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Abstract 

This research investigates the technical impacts of energy storage systems (ESSs) 

on low voltage (LV) residential feeders. A critical literature review on the existing 

impact assessment methodologies informs on the requirements of an efficient  

methodology that ensures the accurate and detailed assessment of feeder 

performance under ESS penetration. Based on the review’s findings, a 

comprehensive stochastic-probabilistic methodology is proposed that directly 

accounts for the unpredictability in customer behaviour and the subsequent impact 

on the diversity and variability in simulation inputs and outcomes of load flow 

analysis (something that most impact assessment methodologies do not 

adequately account for). The proposed methodology makes use of the Monte Carlo 

Simulation method as a stochastic simulator to simulate the uncertainty in the 

feeder placement of ESSs, and the Herman-Beta extended algorithm to solve the 

probabilistic load flow analysis. This proposed methodology can be used to assess 

the hosting capacity of radial LV distribution feeders to increasing penetrations of 

ESSs. The simulation results, from detailed and comprehensive input modelling, 

can provide helpful and more accurate and representative information to 

distribution network planners and policymakers, than simplified methodologies. 
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Opsomming 

Hierdie navorsing ondersoek die tegniese gevolge van energieopbergings stelsels 

(EOS) op lae spanning (LS) residensiële toevoere. 'n Omvattende literatuuroorsig 

van bestaande impakbeoordelingsmetodologieë gee inligting oor die vereistes van 

'n doeltreffende metodologie wat die akkurate en gedetailleerde assessering van 

die voerprestasie onder ESS-penetrasie verseker. Op grond van die oorsig 

bevindings, word 'n omvattende stogastiese-waarskynlikheids metodologie 

voorgestel wat die onvoorspelbaarheid van kliëntegedrag aanspreek en die impak 

op diversiteit en wisselvalligheid in simulasie-insette en simulasie-uitkomste van 

lasvloei-analise (iets wat die meeste impakassesseringsmetodologieë nie 

voldoende aanspreek nie). Die voorgestelde metodologie maak gebruik van die 

Monte Carlo Simulasie metode as ‘n stogastiese simulator om die onskerheid in 

toevoerplasing van die ESS te simuleer, en die Herman-Beta- uitgebreide 

algoritme om die waarskynlike lasvloei-analise op te los. Hierdie voorgestelde 

metologie kan gebruik word om die huisves kapasiteit van die radiale LV-

verspreidingstoevoere te beoordeel met betrekking tot toenemende penetrasies 

van ESS's. Hierdie simulasie-resultate, van gedetailleerde en omvattende 

insetmodellering, kan nuttige, meer akkurate en verteenwoordigende inligting aan 

verspreidingsnetwerkbeplanners en beleidsmakers bied as vereenvoudigde 

metodologieë. 
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1 Introduction 

This introduction chapter will provide background information to show the 

relevance of the research investigated. The specific thesis topic is motivated, and 

the hypothesis and research questions are presented. The chapter then gives an 

overview of the thesis structure to provide a map to guide the reading of the thesis. 
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1.1 Background and motivation 

1.1.1 Principles of distribution network design 

According to [1], there are three main criteria for an efficient power supply. The 

supply needs to be (i) compliant – supply power at a consistent and acceptable 

voltage level and frequency, (ii) adequate – reach all customer with enough 

capacity to meet their demand, (iii) reliable – able to meet the demand of customers 

at all times without interruption. Overall, the network design should be efficient and 

effective, designed to minimize losses and optimize network investments. To do 

this, appropriate distribution network design is key.  

The objective of good distribution network design is to ensure that the three main 

criteria mentioned above are met. Knowledge of the expected loads, allowing 

capacity for load changes in a defined planning horizon, is important as this informs 

the process of component selection, sizing, and placement. Knowledge of the 

expected loads will ensure that the system can meet the demand requirements. 

Transformers are sized and selected so that the total power supplied does not 

result in prolonged periods of transformer overloading. Conductor cables are 

selected so that the total current flowing in any branch or section of the conductor 

cables does not exceed the current carrying capacity of the cable. The conductor 

cables are also selected so that the sum of the voltage drops to the most distant 

node does not violate the lower limit of the power quality standards regarding 

voltage level. The voltage-drop resulting in network losses are a function of the 

electrical properties of the conductor cables and the load current. Conductor and 

transformer loading are both directly proportional to the load current. From this, it 

is evident that knowledge of the expected loads is vital. 

In the past, feeder designs assumed one-directional power flow and were based 

on deterministic methods that assume load homogeneity. The unpredictability and 

randomness in customer behaviour make deterministic load models inadequate. 

Detailed load research has demonstrated the extent of randomness in customer 

loads and has motivated the suitability of probabilistic methods over deterministic 

ones [2], [3]. In addition to this, the introduction of distributed generation (DG) and 

energy storage system (ESS) technologies such as hybrid photovoltaic (PV) 
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systems, battery energy storage systems (BESSs), uninterruptable power supply 

(UPSs) systems, electric motorcycles (EMs) and electric vehicles (EVs) have 

become more common.  

1.1.2 The penetration of new technologies and the need for 
appropriate planning tools 

There has been a significant increase in the uptake of EVs especially over the last 

10 years, with a 400% increase in EVs worldwide from 2015 to 2019 alone [4]. The 

increase in uptake is partly attributed to deliberate efforts by policymakers to 

promote EV adoption through rebates, tax breaks and incentives [5]. This resulted 

in the increase in EV sales and subsequently the number of EVs connecting to 

power systems. The world’s total installed PV capacity increased by over 4 300 % 

in only 10 years from 9.2 GW in 2007 to 404.5 GW in 2017 [6]. Due to the 

misalignment in the peak demand hours and maximum PV output, the uptake of 

PV systems is often accompanied by BESSs [7]. This configuration is in many 

cases referred to as hybrid PV systems. This entire grouping (EVs, BESS, hybrid 

PV, UPS) will be referred to as ESSs from this point. 

Traditional power systems were not designed to accommodate these newly 

introduced ESS technologies. As a result, variable load profiles and bidirectional 

power flow possible with these introduced ESS technologies have changed the net 

load profiles that traditional power systems were initially designed to handle. The 

introduction of these technologies has had a significant impact on the planning and 

operation of distribution networks. The introduction of ESS technologies as been 

associated with several technical issues including excessive voltage-drop, voltage 

unbalance, increase in network losses, thermal overloading, underfrequency and 

current harmonics [8]–[11]. The magnitude of the effect of ESS technologies is 

dependent on the penetration level of these technologies, which depends on the 

regulations regarding its uptake and conditions of operation (i.e. prohibiting 

charging or power export during certain periods). Therefore, impact assessment 

studies focussed on investigating the nature, scope, and severity of the technical 

impact of these technologies on distribution networks have become more 

important. 
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1.1.3 Limitations of modern planning tools and opportunities for 
research 

Two load characteristics complicate the formulation and application of impact 

assessment studies: (1) the unpredictability and uncertainty in usage patterns, 

which affect the characterization of load profiles and load diversity within given 

intervals, and (2) unknown factors such as the placement of the ESS technologies, 

particularly the phase of connection. These issues are common to all ESS 

technologies but there are some differences.  EV loads differ from other distributed 

ESS technologies in terms of the sources of unpredictability and uncertainty. For 

one, EV loads are significantly dependent on the individual customer’s behaviour 

such as mobility, while PV exports are mostly influenced by common 

characteristics such as weather conditions. The EV owner’s behaviour influences 

both the usage pattern and charging pattern of the EV. In addition to the behaviour 

of EV owners, another aspect of uncertainty unique to EV loads is the direction of 

power flow. EV batteries can act as a load (power import) or generator (power 

export), where the direction of power flow will determine the scope and magnitude 

of the technical issues experienced by the grid. ESSs in general have similar 

predicted growths, technical impacts and considerations that introduce uncertainty. 

The most simplistic existing impact assessment methodologies tend to make use 

of simplified distribution feeder models, deterministic load models for the 

residential load and ESS load, worst-case scenario placement of ESSs and 

deterministic load flow analysis, as will be explored in greater detail in Chapter 2. 

Often in cases where probabilistic load models are used, placement will still be 

worst-case scenario based or too few placement scenarios are simulated to 

accurately account for the full scope of placement possibilities. Simplified feeder 

models do not allow the accurate representation of loading conditions on the 

feeder. Deterministic load models do not account for the diversity in both the 

residential customer loads and EV loads, due to the unpredictability of customer 

behaviour. And worst-case scenario placement strategies do not account for the 

randomness in location of ESSs due to the unpredictability regarding which 

customers will invest in the ESS under investigation. 
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1.2 Hypothesis and research questions 

With customer behaviour being unpredictable, probabilistic customer load models 

are more suitable than the deterministic customer load models still widely used in 

impacts assessment studies [12]. Furthermore, the introduction of ESS 

technologies into LV networks has changed the net load profile expected at 

residential level. Traditional design and planning methodologies, which includes 

assumptions regarding load profiles and direction of load flow, are therefore less 

relevant now than in the past.  

New planning tools for active distribution networks with ESS technologies need to 

accommodate various forms of uncertainty associated with the usage patterns and 

conditions of uptake such as the system capacity and location to node and phase.  

The hypothesis of this research is phrased as follows:  

A comprehensive impact assessment methodology for LV feeder 
performance under ESS penetration can be developed, which accounts for 
the load uncertainty resulting from unpredictable customer behaviour. 

The following list of research questions are used to guide the research and answer 

the research hypothesis: 

1. What are the technical impacts of ESSs (namely EMs, EVs and hybrid PV 

systems) on LV residential distribution feeders and to what extent are 

existing distribution network infrastructure technically impacted by 

increasing penetrations of these ESSs? 

2. What are the state-of-the-art approaches for conducting impact 

assessment studies to determine the technical impacts and the estimation 

of a network’s hosting capacity to EVs, and what are their limitations?  

3. What are the characteristics of a comprehensive methodology for the 

impact assessment of EVs on LV distribution feeders? 

4. Can a comprehensive impact assessment methodology that incorporates 

these identified characteristics be developed? 
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The answers to these research questions are reported in three conference papers, 

included as Appendix A [13], Appendix B [14] and Appendix C [15], one journal 

paper, included in Appendix D [16] and two content chapters (chapter 2 and 3). 

1.3 Scope and limitations 

This research is focussed on achieving detailed and accurate assessments of the 

impacts of ESSs on LV distribution feeders. Although studies investigating the 

impacts of EMs and hybrid PV systems are conducted, EVs are deemed a good 

proxy for ESSs in general as it represents all the aspects of ESSs (random uptake, 

ability to act as a load or generation, influenced by customer behaviour etc.). 

Therefore, a significant portion of the work conducted is based on EVs. However, 

the methodology developed and EV model proposed can be used for any ESS. 

There are three types of EVs: hybrid EVs (HEVs), plug-in hybrid EVs (PHEVs) and 

battery EVs (BEVs). HEVs and PHEVs make use of both petrol and electricity, 

while BEVs are fully electric. This work makes reference to only BEVs and refers 

to these as EVs. 

The research is further limited to LV residential feeders of radial configuration and 

3-phase 4-wire topology.   

1.4 Thesis structure 

To answer the aforementioned research questions, a look at the network design 

and planning frameworks, a comprehensive review of impact assessment 

methodologies, investigation of the technical impacts of ESSs and extent of these 

impacts are necessary.  

The research is approached as follows. This document consists of five chapters. 

Chapter 2 is a review of EV impact assessment methodologies proposed in 

literature, giving particular attention to the formulation of the load flow inputs, 

defining the scope of technical parameters assessed, method of load flow analysis 

and EV penetration scenarios. Chapter 3 describes the EV modelling and 

simulation approaches used in this research, allowing for accurate probabilistic 
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modelling of the EV load, and ensuring extensive feeder analysis. Chapter 4 

integrates the results of chapters 2 and 3 and consolidates the findings from papers 

[13]–[16] that have been written, to answer the research questions. Chapter 5 

concludes the research. The papers written to support this thesis can be 

summarized as follows: 

Appendix A [13]: The Impact of Distributed Hybrid Photovoltaic Backup 
Systems on Shared Residential Feeders 
This paper explores the impacts of grid-interactive PV systems with self-

consumption and uninterruptable power supply functionalities. The paper refers to 

these as “hybrid PV systems” simply meaning there is a battery as an additional 

component to the traditional PV system. The technical impacts of these hybrid PV 

systems, specifically looking at how the network is affected by grid charging of 

these systems and power injection into the grid, are described in this paper.  

Appendix B [14]: Probabilistic Impact Assessment of Residential Charging 
of Electric Motorcycles on LV Feeders 

This paper uses a stochastic-probabilistic approach to explore the impacts of the 

residential charging of EMs on LV distribution feeders. This paper is particularly 

relevant due to the expected increase in the number of EMs specifically in East 

Africa. Motorcycles, and soon EMs, are a popular mode of transport in these 

regions. EM loads and factors contributing the modelling of these loads are 

considered to be similar to those affecting EV loads. 

Appendix C [15]: Considerations for Impact Assessments of Electric 
Vehicles on South African Residential Networks 

This paper identifies considerations and inputs to guide impact assessment studies 

to determine the extent of the technical issues caused by EVs on LV residential 

feeders. 

Appendix D [16]: A Comprehensive Stochastic-Probabilistic Methodology for 
Assessing the Impact of Electric Vehicle Charging on Low Voltage 
Distribution Networks 
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This paper proposes a comprehensive methodology, making use of a stochastic-

probabilistic approach, for impact assessment studies investigating the effects of 

EV charging on LV distribution feeders. This paper documents a case study in 

which the methodology is demonstrated on a practical feeder in South Africa. 
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2 A Review of Impact Assessment 
Studies of Electric Vehicles on Low 
Voltage Residential Networks  

EVs have gained interest over the past 10 years as the world becomes more 

environmentally conscious and resource sustainability becomes a priority. 

However, renewable and sustainable technologies do not come without 

challenges. The introduction of these technologies brought potential technical 

impacts to the environments into which they were incorporated.  EVs have a 

significant impact on power systems due to the nature of the loads introduced by 

EVs. Because of this, many approaches to assessing and quantifying the impacts 

have been formulated.  

This chapter reviews EV impact assessment methodologies reported in literature. 

The focus is on how the factors related to the diversity and uncertainty of load flow 

inputs, specifically the EV load and simulation characteristics attached to future EV 

penetration, are addressed. This is achieved by reviewing the technical impacts 

assessed and highlighting the inputs considered by the various assessment 

methodologies, and how these inputs are modelled during simulations. Informed 

by this, the chapter then discusses the advantages and limitations of the various 

methodologies.  

Through this review, the required EV impact assessment methodology 

characteristics are identified, and the objectives defined to ensure that the 

simulation results accurately inform the decisions of planners and policymakers. 
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When assessing the impacts of ESS technologies, in this case EVs, it is one thing 

to know that EV charging will affect voltage level and another to know that this may 

result in severe voltage drops or strain on the physical infrastructure causing 

irreparable damage. Therefore, further than identifying the possible technical 

impacts on a network it is useful to conduct load flow analysis simulations to 

observe the extent of these technical issues. However, the usefulness of the results 

of such load flow analysis studies is dependent on the accuracy of the input 

models, the capability and suitability of the load flow method and the applicability 

of the technical parameters assessed in the output analysis. The relation between 

these components of a load flow analysis is shown in Figure 1 below. 

This chapter will discuss the reviewed papers and their methodologies under the 

following headings: load flow inputs, scope of technical parameters assessed, 

methods for load flow analysis and simulation of EV penetration scenarios. 

2.1 Load flow inputs 

The following three load flow inputs have been identified and will be discussed in 

further detail below: network modelling, residential load modelling and EV load 

modelling. 

2.1.1 Network modelling 

The network model forms the skeleton for the assessment simulation. The 

residential customer load models and the EV load models are applied to the 

Figure 1: Impact Assessment Overview Illustration 
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network model.  Therefore before being able to assess the impacts of EVs, it is 

important to have accurate models for the distribution network [17]. The network 

model details several properties including the feeder topology, the transformer 

sizing and location, conductor lengths and electrical properties and customer 

location and phase distribution. 

In most cases, distribution network operators (DNOs) or policymakers do not have 

accurate information regarding the customer phase distribution along an LV feeder. 

The impact on voltage-drop as a result of customer phase allocation has been 

previously studied and shown to be significant [18]. Though the study was based 

on systems without EVs, its results suggest that the detail of the network model 

used for simulation is likely to have a significant effect on the results of the EV 

impact assessment study. If the simulation network model is far from reality, the 

respective results will be misleading; leading to overly restrictive regulations that 

unnecessarily limits the uptake of EVs, or too relaxed regulations that result in 

frequent violations of statutory limits. Decisions made based on these simulation 

results may therefore not be the most suitable and could even be detrimental if 

careful consideration of the network model used is not taken.  

There are several possibilities when modelling a network for an assessment 

simulation i.e. simplified or detailed models, real or test networks, models 

characterizing existing networks or those for new electrification projects etc. In 

general, most studies state the size of the transformer and the number of 

customers served. Details regarding the electrical properties of the conductors or 

customer distribution is seldomly given, if at all. Papadopoulos et al. [19] modelled 

a simplified network consisting of an ideal voltage source connected to two 

transformers and a substation with six outgoing feeders. Only one of the feeders 

was modelled in detail, with the single-phase loads distributed evenly across the 

three phases. The other five feeders were modelled as lumped loads having a 

single load representative of all the customers along that feeder branch. This does 

not allow for the assessment of the effects of voltage unbalance nor the effects of 

voltage-drop along these branched feeders. Simplified networks are not ideal as 

they do not allow for the full scope of technical impacts to be assessed [20], [21]. 
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Since traditional power systems were designed and built before the introduction of 

technologies such as PV systems, BESSs and EVs, demonstrating the difference 

in accommodation of EVs in existing networks and new electrification projects 

improves the quality of planning decisions. Tie et al. [22] modelled both an existing 

(in the paper referred to as a mature network) and newly developed network. It 

should be noted that under passive conditions the feeder loading of the feeders in 

the mature network were on average 11.7 % higher than the feeder loading in the 

newly developed network. The results showed that the newly designed network 

could handle 10% more EVs than the mature network based on the voltage 

unbalance limit and as much as 50% more EVs in terms on the thermal loading 

limit of the conductor cables. Quirós-Tortós et al. modelled nine different LV 

residential networks in the UK [23]. These networks were found to be able to 

accommodate varying penetrations of EVs. That study demonstrated that the exact 

results from one network should not be blindly extrapolated to the next. However, 

trends and general conclusions may be applicable across multiple networks. 

Because of the difference in hosting capacity between long existing and newly 

developed networks as well as discrepancies between different networks in 

general, careful consideration for the network modelled should be taken, paying 

close attention to networks in areas that are likely to have an increase in EV uptake. 

Some studies modelled test networks [9], [10], [18], [24], [25], however these 

synthetic or test networks are usually simplified and limited in their representation 

of practical feeder conditions. As a result, the use of such networks must be limited 

to the study of the nature of technical impacts and not the formulation of regulations 

or any other sensitive planning decisions. The importance of modelling a realistic 

network is acknowledged by several studies that modelled existing and detailed 

networks [20], [21], [26]–[30].  

