, Section 3) for details.
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The first form of the modern approach to CV was introduced to statistics in

the 1950’s by Maurice Quenouille, and christened as the jackknife by Tukey.

Central to this idea is the concept of a jackknife sample: a jackknife sample

of a data set is simply the data set with one data point removed. The idea

is to model the behaviour of a statistical procedure on the full data set by

its behaviour on the jackknife samples. The idea is clearly similar to that of

the bootstrap72.

More specifically, considering our problem of estimating the risk of a decision

rule selected based on a training sample, we denote the i-th jackknife sample

(and the corresponding empirical distribution) by S\i — the training sample

with the i-th data point removed. The jackknife approach thus estimates

the risk of wS as the average of the risks of each wS\i
on the corresponding

deleted data point (xi, yi), i.e.

̂rD(wS) =
1

m

m∑

i=1

L(wS\i
(xi), yi) .

The jackknife has further applications beyond the scope of this work, but

this approach to risk estimation forms the foundation of modern CV. This

approach is also called, for obvious reasons, leave-one-out CV (LOO-CV),

and the risk estimate is sometimes called the deleted estimate (Devroye et al.,

1996).

Since the jackknife methodology involves m jackknife iterations, i.e. per-

forming the entire statistical procedure under consideration for each jack-

knife sample, it can be very time-consuming. It is often totally infeasible to

calculate jackknife estimates for complex statistical procedures. In our sce-

nario, this typically includes cases where the process for selecting a decision

rule from a training sample is already quite computationally intensive. This

problem can sometimes be solved by clever tricks which allow one to modify

the decision rule selected for one sample to obtain the decision rule which

would be selected for a slightly modified sample. An example of this is fitting

a least squares regression model (Efron and Tibshirani, 1993). Generally,

72However, for simple applications of the jackknife, exact results can usually be obtained,
rather than using Monte Carlo approximation techniques.
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however, an alternative approach, representing a trade-off between accuracy

and computation time, must be used.

The most popular and widely-used such alternative is K-fold CV: when

Efron and Tibshirani introduced the .632+ bootstrap estimator, they noted

that until then, K-fold CV was the “traditional method of choice” for es-

timating generalization error (Efron and Tibshirani, 1997). In this setting,

the training sample is partitioned into K (usually) equal-sized73 subsets or

folds SFi
74. We define the i-th CV sample as S\Fi = S \ SFi. Then the

modified approach involves estimating rD(wS) by the average of the per-

formances of the decision rules selected on the basis of the CV samples (as

evaluated on the omitted fold). The main advantage of this approach is that

there are only K possible CV samples, instead of m. Thus, in many cases

performing K-fold CV is much more feasible than LOO-CV when K � m.

For m equal-sized folds, we recover the jackknife estimate, so that LOO-CV

is sometimes called m-fold CV.

The computational advantage of this alternative has been made clear. There

is, however, a corresponding loss in accuracy in employing K-fold CV. This

derives from the fact that the CV samples have average size K−1
K

m. Thus,

for smallish K, the hypotheses selected from CV samples are based on less

data, and are thus typically less accurate than wS . This results in pessimistic

error estimates75. For LOO-CV, the jackknife samples are of size m− 1, so

for large m, this bias is very small, so that LOO-CV estimates are typically

said to be “nearly unbiased”.

The value of K also affects the quality of CV estimators in another way.

For K near m, the CV samples are almost identical to each other and to

the complete sample. This means that the CV iterations (analagous to

jackknife iterations) have very similar outcomes for a given training sample.

However, this similarity means that such estimators are subject to almost all

73In general practice and reporting, subsets are of equal size (or within one element of
each other) unless otherwise noted.

74Here F denotes fold.
75This is not always so serious, depending on how quickly the error is decreasing as the

sample size increases (see the conclusions of Efron and Tibshirani, 1997, and Hastie et al.,
2001, Section 7.10).
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the variance implied by using only the training sample to estimate the risk.

The lower level of overlap between CV samples and the training sample for

smaller values of K, may lead to more biased estimates, but the more diverse

outcomes of the CV iterations result in a lower variance of the estimator.

This idea was developed, based on empirical observations, in Efron and

Tibshirani (1997) and Hastie et al. (2001).

Despite the apparent differences in approach between the bootstrap and CV,

Efron and Tibshirani (1997) points out that the .632 bootstrap estimator can

be seen as a smoothed version of the LOO-CV estimator. The result of this

smoothing is a variance reduction at the cost of increased bias. The authors

also show that the .632+ bootstrap estimator performs bias reduction on the

.632 estimator, and show that this estimator outperforms cross-validation on

a variety of experiments. These experiments are restricted to zero-one loss

functions, however. In the case of zero-one and other discontinuous losses,

LOO-CV may suffer from a high variance for certain algorithms, and thus

a smoothed estimate may be preferable.

5.3 Training sample interval estimators

We now turn our attention to constructing interval estimators for rD(wS)

and rD(Θ) from the training sample S. Our approach can be broadly stated

as follows: on the basis of S, we hope to be able to construct a region

A(S,w) for each decision rule w in a subset W?(S) of the decision class W
such that, with high confidence, every region contains the true risk of the

corresponding decision rule simultaneously.

Thus, we seek a statement of the form

PS∼Dm {∀w ∈ W?(S) : rD(w) ∈ A(S,w)} ≥ 1 − δ .

If wS ∈ W?(S), it follows that A(S,w) is a confidence region for rD(wS) with

coverage at least 1−δ.76 As in Section 3.2.1, the expression rD(w) ∈ A(S,w)

76If wS 6∈ W?(S), we will have to make do with the confidence interval [0, 1].
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will often be represented by ψ (rD(w), rS(w)) ≤ ε(S,w), where ψ is some

measure of deviation.

We distinguish two major groups of bound: those for which ε or the class

W?(S) depends on S, and those for which they do not. In the second case,

A(S,w) and the resulting confidence interval only depend on the sample

through rS(w). Otherwise, the resulting interval can depend on the sample

in more complicated ways. In general, if W?(S) is not dependent on S, it

is difficult to guarantee that wS ∈ W?(S), unless one selects W?(S) = W.

This is a common choice for many approaches to deriving bounds, including

all the bounds we consider in this chapter.

Those bounds for which ε or W?(S) do depend on S are often called data-

dependent bounds (even though in all cases A(S,w) is data-dependent). As

an example, W?(S) may be the set of decision rules which could be selected

on a permutation of S by a specific algorithm Θ.77 In this case, the set

W?(S) is generally much smaller than W, but the dependence of W ?(S) on

S makes deriving bounds for this case much more difficult. In general, it is

preferable that W?(S) be as small as possible, as that may allow the regions

A(S,w) to be smaller.

Examples of data-dependent bounds are the margin bounds of Section 5.6

and the various bounds discussed in Chapter 6.

Much of the classical work on bounds has focused on the case where ε is

not dependent on w, so-called uniform bounds. In this case, our statement

above can be rewritten as

PS∼Dm {∀w ∈ W?(S) : ψ (rD(w), rS(w)) ≤ ε(S)} ≥ 1 − δ .

5.4 The Occam’s razor method

In this section, we consider the case W?(S) = W, with W countable. In

that case, this method allows one to convert any collection of test set interval

77This may seem contrived, but such constructions are used in the algorithm-specific
bounds presented in later chapters.
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estimators for rD(w), w ∈ W, into a training sample interval estimator for

rD(w), w ∈ W, and thus also for rD(wS).

The Occam’s razor method employs the Bonferroni inequality to generate

a confidence region for the sequence of decision rule risks in a countable

decision class. Core to the weighted union bound is the understanding that

a confidence region represents a probability statement in the sample space,

Zm: if A(S)78 is a 100(1 − δ)% confidence region for a parameter t, then it

means that79

PS∼Dm {t ∈ A(S)} ≥ 1 − δ .

We can combine a number of such probability statements by means of the

Bonferroni inequality to obtain a confidence region for all the decision rule

risks simultaneously. Suppose the decision class W is countable. For each

decision rule w ∈ W, we can derive a 100(1− δ(w))% confidence interval for

the risk of w, A(S,w) using any of the methods outlined in the section on

test sample interval estimators.

Suppose that we select the δ(w) such that
∑

w∈W δ(w) = δ. Then, for any

w,

PS∼Dm {rD(w) 6∈ A(S,w)} ≤ δ(w) ,

so the probability of any one of these events occurring,

PS∼Dm {∃w ∈ W : rD(w) 6∈ A(S,w)}

= PS∼Dm

{ ⋃

w∈W
{S : rD(w) 6∈ A(S,w)}

}
, (5.2)

by the Bonferroni inequality, does not exceed

∑

w∈W
PS∼Dm {rD(w) 6∈ A(S,w)} ≤

∑

w∈W
δ(w)

= δ .

we obtain that

PS∼Dm {∀w ∈ W?(S) : rD(w) ∈ A(S,w)} ≥ 1 − δ ,

78Note that a confidence region is a function of the sample used to calculate it.
79Assuming that the interval does not exhibit undercoverage.
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as desired.

It may seem at first that the weighted union bound approach won’t be very

useful: after all, if we have to increase the confidence level for the confidence

interval we construct for each decision rule substantially, it would seem the

resulting bounds on the risk will be too wide to be useful. This may be the

case for very large and infinite decision classes, when we have no idea which

decision rules are more likely to be correct. However, in the finite case,

when the decision class is not too large, the resulting interval estimator is

not unmanageably wide, if we base our interval on the sample mean. This is

because the sample mean has the desirable property of being concentrated

around its expectation, the true mean, as discussed earlier. This means

that a sample mean is very likely to be close to the true mean, and the

probability of large deviation between the two values is very small: in fact,

it drops off at an exponential rate as the deviation increases. This can be

readily verified by considering the test set interval estimators as well as the

results on risk concentration discussed in earlier sections.

For extremely large and infinite decision classes, we use the technique of

assigning prior weights outlined below to obtain useful bounds. We shall,

however, need more sophisticated techniques to handle the uncountable de-

cision classes, which are not covered by the Occam’s razor method.

5.4.1 Assigning ‘prior’ weights

It is natural to consider the problem of selecting the values δ(w) above. Of

course, they must be selected to ensure a certain pre-specified confidence for

the simultaneous bound. In the case where W is finite, and one desires a final

confidence level of 1 − δ, one can simply use seperate confidence intervals

for each decision rule with all δ(w) = δ
|W| . Of course, we are not restricted

to this option, but it seems sensible when we have no prior indication that

one of the decision rules is more likely than the others.

Note that, once we have selected a decision rule w by some algorithm, we are

only concerned with the length of A(S,w); the lengths of all the other con-
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fidence intervals used in designing the simultaneous probability statement

generally becomes immaterial to us. In addition, the confidence level in the

original interval, 1−δ(w), no longer applies — instead, the confidence level is

1− δ, the value assigned to the complete probability statement. Effectively,

δ− δ(w) represents “lost confidence” — the price we pay to be sure that our

bound will apply regardless of which decision rule an algorithm selects.

Let us, for a moment, consider the problem from a Bayesian perspective:

suppose the probability (measure of belief) that w will be the decision rule

selected by an algorithm is α(w). Let us consider the question: what division

of confidence will result in the least “lost confidence” on average.

Given a combined confidence level 1 − δ, we wish to find which choice of

δ(w), summing to δ, minimizes

∑

w1∈W


α(w1)

∑

w2 6=w1

δ(w2)




Now, since ∑

w2 6=w1

δ(w2) = δ − δ(w1) ,

we can use ∑

w1∈W
α(w1) = 1

to see that this is equivalent to maximizing

∑

w1∈W
α(w1)δ(w1) .

But this is simply the problem of maximizing an inner product. Since the

maximum inner product is achieved when the sequences are in the same

direction, we have that δ(w) = cα(w). The restriction on the δ(w)’s sum-

ming to δ imply that c = δ. In this framework, it follows that the best way

to allocate confidence levels to individual decision rules is in proportion to

their prior probability of selection. We do not have to use this allocation of

course, even though deviating from it may be suboptimal in the Bayesian
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sense above.80

Motivated by this discussion, we will refer to a distribution function corre-

sponding to the assignment of weights to decision rules as a “prior”. This

is because it generally reflects our beliefs about the suitability of each deci-

sion rule. This idea of a “prior” will be central to a number of the bounds

we will discuss later, notably the shell decomposition and PAC-Bayesian

bounds presented in Chapter 8.

5.4.2 Applying the Occam’s razor method

This section will present some applications of the Occam’s razor method,

including the most common forms available in the machine learning litera-

ture.

Example 5.1 Occam’s razor binomial interval. For a zero-one loss function,
the tightest upper interval on eD(w) with guaranteed coverage 1 − δ for a
given decision rule w is the upper binomial interval,

[0,UBT (eT (w), k, 1 − δ)] .

The Occam’s razor method suggests using the regions

A(S,w) = [0,UBT (eS(w),m, 1 − δ(w))]

for each w.

In this case, if the algorithm selects the decision rule wS , the resulting
100(1 − δ)% interval estimator for eD(wS) is

[0,UBT (eS (wS) ,m, 1 − δ(wS))] .

A similar result to the interval above can be obtained for lower intervals.
Two-sided bounds can also be obtained, but they can be improved by using,
for example, the two-sided exact LR interval.

When all the δ(wS) are selected equal, the bound employed on the binomial
tail deviation is independent of w, so that the result is a uniform interval.

ut
80Further, optimizing the “lost confidence” is not necessarily the best approach. Another

approach is to choose the “prior” δ(w) to minimize the expected value of the bound, subject
to an assumption on the distribution of the selected decision rule. For a short synopsis of
this approach, see Langford and Blum (1999, Section 2.1).



Chapter 5. Training sample bounds 142

The scenario presented in the next example is known variously as the op-

timistic, realizable or consistent case in machine learning. This case deals

with the situation when a decision rule with zero error on the training sample

can always be found. The result here is based on generalizing the realizable

interval of Section 3.2.12.

Example 5.2 Occam’s razor realizable intervals. Suppose for a given prob-
lem, it is known that a finite decision class W contains at least one decision
rule w0 which has eD(w0) = 0. It follows that for any sample S, there is at
least one decision rule with zero empirical error. Consider any algorithm Θ
which always selects some decision rule wS with eS(wS) = 0. It follows from
the uniform Occam’s razor binomial interval that a 100(1 − δ)% confidence
interval for eD(wS) (and also for eD(Θ)) is

[
0,UBT

(
0,m, 1 − δ

|W|

)]
=

[
0, m

√
δ

|W|

]

⊆
[
0,

1

k
ln

|W|
δ

]
,

with the last line following from (3.7).

Non-uniform and lower intervals (when rS(w) = 1) can be derived similarly.
ut

Note that the realizable bound for general loss functions derived from the

upper Chernoff inequality in Section 4.6.1 could also be employed to obtain

realizable bounds for general loss functions. In both cases, we are actu-

ally employing the Occam’s razor method for the binomial interval (upper

AV interval) to the entire decision class, but the stated result restricts our

attention to the case where rD(w) = 0.

In contrast to the realizable case, the agnostic case considers the more gen-

eral situation where one does not know a priori whether an hypothesis with

zero error exists, or can be found, in the decision class (hence their name).

It is common to differentiate between two scenarios in the agnostic case:

1. the pessimistic (worst case) scenario: we do not assume that we shall

wish to evaluate a good decision rule in the decision class;
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2. the realistic81 case: we are unsure whether good performance can be

achieved by a decision rule or not, but focus on good decision rules for

our bounds/interval estimators.

However, in most cases, bounds for the realistic case are simply based on

inverting special cases of bounds holding for the pessimistic case (see the

discussion of machine learning Chernoff inequalities in Section 4.6.1). As

such, we will focus almost entirely on bounds for the pessimistic case.

The following example presents a bound for the pessimistic case:

Example 5.3 Occam’s razor Hoeffding’s tail interval. Hoeffding’s tail inter-
val (4.3) applies to general loss functions, allowing us to construct confidence
intervals for risk. This interval suggests using

A(S,w) =


0, rS(w) +

√
ln 1

δ(w)

2m




in the application of the Occam’s razor method.

The resulting 100(1 − δ)% interval estimator for rD(wS) is

0, rS (wS) +

√
ln 1

δ(wS)

2m


 .

Due to the symmetry of Hoeffding’s tail inequality, lower and two-sided
intervals of a similar form follow easily. Again, a constant choice for all
δ(wS) yields a uniform interval. ut

As discussed in Section 4.7, the Hoeffding tail inequality does not incorporate

knowledge of the variance of the loss of a decision rule. We can also obtain

narrower intervals for good decision rules at the expense of wider intervals

for poor decision rules by employing the Angluin-Valiant interval.

Example 5.4 Occam’s razor Angluin-Valiant interval. In Section 4.7, we noted
that the upper Angluin-Valiant interval generally outperforms the upper Ho-
effding’s tail interval for rD(w) ≤ 0.25, but is generally poor when rD(w) is
larger.

81Traditionally, this has been called the general case - see, for example, Vapnik (1998).
We have avoided this usage to allow the use of “general” in the text with its regular
meaning.
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To apply the Occam’s razor method to this interval, we use

A(S,w) =

(
0, rS(w) − ln δ(w)

m

(
1 +

√
1 − mrS(w)

ln δ(w)

)]

obtaining the 100(1 − δ)% interval

(
0, rS(wS) − ln δ(wS)

m

(
1 +

√
1 − mrS(wS)

ln δ(wS)

)]
.

ut

Note that both bounds above can be improved by applying the Occam’s

razor method to the Hoeffding’s r.e. interval. In the case of zero-one loss, the

exact-variance Bernstein interval for error will also provide an improvement.

PAC bounds

Suppose W is finite, and we are working with a uniform interval, so δ(w) =
δ

|W| . Inherent in applying the Occam’s razor method to Hoeffding’s tail

interval in this case is the probability statement

PS∼Dm



∀w ∈ W : rD(w) ∈


0, rS(w) +

√
ln |W|

δ

2m





 ≥ 1 − δ .

Another way of stating this result is: with probability at least 1 − δ, for all

w ∈ W,

rD(w) ≤ rS(w) +

√
ln |W| − ln δ

2m
.

This formulation is popular in the machine learning community, where such

statements are known as PAC bounds. This name was given by Dana An-

gluin to the bounds presented in Leslie Valiant’s seminal paper (Valiant,

1984) in computational learning theory, which were of a similar nature.

The focus in machine learning is strongly on providing such probabilistic

upper bounds (hence, upper intervals) on the risk of a specific decision rule

selected by an algorithm Θ. In the corresponding work in classical statistics,
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the focus is often more on eD(Θ) than eD(w), but the focus on upper one-

sided results remains, as we shall see.

We note that uniform Occam’s razor results actually provide more than

we typically need: we typically only desire an interval for the risk of the

specific decision rule selected, or the algorithm under consideration, while

the Occam’s razor method provides simultaneous bounds on every decision

rule in W.

Sample complexity

We next consider the question: for an algorithm Θ, how large must the sam-

ple size m be to be confident that rD(wS) ≤ rS(wS) + ε for any hypothesis?

Setting √
ln |W|

δ

2m
= ε ,

we obtain that rD(w) ≤ rS(w) + ε for all w ∈ W (and hence also for wS)

with probability at least 1 − δ, if

m(ε, δ) =
ln |W| − ln δ

2ε2
.

Computational learning theorists often refer to the function m(ε, δ) as the

sample complexity of Θ (with respect to the specific interval or bound).

Generally, one can consider any such m(ε, δ) as an upper bound on the

minimum number of samples m0(ε, δ) needed to ensure rD(wS) ≤ rS(wS)+ε

with probability 1 − δ. This m0(ε, δ) is the true sample complexity.

Computational learning theorists are generally interested in the asymptotic

behaviour, such as the growth rate, of sample complexities, and less in-

terested in the precise constants in m(ε, δ). As such, many results in the

literature are presented in order notation. In this example, we would say

the sample complexity is O(ε−2 ln 1
δ
). From a sample complexity result with

specified constants, one can in turn obtain an interval estimator for rD(wS).

The variety of approaches to presenting results can make navigating the

literature of machine learning and computational learning theory, as well as
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comparing results in different forms, rather confusing. In many cases, order

results on sample complexity suppress constants which can be retrieved by

studying the proofs of the results. This work will generally not present

sample complexity results.

5.5 Bounds using covering numbers

The Occam’s razor method can not be directly applied to uncountably in-

finite decision classes.82 In order to allow bounds on such decision classes,

we shall next apply the Occam’s razor method to a finite class of decision

rules which approximate all the decision rules in the complete decision class

W. This approach also allows us to improve the Occam’s razor intervals for

extremely large and countably infinite decision classes. The finite approxi-

mating class will be known as a cover of W. The Occam’s razor method is

then applied uniformly over the elements of the cover, and some adjustments

are made to the result to fit it to the original decision class.

In order to apply this approach, it is generally necessary to restrict ourselves

to the modified learning problem described in Section 2.3.1. Thus, in what

follows, we assume a bounded loss, so that Y = A = [0, 1], g is the identity

function on [0, 1], X represents the space of predictor-response pairs, with a

specific pair denoted by x. In addition H = W is a class of real-valued func-

tions mapping into [0, 1] corresponding to the loss class for an underlying

problem (so the mapping is into {0, 1} for zero-one loss functions). Further-

more we have L(w(x), v) = w(x) for all v. One effect of this approach is

that when the resulting bounds are applied in practice, various quantities

expressed in terms of the modified framework need to be transformed to the

82As pointed out in Langford and McAllester (2004), however, we note that all computer
implementation of algorithms effectively employ finite decision classes, even if the classes
are very large. This is because the continuous parameters are represented by a finite set of
bits, effectively discretizing the parameter space. This has two consequences: first, bounds
based on exact minimization of risk on the training sample may not theoretically hold for
the selected decision rule (although this effect is almost always negligible); second, bounds
such as shell decomposition bounds may be able to use exponential decay of the shell sizes
to obtain reasonable results even for continuous hypothesis classes (although such results
have not yet been reported, examples of using Occam’s razor bounds based on 8-bit and
32-bit representations of the parameter space appear in Langford and McAllester, 2004).
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original framework. The most dominant such example is the decision class

W, which corresponds to the loss class in the original problem.

5.5.1 Pseudometrics and covering numbers

In order to apply this approach, we need to specify when one decision rule

approximates another. This is typically done by means of a pseudometric83

d: if d(w1, w2) < γ, we say w2 γ-approximates w1 (with respect to d). If, on

the other hand, d(w1, w2) ≥ γ we say that w1 and w2 are γ-distinguishable.

Various choices of pseudometric are popular, but they are nearly always

based on the norm of some Lebesgue space Lp(Q), with respect to some dis-

tribution Q. We will generally specify such a norm as dp,Q. Note that when

Q is a discrete distribution (such as an empirical distribution corresponding

to a sample P , functions which are equal Q-almost everywhere are strictly

equal, so that dp,Q is a metric. We now give a few examples of such dp,Q.

Example 5.5.

d1,D(w1, w2) =

∫

Z
|w1 − w2| dD

= E(x,y)∼D |w1(x) − w2(x)| ,

the mean absolute deviation between w1 and w2.

d∞,D(w1, w2) = ess sup
(x,y)∼D

|w1(x) − w2(x)| ,

i.e. the smallest value almost surely bounding |w1(x) −w2(x)| with respect
to x ∼ D. ut

Example 5.6.

d1,P (w1, w2) =

∫

Z
|w1 − w2| dP

=
∑

(xi,yi)∈P

1

m
|w1(xi) − w2(xi)| ,

83A pseudometric space is a set equipped with a pseudometric. A pseudometric is similar
to a metric: a function d(v1, v2) is a pseudometric if d is positive, symmetric and obeys a
triangle inequality. However, it is possible to have d(v1, v2) = 0 even when v1 6= v2.
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the average difference between w1 and w2 over the sample P . This gives
us an idea of whether w1 and w2 behave similarly on the predictors in the
sample P (but it is not yet clear they act similarly over the rest of X ). ut

Example 5.7. More generally, for 1 ≤ p <∞,

dp,P (w1, w2) =

(∫

Z
|w1 − w2|p dP

) 1
p

=


 ∑

(xi,yi)∈P

1

m
|w1(xi) − w2(xi)|p




1
p

.

For some of the work that follows, we will be particularly interested in d2,P .
ut

Example 5.8. As final examples,

d∞,P (w1, w2) = max
(xi,yi)∈P

|w1(xi) − w2(xi)| ,

the maximum difference between w1 and w2 on the predictors in P , and

d0,P (w1, w2) =
∑

(xi,yi)∈P

|w1(xi) − w2(xi)|0 ,

the number of predictors in P for which w1 and w2 differ,84 are popular
choices of pseudometric. ut

It can easily be shown (using Jensen’s inequality) that for any p ≥ 1,

d1,Q ≤ dp,Q ≤ d∞,Q .

In addition, if P is an n-sample, we also have that

d∞,P ≤ nd1,P .

Another result that will be useful is that when w1, w2 map into [0, 1], we

have

[dp,Q(w1, w2)]
p ≤ d1,Q(w1, w2) (5.3)

84In this result we define 00 = 0. We shall use this notation even though there is no
corresponding Lebesgue space.
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for 1 ≤ p < ∞. This follows by noting that for v1, v2 ∈ [0, 1], |v1 − v2|p ≤
|v1 − v2| for such p.85 If the functions map into {0, 1} (such as zero-one loss

functions), equality results.

Up to now we have used absolute value to measure the distance between

w1(xi) and w2(xi), since they are assumed to be real. However, this is just

a special case of a more general formulation, which we will need on occasion

later. Specifically, assume that v1 and v2 are functions mapping a set X into

a pseudometric space (E , d), and that D is a distribution on E . Then, we

can define

dp,D(v1, v2) =

(∫

x∈X
[d(v1(x), v2(x))]

p dD

) 1
p

for 1 ≤ p < ∞, and for p = ∞, the distance is the essential supremum

of d(v1(x), v2(x)). In the specific case we have been considering, we have

E = IR, with d defined by absolute difference.

Definition 5.1 (Packing and covering numbers). Consider a pseudo-
metric space (E , d). We say that J ⊆ E is an γ-cover of K ⊆ E with
respect to d if J ⊆ K and for every k ∈ K, there is a j ∈ J such that
d(j, k) < γ (i.e. j γ-approximates k w.r.t. d). If only the second condition
holds, we call J an external γ-cover.86 In both cases, we refer to γ as the
resolution of the cover.

The (external) γ-covering number of K with respect to d, is the minimal
cardinality of an (external) γ-cover of K, if this is finite, and infinity, oth-
erwise. We denote the γ-covering number by N (γ,K, d), and the external
γ-covering number by N̄ (γ,K, d). Note that since a cover is an external
cover, N̄ (γ,K, d) ≤ N (γ,K, d). A cover with minimal cardinality is said to
be minimal, and similarly for external covers.

We say that J ⊆ E is γ-separated if for any j1, j2 ∈ J , d(j1, j2) ≥ γ (i.e.
j1 and j2 are γ-distinguishable w.r.t. d). The γ-packing number of K with
respect to d, M(γ,K, d), is the maximal cardinality of an γ-separated subset
of K, if this is finite, and infinity, otherwise. We call an γ-separated subset
J of E maximal if J is the only γ-separated subset of E containing J .

85Note that by translation, this in fact holds when [0, 1] is replaced by any interval of
width 1.

86The terminology here is subject to debate. Sometimes, as in Vapnik (1982), what
is here named a cover is called a proper cover. In those cases, the term cover refers to
external covers. As pointed out in Vidyasagar (2002, Chapter 2), in learning theory it is
typically more convenient to work with the definitions we have chosen.
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Specifically, this means that no point in E can be added to J to obtain an
γ-separated subset of E . It follows that all points in E are within distance
γ of some point in J . Clearly, any γ-separated subset with M(γ,K, d)
elements is maximal.

Note that the (external) covering and packing numbers of a set are decreas-
ing functions of the resolution.

In our case, a collection W? of decision rules is thus a γ-cover of the decision

class W with respect to the pseudometric d if, for each w ∈ W there is a

w? ∈ W? such that w? γ-approximates w. If W? is a (proper) γ-cover of

minimum cardinality, we call it minimal, and refer to the cardinality as

the (proper) γ-covering number of W with respect to d. If d = dp,P , we

shall shorten notation by writing the covering number as Np,P (γ,W) and

analogously for the proper covering number.

Some bounds and related results are derived or stated in terms of packing

numbers or external covering numbers, rather than covering numbers. How-

ever, this is not a large problem, as all of these quantities are closely related

for bounded sets, as can be seen from the fact that a maximal ε-packing

of a set is effectively a cover of the set. The following results, from Alon

et al. (1993, Lemma 2.3) and Vidyasagar (2002, Lemmas 2.1 and 2.2), show

that one can convert between the various concepts with at worst a change

of resolution of factor 2.

Theorem5.1. If K is a subset of E, and γ > 0,

M(2γ,K, d) ≤ N̄ (γ,K, d) ≤ N (γ,K, d) ≤ M(γ,K, d) .

A further complication arises in that some definitions of covers employ the

condition d(j, k) ≤ γ instead of d(j, k) < γ. In this case, adding an arbitrar-

ily small constant to the resolution of the covering number usually yields a

result which is valid for the concepts we employ.

If d1 ≤ d2, for any distribution Q, we always have

N (γ,K, d1) ≤ N (γ,K, d2) .
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For any w ∈ K,

{
w′ : d2(w,w

′) ≤ γ
}
⊆
{
w′ : d1(w,w

′) ≤ γ
}

due to the relationship between the metrics. Thus any γ-cover with respect

to d2 is also one with respect to d1, so the relationship between the covering

numbers follows. In general, for any distribution Q, we have that dp,Q ≤ dq,Q

for 1 ≤ p ≤ q, so that

Np,Q(γ,K) ≤ Nq,Q(γ,K) , (5.4)

and from (5.3), we obtain that for γ > 0, we have that

Np,Q

(
γ

1
p ,K

)
≤ N1,Q(γ,K) (5.5)

for 1 ≤ p <∞, when K consists of functions into [0, 1]. If the functions map

into {0, 1}, equality holds.

Suppose Q = Jq1, · · · , qnK is an n-sample. Then we also have that

N∞,Q (γ,K) ≤ N1,Q

(γ
n
,K
)
, (5.6)

Consider any γ, v with γ ≥ v > 0.87 If γ − v > 1, set j = 0. Otherwise, let

φ = φ(γ, v) be the smallest natural number such that (2φ + 1)(γ − v) > 1.

Define wa1 ,a2,··· ,an on supp(Q) by

wa1,a2,··· ,an(qi) = min{(2ai + 1)(γ − v), 1} ,

where the integers ai satisfy 0 ≤ ai ≤ φ for i ∈ [1 : n]. Extend this function

in an arbitrary way to X to obtain a decision rule. Then the set of all such

decision rules wa1,a2,··· ,an is an external γ-cover of any decision class W w.r.t.

d∞,Q (and hence dp,Q, for p ≥ 1), with cardinality (φ+ 1)n. It follows that

N̄p,Q(γ,W) ≤ [φ(γ, v) + 1]n for an arbitrarily small v. Thus

Np,Q(γ,W) ≤ Mp,Q(γ,W) ≤ N̄p,Q

(γ
2
,W
)
≤
[
φ
(γ

2
, v
)

+ 1
]n

.

87Here, v is introduced to cater for the fact that strict inequalities are used in the
definition of covering numbers, and we will be interested in the case where v is arbitrarily
close to zero.
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It should be clear the behaviour of decision rules on points not in Q are

irrelevant to the construction of covers w.r.t. dp,Q. Put another way, the

dp,Q metric only compares values of the decision rule at the points in Q. If

we restrict each decision rule to supp(Q), we can represent w by a point

Qw ∈ [0, 1]n, where

Qw = (w(q1), · · · , w(qn)) ,

so that we can represent W by

QW = {Qw : w ∈ W} .

It can easily be shown that any cover of QW w.r.t. the metric on `pn implies

an external cover on W w.r.t. dp,Q (by arbitrary extension, as above), and

vice versa. However, it is important to note that it is common to have |QW |
much less than |W|.

We see that covering numbers w.r.t. an empirical distribution grow at worst

exponentially in the cardinality of the sample. In practice, the decision class

is restricted in some way, and we hope to obtain covering numbers which

will grow more slowly than this. We shall later see that this slower growth

over a decision class is what allows one to obtain nontrivial training sample

interval estimators.

The points in the cover constructed above correspond to a regular grid of

points placed over [0, 1]n, ensuring that some point in the grid will be close

to Qw for any conceivable decision rule w. However, for many decision

classes W, QW is unlikely to lie in all the portions of [0, 1]n. An obvious

example is the case of zero-one loss functions: in that case QW ⊆ {0, 1}n,

so that when constructing a cover, we have no need of points in the middle

of [0, 1]n, but only near the corners. This leads us to a simple bound on

Np,Q(γ,W) of 2n, the number of vertices of the unit hypercube. Note that

this still grows exponentially in n, though. A more important example:

suppose the decision rules in W are Lipschitz continuous with Lipschitz

constant 1. Then for any two points qi, qj ∈ Q, and any decision rule w, we

have |w(qi)−w(qj)| ≤ d(qi, qj). A pairwise constraint on the coordinates of
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points in QW follows: for all i, j ∈ [1 : n],

|(Qw)(i) − (Qw)(j)| ≤ d(qi, qj) .

This result effectively constrains the location of the points inQW to a smaller

region of [0, 1]n, allowing a smaller cover. This type of constraint typically

restrains QW to a subclass of dimension less than n, unlike the previous ex-

ample. Similarly, thresholded classifiers which threshold a Lipschitz function

will tend to have QW restricted to certain portions of {0, 1}n.

Finally, we turn to covers of functions into {0, 1}. Consider any two distinct

points w1, w2 in {0, 1}n. Then we have that

dp,Q(w1, w2) = d1,Q ≥ m
−1
p

for 1 ≤ p < ∞. Thus, we have that any two distinct points in QW are

γ-distinguishable for all γ ≤ m
−1
p . Thus, if γ ≤ m

−1
p , the only point in

QW which approximates a given Qw ∈ QW is Qw itself. It follows that the

only γ-cover of QW is QW , so that Np,Q(γ,W) ≤ |QW | ≤ 2n for all γ, with

equality for γ ≤ m
−1
p . A similar argument shows that N∞,Q(γ,W) = |QW |

for γ ≤ 1. Furthermore, if γ > 1, we have N∞,Q(γ,W) = 1 since (0, · · · , 0)
is an appropriate (1 + v)-cover for arbitrarily small v. By the relationships

discussed above, there are appropriate scale thresholds for γ below which

packing numbers or external covering numbers also equal |QW |.

5.5.2 A näıve covering number bound

Given this background, we now outline an approach to constructing bounds

employing covering numbers. Given a sample S of size m, we employ a

bound on the deviation ψ(rS(w), rD(w)). We apply the uniform Occam’s

razor method to this result for each w in a minimal cover of W with respect

to d∞,D. Thereafter, we extend the bound from all w in the cover to all w

in W.

As an example, we consider Hoeffding’s tail inequality:

PS∼Dm {rS(w) − rD(w) > ε} < exp(−2mε2) .
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Suppose N∞,D(γ,W) is finite, and that W? is a minimal γ-cover with respect

to d∞,D. Applying the Occam’s razor method over W? to the bound above

yields

PS∼Dm

{
sup

w∈W?

[rS(w) − rD(w)] > ε

}
< N∞,D(γ,W) exp(−2mε2) .

One last step remains: extending this bound to all w ∈ W. Now, for any

w ∈ W, we have

rS(w) − rD(w) = [rS(w) − rS(w?)] + [rS(w?) − rD(w?)] ,

where w? is a member of W? which γ-approximates w. We have already

bounded the second term, so we turn our attention to the first. Since

rS(w) − rS(w?) =
1

m

m∑

i=1

[L(w(xi), yi) − L(w?(xi), yi)] ,

the fact that w? γ-approximates w w.r.t. d∞,D means that each term in this

sum is less than γ
m

.88 Thus rS(w) − rS(w?) < γ. It follows that

PS∼Dm

{
sup
w∈W

[rS(w) − rD(w)] > ε+ γ

}

≤ PS∼Dm

{
sup

w∈W?

[rS(w) − rD(w)] > ε

}
,

so that

PS∼Dm

{
sup
w∈W

[rS(w) − rD(w)] > ε

}
< N∞,D(γ,W) exp(−2m(ε− γ)2) .

Setting the right hand side to δ and solving for ε, we obtain

PS∼Dm

{
sup
w∈W

[rS(w) − rD(w)] > γ +

√
lnN∞,D(γ,W) − ln δ

2m

}
< δ .

Note that the same proof can be applied with a minimal external γ-cover,

so that the result above can be strengthened by replacing N∞,D(γ,W) by

N̄∞,D(γ,W).

88It complicates the argument to cater for the possibility that |w1(x) − w2(x)| >

d∞,D(w1, w2) for some x ∈ S. Since the probability of this occuring is zero by defini-
tion of the pseudometric, we ignore the possibility. A rigorous argument is longer, but not
substantially different.
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Since D is generally unknown, and only assumed to lie in some collection of

distributions S, to apply this bound we need to replace N∞,D(γ,W) by

N∞,S(γ,W) = sup
Q∈S

N∞,Q(γ,W) .

When the metric is based on p = ∞, as here, this supremum is equal to

N∞,Q(γ,W) for any distribution Q with supp(Q) = Z.

When S = QZ ,

sup
Q∈S

Np,Q(γ,W) = Np,S(γ,W)

= N∞,S(γ,W) ,

so that even if the bound above is constructed using covering numbers with

respect to some metric dp,D where p 6= ∞, the need for this supremum makes

the choice of p fairly arbitrary.

Furthermore, γ-approximation w.r.t. dp,D is generally not useful for bound-

ing rS(w)−rS(w?), except in the case p = ∞. These considerations motivate

the choice of p = ∞ for the cover in the result above.

The bound presented in this section suffers from a major drawback: the

need to find a bound on N∞,D(γ,W). Consider the simple case of a zero-

one loss function, and any γ ≤ 1
2 . Consider two decision rules w1 and w2

which differ at some point x ∈ supp(D), so that dp,D(w1, w2) > 0. Then

|w1(x) − w2(x)| = 1, so that for any decision rule w?, we can not have

|w1(x)−w?(x)| < γ and |w2(x)−w?(x)| < γ. Thus any two decision rules in

W which differ on the support of D (i.e. essentially different decision rules),

can not be γ-approximated by the same decision rule w.r.t. d∞,D. Thus,

N∞,D(γ,W) = |W| (assuming that each decision rule in W is essentially

different).

Since we are considering covering number bounds to address infinite decision

classes, this bound will not be very helpful in practice. Its main value in the

text is to introduce the main theme behind constructing bounds employing

covering numbers. However, we shall need two refinements to the approach

to obtain bounds which do not generally have infinite covering numbers.
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The following two sections introduce these refinements for various measures

of deviation.

5.5.3 Symmetrization lemmas

In this section, we investigate the possibility of obtaining bounds using cov-

ering numbers over empirical distributions. However, we would like our

results to hold for any sample, which motivated our choice of using covering

numbers based on D in the previous section. In what follows, we present

an alternative solution: deriving bounds for a finite subset of supp(D) and

then converting these bounds to apply to the whole support of D.

Key results which allow us to do this are the so-called symmetrization lem-

mas89. Such lemmas quantify how a probability statement w.r.t. a finite

sample can be converted into a similar probability statement w.r.t. the

entire sample space.

When the first symmetrization lemmas were originally derived by Vapnik

and Chervonenkis in the late 1960’s (for an account of these developments,

see Vapnik, 1998), the results derived were tailored for their situation. As a

result they were fairly tight, but they were restricted to zero-one loss func-

tions. Later research considered obtaining bounds on general loss functions

which were sensitive to the resolution of the covering numbers used. How-

ever, the basic idea behind the proofs of the original symmetrization lemmas

used by Vapnik and Chervonenkis, and the later symmetrization lemmas

were almost identical. We begin by presenting the general symmetriza-

tion lemma from Pollard (1984, Chapter II). An alternative formulation is

in Dudley (1999, Lemma 11.2.4).

Theorem5.2 (General symmetrization lemma). Let E(v) and E ′(v)
be independent stochastic processes sharing an index set V. Suppose there

89The name of these lemmas come from the fact that applying such a lemma typically
reduces the problem of bounding probabilities over an arbitrary distribution, to bounding
a related probability over an empirical distribution corresponding to a finite sample. Such
results can be obtained by considering the symmetric group of permutations of the finite
sample.
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exist constants α, β > 0 such that

P
{
E′(v) ≤ α

}
≥ β

for every v ∈ V. Then

P

{
sup
v∈V

E(v) > ε

}
≤ β−1 P

{
sup
v∈V

(E(v) −E′(v)) > ε− α

}
.

Proof. The proof sketch here follows that in Pollard (1984, Section II.3),
except that the result stated here is one-sided. Application to the negated
processes allows obtention of a two-sided result.90

Let vE be a r.v. in V such that E(vE) > ε when supv∈V E(v) > ε.

Now, since E and E ′ are independent, vE is independent of E ′. Thus, by
the assumptions of the Lemma,

P
{
E′(vE) ≤ α|E

}
≥ β .

Now

β P

{
sup
v∈V

E(v) > ε

}
≤ P

{
E′(vE) ≤ α|E

}
P

{
sup
v∈V

E(v) > ε

}

= P

{(
E′(vE) ≤ α

)
∧
(

sup
v∈V

E(v) > ε

)}

= P
{(
E′(vE) ≤ α

)
∧ (E(vE) > ε)

}

≤ P
{
E(vE) −E′(vE) > ε− α

}

≤ P

{
sup
v∈V

[E(v) −E′(v)] > ε− α

}
.

Dividing throughout by β yields the result. ut

The most common application of the general symmetrization lemma in

our framework is when the stochastic processes E and E ′ represent the

deviation of empirical risk from true risk for an m-sample S and a u-

sample P respectively. In this case, V = W, E(w) = rD(w) − rS(w), and

E′(w) = rD(w)−rP (w). To apply the symmetrization lemma, we then need

a result of the form: for some α, β > 0,

PP∼Du {rD(w) − rP (w) ≤ α} ≥ β

90If the conditions of the lemma are met for the negated process, of course.
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for every w ∈ W. But such bounds underlie all the exact upper test sam-

ple interval estimators we have derived. As an example, let us consider

Hoeffding’s tail inequality. For a fixed choice of β, the condition in the

symmetrization lemma holds with αH(u, β) =

√
− ln(1−β)

2u
. Another bound

which easily yields analytical results is Chebyshev’s inequality. In this case,

the condition seems to hold with αC(u, β) =
√

VP∼Du rP (w)
(1−β) , but this is

not the case, since this αC is a function of w, not a constant, for a given

β. Since VP∼Du rP (w) ≤ rD(w)[1−rD(W )]
u

≤ 1
4u

, the condition also holds with

αC′(u, β) = 1

2
√

u(1−β)
. Another proposal is the use of the Chebyshev-Cantelli

inequality (4.1) to obtain a suitable α. This may be because the symmetriza-

tion lemma is usually considered for two-sided processes directly. How-

ever, when one is specifically considering one-sided results, the Chebyshev-

Cantelli inequality yields an improved choice of α. Specifically, we obtain

αCC′(u, β) =
√

β
4u(1−β) by upper bounding an αCC as with the Chebyshev

inequality.

We thus obtain, for any 0 < β ≤ 1,

PS∼Dm

{
sup
w∈W

[rD(w) − rS(w)] > ε

}

≤ β−1 PS⊕P∼Dm+u

{
sup
w∈W

[rP (w) − rS(w)] > ε− α(u, β)

}
, (5.7)

where α is αH , αC′ , αCC′ , or any other function α(u, β) satisfying the condi-

tions of the lemma (note that we can not use α = αC , since αC is dependent

on w). Here, and further, S ⊕ P denotes the sample obtained by concate-

nating S and P (as well as the associated empirical distribution).

It is common in the machine learning literature to set β = 1
2 and then require

α(u, 1
2) ≤ ε

2 when deriving results. The results are then stated along with

a condition on the sample size in terms of ε. Since αC′(u, 1
2) =

√
1
2u

, we

obtain the restriction u ≥ 2ε−2, yielding:

Theorem5.3 (Traditional symmetrization lemma for regular deviation).
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PS∼Dm

{
sup
w∈W

[rD(w) − rS(w)] > ε

}

≤ 2 PS⊕P∼Dm+u

{
sup
w∈W

[rP (w) − rS(w)] >
ε

2

}
,

if u ≥ 2ε−2.

Note that by using αCC′ instead, the sample size requirement is reduced by

a factor of two, to u ≥ ε−2.

To date, we are not aware of a useful symmetrization lemma for relative

deviation which is applicable to general loss functions. This has led to the

consideration of other deviations which attempt to take the variance of the

decision rules into consideration.

Haussler (1992) employs a similar argument to the proof of the general sym-
metrization lemma to obtain a symmetrization lemma for the two-sided P-H
ν-deviation. Below we present a slight generalization of this result, allowing
m 6= u and introducing α and β by analogy to the general symmetrization
lemma. The proof is a similar to that of the original result in Haussler (1992,
Lemma 12).

Theorem5.4 (Haussler symmetrization lemma). Let ψν denote the two-
sided P-H ν-deviation. Suppose there exist constants α, β > 0 such that

PP∼Du {ψν(rD(w), rP (w)) ≤ α} ≥ β (5.8)

for every w ∈ W. Then

PS∼Dm

{
sup
w∈W

ψν(rD(w), rS(w)) > ε

}

≤ β−1 PS⊕P∼Dm+u

{
sup
w∈W

ψν(rP (w), rS(w)) > ε− α

}
.

Unfortunately, in this case, a one-sided result does not seem practical. The

proof of the result relies on the fact that ψν is a metric, and thus satisfies the

triangle inequality. For the general symmetrization lemma, we could work

around this issue, but we did not find a similar one-sided result for the P-H

deviation.
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In practice, we need a suitable way to determine the constants α and β.

A useful tool for this is the bound on P-H deviation obtained by using

Bernstein’s inequality. Specifically, from the bound of (4.9) we have that

the condition above holds for a specific α when

βPH(α) = 1 − exp

(−18uα2ν

(3 + α)2

)
.

It is usually more convenient to specify β and solve for α. This yields, for

18uν ≤ − ln(1 − β),

αPH(β) = ε(1 − β) ,

where ε(δ) is defined in (4.10).

Bartlett and Lugosi (1999) provide symmetrization lemmas for the upper

and lower B-L deviation. The results provided here generalize the results

provided there by permitting m 6= u, and allowing other choices of α and

β.91

Theorem5.5 (Bartlett-Lugosi symmetrization lemmas). Let ψU
ν and

ψL
ν denote the upper and lower B-L ν-deviations respectively. Suppose there

exist constants α, β > 0 such that

PP∼Du {rD(w) − rP (w) ≤ α} ≥ β (5.9)

for every w ∈ W. Then, for α < ν,

PS∼Dm

{
sup
w∈W

ψU
ν (rD(w), rS(w)) > ε

}

≤ β−1 PS⊕P∼Dm+u



 sup

w∈W

rP (w) − rS(w) − (ν − α)√
1
2(rP (w) + rS(w))

> ε



 .

Suppose there exist constants α, β > 0 such that

PP∼Du {rP (w) − rD(w) ≤ α} ≥ β (5.10)

91We also note a minor correction to their proof. For the upper deviation, we note that
the function x−a√

x+a
is monotone increasing in x > −a when a ≥ 0, rather than just for

x > 0. This additional information is necessary for the proofs provided there to hold. A
similar change is necessary for the proof for the lower deviation.
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for every w ∈ W. Then, for α < ν,

PS∼Dm

{
sup
w∈W

ψL
ν (rD(w), rS(w)) > ε

}

≤ β−1 PS⊕P∼Dm+u



 sup

w∈W

rS(w) − rP (w) − (ν − α)√
1
2(rP (w) + rS(w))

> ε



 .

Note that the choice of α in these lemmas was originally determined using

αCC′ . The proof of this modified version is similar to the original proof.

Vapnik (1998) presents two symmetrization lemmas for zero-one loss func-

tions, derived in a similar way to the general symmetrization lemma, for the

case m = u. The first reduces the restriction on ε in the lemma on regular

deviation above, and the second provides a symmetrization lemma for upper

relative deviation.

Theorem5.6 (Vapnik symmetrization lemma for regular deviation).
Suppose m = u. Then

PS∼Dm

{
sup
w∈W

[eD(w) − eS(w)] > ε

}

≤ 2 PS⊕P∼D2m

{
sup
w∈W

[eP (w) − eS(w)] > ε− 1

m

}
.

Thus, if m ≥ 2ε−1,

PS∼Dm

{
sup
w∈W

[eD(w) − eS(w)] > ε

}

≤ 2 PS⊕P∼D2m

{
sup
w∈W

[eP (w) − eS(w)] >
ε

2

}
.

The same results hold for lower and two-sided regular deviation.

Theorem5.7 (Vapnik symmetrization lemma for upper relative deviation).

Let p > 1. For u > ε
−p
p−1 ,

PS∼Dm

{
sup
w∈W

eD(w) − eS(w)
p
√
eD(w)

> ε

}

< 4 PS⊕P∼Dm+u



 sup

w∈W

eP (w) − eS(w)

p

√
1
2 [eS(w) + eP (w) + 1

u
]
> ε



 .
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One can simplify, but loosen, this result by discarding the 1
u

term in the
denominator of the right hand side.

The lemma for regular deviation is based on Vapnik (1998, Section 4.5, Ba-

sic Lemma)92. The lemma for relative deviation is Vapnik (1998, Lemma 4.1).

Note that the result in this theorem has been generalized to the case m 6= u.

We omit the proof since it is highly similar to that provided in the original

source. In general, we shall apply the lemma for relative deviation with

p = 2.

5.5.4 Dual sample bounds

The symmetrization lemmas above provide us with a way of obtaining train-

ing sample interval estimators for risk by uniformly bounding the deviation

between empirical risks on two samples. As an example, suppose

PS⊕P∼Dm+u

{
sup
w∈W

[rP (w) − rS(w)] > ε

}
< δ(ε) ,

for any ε > 0. It follows from (5.7) that

PS∼Dm

{
sup
w∈W

[rD(w) − rS(w)] > ε

}
≤ β−1δ(ε− α(u, β))

for any ε > α(u, β).

In this context, we turn to the problem of finding a bound on

sup
w∈W

[rP (w) − rS(w)] .

Consider the following näıve application of test set bounds. It is easy to see

that

PS⊕P∼Dm+u {[rP (w) − rS(w)] > ε}

≤ PP∼Du

{
[rP (w) − rD(w)] >

ε

2

}
+ PS∼Dm

{
[rD(w) − rS(w)] >

ε

2

}
.

Applying Hoeffding’s tail inequality to each term, one obtains that this is

less than

exp

(
−ε

2u

2

)
+ exp

(
−ε

2m

2

)
. (5.11)

92An easy proof that the result holds in the one-sided case is Kroon (2003, Theorem 66).
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This approach is quite wasteful, however. A more refined approach allows

us to obtain a much better bound, when m = u. In that case,

ES⊕P∼Dm+u[rP (w) − rS(w)] = 0 ,

and rP (w) − rS(w) can be viewed as a sum of independent r.v.’s. Applying

Hoeffding’s inequality in this scenario yields the much better bound of

exp(−mε2) . (5.12)

We are now faced with the problem of converting this bound on the devia-

tion of a single decision rule w to a bound on the supremum of the deviation

for all decision rules in W. The approach which suggests itself is to apply

the Occam’s razor method to a γ-cover of W. The choice of metric is trou-

blesome however, because the bound above is with respect to samples drawn

i.i.d. from D, seemingly necessitating a metric w.r.t. D.

Fortunately, we have an ingenious solution: work conditionally on the m+u

points in S⊕P . Note that for any event E which can be written as a function

of an m+ u-sample, we can write

PS⊕P∼Dm+u {E (S ⊕ P )}

as

EQ∼Dm+u Pτ∼Unif Sm+u
{E (τ(Q))|Q} , (5.13)

where Sm+u denotes the symmetric group, i.e. the possible permutations

of the sample Q. This can be seen by noting that each value of τ merely

changes the order of integration in calculating the probabilities, because all

the points in S⊕P are i.i.d. This technique for obtaining such probabilities is

known as symmetrization by permutation (Herbrich and Williamson, 2002).

If m = u, we call the subgroup S?
2m of S2m generated by the transpositions

(i ↔ m + i) with i ∈ [1 : m] the swapping subgroup of S2m. Note that the

result above also holds when S2m is replaced by S?
2m.

Writing Ew(S ⊕ P, ε) for the event rP (w) − rS(w) > ε, our initial focus

is then on bounding Pτ∼Unif Sm+u
{Ew(τ(Q), ε)|Q}, for any decision rule w.
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This bound can then be used later to obtain bounds on the supremum. Note

that we have no guarantee that the bounds based on Hoeffding’s inequality

in (5.11) and (5.12) hold conditional on the combined sample Q: Hoeffding’s

inequality requires independence of each term in the sum, and given Q, the

value of any one r.v. is completely fixed by knowledge of the other m+u−1

r.v.’s. Nevertheless, the bounds above serve as benchmarks: if we were

to better them, taking an expectation over all possible Q would yield an

improvement over the results above.

It turns out that we can very nearly achieve the benchmark for zero-one loss
functions when m = u:

Theorem5.8 (Vapnik double sample bound). Let Ew(S ⊕ P, ε) be ei-
ther of the events

eP (w) − eS(w) > ε

or
eS(w) − eP (w) > ε .

Then

Pτ∼Unif S2m
{Ew(τ(Q), ε)|Q} < exp

(
−ε

2m2 − 1

m+ 1

)

and for any decision rule w. A two-sided result follows by Bonferroni’s
inequality.

This result is based on an implicit result in the proof of Vapnik (1998, The-

orem 4.1).93 The proof of this result directly investigates the proportion of

combinations satisfying Ew(τ(Q)). The interested reader is referred to Vap-

nik (1998, Sections 4.5.4 and 4.13) for the details.

Vapnik (1998) also presents a bound on regular deviation for general loss

functions which effectively employs the double sample bound for zero-one

loss functions 2m times, and applies Bonferroni’s inequality. We present

here a one-sided version of that result implicit in the proof of Vapnik (1998,

Theorem 15.1).94

93There is a slight mistake in the derivation there. Equation 4.67 in the reference should
replace ε2l2 by (ε2l2 − 1) and the correction carried further.

94The proof there is subject to a few corrections. As mentioned earlier, Equation 4.67

needs a modification. Further, the expression 3 exp
“
− ε2l

9

”
on p.623 should instead have

coefficient 2.
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Theorem5.9 (Double sample bound for regular deviation of risk).
Let Ew(S ⊕ P, ε) be either of the events

rP (w) − rS(w) > ε

or
rS(w) − rP (w) > ε .

Then

Pτ∼Unif S?
2m

{Ew(τ(Q), ε)|Q} < 2m exp

(
−ε

2m2 − 1

m+ 1

)

for any decision rule w ∈ W.

Combining these results with Bonferroni’s inequality yields a two-sided re-
sult.

We will typically use this in conjunction with the general symmetrization

lemma for regular deviation.

We now present a dual sample bound for regular deviation, based on ideas

in Devroye (1982).95 Note that given Q, sampling τ ∼ Unif S2m corresponds

to sampling from the finite sample Q without replacement. Hoeffding (1963,

Section 6) shows that the bounds in that paper can be applied when sampling

without replacement. The good idea in Devroye (1982) is to reformulate the

expression

rP (w) − rS(w) > ε

as

rS⊕P (w) − rS(w) >
εu

m+ u
.

This follows from noting that

rP (w) =
1

u
((m+ u)rS⊕P (w) −mrS(w)) . (5.14)

An equivalent result for rP (w) − rS(w) follows identically. In the reformu-

lated version, we can apply Hoeffding’s inequality, yielding a dual sample

bound.

95The cited article derives the result for errors with m + u = m2.
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Theorem5.10 (Dual sample bound for regular deviation of risk).
Let Ew(S ⊕ P, ε) be either of the events

rP (w) − rS(w) > ε

or
rS(w) − rP (w) > ε .

Then

Pτ∼Unif Sm+u
{Ew(τ(Q), ε)|Q} < exp

(
−2m

(
εu

m+ u

)2
)

for any decision rule w ∈ W.

Combining these results with Bonferroni’s inequality yields a two-sided re-
sult.

Vapnik (1998) uses a similar argument to his double sample bound for reg-

ular deviation of errors to derive a double sample bound for a generalized

relative deviation of errors. However, due to the flaw in his Equation 4.67,

the derivation provided is not correct (Vapnik, 2007). We present here a

modified result which works around the problem, but represents a slight

weakening (by a factor of less than two) of the bound implicit in Vapnik

(1998, Lemma 4.2).

Theorem5.11 (Double sample bound for upper relative deviation of error).
Let Ew(S ⊕ P, ε) be the event

eP (w) − eS(w)

p

√
es⊕P (w) + 1

2m

> ε .

Then

Pτ∼Unif S?
2m

{Ew(τ(Q), ε)|Q} < exp

(
m+ 1

2m+ 1
− ε2m2− 2

p

2
1+ 2

p

)

for any decision rule w ∈ W.

Vapnik (1998, Theorem 4.2?) and all further results based on it need to be

corrected for this extra factor of exp
(

m+1
2m+1

)
≈ √

e, notably Theorem 4.2,
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Theorem 5.2, Theorem 5.3? and Theorem 5.4 of Vapnik (1998), many of

which are considered standard in the machine learning literature.96

Anthony and Shawe-Taylor (1993) derives a result closely related to this

result in the case p = 2. Although their original result is stated for errors,

nothing in their proof, provided below, employs the restriction to zero-one

loss functions, so that the result also holds for general loss functions. The

result is based on conditioning w.r.t. the swapping subgroup S?
2m rather

than the symmetric group S2m, so it also only applies when m = u.

Theorem5.12 (Double-sample bound for upper relative deviation of risk).
Let Ew(S ⊕ P, ε) be the event

rP (w) − rS(w)√
rS⊕P (w)

> ε .

Then

Pτ∼Unif S?
2m

{Ew(τ(Q), ε)|Q} < exp

(−ε2m
4

)

for any decision rule w.

We present a proof of this result, as the concepts involved are very similar

to those used later for the random subsample lemma and bound.

Proof.

Pτ∼Unif S?
2m

{Ew(τ(Q), ε)|Q}

= Pτ∼Unif S?
2m

{
rPτ(Q)

(w) − rSτ(Q)
(w) > ε

√
rτ(Q)(w)|Q

}
,

where Sτ(Q) and Pτ(Q) denote the first and second half of τ(Q) respectively.
Writing si for the i-th component of Sτ(Q) and analogously for pi and Pτ(Q),
the above equals

Pτ∼Unif S?
2m





1

m

m∑

i=1

[w(pi) − w(si)] > ε

√√√√ 1

2m

2m∑

i=1

w(qi)|Q



 ,

where qi denotes the i-th component of Q. Now, for any i ∈ [1 : m], either
si = qi and pi = qm+i, or si = qm+i and pi = qi. Thus we can rewrite the

96However, in the case of p = 2, the following result makes the change unnecessary.
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above probability as

Pζ∼Unif({−1,1}m)





1

m

m∑

i=1

ζi[w(qm+i) − w(qi)] > ε

√√√√ 1

2m

2m∑

i=1

w(qi)|Q



 ,

where the vector of independent Rademacher variables ζ = (ζ1, · · · , ζm)
has replaced the role of τ . Since Q is an i.i.d. sample, we have that
V1(w), · · · , Vm(w) defined by

Vi(w) = ζi[w(qm+i) −w(qi)] ,

are independent r.v.’s, each with mean zero.97

Applying Hoeffding’s tail inequality, we obtain

Pζ∼Unif({−1,1}2m)





1

m

m∑

i=1

ζi[w(qm+i) − w(qi)] > ε

√√√√ 1

2m

2m∑

i=1

w(qi)|Q





= Pζ∼Unif({−1,1}2m)





1

m

m∑

i=1

Vi(w) > ε

√√√√ 1

2m

2m∑

i=1

w(qi)|Q





≤ exp




−2m2

(
ε
√

1
2m

∑2m
i=1w(qi)

)2

∑m
i=1[2(w(qm+i) − w(qi))]2




= exp

(
−mε2∑2m

i=1 w(qi)

4
∑m

i=1[w(qm+i) − w(qi)]2

)
.

Given Q and w, we have

m∑

i=1

[w(qm+i) − w(qi)]
2 =

m∑

i=1

(
[w(qm+i)]

2 + [w(qi)]
2 − 2w(qm+i)w(qi)

)

≤
2m∑

i=1

[w(qi)]
2

≤
2m∑

i=1

w(qi) ,

since 0 ≤ w(qi) ≤ 1, so that

exp

(
−mε2∑2m

i=1 w(qi)

4
∑m

i=1[w(qm+i) − w(qi)]2

)
≤ exp

(−mε2
4

)
,

97It is interesting to note, however, that the Vi are not generally identically distributed,
even in the case of zero-one loss functions.
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concluding the proof. ut

This relative deviation double sample bound can be used in conjunction

with the Vapnik symmetrization lemma for relative deviations, with p = 2

in order to obtain error bounds. However, we do not know of an appropriate

symmetrization lemma to employ to obtain bounds on relative deviation for

general loss functions. On the other hand, we shall see that this result can

be combined with the symmetrization lemmas for B-L deviation to obtain

bounds.

