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Abstract

Flux balance analysis of Plasmodium falciparum growth

and energy metabolism

R.W. Burger

Department of Biochemistry

University of Stellenbosch

Private Bag X1, 7602 Matieland, South Africa

Thesis: MSc Bsc (Biochem.)

December 2017

Genome-scale network reconstructions serve as an ideal tool for the modeling of

large, complex metabolic networks. In this study we use flux-balance analysis to

investigate key amino acid dependencies of Plasmodium falciparum growth. Our

model was able to produce a realistic flux distribution geared for the optimal

production of biomass. We were able to simulate parasite growth in a variety of

conditions and assess the favourability of these conditions for optimal growth.

To demonstrate the applicability of the model we additionally simulate the re-

sponse of the model to the introduction of an antimalarial agent, atovaquone.
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Chapter 1

Introduction

1.1 Background and motivation

As a disease that puts almost half the world’s population at risk, malaria has

been a worldwide public health challenge [78]. In 2015 there were an estimated

212 million cases of malaria, with 429 000 of those cases estimated to have

been fatal [78]. Malaria is a mosquito-borne infectious disease caused by the

protozoan parasite, Plasmodium. Carried by the female Anopheles mosquito,

Plasmodium sporozoites are transferred to humans during a blood meal where

they infect the host’s liver and use the host nutrients to rapidly proliferate. At

this point patients remain asymptomatic. During the next phase, parasites are

released from liver cysts, entering the bloodstream in the form of merozoites,

where they will invade red blood cells and begin to reproduce asexually. It is

only once the infected erythrocytes reach the point of rupture that symptoms

will begin to present themselves. The subsequent release of burst red blood cell

contents, sequestration of infected erythrocytes to vascular endothelial cells and

a multitude of metabolic changes that occur, can lead to anaemia, fever and res-

piratory distress [68, 15, 35]. In the case of Plasmodium falciparum, there is a

risk of infection spreading to the brain, vastly diminishing the likelihood of sur-

vival and increasing the chance of permanent damage. Plasmodium falciparum

infections account for 99% of malaria-associated deaths worldwide [78]. It is for

this reason that Plasmodium falciparum will be the focus of this study. Due

to emergent resistant strains, it is of great importance that novel or improved

anti-malarial drugs and administration procedures be developed. As mentioned

1
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CHAPTER 1. INTRODUCTION 2

by Liu et al. [60], understanding of the parasite’s molecular mechanisms and

interactions are essential for the identification of new drug targets.

Mathematical modeling allows us to investigate the characteristics of Plasmod-

ium falciparum metabolism prior to conventional experimentation, enabling the

identification of significant metabolic interactions or occurrences, thus promot-

ing a more focused approach in experimental design and investigation. Fur-

thering the biochemical knowledge of this organism helps in the discovery of

potential drug targets and improving existing treatment methods. The genome

of Plasmodium falciparum has been sequenced, providing a library of parasite

proteins and regulatory elements [29, 10]. Adding to this, transcriptomic [9],

proteomic [24, 54], and metabolomic [77] studies have been conducted to further

investigate key cellular interactions and metabolic pathways. All these data are

added to specific databases that are freely available. These databases can be

used to computationally generate metabolic models that are able to simulate

an organism’s metabolism. Based on mathematical methods such as linear pro-

gramming, flux balance analysis can be used to predict the flux distributions of

a metabolic network for a specified set of conditions [22].

1.2 Aims

To date, our group has largely focused on modeling the glycolytic pathways

of P. falciparum. Using genome-scale network reconstructions we can create a

network of reactions to acquire insight into the amino acid metabolism of the

parasite, and study how these pathways interact with those of the glycolytic

pathway. A metabolic network of Plasmodium falciparum was created to simu-

late parasite growth inside a human red blood cell with a focus on amino acid

metabolism resulting from haemoglobin digestion, and the subsequent amino

acid transport dynamics as accurately as possible. From these simulations, the

following questions can be addressed:

� Is the model able to reproduce experimental observations in terms of amino

acid incorporation into biomass and amino acid export, using haemoglobin

catabolism as a primary source, and extracellular amino acid scavenging

to make up for any deficits?

� Are we able to reproduce the findings of Liu et al. [59] that Plasmodium

falciparum is able to grow in culture medium containing isoleucine as the

only supplemented amino acid?
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CHAPTER 1. INTRODUCTION 3

� Are we able to identify a steady-state flux distribution for the model sys-

tem that is realistic to what we can observe in nature?

� From the flux distribution outputs, can we identify any key reactions or

metabolites that could be investigated further as potential drug targets?

In P. falciparum metabolism, a clear dependence on specific amino acids for

the optimal growth of the parasite has been established [59, 16]. The aim of

this study was to use established biological knowledge of Plasmodium falci-

parum to construct a computational model able to simulate parasite growth

and energy metabolism, with the purpose of investigating the dependence of

each individual amino acid for the optimal rate of biomass formation. A net-

work reconstruction constructed by Plata et al. [89] was used as a foundation

to develop such a model. Their model contained 1001 compartmentalised re-

actions and 1024 metabolites, which was an adequately comprehensive network

containing all the key transport reactions, a biomass objective function, and

the incorporation of haemoglobin import into the network. The 1001 reac-

tions included comprised 75% of the total enzymatic reactions. The enzymatic

reactions removed were those with no literature support, and those not appli-

cable to biomass production. The Plata model was originally used to simulate

the effect of gene knock-outs on biomass production, and using constraints,

was able to predict direction of concentration changes for external metabolites

with 70% accuracy. Using the Plata model as a foundation meant that some

of the necessary model infrastructure would already be in place for the con-

struction of our own model. Sub-cellular localization of metabolites, substrate

and cofactor specificities, pathway gaps, and reaction directionalities were for

the most part accounted for. Using flux-balance analysis we were able to ob-

tain a flux distribution profile for amino acid and growth metabolism for a

variety of simulated conditions. Samples obtained from in vitro cultures were

subjected to amino acid analysis using UPLC separation with UV detection

(after 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate derivitization). The

metabolic fluxes were determined from the experimental data, which compared

well with model-simulated fluxes. Furthermore, we were able to make key obser-

vations into the metabolic dependencies of Plasmodium falciparum growth, and

test the response of the model to the effects of a popular antimalarial compound,

atovaquone.
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Chapter 2

Literature overview

2.1 Biology of Plasmodium falciparum

Malaria is a disease caused by several species of the Plasmodium genus. Clas-

sified as obligate intracellular protozoa, these parasites are dependent on a

vertebrate host for the asexual stage, and the female Anopheles mosquito,

for the sexual stage of their life-cycle. During a blood meal, mosquito saliva

containing sporozoites are transferred into the bloodstream of the host and

travel to the liver where they invade hepatocytes and proliferate to form liver-

stage schizonts. Each of these schizonts can release thousands of merozoites

[30, 31, 100, 36, 101]. It is believed that these schizonts actually bud off from

hepatocytes as membrane-bound clusters, termed merosomes [112, 109]. These

merosomes exit the liver and travel towards the lungs where they will release

merozoites into the pulmonary micro-circulation to invade host erythrocytes.

Merozoites bind to and enter erythrocytes via an apicomplexan invasion or-

ganelle [1]. During infection of the erythrocyte, the merozoite forms a vesicle

from the erythrocyte membrane [14]. The merozoite proceeds to mature into an

early trophozoite, known as the ring stage, named after the ring-like appearance

observed microscopically. The ring stage lasts about 16 hours, accounting for

one third of the erythrocytic life cycle, but has been regarded as metabolically

nondescript [32]. During the subsequent trophozoite stage, notably the most

metabolically active phase of development, the parasite will digest up to 80% of

the host cell’s haemoglobin, meanwhile growing in size [5, 70, 79]. At around the

38 hour mark of development the trophozoite will begin to undergo schizogeny,

whereby the parasite will undergo multiple rounds of mitosis to produce 15 to 30

4
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CHAPTER 2. LITERATURE OVERVIEW 5

merozoites within the parasitophorous vacuole membrane, collectively referred

to as a schizont [6]. After 48 hours of development, Plasmodium falciparum

infected red blood cells will rupture, releasing merozoites into the bloodstream

to re-invade new erythrocytes. It is only in this blood-stage of infection where

clinical symptoms will present themselves.

2.2 Pathogenesis of malaria

Patients with malarial infections progressing to the blood-stage will initially

display flu-like symptoms such as fever, nausea, muscle pain and convulsions,

as well as symptoms of anemia.There is an array of factors responsible for this.

Adhesin proteins encoded by the parasite facilitate the binding of infected cells

to the blood vessel walls of the host, preventing their removal by macrophages

in the spleen. Sequestration of infected cells in the lungs (and brain in the

case of P. falciparum infections) leads to partial obstruction of blood flow, en-

dothelial barrier breakdown, and inflammation [72]. Infected erythrocytes have

a glucose uptake rate of up to 100 times higher than uninfected erythrocytes

[95]. Infection of host red blood cells also causes an immune response by the

host, whereby macrophages destroy infected cells, but also uninfected cells [43].

Reduced deformability of uninfected red blood cells and intrinsic and extrinsic

changes to these cells increase recognition by macrophages [69]. Erythrocyte

production by host bone marrow is unable to keep up [53] with this concomi-

tant loss and an anemic state will result. Anemia and various other factors

present in malaria infections will cause an insufficient oxygen supply to tissue

that may cause a metabolic shift in the host to anaerobic glucose metabolism

and increased lactic acid production [50]. Together, these shifts in metabolism

will present symptoms of hypoglycemia, lactic acidosis, and brain infection in

the case of P. falciparum.

Proteolysis of haemoglobin releases a reactive heme group. Humans have a heme

oxygenase responsible for the cleaving of heme rings, which produces biliverdin,

ferrous iron and carbon monoxide. However, Plasmodium lack the heme oxy-

genase enzyme that vertebrates use to degrade free heme. Free heme has been

shown to threaten parasite development by having the potential to inhibit en-

zyme activity [34, 41], peroxidise membranes [111], and cause oxidative free

radical accumulation in the digestive vacuole [3]. In malarial infections, host

erythrocytes are lysed at a much higher rate than normal, leading to an in-

creased amount of free heme in the host blood-stream. These free heme groups
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CHAPTER 2. LITERATURE OVERVIEW 6

are detoxified by the parasite via polymerization of heme groups into inert crys-

talline structures known as hemozoin, which accumulate in the digestive vacuole.

Carbon monoxide has also been suggested to bind to ferrous iron in haemoglobin

to prevent heme release [83].

2.3 Plasmodium falciparum metabolism

2.3.1 Protein metabolism

Over a 48 hour life cycle of P. falciparum within a red blood cell, it is ac-

cepted that up to 80% of haemoglobin is digested by the parasite; however,

only about 16% of the released amino acids are actually utilised [96, 51]. The

colloid-osmotic hypothesis proposes that parasites digest host cell cytosol to pre-

vent the red blood cell reaching critical haemolytic volume (CHV) which would

result in premature lysis of the infected erythrocyte [32, 122]. During this pro-

cess, haemoglobin is rapidly degraded and the amino acids produced are largely

exported out the cell, in what would otherwise be considered a metabolically

demanding process. The increase in osmotic pressure as a result of freed amino

acids due to haemoglobin digestion alone is not enough to determine the time

of lysis of the erythrocyte. Another hypothesis is that haemoglobin degradation

necessity may also be linked to protease inhibitors [27, 57, 94, 92, 93]. Inhi-

bition of plasmepsin I and cysteine protease activity causes the haemoglobin

degradation process to halt, resulting in osmotic swelling, impairment of vacuo-

lar functions and eventually parasite death [26].

The majority of haemoglobin degradation occurs during the 6-12 hour tropho-

zoite stage [119]. New permeation pathways (NPP’s) have been shown to be

induced in the membrane of the erythrocyte [33, 48]. Mauritz et al. [67] have

hypothesised that upon entry of this metabolically intensive trophozoite stage,

NPP development is induced by the parasite. Host cell haemoglobin is ingested

by the acidic vacuole of the parasite and proteolysed to its amino acid con-

stituents. A small portion of the amino acids are retained for parasite growth

and the rest exported with the aid of these newly formed NPP’s. Plasmodia

have evolved to no longer be capable of amino acid biosynthesis, instead rely-

ing on haemoglobin catabolism and extracellular amino acid supply [29]. With

regards to Plasmodium growth, haemoglobin is a deficient source of methio-

nine, cysteine, glutamine, glutamate, and contains no isoleucine at all. This

indicates a strong likelihood that these amino acids are scavenged from extra-

cellular sources. Divo et al. [16] discovered that P. falciparum were able to
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CHAPTER 2. LITERATURE OVERVIEW 7

grow in media containing only five exogenous amino acids (cysteine, glutamate,

glutamine, methionine and isoleucine). Liu et al. [59] were then further able

to show that P. falciparum is able to grow in media supplemented with only

a single amino acid, isoleucine. Isoleucine is absent from haemoglobin, and

research has shown that Plasmodia growth is not possible without the exoge-

nous supplementation of isoleucine [59]. This finding suggests that aside from

isoleucine, P. falciparum should be able to grow solely on amino acids released

via haemoglobin catabolism.

2.3.2 Carbon metabolism

Glycolysis

Glucose metabolism by Plasmodium spp. is achieved via the Embden-Meyerhof-

Parnas (EMP) pathway of glycolysis. Glucose is rapidly metabolised by the

parasite, up to 100 times that of uninfected erythrocytes [95]. However, around

60-70% of glucose consumed by Plasmodium is incompletely oxidised to lactate

and excreted, contrasting with the 90% glucose-to-lactate conversion observed

in uninfected erythrocytes, reflecting the increased flux of glucose-sourced car-

bon into biomass generation [42]. Only a small fraction of glucose consumed

is completely oxidized to carbon dioxide, in agreement with the belief that the

parasite tricarboxylic acid plays a minor role in energy metabolism. A hexose

transporter encoded by Plasmodium is targeted to the host cell membrane to

allow for the increased demand for glucose [102].

Tricarboxylic acid cycle

It is well established that the genome of P. falciparum encodes all the tri-

carboxylic acid (TCA) cycle enzymes and are expressed during the asexual life

stage [29, 9]. Isotopic-labelling studies have also shown this TCA cycle to be

canonical [46]. The TCA cycle is mostly fueled by acetyl-coA (and oxaloacetate,

to a smaller degree) obtained from glycolysis [108]. However, Cobbold et al. [12]

have shown that as the parasite matures, a transition towards glutamine-derived

TCA-intermediates over that obtained via glycolytic acetyl-coenzyme A (acetyl-

CoA) production, giving more evidence for an adaptive metabolism employed by

Plasmodium. Glutamine is deaminated to glutamate; where after an additional

amino group is cleaved from glutamate to produce α-ketoglutarate for use in the

TCA cycle [76]. During this process, pyruvate receives the amino group produc-

ing alanine, which ties up with the large spike in alanine export from the cell
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CHAPTER 2. LITERATURE OVERVIEW 8

observed during late trophozoite stages of growth. This also coincides well with

the large consumption of glutamine released from an accelerating haemoglobin

catabolism.