Overall, most networks experienced technical problems when dealing with 

increasing penetrations of EVs and therefore regulations are necessary. The 

bounds of these regulations are complicated by multiple factors whose correlation 

is extremely difficult to model and the large diversity of feeder conditions makes 

the application of assumptions inevitable. Also, unless a study is targeted at the 

detailed performance analysis of an individual feeder, the selection of 
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representative feeders should ensure the results achieve global perspective of the 

technical impacts on most feeders and suitable limits of penetration. This review 

emphasizes the necessity of selecting an appropriate and detailed network model 

that is realistic and representative of conditions along a practical feeder (realistic 

customer distribution, transformer size, cable lengths and electrical properties). 

This is likely to yield realistic and practical results. 

2.1.2 Residential load modelling 

The residential load model forms the base that EV loads (and subsequently the 

effects of the EVs) will be superimposed onto. Therefore, the accurate modelling 

of the residential customer loads is important. Two main methods, namely 

deterministic and probabilistic, are used to model these loads. Several studies [24], 

[31]–[37] chose to model worst-case scenario, high consumption periods being 

winter weekday evenings, with [24], [33], [36] modelling both winter evening and 

summer noon peaks.  Many studies [10], [34], [35], [38]–[40] modelled these loads 

deterministically, applying a single daily load profile to every customer along the 

simulated feeder. This method does not account for the diversity in the customer 

loads. The element of uncertainty and variability in customer behaviour is ignored. 

Such methods based on average and uniform demand, even with the application 

of empirical factors for diversity and unbalance, fail to account for the likelihood or 

risk of occurrence of the assumed input states. Depending on the relativity of the 

assumed input states to the distribution of the full range of possible states, the 

corresponding results may result in overly restrictive or relaxed EV uptake 

regulations, which impact the optimal use of resources and the reliability of 

networks, respectively. 

In [41], Awadallah et al. ran multiple simulations, initially for two worst-case 

conditions being winter evening and summer noon peak hours. Then simulations 

for a typical spring day was conducted for three different time intervals 

corresponding to a minimum, medium and peak load consumption hour. Although 

multiple scenarios were conducted to assess various periods of interest, the 

customer diversity in each scenario was ignored as each customer was assigned 

the same constant load value. By simulating various time intervals, this model 

demonstrates the variability of the residential load with time. However, by assigning 
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each customer the same constant load value this method fails to adequately model 

the customer load uncertainty and diversity within a specific time interval. 

In both [23] and [37], Quirós-Tortós et al. made use of a tool that generates 

domestic load profiles based on various factors including  the behaviour of British 

customers, the number of people at home, the type of day and the month. The tool 

generates a pool of 1000 load profiles and these profiles are assigned at random 

to customer nodes during the simulation. Unlike the aforementioned example, both 

of these methods acknowledge an important factor regarding customer 

behavioural uncertainty. Both methods attempt to model the residential loads 

incorporating the diversity within a specific time interval. In [7], 100 Monte Carlo 

(MC) simulations were conducted; however, the full spectrum of scenarios may not 

be tested with so few scenarios. In such a case it may be necessary to conduct 

considerably more (a few thousand) scenarios to get an accurate depiction of the 

possibilities. In [42], Flynn et el. used 15-minute time series load data for high, 

medium and low use customers, monitored for a year to generate probability 

density functions (PDFs) to describe the customers’ load demand. This 

probabilistic characterization of the residential load is adequate, although it has 

been reported that 5-minute interval data is best for this application [43]. 

Traditional approaches based on deterministic load modelling in which the same 

single load profile or constant load value is assigned to all customers are not 

suitable under input uncertainty, and do not lead to realistic results.  Methods 

based on iterative simulation of random scenarios have the potential to accurately 

model the input behaviour. However, a large number of scenarios, in the order of 

104 are often required, which attracts high computational burden. Statistical 

characterization of load diversity using PDFs or cumulative density functions 

(CDFs) in each time interval in ways that allow analytic analysis supports high 

computational efficient tools. This review concludes that the approach to model the 

residential customer load should accurately and effectively address the diversity in 

customer loads and unpredictability in customer behaviour. 
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2.1.3 EV load modelling 

EV load modelling (similar to residential load modelling) largely due to its 

dependence on unpredictable customer behaviour, has inherent variability. 

Subsequently, characteristics that affect the EV load model include variation with 

time and diversity within a specific time interval. Factors including charge rate and 

duration, EV location, time interval and coincidence of charging have all been 

reported to influence the impact that EV charging has on a network [44]–[47]. 

These have been incorporated and the following five factors that shape the EV 

load model have been identified and will be detailed below: 

1. EV battery capacity,  

2. Battery state of charge (SoC) when connecting to charge, 

3. Mode of charging and therefore charging power rating,  

4. Travel data informing home arrival and departure times,  

5. Implementation of charge schemes or tariff incentives. 

2.1.3.1 Battery capacity 

The battery capacity will influence the duration of the EV load when charging. The 

battery capacity of the EVs modelled in the impact assessment simulations 

reviewed ranged from 10 kWh to 35 kWh. As far as specific EVs modelled, a few 

studies modelled the 24 kWh Nissan Leaf [22], [23], [38], [48], others modelled the 

16 kWh Mitsubishi i-MiEV [18], [40], [48] and one study modelled the BMW i3 [39]. 

Many studies did not specify the specific EV modelled. Studies that based the 

battery capacity on a exact EV model, did so on the basis of high EV sales of that 

brand of EV in the country or city in question.  

2.1.3.2 SoC 

The SoC of the EV battery when connecting to charge will determine both the 

duration and size of the load. While the SoC affecting the duration of the load is 

intuitive, how the SoC affects the size of the load may not be. A battery SoC curve 
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shows the relationship between the amount of power being drawn (size of load) vs 

battery SoC. Figure 2 below shows the SoC curve for the 22 kWh and 33 kWh 

Nissan Leaf. It is evident that the charge speed (load size) is almost constant for a 

considerable portion of the charging period. 

The SoC when connecting at home to charge is dependent on the usage pattern 

(including daily travel distance) of the EV and energy consumption rate as well as 

the use of a secondary charging facility. Extensive daily travel distances and high 

energy consumption rates will result in a lower SoC. However, the use of a 

secondary charging facility at work is likely to result in higher SoC percentages 

when arriving home and connecting to charge.  

In [49], Kintner-Meyer et al., conducted one simulation in which charging was 

strictly done at home and another where charging was possible at home and work. 

When charging was possible at work, this introduced a morning peak in the 

charging profile, corresponding to ordinary work arrival times. This also resulted in 

a smaller evening charging peak compared to when charging was restricted to 

solely take place at home. Another study only modelled residential charging as 

majority of privately owned EVs are charged at home [50]. 

Figure 2: SoC Curve for 22 kWh and 33 kWh Nissan Leaf [62] 
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In [34], the initial SoC when connecting to charge was modelled as a Gaussian 

PDF with the mean SoC at 50%, while in [38] because of the lack of travel data 

available the SoC when connecting to charge was assumed to be completely flat. 

However, in [22] the battery longevity was taken into account and the SoC was 

controlled between 20 % and 80 %. Subsequently, the EV was modelled as a 

constant 3.3 kW load.  

The incorporation of variability due to unpredictable customer behaviour is 

attempted by [23], [39], [42]. In [23], Quirós-Tortós et al. created 1000 EV profiles 

for initial and final SoC and in [42], Flynn et al. created a PDF for initial SoC based 

on one year’s data collected in a trial. In [39] a Weibull distribution of travel data, 

along with an assumed energy consumption rate was used to determine the initial 

SoC. 

Most studies assume that once an EV is connected to charge, the EV will only be 

disconnected once charging is complete. This is typical for overnight residential 

charging.  

2.1.3.3 Type of charging 

The type or charging (slow, quick, or fast/ rapid charging) that takes place affects 

the size and duration of the load and is determined by the voltage supply level and 

type of charger (power rating and connection type) used. Slow charging results in 

smaller loads for longer periods of time while rapid charging results in larger loads 

for shorter periods of time. The residential voltage supply level is dependent on the 

electricity supply standards adopted by the country. A summary of the residential 

voltage supply levels stipulated in [51] for Europe and North America is shown in 

Table 1. 
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Table 1: International EV Charging Standards in Europe and North 
America 

Most ordinary residential sockets can accommodate slow charging in terms of 

European Standards or up until Level 2 charging in terms of North American 

Standards.  

In [19], single- and three-phase residential quick (level 2) charging is modelled in 

addition to single-phase slow charging. The distribution of these various charging 

methods is made in favour of single phased slow charging. With 10 % of residents 

having single-phase quick charging facilities, 20 % having three-phase quick 

charging facilities and 70 % of residents making use of ordinary single-phase slow 

charging. Although it is possible to install fast charging stations at home, this is 

Europe 

Charge 
Method 

Power [kW] 
Maximum 

Current [A] 
Connection Location 

Normal (slow) 3.7 10-16 1-phase AC Domestic 

Medium 
(quick) 

3.7-22 16-32 
1- or 3-phase 

AC 
Semi-public 

High (fast) >22 > 32 3- phase AC Public 

High >22 > 3 225 DC Public 

North America 

Charge 
Method 

Maximum 
Power [kW] 

Maximum 
Current [A] 

Connection 
Nominal AC 

Supply Voltage [V] 

Level 1 1.44 12 1-phase AC 120 

Level 2 7.7 32 
1- or 3-phase 

AC 
240 

Level 3 240 400 3-phase DC 208-600 
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costly and most EV owners do no find this a necessity. Consequently majority of 

impact assessments solely model ordinary residential charging [23]–[25], [33], [37], 

[50], [52], [53]. 

2.1.3.4 Traffic data 

Traffic data, along with the daily travel distance mentioned in the SoC section 

above, will inform likely home arrival times. This home arrival times could inform 

potential periods of interest during which mass simultaneous EV charging will be 

likely. Many studies assumed that if there are no restrictions regarding when 

charging may take place, most EV owners will connect their EVs to charge when 

arriving home from work, as is the case in [18], [38], [39], [48], [50], [53]. For the 

most part, this home arrival time is assumed to correspond to the evening peak 

consumption period.  

In [33], for unrestricted charging, two common connection times were identified. 

The first when owners arrive home from work (coinciding with the evening demand 

peak) and the second at around 22:30, that is assumed to correspond to charging 

after the final trip of the day. 

Both [23], [37] make use of historical data to create a pool of 1000 EV profiles, 

indicating connection time. In [42], a PDF of typical connection times based on data 

collected during an EV trial is used, while in [39], the connection time is modelled 

as a normal distribution function with a mean on 19:15 and standard deviation of 

1.5 hours. 

In [40], a curve of vehicle movement was obtained for Barcelona and shifted two 

hours earlier to be a better representation of Denmark. This mobility curve was 

used to indicate when vehicles were likely to be at home and available for charging.  

The main purpose of traffic data informing home arrival times is to identify periods 

of interest. It has been widely concluded that without charge restrictions (charge 

schemes or tariff incentives), mass simultaneous charging is likely to coincide with 

the evening residential consumption peak. 
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2.1.3.5 Charge scheme and tariff incentive implementation 

Charge schemes are mandatory. Charge schemes prohibit charging during 

specific periods or restrict charging to specific periods. Charge schemes can also 

be implemented to allow a certain group of customers to charge during specific 

time periods, giving all customers a designated charge period that will put the least 

amount of strain on the network.  

Tariff incentives differ from charge schemes in the way that they can be seen as 

optional opposed to mandatory. Tariff incentives attempt to encourage a desired 

customer behaviour by making charging during certain periods more financially 

beneficial than during other periods. However, with tariff incentives it is possible to 

choose convenience over cost. 

In [39], it is observed from the simulation results that a multi tariff system may result 

in the elimination of many violations to power quality standards, if EV owners make 

use of the favourable rates during specific time periods. 

In [50], where charge schemes delayed charging until after the evening peak, it 

was found that nodal voltage deviations at locations furthest from the transformer 

were reduced compared to uncontrolled charging. This controlled charging was 

also found to reduce the coincidence of household peak demand and EV charging 

peak demand.  

Charge scheme implementation is also found to reduce the need for investments 

for infrastructure modification [40], result in no increase in the peak load and 

decrease the maximum line loading [38]. 

With smart charging, which is different from charge schemes as it incorporates a 

control algorithm and monitoring system, a higher level of control is possible. 

In [19], three levels of EV penetration (low, medium and high) was studied 

corresponding to 12.5 %, 33.3 % and 70.8 % respectively, with penetration being 

defined as a measure of households with EVs. The level of smart charging was 

also scaled from 0% (referred to as dumb charging where no form of control was 

allowed), 25 %, 50 % and 100 % (corresponding to all EV owners having smart 
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charging abilities). It was found that in most cases, the wide application (100 %) of 

smart charging could decrease the number of alerts and violations of power quality 

standards to zero. 

Overall, the implementation of charge schemes, tariff incentives or smart charging 

technology is concluded to decrease the extent of technical issues and power 

quality violations in a network. The widespread implementation of these strategies 

may in some cases alleviate all of the technical issues caused by EV charging and 

increase the hosting capacity of networks significantly. 

To summarize, the uncertain variables that affect the EV load include the make 

and model of EV (informing battery capacity and energy consumption rate), owner 

behaviour (daily travel distance affecting SoC, charge patterns informing periods 

of interest, installation of fast charging facilities at residential level affecting charge 

rate) and the implementation of charge schemes and tariff incentives. All of these 

factors, with its effect of the load shown in Figure 3 below, bring diversity and 

uncertainty to the EV load. While some studies attempt to address these factors, 

most impact assessment studies fail to address them all. Some studies 

acknowledge the variability of the EV load with time but fail to address the diversity 

in the EV load for a specific time interval.  This review concludes that motivated 

assumptions be made regarding certain factors of uncertainty, the diversity in the 

EV load be addressed and unpredictability in customer behaviour be incorporated 

in the EV load model. 

Figure 3: Factors that affect the EV Load Model 

Stellenbosch University https://scholar.sun.ac.za



22 

2.2 Scope of technical parameters assessed 

The supply of electricity to customers is regulated through power quality standards 

to ensure the optimal performance of the network and connected equipment. An 

increase in EV penetration may have effects on the network, due to newly 

introduced loads and/or generations (when using the EV battery for energy 

arbitrage, self-consumption or UPS functionalities), that were not taken into 

account in the initial distribution network design. A range of technical issues is 

possible, and the extent of these issues depends on the penetration level of EVs 

and restrictions concerning operation.  

The following parameters (voltage level, voltage unbalance and thermal loading of 

conductors and transformer) are usually used as indicators to assess the 

accommodation of the network to EVs. How each of these technical parameters 

are affected by EVs interacting with the grid is detailed below. 

2.2.1 Voltage level 

The additional load demand from the charging of EV batteries can cause large 

voltage-drops along a feeder. Although a voltage-drop along the feeder is normal 

and expected, due to the size of the additional loads, the voltage-drop could be 

excessive and cause the feeder voltage level to fall below the minimum voltage 

level prescribed by the power quality standards. Mass simultaneous charging of 

EV batteries has in many cases shown to cause severe voltage drops beyond the 

prescribed supply standards [10], [18], [19], [33], [34], [39], [40], especially if this 

mass charging coincides with peak demand loads. In most cases voltage-drop 

violations occurred at houses close to the end of the feeder (furthest from the 

transformer).  

Similarly, when EV batteries are used as distributed generation (DG) and are 

allowed to export power into the network, feeder voltage may rise, which in excess 

may also be problematic. This export of power into the grid could cause the voltage 

level along the feeder to rise and exceed the maximum voltage level stipulated in 

the power quality standards. This is demonstrated in [33]. At 30% EV penetration 

(as a measure of houses with EV), when the EVs are in generation mode, the tap 
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changer and the voltage level at all points along the feeder exceed their statutory 

limit.  

Something to note is that although EV charging is likely to result in voltage drops 

along the feeder and EV discharging result in voltage rise, the effects of voltage 

unbalance should not be overlooked. Due to voltage unbalance, it is possible that 

EV charging may result in voltage rise and EV discharging in voltage drops.  

2.2.2 Voltage unbalance 

Electricity is generated, transmitted, and distributed as three-phase power. 

However, each household along an LV feeder is typically connected to only one of 

the three phases. If the three phases are not evenly loaded this could result in 

voltage unbalance. Power quality standards stipulate the percentage of voltage 

unbalance that is allowed. The utility cannot predict which customers will adopt 

EVs. This uncertainly implies that if charging of the EVs is done at home, the EV 

battery can be connected to an unknown node and phase in the network. This 

could result in the three phases being unequally loaded, causing voltage 

unbalance along the feeder. Voltage unbalance causes extra heating and results 

in increased losses [54].  

In [19], for the deterministic analysis, Papadopoulos et al. ignored the effects of 

voltage unbalance by allocating the single-phase EV loads uniformly across the 

nodes and phases. Results from such simulations do not demonstrate the full 

scope of effects and extent of technical issues which may arise from the uneven 

distribution of EVs in a network. Other studies acknowledge the impacts of uneven 

loading of the three phases and the effect it may have on voltage unbalance. Ul-

Haq et al. [10] analysed the effects of uneven phase loading using two placement 

scenarios. The first scenario distributed the EV loads across phase a, b and c in 

the ratio of 50%, 30% and 20% respectively. The second scenario distributed the 

EVs across the three phases in the ratio of 80%, 20% and 0% respectively. It was 

found that for the first scenario, the network could handle up to 50% EV penetration 

before exceeding a voltage unbalance limit of 2%. While scenario two only allowed 

a penetration of 25% before the voltage unbalance limit was breached.  The 

uneven loading of the three phases is shown to have a significant effect on voltage 
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unbalance and subsequently the hosting capacity of a network to EVs while 

adhering to power quality standards.  

Although [42] assigned EVs randomly during the simulation process, the impact on 

voltage unbalance was not assessed. The study does however acknowledge the 

effect of voltage unbalance on voltage level and mentions the benefit of monitoring 

the phase allocation of EVs in future simulations in order to observe the full scope 

of technical impacts. More studies [18], [19], [22], [33], [34], [40] recognize the 

unpredictability of EV uptake (with regard to node and phase) and subsequently 

model the placement of EV randomly, allowing for uneven EV phase allocation. 

2.2.3 Thermal loading of conductors and transformer 

Transformers and conductors are sized and selected according to the expected 

loads. For design purposes, knowledge of the expected loads is required to 

accurately size these components. Traditional power systems that were designed 

and built before the broader based introduction of DG and ESSs, included 

additional capacity for traditional load growth, but it is not likely that this was in 

excess. Specifically, not to the extent of meeting the capacity demand 

requirements of these newer technologies. The demand during mass simultaneous 

charging of EVs, especially when coincident with ordinary pre-EV peak demand, is 

found to result in thermal overloading of both the transformers and conductors [18], 

[19], [22], [23], [40]. This leads to inefficient operation, loss of component life and 

increased network losses [22], [39]. This component overloading is addressed in 

[19], [35], [40], [50], by implementing charge schemes that coordinate EV charging 

from peak periods. These studies have found that this significantly decreases 

component loading. 