We next present a double sample bound for P-H deviation of risk. This

result is a one-sided version of Haussler (1992, Lemma 11).

Theorem5.13 (Double sample bound for P-H deviation of risk). Let
the event

ψν(rP (w), rS(w)) > ε ,

where ψν denotes the upper or lower P-H ν-deviation, be denoted by Ew(S⊕
P, ε).

Then
Pτ∼Unif S?

2m
{Ew(τ(Q), ε)|Q} < exp(−2ε2νm)

for any decision rule w.

Applying Bonferroni’s inequality yields a two-sided result.

The proof of this result once again employs Hoeffding’s tail inequality and

the swapping subgroup.

We can also obtain results for regular deviation for general loss functions by

means of another symmetrization lemma-type result, known as the random

subsample lemma. Before discussing that, however, we show how the double

sample bounds above allow us to obtain training sample bounds.
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5.5.5 Applying the cover to dual sample bounds

Regular deviation of error

We now apply the uniform Occam’s razor method to the Vapnik double

sample bound of Theorem 5.8 over a minimal γ-cover of W w.r.t. dp,Q,

W?(Q). Note that to apply the theorem, we need the elements of the cover

also to map into {0, 1}, so that we can not derive a result using external

covers.98 It follows that for zero-one loss functions, with m = u,

Pτ∈Unif S2m

{
sup

w∈W?(Q)
Ew(τ(Q), ε)|Q

}
< Np,Q(γ,W) exp

(
−ε

2m2 − 1

m+ 1

)
,

where Ew is the bound on upper regular deviation of error defined in Theo-

rem 5.8.

In order to extend this result to W, consider any τ ∈ S2m and w ∈ W.

Suppose w? ∈ W?(Q) γ-approximates w w.r.t. dp,Q. Let the first and

second halves of τ(Q) be denoted by Sτ(Q) and Pτ(Q) respectively, so τ(Q) =

Sτ(Q) ⊕ Pτ(Q). Now

rPτ(Q)
(w) − rSτ(Q)

(w)

=
[
rPτ(Q)

(w) − rPτ(Q)
(w?)

]
+
[
rPτ(Q)

(w?) − rSτ(Q)
(w?)

]
+
[
rSτ(Q)

(w?) − rSτ(Q)
(w)
]
.

The middle term of the right hand side is subject to the bound above. We

wish to use the fact that w? γ-approximates w to bound the other terms.

98In theory, one could allow elements of the cover to lie outside QW but to lie in {0, 1}2m.
We do not pursue this possibility further, though.
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We have

[
rPτ(Q)

(w) − rPτ(Q)
(w?)

]
+
[
rSτ(Q)

(w?) − rSτ(Q)
(w)
]

=
1

m

m∑

i=1

[w(pi) − w?(pi)] +
1

m

m∑

i=1

[w?(si) − w(si)]

≤ 1

m

m∑

i=1

|w(pi) − w?(pi)| +
1

m

m∑

i=1

|w?(si) − w(si)|

= 2
1

2m

2m∑

i=1

|w(qi) − w?(qi)|

= 2d1,Q(w,w?)

≤ 2dp,Q(w,w?)

< 2γ , (5.15)

where the si and pi are the components of Sτ(Q) and Pτ(Q) respectively. This

result holds for general loss functions. When, as here, w and w? map into

{0, 1} we can tighten the last line slightly to

2d1,Q(w,w?) = 2[dp,Q(w,w?)]p

< 2γp .

It follows that

ePτ(Q)
(w) − eSτ(Q)

(w) < ePτ(Q)
(w?) − eSτ(Q)

(w?) + 2γp

so that we obtain the following result: for zero-one loss functions, with

m = u, we have,

Pτ∈Unif S2m

{
sup
w∈W

Ew(τ(Q), ε + 2γp)|Q
}

< Np,Q(γ,W) exp

(
−ε

2m2 − 1

m+ 1

)
.

This result is equivalent for all 1 ≤ p < ∞ due to the relationship between

covering numbers for zero-one loss functions given in (5.5).

We have succeeded in obtaining a conditional bound employing a covering

number over the finite set Q. We now take the expectation (over all possible
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Q w.r.t. D2m) of both sides to obtain a bound which is independent of a

specific choice of Q. This yields

PS⊕P∼D2m

{
sup
w∈W

[eP (w) − eS(w)] > ε+ 2γ

}

= PS⊕P∼D2m

{
sup
w∈W

Ew(S ⊕ P, ε+ 2γ)

}

= EQ∼D2m Pτ∼Unif Sm+u

{
sup
w∈W

Ew(τ(Q), ε + 2γ)|Q
}

< EQ∼D2m N1,Q(γ,W) exp

(
−ε

2m2 − 1

m+ 1

)
.

Combining this result with the Vapnik symmetrization lemma for regular

deviation (Theorem 5.6) yields a uniform bound on the regular deviation

between the empirical and true risk of all the decision rules in W:

PS∼Dm

{
sup
w∈W

[eD(w) − eS(w)] > ε

}

≤ 2 PS⊕P∼D2m

{
sup
w∈W

[eP (w) − eS(w)] > ε− 1

m

}

< 2 EQ∼D2m N1,Q(γ,W) exp

(
−
(
ε− 1

m
− 2γ

)2
m2 − 1

m+ 1

)
. (5.16)

Setting the right hand side to δ, we obtain

PS∼Dm





supw∈W [eD(w) − eS(w)]

> 2γ +
1+

q
(m+1)[ln 2 E

Q∼D2m N1,Q(γ,W)−ln δ]+1

m



 < δ . (5.17)

As we discuss later, it is often difficult to obtain the covering number

N1,Q(γ,W)). If the intention is to bound it by |QW | for application, we

note that

N1,Q(γ,W)) ≤ N∞,Q(γ,W))

≤ lim
γ′→0+

N∞,Q

(
γ′,W

)

= |QW | .

This leads to the bound

PS∼Dm





supw∈W [eD(w) − eS(w)]

>
1+

q
(m+1)[ln 2 EQ∼D2m |QW |−ln δ]+1

m



 < δ . (5.18)
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Relative deviation of error

By following an analysis almost identical to that of the case for regular

deviation above, but employing instead the double sample bound for relative

deviation (Theorem 5.12) and the Vapnik symmetrization lemma for relative

deviation (Theorem 5.7), we obtain a bound on relative deviation. There is

one important difference in the derivation though. We restrict γ to be small

enough that the γ-cover given Q is specified by QW . This means that for

any w, the w? γ-approximating w satisfies w? = w, so that

eP (w) − eS(w)√
eS⊕P (w)

− eP (w?) − eS(w?)√
eS⊕P (w?)

= 0 .

If this was not the case, bounding this deviation would be tricky.

The resulting bound, first proved with these constants in Anthony and

Shawe-Taylor (1993, Theorem 2.1), is

PS∼Dm

{
sup
w∈W

eD(w) − eS(w)√
eD(w)

> ε

}
< 4 EQ∼D2m |QW | exp

(−mε2
4

)
,

(5.19)

for m > ε−2.

Derived realistic and realizable bounds on error

This result provides an exponential bound on relative deviation for every

decision rule in W, so that we can use the techniques in Section 4.6.1 to

obtain corresponding probability statements for the realizable and realistic

cases.

In the realistic case, this yields the probability statement

PS∼Dm {∃w ∈ W : (eS(w) ≤ (1 − κ)eD(w)) ∧ (eD(w) > ε)}

< 4 EQ∼D2m |QW | exp

(−mκ2ε

4

)
, (5.20)

for m > κ−2ε−1.
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Setting κ = 1, we obtain for the realizable case that

PS∼Dm {∃w ∈ W : (eS(w) = 0) ∧ (eD(w) > ε)}

< 4 EQ∼D2m |QW | exp

(−mε
4

)
, (5.21)

for m > ε−1.

We can improve this result by noting that when eT (w) = 0, the upper

relative deviation is simply
√
eD(w). In this case, the relative deviation

exceeds ε exactly when the absolute deviation exceeds ε2. Applying this

reasoning along with the bound of (5.18), we obtain

PS∼Dm {∃w ∈ W : (eS(w) = 0) ∧ (eD(w) > ε)}

< 2 EQ∼D2m N1,Q(γ,W) exp

(
−
(√
ε− 1

m
− 2γ

)2
m2 − 1

m+ 1

)
. (5.22)

A direct realizable bound on error

It is possible to improve this further by utilising the fact that eT (w) = 0

and constructing a more efficient dual sample bound for this case by a direct

permutation argument.

Theorem5.14 (Realizable dual sample bound). For zero-one loss func-
tions,

Pτ∼Unif Sm+u

{(
eSτ(Q)

(w) = 0
)
∧
(
ePτ(Q)

(w) > ε
)
|Q
}

≤

(
u

duεe

)

(
m+ u

duεe

)

≤
(

u

m+ u

)duεe

≤
(

u

m+ u

)uε

,

for any decision rule w.
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This result is a generalization of a result implicit in Blumer et al. (1986,

Lemma 5), to allow m 6= u.99 The proof is very similar to the original, so

we omit it here.

Following the same techniques as for earlier bounds in this section, we obtain

PS⊕P∼Dm+u {∃w ∈ W : (eS(w) = 0) ∧ (eP (w) > ε)}

< EQ∼Dm+u N1,Q(γ,W)

(
u

m+ u

)du(ε−m+u
u

γ)e
. (5.23)

One difference between this bound and others presented earlier is the ex-

pression ε− m+u
u
γ instead of ε−2γ. This occurs because one can not obtain

a reduction in risk from zero on the first half of the sample, and because the

two samples are no longer of equal size. To obtain a final result, we need

to combine this result with a result like a symmetrization lemma. How-

ever, in its current form, we can not combine this result with the general

symmetrization lemma of (5.7). Fortunately, we have derived an analogous

symmetrization lemma in this case.

Theorem5.15 (Realizable symmetrization lemma for risk). Consider
ε ∈ [0, 1). Suppose there exist constants α, β > 0 such that

PP∼Du {rP (w) > αrD(w)} > β

for every w ∈ W satisfying rD(w) > ε. Then

PS∼Dm {∃w ∈ W : (rS(w) = 0) ∧ (rD(w) > ε)}
≤ β−1 PS⊕P∼Dm+u {∃w ∈ W : (rS(w) = 0) ∧ (rP (w) > αε)} .

The proof of this result is similar in nature to that of Theorem 5.2, although

some changes are necessary to accommodate the conditional reasoning.

Proof. Let wS be a decision rule in W depending on S such that rS(wS) = 0
and rD(wS) > ε when S ∈ Zm satisfies

∃w ∈ W : (rS(w) = 0 ∧ rD(w) > ε) .

99We later found the result to be implicit in the proof of Shawe-Taylor et al. (1993,
Theorem 3.3).
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Denote this set of samples by Rε.

Now, since rS and rP are independent, wS is independent of rP . Thus, by
the assumptions of the lemma,

PP |S {rP (wS) > αrD(wS)|S} > β

for any S in Rε.

Now

β PS∼Dm {S ∈ Rε}

=

∫

S∈Rε

β d(Dm)

<

∫

S∈Rε

PP |S {rP (wS) > αrD(wS)|S} d(Dm)

=

∫

S∈Zm

PP |S {rP (wS) > αrD(wS)|S} I(S ∈ Rε) d(D
m)

= PS⊕P∼Dm+u {(rP (wS) > αrD(wS)) ∧ (S ∈ Rε)}
= PS⊕P∼Dm+u {(rP (wS) > αrD(wS)) ∧ (rS(wS) = 0) ∧ (rD(w) > ε)}
≤ PS⊕P∼Dm+u {(rS(wS) = 0) ∧ (rP (wS) > αε)}
≤ PS⊕P∼Dm+u {∃w ∈ W : (rS(w) = 0) ∧ (rP (w) > αε)} .

Dividing throughout by β yields the result. ut

Applying this lemma to (5.23), we obtain:

PS∼Dm {∃w ∈ W : (eS(w) = 0) ∧ (eD(w) > ε)}

≤ β−1 EQ∼Dm+u N1,Q(γ,W)

(
u

m+ u

)du(αε−m+u
u

γ)e
. (5.24)

In order to apply this lemma, we need to find valid choices of α and β

to apply the symmetrization lemma. As with the general symmetrization

lemma, we can obtain α in terms of β and u (and in this case ε) by employing

concentration inequalities.

Simple manipulation shows that

PP∼Du {rP (w) > αrD(w)} > β



Chapter 5. Training sample bounds 177

is implied by the probability inequality

PP∼Du {rD(w) − rP (w) > (1 − α)rD(w)} ≤ (1 − β) .

From this form, one can obtain a value for β by employing the Chebyshev

inequality100: since

EP∼Du rP (w) = rD(w)

and

VP∼Du rP (w) ≤ rD(w)[1 − rD(w)]

u
,

we have that

PP∼Du {rD(w) − rP (w) > (1 − α)rD(w)}

≤ rD(w)[1 − rD(w)]

u(1 − α)2[rD(w)]2

=
1 − rD(w)

u(1 − α)2rD(w)
,

which for rD(w) > ε exceeds

1
ε
− 1

u(1 − α)2
.

Setting this equal to 1−β, we obtain that the conditions of the lemma hold

for a given α with

β = 1 −
1
ε
− 1

u(1 − α)2
.

Solving this for α yields

αC−R(u, β, ε) = 1 −
√

1
ε
− 1

u(1 − β)

where C −R stands for “Chebyshev-Realizable”.

Using this choice, and considering the bound as γ → 0+, one obtains, for

any ε ∈ [0, 1), β ∈ (0, 1]:

PS∼Dm {∃w ∈ W : (eS(w) = 0) ∧ (eD(w) > ε)}

≤ β−1 EQ∼Dm+u |QW |
(

u

m+ u

)duαC−R(u,β,ε)εe
. (5.25)

100Other options can be considered: for example, an improvement for the case β = 1
2

is
mentioned in Blumer et al. (1989, Lemma A.2.1).
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By employing a number of relaxations, choosing β = 1
2 and calculating a

suitable u for a given ε such that (a relaxation of) αC−R(u, β, ε) is conve-

nient, one can obtain an analog of the bound of Shawe-Taylor et al. (1993,

Theorem 3.3). The details are omitted, since they require concepts not yet

introduced. However, this result is a clear example of the benefits to be

reaped by considering more general formulation of symmetrization lemmas

and dual sample bounds.

We conclude this section by noting that while the realizable symmetrization

lemma of Theorem 5.15 is new, the bound in Shawe-Taylor et al. (1993) is

based on a very similar result, which we present in a general form below.

Theorem5.16 (Alternative realizable symmetrization lemma for risk).
Consider ε ∈ [0, 1). Suppose there exist constants α, β > 0 such that

PP∼Du {rD(w) − rP (w) < α} > β

for every w ∈ W satisfying rD(w) > ε. Then

PS∼Dm {∃w ∈ W : (rS(w) = 0) ∧ (rD(w) > ε)}
≤ β−1 PS⊕P∼Dm+u {∃w ∈ W : (rS(w) = 0) ∧ (rP (w) > ε− α)} .

The earliest form of this result employed m = u, β = 1
2 and α = ε

2 , with

a sample size restriction of m > 8
ε

obtained by employing Chebyshev’s in-

equality — see Haussler (1986, Lemma 3.5). For further development of this

result, see Blumer et al. (1986, 1989), Shawe-Taylor et al. (1993). To our

knowledge, the result has not yet been presented in this generality.

Regular deviation of risk

Next we turn to employing the double sample bound for risk in Theorem 5.9.

First we note that since the bound holds for w ∈ W, we can not employ

an external cover. Applying the Occam’s razor method to the bound over a
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minimal γ-cover of W w.r.t. dp,Q, W?, yields

Pτ∼Unif S?
2m

{
sup

w∈W?

Ew(τ(Q), ε)|Q
}

< 2mNp,Q(γ,W) exp

(
−ε

2m2 − 1

m+ 1

)

where Ew is defined in Theorem 5.9. From (5.15), it follows that

rPτ(Q)
(w) − rSτ(Q)

(w) < rPτ(Q)
(w?) − rSτ(Q)

(w?) + 2γ

so that

Pτ∼Unif S?
2m

{
sup
w∈W

Ew(τ(Q), ε + 2γ)|Q
}

< 2mNp,Q(γ,W) exp

(
−ε

2m2 − 1

m+ 1

)
.

Taking expectations with respect to Q of both sides yields

PS⊕P∼D2m

{
sup
w∈W

[rP (w) − rS(w)] > ε+ 2γ

}

< 2mEQ∼D2m [Np,Q(γ,W)] exp

(
−ε

2m2 − 1

m+ 1

)
,

so that applying the general symmetrization lemma for regular deviation

in (5.7) yields

PS∼Dm

{
sup
w∈W

[rD(w) − rS(w)] > ε

}

<
2m

β
EQ∼D2m [Np,Q(γ,W)] exp

(
− [ε− α(m,β) − 2γ]2m2 − 1

m+ 1

)
, (5.26)

for any 0 < β ≤ 1; setting the right hand side to δ yields

PS∼Dm





supw∈W [rD(w) − rS(w)] > 2γ + α(m,β)

+

q
(m+1)[ln 2m EQ∼D2m N1,Q(γ,W)−lnβδ]+1

m



 < δ . (5.27)

These results, although implicit in the derivations in the literature, are typ-

ically not stated in this generality. If we set β = 1
2 , requiring m ≥ 2ε−2

implies αC′(m,β) ≤ ε
2 . Comparing this result with the error bound in
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(5.16), we see that the bound for general risk has an additional factor of 2m

in the coefficient, and that the bound decreases more slowly with respect to

ε due to an extra factor 1
2 before the ε in the bound. The factor 1

2 and a

factor 2 in the coefficient are due to the use of the general symmetrization

lemma rather than the Vapnik symmetrization lemma for regular deviation.

The other factor m is introduced by employing the double sample bound for

regular deviation of risk, rather than the Vapnik double sample bound.

If one further selects γ = ε
3 , one obtains essentially the result in Alon et al.

(1993, Lemma 3.3)101.

In the case u = m, it is not difficult to show that the bound of Theorem 5.10

is tighter than that of Theorem 5.9 roughly when102

ε <

√
2 ln(2m)

m
.

Due to the quick decay of the right hand side, the dual sample bound is

generally not preferable for large sample sizes if applied with u = m. This

is simply because the fraction u
m+u

is too small in this case. If we increase

u, this fraction increases, making the dual sample bound more attractive

as the distribution P becomes a better approximation to D. However, as u

increases, the symmetrization lemma becomes weaker, so a trade-off will be

necessary for the choice of u if the dual sample bound is to be employed to

obtain tight bounds.

Obtaining a bound for regular deviation using the dual sample bound of

Theorem 5.10 follows exactly the same lines as the one just derived based

on Theorem 5.9, except that the argument is based on the symmetric group

instead of the swapping subgroup, we employ the symmetrization lemma

with unequal samples, and the extension from a cover to the whole of W is

not so straightforward.

In order to extend the bound to W from a cover W?, consider any τ ∈ S2m

and w ∈ W. Suppose w? ∈ W? γ-approximates w w.r.t. dp,Q. Let the first

101This result is one-sided, but a two-sided version can be seen to hold with a coefficient
of 8. The coefficient of 12 in the referenced paper should actually be 8. See footnote 94.

102We approximate the bound in the double sample bound by 2m exp(−ε2m).
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m points of τ(Q) be denoted by Sτ(Q). As before, we can write

rPτ(Q)
(w) − rSτ(Q)

(w)

=
[
rPτ(Q)

(w) − rPτ(Q)
(w?)

]
+
[
rPτ(Q)

(w?) − rSτ(Q)
(w?)

]
+
[
rSτ(Q)

(w?) − rSτ(Q)
(w)
]
,

and we wish to use the fact that w? γ-approximates w to bound the sum of

the first and last terms on the right hand side. Using

rPτ(Q)
(w) − rSτ(Q)

(w) =
m+ u

u
[rQ(w) − rSτ(Q)

(w)]

for any decision rule, we can write the sum of these terms as

m+ u

u

[
(rQ(w) − rQ(w?)) − (rSτ(Q)

(w) − rSτ(Q)
(w?))

]

=
m+ u

u

[(
1

m+ u

m+u∑

i=1

[w(qi) − w?(qi)]

)
+

(
1

m

m∑

i=1

[w?(si) − w(si)]

)]

≤ m+ u

u

[(
1

m+ u

m+u∑

i=1

|w(qi) −w?(qi)|
)

+

(
1

m

m+u∑

i=1

|w?(qi) − w(qi)|
)]

=
m+ u

u

[
d1,Q(w,w?) +

m+ u

m
d1,Q(w,w?)

]

<
(2m+ u)(m+ u)

um
γ ,

where the si are the components of Sτ(Q) and the qi are the components of

Q. It follows that

rPτ(Q)
(w) − rSτ(Q)

(w) ≤ rPτ(Q)
(w?) − rSτ(Q)

(w?) +
(2m+ u)(m+ u)

um
γ ,

with the same result holding for lower deviation.

Applying this, we obtain the following result.

Theorem5.17 (Dual sample bound on regular deviation of risk). Let
α(u, β) be chosen such that (α(u, β), β) satisfies the requirements of the sym-
metrization lemma of (5.7). Let 0 < β ≤ 1.

If 1 > ε > α(u, β) and u, γ > 0 are chosen such that

ε− α(u, β) − (2m+ u)(m+ u)

um
γ > 0 ,



Chapter 5. Training sample bounds 182

then

PS∼Dm

{
sup
w∈W

[rD(w) − rS(w)] > ε

}

<

1
β

EQ∼Dm+u Np,Q(γ,W)

exp

(
−2m

[
ε− α(u, β) − (2m+u)(m+u)

um
γ
]2 (

u
m+u

)2
)

.

Unfortunately, the factor (2m+u)(m+u)
um

can be prohibitively large, particu-

larly if we wish to select a large value of u. However, in cases where the loss

function has a finite range, such as zero-one loss functions, we can make γ

arbitrarily small, so that this factor does not influence the results below a

certain resolution. Furthermore, some well-behaved function classes which

have infinite ranges may exhibit similar behavior.

An alternative option is to use covers with respect to d∞,Q, if one can obtain

a suitable estimate of EQ∼Dm+u N∞,Q(γ,W). It is not difficult to show that

if we replace p by ∞ in the covering numbers of Theorem 5.17, the result

still holds if we replace (2m+u)(m+u)
um

γ by 2γ, yielding a bound of

1

β
EQ∼Dm+u N∞,Q(γ,W) exp

(
−2m [ε− α(u, β) − 2γ]2

(
u

m+ u

)2
)

.

Note that the reduction in the factor before γ is offset by the increased

covering number obtained by using a more restrictive metric.

Theorem 5.17 generalizes somewhat the bound presented for error in (1.6)

of Devroye (1982). First, that result selects u = m2 −m. Then it obtains β

as the solution to αC′(u, β) = 1
m

, i.e.

β = 1 − m2

4u
.
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Applying these settings, and taking the limit as γ → 0+, yields

PS∼Dm

{
sup
w∈W

[eD(w) − eS(w)] > ε

}

<
1

1 − m
4(m−1)

EQ∼Dm+u |QW | exp

(
−2m

[
ε− 1

m

]2(m− 1

m

)2
)

=
4m− 4

3m− 4
EQ∼Dm+u |QW | exp

(
−2m

[
ε− 1

m

]2 [
1 − 1

m

]2
)

<
4

3
EQ∼Dm+u |QW | exp

(
−2m

[
ε2 − 2ε

m

] [
1 − 2

m

])

<
4

3
EQ∼Dm+u |QW | exp

(
−2m

[
ε2 − 2ε2

m
− 2ε

m

])

=
4

3
exp (4ε(ε+ 1)) EQ∼Dm+u |QW | exp(−2mε2)

when 1 > ε > 1
n
. Doubling the coefficient to obtain a two-sided result

yields (2.2) of Devroye (1982) except for the slightly improved constant of 8
3

instead of 4 (which results in their paper from an unnecessary relaxation).

In addition, the constraint 1 > ε > 1
m

, while not stated directly in their

theorem, is necessary for their proof to hold.

It is instructive to compare this result to the bound on regular deviation of

error in (5.16) for small enough γ. The bound in this result has a (poten-

tially much) larger coefficient, and the covering numbers are with respect

to a sample of size m2, rather than 2m. On the other hand, the negative

exponential term in this result decays twice as quickly. Thus, if the differ-

ence in growth of the covering numbers is outweighed by the rate of decay

of the negative exponential term, the second bound is better asymptotically.

We shall see later that if these bounds are to be non-trivial, the gain in the

negative exponential term will bear more weight. However, a large sample

is necessary in practice to obtain improvements using this result.

We further note that this is the first straightforward covering number for reg-

ular deviation of risk exhibiting this asymptotic rate of decay. In particular,

all the bounds which are asymptotically competitive with this bound make

use of either chaining (see Section 5.7) or applications of more advanced

concentration inequalities.
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Bartlett-Lugosi deviation of risk

Next, we present a bound on the B-L deviation. This result employs sim-

ilar techniques to those presented above, but combines the B-L deviation

symmetrization lemma with a double sample bound for relative deviation.

In order to do this, a result is needed relating probabilities w.r.t. the two

deviations when ν 6= 0. Let W? be a γ-cover of W w.r.t. dp,Q. Applying

the double sample bound for relative deviation of risk (Theorem 5.12) to the

elements of this cover (note that this restricts us to u = m), and applying

the uniform Occam’s razor method, one obtains

Pτ∼Unif S?
2m

{
∃w ∈ W? : E 0

w(τ(Q), ε)|Q
}
< |W?| exp

(−ε2m
4

)
, (5.28)

where E ν
w(S ⊕ P, ε) denotes the event

rP (w) − rS(w) − ν√
rS⊕P (w)

> ε .

Next, consider any decision rule w ∈ W, any S, and any P . Let w? denote

an element of W? with dp,Q(w,w?) < γ. (Note here that Q = S ⊕ P ). It

will be convenient to handle the case p = ∞. Bounds for other p can be

obtained by relationships between covering numbers. In that case, we have

that w(q) ≤ w?(q)+γ for any q ∈ Q, so that rS(w?)−γ ≤ rS(w) ≤ rS(w?)+γ

and similarly for P .
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We can write

rP (w) − rS(w) − ν√
rS⊕P (w)

=
√

2

(
rP (w) − ν

2

)
−
(

ν
2 + rS(w)

)
√(

rP (w) − ν
2

)
+
(

ν
2 + rS(w)

)

≤
√

2

(
rP (w?) + γ − ν

2

)
−
(

ν
2 + rS(w)

)
√(

rP (w?) + γ − ν
2

)
+
(

ν
2 + rS(w)

) (5.29)

=
√

2
rP (w?) + γ − ν − rS(w)√

rP (w?) + γ + rS(w)

=
√

2

(
rP (w?) + γ − ν

2

)
−
(

ν
2 + rS(w)

)
√(

rP (w?) + γ − ν
2

)
+
(

ν
2 + rS(w)

)

≤
√

2

(
rP (w?) + γ − ν

2

)
−
(

ν
2 + rS(w?) − γ

)
√(

rP (w?) + γ − ν
2

)
+
(

ν
2 + rS(w?) − γ

) (5.30)

=
rP (w?) − rS(w?) − (ν − 2γ)√

rS⊕P (w?)
,

where (5.29) follows from the monotonic increasing behaviour of v−c√
v+c

in

v > −c when c ≥ 0, and (5.30) follows from the monotonic decreasing

behaviour of c−v√
c+v

in v > −c when c ≥ 0.

It follows that for γ ≤ ν
2 , E ν

w(S ⊕ P, ε) only occurs if E 0
w?(S ⊕ P, ε) occurs.

Finally, choosing W? to be a minimal cover, and taking the expectation

w.r.t. the double sample Q, one obtains

PS⊕P∼D2m



 sup

w∈W

rP (w) − rS(w) − ν√
1
2(rP (w) + rS(w))

> ε





< EQ∼D2m N∞,Q

(ν
2
,W
)

exp

(−ε2m
4

)
.

Combining this with the Bartlett-Lugosi symmetrization lemma yields the

following result, where ψU
ν denotes the upper B-L ν-deviation measure:

PS∼Dm

{
sup
w∈W

ψU
ν (rD(w), rS(w)) > ε

}

≤ β−1 EQ∼D2m N∞,Q

(
ν − α(m,β)

2
,W
)

exp

(−ε2m
4

)
, (5.31)
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where α(m,β) and β satisfy the condition of the symmetrization lemma.

An appropriate choice for α, used to derive the special case of this result

presented in Bartlett and Lugosi (1999), is αCC′ . A similar result to the

one presented here can be obtained by a similar derivation combined with

the form of the Bartlett-Lugosi symmetrization lemma appropriate for lower

bounds.

Bartlett and Lugosi (1999) use these bounds to further obtain bounds on

the P-H ν-deviation. However, they claim that the resulting bounds are not

as tight as a direct argument, which we shall present next.

Pollard-Haussler deviation of risk

The bounds from the direct argument employ a pseudometric we have not

yet encountered. To understand the metric, we present the following defini-

tion, based on Haussler (1992, Definition 12).

Definition 5.2 (Haussler extension of a metric). Let d be a metric de-
fined on IR+. The Haussler extension of d, denoted dH , is defined on (IR+)2m

by

dH(v1, v2) = sup
τ∈S?

2m

[d (φ1(τ, v1), φ1(τ, v2)) + d (φ2(τ, v1), φ2(τ, v2))] ,

where

φ1(τ, v) =
1

m

m∑

i=1

v(τ(i))

and

φ2(τ, v) =
1

m

2m∑

i=m+1

v(τ(i)) .

Haussler (1992) verifies that dH is a pseudometric. By employing a cover

of QW w.r.t. this Haussler extension of the P-H metric, dH
ν , one is able

to control the two-sided P-H ν-deviation of all the decision rules in terms

of those of the cover. The following derivation is a simple extension of a

portion of the proof of Haussler (1992, Lemma 13).
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Applying the double sample bound for two-sided P-H deviation of risk (The-

orem 5.13) to a minimal γ-cover R of QW w.r.t. dH
ν , one obtains that

Pτ∼Unif S?
2m

{∃w ∈ W? : Ew(τ(Q), ε)|Q} < 2N (γ,W, dH
ν ) exp(−2ε2νm)

where Ew(S ⊕ P, ε) is the event

dν(rP (w), rS(w)) > ε ,

and W? = {w ∈ W : Qw ∈ R}.

Based on the definition of dH
ν , it can be shown that if

dν(rP (w), rS(w)) > ε

for some w ∈ W, the corresponding w? ∈ W? satisfies

dν(rP (w?), rS(w?)) > ε− γ .

(This is a general property of the Haussler extension of a metric).

Thus

Pτ∼Unif S?
2m

{∃w ∈ W : Ew(τ(Q), ε)|Q}
< 2N (γ,QW , dH

ν ) exp(−2(ε− γ)2νm) . (5.32)

Taking the expectation w.r.t. Q and applying the Haussler symmetrization

lemma, one obtains

PS∼Dm

{
sup
w∈W

dν(rD(w), rS(w)) > ε

}

≤ 2β−1 EQ∼D2m N (γ,QW , dH
ν ) exp

(
−2(ε− α(m,β) − γ)2νm

)
,

where α(m,β) and β satisfy the requirements of the symmetrization lemma.

A problem with this bound is the covering numbers of QW w.r.t. dH
ν . This

problem is slightly alleviated by the following relationship between dH
ν and

the L1 metric, from Haussler (1992, Lemma 14).
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Theorem5.18. For v1, v2 ∈ (IR+)2m, and ν > 0,

dH
ν (v1, v2) ≤

2

ν
d`12m

(v1, v2) ,

where

d`12m
(v1, v2) =

1

2m

2m∑

i=1

|v(i)
1 − v

(i)
2 | .

A consequence of this result is that the covering number N (γ,QW , dH
ν ) can

be replaced by the covering number N1,Q(γν
2 ,W), which is similar to the

other covering numbers we have employed.

As for obtaining an appropriate function α, the reader is referred to the

discussion in Section 4.7. As an example, from the bound in (4.9), we

obtain that α and β satisfying

1 − β = exp

(−18mα2ν

(3 + α)2

)

are suitable choices. Inverting this numerically is an option, as described

in Section 4.7. If a simpler alternative is desired, one can replace the right

hand side by

exp

(
−9

8
mα2ν

)
,

which yields the function

αBPH(m,β, ν) =

√
−8 ln(1 − β)

9mν
.

Putting this together yields the bound (for β ∈ (0, 1]),

PS∼Dm

{
sup
w∈W

dν(rD(w), rS(w)) > ε

}

≤ 2β−1 EQ∼D2m N1,Q

(γν
2
,W
)

exp
(
−2(ε− αBPH(m,β, ν) − γ)2νm

)
.

(5.33)

Setting β = 1
2 , using the Chebyshev inequality (instead of αBPH) to obtain

α = ε
2 for m ≥ 2

ε2ν
, and setting γ = ε

4 essentially yields Haussler (1992,

Theorem 3), barring the improvement we discuss next.
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We have omitted one potential improvement to the results which we have

presented here: the usage of replacing any trivial upper bound on probability

by 1. This can be particularly useful when multiplying small probabilities by

potentially large covering numbers. Examples of this approach are provided

in Haussler (1992, Theorem 3), and some results in Pollard (1984). To give

a flavour of these improvements, we shall simply state the improved bound

obtained for the P-H deviation above.

For β ∈ (0, 1], we have

PS∼Dm

{
sup
w∈W

dν(rD(w), rS(w)) > ε

}

≤ min
{
β−1 min

{
2 EQ∼D2m N1,Q

(γν
2
,W
)

exp
(
−2(ε− αBPH(m,β, ν) − γ)2νm

)
, 1
}
, 1
}

.

We shall not pursue this issue further, however, because in practice there

are very few opportunities to employ this strengthening.

5.5.6 The random subsample lemma and bound

The random subsample lemma, which we present next, is a well-established

result which allows us to obtain bounds for general loss functions. The ap-

proach based on this lemma originated in the early 1980’s, with Vladimir

Koltchinskii (Koltchinskii, 1982) and David Pollard (Pollard, 1982) intro-

ducing it independently to prove central limit theorems for empirical mea-

sures (Pollard, 1984).

Theorem5.19 (Random subsample lemma). Let ζ = (ζ1, · · · , ζm) be
a sequence of m independent Rademacher variables, i.e. ζ ∼ Unif({−1, 1}m).
Then, for ε > 0,

PS⊕P∼D2m

{
sup
w∈W

[rP (w) − rS(w)] > ε

}

< 2 PS∼Dm,ζ∼Unif({−1,1}m)

{
sup
w∈W

[
1

m

m∑

i=1

ζiw(xi)

]
>
ε

2

}

= 2 ES∼Dm Pζ∼Unif({−1,1}m)

{
sup
w∈W

[
1

m

m∑

i=1

ζiw(xi)

]
>
ε

2
|S
}

, (5.34)

where xi denotes the i-th component of S.
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Proof. The proof again makes use of the swapping subgroup S?
2m of the

symmetric group S2m. The left hand probability is

PS⊕P∼D2m

{
sup
w∈W

[rP (w) − rS(w)] > ε

}
.

We can rewrite this as

EQ∼D2m Pτ∼Unif S?
2m

{
sup
w∈W

[rPτ(Q)
(w) − rSτ(Q)

(w)] > ε|Q
}

,

where Sτ(Q) and Pτ(Q) denote the first and second half of τ(Q) respectively.
Writing si for the i-th component of Sτ(Q) and analogously for pi and Pτ(Q),
we obtain

EQ∼D2m Pτ∼Unif S?
2m

{
sup
w∈W

[
1

m

m∑

i=1

[w(pi) − w(si)]

]
> ε|Q

}
.

As in the proof of Theorem 5.12, we can replace τ by ζ. This yields

EQ∼D2m Pζ∼Unif({−1,1}m)

{
sup
w∈W

[
1

m

m∑

i=1

ζi[w(qm+i) − w(qi)]

]
> ε|Q

}

≤ EQ∼D2m Pζ∼Unif({−1,1}m)

{
sup
w∈W

[
1

m

m∑

i=1

ζiw(qm+i)

]
>
ε

2
|Q
}

+ EQ∼D2m Pζ∼Unif({−1,1}m)

{
sup
w∈W

[
1

m

m∑

i=1

(−ζiw(qi))

]
<

−ε
2
|Q
}

.

Since the sample Q is i.i.d., and the ζi are symmetric, this equals

2 ES∼Dm Pζ∼Unif({−1,1}m)

{
sup
w∈W

[
1

m

m∑

i=1

ζiw(si)

]
>
ε

2
|S
}

= 2 PS∼Dm,ζ∼Unif({−1,1}m)

{
sup
w∈W

[
1

m

m∑

i=1

ζiw(xi)

]
>
ε

2

}
.

ut

Clearly, the same result holds when rP (w) − rS(w) is replaced by rS(w) −
rP (w). Furthermore, a scrutiny of the proof shows that it also holds if the

suprema are taken over absolute values. i.e.

PS⊕P∼D2m

{
sup
w∈W

|rP (w) − rS(w)| > ε

}

< 2 ES∼Dm Pζ∼Unif({−1,1}m)

{
sup
w∈W

∣∣∣∣∣
1

m

m∑

i=1

ζiw(si)

∣∣∣∣∣ >
ε

2
|S
}

.



Chapter 5. Training sample bounds 191

Combining Theorem 5.19 with the symmetrization lemma of (5.7) (for m =

u) we obtain, for any 0 < β ≤ 1, and ε > α(u, β),

PS∼Dm

{
sup
w∈W

[rD(w) − rS(w)] > ε

}

≤ 2β−1 PS∼Dm,ζ∼Unif({−1,1}m)

{
sup
w∈W

[
1

m

m∑

i=1

ζiw(xi)

]
>
ε− α(u, β)

2

}
,

where α is a function of β so that the requirements of the symmetrization

lemma are required. The same result holds with absolute values inside the

suprema — see, for example, Giné and Zinn (1984, Lemma 2.7).

As in Section 5.5.4 our approach will be to work conditionally on a given

sample. In this case, we investigate, for a given S and any decision rule

w (not necessarily in W), the probability on the right of (5.34). We can

bound this using Hoeffding’s tail inequality in a similar way to the proof of

Theorem 5.12: since S is an i.i.d. sample, we have that Vi(w) = ζiw(xi) for

i ∈ [1 : m] are independent r.v.’s, each with mean zero.

Applying Hoeffding’s tail inequality, we obtain

Pζ∼Unif({−1,1}m)

{
1

m

m∑

i=1

Vi(w) > ε|S
}

≤ exp

( −2m2ε2∑m
i=1[2w(xi)]2

)
.

Finally we note that w(xi) ≤ 1. We call the resulting inequality,

Pζ∼Unif({−1,1}m)

{
1

m

m∑

i=1

ζiw(xi) > ε|S
}

≤ exp

(−mε2
2

)
, (5.35)

the random subsample bound.

The expression supw∈W [ 1
m

∑m
i=1 ζiw(xi)] is known as the Rademacher penalty

of W for the sample S, and we shall denote it by RS(W).

In what follows, we show how to employ an ε-cover to bound the Rademacher

penalty. Section 5.7 presents a more sophisticated method for bounding the

Rademacher penalty, which uses a sequence of covers of various scales. In

Section 7.2, we discuss methods for bounding the Rademacher penalty more

directly by employing concentration inequalities.
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5.5.7 Applying the cover with the random subsample bound

This section is analogous to Section 5.5.5. Here we apply the uniform Oc-

cam’s razor method to the random subsample bound over a minimal γ-cover

of W w.r.t. dp,S , W?(S). Unlike in Section 5.5.5 we are not restricted to

proper covers of W, since the random subsample lemma applies to any de-

cision rule w.

It follows that

Pζ∼Unif({−1,1}m)

{
sup

w∈W?(S)

[
1

m

m∑

i=1

ζiw(xi)

]
> ε|S

}

≤ N̄p,S(γ,W) exp

(−mε2
2

)
.

In order to extend this result to W, consider any ζ ∈ {−1, 1}2m and w ∈ W.

Suppose w? ∈ W?(S) γ-approximates w w.r.t. dp,Q. Then

1

m

m∑

i=1

ζiw(xi) =
1

m

m∑

i=1

ζiw
?(xi) +

1

m

m∑

i=1

ζi[w(xi) − w?(xi)] .

The first term is subject to the bound above. We use the fact that w?

γ-approximates w to bound the other term. We have

1

m

m∑

i=1

ζi[w(xi) − w?(xi)] ≤
1

m

m∑

i=1

|w(xi) − w?(xi)|

= d1,S(w,w?)

≤ dp,S(w,w?)

< γ .

It follows that

Pζ∈Unif({−1,1}2m)

{
sup
w∈W

[
1

m

m∑

i=1

ζiw(xi)

]
> ε+ γ|S

}

< N̄p,Q(γ,W) exp

(−mε2
2

)
,

with the right hand side a minimum for p = 1.
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The next step is to integrate over the possible samples S, which yields

PS∼Dm,ζ∼Unif({−1,1})m

{
sup
w∈W

[
1

m

m∑

i=1

ζiw(xi)

]
> ε

}

< EQ∼Dm N̄p,Q(γ,W) exp

(−m(ε− γ)2

2

)
.

Applying the random subsample lemma (Theorem 5.19) and the general

symmetrization lemma for regular deviation in (5.7), we obtain for any 0 <

β ≤ 1,

PS∼Dm

{
sup
w∈W

[rD(w) − rS(w)] > ε

}

≤ β−1 PS⊕P∼D2m

{
sup
w∈W

[rP (w) − rS(w)] > ε− α(m,β)

}

≤ 2

β
PS∼Dm,ζ∼Unif({−1,1})m

{
sup
w∈W

[
1

m

m∑

i=1

ζiw(xi)

]
>
ε− α(m,β)

2

}
(5.36)

≤ 2

β
EQ∼Dm N̄p,Q(γ,W) exp



−m

([
ε−α(m,β)

2

]
− γ
)2

2


 . (5.37)

Applying Theorem 5.3, we can replace β by 1
2 and α(m,β) by ε

2 , so that103

PS∼Dm

{
sup
w∈W

[rD(w) − rS(w)] > ε

}

≤ 4 EQ∼Dm N̄p,Q(γ,W) exp

(
−m

(
ε
4 − γ

)2

2

)
.

It is interesting to compare this result with the bound in (5.26). The bound

in (5.26) has an extra factor of m in the coefficient. On the other hand, the

current bound has an additional factor of approximately 1
8 in the exponent.

As a result, even if this bound begins narrower than the bound in (5.26),

that bound is asymptotically tighter.

Choosing γ = ε
8 yields a result very similar to Devroye et al. (1996, Theo-

rem 29.1), which is in turn implicit in Pollard (1984, Theorem 24).

103Usually, we have the sample size restriction m > 2ε−2, but the bound on the right is
trivial for m ≤ 2ε−2 in this case, so it is not necessary. This is often the explanation for
the disappearance of sample size restrictions when results are derived in the literature.
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Setting the right hand side to δ, we obtain

PS∼Dm

{
sup
w∈W

[rD(w) − rS(w)] > 4

[
γ +

√
2[ln 4 EQ∼Dm Np,Q(γ,W) − ln δ]

m

]}
< δ .

(5.38)

5.5.8 Thresholded class covering number bounds

Vapnik and Chervonenkis’s original work in the 1960’s only derived bounds

for zero-one loss functions (Vapnik, 1998). Their approach to extending their

results to general loss functions employed a so-called thresholded decision

class Wt related to the the decision class W. This associated class consisted

of decision rules with range in {0, 1} so that their results for error bounds

could be applied to Wt.

The following lemma shows that any bound on the regular deviation of errors
applies to the regular deviation of risk on the original decision class:

Theorem5.20 (Thresholded class lemma for regular deviation).

PS∼Dm

{
sup
w∈W

[rD(w) − rS(w)] > ε

}
≤ PS∼Dm

{
sup

w∈Wt

[eD(w) − eS(w)] > ε

}
,

where the thresholded decision class Wt is defined by

Wt = {ws : w ∈ W, s ∈ [0, 1]} ,

where ws = I(w(·) > s).

In other words, for a given s ∈ [0, 1] and a decision rule w, we construct a

new decision rule which is 1 if w(x) > s, and 0 otherwise. The collection of

all such binary decision rules forms the thresholded decision class Wt. Any

bound on error deviation over Wt thus yields a bound on risk deviation over

W.

The proof of this lemma is based on expanding the integrals in the definition

of the risk as a limit, and investigating the limit directly. For proofs, the

reader is referred to Vapnik (1998, Section 5.2.2) or Devroye et al. (1996,
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Lemma 29.1). As an example of the application of this result, we have

from (5.17) that

PS∼Dm





supw∈W [rD(w) − rS(w)] > 2γ

+
1+
√

(m+1)[ln 2 EQ∼Dm+u N1,Q(γ,Wt)−ln δ]+1

m



 < δ . (5.39)

Let us now consider the case with relative deviation. The denominator

presents an obstacle to obtaining as direct a result as the thresholded class

lemma for regular deviation.

To proceed, we note that for a given wc, we have

eD(ws) = PZ∼D{w(Z) > s} .

The core of Vapnik (1998, Theorem 5.2)104 essentially then consists of prov-
ing the following result:

Theorem5.21 (Thresholded class lemma for relative deviation). For
p ≥ 1,

PS∼Dm

{
sup
w∈W

rD(w) − rS(w)

Dp(w)
> ε

}
≤ PS∼Dm

{
sup

w∈Wt

eD(w) − eS(w)
p
√
eD(w)

> ε

}
,

where

Dp(w) =

∫ 1

0

p
√

PZ∼D{w(Z) > s} ds .

Applying this result with (5.19), we have

PS∼Dm

{
sup
w∈W

rD(w) − rS(w)

D2(w)
> ε

}
< 4 EQ∼D2m |QWt | exp

(−mε2
4

)
.

(5.40)

Finally, we present a result relating Dp(w) and p
√
rD(w) which allows us to

obtain relative deviation bounds.

Hölder’s inequality states that if 1
v1

+ 1
v2

= 1 for v1, v2 > 0, then

∫ c2

c1

|φ1(s)φ2(s)|ds ≤
(∫ c2

c1

|φ(s)|v1 dc

) 1
v1

(∫ c2

c1

|φ2(s)|v2 dc

) 1
v2

,

104Note that this result is misstated in the reference. HΛ,B
ann (l) should be replaced by

HΛ,B
ann (2l).
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i.e. that ‖φ1φ2‖1 ≤ ‖φ1‖v1‖φ2‖v2 , where ‖·‖p denotes the norm in Lp[c1, c2].

Applying this inequality with c1 = 0, c2 = 1,

φ1(s) = p
√

PZ∼D{w(Z) > s}
= eD(ws)

,

φ2(s) = 1, and v1 = p yields, for p > 1,

Dp(h) ≤
(∫ 1

0
PZ∼D{w(Z) > s} ds

) 1
p

11− 1
p .

Since

∫ 1

0
PZ∼D{w(Z) > s} ds = EZ∼D w(Z)

= rD(w) ,

we have

Dp(h) ≤ p
√
rD(w) .

Combining this with (5.40) yields a bound on relative deviation of risk:

PS∼Dm

{
sup
w∈W

rD(w) − rS(w)√
rD(w)

> ε

}
< 4 EQ∼D2m |QWt | exp

(−mε2
4

)
.

(5.41)

Note that this is the only result we have presented so far directly bounding

relative deviation of risk.

5.6 Bounds from dominating loss functions

This section will focus on upper deviations. In many cases, similar results

for lower deviations can be obtained.

Until now, we have obtained probabilistic bounds on a measure of deviation

ψ(rD(w), rS(w)). However, we can generally study ψ(rD(w), v) for any v.

If we can find a probabilistic bound on this expression, we can invert the

probability statement to obtain an interval estimator of rD(w). Typically v

will depend on the decision rule w, the sample S (as our source of information
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about D), and the loss function L. Thus rS(w) seems like a good choice.

However, in some cases, we may be able to obtain better bounds using

alternative choices for v.

A common choice of v is rS(w,L′), where L′ is a loss function which domi-

nates L — a so-called proxy loss. In addition, convexity of the proxy loss is

often desirable.

In the rest of this section, we will be considering such an approach to obtain

so-called margin bounds. We consider the problem slightly more generally

than the outline above, by considering loss functions using the output of

the hypothesis class, prior to application of the strategy. Since the modified

setting used so far in this chapter effectively discards this information, we

will not be able to employ it here. For this section, then, we shall work in

the regular setting.

Consider the unmodified problem specified by {X ,Y,S,A,H, L}, and a spe-

cific strategy g. We are interested in improving our risk estimators of rD(w)

by employing information about the values of the hypothesis on S.

Suppose the hypotheses in H map into R. Then we may consider a related

problem, specified by {X ,Y,S, R,H, L′}, with the strategy restricted to idR,

where L′ : R×Y → IR+ is a loss function. We say that L′ g-dominates L if

the following holds: for any (x, y) ∈ Z, and any h ∈ H

L′(h(x), y) ≥ L(gh(x), y) .

If L′ g-dominates L, it follows that

rQ(gh, L) ≤ rQ(h,L′)

for any distribution Q on Z. Thus, one can upper bound the true risk of a

decision rule w by upper bounding the true risk of the underlying hypothesis

with respect to a g-dominating loss of L on R.

Since the strategy in the related problem is idR, the hypothesis class H
effectively comprises the decision class for the related problem. Note that
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the bounds obtained in the earlier sections of this chapter were obtained in

terms of the covering numbers of the loss class FW .

Suppose for a given L′, we can find a second loss function L′′ ≤ L′ on

R × Y which also g-dominates L, which further satisfies the following: for

any distribution Q on Z, if d∞,Q(h1, h2) < γ, we have that

L′(h1(x), y) ≥ L′′(h2(x), y)

and

L(gh1(x), y) ≤ L′′(h2(x), y)

almost surely for (x, y) ∼ Q. We shall call such an L′′ an (L,L′)-intermediary

with constant γ.

Now, consider a measure of deviation ψ(x, y), and consider a typical sym-

metrization lemma upper bounding

PS∼Dm

{
sup
h∈H

ψ (rD(gh, L), rS(gh, L)) > ε

}

by φ1(v), with

v ≥ PS⊕P∼Dm+u

{
sup
h∈H

ψ?(rP (gh, L), rS(gh, L)) > φ2(ε)

}
, (5.42)

for some functions φ1 and φ2, and a (potentially) modified measure of devi-

ation ψ?.

In many cases, a similar argument can be used to show that we can upper

bound

PS∼Dm

{
sup
h∈H

ψ(rD(gh, L), rS(h,L′)) > ε

}

by some φ′1(v
′), with

v′ ≥ PS⊕P∼Dm+u

{
sup
h∈H

ψ′(rP (gh, L), rS(h,L′)) > φ′2(ε)
}

, (5.43)

for suitable φ′1,φ
′
2 and ψ′.

It will be necessary to assume that ψ ′(v1, v2) is increasing in v1 and decreas-

ing in v2. This is the case for the upper regular deviation and the upper
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relative deviation, and seems a fairly natural condition for an upper measure

of deviation.

The key to improving bounds with this approach is to use L′′ to obtain good

bounds on v′. Let L′′ be an (L,L′)-intermediary with constant γ, and let

H? be a γ-cover of H w.r.t. d∞,S⊕P . For any h ∈ H, let h? ∈ H? satisfy

d∞,S⊕P (h, h?) < γ. It follows that

rP (h,L′) ≥ rP (h?, L′′)

and

rS(gh, L) ≤ rS(h?, L′′) .

By our assumptions on ψ′, it follows that

ψ′ (rP (gh, L), rS(h,L′)
)
≤ ψ′ (rP (h?, L′′), rS(h?, L′′)

)
.

Putting this together, we have

PS∼Dm

{
sup
h∈H

ψ(rD(gh, L), rS(h,L′)) > ε

}

≤ φ′1

(
PS⊕P∼Dm+u

{
sup
h∈H

ψ′(rP (gh, L), rS(h,L′)) > φ′2(ε)
})

≤ φ′1

(
PS⊕P∼Dm+u

{
sup

h∈H?

ψ′(rP (h,L′′), rS(h,L′′)) > φ′2(ε)
})

. (5.44)

All that remains is bounding the supremum of the deviation over the cover,

a technique which we have performed for a number of deviations already.

In order to do this, we need a dual sample bound for ψ ′. Conditioning on

S⊕P , employing minimal covers, applying the dual sample bound, adjusting

the result to allow for the approximation of the whole class by a cover, and

taking the expectation over the dual sample typically shows that (5.44) does

not exceed

φ′1
(
EQ∼Dm+u N∞,Q(γ,H)φ3(m,u, φ

′
2(ε), γ)

)
,

where φ3 is a function based on the dual sample bound for risk for the

measure of deviation ψ′, and the corrections necessary for approximating by

a cover.
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Note that the dual sample bound employed may restrict the choice of u. In

addition, if all the loss functions concerned are zero-one loss functions, one

may employ a dual sample for error.

It seems that lower bounds will follow similarly, but we have not pursued

this direction further.

5.6.1 Margin bounds for thresholding classifiers

We now show that many of the margin bounds developed for threshold-

ing classifiers in the 1990’s fall into the framework sketched above. The

pioneering work in this direction was predominantly due to Peter Bartlett,

John Shawe-Taylor and their collaborators — for the major developments in

the literature, see Anthony and Bartlett (1994), Shawe-Taylor et al. (1996),

Schapire et al. (1997), Shawe-Taylor et al. (1998), Bartlett (1998), Freund

and Schapire (1999), Shawe-Taylor and Cristianini (1998a), and Shawe-

Taylor and Cristianini (1998b).

We consider the thresholding classifiers introduced in Example 2.6. Thus

we assume A = Y = {0, 1}, and that the hypotheses output real values.

Furthermore, we are interested in error estimation for the strategy g(v) =

I(v ≥ s), so we have

w(x) = gh(x) = I(h(x) ≥ s) .

Margin bounds are based on the intuition that when the real value calcu-

lated by the underlying hypothesis (i.e. h(x)) differs substantially from the

threshold s , classification can be performed more confidently than if h(x)

is close to s. This idea is closely related to the Glick smoothed estimate

described in Section 3.1.6.

The question of the validity of this intuition was, to our knowledge, first

raised by Vapnik and Lerner in 1963. Vapnik later gave results sup-

porting the intuition, and used his ideas with his development of canonical

hyperplane classifiers for transductive learning (Vapnik, 1982). The ideas



Chapter 5. Training sample bounds 201

there later led to the development of support vector machines in Boser et al.

(1992), Cortes and Vapnik (1995), Guyon et al. (1993).

Consider the zero-one loss function

L(w(x), y) = I(w(x) 6= y) .

This is the natural loss function for classification. We shall now propose the

zero-one margin loss functions, defined on the related problem. Thus these

loss functions map IR × {0, 1} → {0, 1}. Let

Lγ(h(x), y) = I([h(x) − s] sgn(y) < γ)

for γ ≥ 0. It is straightforward to verify that

L(gh(·), ·) = L0(h(·), ·) .

Moreover, it is clear that for γ1 ≥ γ2 we have Lγ1 ≥ Lγ2 . Finally, for

any γ ≥ 0, these observations mean that Lγ g-dominates L. The quantity

[h(x) − s] sgn(y) is called the margin of h attained by (x, y)105, so that the

margin loss with parameter γ penalizes points not attaining a margin of at

least γ. Also note that having a positive margin on a point implies correct

prediction, while an incorrect prediction results from a negative margin.

The critical fact allowing us to obtain margin bounds is the following state-

ment: L γ
2

is an (L,Lu)-intermediary with constant γ
2 .

Indeed, consider any distribution Q on Z, and suppose d∞,Q(h1, h2) <
γ
2 ,

and let (x, y) ∈ suppQ. Since |h1(x) − h2(x)| ≤ γ
2 , it follows that if

[h1(x) − s] sgn(y) ≥ γ

then

[h2(x) − s] sgn(y) ≥ γ

2

so that L γ
2
(h2(x), y) is always zero when Lγ(h1(x), y) is zero. As a result

we have

Lγ(h1(x), y) ≥ L γ
2
(h2(x), y) .

105Note that the margin has an implicit dependence on the strategy.
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A similar argument shows that

L(gh1(x), y) ≤ L γ
2
(h2(x), y) .

Next we turn to the issue of obtaining an appropriate modified symmetriza-

tion lemma. In fact, a study of the original proof of the Vapnik symmetriza-

tion lemma for upper relative deviations shows that it still holds verbatim

if we make the following changes to Theorem 5.7:

• replace eD(w) by eD(gh, L);

• replace eP (w) by eP (gh, L); and

• replace eS(w) by eS(h,L′).

We will apply this modified result with L′ = Lγ .

Note that the first two modifications are not really changes to the theorem,

just modifying the notation to the new setting. The third replacement holds

because of an optimization argument employed in the original proof. As a

bonus, the derivative computations for the optimization show that

ψ′(x, y) =
x− y

p

√
1
2

[
x+ y + 1

γ

]

is increasing in x and decreasing in y. The same holds if we discard the 1
γ

term.

The last component we need is a double sample bound on upper relative

deviation of error. For this, we can apply Theorem 5.12 with respect to the

loss function L γ
2
. Note that we are now restricted to m = u.

Thus we have

φ′1(v) = 4v ,

φ′2(ε) = ε ,

and

φ3(m,m, ε, γ) = exp

(−ε2m
4

)
.
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Combining these ingredients we obtain the following result corresponding

to Bartlett (1998, Theorem 6):106

PS∼Dm

{
sup
h∈H

eD(gh, L) − eS(h,Lγ)√
eD(gh, L)

> ε

}

< 4 EQ∼D2m N∞,Q

(γ
2
,H
)

exp

(−ε2m
4

)
. (5.45)

Note that this result can also be used to obtain bounds for the realizable

and realistic case employing empirical margin losses.

A similar approach can be followed for regular deviation, combining a mod-

ification of the regular symmetrization lemma in (5.7)107 with the Vapnik

double sample bound of Theorem 5.8. This yields the following result:

PS∼Dm

{
sup
h∈H

[eD(gh, L) − eS(h,Lγ)] > ε

}

≤ β−1 EQ∼D2m N∞,Q

(γ
2
,H
)

exp

(
−(ε− α(m,β))2m2 − 1

m+ 1

)
, (5.46)

where α(m,β), β satisfy the requirements of the symmetrization lemma, and

ε > α(m,β). We note that setting β = 1
2 and α = ε

2 for large enoughm yields

a weaker result than Bartlett (1998, Lemma 4). Bartlett’s proof employs

a direct argument similar to the random subsample lemma, but avoids the

reduction in resolution usually necessary. Our result could also be applied

to unequal sample sizes by employing the dual sample bound for regular

deviation of risk (Theorem 5.10) instead. This yields a bound with worse

growth of covering numbers, but which would outperform Bartlett’s result

asymptotically. For reference, we state Bartlett’s result in a relevant form

below.

Theorem5.22 (Lemma 4 of Bartlett, 1998). Select γ > 0, and 0 <

106Although this result implicitly has the sample size restriction m > ε−2 derived from
employing (5.19), the restriction has been dropped since the bound is trivial for smaller
values of m.

107The proof of the modified symmetrization lemma follows directly by applying Theo-
rem 5.2 to appropriate processes, so we have φ′

1 = φ1, and φ′
2 = φ2.
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δ < 1
2 . Then,

PS∼Dm

{
sup
h∈H

[eD(gh, L) − eS(h,Lγ)] > ε

}

≤ 2 EQ∼D2m N∞,Q

(γ
2
,H
)

exp

(
−ε

2m

2

)
.

The last bound we discuss is a bound for the realizable case. We could

obtain a realizable-case bound from the relative deviation result, but we can

do better by directly employing the realizable symmetrization lemma and

the realizable double sample bound in Theorems 5.15 and 5.14.

Once again, the symmetrization lemma can be shown to hold in the same

form with the replacement of the training risk by the training margin risk.

This leads to the following realizable margin bound, which can be compared

to the bounds in (5.24) and (5.25) for the same choices of α and β:

PS∼Dm {∃h ∈ H : (eS(h,Lγ) = 0) ∧ (eD(gh, L) > ε)}

≤ β−1 EQ∼Dm+u N∞,Q

(γ
2
,H
)( u

m+ u

)duαC−R(u,β,ε)εe
. (5.47)

5.6.2 ε-insensitive loss

Consider a problem employing the ε-insensitive indicator loss function of

Example 2.13,

Lε(y1, y2) = I(|y1 − y2| > ε) .

By considering a related problem associated with this one, we can obtain

bounds from the margin bounds for thresholded classifiers.108 Suppose the

original problem is specified by {X , IR,S, IR,H, L}. We specify the new

problem as {X×IR, {0, 1},S ′ , {0, 1},H′, L?}, where the first four components

are identical to those of the modified learning problem, and L?(y1, y2) =

I(y1 6= y2). The hypotheses in the new problem are related to the original

hypotheses by

h′(x′) = h′(x, y) = |h(x) − y| .
108This approach is very similar to that performed in Shawe-Taylor and Cristianini

(1998b).
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In this new problem setting, we specify the strategy g ′ by

g′(v) = I(v > ε) .

Furthermore, we restrict S ′ to the products of distributions in S with the

distribution concentrated entirely on {0}. It follows that for any distribution

D′ ∈ S ′, for (x′, y′) ∼ D′, we have y′ = 0, so that

L?(g′(h′(x′)) 6= y′) = g′(h′(x′)) .