Pentose phosphate pathway

The pentose phosphate pathway (PPP) is a critically conserved pathway in

almost all cells capable of of utilising carbohydrates as a carbon source. P.

falciparum is no different, and PPP-enzymes were found to be encoded in the

parasite’s genome [29], as well as expressed [9]. The PPP comprises two inter-

connected branches. The oxidative arm generates riboses required for nucleic

acid synthesis, and NADPH, a cofactor for biosynthetic reactions and redox

control. The non-oxidative arm comprises a set of reversible reactions inter-

converting 3, 4, 5, 6 and 7-carbon sugar phosphates, enabling the recycle of

ribose-5-phosphate back into glycolytic intermediates when there is an NADPH

shortage. In human red blood cells the PPP is one of the major metabolic path-

ways, consuming 3-11% of glucose metabolised under normal conditions, and is

the only source of NADPH required to reduce glutathione in response to oxida-

tive stress [121]. In trophozoite-stage infected red blood cells, the activity of the

oxidative branch increased to 78-fold that of uninfected erythrocytes [4]. In free

parasites 82% of this activity can be accounted for, indicating P. falciparum is

responsible for the majority of the flux increase, and also for the up-regulation

of of the erythrocyte-PPP by 24-fold. By up-regulating NADPH production,

the parasite is able to hamper programmed cell death initiation by the host

immune system, by maintaining a high ratio of reduced to oxidised glutathione.

2.3.3 Parasite metabolism as a target for antimalarials

The arms race between disease and treatment solutions is an ongoing war that

researchers and clinicians have fought throughout the ages. Humans have al-

ways been one step behind in this war; a constant struggle to identify new

solutions to the ever-evolving resistances that pathogens develop in response to

the cures and treatments we develop. In the case of microbial infections it is

often a question of: “What is the most efficient solution to kill the unwelcome

parasites, while doing as little harm as possible to the host?” An important fac-

tor with drug target identification strategies based on metabolomic approaches

is the differences in metabolisms of host and parasite. Blocking the availability

of metabolite X in host and pathogen could be a viable approach if the host has
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no vital requirement of metabolite X for survival, whereas even a 10% disrup-

tion in metabolite Y production or depletion might kill both host and parasite.

Therefore core strategies often initially require the identification of differences

in metabolic network structure as well as robustness to change thereof.

Unlike the majority of eukaryotic cells, Plasmodia species do not rely on mito-

chondrial electron transport systems for ATP production. However, inhibition

of the Cyt bc1 complex of electron transport is usually lethal to the parasite,

due to interruption of pyrimidine biosynthesis and destabilisation of mitochon-

drial membrane potential [65, 66, 115]. An observation was made by Painter

et al. [81] that P. falciparum likely maintain mitochondrial electron chain ac-

tivity for the sole metabolic purpose of regenerating ubiquinone, the electron

acceptor of dihydroorotate dehydrogenase (DHODH). DHODH is responsible

for the oxidation of dihydrooorotate to orotate, and is an essential reaction in

the synthesis of pyrimidines required for DNA synthesis. Atovaquone, an analog

of ubiquinone, has been used in conjunction with proguinil in the drug malarone

for the treatment of malaria since 2000. Atovaquone occupies the quinol oxidase

site of mitochondrial Cyt b, inhibiting the electron flux through the Cyt bc1

complex thereby preventing pyrimidine biosynthesis and collapse of mitochon-

drial membranes. At concentrations as low as 5 nM, atovaquone is still able to

inhibit 90% of DHODH activity [40].

2.4 Mathematical models and metabolism

Mathematical modeling has been used as a powerful predictive tool across a

diverse spectrum of fields including the natural sciences, engineering, economics

and social sciences. In biology, metabolic networks can be described mathe-

matically, using sets of equations to represent network reactions and a set of

variables that define the metabolic environment. The model, represented as a

set of functions describing interactions between variables, is optimised for a de-

sired set of conditions and a set of prediction outputs are acquired. The fact that

a metabolic environment can be defined means that modeling has implications

in physiological studies, pathway gap-filling and flux manipulation in biologi-

cal systems [80]. For example, by constraining certain reactions in a bacterial

species, we can simulate a growth medium or even gene knock-outs and then

use a mathematical approach such as flux balance analysis (FBA), to predict

the yield of key metabolites and cofactors.

As biological systems consist of a number of low-level components acting to-
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gether to display high-level system behaviour, when we construct a mathemat-

ical model of a biological system, there are two approaches. A bottom-up ap-

proach involves analysis of the detailed experimental data of the components and

their interactions and then including only what is deemed necessary. This type

of model is not fitted on the system behavior, but rather predicts the behaviour

of the system as a function of the interacting components. Alternatively, a top-

down approach uses measured system behaviour to construct a model consisting

of apriori selected mechanisms. Method choice is based on the purpose of the

model and the experimental data available, however a combination of the two

approaches can be used during the construction of a mathematical model.

Depending on the scope of the project, a researcher must also determine the

elements required of their model for their investigations. Static models are time-

invariant and calculate the flux distribution of the system in equilibrium (steady-

state), whereas a dynamic models are able to account for time-dependent changes

in the system. This often becomes a question of model complexity. Based on

the size of the model and the available data, complexity is an important consid-

eration during model design, and boils down to a trade-off between simplicity

and accuracy. Metabolic models tend to either contain only a few metabolic re-

actions described to high kinetic detail (kinetic models) or comprise a large set

of reactions with little or no kinetic detail (stochiometric, or constraint-based

models). Large models such as genome-scale network reconstructions may seem

more biologically relevant as they can account for global inter-dependencies and

the effects of multiple linked metabolisms and compartments, but this is often

accompanied by the lack of kinetic data leading to a lower model resolution.

The yeast consensus model contains more than 1000 reactions, but merely de-

fine the network stoichiometry, which can only be studied using Elementary

Mode Analysis or Flux Balance Analysis [106]. Kinetic models on the other

hand are limited to a smaller number of reactions due to computational issues,

such as numerical instability and the computational costs of higher resolution

simulations.

There are many kinetic models of yeast as well, however their coverage does

not extend far beyond the glycolytic pathway and typically comprise less than

20 reactions, but allow for dynamic simulations and metabolic control analysis.

Ideally it would be desirable to construct genome-scale kinetic models, and

attempts have been made to do this using methodologies such as linlog rate laws

or approximation methodologies, whereby generic rate laws are incorporated

[103, 104]. The current methodologies however, do not produce models of a

satisfactory calibre and research on this topic is ongoing. Therefore, depending

on the focus of the research, when initiating model design at this point in time,
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a researcher must decide on a top-down or bottom-up approach and whether to

define enzyme kinetics for the model.

2.5 Genome-scale network reconstructions of

biochemical networks as an approach to

modeling metabolism

2.5.1 Establishing a genome-scale network reconstruction

Traditionally, metabolic network reconstructions were based on primary liter-

ature and biochemical characterization [64, 84, 85]. Today, thanks to high-

throughput sequencing, we are able to sequence and annotate on a genome

level, allowing the creation of genome-scale network reconstructions. This can

even be done for organisms with minimal published biochemical data. Network

reconstructions consist of a network of linked reactions that are mass-balanced

and the system is at steady-state. To construct a network reconstruction, cer-

tain knowledge of the enzymes catalysing each reaction is required. For each

enzyme, the actionable substrates and products and the stoichiometric coeffi-

cients of each metabolite participating in said reaction needs to be known. In

practice, these reconstructions occur using automated software to map out data

from bibliomic databases. Organism-specific genome annotations can be found

in genomic databases such as EcoCyc [116] and SGD [45]. These genome anno-

tations are each directly linked to a metabolic enzyme and indicate how these

gene products interact and catalyze metabolic reactions in the network.

Metabolic databases such as KEGG [44] and Transport DB [91] are used to

assign reaction specificity to each of the enzymes present in the system. Many

of these databases link an enzyme commission (EC) number or transport com-

mission (TC) number to reactions observed in a different organism to that of

the model. It is, however, important to note that substrate specificities and

enzyme activities can differ between enzymes with the same EC or TC number.

Additionally, key information required for the network reconstruction, such as

sub-cellular localization and reaction directionality, may not be present. This

highlights the importance of curating the initial reconstruction.
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2.5.2 Curating the network reconstruction

Automatically reconstructed networks will often be incomplete and require man-

ual curation. There will often be reaction gaps or reaction mismatches, and this

can be quite a tedious procedure. Using available literature, organism-specific

databases and even consultations with experts that have specialist knowledge

of the organism, reaction errors and gaps can be solved. These curated network

reconstructions build on the biochemical, genomically and genetically (BiGG)

structured knowledge base available to all researchers working on the target or-

ganism. The reactions placed in a BiGG knowledge base form a genome-scale

network reconstruction (GENRE). These GENREs are formed iteratively as new

experimental data is released and the BiGG knowledge base grows [22].

2.5.3 Transforming a genome-scale reconstruction into a

computational model

Before a network reconstruction can be used to make simulations, it needs to

be converted into a mathematical format that can be computationally read.

Converting a GENRE to a genome-scale model (GEM), opens up the model to

computational tools that can be used to evaluate the network in its ability to

accurately predict outcomes, and where necessary, make changes to the network

to more accurately align these prediction outcomes with published data. Neces-

sary for these analyses, is the composition of cellular biomass, the composition

of minimal growth media, and a set of experimental data which includes growth

rates and substrate uptake rates of the specific organism under a specified set

of conditions.

Once in a GEM format, a biomass objective function can be applied to simulate

the ability of the network to support growth. The biomass objective function is

an artificial reaction added to the model as a representation of the macromolec-

ular components required to synthesize a model-defined amount of an organism.

Most commonly, it is the millimole of each component required to form a gram

of organism dry weight. Chavali et al. [11] describes an approach whereby

the dry weight distribution of protein, carbohydrate, DNA, RNA, lipid, and

polyamine percentage is determined experimentally or via available literature of

the organism or similar organisms. The relative abundance of each molecular

component comprising each macro component can then be estimated based on

its percentage prevalence. For example, in Leishmania major, Chavali et al. [11]

estimated that the protein fraction constituted about 45 % of the organism dry
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weight. To determine the amount of arginine in this fraction, the amino acid

sequences associated with each open-reading frame in the L. major genome can

be acquired from GeneDB. Using the percentage prevalence of each amino acid

and each respective molecular weight, we can determine a dry weight distri-

bution for the various amino acids. At a percentage prevalence of 7.19 and a

molecular weight of 175.11 g/mole, we can calculate the total mass contribution

of arginine as 9.95%. This can then be converted to a mmol/gDW value, indi-

cating the millimole demand of each metabolite to form one gram of dry weight

biomass.

There are additional factors to consider during model curation, being that of

strain-specific parameters and non-metabolic activities. For example, the stoi-

chiometry of translocation reactions and cell maintenance reactions are major

factors that need to be acknowledged [21, 117]. Translocation reactions often

need to be considered post-reconstruction as a result of the difficulty to experi-

mentally obtain data on the mass and energy balances of ion-pump components

[22]. To analyse the accuracy of the modeled network reconstruction, model

simulations can be conducted for a specified set of conditions, of which experi-

mental data has already been published.

2.5.4 Large-scale data processing of genome-scale models

Completed GENREs and GEMs can be integrated to cover a range of cellu-

lar activities with a single model. Network reconstructions can be performed

on a variety of an organism’s cellular activities. In addition to metabolic pro-

cesses, network reconstructions can be applied to transcriptional and translation

processes, transcriptional regulation, and other signaling systems. Once multi-

ple types of network reconstructions have been established for a given organ-

ism, these network reconstructions can be integrated to evaluate genome-scale

’omics data sets with a higher biological relevancy and accuracy. Integration of

transcriptional regulation networks (TRNs) and metabolic networks has been a

popular choice for researchers [13, 37, 55]. TRNs add an extra step of regula-

tion as active enzyme concentrations are regulated by transcriptional activity.

In turn, gene expression is regulated by metabolic precursors of transcription,

and a kind of positive feedback is established. The same approach has been

taken with integration of sRNA (small RNA) into genomic models. One of the

functions of sRNAs is to regulate gene expression through mRNA binding, thus

acting together with transcriptional regulation to determine eventual enzyme

expression.
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2.6 Flux balance analysis as a mathematical

approach to biological problems

In biochemistry, flux balance analysis (FBA) is a widely used approach for

modeling genome-scale biochemical networks [18, 21, 23, 75]. By means of linear

programming, FBA mathematically analyses the flow of metabolites through a

metabolic network, allowing for the prediction of metabolic outcomes for a given

set of parameters. For example, given a set of constraints, FBA can be used to

predict the growth rate of an organism for a specific set of biological conditions.

In a simplistic 2-step reaction, a substrate “S”, will be converted by enzyme “E1”

into an intermediate metabolite “X”. Enzyme “E2” will then convert metabolite

“X” into product “P”.

In this reaction the rate of production of product “P” is dependent on how

fast enzyme “E1” can convert substrate “S” into intermediate “X”, and how fast

enzyme “E2” can convert intermediate “X” into product “P”. At steady-state,

these reaction rates are known as steady-state fluxes. Considering the activities

of “E1” and “E2”, whichever enzyme has the slowest activity will determine the

rate at which “P” can be formed. Even if “E1” is able to convert 5 “S” to 5 “X”

per minute, if “E2” is only able to convert 2 “X” to 2 “P” per minute, only 2

“P” can be produced every minute. The same is true for vice versa. If “E2” is

able to convert 5 “X” to 5 “S” per minute, but “E1” is only supplying 2 “X” per

minute, only 2 “P” will be produced per minute. This rate-limiting effect on “P”

production by enzyme “E1” or “E2”, is known as a system constraint.

If we expand our simple reaction network further, introducing a third enzyme,

which competes with enzyme “E2” for intermediate “X”, there will be two pos-

sible end-products that can be formed from metabolite “X”.
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In a dynamic system, the concentrations of substrate “S”, and products “P” and

“Y” can affect the reaction rates. In a system consisting only of a saturating

concentration of substrate “S”, reaction throughput by the “E1”, “E2” and “E3”

reactions will be a lot higher than a system where there is very little available

substrate“S”and say, a high concentration of metabolite“X”. Assuming reaction

“E1” is reversible, the presence of a large concentration of “X” and a low con-

centration of substrate “S”, may push the reaction flux in the reverse direction,

producing “S” from “X”. A reaction network is said to be at steady-state when

the concentrations of internal metabolites reach a stable concentration, and each

reaction displays a constant, net flux. When this system is at steady-state, de-

pending on reaction favourabilities, there will be a flux distribution between

enzymes “E2” and “E3”, represented as steady-state fluxes “J2” and “J3”. As

intermediate “X” can only be consumed as fast as it can be produced, the sum

of “J2” and “J3” will thus equal “J1”.

J1 = J2 + J3

There can be multiple different flux distributions for “J2” and “J3”, all fulfill-

ing J1 = J2 + J3. We may wish to optimise the production of metabolite “Y”.

In a modeled system, we could set an objective function for the production of

metabolite “Y”, and using FBA, find the most optimal solution for maximizing

the rate of “Y” production.

A simplistic branched metabolic pathway can be used to illustrate glycolysis

in yeast. During glycolysis, glucose is processed by a pathway of consecutive

reactions to form pyruvate. Depending on the growth conditions of a yeast

cell, pyruvate (“X”) can either undergo aerobic metabolism, converting pyru-

vate into acetyl-coA, or undergo anaerobic fermentation, whereby pyruvate is

processed into ethanol. For the sake of simplicity, the glycolytic pathway has

been condensed into a single reaction step.
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Each enzyme in the metabolic network will have a maximal and minimal activity.

This is known as the upper and lower bounds, and serves as a flux constraint

for each reaction. Depending on the parameters we set for a modeled system of

yeast metabolism, FBA will determine a flux-distribution for the fate of pyruvate

molecules produced by glycolysis. One may wish to optimise their network

so that the yeast cell favours ethanol production over aerobic respiration. An

objective function for the model can be set to optimise the production of ethanol.