2.3 Method for load flow analysis  

There are two load flow analysis methods reported, deterministic and probabilistic. 

The load flow analysis method will be dependent on how the simulation inputs have 

been defined and therefore how these inputs will be handled during the simulation. 

Whether customers and EV loads are assigned single constant load values, 

whether different types of customer loads have been used or whether customer 
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loads and EV loads are assigned as distributions. Whether EVs are characterized 

as constant power loads or whether EV loads made use of varying charging rates. 

Deterministic load flow (DLF) methods applied in [25], [35], [36], [38], [41] are not 

able to explicitly simulate the effects of the load input uncertainty and variability 

and therefore this inherent uncertainty and variability is not factored in the results.  

In [38], an average residential load was assigned to each customer for different 

EVs charging-load scenarios, in which a single iteration was run for each scenario. 

The scenarios are characterised by penetration percentages (5 %, 10 %, 20 % and 

50 %), whether charging was regulated or unregulated and whether fast charging 

was prohibited or allowed forming a total of 12 scenarios.  

In [36], simulations were conducted for both a summer and winter’s day. The 

number of EV assigned to each customer was increased from one to seven and 

the charging rate increasing from 1 kW to 3.3 kW to 6 kW and finally 20 kW. This 

created two sets (summer and winter) of 28 scenarios each. Simply put, one 

scenario consisted of all customer being assigned the same residential load profile 

(either summer or winter), where each customer is assigned the same number of 

EVs (ranging from one to seven) at the same charging rate (1 kW, 3.3 kW, 6 kW 

or 20 kW). Running a single iteration of each scenario and changing the loads 

uniformly for all customers ignores the diversity in the residential load and EV load 

in the interval being analysed. 

[41] implemented a process similar to [36], but instead of using four charging rates, 

only made use of two (3.3 kW and 6.6 kW), at three penetration percentages 

(33 %, 66 % and 100 %) at three time intervals (corresponding to the minimum, 

medium and maximum load hour). This produced a total of 18 scenarios. 

Although [36], [38], [41] ran multiple scenarios, this is not close to the number of 

scenarios necessary to accurately model the full extent of variability in the load 

inputs. 

Probabilistic load flow (PLF) methods are implemented by [19], [22]–[24], [34], [39], 

[40], [42]. To ease the computational burden some studies ran fewer iterations than 

what is usually deemed necessary to accurately model the input behaviour. Often 
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this may come at the cost of not accurately representing the entire scope of 

possible scenarios and therefore the results might not depict the full extent of 

technical issues possible. [39] ran 200 MC based load flow analysis iterations per 

hour for each of the four penetration percentages (10%, 20%, 30% and 50%) 

analysed. Each MC iteration assigned a connection time from a normal PDF of 

plug-in trends and a charge duration based on a Weibull distribution of daily travel 

characteristics. [23], [40] used both a DLF and PLF analysis method where [23] 

conducted 100 MC simulations while [40] only conducted 50 load flows in the 

probabilistic section. In [23] the MC simulations handled the random allocation of 

residential and EV load profiles to each customer from a pool of 1000 profiles each, 

as well as the random placement of EVs. 

[19], [22], [24], [34] acknowledged the need for significantly more iterations. Both 

[22], [24] ran 1000 iterations, while [34] set the simulation process to continue for 

10 000 iterations or if the variation in the last 10 iterations was less than 1e-4. In 

[19] the MC method conducted power flows for 2 days until the terminating criteria 

was satisfied. This was when the standard error of each node’s voltage magnitude 

for every time step that fell below 0.001%. When it comes to determining the 

appropriate number of iterations to run, a convergence or error margin can be used 

or a set number of iterations that has been tested to produce results that fall within 

a specified error margin can be used. 

Studies that make use of PLF methods are particularly helpful to network planners 

and policy makes as the full and realistic extent of technical issues possible are 

addressed, especially studies that include some form of risk index in the 

interpretation of the simulation results [19], [22], [34], [42]. This informs the planner 

or policy maker of the risk involved when planning or allowing for a certain 

penetration of EVs in attempt to inform optimal network design strategies and EV 

uptake restrictions.  
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2.4 Simulation of EV penetration scenarios 

The simulation of EV penetration scenarios can be separated into two sections (i) 

how penetration percentage is defined and (ii) the EV placement strategy adopted 

during the simulation process. 

2.4.1 Definition and quantification of penetration percentage 

There is not a standard way in which the measure of EV penetration should be 

defined. Some studies express the measure of penetration percentage as the 

number of EVs over the total vehicle fleet of the residential area analysed [23], [25], 

[53]. Other studies define penetration as the number of EVs over the total number 

of households considered in the assessment [10], [19], [22], [25], [33], [35], [37], 

[41]. These different definitions result in varying acceptable penetration 

percentages. Although neither definition is incorrect it is very important to clearly 

define the penetration percentage definition used and be careful when making 

direct comparisons from one impact assessment to another, especially when 

different definitions of penetration percentage have been used. 

The penetration percentage definition found in an impact assessment of PV 

systems [43] was adapted in [15] to define the measure of penetration for EV 

impact assessment simulations. The adaption from equation 1 to equation 2 is 

found below.   

PV Penetration Percentage = Cumulative Power of PV Installed [kW]
Feeder Maximum Demand [kW] ×100% (1) 

EV Penetration Percentage = Cumulative Power of EVs Loads [kW]
Feeder Maximum Demand [kW] ×100% (2) 

Both equations above define penetration percentage in relation to the feeder 

properties, specifically feeder maximum demand (FMD). This proposed definition 

allows the simulation results to be indicative of the maximum cumulative charging 

capacity that the network can handle as a percentage of the FMD. This definition 

can be manipulated based on the charging capacity of each EV and subsequently 

be used to calculate the corresponding number of EVs allocated. Using this 
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definition ten EVs of 3 kW in network A may result in a penetration of 50%, while 

ten EVs of 3 kW in network B results in a penetration of 25%. The FMD of network 

A is 60 kW and the FMD of network B is 120 kW. Likewise, a penetration 

percentage of 20% in network A will be equivalent to four 3 kW EVs while 20% in 

network B will be equivalent to eight 3 kW EVs. Also, for network A if the 

penetration percentage that the network could handle was 50%, and if the EVs 

were modelled having a charging capacity of 6 kW opposed to 3 kW, this would 

result in an equivalent of 5 EVs opposed to ten. For both 3 kW and 6 kW the 

cumulative power is 30 kW. This definition defined above allows for simple 

conversion and easier comparison between network results.  

2.4.2 Simulation of EV placement  

EV placement strategies can be categorised into three approaches; (i) single, fixed 

scenario, pure deterministic placement, (ii) limited, manually selected worst-case 

scenario placement and finally (iii) stochastic placement. 

[36] adopted a purely deterministic approach by allocating EVs uniformly across 

the network nodes, first allocating one EV to each customer, monitoring the 

network condition, then adding another EV to each customer then monitoring the 

network conditions and so forth.  

The second approach makes use of multiple scenarios and places EVs at specified 

locations, determined by the planner, along the feeder that may be deemed to have 

the largest effect on the network [18], [25]. In [25] EVs were first placed at houses 

furthest from the substation bus, then at houses closest to the substation bus. This 

was done to assess the two polar cases. While this method of worst-case 

placement scenarios may be helpful in determining the extreme conditions along 

a feeder, given the most unfavourable placement regardless of how unlikely, this 

method may not mimic reality. Although this will give a good idea of the maximum 

effect of EVs and the results may lead to very conservative EV uptake policies, this 

may not be realistic. Similar to uniform pattern placement strategies, this worst-

case placement scenarios do not account for the unpredictability in EV placement.  
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Finally, the stochastic approach accounts for the randomness in the placement of 

EVs, as the first and second approach may not result in realistic or probable 

placement. The random placement strategies are seen as more realistic, as it more 

often than worst-case scenario approaches, mimics actual EV uptake. This random 

placement strategy used in  [22]–[24], [42], [52] recognizes and reflects the 

randomness and unpredictability in the placement of EVs along a feeder. Both [19], 

[48] conducted a deterministic and probabilistic analysis making use of different 

placement strategies for each analysis. In [19], for the deterministic section, EVs 

were allocated uniformly (approach (i) ) among the network nodes while in [48] the 

deterministic analysis placed EVs at critical locations (approach (ii) ). Both studies 

allocated EVs randomly for the probabilistic analysis section and acknowledge the 

importance thereof.  

This review concludes that the stochastic placement approach is best as it caters 

for the uncertainties associated with the EV impacts, including the location (node 

and phase) of EVs, that the single scenario and worst-case placement approach 

fails to adequately address. 

2.5 Chapter summary and conclusions 

To conclude, this review identifies five key components necessary for a 

comprehensive analysis, and proposes the approach of these components as 

follows:  

1. The network model needs to be detailed and realistic, and simulation 

conditions need to resemble the characteristics of a practical feeder.  

2. The residential customer load and EV load models should account for the 

diversity in these loads, and the unpredictability of the customers’ 

behaviour. 

3. The method used to simulate the allocation of EVs should reflect the 

randomness in EV uptake and therefore the uncertainty in EV location 

(node and phase). 
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4. The load flow analysis method should explicitly account for the stochasticity 

and variability in both the residential customer and EV loads.  

5. The technical parameters assessed to serve as an indicator of a networks 

hosting capacity to EV loads should ensure that the power quality 

standards and component loading limits are adhered to. The technical 

parameters identified are voltage level, voltage unbalance and transformer 

and conductor loading. 

Figure 4 below visually illustrates components 1-4 from the list above and where 

each component fits within in the bigger simulation process. This forms the 

framework comprising the key components necessary for a comprehensive impact 

assessment study. In [16], this framework is expanded, and a methodology 

proposed for how each of these five components can be addressed and modelled 

when conducting an impact assessment simulation. 

 

Figure 4: Components of a Comprehensive Impact Assessment 
Methodology 
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3 Probabilistic EV Modelling and 
Modified Use of the HBE-MCS Impact 
Assessment Tool  

Chapter 2 informed the key components for a comprehensive impact assessment 

methodology. The key components identified include (i) detail network modelling, 

(ii) the use of residential customer and EV load models that account for the diversity 

in these loads and unpredictability of customer behaviour, (iii) the uncertainty in EV 

placement and (iv) a load flow method that explicitly account for uncertainty and 

variability in the load input models. This chapter describes the simulation methods 

used in this work, which is based on a combined stochastic-probabilistic approach 

called the Herman-Beta Extended-Monte Carlo Simulation (HBE-MCS) method, 

that has been used for impact assessments of PV systems. The chapter describes 

the preparation of the input models, definition of simulation conditions and 

modification of the HBE-MCS tool that was done in this research to make it suitable 

for EV applications. 
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3.1 Why the HBE-MCS tool? 

The Herman-Beta (HB) transform was originally developed for PLF analysis to 

assess the impacts on voltage-drop of passive loads on radial LV feeders and 

ultimately the selection and sizing of conductors in feeder design [55]. The HB 

transform was adopted as the national standard for LV feeder design in South 

Africa [56]. In 2017, the transform was extended to allow for assessment of active 

LV feeders [32], and extended in 2019 to form the HBE transform [57], which 

removed restriction to LV feeders and added a variety of functionalities, making it 

widely applicable. The HBE transform is a single-pass analytical approach for PLF 

analysis. It calculates statistical bus voltages and branch currents, to assess the 

impacts on voltage level, thermal loading and voltage unbalance, on radial feeders 

at any voltage level. The HBE takes in beta-PDF inputs (of current, power or 

impedance) and produces beta PDF defined outputs [57], where these outputs can 

be interpreted using design risk margins. The modelling of the inputs (loads and 

generations) using beta PDFs allows for the representation of these loads and 

generations with the associated uncertainty. The HBE-MCS tool was used in both 

[32], [43] to assess the impacts of distributed energy resources (DERs), specifically 

PV systems, on LV feeders. 

The following features of the HBE-MCS tool make it suitable for the intended 

application:  

 The HBE-MCS tool is analytic and therefore supports the need for 

computational efficiency.  

 The tool makes use of PDF based inputs accounting for the explicit 

modelling of input uncertainty. The use of the beta PDF specifically makes 

load modelling versatile. 

 The MCS component allows for the extensive modelling and simulation of 

the unpredictability in EV placement.  
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 The HB transform is the standard for feeder design in South Africa and 

therefore its use in this application has the potential to advance design 

standards.  

 The scope of technical parameters that can be monitored and the 

interpretation of these outputs to include design risk makes this tool 

particularly useful for comparison to power quality standards.  

From this it is evident that the HBE-MCS tool meets all the requirements of a robust 

impact assessment tool set out in Chapter 2. The tool does however require some 

modifications to extend the application to EV penetration analysis.  

3.2 Modifications to the HBE-MCS tool to include 
EVs 

The following modifications are required to extend the application of the tool to EV 

penetration analysis: 

 EV load modelling using the beta PDF 

 Building the EV models into the HBE 

 Modifying the conditions in the MC simulator 

3.2.1 EV load modelling using the beta PDF 

This section will explain the applicability of the beta PDF to model the EV load. 

3.2.1.1 Why beta PDFs? 

The beta distribution models probability, its domain is ordinarily bound between 0 

and 1, and the distribution is defined by two shape parameters alpha and beta. The 

beta distribution is very flexible and by changing the values of the shape 

parameters alpha and beta, the distribution can be U-shaped, bell shaped, 

symmetrical, left and right skewed or even uniform. The versatility of the beta PDF 

to take on many shapes is shown in Figure 5. 
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The beta PDF can further be defined by a scaling factor C, that bounds the domain 

between 0 and C, where C can be representative of a maximum or full load 

condition. This is particularly useful as this matches the expectation of the loads 

and generations falling between zero and a maximum value (this maximum can be 

restricted to the customers’ circuit breaker value for loads and the maximum 

inverter output capacity for ESSs). 

The use of beta PDFs for PLF analysis is particularly convenient since the alpha 

and beta parameters are easily extracted from load data and captures all the 

statistical properties of the load such as mean, mode, skewness, moments and 

kurtosis [57].  

One of the assumptions made is that the beta PDF is a suitable descriptor of 

residential customer loads at any specified interval. In South Africa, residential 

customers are clustered according to characteristics used to define Living 

Standard Measure (LSM) levels, that can inform expected loads. A load research 

study conducted in South Africa concluded that the loads of these customer groups 

during the interval of maximum demand (IMD) followed beta distributions [58]. 

Further work demonstrated the suitability of the beta PDF to model load 

measurements in extended periods beyond the IMD [59]. The question that 

remains is whether the beta PDF is a suitable descriptor for EV loads. 

Figure 5: Versatility of Beta PDF Illustrated 
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3.2.1.2 Beta PDF for EV load 

As previously mentioned, the flexibility of the beta PDF allows for the modelling of 

various load shapes. The generic SoC curve of a lithium-ion EV battery (Figure 6 

below), shows that for a majority of the charge period, the amount of power being 

drawn to charge an EV is almost constant. Let this constant value be called K. 

This constant charge power being drawn is with the exception of the very beginning 

and final phases of charging. The very beginning portion of the SoC curve is not 

particularly important as it is not advised to allow the EV battery to deplete 

completely, to reduce battery degradation and prolong battery life. This means that 

if a random charge power was selected from this charge curve, the chances would 

be high that this charge power would be K, and less likely that it would relate to a 

charging power at the beginning or end of charge. It is possible to model this 

probability making use of a beta distribution. The assumptions and how the beta 

PDF shape parameters are extracted is explained in the following section. 

3.2.1.3 Assumptions and procedures for extracting beta PDF parameters 

for EV load model 

For the extraction of the beta PDF shape parameters alpha and beta, the following 

method is followed. The SoC curve is modelled as a piecewise linear function for 

values 0 to 100, representing completely flat to fully charged. It is assumed that 

the EV owners will not allow the batteries to drain completely to ensure longevity 

of the battery life, therefore the deviation of the power values at the beginning 

portion of the SoC curve will not be incorporated.  

Figure 6: Generic SoC Curve for Lithium-ion EV Battery 
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The piecewise linear function is constant from zero until a certain value, after which 

the curve can be described by a linear decreasing function. The value at which the 

SoC begins to decrease is between 65 % and 85 % SoC. For the purpose of 

demonstrating how the beta PDF parameters are extracted, let this value be 75 % 

and the constant charge value be 2.5 kW. Table 2 below shows this discretised 

SoC vs power values.  

Table 2: Discretised SoC vs Power for EV SoC Curve 

SoC [%] 0 1 2 3 … 75 76 77 … 99 100 

Power [kW] 2,5 2,5 2,5 2,5 2,5 2,5 2,4 2,3 … 0,1 0 

From this it is possible to calculate the mean (μ) and standard deviation (σ) for the 

data set. The mean and standard deviation values are then used to calculate the 

alpha and beta shape parameter values using equations 3 and 4 below. 

α = ቀ1-μ
σ2 - 1

μ
ቁ μ2 (3) 

β = α ቀ1
μ

-1ቁ  (4) 

The value of the scaling factor C will be 2.5 kW in this case as the power value will 

not exceed this. For the data set above, the calculated shape parameters are as 

follows: 

α = 0.4893 and β = 0.0699. 
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The beta PDF is shown below in Figure 7. 

The shape parameters would not be the same for all time intervals, as the 

discretised SoC versus power curve should reflect the likelihood that the EVs have 

been charging for a few hours already (and many vehicles may be closer to the 

end section of the charge curve) or whether most EV owners have just connected 

their EVs to charge. This would be informed by the daily travel distance and the 

home arrival time in relation to the time of connection and time period under 

analysis. 

3.2.2 Building the EV models into the HBE 

As already stated, the HBE-MCS tool has been used to assess the impacts of PV 

systems on LV feeders. This was achieved by modelling the PV as negative loads 

and separating the residential customer loads and the PV loads by implementing 

sub-nodes. These nodes were separated by an insignificant  distance (e.g. 0.01 

m) that allowed algebraic integrity and the principle of superposition to be easily 

applied [32]. Each household was now represented by two nodes, illustrated in 

Figure 8. 

Figure 7: Beta PDF for EV Load 
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The first sub-node received the beta PDF representing the positive residential 

customer load. If the household was assigned a PV system, the second sub-node 

is assigned a beta PDF model for the generation (negative load) of the PV system. 

In [43] it was concluded that this approach was not limited to PV systems but that 

different types of loads could be modelled using this approach. 

In [15] the application of this approach is extended to EVs where the PV loads are 

replaced by EV loads. As with the PV loads, the EV loads are separated from the 

residential loads because not only can an EV battery act as both a load and 

generator, but the beta distribution representing the EV load model has different 

shaping parameters and a different scaling factor to the residential customer load 

distribution. The reason for this algebraic separation is because beta PDFs with 

different shape parameters cannot be readily summed. This extended approach is 

also applied to EMs in [14] and again to EVs in [16]. 