Suppose (x, y) erred on h in the original problem. Then |h(x) − y| > ε, so

that

g′(h′(x′)) = I(|h(x) − y| > ε) .

A similar argument when (x, y) does not err on h shows that the losses

for both problems are identical, and thus the risk of corresponding decision

rules are the same.

With this setup, we can apply the margin bounds described above. Note

that the loss function L?
γ in this scenario can be expanded as follows:

L?
γ(h′(x′), 0) = I(−[h′(x′) − ε] < γ)

= I(h′(x′) < ε− γ)

= I(|h(x) − y| > ε)

= Lγ(h(x), y) .

Thus, intuitively, a point (x, y) is associated with a γ-margin loss in this

scenario if it falls outside a narrower insensitive tube, of width 2(ε− γ).

Applying the margin bound for upper relative deviation to this problem, we

have that

PS′∼D′m

{
sup

h′∈H′

rD′(g′h′ , L?) − rS′(h′, L?
γ)√

rD′(g′h′ , L?)
> ε

}

< 4 EQ∼D′2m N∞,Q

(γ
2
,H′
)

exp

(−ε2m
4

)
.

Noting that

rD′(g′h′ , L?) = rD(gh, L)
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and that

rS′(h′, L?
γ) = rS(h,Lγ) ,

we can reformulate this as

PS∼Dm

{
sup
h∈H

rD(gh, L) − rS(h,Lγ)√
rD(gh, L)

> ε

}

< 4 EQ∼D2m N∞,Q

(γ
2
,H′
)

exp

(−ε2m
4

)
.

It is important to note that the covering number on the right is for covers

of H′, not H. However, in practice, this is not a major obstacle.

If we instead apply the bound in (5.47), choosing β = 1
2 and m = u, we

essentially recover the covering number result underlying one of the earliest

(if not the earliest) margin bounds, Anthony and Bartlett (1994, Theorem 5)

(except that the covering number is once again of H′). It was perhaps not

realized at the time, but the interpretation of the result as a margin bound

for classification was presented in Shawe-Taylor et al. (1998).

Finally, note that the analysis in this section could easily be generalized by

replacing the absolute value in the original loss function by a norm in some

other space instead of IR, thus generalizing the concept of an ε-insensitive

tube to other spaces (particularly, higher-dimensional Euclidean spaces may

be useful).

5.6.3 Margin bounds for other classifiers

Earlier, we defined the margin of a point w.r.t. an hypothesis for thresh-

olded classifiers. In this section, we continue our consideration of classifiers.

Thus, we assume our strategy maps into {0, 1}. Furthermore, we assume

the hypotheses map into a metric space (E , d).

We begin by generalizing the margin concept.

Definition 5.3 (Generalized margin). The margin of an hypothesis h ∈
H on a point z = (x, y) ∈ X × {0, 1} is

ρ(z, h) = sgn y sgn (I(gh(x) = 1)) d (h(x), {η ∈ E : g(η) 6= gh(x)}) .
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To demystify this definition, the first two factors determine the sign of the

margin: it is positive when the x is correctly classified by gh, and negative

otherwise. The final term measures the distance from h(x) to the closest

point in E that the strategy would classify differently to h(x). In the case

of thresholded classifiers, this is the distance from h(x) to s, where the

classification changes.

Effectively, since the strategy is a map from E to {0, 1}, g partitions E
into a portion it maps to zero, and a portion it maps to one. The size

of the margin can then informally be seen as the distance of h(x) from

the boundary between these two portions, while the sign is determined by

whether x was correctly classified by gh or not. In the thresholding classifier,

the portion of IR mapping to zero, were the points less than s, while those

mapping to one were the points at least s. Thus, the boundary between the

portions consisted of s, showing that this margin is a generalization of that

for thresholded classifiers.

We can also generalize the margin loss easily, by defining

Lγ(h(x), y) = I(ρ((x, y), h) < γ) .

Again we have

L(gh(·), ·) = L0(h(·), ·) ,

Lγ1 ≥ Lγ2 for γ1 ≥ γ2, and that Lγ g-dominates L for any γ ≥ 0. Further-

more, the same approach shows that L γ
2

is an (L,Lγ)-intermediary with

constant γ
2 .

It follows that margin bounds obtained for thresholded classifiers apply for

arbitrary zero-one strategies, when the margin loss is defined with respect

to the partition of E induced by g.

Example 5.9. Consider the strategy on E defined by

g(η) = I(||η − η0|| > ε)

for some η0 ∈ E , and ε ∈ IR, so that the portion classified as zero lies in a
ball of radius ε in E .
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In this case, we can see that the margin of h on z is defined by

ρ(z, h) = (||h(x) − η0|| − ε) sgn y ,

and the bounds of thresholded classifiers are directly applicable here.

It is interesting to note that the form for the margin here is extremely
similar to that observed when considering thresholding classifiers and the
ε-insensitive loss.

Note furthermore, that a number of strange shaped sets can be obtained by
using an appropriate metric on E . For example, if we consider IRn with the
Manhattan metric, we can apply margin bounds to classification based on
whether h(x) lies in a box. ut

Example 5.10. Let us consider a somewhat more complex strategy. Consider
a voting machine composed of N thresholded classifiers, each with threshold
si. Let s = (s1, · · · , sN ). We can obtain a margin bound based on the output
of each classifier directly.

Consider η = (η1, · · · , ηN ) ∈ E = IRN . Let g(η) be one exactly when at least
j coordinates of η exceed the corresponding thresholds in s. Assume without
loss of generality that s = 0. Then the strategy partitions IRN into two sets
of orthants, those with j or more nonnegative coordinates, and those with
less than j.

Our results show that if we can calculate the margin of any point η ∈
IRn, we can apply the margin bounds for thresholding classifiers using the
corresponding margin loss.

Consider the Manhattan metric d1, and assume a point η ∈ IRN has i ≥ j
nonnegative coordinates. For η′ to be classified differently to η, it needs less
than j nonnegative coordinates. Such a point must have a distance from
η of at least the sum of the i − j + 1 smallest nonnegative coordinates of
η. Similarly comparing a point η with i < j nonnegative coordinates to an
η′ with at least j nonnegative coordinates, shows that the distance between
them is at least the negated sum of the i− j smallest negative coordinates
of η. Furthermore, these distances can be approximated arbitrarily closely
by appropriate selection of η′, so that these expressions define the margin.

With this definition, it is not difficult to calculate the margin, and thus
apply the margin bound, yielding a bound which uses the real outputs of
each classifier of a voting classifier. ut
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5.6.4 γ and Occam’s razor

Note that pre-specifying γ with the bounds above may lead one to overly

pessimistic bounds: if a large margin is attained over the whole sample, but

γ is selected too small, the bound is likely to be overly pessimistic — picking

a larger γ would be more useful. Thus selecting γ on the basis of the selected

hypothesis and its behaviour on the data is desirable.

The most obvious approach to achieve this while avoiding dependence prob-

lems is to make the bound uniform for all γ by employing the Occam’s

razor method in the same way we used it to obtain uniform bounds over a

countable decision class. Unfortunately, however, γ is a real value, so that

it seems we need to employ a cover over a grid of potential values of γ. This

is very similar to the approach we outline next.

For an hypothesis class H, define the sets R1, R2, · · · by

Ri =
{
γ :
⌊
log2

(
EQ∼Dm+u N∞,Q

(γ
2
,H
))⌋

= i− 1
}

.

That is, Ri consists of those γ for which the expected covering number lies

in [2i−1, 2i). Clearly, the Ri form intervals which partition IR+.

Suppose we have a bound on

PS∼Dm

{
sup
h∈H

ψ(rD(gh, L), rS(h,Lγ)) > ε

}

in terms of the expected covering number above for any pre-specified γ. Let

γi = inf Ri.

Now consider any γ ≥ γi, so that

Lγ ≥ Lγi
.

Assuming that ψ is decreasing in its second argument, this implies that

ψ(rD(gh, L), rS(h,Lγ)) ≤ ψ(rD(gh, L), rS(h,Lγi
)) .
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Thus

PS∼Dm

{
∀γ ≥ γi : sup

h∈H
ψ(rD(gh, L), rS(h,Lγ)) > ε

}

= PS∼Dm

{
sup
h∈H

ψ(rD(gh, L), rS(h,Lγi
)) > ε

}
.

It follows that by employing the union bound on the probability of ψ-

deviation at each γi will yield a bound for all γ. Let α?(i) be a “prior”

for i ∈ IN for this purpose.

We now illustrate the results of this approach using the realizable margin

bound of (5.47). Let us write

δ(ε, i,m, u) = β−1 EQ∼Dm+u N∞,Q

(γi

2
,H
)( u

m+ u

)duα(u,β,ε)εe
.

From the union bound on γi, i ∈ IN, we have

PS∼Dm {∀i ∈ IN : ∃h ∈ H : (eS(h,Lγi
) = 0) ∧ (eD(gh, L) > εi)}

≤
∞∑

i=1

δ(εi, i,m, u) . (5.48)

Since the bound for any γi applies simultaneously to all γ ≥ γi, we have

PS∼Dm {∀γ ∈ IR : ∃h ∈ H : (eS(h,Lγ) = 0) ∧ (eD(gh, L) > εi)}

≤
∞∑

i=1

δ(εi, i,m, u) . (5.49)

Some important points to note:

• Note that the right hand side is fixed, regardless of γ, for any selection

of the εi. Any selection of εi > 0 is valid, but typically, they can be

specified by employing the “prior” α?(i). This is done by setting

δ(εi, i,m, u) = δα?(i)

for some desired overall confidence level 1 − δ. This ensures that
∞∑

i=1

δ(εi, i,m, u) = δ .
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• Even if this inversion can not be done precisely, we still obtain a uni-

form bound if we choose the εi to satisfy

δ(εi, i,m, u) ≤ δα?(i) .

Generally, the idea is to select smaller εi for small i. In practice, we

would generally like the bounds to be tightest for the smallest choice

of i satisfying γ0 ≥ γi, where γ0 is the largest choice of γ for which

eS(h,Lγ) = 0.

• Note that the same analysis could be performed with respect to any

upper bound on EQ∼Dm+u N∞,Q(γ
2 ,H). In practice, this is extremely

important, because we can not generally know the exact values of γi if

defined with respect to the expected covering numbers. However, if we

use some computable alternative, we can find an appropriate choice of

i for implementing this bound.

• One guiding principle in applying a “prior” to such a bound is to

consider the form of the bound. There is no point allocating confidence

to choices of i and εi for which the bound will be trivial.

• Note that limi→∞ γi = 0, so the bound can always be applied.

In order to apply a “prior” to the result above will require significant nu-

merical calculations due to the symmetrization lemma employed. We will

present another method for making this bound uniform soon.

To illustrate the approach, however, we shall use the relative deviation

bound of (5.45), and the uniform “prior” α?(i) = 1
2m

on [1 : 2m]109. We

thus set
δ

2m
= 4 EQ∼D2m N∞,Q

(γi

2
,H
)

exp

(−ε2im
4

)

and solve for εi in terms of γi. This yields

εi = ε(γi) =

√√√√√4 ln

(
8m E

Q∼D2m N∞,Q( γi
2

,H)
δ

)

m
,

109Thus α?(i) = 0 for i > 2m, so the bound will not apply to any γ such that the
expected covering number at scale γ

2
exceeds 22m.
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for i ∈ [1 : 2m].

Thus, we have

PS∼Dm

{
∀i ∈ [1 : 2m] :

(
∀γ ≥ γi : sup

h∈H

rD(gh, L) − rS(h,Lγ)√
rD(gh, L)

> εi

)}
< δ .

What makes this inversion more attractive is that in this form we can make

use of a relaxation which obviates the need to know the relationship of γ

to any of the γi: since covering numbers are decreasing functions of the

resolution, γ ≤ γi implies that ε(γ) ≥ ε(γi). It follows that

PS∼Dm

{
∀γ ≥ γ2m : sup

h∈H

rD(gh, L) − rS(h,Lγ)√
rD(gh, L)

> ε(γ)

}
< δ .

Converting this to a realizable case bound provides a weaker analog of the

bound in Shawe-Taylor and Cristianini (1999, Theorem 4.7).110

An example of the benefits reaped from not allocating confidence in the

“prior” when the resulting bound is trivial is the improvement from Shawe-

Taylor and Cristianini (1999, Theorem 4.7), which employed a uniform

bound on [1 : 2m], to Shawe-Taylor and Cristianini (2000, Theorem VII.7),

which noted that allocating confidence to i > m
2 was pointless given the

form of the bound, so instead applied a uniform “prior” on [1 : m
2 ] instead.

An alternative, but highly similar approach is based on the following result

from Bartlett (1998), which we shall call the margin unification lemma.

Lemma5.1 (Proposition 8 of Bartlett, 1998). Let (E , Σ, τ) be a prob-
ability space, and let

{E (v1, v2, v3) : 0 < v1, v2, v3 ≤ 1}

be a set of events satisfying the following conditions:

1. for all 0 < c ≤ 1 and 0 < v3 ≤ 1, τ(E (c, c, v3)) ≤ v3;

110That bound is obtained by combining the realizable dual sample bound of Theo-
rem 5.14 with a variant of the traditional symmetrization lemma, modified for the realiz-
able case.
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2. for all 0 < c < 1 and 0 < v3 ≤ 1,

⋃

v2∈(0,1]

E (cv2, v2, (1 − c)v2v3)

is measurable; and

3. for all 0 < v1 ≤ c ≤ v2 ≤ 1 and 0 < v′ ≤ v3 ≤ 1,

E (v1, v2, v
′) ⊆ E (c, c, v′) .

Then, for 0 < c, v3 < 1,

τ (E (cv2, v2, (1 − c)v2v3)) ≤ v3 .

The reader is referred to the article for the proof. In our case, the lemma

assumes that we have some event (such as large deviation of true loss from

margin loss) which holds with probability at most δ for any individual γ ≤ 1

(condition 1). If the modified event obtained by

• decreasing some occurences of γ to any smaller γ1;

• increasing the other occurences of γ to any larger γ2; and

• reducing any occurence of δ to a smaller δ ′

implies the original event (condition 3), then (ignoring measurability issues)

we can obtain a uniform bound for all γ ∈ (0, 1]111.

We now illustrate the results of this approach using the realizable margin

bound of (5.47). Suppose ε(δ, γ) is the solution (usually obtained numeri-

cally) for ε of

δ = β−1 EQ∼Dm+u N∞,Q

(γ
2
,H
)( u

m+ u

)uα(u,β,ε)ε

for an appropriate α and β.

111Extending the maximum margin permissible here from 1 to some other value requires a
straightforward modification to the margin unification lemma, akin to scaling the margin.
For such a modified result, see Kroon (2003, Theorem 68).
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Let

E (v1, v2, v3) = {S ∈ Zm : (∃h ∈ H : (eS(h,Lv2) = 0) ∧ (eD(gh, L) > ε(v3, v1)))} .

Clearly, condition 1 of the lemma is met with c = γ and v3 = δ. We shall

now consider condition 3. Suppose that a sample S ∈ E (γ1, γ2, δ
′), with

0 < γ1 ≤ γ ≤ γ2 and 0 < δ′ ≤ δ ≤ 1. Consider any h ∈ H such that

eS(h,Lγ2) = 0 and

eD(gh, L) > ε(δ′, γ1) .

Since γ ≤ γ2, eS(h,Lγ) = 0.

When the α in (5.47) is determined by αC−R, ε(δ, γ) solves for ε in

ln δβ

EQ∼Dm+u N∞,Q( γ
2
,H)

u ln u
m+u

= ε


1 −

√
1
p
− 1

u(1 − β)


 .

The left hand side here is decreasing in δ, and, since covering numbers

decrease with an increase in the scale, in γ. (Note the negative denominator).

Furthermore, the right hand side is increasing in ε. It follows that ε(v3, v1)

is decreasing in v3 and v1. Therefore,

ε(δ, γ) ≤ ε(δ′, γ1) ,

so that

eD(gh, L) > ε(δ, γ) ,

implying that S ∈ E (γ, γ, δ). Thus condition 3 holds, and we can apply the

margin unification lemma. We obtain the following result.

Theorem5.23 (Realizable margin bound for error). Select some 0 <
v, δ < 1. Then

PS∼Dm {∀γ ∈ (0, 1] : (∃h ∈ H : (eS(h,Lγ) = 0) ∧ (eD(gh, L) > ε(vγ, γδ(1 − v))))} ≤ δ .

In short, taking as an example v = 1
2 , we can select the margin from (0, 1]

after selecting the hypothesis at the cost of doubling the resolution (i.e.

dividing the scale parameter by 2) of the cover of H, and replacing δ by
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δγ
2 . Since we are interested in large values of γ, the lost confidence from

this application of the margin unification lemma should hopefully not be

too punitive.

This approach is very convenient, since any reasonable margin bound will

satisfy the conditions of the margin unification lemma. A study of the proof

of the lemma shows that it employs a geometrically decreasing “prior” over

geometrically decreasing portions of (0, 1]. This result then effectively seems

to allocate confidence uniformly over the entire region, in contrast to the first

method discussed, where an arbitrary “prior” can be employed.

5.6.5 Margin distribution bounds

Shawe-Taylor and Cristianini (1998b) provides an incredibly interesting method

for transforming a problem to ensure that a pre-specified hard margin is at-

tained by all the points in the sample on the modified problem. Standard

realizable margin bounds can then be applied to the transformed problem,

yielding bounds which apply to the original problem. Furthermore, the exact

margin which will be attained is known a priori. This approach is, however,

limited to thresholding classifiers.

The process involves a trade-off: the transformation of the problem increases

the covering numbers, but at the same time it allows application of the more

rapidly decaying realizable bounds. We shall also see that this approach

removes the need to make the bound uniform over the margin at the expense

of introducing a new value over which the bound must be made uniform.

The approach employs a generalization of an ingenious technique seemingly

first used for a different, but related, purpose in Klasner and Simon (1995),

and further developed in this direction by Freund and Schapire (1999). The

resulting margin embedding technique results in so-called margin distribu-

tion, or soft margin bounds: it was shown (Shawe-Taylor and Cristianini,

1998b) that the approach has strong parallels with the soft-margin SV ma-

chine classifier proposed in Cortes and Vapnik (1995).
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The approach relies on transforming the hypotheses for a given strategy to

ensure that all the points in the training sample will attain some pre-specified

minimum margin γ. Realizable margin bounds can then be applied to the

transformed hypotheses. The transformation is further chosen so that the

new hypotheses behave identically to the original hypotheses everywhere in

X except on the points in S. A result of this is that bounds on the error of

transformed hypotheses also appply to the original hypotheses. We detail

the transformation in what follows.

Select some desired margin γ0, and consider any hypothesis h ∈ H. Then,

we can consider the margin shortfall max(0, γ0 − ρ(z, h)) of any point in Z.

This is the amount by which the margin achieved by h on z, ρ(z, h), falls

short of γ0. We employ these margin shortfalls on the points in the training

sample S, along with the Kronecker delta.

We define L(X ) as the set of functionals on X which have finite support112.

We endow L(X ) with an inner product defined by

〈v1, v2〉 =
∑

x∈supp(v1)

v1(x)v2(x) ,

where supp(v1) denotes the support of v1.

For any x0 ∈ X , the Kronecker delta function, δx0 = I(x = x0), belongs to

L(X ). We now define the mapping ξ : X → X × L(X ) by ξ(x) = (x, δx).

We will transform h so that it operates on this transformed input space,

and attains a margin of γ0 on the transformed training sample. We define

hξ : X × L(X ) → IR by

hξ((x, v)) = h(x) +

〈 ∑

(x′,y′)∈S

max
(
0, γ0 − γ((x′, y′))

)
y′δx′ , v

〉
.

Note that the first function in the inner product above is a sum of weighted

Kronecker delta functions over the sample, with each weight equal to the

margin shortfall for the corresponding element of the sample. Thus, if v is a

Kronecker delta function corresponding to a sample point, the inner prod-

uct term will add just enough to the original predicted output to attain a

112i.e. each function is non-zero at finitely many points of X .
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margin of γ0, if necessary. However, if v is the Kronecker delta function cor-

responding to a point not in the training sample, the inner product will be

zero, so the modified hypothesis behaves identically to the original hypoth-

esis. Assuming that no misclassified points are assigned non-zero measure

by D, it follows that h and hξ are equal D-almost everywhere, and that hξ

achieves a margin of γ0 on the transformed sample, allowing the application

of the optimistic margin bound. The complication is that the new hypoth-

esis comes from a larger class than H, and it is the covering number of the

larger class that needs to be used: if we define h1((x, v)) = h(x) and

h2((x, v)) =

〈 ∑

(x′,y′)∈S

max
(
0, γ0 − γ((x′, y′))

)
y′δx′ , v

〉
,

we can write hξ = h1 + h2 ∈ H + L(X ), where

H + L(X ) = {h+ v : h ∈ H, v ∈ L(X )} .

It seems tempting to simply apply the optimistic margin bound in this situ-

ation. However, the class L(X ) is too rich, so the covering numbers involved

will be too large. The solution is to restrict the choice of functions in L(X ).

One approach is to upper bound the allowable norm of h2: note that for any

training sample S, we have that ‖h2‖ equals
∥∥∥∥∥∥
∑

(x′,y′)∈S

max
(
0, γ0 − γ((x′, y′))

)
y′δx′

∥∥∥∥∥∥

=

√√√√
〈 ∑

(x′,y′)∈S

max(0, γ0 − γ((x′, y′)))y′δx′ ,
∑

(x′,y′)∈S

max(0, γ0 − γ((x′, y′)))y′δx′

〉

=

√ ∑

(x′,y′)∈S

max(0, γ0 − γ((x′, y′)))2 .

In addition, it is useful to note that this approach only ever considers

h((x, v)) for

v ∈ δX = {δx : x ∈ X} .

This restriction allows us to employ so-called radius-margin bounds113 for

the calculation of covering numbers, since for any x, ‖δx‖ = 1.

113Radius margin bounds are discussed in Section 5.9.4.
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Now, if J ≥ ‖h2‖ we can view hξ as an element of H + LJ(X )|δX , where

LJ(X ) consists of the functions in L(X ) with norm not exceeding J .

By considering balls in L(X ) with successively increasing radii Ji, similarly

to the approach in Shawe-Taylor and Cristianini (1998b), and applying the

union bound, a bound which holds regardless of ‖h2‖ can be obtained.

For each i, we wish to apply the realizable bound of (5.47). For any h ∈ H,

denote the transformed hypothesis by hξ as above. Let Hξ = {hξ : h ∈ H}.
For any h′ ∈ Hξ we write h′2 for the component of h′ in L(X ). Then, for the

appropriate choices of α and β for that bound, we have

PS∼Dm {∃h ∈ H : ((hξ)2 ∈ LJi
(X ) |δX ) ∧ (eD(gh, L) > ε)}

= PS∼Dm{∃h′ ∈ Hξ : (h′2 ∈ LJi
(X )|δX ) ∧ (eS(h′, Lγ0) = 0) ∧ (eD(gh′ , L) > ε)}

= PS∼Dm{∃h′ ∈ Hξ ∪ (H + LJi
(X )|δX ) : (eS(h′, Lγ0) = 0) ∧ (eD(gh′ , L) > ε)}

≤ β−1 EQ∼Dm+u N∞,Q

(γ
2
,H + LJi

(X )|δX
)( u

m+ u

)duα(u,β,ε)εe
. (5.50)

Note that the transformed class Hξ depends on the training sample S. This

is why the covering number in the bound of the last line is not over the

intersection

Hξ ∩ (H + LJi
(X )|δX ) ,

but over the larger class H + LJi
(X )|δX . This is because this class contains

the intersection for every sample, allowing one to obtain the bound despite

the data-dependence of the class.

Finally, we apply the weighted union bound over the potential choices of Ji

to obtain114

PS∼Dm {∃i ∈ IN : (∃h ∈ H : ((hξ)2 ∈ LJi
(X )|δX ) ∧ (eD(gh, L) > εi))}

≤
∞∑

i=1

β−1 EQ∼Dm+u N∞,Q

(γ
2
,H + LJi

(X )|δX
)( u

m+ u

)duα(u,β,εi)εie
.

(5.51)

114One may be able to apply the margin unification lemma instead.
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Notes similar to those after (5.49) apply here regarding the choice of the ρi.

This result is based on a modified version of Theorem 5.15. The original

bounds of this form were based on a modification of Vapnik’s symmetrization

lemma for the realizable case. Early forms of this modified symmetrization

lemma employed m = u, so those results appear in that form. However, Her-

brich and Williamson (2002, 2004) provide an extension of this modification

to the case m 6= u, so that the original margin distribution results can be

extended to that case — for the modified symmetrization lemma, see The-

orem 6.1.

Regarding selection of the Ji, we suggest using an arithmetic sequence if the

underlying functions are bounded in a small interval (allowing one to obtain

a maximal Ji), while a geometric sequence is recommended if the underlying

functions are unbounded.

Finally, we mention that in practice, the εi will be determined by specifying

a desired confidence level δ, together with a “prior” over the Ji. These

values permit a numerical inversion of each individual bound to obtain the

appropriate choice of εi. In this case, the right hand side of this bound sums

to δ.

5.6.6 Discussion

The development presented here does not match the development of the re-

sults in theory. Bounds were first developed for the so-called hard-margin

case, which corresponds to our realizable bounds, first in the case of ε-

insensitive function learning, and then for thresholding classifiers. Note

that such results are (strongly) optimistic: the bound only applies to func-

tions correctly classifying the whole training sample with the unthresholded

function achieving a certain (pre-specified) margin on all the points.

Bartlett (1998) provided the extension to the general case, providing the

capability to still obtain bounds when the minimal margin on the sample did

not exceed the selected γ. These bounds are then called margin percentile

bounds, since the choice of γ corresponds to a quantile of the empirical
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distribution of the margin on the sample.

These general case bounds are particularly useful when there are no hy-

potheses in H such that gh is consistent with the data. In this case, no

choice of γ can yield a non-trivial bound based on the realizable bounds.

The general case bounds of Bartlett also make it clear that generalization

of thresholded classifiers not only depends on the minimum margin on the

sample, but on the distribution over the whole sample. Consider a situation

in which an hypothesis attains a margin near 1 on all but one of the points

in a sample, while achieving a margin very close to 0 on the remaining point.

The realizable bound could only obtain a bound by selecting γ less than the

smallest margin, which is not representative of the whole sample’s margins.

With the general case bounds, one can probably substantially improve the

bound by using a larger γ, near 1: the margin error eS(h,Lγ) increases from

0 to 1
m

, and the bound decays slower, but the reduction in the covering

number due to the reduced resolution required may well far outweigh this

downside.

5.7 Chaining

Chaining is a powerful technique in the field of stochastic processes — an

excellent discussion of the technique by one of the pioneering authors is Ta-

lagrand (2005), while Alexander (1984) attributes the first application of

the technique to empirical processes to Dudley (1978). The contents of this

section are closely related to the derivation of Dudley’s entropy bound on

the expected supremum of a stochastic process, as detailed in the above

reference.

The core concepts employed in chaining were pioneered by Kolmogorov, and

their application to bounding stochastic processes was promoted in the work

of Richard Dudley in the 1960’s and 1970’s.

Chaining allows one to obtain bounds on the Rademacher penalty by ex-

pressing each function as a telescoping series. The terms in the telescoping
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series are differences between carefully selected successive approximations

to the given function.

Consider W, a sample S = Jx1, · · · , xmK, and the metric d = d2,S
115. Then

diam(W) = sup{d(w1, w2) : w1, w2 ∈ W} ≤ 1 .

We consider a sequence of subclasses

W0 ⊆ W1 ⊆ · · · ⊆ W ,

where each Wj is a maximal (2−j)-separated subset of W.

Consider any j ≥ 0. Now, by the definition of a maximal ε-separated subset,

it follows that for any w ∈ W, there is at least one element of Wj within

distance 2−j of w. Pick an arbitrary such element wj , and define Pj(w) =

wj . This Pj is then a kind of “projection function”, which maps any w onto

an approximation Pj(w) such that d(w,Pj(w)) ≤ 2−j .116 Clearly, W0 has

exactly one element, since no two elements of F are 2n-seperated, and we

can choose that element arbitrarily. We select it to be the constant decision

rule w0 which always outputs zero.117 We thus have P0(w) = w0 for all

w ∈ W.

Since Pj(w) and Pj−1(w) are both close to w, it follows that they are close

to each other. Employing the triangle inequality, going via w, we obtain

that d(Pj(w),Pj−1(w)) ≤ 3 · 2−j .

In order for chaining to yield useful results, we need some relationship to

hold between values assumed by the process at points close to each other

in W. We shall be interested in applying chaining to the stochastic process

{ 1
m

∑m
i=1 ζiw(xi) : w ∈ W}, where ζ = (ζ1, · · · , ζm) is a sequence of inde-

pendent Rademacher variables. We shall call this process the Rademacher

process. Note that the supremum of this process over the index set is the

115The reason for the choice of p = 2 will be made clear later.
116Such a projection function is not generally unique, but any one will suffice for our

purposes.
117Technically, this decision rule is not necessarily in W. However, if we add it to W the

results we obtain also hold for the original class, so we shall not worry about this further.
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Rademacher penalty RS(W). So, for two decision rules w1 and w2, we

consider

(rD(w1) − rS(w1)) − (rD(w2) − rS(w2)) = rS(w2) − rS(w1) .

The kind of result we desire is that if two decision rules in W are close (w.r.t.

d), then it is highly likely that the process assumes similar values at those

two points.

Such a result is easily obtained from Hoeffding’s inequality. Consider any

w1, w2 ∈ W. Then

Pζ∼(Unif{−1,1}m)

{
1

m

m∑

i=1

ζi(w1(xi) − w2(xi)) > ε|S
}

≤ exp

( −2m2ε2∑m
i=1(2[w1(xi) − w2(xi)])2

)

= exp

( −mε2
2(d(w1, w2))2

)
.

Note that the last inequality does not generally hold for dp,S where p 6=
2. Clearly, the closer w1 and w2 are, the less likely it is that the value

assumed by the Rademacher process at w1 will exceed its value at w2 by

any prespecified amount.

Now, we can decompose any w ∈ W on the basis of its projections:

w = w0 +
∞∑

j=1

[Pj(w) − Pj−1(w)] .

It follows that

m∑

i=1

ζiw(xi) =

m∑

i=1

ζiw0(xi) +

∞∑

j=1

ζi

m∑

i=1

(Pj(w)(xi) − Pj−1(w)(xi)) .

For any given j and w, we know that d(Pj(w),Pj−1(w)) ≤ 3 · 2−j . It

follows that

Pζ∼(Unif{−1,1}m)

{
1

m

m∑

i=1

ζi([Pj(w)] (xi) − [Pj−1(w)] (xi)) > ε|S
}

≤ exp

( −mε2
2(3 · 2−j)2

)
.
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For a specific w, we can thus obtain an upper bound on

Pζ∼(Unif{−1,1}m)

{
1

m

m∑

i=1

ζiw(xi) > ε|S
}

by employing a countable union bound over each link (since the first term

is zero). We would like to extend this result to hold for all w ∈ W. Unfor-

tunately, we can not simply apply the Occam’s razor method over W, since

W is generally uncountable. One approach to circumventing this problem

is to apply the Occam’s razor method to Wj, for a large enough j, and then

correct for any inaccuracies. This is, however, effectively the same as using

the normal covering number approach to obtain bounds. Chaining obtains

a great improvement by getting a result which applies to all of Wj by ap-

plying the Occam’s razor method over the individual links, and employing

the union bound within each set of links! This results in a great reduction

in “lost confidence” in the Occam’s razor method.

It is clear that there are at most |Wj|·|Wj−1| possible pairs (Pj(w),Pj−1(w)).

However, we can do better by directly employing the size of the set

Bj = {(Pj(w),Pj−1(w)) : w ∈ W} .

Applying the uniform Occam’s razor method over the links in Bj yields

Pζ∼(Unif{−1,1}m)

{
sup

(w1,w2)∈Bj

[
1

m

m∑

i=1

ζi(w1(xi) − w2(xi))

]
> ε|S

}

≤ |Bj| exp

( −mε2
2(3 · 2−j)2

)
.

Equating the probability to δ(j) and solving for ε we obtain

Pζ∼(Unif{−1,1}m)





sup(w1,w2)∈Bj

[
1
m

∑m
i=1 ζi(w1(xi) − w2(xi))

]

> 3 · 2−j

√
2(ln |Bj |−ln δ(j))

m

|S



 ≤ δ(j) .

We now have a probabilistic bound for the j-th link in the chain stretching

from w0 to any w ∈ W, for any j. Next, we can apply the Occam’s razor
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method non-uniformly to all j to obtain

Pζ∼(Unif{−1,1}m)



∃j ∈ IN :

sup(w1,w2)∈Bj

[
1
m

∑m
i=1 ζi(w1(xi) − w2(xi))

]

> 3 · 2−j

√
2(ln |Bj |−ln δ(j))

m

|S





≤
∞∑

j=1

δ(j) .

Suppose the δ(j) are selected in such a way that the sum on the right is

finite and equal to δ ∈ (0, 1]. Then, with probability at least 1 − δ, for

every decision rule w ∈ W, we have that every term in the telescoping series

expansion of 1
m

∑m
i=1 ζiw(xi) is bound by

3 · 2−j

√
2(ln |Bj| − ln δ(j))

m
,

so that the infinite sum does not exceed

3

√
2

m

∞∑

j=1

(
2−j
√

ln |Bj| − ln δ(j)

)
.

Together this yields a chaining bound in full generality, which provides an

alternative to the random subsample bound of (5.35):

Pζ∼Unif({−1,1}m)





1

m

m∑

i=1

ζiw(xi) > 3

√
2

m

∞∑

j=1

(
2−j
√

ln |Bj| − ln δ(j)

)
|S



 ≤ δ ,

(5.52)

The next section will discuss a futher generalization of this approach, known

as generic chaining. However, before doing that, we turn our attention to

the non-trivial problem of applying this rather abstract bound.

To apply this bound, we need to select a “prior” α(j) such that δ(j) = δα(j),

and we need to know more about the sizes of the link sets Bj . We also need

to be able to evaluate or upper bound the infinite sum in the expression

above.

We now demonstrate a useful technique for obtaining an upper bound on

sums of this form: essentially, we replace the infinite sum by an appropriate

integral.
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Suppose a function φ is decreasing on some interval (0, c) ⊂ IR. Let K =

b− log2 cc, so that 2−K ≤ c ≤ 2−K+1. Now we consider a step function

approximating φ from below. Specifically define φ′ : (0, 2−K) → IR by

φ′(v) = φ(2−j) when v ∈ [2−j−1, 2−j), for j ≥ K.

Thus, φ′ approximates φ on [2−j−1, 2−j) by the value of φ at the right-most

side of the interval. Since φ is decreasing, φ′ never exceeds φ. Thus

∫ v′

0
φ′(v) dv ≤

∫ v′

0
φ(v) dv

for all v′ ≤ 2−K . However, since φ′ is a step function, the left-hand integral

can be replaced by an infinite sum. Assuming v ′ = 2−i for some i ∈ ZZ, we

have

∫ v′

0
φ′(v) dv =

∞∑

j=i

(2−j − 2−j−1)φ(2−j)

=

∞∑

j=i

φ(2−j)2−j−1 .

We apply this result by finding a φ such that the infinite series in (5.52)

corresponds to integrating/summing the corresponding φ′. Then we can

upper bound the sum by the integral of φ. If we write

Υ (j) = 3

√
2

m

√
ln |Bj | − ln δ(j) ,

we would like it if we could have φ(2−j) = Υ (j), so that the upper bound

we would like to evaluate is simply

∞∑

j=1

2−j−1φ(2−j) ,

yielding an upper bound of

∫ 1
2

0
φ(v) dv .

In order to do this, we need φ to be a decreasing function passing through

(2−j , Υ (j)) for all j ∈ [2 : ∞). Such a φ can be found if we know that Υ (j)

is an increasing function of j. Thus, for a specific construction of the Wj,



Chapter 5. Training sample bounds 226

one must choose δ(j) such that
|Bj |
δ(j) is increasing in j. For most reasonable

constructions, |Bj| is increasing in j, and one will typically work with a

decreasing sequence for δ(j), so that this condition will hold in almost any

reasonable situation.

It is clear that for any φ? ≥ φ,
∫ 1

2
0 φ?(v) dv is also an upper bound on the

sum under consideration. For any construction of the Wj, we know that

|Wj| ≤ M2,S(2−j ,W) ,

so that

|Bj| ≤ (M2,S(2−j ,W))2 .

This upper bound on |Bj| is convenient since it provides a clear extension

to values of s which are not powers of 2. If one constructs each Wj as a

refinement of Wj−1 (i.e. by adding points to Wj−1), it can be shown that

|Bj| = |Wj | (since each element of Wj has a unique element of Wj−1 close

enough to form a link). In this case, we have

|Bj| ≤ M2,S(2−j ,W) ,

a considerably tighter bound.

In conjunction with this, one typically selects a prior which can easily be

extended from powers of 2. Since we are dealing with a countably infinite

sequence, the prior must be arbitrarily small for infinitely many j. Fur-

thermore, we would like δ(j) to be decreasing. However, using a geometric

sequence for the “prior” α will typically yield an undesirably rapid decrease

of the δ(j) to zero. Popular sequences for α in practice are generally based

on variations of α(j) = 1
j2 . The corresponding series sums to π2

6 . Some

references reduce this to less than 1 by instead using α(j) = 1
(j+1)2

, but

this wastes confidence unnecessarily. Another option is scaling α to ensure

summation to one, i.e. α(j) = 6
π2j2 . We recommend an option similar to

scaling, but without the extraneous constants: if one employs α(j) = 1
j(j+1) ,

we have that the series sums to one directly. We consider this choice of α(j)

in what follows.
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Let us now consider the function

α′(v) =
1

(− log2 v)(− log2 v + 1)
=

(ln 2)2

(ln v)
(
ln v

2

) .

Then α′(2−j) = α(j), and α′ is increasing for v > 0.

With this choice of δ(j), and the Wj constructed by refining Wj−1, we have

that

3

√
2

m

√
ln

M2,S(v,W)

δα′(v)

is a potential choice of φ?, an upper bound on φ.

With this choice of φ?, we have

Pζ∼(Unif{−1,1}m)

{
sup
w∈W

[
1

m

m∑

i=1

ζiw(xi)

]
>

∫ 1
2

0
φ?(v) dv|S

}
≤ δ .

The bound obtained here is for a fixed m-sample S. In order to apply

the random subsample lemma, we need to take an expectation w.r.t. the

possible samples S. However, the form above is not convenient for that.

Consider any ε > 0. We note that

∫ 1
2

0
φ?(v) dv

is a function of δ and S, say Π(δ, S). Let δ(ε, S) be such that

Π(δ(ε, S), S) = ε .

Then

Pζ∼(Unif{−1,1}m)

{
sup
w∈W

[
1

m

m∑

i=1

ζiw(xi)

]
> ε|S

}
≤ δ(ε, S) .

Taking expectations w.r.t. S on both sides yields

PS∼Dm,ζ∼Unif({−1,1}m)

{
sup
w∈W

[
1

m

m∑

i=1

ζiw(xi)

]
> ε

}
≤ ES∼Dm δ(ε, S) .

It is common to replace the packing numbers by covering numbers in the

expression above, using

M2,S(v,W) ≤ N2,S

(v
2
,W
)
.
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In summary, in this section we defined a sequence of approximating sub-

classes of W, and expanded each decision rule w into a telescoping series

based on its projections on consecutive subclasses. By construction, the suc-

cessive projections for each decision rule w are close together (because they

are both close to w). Because the process behaviour is in someway related

to the structure of the index set, we could obtain a probabilistic bound on

the difference between the process values at these projections. We employed

the Occam’s razor method over each link set, and for each successive ap-

proximation (non-uniformly). In this manner, we obtained a bound on the

Rademacher penalty. Finally, we took the expectation over all m-samples

S to obtain a bound which can be combined with the random subsample

lemma and a symmetrization lemma. This approach provides a bound on

the regular deviation between empirical and true risk for all of the decision

rules in W.

5.7.1 Generic chaining

Generic chaining is a generalization of chaining originally presented us-

ing the concept of majorizing measures, which first arose in Gaussian pro-

cess theory (Talagrand, 1996a). Essentially, generic chaining replaces the

uniform application of the Occam’s razor method in the regular chaining

method over the various link sets Bj by a non-uniform application of the

Occam’s razor method.

To motivate this, we consider the elements of a link set Bj. For each pair

(w1, w2) ∈ Bj, define the set

Aj((w1, w2)) = {w ∈ W : (Pj(w),Pj−1(w)) = (w1, w2)} .

So w is an element of Aj((w1, w2)) if the element of the j-th link set corre-

sponding to w is (w1, w2). It follows that the collection of sets

Dj = {Aj((w1, w2)) : (w1, w2) ∈ Bj}

forms a partition of W. Effectively, the standard chaining bound assigns a

uniform “prior” ( 1
|Bj |) to all elements of the link set Bj. Generic chaining
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attempts to improve this “prior” by relating the “prior” probability of a link

in Bj to the “relative size” of the partition element associated with that link.

We first need to formalize the concept of the “relative size” of an element A

of a partition of some set R. First, suppose R is a bounded subset of IRn.

A natural concept of relative size in this case is the ratio of the volume of

A to that of R, or equivalently the ratio of the Lebesgue measure of these

sets.118 If we wish to work in more abstract spaces than IRn, and possibly

unbounded sets, the concept of the ratio of the measure of the sets is more

useful. However, the choice of measure is typically arbitrary, and can also

be seen as similar to that of the “prior” of the Occam’s razor method — in

fact, the measure we select here will translate directly into a “prior” for each

partition Dj . We shall assume the measure we use is a probability measure.

This is a minor restriction, since we are dealing with ratios of measures, so

that any bounded measure can be replaced by a probability measure with

identical results.

Consider a probability measure τ on W. Then the relative size of A (with

respect to W) is τ(A)
τ(W) = τ(A). Since Dj forms a partition of W, the sum

of the relative sizes of each partition element will sum to one. We use

these relative sizes to assign a “prior” to the elements of Bj: specifically,

αj((w1, w2)) = τ(Aj((w1, w2))). Once again, note that τ is merely a techni-

cal prior, which may, but need not, reflect prior belief and information on

the appropriateness of the elements in W. Furthermore, if we desire, for

each choice of j the corresponding αj can be defined with reference to a

different measure τj.

We now consider the application of this idea to modify the chaining bound.

A scrutiny of the reasoning employed for the chaining bound shows that one

can obtain a result for this modified “prior” over Bj simply by replacing the

old “prior” value 1
|Bj | by the new “prior” value

αj((w1, w2)) = τj(Aj((w1, w2))) ,

and noting that the appropriate link (w1, w2) for a given link number j and

118Assuming we have equipped IRn with the Lebesgue measure.
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decision rule w is (Pj(w),Pj−1(w)). This yields the generic chaining bound

Pζ∼(Unif{−1,1})m





supw∈W
[

1
m

∑m
i=1 ζiw(xi)

]

> 3
√

2
m

∑∞
j=1 2−j

√
ln 1

δ(j)τj (Aj((Pj (f),Pj−1(f))))

|S



 ≤ δ .

5.8 Dimension measures of complexity

In practice, expectations involving covering numbers are not obtained ex-

actly. Even for a known distribution D, this is a very difficult problem.

In general, we do not know D, and the expected covering number may be

as large as the worst covering number obtained w.r.t. any specific sample.

Thus the classical approach to this problem is to bound the expectation

involving the covering number from above by replacing the covering number

by the supremum of the covering number over all possible samples of the

relevant length. This supremum is then an upper bound for the expected

covering number for all distributions D. We shall write Np,m(γ,W) for this

supremum, i.e.

Np,m(γ,W) = sup
Q∈Zm

Np,Q(γ,W) .

We extend the notation for external covering and packing numbers similarly.

In addition, we shall write NW(m) for

sup
Q∈Zm

|QW | .

NW(m) is known as the shatter coefficient of W for sample size m.

Even the calculation of these shatter coefficients is very difficult or impos-

sible in practice, so bounds on them are typically employed. Many of these

bounds rely on quantities called dimensions. Before focusing on methods for

bounding covering numbers and their suprema, we shall spend some time

introducing the three most important119 dimension quantities.

119A wide variety of other related dimension quantities have been studied, but these will
be sufficient for presenting and discussing our results.
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5.8.1 VC dimension

The first bounds on covering numbers were based on the concept of the

Vapnik-Chervonenkis (VC) dimension. To explain VC dimension, we begin

by introducing the auxiliary concept of shattering. Note that for a small

m, a zero-one loss function, and a reasonably-sized decision class W, it is

highly likely that there exists a sample Q containing n distinct points such

that QW = {0, 1}n, i.e. that for any sequence of n decisions in {0, 1} there

is some decision rule in W yielding that sequence of decisions on Q. When

this is the case, we say that W shatters Q. Clearly, when W shatters an

n-sample Q, we have |QW | = NW(m) = 2n.

Consider the 1-concept class corresponding to W, C1(W). Consideration of

the definitions show that W shatters an m-sample Q of distinct points if

for each subsample Q0 of Q, there is a c ∈ C1(W) such that Q0 ⊆ c and

Q \Q0 ∩ c = ∅. The same result holds for C0(W). In general, we can extend

our definition of shattering to arbitrary classes of sets: we say a class of sets

C in a space E shatters a set R ⊆ E if, for each subset R0 of R, there is a

c ∈ C such that R0 ⊆ c and R \ R0 ∩ c = ∅. An alternative formulation: C

shatters a finite set R if

{c ∩R : c ∈ C } = 2R .

If we write

NC (R) = | {c ∩R : c ∈ C } | ,

we can restate this condition as

NC (R) = 2|R| .

Furthermore, we can see that

NC1(W)(Q) = |QW | .

We can also extend the concept of shatter coefficient to classes of sets using

this approach, motivating our choice of the symbol N : the shatter coefficient

of a class of sets is defined by

NC (n) = sup{NC (R) : |R| = n,R ⊆ E} .
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Example 5.11. Consider the collection C of intervals in IR of the form cs =
(−∞, s]. Consider any point s0 ∈ IR. If s ≥ s0, s0 ∈ cs and cs∩{s0} = {s0}.
If s < s0, we have cs ∩ {s0} = ∅. Since the power set of {s0} has two
elements, we see that C shatters {s0}.

Furthermore, it should be easy to see that given any two points s0, s1 ∈ IR
with s1 > s0, no interval in C intersects with s1 but not with s0. Thus, no
two points can be shattered by C .

Given n points, s0 < s1 < · · · < sn−1, the upper endpoint of such an interval
must lie below s0, between si−1 and si for i = 1, · · · , n − 1, or above sn−1,
yielding n+ 1 classifications. We thus have

NC (n) = n+ 1 =

(
n

0

)
+

(
n

1

)
.

ut

Example 5.12. Let us expand C to allow all intervals in IR with at least
one infinite endpoint. These intervals are also known as halfspaces in IR.
Consider s0, s1 ∈ IR with s1 > s0.

• For s < s0, (−∞, s] ∩ {s0, s1} = ∅.

• For s0 < s < s1, (−∞, s] ∩ {s0, s1} = {s0}.

• For s0 < s < s1, [s,∞) ∩ {s0, s1} = {s1}.

• For s > s1, (−∞, s] ∩ {s0, s1} = {s0, s1}.

Thus C shatters {s0, s1}.

However, for any three points {s0, s1, s2}, it is clear we can not have

c ∩ {s0, s1, s2} = {s0, s2}

for any c ∈ C , since any interval containing s0 and s2 has to contain t1.

In this case, it can be shown (Devroye et al., 1996, Theorem 13.8) that

NC (n) =
n(n+ 1)

2
+ 1 =

(
n

0

)
+

(
n

1

)
+

(
n

2

)
.

ut

VC dimension is useful due to a lemma known as the Vapnik-Chervonenkis-
Sauer-Shelah (VCSS) lemma. This effectively states that once n becomes
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large enough that no n-sample can be shattered by W, NW(n) stops growing
exponentially in n, and starts growing no faster than a polynomial in n. The
n at which this change occurs, known as the VC dimension of W, is also the
degree of this polynomial. In some cases, there is no n large enough — W
can shatter some sequence of arbitrary length. In this (not so uncommon)
case, we say W has infinite VC dimension.

Definition 5.4 (VC dimension). The VC dimension of a zero-one deci-
sion class W, VC(W), is the size of the largest sample of distinct points
which are shattered by W, and infinity if no such largest set exists.

Equivalently, the VC dimension of W is the VC-dimension of C1(W) (or
C0(W)), where the VC-dimension of a class of sets C is the size of the
largest set of points R shattered by C .

If the VC dimension of a class is finite, we call the class a VC class.

Example 5.13. From Example 5.11 it is clear that the VC dimension of the
set of intervals on IR with lower endpoint −∞ is one.

Similarly, from Example 5.12, the VC dimension of the set of intervals on
IR and of the set of halfspaces on IR is two. ut

Example 5.14. Consider the class C of all (Borel) closed sets in IRN , and
any finite set R = {η1, · · · , ηn}. For each ηi, we can construct a closed ball
Bi in IRN with centre ηi not containing any other elements of R.

Consider any R0 ⊆ R. It is clear that

R′ =
⋃

{i:ηi∈R0}
Bi

is (Borel) closed, and R′ ∩ R = R0. Thus C shatters any finite set R, so
that the VC dimension of C is infinite. ut

The VCSS lemma was independently discovered (in slightly varying strengths)

by Vapnik and Chervonenkis (Vapnik and Chervonenkis, 1971), by Sauer (Sauer,

1972), and by Shelah (Shelah, 1972), their initials resulting in the current

name.120

120The intermediate inequalities presented here are from Blumer et al. (1989).
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Theorem5.24 (VCSS lemma). Let % < n. Then

%∑

i=0

(
n

i

)
≤ 2n%

%!
≤
√

2

π%

(
en

%

)%

≤
(
en

%

)%

.

For any decision class of indicator functions W, we have that NW(n) = 2n

for 1 ≤ n ≤ VC(W), and, for n > VC(W),

NW(n) ≤
VC(W)∑

i=0

(
n

i

)
,

which can in turn be bounded by the results above.

A formulation for classes of sets is obtained by replacing W by C , and
NW(m) by NC (m).

We note that the first inequality in the lemma is tight, since equality holds

in Examples 5.11 and 5.12.

Proofs for this result may be found in, amongst others, Vidyasagar (2002,

Section 4.2.1) and Vapnik (1998, Lemma 4.4) — the conversion from the

combinatorial form to the polynomial expression is made by using Stirling’s

approximation (Blumer et al., 1989). A number of other related and use-

ful results based on other bounds on the combinatorial form are presented

in Devroye et al. (1996, Section 13.1) and Vapnik (1998, Section 4.10).

It should be clear that this lemma effectively provides an upper bound on

the covering number-based bounds employing QW in previous sections. As

one example, applying the VCSS lemma to the bound in (5.18), we obtain

that (for 2m > VC(W)),

PS∼Dm





supw∈W [eD(w) − eS(w)]

>
1+

r
(m+1)

h
VC(W) ln 4em

VC(W)
−ln δ

i
+1

m




< δ (5.53)

since for any distribution D, we have

EQ∼D2m |QW | ≤ NW(2m)

≤
(

2em

VC(W)

)VC(W)
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for 2m exceeding VC(W).

The VCSS lemma represents the first generic approach to obtaining non-

trivial distribution-independent bounds (although very large samples are

needed in practice): without the VCSS lemma, bounding the supremum of

the covering number by the näıve 22m yields trivial confidence intervals in

all cases.

5.8.2 Pseudodimension

The approach above employing the VC dimension is clearly limited to the
bounds stated in terms of expectations involving QW . This works well for
decision classes of indicator functions, so we can also obtain bounds for
real functions by employing bounds based on the thresholded loss class,
along with applying the VCSS lemma to bound NWt(m), the supremum of
QWt for m-samples Q on the thresholded loss class. It turns out that a
fascinating connection exists between NWt and the packing numbers of W
when the domain of the functions in W is IRN for some N . This connection
is quantified by the following result relating the expected γ-packing number
of W to NWt . The result is a refinement of a result by Pollard, based on
work by Dudley:

Theorem5.25 (Theorem 29.3 of Devroye et al., 1996). Let the domain
of the elements of W be IRN for some N ∈ IN. For every γ and every dis-
tribution Q,

M1,Q(γ,W) ≤ NWt

(⌈
1

γ
log2

eγM2
1,Q(γ,W)

2

⌉)
.

It follows from this theorem together with the VCSS lemma that we can

bound the packing numbers (and hence the covering numbers) from above

by

2

(
2e

γ
ln

2e

γ

)VC(Wt)

, (5.54)

which can be seen as a more widely applicable companion to the VCSS

lemma. This is Theorem 6 in Haussler (1992).

We thus see that the VC dimension of the thresholded decision class can be

used to obtain bounds on results employing general covering and packing
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numbers (at least those employing a L1 norm). The VC dimension of the

thresholded decision class Wt is called (Dudley’s) pseudodimension of the

decision class W121, and is denoted by

pdim(W) = VC(Wt) .

Considering these results, the relationship between covering numbers and

packing numbers, and the bound of (5.37) with p = 1, we obtain

PS∼Dm

{
sup
w∈W

[rD(w) − rS(w)] > ε

}

≤ 2

β
EQ∼Dm N̄1,Q(γ,W) exp



−m

(
ε−α(m,β)

2 − γ
)2

2




≤ 2

β
EQ∼Dm M1,Q(γ,W) exp



−m

(
ε−α(m,β)

2 − γ
)2

2




≤ 4

β

(
2e

γ
ln

2e

γ

)pdim(W)

exp



−m

(
ε−α(m,β)

2 − γ
)2

2


 .

Haussler also provided a packing number bound w.r.t. d1,Q for zero-one loss

functions which is tighter than the general-purpose one above. Specifically,

in Haussler (1991, Theorem 1), he shows that for any Q,

M1,Q(γ,W) ≤ e(VC(W) + 1)

(
2e(m+ 1)

mγ + 2VC(W) + 2

)VC(W)

≤ e(VC(W) + 1)

(
2e

γ

)VC(W)

, (5.55)

provided that mγ ∈ [1 : m]. Note that this result is in terms of the VC

dimension, not the pseudodimension, of W. This result is useful for bounds

on zero-one loss functions where γ is large enough that N̄1,Q(γ,W) < |QW |.
An example is if we would like to employ the bound of (5.16) directly without

relying on the bound of (5.18).

121Other names for this quantity include the combinatorial or Pollard dimension. An
equivalent formulation can be found in Anthony (1994, Definition 12.1)
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5.8.3 Fat-shattering dimension

Further refinements were obtained in Alon et al. (1993), Cesa-Bianchi and

Haussler (1998), Haussler and Long (1995). The authors generalized the

VCSS Lemma, employing alternative concepts of strong shattering and the

strong dimension of an hypothesis class. The formulation of the final result,

however, can be provided in terms of the more widely used fat-shattering

dimension. Unlike the VC dimension and the pseudodimension, which are

numbers, the fat-shattering dimension is a function, encoding the complex-

ity of a function class at various resolutions. In fact, the fat-shattering

dimension can be seen as a three-level generalization of the VC dimension.

We say that a decision class W of real-valued functions γ-shatters a set

R ⊆ X if there is a real-valued function φ such that for any R0 ⊆ R there

is a w ∈ W such that w(x) ≥ φ(x) + γ for x ∈ R0 and w(x) ≤ φ(x) − γ

for x ∈ R \ R0. The function mapping γ > 0 to the size of the largest set

which W γ-shatters (or infinity), is called the fat-shattering dimension (or

Pγ dimension — see Alon et al., 1993) of W, and is denoted by fatW . We

refer to fatW(γ) as the fat-shattering dimension122 of W at scale γ. Clearly

the fat-shattering dimension is decreasing on (0,∞). If the fat-shattering

dimension of W is finite at all scales γ > 0, we call W a uniform Glivenko-

Cantelli (GC) class.

If we restrict φ to be a constant function, we speak of uniform γ-shattering,

and the uniform fat-shattering dimension (or Vγ -dimension — see Alon et al.,

1993), fatVW . It is interesting to note that all bounds formulated in terms

of the fat-shattering dimension can be reformulated using the uniform fat-

shattering dimension — see Alon et al. (1993, Lemma 2.2). The limit of the

fat-shattering dimension of a function class as γ tends to 0 can be seen to

122Introduced by Kearns and Schapire (Kearns and Schapire, 1994), although they refer
to γ as the width of shattering. Interestingly, their work used the concept to derive lower

bounds on sample size for learning.
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be the pseudodimension of the class123:

pdim(W) = lim
γ→0+

fatW(γ) .

Thus, any class with finite pseudodimension is a uniform GC class.

Since the fat-shattering dimension is a decreasing function, we also have

that pdim(W) ≥ fatW(γ) for all γ > 0, and that if pdim(W) is finite, there

is some γ0 > 0 such that for 0 < γ < γ0, pdim(W) = fatW(γ).

Earlier, we discussed the VC-dimension: it can be viewed as a measure of

the ability of a class of functions to classify randomly labelled inputs. If one

considers the definition of the (uniform) fat-shattering dimension in this

light, we can interpret it as a measure of the ability of a class of functions to

“classify” randomly labelled points with a kind of safety buffer (correspond-

ing to γ) when thresholded. Informally, this safety buffer is the margin, and

provides extra confidence in the classification. Thus, we shall see that tra-

ditional classification bounds will employ the VC dimension, while margin

bounds will typically employ the fat-shattering dimension at some scale.

Improvements to the VCSS lemma were based on generalizing the lemma to

loss functions with a finite range. The original work in Alon et al. (1993)

employed a generalization of shattering known as strong shattering, leading

to the concept of strong dimension of the function class. It turns out that

the packing number of W w.r.t. d∞,Q can be related to the packing number

of a discretized version of W. This discretized version has a finite range

(related to the resolution desired for the packing number of W), and thus a

generalized VCSS lemma can be applied to bound its packing numbers.

A bound on the packing numbers of W is stated in Lemma 3.4 of Alon et al.
(1993), with a slight refinement implicit in the previous proof presented in
Lemma 4 of Anthony and Bartlett (1994).

Theorem5.26 (Packing number bound from fat-shattering dimension).

123The corresponding limit of the uniform fat-shattering dimension is known as the Vap-
nik dimension (Guermeur, 2004).
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Let 0 < γ < 1. Then

M∞,n(γ,W) ≤ 2

(
4n

γ2

)l
% log2

4n
γ
−log2 %!

m

≤ 2

(
4n

γ2

)l
% log2

2en
%γ

m

,

where % = fatW(γ
4 ) satisfies % < m.124

In addition, define

j =

%∑

i=1

(
n

i

)⌈
2

γ

⌉i

.

Then, for n ≥ log2 j + 1,

M∞,n(γ,W) < 2

(
n

⌈
2

γ

⌉2
)log2 j

.

The first form is more often used, although the second form is slightly

stronger, and is analogous to the combinatorial bound in the VCSS Lemma.

These results allow us to use the fat-shattering dimension as an analog of the

VC dimension for general loss functions, as well as a measure of complexity

when employing margin bounds. As a result, the fat-shattering dimension

of a class at a suitable scale is sometimes referred to as the effective VC di-

mension of the class, e.g. Cristianini and Shawe-Taylor (2000, Section 4.3).

Applying the bound above to the bound on regular deviation of risk in

124The original statement of this Theorem did not include this condition or the ceiling in
the final exponent; neither did it include the central inequality. The condition is necessary
because the proof effectively employs the VCSS lemma, which also allows the introduction
of the slightly tighter bound. The ceiling seems to have been dropped for convenience in
the original proof.
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(5.37), we obtain that

PS∼Dm

{
sup
w∈W

[rD(w) − rS(w)] > ε

}

≤ 2

β
EQ∼Dm N̄p,Q(γ,W) exp



−m

(
ε−α(m,β)

2 − γ
)2

2




≤ 2

β
M∞,m(γ,W) exp



−m

(
ε−α(m,β)

2 − γ
)2

2




≤ 4

β

(
4m

γ2

)% log2
2em
%γ

exp



−m

(
ε−α(m,β)

2 − γ
)2

2


 ,

where % = fatW(γ
4 ).

Haussler and Long (1995) provide an alternative result by directly general-
izing the VCSS lemma to classes of functions with finite range for various
generalizations of the concept of shattering. This led to the following result,
which bounds N∞,n(γ,W):

Theorem5.27 (Covering number bound from pseudodimension).

N∞,n(γ,W) ≤
%∑

i=1

(
n

i

)⌊
1

2γ

⌋i

,

where % = pdim(W).

Note that for n ≥ % and γ ≤ 1
2 we can relax the right hand side of the above

bound to (
en

%

)%

(2γ)−% =

(
en

2γ%

)%

,

by employing the same bound used to relax the VCSS lemma. This result

looks substantially tighter, but employs the pseudodimension, rather than

the fat-shattering dimension. In some cases, the pseudodimension is not

finite, even though the fat-shattering dimension is finite at every scale γ > 0.

Employing the results above for bounding the covering numbers in terms of

complexity dimensions are confounded by two complications. The first is

that the results only help when the appropriate dimension of the decision
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class is known. Although these dimensions have been determined for a

number of popular decision classes, finding these values for a decision class

in general is a very difficult problem, if a way to do it can be found at all.