Using FBA, an optimal solution space can be calculated for the model, which can

reveal key factors responsible for optimising ethanol production. Once a stable,

working model has been achieved, a variety of new conditions for the modeled

yeast cell can be tested. For example, one can simulate a hypothetical GMO-

yeast strain that produces a lower concentration of pyruvate dehydrogenase

complex enzymes by constraining the flux through this pathway in the model,

and test whether this decrease in enzyme concentration will lead to a higher

portion of pyruvate being converted to ethanol than acetyl-coA.

2.6.1 FBA and biology

Using experimental data obtained from various databases, such as KEGG [44],

BRENDA [98] and MetaCyc [49], we are able to generate a network recon-

struction. These days automated software is readily available that can perform

this task efficiently. When converting a metabolic network reconstruction into a

computational model, the first step is to mathematically represent the metabolic

reactions of the model. This is done by setting up a numerical matrix of the

stoichiometric coefficients of each reaction (figure 1b). From this numerical ma-

trix, a system of linear equations can be derived, representing the stoichiometry

of each reaction in the network. This set of mass balance equations act as

constraints ensuring that the total amount of any metabolite produced must

be equal to the total amount consumed at steady state. This is also the first

constraint that is applied to the model.

The second constraint on the system comes in the form of upper and lower

bounds applied to each reaction in the model (figure 1c). These bounds define
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the maximum and minimum allowable flux for each reaction. Reaction flux is a

representation of the rate at which each metabolite is consumed or produced by

each reaction. These two types of constraints together define the possible flux

distributions for a system, also known as the solution space.

Fig.1 A network reconstruction consisting of metabolic pathways (a) is repre-

sented in the form of a stoichiometric matrix (b), where each column dis-

plays a reaction in the network, and each row displays the list of metabo-

lites involved in the network. To analyse growth from model simulations,

an additional column representing an artificial biomass reaction can be

added. Stoichiometric coefficients are assigned to metabolites for each

reaction. An upper and lower bound is applied to each reaction (c), defin-

ing the maximal and minimal allowable flux through each reaction in the

pathway [7].

Most biological network reconstructions are large models where there are more
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reactions than metabolites, meaning there is more than one possible solution to

the set of linear equations. It is thus necessary to use some kind of optimisation

technique to find the optimal solutions. To investigate a desired phenotype in

a model, an objective function is defined, which will either be maximised or

minimised mathematically. A desired phenotype is investigated by setting an

objective function for the model and applying the necessary constraints to the

model. For example, for predicting growth rate of an organism, the objective

set would be a reaction representing biomass production. In the case of biomass

production, an artificial ’biomass reaction’ is created that mathematically rep-

resents the rate at which metabolites are converted into biomass constituents.

In terms of the stoichiometric matrix, an extra column is thus introduced con-

taining stoichiometric values for metabolic constituents that are consumed to

simulate biomass production. The composition of this biomass reaction is based

on experimental data on biomass components, such as nucleic acids, proteins

and lipids. The biomass flux is scaled to the exponential growth rate (µ) of the

organism. Predicting the maximum possible growth rate can then be achieved

by using FBA to calculate the possible conditions that will result in the max-

imum flux through the biomass reaction. It is possible that multiple reactions

contribute to a phenotype of interest. Mathematically, an objective function

quantitatively determines how much each reaction contributes to a phenotype.

Linear programming algorithms are used to solve for optimal solutions for a

modeled set of conditions. Due to the size of most models, computational lin-

ear programming algorithms are necessary to solve for these solutions. Many

of these computational algorithms are freely available on the internet or on re-

quest by author. Algorithm software, such as the COBRA Toolbox, is able to

efficiently solve for optimal solutions to large systems of equations [7]. FBA can

also be used to determine a phenotype for a variety of conditions. Constraints

can be altered by adjusting the bounds of reactions in the system. Growth rates

of an organism can thus be simulated for a range of substrate conversion rates.

2.6.2 Linear programming: The foundation of FBA

Linear programming is a method of optimising a mathematical model, where

all variables are represented by linear relationships. An objective function is as-

signed and optimized, while confined to the linear equality and linear inequality

constraints defined in the model.

Linear problems can be expressed mathematically in a canonical form:

� maximise Z = cTv
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� subject to Sv ≤ b

� and v ≥ 0

where “v” represents the vector of all the variables and “c” defines the weighting

of each flux in the objective function. “b“ Is the vector of all the constraints,

“S” is the matrix of coefficients and “(.)T” is the matrix transpose. “cTv” Is the

expression being optimized ie. the objective function. The inequalities “Sv ≤
b” and “v ≥ 0” are the constraints depicting the convex polytope over which

the objective function is to be optimized. This convex polytope serves as a

graphical illustration of the solution space of the model ie. all the possible

model outcomes, based on the array of possible flux distributions (figure 2).

Returning to our simplistic branched metabolic pathway, we can illustrate the

principles of linear programming.

Our linear objective function is to maximize the production of ethanol. By

increasing the proportion of pyruvate produced via pyruvate kinase activity

(PYK) consumed by pyruvate decarboxylase (PD) rather than by the pyru-

vate dehydrogenase complex (PDC), more acetaldehyde can be produced. More

acetaldehyde means more ethanol can be produced by alcohol dehydrogenase

(ADH).

Glycolysis produces two quantities of pyruvate for every quantity of glucose con-

sumed. The stoichiometry of a reaction network directly applies to the reaction

fluxes observed, and as a result, the rate of pyruvate formation is effectively dou-

ble that of the glucose consumption for a given glycolytic flux. All downstream

fluxes will also be affected by this stoichiometric factor and so it is acknowledged

when writing out our objective function:

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 2. LITERATURE OVERVIEW 20

maximize PD: 2 vPD = vPYK - 2 vPDC

with the following constraints:

2 vPD + 2 vPDC ≤ vPYK

The rate of pyruvate consumption between the PDC and PD reactions can

only be equal to, or less than half the rate of glycolysis.

- 0.5 vPYK + vPD ≤ - vPDC

The total flux through PDC must be equal to or less than 50% of the gly-

colytic flux minus the flux through the PD branch

- 0.5 vPYK + vPDC ≤ - vPD

Similarly to the PDC reaction constraint above, the total flux through PD must

be equal to or less than 50% of the glycolytic flux minus the flux through the

PDC branch

- vPD ≤ - vADH

The flux of ADH can only be equal or less than the flux through PD

and non-negative variables:

vPYK ≥ 0

v2PD ≥0
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v2ADH ≥0

These non-negative constraints define that the reactions PYK, PD, and ADH

cannot have negative flux values. Basically, in order to maximise the production

of acetaldehyde, it is required that these three reactions have a non-negative net

flux.

More complex linear programs are usually expressed in matrix form:

max{cTv | Sv ≤ b λ v ≥ 0}

As described earlier, our objective function “cTv” or “Z” is maximised, within

the feasible solution space created by the constraints “Sv ≤ b” and “v ≥ 0”.

which can be expanded and shown in standard form as:

maximise
[
c1 c2

][v1
v2

]

with constraints:

S x v ≤ b , v ≥ 0 :a11 a12

a21 a22

a31 a32

[v1
v2

]
≤

b1b2
b3

,

[
v1

v2

]
≥

[
0

0

]

In an FBA-based model, the stochiometric matrix (“S”) will consist of rows

of reactions (“n”) and columns of metabolites (“m”), representing the quantity

of each metabolite consumed and produced for every network reaction (figure

1b). The vector of all the reaction fluxes (“v”) is multiplied through the rows

of reactions in the stochiometric (“S”) matrix (“S x v”). These outputs are

constrained by the system of inequalities “Sv ≤ b” and “v ≥ 0”, which together

define a set of minimal and maximal bounds for each reaction flux (figure 1c).

Based on the bound-restrictions established for each reaction, we can graphically

display the reaction vectors and map out a feasible region (figure 2).
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By factoring in our constraints, a solution space is defined in the form of a convex

polytope. This solution space is more commonly referred to as the feasible re-

gion. To solve for optimal solutions to an established objective function (“Z”), a

linear programming algorithm can solve for the points in this polyhedron where

the objective function value is optimal (either maximised or minimised).

Fig2. Before applying constraints, the solution space (feasible region) is limit-

less, but after applying constraints in the form of linear inequalities, an

allowable solution space is established. Linear programming algorithms

then work to find optimal solutions for the system along the edge of the

feasible region [80].

With just four reactions and five metabolites in the example above, there are

only a handful of variables that can affect the outcome in the optimization of

ethanol production. One could determine an optimal solution using just a pen

and paper. However, in reality, biological systems are far more complex and

the number of reactions can extend into the hundreds and thousands, each with

minimal and maximal allowable fluxes (bounds). The potential outcomes of such

a system can get exponentially more complex with the introduction of each new

variable. There is thus a need for a higher solving power than a man and his pen

and paper. Today we make use of solving-algorithms based on the principles

of linear optimization to simulate feasible solutions to computationally-modeled

systems.
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2.7 Genome-scale network reconstructions,

then and now

Before the existence of GENREs, constraint-based modeling was used as a

method to determine theoretical pathway yields and metabolite overflows for

simple metabolic pathways. The ability to sequence whole genomes made it

possible to utilise constraint-based modeling at a genome scale, allowing for the

assessment of phenotypic functions based on the complete metabolic gene con-

tent of an organism. The first GENRE was built for Haemophilus influenzae in

1999, demonstrating that the genotype-to-phenotype relationship of metabolic

pathways could be discerned mechanistically at a genome-scale [20]. GENREs of

model organisms followed soon after, consistently being updated and improved

as modeling techniques became more sophisticated and additional data became

available. Updates to the GENRE for Escherichia coli brought about the de-

velopment of a set of standards for modeling the relationship between genes,

proteins and reactions involved in a particular biochemical transformation [90].

Later, updates to the GENRE for Saccharomyces cerevisiae suggested a stan-

dard way to describe cellular compartmentalisation [25]. The development of

these guidelines facilitated the study of global organization of cellular behavior,

such as pathway structure [107], adaptive evolution end points [39], metabolic

fluxes [2] and bacterial evolution [82, 86].

The age of “omic” data opened the door to much richer, diverse GENREs. The

ability to compare transcriptional changes for a given metabolic network allowed

for context-specific modeling, and further aided accuracy in these models. As

a result, reconstructions of dynamic metabolism such as human metabolisms

[18, 113] and photosynthetic processes [74] were now possible.

Today, highly curated and validated GENREs enable meaningful predictions of

biological processes. Lobel et al. [62] investigated the role of metabolism in

the pathogenesis of Listeria monocytogenes. Through constraint-based model-

ing they were able to contextualize expression data and algorithmically correct

for incorrectly up-regulated transcripts where the rest of the associated path-

way is inactive. This higher predictive accuracy enabled the research group

to focus their experimentation on highly active pathways and to elucidate the

role of amino acid metabolism in L. monocytogenes pathogenesis via knockout-

strain simulations. Interaction networks describe the phenomological interac-

tions between different biomolecules, such as genes, proteins and transcription

factors. Szappanos et al. [110] were able to discover the mechanistic prin-

ciples that underlie the global properties of S. cerevisiae genetic interaction
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networks. Through the use of single-deletion mutants, they were able to disrupt

the production of multiple metabolite precursors necessary for cellular growth

and show the contribution of associated gene interactions in the functionality of

certain genes. As a result, model refinement led to the identification of one of

two NAD+ biosynthetic pathways from amino acids in their model as a source

of inaccurate predictions. Growth experiments using mutant strains were able

to confirm that this second biosynthetic pathway was not present in Saccha-

romyces cerevisiae. Nakahigashi et al. [71] discovered a novel pathway and

previously uncharacterized enzymatic functions in Escherichia coli directly as

a result of genetic perturbation simulations to the central carbon system of E.

coli. This prompted experimentation with a variety of knockout-strains of E.

coli. Metabolomic analysis identified a metabolite previously uncharacterized

in E. coli, “sedoheptulose-1,7-biphosphate”, suggesting a novel reaction. It was

found that phosphofructokinase carries out this reaction and that glycolytic al-

dolase can split the seven-carbon sugar into three- and four-carbon sugars. In

short, the use of constraint-based modeling led to the discovery of two new

catalytic functions of classic glycolytic enzymes.

GENREs have also aided in the field of metabolic phenotype design and bio-

chemical engineering. Yim et al. [120] designed an E. coli strain able to produce

1,4-butanediol (BDO) at high yields. This is a significant feat, considering BDO

is not a naturally occurring compound in any organism. The authors used a

pathway prediction algorithm to determine the necessary transformations re-

quired to convert an endogenous E. coli metabolite to BDO. Using FBA they

were able to identify the most favourable pathway based on thermodynamic

feasibility, theoretical yield, and topological distance of the pathway from the

central carbon system. Another hurdle was getting E. coli to produce BDO at a

significant rate. Using a knock-out algorithm, a strategy was developed to block

out the production of natural fermentation products, forcing the organism to

channel carbon flux through BDO production in order to maintain redox bal-

ance. The use of constraint-based modeling greatly accelerated the industrial

strain design process.

Conventional drug target discovery is based on gene-centric constraints. How-

ever, metabolite- and reaction-knockouts are also possible. Using a metabolite-

centric approach, enabled Kim et al. [47] to search for structural analogues

of metabolites essential to the Gram-negative pathogen, Vibrio vulnificus, that

would inhibit the enzymes that relied on them as substrates. Using a constraint-

based model they were able to approach antibiotic discovery from multiple per-

spectives, and as a result, a compound more effective than current anti-bacterials

was identified experimentally.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 2. LITERATURE OVERVIEW 25

GENREs and constraint-based modeling has also led to the coupling of vari-

ous cellular processes. Lerman et al. [56] integrated a model of Thermotoga

maritima metabolism with another model of transcription and translation. The

hopes are that an integrated model may address some of the challenges that

limited metabolic models face. This integrated model is able to account for the

variability of cellular composition at different growth rates, whereas metabolic

models only use a biomass function for growth rate optimization. The authors

were able to validate predictions of differential experimental transcriptome and

proteome levels across varying conditions. With GENRE models such as these,

as the content of these models increase the ability of such models to explain and

predict biological functions grows in scope.

2.8 Network reconstruction curation conducted

by Plata et al.

A network reconstruction was created by Plata et al.[89] to simulate biomass

production rates and changes in metabolite exchange reactions as a result of

single and double gene deletions. In their model, enzyme-coding genes of P.

falciparum were mapped to their corresponding metabolic reactions using well-

studied metabolic models, such as the iAF1260 model for E. coli, the iND750

model for S. cerevisiae and the genome-scale human metabolic network by

Duarte et al [19]. Additional mapping was conducted using the KEGG database.

Stoichiometry and compartmentalisation of reactions were conducted. Trans-

port and exchange reactions were added based on PlasmoDB and MPMP databases,

as well as additional literature reported values. A biomass-producing objective

function was created and added to the model based on a modified version of

the yeast objective function found in the iND750 model [19]. Lipid composition

was modified as reported for Plasmodium by Hsiao et al [38]. Amino acid and

nucleotide components were adjusted based on proteome and genome expres-

sion data obtained by Llinas et al. [61]. The percentage prevalence of each

ribonucleotide and amino acid across all open reading frames (ORFs) was cal-

culated as the relative frequency of each monomer. Where available, the counts

for each ORF were multiplied by their expression levels. The percentage preva-

lence of dNTPs was derived from the genome A+T content of 80.6% and then

converted to mmol/gDW as described by Chavali et al [11]. Once the network

reconstruction was able to synthesize or import all biomass components, the

reactions with no literature support and not essential for biomass production

were removed from the network.
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Materials and methods

3.1 Setting up an initial model

A literature search of published genome-scale network reconstructions of P. fal-

ciparum metabolism was conducted. FAME is web-based modeling tool that

combines the tasks of creating, editing, running, and analyzing/visualizing stoi-

chiometric models into a single program [8]. Appropriate models were analysed

using the FAME modeling tool, and compared using a set of criteria:

� Does the model contain all the key reactions and metabolites required to

accurately simulate intra-erythrocytic P. falciparum growth?