3.2.3 Modifying the conditions in the MCS simulation 

In addition to the EV load modelling being probabilistic, a stochastic placement 

strategy provides means to the simulation of a representative distribution of EVs 

across the network. The MCS method has been used in EV impact assessment 

studies for the purpose of random EV placement [23], [34], [37]. This random 

placement of single phased EV loads explicitly accounts for unbalanced allocation 

of EVs and therefore unbalanced phase loading across the three phases in a 

Figure 8: Household Node Separation Illustration 
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distribution network. This allows for a detailed analysis of the conditions of voltage 

unbalance and its impacts on other technical variables such as voltage level and 

conductor loading. 

When used for PV systems, the HBE-MCS tool makes use of the MCS method as 

a stochastic simulator to mimic random PV allocation (location and capacity). 

Where a PV unit, of a given capacity (e.g. 2 kW), is randomly assigned one unit at 

a time. The maximum number of units that may be assigned to any household is 

specified upfront. If a specific household is selected at random after it has already 

been assigned a PV unit, but the household has not reached the maximum number 

of units specified, the household is assigned an additional unit. This allows the tool 

to assign PV systems of varying capacities.  

This approach needed some adjustment for the EV application. Since it is not 

possible to own half an EV, the EV “unit” assigned should resemble one full EV 

load. And similarly to the maximum number of PV units that may be assigned to a 

household, the maximum number of EVs that may be assigned to any customer 

should be specified upfront. 

At each penetration percentage, a number of MCS placements that balances 

simulation accuracy and computational speed is conducted. When this HBE-MCS 

tool was used in [60], 1000 MCS placement scenarios were found to be sufficient. 

The results at each penetration percentage will represent 1000 of the worst cases 

along the feeder of each technical parameter monitored (i.e. maximum and 

minimum voltage, maximum voltage unbalance, and maximum transformer and 

conductor loading). 

The level of risk incorporated indicates the likelihood that the technical parameter 

assessed will violate the stipulated power quality standards. According to the South 

African quality of supply standards stipulated in [56], the electricity supply should 

comply with the standards and therefore fall within the specifications 95% of the 

time. Because the HBE transform is probabilistic, a risk factor (e.g.  5%) can be 

incorporated in the PLF analysis. However, since the output of a defined number 

of MCS runs (e.g. 1000) gives information about the distribution of the most 

extreme technical parameter values at each penetration percentage, it is possible 
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to incorporate an additional factor of risk. This second factor of risk can be 

incorporated in the analysis of the stochastic results. In this case, when the making 

use of the combined risk factors, 2.5 % can be applied in the PLF analysis and 

2.5 % in the secondary process of interpretation, resulting in an overall risk factor 

of 5%, or inversely a confidence of 95% in the results. This overall combined risk 

is therefore compliant with the power quality standards. However, the level of risk 

incorporated in the simulation and results interpretation is influenced by how 

accurately the loads have been modelled and the application of the results [61]. If 

there is uncertainty with the load model adopted, a larger level of risk should be 

incorporated in the analysis of the results. 

3.3 Simulation procedure 

After the modelling of both the residential customer load and EV load using beta 

PDFs, the incorporation of the EV loads into the HBE using the node separation 

approach, and the modification of the conditions of the MCS placement simulator, 

the HBE-MCS tool is now suitable for EV penetration applications. 

The simulation process is explained in the following five steps, fully described in 

[14]. 

1. Determine the FMD by loading the residential customer load subnodes 

and linearly incrementing the load until the first occurrence of either a 

voltage or conductor loading violation. 

2. Reset the load to the original residential customer loads and add ESSs 

(hybrid PV systems, EMs or EVs) randomly using the MCS method 

guided by the penetration level under analysis and the limits per 

household. 

3. Perform the HBE and record the worst-condition of each technical 

variable (maximum voltage, minimum voltage, maximum voltage 

unbalance, maximum conductor loading, and maximum transformer 

loading) based on a desired level of risk. 
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4. Repeat processes 2 and 3 for a defined number of scenarios selected 

(e.g. 1000) to balance simulation accuracy with computational speed. 

5. Increment the penetration level and repeat processes 2 to 4 until every 

node reaches the maximum specified ESS limit per household. 

The program flow into which these five steps are incorporated is presented in 

Figure 9 below. 

3.4 Verification of Modified HBE_MCS Tool 

The modified HBE-MCS tool is verified by simulating two sets of simulations. The 

first set of simulations shows how the tool is able to simulate load-mode (battery 

charging) and generation-mode (battery discharging). In the first scenario the EV 

is simulated in load-mode. The beta PDF representative of the EV load will be a 

Figure 9: Overall Program Flow for MCS-HBE Tool 
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negative load, indicating load-mode. In the second scenario the EV is simulated in 

generation-mode and the EV load will be positive, injecting power into the network. 

The maximum voltage level and minimum voltage level for both modes are 

monitored. This is shown in Figure 10 and Figure 11 below.  
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Figure 10: Simulation Results for Modified HBE-MCS Tool in Load-Mode 
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Figure 11: Simulation Results for Modified HBE-MCS Tool in Generation-Mode 
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The red trendline in the feeder maximum voltage curves (top curve) and blue 

trendline in the feeder minimum voltage curves (bottom curve) indicate the 95 % 

confidence interval referred to in section 3.2.3. For the red trendline, 95 % of the 

data points observed falls below this line. Inversely, for the blue trendline, 95 % of 

the data points lie above this line. These trendlines simply aid in assessing the 

results while incorporating a 5 % level of risk. 

The green trendlines in Figure 11 represent the 95 % trendline from load-mode 

that has been superimposed onto the generation-mode curves for easy 

comparison. In generation-mode the extent of voltage rise is higher than when the 

EV is placed in load-mode. This is illustrated by comparing the green trendline in 

(a) of Figure 11 to the red trendline. In load-mode it is evident that the extent of 

voltage drop is considerably higher than when the EV is simulated in generation-

mode. This is illustrated by comparing the green trendline in (b) of Figure 11 to the 

blue trendline. This decrease in voltage rise and increase in voltage drop is to be 

expected as charging results in voltage drop and discharging in voltage rise. The 

extent of voltage rise in load-mode and voltage drop in generation-mode is 

attributed to the effect that voltage unbalance has on voltage level.  

For the second set of simulations the EVs will be simulated in load-mode only, 

while the shape parameters for the beta PDF representing the EV load will be 

changed (Scenario 1: α = 2, β = 5; Scenario 2: α = 5, β = 2). 

Once again, the minimum voltage level and maximum voltage level for both 

scenarios are monitored. The results are shown in Figure 12 and Figure 13. 

In scenario 1 the shape parameter alpha is smaller than beta. As a result, the beta 

PDF is skewed to the right. In scenario 2 the shape parameter alpha is larger than 

beta. As a result, the beta PDF is skewed to the left. Because both scenarios are 

making use of the same scaling factor, the mean of the load is smaller in scenario 1 

than in scenario 2. The green trendlines seen in Figure 13 represent the 95 % 

confidence interval from scenario 1 superimposed onto the curves of scenario 2. 

When comparing the green trendline in (b) of Figure 13 to the blue trendline, the 

results from scenario 1 show a smaller voltage drop than in scenario 2. This 

confirms that the mean of the load in scenario 1 is in fact smaller than the mean of 
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the load in scenario 2. As with the previous set of simulations, the increase in 

voltage level from scenario 1 to scenario 2 can be attributed to the amplification in 

the effects of voltage unbalance due to the larger load. 

(a) 

(b) 

Scenario 1 

Figure 12: Results of HBE-MCS Tool Verification - Scenario 1 
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 Scenario 2 
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Figure 13: Results of HBE-MCS Tool Verification - Scenario 2 
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These straightforward simulations verify that the HBE-MCS tool has been 

successfully modified. 

3.5 Chapter conclusion 
This chapter motivates the selection of the HBE-MCS tool based on the tool’s 

computational efficiency, the explicit modelling of input uncertainty, the ability to 

model the unpredictable placement of EVs and the scope of technical parameters 

that can be monitored.  

The tool is adapted to model the EV load using the beta PDF and include the EV 

model in the HBE while the conditions in the MC simulator is modified for EV 

allocation. The simulation procedure, for the modified HBE-MCS tool, detailed and 

verified in this chapter, is used for the EV studies in [15] and [16] and an EM study 

in [14].   
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4 Results Informing the Thesis Research 
Questions 

In this chapter the primary results, conclusions and contributions of the research 

will be discussed, consolidated and used to answer the four research questions. 

The four research questions that this thesis aims to answer are all directed towards 

proving the hypothesis. Furthermore, the research questions are directed towards 

developing a robust and comprehensive methodology to be used for ESS impacts 

assessments, that can be used to help planners and policy makers make informed 

decisions regarding components selection, infrastructure upgrade 

recommendations and uptake regulations around ESSs.  
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4.1 Results relating to research question 1 

Research Question: What are the technical impacts of ESSs (namely EMs, EVs 

and hybrid PV systems) on LV residential distribution feeders and to what extent 

are existing distribution network infrastructure technically impacted by increasing 

penetrations of these ESSs? 

In order to develop a comprehensive impact assessment methodology, it is 

necessary to determine the technical impacts of ESSs, review the proposed 

methodologies reported in literature and identify the characteristics necessary for 

a comprehensive methodology. 

To answer research question 1, the technical impacts of ESSs on LV residential 

distribution feeders is investigated, and to what extent these existing networks are 

affected by increasing penetration levels of these ESSs is determined. 

The research assessing the impacts of ESSs (hybrid PV systems, EVs and EMs) 

identify voltage level, voltage unbalance and component loading (of the 

transformer and conductor cables) as the primary technical impacts of ESSs on 

distribution networks [13]–[15]. Voltage unbalance is found to be affected by the 

unbalanced location of these ESSs on the network due to the unpredictability 

regarding which customers will adopt these technologies. Feeder voltage level rise 

or drop is primarily affected by whether the ESS is charging (consuming power) or 

discharging (exporting power). Additionally, the effect of voltage unbalance on 

feeder voltage level is also acknowledged. Components loading is found to be 

largely influenced by mass simultaneous charging or discharging of these ESSs. 

Operational constraints are found to cause varying degrees of impacts on the 

network, where constraints refer to whether grid charging and export of power into 

the network are allowed or not. Systems in which grid charging and power export 

are prohibited are generally assumed to have a smaller effect on the network than 

systems that are allowed to grid charge and export power into the grid. Table 3 

summarizes the technical impacts of ESSs (hybrid PV systems) based on the 

operational constraint applied [13]. 
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Table 3: ESS Operational Constraints vs Technical Impact  

Operational 
Constraint 

Voltage Conditions Component Thermal 
Limits Level Unbalance 

Grid 
charging 

Mass 

simultaneous 

charging will 

increase the 

magnitude of load 

currents, therefore 

significant voltage 

drops.  

Charging of 

single-phase 

systems results 

in unequal phase 

load currents 

which leads to 

voltage 

unbalance. 

High and 

continuous load 

current from 

simultaneous 

charging can cause 

thermal overloading 

of components. 

Power 
export 

High enough 

power export 

levels can cause 

reverse power flow 

and therefore 

voltage increase. 

Unbalanced 

power export will 

cause phase 

unbalance. 

High enough 

reverse power flow 

current can cause 

thermal overloading 

of components. 

Based on these constraints, four scenarios in which the constraints regarding grid 

charging and power export are toggled, are identified. These scenarios are 

displayed in Figure 14 below.  

Figure 14: ESS Operational Scenarios [13] 
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With ESSs, self-consumption of stored energy is possible. In fact, in South Africa 

most utilities encourage self-consumption, and although power export is not 

prohibited, it is discouraged through tariff instrumentation.  Also, although self-

consumption of generated or stored power is encouraged, its effects should not be 

overlooked. Self-consumption leads to load reduction. Load reduction (specifically 

to the point of load elimination) seems to have significant effects on voltage 

unbalance, especially for customers with large loads. The effects on voltage 

unbalance is significant enough to cause violations to the power quality standards. 

From the simulations conducted in [13], it is concluded that distribution networks 

are designed to accommodate specified load capacities, without a large allowance 

of load changes with time. 

For the simulations conducted in the three studies mentioned [13]–[15], the 

technical parameter (voltage level, voltage unbalance, transformer loading and 

conductor loading) first violated is deemed the limiting factor for ESS uptake. For 

the simulation conducted for hybrid PV systems, the technical issue that limited 

uptake was voltage unbalance. No violations were recorded for any of the other 

technical parameters monitored. For the assessment of EMs, the loading of the 

conductor cables and transformer were the factors limiting uptake closely followed 

by voltage unbalance. 

Up until this point, the technical impacts of ESSs on LV residential distribution 

feeders and how these technical impacts are affected by grid charging and 

discharging (power export) have been identified. 

4.2 Results relating to research question 2 
Research Question: What are the state-of-the-art approaches for conducting 

impact assessment studies to determine the technical impacts and the estimation 

of a network’s hosting capacity to EVs, and what are their limitations? 

The literature review in Chapter 2 addresses research question 2 by analysing the 

current state-of-the-art methodologies proposed for EV impact assessment 

studies. The review reveals the shortcomings of existing approaches that account 
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for some of the factors but fail to address the full scope of factors that introduce 

variability and uncertainty to the load modelling and simulation approach.  

The literature review is approached by analysing impact assessment 

methodologies addressing four major areas: 

1. How the load flow inputs are modelled, 

2. the technical parameters assessed, 

3. the method of load flow analysis, 

4. and finally, the simulation of EV penetration scenarios. 

The first load flow input explored is the network model. The importance of accurate, 

detailed and realistic network modelling is identified and acknowledged in a 

literature review reported in [14].  One of the characteristics of the network model 

is the customer distribution. In both [13], [14] the importance of customer 

distribution is highlighted. In both studies, three different customer distributions 

shown in Table 4 below were tested. 

Table 4: Customer Phase Distribution Illustration 

  Balanced Cyclic Cosine 

Phase → A B C A B C A B C 

Node ↓ 

1 1 1 1 2 1 0 3 0 0 

2 1 1 1 0 2 1 0 3 0 

3 1 1 1 1 0 2 0 0 3 

4 1 1 1 0 2 1 0 3 0 

5 1 1 1 2 1 0 3 0 0 

… … … … … … … … … … 

The table shows the number of customers connected to each phase at each node 

along the feeder for the three distributions tested. The results of the simulations 
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conducted revealed that even under passive conditions (no ESS) the customer 

distribution plays a significant role in voltage unbalance, enough to cause the 

network to fail to comply with power quality standards. 

The second load flow input identified is the residential load model. The review 

found that deterministic modelling of residential loads is not suitable and does not 

lead to realistic results. Some studies acknowledged this and attempted to model 

the changes in residential load with time but failed to accurately model the diversity 

in the residential load within a specific time period. The statistical characterization 

of the residential load in each time interval allows analytic analysis and supports 

high computational efficient tools. 

Both the literature review in chapter 2 and [15] identified factors that influence and 

bring diversity to the EV load model. These factors are indicated below: 

1. The EV battery capacity,  

2. the battery SoC when connecting to charge, 

3. the mode of charging and therefore charging power rating,  

4. travel data informing home arrival and departure times,  

5. and the implementation of charge schemes or tariff incentives.  

The second part of the literature review explored the technical parameters 

assessed during impact assessment simulations. The technical parameters 

assessed in the impact assessment studies reviewed correspond to the technical 

impacts of ESSs identified when answering research question 1.  

The method used to conduct the load flow analysis is influenced by how the inputs 

have been defined and the ESS penetration scenarios simulated. The review of 

ESS penetration scenarios was split into (i) how the measure of penetration of 

ESSs was defined and (ii) the placement strategy used to assign ESSs during the 

simulation process. The review mentions the need for a load flow analysis method 

that directly accounts for the variability in the input load models and a placement 

strategy for the allocation of EVs that resembles the randomness and 
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unpredictability in EV location (node and phase). Many studies were either found 

to ignore this diversity in the loads and uncertainty in EV placement by conducting 

a DLF analysis with worst-case scenario placement. Or attempted PLF analysis 

but did not conduct enough simulations or placement scenarios to model the full 

scope of possibilities. 

4.3 Results relating to research question 3 
Research Question: What are the characteristics of a comprehensive 

methodology for the impact assessment of EVs on LV distribution feeders? 

After highlighting the inadequacies of the existing approaches, the literature review 

outlines the key components for a robust and comprehensive EV (ESS) impact 

assessment study, listed below. 

1. The network model and simulation conditions need to be detailed and 

realistic and resemble the characteristics of a practical feeder.  

2. The residential customer load and EV load models should account for the 

diversity in these loads, and the unpredictability of the customers’ 

behaviour. 

3. The method used to simulate the allocation of EVs should reflect the 

randomness in EV uptake and therefore the uncertainty in EV location 

(node and phase). 

4. The load flow analysis method should explicitly account for the stochasticity 

and variability in both the customer and EV loads.  

5. The technical parameters assessed to serve as an indicator of a networks 

hosting capacity to EV loads should ensure that the power quality 

standards and equipment limits are adhered to. The technical parameters 

identified are voltage level, voltage unbalance and transformer and 

conductor loading. 
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These requirements listed above and the factors that bring diversity to the EV load 

model informed the required modifications, listed below, to be made to the existing 

HBE-MCS tool that had been developed and tested in PV penetration applications 

[32].  

The modifications to extend the application of the HBE-MCS tool to EV penetration 

analysis are as follows: 

1. Definition of the Measure of ESS Penetration. 

2. Preparation of beta PDF models of EV loads. 

3. Building the EV models into the HBE. 

4. Modifying the conditions in the MC simulator. 

In Chapter 2 and [15], various definitions for penetration percentage are discussed. 

It is concluded that (i) the varying definitions of penetration caused a wide range of 

acceptable hosting capacities making it difficult to compare results between two 

assessments using different definitions and (ii) because of this, these definitions 

may not be of direct use to the planner during distribution network design or to the 

DNO when defining standards or regulations. Therefore, a definition of penetration 

level as a measure of the capacity (in kW or kVA) of installed ESSs in relation to 

the technical characteristics of the network, such as the peak demand or FMD, 

could be deemed more useful. In [15] the definition of penetration percentage, as 

explained in Chapter 2, was adapted and first used. In addition, the other three 

modifications to the HBE-MCS tool detailed in Chapter 3 were completed, and the 

HBE-MCS tool was first used for EV penetration applications in [15]. 

4.4 Results relating to research question 4 
Research Question: Can a comprehensive impact assessment methodology that 

incorporates these identified characteristics be developed? 
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Informed by the key components identified in research question 3, [16] proposes 

and demonstrates a comprehensive methodology to assess the impact of EV 

charging on LV residential feeders. 

The study proposes the probabilistic modelling of the residential customer and EV 

load making use of beta PDFs, accounting for the unpredictability in customer 

behaviour and subsequently the diversity in these loads. The study also proposes 

using the MCS method as a stochastic simulator to mimic the random placement 

of EVs throughout the network due to the uncertainty in EV location. The HBE 

algorithm is proposed to solve the PLF analysis. The technical parameters 

recorded will be analysed and interpreted accounting for a specified level of risk. 

Where this level of risk is informed by the accuracy of the input modelling and the 

intended application of the results. This proposed methodology is demonstrated 

through a case study applied to a practical LV residential feeder located in South 

Africa. 