Two points are important in this regard. First, adding functions to a decision

class can only increase its dimension. Thus, one often obtains the dimension

of a slightly expanded decision class for which finding the dimension is an

easier task. Second is a related issue: often bounds on the dimension are

used instead of the dimension itself, when finding the dimension directly is

not feasible.

The second issue leads us to the realization that we need further alterna-

tives besides these bounds: many decision classes have infinite VC, pseudo-,

and/or fat-shattering dimension. This means that bounds employing them

never become non-trivial, regardless of the sample size.

5.9 Bounding covering numbers

Having introduced some dimension quantities in the previous section, and il-

lustrated why they are helpful, we now turn to obtaining bounds on covering

numbers.

In general, finding a dimension quantitiy corresponding to a complex deci-

sion class directly is quite difficult. However, results have been found for

a number of simple classes, and these results can often be leveraged to ob-

tain bounds on more complex classes. Due to the theoretical importance of

finite dimensions in statistical and computational learning theory, the VC

dimension in particular has been studied extensively. Unfortunately, many

of the results only establish finiteness of the VC dimension of a class, rather

than providing a specific bound. Fortunately, a large number of results were

derived for complex classes such as artificial neural networks (for example

Anthony, 1997). These complex classes and their layered structure encour-

aged the development of methods for relating the VC dimension of complex

classes to the VC dimension of simple “building block” classes.
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5.9.1 Shatter coefficients and VC dimension

Our first focus will be on obtaining bounds on the VC dimension. First
we present some useful properties of shatter coefficients. These results are
taken from Devroye et al. (1996, Theorem 13.5) and Devroye and Lugosi
(2001, Theorem 4.1).

Theorem5.28 (Properties of shatter coefficients). Let C1,C2 be classes
of subsets of a set E, and n1, n2 ≥ 1 be integers.

• NC1(n1 + n2) ≤ NC1(n1)NC1(n2).

• NC1∪C2(n1) ≤ NC1(n1) + NC2(n1).

• Let
C3 = {E \ c : c ∈ C1} .

Then NC3(n1) = NC1(n1).

• Let
C3 = {c1 ∩ c2 : ci ∈ Ci} .

Then NC3
(n1) ≤ NC1

(n1)NC2
(n1).

• Let
C3 = {c1 ∪ c2 : ci ∈ Ci} .

Then NC3(n1) ≤ NC1(n1)NC2(n1).

• Let
C3 = {c1 × c2 : ci ∈ Ci} .

Then NC3(n1) ≤ NC1(n1)NC2(n1).

It follows that if C1 and C2 have finite VC dimension, so do the four forms

of C3 considered above, as well as C1 ∪ C2. In fact, it can further be shown

(by combining the above result with the VCSS lemma) that VC(C1 ∪C2) ≤
VC(C1) + VC(C2) + 1.

As pointed out in Examples 5.13 and 5.14:

• the class of (Borel) closed sets has infinite VC dimension;

• the class of intervals on IR with lower endpoint −∞ has VC dimension

1;
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• the class of halfspaces on IR has VC dimension 2;

• and the class of intervals on IR has VC dimension 2.

We shall now generalize the last three of these results in various ways. We

begin by extending the result for intervals on IR with lower endpoint −∞.

Example 5.15. Consider the class C of Cartesian products of intervals on IR
with lower endpoint −∞: given s = (s1, s2, · · · , sN ) ∈ IRN , define

cs =
N∏

i=1

(−∞, si] = {η ∈ IRN : η ≤ s} .

The VC dimension of C is N (Devroye et al., 1996, Theorem 13.8). ut

Example 5.16. A monotone layer is a generalization of these intervals. Specif-
ically, a set c is a monotone layer if η1 ∈ c implies η2 ∈ c for all η2 ≤ η1.
This definition applies in an arbitrary setting, not just in IRN .

It turns out that the class of monotone layers in IRN has infinite VC dimen-
sion (see Devroye et al., 1996, Problem 13.19). ut

Definition 5.5 (Linearly ordered by inclusion). We say a class of sets
C is linearly ordered by inclusion (Devroye et al., 1996, Problem 13.15) if,
for any two elements c1, c2 ∈ C , either c1 ⊆ c2 or c2 ⊆ c1.

It is clear that the class of intervals with lower endpoint −∞ is linearly

ordered by inclusion. By a proof analogous to Example 5.11 one obtains the

following result:

Theorem5.29. Suppose a class of sets C satisfies |C | ≥ 2. If C is linearly
ordered by inclusion, VC(C ) = 1.

Example 5.17. Let R be a non-empty subset of a vector space over IR, which
is star-shaped around 0.125 For any v > 0, define vR = {vη : η ∈ R}.

Then the convex cone generated by R, i.e. the class C = {vR : v > 0}, is
linearly ordered by inclusion, so that VC(C ) = 1. ut

125A subset R of a real vector space E is star-shaped around a point η if, for all v ∈ [0, 1],
we have η + v(η′ − η) ∈ R for all η′ ∈ R. Thus any line segment connecting a point in R

to η lies entirely in R.
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One can generalize the fact that the class of intervals in IR has VC dimension

2 to Euclidean N -space in two obvious ways. One analog of the interval is the

class of N -dimensional axis-parallel rectangles126, for which it can be shown

that the VC dimension is 2N (Blumer et al., 1989). The other analog of the

interval is the class of balls in N -dimensional space — the VC dimension of

this class is N + 1 (Devroye and Lugosi, 2001, Dudley, 1979).

Furthermore, one can generalize the result for intervals in a different way.

Consider the class of unions of up to K intervals in IR. Then the class of

intervals corresponds to K = 1. In general, the VC dimension of such a

class is 2K (Blumer et al., 1989).

5.9.2 Thresholded classes — VC and pseudodimension

Next we turn to a generalization of halfspaces. Note that we can write any

halfspace in IR as

{η ∈ IR : vη ≥ s}

for some v, s ∈ IR. This is easily generalized to IRN : a halfspace in IRN is a

set of the form

{η ∈ IRN : 〈v, η〉 ≥ s}

for v ∈ IRN , s ∈ IR. The boundary of this set,

{η ∈ IRN : 〈v, η〉 = s}

is an N -dimensional plane, which we call a hyperplane. It can be shown that

the VC dimension of the class of all halfspaces in IRN is N +1 (Vidyasagar,

2002, Wenocur and Dudley, 1981).

Steele (1975) and Dudley (1978) provide a powerful bound on the VC di-
mension of a wide variety of classes:

Theorem5.30 (VC dimension of a thresholded affine space). Let V
be an affine space127 of real-valued functions on IRN with dimension K. For

126Note that the axes in IRN can be rotated by a change of coordinates: axis-parallel
here thus merely means that all the rectangles should be oriented similarly.

127An affine space is a generalization of a vector space. The generalization of this result
from vector spaces to affine spaces is due to Hush and Scovel (2004).



Chapter 5. Training sample bounds 245

each φ ∈ V define
cφ = {η ∈ IRn : φ(η) ≥ 0} .

Then the class of sets C (V) = {cφ : φ ∈ V} has VC dimension K (Anthony,
1994, Devroye et al., 1996).

Equivalently, given that φ1(η), · · · , φK(η) are linearly independent real-valued
functions on IRN , consider the sign of a linear combination of these func-
tions, sgn(

∑K
i=1 viφi(η)). The VC dimension of the class of such thresholded

linear combinations equals K (Vapnik, 1998).

Example 5.18. Let φi(η) = η(i), the i-th component of η ∈ IRN , for i ∈
[1 : N ]; and let φN+1(η) = 1. These φi are linearly independent, and
thresholding their span at zero yields the set of halfspaces in IRN . This
confirms that the VC dimension of the set of halfspaces in IRN is N + 1.

Another important result concerns the restricted class of halfspaces where
we have s = 0. In this case, the corresponding hyperplanes pass through the
origin in IRn. This restricted class is obtained by thresholding the span of
φ1, · · · , φN at zero. It follows that the VC dimension of this restricted class
is N . ut

Example 5.19. This example is based on Devroye et al. (1996, Corollary 13.2).

Consider the class of closed balls in IRN . A closed ball is a set of the form

{
η ∈ IRN : ||η − v||2 ≤ s

}
,

for v ∈ IRN , s ∈ IR+.

Setting φi(η) = η(i), φN+1(η) = 1, and φN+2(η) = ||η||2 and expanding the
norms coordinate-wise, one sees that any closed ball can be obtained by
thresholding a function in the span of the φi.

It follows that the VC dimension of the class of closed balls does not exceed
N + 2. As we have seen, it actually equals N + 1. The reason the bound is
not exact is because the thresholded span of the φi contains more sets than
just the closed balls. Note that the class of closed balls are parametrized by
only N + 1 real values, with the coefficient of ||η||2 fixed at 1. ut

Example 5.20. In this example we consider a larger class than the closed
balls, the class of closed axis-parallel ellipsoids in IRN . A closed axis-parallel
ellipsoid is a set of the form

{η ∈ IRN : (η − v)T S (η − v) ≤ 1} ,
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where v ∈ IRN and S is a positive definite symmetric N ×N matrix.

Expanding (η−v)T S (η−v)−1 into its components leads one to consider the

basis consisting of the N functions of the form [η(i)]2, the N(N−1)
2 functions

of the form η(i)η(j), and the constant function 1. Clearly thresholding the
span of these functions yields a class containing all these ellipsoids.

It follows that the VC dimension of the class of closed axis-parallel ellipsoids
does not exceed

N +
N(N − 1)

2
+ 1 =

N(N + 1)

2
+ 1 .

ut

Example 5.21. This example shows that the pseudodimension of V in The-
orem 5.30 is K or K + 1.

The pseudodimension of V is the VC dimension of Vt. Clearly C (V) ⊆ Vt,
so that pdim(V) ≥ K.

Now, consider V ′, the smallest vector space containing V and the constant
function {1}. Any element of Vt can be written as

cφ,s{η ∈ IRN : φ(η) ≥ s} = {η : φ(η) − s ≥ 0}

for some s ∈ IR. Thus, it follows that Vt ⊆ C (V ′), where C (V ′) is defined
by analogy to C (V). Furthermore, the dimension of V ′ is either K or K+1,
yielding the result we seek. ut

Some modifications to an hypothesis class do not affect certain dimension

measures of complexity.

Example 5.22. Let V be as in Theorem 5.30, and let v be an arbitrary real-
valued function. Define the class

v + V = {v + φ : φ ∈ V} .

For each φ ∈ v + V define

cφ = {η ∈ IRN : cφ ≥ 0} .

Then the class of sets C (v + V) = {cφ : φ ∈ v + V} has VC dimension
K (Wenocur and Dudley, 1981).

In other words, adding a fixed function to every function in V before thresh-
olding does not change the VC dimension of the class.
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It follows immediately that pdim(C (v+V)) isK orK+1. Thanks to the first
result in the following example, we actually have pdim(v + V) = pdim(V).

ut

Example 5.23. Consider an arbitrary real-valued function class V, and define
v+V as in Example 5.22. Then pdim(v+V) = pdim(V). This result is due
to Wenocur and Dudley (1981).

Define the class
v ◦ V = {v ◦ φ : φ ∈ V}

for a function v : [0, 1] → IR. If v is nondecreasing, pdim(v◦V) ≤ pdim(V) (Dud-
ley, 1987, Nolan and Pollard, 1987). ut

Thus, when working with a real-valued hypothesis class, one can add a

specific function to each element of the class to form a new class with the

same pseudodimension; in addition, composing each element of a real-valued

hypothesis class with a fixed, non-decreasing function cannot result in a new

class with a larger pseudodimension.

Blumer et al. (1989) provides a valuable result for bounding the VC di-
mension of classes constructed by finite unions or intersections from classes
with known or bounded VC dimension, based on a slightly weaker result
from Haussler (1986):

Theorem5.31 (Lemma 3.2.3 of Blumer et al., 1989). Let C ? denote
the class of unions of up to K elements of a class C . Then

VC(C ?) ≤ 2VC(C )K log2(3K) .

The same result applies when C ? is the class of intersections of up to K
elements of C .

Note that the result for intervals above shows that this bound can be quite

loose: the union of up to K intervals has VC dimension exactly 2K, and the

original class of intervals has VC dimension 1.

Example 5.24. Consider the class C ? of intersections of up to K halfspaces
in IRN . Since the VC dimension of the underlying class is N + 1, we have
that VC(C ?) ≤ 2(N + 1)K log2(3K).
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Note that if K ≥ N + 1, C ? contains the convex polytopes in IRN with up
to K facets128

The restriction to a finite number K of intersections or unions is necessary
in this case (and many others). A direct derivation of the VC dimension
of the class of convex polytopes with up to K facets by a direct shattering
argument yields VC(C ?) = 2K − 1 (Blumer et al., 1989, Example 3.2.2).
It follows that the class of all convex polytopes in IRN (with an arbitrary
number of facets) has infinite VC dimension.

In addition, we note that if K = N + 1, the class of convex polytopes with
K facets is the class of N -simplices129. Thus the class of N -simplices has
VC dimension at most 2N + 1. ut

A rather irksome restriction in Theorem 5.31 is the restriction to employing
either unions or intersections. In practice, we may like to employ combina-
tions of the two, as well as set difference. The following result allows us to
do so:

Theorem5.32 (VC dimension of a set-theoretic formula). Let C ? de-
note the class of all sets obtainable by any set-theoretic formula (using
unions, intersections, and set differences) involving K elements of a class
C . Then

VC(C ?) ≤ 2VC(C )K log2(2VC(C )K) .

Example 5.25. It follows from this result that the class of all (convex and
non-convex) polygons in IR2 with at most 5 sides has VC dimension at most

2 · (2 + 1) · 5 log2(2 · (2 + 1) · 5) = 30 log2 30 < 148 .

ut

Note that a number of classification bounds were provided in terms of cov-
ering numbers, after which the limit is often taken as the scale tends to
zero. The following result from Alexander (1984) on covering numbers for
zero-one functions seems to underpin the result in Theorem 5.32.

Theorem5.33 (Covering numbers of a set-theoretic formula). Let V
denote the class of indicator functions corresponding to the concepts in C in

128A polytope is a higher-dimensional generalization of a polygon or polyhedron, and a
facet corresponds to the concept of the edge of a polygon or the face of a polyhedron.

129A simplex is a higher dimensional analog of a triangle: a convex polytope with the
least number of facets.
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Theorem 5.32, and let V? be the corresponding class of indicator functions
of concepts in C ?.

Then, for any distribution P ,

N1,P (γ,C ?) ≤
[
N1,P

( γ
K
,C
)]K

.

5.9.3 Covering number bounds, pseudodimension and Eu-

clidean classes

We now move our focus from the VC dimension and shatter coefficients to

more general covering numbers and their associated dimension quantities.

We begin with some bounds relating covering numbers of simple classes to

those of classes built from them. To do this, we generally assume that the

functions in any function classes are defined on IRn.

Definition 5.6 (Envelope). Suppose a function φ? satisfies φ? ≥ φ for all
φ ∈ V. Then φ? is called an envelope of V. The smallest envelope of V is
called the natural envelope of V, denoted by envV .

Example 5.26. All the decision classes we consider have the constant function
1 as an envelope. If, for every point x ∈ X , there is a w ∈ W such that
w(x) = 1, 1 is a natural envelope for W, ut

Many of the results we have stated can be generalized to classes of bounded

and even unbounded loss by incorporating a type of normalization based

on the envelope of the relevant function classes. Since we are considering

building functions into [0, 1] from other components which do not necessarily

map into [0, 1], we need to introduce the envelope concept here.

The following theorem is mostly based on the section on packing numbers
in Pollard (1990, Chapter 5).

Theorem5.34 (Properties of covering numbers). Let V1,V2 be real-
valued function classes, d be a pseudometric, and let γ1, γ2 > 0.

1. N (γ1,V1 ∩ V2, d) ≤ min(N (γ1,V1, d),N (γ1,V2, d)).
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2. N (γ1,V1 ∪ V2, d) ≤ N (γ1,V1, d) + N (γ1,V2, d).

3. Let V3 be any of the following classes:

• {φ1 + φ2 : φ1 ∈ V1, φ2 ∈ V2};
• {max(φ1, φ2)(·) : φ1 ∈ V1, φ2 ∈ V2}; or

• {min(φ1, φ2)(·) : φ1 ∈ V1, φ2 ∈ V2},

where the max and min of the functions are defined pointwise (i.e.
[max(φ1, φ2)](x) = max(φ1(x), φ2(x))).

Then we have

N (γ1 + γ2,V3, d) ≤ N (γ1,V1, d)N (γ2,V2, d) .

4. Suppose for i = 1, 2, we have that the constant function Ki is an
envelope for Vi, and that d satisfies

d(Kφ1,Kφ2) ≤ |K|d(φ1, φ2)

for all K ∈ IR and functions φ1 ∈ V1, φ2 ∈ V2. Let

V3 = {φ1φ2 : φ1 ∈ V1, φ2 ∈ V2} .

Then we have

N (K2γ1 +K1γ2,V3, d) ≤ N (γ1,V1, d)N (γ2,V2, d) .

The first two results are trivial, and all three cases for the third result are

easily obtained using the triangle inequality. The fourth result also uses

the triangle inequality, but in a slightly more sophisticated way. It is a

special case of the corresponding result in Pollard (1990), since it assumes

the functions in the classes are bounded.

Clearly applying these results repeatedly yields bounds on covering numbers

of sums, products, minima, maxima, intersections and unions of k functions.

Example 5.27. We apply the result to the sum of K functions with equal γi.

Let V = {∑K
i=1 φi : φi ∈ Vi} for some function classes V1, · · · ,Vk. Then, for

every γ > 0 and every sample Q,

Np,Q(γ,W) ≤
K∏

i=1

Np,Q

( γ
K
,Vi

)
.

This result, with p = 1, is Devroye et al. (1996, Theorem 29.6). ut
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We recall that one can generally obtain a bound for an algorithm employing

a given hypothesis class in terms of covers of a surrogate hypothesis class.

Many such classes are obtained by composition with some kind of well-

behaved function.

Next, we present a covering number result for the composition of functions

where the outer functions are Lipschitz, which is a reasonably straightfor-

ward generalization of Anthony and Bartlett (1999, Lemma 14.3).

Theorem5.35. Let V1 be a class of functions from a set E1 to a metric
space (E2, d), and V2 be a class of K-Lipschitz (w.r.t. d) functions from E2

into IR.

Then, for any distribution P1 on E1,

N∞,P1(Kγ1 + γ2,V2 ◦ V1) ≤ N∞,P1(γ1,V1)N∞,P2(γ2,V2) ,

where
V2 ◦ V1 = {φ2 ◦ φ1 : φ1 ∈ V1, φ2 ∈ V2} ,

and P2 is any distribution on E2 with support equal to E2.

Example 5.28. A rather trivial, yet very important, example of this is when
V2 consists of a single K-Lipschitz squashing function φ? being applied to
an hypothesis class H. In that case, the second covering number is clearly
one, and we obtain

N∞,P (γ, φ?(H)) ≤ N∞,P

( γ
K
,H
)
.

The first notable field of application of this result is to the zero-one loss
function L(y1, y2) = I(y1 6= y2) when y1, y2 ∈ {0, 1}. This function is 1-
Lipschitz. A second useful application of this result is for margin bounds:
the trimming function π(s−γ′,s+γ′) is 1-Lipschitz. In both cases, it follows
that composition with the relevant function can not increase the covering
numbers employed in the bounds. Note that for margin bounds, γ ′ must be
selected at least as large as the margin required for the empirical margin loss,
since otherwise, no points achieve the margin for any function in the trimmed
class. Thus, γ ′ is typically chosen equal to the margin under consideration.

See Bartlett (1998, Proposition 25) for related results. ut

Furthermore, note that the loss class can be seen as the composition of the

decision class with the loss function, and the decision class can often be seen
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as the composition of the hypothesis class with the strategy. Thus results

like the one above are powerful tools for obtaining covering numbers on the

loss class.130

We now present a closely related result which can provide a connection be-

tween the covering number of a decision class and a loss class for a wide vari-

ety of loss functions, or between those of a decision and hypothesis class for

a variety of strategies. It is a basic generalization of Lemma 2 of Williamson

et al. (1998b) to p-norms, and allowing P to be an arbitrary distribution.

Theorem5.36. Let V be a class of functions mapping X into [L ,U ] ⊆ IR,
and v : [L ,U ]2 → IR+. For φ ∈ V, define

φ′((x, y)) = v(φ(x), y)

and
V ′ = {φ′ : φ ∈ V} .

Suppose there is a function v′ which is K-Lipschitz131 on [L −U ,U − L ]
such that v(y1, y2) = v′(y1 − y2) for all y1, y2 ∈ [L ,U ].

Then, for all distributions P on Z = X × [L ,U ], all p ≥ 1, and all γ > 0,

Np,P (γ,V ′) ≤ Np,P

( γ
K
,V
)
.

When P is an empirical distribution, a bound on N∞,P (γ,V ′) can be found

from the bound on N1,P (γ,V ′).

Example 5.29. Suppose for a problem we have A = Y = [L ,U ], with deci-
sion class W.

Consider the polynomial loss function L(r, y) = |r − y|K . Then L can be
written as L′(r − y), and L′ can be shown to be Lipchitz with constant
K(U − L )K−1 (Williamson et al., 1998b, Lemma 2). This allows one to
easily obtain bounds on two very common loss functions: the absolute loss,
and the squared error loss.

130Note that in the modified setting, we assume the loss function is the identity function.
This is useful for theoretical derivations. However, in practice, bounds must be obtained
for the loss class, while the loss function is not typically the identity function.

131Actually, a slightly weaker condition often suffices — see the original article for more
details.
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For example, the covering numbers of the loss class for squared error loss,
when Y = [0, 1], is bounded by

Np,P (γ,FW) ≤ Np,P

(γ
2
,W
)
.

ut

We shall see that many function classes V satisfy the following condition:

for every distribution Q with Eη∼Q envV(η) finite, we have

N1,Q(γ,V) ≤ E1

(
Eη∼Q envV(η)

γ

)E2

,

for some constants E1, E2 ≥ 0. Following Nolan and Pollard (1987), we call

such a class (E1, E2)-Euclidean132. A Euclidean class is any class which is

Euclidean for some constants (E1, E2). If the result holds with envV replaced

by another envelope φ?, we say that the class is (E1, E2)-Euclidean for φ?.

This is a slightly stronger condition, since φ? ≥ envV .

If an envelope φ? of V is bounded, the covering numbers are bounded for

every distribution Q, including those where Q is an empirical distribution.

Note that the covering number bound is then independent of the sample size

underlying the empirical distribution.

We have the following result implicit in Pollard (1984, Lemma II.25).

Theorem5.37. If % = pdim(V) is finite, then V is (E1(%), E2(%))-Euclidean,
where E1(%) = 2%, and E2(%) = max(v0(%), [v1(%)]

2), with B(%) and v0(%)
as follows:

• v0(%) is the solution to

(1 + 4 ln v)% =
√
v . (5.56)

• v1(%) is such that
%∑

i=0

(
j

i

)
≤ v1(%)j

%

for all j ≥ %, and
2j ≤ v1(%)j

%

132Because their covering numbers grow at a rate similar to an E2-dimensional Euclidean
space.
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for 1 ≤ j < %.133

It is natural to consider whether there are any other Euclidean classes besides

the classes of finite pseudodimension. Since any (E1, E2)-Euclidean class is

also (E′
1, E

′
2)-Euclidean when (E ′

1, E
′
2) ≥ (E1, E2), we can show this is the

case by showing that for any (E1, E2), there is a % such that (E1(%), E2(%)) ≥
(E1, E2).

Clearly, for any % > E1
2 , we have E1(d) > E1. Let us next consider v0(%):

rewriting (5.56), we have that v0(%) is the solution to

% =
ln v

2 ln(1 + 4 ln v)
.

The right hand side is O( ln v
ln ln v

) so that it becomes infinitely large as v → ∞.

Thus, we can obtain v0(%), and hence E2(%), arbitrarily large by selecting d

large enough.

We thus have the following characterization of Euclidean classes.

Theorem5.38. A function class V is Euclidean if and only if it has finite
pseudodimension.

It follows from this result that function classes with finite fat-shattering

dimension at all scales, but infinite pseudodimension, are uniform Glivenko-

Cantelli classes, but not Euclidean classes.

It is not difficult to show that the set of Euclidean classes is closed under

finite unions, intersections, maxima, minima, addition, and multiplication,

based on Theorem 5.34. In fact, Theorem 5.34 may often allow us to obtain

upper bounds for E1 and E2 for the modified classes given the corresponding

values for the original classes. Combining such results with Theorem 5.37

would yield bounds for many complicated classes of finite pseudodimension,

but for which it is not practical to find the pseudodimension directly. How-

ever, it is generally more desirable to employ Theorem 5.34 together with

133Clearly this is possible, since the left hand side of the first inequality (which corre-
sponds to the expression in the VCSS lemma) are merely points on a polynomial of degree
%. This interpretation explains why VC classes are sometimes called polynomial classes.
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a more direct bound on the covering numbers of a class of finite pseudodi-

mension, such as Theorem 5.27.

Anthony and Bartlett (1999, Theorems 11.3 and 11.14) provides essentially

the following results.

Theorem5.39. Let v be a monotonic function and V a class of real-valued
functions. Let v ◦ V = {v ◦ φ : φ ∈ V}. Then

pdim(v ◦ V) ≤ pdim(V) .

Theorem5.40. If a function class V is closed under scalar multiplication,
then

pdim(V) = fatF (γ)

for all γ > 0.

The first result basically says that one can not increase the pseudodimension

of a function class by smoothing the functions in the class. The second re-

sult applies in particular to any function classes which form a vector space,

so that we may be able to get bounds on the pseudodimension from Theo-

rem 5.30. In these cases, it is recommended to bound covering numbers by

using results based on the pseudodimension. Bounds on covering numbers

based on fat-shattering dimension rely on the fact that the fat-shattering

dimension at resolution γ can be substantially less than the pseudodimen-

sion. This improvement in the dimension quantity often outweighs increases

in other components of the bound. However, this is not the case when the

fat-shattering dimension is constant (or decreases too slowly).

5.9.4 More covering number bounds, and fat-shattering di-

mension

For other basic function classes, bounds on the fat-shattering dimension

have relied on knowledge of the functions in the class. We present two such

results next, after providing an introductory definition.

Definition 5.7 (Total and bounded variation). A real-valued function
φ defined over an interval [L ,U ] is said to have bounded variation on
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[L ,U ] if there is a finite K such that for every j ∈ IN, and every increasing
sequence (v1, · · · , vn) with v1 ≥ L and vn ≤ U , we have

j−1∑

i=1

|φ(vi+1) − φ(vi)| ≤ K .

The total variation of φ on [L ,U ] is the infimum of all K satisfying the
above inequality.

Informally, suppose one could walk along the graph of v from L to U .

Then the total variation of a function can be thought of as the total height

climbed in the trip added to the total height descended. It should be clear

that functions with smaller total variation tend to be less “wiggly” than

functions with larger total variation. As a result, we can expect function

classes containing such functions to be less prone to overfitting. We can

quantify this intuition with a bound on the fat-shattering dimension.

Theorem5.41. Let V be the class of all functions with total variation on
[0, 1] not exceeding K. Then

N∞,n(γ,V) < 2

(
4n

γ2

)“
1+ 2K

γ

”
log2

2en
K

and

fatV(γ) = 1 +

⌊
K

2γ

⌋
.

This result is presented in Anthony and Bartlett (1999, Theorems 11.12 and

12.12), but the authors attribute the discovery to Simon (1997). This result

is interesting in that the fat-shattering dimension is linear in 1
γ
. Thus it is

clear that the class has infinite pseudodimension. Classes of functions with

fat-shattering dimension growing as a polynomial in 1
γ

are clearly better

behaved than functions with faster growing dimensions. It turns out that

polynomial growth has implications for the class to be able to tolerate noise.

This application does not fall into our framework however, so we refer the

interested reader to Bartlett et al. (1996), where some other implications

are also discussed.
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Other important functions are those which satisfy a Lipschitz condition. The

following result relates the fat-shattering dimension of a class of Lipschitz

functions to a covering number of the domain of the functions in the class.

Theorem5.42 (Theorem 13 of Bartlett, 1998). Let (E , d) be a totally
bounded metric space. Let V be the class of all real-valued functions φ on E
which are K-Lipschitz, i.e. for any η1, η2 ∈ E, we have

|φ(η1) − φ(η2)| ≤ Kd(η1, η2) .

Then fatV(γ) ≤ N
(
E , γ

K
, d
)
.

Example 5.30. If E is a bounded subset of IRN , and d is the Euclidean dis-
tance, N (E , γ

K
, d) behaves like ( γ

K
)−n. Therefore, the class of functions

which are K-Lipschitz on this space is Euclidean and thus has finite pseu-
dodimension. ut

We now present the well-known radius-margin bounds. The original results

of this type were bounds on the VC dimension of a restricted class of half-

spaces. These bounds are closely related to early work on the perceptron

in the 1960’s, but early proofs of the bound relied on a result which was

thought to hold “by symmetry considerations” (see, for example, Vapnik,

1998). After the need for a more rigorous proof for this result was highlighted

in Burges (1998) (and a correction to the result made), a proof for the result

was finally presented in Hush and Scovel (2001), putting this class of bounds

on a firm footing.

The following theorem is essentially the classical radius-margin bound on
the VC dimension of restricted thresholded classifiers.

Theorem5.43 (Radius-margin bound on VC dimension). Let E be an
inner product space, and let E ′ ⊆ E be contained in some ball of radius c.
For any η ∈ E and s ∈ IR, we define the function hη,s : E → IR by

hη,s(η
′) = 〈η, η′〉 + s .

Consider the class
H = {hη,s : ‖η‖ ≤ K, s ∈ IR}
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and its subclass

H′ =

{
h ∈ H : inf

η′∈E ′
|h(η′)| = 1

}
.

Consider the class W obtained by thresholding the elements of H ′ at zero,

W = sgn(H′) =
{
sgn ◦h : h ∈ H′} .

The restriction of W to the points in X ′, W|E ′ , satisfies

VC (W|E ′) ≤ min
{⌈
c2K2

⌉
, N
}

+ 1 ,

where N is the dimension of E (possibly infinite).

While the above result has some theoretical appeal, the rise of margin

bounds meant that it was more interesting to consider the fat-shattering

dimension of the unthresholded functions which yielded the halfspaces. In-

deed, in one of the first papers presenting margin bounds, Shawe-Taylor

et al. (1998) gives such a fat-shattering dimension bound based on extend-

ing the result above by a γ-shattering argument. They obtain the following

result.

Theorem5.44 (Radius-margin bound on fat-shattering dimension).
Let E be an inner product space, and let E ′ ⊆ E be contained in some ball of
radius c. For any η ∈ E and s ∈ IR, define the function hη,s : E → IR by

hη,s(η
′) = 〈η, η′〉 + s .

Consider the class

H = {hη,s : ‖η‖ = 1, |s| ≤ c} .

Then the restriction of H to E ′ satisfies

fatH|E′ (γ) ≤ min

{⌈
9c2

γ2

⌉
, N + 1

}
+ 1 ,

where N is the dimension of E (possibly infinite).

A more direct approach seems to have been taken in Gurvits (1997). This

allowed tighter bounds to be obtained at the cost of some restrictions: no-

tably, the ball containing E0 had to be centred at the origin, and s had to

be zero. The following representative result is Shawe-Taylor and Cristianini

(2000, Theorem III.6).
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Theorem5.45 (Radius-margin bound on fat-shattering dimension).
Let E be an inner product space. Let H be the class of linear functions with
norm less than K. Let E0 be the ball of radius c about the origin in E.

Then

fatH|E0
(γ) ≤

(
Kc

γ

)2

.

In principle, this result can be extended by adding an extra dimension to

the space for the threshold, but then the size of the threshold is limited by

the choice of c.

An important breakthrough in this area was the recent work of Hush and

Scovel (2004). Their results provide exact values for the fat-shattering di-

mension of a restricted affine function class.

Theorem5.46 (Fat-shattering dimension of restricted affine class).
Let E be an inner product space of finite dimension N , and E0 the ball of
radius c about the origin of E.

For any η ∈ E and s ∈ IR, we define the function hη,s : E → IR by

hη,s(η
′) = 〈η, η′〉 + s .

Define
H = {hη,s : ‖η‖ ≤ K, s ∈ IR} ,

the class of affine transformations with the norm of the linear transformation
component not exceeding K.

Denote, for i ∈ IN,

γi =

{
1√
i−1

, i even;
i

(i−1)
√

i+1
, i odd.

Then

fatH|E0
(γ) =

{
N + 1, γ

cK
≤ γN+1

i, γi+1 ≤ γ
cK

≤ γi, 1 ≤ i ≤ N + 1
.

It follows that

max

{(
cK

γ

)2

, 1

}
≤ fatH|E0

(γ) ≤ min

{(
cK

γ

)2

+
5

4
, N + 1

}
.
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The results in the theorem could be stated to apply to infinite dimensional

spaces as well — this is only not done to avoid notational nuisances.

Note that this result combines the best of the previous two theorems, and

in addition it applies for any threshold s.

We conclude this section with a consideration of convex hulls of hypothesis

classes. Such convex hulls are relevant in a number of algorithms, notably

ensemble classifiers, such as various voting classifiers and boosting, where a

convex combination of base classifiers are employed to make a prediction.

Since the convex hull of a class H consists of real-valued functions, it would

be useful to bound the pseudodimension or fat-shattering dimension of the

class. Of course, it seems natural that such a dimension would depend on

the capacity of the class H.

The following specialization of a theorem from Bartlett (1998) is an example

of such a result.

Theorem5.47 (Fat-shattering dimension of a convex hull). Let H be
a class of functions mapping into

[−K
2 , K

2

]
. Suppose γ ≥ 0 is such that

% = fatH( γ
32 ) ≥ 1.

Then fatabsconv H(γ) ≤ cK2%
γ2

(
ln K%

γ

)2
for some universal constant c.

Unfortunately, this result employs the unspecified constant c. However,

the result is based on the following relationship between covering numbers,

which does not depend on c.

Theorem5.48 (Covering numbers of a convex hull). Let H be a class
of functions mapping into

[−K
2 , K

2

]
. Then

log2 (N2,n(γ, absconvH)) ≤ 2K2

γ2
log2

(
2N2,n

(γ
2
,H
)

+ 1
)
.

5.9.5 Bounds from functional analysis

With the rise in popularity of the SV machine and related techniques, the

idea of the kernel trick has become important. The kernel trick refers to
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a method for obtainining nonlinear techniques from linear techniques. The

approach makes use of a kernel function K . K (η1, η2) then typically cor-

responds to an inner product in some feature space:

K (η1, η2) = 〈Φ(η1), Φ(η2)〉 ,

where Φ is a mapping from the input space to the feature space, which can

typically be regarded as `2. More details on the kernel trick are available in

the many books available treating support vector machines, e.g. Cristianini

and Shawe-Taylor (2000), Schölkopf and Smola (2002).

Many kernel-based algorithms, and specifically support vector machines,

select their decision rule from a class which can be expressed as (thresholded

versions of) linear functions in feature space. As such, the results above can

be applied to obtain bounds on the covering number of the hypothesis class.

However, since the feature space typically has a much higher (often infinite)

dimension, the transformation Φ employed by the kernel restricts the image

of input space to a subset of the feature space.

Example 5.31. Consider the Gaussian kernel K (η1, η2) = exp
(
−‖η1−η2‖2

2σ2

)
,

where σ is a parameter controlling the bandwidth of the kernel.

In this case, for any η, we have K (η, η) = 1, so that the kernel maps the
input space onto the unit ball in `2. ut

In what follows, we attempt to outline the approach used to obtain good

bounds for kernel-based algorithms while glossing over technicalities. Full

details can be found in Guo et al. (2002), Williamson et al. (1998a,b, 2000).

In order to follow the argument, it is useful to introduce the idea of entropy

numbers, which can be seen as a functional inverse of covering numbers.

Definition 5.8 (Entropy numbers). Let j ∈ IN. The j-th entropy num-
ber Nj(J ) of a set J ⊆ E is defined by

Nj(J ) = inf{γ > 0 : N̄ (γ,J , d) ≤ j} ,

where (E , d) is a pseudometric space.
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The j-th entropy number Nj(T ) of a bounded linear operator T : E1 → E2

is defined by
Nj(T ) = εj(T (BE1)) ,

where BE1 denotes the unit ball in E1.

First, we note that N1(T ) = ‖T‖. Second, it is clear from the definition

that Nj(T ) ≤ γ implies N (γ, T (UE), dE∈) ≤ j.

For the kernel K , one can consider the integral operator TK associated

with K . When TK is non-negative and compact, the spectrum of TK is

countable, and one can express the map Φ in terms of the eigenvalues (λi)

and the associated eigenfunctions (ψi) of TK . Specifically, we have that

Φ : E → `2 satisfies

(Φ(η))(i) =
√
λiψi(η)

where the eigenvalues λi are sorted in non-increasing order. Furthermore

the eigenfunctions are uniformly bounded by some constant CK . It follows

that Φ(E) is restricted to the axis-parallel parallelipiped134

[−λ1CK , λ1CK ] × [−λ2CK , λ2CK ] × · · · × [−λiCK , λiCK ] × · · · .

The smallest ball containing this parallelipiped would intuitively have a

radius equal to the “diagonal” of this infinite dimensional parallelipiped.

However, Φ(E) actually only occupies a thin slice of that ball. The key to

improvement is to rather fit Φ(E) into an ellipsoid. By appropriately scaling

the axes of the ellipsoid, we can map the ellipsoid into the unit ball, and

vice versa. If we denote the mapping from the unit ball to the ellipsoid by

A, we can write Φ = A(A−1Φ). It turns out to be important that the scaling

operation represented by A is a diagonal operator. We do not yet commit

to a specific ellipsoid — we shall choose A to optimize the resulting bound.

Now, consider the class of linear functions in feature space represented by

HK = {〈v, Φ(·)〉 : ‖v‖ ≤ K}. We shall provide bounds on N∞,Q(γ,HK).

134Technically, it is possible that this does not hold. However, similar results can still be
obtained in this case. See the discussion in Guo et al. (2002, p. 241).
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For an n-vector V = (v1, · · · , vn) ∈ (`2)n, define the evaluation map SV :

`2 → `∞n by

SV (v) = (〈v, v1〉, 〈v, v2〉, · · · , 〈v, vn〉) .

Let Q be an n-sample with x1, · · · , xn being the predictors for each data

point. Denoting (Φ(x1), · · · , Φ(xn)) by Φ(Q), SΦ(Q)(v) is the vector

(〈v, Φ(x1)〉 , · · · , 〈v, Φ(xn)〉) .

It follows that we are trying to find the covering number of

{SΦ(Q)(v) : ‖v‖ ≤ K}

with the metric of (`∞)n. We can rewrite this as

{
SA(A−1Φ(Q))(Kv) : ‖v‖ ≤ 1

}
.

Now, because A is diagonal, it is self-adjoint, so

〈
Kw,AA−1Φ(xi)

〉
=
〈
AKw,A−1Φ(xi)

〉

and hence the set above is

{SA−1Φ(Q)(AKw) : ‖w‖ ≤ 1} = SA−1Φ(Q)AK(B`2) .

The following results on entropy numbers of operators, taken from Williamson

et al. (1998b), now allow us to obtain bounds. We write L(E1, E2) for the

class of bounded linear operators from E1 into E2. The first result relates

the entropy numbers of products of operators to those of each operator.

The second result provides an entropy number result which is useful for the

evaluation map. The third result bounds the entropy number of a diagonal

operator, such as A.

Theorem5.49 (Entropy numbers of composed operators). Let E1, E2,
and E3 be Banach spaces. Let T1 ∈ L(E2, E3) and T2 ∈ L(E1, E2). For any
j1, j2 ∈ IN,

Nj1j2(T1T2) ≤ Nj1(T1)Nj2(T2) . (5.57)
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Setting j1 = 1, we have

εj(T1T2) ≤ ‖T1‖εj(S) .

A similar result is obtained by setting j2 = 1.

Theorem5.50 (Entropy number of an evaluation map). Let E be a
Hilbert space, n ∈ IN, and T ∈ L(E , `∞n ). Then, for c ≥ 102.88,

Nj(T ) ≤ c‖T‖
√

(ln j + 1)−1 ln

(
1 +

n

ln j + 1

)
.

It is conjectured that this theorem still holds with c ≥ 1.86, but to my

knowledge this problem remains open. The conjecture (and its motivation)

appears with further improvements on this result in Williamson et al. (2000,

Lemma 16).

Theorem5.51 (Entropy number of a diagonal operator). Let (ηi) be
a non-increasing sequence defining a diagonal operator T : `p → `p by

Tv = (η1v1, η2v2, · · · , ηivi, · · · ) ,

for 1 ≤ p ≤ ∞. Then, for all j ∈ IN,

sup
i∈IN

[
j

−1
i (σ1σ2 · · · σi)

1
i

]
≤ Nn(T ) ≤ 6 sup

i∈IN

[
j

−1
i (σ1σ2 · · · σi)

1
i

]
.

We now have

Nj1j2(SA−1Φ(Q)AK) = KNj1j2(SA−1Φ(Q)A)

≤ KNj1(SA−1Φ(Q))Nj2(A)

for any j1, j2 ∈ IN. For j1 = 1, we note that by the construction of A,

‖SA−1Φ(Q)‖ ≤ 1, so that we obtain

Nj

(
SA−1Φ(Q)AK

)
≤ KNj(A) .

In this result, we only used Theorem 5.49. Alternatively, applying Theo-

rem 5.50, one obtains

Nj1j2(SA−1Φ(Q)AK) ≤ cK

√
(ln j1 + 1)−1 ln

(
1 +

n

ln j1 + 1

)
Nj2(A) .
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Finally, we need bounds on Nj(A). In order to ensure that A meets the

requirements of the construction, we have that A is a diagonal operator

defined by a sequence
(
CK

∥∥∥∥
(√

λi

ai

)∥∥∥∥
`2
ai

)
,

where the choice of (ai) can be used to optimize Theorem 5.51 (under the

restriction that the norm in the sequence is finite).

The optimal choice of (ai) was found in Guo et al. (2002). Let

i? = min

{
i ∈ IN : λi+1 <

(
λ1λ2 · · · λi

n2

) 1
i

}
.

Using i?, we define the optimal (a?
i ) by

a?
i =





√
λi, i ≤ i?

(√
λ1λ2···λi?

j

) 1
i?

i > i?
.

For this choice of (a?
j ), Theorem 5.51 gives

Nj(A) ≤ 6CK

√√√√i?
(
λ1λ2 · · · λi?

j2

) 1
i?

+
∞∑

i′=i?+1

λi′ .

We still have some problems with applying this result. The most obvious

one is that it is not clear how to obtain the eigenvalues and eigenfunctions

of the kernel. We will return to this problem in a moment. However, a

more subtle problem is the assumption that TK is compact. In most cases,

the kernels employed in practice have non-compact support so that this

assumption may be violated. The key to solving this problem is that the

integral operator corresponding to a ν-periodic extension of a translation-

invariant kernel is compact. Suppose the kernel K is defined for inputs in

IRN . Let Gν = {η ∈ IRN :
(
∀i ∈ [1 : N ] : η(i) = jν, j ∈ ZZ

)
} be a regular grid

of points with an interval of ν. Let Gν(η) = η + Gν = {η + η′ : η′ ∈ Gν}.
Then the ν-periodic extension of K is defined by

Kν(η, η′) = K ′
ν (η − η′) =

∑

η?∈Gν(η−η′)

K ′(η?) ,
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where K ′ is defined by

K (η, η′) = K ′(η − η′) .

By selecting ν large enough for the expected application, the extended kernel

Kν behaves exactly like K on the training sample and future points. On

the other hand, the larger ν is, the worse the bounds obtained are.

The Fourier series representation of a kernel is important because the coef-

ficients in the series correspond to the eigenvalues of the associated integral

operator. If we denote the Fourier transform of K ′ by F [K ′], and K ′
ν

exists, then K ′
ν has an expansion as a Fourier series, since it is periodic.

Furthermore, if K ′ is rotationally invariant, the Fourier series is related to

F [K ′′], where

K ′(η) = K ′′(‖η‖) .

In N dimensions, the resulting Fourier series has eigenvalues indexed by ZZ
N ,

and it is rotationally invariant. Specifically, we have (see Williamson et al.,

1998b, Remark 13) that the eigenvalues of TKν can be represented by

λv = (2π)
N
2 F [K ′′]

(
2π‖v‖
ν

)
,

where v ∈ ZZ
N . Furthermore, we have that CKν = ( 2

ν
)

N
2 . We see that the

spectrum of K ′
ν is degenerate: if ‖v1‖ = ‖v2‖, λv1 = λv2 . It turns out the

result in Theorem 5.51 can be tightened slightly to take advantage of this, if

we can calculate the multiplicity of each eigenvalue. An approach for doing

this is presented in Williamson et al. (1998b).

Finally, the Fourier transform of K ′′ can be obtained by using the Hankel
transform:

Definition 5.9 (Hankel transform). The Hankel transform of order i of
φ(v), Hi[φ], is defined by

Hi[φ](η) =

∫ ∞

0
vφ(v)Ji(ηv) dv ,

where Ji is the Bessel function of the first kind of order i,

Ji(v) =
(v

2

)i
∞∑

j=0

(−1)jv2j

22jj!Γ (j + i+ 1)
,

and here Γ is the Gamma function.
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Generally, we have

F
[
K ′′] (v) = v−(N

2
−1)HN

2
−1

[
η

N
2
−1K ′′(η)

]
(v) .

Finally, one should sort the eigenvalues obtained using this method in de-

creasing order. However, in practice, the resulting Fourier transform ex-

hibits (hopefully fast) decay with increasing ‖v‖ so that we generally have

λv1 ≤ λv2 when ‖v1‖ ≥ ‖v2‖.

Example 5.32. Let K be the N -dimensional Gaussian kernel,

K (η, η′) =
exp

(
−‖η−η′‖2

2σ2

)

σN
,

so that

K ′′(η) =
exp

(
−η2

2σ2

)

σN
.

Then

F [K ′′](v) = v−(N
2
−1)σ−NHN

2
−1

[
η

N
2
−1 exp

(−η2

2σ2

)]
(v) ,

where Hi[φ] denotes the Hankel transform of order i of φ(η). The Fourier
transform finally reduces to

F [K ′′](v) = exp

(−v2σ2

2

)
,

which decays exponentially with |v|.

This yields the eigenvalues

λv = (2π)
N
2 exp



−
(

2π‖v‖
ν

)2
σ2

2


 .

ut

We conclude this section with two comments. First, note that the bounds

obtained are independent of the data, so effectively bound N∞,n, as well.

Second, we mention that one can also obtain bounds for covering numbers

employing other metrics except the infinity metric. This is done by employ-

ing bounds on the entropy number of the identity operator between different

spaces. For more details on this, the reader is referred to Williamson et al.

(2000).



Chapter 6

Data-dependent bounds

The covering number approach discussed in the previous chapter is limited

in that the double sample bound is applied uniformly over the cover of

the loss class. This approach seems to disregard the potential benefits of

the weighted approach employed using a “prior” in the countable case, as

described in Section 5.4.

The chapter begins by presenting a method of sensibly introducing a “prior”

in conjunction with covering number bounds. This method is closely related

to methods proposed for model selection in the statistical learning commu-

nity: structural risk minimization (SRM), complexity regularization, and

the method of sieves.

Generalizing the method leads naturally to data-dependent bounds and re-

lated data-dependent methods for model selection. The first major data-

dependent bounds, based on the concept of sample compression, were intro-

duced as early as 1986 by Littlestone and Warmuth (1986).

The idea of using the unthresholded output of thresholded classifiers was the

second source of data-dependent bounds. We present a framework, known

as the luckiness framework, which motivates both of these types of bounds.

However, note that these approaches were developed before the luckiness

framework was formulated. As such, the direct arguments employed in the

original work often provide better results than a direct application of the

268
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framework.

6.1 Combining a “prior” with covering number

bounds

The covering number approach of the previous chapter generally provides a

uniform bound on a measure of deviation over the entire loss class. On the

other hand, the Occam’s razor method of Section 5.4 suggests employing a

“prior” to obtain better bounds for functions which are more likely to be of

interest.

The Occam’s razor method breaks down in the uncountable case because

one can not sensibly define a “prior” over such a loss class.

A natural attempt to combine the Occam’s razor method and covering num-

ber methods is the following: for an uncountable loss class, partition the class

into a countable number of segments. Employ a “prior” over the segments,

and obtain bounds for each segment employing the covering number method.

This yields uniform bounds on the measure of deviation for each segment,

but the bound will depend on which segment, and the “prior” probability

associated with the segment.

Example 6.1. Consider the case of obtaining bounds for thresholded classi-
fiers based on polynomials of arbitrary degree. Without a restriction on the
degree of the polynomial, this class has infinite VC dimension.

Suppose one decomposes this class based on the degree of the polynomial
being thresholded. Then, one can use covering number methods to obtain
bounds for thresholded degree K polynomials (which has a finite VC dimen-
sion). Combining these bounds for all K yields bounds for all polynomials.
Note, however, that for large enough K these bounds will generally be triv-
ial. ut

In the example above, generally a bound obtained for degree K polynomials

will hold for all polynomials of degree K or less. As a result, instead of

a partition of a loss class, one could consider any sequence of loss classes,
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and obtain bounds for each element of the sequence. Applying the Occam’s

razor method then yields bounds for any decision rule whose associated loss

lies in the union of these loss classes. Thus, let (Fi) be a sequence of subsets

of a loss class F , with limi→∞
⋃i

j=0 Fi = F . Typically, but not necessarily,

the Fi form a nested hierarchy of increasing complexity, according to some

measure of complexity (e.g. VC dimension). This is a popular, but slightly

weaker, formulation of this approach. Such a sequence of nested loss classes

is sometimes called a sieve.

Example 6.2. Consider a loss class F corresponding to the class of all deci-
sion trees for binary classification. Define Fi as the loss class corresponding
to those decision trees with i or less leaves.

In this case, we have

F1 ⊆ F2 ⊆ · · · ⊆ Fi ⊆ · · · ⊆ F .

If we can obtain a bound for each such Fi, we can then combine them with
the Occam’s razor method. ut

Even if a uniform “prior” is used with this approach, the resulting bounds

will not generally be uniform over the entire loss class. This is because the

covering numbers of each loss class will be different. In the case of a nested

loss class sequence, the covering numbers will typically increase as the size

of the class under consideration increases, resulting in looser bounds.

Thus, what distinguishes these training sample bounds from the bounds

described earlier is that these bounds no longer have to depend on the com-

plexity of the entire loss class, but merely on that of some Fi to which the

loss corresponding to the decision rule under consideration belongs.

6.1.1 ERM and SRM

A classical approach to selecting a decision rule is empirical risk minimiza-

tion (ERM). Simply put, the ERM algorithm proposes selecting a decision

rule with the lowest training risk. Thus ERM and M-estimation (van de
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Geer, 2000) are intimately related. An alternative view which shall be use-

ful to us is that ERM minimizes an upper bound on true risk derived from

a uniform bound on the upper absolute deviation over the entire loss class.

For a specific confidence level, the bound on the error is simply the training

risk plus some value obtained from the bound for each decision rule. Because

the bound is uniform over the entire class, the value added is the same for

each decision rule.

The examples above are useful when one expects to select a simpler classi-

fier, such as one based on a low degree polynomial, or a tree with few leaves.

These types of choices are very common, with most algorithms avoiding

overly complex decision rules to avoid overfitting, particularly in the case

of noisy data. In the case of the uniform “prior” over the sequence of loss

subclasses (Fi), the examples also provide a motivation to prefer algorithms

selecting decision rules based on lower degree polynomials or trees with less

leaves if good empirical results can be obtained: the smaller covering num-

bers corresponding to these smaller loss subclasses show that deviations

between empirical and actual probabilities are smaller for the decision rules

in these subclasses, so the empirical estimates are more reliable. This indi-

cates a trade-off between empirical performance and the size of the covering

number bounds of the loss subclasses. Indeed, this is the basis of structural

risk minimization, first proposed as ordered risk minimization by Vapnik

and Chervonenkis in 1974 (Devroye et al., 1996).

SRM is a generalization of ERM in that it also chooses a decision rule by

minimizing an upper bound on true risk obtained from a bound on upper

absolute deviation. However, the bound is no longer uniform over the entire

loss class: instead, the bound is obtained using the Occam’s razor method

on a nested sequence of loss classes. A result of this approach is that simple

decision rules with larger training risk may be preferred to more complex

decision rules with smaller training risk. This can be seen as a form of

complexity regularization, a general approach to selecting decision rules in

which a trade-off is made between empirical performance and some penalty

term related to the “complexity” of the decision rule (Devroye et al., 1996).
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SRM thus attempts to find a good trade-off between empirical risk and a

measure of decision rule complexity, based on risk bounds. However, for a

decision class W, the covering number bounds considered in the last chapter

use the complexity of FW as a measure of decision rule complexity for every

decision rule in W. SRM overcomes this by refining the measure of decision

rule complexity used for each decision rule by considering the complexity of

various subsets of FW .

We noted earlier that the sequence of nested hypothesis classes is sometimes

called a sieve. This seems to be due to the parallels between the relation-

ship of SRM to ERM and the relationship of the method of sieves (Grenan-

der, 1981) to ML estimation. For a discussion of statistical aspects of the

method of sieves and penalization/regularization methods, see Shen and

Wang (1997).

Example 6.3. Consider the problem of finding a polynomial model for a re-
gression problem, with no restrictions on the degree of the polynomial. How
does one determine the degree of overfitting for one polynomial over another?
Since higher degree polynomials are more complex and are more liable to
overfit, making use of this knowledge in our selection of an hypothesis seems
sensible.135

One approach to this example would be to set Fi as the loss class corre-
sponding to the degree i polynomials of the decision class W, and apply the
SRM methodology with some “prior”.136

Finally, one selects the hypothesis with the lowest bound on the risk. This
selection then also implicitly provides a solution to the model selection prob-
lem of selecting the degree of the polynomial to fit. ut

6.2 Generalizing the “prior”

Note that the “prior” used for the Occam’s razor method needs to be spec-

ified before observing the data. That is, in traditional SRM, the collection

of Fi’s is fixed for all possible samples, allowing us to apply the training

135Another good example would be the number and degree of interaction terms to include
in an analysis of variance model.

136The prior will need to decay in some way to sum to one, however.
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sample bounds of the previous sections.

In this section, we introduce a generalized “prior” concept which has already

been implicitly employed for realizable margin bounds, allowing us to cir-

cumvent this obstacle. This leads naturally to the concept of data-dependent

SRM.

Recall that we employed the union bound (or margin unification lemma)

in order to allow us to select a desired margin for the margin bounds we

derived, after observing the training data. If we consider specifically the

realizable margin bound, we note that for a specific choice of γ, the bound

provides a bound only when eS(h) = 0 and the margin on all the points in

S are at least γ. Clearly, the hypotheses that this bound can be applied

to can not generally be specified simply as a subset of H regardless of the

sample. Instead, the subset H(S) the bound applies to is a function of the

sample (and can thus be seen as a random variable). This bound is then

made uniform by the margin unification lemma in Theorem 5.23, which can

be seen as an application of the Occam’s razor method.

As such, the realizable margin bound can be seen as an application of the

Occam’s razor method with a generalized “prior” to a margin bound with a

fixed γ.

In the approach discussed in the previous section, we obtained bounds over

F by considering various subsets of F and employing the union bound.

Furthermore, if the union of the subsets considered was not F we did not

obtain bounds for the elements of F not in the union.

The generalized “prior” takes this idea further: instead of considering sub-

sets of F , we consider subsets of Zn × F for some n. If we can obtain a

bound for each such subset, we can employ the Occam’s razor method to

obtain a bound which applies to all the subsets simultaneously.

Example 6.4. In the case of realizable margin bounds above, for any γ ∈ IR,
we could consider the sets

Ri =
{
(S, gh) ∈ Zm ×H : (eS(h,L 1

i
) = 0)

}
.
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Observe that here the Ri form a nested sequence of subsets in Zm ×H.

Applying the Occam’s razor method to bounds obtained for such Ri then
provides a bound for any hypothesis h which achieves a positive margin on
all points in the sample S. This approach does not provide bounds for
other hypotheses, however. Furthermore, we note that an hypothesis can
be bounded by this result on observing one sample, but not be bounded if
a different sample is observed.

Note that this example presented a decomposition of the hypothesis class
instead of the loss class. This is valid by the same reasoning used to derive
margin bounds originally. ut

Example 6.5. Consider the sets

Ri =

{
(S,w) ∈ Zm ×W : rS(w) ≤ i

m

}
.

Once again, the Ri form a nested sequence. One can obtain a realistic case
bound for each Ri, including a realizable case bound for R0. Combining
these bounds with a “prior” on [0 : m] yields a data-dependent bound on
every decision rule in W. ut

6.2.1 Data-dependent SRM

In general, data-dependent SRM (DD-SRM) refers to an extension of SRM

which optimises bounds based on this generalized “prior” approach, rather

than traditional “priors”. Such an algorithm is easily seen to be a gen-

eralization of SRM by noting that choosing the Ri independently of the

sample with the generalized “prior” approach yields the traditional “prior”

approach.

Note that in both examples above, the sets Ri with small i represented

(typically small) subsets of Zm × F with seemingly desirable properties

(large margin/small empirical error). Other potentially desirable properties

can be considered, but they should be formulated in such a way that bounds

taking advantage of the property can be obtained. In general then, we are

interested in constructing the sequences Ri such that the most desirable

sample-decision rule couples are in the Ri with small i — in other words,
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the Ri form a hierarchy of decreasing desirability of sample-decision rule

couples.

6.3 The luckiness framework

The first reasonably generic approach to data-dependent bounds was the

so-called luckiness framework, which was developed in Shawe-Taylor et al.

(1996) and Shawe-Taylor et al. (1998). The original luckiness framework

had two major shortcomings: it was restricted to errors, and furthermore

was restricted to the realizable case. However, both of these shortcomings

were addressed in the later developments of the algorithmic luckiness frame-

work in Herbrich and Williamson (2002). These frameworks make use of a

concept called “probable smoothness” or “ω-smallness” to obtain bounds —

functions which are probably smooth can be used as the basis for properties

which can be exploited for deriving useful bounds.

Independent work in Gat (1999, 2000a,b) proposed a similar approach which

removed the realizable restriction, and was algorithm-dependent. Cannon

et al. (2002) provided an alternative version of these results which was not

algorithm-dependent, and replaced the cardinality of a class by that of a

corresponding cover in the resulting bounds.

The luckiness framework is named for its use of a luckiness function for

quantifying the desirability of a decision rule w on a sample S. Generally

the luckiness function is some mapping Luck :
⋃∞

i=1 Zi × W → IR, which

should be larger for more desirable combinations of inputs and decision

rules.

For an arbitrary n-sample Q, one can then define

W(Q,w) = {w′ ∈ W : Luck(Q,w′) ≥ Luck(Q,w)} ,

the class of decision rules luckier than w on Q. Generally, the bounds we

obtain employ covering numbers, so we consider the covering numbers of

W(Q,w). For any metric d, and any loss function, we have that

N (γ,FW(Q,w), d) ≤ N (γ,FW , d)
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for all γ. Consider some fixed γ > 0. Then for any i, we can define the sets

Ri(d, γ) =
{
(Q,w) : N (γ,FW(Q,w), d) ≤ 2i

}
.

We could replace the 2i by any other increasing sequence if we desire. The

intuition here is that Ri consists of those sample-decision rule couples for

which there are very few luckier decision rules for the corresponding samples.

Note that in order for the Ri to be deterministic, the metric employed should

not depend on points in Z except through Q.

If we can obtain bounds for these Ri we can employ the margin bound to

obtain data-dependent results. Alternatively, we can employ the margin

unification lemma with a little ingenuity.

Let us review the approach we have taken to obtaining bounds on uncount-

able decision classes so far:

• employ a symmetrization lemma to reduce the problem to an argument

over a dual sample;

• reduce this problem to a combinatorial one by a standard argument

involving the symmetric group or swapping subgroup;

• reduce the problem to a finite cover, and make an adjustment for the

approximation of the cover;

• bound deviations of individual decision rules using a dual sample

bound;

• employ the uniform Occam’s razor method over the cover to obtain

bounds over the cover; and

• take expectations to make the probability statement unconditional.

If we wish to apply this methodology in the current setting, we will need to

provide some modifications of previous results. The following modified sym-

metrization lemmas are useful in this context.137. They are based on Her-

137The reader may remember that we also considered modified symmetrization lemmas
when discussing margin bounds.
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brich and Williamson (2002, Lemmas 20 and 21)138, and correspond to (a

realizable version of) Theorem 5.6 and (5.7) respectively.

Theorem6.1 (Data-dependent realizable symmetrization lemma).
Consider any distribution D, and any decision class W. Let E be a predicate
on
⋃∞

i=1 Zi. Then

PS∼Dm{∃w ∈ W : (eD(w) > ε) ∧ (eS(w) = 0) ∧ E (S)}
<
[
1 − e−εu

]−1
PS⊕P∼Dm+u

{
∃w ∈ W :

(
eP (w) >

ε

2

)
∧ (eS(w) = 0) ∧ E (S)

}
.