� Are all the necessary transport reactions included in the model?

� Are the network reactions compartmentalised?

� Does the model include a biomass objective function to represent parasite

growth?

� Does the model include a haemoglobin import function?

3.2 Model curation

Using the framework of a selected network reconstruction, we constructed our

model with a focus on the amino acid metabolism in P. falciparum. We set a

26
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maximum biomass formation rate based on a determined specific growth rate as

well as a maximum rate that haemoglobin can be digested for amino acid supply

to the parasite. We then set objective functions on biomass formation rate,

haemoglobin catabolism and glucose consumption. Based on model simulation

outputs, we assessed the flux outputs of the model and applied constraints to

the model to address any model stability issues. This process was repeated

multiple times to test the response of the model to the applied constraints.

Model simulations were conducted in the Python programming language, and

using the COnstraints-Based Reconstruction and Analysis for Python (CO-

BRA) toolbox [97]. Additional packages were installed including LMFIT, MAT-

PLOTLIB, NETWORKX, NUMPY, LIBSBML, SCIPY AND SYMPY.

3.3 Parasite culturing

P. falciparum (Strain D10) cultures were grown in airtight, standard 250 mL

culturing flasks containing 50 mL of RPMI 1640 formulation 6504 medium

(10.4 g/L) supplemented with 0.5% m/v Albumax II ®, 22.2 mM glucose (33.3

mM glucose final concentration), 25 mM HEPES, 3 mM hypoxanthine, 25 mM

sodium bicarbonate, and 50 µg/mL gentamycin sulphate, and pH 7.2 at 37 oC ,

as described by Trager & Jensen [114]. Cultures were maintained at 4% haema-

tocrit (A+ erythrocytes obtained from anonymous donors through the Western

Province Blood Bank, South Africa) and a gas mixture consisting of 3% oxygen,

4% carbon dioxide, and 93% nitrogen, was used to aerate cultures. All reagents

were obtained from Sigma-Aldrich (St. Louis, Missouri, USA), unless otherwise

stated. RBC’s were washed twice in standard medium before incubation.

Culture synchronization was conducted using sorbitol synchronization as de-

scribed by Lambros and Vanderberg [52] leaving only ring-infected and unin-

fected RBC’s intact. The more mature life stage infected RBCs, containing

trophozoites and schizonts would be lysed. Centrifuge-isolated (750 x g, 3 min)

infected erythrocytes were suspended in a pre-warmed, sterile sorbitol solution

in distilled water (5%) at 37 oC for 5 minutes. This creates a 16 hour window of

synchronisation approximately (ring stage parasites are observed between the

6 to 22 hour time points in the 48 hour life cycle). Tighter synchronisation

windows were obtained using multiple synchronisations at start and endpoints

of ring stage, allowing for approximately 90% uniformity in a synchronisation

window of about 4 hours.
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3.4 Growing P. falciparum parasites on a

minimal medium

The minimal media used by Liu et al. [59] was recreated to test haemoglobin-

dependent growth of erythrocytic parasites. RPMI 1640 formulation R8999-04A

(US Biological) w/o amino acids and sodium phosphate was used as the base

media. R8999-O4A RPMI media (8.59 g/L) was supplemented as in the stan-

dard culture media, but with the addition of 0.8 g/L sodium phosphate dibasic

that was lacking in the custom formulation. Single amino acids were added in a

variety of combinations to test the dependence of parasite growth on the pres-

ence of key amino acids (isoleucine, methionine, glutamine, glutamate, cysteine;

Sigma-Aldrich). Amino acids concentrations were based on the concentrations

found in standard RPMI 1640 media formulation. The pH was adjusted to 7.2

at 37 oC for all custom media created.

3.5 48 Hour life cycle sampling of cultured

parasites

After sorbitol-synchronisation of parasites, there is a possibility that parasite

growth may be affected (metabolic stress). For this reason, parasites were

allowed an additional life cycle to be sure parasite growth was stable post-

synchronisation. Parasitemia change and synchronicity was monitored micro-

scopically via blood-slides. Synchronised parasites used for experimentation

were harvested during early schizont stage and split into two triplicate lines;

one line of triplicates representing low parasitemia (9%) growth, and the other,

high parasitemia (21%). Culture lines were split in the schizont stage (40-44h

life-stage), accounting for an established 4x multiplication factor during par-

asite re-invasion. The motivation behind schizont stage splitting is to avoid

parasite loss present in early merozoite based splitting, whereby newly released

merozoites that have not re-invaded yet are lost during parasite harvesting. A

0h timepoint was sampled immediately after culture splitting. Parasites were

allowed to re-invade new red blood cells and timepoint-based sampling was con-

tinued at: 24h; 36h; 48h post-split. Samples were immediately flash-frozen in

liquid nitrogen and stored at -20 oC. Important to note is that culture media

was refreshed after the 24 hour sample point, as 48 hour experiments with no

media refresh showed stressed growth not long after 24 hours of incubation for

both low and high parasitemia counts. Stressed growth was observed by the
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change in colour of culture medium from a bright red to a dark, brownish-red.

When microscopically inspected, some intra-erythrocytic parasites appeared as

dark, solid balls, often observed in cultures under metabolic stress. This is due

to hemozoin accumulation and the pH drop resulting from lactic acid accumu-

lation.

3.6 Extracellular amino acid analysis using

UPLC-UV

Timepoint samples used for analysis were defrosted and centrifuged at 1200 x

g for 5 minutes to remove large particulate matter and macromolecules. Su-

pernatants were transferred to Nanosep 10K Omega centrifugal devices (PALL

Life Sciences ®) for finer filtration to isolate extracellular amino acids by cen-

trifugation at 14000 x g for 12 minutes. Supernatants were then submitted to

Central Analytical Facility at Stellenbosch University, South Africa for amino

acid analysis. Submitted samples were subjected to the Waters AccQ Tag Ultra

Derivatization Kit and placed in a heating block for 10 minutes at 55 oC. Amino

acid separation and detection was performed using a Waters Acquity Ultra Per-

formance Liquid Chromatograph (UPLC) fitted with a photodiode array (PDA)

detector. A Waters UltraTag C18 (1.7 µm, 2.1 x 50 mm) column was used for

the separation, and instrument control and data acquisition was performed by

MassLynx software, which integrates the peaks at the defined retention times

and plots calibration curves for each amino acid based on the peak response

(peak area/internal standard peak area) against concentration. UPLC parame-

ters were as follows: 700 µL/min flow rate, water as solvent A, and acetonitrile

as solvent B.

3.7 Model validation

3.7.1 Evaluating model prediction accuracy by

comparison to flux values obtained via

experimental data

We established objective functions for our model, applied a set of reaction con-

straints for general model stability and addressed model errors that occurred,
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such as infinite-looping of metabolites. We then validated our model simula-

tions by comparing our model outputs with experimental fluxes obtained from

a UPLC data set.

3.7.2 Simulation of atovaquone, a popular antimalarial

At concentrations as low as 5 nM, atovaquone has been shown to be able to

inhibit 90% of dihydroorotate dehydrogenase (DHODH) activity in previous

experimentation[40]. In our model a reaction named “DHORD2 mt” repre-

sents the activity of mitochondrial DHODH, responsible for the oxidation of

dihydroorotate to orotate. As atovaquone ultimately affects the oxidation of

dihydroorotate to orotate by hampering mitochondrial DHODH activity, we

simulated the effect of the drug by constraining the flux through this reaction

in the model to investigate how biomass production is affected.
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Results

In this chapter we will present the results of our model simulations as well as

the results of our experimental work. In literature claims have been made that

P. falciparum could be grown quite efficiently on a variety of nutrient-restricted

media [16, 99, 58]. This is a significant aspect in the investigation of the role of

amino acid metabolism in biomass production. We will first present the results

of our culturing of P. falciparum on a variety of nutrient-restricted media, fol-

lowed by the UPLC-UV analysis of standard cultures for the main purpose of

model validation. We will then move on to the construction of our model and

the accompanying simulations, and finally displaying the results of our investi-

gations using the constructed model.

4.1 Minimal media growth

The ability to grow P. falciparum on a nutrient-restricted medium, while still

maintaining a growth rate comparable to that of standard growth conditions was

attempted. If successful, this would allow for a more tractable UPLC analysis

of the amino acid metabolic profile of P. falciparum, as well as the degree to

which the parasite can rely on haemoglobin as a primary source of amino acids.

A range of growth media conditions were used to test the dependence of P.

falciparum on serum-sourced amino acids for growth. Being able to grow para-

sites on a minimal medium that still produces similar growth characteristics as

31

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 4. RESULTS 32

that of standard media would allow for a much clearer picture of haemoglobin

metabolism and its importance as an amino acid source for biomass production.

It would also allow for a higher resolution of amino acid metabolic profiles ac-

quired from UPLC-UV analysis. Life cycle progression and re-invasion efficiency

was monitored for a spectrum of growth media configurations. Culturing of P.

falciparum in standard RPMI 1640 medium results in approximately four-fold

increases in parasitemia after a 48 hour life cycle (figure 3).

For limited media cultures, life cycle progression is retarded (figure 4) and takes

roughly 72 hours for merozoites to advance through schizogeny and subsequent

re-invasion of daughter merozoites (data not shown). Re-invasion efficiency is

also suspected to be lower in limited media cultures, as once all parasites in each

culture had progressed through schizogeny, parasitemia counts after re-invasions

were 25-40% lower for 5x and I+M culture lines when compared to standard

cultures. This seems to be a case of a fraction of intra-erythrocytic parasites

not progressing to schizogeny and therefore not producing a new generation of

merozoites. In limited media culture lines, some early stage parasites would not

progress to mature trophozoites, instead stalling in what appeared as enlarged

merozoites or compacted early trophozoites. This phenomenon has been noted

in cultures that have been subjected to some form of stress. In this case it is

most likely due to a shortage of specific amino acids required for maturation

of parasites. Ultimately these factors add up to a higher doubling time and

lower specific growth rate for parasites. Under standard culturing conditions we

observe a four-fold increase in parasitemia every two days (˜24 hour doubling

time). What we observe with the limited media cultures however, is a doubling

time of 50.2 hours for ’I+M’ and 67.3 hours for ’5x’ (table 1). Cultures contain-

ing only isoleucine as an exogneous amino acid ’I’ displayed a negative specific

growth rate, indicating additional exogenous amino acid types were required for

P. falciparum to increase in biomass.
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Table 1: Calculated specific growth rates and doubling times for P. falciparum

grown in a variety of media conditions

Culture line Specific growth rate (µ) Doubling time (h-1)

Standard 1 0.0302 23.0

Standard 2 0.0297 23.3

Standard 3 0.0284 24.4

Ile,Met,Gln,Glu,Cys 0.0103 67.3

Ile -0.005 -138.6

Ile,Met 0.0138 50.2

4.2 48 hour sampling of parasite growth

When parasites were inoculated in fresh medium and grown without refreshing

the medium, at the 36 hour timepoint, culture serum appeared to be darken-

ing and life cycle progression appeared sluggish when observed microscopically.

Blood slides would show unhealthy parasites to appear as dark, compact spheres

within erythrocytes (figure 5). Further evidence of stressed parasite growth is

shown in appendix A: figure 1, contrasting the healthy progression of parasites

to schizonts in comparison with the halted growth of stressed parasites. In

follow-up experiments we incorporated a 24 hour media-refresh. This means

that UPLC-determined concentrations for 36 and 48 hour samples will not dis-

play the changes in metabolite concentrations from the 24 hour timepoint, but

rather show the changes in concentrations from effectively “a 0 hour” metabolite

concentration profile. As a result of this, metabolite concentrations recorded for

36 and 48 hour samples were normalised to the concentrations obtained at the

24 hour mark. To accomplish this, we used the following formula to determine

the concentrations for each metabolite expected if refreshing of culture media

did not reset the metabolite concentrations at the 24 hour timepoint:

Concexp = Conc36h + (Conc24h − Conc0h)

In other words, the expected 36 hour concentration for each metabolite we

would observe in a normal culture (Concexp36h), is equal to the sum of the

recorded concentration at the 36 hour timepoint (Conc36h), and the difference
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between concentrations recorded at 24 hours (Conc24h) and that of fresh medium

(Conc0h).
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Fig.3 Three independent P. falciparum cultures (Standard 1, Standard 2, Stan-
dard 3) were grown in standard RPMI 1640 and parasitemia counts were
taken at 24 hour intervals. Based on the relative increases in parasitemia
over time a projection of biomass growth was generated.
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Fig.4 Growth rates observed for P. falciparum grown in a variety of lim-
ited media, with 24 hour sampling intervals. Parasites were cultured
in three limited RPMI 1640 media conditions: The suspected core 5
amino acids (isoleucine; glutamine; glutamate; cysteine; methionine)
’Ile,Met,Gln,Glu,Cys’, an isoleucine only line, ’Ile’, and a line containing
isoleucine and methionine ’Ile,Met’.
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Fig.5 Microscope image captured of a blood slide of a P. falciparum culture
undergoing metabolic stress. “A” = healthy ring-stage parasite; “B” =
parasite exhibiting metabolic stress, observed as a solid, compact mass;
“C” = healthy trophozoite-stage parasite.

4.3 UPLC-UV analysis

To test the accuracy of the supplier-stated concentrations for RPMI media,

concentrations of amino acids calculated for RPMI 1640 growth media (based

on information supplied by Sigma-Aldrich) were compared to UPLC analysed

concentrations of prepared RPMI medium (figure 6). Furthermore, controls

of known concentration of the five core amino acids (glu; gln; met; ile; cys)

were analysed (figure 7). These controls would be run along-side experimental

samples.

Six P. falciparum cultures (3 x 9% parasitemia; 3 x 21% parasitemia) were

sampled at 12 hour intervals for 48 hours and immediately flash-frozen in liquid

nitrogen. Additionally, parasitemia and parasite health were monitored micro-

scopically for each sample. The sampling of cultures was initiated when parasites

were entering the late-schizont stage of development to avoid the potential loss of

merozoites yet to invade erythrocytes that could occur if sampling was initiated

during the merozoite stage. Samples from high parasitemia and low parasitemia
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culture lines were submitted to the Central Analytical Facility at Stellenbosch

University, for UPLC-UV analysis (figure 8). Chromatograms from the amino

acid analysis provide a visual display of the amino acid concentrations repre-

sented by the peak heights for amino acids eluting at their respective retention

times. Figure 9 contains the chromatograms of two controls included in the

analysis, five amino acids of known concentration (above) and standard RPMI

1640 (below). Figure 10 provides a visual comparison of the changes in peak

heights over 48 hours for P. falciparum lifecycle. Observed is general accumu-

lation of amino acids over the 48 hour timeframe, such as ornithine, glutamate

and alanine. Amino acids such as arginine and isoleucine are visibly decreased

in concentration by the 48 hour timepoint.

Concentrations of the majority of amino acids were increased by the end-stage

of parasite maturation, barring isoleucine, methionine, arginine, glutamine, cys-

teine and aspartic acid, which decreased. P. falciparum metabolic activity is

known to be highest during the trophozoite stage of development [77]. Our

experimental data reflects this where we see large consumption of glutamine

between the 24-36 hour mark. In line with this we observe a rise in exported

glutamate and alanine. This accounts for the 24 hour timepoint shift by the

parasite from glucose being favoured for the production of TCA-intermediates

to glutaminolysis-derived α-ketoglutarate from glutamine [76]. Along with the

increase in glutamine metabolism from 24-36 hours, we also see a high rate of

arginine depletion from the medium, and a resultant spike in ornithine export.