The network model simulated for the case study is detailed and is that of a real 

residential area in the Western Cape, South Africa. For the residential load model, 

the period of interest identified from travel data, average commuting times and 

electricity consumption data is 7 pm. This corresponds with the likely resident 

home arrival times, therefore anticipated period of mass simultaneous charging, 

as well as the residential electricity consumption peak period for a winter weekday. 

The period of interest selected for a simulation may vary depending on the season, 

type of day and even the purpose of the study.  For the case study, the period of 

interest selected was based on the period of maximum impact. The data used for 

the residential load modelling was data recorded for a year from 42 different 

residential consumers. The diversity in the residential load can be seen in Figure 

15 in the beta PDF representing the residential load at 7 pm. 

Stellenbosch University https://scholar.sun.ac.za



57 

The EV modelled for the simulation is the 33 kWh BMW i3, as this is the most 

common EV in South Africa. Although the BMW i3 is modelled for the case study 

simulation, it is possible to model any EV model and feed this into the HBE-MCS 

tool. The diversity in the EV load, although not a lot, is also simulated by modelling 

the EV load using a beta PDF. The EV load is modelled to have an average power 

rating of 2.76 kW (230 V, 12 A). 

EVs are randomly assigned to households along the feeder using the MCS 

method, with the maximum penetration limit of one EV per household. The 

maximum penetration limit is a variable that is specified upfront when initializing 

the HBE-MCS tool for the given simulation. 

The results revealed that the factor limiting the uptake of EVs in the network 

simulated is the conductor cable loading, while the least pressing factors area the 

maximum voltage and voltage unbalance. The results in Figure 16 are illustrated 

including a 5 % level of risk . It should be noted that the hosting capacity of 63 % 

(as a measure of the FMD) corresponds to all (100 %) of the households in the 

simulated network having one EV. 

Figure 15: Case Study Beta PDF for Residential Load at 7 PM 
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The case study reiterates that when mass simultaneous EV charging is coincident 

with the residential consumption peak, the network is placed under severe strain 

and the hosting capacity of the network is lowest. In this case study, a simulation 

in which EV charging is conducted during off-peak hours revealed considerably 

higher hosting capacities. For the network simulated, this period was found to be 

between midnight and 6 am. The hosting capacity during this period is shown in 

Figure 17.  
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Furthermore, during this period between midnight and 6 am, three different EV 

charge rates were simulated. The first charge rate (2.76 kW) corresponds to AC 

charging at the South African residential voltage supply level (230 V), using the 

standard EV charger for the BMW i3. Under these condition every household in 

the network simulated was able to charge its EV with no violations to any of the 

technical parameters monitored when compared to the power quality standards, 

When this charge rate was increased to 3.45 kW and then 4.6 kW, the hosting 

capacity decreased. At 3.45 kW only 55 % and at 4.6 kW only 44 % of households 

could charge its EV before violating the power quality standards. This reveals that 

charge scheme implementation can aid in EV accommodation.  

If uptake policies and regulations are informed and put in place based on the 

results of studies conducted during periods of maximum impact, the regulations 

might be overly restrictive and unnecessarily curb the uptake of EVs. The case 

study demonstrates the usefulness of the proposed methodology in informing 

policymakers and network planners who through using the methodology are able 

to conduct detailed simulations for different time periods. In doing so this revealed 

that when charging is restricted to certain hours, during which the network can 

accommodate these EV loads, the hosting capacity of the network is significantly 

increased. 
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5 Conclusions 

To conclude, a concise summary of the answers to the research questions will be 

presented, and the research hypothesis validated. This chapter ends by 

summarizing the research contributions and providing recommendations for further 

work.  
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5.1 Summary and conclusion of findings 

The research hypothesis guiding this research states:  

A comprehensive impact assessment methodology for LV feeder 
performance under ESS penetration can be developed, which accounts for 
the load uncertainty resulting from unpredictable customer behaviour. 

This section concisely answers the research questions defined in Chapter 1. 

Research Question 1: What are the technical impacts of ESSs (namely EMs, EVs 

and hybrid PV systems) on LV residential distribution feeders and to what extent 

are existing distribution network infrastructure technically impacted by increasing 

penetrations of these ESSs? 

The technical impacts of ESSs are explored in [13]–[15]. The identified technical 

impacts on LV distribution feeders are (i)  increase in voltage-drop (primarily due 

to ESS charging), (ii) increase in voltage rise (primarily due to ESS power export),  

(iii) increase in voltage unbalance (due to random, single phased placement of 

these ESS loads), (iv) increase in conductor and transformer loading (due to the 

load current increasing during ESS charging). The technical impacts, such as 

voltage-drop, voltage-rise and component loading, are exacerbated when the 

penetration of ESSs connected to the network is increased, while voltage 

unbalance actually decreases with an increase in EV penetration (given that 

customer phase distribution is not severely unbalanced). 

The placement of ESSs is found to have a significant impact on the severity of the 

technical impacts experienced. Placement of ESSs systems at locations of highest 

impact (such as the furthest end of the feeder) or severely unbalanced phase 

placement of ESSs is found to cause violations to the power quality standards at 

low penetration percentages.  

It is also found that feeders that have a significant phase unbalance in the customer 

distribution or higher transformer loadings prior to ESS penetration, tend to have 

lower hosting capacities as these issues are amplified with increasing penetrations 

of ESSs. Because of the sensitivity of the simulation results to factors like initial 
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component loading and customer distribution, generalizations regarding hosting 

capacities cannot be blindly extrapolated across feeders.  

Detailed studies, as conducted in [13]–[16], provide realistic feeder conditions and 

prevent over-restrictive or lenient restrictions as a result of the hosting capacities 

found. 

Research Question 2: What are the state-of-the-art approaches for conducting 

impact assessment studies to determine the technical impacts and the estimation 

of a network’s hosting capacity to EVs, and what are their limitations? 

The state-of-the-art approaches for impact assessment studies are reviewed in 

Chapter 2. Many studies make use of deterministic modelling approaches, using 

fixed or specified locations for EV placement and fixed (averaged) residential 

customer load and EV load capacities. Although these models are simple and the 

computational burden low, this comes at the cost of the location scenarios not 

being representative of reality, the effects of random placement affecting voltage 

unbalance being ignored and the effects of averaged capacities overlooking the 

residential customer load and EV load diversity. 

Some studies do make use of probabilistic load modelling approaches but, in order 

to reduce the computational cost, either make use of deterministic EV placement 

strategies or do not compute enough stochastic placement scenarios. This does 

not allow the full scope of possible scenarios to be tested and the full extent of 

technical issues to be determined. 

The review concludes that these approaches either fail to adequately address or 

fail to address all of the factors that introduce uncertainty and diversity to the impact 

assessment simulation inputs, method and load flow analysis. 

Research Question 3: What are the characteristics of a comprehensive 

methodology for the impact assessment of EVs on LV distribution feeders? 

The review in Chapter 2 identified and summarized the characteristics of a 

comprehensive impact assessment methodology into the following five 

components: 
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1. The network model and simulation conditions need to be detailed and 

realistic and resemble the characteristics of a practical feeder. This will 

yield accurate and representative results. 

2. The residential customer load and EV load models should account for the 

diversity in these loads, and the unpredictability of the customers’ 

behaviour. 

3. The method used to simulate the allocation of EVs should adequately 

capture the randomness in EV uptake and therefore the uncertainty in EV 

location (node and phase). 

4. The load flow analysis method should explicitly account for the uncertainty 

and variability in both the customer and EV loads. 

5. The technical parameters assessed to serve as an indicator of a network’s 

performance and hosting capacity to EV loads should ensure that the 

power quality standards and equipment limits are adhered to, including the 

provision for risk margins. The technical parameters identified are voltage 

level, voltage unbalance and transformer and conductor loading. 

Research Question 4: Can a comprehensive impact assessment methodology that 

incorporates these identified characteristics be developed? 

The components identified in answering research question 3, especially those 

identified to influence the EV load model, were used to inform the necessary 

modifications to the HBE-MCS tool, detailed in Chapter 3.  

The HBE-MCS tool combines PLF analysis (using the HBE transform) and 

stochastic placement at every penetration level (using the MCS method). This tool 

balances computational efficiency and result accuracy. The modifications made to 

the HBE-MCS tool makes it feasible for analysis of any ESS (hybrid PV systems, 

EMs, EVs, BESS etc). The features of the tool include probabilistic input modelling 

of the residential customer load and ESS load, random placement of ESSs, PLF 

analysis directly accounting for input modelling variability, a measure of ESS 
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penetration more useful to network planners than most widely used definitions and 

analysis of simulation outputs incorporating risk. 

The accurate and probabilistic residential load and EV load modelling, in addition 

to the other components identified are combined and a robust and comprehensive 

methodology for EV impact assessment studies is proposed in [16]. This proposed 

methodology is demonstrated in a case study. 

The hypothesis is confirmed as the proposed methodology meets the requirements 

of adequately accounting for the full scope of factors that introduce uncertainty and 

diversity to both the residential load and ESS load. The methodology addresses all 

the criteria identified for a comprehensive methodology for ESS impact 

assessments on LV distribution feeders. However, a limitation of the proposed 

methodology is that it is currently only applicable to radial feeders.  

5.2 Summary of contributions and future work 

This work has proposed a comprehensive methodology for assessing the technical 

impact of ESS technologies on radial LV feeders. The proposed methodology can 

be used to determine the hosting capacity of a particular network to various ESS 

technologies such as hybrid PVs, EVs, EMs, and BESSs. Although the results will 

reveal the hosting capacity of the network simulated, multiple simulations on 

various networks under different conditions can allow for broader conclusions to 

be drawn. This proposed methodology can be used in further studies to inform EV 

uptake policies under various operation restrictions (including charge scheme 

implementation), to identify possible future network upgrades and reinforcements, 

and to aid network planners in component selection and sizing. 

The summary of contributions is as follows: 

 The acknowledgement that even under conditions in which power export is 

prohibited and self-consumption is encouraged, which is often the case as 

this is generally deemed less intrusive, ESSs penetration can still cause 

power quality violations.  
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 A detailed review of existing methodologies and scope of the critical 

considerations for a comprehensive assessment of feeder performance 

under various scenarios of ESS penetration. 

 The description of data requirements and the derivation of EV statistical 

models for probabilistic analysis of feeder performance. 

 A comprehensive stochastic-probabilistic methodology with capabilities of 

uncertainty propagation, simulation of unknown future scenarios of ESS 

penetration, and demonstration of an extensive range of feeder 

performance interpretable using design risk factors. 

This work is particularly important for network planners, DNO and policymakers in 

understanding the extent of technical issues associated with ESS penetration and 

equipping them with the necessary information for setting design standards, 

component selection, infrastructure upgrade recommendations and the 

formulation of relevant penetration and ESS uptake regulations. 

It is accepted that transformers can operate beyond rated conditions for brief 

periods. From the results of simulations conducted throughout this research it is 

concluded that because of this tolerance for brief overloading, networks are 

designed will little headroom, particularly during periods of peak demand. This 

problem of component overloading is augmented, and time periods of such 

overloading extended, by mass simultaneous charging of ESSs especially when 

coincident with this demand peak. Future work focussing on the correlation 

between component headroom available under passive conditions during demand 

peak and the hosting capacity of a network could provide valuable insight, in 

conjunction with the proposed methodology, to inform network planning and ESS 

uptake policy implementation.   

Further studies could include detailed load modelling making use of extensive 

mobility data as well as the analysis of BESSs based on load measurements of 

power imports and exports from already installed systems. Further work could also 

include expanding the feeder topology that the methodology may be applied to. 

The HBE-MCS tool could further be expanded to include multiple ESS load nodes 
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per household and simulations with multiple ESSs applied could be conducted. For 

the case study simulation in [16] each household was assigned a maximum 

penetration of one EV and only single-phased charging was considered. 

Simulations in which three-phase charging is simulated and compared to single-

phased charging or simulations in which the maximum penetration of ESS allowed 

per household is increased, could also be conducted.  
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Abstract 
Battery energy storage systems will increasingly be 
connected to shared low voltage (LV) feeders, as the 
uptake of electric vehicles (EVs), hybrid photovoltaic 
(PV) backup systems (i.e. grid-interactive PV systems 
with self-consumption and uninterruptable power 
supply functionalities) and other behind-the-meter 
storage technologies rises. While there are many 
benefits from the increase in these technologies they 
may also pose several issues. 

This paper discusses the potential impacts of hybrid PV 
system installations on LV networks in various 
scenarios of net load capacity (the offset between 
generation and consumption), grid access regulations 
and the customer’s battery-use behaviour. Using one of 
the scenarios, the paper demonstrates the potential 
impacts of increased hybrid PV system penetration on 
voltage levels, phase unbalance and thermal loading of 
the feeder, referenced against the relevant quality of 
supply standards. A stochastic-probabilistic approach is 
used to conduct the simulations; the Monte Carlo 
Simulation method is used to simulate the stochastic 
nature of the unknown hybrid PV system placement 
while the extended Herman Beta transform accounts for 
the uncertainty and variability in both the PV generation 
and loads. The results show that hybrid PV systems can 
cause the violation of voltage unbalance limits even if 
injection into the grid is not allowed. Further simulations 
demonstrate that the distribution of customers along the 
feeder affects the extent of the unbalance and thus the 
permissible penetration.  

Keywords: hybrid PV systems; stochastic PV 
distribution, probabilistic load flow; LV network 
hosting capacity, PV grid impacts. 

1. Introduction 

The placement, size and usage patterns of battery energy 
storage systems (BESS) on shared LV feeders are not 
centrally planned, but rather decided by the end 
customer, informed by technology pricing and 
electricity pricing signals, amongst other factors. This is 

similar to the roll-out of embedded generation (EG) on 
shared feeders. 

The technical impacts of the random and subsequently 
difficult-to-predict roll-out of BESSs will also be similar 
to that of EG: the introduction of current flows for which 
the LV feeder was not designed, impacting feeder 
voltage profiles, thermal loading and phase unbalance. 
Regulations like NRS097-2-3 [1] provide some 
guidelines on managing the impact of the roll-out of EGs 
but does not include BESS yet.  

Currently in South Africa, the BESS with the highest 
uptake is likely to be hybrid PV backup systems, 
primarily due to frequent load shedding, favourable 
return on investment of PV and self-consumption 
requirements. This paper focuses on the impacts of these 
hybrid systems on shared LV feeders, further limited to 
residential applications to allow for a sufficient depth of 
analysis. 

The primary objective of this paper is to gain a better 
understanding of the effects on voltage level, thermal 
loading and phase unbalance as the number of hybrid PV 
backup systems connected to a shared residential feeder 
increases. The research applies a stochastic-probabilistic 
methodology initially developed by Gaunt et al. [2] and 
recently extended for enhanced accuracy and further 
applications [3]. This methodology is explained and was 
used successfully in [4] for LV feeders with PV EGs 
without storage and with feedback limits of 50% of the 
customer’s rated circuit breaker. In this paper, it is used 
to map the impacts of hybrid PV systems at different 
penetration levels, for a large number of placement 
scenarios that are randomly generated. 

The difference with BESSs compared to EGs is however 
that many variations of charge-discharge schemes exist, 
defined by customer behaviour, pricing signals, 
regulations to name a few, compared to EGs based 
mainly on solar irradiation. The value of this work will 
be in understanding how these different charge-
discharge schemes correlate to the technical impacts as 
a function of uptake. 
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The next section discusses the potential technical 
impacts of BESSs on the LV grid. It also illustrates how 
various system configuration constraints affect these 
technical impacts. Section 3 explains various power 
generating energy system configurations and how they 
affect the grid. In section 4, six hybrid PV system 
scenarios are explained, one of which is simulated to 
study the technical impacts of self-consumption hybrid 
PV systems without grid export. The simulation process 
and load flow analysis method are also described in 
section 4. This is followed by a discussion of the results 
and finally, conclusions are drawn and 
recommendations for possible further studies made.  

2. Grid impacts 

There are several impacts that increasing penetrations of 
hybrid PV systems will have on an LV feeder. In this 
paper, the various hybrid PV system configuration 
scenarios will be analysed based on the following 
technical impacts: feeder voltage level, phase unbalance 
and thermal loading. These technical impacts are 
defined below, followed by explanations on how 
different system scenarios contribute to these technical 
issues. 

2.1 Feeder Voltage 

The feeder voltage level can be affected mainly by two 
factors namely the amount of current being drawn along 
a feeder (the load current) and phase unbalance. 

2.1.1 Load 

Quality of supply (QoS) standards define margins in 
which certain parameters, like feeder voltage level, need 
to operate within. For South Africa, the voltage received 
on a residential LV distribution network level is 230 V 
within a 10% tolerance band [5]. 

The flow of current from the distribution transformer to 
connected customers (electric load points) results in 
voltage drop due to the impedance characteristic of the 
distribution cables. The larger the load current the larger 
the voltage drop. Accordingly, a large enough voltage 
drop could cause the voltage level received by the 
consumer to fall below the limit stipulated in the QoS 
standards. 

The inverse is also true. EGs can also independently 
affect the feeder voltage level if injection of power into 
the grid is allowed. If a resident is allowed to inject 
stored battery power or excess power generated from a 

PV system into the grid, this could cause a voltage rise 
that could violate the QoS standards if the feeder voltage 
becomes too high. When injection is not allowed, the 
reduction in the net load is anticipated to limit voltage 
drop. However, where this occurs unequally between the 
phases, voltage rise due to unbalance may also result. 
This is discussed in detail in the subsequent section. 

2.1.2 Unbalance 

Electricity is generated and transported in three phases 
and each household along an LV feeder is typically 
connected to only one of the three phases. If the three 
phases are not evenly loaded this could result in voltage 
unbalance. QoS standards stipulate that the voltage 
unbalance allowed is up to 2% [5]. This voltage 
unbalance, although possibly small, can in three-phase 
motors result in large negative-sequence currents which 
causes poor efficiency, excess heat generation causing 
increasing operating temperature affecting equipment 
lifespan and even permanent damage or failure [6], [7].  

Apart from possible damage to equipment, voltage 
unbalance affects the voltage level of the feeder itself. If 
one phase is more heavily loaded than the other two, 
because the phase voltages are dependent on each other, 
this will affect the voltage level of the other two phases. 
However, the variation may not be significant enough to 
violate the QoS standards.  

A cause for these unbalanced residential loads is the 
stochastic uptake of EG, PV and hybrid PV systems as 
well as BESS. However, this is something the utility has 
limited control over. Standards that regulate this uptake 
may however aid in reducing the impact on load and 
phase unbalances.  

2.2 Thermal Limits 

The thermal limits referred to here are in relation to the 
current carrying cables and the transformer windings. 
As previously mentioned in Section 2.1.1, the cables can 
be modelled having an impedance comprising of a 
resistance and inductance, this being a physical property 
of the cable. If a current passes through the cable, the 
cable will heat up due to this resistance. A large enough 
current will cause the cable to heat up significantly. This 
can not only cause fires and irreparable damage but will 
also decrease the efficiency of the cables and windings. 
Larger loads than accommodated in the network design 
could cause the thermal limits of the cables to be 
exceeded. Knowledge of the expected loads is therefore 
imperative when doing distribution network design to 
ensure that these cables and transformers are chosen 
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appropriately and will be able to handle the expected 
currents. Table 1 summarises the effects of grid charging 
and injection on the technical impacts discussed in this 
section. 