Theorem6.2 (Data-dependent symmetrization lemma for regular deviation).
Consider any distribution D, and any decision class W. Let E be a predicate
on
⋃∞

i=1 Zi. Suppose α, β satisfy

PP∼Du {rD(w) − rP (w) ≤ α} ≥ β .

Then

PS∼Dm

{(
sup
w∈W

[rD(w) − rS(w)] > ε

)
∧ E (S)

}

< β−1 PS⊕P∼Dm+u

{(
sup
w∈W

[rP (w) − rS(w)] > ε− α

)
∧ E (S)

}
.

The forms of these theorems appearing in Herbrich and Williamson (2002)

employ α = ε
2 , and β = 2, using αH to obtain a sample size restriction for the

results to hold. Theorem 6.1 has many similarities to Theorem 5.16; how-

ever, by considering only errors, tighter constants are obtained by employing

properties of the binomial distribution. Thus it is not as straightforward to

generalize this theorem, beyond the removal of the sample size restriction

we have performed.

In order to apply these results usefully in our current context, we need

a good way to choose E . For a given choice of i, the idea is to try and

specify Ei so that Ei(S) implies (S ⊕ P,w) ∈ Ri(d, γ), while not making Ei

true unnecessarily. For certain metrics d, and in particular the one we will

138Note that the original proof of Lemma 20 was incorrect — the corrections can be
found in Herbrich and Williamson (2004).
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consider, this can not generally be done, and we must be satisfied with a

probability statement. In what follows, suppose we have an Ei(S) such that

PS⊕P∼Dm+u{((S ⊕ P,w) ∈ Ri(d, γ)) ∧ Ei(S)} < δ .

More generally, we can parametrize Ei with δ, so that Ei(S, δ) implies (S ⊕
P,w) ∈ Ri(d, γ) with probability at least 1− δ. We will discuss finding such

Ei in more detail later.

Next, we consider (for regular deviation)

PS⊕P∼Dm+u

{
∃w ∈ W :

(
sup
w∈W

[rP (w) − rS(w)] > ε− α

)
∧ Ei(S, δ

′)
}

≤ δ′+PS⊕P∼Dm+u

{(
sup
w∈W

[rP (w) − rS(w)] > ε− α

)
∧ ((S ⊕ P,w) ∈ Ri(d, γ))

}
.

Converting this to a probability statement on permutations is unchanged,

and we obtain that the probability on the right hand side equals

EQ∼Dm+u Pτ∼Unif Sm+u

{
E ′(τ(Q))|Q

}
,

where E ′(S ⊕ P ) denotes

(
sup
w∈W

[rP (w) − rS(w)] > ε− α

)
∧ ((S ⊕ P,w) ∈ Ri(d, γ)) .

By definition, when (S ⊕ P,w) ∈ Ri(d, γ) there is a γ-cover F ′(S ⊕ P,w))

of FW(S⊕P,w) of at most 2i elements (using the metric d). This leads us to

consider replacing E ′(S ⊕ P ) by E ?(S ⊕ P ), defined by

(
sup

f∈F ′(S⊕P,w)
[Ez∼P (f(z)) − Ez∼S(f(z))] > ε? − α

)
.

Thus, it seems a sensible choice of the metric d is d1,S⊕P . A uniform bound

of ε? − α on this regular deviation over the cover elements then implies a

corresponding bound on the elements of W(S⊕P,w) of ε?−α+ (2m+u)(m+u)
mu

γ,

as discussed just before Theorem 5.17. This leads one to the choice of

ε? = ε− (2m+u)(m+u)
mu

γ.
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Noting that we have a bound on the cover sizes of 2i, we obtain

PS⊕P∼Dm+u

{
∃w ∈ W :

(
sup
w∈W

[rP (w) − rS(w)] > ε− α

)
∧ E (S)

}

≤ δ′+2i EQ∼Dm+u sup
w∈W

Pτ∼Unif Sm+u

{
E ′

w

(
τ(Q), ε− α− (2m+ u)(m+ u)

mu
γ

)
|Q
}

,

(6.1)

where E ′
w(S ⊕ P, t) is defined by

rP (w) − rS(w) > t .

The interior probability can be bounded with standard dual sample bounds.

We can also replace the symmetric group with the swapping subgroup at

this stage and employ double sample bounds.

For instance, applying the dual sample bound for regular deviation of risk

in Theorem 5.10, one obtains a bound on (6.1) of

δ′ + 2i exp


−2m




(
ε− α− (2m+u)(m+u)

mu
γ
)
u

m+ u




2

 .

Suppose that α and β satisfy the conditions of Theorem 6.2. In this case,

we have

PS∼Dm

{(
sup
w∈W

[rD(w) − rS(w)] > ε

)
∧ Ei(S, δ

′)
}

≤ β−1


δ′ + 2i exp


−2m




(
ε− α− (2m+u)(m+u)

mu
γ
)
u

m+ u




2




 .

Setting this bound to δ and solving for ε, one obtains

ε =
(2m+ u)(m+ u)

mu
γ + α+

m+ u

u

√
i ln 2 − ln(δβ − δ′)

2m
. (6.2)

Note that for any choice of m and u, one can find a corresponding i0 for

which i > i0 ⇒ ε ≥ 1, so that the bounds are trivial. One can thus obtain a

bound which applies for all i ≤ i0 by employing the Occam’s razor method

with a (typically uniform) “prior” over [0 : i0], since larger values of i are

irrelevant.

To summarize, we present the following theorem.
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Theorem6.3 (Data-dependent bound on regular deviation). Suppose
one can find an Ei such that for all non-negative integers i, and δ ∈ (0, 1],

PS⊕P∼Dm+u{((S ⊕ P,w) ∈ Ri(d1,S⊕P , γ)) ∧ Ei(S, δ)} < δ .

Let α?(i) be a “prior” on the non-negative integers IN0. Furthermore, let
α(i) and β(i) satisfy the conditions of Theorem 6.2 for every i ∈ IN0, and
let 0 < δ′(i) < δ. Define

N = {i ∈ IN0 : δ′(i) < δβ(i)} .

Then

PS∼Dm

{
∀i ∈ N :

((
sup
w∈W

[rD(w) − rS(w)] > εi

)
∧ Ei(S, δ

′α?(i))

)}
≤ δ ,

where

εi =
(2m+ u)(m+ u)

mu
γ + α(i) +

m+ u

u

√
i ln 2 − ln(α?(i)[δβ(i) − δ′(i)])

2m
.

6.3.1 ω-smallness and the choice of E

The above theorem is useless unless we can find a useful form for Ei(S, δ).

To understand what the predicate E should encode, note that we need

PS⊕P∼Dm+u{((S ⊕ P,w) ∈ Ri(d1,S⊕P , γ)) ∧ Ei(S, δ)} < δ ,

and that by definition (S ⊕ P,w) ∈ Ri(d1,S⊕P , γ) when

N1,S⊕P (γ,FW(S⊕P,w)) ≤ 2i .

Thus, we desire a statement Ei(S, δ) which will give us information about

the covering numbers of a class of lucky decision rules on a dual sample

S⊕P with first portion S. Furthermore, we need this statement to hold for

all distributions in S. This motivates the following definition.

Definition 6.1 (ω-smallness of a luckiness function). A luckiness func-
tion Luck is called ω-small w.r.t. L and u(m) at scale γ if there are functions
ω : IR× IN × (0, 1] → IN and u : IN → IN such that for all m ∈ IN, δ ∈ (0, 1],
and all Q ∈ S,

PS⊕P∼Qm+u(m)

{
∃w ∈ W : N1,S⊕P (γ,FW(S⊕P,w)) > ω(Luck(w,S),m, δ)

}
< δ ,

where the loss class is induced by the loss function L.

If u(m) = m, we omit the expression “w.r.t. u(m)”.
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A study of this definition shows that if Luck is ω-small w.r.t. L and u(m)

at scale γ, the following choice of Ei(S, δ) satisfies the requirements of The-

orem 6.3:

Ei(S, δ) = [ω(Luck(w,S),m, δ) ≤ 2i] .

Further consideration of the definition reveals that a luckiness function will

usually only be ω-small if luckiness of a decision rule on any portion of a

sample is in some way indicative of its luckiness on the entire sample. In

this sense, luckiness functions must be well-behaved.

A similar property was also referred to as probable smoothness in Shawe-

Taylor et al. (1998). As pointed out in Herbrich (2002, Remark 4.23), the

approach we have described above could be called “vanilla luckiness”, be-

cause it is based on a restricted version of the probable smoothness concept

in Shawe-Taylor et al. (1998). In the terminolgy of that paper, ω-smallness

specifies probable smoothness with η = 0. As a result, some luckiness func-

tions shown to be probably smooth in Shawe-Taylor et al. (1998) are not

necessarily ω-small. Particularly, the luckiness function used to derive mar-

gin bounds in Shawe-Taylor et al. (1998) is shown to be probably smooth,

but not shown to be ω-small. It is not clear to me whether the full probable

smoothness concept from Shawe-Taylor et al. (1998) could be sensibly em-

ployed to obtain bounds in the non-realizable case, as has been done with

ω-smallness.139

In order to combine Theorem 6.3 and Definition 6.1, a few restrictions are

needed. First, we restrict the “prior” α?(i) to be uniform over some set A.

In addition, we restrict the δ′(i) to all equal a constant δ′. This leads to the

following result.

139Furthermore, we note that the margin bounds in Shawe-Taylor et al. (1998, Section 4)
(employing the fat-shattering dimension), which are developed directly and served as an
inspiration for the luckiness framework, do not fall into the results of the framework. A
similar observation holds for the the margin bounds derived for linear classifiers employing
covering numbers directly in Schölkopf et al. (1999a,b), Williamson et al. (1999), which
seem to develop from those margin bounds. These bounds are interesting since they
employ ideas similar to those in Section 5.9.5, but obtain bounds in terms of the eigenvalues
of the Gram matrix obtained from the kernel K on the sample S. The resulting bounds
on the covering numbers are then clearly data-dependent.
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Theorem6.4 (Luckiness bound). Let Luck be ω-small w.r.t. L and u(m)
at scale γ. Let α?(i) be a uniform “prior” on a finite set A ⊂ IN0. Fur-
thermore, let α(i) and β(i) satisfy the conditions of Theorem 6.2 for every
i ∈ A, and let 0 < δ′ < δ. Let

N = {i ∈ A : δ′ < δβ(i)} .

Define

φ(w) =

⌈
log2 ω

(
Luck(w,S),m,

δ′

|A|

)⌉
,

and let W ′ = {w ∈ W : φ(w) ∈ N}. Then,

PS∼Dm{∃w ∈ W ′ : rD(w) − rS(w) > εw} ≤ δ ,

where

εw =
(2m+ u(m))(m+ u(m))

mu(m)
γ + α(φ(w))

+
m+ u(m)

u(m)

√
φ(w)
log2 e

+ ln |A| − ln(δβ(φ(w)) − δ′)

2m
.

A similar theorem can be obtained in the realizable case, based on the

symmetrization lemma of Theorem 6.1 and the realizable dual sample bound

in Theorem 5.14.

Let us briefly compare this result to those in Shawe-Taylor et al. (1998)

and Herbrich and Williamson (2002). Shawe-Taylor et al. (1998, Theo-

rem 6.4) is a bound on the realizable case, and employs the more general

concept of probable smoothness. When η in that bound is set to zero, the

result seems to correspond to the result that would be obtained here with

further restrictions of a sufficiently small scale, m = u, and δ ′ = δ
4 .

Herbrich and Williamson (2002, Theorems 8 and 9) (and the uniform ver-

sions below them on p. 164), on which these results were based, are algorithm-

specific in that the resulting bounds only apply to the decision rule selected

by the algorithm. We shall pay more attention to this approach in what

follows. The bounds there are closely related to the ones we have here, and

if the same approach taken there was taken to obtain algorithm-independent

bounds, (essentially) a special case of our results would be obtained up to a

constant factor of
√

log2 e. Specifically, their bounds are obtained with the
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following setting: u(m) = m, δ′ = δ
4 , α(w) = εw

2 (note that εw depends on w

only through φ(w)), β(i) = 2 and a uniform bound on [0 : m
2 − 1]. The con-

dition required on α and β is maintained by a sample size restriction, which

is obtained using αH . We note in passing that the uniform bound obtained

from their Theorem 9 could be strengthened somewhat by restricting the

uniform prior to [0, m
8 − 1], since for larger values of d the bound is trivial.

Besides a realizable version of the data-dependent bounds, there is much

potential here for considering data-dependent bounds on other measures of

deviation. In order to do this, appropriate modified symmetrization lemmas

will be needed, and potentially new smallness concepts when working with

the P-H ν-deviation, for example. The only work I am aware of in this

regard is a data-dependent bound on relative deviation in Andonova Jaeger

(2005), which employs other techniques instead of the luckiness framework.

Furthermore, it is not clear how much benefit can be obtained by our for-

mulation allowing m 6= u. Note however, that some of the improvements of

standard covering number bounds, such as those in Devroye (1982), Shawe-

Taylor et al. (1993), came by employing results with m 6= u.

An obvious candidate luckiness function is risk on a sample. However, a

result on ω-smallness of risk essentially states we can control risk on the

double sample in terms of the risk on the first sample. However, this has,

in a way, been the problem under consideration for much of this work.

Furthermore, applying such a result here would only lead to a potential

slackening of the ω-smallness result originally employed.

Generally, then, the luckiness function can be seen as an encoding of our

intuition of what behaviour on a sample is desirable for a decision rule. How-

ever, the ω-smallness requirement constrains our choices to those which are

in some sense stable, preventing one from tailoring the bound too much to-

wards the observed sample. Informally, one gets the sense that the luckiness

function needs to be more stable than empirical risk based on the comments

in the previous paragraph.

Example 6.6. We begin with a fairly trivial example of an ω-small luckiness
function. Consider a decision class W with finite pseudodimension.



Chapter 6. Data-dependent bounds 284

Consider the luckiness function Luck(w,Q) = −pdim(W), and any choice
of u(m). Then, by Theorem 5.27,

N1,S⊕P (γ,W(S ⊕ P,w)) ≤ N1,S⊕P (γ,W)

≤ N∞,m+u(m)(γ,W)

≤
pdim(W)∑

i=1

(
m+ u(m)

i

)⌊
1

2γ

⌋i

.

Since this always holds, we have that for all δ ∈ (0, 1],

PS⊕P∼Qm+u(m)

{
∃w ∈ W :

N1,S⊕P (γ,W(S ⊕ P,w))
> ωu (−pdim(W),m, δ)

}
< δ ,

where we define

ωu(t,m, δ) =

−t∑

i=1

(
m+ u(m)

i

)⌊
1

2γ

⌋i

for all δ.

Thus, for any choice of the function u, Luck(w,Q) = −pdim(W) is ωu-small
w.r.t. the identity loss. However, the resulting bounds will not incorporate
any improvements based on the hypothesis or data under consideration.

A similar analyis can be performed using the fat-shattering dimension by
employing Theorem 5.26. ut

The following example provides a data-dependent luckiness function.

Example 6.7. Consider the restriction of the zero-one functions in W to a
sample Q, W|Q. Clearly, since the domain of these functions is Q, we have
VC(W|Q) ≤ |Q|. VC(W|Q) is known as the empirical VC dimension on Q.

Define the luckiness function Luck(w,Q) = −VC(W|Q). Then Shawe-Taylor
et al. (1998, Proposition 7.7) show that Luck is ω-small w.r.t. the identity
loss at sufficiently small140 scale γ, where

ω(t,m, δ) =

( −em
1.54(t + ln δ)

)−3.08(t+ln δ)

.

ut
140Since the functions are zero-one, for a small enough scale, the covering numbers in-

volved equal the shatter coefficients.
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Note that when the loss function is well-behaved, the results relating cov-

ering numbers of loss classes and decision classes can be used to infer ω ′-

smallness of a luckiness function with respect to such a loss function from

ω-smallness with respect to the identity loss.

6.4 Algorithmic luckiness

If one intends to use a specific algorithm Θ to select a decision rule, it makes

sense to try and tailor the generalized “prior” to suit Θ.

Ideally, for a specific sample Q, one would like to place all the generalized

“prior” mass on the decision rule that will be selected based on Q. However,

the technical conditions of the luckiness framework prevent one from doing

this directly.

The algorithmic luckiness framework solves this in a similar manner to the

luckiness framework we have outlined in the previous sections. A generalized

“prior” is obtained by considering a set of hypotheses which is in some

sense desirable, based on an algorithmic luckiness function. An ω-smallness

constraint on the algorithmic luckiness function then leads to bounds similar

to those of the luckiness framework.

There are two major differences between this framework and the luckiness

framework. First, in this case, luck is assigned to samples, rather than to

pairs of samples and decision rules. Secondly, the only decision rules which

are assigned non-zero “prior” weight for a given sample Q are the decision

rules which would be selected by Θ on a subsample of Q (of some fixed

length).

We begin with the concept of an algorithmic luckiness function, which is a

mapping AluckΘ :
⋃∞

i=1 Zi → IR. The analysis done here is for a generic

algorithm Θ, which can be seen as a subscript to the sets and functions

defined. We shall omit the subscript throughout for notational convenience,

however.
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Analogously to W(Q,w) in the luckiness framework, we can define W(Q,m)

for an (m+ u)-sample Q:

W(Q,m) = {Θ(Sτ(Q)) : τ ∈ Sm+u,Aluck(Sτ(Q)) ≥ Aluck(SQ)} ,

where, as before, SQ denotes the first m elements of the (m + u)-sample

Q. Note that since many algorithms are sensitive to the order of the

data presented to them, Aluck and these derived concepts are not gener-

ally permutation-invariant. Considering the m + u-sample Q, some of the

(m + u)! permutations are such that Aluck is larger on the first S points

of the permuted sample than it is on the original sample. W(Q,w) then

consists of the decision rules outputted by Θ on these truncated, permuted

samples.

These sets W(Q,m) are again the basis of the sets Ri, defined by

Ri(d, γ,m) = {Q : N (γ,FW(Q,m), d) ≤ 2i}

for some loss function L.

With this setup, if we can (with some probability) relate the truth of an

expression Ei(S, δ) to whether S ⊕ P is in Ri(d, γ,m), we can apply The-

orem 6.3 to obtain bounds which are dependent on Θ. The key to doing

this is an analog of ω-smallness for algorithmic luckiness functions. If this

condition on the algorithmic luckiness function holds, we can use the size of

ω(Aluck(·)) as the basis of such an Ei.

Definition 6.2 (ω-smallness of an algorithmic luckiness function). An
algorithmic luckiness function AluckΘ is called ω-small w.r.t. L and u(m)
at scale γ if there are functions ω : IR × IN × (0, 1] → IN and u : IN → IN
such that for all m ∈ IN, δ ∈ (0, 1], and all Q ∈ S,

PS⊕P∼Qm+u(m){N1,S⊕P (γ,FW(S⊕P,m)) > ω(AluckΘ(S),m, δ)} < δ ,

where the loss class is induced by the loss function L.

If u(m) = m, we omit the expression “w.r.t. u(m)”.

Thus, if AluckΘ is ω-small w.r.t. u(m), ω(AluckΘ(S),m, δ′) controls the

growth of the loss class corresponding to decision rules selected by “lucky”
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m-subsamples of S ⊕ P . As such, an appropriate choice for Ei(S, δ) is

[ω(AluckΘ(w,S),m, δ) ≤ 2i] .

Finally, Theorem 6.3 gives the following algorithmic luckiness theorem, which

is an algorithmic luckiness analog to the result in Theorem 6.4.

Theorem6.5 (Algorithmic luckiness bound). Let Θ be an algorithm.
Let AluckΘ be ω-small w.r.t. L and u(m) at scale γ. Let α?(i) be a uniform
“prior” on a finite set A ⊂ IN0. Furthermore, let α(i) and β(i) satisfy
the conditions of Theorem 6.2 (with u = u(m)) for every i ∈ A, and let
0 < δ′ < δ. Let

N = {i ∈ A : δ′ < δβ(i)} .

Define

φ(w) =

⌈
log2 ω

(
AluckΘ(S),m,

δ′

|A|

)⌉
,

and let W ′ = {w ∈ W : φ(w) ∈ N}.

Then,

PS∼Dm{(Θ(S) ∈ W ′) ∧ (rD(Θ(S)) − rS(Θ(S)) > ε(S))} ≤ δ ,

where

ε(S) =
(2m+ u(m))(m+ u(m))

mu(m)
γ + α(φ(w))

+
m+ u(m)

u(m)

√
φ(w)
log2 e

+ ln |A| − ln(δβ(φ(w)) − δ′)

2m
.

An important difference between this result and Theorem 6.4 is that this

bound does not apply to any decision rule other than that selected by the

algorithm.141 This loss of generality is the price paid to obtain the poten-

tially tighter bounds by using algorithmic luckiness specific to Θ, rather

than a more generic luckiness concept. This result is a (slightly stronger)

more general form of the uniform version of the main result in Herbrich and

Williamson (2002).

Once again, a realizable version can be formulated, and there is potential

for future development with other measures of deviation.

141Strictly speaking, it can be formulated to apply to a handful of other decision rules,
but this is not practically useful.
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6.5 Sample compression bounds

In this section, we shall consider the application of data- and algorithm-

dependent bounds to algorithms which can be framed as effective compres-

sion schemes. The pioneers in bounds for such algorithms were Nick Little-

stone, Manfred Warmuth, and Sally Floyd: the two most influential sources

seem to be Floyd and Warmuth (1995), Littlestone and Warmuth (1986).

In our context, a compression scheme for an algorithm Θ has two compo-

nents: a compression function, and a (permutation-invariant) reconstruction

function. The compression function is given a sample Q, and returns the

compressed subsample Q′. The reconstruction function takes a labelled sam-

ple and returns a decision rule in W. These two components are related in

that the reconstruction function applied to Q′ should yield Θ(Q). In other

words, the compression function identifies the sample elements necessary

to specify Θ(Q), and the reconstruction function can use those ‘essential’

sample elements to obtain Θ(Q).

Example 6.8. Consider a classification problem where the concept class cor-
responding to W consists of (axis-parallel) rectangles in IR2.

Consider the algorithm Θ which selects the smallest rectangle R(S) contain-
ing all the points in a sample S labelled one, and predicts I(x ∈ R(S)).

Consider the subsample S ′ consisting of the point labelled one with the
smallest first feature, the point labelled one with the largest first feature,
and the points labelled one with the smallest and largest second feature.
Clearly S ′ consists of at most four points. Furthermore, it should also be
clear that Θ(S ′) = Θ(S).

Thus, the function choosing S ′ as described is a compression function cor-
responding to the reconstruction function Θ. ut

Example 6.9. The previous example can be generalized to higher dimensions.
In IRN , the compressed subsample contains at most 2N elements.

It is interesting to note that the VC dimension of the class of axis-parallel
parallelipipeds in IRN is also 2N . ut

It is very often the case that the reconstruction function in a compression
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scheme is the original algorithm. Note that for any permutation-invariant

algorithm Θ, using the identity compression function and the algorithm Θ

as a reconstruction function constitutes a (trivial) compression scheme.

In the examples above there a fixed upper limit K on the size of the com-

pressed subsample available a priori. In such a case, the algorithm is said

to have a compression scheme of size K.142

The basic intuition of sample compression bounds is that when the com-

pression function returns a small subsample, the selected decision rule is

in a sense simple, and thus less likely to exhibit a large deviation between

empirical and actual error.

The original bounds in Littlestone and Warmuth (1986) were restricted to

the realizable error case, that is, where eS(Θ(S)) = 0. The following is a

classical result of this type.

Theorem6.6 (Theorem 5 of Floyd and Warmuth, 1995). Consider an
algorithm Θ with an associated compression scheme. Let S ′ denote the com-
pressed subsample associated with a sample S. Then

PS∼Dm{(|S′| ≤ K)∧(eD(Θ(S)) > ε)∧(eS(Θ(S)) = 0)} ≤
K∑

i=1

(
m

i

)
(1−ε)m−i .

The authors further state that this can be extended to the realistic case

using Chernoff bounds. Such an extended result is presented in Blum and

Langford (2003, Theorem 11).

One shortcoming of this approach is that it can only be applied if |S ′| ≤ K

with K chosen a priori. This is not a problem if Θ has a compression scheme

of size K, since then the bound will always apply (assuming a consistent

decision rule can be found). Furthermore, it is desirable that the bound

should be data-dependent in the sense that it is tighter when the compressed

subsample is smaller.

For an algorithm Θ with an associated compression scheme, define the algo-

rithmic luckiness function AluckΘ(Q) as the negated size of the compressed

142K can generally be a function of m.
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subsample, −|Q′|. The following result is a straightforward generalization

of a result in Herbrich and Williamson (2002) to a more general choice of

u(m).

Theorem6.7 (Algorithmic luckiness function for sample compression).
Let Aluck be defined as above. Then for any γ > 0, any u(m), and any loss
function L, Aluck is ωu-small, where

ωu(t,m, δ) =

−t∑

i=1

(
m+ u(m)

i

)
.

Note the similarity of the form of ωu to the coefficient in the bound of

Theorem 6.6. One can use this result in conjunction with Theorem 6.5 to

obtain bounds which are algorithm- and data-dependent. Note that the

resulting bounds are no longer restricted to errors, and they hold generally,

instead of only in the realizable or realistic cases.

6.5.1 MDL

Sample compression bounds are closely related to the ideas of algorithmic

complexity, which were first proposed in the 1960’s. Based on these ideas,

the minimum message length (Wallace and Boulton, 1968) and minimum

description length (MDL) (Rissanen, 1978) methodologies were proposed

for selecting decision rules.

The MDL methodology suggests the following technique for selecting a de-

cision rule from a class on the basis of a training sample: if one adds the

minimal size (in bits) needed to code an algorithm to implement a decision

rule (known as the coding length of the decision rule143), to the number of

bits needed to store the points in the training sample inconsistent with the

decision rule, one obtains a value for each decision rule. The MDL principle

proposes selecting the decision rule minimizing this value.

143This length is defined as the length of a binary computer program — the type of
computer is irrelevant. Solomonoff and Kolmogorov were working with these concepts
before Rissanen proposed the MDL principle — more details are in Section 4.6 of Vapnik
(1995).
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A little reflection makes clear that the MDL principle represents a trade-

off between decision rule complexity (the coding length) and accuracy on

the training sample (storing errors). In fact, the MDL principle is an im-

plementation of SRM, not as originally formulated by Vapnik, but in the

more generic form presented in this work.144 Note that the coding length of

decision rules is independent of the data. The name derives from the fact

that the sum described for a given decision rule is the amount of data that

needs to be communicated to enable the receiver to calculate the responses

from the predictors for each point in the training sample by employing that

decision rule.145 To calculate the responses, one evaluates the decision rule

on the predictors of each training point. These outputs are then used, ex-

cept for those points transmitted in the message, where we use the outputs

provided in the message.

As is so often the case in practice, one doesn’t usually know all the values

desired — in this case, one generally does not know the coding length of the

hypotheses, so one must employ upper bounds (such as the actual length

of some program to implement an hypothesis). If the upper bound used

is independent of the specific hypothesis (e.g. if the length of code imple-

menting the entire hypothesis class were to be used), this approximation of

the MDL principle would propose minimizing the number of errors, and one

once again obtains ERM.

The sample compression approach we discussed above can be seen as using a

data-dependent bound on the coding length of hypotheses in order to obtain

bounds. This is because, for a given compression scheme, an implementation

of the compression and reconstruction functions is common to all decision

rules. For each decision rule, the same program can then be used, except that

different compression subsamples must be provided. Using this upper bound

on the coding length of each decision rule, the MDL methodology indicates

that one should prefer decision rules with small compression subsamples,

if their empirical risks are identical. As a result, employing the bounds

144Vapnik (1995, Section 4.6) discusses the relationship between MDL and Vapnik’s SRM
in more detail.

145Note that this approach assumes that training samples do not contain points with
identical inputs but differing outputs.
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obtained with the sample compression approach above for model selection

can be seen as a kind of data-dependent MDL.



Chapter 7

Tightening bounds with

concentration inequalities

Until now, we have only made use of the concentration inequalities for sums

of random variables, detailed in the first half of Chapter 4, in obtaining our

results.

Tight concentration inequalities allow one to use observations of variables

instead of their underlying mean when making calculations, at some small

penalty. The bounds we have studied until now used a form of union bound

to combine such an argument for each function in the class. The resulting

bounds are often expressed in terms of expected covering numbers, or in the

case of chaining, a type of entropy integral. These values can then be upper

bounded employing concepts such as the VC or fat-shattering dimension.

However, concentration inequalities provide an alternative approach. If it

can be shown that the covering number for a given sample is concentrated

about its mean, a suitable concentration inequality may be able to pro-

vide a good high-confidence bound on the expected covering number. This

approach is presented in Section 7.1

An alternative approach manages to avoid the union bound argument en-

tirely, by employing Rademacher complexities and concentration inequali-

ties. The resulting bounds, known as Rademacher bounds, are discussed in

293
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Section 7.2.

7.1 Covering numbers and concentration inequal-

ities

Ledoux and Talagrand made significant advances in the understanding of

concentration of measure in the late 1980s and throughout the 1990s —

for the development of their theory, see Ledoux (1996, 1997, 2001), Ledoux

and Talagrand (1991), Talagrand (1988, 1989, 1994, 1995, 1996b,c,d). Other

players made significant contributions leading to the advanced concentration

results provided in Sections 4.10 and 4.11.

In this section, we show that a concentration inequality for self-bounding

functions allows us to obtain tight control of the expected effective class

EQ∼Dn |QW | simply by considering the size of the effective class for a specific

n-sample Q, viz. |QW |. The approach is based on Boucheron et al. (1999).

Theorem7.1. For b ≥ 2, H(Q) = logb |QW | is a self-bounding function.

To prove this, we will need to use Han’s inequality (Boucheron et al., 1999,

Han, 1978). Recall that the Shannon entropy (base b)146 of a discrete random

variable V with distribution P is

Entb(V ) = −
∑

v∈supp P

PV ∼P {V = v} logb PV ∼P {V = v} .

It is known (see, for example, MacKay, 2003, Section 2.4) that the uniform
distribution maximizes the Shannon entropy. Han’s inequality relates the
entropy of a vector-valued variable to the entropy of the n subvectors each
obtained by removing a component from the vector:

Lemma7.1. Let V1, · · · , Vn be discrete random variables. Let V\i denote
(V1, · · · , Vi−1, Vi+1, · · · , Vn). Then

Entb(V1, · · · , Vn) ≤ 1

n− 1

n∑

i=1

Entb(V\i) .

146The constant b is a slight nuisance, but it allows us to use similar approaches for real-
izable bounds, where we may be interested in using log2. Furthermore, for polychotomous
classification, we may want to use some other b > 2.
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Note that we can rewrite this result as
n∑

i=1

[Entb(V1, · · · , Vn) − Entb(V\i)] ≤ Entb(V1, · · · , Vn) . (7.1)

Proof. (of Theorem 7.1) Define Q\i as Q with the i-th element removed.

Clearly
∣∣∣
(
Q\i
)
W

∣∣∣ ≤ |QW | ≤ 2
∣∣∣
(
Q\i
)
W

∣∣∣, so that 0 ≤ H(Q) − H(Q\i) ≤
logb 2 ≤ 1.

Let Q have n elements. Consider a random variable (V1, · · · , Vn) which has
a uniform distribution over QW . Now,147

H(Q) = logb |QW |

= −
|QW |∑

i=1

1

|QW | logb

1

|QW |
= Entb(V1, · · · , Vn) .

(7.2)

Defining V\i from V as in Han’s inequality, we note that V\i is selected from
some distribution on

(
Q\i
)
W (not necessarily, uniform, however). But, since

entropy is maximized on the uniform distribution, we have that

H(Q\i) ≥ Entb(V\i) .

Thus, applying (7.1), we have

n∑

i=1

[H(Q) −H(Q\i)] ≤
n∑

i=1

[Entb(V1, · · · , Vn) − Entb(V\i)]

≤ Entb(V1, · · · , Vn)

= H(Q) ,

completing the proof. ut

It follows from this theorem that one can apply (4.16) to bound EQ∼Dn H(Q).

This yields the result, for any ε ≥ 0,

PQ∼Dn{H(Q) ≤ EQ∼Dn H(Q)−ε} ≤ exp

(
−EQ∼Dn H(Q)h

( −ε
EQ∼Dn H(Q)

))
,

and the right hand side can be further relaxed to

exp

( −ε2
2 EQ∼Dn H(Q)

)

147The logarithm of a covering number is often referred to as the entropy of the class.
This result serves to explain why.
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— see Boucheron et al. (1999, Corollary 1). Setting this equal to δ1 yields

PQ∼Dn

{
H(Q) ≤ EQ∼Dn H(Q) −

√
−2 EQ∼Dn H(Q) ln δ1

}
≤ δ1 ,

so that with probability at least 1 − δ1,

EQ∼Dn H(Q) ≤ H(Q) +
√
−2 EQ∼Dn H(Q) ln δ1 .

This result is undesirable however, due to the occurence of EQ∼Dn H(Q) on

the right hand side.

Boucheron et al. (1999) suggest the following approach to avoiding this im-

passe. Setting

ε =
1

2
EQ∼Dn H(Q) + v ,

one obtains

PQ∼Dn {EQ∼Dn H(Q) > 2H(Q) + 2v} ≤ exp

(
−
(

1
2 EQ∼Dn H(Q) + v

)2

2 EQ∼Dn H(Q)

)
.

Expanding the square, and using

1

2
EQ∼Dn H(Q) + v ≥ 0 ,

one can bound the right hand side by e−v. We thus have

EQ∼Dn H(Q) ≤ 2H(Q) − 2 ln δ1

with probability at least 1 − δ1.

We now present a generalization of this approach to allow smaller factors

than 2 in front of H(Q). Set ε = κEQ∼Dn H(Q) + v, for κ ∈ (0, 1). This

leads to

PQ∼Dn

{
EQ∼Dn H(Q) >

1

1 − κ
(H(Q) + v)

}
≤ exp

(
− (κEQ∼Dn H(Q) + v)2

2 EQ∼Dn H(Q)

)
.

Expanding the square, the exponent on the right is

− v2

2 EQ∼Dn H(Q)
− vκ− κ2

2
EQ∼Dn H(Q) .
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Our approach is to find a factor z(κ) such that this exponent never exceeds

−z(κ)v. This will be the case when the quadratic equation

v2

2 EQ∼Dn H(Q)
+ v(κ− z(κ)) +

κ2

2
EQ∼Dn H(Q) = 0

has zero or one solution. Examining the discriminant of the equation, we

show that this requires

(z(κ))2 − 2z(κ)κ ≤ 0 .

The tightest bound results from the largest choice of z, so we can use

z(κ) = 2κ. Note that when κ = 1
2 , z(κ) = 1 so that this generalizes the

result above. We thus obtain

PQ∼Dn

{
EQ∼Dn H(Q) >

1

1 − κ
[H(Q) + v]

}
≤ exp(−2κv) ,

so that with probability at least 1 − δ1,

EQ∼Dn H(Q) ≤ 1

1 − κ

[
H(Q) − ln δ1

2κ

]
. (7.3)

Note that this relaxation method applies for general self-bounding functions,

not just H(Q). The first part of the following theorem follows.

Theorem7.2. Let ϑ(Q) be a self-bounding function defining a statistic E,
and κ ∈ (0, 1). Then for v > −κEE,

P

{
EE >

1

1 − κ
[E + v]

}
≤ exp(−2κv) ,

so that for δ < exp(2κ2 EE),

EQ∼Dn E ≤ 1

1 − κ

[
E − ln δ

2κ

]
, (7.4)

with probability at least 1 − δ.

Furthermore, if EE ≥ 0,

EE ≤ inf
κ∈(0,1)

(
1

1 − κ

[
E − ln δ

2κ

])
. (7.5)
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The more useful second part is obtained from Bartlett et al. (2004, Lemma A.4).

We should compare the result for H(Q) to what can be obtained from Mc-

Diarmid’s inequality. It is easy to verify that −H(Q) satisfies the bounded

difference assumption with c = 1, so that from Theorem 4.6, we obtain

EQ∼Dn H(Q) < H(Q) +

√
−n ln δ

2

with probability at least 1−δ. For small sample sizes, this may be a beneficial

alternative. In what follows, we shall (somewhat arbitrarily) use the result

from Theorem 7.2, however.

Next, we note that most bounds are in terms of ln EQ∼Dn |QW |, instead of

EQ∼Dn H(Q) = EQ∼Dn ln |QW | .

Fortunately, these quantities can be related. In fact, due to (4.13) in Theo-

rem 4.14, we have

EQ∼Dn [eλ(H(Q)−EQ∼Dn H(Q))] ≤ exp((eλ − λ− 1) EQ∼Dn H(Q)) ,

for all λ ≥ 0. Setting λ = ln b, we obtain

EQ∼Dn[exp(ln b(H(Q)−EQ∼Dn H(Q)))] ≤ exp((b− ln b−1) EQ∼Dn H(Q)) ,

which leads to

EQ∼Dn bH(Q) ≤ exp((b− 1) EQ∼Dn H(Q)) .

Noting the definition of H(Q), we then have that

logb EQ∼Dn |QW | ≤ b− 1

ln b
EQ∼Dn H(Q) .

As an example, we apply this result to the bound in (5.38) (for error).

Taking the limit as γ → 0, we obtain

PS∼Dm

{
sup
w∈W

[eD(w) − eS(w)] > 4

[√
2[ln 4 EQ∼Dm |QW | − ln δ2]

m

]}
< δ2 .

In this case, we have b = e, so with probability at least 1 − (δ1 + δ2),

sup
w∈W

[eD(w) − eS(w)]
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does not exceed

4




√√√√2
[
(e− 1) infκ∈(0,1)

[
1

1−κ

(
ln |SW | − ln δ1

2κ

)]
− ln δ2

4

]

m


 .

Note that in this result, we can specifically use |SW |, the size of W restricted

to the actual sample observed.

Using the bound of (5.38) was convenient because we had employed the

random subsample lemma, so that the covering number we were considering

was over an m-sample. More generally, however, we would like to be able

to obtain a bound on EQ∼Dm+u H(Q) when Q is an (m + u)-sample. Since

we don’t actually observe the shadow sample, this problem is a little more

difficult. Generally, it is not difficult to see that

|(S ⊕ P )W | ≤ |SW ||PW | .

Taking expectations and logarithms in the case m = u, one obtains that

ln ES⊕P∼D2m |(S ⊕ P )W | ≤ 2 ln ES∼Dm |SW | ,

which one can then combine with the results above in order to improve

bounds obtained without employing the random subsample lemma.

The following result allows us to obtain bounds for m 6= u — when m = u,
applying it to H(Q) yields a result similar to the one above.

Theorem7.3. Suppose a sequence of functions (ϑn) is such that ϑn : En →
IR is symmetric and self-bounding with respect to ϑn−1 for every n.

Then, for any distribution τ on E,

EX∼τm+u ϑm+u(X) ≤ m+ u

m
EX∼τm ϑm(X) .

The proof is a straightforward generalization of that used for Philips (2005,

Lemma 3.14).

It also seems reasonable that semi-supervised learning approaches may allow

one to use unlabelled examples to obtain even better empirical estimates.



Chapter 7. Tightening bounds with concentration inequalities 300

Finally, we note that the results obtained above for the concentration of

H(Q) are based on a definition for a fixed decision class W, so that the

approach outlined here does not apply to covers of data-dependent classes.

However, the results obtained are attractive, since the traditional supremum

bound on the size of the effective function class has been tightened, without

requiring knowledge of the distribution D. However, an important ques-

tion in practice is how feasible it is to calculate (or bound) the size of the

empirically observed effective function class.

A potentially useful result in this direction is that |QW | ≤ (n+1)VC(QW) —

see, for example, Bartlett et al. (2002, p.15). However, finding the empirical

VC dimension of W on Q is not generally easy.148 This also limits its appli-

cability in the luckiness framework — remember that the negated empirical

VC dimension is an ω-small luckiness function (Example 6.7). However, a

rather general method to bound it probabilistically (by using Bernstein’s

inequality) was presented in Williamson et al. (1999). The method is based

on evaluating the capability of the decision class to model noise, so it is

closely related to the Rademacher bounds we discuss in Section 7.2.

7.2 Rademacher bounds

The training sample bounds we have considered so far have provided a bound

on the maximal deviation between empirical and true risks over a (poten-

tially random) function class by effectively employing the union bound over

a number of representative functions from the class. A function of the di-

mension measure or covering number of the class appeared as a complexity

penalty to the empirical error when constructing upper bounds on the true

error. This has an intuitive appeal, since the size of the cover of the hypoth-

esis class gives an indication of the richness of the class, and thus, hopefully,

148As an aside, it is interesting to note that the empirical VC dimension of W is an
example of a configuration function, a class of self-bounding functions, so that the em-
pirical VC dimension is concentrated about its mean (Boucheron et al., 1999, Talagrand,
1995). The empirical fat-shattering dimension is also self-bounding. It is also clear that
Theorem 7.3 applies to both of these concepts.
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its likelihood of overfitting.

Rademacher bounds are the pre-eminent representative of an entirely dif-

ferent approach to bounding maximal deviation which has been developed

in the past decade. Rademacher bounds generally make use of a number

of concentration-of-measure results to derive bounds without employing the

union bound over elements of the hypothesis class. The key to this approach

is the realization that the maximal deviation between empirical and true risk

exhibits strong concentration. Indeed, Example 4.2 shows that

PS∼Dm {V ≥ ES∼Dm V + ε} ≤ e−2ε2m ,

where V = ϑ(S) = supw∈W [rS(w)−rD(w)], thanks to the bounded difference

inequality of Theorem 4.6.

Setting δ = exp
(
−2ε2m

)
, it follows that with probability at least 1 − δ,

sup
w∈W

[rD(w) − rS(w)] < ES∼Dm sup
w∈W

[rD(w) − rS(w)] +

√
ln 1

δ

2m
, (7.6)

with similar bounds for the lower and two-sided regular deviation.

This leads one to search for bounds on the expected maximal deviation of em-

pirical and true risk. The focus of Rademacher bounds and related bounds

is thus to directly bound the expectation on the right hand side of this

inequality.

7.2.1 The basic bound

The core of Rademacher bounds is the following classical symmetrization
result employing Rademacher random variables. We quote it in the following
convenient form from Bartlett et al. (2004, Lemma A.5).

Theorem7.4 (Symmetrization inequality).

max

{
ES∼Dm sup

w∈W
[rD(w) − rS(w)],ES∼Dm sup

w∈W
[rS(w) − rD(w)]

}

≤ 2 ES∼Dm,ζ∼Unif{−1,1}m RS(W) .
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Recall that RS(W) is the Rademacher penalty of W for the sample S, which

also appeared in the random subsample lemma (Theorem 5.19).

Combining the symmetrization inequality with (7.6) yields that with prob-

ability at least 1 − δ1,

sup
w∈W

[rD(w) − rS(w)] ≤ 2 ES∼Dm,ζ∼Unif{−1,1}m RS(W) +

√
ln 1

δ1

2m
, (7.7)

with an analagous result holding for lower regular deviation, and a two-sided

version holding with 1
δ1

replaced by 2
δ1

on the right hand side.

Our next step is bounding the expected Rademacher penalty. In prac-

tice, Rademacher bounds work well because the Rademacher penalty is

also highly concentrated around its mean: we begin by noting that the

Rademacher penalty satisfies the bounded difference assumption. Modify-

ing any data point (xi, yi) and a Rademacher variable σi can result in a

maximum change to the supremum of 2
m

. Applying the bounded difference

inequality (Theorem 4.6) shows that

PS∼Dm,ζ∼Unif{−1,1}m

{
ES∼Dm,ζ∼Unif{−1,1}m RS(W) −RS(W) ≥ ε

}

≤ exp

(−ε2m
2

)
,

where the expectation of the Rademacher penalty is over all samples and

Rademacher variables. A lower bound is identical, so a two-sided bound can

be obtained by doubling the right-hand side.

Setting the right hand side here to δ2, and employing the union bound to

combine this with the result in (7.7), we obtain that with probability at

least 1 − (δ1 + δ2),

sup
w∈W

[rD(w) − rS(w)] < 2


RS(W) +

√
2 ln 1

δ2

m


+

√
ln 1

δ1

2m
. (7.8)

The same bound applies to

sup
w∈W

[rS(w) − rD(w)]

and a two-sided bound applies with 1
δ1

replaced by 2
δ1

.
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An alternative approach is to note that if we consider

R̄S(W) = Eζ∼Unif{−1,1}m RS(W)

as a function of S, that it satisfies the bounded difference inequality with a

maximum change of 1
m

. This yields

PS∼Dm

{
ES∼Dm,ζ∼Unif{−1,1}m RS(W) − R̄S(W) ≥ ε

}
≤ exp

(
−2ε2m

)
.

Setting the right hand side to δ2 and combining this with (7.7), we obtain

that with probability at least 1 − (δ1 + δ2),

sup
w∈W

[rD(w) − rS(w)] < 2


R̄S(W) +

√
ln 1

δ2

2m


+

√
ln 1

δ1

2m
. (7.9)

We call the average Rademacher penalty R̄S(W) the Rademacher average

of W on S, and the mean Rademacher average

Rm(W) = ES∼Dm R̄S(W)

is called the Rademacher complexity of W.149

It is also common to present results using two alternative notions of a

Rademacher penalty. In many cases, results are stated based on

sup
w∈W

∣∣∣∣∣
1

m

m∑

i=1

ζiw(xi)

∣∣∣∣∣ = R′
S(W) ,

which we shall call the absolute Rademacher penalty of W on S. It is clear

that R′
S(W) ≥ RS(W). The absolute Rademacher average and absolute

Rademacher complexity are defined analogously. In some cases, results are

stated using scaled versions of these results, e.g. where the quantities are

not normalized by the factor 1
m

(see Mendelson and Philips, 2003), or the

value is doubled (see Bartlett and Mendelson, 2002). Thus, great care must

be taken when attempting to apply Rademacher bounds.

It is most common to set δ1 = δ2 = δ
2 for a desired δ in these bounds. From

these bounds, we see that a Rademacher penalty (or average) for a given

149Note that the Rademacher complexity is a function of the sample size.
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sample can be used as an accurate estimate of the Rademacher complex-

ity of the class, thus obtaining “calculable” bounds. The quotes here refer

to the fact that efficiently evaluating the supremum in the definition of a

Rademacher penalty is by no means a trivial task, if it can be performed at

all. Koltchinskii (2001) illustrates that calculating a Rademacher penalty

is in fact equivalent to performing ERM over the class.150 A result of this

is that most Rademacher bounds are formulated for ERM and SRM tech-

niques. However, it is important to note that in general, the ERM problem

is difficult, being an NP-hard problem151. In practice, efficient methods for

ERM exist for a number of function classes. For these classes, Rademacher

bounds are relatively easy to evaluate.

Also note that the bound of (7.8) is an example of a data-dependent bound:

the bound on the deviation measure depends on the sample S through the

Rademacher penalty.

The development of Rademacher bounds was due to research on two fronts:

model selection, and attempts to improve the fat-shattering dimension.

Specifically, use of the Rademacher penalties arose seemingly independently

in Koltchinskii (2001), Bartlett et al. (2000), and Mendelson (2002), with

the first of these references bearing the most explicit resemblance to the

approach taken here.

Let us briefly consider the interpretation of the Rademacher penalty. We

can view the Rademacher penalty as a measure of the ability of the decision

class to model, or correlate with, noise: if the expression is very large, the

decision class contains decision rules which can match high losses with those

i for which ζi = 1, and low losses for those i with ζi = −1. If the expression

is small, the decision class is unable to do this, so it is not as rich or complex.

This viewpoint leads naturally to considering the Gaussian penalty of the

hypothesis class, where the Rademacher variables are replaced by standard-

150The supremum corresponds to a decision rule selected by ERM when the labels are
switched according to the Rademacher variables.

151This means that generally the problem of minimizing empirical risk is equivalent to
a number of difficult problems in statistics and computer science which no-one yet knows
how to solve in time polynomial in the sample size.
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ized normal variables. It turns out that these quantities are closely related.

We define (absolute) Gaussian penalties, averages, and complexities corre-

sponding to the Rademacher concepts by replacing the Rademacher variable

ζi with a standard normal r.v. gi, and replacing R by G .

Theorem7.5 (Lemma 4 of Bartlett and Mendelson, 2002). There are
constants t1, t2 such that

t1R′
m(W) ≤ G ′

m(W) ≤ t2 lnmR′
m(W)

for all function classes W and m ∈ IN.

It follows that bounds in terms of absolute Rademacher complexities imply

bounds in terms of absolute Gaussian complexities, and vice versa. Bartlett

et al. (2000) have also proposed a so-called maximum discrepancy average

and corresponding complexity, but this also is intimately related to the

absolute Rademacher complexity (Bartlett and Mendelson, 2002, Lemma 3).

In what follows, we thus exclusively consider the Rademacher penalty.

7.2.2 Improvements on the basic bound

The first improvement to the basic bound is replacing the two separate

applications of the bounded difference inequality, which are combined with

the union bound, by a single application of the inequality. Specifically, we

consider the statistic V defined by

ϑ(S) = sup
w∈W

[rD(w) − rS(w)] − 2RS(W) .

Since RS(W) can change by at most 2
m

and supw∈W |rD(w) − rS(w)| by

at most 1
m

with a change of a single data point, V satisfies the bounded

difference assumption with c = 5
m

. This improvement was suggested in Hush

and Scovel (1999), and also appears in Koltchinskii (2001). The resulting

bound is

PS∼Dm



 sup

w∈W
[rD(w) − rS(w)] < 2RS(W) +

√
25 ln 1

δ

2m



 ≤ δ .
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Similar bounds can be obtained for lower and two-sided deviation. Note

that this approach also removes the problem of selecting δ1 and δ2 in the

basic bound.

A similar bound can be obtained in terms of R̄S(W). In this case,

ϑ(S) = sup
w∈W

[rD(w) − rS(w)] − 2R̄S(W)

satisfies the bounded difference assumption with c = 3
m

, yielding a proba-

bilistic bound on the maximal upper regular deviation of

2R̄S(W) +

√
9 ln 1

δ

2m
.

This bound is tighter, but it is more difficult in general to obtain R̄S(W)

than RS(W). However, if performing ERM to obtain RS(W) is reasonably

efficient, one can use Monte Carlo approximation to obtain R̄S(W) to any

desired accuracy152 (Bartlett et al., 2002).

We spent some time in Section 4.11 trying to obtain tighter bounds on the

maximal deviation between empirical and true means. The final result was

the functional Bennett’s inequality due to Bousquet, which was a special

case of Theorem 4.14.

We have mentioned that McDiarmid’s inequality strictly extends Hoeffding’s

inequality, and that Bousquet’s theorem extends Bennett’s inequality. When

we compared Hoeffding’s inequality to Bernstein’s and Bennett’s inequality

we noted that the latter inequalities were tighter when we could control

the variance of the function under consideration well. Similarly, Bousquet’s

theorem for suprema of centred empirical processes only shows its full power

when the index set of the process consists of functions for which we can

control the variance well (uniformly).

For now, we thus consider bounding the uniform deviation of empirical and

true risk over some subclass W ′ of W. The idea would be that such bounds

152Note that one can also use concentration inequalities to control the inaccuracy of the
Monte Carlo estimate.
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on a number of classes could then be combined with the union bound. Fur-

thermore, we assume we have some ς satisfying

ς2 ≥ sup
w∈W ′

VZ∼D w(Z) .

Writing Y = supw∈W ′ [rD(w) − rS(w)], with probability at least 1 − δ1, we

have

Y ≤ ES∼Dm Y +

√
−18 ln δ1[mς2 + 2 ES∼Dm Y ] − ln δ1

3m

≤ 2Rm(W ′) +

√
−18 ln δ1[mς2 + 4Rm(W ′)] − ln δ1

3m
.

(7.10)

This follows by applying (4.18) to mY , dividing by m, and applying Theo-

rem 7.4.

We next show how to employ a variant of Theorem 4.14 to obtain a bound

on Rm(W ′).

Theorem7.6 (p.25 of Lugosi, 2004). Let V be a class of functions from
E into [−1, 1]. Let Q = (η1, η2, · · · , ηn) be a sample from E. Then the
statistic defined by

nR̄Q(V) = Eζ∼Unif{−1,1}n sup
φ∈V

n∑

i=1

ζiφ(ηi)

is self-bounding.

Theorem7.7. Define ϑ(S) = 2mR̄S(W ′). Then ϑ is self-bounding.

Proof. This follows by noting that

2W ′ − 1 = {2w − 1 : w ∈ W ′}

is a class of functions into [−1, 1], so that mR̄S(2W ′ − 1) = 2mR̄S(W ′) is
self-bounding. ut

We obtain a bound by employing Theorem 7.2. Since

Rm(W ′) = ES∼Dm R̄S(W ′)

≥ 0
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(this is straightforward to verify), it follows from (7.5) that with probability

at least 1 − δ2,

2Rm(W ′) ≤ inf
κ∈(0,1)

(
1

1 − κ

[
2R̄S(W ′) − ln δ2

2κm

])
, (7.11)

for any δ2, κ ∈ (0, 1).

As we did with H(Q) in Section 7.1, we should compare this result to what

can be obtained from McDiarmid’s inequality. The bounded difference as-

sumption for the Rademacher average holds with constant 1
m

, so that Mc-

Diarmid’s inequality implies

Rm(W ′) ≤ R̄S(W ′) +

√
− ln δ

2m

with probability at least 1 − δ. For certain combinations of m, δ and κ,

as well as the unknown R̄S(W ′), this bound may be more appropriate. In

what follows we shall employ (7.11), however.

Combining this with (7.10), we obtain the following: for any κ, δ1, δ2 ∈ (0, 1)

with δ1 + δ2 = δ < 1, with probability at least 1 − δ,

Y ≤ φ(κ, δ2, R̄S(W ′)) +

√
−18 ln δ1[mς2 + 2φ(κ, δ2, R̄S(W ′))] − ln δ1

3m
,

(7.12)

where φ(κ, δ2, R̄S(W ′)) denotes the right hand side of (7.11). The same

bound applies to the supremum of the lower regular deviation, due to the

properties of Rademacher averages we shall establish later in Theorem 7.10.

The result here should be compared to Bartlett et al. (2004, Theorem 2.1).

Their result differs primarily in that they employ a result similar to Theo-

rem 7.2 for upper bounds to ensure that the bound on Y only uses ES∼Dm Y

once. Furthermore, the result presented here does not employ all the relax-

ations employed there.

In deriving this result, we have tacitly assumed that the functional Bern-

stein’s inequality in (4.18) employed to obtain (7.10), will outperform the

bounded difference inequality if we have good control of the variance. If

we compare the bounds for a fixed choice of δ1, we see that the bounded
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differences inequality is only better when

√
− ln δ

2m
<

√
−18 ln δ[mς2 + 2 ES∼Dm Y ] − ln δ

3m
.

This leads to the inequality

1 −
√

−2 ln δ
9m

2
<

√
ς2 +

2 ES∼Dm Y

m
.

For most combinations of sample size and confidence level, the left hand

side will be slightly less than 0.5. The expression 2
m

ES∼Dm Y is generally

negligible, so that the functional Bernstein’s inequality will be superior if

one can bound ς2 below 0.25, and will not usually be much worse even if the

bound of 0.25 is used.

Ideally, we would like to obtain bounds of the form above for various classes

W ′, and combine them using the Occam’s razor method to obtain bounds

on the combined class. It is natural to select the classes based on the control

of ς available for the class. The resulting bounds will be tighter for those

with tighter control of ς, facilitating the use of SRM with these bounds.

In practice, however, it is not clear how to select such classes. Since we

typically bound the variance of the loss of a decision rule by its risk, the

natural choice of ς for a class W ′ is supw∈W ′ [rD(w)(1−rD(w))].153 However,

we do not know the true risks, so that this approach is not feasible. At

first sight, it thus seems that the best we can do with this approach is

to obtain a uniform bound over W using ς = 1
4 (unless the loss function

provides a better alternative). However, alternative approaches can indeed

yield improved bounds in some situations.

Data-dependent Rademacher bounds

The concept of data-dependent Rademacher bounds has been developed

by Petra Philips and Shahar Mendelson in recent years (Mendelson and

Philips, 2003, 2004, Philips, 2005). We shall just give a flavour of the ap-

proach, but no details, since their results do not provide explicit constants.

153Tighter bounds might be available for some general (non-zero-one) loss functions.
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Their approach employs data-dependent formulations of a symmetrization

lemma and a random subsample lemma, together with a concept they call δ-

symmetry. However, instead of employing a cover to bound the Rademacher

penalty, they use concentration inequalities.

What is fascinating about their approach is that they show that many ma-

jor data-dependent approaches to obtaining bounds developed earlier can

be cast in their framework: essentially, for their framework to obtain good

bounds, two assumptions must be satisfied. The authors show that the as-

sumptions of other approaches are just alternative ways of effectively speci-

fying these two assumptions. Their framework encompasses the traditional

covering number bounds, (algorithmic) luckiness bounds, and bounds for

compression schemes.

Local Rademacher bounds

The main reason Rademacher bounds have been under the spotlight in recent

years is that they are well-suited to obtaining bounds for the ERM algorithm.

This is because the decision rule selected by ERM has certain desirable

properties. These properties allow one to apply the Rademacher bound re-

peatedly to the decision rule, using the error bound from the i-th application

to bound the variance for the (i+1)-th application. To do this, an Occam’s

razor method is employed over the various applications of the bound.

This approach seems to have been pioneered in Koltchinskii and Panchenko

(2000), with later work summarized in Bartlett et al. (2004) and Koltchinskii

(2006) (as well as the various discussions and the rejoinder to the second

article).

In the process of developing results for ERM, Bartlett et al. (2004) also

obtain results which apply to all functions in the decision class. These

results are obtained by applying a bound similar to (7.12) to a modified

decision class, which (roughly speaking) weights decision rules in order to

control the variance of decision rules with a large variance of future losses.
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An additional result then shows how a uniform bound on deviations over

the weighted class can yield a bound on true risk for the original decision

rules.

The proofs of these results are technically detailed, and the interested reader

is referred to the original paper for the details. We will restrict ourselves

to introducing the necessary concepts and presenting the most useful re-

sults (for more, and more general, such results, see the original article and

references therein).

Definition 7.1 (Sub-root function). A function φ : IR+ → IR+ is called

sub-root if it is nondecreasing and φ(v)√
v

is nonincreasing in v.

Thus, a sub-root function is a function which grows, but no faster than

the square root function. All subroot functions except the zero function

are called nontrivial subroot functions. It can be shown that any nontrivial

subroot function φ is continuous, and the equation φ(v) = v has a unique

solution. Denoting this solution by vφ, one also has that v ≥ vφ exactly

when v ≥ φ(v). We call vφ the fixed point of φ.

Approximating the fixed point of a sub-root function can in principle be

done with a binary search, but it can be shown that iterating the function

φ actually obtains quicker convergence to the fixed point. To perform this

procedure we begin with some v0 ≥ vφ. Defining vi+1 = φ(vi), we have that

vi converges very rapidly to vφ: it can be shown that

vφ ≤ vi ≤
(
v0
vφ

)2−i

vφ .

Definition 7.2 (Star hull). Let A be a set in a real vector space E . Then
the star hull of A about a point η ∈ E in the vector space is defined by

star(A, η) = {η + v(η′ − η) : v ∈ [0, 1], η′ ∈ A} .

When b = 0, we simply refer to the star hull of A, and write star(A) =
star(A, 0).

With this background, we can state the following result which flows from Bartlett

et al. (2004, Theorem 3.3.2), in a similar fashion to their Corollary 3.5.
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Theorem7.8. Let ς : star(W) → IR+ satisfy

VZ∼D w(Z) ≤ ς(w) ≤ EZ∼D w(Z)

and ς(zw) ≤ z2ς(w) for all w ∈ star(W) and z ∈ [0, 1].

Suppose φ is a sub-root function satisfying

φ(v) ≥ Rm ({w ∈ star(W) : ς(w) ≤ v})

for v ≥ vφ.

Then, for any K > 1 and δ ∈ (0, 1),

PS∼Dm

{
∃w ∈ W : rD(w) >

K

K − 1
rS(w) + 6Kvφ − (ln δ)(11 + 5K)

m

}
≤ δ .

Thus this result bounds the true risk of a decision rule by a weighted em-

pirical risk plus a complexity term which depends on the sample size, the

confidence required, and vφ, the fixed point of a sub-root function upper

bounding the Rademacher complexity of low-variance decision rules in the

star hull of W. It can be shown that under the conditions of the theorem,

Rm({w ∈ star(W) : ς(w) ≤ v})

is itself a sub-root function of v, so that it is a desirable choice for φ, except

that it is not clear how to evaluate it (note that the expression depends on

the distribution D).

By showing that functions with low true variance of loss tend to have low

empiricial variance of loss (i.e. variance on the sample S), Bartlett et al.

(2004) present an alternative choice of φ which is a bound on the Rademacher

average instead of the Rademacher complexity (for a specific choice of ς).

Since this φ only upper bounds the Rademacher complexity with a certain

probability, we have reduced confidence in the final bound.

Theorem7.9. Let δ1, δ2, δ3 ∈ (0, 1) satisfy δ1 + δ2 + δ3 ≤ 1.