This is mostly due to the increase in the parasite arginase activity [77]. Parasites

are at a late trophozoite stage at the 36 hour mark, so between 36-48 hours, we

expect to see an increase in the rate of energy metabolism and macromolecular

biosynthesis as parasites enter the process of schizogeny. We observed a linear

consumption of isoleucine throughout the first 36 hours of growth, and then

consumption increased slightly during the late trophozoite stage of growth. In

line with this, we saw a large increase in accumulation of alanine, glutamate and

ornithine for this final 12 hour period of parasite maturation, but also to a lesser

extent, leucine, histidine, glycine, threonine, proline, valine, and phenylalanine

(figure 8).

Arginine metabolism seemed to be the highest of all amino acids, most notably

between the 24-36h time-points, which was reflected closely by ornithine accu-

mulation (figure 11). An interesting observation that after correcting for the 24

hour media refresh, as observed in figure 8, we predict that high parasitemia

cultures of P. falciparum (>10% parasitemia) will deplete exogenous arginine

supply if left to grow in the same medium for longer than 24 hours. Combining

the arginine and ornithine concentrations as a total concentration indicate a
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Fig.6 Concentrations of amino acids, as stated by Sigma-Aldrich (St. Louis,
Missouri, USA), were compared to UPLC-UV analysed samples of stan-
dard culture media. “M” = un-inoculated RPMI 1640 medium; “Calcu-
lated” = millimolar calculated concentrations based on information sup-
plied by Sigma-Aldrich (St. Louis, Missouri, USA); “low0h” = 9% para-
sitemia culture right after inoculation; “high0h”= 21% parasitemia culture
right after inoculation.
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Fig.7 Control samples of known concentration (“Calculated”) were analysed by
UPLC-UV (“Analyzed”) and compared to evaluate the accuracy of UPLC-
UV analysis.
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Fig.9 Integrated chromatograms generated from UPLC-UV analysis of five
amino acids (gln; glu; met; cys; ile) in phosphate buffer (above), and
fresh RPMI 1640 culture medium (below).
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Fig.10 Integrated chromatograms generated from UPLC-UV analysis of amino
acid profiles for timepoint zero (above) and 48 hour endpoint (below) of a
9% parasitemia P. falciparum culture.
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strong favourability towards arginase primarily processing arginine, where the

gradual loss in total concentration (“Low48h”; “High48h”) is most likely at-

tributed to minor conversion of arginine to citrulline by an arginine deiminase

(figure 11).

4.4 Model Construction

The network reconstruction conducted by Plata et al. [89] was used as a starting

point for the construction of a model to investigate P. falciparum growth depen-

dencies in relation to amino acid metabolism. The first step was making sure

all network reconstruction data was successfully imported to allow for model

simulations. In order to recreate the core growth metabolism of the parasite,

we would have to recreate the mass conversion of glucose to lactate observed

in the intra-erythrocytic parasite, in conjunction with the rapid catabolism of

haemoglobin featured in the parasite’s complex amino acid metabolism. The

terms “exchange reaction” and “transport reaction” will appear quite often in

this section. Before explaining our process of model construction we will ex-

plain the difference between these two terms. An exchange reaction represents

the net flux of a metabolite between the model organism and the extracellu-

lar environment, whereas a transport reaction is a reaction responsible for the

transfer of a specific metabolite between different intracellular compartments.

Exchange reactions are thus important indicators of the modeled system’s deci-

sions to import or export a variety of metabolites and the magnitude at which

it occurs.

This would require us to set our solving algorithm to prioritize the digestion

of haemoglobin for amino acid metabolic requirements, while still optimizing

for biomass production. The primary objective functions of the model were

set for optimising biomass production and haemoglobin digestion. A minor

prioritization was also set for glucose uptake to ensure its favouring as a carbon

source. This was done by setting an additional objective function on the glucose

exchange reaction to optimise glucose import. The biomass objective function

was, however, still the primary optimisation and this was maintained by setting

optimisation weighting values of the biomass reaction, haemoglobin reaction,

and glucose exchange reaction to 1.0, -1.0, and 0.01 respectively.

The core function of the model was to prioritise biomass production via the

harvesting of amino acids provided by haemoglobin catabolism and glucose as

the primary carbon source. Any insufficiencies in amino acid supply through
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Fig.11 Concentration shifts for arginine and ornithine over a 48 hour life cycle
of P. falciparum, accounting for a 24 hour media refresh. “Low” = 9%
parasitemia cultures. “High” = 21% parasitemia cultures. “Low48h” and
“High48h” are summed concentrations of arginine and ornithine concen-
trations.
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haemoglobin would then be made available via amino acid exchange reactions

mimicking exogenous amino acid supply. Excess amino acids produced via

haemoglobin degradation would be exported via these same exchange reactions.

In essence, we would be able to predict a metabolic profile of the amino acid

metabolism of P. falciparum in a minimal medium environment, using the the

amino acid exchange reaction fluxes simulated by the model. Some biologi-

cally relevant constraints were added to the model, especially for haemoglobin

digestion rates and P. falciparum growth rates.

In the boundless state of the model, there are no biological constraints on the

model (no maximal or minimal reaction rates have been defined), and one can

see how the model attempts to consume as much glucose as it possibly can, as

this is what the model has been programmed to do (figure 12). Constraints

therefore needed to be applied so that the output fluxes of exchange reactions

representing the core metabolism of the parasite were more in line with what

can be observed in nature. In the following sections each of these constraints

are detailed, and how they were determined.

4.4.1 Some initial calculations

Model flux outputs are represented in the units mmol / gDW / hour and model

simulations would be conducted under the conditions of a 50 mL, 9% parasitemia

culture at 4% haematocrit. Applying any biological constraints would therefore

require conversion to this specific set of conditions.

As seen in figure 12, without defining an acceptable rate of biomass formation

(“B”), the model will produce biomass at a rate that is only constrained by the

rate at which it can acquire the necessary components. Without any constraints

on the exchange reactions providing these building blocks, import fluxes and

export fluxes appear at rates at the maximal and minimal bounds established for

the model. It is thus important to parameterize the model, and establish some

fundamental metabolic rates. We started by determining the specific growth

rate (“µ”) for Plasmodium falciparum.

Specific growth rate:

dB
dt = µB
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∫
1
BdB = µ

∫
dt

ln(B) = µt+ c

B(t) = eµt+c = eceµt = B0e
µt

B(t) = B0e
µt

A young intra-erythrocytic merozoite has an approximate volume of 5 fem-

tolitres and over a 48 hour life-cycle progresses to a schizont of 70 femtolitres

(14 times increase) [17]. Substituting in these parameters, we can establish a

maximal specific growth rate:

14 = 1e48µ

ln( 14
1 ) = 48µ

Specific growth rate: µ = ln(14)
48 = 0.0550h−1

This rate of 0.0550h−1 was used to define the maximal amount of biomass that

could be formed per hour in the model.

As the model uses the unit of mmol/gDW/h, we needed to determine the dry

mass of a single parasite, which could then be scaled up to the parameters

established for the model. We calculated the parasite dry weight for a 9%

parasitemia culture in a 50 mL volume. Penkler et al. [87] established that the

intracellular volume of a trophozoite had a volume to protein dry mass ratio

of = 4.67µL.mg−1, which when inverted is = 1
4.67 = 0.214mg.µL−1. Assuming

a 45% protein mass of total mass, we estimated a biomass per volume ratio of
1

0.450.214 = 0.476mg.µL−1 [11].

Using 5 fL as the volume of a single merozoite [17], we can calculate the dry

mass of a single merozoite using our established biomass per volume ratio:

5 fL× 0.476× 10−9mg.fL−1 = 2.38× 10−9mg = 2.38× 10−12gDW

The total dry parasite mass in a standard 9% parasitemia can be calculated

using the dry mass of a single merozoite. Our standard cultures consisted of

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 4. RESULTS 48

growing parasites at 4% haematocrit in 50 mL culture flasks. Therefore 2mL of

this volume is expected to be compact red blood cells. At an average volume

of 90 fL per erythrocyte [73], there will be about 2.22×1010 total red blood cells.

Culture parasitemia is determined as the percentage of infected erythrocytes

of total erythrocytes. Given a 9% parasitemia culture, there will be about

2.00×109 infected red blood cells. Above, the average mass of a single merozoite

was calculated to be 2380 femtograms. Multiplying this mass by the 2.00× 109

infected red blood cells, a total dry mass of 0.00476 g parasites can be estimated

for a 9% parasitemia culture at 4% haematocrit.

The next goal was to estimate the rate of haemoglobin catabolism. In a 48 hour

parasite life-cycle, approximately 75% of haemoglobin is digested by the parasite

[63]. Using an established mass of haemoglobin per red blood cell of 27.2e−12g

[88] and 64458.0 grams per mole as the molecular weight of haemoglobin, a

haemoglobin digestion rate in millimoles per hour can be calculated if the rate

was linear over time.

Assuming haemoglobin consumption is proportional to the amount of parasite

biomass (“B”),

dHb
dt = −cB(t)

dHb
dt = −cB0e

µt

We can express this rate of haemoglobin digestion as: Hb(t) = Hb(0)− cB0e
µt,

where we can calculate our haemoglobin remaining at a given time “Hb(t)” is

equal to our starting haemoglobin in a given erythrocyte “Hb(0)” minus the

haemoglobin digested by the relative amount of parasite biomass calculated for

the given time (“c”).

Using the mass of Hb per erythrocyte as = 27.2e−12g [88], and MWHb =

64458.0 g/mol, we can calculate the moles of Hb per cell as:
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Hbcell
MWHb

= 27.2×10−12

64458 = 4.2× 10−16moles = 4.2× 10−13mmoles

Therefore, assuming complete Hb consumption for a 48 hour life cycle:

Hb(0) = 4.2× 10−13mmoles

Hb(48) = 0.0mmoles

Using the values at time-points 0 and 48 hours, we can calculate the mmoles of

haemoglobin digested per single intra-erythrocytic parasite over a 48 hour life

cycle:

Hb(48) = Hb(0)− cB0e
µ(48) (mmol = mmol − (c)(gDW )(e(h

−1)(h)))

0.0 = 4.2× 10−13 − ((c)(1.28× 10−12)(e0.0550(48)))

1.79× 10−11(c) = 4.2× 10−13 (mmol = (c)(gDW)(e))

c = 2.346× 10−2mmol/gDW (per 48 hour life cycle)

Using a linear rate of haemoglobin consumption over the 48 hour life cycle,

we calculated the mmoles of Hb digested per gram of parasite dry mass per

hour (mmol/gDW/h) by dividing by 48, to give us a haemoglobin digestion rate

of 4.89× 10−4 mmoles/gDW/h.

4.4.2 Applying constraints to the model

While defining haemoglobin catabolism parameters, it was found that the haemoglobin

catabolising reaction in the model produced only half the amino acid con-

stituents of a full human haemoglobin tetramer as a result of incorrect haemoglobin

composition in the model file, as published in [89]. Additionally the stoichiome-

try of haemoglobin erroneously included two extra methionine components. This

was found to be the start codons which are cleaved during post-translational

modification of haemoglobin and were thus deducted from the number of me-

thionines produced per haemoglobin consumed.

The core constraints were applied to the model as calculated above and then

examined model simulations for any remaining fluxes that were extremely high.

It was observed that the model was still finding alternative pathways to obtain

metabolites for growth and energy metabolism. From the extremely high import
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fluxes in figure 13, we can determine the reaction pathways that would need to

be addressed.For the sake of model stability, even a boundless reaction with a

theoretical maximum flux of positive or negative infinity requires an upper and

lower bound to prevent model simulation crashes in the result of flux calcula-

tions to infinity. Upper and lower bounds of 1 000 000 mmol/gDW/h and -1 000

000 mmol/gDW/h were set for all reactions. Therefore, when reaction fluxes

reaching one million mmol/gDW/h are observed, it is understood that the re-

action flux is approaching infinity. This is an un-natural flux calculation, and

is addressed by pathway flux analysis to identify problematic reactions causing

these un-intended flux predictions. It is important to note that the application

of the following constraints mentioned hereafter are implemented for the sake

of model stability and do no affect the amino acid metabolism in the model in

any way. A large portion of the metabolites shown in figure 13 are involved in

the glycolytic pathways of the parasite, so our first strategy was to lock these

metabolites within glycolysis and the TCA cycle by preventing their export out

of the cell or any import of pathway intermediates. This was done by constrain-

ing the exchange reactions for any metabolites involved in glycolysis or the TCA

cycle that displayed a tendency for significant import or export. The import

reactions showing extremely high fluxes (EX akg e, EX ade e, EX dgsn e, and

EX ins e), were addressed initially, as many of the export reactions with ex-

tremely high fluxes were directly linked to the activity of these import reactions

(figure 13). Simulations were conducted again and any new problematic ex-

change fluxes that appeared were addressed. This process was conducted until

natural carbon metabolism was observed, where no intermediates were being

imported or exported unnecessarily (figure 14).

We then addressed any other metabolites that were entering or leaving the cell

at a very high rate. We observed a very high rate of oxygen and water uptake.

This was attributed to the superoxide dismutase and glutathione peroxidase

reactions. The model was set to only take up oxygen and only export carbon

dioxide, and the peroxide exchange reaction was turned off.

The biomass reaction requires a purine source to produce biomass units, which

can be acquired via inosine, adenine or hypoxanthine. However adenosine and

inosine were shown to be potential metabolites for carbon metabolism, so they

were constrained to zero and hypoxanthine was used exclusively.

As it is not a component of haemoglobin, isoleucine import is required for

biomass production and the exchange reaction was set to import only.

Infinite loops can occur during the simulation of network models, whereby a

product of one reaction is used as the substrate of another reaction, however
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Fig.12 Flux distribution output of the boundless model after establishing the
model objective functions for glucose catabolism, haemoglobin catabolism
and biomass production. DIN = deoxyinosine; ADN = adenosine; DGSN
= deoxyguanosine; URA = uracil; GLC = glucose; NH4 = ammonium;
NO3 = nitrate; F6P = fructose-6-phosphate; H2O = water; SUCC =
succinate; PI = inorganic phosphate; O2 = oxygen; AKG = alpha-
ketoglutarate; GSN = guanosine; FUM = fumarate; H2O2 = peroxide;
GAM6P = glucosamine-6-phosphate; H = protons; NO2 = nitrite; CO2
= carbon dioxide; GUA = guanine; DURI = deoxyuridine; HXAN = hy-
poxanthine; SBT = sorbitol; LAC = lactate; DAD = deoxyadenosine.
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Fig.13 After applying the biological constraints to the core exchange reactions
(haemoglobin digestion and biomass production), displayed are the flux
values still above 0.05 mmol/h/gDW in magnitude. ADE = adenine;
INS = inosine; O2S = superoxide anion; CHOL = cholesterol; 4AHMMP
= 4-amino-5-hydroxymethyl-2-pyramidine; THM = thiamine; GLYC =
glycerol; OCDCEA = octadecenoate; XAN = xanthine; INOST = myo-
inositol; MAL = malate; PYR = pyruvate; DIN = deoxyinosine.

the product of the second reaction is the substrate of the first reaction, resulting

in a metabolite being locked into an endless loop. These infinite loops are able

to accumulate the entire pool of a metabolite and break model simulations. To

prevent infinite looping, some reactions were set to either forward/reverse only,

and in some cases turning off reactions completely.