3. Power generating energy system 
configuration scenarios 

Different system configurations or the same system 
under different constraints will have varying impacts on 
the network. PV systems and BESS that are not allowed 
to inject excess generated power into the grid might have 
a smaller impact on the network compared to PV 
systems in which injection into the grid is allowed. 
Similarly, PV systems that have batteries to store excess 
power generated for self-consumption at a later stage 
will affect the network differently to PV systems with 
batteries that can inject into the grid during peak tariff 
periods. Whether injection into the grid is allowed and 
whether charging of batteries take place via excess PV 
power generated versus grid power will play a role in the 
penetration percentage a network can accommodate 
while meeting QoS standards. 

When conducting distribution network design, 
specifically referring to LV feeders in this case, 
knowledge of the expected loads is important. After 
Diversity Maximum Demand (ADMD) is used and 
based on the type and number of customers connected 
to the feeder, the network is designed accordingly. 
However, the ADMD assumptions without modification 
become invalid as soon as EG and batteries are 
introduced; as the capacity and characteristics of the 
loads change significantly. For instance, with grid 
charging of batteries, the loads will be more continuous 
opposed to traditional loads like geysers, ovens and 
refrigerators controlled by thermostats causing varying 
loads due to the on-off switching.  

Table 2 illustrates the potential technical impacts of 
various PV and battery system configurations with 
injection of power into the grid prohibited and allowed. 
Although the extent to which the technical impact is 
affected is not noted, this could be determined through 
simulations.  

 The very first row shows a system than consists of only 
PV with no battery for storage and regulated such that 
no excess generated power may be injected into the grid. 
This scenario, when applied to single phase systems, 
may significantly affect phase unbalance as some 
customer loads are reduced while others completely 
offset by the PV generated power causing them to 
appear off-grid. This may cause uneven loading of the 
three phases, resulting in voltage unbalance. This 
scenario will not have an impact on thermal loading as 
the load current will decrease and no reverse power flow 
is allowed due to the injection restriction.  

 
Scenario 

Technical Grid Impacts 
Voltage Conditions Thermal 

Limits Level Unbalance 
PV only (no 
export)     

PV only 
(export 
allowed) 

      

Battery only 
(grid 
charging, no 
export) 

      

Battery only 
(grid 
charging, 
export 
allowed) 

      

Condition Voltage Conditions Thermal Limits Level Unbalance 

Grid charging Mass simultaneous charging 
will increase the magnitude 
of load currents, therefore 
significant voltage drops.  

Charging of single-phase 
systems results in unequal 
phase load currents which 
leads to voltage unbalance. 

High/continuous load current from 
simultaneous charging can cause 
thermal overloading. 

Injection High enough injection levels 
can cause reverse power flow 
and therefore voltage 
increase. 

 
Unbalanced injection will 
cause phase unbalance. 

High enough reverse power flow 
current can cause thermal overloading. 

Table 1: Grid charging and injection effects on technical grid impacts 

Table 2: Effects of scenarios on technical grid 
impacts 
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The batteries mentioned in the table above could refer to 
batteries of EV’s. When no export is allowed, the battery 
is only charged with the grid power and injection into 
the grid is not allowed. In the scenario in which injection 
is allowed, this may be during periods in which the 
vehicle is not being used. Reverse power flow is 
possible and feeder voltage increase is likely. 

Without explaining each scenario as extensively as the 
first, it is evident that the diverse states of configuration 
will lead to different constraints on the network  
indicating the complexity of planning as a result of new 
technologies. References to papers investigating the 
technical impacts associated with the other scenarios of 
Tables 2 include [8], [9], [10], [11]. 

4. Simulation Process 

The following section will introduce six operating 
scenarios specific to hybrid PV systems. The scenario 
most relevant to typical South African shared LV 
feeders will then be simulated to demonstrate how the 
stochastic-probabilistic load flow method can be used to 
study the impacts of hybrid-PV systems on LV feeders. 

4.1. Background 

4.1.1 Possible Scenarios 

Systems consisting of a PV and wind combination or PV 
and other  forms of EGs are often also referred to as 
hybrid PV systems [12], [13], [14]. However, in this 
paper, the term “hybrid PV” refers to PV systems with 
an additional component being a battery. This allows for 
charging of the battery when the PV generation is higher 
than the load and self-consumption of battery power at 
a later stage when the PV generation might be low or 
unavailable. This could be particularly beneficial during 
load shedding periods or even for energy arbitrage.  

When simulating the impact of hybrid PV systems, a 
range of scenarios are possible. Four scenarios are 
visually represented in figure 1 in which the restriction 
on grid charging of the batteries and injection of battery 
or generated power is toggled. 

For the scenarios in which grid charging is allowed, time 
of use (ToU) tariffs may introduce an additional two 
scenarios; with ToU and without ToU tariffs.  Grid 
charging without ToU tariffs would be purely for UPS 
functionalities when load shedding events take place, 
while ToU tariffs makes energy arbitrage a possibility.  

4.1.2 Load Flow Analysis Methods 

Placement and Capacity of Connected Systems: 

Because the uptake of power generating energy systems 
(in this case hybrid PV systems) is dependent on factors 
like the interest of the resident and pricing of the 
technology, the uptake subsequently lies outside the 
control of the utility. This means that it is very difficult 
for the utility to predict the capacity and location of these 
installations making network planning with PV uptake a 
challenge. 

To simulate the randomness in capacity and location of 
the hybrid PV system installations in the load flow 
analysis, a stochastic approach can be taken to account 
for the unknown placement of hybrid PV system 
installations along a feeder. The Monte-Carlo 
Simulation (MCS) is one such method. Gaunt et al. [4] 
applied the MCS approach for random capacity and 
placement allocation of PV in a study to determine the 
hosting capacity to only PV (no battery) on an LV 
network. Several other authors [15], [16], [17] and [18] 
identified the need to use this approach to account for 
the stochastic placement  of loads (EVs) during impact 
assessments on LV feeders.  Valsera-Naranjo et al [19], 
used both a deterministic and probabilistic approach to 
account for the placement of EVs in an impact 
assessment to determine the effects of EV on a network. 
It was noted that although a deterministic method 
accounted for various worst-case scenarios; the 
stochastic method was deemed more appropriate as it is 
more consistent with the nature of EV uptake.  

Solving the Load Flow: 

When it comes to the load flow calculation, once again 
either a deterministic or probabilistic approach can be 
taken. Deterministic load flow analysis uses fixed, 

 

Fig. 1.  Scenarios for Hybrid-PV System 
Operation Restrictions  
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predetermined values for the loads and generations. 
Using this method, a single scenario in a spectrum of 
thousands of possible operating scenarios is analysed. 
This approach does not however take into account the 
likelihood of such scenarios. Without the knowledge of 
the full spectrum of feeder performance, a planner 
cannot tell the risk associated with a particular design, 
which, may impact network performance and total 
investment.  

On the other hand, probabilistic load flow (PLF) 
methods take the uncertain and varying characteristics 
of both the loads and generators into account. Extreme 
cases can still be analysed but the likelihood of such 
cases is known. The result is that the planner has full 
awareness of the operating states of the network, which 
enables informed decisions. 

Several PLF approaches of different speed, complexity, 
and accuracy exist. The MCS, when used with adequate 
samples, is regarded the most accurate. However, it is 
very slow due to the iterative approach. With the 
requirement of an MCS to solve the random allocation 
problem, speed is a critical characteristic in the selection 
of the PLF approach. The Herman-Beta Extended 
(HBE) is a single-pass statistical method used for PLF 
analysis [20]. When the HBE is compared to the MCS,  
the computational speed of the HBE is significantly 
faster without loss of accuracy [21], [22]. Accordingly, 
the HBE is appropriate for use in the combined 
stochastic-probabilistic approach and is used in the 
simulations in this paper. 

4.2. Conditions and Assumptions of Simulated 
Scenario 

Now that different placement and capacity methods, 
load flow solving methods and potential technical grid 
impacts have been discussed, in addition to six system 
operation scenarios, one of these scenarios will be 
simulated.  

Scenario 3 in figure 1, in which grid charging and 
injection is prohibited is simulated. This scenario is 
chosen specifically because it is practically relevant 
currently in South Africa. Most utilities encourage self-
consumption of generated power and although injection 
is not prohibited, it is discouraged through tariff 
instrumentation.  For instance, in Cape Town, the 
current electricity rate for a home user is 201.78 c/kWh 
(incl. VAT), while residential small scale embedded 
generation (SSEG) can inject into the grid at 84.95 
c/kWh [23]. This may be seen as a way in which the City 

of Cape Town encourages users to self-consume and 
deter injection into the grid. A question which arises is 
that should the customers comply with the suggested 
regulations (by fully self-consuming without export), 
what is the associated technical performance of the 
network? To study this, Scenario 3 from figure 1 will be 
simulated. The following baseline conditions and 
assumptions are applied: 

 To increase the service life of the battery, the 
battery will never be discharged past a certain point. 
Therefore, only a certain maximum percentage 
referred to as depth-of-discharge (DoD) will be 
used. 

 A portion of the battery capacity will always be 
assigned for UPS functionality in the case of load 
shedding. 

 The battery can be used for self-consumption up 
until a minimum point equal to the percentage 
retained for protection plus that retained for load 
shedding. 

 When the PV generation is less than the load, the 
battery will be used to match the load. If the battery 
has reached the minimum point, grid power will be 
used to match the load.  

 When the PV generation is more than the load, the 
battery is charged. 

 Injection into the grid is not allowed.  
 If the battery is full, excess PV generation will be 

curtailed.  
 The battery will never be charged with grid power. 
With the conditions and assumptions clear, the load flow 
analysis method used will be explained below. 

This paper makes use of a simulation approach 
combining the MCS method and the HBE. The MCS 
deals with the random placement of hybrid PV systems 
along the feeder while the HBE is used for the 
probabilistic load flow analysis.  

When using the HBE, the loads and PV models are 
characterised as Beta probability density functions 
(PDFs) of currents. The simulation was conducted for a 
very extreme case period of the day in which PV 
production would be high while consumption is low. In 
South Africa, this usually occurs around midday during 
summer. Only the effects on the grid during that interval 
were simulated. The charging of the battery with excess 
PV power for later use does not have affect the grid in 
the worst-case interval. The battery is assumed to be at 
its minimum due to consumption the previous evening, 
so the load was not supplemented with the battery when 
PV generation was less that the load.  
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4.2.1 Description of Test System 

A simple, three-phase four-wire, 11-bus, radial feeder 
supplied by a 11/0.4 kV transformer is used.  Each bus 
(apart from the source bus) supplies three residential 
customers and is separated from the subsequent bus by 
a 45-metre conductor branch.  

4.2.2 Input modelling: Load and PV 

For the selected simulation scenario, to simulate the 
condition of no injection into the grid, the net load 
conditions at each node must be zero or bigger. This 
presents a huge computational challenge: since the loads 
and PV are characterised by different statistical models, 
they are treated separately in the HBE; PV nodes are 
separated from load nodes by a dummy, ‘negligible 
voltage-drop’, branch. This means it is difficult to 
control the net load capacity without reformulating the 
algorithm, which is beyond the scope of this work. 
However, two approaches, based on the modification of 
inputs, are possible. 

The one involves redefining the load model to include 
the effects of PV generation. This would result in net 
load probabilistic models for various levels of PV 
generation. With net load models and no allocation to 
PV nodes, the HBE can be used to simulate the 
stochastic reduction of the load as a result of PV 
generation. However, the definition of probabilistic 
models for the net load has not been done and thus 
requires separate attention.  

Another approach, which is relatively easier has two 
components; the allocation of PV installations matching 
the load capacity, and the modification of the statistical 
parameters of the input beta PDFs to ensure the 
stochastic sum of the two does not result in significant 
negative currents. This can be achieved by reducing the 
variance of the load while maintaining its after-
diversity-maximum-demand (ADMD) and modelling 

the PV generation under optimal conditions in which the 
output from each customer is mostly high.  

The reduction in variance is achieved by setting the 
alpha and beta parameters for the loads and PV models 
very high, resulting in high-pitched, tall distributions. 
This ensures that in majority of the scenarios PV 
generation would either be less than or equal the load. In 
cases where this is not so, the negative currents are 
negligible as a result of the reduced variance. It should 
be noted that by reducing the stochasticity of the loads 
and PV, the hosting capacity determined by the 
simulation will be affected. As shown in [4], when the 
loads are modelled with little variance, the impacts of 
PV installations were reduced by almost 100% 
compared with the result achieved using a full stochastic 
load. The reduced penetration observed with the full 
stochastic load is due to increased diversity in the load 
which in turn increases unbalance. Therefore, the results 
shown in the following section may in actual fact be 
conservative. 

4.2.3 Simulation Investigations 

The technical impacts of hybrid PV system without grid 
injection were simulated using two investigations with a 
total of five case studies. The first investigation looks at 
the influence of load magnitude on the technical impacts 
of hybrid-PV systems. The customer distribution was 
balanced having one customer connected to each phase 
at each node along the feeder. PV installations were 
assigned at random in 1 kW increments. This implies 
that for a house with a 4 kW load to be completely offset 
by PV generation and appear off-grid, that specific 
house needed to be chosen four times at random. Two 
test cases are conducted; Case 1 loads have a 2 kW 
afternoon customer load while in Case 2 higher 
customer loads of 4 kW are used. The 4 kW loads are 
those of customers that most likely have air-conditioners 
installed and pool pumps that may be running during the 

Simulation Customer 
Load [kW] 

Maximum PV 
Load [kW] 

Penetration percentage at which violations occur 

Unbalance Minimum 
Voltage Level 

Transformer Maximum 
Loading 

1 2 2 No violation No violation No violation 
2 4 4 20 % No violation No violation 

Table 3: Simulation results for 2 kW and 4 kW customers with balanced distribution 

Case Customer Distribution 
Penetration at which violations occur 

Unbalance Voltage-drop Transformer Loading 
1 Balanced (1-1-1) 20 % No violation No violation 
2 Cosine (3-0-0) 16 % No violation No violation 
3 Cyclic (2-1-0) 15 % No violation No violation 

Table 4: Simulation results for 4 kW customers with different distributions 
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summer midday period. In each case, the maximum PV 
capacity is matched to the load. 

The second investigation focusses on the impact of 
different customer distributions on the gravity of 
technical issues. Three case studies are used; Customers 
were assigned in both a cosine (3-0-0) and cyclic (2-1-
0) pattern and compared to that of a balanced (1-1-1) 
distribution. 

5. Results 

The results from the first investigation are shown in 
Table 3. The penetration percentages at which violations 
to voltage unbalance, minimum feeder voltage and 
transformer maximum loading are shown. 

Because injection of excess power generated into the 
grid is not permitted, violations to the upper limit of the 
feeder voltage are not expected and only the lower limit 
(minimum) feeder voltage level is shown. 

Customers consuming 2 kW during the midday summer 
period did not appear to have any violations even when 
all customers were assigned the maximum PV load. 
However, when the noon load was increased in Case 2, 
the voltage unbalance limit was exceeded at 20 % 
penetration. The results demonstrate that for a class of 
customers with high noon demand, the impacts of 
unbalance are likely to be significant.  

Table 4 shows the results from the second investigation 
on the impacts of customer allocation. The results show 
that when the customer distribution is balanced, 
violation of unbalance occurs at a higher penetration 
percentage than both the cyclic and cosine 
configuration. On further analysis, looking at unbalance 
at passive conditions (with no DG), the cyclic customer 
allocation had the highest unbalance while the cosine 
configuration was not much lower and the balance 
configuration nearly no unbalance. It can be deduced 
that the initial unbalance on a feeder, usually as a result 
of customer distribution along a feeder, will constrain 
the uptake of non-injecting PV systems as unbalance is 
easily aggravated beyond the permissible limits. 

The results also illustrate that when injection into the 
grid is prohibited, the effects on unbalance are a lot more 
significant than the effects on feeder voltage level and 
thermal loading. In fact, as PV penetration increases 
(without export), thermal loading decreases as the 
customer consumes less and less from the grid. While 
the maximum recorded voltages on the feeder may in 
some cases increase due to the effect of unbalance, the 

magnitude of voltage rise is very small (less than 2% in 
the simulated case). Accordingly, violations of thermal 
loading and voltage level are much more unlikely 
compared to voltage unbalance violations. 

From the results it is evident that the basis for the 
encouragement of self-consumption and deterrence of 
injection based on the premise that this will not have an 
effect on the grid, is flawed. Distribution networks are 
designed to accommodate a specified load capacity, 
with little allowance of load changes with time. Self-
consumption, which leads to load reduction and 
ultimately causing customers to appear off grid, appears 
to have significant effects on unbalance. 

6. Conclusions 

This paper discussed three technical impacts that power 
generating energy systems have on the grid namely: 
voltage unbalance, voltage level and thermal loading. 
Then the power generation energy systems and the 
effects that increasing penetrations of these systems 
have on the three technical impacts were discussed.  

The paper has identified four major operation 
configurations which are crucial when considering 
hybrid PV systems and their effects. These can be 
expanded to six if ToU tariffs are introduced to regulate 
grid charging and injection. The discussion also covers 
the simulation requirements for these applications. The 
work shows the complexity associated with the design 
of future networks, even the assessment of the adequacy 
of existing networks to host the new technology. 

To demonstrate the potential impacts of hybrid PV 
systems, and the manner in which the simulations can be 
conducted, one of the many possible scenarios was 
simulated. The scenario involves cases in which grid 
charging and injection into the grid is not allowed. 
Simulation results demonstrated that the penetration of 
hybrid PV systems for self-consumption is likely to 
cause significant issues of voltage unbalance. Severity 
studies show the severity of the unbalance is higher on 
feeders with high demand in summer noon, due to air 
conditioners and pool pumps for instance, and feeders 
with high unbalance under passive conditions.  

It is worthwhile noting that the simplified inputs models 
used in this paper were only sufficient to demonstrate 
the potential technical impacts of hybrid PV systems for 
one operating scenario. The accurate statistical 
modelling and probabilistic simulation of the full scope 
of technical parameters and operation scenarios, 
including the randomness of parameters such as the 
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system location, PV and storage capacity, and operation 
mode, remains a research gap that encourages future 
work. 
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Abstract— There has been a rapid increase in the uptake of 
electric vehicles (EVs) worldwide. However, this uptake of EVs 
is accompanied by network planning and operational 
challenges on power systems, particularly low voltage (LV) 
networks. This paper aims to identify considerations and 
inputs to guide impact assessment studies to determine the 
extent of the technical issues caused by EVs on LV residential 
networks. The importance of selecting an appropriate network 
model is discussed and the significance of the customer 
distribution, in the network selected, is demonstrated in a 
straightforward simulation. The paper then discusses how 
customer loads can be modelled, as well as factors to consider 
when modelling the EV load, including the impacts of charge 
schemes and time-of-use tariffs. This is followed by a 
simulation demonstrating how the various inputs and 
considerations discussed are taken into account. Within the 
simulation the Monte Carlo Simulation method is used to 
randomly allocate EVs along a residential feeder, while the 
extended Herman Beta algorithm is used to account for the 
stochasticity of the customer load during the power flow 
analysis. The results of the simulation can be used to inform 
penetration limits for EV charging along the specific feeder 
simulated. However, further studies conducting such impact 
assessments on different networks can be used to inform 
general limits stipulated in network standards and uptake 
policies regarding the penetration of EV in residential 
networks. 