Define ςP (w) = EZ∼P w
2(Z). Then, with probability at least 1 − δ2,

φ′(v) = 10Rm({w ∈ star(W) : ςD(w) ≤ v}) +
11 ln δ2
m
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satisfies the conditions for φ in Theorem 7.8.

Let φ′′ be a sub-root function satisfying

φ′′(v) ≥ 20R̄S({w ∈ star(W) : ςS(w) ≤ 2v}) +
11 ln δ2 + 20 ln δ3

m
.

Then, with probability at least 1 − δ3, vφ′ ≤ vφ′′.

Applying Theorem 7.8, we thus have, for any K > 1,

PS∼Dm

{
∃w ∈ W : rD(w) >

K

K − 1
rS(w) + 6Kvφ′′ − (ln δ1)(11 + 5K)

m

}

≤ δ1 + δ2 + δ3 .

This result, with all the δi equal, corresponds to Bartlett et al. (2004, Corol-

lary 5.1).154 Note that this result can be calculated in theory, since all the

values involved can in principle be observed. However, obtaining such a

Rademacher average is generally a daunting task. We now turn our atten-

tion to methods for bounding such Rademacher averages.

7.2.3 Bounding Rademacher and Gaussian penalties

We have mentioned that evaluating a Rademacher penalty is equivalent in

difficulty to performing ERM on the function class. In the general case,

performing ERM is not feasible, so that one must rely on upper bounds on

the Rademacher penalty or average.

As with covering numbers and dimension measures, a number of results are

available to aid obtaining bounds on the Rademacher penalty of a complex

class from those of simpler classes. The results in the following theorem

come from Bartlett and Mendelson (2002, Theorem 12). The results are

stated for (absolute) Rademacher complexities, but in many cases, similar

results can be obtained for Rademacher complexities, as well as (absolute)

Rademacher averages and penalties, and their Gaussian counterparts.

Theorem7.10 (Properties of (absolute) Rademacher complexities).
Let V1, · · · ,Vk be classes of real functions. Then

154Note that their result uses the constant 13 instead of 31, which seems to be incorrect.
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1. If V1 ⊆ V2,
R′

m(V1) ≤ R′
m(V2) .

2.
R′

m(absconv V1) = R′
m(conv V1) = R′

m(V1) .

3. For every v ∈ IR,
R′

m(vV1) = |v|R′
m(V1) .

4. If v : IR → IR is K-Lipschitz and satisfies v(0) = 0, then

R′
m(v ◦ V1) ≤ 2KR′

m(V1) .

5. For any uniformly bounded function v,

R′
m(V1 + v) ≤ R′

m(V1) +
‖v‖∞√

n
.

6. For any uniformly bounded function v and 1 ≤ p <∞, let

V ′
1(p) = {|φ− v|p : φ ∈ V1} .

If ‖φ− v‖∞ ≤ 1 for all φ ∈ V1, then

R′
m(V ′

1(p)) ≤ 2p

(
R′

m(V1) +
‖v‖∞√
n

)
.

7. R′
m

(∑k
i=1 Vi

)
≤∑k

i=1 R′
m(Vi).

The same results hold for Rademacher complexities, with the following mod-
ifications:

• In part (2), the first equality does not hold;

• part (3) requires v > 0;

• in parts (4) and (6), the constant 2 is not necessary.

The modifications necessary to obtain bounds on Rademacher complexities

are generally straightforward. The modification of part (4) (and hence part

(6)) is an application of Ledoux and Talagrand (1991, Theorem 4.12).155

155Bartlett and Mendelson (2002) accidentally refer to Corollary 3.17 of the same book.
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There is a close relationship between the empirical covering number and

the Rademacher average of a class of zero-one functions on a sample S,

as pointed out in the following theorem based on results in Bartlett and

Mendelson (2002) and Kääriäinen (2004)156.

Theorem7.11 (Obtaining Rademacher penalties from shatter coefficients).
Let W be a class of functions into {0, 1}. Then for all n-samples Q, we have

R̄Q(W) = O

(√
VC(W|Q)

n

)

and

R̄Q(W) = O

(√
ln(|QW |)

n

)
.

Furthermore, we have that

R̄Q(W) ≤ 2

√
ln |QW |

n
+

1

|QW |

and

PQ∼Dn,ζ∼Unif({−1,1}n)

{
RQ(W) >

√
2(lnNW(n) − ln δ)

n

}
≤ δ .

For further useful results for calculating Rademacher averages for various

function classes, the interested reader is referred to, inter alia, Bartlett et al.

(2004), Bartlett and Mendelson (2002), Bousquet and Herrmann (2003),

Koltchinskii and Panchenko (2002), Mendelson (2003), Shawe-Taylor and

Cristianini (2004), von Luxburg and Bousquet (2004).

156The authors of these papers use these and similar results as a motivation to replace
traditional bounds employing VC dimension of the class by Rademacher bounds: they
note that the Rademacher averages are sample-based, allowing much lower values to be
obtained, and in the worst case, the bound obtained using Rademacher averages is worse
by a factor of

√
2.



Chapter 8

PAC-Bayesian bounds and

Occam’s hammer

In this chapter, we consider two novel methods for obtaining bounds for

stochastic decision rules in specific scenarios. Firstly, the PAC-Bayesian ap-

proach provides bounds on the expected risk of the stochastic Gibbs strategy

for selecting a decision rule. The very new Occam’s hammer methodology,

on the other hand, provides a bound for the risk of a single stochastic de-

cision rule (among other applications). The common thread uniting these

approaches is that both approaches make use of some “posterior” distri-

bution in the Gibbs class GH′ associated with some base hypothesis class

H′.

In Example 2.5, we discussed three common strategies when the hypothesis

class was a Gibbs class. We will particularly focus on the Gibbs strategy in

this chapter.

8.1 PAC-Bayesian bounds

In general, PAC-Bayesian bounds refer to any PAC-style bound obtained

for a Bayesian approach to a problem. Typically, the Bayesian approach

assumes that the prior in the problem under consideration is correct, thus

validating the decision rule their approach selects. However, PAC-Bayesian

316



Chapter 8. PAC-Bayesian bounds and Occam’s hammer 317

bounds guarantee performance of the resulting decision rule regardless of the

veracity of the prior. Thus PAC-Bayesian bounds can be seen as a method

for validating a decision rule obtained by a Bayesian approach within the

framework of classical statistics.

Perhaps the earliest PAC-Bayesian bound was an application of the luck-

iness framework to a Bayesian estimator in Shawe-Taylor and Williamson

(1997).

However, the foundation of tight PAC-Bayesian bounds was laid by David

McAllester with a theorem he proved in McAllester (1998) and generalized

in McAllester (1999) and McAllester (2001). PAC-Bayesian bounds are

novel in that they seem to extend the union bound to uncountable decision

classes directly, without resorting to a cover or an advanced concentration

inequality. In fact, we shall see later that these bounds actually can be seen

as leveraging bounds obtained with the exponential moment method.

Every Q ∈ QH′ corresponds to an hypothesis hQ ∈ GH′ . The Gibbs strategy

then selects a stochastic decision rule wQ by sampling an element of H′ from

Q.

Theorem8.1 (McAllester’s PAC-Bayesian bound). Consider a deter-
ministic hypothesis class H′ and the associated Gibbs class GH′ . Let α ∈ QH′

be a distribution over H′, and δ ∈ (0, 1] a confidence level. Then, with prob-
ability at least 1 − δ, for all Q ∈ QH′ ,

rD(wQ) ≤ rS(wQ) +

√
KL(Q||α) + ln m

δ
+ 2

2m− 1
.

In this theorem, α plays the role of a “prior” distribution over the base

hypothesis class H′. Investigating this bound, we see that the benefits it

provide come at a price: the resulting bounds are generally trivial when the

“prior” is a density over a continuous class, while the posterior Q is discrete

(such as when we wish to select a single decision rule from H′). This happens

because the Kullback-Leibler divergence explodes when Q becomes highly

concentrated on a few points.

It is instructive to compare this result to the following more direct approach.
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Suppose H′ is countable, and consider a “prior” α. Then, applying the

Occam’s razor method to Hoeffding’s tail inequality (see Example 5.3) yields

rD(w) ≤ rS(w) +

√
ln 1

δ
+ ln 1

α(h)

2m
(8.1)

for all h ∈ H′. (Here we have used H′ as the hypothesis class, along with

the identity strategy g = idA). Now consider some distribution Q ∈ QH′ .

From (8.1), we have

Eh∼Q rD(h) ≤ Eh∼Q rS(h) + Eh∼Q

√
ln 1

δ
+ ln 1

α(h)

2m
.

By Jensen’s inequality, this yields

rD(wQ) ≤ rS(wQ) +

√
ln 1

δ
+ Eh∼Q ln 1

α(h)

2m

= rS(wQ) +

√
ln 1

δ
+ KL(Q||α) + Ent(Q)

2m
,

(8.2)

where Ent(Q) denotes the entropy of Q.

Thus, the PAC-Bayesian bound improves this result roughly when Ent(Q) >

lnm. Furthermore, the PAC-Bayesian bound also applies to uncountable H ′.

The form of the PAC-Bayesian bound above (McAllester, 2001, Theorem 1)
was constructed using Hoeffding’s tail inequality, so a two-sided version can
easily be constructed. Seeger (2001) showed that the same proof technique
employed for this result could be used for a variety of similar bounds, in-
cluding a bound based on Hoeffding’s r.e. bound. The result in this case
is the most well-known PAC-Bayes bound, stated basically in the following
form for the first time in Langford and Seeger (2001, Theorem 3):

Theorem8.2 (Langford-Seeger PAC-Bayesian bound). Consider any
distribution α over the deterministic hypothesis class H′, and a confidence
level δ ∈ (0, 1]. Then, with probability at least 1 − δ,

KL(rS(wQ)||rD(wQ)) ≤ KL(Q||α) + ln 2m
δ

m− 1

holds simultaneously for all distributions Q ∈ QH′ .
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A one-sided version of this result also holds: with probability at least 1− δ,

rD(wQ) ≤ sup

{
ε : KL(rS(wQ)||ε) ≤ KL(Q||α) + ln m

δ

m− 1

}
. (8.3)

Seeger (2001) showed that a slight tightening of this theorem is possible

under zero-one loss, with the inequality in that case replaced by

KL(eS(wQ)||eD(wQ)) ≤ KL(Q||α) + ln m+1
δ

m
. (8.4)

If we use the bound KL(v1||v2) ≥ 2(v2 − v1)
2 on the left hand side of the

Langford-Seeger PAC-Bayesian bound, we see that with probability at least

1 − δ, for all HQ,

rD(wQ) − rS(wQ) ≤
√

KL(Q||α) + ln 2m
δ

2(m− 1)
.

We see that this gives us a slight weakening of McAllester’s PAC-Bayesian

bound.

Although the Kullback-Leibler divergence between rS(wQ) and rD(wQ) is

not analytically invertible, it can be inverted numerically: since, for a fixed

v1, KL(v1||v2) is monotonically increasing for v2 > v1, a simple line search

for the smallest v such that

KL(rS(wQ)||v) > KL(Q||α) + ln 2m
δ

m− 1

yields an upper bound U on rD(wQ). A similar argument for v2 < v1 yields

a lower bound L , so that [L ,U ] forms a 100(1−δ)% confidence interval for

rD(wQ). Note that the bound can be tightened by employing the improved

bound for errors rather than risks. This approach first appeared in the

literature in Seeger (2002), although it was foreshadowed in Langford and

Seeger (2001).

In the bounds above, the role of the distribution α is very much like that

of the “prior” α in Section 5.4, as it gives an indication of where it is felt

more or less confidence should be placed on respective hypotheses in H ′.

The KL divergence measures the difference between the original, “prior”,
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assignment of confidence (the distribution α), and the final decision where to

place confidence (represented by the distribution Q determining an element

in the Gibbs class of H′). In a way, Q can be seen as an analog of a

Bayesian posterior distribution, although there is no requirement that Q

and α are related. If Q and α are identical, the divergence is 0, and one

obtains the tightest bound. The more the selected hypothesis differs from

that specified by the “prior”, the greater the KL divergence. So, in a way,

the KL divergence can be seen as a penalty for incorrectly assigning “prior”

confidence — a high divergence would then correspond to a lot of “lost

confidence” in the countable case outlined above. Note further that if Q is

not absolutely continuous with respect to α, then the KL divergence between

them is infinite, and we obtain trivial bounds.

Both of the bounds above rely in essence on the following lemma, proved
by an optimization argument involving the Kuhn-Tucker conditions for con-
strained optimization:

Lemma8.1 (Lemma 4 of McAllester, 2001). Let Q,α, v ∈ IRN , with
αi, Qi > 0 and

∑N
i=1Q

(i) = 1. If, for some c,K > 0,

N∑

i=1

α(i)ecv
(i)
< K ,

then
N∑

i=1

Q(i)v(i) ≤ KL(Q||α) + lnK

c
.

To use this lemma for the Langford-Seeger PAC-Bayesian bound above, we

use Q as a discrete distribution over N hypotheses in an hypothesis class. α,

corresponding to a discrete α above, represents a prior assignment of confi-

dence to those N hypotheses, while v(i) = KL(rS(hi)||rD(hi)), where the hi

are the N hypotheses under consideration. Making these substitutions, we

obtain a bound on the KL divergence between the true and expected error

rate of the Gibbs classifier obtained by sampling from hi according to Q.

This bound is in terms of the KL divergence between Q and α, as well as

K and c.

Appropriate values forK and c in the lemma above are obtained by bounding
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the mean of an exponential function of KL(rS(h)||rD(h)) w.r.t. h ∼ α. Full

details of that derivation are in Langford and Seeger (2001, Lemma 2).

Finally, a limit argument can be employed to show that this bound still

holds when N tends to infinity. In this case, the limits of the distributions α

and Q can be used, and the Langford-Seeger PAC-Bayesian theorem above

results.

8.1.1 Links with concentration inequalities

The choice v(i) = KL(rS(hi)||rD(hi)) in Lemma 8.1 used to prove Theo-

rem 8.2 is motivated by the form of Hoeffding’s r.e. bound, where the prob-

ability of deviation between true and empirical risk for a single hypothesis

h on an n-sample is bounded by

exp(−nKL(rD(h) − ε||rD(h))) .

Seeger (2001) shows that other concentration inequalities showing exponen-

tial decay can be used instead of Hoeffding’s r.e. bound. In general, the

choice of v(i) is then linked to the form of the concentration inequality em-

ployed in a similar fashion.

In this light, it is natural to wonder whether a PAC-Bayes bound built on

Bennett’s or Bernstein’s inequality can be obtained. Unfortunately, tech-

nical restrictions employed in Seeger’s approach seems to prevent such a

result being obtained in his framework. However, such a result can indeed

be obtained based on Bernstein’s inequality.

In this section, we shall present such a result using a rather different ap-

proach to that presented above. This approach, which was pioneered by

Olivier Catoni (Catoni, 2003, 2004b), will hopefully shed light on the source

of the the improvements of Theorem 8.1 over (8.2).

When deriving a concentration inequality such as Hoeffding’s inequality or

Bernstein’s inequality, one uses the exponential moment method by bound-

ing the right hand side of

P{V > ε} ≤ eλV −λε .
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For the obvious choice V (h′) = rD(h′)− rS(h′), we are interested in bounds

on the deviations of Eh′∼Q V (h′). The approach taken to obtain (8.2) was to

bound V for every h′ with at least a certain probability 1− δ, and then take

this expectation over both sides, to obtain a bound on Eh′∼Q V (h′) which

holds with probability at least 1 − δ.

A more direct approach is to consider

PS∼Dm{Eh′∼Q[V (h′) − ε(h′)] > 0}

directly. Instead of using the bound obtained for V by a concentration in-

equality, the idea is now to obtain a concentration inequality for the expected

deviation directly. By the exponential moment method, we have that

PS∼Dm{Eh′∼Q[V (h′) − ε(h′)] > 0} ≤ ES∼Dm exp(λEh′∼Q[V (h′) − λε(h′)]) .

Furthermore, we wish to obtain a bound that holds for all Q157. Thus we

would like to work with

PS∼Dm{∃Q ∈ QH′ : Eh′∼Q[V (h′) − ε(h′)] > 0} . (8.5)

If ε is independent of h′, this leads us to

PS∼Dm

{
sup

Q∈QH′
Eh′∼Q V (h′) > ε

}
≤ ES∼Dm exp

(
λ sup

Q∈QH′
Eh′∼Q V (h′) − λε

)
.

(8.6)

The problem with this, however, is that the supremum includes distribu-

tions which can be concentrated on h′ exhibiting “arbitrarily bad” behaviour

(where the KL divergence can become infinite). Thus, it seems ε can not

be held constant. If we regard the “prior” α as encoding a kind of desir-

able behaviour of the hypotheses in H′, the KL divergence KL(Q||α) might

be interpreted as a “deviation from desirability” of Q. Fortunately, a link

can be established between Eh′∼Q V (h′) and KL(Q||α). If we consider the

KL divergence KL(Q||α) as a convex function of Q, the convex conjugate or

Legendre-Fenchel transform of KL(·||α) is

Leg[KL(·||α)](φ) = sup
Q∈QH′

[Eh′∼Q φ(h′) − KL(Q||α)] .

157This step corresponds to the transition from a test sample to a training sample bound.
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Theorem8.3 (Lemma 1.4.2 of Catoni, 2004b).

Leg[KL(·||α)](φ) = ln Eh′∼α exp(φ(h′)) .

In addition, if φ is upper bounded, we have

ln Eh′∼α exp(φ(h′)) = Eh′∼Q φ(h′) − KL(Q||α) + KL(Q||ν) ,

where ν is the Gibbs distribution derived from α based on φ, i.e. (assuming
α is a continuous distribution),

ν(h′) =
exp(φ(h′))

Eh′′∼α exp(φ(h′′))
α(h′) .

Thus, this result tells us that the deviation of Eh′∼Q φ(h′) from KL(Q||α) is

uniformly controlled158 by the Legendre-Fenchel transform of KL(·||α) at φ.

The next step thus involves bounding this Legendre-Fenchel transform. We

consider, for any λ > 0,

PS∼Dm

{
sup

Q∈QH′

[
Eh′∼Q[λV (h′) − ε(λ, h′)] − KL(Q||α)

]
> 0

}
. (8.7)

By considering the function φ(·) = λV (·) − ε(λ, ·), and employing Theo-

rem 8.3, this probability equals

PS∼Dm{ln Eh′∼α exp(λV (h′) − ε(λ, h′)) > 0}
= PS∼Dm{Eh′∼α exp(λV (h′) − ε(λ, h′)) > 1}
= ES∼Dm I

(
Eh′∼α exp(λV (h′) − ε(λ, h′)) > 1

)

≤ ES∼Dm Eh′∼α exp(λV (h′) − ε(λ, h′))

= Eh′∼α ES∼Dm exp(λV (h′) − ε(λ, h′)) , (8.8)

where we used the fact that the exponential function is always positive.

Finally, we note that if we have derived a concentration inequality for V us-

ing the exponential moment method, we have a bound on ES∼Dm exp(λV (h′))

for any h′. Thus, in principle, every quantity in this bound can be calculated.

158Some technical restrictions apply to the Theorem — see Catoni (2004b) for details.
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Example 8.1. Theorem 4.1 is the basis of Hoeffding’s tail inequality. From
this theorem, one can obtain, for any h′ ∈ H′,

ES∼Dm exp(λV (h′)) ≤ exp

(
λ2

8m

)
.

Applying this to (8.8) with ε independent of h′, one obtains a bound of

exp

(
λ2

8m
− ε(λ)

)
.

A convenient choice of ε, which helps cancel terms, is

ε(λ) =
λ2

8m
− ln δ .

In this case, the bound reduces to δ, and we obtain the following probability
statement: for any λ > 0,

PS∼Dm

{
∃Q ∈ QH′ : Eh′∼Q V (h′) >

1

λ

[(
λ2

8m
− ln δ

)
+ KL(Q||α)

]}
≤ δ .

(8.9)

Ideally, we would now like to select a λ minimizing the right hand side.
However, the derivative of the right hand side is a function of Q, through
the KL divergence, which may be infinite. Thus, we have to content ourselves
with selecting a λ which may not be optimal. Here, we shall consider the
choice λ =

√
2m. In this case, we have

PS∼Dm

{
∃Q ∈ QH′ : rD(wQ) > rS(wQ) +

KL(Q||α) + 1
4 − ln δ)√

2m

}
≤ δ .

(8.10)

Comparison with the result in Theorem 8.1 shows that this approach pro-

vides a bound which converges at a rate of O
(

1√
m

)
, rather than O

(√
lnm
m

)

for any choice of δ and Q. This improvement must, however, be balanced
with the loss of the square root in the numerator159. ut

Example 8.2. To compare this approach to that of Langford and Seeger,
we recover (8.4) for zero-one loss with this approach. In this case, we use
V (h′) = KL(rD(h′)||rS(h′)).

159Audibert and Bousquet (2007, Section B.3.6) derive another bound with the same

O
“

1√
m

”
behaviour, which exhibits a clearer relationship to Theorem 8.1, by employing a

choice of V more similar to that used in the original result.
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From the analysis above, we have

PS∼Dm

{
sup

Q∈QH′

[
Eh′∼Q[λV (h′) − ε(λ, h′)] − KL(Q||α)

]
> 0

}

≤ Eh′∼α ES∼Dm exp(λV (h′) − ε(λ, h′)) .

Seeger (2001) shows that for zero-one loss,

ES∼Dm exp
(
mKL

(
rD(h′)||rS(h′)

))
≤ m+ 1

for any h′. Thus, choosing λ = m, we obtain

PS∼Dm

{
sup

Q∈QH′

[
Eh′∼Q[mV (h′) − ε(m,h′)] − KL(Q||α)

]
> 0

}

≤ (m+ 1) Eh′∼α exp(−ε(m,h′)) .

Restricting ourselves to a choice of ε independent of h′, setting the bound
to δ and solving for ε yields

ε(m) = ln
m+ 1

δ
.

Thus, with probability at least 1 − δ, for all Q ∈ QH′ ,

Eh′∼Q KL(rD(h′)||rS(h′)) ≤ KL(Q||α) + ln m+1
δ

m
.

It is easy to verify that KL(v1||v2) is convex w.r.t. v1 and v2, so that applying
Jensen’s inequality to

Eh′∼Q KL(rD(h′)||rS(h′))

allows us to recover the result in (8.4).

Note that while the choice of λ = m is convenient in this case, there is
no clear reason to expect it to be a good choice. Unfortunately, it is not
clear how to find good bounds on ES∼Dm exp(λKL(rD(h′)||rS(h′))) for other
choices of λ. ut

We now return to obtaining a bound based on Bernstein’s inequality. First,

we present the bound on the m.g.f. of V employed in deriving Bernstein’s

inequality. The following result is obtained from the proof of Catoni (2004b,

Theorem 1.4.1):
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Theorem8.4. Let Vi, c, σ
2 and ε be as in Theorem 4.3. Then the m.g.f.

of V = 1
n

∑n
i=1 Vi is bounded by

exp

(
φ

(
cλ

n

)
σ2

n
λ2

)
,

where

φ(v) =
ev − v − 1

v2
.

Furthermore, choosing

λ =
n

c
ln
(
1 +

cε

σ2

)

is sufficient to derive the simple form of Bernstein’s inequality (Theorem 4.4)
using the exponential moment method.

By using Vi(h
′) = rD(h′) − L(h′(xi), yi), where (xi, yi) denote the i-th ele-

ment of S, we have V = rD(h′) − rS(h′), with c = 1. It follows that

PS∼Dm

{
sup

Q∈QH′

[
Eh′∼Q[λV (h′) − ε(λ, h′)] − KL(Q||α)

]
> 0

}

≤ Eh′∼α ES∼Dm exp(λV (h′) − ε(λ, h′))

≤ Eh′∼α exp(−ε(λ, h′)) exp

(
φ

(
λ

m

)
(ς(h′))2

m
λ2

)
, (8.11)

for some appropriate variance bound (ς(h′))2.

At this stage, we are faced with a number of issues: we need a bound for

each (ς(h′))2, we need a way to choose the ε(λ, h′); and we need to make

these selections in a way permitting us to invert the resulting bound.

Suppose for now that we have appropriate values for (ς(h′))2. For a desired

confidence level 1 − δ, the following choice of ε(λ, h′) is convenient:

ε(λ, h′) = φ

(
λ

m

)
(σ(h′))2

m
λ2 − ln δ . (8.12)

With this choice, all the difficult factors in the bound of (8.11) cancel, and

the bound reduces to δ.

It follows that with probability at least 1 − δ, for all Q ∈ QH′ ,

rD(wQ) ≤ rS(wQ) +
1

λ

[
KL(Q||α) + φ

(
λ

m

)
(ς(h′))2

m
λ2 − ln δ

]
.



Chapter 8. PAC-Bayesian bounds and Occam’s hammer 327

One simple choice for (ς(h′))2 is rD(h′). In this case,

Eh′∼α(ς(h′))2 = rD(wQ) ,

leading to the bound

rD(wQ) ≤
[
1 − λ

m
φ

(
λ

m

)]−1 [
rS(wQ) +

1

λ
[KL(Q||α) − ln δ]

]
, (8.13)

which only holds (with probability at least 1 − δ) when

1 − λ

m
φ

(
λ

m

)
> 0 .

This bound appears in Catoni (2004b, Corollary 1.5.1).

The choice (ς(h′))2 = rD(h′)[1 − rD(h′)] is somewhat more difficult to han-

dle, and will not provide much benefit when rD(h′) is small. We shall not

consider this choice further here.

If we consider the result in (8.13), we see that the best choice of λ once
again depends on the sample S, this time through the empirical risk rS(wQ)
and the KL divergence KL(Q||α). We now briefly present a modification to
the above bounds allowing us to select λ after observing S. Two approaches
are feasible: the most simple is employing the Occam’s razor method over a
grid of potential choices of λ, while the second is to construct another PAC-
Bayesian argument for the choice of λ. Both of these approaches employ a
“prior” over potential choices of λ. These approaches are described in Catoni
(2004b, Section 1.5.3). We shall content ourselves with stating the following
result, which is similar to Catoni (2004b, Corollary 1.5.6)160:

Theorem8.5. For some b > 1, let G be the grid

G = {2mb−i : i ∈ [0 : logb 2m]} .

Employing the uniform “prior” over G, and the Occam’s razor method, we
obtain the following: with probability at least 1 − δ,

rD(wQ) ≤ inf
{λ∈G: λ

m
φ( λ

m )<1}

[[
1 − λ

m
φ

(
λ

m

)]−1 [
rS(wQ) +

1

λ
[KL(Q||α) − ln

δ

logb 2m+ 1
]

]]
.

160Their corollary can be seen as utilizing the margin unification lemma for this problem.
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8.1.2 PAC-Bayesian margin bounds

The first application of the margin with PAC-Bayesian bounds was in Her-

brich et al. (1999), where the authors used the margin achieved by a SV

machine to obtain a bound on the size of the largest ball in version space161.

This bound was then applied to an early version of the PAC-Bayesian bound

from McAllester (1998) applicable when the posterior Q is only positive for

hypotheses in the version space. Later work in Herbrich (2002), Herbrich and

Graepel (2001) focused on obtaining larger sets in version space to tighten

the bounds, and noted that the results were applicable to linear classifiers

in general.

The second development in this direction involved the application of a PAC-

Bayesian bound to a margin bound. As noted earlier, the earliest ag-

nostic margin bound was that developed specifically for voting classifiers

in Schapire et al. (1997). By replacing an application of the Hoeffding tail

inequality with a smart application of McAllester’s PAC-Bayesian bound

(Theorem 8.1), which was then state-of-the-art, a tighter bound could be

obtained. Subsequent improved PAC-Bayesian bounds implied improve-

ments to this bound in Langford and Seeger (2001). Notably, these results

hold for the voting classifier based on the posterior, not the Gibbs classifier.

The most well-known PAC-Bayesian margin bounds, however, are those

derived in Langford and Shawe-Taylor (2002), McAllester (2003). These

results employed a Gaussian “prior”162 for classifiers based on thresholding

a weighted sum of basis functions. In order to obtain a bound, they derive

a result relating the true risk and the empirical margin risk.

Specifically, let η1, η2, η3, · · · , ηM be an orthonormal basis of an inner prod-

uct space of functions H′, and let α ∼ N(0, IM ), where IM denotes the

M ×M identity matrix. In this situation, an hypothesis h′ can be written

uniquely as a basis expansion h′ =
∑M

i=1 hiηi, and we use the distribution α

161The version space for a given sample S is the set of all hypotheses consistent on S.
As such, it is only defined for zero-one loss functions.

162This choice is almost completely determined by properties needed by the “prior” in
the derivation.
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to define this canonical “prior”:

α(h′) = α((h1, h2, · · · , hM )) .

Consider any h? ∈ H′ and v > 0. Define the posterior distribution Q(h?, v)

as the following renormalized subset of α:

Q(h?, v)(h′) =
I(〈h?, h′〉 ≥ v)

Ph′′∼α{〈h?, h′′〉 ≥ v}α(h?) .

Note that this can be seen as the Gibbs distribution derived from α based

on163 φ(h′) = ln I(〈h?, h′〉 ≥ u).

We will be interested in KL(Q(h?, v)||α):

KL(Q(h?, v)||α) = Eh′∼Q(h?,v) ln
Q(h?, v)(h′)

α(h′)

= Eh′∼Q(h?,v) ln
1

Ph′′∼α{h? · h′′ ≥ v}
= − ln Ph′′∼α{〈h?, h′′〉 ≥ u} .

Expanding h? =
∑M

i=1 h
?
i and h′′ =

∑M
i=1 hi, we have that

〈h?, h′′〉 =

M∑

i=1

hih
?
i ,

a linear combination of zero-mean, independent, Gaussian r.v.’s, with vari-

ance
∑M

i=1(h
?
i )

2. Thus, we have that

KL(Q(h?, v)||α) = − ln PZ∼N(0,‖h?‖2){Z ≥ v}

= ln
1

1 − Φ
(

v
‖h?‖

) .

In what follows, we consider only h? with ‖h?‖ = 1.

In this setting, we can obtain the following results (see Lemma 4 and Corol-

lary 2 of McAllester, 2003): for any distribution P on Z, and any γ > 0,

eP

(
h′Q(h?,v), L γ

2

)
≤ eP (h?, Lγ) +

(
1 − Φ

(γv
2

))
(8.14)

163This interpretation assumes sensible methods are used to handle undefined terms in
terms of limits.
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and

eP (h?, L0) ≤ eP

(
h′Q(h?,v), L γ

2

)
+
(
1 − Φ

(γv
2

))
. (8.15)

These formulae use some unusual notation which is necessitated by the fact

that in the stochastic case, we are dealing with a composite strategy: thresh-

olding the function obtained by the Gibbs strategy. Lγ denotes the margin

loss at margin γ (see Section 5.6.1). The composite strategy necessitates the

use of L0 rather than the underlying zero-one loss function. Furthermore,

while h? is not strictly a stochastic decision rule in this setting, it is treated

as such for the purpose of defining eP . Note that if we write w? for the

thresholded version of h?, we have eP (h?, L0) = eP (w?, L).

The idea of the PAC-Bayesian margin bound we present is now to use P = S

in (8.14) and P = D in (8.15), allowing us to employ the regular PAC-

Bayesian bound with loss function L γ
2
. Specifically, we obtain, for any γ > 0,

eD (w?, L) ≤ eS (h?, Lγ) +
[
eD

(
h′Q(h?,v), L γ

2

)
− eS

(
h′Q(h?,v), L γ

2

)]

+ 2
(
1 − Φ

(γv
2

))
.

We now apply (8.3), to eD

(
h′

Q(h?,v), L γ
2

)
, yielding, with probability at least

1 − δ,

eD(w?, L) ≤ eS (h?, Lγ) − eS

(
h′Q(h?,v), L γ

2

)
+ 2

(
1 − Φ

(γv
2

))

+ sup

{
ε : KL

(
eS

(
h′Q(h?,v), L γ

2

)
||ε
)
≤ KL(Q(h?, v)||α) + ln m

δ

m− 1

}
.

A weaker form, which eliminates the need to calculate eS

(
h′

Q(h?,v), L γ
2

)
is

eD(w?, L) ≤ sup



ε :

KL
(
eS (h?, Lγ) +

[
1 − Φ

(
γv
2

)]
||ε−

[
1 − Φ

(
γv
2

)])

≤ ln 1
1−Φ(v)

+ln m
δ

m−1



 ,

where we have also replaced KL(Q(h?, v)||α) by ln 1
1−Φ(v) .

To calculate this bound, we need to select γ and v. McAllester (2003)

proposes using v =

q
8 ln mγ2

4

γ
, and selecting γ after observing the data by
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employing an Occam’s razor bound over the set

G =

{√
i

m2
: i ∈ [1 : m2]

}
.

The choice of u allows us to obtain appropriate bounds on Φ(u) and Φ
(

γu
2

)
,

yielding the following result.

Theorem8.6 (McAllester’s PAC-Bayesian margin bound). With prob-
ability at least 1 − δ, for all h? with ‖h?‖ = 1,

eD(w?, L) ≤ inf
γ∈G

sup




ε :

KL
(
eS(h?, Lγ) + 4

mγ2 ||ε− 4
mγ2

)

≤
4

„

ln

„

mγ2

4

««

+
γ2 + 7

2
ln m+ln 1

δ
+3

m−1





.

8.1.3 Data-dependent PAC-Bayesian bounds

Two shortcoming of the PAC-Bayesian bounds we have considered so far is

that the bounds generally explode when the posterior is concentrated on a

single decision rule; and the bounds are data-independent. Catoni (2004b)

presents a method which employs a double sample approach to attempt to

remedy these issues. We begin by showing how his approach can be used to

obtain data-independent results analogous to traditional covering number

results.

Due to symmetrization lemmas (such as (5.7)), a bound on

PS⊕P∼Dm+u

{
sup

Q∈QH′
[rP (wQ) − rS(wQ)] > ε?

}
(8.16)

for an appropriate ε? can be used to obtain a bound on

PS∼Dm

{
sup

Q∈QH′
[rD(wQ) − rS(wQ)] > ε

}
.

By using the conditioning argument of (5.13), (8.16) can be expressed as

EM∼Dm+u Pτ∼Unif Sm+u
{E (τ(M))|M} ,
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where

E (S ⊕ P ) =

[
sup

Q∈QH′
[rP (wQ) − rS(wQ)] > ε?

]
. (8.17)

Catoni’s idea is to bound

Pτ∼Unif Sm+u
{E (τ(M))|M}

using a “prior” which depends on M . However, to make the approach fea-

sible, the “priors” must be well-behaved in some sense164. This is done by

using an exchangeable mapping α from the space of m + u-samples Zm+u

to QH′ . The mapping α is exchangeable if, for any τ ∈ Sm+u, and any

M ∈ Zm+u,

α(M) = α(τ(M)) ,

i.e. the “prior” is insensitive to reordering the sample M . Furthermore, his

approach permits one to let ε be sensitive to M .

Unfortunately, Catoni’s results are limited to the case m = u. This is partic-

ularly disappointing because his focus is on transductive learning (Vapnik,

1995, 1998), where one is specifically interested in the error rate on a given

future test sample, which in practice is unlikely to be the same size as the

training sample. In what follows, we present a novel approach combining

Catoni’s idea with ideas inspired by Devroye’s dual sample bound in De-

vroye (1982), which allows us to obtain results for the case m 6= u. While

his results only hold for zero-one loss functions, we show that our results

apply to general loss functions.

For a given (m+ u)-sample M , we are interested in

Pτ∼Unif Sm+u
{E (τ(M))|M} .

Thanks to (5.14), we can rewrite rP (h′)− rS(h′) as m+u
u

[rS⊕P (h′)− rS(h′)],

so that

E (S ⊕ P ) = sup
Q∈QH′

Eh′∼Q

[
rS⊕P (h′) − rS(h′) − u

m+ u
ε?
]
> 0 .

164This idea is comparable to that of ω-smallness of a luckiness function.
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By the same reasoning that led to (8.7) from (8.5), we shall consider for an

arbitrary M ∈ Zm+u, any exchangeable “prior” α(M) ∈ Q(H′)|M , and any

λ > 0,

Pτ∼Unif Sm+u

{
sup

Q∈Q(H′)|M

[
Eh′∼Q [λV (τ(M), h′) − ε(τ(M), λ, h′)]

−KL(Q||α(M))

]
> 0

}
,

(8.18)

where

V (S ⊕ P, h′) = rS⊕P (h′) − rS(h′)

= rM (h′) − rS(h′) .

A very important point to note is that Q and α(M) are distributions over the

restricted function class (H′)|M . This is what will prevent the KL divergence

from exploding when Q is concentrated on a specific decision rule (at least

in the case of zero-one loss functions).

Employing Theorem 8.3 as with the derivation of (8.8), this probability does

not exceed165

Eh′∼α(M) Eτ∼Unif Sm+u
exp

(
λV
(
τ(M), h′

)
− ε
(
τ(M), λ, h′

))
. (8.19)

If we require that ε be exchangeable, then t(τ(M), λ, h′) is independent of

τ , and the bound equals

Eh′∼α(M) exp(−ε(M,λ, h′)) Eτ∼Unif Sm+u
exp(λV (τ(M), h′)) . (8.20)

The following result is central to further progress.

Theorem8.7 (Theorem 4 in Hoeffding, 1963). Let E1, E2, · · · , En be
a random n-sample taken from a population without replacement, while
E′

1, E
′
2, · · · , E′

n is a random n-sample taken from the same population with
replacement.

Then, for any convex, continuous function φ,

Eφ

(
n∑

i=1

Ei

)
≤ Eφ

(
n∑

i=1

E′
i

)
.

165In the derivation of this expression, the final step exchanges expectations. This is only
possible because of the assumption that the “prior” α(M) is exchangeable.
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In our current scenario we can view the choice of τ as selecting a random

sample without replacement, where Ei is the loss on the i-th element of Sτ .

Applying this theorem with the function φ(v) = e−λv to this situation, we

obtain

Eτ∼Unif Sm+u
exp(−λrSτ (h′)) ≤ ES′∼Mm exp(−λrS′(h′)) .

Expanding V and employing this result yields a bound of

Eh′∼α(M) exp(−ε(M,λ, h′)) ES∼Mm exp(λ[rM (h′) − rS(h′)]) .

Note that in this form, we are considering the m.g.f. of the difference between

the empirical and “true” risk, conditional on the “true” distribution on Z
being M . As a result, we can use the results derived earlier for Hoeffding

and Bernstein’s inequalities.

A bound for error

We first consider bounds for an easier case, when ε is independent of h′.

Using the approach in Example 8.1, we have the bound

Eh′∼α(M) exp(−ε(M,λ, h′)) ES∼Mm exp(λ[rM (h′) − rS(h′)])

≤ exp

(
λ2

8m
− ε(M,λ)

)
.

Previously, it was convenient to choose ε to help us cancel terms in the

bound. In this case, the situation is somewhat different. We wish to obtain

a bound on E (M) as in (8.17) for a given M , so that we can take an expec-

tation w.r.t. M . Thus we would like to choose ε to cancel the KL divergence

in probability statement (8.18). However, the KL divergence can vary over

each Q(M) ∈ Q(H′)|M , while ε is constant (since we assume ε is independent

of h′). The following observations help us address this problem.

In the case of a zero-one loss function, the restricted hypothesis class (H ′)|M
is discrete. We begin by considering the most simple choice of α(M),

α(M) = Unif((H′)|M ). Clearly α(M) is exchangeable. Notably, in this
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case, if we select Q entirely concentrated on a single element of (H ′)|M , we

obtain

KL(Q||α(M)) = 1 ln
1
1

|(H′)|M |

= ln |(H′)|M | .

Furthermore, such a Q maximizes the KL divergence from the uniform

α(M): it is not difficult to show, by a similar argument, that for any

Q ∈ Q(H′)|M ,

KL (Q||α(M)) = ln
∣∣(H′)|M

∣∣− Ent (Q) .

These results are special cases of similar results which hold for arbitrary

finite sets, not just (H′)|M .

Thus we have

Pτ∼Unif Sm+u

{
sup

Q∈Q(H′)|M

[
rM (wQ) − rSτ (wQ)

− 1
λ

[ε(M,λ) + ln |(H′)|M |]

]
> 0

}
(8.21)

≤ Pτ∼Unif Sm+u

{
sup

Q∈Q(H′)|M

[
rM (wQ) − rSτ (wQ)

− 1
λ

[ε(M,λ) + KL(Q||α(M))]

]
> 0

}
.

In (8.21), we select ε(M,λ) such that

1

λ
[ε(M,λ) + ln |(H′)|M |] =

u

m+ u
ε? ,

obtaining

ε(M,λ) =
λuε?

m+ u
− ln |(H′)|M | . (8.22)

For any distribution Q ∈ QH′ , consider a corresponding distribution Q? ∈
Q(H′)|M where, for any h? ∈ (H′)|M we define

Q?(h?) = Q({h′ ∈ H′ : h′|M = h?}) .

Clearly,

rM (wQ) − rS(wQ) = rM (wQ?) − rS(wQ?) ,
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so that (8.21) with ε as in (8.22), equals

Pτ∼Unif Sm+u
{E (τ(M))|M} ≤ exp

(
λ2

8m
− ε(M,λ)

)

= exp

(
λ2

8m
− λuε?

m+ u
+ ln |(H′)|M |

)

= |(H′)|M | exp

(
λ2

8m
− λuε?

m+ u

)
.

The optimal choice of λ here is 4muε?

m+u
, yielding a bound of

|(H′)|M | exp

(−2mu2(ε?)2

(m+ u)2

)
.

This result provides a transductive bound for the case m 6= u in terms of

the size of the effective hypothesis class on M .

Taking the expectation of this bound w.r.t. M ∼ Dm+u, we obtain that

PS⊕P∼Dm+u{E (S ⊕ P )} ≤ EM∼Dm+u |(H′)|M | exp

(−2mu2(ε?)2

(m+ u)2

)

= EM∼Dm+u |MH′ | exp

(−2mu2(ε?)2

(m+ u)2

)
.

This is a dual sample bound, and can now be combined with a symmetriza-

tion lemma for regular deviation.

Example 8.3. Consider the case m = u. In this case, we combine the re-
sult with the Vapnik symmetrization lemma for regular deviations (Theo-
rem 5.6). This yields

PS∼Dm

{
sup

Q∈QH′
[eD(wQ) − eS(wQ)] > ε

}

≤ 2 PS⊕P∼D2m

{
sup

Q∈QH′
[eP (wQ) − eS(wQ)] > ε− 1

m

}

≤ 2 EM∼D2m |MH′ | exp

(
−m

2

(
ε− 1

m

)2
)

.

This result then holds for arbitrary distributions over H′. If we consider
those Q concentrated on single hypotheses, rather than exploding as previ-
ous PAC-Bayesian bounds do, we obtain a rather weaker version of (5.16).
This weakness comes predominantly from the approach we used here employ-
ing Hoeffding’s inequality, which applies for general loss functions, while (5.16)
is based on a result specifically for errors. ut
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A bound for risk

In this section, we consider general loss functions. In this case, the restricted

function class is typically infinite, so that the approach used for error will

not work. The solution is to work with covers of the restricted loss class.

For this purpose, let H′
γ(M,p) be any subset of H′ of cardinality |Np,M(γ,FH′)|

such that FH′
γ(M,p) is a γ-cover of FH′ w.r.t. dp,M .

In the case of errors, we considered distributions over the restricted class

(H′)|M , and then showed that the results for these distributions could be

applied to arbitrary distributions over H′. Now we use a similar approach,

using distributions over H′
γ(M,p) instead. Unfortunately, in this case, not

all the functions in H′ correspond exactly to elements of H′
γ(M,p), so an

adjustment term is necessary, as is the case with covering number bounds

for risk.

We begin with a variant of (8.18): for an arbitrary M ∈ Zm+u, any ex-

changeable “prior” α(M,p) ∈ QH′
γ(M,p), and any λ > 0, we bound

Pτ∼Unif Sm+u



 sup

Q∈QH′
γ(M,p)

[
Eh′∼Q[λV (τ(M), h′) − ε(τ(M), λ, h′)]

−KL(Q||α(M))

]
> 0



 .

As before, if we let α(M,p) = Unif(H′
γ(M,p)), we obtain for all Q ∈

QH′
γ(M,p) that

KL(Q||α(M,p)) = lnNp,M(γ,FH′) − Ent(Q)

≤ lnNp,M(γ,FH′) .

Following the same route by which we obtained (8.21) in the case of errors,

we obtain that for any λ > 0,

Pτ∼Unif Sm+u



 sup

Q∈QH′
γ(M,p)

[
rM (wQ) − rSτ (wQ)

− 1
λ

[ε(M,λ) + lnNp,M (γ,FH′)]

]
> 0





≤ exp

(
λ2

8m
− ε(M,λ)

)
.
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Again, it is convenient to choose ε(M,λ) such that

1

λ
[ε(M,λ) + lnNp,M(γ,FH′)] =

u

m+ u
ε? ,

obtaining

ε(M,λ) =
λuε?

m+ u
− lnNp,M(γ,FH′) . (8.23)

This yields a bound of

Np,M(γ,FH′) exp

(
λ2

8m
− λuε?

m+ u

)
,

which is optimal when λ = 4muε?

m+u
. In that case, we obtain a bound of

Np,M(γ,FH′) exp

(−2mu2(ε?)2

(m+ u)2

)
.

We now adjust this result to apply to all of QH′ . For an arbitrary distribution

Q ∈ QH′ , we can define an associated distribution Q? ∈ QH′
γ(M,p) by

Q?(h?) = Q(h′ : f ′h′ = fh?) ,

where f ′h′ denotes the closest element of the cover FH′
γ (M,p) to fh′ . Thus

the mass of Q? at h? is the probability (w.r.t. Q) of selecting an h′ so that

fh? is the closest cover element to fh′. In a way Q? can thus be seen as the

projection of Q onto H′
γ(M) (Audibert and Bousquet, 2007, Section 3).

Consider p = 1. Then, by construction, for any h′ ∈ H′, there is an h? ∈
H′

γ(M, 1) such that rM (h?) − rM (h′) ≤ γ. By an analysis similar to that

preceding Theorem 5.17, we can show that in this case

[rPτ(M)
(h′) − rSτ(M)

(h′)] − [rPτ(M)
(h?) − rSτ(M)

(h?)] ≤ (2m+ u)(m+ u)

mu
γ ,

so that

Eh′∼Q[rPτ(M)
(h′) − rSτ(M)

(h′)]

≤ Eh′∼Q[rPτ(M)
(h?(h′)) − rSτ(M)

(h?(h′))] +
(2m+ u)(m+ u)

mu
γ

= Eh?∼Q? [rPτ(M)
(h?) − rSτ(M)

(h?)] +
(2m+ u)(m+ u)

mu
γ .
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It follows that

Pτ∼Unif Sm+u

{
sup

Q∈QH′

[
rPτ(M)

(wQ) − rSτ(M)
(wQ)

]
> ε?|M

}

≤ Pτ∼Unif Sm+u



 sup

Q∈QH′
γ(M,1)

[rPτ(M)
(wQ) − rSτ(M)

(wQ)] > ε? − (2m+ u)(m+ u)

mu
γ|M





≤ N1,M (γ,FH′) exp



−2mu2

[
ε? − (2m+u)(m+u)

mu
γ
]2

(m+ u)2


 . (8.24)

The other choice of p we consider is p = ∞. In this case, as noted after

Theorem 5.17, we obtain

[rPτ(M)
(h′) − rSτ(M)

(h′)] − [rPτ(M)
(h?) − rSτ(M)

(h?)] ≤ 2γ ,

where fh? is the closest cover element to fh′. A similar analysis to above

yields a bound of

N∞,M (γ,FH′) exp

(−2mu2[ε? − 2γ]2

(m+ u)2

)
. (8.25)

We can obtain dual sample bounds by taking the expectation of (8.24)

and (8.25) w.r.t. M ∼ Dm+u. From (8.24), we obtain

PS⊕P∼Dm+u

{
sup

Q∈QH′
[rP (wQ) − rS(wQ)] > ε?

}

≤ ES⊕P∼Dm+u N1,S⊕P (γ,FH′) exp



−2mu2

[
ε? − (2m+u)(m+u)

mu
γ
]2

(m+ u)2


 ,

(8.26)

while the probability bound based on (8.25) is

ES⊕P∼Dm+u N∞,S⊕P (γ,FH′) exp

(−2mu2[ε? − 2γ]2

(m+ u)2

)
.

Example 8.4. We now obtain a bound by applying the symmetrization lemma
for regular deviation of risk in (5.7) to the dual sample bound of (8.26): for
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0 < β ≤ 1 and α a suitable function as determined by the symmetrization
lemma,

PS∼Dm

{
sup

Q∈QH′
[rD(wQ) − rS(wQ)] > ε

}

≤ β−1 ES⊕P∼Dm+u N1,S⊕P (γ,FH′) exp



−2mu2

[
ε− α(u, β) − (2m+u)(m+u)

mu
γ
]2

(m+ u)2


 .

(8.27)

This result is a generalization of Theorem 5.17: we recover that result when
the Q are concentrated on single hypotheses. ut

A potential improvement of the results above is to utilise the Bernstein-type

PAC-Bayesian bounds presented in Section 8.1.1, instead of the Hoeffding-

type bounds used here.

The data-dependent approach

In the above results, we have employed a uniform “prior” over a cover of

FH′ in deriving our results. While this is certainly exchangeable, the power

of being able to select the prior based on the dual sample M is not being

utilized fully.

In what follows, we shall present an algorithm- and data-dependent bound.

General data-dependent bounds can be obtained using similar techniques.

It will be convenient to consider a deterministic algorithm Θ166. The idea,

quite simply, is to choose α(M) as a uniform “prior”, not on a cover of FH′ ,

but instead on a cover of the loss class associated with

H′(Θ,M) = {Θ(Sτ(M)) : τ ∈ Sm+u} .

Applying this approach makes it difficult, if not impossible, to apply the

techniques above of generalizing to arbitrary distributions or arbitrary de-

cision rules, however. This should not be a problem, though, since this

166The assumption that the algorithm is deterministic is convenient, but similar results
can be obtained for stochastic algorithms. The resulting bounds will employ covers of
larger function classes, however.
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approach caters for a specific algorithm, where we wish to bound the per-

formance of Θ(S).

Following a similar approach to the derivation of the bound on risk in (8.27),

one obtains the following result:

PS∼Dm{rD(Θ(S)) − rS(Θ(S)) > ε}

≤

[
1 − exp

(
−ε2u

2

)]−1
ES⊕P∼Dm+u N1,S⊕P

(
γ,FH′(Θ,S⊕P )

)

exp

(
−2m

[
εu

2(m+u) − 2m+u
m

γ
]2)

.

Most of the proof involves simply replacing H′ by H′(Θ,M). At the end of

the proof, however, one must use a data-dependent symmetrization lemma

because H′(Θ,M) is data-dependent. The result given here employs The-

orem 6.2 for this purpose, where E (S) = I(h′ = Θ(S)). This result is

rather similar to the algorithmic luckiness result of Theorem 6.5. The

main difference between these bounds is that the result we give here uses

ES⊕P∼Dm+u N1,S⊕P (γ,FH′(Θ,S⊕P )) as a measure of capacity (which we see is

data-independent), while the algorithmic luckiness result employs the algo-

rithmic luckiness function on S to obtain an algorithm- and data-dependent

capacity measure.

In order to get a data-dependent result in this case, we follow the same

approach as that used in the luckiness framework: we include a condition

on the size of N1,S⊕P (γ,FH′(Θ,S⊕P )) in the predicate E used in the data-

dependent symmetrization lemma of Theorem 6.2. We then obtain a bound

subject to this condition for various bounds on the size, and apply an Oc-

cam’s razor bound over the various size conditions.

The most natural condition on the size of N1,S⊕P (γ,FH′(Θ,S⊕P )) is

E ′
i (S ⊕ P ) = [lnN1,S⊕P (γ,FH′(Θ,S⊕P )) ≤ i]

for i ∈ IN. A problem with this choice is that it is dependent on the double

sample S ⊕ P . We thus consider the following alternative:

E ?
i (S) = [ln EP∼Du N1,S⊕P (γ,FH′(Θ,S⊕P )) ≤ i] .
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With this choice, we obtain167

PS⊕P∼Dm+u {(rD(Θ(S)) − rS(Θ(S)) > ε) ∧ E ?
i (S)}

≤
[
1 − exp

(−ε2u
2

)]−1

exp

(
i− 2m

[
εu

2(m+ u)
− 2m+ u

m
γ

]2
)

(8.28)

for any i ∈ IN.

In order to apply the Occam’s razor method w.r.t. a “prior” α over IN, one

must set the right hand side to δα(i) and solve for ε (as a function of S) for

each i. To make this feasible, we restrict ε(S) to obtain an upper bound of

2 on [
1 − exp

(−[ε(S)]2u

2

)]−1

and invert the weaker bound instead. This occurs when [ε(S)]2u ≥ 2 ln 2.

In this case, we solve

δα(i) = 2 exp

(
i− 2m

[
ε(S)u

2(m+ u)
− 2m+ u

m
γ

]2
)

for ε(S), obtaining

ε(S) =
2(m+ u)

u


2m+ u

m
γ +

√
i− ln δα(i(S))

2

2m


 ,

where for any sample S, the appropriate choice of i is

i(S) = dln EP∼Du N1,S⊕P (γ,FH′(Θ,S⊕P ))e .

We thus have, with probability at least 1 − δ, for all S satisfying

[ε(S)]2u ≥ 2 ln 2 ,

that

PS⊕P∼Dm+u {rD(Θ(S)) − rS(Θ(S)) > ε(S)} ≤ δ , (8.29)

which is an algorithm- and data-dependent bound.

167Note that here the E employed for applying Theorem 6.2 is I(h′ = Θ(S)) ∧ E ?
i (S).



Chapter 8. PAC-Bayesian bounds and Occam’s hammer 343

Comparing the bound of (8.29) to the algorithmic luckiness bound of The-

orem 6.5, we see that the results are basically identical: the algorithmic

luckiness function in the algorithmic luckiness bound is used to probabilis-

tically bound the expected covering number on the double sample which

appears explicitly in this bound.

8.1.4 Discussion

Since the discovery of PAC-Bayesian bounds, a mini-industry has arisen

investigating various methods of employing them. We begin by briefly men-

tioning two other developments in the field, besides the bounds presented

above.

First, PAC-Bayesian compression bounds (Catoni, 2004b, Graepel et al.,

2005) have been developed which use the size of a compression set to obtain

data-dependent bounds using methods like those discussed in the previ-

ous section. A second approach in Audibert and Bousquet (2007) is PAC-

Bayesian generic chaining. This approach uses the ideas of generic chaining

to obtain data-dependent bounds, using a sequence of exchangeable “priors”

over successively finer-grained partitions of H′.

An interesting question is why PAC-Bayesian bounds perform as well as they

do. One interesting theory by Catoni (2004b) involves an interpretation of

PAC-Bayesian bounds as investigating the quantiles of an empirical process,

rather than the supremum of the process, which earlier bounds studied. As

a result, previous bounds had to cater for highly unusual hypotheses, while

averaging bounds can avoid this if the “prior” and the posterior avoid (or

at least do not unduly emphasize) these hypotheses.

Next, we turn to the issue of evaluating these PAC-Bayesian bounds. Most

of the bounds we discussed above bounded rD(wQ) in terms of rS(wQ). In

general, it is not easy to actually calculate rS(wQ). Generally, however, this

value can be approximated arbitrarily closely using Monte Carlo techniques.

Results in this direction are presented in Langford (2002, Section 6.3).
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Finally, we raise an important point in practice. For general PAC-Bayesian

bounds, the “prior” must be specified before observing the data. If this is

not controlled, an α can be selected which matches the posterior distribution

Q well, yielding artificially low bounds. Thus, for reporting results, some

way of verifying that the “prior” was selected without reference to the data

is needed.

8.2 Shell decomposition of the union bound

The shell decomposition of the union bound can be seen as a theoreti-

cally well-motivated data-dependent approach to selecting the “prior” used

in the application of the Occam’s razor method for a countable decision

class. A practical version of this bound was first developed in Langford and

McAllester (2000), and was primarily motivated by the theoretical work

of Haussler et al. (1996) based on models of learning used in statistical

mechanics.

The idea of this approach is to divide the decision class into layers, or shells,

depending on the (unknown) true risk of each decision rule. Put another

way, we bin the decision rules, grouping those with similar true risk. We

then divide the confidence equally among the bins, and within each bin, the

confidence allocated to that bin is again split equally. Both of these equal

splits can also be split according to a between-bin or within-bin “prior” if

desired, but this is usually not done.

Note that the approach just described can not be performed explicitly, since

the true risks of the decision rules are not known. The shell decomposition

approach uses the training risk to approximate these shells, allowing one to

obtain a bound.

In what follows, although we follow the spirit of Langford and McAllester

(2004), we generalize their results in a few directions: first, we employ arbi-

trary “priors” (allowing one to obtain bounds on countably infinite classes);

second, our results cater for general loss functions rather than zero-one loss
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functions; third, we allow for the case where the number of bins need not

equal the size of the sample. The results we derive are related to Hoeffding’s

tail inequality instead of Hoeffding’s r.e. inequality, as employed in Lang-

ford and McAllester (2004). As a result, we can optimize our bound over a

parameter at the end.

Consider a sequence 0 = v0 < v1 < v2 < · · · < vK−1 < vK = 1. This

sequence can be used to define subclasses (bins) of a countable decision

class W by

Wj = {w ∈ W : vj−1 < rD(w) ≤ vj}

for j ∈ [2 : K], and

W1 = {w ∈ W : rD(w) ≤ v1} .

In general, it is most useful to have the ij equally spaced, i.e. vj = j
K

. This

is the case we consider.

The idea is now to divide δ up among the Wj, typically equally, and obtain

confidence intervals for the modified confidence levels — applying the union

bound will then yield a bound over W. Generally, within each Wj , the union

bound is also applied, so that another division of confidence is obtained.

If Wj is allocated δ
K

confidence, and the decision rules in Wj are allocated

proportionally to some general “prior” α over W, this approach can be seen

as updating the “prior” α by taking into account the true errors of the

decision rules. Let α′ be a discrete distribution on [1 : K] reflecting the

weights used for the union bound over the classes Wj. Then, assuming we

allocate confidence within Wj proportionally to α, the confidence we wish

to assign to w ∈ Wj in order to obtain a 100(1 − δ)% confidence interval is

δ(w) = δα({w})α′({j})
α(Wj ) . However, we can not calculate this, because we do

not know the true error of w, and hence we do not know the appropriate

value of j. In addition, we do not know the α(Wj).

The solution we present to the second problem is to use the concentration of

rD(w)−rS(w) to bound α(Wj). We begin with the m.g.f. of rD(w)−rS(w),

ES∼Dm exp(λ[rD(w) − rS(w)]) ≤ exp

(
λ2

8m

)
.
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Thus, for any distribution Q ∈ QW , we have

Ew∼Q ES∼Dm exp(λ[rD(w) − rS(w)]) ≤ exp

(
λ2

8m

)
,

so that for any λ > 0,

PS∼Dm



Ew∼Q exp(λ[rD(w) − rS(w)]) ≤

exp
(

λ2

8m

)

δ1



 > 1 − δ1

for all δ1 > 0 (by Markov’s inequality). A similar argument shows that

PS∼Dm



Ew∼Q exp(λ[rS(w) − rD(w)]) ≤

exp
(

λ2

8m

)

δ1



 > 1 − δ1

for all δ1 > 0.

We now assume that S satisfies

Ew∼Q exp(λ|rD(w) − rS(w)|) ≤ exp( λ2

8m
)

δ1
,

which from the two results above occurs with probability at least 1 − 2δ1.

Again from Markov’s inequality, we have for this S that

Pw∼Q



exp(λ|rD(w) − rS(w)|) ≥

2 exp
(

λ2

8m

)

δ1



 ≤ 1

2
.

Let us write Q for the renormalized version of the “prior” α over Wj, i.e.

Q(w) =
α(w)

α(Wj)
.

It follows that

α





w ∈ Wj : |rD(w) − rS(w)| ≤ 1

λ
ln

2 exp
(

λ2

8m

)

δ1






 ≥ 1

2
α(Wj) .

Since we are considering w ∈ Wj, we have

∣∣∣∣
2j − 1

2K
− rS(w)

∣∣∣∣ ≤
∣∣∣∣
2j − 1

2K
− rD(w)

∣∣∣∣ + |rD(w) − rS(w)|

≤ |rD(w) − rS(w)| + 1

2K

,
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so that

α (Wj) ≤ 2α





w ∈ Wj :

∣∣∣∣
2j − 1

2K
− rS(w)

∣∣∣∣ ≤
1

2K
+

1

λ
ln

2 exp
(

λ2

8m

)

δ1






 .

The minimal value of

1

λ
ln

2 exp
(

λ2

8m

)

δ1

can be shown to occur at λ =
√

8m ln δ1
2 . With this choice of λ we obtain

that with probability at least 1 − 2δ1 (over the selection of S),

α(Wj) ≤ 2α





w ∈ Wj :

∣∣∣∣
2j − 1

2K
− rS(w)

∣∣∣∣ ≤
1

2K
+

ln 4
δ2
1√

8m ln δ1
2








≤ 2α
(
Ŵj(δ1)

)
,

where we define

Ŵj(v) =

{
w ∈ W :

∣∣∣∣
2j − 1

2K
− rS(w)

∣∣∣∣ ≤
1

2K
+

ln 4
v2√

8m ln v
2

}
.