We were still observing fluxes indicating extreme metabolic activity. Lactate

production was at the upper bound of the model while the rate of glycolysis was

occurring at a much lower, acceptable flux. This was initially observed with a

mass import of glutamate and aspartate, and a concomitant export of glutamine

and lactate (figure 14). The amino acid antiporter reaction “AKGMAL” was set

to zero to prevent the looping of malate and α-ketoglutarate. This antiporter

is part of a coupled-transporter known as the malate-aspartate (M-A) shuttle.

The second transporter coupled in this M-A shuttle is a glutamate-aspartate
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Fig.14 Exchange fluxes above 0.05 mmol/h/gDW had been addressed and the
model was updated. Displayed in this figure are the unnaturally high
exchange fluxes still simulated by the model. From this we addressed
infinite loops, identified initially from the large flux outputs for glutamate,
aspartate, and glutamine. AC = acetate; HDCA = hexadecanoate; CYTD
= cytidine.

transporter. In our model, glutamate and aspartate were being mass-imported

for the downstream transamination of alanine for pyruvate production, which

would then be used for biomass production.

4.4.3 Model simulations

Initial simulations of our curated model proved to successfully make use of

glucose as a primary carbon source, and haemoglobin as the primary amino

acid source, to produce biomass, while importing any lacking (glutamine) or

missing (isoleucine) biomass components. There were however some unexpected

fluxes. The model seemed to highly favour a selection of amino acids for biomass

generation, in order of rank: glutamine, asparagine, aspartate, glutamate. The

asparagine and aspartate utilisation is odd as no literature supports this notion.
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As the model would import as much glutamine as it could for growth, we had

to establish an upper bound constraint on the glutamine exchange reaction

(“EX gln L e ”).

Determining a maximum bound for exogenous glutamine uptake:

In standard RPMI medium, glutamine exists in concentration: 0.3 g/L. For

standard 24 hour growth before medium is refreshed, 21% parasitemia cultures

will grow healthily, and are assumed to not deplete exogenous glutamine. There-

fore, in 24 hours, at most we would expect 0.3 g/L/24h for a 21% parasitemia

culture, resulting in: 1.25× 10−2 g/L/h. Using MWgln = 146.14 g/mol, we get

8.55 × 10−5 mol/l/h. Model fluxes are in “mmol/gDW/h”, therefore we scale

the gDW of a 21% parasitemia culture to per 1 gDW:

gDW of parasite in a 21% parasitemia culture: 1.11× 10−2 (calculated above)

Scaling to 1 gDW we get: 7.698 mmol/l/gDW/h of glutamine

Cultures are grown in 50 mL flasks, and the current flux is per litre, so con-

version to 50mL volume yields: 0.385 mmol/gDW/h for a 50 mL volume (as

used for experimental data). Thus, in a 9% parasitemia culture, the maximum

possible uptake rate of glutamine could be 0.385 mmol/gDW/h for a 50 ml vol-

ume culture, and was set as our upper bound for exogenous glutamine import.

From literature findings, and confirmation from our own experimentation, that

parasite arginase plays a large role in free arginine being converted to ornithine,

the arginase reaction flux was clamped on 3.30× 10−1 mmol / gDW / h, based

on arginase activity observed by Olszewski et al. [77]. In addition, the ornithine

aminotransferase reaction was constrained to zero to prevent ornithine recycling

back into the system.

4.5 Preliminary predictions of haemoglobin

supply and biomass demand

Prior to conducting model simulations of the production of parasite biomass and

the concomitant catabolism of host haemoglobin, a thought experiment would

be to theoretically predict how much biomass could be formed per haemoglobin

molecule, based on the compositions of biomass and haemoglobin as present

in the model. This would also provide a strong motivation for the necessity
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of a model based on a complicated network for amino acid metabolism in P.

falciparum.

In the model there is a reaction responsible for the digestion of haemoglobin

“HMGLB”, supplying freed amino acids to the parasite for biomass production.

The biomass objective function (BOF), named in the model as “biomass”, is a

manually created reaction that harvests a large variety of components created by

the metabolic network necessary to create a“unit”of biomass. As this BOF is an

artificial reaction, we represent biomass production as the rate of production of

these units. By comparing the compositions of haemoglobin molecules and these

units of biomass produced by the model, we can make preliminary predictions

on which amino acids will likely be most limiting by haemoglobin catabolism

(assuming no interconversions of amino acids occur). Further, assuming no

availability of exogenous amino acids (besides isoleucine), we can predict how

many units of biomass can be produced by the biomass reaction for the total

haemoglobin provided within a single red blood cell before specific amino acid

supply would start to run out.

The number of haemoglobin molecules required to generate 10 000 units of

biomass was calculated (calculations based on 10 000 units for aesthetic appeal),

and on the compositions of haemoglobin and biomass (table 2). Tryptophan was

calculated to be the shortest in supply, requiring 350 haemoglobin molecules to

produce enough tryptophan for the production of 10 000 units of biomass. This

is followed by asparagine, which requires 313 haemoglobin molecules.
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Table 2: Comparing biomass composition versus haemoglobin composition to

illustrate the basic supply and demand of amino acids in the modeled

system. “AA” = amino acid, “AA/Hb” = amino acid per haemoglobin

molecule, “AA/10 000 biomass” = number of each amino acid required

to produce 10 000 units of biomass, “Hb/10 000 biomass” = haemoglobin

molecules required to supply enough of a specified amino acid to produce

10 000 units of biomass.

AA AA/Hb AA/10 000 biomass Hb/10 000 biomass

ala 72 1364 19

arg 12 1349 113

asn 20 6245 313

asp 30 2994 100

cys 6 674 113

gln 8 1353 170

glu 24 3505 147

gly 40 1827 46

his 28 1063 39

iso 0 3566 N/A

leu 72 3405 48

lys 44 5124 117

met 6 1019 170

phe 30 1823 61

pro 28 1085 39

ser 32 3055 96

thr 32 2045 64

trp 6 2095 350

tyr 12 1379 115

val 62 2030 33

Using the average amount of haemoglobin in an erythrocyte = 4.2 × 10−13

mmoles (calculated previously), and assuming 75% of haemoglobin is digested

during a 48 hour life-cycle of an intra-erythrocytic P. falciparum, we can use

Avogadro’s constant to calculate the number of molecules of haemoglobin present

within a red blood cell:

75% of haemoglobin consumed = 3.15× 10−13 mmoles
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Avogadro’s constant = 6.022× 1023 molecules in one mole of substance

We can estimate there are 1.9 × 108 molecules of haemoglobin digested in a

48 hour life-cycle by an intra-erythrocytic parasite.

Taking the number of digested haemoglobin molecules into account, the max-

imum units of biomass that can be generated using the released amino acid

molecules can be calculated (table 3).
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Table 3: Predicting the amount of biomass units that can be formed by the

biomass objective function solely using amino acids supplied via the catabolism

of haemoglobin within a single erythrocyte. “AA” = amino acid, “AA/Hb”

= amino acid per haemoglobin molecule, “AA/total erythrocyte Hb” =

Number of molecules of each amino acid for the total haemoglobin found

in an average erythrocyte, “Biomass/erythrocyte” = The total potential

biomass units produced using the haemoglobin within a single erythrocyte.

AA AA/Hb AA/total erythrocyte Hb Biomass/erythrocyte

ala 72 1.4× 1010 1.00× 1011

arg 12 2.3× 109 1.69× 1010

asn 20 3.8× 109 6.08× 109

asp 30 5.7× 109 1.90× 1010

cys 6 1.1× 109 1.69× 1010

gln 8 1.5× 109 1.12× 1010

glu 24 4.6× 109 1.30× 1010

gly 40 7.6× 109 4.16× 1010

his 28 5.3× 109 5.00× 1010

iso 0 N/A N/A

leu 72 1.4× 109 4.02× 1010

lys 44 8.4× 109 1.63× 1010

met 6 1.1× 109 1.12× 1010

phe 30 5.7× 109 3.13× 1010

pro 28 5.3× 109 4.90× 1010

ser 32 6.1× 109 1.99× 1010

thr 32 6.1× 109 2.97× 1010

trp 6 1.1× 109 5.44× 109

tyr 12 2.3× 109 1.65× 1010

val 62 1.2× 1010 5.80× 1010

From table 2 and table 3 we can predict that modeled simulations will most

likely indicate (in order of demand): tryptophan, asparagine, methionine,

glutamine, glutamate, lysine, arginine, and cysteine, as the amino acids

with the highest dependency on exogenous supply to allow for optimal

biomass production. Using our model based on the complex metabolic

network of amino acid metabolism for intra-erythrocytic P. falciparum we

hope to provide further insights.
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4.6 Network reconstruction simulations

4.6.1 Overview of P. falciparum flux profile, as

simulated by the network reconstruction

Once we had applied all our constraints to the network, our simulations started

to predict a flux distribution that was more in line with literature expectations.

The largest fluxes through the modeled system are presented in figure 15, dis-

playing vast conversion of glucose to lactate, indicating a functional glycolysis

system. There is also a build up of urea and ammonia that is successfully

exported by the parasite. Amino acid metabolism comprises a large part of

metabolism in Plasmodia. Many transamination reactions occur in the para-

site. For example, in figure 15 it can also be seen how exogenous glutamine

has a large import flux and glutamate is exported out the cell. Glutamine

can be processed by the parasite to α-ketoglutarate, by a set of transamination

reactions, leading to the production of ammonia and urea.

In culturing conditions, exogenous arginine is taken up by the parasite at a

high rate and converted to ornithine (arginine + H2O � ornithine + urea),

before exporting out of the system. We manually clamped the arginase reaction

flux to the rate of ornithine accumulation we determined experimentally (figure

11) of 0.330mmol/h/gDW . From this added constraint we observed how argi-

nine import and ornithine export increased accordingly. We had set the upper

limit of our BOF to 0.0550 h-1and simulations displayed that maximal biomass

formation rate was achieved.

4.6.2 Model-predicted flux profile for an asynchronous

P. falciparum culture compared to an

experimental data set

To test the accuracy of our model simulations we compared our simulation

data to a set of experimental data obtained via UPLC-UV analysis of time-

point samples obtained from asynchronous P. falciparum cultures grown at 9%

parasitemia.

Experimental fluxes were calculated for each of the amino acids from the UPLC-

UV observed changes in amino acid concentrations over a 48 hour period and

converted from millimolar to mmol/h units for a 50mL volume to match the
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Fig.15 Overview of major fluxes predicted by the modeled system for P. fal-
ciparum. Negative values indicate a net import flux and positive values
indicate a net export flux. OMASS = Biomass; ORN = ornithine; UREA
= urea.

units used in the model. Additionally calculated fluxes were converted from

parasite dry weight calculated for a 9% culture (4.76 × 10−3 gDW) to 1 gDW,

as used in the model (mmol/h/gDW).

Qualitatively, fluxes predicted by the model compared well with our experimen-

tal data (figure 16). Both systems displayed a large favourability for exoge-

nous glutamine as a primary amino acid source, with a resultant net export

of glutamate and alanine, produced during glutaminolysis. The model indi-

cated a slight over-utilization of glutamine as a result of us manually clamp-

ing the glutamine import flux at the maximum possible rate we could ex-

pect (0.385 mmoles/gDW/h). Upon closer inspection, in our experimental

data we see that the net import flux of glutamine is substantially higher than

the glutamate export flux. In the model, however, the glutamate export flux

(0.374 mmoles/gDW/h) is almost as high as the import flux of glutamine (0.385

mmoles/gDW/h). Paired with this, in our simulations we see a smaller export
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flux for alanine. In the process of glutaminolysis, glutamine is partially deami-

nated to glutamate. Thereafter three possible pathways are possible. Glutamate

can either be further deaminated to produce α-ketoglutarate and ammonium,

transfer the ammonium group to pyruvate to form alanine (transamination),

or transfer the ammonium group to oxaloacetate to form aspartate (transam-

ination). Our simulations indicate that perhaps glutamate is not being fully

utilised in this glutaminolysis pathway of the model. Comparing model to ex-

perimental data, we see a lower glutamate utilisation and as a result a smaller

export flux of alanine by the model. This could also be a possible reason for the

unexpected import fluxes of exogenous aspartate and asparagine we see in our

model.

Arginine is also largely converted to ornithine by arginase in experimental cul-

tures as well as computational simulations. Ornithine export in the model was

clamped to the flux we determined experimentally. Model simulations showed

a 96% conversion of arginine to ornithine in the model. In experimental data

that is slightly less and likely a result of an arginine deiminase converting some

of the arginine into citrulline.

The amino acid flux distributions in figure 2 of Appendix C are preliminary

simulations of amino acid flux distributions. Later in the development of the

model, more accurate flux distributions can be observed once the correct con-

straints and boundary flux values were introduced (for biomass formation rate,

haemoglobin digestion rate, and glucose consumption rate).

4.6.3 Investigation of model dependencies on various

exogenous amino acids

Exchange reactions responsible for the import and export of metabolites between

the parasite and cytosol of the host erythrocyte were systematically switched off

and the effect thereof on parasite growth characteristics were examined. Remov-

ing exogenous isoleucine uptake prevented any biomass formation and energy

demand by the parasite reflected this. When glutamine import was turned off

only a slightly higher lactate production was observed, indicating that while

glutamine is a desired source of amino acid, the model is able to make use of

the various other amino acids in its absence, but causing a small increase in

lactate production (Table 4). The increased transaminations occurring in the

absence of glutamine increase the energetic demand of the parasite to produce

biomass in the model. Analysis of upstream pathway fluxes revealed this in-

creased lactate export flux to be as a result of glycerol being imported by the
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cell to use as a carbon source. As a result of the additional reactions occurring

in the absence of glutamine, the maximum glucose import rate was no longer

sufficient to provide enough fuel for glycolysis.

The individual removal of exogenous arginine, methionine and tyrosine import

resulted in lowered biomass production rates, indicating haemoglobin is not able

to provide sufficient amounts of these amino acids, and that exogenous supply

is necessary to sustain optimal growth by the parasite. The removal of ex-

ogenous proline and glutamate had no effect on parasite growth characteristics

as the model suggests these amino acids are provided in sufficient quantity by

catabolism of host haemoglobin (indicated by a net export of glutamate and

proline in figure 16). When we simulated parasite growth on only haemoglobin

and exogenous isoleucine, biomass production rates dropped to 52% of optimal

rate. This is the same production rate observed as in the “no methionine” sim-

ulation, indicating that the absence of methionine alone is restricting growth

rates to 52% regardless of availability of other amino acids. Adding exoge-

nous methionine supply to simulated media containing only isoleucine led to

a biomass production rate of 76%. However, when we supplied the other two

exogenous amino acids indicated as necessary for optimal parasite growth, argi-

nine and tyrosine, there was no further increase in biomass production rates.

These model findings suggest that there is one or more amino acids, in addition

to those currently mentioned in literature, required by Plasmodium falciparum

to achieve maximal growth. Additionally, in comparison to the growth rates we

measured for limited media cultures, we saw that restricting cultures to exoge-

nous isoleucine and methionine only, we could achieve growth rates around 48%

of optimal rate (table 1).
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Table 4: Absence of exogenous amino acids and their effect on parasite growth

(expressed as a percentage of standard growth simulations)

Model restriction Hb catabolism Glucose cons. Lactate prod. Biomass prod.