Keywords- electric vehicles, residential networks, impact 
assessment, South Africa. 

I.  INTRODUCTION 
Energy storage system (ESS)  refer to any system that 

can store energy and therefore when connected to the grid 
can act as a load when charging or as distributed generation 
(DG) when discharging (supplying power to the grid). 
Photovoltaic (PV) systems that have batteries for 
uninterruptible power supply functionalities or even the 
battery of an electric vehicle (EV) can both be categorized 
as ESSs. The impact of PV systems has been widely 
investigated and thoroughly documented. This paper aims to 
guide impact assessment studies of ESSs on residential 
feeders, specifically looking at EVs, providing insight into 
the modelling of inputs and simulation considerations.  

The worldwide uptake of EVs can be attributed to a 
combination of aspects including financial and 
environmental factors as well as the introduction of policies 

and incentives. This substantial increase in EV uptake 
introduces various challenges to the power grid. The 
charging of EVs on the network, particularly at home, 
changes the load profiles used for network planning and 
increases the residential load demand. Depending on the 
penetration, the changes affect the performance of the grid 
as it was not designed to accommodate such loads. The 
effects of ESSs (especially EVs) on the load profiles, used 
for network design, maintenance and operation, is an area 
that could use further research. 

I. TECHNICAL IMPACTS OF ES SYSTEMS ON 
DISTRIBUTION NETWORKS 

The supply of electricity to customers is regulated 
through quality of supply (QoS) standards to ensure the 
optimal performance of the network and connected 
equipment. An increase in ESS penetration may have 
effects on the network, due to unforeseen loads and 
generations, that were not taken into account in the initial 
distribution network design. A range of technical issues 
reported in [1]–[6] is possible, however, effects on voltage 
level, thermal limits of the cables and transformer windings 
and voltage unbalance have been identified as most critical,  
and will be discussed in further detail in this section.   

A. Voltage-drop and voltage-rise 
The additional load demand from the charging of ESS 

batteries can cause significant voltage-drops along a feeder. 
A voltage drop along the feeder is normal and expected. 
However, due to the size of these additional loads, if the 
resulting voltage drop is large enough, the feeder voltage 
level may fall below the minimum voltage level prescribed 
by the supply standards. Mass simultaneous charging of EV 
batteries have shown to decrease voltage levels below the 
prescribed supply standards [6], especially if this mass 
charging coincides with peak demand loads. 

When the batteries of ESSs act as DG and are allowed 
to inject power into the network, the opposite may become 
an issue. Injection of power into the grid could cause the 
voltage level along the feeder to rise and exceed the 
maximum voltage level stipulated in the QoS standards. 

It should also be noted that although ESS battery 
charging is likely to result in voltage drops and injection 
result in voltage rises, due to voltage unbalance, charging 

Stellenbosch University https://scholar.sun.ac.za



87 
 

can also result in voltage rises and injection in voltage 
drops. 

B. Thermal Loading 
It is possible that the large currents being drawn during 

ESS battery charging may cause the transformer to be 
overloaded and the thermal limits of the conductor cables to 
be exceeded. This is shown in the case study conducted on a 
residential LV feeder in a suburban area in Dublin, Ireland 
[1].  The case study was conducted when the coincidence in 
the peak customer demand and mass simultaneous EV 
charging is the highest. The loading of the transformer 
reaches 100% at a penetration percentage of only 25%, 
where penetration percentage is defined as the ratio of 
households with EVs over the total number of households. 

C. Unbalance 
Electricity is generated and transported in three phases 

and each household along an LV feeder is typically 
connected to only one of the three phases. If the three 
phases are not evenly loaded this could result in voltage 
unbalance. QoS standards stipulate that at a residential level 
in South Africa the voltage unbalance should not exceed 3% 
[7]. The utility cannot predict which customers will install 
ESSs, which creates uncertainty. If charging of the ESS is 
done at home, the battery can be connected to an unknown 
node and phase on the network. This could result in the 
three phases being unequally loaded, causing voltage 
unbalance along the feeder.  

From these technical issues explained, it is clear that the 
uptake of ESSs may, depending on the penetration, impact 
the performance of the grid. However, to investigate the 
extent of these technical issues at various penetration levels, 
detailed impact studies are required. 

II. IMPACT ASSESSMENT INPUTS AND CONSIDERATIONS 

A. Network Model 
In this paper “network model” refers to an amalgamation 

of properties. These include the feeder configuration (radial, 
parallel, ring or meshed), the customer distribution along the 
feeder and conductor cables properties (length and 
impedance). The significance of the customer distribution is 
illustrated in the example below. The simulation is run 
under passive conditions. 

Consider the feeder shown in Fig. 3. Initially the 
customers are uniformly distributed, meaning the same 
number of customers are connected to each phase at each 
node along the feeder. The customer loads are all the equal, 
for this example 4 kW loads were used.  

The voltage unbalance under these conditions is 
insignificant, 1.135 x 10-14 %. Now consider the exact same 
feeder, but instead of the customers being uniformly 
distributed along the feeder, the customers are distributed in 
a cosine (3-0-0) and cyclic (2-1-0) pattern across the three 
phases. The voltage unbalance for the cosine and cyclic  

 
 
 
 
 
 
 
 
 
 
 
 

customer distribution is 3.806 % and 1.101 % respectively. 
From this it is evident that the customer distribution 

plays a significant role in the simulation results, especially 
unbalance even under passive conditions. If the network is 
not modelled correctly, it may be difficult to determine 
whether the effects on the network simulated are as a result 
of the ESS or the inaccurate modelling of the network itself.  

In most cases the distribution network operator does not 
have the information regarding the customer phase 
distribution along an LV feeder. The planner’s assumptions 
regarding this will have a significant effect on the results of 
the simulated impact assessment study.  

Decisions made based on these results may therefore not 
be the most suitable and could even be detrimental. Careful 
consideration with regard to customer distribution must be 
taken because as illustrated by this example, QoS standards 
can be violated even under passive conditions. 

Although trends may be common across more than one 
network, specific penetration percentages at which 
violations of QoS standards occur cannot blindly be 
extrapolated across different networks. Careful 
consideration of the network model chosen must be taken. 

B. Modelling of the Customer Load 
In South Africa, consumers have been grouped into 10 

Living Standards Measure (LSM) levels [8]. Consumers are 
grouped according to their standard of living, looking 29 
aspects including the ownership of commodities such as 
motor vehicles and large appliances [8], [9].  

When doing distribution network design, knowledge of 
the expected loads is important to ensure that the network 
infrastructure can handle these loads. Residential areas are 
classified according to these LSM levels to give the network 
designer insight into the expected loads. 

The load that the network “sees” is dependent on the 
amount of current a customer is drawing at a specific point 
in time. Even though the customers are grouped according 
to these LSM levels and their ADMD may be the same, the 
load coincidence for these group customers need to be taken 
into account as all the customers in the group do not 
necessarily hit their peak demand at the same time [10]. 

It is possible to model the customer loads 
deterministically, giving one specific and predefined value 
for all the customer loads. However, it is important to keep 

Figure 1: Simulation 1 Sample Network 
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in mind that customer behaviour is unpredictable. Modelling 
the customer loads probabilistically may be more 
appropriate, accounting for the uncertainty of the customer 
behaviour and therefore the variable and stochastic nature of 
the customer loads. It is possible to model the load 
probabilistically using a common representative model and 
still keep the load diversity of the grouped customers. 

C. Modelling of the ESS as a Load 
When the battery of the ESS is connected and is 

discharging the battery will be seen as DG and can be 
modelled accordingly. When the battery is charging, the 
battery acts as an additional load to the ordinary household 
consumption load.  

Three factors will affect the instantaneous current drawn 
namely, the battery capacity, state of charge (SOC) and 
charging method. These characteristics determine the 
magnitude and duration of the load and are explained below. 

1) Battery Capacity 
The battery capacity will affect the duration of the load in 

the case of charging the battery, or generation in the case of 
discharging. The operating temperature and depth of 
discharge (DoD) of a battery largely affects the operating 
lifespan of the battery [11]. To increase the service life of a 
battery, the battery should not be discharged past a certain 
point referred to as the DoD. 

2) SOC 
The SOC of a battery when connecting to the grid will 

also affect the duration of the load or generation seen by the 
network. The SOC is dependent on the usage pattern on the 
battery. In the case of an EV battery, the SOC when arriving 
home is a stochastic variable as it is directly related to the 
customer mobility, the distance travelled since the previous 
charge and whether the customer makes use of a secondary 
charging facility. If the customer is able to charge their EV 
at work or elsewhere, the SOC of the EV battery when 
arriving home will differ from a customer who charges at 
home exclusively. The SOC will determine the amount of 
current drawn and the duration of charge till the battery is 
full or the duration of discharge till the DoD has been 
reached. Accurately estimating the SOC is important as it 
informs the user of the remaining useful energy and also 
avoids discharging past the minimum point.  

One method to determine the SOC is to make use of 
traffic flow studies to determine the average distances 

travelled to and from work and relating this to the battery 
capacity. These can also be used to anticipate home arrival 
times and subsequent likely times that EV 
charging/discharging may start.  

3) Charge Method 
Looking at literature to determine a power rating that 

can be used to model an EV battery during charging might 
prove difficult as this is dependent on multiple factors. The 
international standards and categorization of EV charging in 
Europe and North America is shown in the table 1[12]. 

Most EV charging takes place at home [13], [14]. South 
African households receive 230 V from an ordinary wall 
socket, with a wall socket circuit breaker value of 15/20 A 
and a main circuit breaker value of 60 A [15], [16]. This 
allows for a 3.45/4.6 kW supply from a wall socket, and 
13.8 kW if a designated outlet is installed allowing 60 A. 
Residential charging in South Africa would fall under level 
2 (AC) charging according to North American standards and 
normal to medium charging according to European 
standard. 

The diversified daily travel distances as well as the time 
and duration of charge affects the SOC. Where the SOC 
affects the load current. Therefore, the load current is also a 
diversified variable, brining variability to the EV load. 

4) Charge Schemes and Tariff Incentives 
The implementation of charge schemes, or tine-of-use 

(TOU) tariff incentives largely affects the charging or 
discharging behaviour of energy storage users. Charge 
schemes can be seen as regulatory, where charging and 
discharging of ESS batteries is restricted to certain periods 
and this restriction is controlled by the distribution system 
operator (DSO). While time-based tariff incentives act as 
guidelines, encouraging residents to charge and discharge 
during certain periods. These incentives are optional while 
charged schemes are mandatory. The user can choose to 
ignore these incentives and pay the higher rate for the 
freedom of being able to charge and discharge when they 
please.  

When no tariff incentive or charge scheme exists to 
restrict or encourage charging during a specific period, 
residents will charge whenever it is most convenient. Once 
again taking the example of EV owners, to ensure that their 
EV will be fully charged by morning or whenever they may 
need it, they are likely to charge their EVs when arriving 
home from work [17].  

Europe North America 
Charge 
Method 

Power 
[kW] 

Maximum 
Current [A] Connection Charge Method Nominal AC 

Supply Voltage [V] 
Maximum 

Power [kW] 
Maximum 

Current [A] 

Normal 3.7 10-16 1-phase AC Level 1 (AC) 120 1.44 12 

Medium 3.7-22 16-32 1- or 3-phase AC Level 2 (AC) 240 7.7 32 

High >22 > 32 3- phase AC 
Level 3 (DC) 208-600 240 400 

High >22 > 3 225 DC 

TABLE I.  INTERNATIONAL EV CHARGING STANDARDS IN EUROPE AND NORTH AMERICA 
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It may be found that when the DSO has full control over 
when charging and discharging takes the penetration 
percentage of ESSs that a network can handle before 
violating QoS standards may be higher than when no charge 
scheme or tariff incentive is implemented. 

Norway is undeniably the leading country in terms of 
EV adoption, when looking at EV as a percentage of total 
vehicle sales [18]. As far as sales numbers go, China is in 
the lead followed by the United States, then Norway [19]. 
One thing that all of these countries have in common is the 
implementation of charge schemes, off-peak, TOU tariffs 
and rebates [20], [21], [22].  

Currently, South Africa has no charge scheme or widely 
implemented TOU tariff incentive scheme. Looking at 
countries with a much higher EV penetration percentages, 
the introduction of such schemes may be necessary and 
something South Africa may need to consider soon. 

5) ESS Location 
Customer distribution is not known upfront when doing 

distribution network design. The uptake and therefore 
placement of ESSs is not known either. The uptake of ESSs 
is decided upon by the end customer and is dependent on 
interest and finances related to the technology and 
electricity prices, amongst other things. 

When doing an impact assessment and deciding upon 
placement strategies for a simulation, one can either choose 
to take the randomness of ESS placement into account or do 
scenario-based placement cases.  

ESS placement can have a significant impact on voltage 
unbalance. If the placement of ESSs causes one phase to be 
more heavily loaded than the other, this could result in the 
feeder’s unbalance percentage violating the QoS standards. 
Careful consideration needs to be given to the placement 
strategy used, keeping the purpose of the impact assessment 
in mind, to yield useful, realistic and accurate results. 

D. Definition of the Measure of ESS Penetration 
The definition of “penetration percentage” differs widely 

across literature as is no clear-cut way in which penetration 
percentage must be defined.  

In [3], [5], and [4] the penetration level is defined as the 
percentage of houses that have EVs over the total number of 
houses along the feeder. [23] defines penetration level as a 
the number of EVs as a percentage of the total light vehicle 
fleet while [24] and [25] define penetration level as a the 
number of EVs as a percentage of the total vehicle fleet in 
that specific area. 

The definition of penetration can cause a wide variation 
of acceptable capacity. If two assessment are run on the 
same network each with a different definition of penetration 
percentage, the results may show that the networks can 
handle different penetration levels. Therefore, these 
definitions may not be of direct use to the planner during 
distribution network design or the to the DSO when 
defining standards or regulations. 

It may be more useful to define penetration level as a 

measure of the capacity (in kW or kVA) of installed ESSs in 
relation to the technical characteristics of the network, such 
as the peak demand or feeder maximum demand. It may 
then be possible to compare results from one simulation to 
results of another. 

III. SIMULATION DESCRIPTION AND RESULTS 
The ideal simulation would take all of the previously 

mentioned inputs and considerations into account. Customer 
load models taking the variability in customer behaviour 
into account, EV load models incorporating traffic flow 
studies to determine SOC and home arrival times, chargers 
used for EV charging assigned to customers based on data 
showing the distribution of chargers used by EV owners.  
This would require the necessary load models and data in 
order to model the inputs accordingly. Although possible, it 
may be difficult if all the data is not readily available. 
However, making simplifications and assumptions in a 
simulation can still render accurate results. Such a 
simulation was run to illustrate the effect of EVs on a 
residential LV feeder under the assumptions, simplifications 
and conditions stated below. 

A. Description of Simulation Inputs and Assumptions 
1) Network Model 

A time series analysis would be ideal and provide useful 
information regarding SOC, especially because of the time 
dependence of this variable. Whether the EV battery was 
charged earlier, will determine the capacity the battery has 
available to discharge later. However, this simulation aims 
to give a snapshot of the effect of EV charging at what 
could be considered to be a worst-case scenario time period 
explained in the EV modelling section below. 

The network model chosen is a three-phase four-wire, 
11-bus, radial feeder supplied by a 11/0.4 kVA transformer. 
All of the conductors are modelled with the same electrical 
properties having a resistance of 0.186 Ω/km and an X/R 
ratio of 0.451. The feeder is based on a real-life feeder 
model, so the customer distribution is realistic and does not 
follow a generic balanced, cyclic or cosine pattern. 

2) Customer Load Model 
The residents in this area are classified as an LSM 10 

group. The customer load is taken for a winter weekday at 
18:00, corresponding to the evening peak consumption 
period in the specific residential area. The load is modelled 
probabilistically as current, using a beta PDF with the 
following shape parameter values: alpha = 1.418 and beta = 
4.145, a scaling factor C = 80 A and an ADMD of 4.689 
kVA. 

3) Charge Scheme, Tariff Incentives and EV Load 
Model 

As there are no charge schemes currently realized in 
South Africa and ToU tariffs not widely implemented, no 
tariff incentive or charging scheme is incorporated in the 
simulation. The implementation of charge schemes in the 
simulation is possible. This is done by only allowing a 
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percentage of EVs allocated to be connected to the grid to 
charge (act as loads during the power flow analysis) during 
a certain period. However, for the purpose of this 
simulation, this was omitted, and no charge scheme was in 
effect. 

Only a single moment in time was simulated, 
corresponding to what could be considered a worst-case 
time instance, in which the evening peak of the ordinary 
customer load coincides with mass simultaneous charging 
of EVs. Because no charge scheme or tariff incentive is put 
into effect, all EVs allocated are assumed to be connected to 
the grid and charging is assumed to start upon arrival home 
from work. Only EV charging is simulated (no discharging), 
and the EV is modelled as a load.  

Due to the lack of daily travel distance data to determine 
SOC, a simplification regarding the EV load is made. All 
EVs allocated are modelled as 3.45 kW loads, calculated 
from 230 V (residential supply level in South Africa) and 15 
A. (wall socket circuit breaker value). To do this, the EV 
node is given a beta PDF with high alpha and beta values to 
represent the EV model almost deterministically having a 
value of 3.45 kW. (alpha = beta = 255.5, C = 30). These 
shape parameters are chosen because the co-incidence of all 
the EV users connecting to charge at the exact same time 
may not be probable. With the shape parameters selected, 
although little, there is still some variance in the EV load. 

4) Load Flow Tool 
In [26], the HB transform is modified from modelling 

loads to also modelling DG. Modifications to the use of the 
algorithm was done, explained below and simulated, as the 
HBE does not accommodate EVs.  

Each household was simulated having two nodes. To do 
this, an additional node was modelled an insignificantly 
short distance from the household node. The second node is 
where the EV load model was placed. The EV load then acts 
as an additional load to the ordinary customer load 
mentioned above. The reason for the separation of nodes is 
because not only can an EV act as a load or generation, the 
beta distribution of the EV load model has different shaping 
parameters (alpha and beta) and a different scaling factor to 
that of the ordinary customer load.  

The EV penetration is defined as a percentage of the 
maximum feeder demand. The EV penetration percentage is 
calculated as the follows: 

 
        (1) 

The MCS method is used to assign EVs to a random 
node and phase along the feeder for 1000 placement 
scenarios for each EV penetration percentage, with a 
maximum of one EV per household. The extended Herman-
beta algorithm is used to solve the power flow analysis. In 
this simulation the minimum and maximum voltages 
observed along the feeder for each of the 1000 placement 
scenarios per EV penetration percentage are recorded. 