By employing a “prior” α′ over [1 : K], one has that with probability at

least 1 − 2δ1,

∀j ∈ [1 : K] : α(Wj) ≤ 2α
(
Ŵj(δ1α

′ ({j}))
)
.

We note that one can obtain each α
(
Ŵj(δ1)

)
in theory, since all the values

needed are known. Now that we have probabilistically upper bounded each

α(Wj), we would like to apply the Occam’s razor method. However, we still

do not know the appropriate choice of j for a given w. Despite this, we are

still able to obtain bounds in certain cases using this “prior”.

To do this, we need to go back to basics, however. One general approach to

constructing a confidence region of coverage at least 1− δ is to begin with a

probability statement involving the parameter of interest w.r.t. the sample

space which holds with probability at least 1 − δ. The confidence region is

then obtained by selecting any values of the parameter of interest for which

the predicate inside the probability statement holds.
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As an example, we shall employ Hoeffding’s tail inequality to obtain a con-

fidence region for rD(w) using this approach. Employing the Occam’s razor

method with Hoeffding’s tail inequality implies that

PS∼Dm




∀j ∈ [1 : K] :


∀w ∈ Wj : rD(w) ≤ rS(w) +

√
ln

α(Wj)
δ2α(w)α′({j})

2m








> 1 − δ2 .

Upper bounding the α(Wj) by α
(
Ŵj (δ1α

′ ({j}))
)
, we have that

PS∼Dm




∀j ∈ [1 : K] :


∀w ∈ Wj : rD(w) ≤ rS(w) +

√√√√ ln
α(dWj(δ1α′({j})))

δ2α(w)α′({j})
2m








> 1 − 2δ1 − δ2 .

In this case, the true error rate influences the right hand side, so that direct

inversion can not be done. Instead, we obtain that




p : p ≤ rS(wS) +

√√√√ ln
α(dWj(δ1α′({j(p)})))
δ2α(wS)α′({j(p)})

2m





,

where j(p) = max (1, dnpe), is a 100(1 − 2δ1 − δ2)% confidence region for

rD(wS).

A similar bound employing Hoeffding’s r.e. inequality (using uniform “pri-

ors” throughout) is presented for zero-one loss functions and a finite decision

class in Langford and McAllester (2004). However, for zero-one loss func-

tions, it is even better to use a direct bound on the binomial distribution,

such as the binomial tail bound. Similarly for general loss functions, it may

be profitable to investigate the application of Bennett’s or Bernstein’s in-

equality instead of the inequalities due to Hoeffding, as these inequalities

can incorporate additional information on the variance of rD(w), so that

it may be possible to obtain tighter bounds for those w with small risk or

variance.
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The largest problem with these bounds is still their application. In order to

calculate the bounds, the empirical error of every decision rule in W needs

to be found. For some decision classes this is feasible, but in general this can

not be done. Langford (2002, Section 8.2) presents a so-called sampling shell

bound which attempts to circumvent this problem by replacing the “prior”

measure of the empirical shells above by an empirical estimate of the same

amount. This is done by sampling from W according to α and using the

resulting empirical measure. This approach however, suffers a dramatic loss

in performance compared to the regular shell bound outlined above.

Finally, we briefly discuss why we expect such a bound to work well. For

most decision classes, we expect very few functions in the class to perform

very well on the problem, while most of the functions exhibit mediocre

performance. As a result, the Wj corresponding to small j tend to be very

small, so that the corresponding confidence allocated to each decision rule

in Wj is much higher than that placed on the typical decision rule in those

Wj corresponding to larger j, thus resulting in tighter confidence intervals

for those w with small risk. Note that the key to this approach was that

we could effectively replace the true shells with empirical shells. To do this

we used the m.g.f. of the deviation between true and empirical error. Thus

this result relies on the concentration of the empirical error.

8.3 Occam’s hammer

In Example 2.5, we discussed three strategies when the hypothesis class is

a Gibbs class. The PAC-Bayesian bounds discussed earlier in this chapter

present bounds for the Gibbs strategy.

In this section, we consider another approach which lies somewhere between

the Gibbs strategy and the Bayes strategy. This approach selects a single

base hypothesis according to the distribution Q corresponding to an element

of the Gibbs class, and then uses the resulting hypothesis for all future data.

As a result, if this approach is used, the decision class actually consists of

the base hypotheses, i.e. W = H′. In contrast, the Gibbs decision rule is
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stochastic, with the decision on each future point being made by a potentially

different base hypothesis.

Suppose that this approach, which we shall call the Blanchard strategy 168

selects an hypothesis h′S based on sampling from Q(S). Thus, in a sense,

we are interested in a confidence interval for rD(h′S). From this viewpoint,

we can employ standard bounds which apply to the entire base hypothesis

class.

An alternative viewpoint, which we pursue here, is to provide a confidence

interval w.r.t. the selection of S and the sampling from Q. Specifically, let

U ∼ Unif[0, 1], and let h′S = h′u, the 100u-th percentile of the distribution Q

(again, we assume a sensible definition of percentile). Then we might desire

a statement of the form

PS∼Dm,U∼Unif[0,1]{rD(h′S) ∈ A(S,U)} ≥ 1 − δ

for some set-valued function A. This can be rewritten as

PS∼Dm,h′∼Q(S){rD(h′) ∈ A(S, h′)} .

Bounds on statements of this form can be constructed from regular confi-

dence intervals on individual base hypotheses by a new construction known

as Occam’s hammer (Blanchard and Fleuret, 2007). This paper presents the

following result, restated for our purposes, which can be seen as a general-

ization of the Occam’s razor method.

Theorem8.8 (Occam’s hammer). Suppose for every h′ ∈ H′ and δ ∈
[0, 1] we have a set R(h′, δ) such that

PS∼Dm{S ∈ R(h′, δ)} ≤ δ

and the function I(S ∈ R(h′, δ)) is jointly measurable in (S, h′, δ). Further-
more, we assume that for all h′,

∅ = R(h′, 0) ⊆ R(h′, δ1) ⊆ R(h′, δ2)

168According to the definitions given in Section 2.2, the approach discussed here is not
strictly a strategy, mainly because it requires knowledge of the distribution Q — see
footnote 10.
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for δ1 ≤ δ2.

Let τ be a nonnegative measure on H′. Let α1 be a “prior” measure on
H′ which is absolutely continuous w.r.t. τ , and denote the Radon-Nikodym
derivative dα1

dτ
by α′

1. Let α2 be a “prior” on (0,∞) (the inverse density
prior), and denote the c.d.f. of α2 by Fα2 . For some δ′ ∈ [0, 1], define

∆(h′, v) = min
(
δ′α′

1(h
′)Fα2(v), 1

)
,

the level function of h′ at v.

Consider any algorithm Θ which returns an hypothesis Θ(S) ∈ GH′ corre-
sponding to a distribution Q(S) ∈ QH′ , and employs the Blanchard strategy.

If, for all S, Q(S) is absolutely continuous w.r.t. τ , with Radon-Nikodym
derivative Q′(S), and (Q′(S))(h′) is a jointly measurable function of (S, h′),
then

PS∼Dm,h′∼Q(S)

{
S ∈ R

(
h′,∆

(
h′,
[(
Q′(S)

)
(h′)

]−1
))}

≤ δ′ . (8.30)

Our application of this theorem links the sets R(h′, δ) to confidence intervals.

Specifically, for some approach to deriving confidence intervals for rD(h′),

we set R(h′, δ) to be the set of samples for which the realization of the

confidence interval does not contain rD(h′). Furthermore, we need these

confidence intervals to satisfy a monotonicity condition. The measure τ is a

general measure of volume on the base hypothesis class — for example, one

could choose the Lebesgue measure on the parameter space.

In this context, we note that (8.30) implicitly provides a 100(1 − δ ′)% con-

fidence interval on rD(h′S), which is dependent on the “priors” α1 and α2.

The “prior” α1 is already familiar, but the “prior” α2 needs some explana-

tion. The term inverse density prior derives from the fact that Fα2 is applied

to the inverse of (Q′(S))(h′) when the level function is employed in (8.30).

To clarify the role of α2, suppose for a moment that Q′(S) is constant over a

set R ⊂ H′ with finite volume τ(R), and zero elsewhere. Then the inverse of

the density at h′ is exactly τ(R). In this case, α2 can be seen as a “prior” over

the volume of the set R. When Q′(S) is not constant, the inverse density

at h′ is no longer constant. In this case, note that the inverse density is

exactly the volume a set R would need to be such that a constant density
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on R would integrate to one. Thus, in a sense, the inverse density at h′ is

an “effective volume” measure, which caters for the density at h′. Thus,

base hypotheses with higher densities, which are more likely to be selected,

correspond to smaller “effective volumes” than those with lower densities.

We now provide an example of the application of this theorem, employing

the binomial tail bound. This example is based on Blanchard and Fleuret

(2007, Proposition 3.1), which uses the same “priors” to obtain bounds using

confidence intervals from Hoeffding’s r.e. inequality.

Example 8.5. Consider a volume measure τ over H′. We set the “prior”
measure α1 equal to τ , so that α′

1 = 1. For any K > 0, we consider

the inverse density prior α2 having density 1
K
v

1
K
−1 on v ∈ (0, 1], and zero

elsewhere. Thus, we have

Fα2(v) =
1

K + 1
min

(
v

1
K

+1, 1
)
.

Basing our approach on confidence intervals obtained from the binomial tail
bound, we define R(h′, δ) as

R(h′, δ) =
{
S ∈ Zm : eD(h′) > UBT(eS(h′),m, 1 − δ)

}
,

the samples for which the empirical error is misleadingly low (see Sec-
tion 3.2.4). It is not difficult to see that this choice satisfies the monotonicity
requirements of Theorem 8.8.

With these choices, if we let Θ be an algorithm satisfying the conditions of
Theorem 8.8, it follows that

PS∼Dm,h′∼Q(S)

{
S ∈ R

(
h′,∆

(
h′,
[(
Q′(S)

)
(h′)

]−1
))}

≤ δ′ . (8.31)

Now, in this case we have

∆
(
h′,
[(
Q′(S)

)
(h′)

]−1
)

= min
(
δ′α′

1(h
′)Fα2

([(
Q′(S)

)
(h′)

]−1
)
, 1
)

= min

(
δ′

K + 1
min

([(
Q′(S)

)
(h′)

]−(K+1)
K , 1

)
, 1

)
.

If we write ∆? as shorthand for this expression, we have S 6∈ R(h′,∆?)
with probability at least 1 − δ′ (over joint selection of S and h′). When
S 6∈ R(h′,∆?), we have

eD(h′) ≤ UBT(eS(h′),m, 1 −∆?) ,
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so that [0,UBT(eS(h′S),m, 1−∆?)] is a 100(1− δ′)% confidence interval for
the true error of a base hypothesis h′S selected by sampling from Q(S) using
the Blanchard strategy. ut



Chapter 9

Practical application of

bounds

In this chapter, we calculate a number of the bounds discussed in the the-

sis, evaluating their relative performance and the relative effects of various

bound parameters.

9.1 Introduction

This chapter aims to concretize a number of the estimators presented in

the course of this thesis. We do this by evaluating the estimators on a

benchmark data set, employing two algorithms. Our focus will be on upper

confidence intervals for risk based on a training sample. For such inter-

vals, we investigate the influence of various parameters on the upper bounds

obtained.

All our investigations were performed using the R statistical computing lan-

guage (R Development Core Team, 2006).

354
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Description R object Genuine Spam Total

Full data set spam100 2788 1813 4601
Training sample spam80 2237 1444 3681
Test sample spam20 551 369 920

Table 9.1: The various samples and their composition

9.2 Benchmark data: the spam data set

For our analysis, we employed a data-set for a two-class classification prob-

lem, the “spam” data set. This set is a benchmark data set in machine

learning, and consists of 4601 data points, each representing an email mes-

sage. Each data point consists of 57 predictors, together with a classification

of the point into spam (labelled 1) or genuine email (labelled 0). The first

54 predictors are percentages: real values between 0 and 100. The next is a

positive real number, and the last 2 predictors are natural numbers. For the

purposes of our calculations, we treat all of the predictors as real numbers,

although this is not optimal (we will return to this in the discussion).

The data set is publicly available from the UCI (University of California,

Irvine) repository of machine learning databases and domain theories (Asun-

cion and Newman, 2007), at http://mlearn.ics.uci.edu/databases/spambase/ .

The data set was divided randomly into a training and test sample using an

80/20 split. The various samples and their composition are summarized in

Table 9.1.

9.2.1 Loss functions

We considered two loss functions for this classification problem. The simpler

of the two was simply the misclassification rate, using the zero-one loss

function Lm(y1, y2) = I(y1 6= y2). However, the true loss in such a problem

is inherently asymmetric if an algorithm attempts to filter out spam from

genuine e-mail: filtering out a genuine e-mail message by misclassifying it

as spam is substantially worse (i.e. higher loss) than allowing a spam e-mail

to slip through as a genuine e-mail. We modelled this using the asymmetric
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Description Fitted model Test risk Training risk

Decision tree, loss=Lm dt80 symm 0.1021739 0.1016028
Decision tree, loss=La dt80 asymm 0.02347826 0.01586525
Boosting, loss=Lm boost80s 0.07608696 0.07171964

Table 9.2: Training and test risks of fitted models

loss function

La(y1, y2) =





0 if y1 = y2

1 if y1 > y2

0.1 if y1 < y2

9.2.2 Algorithms applied

We applied two related algorithms to the training sample. First, we consid-

ered decision trees, as implemented in the rpart R package (Therneau and

Atkinson, 2007). We applied this algorithm using default values, for both

loss functions. Secondly, we considered boosting. Our approach here was to

boost stumps using Adaboost. This analysis was performed using the ada R

package (Culp et al., 2006), which employs rpart to construct the stumps.

In this case, we only considered the misclassification rate. We used mostly

default values for the algorithm, along with the recommended settings for

selecting stumps as the base learner. The only non-default value selected

was that we elected to use 200 iterations of the base learner, rather than 50.

Tables 9.2 and 9.3169 summarize the fitted models we will discuss.

Comparing the training and test risks of these models, it seems that if over-

fitting is taking place, it is not serious in the case of the misclassification loss.

For the decision trees, this is because the algorithm incorporates pruning,

and in the case of boosting, this indicates that the number of iterations is

not too high (in fact, more iterations would likely improve the fitted model).

169In the confusion matrices presented, the rows denote the true class member, and
the columns the prediction: the first row/column corresponds to genuine e-mail, and the
second to spam. It is perhaps worth mentioning that the confusion function in the mda

R package reverses this traditional presentation.
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Fitted model Training sample Test sample

dt80 symm

[
2135 102
272 1172

] [
522 29
65 304

]

dt80 asymm

[
2231 6
524 920

] [
544 7
146 223

]

boost80s

[
2157 80
184 1260

] [
525 26
44 325

]

Table 9.3: Confusion matrices of fitted models on training and test samples

9.3 Test sample estimators

Table 9.4 contains the test sample estimators obtained for the three models.

There are five broad groupings in the table. The first grouping consists of

point estimators, and the other four list the upper end of a one-sided 95%

confidence interval for the risk. The second group provides results employing

exact distributions, the third group lists various results based on asymptotic

normality, the fourth group presents bootstrap intervals, and the final group

presents intervals based on various concentration inequalities. Many of the

estimators are specific to the binomial distribution arising from a zero-one

loss function, and hence are not applicable to dt80 asymm.

The ME prior employed is a Beta(1, 1) distribution, and the minimax prior

is a Beta(
√

920,
√

920) distribution. The PPE estimates are obtained by

employing heuristics:

• for the decision tree, the probability employed is based on the split of

training points reaching the node used to classify a given test point;

• for boosting, probability estimates are based on a transformation of

the unthresholded values. These probability estimates are obtained

from the ada package.

The Bayesian estimators shrink the error estimates towards 0.5, with the

minimax performing a stronger shrinkage.

With respect to dt80 symm and boost80s, it seems reasonable to consider

the max-P bound as a gold standard. The mid-P bound provides a slightly
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Estimator dt80 symm dt80 asymm boost80s

Test risk 0.1021739 0.02347826 0.07608696
Maximum entropy 0.1030369 - 0.0770065
Minimax 0.1214814 - 0.09622706
PPE 0.1800135 - 0.1475197

Max-P 0.1200926 - 0.09204876
Pratt’s max-P 0.120101 - 0.0920428
Mid-P 0.1195515 - 0.0914774
Pratt’s mid-P 0.1195202 - 0.09145363
ME credible 0.1199726 - 0.0919446
Minimax credible 0.1323257 - 0.1053257

Wald (- CC) 0.1185987 - 0.09046514
Wald (+ CC) 0.1191422 - 0.09100862
Wald (+ BS) 0.1191673 - 0.09103067
Logit-Wald 0.1198076 - 0.09177031
Probit-Wald 0.1195723 - 0.09152385
Arcsine-Wald 0.1191754 - 0.09108126
Score (- CC) 0.1197825 - 0.09174074
Score (+ CC) 0.1203628 - 0.09232926

Normal bootstrap 0.1183 0.0283 0.0906
Studentized bootstrap 0.1185 0.0301 0.0916
Basic bootstrap-t 0.1174 0.0285 0.0902
Percentile bootstrap 0.1195 0.0279 0.0902
ABC bootstrap 0.11955305 0.02962831 0.09149320

Hoeffding’s tail 0.1425238 0.06382817 0.1164369
Hoeffding’s r.e. 0.1282982 0.03782398 0.0993411
A-V 0.1314303 0.03952137 0.1018402
Bernstein 0.1304628 0.04046507 0.1015556
P-H (best ν) 0.14325330 0.04605585 0.11220717
P-H + Occam 0.17233353 0.06444982 0.13844671

Table 9.4: Test sample based estimators of risk for the fitted models



Chapter 9. Practical application of bounds 359

tighter bound with reduced overcoverage at the cost of no longer guarantee-

ing coverage. In all cases, the Pratt approximations are accurate to within

10−4. It is further interesting to note that the minimax point estimator lies

well outside the 95% max-P interval for error. Another interesting observa-

tion is that the Bayesian credible interval based on the ME prior actually

yields a tighter bound than the max-P interval. This is because exact cov-

erage can be obtained in this case, since the posterior distribution is contin-

uous. If a Bayesian credible interval with the same coverage as the max-P

interval were to be constructed, its upper endpoint would be larger than the

max-P bound.

Turning to the bounds obtained using asymptotic normality, we see that in

both cases

Wald (- CC) < Wald (+ CC) < Wald (+ BS) < Mid-P .

We expect the Wald interval without continuity correction to exhibit consis-

tent undercoverage, and the continuity correction and Blyth-Still adjustment

to modify the intervals to take this into account. The resulting Wald-Blyth-

Still bound turns out to be very close to the mid-P bound. The three Wald

intervals based on a transformation all yield bounds larger than the Wald-

Blyth-Still bound in both cases, as do the score intervals, both with and

without CC.

The bootstrap intervals exhibit a similar pattern, with the normal bootstrap

bound being lower than the more refined ABC bootstrap estimator in all

three cases. Note that the ABC bounds match the mid-P bound quite

closely. These bootstrap estimators were obtained using the boot.ci and

abc.ci functions of the boot R package (Canty, 2005).170

If we consider the most reputable confidence intervals among the ones consid-

ered thus far: the max-P, ME credible, Wald-Blyth-Still, score (+CC), and

the ABC bootstrap intervals, we see that for both dt80 symm and boost80s

the bounds are all within 0.0015 of each other, while the difference between

these bounds and the corresponding test risk is roughly 0.015, only ten times

170For estimators employing a variance estimate, we used p̂(1−p̂)
m

.
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as much. This serves to illustrate that at the scale under consideration, the

selection of a specific confidence interval is not just an academic question,

but can have a sizable effect.

However, the differences between these methods are almost negligible when

they are compared to the bounds obtained from concentration inequalities.

The bounds in the last group are derived from results which hold for all dis-

tributions. This generality introduces considerable slackness in the bounds

when applied to the binomial distribution, and we see that the resulting

bounds are nowhere near competitive. We see that the symmetric tails im-

plied by using Hoeffding’s tail inequality yield substantially worse results

than directly inverting Hoeffding’s r.e. bound. The A-V bound’s ability

to handle asymmetry means that it is a much tighter approximation to the

r.e. bound than the Hoeffding’s tail bound. The bound based on Bern-

stein’s inequality is weaker than the Hoeffding r.e. bound (and even the

A-V bound), since no additional knowledge about the variance of the test

error is employed: the binomial variance is used in all cases. As expected,

the P-H ν-deviation is always weaker than Bernstein’s inequality, which it

employs. The P-H + Occam entry employs the Occam’s razor method on

P-H ν-deviation over a uniform grid of 100 values of ν, so that the provided

value is an upper bound of a 95% confidence interval. In contrast, the P-H

(best ν) entry provides the best bound which could have been obtained had

ν been selected a priori.

9.4 Training sample estimators

9.4.1 Bootstrap point estimates

In all three fitted models, the training risk is less than the test risk, as is

to be expected. We begin this section by presenting point estimates of the

true risk employing the bootstrap on the training sample. The estimates

we consider are the optimism-adjusted training risk and the .632 bootstrap

estimate. These 2 estimators were calculated for dt80 symm and dt80 asymm.

The estimates were calculated using the bootpred function in the bootstrap
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Model Tr. risk Est. opt. Adj. tr. risk .632

dt80 symm 0.1016028 0.007726161 0.1093290 0.1046921
dt80 asymm 0.01586525 0.004962239 0.02082749 0.02129312

Table 9.5: Training sample bootstrap point estimates

R package (Statlib and Tibshirani, 2007), and the results are summarized

in Table 9.5.171

In the table, the entries in the second last column (the adjusted training

risk) are the sum of the corresponding values for training risk and estimated

optimism. In the case of dt80 symm, both the optimism-adjusted training

risk and the .632 estimate are well within the various 95% test sample upper

confidence intervals for the risk, while in the case of dt80 asymm, both esti-

mates are less than the corresponding test risk. However, we note that the

.632 estimate is closer to the test risk than the optimism-adjusted training

risk in both cases.

9.4.2 Capacity measures of decision trees

All the training sample interval estimators we will present for decision trees

will essentially be based on covering numbers of a class of decision trees. It

is not difficult to show that the class of all decision trees has infinite VC

dimension, and in fact any sample of distinct points can be shattered by the

class of decision trees. Without a restriction on the class, we will not be

able to obtain non-trivial training sample estimators.

Two restrictions are of interest to us, both of which reflect the size of the

tree in some way. These are the number of splits in the tree, and the depth

of the tree.

The basic building block for boosting with stumps and decision trees are

single decision-tree splits, known as stumps. In principle, these splits could

171The .632+ bootstrap estimator is not commonly available in R, to my knowledge.
Since the fitting method used employs pruning to avoid overfitting, we decided it was not
necessary to evaluate this estimator, since its main benefit is when overfitting is liable to
occur.
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be complex functions, but it is most customary for them to create binary

splits by mapping an input x to {0, 1} by thresholding a single feature of

x. This is the basic approach used in the rpart package we employed.172

A decision tree with j binary splits has j + 1 terminal nodes, and a total of

2j + 1 nodes.

The depth of a node in a tree refers to the number of splits lying between

the root node and that node. Thus the depth of the root node is always

zero. The depth of the tree is the maximal depth of any node in the tree.

In particular, the depth of a stump is one.

Let Tj denote the class of decision trees with at most j splits, T ′
j the class

of decision trees of depth at most j, and S denote the class of all stumps.

Generally speaking, we will obtain a bound on T ′
j from Tj, and we will obtain

a bound on Tj from various bounds on S.

We begin by discussing covering numbers for various classes of interest, and

then we will discuss Rademacher averages.

Covering numbers for stumps

To obtain bounds on the covering numbers of S, we begin by defining the

class somewhat more formally. For an input x ∈ IRN , a split can be repre-

sented as an indicator function of the form I(x(i) < s) or the form I(x(i) ≥ s),

where x(i), i ∈ 1 : N is a coordinate of x and s ∈ IR. If we denote these two

functions by h−i,s and h+
i,s respectively, we can define

S =
⋃

i∈1:N

(S−
i ∪ S+

i ) ,

where S−
i = {h−i,s : s ∈ IR}, and S+

i is defined likewise.

Let us begin with the simplest bound on the covering numbers of S. Clearly,

any element of S is a halfspace in IRN , so that the VC-dimension of S is max-

172The package also caters for so-called surrogate splits, which allows the resulting deci-
sion trees to cope with missing data. However, the data set under consideration does not
have any missing data, and our results do not apply to trees employing such surrogate
splits.
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imally N+1, which in the case of the spam data set is 58. (See Theorem 5.30

and Example 5.18.) The VCSS lemma (Theorem 5.24) now provides bounds

on the shatter coefficient of the class, while (5.54) and (5.55) provide bounds

on the packing (and hence covering) numbers of the class, since the VC di-

mension of a class of {0, 1} functions is also its pseudodimension.

However, this approach is unnecessarily conservative, since the elements of

S form a very small subset of all hyperplanes: each separating hyperplane

corresponding to a halfspace in S is parallel to N − 1 of the axes in IRN .

Employing part 2 of Theorem 5.34, we can see that for any metric d,

N (γ,S, d) ≤
N∑

i=1

[
N (γ,S−

i , d) + N (γ,S+
i , d)

]
.

By an argument almost identical to Example 5.11, it follows that the VC

dimension of any S−
i or S+

i is 1. The results in the previous paragraph then

allow one to upper bound covering numbers and shatter coefficients of these

classes.

We can use this result to bound the VC dimension of the class of splits in

the following way: from the VCSS lemma, the shattering coefficient of any

S−
i or S+

i on a sample of size n is at most n+ 1. Thus, we have that

NS(n) ≤ 2N(n+ 1) . (9.1)

In the case of N = 57, we have that 114(10+1) > 210 and 114(11+1) < 211,

so that it follows that the VC dimension of the class of splits is maximally

10, a substantial improvement over 58.

We now consider improving these bounds based on representation of the

data. Until now, we have assumed that the inputs are real numbers. How-

ever, the first 54 features are percentages provided to two decimal places,

e.g. 4.36%. As such, each of these features can only assume one of 10001

possible values for each observation in the training and test sample. Sup-

pose we know that all future data supplied to a classifier will be in this form.

In that case, there are maximally 10001 effective splits in any S−
i or S+

i ,

i ∈ 1 : 54, since all splits in such a set for which the value of s are identical
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to two decimals are indistinguishable. Thus, we can reduce the covering

number bound to

NS(n) ≤ 108min(n+ 1, 10001) + 6(n+ 1) , (9.2)

where the second term is for the remaining 3 features where we don’t have

the advantage of representation. This modification does not affect the VC

dimension estimate however, since it only yields an improved result for n >

10000. When n � 10000, the benefits reaped here could be substantial,

but the remaining three features tend to dwarf the other term, limiting the

potential benefits. Unfortunately, we can not apply this approach to all of

the features.173

Covering numbers for Tj

To obtaining covering numbers for Tj we must express Tj. Let us for a mo-

ment identify any split with the set of points it maps to 1. Our goal is to

identify the set of points mapped to 1 by a tree in terms of the correspond-

ing sets for the splits it contains. Clearly, the set is the union of the sets

corresponding to the terminal nodes which predict a 1. Each such terminal

node is the intersection of a number of sets arising from various splits: ei-

ther the set corresponding to the split itself, or its negation. Thus, the set

mapped to 1 by the tree can be obtained from j elements of S by using a set

theoretic formula (and the set corresponding to any terminal node labelled

1 can be expressed in terms of j ′ splits, where j ′ is the depth of the node).

Using this view, we can obtain the VC dimension of Tj from that of S by

employing Theorem 5.32, yielding

VC(Tj) ≤ 2j VC(S) log2(2j VC(S)) .

A more direct approach is to employ the covering number bound underlying

Theorem 5.32, Theorem 5.33. A bound on the VC-dimension of Tj can then

be obtained by comparing [NS(n)]j to 2n.

173This would result in a finite function class, yielding much better results on large
shadow samples.
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Splits VC dim=58 VC dim=10 Cov. numbers

1 795 86 10
2 1823 212 22
3 2938 354 36
4 4110 505 50
5 5324 664 64
6 6572 828 78
7 7848 998 93
8 9148 1171 108
9 10469 1348 124
10 11808 1528 139
11 13165 1711 155
12 14536 1897 171
13 15922 2085 187
14 17320 2276 203
15 18730 2468 219
16 20152 2663 235
17 21584 2859 251
18 23026 3057 268
19 24477 3256 284
20 25937 3457 301

Table 9.6: VC dimension bounds by number of splits in tree

A comparison of these approaches for trees with between one and twenty

splits are presented in Table 9.6. It presents a striking illustration of how

much can be gained by employing a more refined analysis to obtain a tighter

VC dimension bound on a class, and furthermore how much can be gained by

utilizing covering number results as far as possible: there is roughly an order

of magnitude improvement in the VC dimension bound in each successive

column.

As mentioned before, such bounds on VC dimensions can in turn be used

to obtain covering numbers or shattering coefficients by employing various

results. However, this approach may be wasteful: it might be inefficient

to go via the VC-dimension of Tj to bound its covering numbers if we have

access to the covering numbers of S or its constituent classes. To investigate

this174, we consider bounds on lnNT5(7362) and lnN1,7362(0.1, T5) employing

174We use 7362 points since this is twice the size of the training sample.
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Value T5 : 5324 664 64 S : 10 S−
i : 1

lnNT5(7362) 7045.028 2257.979 364.4275 369.6585 68.2021
lnN1,7362(0.1, T5) 7045.028 2257.979 260.9186 297.3296 60.18074

Table 9.7: Bounds on log-covering numbers for various approaches

the three bounds on the VC dimension above, as well as those obtained when

obtaining the shattering coefficients/covering numbers directly from the VC

dimension bounds on S (10) or each S−
i /S+

i (1). The results are presented

in Table 9.7.

In this table, it seems surprising to see the column corresponding to the

bound of 64 on the VC dimension of T5 yielding better results than for the

column corresponding to the bound on the VC dimension of S. The final

column strongly indicates that we can obtain improved covering numbers by

avoiding going via the VC dimensions of the more complex classes, but these

other columns seem to gainsay this. A possible explanation of this is the

nature of the results used to combine the various classes: the bound used to

combine the S−
i and S+

i to obtain S was additive in nature: the asymptotic

behaviour of the covering numbers was not affected, and continued to grow

as a linear function. On the other hand, the bound used to move from S
to Tj was multiplicative in nature: the degree of polynomial growth of the

covering numbers asymptotically grows j-fold. This may help explain why

there is little to no improvement, but it does not explain why the bound

actually performs worse. This seems to be because the procedure used for

calculating the VC dimension bound of 64 took advantage of the knowledge

that covering numbers grow in powers of two while the sample size is less

than the VC dimension: for a sample of size 64, the covering number bound

predicted by the VCSS lemma employing VC(S) = 10 was greater than 268,

while our knowledge of the growth of covering numbers implies that the

actual covering number is at most 268. This explanation is corroborated by

noting that for larger choices of n than 7362, the bounds obtained employing

the VC dimension of S directly begin to outperform those based on the VC

dimension of T5 being 64.
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Covering numbers related to T ′
j

In this section, we consider alternative covering numbers related to classes

of decision trees. We restrict ourselves to the class of decision trees of depth

at most j. The approach we use involves representing a decision tree as a

thresholded classifier. This allows us to obtain margin bounds in terms of

the covering number of the base class, which turns out to be the class of

decision trees of depth j with exactly one node labelled 1.

In what follows, we let the decision trees assign labels in {−1, 1} instead of

{0, 1}. Any decision tree can then be written as sgn
(∑j′+1

i=1 viφi(·)
)
, where

j′ is the number of splits of the tree, the vi are any real values whose signs

correspond to the label of terminal node i, and φi represents the indicator

function indicating membership of terminal node i. This is because any new

point will reach exactly one terminal node, say node i, so that the function

reduces to sgn(vi), the label of terminal node i.

Since the vi are arbitrary, they can be selected so the sum of their absolute

values is 1, for any decision tree. In order to apply margin bounds based on

this representation, we need to obtain bounds on the infinity-norm covering

numbers of the base class under consideration. Let Lj denote the class of

leaves of depth at most j, i.e. indicator functions corresponding to terminal

nodes in a decision tree. Then the base hypothesis class can be written as

absconvLj. By a similar argument, we can see that a classifier generated

by boosting decision trees of depth at most j can also be written as a signed

thresholded classifier with base hypotheses from the same absolute convex

hull.

We thus consider bounding N∞,Q(γ, absconvLj) for an n-sample Q. Using

the relationships between the various norms (see (5.6) and (5.4)), this is

bounded by

N2,Q

(γ
n
, absconvLj

)
≤ N2,n

(γ
n
, absconvLj

)
.

This form allows us to apply Theorem 5.48 with K = 2, yielding a bound
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of175 [
2N2,n

( γ
2n
,Lj

)
+ 1
] 8n2

γ2
.

Finally, the 2-norm covering number on the right can in turn be bounded

by a 1-norm covering number, by using (5.5), so that we have

N∞,Q(γ, absconvLd) ≤
[
2N1,n

(
γ2

4n2
,Lj

)
+ 1

] 8n2

γ2

.

In order to obtain covering numbers for Lj, we simply note that Lj ⊆ Tj, so

we can use bounds on the covering numbers of Tj.

We expect poor behaviour of these covering numbers due to the confluence

of a number of factors. First, the base hypothesis is presented as an absolute

convex hull. The convex hull of a class can have very large covering numbers

even though the original class has small covering numbers — this serves

to negate the tight bounds on decision trees we have constructed in earlier

sections. Second, the only result we have available for bounding the covering

number of an absolute convex hull employs the 2-norm, while the margin

bounds employ an infinity-norm. Third, the only result we have for going

from an infinity-norm to a p-norm involves modifying the scale by the sample

size. Finally, the covering number bounds in terms of pseudodimension are

based on 1-norms, introducing the necessity to square an already small scale.

In fact, we shall see that regardless of the initial scale selected for the bound,

we shall typically deal with shattering coefficients of the base class.

To illustrate the effects of these issues, consider a sample size of 7362,

and γ = 0.1. In this case, the exponent 8n2

γ2 evaluates to a staggering

10786867201, while we obtain a covering number bound of N1,n

(
γ2

4n2 ,L1

)
≤

839382. This leads to the result

lnN∞,Q(γ, absconvL1) ≤ 10786867201 ln 1678765

= 154614304909 .

We can use this result to apply the bound of (5.46) to the performance of

boost80s (using β = 1
2 and γ = 0.2). This yields an upper bound on the

175The generally negligible additive constant will often be disregarded in our future
calculations.
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risk of about 6500. Similarly, all the other margin bounds employing these

covering numbers provided similar trivial bounds on the risk, so that further

results are not provided.

Rademacher averages for Tj

Obtaining Rademacher averages for classes of decision trees directly is not

simple. Some results in this direction employing Gaussian averages are dis-

cussed in Bartlett and Mendelson (2002), but converting between Rademacher

and Gaussian complexities involves unspecified constants, making the results

useless for practical calculations.

Our approach to obtaining Rademacher averages for classes of decision trees

is to calculate them from the VC dimension or shatter coefficients using

the last two results of Theorem 7.11. Note that the last of these results

only provides a probabilistic bound. To get a bound which holds under

all conditions, we note that the maximal value of the Rademacher average

in our case is 1. Thus, by employing Theorem 7.11 to obtain a bound on

RQ(W) with probability at least 1 − δ?, we can bound Rm(W) by

δ?(1) + (1 − δ?)

√
2(lnNW(n) − ln δ?)

n
. (9.3)

This bound can further be optimized over δ?.

This approach typically outperforms the alternative method when the bound

on the shatter coefficient is not sample dependent. We shall see that this is

the case in our examples.

9.4.3 Capacity measures for loss classes

In order to apply bounds in practice, we need to obtain capacity measures

on the loss class, not simply the original function class. In this section, we

look into obtaining such measures from the corresponding measures of the

function classes.

For both the misclassification loss Lm and the asymmetric loss La, this
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problem is easily disposed of for covering numbers by an application of

Theorem 5.36. Indeed, both of these losses can be formulated as 1-Lipschitz

functions of the distance between the predicted and actual value. As a

result the covering numbers of the loss class are no larger than those of

the underlying function class for these losses. It should be fairly clear that

covering number results for the asymmetric loss will be somewhat looser

than those of the misclassification loss.

Slightly more advanced machinery is needed to move from the decision class

to the loss class in the case of Rademacher averages. Part 6 of Theorem 7.10

provides a tool for the case of the misclassification loss (with p = 1), although

the result would not apply to the asymmetric loss. Applying a counterpart

of this result for Rademacher averages (not absolute Rademacher averages),

one obtains that the Rademacher average of the loss class for any sample of

size n does not exceed that of the function class by more than 1√
n
.

However, there does not seem to be a simple way to obtain Rademacher aver-

ages for a thresholded class. Thus, in cases where we are considering thresh-

olded classes, we need a way to bypass this problem. The solution is to use an

alternative proxy loss function, which acts on the unthresholded values. The

resulting bound is similar to the margin bounds we have discussed before,

and the derivation is based on Koltchinskii and Panchenko (2002). To under-

stand this, we once again consider the case where the base hypotheses map

into {−1, 1}, and examples are labelled likewise. Then the misclassification

loss of a base hypothesis h′ ∈ H′ thresholded at 0 can be expressed in terms

of the unthresholded value by Lm(h′(x), y) = I(yh′(x) ≤ 0). The essential

problem is that this function is not Lipschitz. Suppose v(η) > I(η ≤ 0)

is K-Lipschitz. Then the proxy loss defined by L′(h′(x), y) = v(yh′(x)) is

no smaller than Lm. In fact, it is not difficult to bound the Rademacher

averages of the loss class if we can bound the Rademacher averages of

the class H? = {φh′(·) : h′ ∈ H′}, where φh′ : Z → IR is defined by

φh′((x, y)) = yh′(x).

This is fortunately easy, since by referring to the definition of Rademacher
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averages, for any sample S,

R̄S (H?) = Eζi∼Unif{−1,1}m sup
φ∈H?

(
1

m

m∑

i=1

ζiφ(xi, yi)

)

= Eζi∼Unif{−1,1}m sup
h∈H′

(
1

m

m∑

i=1

ζiyih(xi)

)
.

If we now make the transformation ζ ′i = ζiyi, we note that the ζ ′i are also

Rademacher r.v.’s, so that the expression equals

Eζ′i∼Unif{−1,1}m sup
h∈H′

(
1

m

m∑

i=1

ζ ′ih(xi)

)
= R̄S (H) .

We now bound the Rademacher averages of the loss class obtained from the

proxy loss L′. Let v(0) = c ≥ 1.176 We note that v(·) can be written as

(v(·)−c)+c. Now v(·)−c is also K-Lipschitz, and passes through the origin,

so that one can apply part 4 of Theorem 7.10. Adding c can be performed

by employing part 5 of the same theorem. Writing F ′ for the proxy loss

class, for any m-sample S we have

R̄S

(
F ′) = R̄S (v ◦ H?)

≤ R̄S ([(v − c) ◦ H?] + c)

≤ R̄S ((v − c) ◦ H?) +
c√
m

≤ KR̄S(H) +
c√
m

.

Turning to the problem of bounding R̄S(H), we note that H is contained in

the absolute convex hull of the leaf functions, absconvLj. However, since we

are not dealing with absolute Rademacher averages, we need to express the

class as a convex hull, rather than an absolute convex hull.177 By definition,

absconvLj = conv(Lj ∪ −Lj) ,

176v(0) must exceed 1, since v upper bounds the misclassification loss.
177We could bound the Rademacher average by the absolute Rademacher average, but

we do not have an equivalent result to Theorem 7.11 for absolute Rademacher averages.
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so that we obtain

R̄S(H) ≤ R̄S(conv(Lj ∪ −Lj))

= R̄S(Lj ∪ −Lj)

≤ R̄S(Lj) + R̄S(−Lj)

≤ 2R̄S(Lj) ,

and this final value can be bounded in terms of shatter coefficients using

Theorem 7.11.

We now briefly consider the choice of v. We require v ≥ 0, v(η) > I(η ≤ 0),

and that v be K-Lipschitz. In addition, we want v to be as small as possible.

For any fixed choice of K, it is not difficult to show that the following v is

the optimal choice:

vK(η) =





1 η ≤ 0

1 −Kη 0 < η < 1
K

0 η ≥ 1
K

.

For all these choices, we have c = 1. In particular v1 is a squashed version

of the so-called hinge loss often used for training support vector machines.

9.5 Bounds on the fitted decision trees

In this section, we shall discuss bounds obtained for the risk of dt80 symm

and dt80 asymm. Note that the bounds discussed above employed a re-

stricted class of decision trees based on the number of splits or the depth of

the tree. This approach defines a hierarchy on the class of all decision trees.

We employed a “prior” over this hierarchy, based on a minimum expected

size: the “prior” was defined by α(j) = 1
j(j+1) , where in the case of splits,

j was the number of splits more than 3, and in the case of depth was the

amount the depth exceeded 2 (in both cases, with a minimum value of 1).

Note that this prior should be selected prior to obtaining the training or

test sample. 178

178A slight improvement could be obtained by using the fact that the algorithm never
yields trees of depth larger than 31 due to the internal representation of the tree.
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We obtained the fitted model dt80 symm with the following R command:

dt80_symm<-rpart(y~.,spam80,method="class")

The following is a summary of the resulting fitted model:

> dt80_symm

n= 3681

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 3681 1444 0 (0.60771529 0.39228471)

2) x.V53< 0.0445 2739 625 0 (0.77181453 0.22818547)

4) x.V7< 0.065 2494 401 0 (0.83921411 0.16078589)

8) x.V52< 0.5085 2247 241 0 (0.89274588 0.10725412) *

9) x.V52>=0.5085 247 87 1 (0.35222672 0.64777328)

18) x.V57< 35 92 24 0 (0.73913043 0.26086957) *

19) x.V57>=35 155 19 1 (0.12258065 0.87741935) *

5) x.V7>=0.065 245 21 1 (0.08571429 0.91428571) *

3) x.V53>=0.0445 942 123 1 (0.13057325 0.86942675)

6) x.V25>=0.385 68 7 0 (0.89705882 0.10294118) *

7) x.V25< 0.385 874 62 1 (0.07093822 0.92906178) *

This decision tree has 5 splits and 6 terminal nodes. The splits are on

features 7, 25, 52, 53, and 57. The “prior” probability of obtaining 5 splits

is 1
(5−3)(5−3+1) = 1

6 , so that to obtain strict 95% confidence intervals, we

shall typically need to set δ = 1−0.95
6 = 1

120 in our applications of bounds.

This allows us to use T5 as the function class in the bounds.

Note that a larger tree may have yielded a lower training error, but the

resulting tree would have been larger, yielding larger capacity measures.

For the asymmetric loss, we employed the command

> dt80_asymm<-rpart(y~.,spam80,method="class",parms=list(loss=spam_loss_matrix))

obtaining the following result:

> dt80_asymm
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n= 3681

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 3681 144.4 0 (0.607715295 0.392284705)

2) x.V7< 0.01 3041 83.9 0 (0.724103913 0.275896087)

4) x.V53< 0.0875 2596 45.7 0 (0.823959938 0.176040062)

8) x.V52< 0.775 2432 33.4 0 (0.862664474 0.137335526) *

9) x.V52>=0.775 164 12.3 0 (0.250000000 0.750000000)

18) x.V57< 77 83 4.4 0 (0.469879518 0.530120482)

36) x.V16< 0.62 67 2.8 0 (0.582089552 0.417910448) *

37) x.V16>=0.62 16 0.0 1 (0.000000000 1.000000000) *

19) x.V57>=77 81 2.0 1 (0.024691358 0.975308642) *

5) x.V53>=0.0875 445 38.2 0 (0.141573034 0.858426966)

10) x.V52< 0.4095 263 20.2 0 (0.231939163 0.768060837)

20) x.V24< 0.165 153 9.8 0 (0.359477124 0.640522876)

40) x.V23< 0.98 121 6.6 0 (0.454545455 0.545454545) *

41) x.V23>=0.98 32 0.0 1 (0.000000000 1.000000000) *

21) x.V24>=0.165 110 6.0 1 (0.054545455 0.945454545)

42) x.V21< 0.875 22 1.7 0 (0.227272727 0.772727273) *

43) x.V21>=0.875 88 1.0 1 (0.011363636 0.988636364) *

11) x.V52>=0.4095 182 2.0 1 (0.010989011 0.989010989)

22) x.V12>=2.365 7 0.5 0 (0.285714286 0.714285714) *

23) x.V12< 2.365 175 0.0 1 (0.000000000 1.000000000) *

3) x.V7>=0.01 640 35.0 1 (0.054687500 0.945312500)

6) x.V52< 0.0765 151 12.4 0 (0.178807947 0.821192053)

12) x.V13< 0.135 102 7.5 0 (0.264705882 0.735294118)

24) x.V55< 7.0605 83 5.6 0 (0.325301205 0.674698795) *

25) x.V55>=7.0605 19 0.0 1 (0.000000000 1.000000000) *

13) x.V13>=0.135 49 0.0 1 (0.000000000 1.000000000) *

7) x.V52>=0.0765 489 8.0 1 (0.016359918 0.983640082)

14) x.V21< 0.085 41 3.6 0 (0.121951220 0.878048780)

28) x.V3< 0.07 23 1.8 0 (0.217391304 0.782608696) *

29) x.V3>=0.07 18 0.0 1 (0.000000000 1.000000000) *

15) x.V21>=0.085 448 3.0 1 (0.006696429 0.993303571) *

In this case, we have 15 splits, resulting in a δ modified for “prior” probability

of 0.05
(15−3)(16−3) = 1

3120 when we use T15 as the function class. It seems that

the asymmetric loss will yield much poorer training sample bounds than

the symmetric case: this δ is much lower, and the capacity measures will

be substantially higher. Furthermore, the resulting larger value is measured
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against the scale of a smaller risk value.

The bounds we present are all based on estimates of covering numbers of

the function class. In Table 9.7 a number of bounds on covering numbers

of various quality are presented. The bounds we present here will be based

on the method used in the final column of that table. To illustrate the

advantages this column provides, we will first present a single bound using

all five techniques employed in the table. We invert the bound on the relative

deviation of error of dt80 symm obtained by setting the right hand side

of (5.19) to 1
120 , and solving for ε. The results of the different approaches

are summarized in Table 9.8.

In addition, the bounds that will follow will consistently use shatter co-

efficients, or a limiting value as the scale γ tends to zero. Unless stated

otherwise, the covering number results we present are based on obtaining

covering numbers from the VC-dimension or pseudodimension of a class, and

it seems intuitive that the results we employ will perform best on bounding

shatter coefficients. Our intuition was verified experimentally, where bounds

employing larger scales consistently performed worse than those with smaller

scales. As an illustration, we invert the risk bound obtained on the regular

deviation of error using (5.17) at a number of different scales. The results

are presented in Table 9.9, and we see that the bounds improve steadily, with

the most dramatic improvement at the large scales, as is to be expected. It

seems the reason for this is that with a finite VC-dimension, the bounds on

the covering numbers we obtain by employing the packing number bounds

of (5.54) and (5.55) only improve on the shatter coefficients obtained using

the VCSS lemma at rather large scales. This is illustrated by the middle

column of the table: for the very large scales, there is a slight reduction in

the covering number bound, but on the whole, the cost to the bound of us-

ing such a large scale is prohibitive. At smaller scales, the covering number

bound does not increase if the scale is reduced, while the accompanying risk

bound does, leading to one using the limiting case as the scale tends to zero.

The training sample bounds we obtained for the fitted decision trees are

summarized in Table 9.10. The second column indicates which results in
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T5 : 5324 664 64 S : 10 S−
i : 1

ε 2.76808 1.568556 0.6346007 0.6390637 0.2842910
Error bound 7.864161 2.659692 0.5883787 0.5942359 0.241234

Table 9.8: Effect of different covering numbers on bounds

γ lnN1,7362(γ, T5) Risk bound

20 48.66101 2.2231695
2−1 53.66580 1.2286518
2−2 58.66637 0.7339022
2−3 58.66637 0.4889653
2−4 63.68060 0.3683756
2−5 68.20211 0.3058756
2−6 68.20211 0.2746256
2−7 68.20211 0.2590006
2−8 68.20211 0.2511881
2−9 68.20211 0.2472818
2−10 68.20211 0.2453287
2−11 68.20211 0.2443521
2−12 68.20211 0.2438639
2−13 68.20211 0.2436197
2−14 68.20211 0.2434976
2−15 68.20211 0.2434366
2−16 68.20211 0.2434061
2−17 68.20211 0.2433908
2−18 68.20211 0.2433832
2−19 68.20211 0.2433794
2−20 68.20211 0.2433775

0 68.20211 0.2433775

Table 9.9: Effect of different scales on covering number bounds
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Bound type Source dt80 symm dt80 asymm

(Thresholded) reg dev error (5.17)/(5.39) 0.2433756 0.2573062
(Thresholded) rel dev error (5.19)/(5.41) 0.241234 0.2641177
Reg dev risk double (5.27) 0.2553656 0.2645674
Reg dev risk dual Thm 5.17 0.2155034 0.2092272
B-L ν-dev (5.31) 0.2443235 0.2669476
P-H ν-dev (5.33) 0.2203768 0.1621967
Random subsample (5.37) 0.5008167 0.6864995
Chaining (5.52) 1.290900 2.026900
Basic Rademacher (7.7) 0.5565481 -
Refined Rademacher (7.10) 0.5569935 -

Table 9.10: Training sample bounds for decision trees

the text were used to obtain the results. When a bound has adjustable

parameters (such as a choice of β and/or ν), the best result over a grid or

line search is reported in this table. Technically, the resulting value is not

strictly a 95% upper confidence bound in this case, but it serves to indicate

the power of the bound (i.e. the best one could have done had the variable

parameters fortuitously been selected optimally in advance). To obtain a

95% upper bound, the weighted union bound can be applied over a grid.

This typically has a rather small effect, which we shall consider later in this

section.

9.5.1 Discussion of the bounds

In this section we provide commentary, clarifications, and further detail on

aspects of the bounds in Table 9.10.

The first two bounds in the table are standard bounds in the form employed.

For dt80 symm we applied the simple bounds on error, and for dt80 asymm

the risk bounds from the thresholded loss class were applied. This required

the covering numbers of the thresholded loss class based on the asymmetric

loss, an issue we have not yet discussed. It turns out that the shatter

coefficients of the loss class in this case is no larger than twice the shatter

coefficient of the function class.
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Double sample bound on regular deviation of risk The bound ob-

tained in (5.27) is a generalized and strengthened form of (a one-sided,

corrected179, version of) Alon et al. (1993, Lemma 3.3).

The modifications include being able to choose the values of γ and β, and

the replacement of the sample size restriction by employing a (more flex-

ible) choice of α. As a comparison, an implementation of their result for

these models yields bounds of 0.9457303 for dt80 symm and 1.507155 for

dt80 asymm.

To make the comparison fair, we note that the result presented above op-

timized over the choice of β, which the result in Alon et al. (1993) fixed at

0.5, over a grid of 99 values. The values of β employed for the results pre-

sented in the table, 0.04 and 0.02 for the symmetric and asymmetric cases

respectively, differ substantially from 0.5. For the bound to hold strictly,

a weighted union bound must be employed over these grid elements. This

increases the reported bound values to 0.2594169 and 0.2670770 for the two

models, a rather minor change. For other comparisons we present, we will

omit this modification, but it should be borne in mind if a grid is to be

employed.

Näıvely employing β = 0.5 instead of using the grid yields comparable

bounds of 0.2596510 and 0.2698580 for the two loss functions. Most of

the improvement in the bounds we present thus seems to come from the fact

that our generalized bound employs a scale tending to zero, while the scale

used in the result from Alon et al. (1993) is related to the value of ε.

Dual sample bound on regular deviation of risk The bound based

on Theorem 5.17 can be seen as an improved version of the main theorem

of Devroye (1982). That result can only handle error, and only considers a

shadow sample of size m2 −m. We will compare them shortly, but we first

address another issue.

The bounds presented in the table used the representation-independent

179The constant 12 quoted in their result should be 8.
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bound on the covering numbers presented in (9.1). To show the influence of

incorporating this information, we consider the bounds one could obtain by

using this information, i.e. by employing (9.2). The bounds using the modi-

fied results are 0.2079258 and 0.1961643, which constitutes an improvement

of about 0.01. The bounds were all obtained using optimization over the

choice of β and the exponent of the sample size used. The optimal choices

of β were 0.36 and 0.14 for the original results, and 0.38 and 0.24 for the

results presented here. This illustrates a general observation made during

the calculation of bounds for this thesis: typically the tighter bounds on

covering numbers become, the larger the desirable choice of β becomes.

The most interesting observation here was that the optimal exponent was

consistently around 1.4 to 1.5, and the choice of the power has a marked

effect on the resulting bound, although performance is reasonably stable for

exponents in the range 1.2 to 2.2. An exponent of 1.5 remained near optimal

with other methods of bounding the covering numbers (such as the weak VC

dimension based approaches) as well.

We now compare our bound with the bound implied by the result in De-

vroye (1982) in the case of dt80 symm. Without using the refined covering

numbers, the value obtained from his bound is 0.2252533. This result is not

much worse than the bound we present, and after applying the weighted

union bound over the grids we employed, it may even be slightly better.

These results serve as further confirmation of the idea that a shadow sam-

ple’s size should be larger than the original sample for good bounds: the

bounds obtained using this method are the tightest of the bounds obtained

for dt80 symm, and the second tightest for dt80 asymm.

Bound based on B-L ν-deviation For the bound based on B-L ν-

deviation, the values optimizing the bounds in this case were ν = 0.003, β =

0.1170175 for dt80 symm and ν = 0.002, β = 0.05562021 for dt80 asymm.

(For these results, β was optimized numerically).

The bound is a generalized form of Bartlett and Lugosi (1999, Theorem 1).

However, the formulation used there prevents choosing ν as small as we
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have, and fixes β at 0.5. That bound is minimized for both models at the

smallest permissible choice of ν,
√

1
m

= 0.01648227. The resulting bounds

are 0.2518804 and 0.2787705, which are only slightly inferior to the bounds

we obtained.

Bound based on P-H ν-deviation This bound attained its optimal

values at ν = 0.32, β = 0.01 for dt80 symm and at ν = 0.32, β = 0.07 for

dt80 asymm. The resulting bound for dt80 asymm was the tightest bound

we obtained on the asymmetric loss.

The bound is a generalization of Haussler (1992, Theorem 3), which has

one free parameter, ν. The optimal value of this bound is 0.9060489 (at

ν = 1.07) for dt80 symm and 1.907755 (at ν = 1.9) for dt80 asymm. Clearly,

our modification of the result yields much better results in this case. The

reasons for this improvement are not at all clear, but it may be due to the

fact that the original results fix both the value of α and β employed in their

symmetrization lemma, subject to a sample size restriction. This restriction

is later dropped since their bound is trivial for smaller sample sizes. The

form of our result uses a choice of α which is sensitive to the choice of β. On

the other hand, the other bounds we have considered do not seem to be as

sensitive to the choice of β. This apparent discrepancy seems worth further

investigation.

Random subsample bound on regular deviation This bound per-

forms significantly worse than all the other bounds considered so far. It is

the first and only bound we consider making use of the random subsam-

ple lemma. This performance is as expected — we noted in Section 5.5.7

that the regular double and dual sample covering number bounds tend to

be asymptotically tighter than bounds employing the random subsample

lemma.

Chaining bound The chaining bound presented here is not technically

correct, but only presents the sum of the first hundred terms of the chaining
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bound as a fairly good approximation. This works because the VC dimension

of the class is finite, so that the error in such an approximation can in

principle be bounded. For general function classes, the covering numbers

approach infinity as the scale approaches zero, so an alternative plan for

obtaining a good approximation must be used.

It is also important to note that the size of Bj in the chaining bound is

expressed in terms of covering numbers w.r.t. the 2-norm, not the 1-norm.

A bound on the 2-norm covering numbers was obtained from the 1-norm

covering numbers by employing (5.5).

Despite the fact that the chaining bound is technically refined, its perfor-

mance here is poor. The most likely reason for this is that the covering

numbers at various scales are bounded by employing the VC dimension.

These covering number bounds are rather poor, and we expect that chain-

ing will perform much better if alternative bounds on such covering numbers

are available.

Rademacher bounds The Rademacher bounds we present employ the

last part of Theorem 7.11 to bound the Rademacher complexity, using (9.3).

This approach yields a bound on R3681(T5) of 0.1982399 (when δ = 0.00150262),

while employing the third part of Theorem 7.11 yields a bound of 0.2652305.

We note that the resulting bound performs similarly to the bound using

the random subsample lemma, i.e. poorer than the dual sample and double

sample bounds. This is also as expected. If we bound the Rademacher

complexity by employing the shatter coefficients as we do here, we have a

bound on maximal deviations of roughly180

2

√
2NW(m) − log δ

m
.

Comparing this to the result obtained when inverting the bound of (5.37),

we see that their overall structure is highly similar.

180This is obtained by combining (7.7) and the inner portion of the last part of Theo-
rem 7.11, and suppressing a number of other terms.
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To obtain results from global Rademacher bounds which improve on the

dual sample bounds, it is necessary to employ methods to obtain tighter

Rademacher bounds than those obtained from Theorem 7.11.

9.6 Bounds on boosted stumps

In this section, we investigate training sample bounds applied to the model

fitted by boosting stumps, boost80s. The fitted model was obtained by

running

> boost80s<-ada(spam80[,2:58],spam80[,1],type="discrete",iter=200,

+ control=rpart.control(maxdepth=1,cp=-1,minsplit=0,xval=0))

This yielded the following fitted model:

> boost80s

Call:

ada(spam80[, 2:58], y = spam80[, 1], type = "discrete", iter = 200,

control = rpart.control(maxdepth = 1, cp = -1, minsplit = 0,

xval = 0))

Loss: exponential Method: discrete Iteration: 200

Final Confusion Matrix for Data:

Final Prediction

True value 0 1

0 2157 80

1 184 1260

Train Error: 0.072

Out-Of-Bag Error: 0.077 iteration= 190

Additional Estimates of number of iterations:

train.err1 train.kap1

196 196
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Informally speaking, the class of unthresholded functions which can be re-

turned by a general boosting algorithm lies in the convex hull of the class of

functions implemented by the base classifier. If, as in our case, the number

of iterations is limited, the class is more restricted to linear combinations

employing a fixed number of terms. However, both of these ways of viewing

the unthresholded class yield poor bounds on covering numbers. We have

already discussed this issue for the first viewpoint in Section 9.4.2. The

major issue with the second viewpoint is that it is not clear how to use the

fact that the class is restricted in order to obtain better covering number

bounds.

Thus, for the boosting model under consideration, we do not have access

to reasonable covering number bounds, precluding the use of most of the

bounds applied to the decision trees in the previous section. The bounds

we will consider in this section are Rademacher bounds based on a Lips-

chitz proxy loss (see Section 9.4.3), and double/dual sample PAC-Bayesian

bounds, which employ the covering numbers of the class of stumps.

Since we specified that the boosting algorithm will use stumps, the underly-

ing size of decision trees is fixed a priori at one split. Thus no class hierarchy

over the decision trees is necessary in this case, so bounds can be applied

using δ = 0.05.

Rademacher bounds The actual model generated by the ada package

yields weights which do not sum to one, and the resulting weighted sum is

thresholded at 0.5, since the base stumps actually make predictions in {0, 1}.
As a result, a few linear transformations of the weights and the outputs are

necessary in order to calculate unthresholded values for application of the

Rademacher bounds (specifically, the unthresholded values are needed to

calculate the losses of the proxy loss function on the training points).

From the discussion of Section 9.4.3, it follows that if we employ the proxy

loss vK , we can bound the Rademacher complexity of the proxy loss class
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under consideration by

2KR3681(S) +

√
1

3681
.

(Recall that the boosting was performed using stumps, and L1 = S).

We obtain a bound of 0.1152925 for R3681(S) using the probabilistic bound

on Rademacher penalties. Unfortunately, this bound is still too large, yield-

ing a trivial bound in this case. Various bounds can be obtained by us-

ing (7.7) with varying choices of vK , however, in this case, the bounds tend

to improve as K → 0. In the limiting case, vK assigns a loss of 1 to all the

points, and the bound reduces to

1 + 2

√
1

3681
+

√
− ln(0.05)

7362
= 1.053137 .

The same behaviour occurs for the bound obtained from (7.10), with the

resulting bound being 1.053409.

Double/dual sample PAC-Bayesian bounds This section will con-

sider double sample and dual sample PAC-Bayesian bounds based on the

results in Examples 8.3 and 8.4. Recall that the PAC-Bayesian bounds are

based on stochastic classifiers using the Gibbs strategy. For the boosting

algorithm, the weight vector obtained training the algorithm can be seen as

a (discrete) distribution over the class of stumps. The combined classifier

then implements the MAP strategy based on that distribution: it classifies

according to the most likely class predicted if a stump is sampled according

to the weight vector.

PAC-Bayesian bounds, on the other hand, apply to the Gibbs strategy: each

new point is classified by sampling a stump according to the weight vector,

and making a prediction employing the stump. The PAC-Bayesian bounds

we shall consider bound the risk of this classifier.