Standard growth 100.00 100.00 100.00 100.00

No isoleucine 100.00 0.03 0.42 0

No glutamine 100.00 100.00 113.97 100.00

No arginine 100.00 78.66 78.90 78.72

No glutamate 100.00 100.00 100.00 100.00

No methionine 100.00 52.05 52.33 52.08

No tyrosine 100.00 77.05 77.26 77.16

No proline 100.00 100.00 100.00 100.00

Only isoleucine 100.00 52.96 52.88 52.08

Only ile and met 100.00 78.45 79.18 76.12

Ile, met, tyr, arg 100.00 78.45 79.18 76.12

4.6.4 Model simulation of atovaquone activity

As atovaquone acts to restrict the activity of mitochondrial enzyme, dihydrooro-

tate dehydrogenase, the activity of atovaquone can be simulated by applying

constraints to the reaction in the model representing dihydroorotate dehydro-

genase, named ’DHORD2 mt’. ’DHORD2 mt’ has a normal flux of 0.0128

mmol/gDW/h when simulating standard growth conditions. Figure 18 illus-

trates the uniform decrease in biomass production as we simulate the effect of

increasing atovaquone concentration. Model predictions were compared to a

dose-response curve determined by Srivastava et al. [105] (figure 17) and ob-

serve a similar trend in activity. Srivastava et al. [105] showed that increasing

concentrations of atovaquone would cause an increasing inhibition of respira-

tion in P. falciparum. The rate of respiration in these parasites can be directly

correlated to their rate of biomass production. By simulating the action of ato-

vaquone to inhibit the activity of DHODH in the model, a linear correlation

between the percentage inhibition of DHODH and the percent of optimal rate

of biomass formation displays how the degree of functionality of the DHODH

enzyme directly affects the capacity of P. falciparum to generate biomass.
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Fig.16 Model-predicted amino acid exchange fluxes obtained in comparison
with fluxes calculated from data obtained from UPLC-UV analysed par-
asite culture growth. Fluxes for both sets of data are calculated based
on a 9% parasitemia culture in a 50ml culture of standard RPMI at 4%
haematocrit.
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Fig.17 Dose-response curve of atovaquone effect on Plasmodium falciparum
respiration, determined by Srivastava et al. [105]
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Fig.18 Model simulations show that constraining DHODH activity reduces the
ability of Plasmodium falciparum to generate biomass
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Discussion

Network reconstructions are an ideal approach to capture large, intricate bio-

chemical networks within a computational model. In this study we investigated

the dependence of P. falciparum on exogenous amino acid supply in relation to

haemoglobin-derived amino acids. Plasmodia have a very limited capacity for

de novo amino acid biosynthesis, by aerobic CO2 fixation and glucose dissimi-

lation. This limited capacity for synthesis has been shown to not be primarily

directed towards amino acid formation for Plasmodial protein synthesis, but

rather for the replenishment of TCA-cycle intermediates [99]. Plasmodia, in-

stead depend on the catabolism of host haemoglobin housed within erythrocytes,

and free extracellular amino acid in the host’s blood stream. Along with this,

Plasmodia have developed a complex transamination system involved in a vari-

ety of metabolic processes [77, 12, 118]. Genome-scale network reconstruction-

based modeling would therefore be a suitable approach for modeling amino acid

metabolism of P. falciparum. Using a network reconstruction created by Plata et

al. [89], we were able to create a functional model of P. falciparum metabolism.

This model was able to reproduce the mass conversion of glucose to lactate (as

observed experimentally), rapidly catabolise host haemoglobin and scavenge the

freed amino acids, as well as those available extracellularly. When exposed to

unfavourable conditions the model was able to adapt and find alternative solu-

tions to try achieve optimal biomass production rates. Limiting the availability

of extracellular amino acids caused the model to make use of transamination

reactions to produce the missing amino acids required for biomass production.

To validate the findings of the model, amino acid analysis was conducted on P.

falciparum cultures grown for a full 48 hour life-cycle and fluxes obtained from

this data were compared to the outputs of model simulations (figure 16). We also
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displayed the ability of the model to mimic the effects of an active compound

(atovaquone) in a popular antimalarial drug on the growth of P. falciparum.

Divo et al. [16] was able to achieve almost 90% of standard growth in a limited

medium containing only 7 amino acids (isoleucine, methionine, cysteine, glu-

tamine, glutamate, tyrosine, proline). Liu et al. [59] observed 86% of standard

growth, showing at least a 1.8-fold increase in parasitemia over a single life cycle,

using a growth medium supplemented with isoleucine as the sole-added amino

acid. Based on these findings, we attempted to reproduce this high level of

growth in amino-acid-limited media. Our model simulations were able to verify

that we could achieve close to 80% of optimal biomass formation rates (table 4).

Experimentally we were not as successful. When only adding isoleucine to an

amino-acid-free custom RPMI culture medium, parasites were not able to grow

well and we saw a net decrease in parasitemia over time. When adding both

isoleucine and methionine, growth improved to about 50% of standard culturing

conditions. The same was observed when adding the “core” 5 amino acids (ile;

met; gln; glu; cys). This slower growth was largely due to sluggish progression

of parasites through their life-cycle. In standard culturing, merozoites will tran-

sition to mature schizonts within 48 hours. However, in limited media cultures,

parasites would take more than 72 hours to complete a life-cycle. Microscop-

ically, it was observed that a large portion of parasites in limited media were

undergoing metabolic stress, where intra-erythrocytic parasites would appear

as solid, compact masses within a red blood cell (figure 5). Liu et al. [58] ob-

served this same slower life-cycle progression in limited media. It is suspected

that re-invasion efficiency and development of newly invading merozoites are

significantly hampered due to a lack of specific amino acids that might be vital

for parasite development. It is possible that P. falciparum we used in limited

media experiments might have adapted over time to favour exogenous amino

acids for growth over those made available during haemoglobin degradation. In

future experimentation multiple strains should be considered for limited media

culturing. It would also be recommended to reproduce the results obtained by

Divo et al. [16] with his 7 amino acid limited medium.

In our theoretical calculations for specific growth rate, based on data presented

by du Toit et al. [17], we calculated a maximal specific growth rate for P.

falciparum of 0.0550 h−1 to be used in our model. However, in our standard

cultures we observe less than 50% of that rate (table 1). This is primarily as a

result of the specific growth rate used in the model to only represent the rate of

growth for a single life cycle. In a system of multi-generational growth, such as

continuous in vitro culturing there are a number of additional factors affecting

the specific growth rate. Our theoretical specific growth does not account for
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factors such as the time from red blood cell rupture and the accompanying

release of daughter merozoites to the resultant re-invasion. Daughter merozoites

also do not invade with a 100% re-invasion-to-schizogeny efficiency and as a

result a portion of released new progeny will not reach schizogeny and release

daughter merozoites of their own. Perhaps even more importantly, the volume

increase from a merozoite to a schizont is by no means a perfect correlation to

the increase in biomass, and the volume occupied by such a schizont divided

by the volume of a merozoite does not accurately represent the number of new

merozoites that will re-invade host erythrocytes. If this were the case, each

schizont would result in ˜31 newly infected red blood cells, but in literature

there is a reported average of 16-18 merozoites released per schizont [28], almost

50% less than the 31 merozoites we might otherwise presume just on the volume

increase in a given life cycle.

There were some interesting findings from data obtained from amino acid anal-

ysis of 48 hour time-course samples of P. falciparum cultures. Most notably

was the rapid depletion of arginine from the culture medium, accompanied by

a large accumulation of ornithine (figure 11). In a 9% parasitemia culture it is

predicted that arginine would be depleted after 48 hours of growth in standard

RPMI 1640 medium. This is not a significant issue in standard practice, as

culture medium is refreshed every 24 hours. However, in 21% parasitemia cul-

tures, arginine is predicted to be depleted after about 30 hours of growth in the

same medium (figure 8). Previous studies have concluded that arginine is not

required for optimal growth, suggesting that sufficient quantities are obtained

from haemoglobin digestion [59]. Olszewski et al. [77] also showed that the

mass-conversion of arginine to ornithine is not for the use of ornithine as a sub-

strate either, as arginase knockout strains were able to obtain enough ornithine

from the plasma or activity of the host arginase. Instead they hypothesize

that the parasite depletes the host arginine pool to prevent nitric oxide gener-

ation from arginine, suppressing the host immune response. Additionally the

large amount of ornithine produced may compete with arginine for transporter-

mediated uptake into macrophages. Also observed is a notable consumption

of glutamine and resultant build up of glutamate and alanine, which can be

attributed to the switch in parasite metabolism during the trophozoite-stage to

glutamine metabolism as a source of α-ketoglutarate for use in the TCA-cycle.

A small consumption of isoleucine and methionine were also noted.

Some initial calculations were conducted to predict which of the amino acids

supplied by haemoglobin catabolism would be in short supply for biomass pro-

duction in the model. From these calculations it was determined that trypto-

phan, asparagine, methionine, glutamine and glutamate were the top five amino
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acids suspected to require exogenous supply (along with isoleucine, which does

not occur in haemoglobin) for the optimal production of biomass by the model.

Once we had produced an optimized model to simulate parasite metabolism,

we could validate our calculated predictions on amino acid supply and demand.

As expected we saw a demand on exogenous sources of glutamine, methionine

and asparagine. However, the amino acid predicted to have the highest need

for an exogenous supply, tryptophan, showed no need for import of extracellu-

lar supply. Investigation into the reaction network of the model showed that

tryptophan was exclusively used as a building block in biomass formation. This

finding is significant in showing that for the most part haemoglobin should be

able to provide enough building blocks for biomass formation. The demand of

other metabolic processes have a large impact on amino acid demand. Glu-

taminolysis is an example of this, whereby glutamine demand is increased as

a result of glutamine additionally being converted to α-ketoglutarate. Simula-

tions also indicated there was no demand for glutamate import. In fact, the

model showed a net export of glutamate, further re-enforcing the belief that

reactions other than the biomass producing reaction play a large role in amino

acid metabolism.

The primary objective of our research was to investigate amino acid metabolism

in intra-erythrocytic Plasmodium falciparum. To address this objective, we

made use of computational modeling to simulate the metabolism of the parasite,

and then validate the results of our model simulations with experimental data.

In the first chapter we stated four key research questions we would attempt to

answer:

1. Is the model able to reproduce experimental observations in terms of amino

acid incorporation into biomass and amino acid export, using haemoglobin

catabolism as a primary source, and extracellular amino acid scavenging

to make up for any deficits?

2. Can the findings of Liu et al. [59] that Plasmodium falciparum is able to

grow in culture medium containing isoleucine as the only supplemented

amino acid be reproduced?

3. Can a steady-state flux distribution for the model system that is realistic

to what we can observe in nature be identified?

4. From the flux distribution outputs, can any key reactions or metabolites

that could be investigated further as potential drug targets be identified?
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Using a genome-scale network reconstruction of P. falciparum and performing

flux-balance analysis we were able to reproduce experimentally observed fluxes

with good accuracy and display some of the key dependencies of the parasite on

exogenous amino acid supply for optimal growth.The model successfully used

haemoglobin catabolism as a primary source of amino acids for biomass for-

mation and obtained any deficits from extracellular scavenging. Any excess

amino acids were successfully exported from the system. Further, we were able

to simulate the findings of Liu et al. that P. falciparum is able to grow on

nutrient-restricted media at almost 80% of maximal biomass formation rates

[59]. We were, however, not able to identify any novel metabolic targets for

drug development.

Overall the model has provided some interesting insights into the amino acid

metabolism of Plasmodium falciparum. The model has indicated that certain

amino acids such as glutamine, are not vital for the generation of biomass,

however, are more energetically favourable options for growth. Experimental

studies [16] have also indicated a core 7 amino acids (isoleucine, methionine,

cysteine, glutamine, glutamate, tyrosine, proline) required for the optimal rates

of biomass formation, where the model reaffirms this finding in the case of

isoleucine, methionine, tyrosine and arginine. However our model indicates that

the absence of exogenous glutamine, glutamate and proline to not hamper opti-

mal biomass formation. Adding to this, with the four amino acids indicated to

be vital to optimal biomass formation only a 76% of optimal rate was simulated

by the model. This perhaps indicates the necessity for another, unsuspected

amino acid, or perhaps even combination of amino acids to actually reach opti-

mal biomass formation rate (table 4).

Future improvements to the model will allow for more biologically accurate sim-

ulations, and a wider range of applications. Attaining a more accurate molecu-

lar representation of Plasmodium biomass for the creation of biomass objective

functions will create a more realistic picture of metabolic requirements for para-

site growth such as the discrepancies we observed when comparing model versus

experimental amino acid exchange fluxes in figure 16. The addition of more bi-

ologically relevant constraints to reaction fluxes in the model, such as transam-

ination reactions will vastly aid in the understanding of these complex reaction

dynamics. Only partial success was achieved with minimal media culturing.

Testing multiple parasite strains and media conditions are considerations that

should be made when expanding on this work.
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APPENDIX A. MICROSCOPE BLOOD SLIDES SHOWINGUNHEALTHY INTRAERYTHROCYTIC P. FALCIPARUM PARASITESA-3

Fig.1 Microscope blood slides of limited media cultures where stressed parasite
phenotypes were observed. In isoleucine-only supplemented media, within 48
hours of parasite culturing (top and middle) the majority of parasite phenotypes
would present as small, dark

”
compact masses that would persist over time

and culture growth would stall. Compared to the growth of isoleucine- and
methionine-supplemented media cultures, where growth conditions are more
favourable for the parasite, it can be observed that there are fewer stressed
parasites and a greater progression from rings to schizonts (bottom).
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Appendix B

Model constraints

Note: The term “blim” is representative of the minimal/maximal extreme for

a bound (1× 106 mmol/gDW/h, effectively indicating boundless in a way that

does not break the model.

’EX gln L e ’: [-0.385,blim],

’EX hb’: [-4.89e-4, 0],

’biomass’: [0, 0.0550],

’EX ile L e ’: [-blim,0],

’EX glc e ’: [-blim,0],

’EX ins e ’: [0,0],

’EX adn e ’: [0,0],

’EX h2o2 e ’: [0,0],

’EX dgsn e ’: [0,0],

’EX din e ’: [0,0],

’EX nicotinamide2’: [0,0],

B-1
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APPENDIX B. MODEL CONSTRAINTS B-2

’EX gua e ’: [0,0],

’EX ade e ’: [0,0],

’EX inost e ’: [0,0],

’EX fum e ’: [0,blim],

’EX ura e ’: [0,0],

’EX fru e ’: [0,0],

’EX akg e ’: [0,0],

’EX o2 e ’: [-blim,0],

’EX co2 e ’: [0,blim],

’EX f6p e ’: [0,0],

’EX g6p e ’: [0,0],

’EX man e ’: [0,0],

’EX mal L e ’: [0,0],

’EX succ e ’: [0,blim],

’SERGLYexR’ : [0,0]

’CYSGLYexR’ : [0,0]

’CYSGLUexR’ : [0,0]

’THRGLYexR’ : [0,0]

’SERGLNexR’ : [0,0]

’THRGLNexR’ : [0,0]

’ALAGLNexR’ : [0,0]

’ALAGLYexR’ : [0,0]

’AKGMAL’ : [0,0]
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APPENDIX B. MODEL CONSTRAINTS B-3

’ORNTA’ : [0,0]

’NDPK1’ : [0.02106,0.2106]

’ARGN’ : [0.330,0.330]

’ASPTA’ : [-blim,-0.001]
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Appendix C

Publication

The paper in this Appendix has been accepted for publication in the Biochemical

Society Transactions journal. Contributions made to this paper include the

sections on “Genome-scale network analysis of metabolism” and “Plasmodium

biomass production from haemoglobin”, as well as the accompanying graphics

in figure 2.

C-1
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Quantitative analysis of drug effects at the
whole-body level: a case study for glucose
metabolism in malaria patients
Jacky L. Snoep*†‡1, Kathleen Green*, Johann Eicher*, Daniel C. Palm*, Gerald Penkler*, Francois du Toit*,
Nicolas Walters*, Robert Burger*, Hans V. Westerhoff†‡ and David D. van Niekerk*
*Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa

†Molecular Cell Physiology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands

‡MIB, University of Manchester, M1 7EN Manchester, U.K.

Abstract
We propose a hierarchical modelling approach to construct models for disease states at the whole-body
level. Such models can simulate effects of drug-induced inhibition of reaction steps on the whole-body
physiology. We illustrate the approach for glucose metabolism in malaria patients, by merging two detailed
kinetic models for glucose metabolism in the parasite Plasmodium falciparum and the human red blood
cell with a coarse-grained model for whole-body glucose metabolism. In addition we use a genome-scale
metabolic model for the parasite to predict amino acid production profiles by the malaria parasite that can
be used as a complex biomarker.

Multi-scale hierarchical modelling of
disease states
Diseases manifest as phenotypic changes in whole-body
physiology that are experienced as illness and can be caused
by external factors (e.g. infectious diseases caused by bacteria)
or by internal dysfunction (e.g. type II diabetes, cancer).
Medical treatment of a disease can be in the form of
medication, such as a pharmaceutical drug that affects specific
reactions in target cells. In the case of a so-called ‘magic
bullet’ drug, displaying complete specificity and complete
inhibition of an essential reaction in a parasite or diseased
cell, the outcome of the drug effect is direct and simple to
predict and no detailed analysis is required. However, most
drugs affect more than one reaction step, do not lead to
complete inhibition and have side effects [1]. The response
to such a drug is more complicated and a quantitative analysis
of the combined effects on the whole-body physiology is
necessary to evaluate the treatment. Analysis of whole-body
responses to partial inhibition of one or more reaction steps
is challenging; typically, mathematical models at the whole-
body level are not fine-grained and do not include individual
chemical reaction steps. We propose a hierarchical approach
where parts of a system are resolved with sufficient detail to
analyse drug effects at the individual reaction step, whereas
for other parts of the system coarse-grained models are used.
This approach is illustrated with a multi-scale hierarchical
model for glucose metabolism in malaria patients (Figure 1).

Key words: glucose metabolism, malaria, multi-scale hierarchical model, Plasmodium

falciparum.
1 To whom correspondence should be addressed (email jls@sun.ac.za).

From diagnosis to drug
Medical treatment usually starts with a diagnosis and
classification of a disease. Typically these are initially made
on the basis of simple phenotypic descriptions. Relating these
symptoms to a mechanistic interpretation of the disease is not
a trivial task and will involve a systems based approach [2],
especially when multiple molecular aetiologies with patient-
dependent contributions are involved. Biomarkers play an
important role in such a diagnosis and are likely to be found
at the metabolomics level [3]. A mechanistic, systems level
interpretation of a disease could point to multiple drug
targets, moving away from the single drug single target
paradigm [4]. Such systems approaches to pharmacology
[5] and toxicology [6] could lead to more effective drug
development strategies [7].

Genome-scale network analysis of
metabolism
Metabolomics and metabolic modelling are important tools in
following and predicting disease progress and understanding
drug efficacy and mode of action [3,8]. In the last decade,
enormous progress has been made in the genome-scale
analysis of metabolic networks for a large number of
species ranging from bacteria (e.g. E. coli [9]), to eukaryotes
(e.g. S. cerevisiae [10]) to humans [11,12] and includes
important human pathogens (e.g. Haemophilus influenzae
[13], Mycobacterium tuberculosis [14] and Plasmodium
falciparum [15–18]). These networks are very large, up to
several thousands of reactions and the analyses are restricted
to topological and constraint based modelling techniques,

Biochem. Soc. Trans. (2015) 43, 1157–1163; doi:10.1042/BST20150145 C©2015 Authors; published by Portland Press Limited
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Figure 1 Hierarchical multi-scale model for malaria patients

The whole-body model consists of several modules at the organ level, each described with input-output functions. The red

blood cell compartment is modelled at the cellular and detailed metabolic level, including P. falciparum metabolism.

such as flux balance analysis [19,20]. Such models have
been very useful for calculating metabolic phenotypes [21],
such as the prediction of changes in metabolite biomarkers
for inborn errors of metabolism [12] or, for instance, in
analysing medium composition requirements for bacterial
growth [22]. The models are typically analysed for steady
state conditions and optimization criteria (e.g. growth rate)
are used to minimize the solution space. Choosing suitable
constraints on exchange reactions, biomass composition and
maintenance reactions can have important effects on model
predictions and should be done carefully.

Why study metabolism in malaria
patients?
Malaria is a dreaded disease that is widespread across tropical
and sub-tropical regions and responsible for the death of

between 500000 and 1000000 people per year, mostly children
in sub-Saharan countries. One might not immediately think
of malaria as a metabolic disease; the classic symptom of
48-h cyclical fever attacks and diagnosis via blood smears has
no relation to metabolism. However, the key-diagnostics for
poor chances of survival, lactic acidosis and hypoglycaemia
[23] are clearly linked to metabolism. In addition, in malaria
patients, blood concentrations of glycerol [24] and alanine
are increased and arginine concentration is decreased [25],
indicating more general metabolic changes [26].

To what extent can these metabolic changes be related
to metabolic activity of the parasite? Plasmodium cannot
synthesize its own amino acids and is dependent on the
host’s haemoglobin for protein biosynthesis and on the host’s
glucose for its free energy production. As such, the metabolic
activity of the parasite has a direct effect on the host, but, in
addition, the parasites cause indirect damage by lysis of red

C©2015 Authors; published by Portland Press Limited
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blood cells and sequestration of parasitized red blood cells in
the vasculature leading to reduced blood perfusion [27].

Although the pathophysiology used to be attributed to two
main syndromes, cerebral malaria and severe anaemia malaria,
it has become clear that severe malaria is complicated and
involves several syndromes [27–29]. Ultimately, the goal is to
delineate the individual contributions of these syndromes to
the pathophysiology of malaria. Such an analysis would point
at the best points of intervention to relieve the burden of the
disease. In an attempt to estimate the direct contribution of
Plasmodium activity we set out to analyse its amino acid and
carbohydrate metabolism.

Plasmodium biomass production from
haemoglobin
The genome of P. falciparum was sequenced in 2002
and several genome-scale metabolic maps have been
reconstructed [30]. Plasmodium is severely limited in its
biosynthetic reactions and is largely dependent on the host’s
supply of amino acids for protein synthesis, for which the
parasite degrades almost all haemoglobin in the red blood
cell during its 48-h growth cycle. The specific condition
of Plasmodium growing in the red blood cell and using
the available haemoglobin for protein synthesis, leads to
an elegant set of constraints that can be used in a genome-
scale analysis. We used an existing genome-scale model [18]
with a set rate of haemoglobin consumption (assuming a
75 % consumption of total haemoglobin in 48-h [31]) and
optimized for biomass production, only allowing uptake of
the amino acids isoleucine and arginine. Isoleucine is not
present in haemoglobin and must be taken up from the blood.
P. falciparum is known to convert arginine to ornithine [32],
leading to hypoargininaemia [25]. Under these conditions,
a specific growth rate of 0.049 h− 1 was calculated for P.
falciparum, which is close to the expected value of 0.058 h− 1

(calculated on the basis of 16 merozoites formed in 48-h).
A glucose consumption rate of 1.6 mmol·h− 1·gDW− 1 was
obtained which is somewhat lower than the experimentally
measured value of 2.1 mmol·h− 1·gDW− 1 [33].

The complete set of reactions for the genome-scale
network is shown in Figure 2(A), where the red lines
indicate the fluxes through the reactions. In Figure 2(B),
a subset of reactions involved in amino acid metabolism is
shown. These reactions fall in three classes: (1) degradation
of haemoglobin, (2) the synthesis of biomass and (3) export
and inter-conversion of amino acids. The export fluxes for
the amino acids are indicated in Figure 2(C).

The relative amino acid production rates compare well with
rates observed in P. falciparum culture [32]. Note that the
arginine to ornithine conversion was part of the objective
and is therefore not a validation for the model. One cannot
immediately compare these amino acid product formation
rates to changes in blood amino acid concentrations in malaria
patients since these concentrations are also dependent on the
consumption rates in the body. However, the high capacity
of the network to consume arginine and the high alanine

production rates are in good agreement with the observed
hypoargininaemia and high alanine blood concentrations
in malaria patients. Interestingly, a high alanine blood
concentration in malaria patients is usually attributed to a
reduced alanine to glucose conversion in the liver [26], but
our network analysis shows that a high alanine production
by Plasmodium could contribute to this symptom. For an
accurate prediction of blood concentration changes of amino
acids a full body implementation of a model is required.
However, high production rates (e.g. alanine) or consumption
rates (e.g. arginine) due to Plasmodium activity can point to
potential metabolic biomarkers for malaria progression. In
addition, one can simulate the effect of a drug by setting
a constraint on a metabolic flux in the network. If such
an inhibition is complete then the network analysis can be
accurate and the effect is dependent on whether the inhibited
step is essential or not. If the inhibition is not complete, which
is the likely scenario, it is better to analyse the effect in a
kinetic model.

Kinetic modelling of Plasmodium glucose
metabolism in malaria patients
Currently no detailed kinetic models exist for genome-
scale networks, mostly due to limited kinetic informa-
tion. Kinetic models do exist for smaller systems, such
as central carbon metabolism and in a more coarse-
grained form for organ and organism level metabolism.
To analyse the effect of increased glycolytic activity of
Plasmodium infected red blood cells in malaria patients,
we merged three existing kinetic models: a detailed
kinetic model for glycolysis of P. falciparum [34], a
detailed kinetic model for central carbon metabolism of the
red blood cell [35–37] and a coarse grained kinetic model
for whole-body glucose metabolism [38]. The models were
obtained from the JWS Online [39] and Biomodels [40] model
repositories, corrected for units and shared-variable-names
inconsistencies and integrated. No adaptations were made to
the P. falciparum and red blood cell model and for the whole-
body model only the fixed metabolites alanine and non-
esterified fatty acids were changed. A detailed description
of the merged model will be published elsewhere (K. Green,
D.C. Palm, F. du Toit and D.D. van Niekerk and Snoep,
manuscript in preparation).

Figure 3(A) shows a schema for the combined model
with the compartmentalized whole-body model and the
added Plasmodium infected red blood model. A simulation
of the effect of increased parasitaemia on blood glucose
concentration is given in Figure 3(B), together with patient
data (and rat model data) obtained from the literature.
The patient data show a lot of scatter, which is indicative
of large intermittent variance (no longitudinal data for a
patient followed over time was available). Most papers make
reference to hypoglycaemia in severe malaria patients, but
then do not report both parasitaemia and blood glucose levels.
The model prediction does simulate the reference state and
the few patient data with hypoglycaemia, for which data were
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Figure 2 P. falciparum genome-scale network analysis

The steady state solution space for the genome-scale metabolic network for P. falciparum [18] with a set influx rate of

0.83 μmol haemoglobin·h− 1·gDW− 1 was optimized for biomass formation and ornithine production. Fluxes are indicated in

red on the complete network structure in (A). A subset of reactions for amino acid metabolism, indicating the haemoglobin

degradation, biomass formation and the amino acid inter-conversion and export are indicated in (B). The export fluxes of

the different amino acids are indicated in (C).

available, quite well. Similarly, the lactate data for malaria
patients shows a lot of scatter (Figure 3C) and much more
consistent data for the longitudinal rat study was obtained.
The model prediction of lactate is low for the reference
state but seems to follow the trend of lactate increase (and
the rat data) reasonably well. In Figure 3(D), the results of
an inhibition of the glucose transporter (to 50 % of non-
inhibited lactate flux) in P. falciparum are simulated.

Discussion and conclusion
To understand the pathophysiology of complex diseases,
whole-body mathematical models can be strong tools to
integrate and analyse the numerous effects that lead to
the disease state. Specifically, when personal parameters
can be added to such a model, they can be instrumental
in choosing a correct treatment. Currently only very few
molecularly informed models exist for the whole-body level
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Figure 3 Modelling glucose and lactate metabolism in malaria patients

(A) kinetic model for whole-body glucose metabolism [38] was merged with two detailed kinetic models for glucose

metabolism in P. falciparum [34] and the red blood cell [35–37] (A). The effect of increasing levels of parasitaemia on

steady state blood glucose and lactate concentrations was analysed and shown in (B and C) respectively, together with

concentrations measured in malaria patients (black symbols, calculated from [41–52]) and rat data (red symbols, calculated

from [53]). The shaded boxes indicate the severe malaria (> 5 % parasitaemia) and hypoglycaemia (<2 mM glucose, B)

and lactic acidosis (>5 mM lactate, C) areas. (D) The effect of inhibition of the glucose transport step (starting at t = 50 min,

resulting in 50 % reduction in glycolytic flux in the parasite) on blood glucose and lactate concentrations in a malaria patient

(5 % parasitaemia) was simulated.

that are detailed enough to be useful in medical applications
(e.g. http://www.entelos.com). Specifically for the simulation
of pharmacological drug effects on the disease state there
is a big challenge in terms of modelling at the correct

level of detail. To simulate the drug effect at the reaction
step, a high level of detail is needed at the drug target
level, which cannot be sustained up to the whole-body
level.
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In the present paper, we illustrated how a hierarchical
model, with a high level of detail at the drug target site and
more coarse-grained for the whole-body level, can be used
to simulate the effect of a pharmaceutical drug on blood
glucose concentration. Clearly, the model is still in a very
rudimentary stage; we only simulate the direct metabolic
effect of parasite activity and have ignored any effects on
blood perfusion or reduced red blood cell contents due to
cell lysis or any of the large number of secondary effects
caused by the malaria parasites. In addition, we simulated
the drug effect by simply assuming a constant inhibitor
concentration in the blood, a much more realistic simulation
would have to include a full PK/PD (pharmacokinetics/
pharmacodynamics) model to evaluate the drug efficacy
[5,54].

The aim to mechanistically simulate drug effects (inhibiting
a specific target reaction) at the whole-body level (physiolo-
gical disease state) is very ambitious. However, we feel the
time is right for this. Some large-scale projects have existed
for quite some time and produced detailed kinetic models at
the organ level that can be extended to the whole-body level
(e.g. the physiome project, http://physiomeproject.org [55];
the virtual liver, http://www.virtual-liver.de [56]). In addition,
a much stronger adherence to modelling standards, such as
description in standard formats [systems biology markup
language (SBML) and CellML)] and storage in curated model
databases (JWS Online, Biomodels and CellML), makes
model reuse much easier. For our initial model construction,
we merged three existing models and this enabled us to make
some preliminary simulations at different hierarchical levels.
Of course, one cannot simple merge all existing models; they
must be compatible and constructed for similar physiological
conditions [57]. After merging of existing models, one can
start a number of iterative cycles to improve the integral
model and adapt it to specific disease states.

With the present concept paper, we hope to have illustrated
the approach we follow towards whole-body modelling of
blood glucose and lactate metabolism in malaria patients.
Clearly, much work is still needed and especially at the whole-
body level the model needs to be validated more thoroughly.
For this, we will first work in a rat model system for which
it is much easier to obtain longitudinal data. Although the
specific model for malaria patients is still very preliminary,
the suggested approach of a hierarchical model structure
with a high level of detail at the drug target level and more
coarse-grained models at the whole-body physiological level,
is generic and could be applied to other complex metabolic
diseases such as type II diabetes.
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