This classifier’s performance is substantially worse than the other classifiers

we have considered, perhaps mainly due to the fact that the base classifiers



Chapter 9. Practical application of bounds 385

are so simple — each stump’s individual performance is quite poor. The

training error of this Gibbs classifier is 0.3220136.

In order to implement these bounds, we used the earlier results for bounding

the covering numbers of the class of stumps, which corresponds to the class

H′ in the bounds referenced. The double sample bound in this case evaluated

to 0.419319, which is the closest a bound has come to the training risk

amongst the bounds considered.

However, we were able to obtain even tighter bounds by employing the

dual sample bound, which gives us the flexibility to consider larger shadow

sample sizes. The optimal settings for this bound were a shadow sample size

of u = 36811.5 and β = 0.55. These settings yielded a bound of 0.3770343.

(Using the refined covering number bound from (9.2) yielded a reduction to

0.3736865 at u = 36811.5, β = 0.65).

As an indication of the tightness of this bound, the test error of the Gibbs

classifier is 0.3240981, slightly higher than the training error. Applying the

Hoeffding r.e. inequality to obtain a 95% test sample confidence interval on

this classifier, one obtains an upper bound of 0.3644480.

Without any doubt, these bounds are the most successful we have consid-

ered. Unfortunately, they come at the cost of having to employ the Gibbs

classifier. For certain problems, one can approximate a deterministic clas-

sifier arbitrarily closely by a related Gibbs classifier, allowing one to obtain

bounds using this powerful strategy. For more details on this aspect, the

interested reader is referred to Langford and Caruana (2002).

9.7 General discussion

Improving covering numbers The training sample bounds applied to

the decision trees clearly showed the improvements that can be obtained

with covering number-based bounds if some effort is spent to obtain good

covering number bounds, rather than näıvely applying the simplest tools

available. We showed that if the class size can be restricted by employing
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the representation of the data, the bounds could also be improved. As we

mentioned before, any computer implementation of an algorithm automati-

cally restricts the function class to a countable set due to its representation

of numbers using a finite set of bits. Employing this restriction may further

lead to tighter bounds.

A related idea is that for good training bounds, the representation of the data

should be as coarse as possible, and the range as restricted as possible. For

example, if we had prior information that the first 48 features of any point

would never have a value of more than 5%, and the measurements would

be multiples of 0.05% (i.e. feature values would be rounded off/truncated

as necessary), instead of 20002 potential splits on a feature, there are only

202. Similar limitations could be imposed on the other features.

A further avenue for potentially reducing covering numbers which we have

not investigated is relationships between features. In the e-mail classification

problem under consideration, there are some inherent relationships between

the features: the sum of the first 48 features can not exceed 100, and neither

can the sum of features 49 to 54. Furthermore, features 55 and 56 can not

exceed feature 57, and feature 57 is a multiple of feature 55. Exploiting

these relationships to tighten the bounds may be possible, and seems worth

investigation.

Bounds not calculated A number of bounds described in this thesis

were not implemented on this data set, or the algorithms considered. We

shall briefly consider the algorithms we did not present here, and why they

were not presented.

• A simple Occam’s razor bound could not be applied because the class

of decision trees (of a given size) is uncountable.

• The margin bounds were investigated, but the covering numbers ex-

ploded on the convex hull of the class of stumps, as described in Sec-

tion 9.4.2.
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• Sample compression bounds were not applicable since we did not have

a useful compression scheme formulation of decision trees.

• Luckiness and algorithmic luckiness bounds were not applicable, since

no useful luckiness function was found.181

• To apply local Rademacher bounds, one needs bounds on the sub-

classes with control on the variance. It is unclear how such bounds

can be obtained for this problem.

• The general PAC-Bayesian bounds and the Occam’s Hammer bound

both require “prior” distributions on the class of classifiers. I was

unable to find a sensible way to express distributions over the class of

all decision trees, or even of all stumps.

• Shell decomposition bounds are defined on a countable hypothesis

class. They can be extended to continuous spaces by employing PAC-

Bayesian arguments, but then a “prior” over the class needs to be

defined.

For a different problem and loss function, some of these bounds would have

been more applicable, while traditional covering number approaches may not

have been practical, or would have yielded terrible results. Generally speak-

ing, the structure of the input space together with the algorithm employed

determine which bounds are suitable candidates for implementation.

Other bounds on decision trees The bounds provided in this thesis are

by no means exhaustive. Furthermore, various algorithms spawn custom-

made bounds which apply knowledge of the structure of the algorithm under

consideration.

The microchoice bound (Langford and Blum, 1999),which arose from the

concept of self-bounding algorithms introduced in Freund (1998), is generally

181Luckiness functions such as the one in Example 6.7 are not worthwhile unless the
bounds obtained on the luckiness function are sample dependent.
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a very competitive bound for decision trees with binary features. However,

when the features are continuous, this bound is no longer applicable.182

Two other approaches to obtaining bounds for decision trees are presented

in Golea et al. (1998) and Mansour and McAllester (2000). The first article

employs the view of a decision tree as the convex hull of the leaf functions,

but uses a more advanced concept of the effective number of leaves of a tree.

It uses these ideas to present a margin bound on decision trees. This margin

bound is, however, based on the covering numbers of the base class, rather

than its convex hull. These results, which are based on the margin bounds

presented in Schapire et al. (1997), are unfortunately based on unspecified

constants. Mansour and McAllester (2000) present what the authors call a

compositional bound — the problem of optimizing the bound over the class

of decision trees can be decomposed into independently optimizing the left

and right subtrees and a little extra work. They also note that the approach

used in Golea et al. (1998) only performs well when “almost all training data

reaches a single leaf”. On the other hand, a drawback of their method for

our sample is that they assume the class of splits is countable.

Another very recent result which is highly relevant here is Shah (2007), which

presents sample compression bounds for decision trees. His approach uses a

more general sample compression approach than that outlined in this thesis.

In the alternative scheme he employs, the compression function maps the

sample to a subsample as well as an extra message with further information

for the reconstruction function. This modified approach, which seems to

have developed from the PAC-MDL bound proposed in Blum and Langford

(2003), makes the sample compression framework much more flexible. The

general approach, developed in the author’s doctoral thesis (Shah, 2006),

allows one to employ a data-dependent “prior” over the compression set

and the class of possible messages, with each individual hypothesis being

bounded by an arbitrary bound (as with Occam’s hammer, one can employ

bounds on the binomial tail deviation).

182Technically, the bound can handle splits on features with multiple values, but not
cases where the size of the class of splits is infinite.
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Shah (2007) suggests appropriate compression and reconstruction functions

in this framework, as well as advice on the selection of appropriate “priors”.

This bound handles the uncountability of the class of splits by effectively

discretizing the class up to an accuracy acceptable to the practitioner. How-

ever, the higher the desired accuracy, the looser the bounds will become. The

article provides empirical results of his bound on a number of benchmark

data sets. In all cases the bounds were non-trivial, despite the trees con-

structed being fairly large (11-61 nodes). Unfortunately, I became aware of

these developments too late to include a fair reflection of these results in my

thesis.

A fair comparison The reader may have noticed that the comparisons

of training sample bounds and test sample bounds presented in this chapter

are not entirely fair. Since training sample bounds dispense with the need

for a test sample, a fair comparison should compare the training sample

bounds applied to models fitted on the full data set to test sample bounds

on models fitted using the reduced 80% training sample.

We expect better performance from such training sample bounds than we

obtained from the training sample bounds applied to the 80% training sam-

ple for two reasons. First, we expect the training risk of the model fit on

the full data set to be smaller than that fitted on the 80% training sample.

Second, we would expect the width of the interval to be smaller.

For the spam data, we employed the same algorithms on the full train-

ing sample as well, obtaining the models dt100 symm, dt100 asymm, and

boost100s. However, the improvement in training risk was very small —

less than 5% of the training risk on the 80% sample in all three cases. In

addition, the resulting decision tree models both had an extra split, so that

the SRM “prior” is more punitive, partially countering the potential gains

of a larger sample size. In general, the training sample bounds obtained

were similar to those obtained on the 80% training sample, so we elected

not to present them, since it would be unclear how the differences between

the bounds should be attributed to differences in decision rule risk, training
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sample size, and differences in model complexity.

The most competitive bound we considered was the dual sample PAC Bayesian

bound applied to the boosting algorithm. As an illustration, we note that

the training error of the Gibbs classifier corresponding to the fitted model

boost100s has a training error of 0.3379392 (larger than that of boost80s).

The corresponding bound was 0.3829682. The term added to the training

risk for this bound decreased from 0.0550207 for boost80s to 0.045029, pre-

dominantly due to the increase in the sample size. If the training risk had

improved notably due to the increase in size of the training sample from

boost80s to boost100s, one can imagine that this bound may well have

outperformed a test sample bound obtained on boost80s. This type of sit-

uation is most likely to occur when data are rather scarce, and withholding

new data is likely to hamper the quality of the resulting decision rule consid-

erably. However, the problem in this situation is that bounds for the Gibbs

classifier are being compared, rather than the actual fitted model.

9.8 Conclusion

The bounds presented in this chapter clearly illustrate that parameters such

as the β from the symmetrization lemma, and the shadow sample size u

in the dual sample lemma can have a notable influence on training sample

bounds. Furthermore, we note that by using a more flexible choice of scale in

double sample risk bounds, we were able to get bounds which were not much

poorer than double sample error bounds. This indicates that the appropriate

choice of scale should be sensitive to the structure of the loss class, and that

the traditional default of using a fraction of ε is not necessarily appropriate.

These observations also suggest that some improvement can be attained

by generalizing the available double sample bounds for error to dual sam-

ple bounds, and deriving a symmetrization lemma for error in terms of

appropriate choices of α and β. In addition, it might be worth investigat-

ing extending bounds on the P-H deviation to more general shadow sample

sizes, and obtaining a tighter symmetrization lemma for error, since the P-H
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ν-deviation bound performed quite well without these refinements.

Although the training sample bounds were, on the whole, poor in comparison

to the test sample bounds, many were by no means trivial. Furthermore,

the results were obtained using covering numbers which were in no way

data-dependent: suprema of covering numbers were used throughout. The

effects of optimizing covering numbers directly, rather than simply employ-

ing bounds on the VC dimension, was also clearly illustrated.

A selection of functions employed for the calculation of many of the esti-

mators presented in this chapter appear in Appendix C.183 One interesting

feature of the code is the calculation of the α employed in the bound for

a given β: the code selects the value of α in response to the size of β and

the shadow sample u, by choosing the best of the candidate α functions

considered in the thesis.

183Disclaimer: these functions were written by me, for me! They would need thorough
sanitation before being made generally available. If you wish to use them, it is strongly
recommended that you verify them against the theory first, since they were often imple-
mented for very specific circumstances.



Chapter 10

Conclusion and Future

Research Directions

This chapter considers the progress made in the various objectives for the

thesis. We review the contributions and progress made, and consider the

way forward for further progress in the field.

10.1 Review of objectives

Chapter 2 presented a generalization of David Haussler’s decision-theoretic

model of learning which incorporated a new component which we called a

strategy. This component allowed us to deal with cases where the decision

rule is stochastic. Notions of risk of an hypothesis and of a decision rule

were introduced. In Chapter 3 we introduced the idea of viewing interval

estimators from the perspective of bounding measures of deviation. The rest

of the results in the thesis were discussed using these perspectives.

The thesis introduced a number of approaches to risk estimation, with a

focus on training sample interval estimation. In order to keep the material

accessible, plenty of background information was provided. The results pre-

sented are a reasonably comprehensive introduction to the major approaches

to training sample interval estimation of risk.

392
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The third objective concerned presenting generalized results allowing more

flexibility in the selection of various parameter values. This approach was

successfully employed to generalize a number of classical and data-dependent

covering number-based and PAC-Bayesian bounds. These more general

forms allowed for flexible selection of the scale parameter γ, the parameter

β used in the relevant symmetrization lemma (as well as the choice of the

corresponding α), and the shadow sample size u. These generalizations and

other contributions of the thesis are discussed in more detail in Section 10.2

These extended results were compared to the classical results in Chapter 9,

where we noted that the choice of scale in covering number bounds can have

a sizeable effect. Furthermore, we saw that a double sample approach to

symmetrization was not near optimal for our problem. Instead a shadow

sample of size u ≈ mc performed well, with 1.2 ≤ c ≤ 2.2. For other

work investigating alternative shadow sample sizes, the reader is referred

to Catoni (2004a). Our investigation of the choice of β in symmetrization

lemmas indicated that the impact of this choice is typically rather small, and

that the tighter a bound is, the larger the appropriate choice of β seemed

to be.

Furthermore, we considered the benefits which could be reaped by focusing

more closely on direct bounding of covering numbers instead of using bounds

on dimension measures of large classes to obtain them. We illustrated that

this approach can yield dramatic improvements.

Generally speaking, the training sample interval estimators we obtained for

the data set and algorithms we considered were simply not competitive with

those obtained by employing a test sample. On the other hand, many of the

results were certainly not trivial, and we illustrated that the PAC-Bayesian

methodology could yield competitive bounds for decision rules employing

the Gibbs strategy.

In general, none of the training sample bounds we presented are uniformly

better than the other methods, and the appropriate choice among these

techniques depends on the specific loss class being used for the problem. In
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certain cases, good bounds on covering numbers of the loss class are avail-

able, but not for Rademacher averages, while in other cases the situation is

the opposite. When a Gibbs classifier is being employed, the PAC-Bayesian

methodology will typically yield better results than covering number- and

Rademacher average-based approaches. Thus, the appropriate choice of

training sample bound for any given problem will depend on a fine anal-

ysis of the loss class, which is currently beyond the expertise of the typical

practitioner.184

Note that we did not present numerical results for all the approaches pre-

sented in the thesis in Chapter 9. As a result, it is not clear how competitive

the other approaches could be made in practice. In principle, many of these

bounds could be substantially tighter than the ones we evaluated, but it is

often very difficult to get useful bounds on the values which enhance the

results.

Furthermore, the results presented in this thesis can not hope to be ex-

haustive. Our aim was to provide representative results of good bounds

for the approaches considered. For a number of approaches, the results we

present are not the state of the art, and in many cases improvements can be

obtained under certain conditions. In particular, tighter bounds are often

available for certain classes of algorithms. Notable in this regard are bounds

based on algorithm stability, local Rademacher bounds for ERM, bounds for

convex loss functions, and bounds employing conditions on the noise level

in a model185. Once again, however, such bounds are only useful if they

can be successfully evaluated. We will return to the difficulty of evaluating

training sample bounds, and possible ways of alleviating the situation, in

Section 10.4.1.

184We discuss this further in Section 10.4.1.
185For a discussion of these approaches, the reader is referred to Bousquet and Elisseeff

(2002) and Koltchinskii (2006) for the first two approaches, and Bousquet et al. (2005)
for overviews of developments for the other two approaches.
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10.2 Contributions

In this section, we will consider the contributions made in this thesis, fo-

cussing on our third objective, viz. presenting more general forms of training

sample bounds. Probably the largest contribution consisted of modifying

various bounds employing covering numbers to allow arbitrary choice of β,

u, and γ by the practitioner, rather than being restricted to the values of

these parameters chosen for convenience in earlier derivations.186

β is a parameter employed in various symmetrization lemmas. A correspond-

ing choice of α is typically obtained by using a concentration inequality. We

point out that one can actually select α on the basis of more than one con-

centration inequality. Furthermore, traditionally, once the value of β was

fixed (typically at β = 1
2 ), the choice of α was fixed by employing a restric-

tion on the sample size m for which the results presented held. Our approach

removes the sample size restriction by directly using the appropriate choice

of α. This allows improvements in the result when the shadow sample size

exceeds the minimum sample size specified by the traditional results. The

final bounds presented retain β as a parameter, allowing the practitioner

to select β as he wishes, or to optimize over β with an appropriate union

bound argument. The potential value of alternative choices of β besides 1
2

is illustrated by the alternative choice used in Shawe-Taylor et al. (1993).

The size of the shadow sample u in nearly all traditional covering number

results is set to equal the sample size m. When this traditional wisdom has

been questioned, improved results have typically been obtained, as in Catoni

(2004a), Devroye (1982), Shawe-Taylor et al. (1993). Our approach provides

bounds where the shadow sample size can be specified by the practitioner.

Finally, it is customary for covering number based bounds on error to be

stated in terms of shatter coefficients, while bounds on risk were stated using

covering numbers. The scale γ of these covering numbers were typically

chosen as a fraction of ε, the bound on the measure of deviation under

186Of course, the typical practitioner is highly unlikely to know the appropriate choices to
make, so the development of heuristics for selecting these parameters is important future
work — see Section 10.4.
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consideration. While this was convenient, it is not necessarily a good choice.

We present results for bounding error in terms of covering numbers, and

bounds for risk where the scale can be selected by the practitioner. The

bounds on error reduce to the traditional shatter coefficient bounds as the

scale becomes arbitrarily small. Our experiments further indicate that for

risk based on asymmetric loss the benefits to be reaped by alternative choices

of scale are substantial.

Flexibility in the choice of u and β is typically attained by the use of the more

flexible forms of symmetrization lemmas which we present in Theorems 5.4,

5.5, 5.6, 5.7, 5.15, 6.1 and 6.2.

The freedom to choose m 6= u also relies on an appropriate dual sample

lemma for the measure of deviation under consideration. We only provided

such results explicitly for regular deviation and for the realizable case —

see Theorems 5.10 and 5.14. However, similar arguments were employed to

obtain the data-dependent bound of Theorem 6.3 in Chapter 6.

The other modification to many of the bounds, allowing the practitioner the

freedom to choose the scale γ of the covering numbers, could generally be

achieved by careful bookkeeping.

Combining these approaches led to many of the bounds in the thesis based

on covering number arguments generalizing previous results. These include

the various bounds in the latter part of Chapter 5 (except for the chaining

bounds), Chapter 6, and Section 8.1.3.

The dual sample bound of Theorem 5.10 was obtained by generalizing an

argument presented for error in Devroye (1982). However, the result we

obtained is applicable to risk as well. This allowed us to obtain a new

simple covering number bound on regular deviation of risk with faster decay

than previous bounds of the same type. Bounds with the same decay rate

have been obtained with more sophisticated tools such as chaining, however.

For further information, see the discussion after Theorem 5.17, until the end

of the subsection. Our formulation of the dual sample bound also permitted

us to extend the PAC-Bayesian bounds presented in Section 8.1.3 to general
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loss functions, although the original results by Catoni were restricted to

error.

We also present a generalized form of the shell decomposition bound in

Section 8.2, which holds for general loss functions. In addition, we allow the

practitioner to select the number of bins used for the bound, and introduce

two “priors”.

Section 5.6 presents a somewhat more general view of margin bounds than

is traditional. We expect the greatest contribution from this perspective to

be the more general margin concept for zero-one loss functions presented in

Section 5.6.3 which views the margin as the distance to a boundary between

various classifications.

We have already discussed the modifications we made to Haussler’s frame-

work in terms of introduction of the strategy concept. In addition, we at-

tempted to deconstruct known results into basic theorems.187 The idea of

viewing interval estimators as inverting bounds on various measures of de-

viation was valuable in this sense.

Finally, a number of variations on existing results were presented in what

we felt were more convenient forms. For example, the bound in (7.12) can

be extracted from the proof of Theorem 2.1 in Bartlett et al. (2004). We

feel this form is more generally applicable, since one has not yet commit-

ted to various relaxations they employ in the rest of the proof. Similarly,

some results in Section 8.1 parallel results in Catoni (2004b), except that

our arguments used results underlying Hoeffding’s inequality, rather than

Bernstein’s inequality.

10.3 Utility of training sample bounds

The original training sample bounds were based on convergence theorems.

However, the conditions under which uniform laws of large numbers and

187Most of our generalizations flowed from generalizing these basic theorems, and then
applying similar reasoning as before.
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uniform central limit theorems hold are now fairly well understood (see

for example Dudley, 1999). Furthermore, upper and lower bounds on the

asymptotic rate of convergence are available in many cases (e.g. Anthony

and Bartlett, 1999). However, while the asymptotic rate is often known

exactly, or up to a factor of lnm, the actual gap between the upper and

lower bounds tend to be extremely large due to the constants employed.

Training sample bounds arise in response to the question of what else can be

done with these convergence results. When applied as is, these bounds were

not suitable for practical use as interval estimators. However, researchers

proposed other uses for the resultant bounds. By considering the quanti-

ties influencing the bound, new insight into the factors influencing the risk

of a decision rule could be obtained. For example, the covering numbers

employed in bounds provide theoretical support for the ideas of capacity

control and regularization.

Furthermore, it was suggested that the bounds could be used as heuris-

tic tools to obtain the appropriate level of capacity control. Thus, it was

proposed that training sample bounds could be used for model selection.188

Another application of training sample bounds was the design of new algo-

rithms. The most well-known example of this is undoubtedly the support

vector machine. This algorithm was motivated by the heuristic of finding a

separating hyperplane which minimized a training sample bound.

It should be clear from these applications that progress in training sample

bounds is a worthy pursuit, regardless of the fact that the bounds we have

considered do not seem to be competitive with those obtained using a test

sample: clearly, tighter bounds will be more predictive of generalization,

making the bounds more useful for identifying factors influencing risk, model

selection, and designing new algorithms.

It seems that for training sample bounds to become consistently competitive

with bounds based on a test sample, at least one of two conditions needs

188A recent book on the use of concentration inequalities and the resulting training
sample bounds for model selection is Massart (2006).
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to be met: either a new theoretical breakthrough in bound design will be

needed, or effective methods for obtaining (good bounds on) the quantities

in the most refined bounds must be found. In addition, progress in making

the bounds available to practitioners will be needed (see Section 10.4.1).

We conclude this section by noting a few restrictions on the applicability of

the results in this thesis.

The most notable restrictions in the thesis are that of bounded loss func-

tions and independent, identically distributed data points. Some work has

been done on training sample bounds for unbounded loss functions, but the

results are by necessity not distribution-free (e.g. Vapnik, 1998). Some of

the theorems we employ can be extended to martingales, and for some other

results identical distributions are not required (e.g. Catoni, 2004a). In ad-

dition, many of the results we present can be generalized to various mixing

processes. These generalizations are discussed in Vidyasagar (2002).

Another restriction which one must always be aware of when considering

training sample bounds are the various independence requirements. Notably,

“priors” employed for a specific bound typically need to be specified before

seeing any of the training data.

10.4 Further research

The work done in this thesis suggests a number of avenues for future work.

Our work has introduced new parameters in bounds which can be specified

by practitioners, or optimized using a weighted union bound. It is natural

to investigate the effect of these parameters, and to try to obtain guidelines

or heuristics for the choice of these parameters or appropriate “priors”. Fur-

thermore, the interactions between the parameters may also be important.

Consider for example the choice of the shadow sample size u. As u increases,

the variance of rP (w) decreases, making the regular deviation rS(w)−rP (w)

an increasingly accurate reflection of rS(w)−rD(w). On the other hand, the

covering numbers under consideration increase as the sample size increases.
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The appropriate choice of u seems to represent a trade-off between these

factors, but the optimal trade-off for the resultant bound is likely to depend

on the value of β and the corresponding α in the symmetrization lemma

employed.

Another challenge is to attempt to obtain dual sample bounds for other

measures of deviation besides regular deviation. As a related issue, we note

that besides the classical covering number bounds of Chapter 5, all the

training sample bounds we considered involved bounds on regular deviation.

We suspect obtaining analogs of these other approaches in terms of other

measures of deviation would be valuable. The only work I am currently

aware of in this vein is the work on data-dependent bounds on relative

deviation in Andonova Jaeger (2005).

Another potentially useful activity is investigating the values of unspecified

constants in classical results. This includes refining constants where poor

constants are presented as well as obtaining bounds on unspecified con-

stants. Both lower and upper bounds on such constants would be useful.

For example, knowledge of (bounds on) the values of the absolute constants

in Theorem 7.5 may have allowed us to obtain tighter bounds on the de-

cision trees investigated in Chapter 9, perhaps using the results presented

in Bartlett and Mendelson (2002).

This thesis has not explicitly discussed the concept of bracketing covering

numbers. This concept, which was already employed for proving a uniform

version of the strong law of large numbers in Pollard (1984) (see Theorem

II.2.2), and appears in a number of aspects of empirical process theory (e.g.

Dudley, 1999, van der Vaart and Wellner, 1996), is closely related to the

general covering numbers we do consider. Specifically, the bracketing cover-

ing number of a class V can be shown to be closely related to the external

covering number using the metric d1,D. Langford (2002, Chapter 9) provides

an extension of PAC-Bayesian bounds for finite hypothesis classes to infinite

classes using this covering number. These results suggest that future work

on obtaining bounds using these covering numbers may yield tight training

sample bounds. In addition further research into bounding such covering
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numbers may be useful.

Another field for future research is investigating effective ways to obtain

good “priors” or reduce the effective size of function classes by interaction

with practitioners. For example, if the practitioner could specify the likely

range and maximum meaningful resolution for each feature of the data set,

covering numbers could in practice be dramatically reduced.

Another approach worth investigating is the concept of training sample boot-

strap interval estimators. It is not clear to me how such an estimator might

be constructed, but if one could, it may well be an extremely useful and

powerful tool for risk estimation.

10.4.1 The way forward

In this section, we briefly discuss making training sample bounds more avail-

able to practitioners, and suggest implementing a website for enhancing the

effectivity of researchers in the field while lowering the barrier to entry for

newcomers to the field.

Perhaps the most useful application of training sample bounds at the mo-

ment is model selection. However, their applicability is severely limited by

a number of factors.

The first is the question of whether model selection using training sam-

ple bounds outperforms the much more well-known methods such as the

hold-out method, cross-validation and the various approaches mentioned in

Section 5.1.2. Note that performance here should also take into account

whether it is necessary to fit multiple models.

Even if it can be shown that training sample bounds are suitable for model

selection, a much greater barrier to their application is the large amount

of technical knowledge necessary to apply them effectively. In this respect,

availability of code, and even integration of model selection employing train-

ing sample bounds into packages implementing various algorithms would be

invaluable. Furthermore, this approach may allow one to calculate bounds
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which one could not calculate any other way. As an example, microchoice

bounds (Langford and Blum, 1999) need to evaluate the number of choices

an algorithm makes during its execution in order to calculate the bound.

Currently, this bound is only available for custom decision tree implementa-

tions, to my knowledge. Incorporating this bound into a standard decision

tree package for a system like R by collaborating with the package authors

will make the bound much more useful. Such an approach will also make

it more likely that bounds will be correctly implemented in packages. For

a recent discussion on the potential benefits of wider availability of source

code to a research community, from the perspective of the machine learning

community, please see Sonnenburg et al. (2007).

A final recommendation for encouraging progress in the field of training

sample risk bounds is the establishment of an online repository for infor-

mation, similar to that available for researchers in kernel methods at http:

//www.kernel-machines.org/.

In the late 1990s and early 2000s, the European Strategic Program on Re-

search in Information Technology (ESPRIT) funded a working group fo-

cusing on neural networks and computational learning theory, known as

NeuroCOLT, and later NeuroCOLT2. One of the focus areas of this group

effectively involved deriving training sample bounds, and most of the devel-

opment in the field of training sample bounds at the time was due to mem-

bers of this group. The group’s website at http://www.neurocolt.com,

which provides a repository of the group’s technical reports, is still a valu-

able source of publications in the field.

As such, our suggestion is not entirely unprecedented in the field. How-

ever, we suggest a broader, more inclusive, repository with more community

involvement. We briefly mention a few potential benefits of such a site.

• Links to publications relevant to the field can be collected centrally.

Furthermore, detailed proofs which could not be published due to ar-

ticle length constraints, source code, and errata or modifications189

189In this thesis, a variety of flaws and inaccuracies were discovered in various sources,
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could be made available with the article.

• Issues which are unclear in a publication can be resolved once, and

collected with other information on the publication. Later readers of

the publication can then find this clarification with little effort.

• Publications in the field, or highly relevant to the field, tend to be

scattered throughout a variety of journals. Announcing relevant new

publications on the site will help researchers stay up-to-date on recent

developments more easily. Similarly, the release of software imple-

menting various bounds could be tracked.

• A record of performance of various training sample bounds on a variety

of benchmark data sets and algorithms can be maintained, allowing

researchers and practitioners to more easily assess the state of the

art.190

and we have pointed out a number of them that were relevant to our arguments. In many
cases, when these inaccuracies are found, it is difficult to make other researchers aware
of them. Furthermore, if they do not affect the asymptotic results, many researchers will
not consider the inaccuracies important.

190One complication with this approach is the matter of verifiability of “priors”. However,
the problem does not seem insurmountable.



Appendix A

List of Symbols

Symbol Usage

A action class for the learning problem, with typical element r

A r.v. corresponding to α in hierarchical Bayes estimation

A generic set; diagonal operator

A(S,w) high confidence region for rD(w)

Aj subset of W corresponding to a link pair — typical element of Dj

Aluck algorithmic luckiness function

a acceleration constant in BCa bootstrap interval; natural number

aj diagonal elements of diagonal operator A

absconv(A) absolute convex hull of A

α parameter of symmetrization lemma; “prior”;

parameter of Beta distribution

α? “prior” used in conjunction with symmetrization lemma

α(u, β) function yielding appropriate parameter of symmetrization lemma

Bj j-th link set for chaining

B r.v. corresponding to β in hierarchical Bayes estimation

B number of bootstrap samples; ball in a space

Bε(R) ε-blowup of the set R

B(α, β) Beta function

Bin(k, p) binomial distribution with parameters k and p

b bootstrap sample index; base of a logarithm;

control on the norm in concentration inequalities

404
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Symbol Usage

β parameter of symmetrization lemma; parameter of Beta distribution

C concept class, with typical element c

C generic class of sets, with typical element c

C(k, ε) probability bound for a concentration inequality

CP Mallows’ CP statistic

c generic real value; concept — typical element of C;

set — typical element of C

conv(A) convex hull of A

χ2 chi-square distribution

Dj partition of W based on the link set Bj , with typical element Aj

D diameter of a set

D distribution generating input-output pairs

D′ a modified version of D with independent inputs and outputs

Dp integral used for deriving relative deviation bounds

d generic metric, pseudometric or prametric

dH Haussler extension of a metric

dp,Q metric on the Lebesgue space Lp(Q)

d̄ point-set extension of d

∆ level function for Occam’s hammer

δ confidence level

δX class of Kronecker delta functions

δx Kronecker delta function

z multiplicative constant

E generic space, with typical element η

E generic event or predicate

E generic r.v., typically taking values in E ; generic stochastic process

(E1, E2) constants for a Euclidean class

Ent entropy

env envelope

eP error with respect to distribution P

erf Gauss error function

ε probabilistic bound on a measure of deviation
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Symbol Usage

ε0 estimate of optimism in the bootstrap world

ε noise term in regression setting; parameter for ε-insensitive loss;

parameter for ε-blowup of a set

η generic element of E ; generic real value or vector

F loss class, with typical element f

Fi subclass of F , used for SRM

F Fourier transform

Fi fold i for cross-validation

FQ c.d.f. of a distribution Q

f typical element of F
fat fat-shattering dimension

fatV level fat-shattering dimension

GH(Q) Gibbs class associated with H and Q
GH Gibbs class associated with H and Q)H
G Gaussian penalty, average or complexity

G grid of points; r.v. with asymptotic normal distribution

g strategy

Γ Gamma function

γ scale for covering numbers

γ−, γ+ functions or constants for trimming

H hypothesis class

H′ class of base hypotheses

H Hankel transform

H0,Ha null and alternative hypotheses

H(Q) H(Q) = logb |QW |
h hypothesis — element of H;

function in functional Bennett’s inequality

h′ base hypothesis — element of H′

hQ element of GH(Q) associated with Q

I indicator function

i generic natural number

id identity strategy
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Symbol Usage

J generic set

J Bessel function of the first kind

J radius of balls for margin distribution bounds

j generic natural number; element of set J
K generic set

K kernel function

Kν ν-periodic extension of K

K generic constant

KL Kullback-Leibler divergence

k |T | — size of test sample; element of a set K
κ multiplicative constant

L class of functionals

Lj class of decision tree leaves of depth at most j

L generic lower endpoint of an interval

L loss function

L′ proxy loss function

L′′ (L,L′)-intermediary

Lp(Q) Lebesgue space with p-norm w.r.t. the distribution Q

La asymmetric loss function for classification

Lm misclassification loss function

Lγ margin loss function

Lε ε-insensitive loss function

LBT lower endpoint of inverted binomial tail deviation

Leg Legendre-Fenchel transform

Lik likelihood function

LKL lower endpoint of inverted KL deviation

Luck luckiness function

l l = m+ k — combined size of the training and test sample;

element of range(L)

`p space of sequences with the p-norm

`pn space of n-sequences with the p-norm

Λ likelihood ratio
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Symbol Usage

λ parameter for an m.g.f.

λi eigenvalues of an operator

M packing number

M S ⊕ P , a dual sample; dimension of a product space

M(E) median of the r.v. E

m |S| — size of training sample

m0(ε, δ) true sample complexity of an algorithm

mode(E) mode of the r.v. E

µ mean of a r.v.

N covering number; shatter coefficient

N̄ external covering number

Np,Q covering number w.r.t. dp,Q

Np,S supremum of Np,Q for Q ∈ S
Np,n supremum of Np,Q for n-samples Q

NW shatter coefficient of W
NC (R) analog of |QW | for the class of sets C

NC (n) shatter coefficient of C

N entropy number

N dimension of a space

N(µ, σ2) normal distribution

n generic natural number; size of a generic sample Q

∇ gradient operator

ν parameter for B-L and P-H ν-deviation; Gibbs distribution;

width of periodic extension of K

O order notation

Op stochastic order notation

op optimism of an estimator

ω smallness function for a luckiness function;

modified scaling factor for the .632+ estimator

P(τ, τ ′) class of couplings between τ and τ ′

Pj j-th projection function for chaining

P shadow sample of size u from D; generic sample from D
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Symbol Usage

Pτ(Q) the last u components of a permutation τ of an (m+ u)-sample Q

p p = eD(w) for some decision rule; constant for choice of norm

p̂ p̂ = r/k, an estimate of p

p? point estimate of p

pi elements of Pτ(Q)

pdim pseudodimension

Φ c.d.f. of N(0, 1) distribution; feature map of a kernel

φ generic function; typical element of V
ϕ p.d.f. of N(0, 1) distribution

Π function used for derivation of chaining bound

π(γ−,γ+) trimming function

Ψ function in Bennett’s inequality

ψ measure of deviation; function in functional Bennet’s inequality

ψi eigenfunctions of an operator

Q class of distributions

QE class of all distributions over E
Q S ⊕ P , a dual sample; a generic n-sample;

generic distribution, typical element of Q
Qw the decision rule w restricted to the sample Q

QW the class of decision rules W restricted to the sample Q

qi element of the sample Q

R Rademacher penalty, average or complexity

R generic set, with typical element r

R̂ a measure of overfitting used with the .632+ estimator

r number of test errors of a decision rule; action — typical element of A;

generic element of R

rP risk with respect to distribution P

ρ margin

% generic value for a dimension

S class of distributions for the learning problem, typically QZ ;

class of stumps

S+
i ,S−

i classes of unidirectional splits on feature i
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Symbol Usage

S positive definite symmetric matrix

S training sample (and the associated empirical distribution)

SX the set of input components of the training sample

SY the set of output components of the training sample

S?b bootstrap sample

Sn symmetric group on [1 : n]

S?
2m swapping subgroup of S2m

S\i jackknife sample

Sτ(Q) the first m components of a permutation τ of an (m+ u)-sample Q

s threshold for indicator functions and thresholded classifiers;

additive constants for linear expansions

si elements of Sτ(Q)

sgn sign function

star star hull

supp support of a function or distribution

Σ σ-algebra, typically of E
σ standard deviation of a r.v.; bandwidth of Gaussian kernel

ς bound on standard deviation of a r.v.

T class of binary decision trees

Tj class of binary decision trees with at most j splits

T ′
j class of binary decision trees with depth at most j

T test sample (and the associated empirical distribution); operator

t generic parameter of a distribution

τ permutation — typical element of Sm+u or S?
2m;

measure, typically over E
Θ algorithm

ϑ function of r.v.’s

U generic upper endpoint of an interval

U r.v. with distribution Unif[0, 1]

UBT upper endpoint of inverted binomial tail deviation

UKL upper endpoint of inverted KL deviation

Unif A uniform distribution over A
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Symbol Usage

u shadow sample size; realized value of r.v. U

u(m) shadow sample size for ω-smallness of a luckiness function

Υ function used for derivation of chaining bound

V generic class of functions, with typical element φ

V generic vector with components vi

V a generic random variable, often a function of a number of Ei

VC VC dimension

v generic function, set, vector, or number

vφ fixed point of the sub-root function φ

W decision class, with typical element w

W? a cover of W, with typical element w?

Wt thresholded decision class

W(Q,w) subclass of “luckier” decision rules than w on Q

W a generic random variable, often a function of a number of Vi

w decision rule — typical element of W
w? decision rule — typical element of W?

wS decision rule dependent on the sample S

ws decision rule thresholded at s

X input space, with typical element x

X r.v. representing an input

x input — typical element of X
xi training input — see zi

x?
i test input — see z?

i

ξ embedding function for margin distribution bounds

Y output space, with typical element y

Y Y = supw∈W ′ [rD(w) − rS(w)]

Y r.v. representing an output

y output — typical element of Y
yi training output — see zi

y?
i test output — see z?

i

Z Z = X × Y, with typical element z

Z r.v. in Z, typically with distribution D;
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Symbol Usage

r.v. with asymptotic N(0, 1) distribution

z z = (x, y), an input-output pair — typical element of Z
zi zi = (xi, yi), element of the training sample S

z?
i z?

i = (x?
i , y

?
i ), element of the test sample T

zδ critical value of the normal distribution

ζ Rademacher variable



Appendix B

List of Abbreviations

This appendix lists the abbreviations used in this thesis, their page of first

occurrence, and what they stand for.

Abbreviation Page In full

AIC 127 Akaike information criterion

AV 87 Angluin-Valiant

BIC 127 Bayes information criterion

B-L 41 Bartlett-Lugosi

BS 61 Blyth-Still

BSC 63 Blyth-Still-Casella

BSW 61 Blyth-Still-Wald

BU 31 Best unbiased

CC 59 Continuity correction

c.d.f. 43 cumulative distribution function

CV 19 Cross-validation

DD-SRM 274 Data-dependent structural risk minimization

ERM 270 Empirical risk minimization

GC 237 Glivenko-Cantelli

i.i.d. 14 independent, identically distributed

KL 35 Kullback-Leibler

HPD 49 Highest posterior density

413
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Abbreviation Page In full

LOO-CV 134 Leave-one-out cross-validation

LR 52 Likelihood ratio

MAP 16 Maximum a posteriori

MDL 128 Minimum description length

ME 34 Maximum entropy

m.g.f. 80 moment generating function

ML 31 Maximum likelihood

MM 31 Method of moments

MRE 32 Minimum risk equivariant

MSE 31 Mean squared error

PAC 13 Probably approximately correct

PPE 39 Posterior probability estimator

P-H 42 Pollard-Haussler

r.v. 15 random variable

RSE 127 Residual squared error

SRM 268 Structural risk minimization

SV 22 Support vector

UMVU 31 Uniform minimum-variance unbiased

VC 231 Vapnik-Chervonenkis

VCSS 232 Vapnik-Chervonenkis-Sauer-Shelah



Appendix C

Code of R functions

This appendix includes various functions employed in calculating most of

the bounds and capacity measures presented in Chapter 9. The functions

are presented in alphabetical order of their names.

Disclaimer: these functions were written by me, for me! They would need

thorough sanitation before being made generally available. If you wish to use

them, it is strongly recommended that you verify them against the theory

first, since they were often implemented for very specific circumstances.

Function alpha bph evaluates the value of αBPH for a given choice of β.

function(second_sample_size,beta,nu) {

sqrt(-8*log(1-beta)/(9*second_sample_size*nu))

}

Function alpha c evaluates the value of αC for a given choice of β.

function(second_sample_size,beta) {

sqrt(1/(4*second_sample_size*(1-beta)))

}

Function alpha cc evaluates the value of αCC for a given choice of β.

415
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function(second_sample_size,beta) {

sqrt(beta/(4*second_sample_size*(1-beta)))

}

Function alpha h evaluates the value of αH for a given choice of β.

function(second_sample_size,beta) {

sqrt(-log(1-beta)/(2*second_sample_size))

}

Function av upper calculates an upper bound based on the AV bounds.

function(test_error, test_size, lower_conf, upper_conf) {

av_upper_bound<-test_error-(log(upper_conf)/test_size)

*(1+sqrt(1-(2*test_error*test_size/log(upper_conf))))

av_upper_bound

}

Function bernstein binom var upper yields an upper bound based on Bern-
stein’s inequality, using the binomial variance estimate.

function(test_error, test_size, lower_conf, upper_conf) {

optim_function<-function(r)

{

val<- r - test_error - (-log(upper_conf)+

sqrt(-18*test_size*r*(1-r)*log(upper_conf)))/(3*test_size)

}

if (optim_function(1)>0) {

res<-uniroot(optim_function,c(0,1))

} else {

res<-list(root=1)

}
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res$root

}

Function bernstein phdev risk var upper calculates an interval based on
a bound on the P-H ν-deviation found using Bernstein’s inequality.

function(test_error, test_size,

lower_conf, upper_conf,nu) {

interim_val<-(-3*(1+sqrt((18*test_size*nu)

/(-log(upper_conf)))))/(1-(18*test_size*nu)/(-log(upper_conf)))

bound<- ((1+interim_val)*test_error+interim_val*nu)/(1-interim_val)

bound

}

Function best alpha evaluates the functions alpha h, alpha c and alpha cc,
and returns the minimum of the three.

function(second_sample_size,beta) {

pmin(alpha_h(second_sample_size,beta),

alpha_c(second_sample_size,beta),

alpha_cc(second_sample_size,beta))

}

Function bl dev error bound epsilon returns a bound on the B-L ν-deviation
using a double sample result. The resulting bound is typically inverted using
the function invert bl deviation. It employs the function best alpha.

function(sample_size,dbl_sample_log_shat_coef,conf,nu) {

find_best_beta_for_nu<-function(nu_val) {

opt<-function(beta) { best_alpha(sample_size,beta)-nu_val}

uniroot(opt,c(0,1))$root

}

best_beta<-sapply(nu,find_best_beta_for_nu)

res<-sqrt((4*(dbl_sample_log_shat_coef-log(best_beta*conf)))/

sample_size)

}
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Function corrected dt log cov number returns a bound on the natural
logarithm of the covering number of a class of decision trees, based on the
number of splits and the number of (continuous) features. It employs the
function corrected log cov num from vc dim.

function(sample_size,num_splits,num_features,scale) {

num_splits*(log(2*num_features)+

corrected_log_cov_num_from_vc_dim(sample_size,

1,scale/num_splits,error=TRUE))

}

Function corrected log cov num from vc dim returns a bound on the nat-
ural logarithm of the covering numbers of a class based on the VC dimension
of the class. It employs the function log shat coef

function(sample_size,vc_dim,scale,error=FALSE) {

estimate1<-log_shat_coef(sample_size,vc_dim)

estimate2<-log(2)+vc_dim*log((2*exp(1)/scale)*

log(2*exp(1)/scale))

if (error) {

scale<-floor(scale*sample_size)/sample_size

estimate3<-log(vc_dim+1)+1+vc_dim*

log(2*exp(1)/scale)

} else {

estimate3<-estimate2

}

combined_estim<-pmin(estimate1,estimate2,estimate3)

combined_estim[scale > 1] <- 0

combined_estim

}

Function credible beta returns a Bayesian credible interval for a binomial
proportion based on a Beta prior.

function(errors,size,beta_shape_1,beta_shape_2,lower_conf,upper_conf)

{
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credible_beta_lower<-qbeta(lower_conf,errors+beta_shape_1,

(size-errors)+beta_shape_2)

credible_beta_upper<-qbeta(1-upper_conf,errors+beta_shape_1,

(size-errors)+beta_shape_2)

c(credible_beta_lower,credible_beta_upper)

}

Function dbl sample pac bayes error bound returns an error bound based
on a PAC-Bayesian argument over a double sample.

function(train_error,sample_size,log_cov_num,conf) {

train_error+1/sample_size+sqrt(2*(log(2)+

log_cov_num-log(conf))/sample_size)

}

Function dt80 symm abc eval calculates the sample risk on a bootstrap
sample for use with the abc.ci function of the boot package.

function(orig_data,bootstrap_weights){

bootstrap_weights %*% (orig_data$y!=predict(dt80_symm,

orig_data,type="class"))

}

Function dt80 symm boot eval2 calculates the sample mean and sample
variance of loss on a bootstrap sample, for use with the boot function in the
package boot.

function(orig_data,bootstrap_sample){

boot_sample<-orig_data[bootstrap_sample,]

boot_error<-length(boot_sample$y[boot_sample$y!=

predict(dt80_symm,boot_sample,type="class")])/920

boot_var<-boot_error*(1-boot_error)/length(boot_sample)

c(boot_error,boot_var)

}

Function dual sample pac bayes risk bound returns a risk bound based
on a PAC-Bayesian argument over a dual sample.

function(train_risk,first_size,second_size,
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log_cov_num,conf,beta,scale) {

m<-first_size

u<-second_size

train_risk+best_alpha(u,beta)+(2*m+u)*(m+u)*scale/(m*u)+

(m+u)*sqrt((log_cov_num-log(conf)-log(beta))/(2*m))/u

}

Function further corrected dt chaining bound approximates a chaining
bound for decision trees based on the number of splits in the tree and
the number of (continuous) features in the data. It employs the functions
corrected dt log cov number and best alpha.

function(train_risk,sample_size,num_splits,num_features,

conf,beta,num_terms=100) {

modified_delta<-conf*beta/2

modified_epsilon<- function(delta_val) {

3*sqrt(2/sample_size)*sum(2^(-(1:num_terms))*sqrt(

corrected_dt_log_cov_number(sample_size,num_splits,

num_features,(2^(-(1:num_terms))/2)^2)-

log(delta_val)+log(1:num_terms)+log(1+(1:num_terms))))

}

epsilon_vec<-sapply(modified_delta,modified_epsilon)

bound<-train_risk+2*epsilon_vec+best_alpha(sample_size,beta)

bound

}

Function hoeffding tail yields a confidence interval based on Hoeffding’s
tail inequality.

function(test_error, test_size,

lower_conf, upper_conf) {

lower_bound_val<-sqrt(-log(lower_conf)/(2*test_size))

upper_bound_val<-sqrt(-log(upper_conf)/(2*test_size))

hoeffding_tail_lower<-invert_simple_deviation("lower",

lower_bound_val,test_error)

hoeffding_tail_upper<-invert_simple_deviation("upper",

upper_bound_val,test_error)

c(hoeffding_tail_lower,hoeffding_tail_upper)
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}

Function hoeffding re upper yields a confidence interval based on Hoeffd-
ing’s r.e. inequality. This employs the function re invert kl deviation.

function(test_error, test_size,

lower_conf, upper_conf, tol=0.0001) {

upper_optim_function<-function(r) {

re_invert_kl_deviation("upper",

-log(upper_conf)/test_size,r,test_size,tol)-test_error

}

if (upper_optim_function(1-tol) > 0) {

if (upper_optim_function(tol) < 0) {

res<-uniroot(upper_optim_function,c(tol,1-tol))

} else {

res<-list(root=0)

}

} else {

res<-list(root=1)

}

res$root

}

Function integer prior returns the “prior” probability over a sequence of
natural numbers.

function(value,min_val=1) {

1/((value-min_val+1)*(value-min_val+2))

}

Function invert binomial tail deviation computes max-P or mid-P in-
terval endpoints based on a bound on the binomial tail deviation.

function(type,bound,estimate,sample_size,mid=FALSE){

if (type=="upper") {

optim_function<-function(x)

pbinom(estimate*sample_size,sample_size,x)-
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0.5*mid*dbinom(estimate*sample_size,sample_size,x)-bound

if (sign(optim_function(0)) !=

sign(optim_function(1))) {

res<-uniroot(optim_function,c(0,1))

} else {

res<-list(root=1)

}

} else if (type=="lower") {

optim_function<-function(x)

pbinom(estimate*sample_size-1,sample_size,x)+

0.5*mid*dbinom(estimate*sample_size,sample_size,x)-(1-bound)

if (sign(optim_function(0)) !=

sign(optim_function(1))) {

res<-uniroot(optim_function,c(0,1))

} else {

res<-list(root=0)

}

}

res$root

}

Function invert bl deviation inverts a bound on the B-L ν-deviation. It
employs the function invert relative deviation.

function(type,bound,estimate,nu){

invert_relative_deviation("upper",bound+nu,estimate)

}

Function invert rao deviation computes interval endpoints based on a
bound on the Rao deviation.

function(type,bound,estimate,sample_size) {

if (type=="upper") {

denominator<- sample_size+bound^2

sqrt_factor<-sqrt(sample_size*estimate*(1-estimate)+(bound^2)/4)

numerator<-sample_size*estimate+(bound^2)/2+bound*sqrt_factor

res<-numerator/denominator

} else if (type=="lower") {

res<-invert_rao_deviation("upper",-bound,estimate,sample_size)

}
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res

}

Function invert relative deviation inverts a bound on the relative de-
viation of risk.

function(type,bound,estimate){

if (type=="upper") {

res<-(2*estimate+bound^2+bound*sqrt(bound^2+4*estimate))/2

} else if (type=="lower") {

res<-invert_relative_deviation("upper",-bound,estimate)

}

res

}

Function invert.transform inverts the data transformations performed by
the function transform.

function(type,value,inv_custom) {

if (type=="logit") {

new_val<- 1-1/(1+exp(value))

} else if (type=="probit") {

new_val<-pnorm(value)

} else if (type=="cloglog") {

new_val<- exp(-exp(-value))

} else if (type=="arcsine") {

new_val<- (sin(value))^2

} else if (type=="custom") {

new_val<- inv_custom(value)

} else {

if (type != "identity") {

print("Unknown transform specified, identity

returned")

}

new_val<-value

}

new_val

}

Function kl bernoulli calculates the KL deviation between two Bernoulli
distributions.
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function(p1,p2) {

res<- p1*log(p1/p2)+(1-p1)*log((1-p1)/(1-p2))

}

Function log shat coef returns a bound on the natural logarithm of the
shatter coefficient of a class, based on the VC dimension of the class.

function(sample_size,vc_dim) {

estimate1<-0

for (i in 0:vc_dim) {

estimate1<-estimate1+choose(sample_size,i)

}

estimate1<-log(estimate1)

estimate2<-estimate1

estimate2[estimate2 == Inf]<-log(2)+

vc_dim*log(sample_size[estimate2 ==

Inf])-lfactorial(vc_dim)

if (any(estimate2 != estimate1)) {

print("Using non-combinatorial approximation for some sample sizes")

}

estimate2

}

Function ph dev risk bound calculates a bound based on a double sample
bound on P-H ν-deviation. It employs the function alpha bph.

function(train_risk,sample_size,dbl_sample_log_cov_num,conf,

scale,beta,nu) {

epsilon<-scale+alpha_bph(sample_size,beta,nu)+

sqrt((dbl_sample_log_cov_num+log(2)-

log(conf*beta))/(2*nu*sample_size))

((1+epsilon)*train_risk+epsilon*nu)/(1-epsilon)

}

Function pratt approx implements the core expression in Pratt’s max-P
interval approximation.
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function(errors,total,conf) {

crit_val<-qnorm(1-conf)

1/(1+(((errors+1)/(total-errors))^2)*(((81*(errors+1)*

(total-errors)-9*total-8-3*crit_val*sqrt(9*(errors+1)*

(total-errors)*(9*total+5-crit_val^2)+total+1))/

(81*(errors+1)^2-9*(errors+1)*(2+crit_val^2)+1))^3))

}

Function pratt max upper return’s Pratt’s approximation to the upper bound
of the max-P interval. It employs the function pratt approx.

function(errors,total,conf) {

pratt_approx(errors,total, conf)

}

Function pratt mid upper returns Pratt’s approximation to the mid-P in-
terval. It employs pratt max upper.

function(errors,total,conf) {

mean(c(pratt_max_upper(errors,total, conf),

pratt_max_upper(errors-1,total, conf)))

}

Function predict boost with dist calculates the sample risk of the Gibbs
classifier where the distribution is specified by the weights of a boosted
model.

function(boost_object,to_predict,loss_func) {

loss_on_indiv_predict<-function(num) {

prediction<-predict(boost_object$model$trees[num][[1]],

to_predict,type="class")

mean(loss_func(as.numeric(prediction)-1,to_predict$y))

}

sum_of_weights<-sum(boost_object$model$alpha)

sum(boost80s$model$alpha*sapply(1:boost_object$iter,

loss_on_indiv_predict)/sum_of_weights)
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}

Function rademacher avg returns a bound on the Rademacher average of a
sample based on the natural logarithm of the empirical shattering coefficient.

function(emp_log_shat_coef,sample_size) {

2*sqrt(emp_log_shat_coef/sample_size)+exp(-emp_log_shat_coef)

}

Function rademacher pen returns a probabilistic bound on the Rademacher
penalty for a sample based on the natural logarithm of the supremum of the
empirical shattering coefficient.

function(sup_log_shat_coef,sample_size,conf) {

sqrt(2*(sup_log_shat_coef-log(conf))/sample_size)

}

Function random subsample bound returns a bound calculated based on a
regular deviation bound obtained using the random subsample lemma. It
employs the function best alpha.

function(train_risk,sample_size,sample_log_cov_num,conf, scale,beta) {

train_risk+best_alpha(sample_size,beta)+

2*(scale+sqrt(2*(sample_log_cov_num+log(2)-

log(conf*beta))/sample_size))

}

Function refined dt log shat coef returns a bound on the natural log-
arithm of the shattering coefficient of a decision tree implemented on the
spam data, using additional information on representation of the first 54
features.

function(sample_size,num_splits) {
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split_log_shat_coef<-log(108*min(sample_size+1,10001)+

6*(sample_size+1))

num_splits*split_log_shat_coef

}

Function refined symm ineq rademacher bound returns a risk bound ob-
tained by combining the Rademacher symmetrization inequality with the
functional Bernstein’s inequality.

function(train_risk,subclass_rademacher_complexity,

subclass_variance_bound,sample_size,conf) {

train_risk+2*subclass_rademacher_complexity+

(sqrt(-18*log(conf)*(sample_size*subclass_variance_bound+

4*subclass_rademacher_complexity))-log(conf))/(3*sample_size)

}

Function reg dev error bound scale returns a bound based on inverting
a double sample bound on regular deviation of error.

function(train_error,sample_size,dbl_sample_log_cov_num,conf, scale) {

train_error+2*scale+(1+sqrt(((sample_size+1)*(dbl_sample_log_cov_num+

log(2)-log(conf)))+1))/sample_size

}

Function reg dev risk bound dual sample scale returns a bound based
on a dual sample bound on regular deviation. It employs the function
best alpha.

function(train_error,sample_size,second_sample_size,

dual_sample_log_cov_num,conf, scale,beta) {

m<-sample_size

u<-second_sample_size

train_error+(2*m+u)*(m+u)*scale/(m*u)+best_alpha(u,beta)+

((m+u)/u)*sqrt((dual_sample_log_cov_num-log(conf*beta))/(2*m))

}

Function reg dev risk bound scale evaluates the double sample regular
deviation bound on risk. It employs the function best alpha.



Appendix C. Code of R functions 428

function(train_error,sample_size,dbl_sample_log_cov_num,conf,

scale,beta) {

train_error+2*scale+best_alpha(sample_size,beta)+

sqrt(((sample_size+1)*(dbl_sample_log_cov_num+

log(2*sample_size)-log(conf*beta)))+1)/sample_size

}

Function re invert kl deviation inverts a bound on KL deviation. It
employs the function kl bernoulli.

function(type,bound,estimate,sample_size,tol){

if (type=="upper") {

optim_function<-function(x) {

res<-kl_bernoulli(estimate*x,estimate)-bound

}

if (optim_function(tol) < 0) {

res<-list(root=0)

} else {

res<-uniroot(optim_function,c(tol,1))

}

} else if (type=="lower") {

optim_function<-function(x)

kl_bernoulli(estimate*x,estimate)-bound

if (sign(optim_function(0)) !=

sign(optim_function(1))) {

res<-uniroot(optim_function,c(0,1))

} else {

res<-list(root=0)

}

}

estimate*res$root

}

Function rel dev error bound epsilon calculates an upper bound on the
relative deviation of error based on a double sample result. The deviation
is typically inverted with the function invert relative deviation.

function(sample_size,dbl_sample_log_shat_coef,conf) {
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res<-sqrt((4*(log(4)+dbl_sample_log_shat_coef-log(conf)))/

sample_size)

if (any(sample_size*res^2 <= 1)) {

print("Some values too small to apply bound")

}

res

}

Function score computes the score interval for a proportion. This employs
the function invert rao deviation

function(test_error, test_size,

lower_conf,upper_conf,cc=TRUE,bs=FALSE) {

score_lower_crit<-qnorm(1-lower_conf)

score_upper_crit<-qnorm(1-upper_conf)

score_interval<-c(invert_rao_deviation("lower",score_lower_crit,

test_error-cc/(2*test_size),test_size),invert_rao_deviation(

"upper",score_upper_crit,test_error+cc/(2*test_size),test_size))

}

Function sq deriv.transform calculates a squared derivative of a value
transformed using transform, for creating a Wald interval on the trans-
formed values.

function(type,value,deriv_custom) {

if (type=="logit") {

new_val<- 1/(value*(1-value))

} else if (type=="probit") {

new_val<- 1/dnorm(qnorm(value))

} else if (type=="cloglog") {

new_val<- -1/(value*log(value))

} else if (type=="arcsine") {

new_val<- 1/(2*sqrt(value*(1-value)))

} else if (type=="custom") {

new_val<- deriv_custom(value)

} else {

if (type != "identity") {

print("Unknown transform specified, identity

returned")

}
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new_val<-1

}

sq_val<-new_val^2

}

Function symm ineq rademacher bound returns a risk bound obtained by
combining the Rademacher symmetrization inequality with the bounded
difference inequality.

function(train_risk,rademacher_complexity,sample_size,conf) {

train_risk+2*rademacher_complexity+sqrt(-log(conf)/(2*sample_size))

}

Function t lip error calculates the sample risk on a boosted model em-
ploying the optimal t-Lipschitz proxy loss on the misclassification loss.

function(t,sum_of_weights,predictions,actual) {

final<-predictions*actual/sum_of_weights

sample_size<-length(final)

transform<-function(val,t_val) {

pmin(1,pmax(0,1-t_val*val))

}

err_rate<-function(t_val) { sum(transform(final,t_val)) }

res<-sapply(t,err_rate)

res/sample_size

}

Function transform performs some standard data transformations for con-
structing confidence intervals.

function(type,value,custom) {

if (type=="logit") {

new_val<-log(value/(1-value))

} else if (type=="probit") {

new_val<-qnorm(value)

} else if (type=="cloglog") {

new_val<- -log(-log(value))

} else if (type=="arcsine") {

new_val<- asin(sqrt(value))

} else if (type=="custom") {



Appendix C. Code of R functions 431

new_val<- custom(value)

} else {

if (type != "identity") {

print("Unknown transform specified, identity applied")

}

new_val<-value

}

new_val

}

Function wald generates intervals based on the Wald test.

function(test_error, test_size,

lower_conf,upper_conf,cc=TRUE, bs=FALSE) {

var_hat<- test_error*(1-test_error)/test_size

wald_lower_crit<-qnorm(1-lower_conf)

wald_upper_crit<-qnorm(1-upper_conf)

if (bs) {

bs_adjust<-(sqrt(test_size/(test_size-wald_upper_crit^2-

2*wald_upper_crit/sqrt(test_size)-1/test_size)

))

} else {

bs_adjust<-1

}

wald_lower<-test_error-(bs_adjust*wald_lower_crit*sqrt(var_hat)+

cc/(2*test_size))

wald_upper<-test_error+(bs_adjust*wald_upper_crit*sqrt(var_hat)+

cc/(2*test_size))

c(invert_wald_deviation("lower",wald_lower_crit,test_error,var_hat),

invert_wald_deviation("upper",wald_upper_crit,test_error,var_hat))

c(wald_lower, wald_upper)

}

Function wald.transform obtains a Wald interval on transformed data.

It makes use of the functions wald, transform, sq deriv.transform and

invert.transform.

function(type, test_error, test_size,

lower_conf,upper_conf,cc=FALSE, bs=FALSE,

custom,inv_custom,deriv_custom) {
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var_hat<-test_error*(1-test_error)/test_size

wald_lower_crit<-qnorm(1-lower_conf)

wald_upper_crit<-qnorm(1-upper_conf)

transformed_test_error<-transform(type,test_error,custom)

variance_transformed_estimate<-var_hat*

sq_deriv.transform(type,test_error,deriv_custom)

invert.transform(type,c(invert_wald_deviation("lower",

wald_lower_crit,transformed_test_error,

variance_transformed_estimate),invert_wald_deviation(

"upper",wald_upper_crit,transformed_test_error,

variance_transformed_estimate)),inv_custom)

}
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Rio, E. (2000). †Inégalités de concentration pour les processus empiriques

de classes de parties. Probability Theory and Related Fields, 119,

163–175.
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