B. Results 
The initial increase of maximum feeder voltage, shown 

in Fig. 4, can be attributed to the effect that unbalance may 
have on the voltage level and it is safe to assume that the 
effects of unbalance are mitigated after this. Thereafter the 
maximum voltage level decreases. It is evident that 
violations to the upper limit of the voltage level is highly 
unlikely and no violations occurred in the simulation. 

Fig. 5 shows that violations to the lower limit of the 
voltage level start to occur at a penetration percentage of 
approximately 156%, this is excluding outliers found 
already at 125%. The results can however also be 
interpreted to include risk. Allowing a 2.5% chance of the 
voltage level being violated, the feeder can handle a 
penetration percentage of approximately 192%. 

IV. CONCLUSION 
This paper begins by explaining how voltage rise and 

drop, thermal loading and unbalance are affected by the 
introduction of ESSs on LV networks. 

The importance of customer distribution is highlighted 
in the network modelling section and demonstrated with a 
simple simulation in which a balanced (1-1-1), cosine (3-0-
0) and cyclic (2-1-0) customer distributions are tested under 

Figure 4: Feeder Maximum Voltage vs Penetration 
Percentage 

Figure 5: Feeder Minimum Voltage vs Penetration 
Percentage 
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passive conditions. The results show that even under passive 
conditions the cosine and cyclic distribution results in 
voltage unbalance that fail to comply with QoS standards.  

A simulation demonstrating how the inputs and 
considerations detailed in the paper is conducted. For this 
simulation the use of the HBE is modified to accommodate 
EVs. The show that for the feeder modelled, violations to 
the lower limit of the voltage level began at approximately 
156% while no violations to the upper limit of voltage 
occurred. 

Due to lack of data available, the simulation made 
assumptions and simplifications. However, in future studies 
the inputs to the simulation including the implementation of 
charge schemes or tariff incentives and a more probabilistic 
model of the EV load can be done, making use of traffic 
flow studies. This will improve the accuracy of the results 
and help inform regulations that may need to be out in place 
regarding the uptake of EVs and EV charging. 
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Abstract—Motorcycles form a popular mode of transport in 
East African countries, and policies in countries like Rwanda 
are encouraging a transition to electric motorcycles (EMs). This 
paper aims to identify the impacts of EM charging on a low 
voltage residential distribution network in future high uptake 
scenarios. A stochastic-probabilistic analysis is conducted on a 
residential network, looking at the effect of EM charging on 
voltage level, voltage unbalance as well as cable and transformer 
loading. The Monte Carlo Simulation method is used to account 
for the randomness in the placement of EMs along the network 
while the extended Herman Beta transform is used to account 
for the variability in the residential consumer loads. This paper 
found transformer overloading to be the limiting factor with 
regard to EM uptake for the sample network modelled. A 
sensitivity analysis then highlighted the effects that the feeder 
properties, transformer size as well as EM and residential load 
model had on the simulation outcome. The sensitivity analysis 
found the results most sensitive to the residential load modelling 
as this affected the transformer loading prior to any EM 
charging. 
 

Keywords— Rwanda, electric motorcycles, impact assessment, 
residential charging, stochastic-probabilistic analysis 

I. INTRODUCTION 
With a global transition towards a cleaner and greener 

environment many countries have set national targets with 
regard to electric vehicles (EVs), with the implementation of 
EV policies worldwide [1] and campaigns such as EV30@30 
launched by the Eighth Clean Energy Ministerial in 2017 [2]. 
As the world moves towards electric mobility, it is anticipated 
that the movement from carbon-based fuel motorcycles 
towards electric motorcycles (EMs) will follow suite. There 
are millions of motorcycles in East Africa, with between 
20 000 and 30 000 in Kigali, Rwanda [3]–[5].  This makes 
countries like Rwanda a good basis for information to use in 
case studies regarding the impacts of EMs. 

Ampersand, an EM company, with a mission to “build 
affordable electric vehicles and charging systems for the three 
million motorcycle taxi drivers in East Africa, starting with 
Rwanda.” plans to extend to Uganda and Kenya in the near 
future [6], [7]. In May 2019, Ampersand launched their pilot 
programme with 20 EMs to test its battery swap out system 
[8]. The system makes use of three battery swap out stations 
where users exchange their fully or partially depleted battery 
for a full one and only pay for the battery capacity consumed 
[4], [8]. In August 2019, Paul Kagame, president of Rwanda, 
announced the movement of the entire country towards EMs 
stating “We will find a way to replace the ones (motorcycles) 
you have now” and implored current motorcycle operators to 
help with the “phase-out process” [3], [4]. Since then, the 
waiting list of users for the Ampersand EM grew from 1 300 

to 7 000 [7]. Ampersand is planning to build 500 more EMs 
in 2020, however the government wants them to build 5 000 
more [7], [9].  

Following this, Safi Motors - a local EM company in 
Rwanda - launched in late October 2019 [10]. Safi Ltd does 
not make use of a battery swap out system, and were the first 
company to install EM charging stations in Rwanda [11]. To 
reduce the downtime due to charging and to accommodate 
different financial positions, charging works similarly to 
filling up with fuel, where one can charge depending on how 
much time or money one has available [10]. The first phase of 
the launch introduced 60 EMs and three charging stations 
located next to fuel stations, allowing a total of six EMs to 
charge at a given moment [12].  

A variety of impact assessment studies have been done 
focusing on the impacts that EV charging and discharging has 
on the grid [13]–[16]. A study has also been done looking at 
the economic and environmental effects of each section of the 
EM life cycle, from manufacture, operation, to end of life [17]. 
However, the technical impacts of EMs on the distribution 
network have not been explored. This is likely due to the fact 
that EM loads may be considered smaller than EV loads and 
the possible negative effects deemed insignificant. With little 
research done to assess the technical impacts of EMs, it may 
not be sufficient to simply assume that the effects of EM 
charging are negligible. This paper explores whether, with 
high uptakes of EMs, the effects of these loads may be 
significant when superimposed onto residential consumption 
loads, especially during periods of mass simultaneous 
charging. 

The aim of the paper is to investigate the technical impacts 
of EM charging on LV residential feeders. The paper proposes 
a stochastic-probabilistic approach that is implemented to 
address the diversity in customer loads and EM loads, and the 
uncertainty in EM allocation. The approach makes it possible 
to analyse an extensive set of EM penetration scenarios: varied 
scenarios of EM location and size, and varied penetration 
limits per household. The performance of the studied 
networks, and the respective hosting capacity are determined 
based on the conditions of four technical variables: voltage-
deviation, unbalance, thermal loading of conductors, and 
transformer loading.  

The next section describes the simulation methodology 
while the case study simulation inputs, considerations, method 
and parameters of interest are discussed in section III. The 
simulation results are reviewed in section IV. This is followed 
by a sensitivity analysis of the simulation inputs in section V. 
The paper then concludes. 
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II. SIMULATION METHODOLOGY  
A stochastic-probabilistic approach, as explained in [18] 

lists considerations for the inputs required to conduct impact 
assessments of dispersed  energy storage systems (ESS) - in 
this case EMs - on distribution networks. The following 
considerations for the inputs and simulation method were 
noted: 

 the uncertainty and variability in the residential and 
ESS loads need to be accounted for. 

 informed, accurate and appropriate modelling of the 
network, residential load and dispersed ESS load 
model applied. 

 the uncertainty in the size and randomness in location 
of the dispersed ESSs needs to be addressed. 

 an appropriate penetration percentage definition 
should be used. 

The stochastic-probabilistic approach consists of two 
components, which are now discussed in detail. 

A. Simulation of EM placement 
A stochastic approach accounts for randomness. In the 

case of dispersed ESSs, the unknown and random location of 
these devices along a feeder is due to the unpredictability of 
which residents will adopt ESSs. Instead of assigning ESSs to 
residents in a specific pattern or even a worst-case scenario 
method, an approach that aptly mimicked the randomness of 
ESS uptake is used.  

At a selected penetration rate, the corresponding number 
of EMs is allocated randomly to phase and node using a 
Monte-Carlo simulation (MCS). This is done repeatedly, with 
replacement, and within the permissible uptake limit per 
household set in the simulation, until all EMs are allocated. 
The MCS random selection is based on a uniform distribution, 
resembling equal EM uptake potential between customers. In 
this paper, 1,000 MCS scenarios of EM allocation are 
performed at each penetration level. For each scenario, the 
corresponding feeder performance is determined using the 
Herman-Beta extended (HBE) probabilistic transform. 

B. Calculation of the load flow using the HBE 
This paper proposes using a probabilistic load flow (PLF) 

approach above a deterministic one. A deterministic approach 
cannot explicitly represent the variability in the loads and 
generation and therefore input uncertainty is not factored in 
the results [19]–[21]. The HBE transform is an analytical PLF 
approach that allows the  loads and generation to be  modelled 
using beta probability density functions (PDFs) to account for 
the associated uncertainty [22]. The HBE method is built on 
the current prescribed method for the design of LV feeders in 
South Africa [23]. Using this approach, feeder performance in 
terms of voltage-deviation, unbalance, and thermal loading 
can be easily assessed factoring in design risk. 

This stochastic-probabilistic analysis approach was 
therefore deemed more appropriate as both the variability and 
uncertainty in loads, and the randomness in the location of EM 
loads are addressed. A schematic of the overall simulation 
program flow is shown in Fig. 1.  

A more detailed look at the inputs, considerations, method 
and parameters of interest is found the following section. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

III. CASE STUDY 
The MCS-HBE approach is now used to investigate the 

impacts of addition loads due to EM charging on residential 
feeders. The simulation is focussed on quantifying the impacts 
and the maximum capacity of EMs that can be hosted on 
existing feeders. Therefore, the interval of interest is one in 
which the feeders are most loaded leaving little headroom for 
additional loads. The coincidence of EM charging with high 
feeder load is anticipated to be the determining factor to the 
hosting capacity (HC) of a feeder. For LV feeders, the peak 
load is usually experienced during winter evenings where 
there is a high coincidence of heating elements. For this 
reason, the influence of distributed generation on HC is not 
included. The characteristics of the conducted simulations are 
described below. 

A. Simulation Inputs 
1) Network Model 
The initial business model of companies like Ampersand 

and Safi Motors appears to be based on battery exchange 
schemes and/or central charging stations. As countries like 
Rwanda progresses towards a fully electric motorcycle sector 
the assumption is made that the primary EM charging method 
will move towards charging at a residential level, as seen in 
the EV sector [24], [25].  

Although the need and relevance of such studies is 
motivated by countries like Rwanda, a more generalised case 
study in which a practical LV residential topology typically 
used in low-income, medium density urban areas in South 
Africa is modelled in the simulation. A single branch three-
phase four-wire, 10 node network, 30 m apart with a 150 kVA  

Figure 1: Overall Simulation Program Flow 
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transformer supplying 50 customers was modelled and is 
shown in Fig. 2 above.  The conductor lines were modelled as 
having the following electrical properties; a resistance value 
of 0.282 Ω/km and an X/R ratio of 0.3034. 

2) Residential Load Model 
For the case study, the impacts of EM charging on South 

African networks are tested. In South Africa domestic 
consumers are groups according to their living standards. This 
allows for customers in a specific area to be grouped 
according to an expected residential load. The residential load 
modelled was that of a class 4 (township area) consumer [26]. 
For the simulation, the load was modelled probabilistically 
using a beta PDF shown in Fig. 3. The load parameters used 
relates to a recently electrified area (electrified for about 7 
years) having an after diversity maximum demand (ADMD) 
of 1.56 kVA and shape parameters alpha = 0.692, beta = 5.437 
and a scaling factor C = 60 amps. This load model is based on 
5-minute readings of load currents during the interval of 
maximum demand, on a winter, week-day evening. 

3) Electric Motorcycle Model 
The following assumptions and simplifications were made 

regarding the exact EM charging and battery specifications. 
The Super SOCO TC-Max was chosen as representative of the 
EM to be modelled for this simulation [27]–[29] since its non-
electric motorcycle equivalent is a typical 125 cc motorcycle 
similar to the ones in widespread use in Rwanda [29]. The 
driving range is about 97 km and charge rate 3.5 kW, fully 
charging in 4.5 hours [28], [29]. The EM load was modelled 
as a current using a beta PDF, with a residential voltage level 
of 230 V [30] resulting in a current of 15.22 A. The alpha and 
beta parameters affect the shape and skewness of the beta 
PDF. For the simulation, the alpha and beta values were set 
equal and high to model the load symmetrically about a 
specific value (3.5 kW) and with little diversity. 

B. Simulation Considerations 
1) Placement Strategy 
With a fully electric motorcycle sector it is assumed that 

this could become the primary mode of transport in densely 
populated areas and is likely that each household will at least 
own one EM.  

The placement of EMs in the residential network chosen 
for the simulation was allocated at random, with a maximum 
of two EMs per household.  

2) Penetration Percentage Definition 
The penetration percentage definition used in this paper is 

based on a measure of the loadability of the feeder, which is 
dictated by its electrical characteristics and configuration. The 
maximum load the feeder can handle without violating quality 
of supply limits, termed the feeder maximum demand (FMD), 
is used as an indicator of the feeder’s loadability.  

Expressed in mathematical form, the electric motorcycle 
penetration percentage (EM PP) definition is as follows: 

𝐸𝑀 𝑃𝑃 =  ஼௨௠௔௟௔௧௜௩௘ ௉௢௪௘௥ ௢௙ ாெ௦ ஺௟௟௢௖௔௧௘ௗ [௞ௐ]ி௘௘ௗ௘௥ ெ௔௫௜௠௨௠ ஽௘௠௔௡ௗ [௞ௐ]  × 100%        (1) 

C. Parameters of Interest 
1) Voltage level 
In South Africa the Nersa 048 standards state that the 

residential supply voltage level should be 230 V ± 10% [31]. 
It is anticipated that mass simultaneous charging of EMs will 
cause the voltage along a residential feeder to drop as seen 
with EVs in [13], [32]. The lower limit of the supply standard 
is therefore a parameter of interest. The upper limit of the 
voltage level may also be of interest due to the effect that 
unbalance may have on the voltage level as shown in [18]. 

2) Voltage Unbalance 
Voltage unbalance, due to the random single-phase 

placements and therefore possible unbalance of loads across 
the three phases, is expected. According to the South African 
supply standards, voltage unbalance should not exceed 3% 
[31]. 

The following equation based on the quantile values was 
implemented to calculate the voltage unbalance: 𝑈𝐵 = ெ௔௫.஽௘௩௜௔௧௜௢௡ ௢௙ ௉௛௔  ௏௢௟௧௔௚௘௦ ௙௥௢௠ ஺௩௘௥௔௚௘஺௩௘௥௔௚௘ ௏௢௟௧௔௚௘ × 100%    (2) 

 
3) Cable and Transformer loading 
It is not likely that these newly introduced loads from EM 

charging was a consideration during the initial low voltage 
distribution network planning. It is hypothesized that existing 
loads augmented with mass simultaneous charging of EMs 
would overload the transformer. The maximum cable and 
transformer loading were therefore parameters of interest that 
were recorded during the simulation. 

D. Simulation Method 
The simulation procedure can be broken down into the 

following five steps. 

I. Determine the FMD by loading winter loads and 
linearly incrementing the load until the first occurrence 
of QoS violation. 

II. Reset the load to winter loads, and add EMs randomly 
using the MCS guided by the penetration level under 
analysis and the limits per household. 

III. Perform the HBE and record the worst-condition of 
each technical variable based on 2.5% risk. 

IV. Repeat II and III for 1,000 scenarios 

V. Increment the penetration level and repeat processes 
II-IV until every node has maximum penetration. 

Figure 2: Simulation Network Model 
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Figure 3: Beta PDF - Residential Load Model 
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IV. RESULTS 
For each penetration percentage, 1 000 different 

placement scenarios were analysed and the minimum voltage, 
maximum unbalance, maximum transformer loading and 
maximum conductor current along the feeder for each 
scenario was recorded. The simulation was run until an EM 
penetration percentage of about 281% was reached. This 
penetration percentage related to each household along the 
feeder having the maximum (in this simulation it was 
restricted to two) number of EMs assigned to it. 

Fig. 4 shows the minimum feeder voltage. The blue line 
indicates a risk margin included in the representation of the 
results. At each penetration percentage there is a 95% chance 
that the minimum voltage along the feeder will lie above the 
blue line. Therefore, when including risk in the interpretation 
of the results and allowing a 5% chance of violating the lower 
limit of the supply voltage level, the feeder can handle a 
penetration percentage of 111%. 

Violations to the lower limit of the voltage quality of 
supply standards start at about 56% if no risk factor is allowed 
for. There were no violations to the upper limit of the voltage 
level and the graph is not shown. 

In Fig. 5 initial violations to the allowable voltage 
unbalance percentage is recorded at penetration percentages 
as low as 31%. When taking risk into account, the feeder could 
handle penetration percentages up to 66%. The bell shape 
indicates how unbalance initially increases as random 
unbalanced allocation occurs. The unbalance eventually 
decreases as the number of EMs assigned increases, reducing 
the level of diversity in EM loads between customers. At the 
extreme end of the penetration range, every customer has the 
same number of EMs hence the initial conditions of unbalance 
(without EMs) are retained. 

When looking at Fig. 6 the transformer is overloaded at 
about 26%. Fig. 7 shows that the cables exceed its maximum 
current carrying capacity at 24% without risk and 31% with a 
5% risk of exceeding the current carrying capacity. The 5% 
risk is comprised of a 2.5% that is incorporated in the PLF 
analysis mentioned in the Simulation Method section and an 
additional 2.5% in the analysis of the stochastic results. 

 The results show that the feeder is thermally constrained 
and the limiting factor for the penetration of EMs that this 
feeder can handle is the cable loading followed by the 
transformer loading. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

V. SENSITIVITY ANALYSIS 
In reality many variations of networks - in which residents 

may be closer together or further apart, load models differ, and 
transformers may be more or less loaded - exist. Because of 
many assumptions regarding the simulation inputs a 
sensitivity analysis becomes useful when interpreting the 
results.  

The following section will have a look at the sensitivity of 
the results to the following four variables; feeder properties, 
transformer size, EM load size and lastly the residential load 
model used.  These were the simulation inputs that did not 
have data readily available and assumptions needed to be 
made. 

Figure 4: Lowest voltages along feeder with increasing penetration of EMs 

Figure 5: Highest voltage unbalance along feeder with increasing 
penetration of EMs 

Figure 6: Highest transformer loading along feeder with increasing 
penetration of EMs 

Figure 7: Highest conductor currents along feeder with increasing 
penetration of EMs 
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A. Feeder Properties 
Feeder properties refer to several characteristics including 

the network topology, distances between customer nodes and 
cable properties. For this analysis, the effect of the distance 
between the customer nodes was tested. For the base case-
study the customer nodes were 30 m apart and violations 
occurred as shown in the first (grey) row of Table 1. The 
distance between the customer nodes was then adjusted to 45 
m. The results are shown in the second row of the table. 

When the distance between the nodes was increased, the 
factor limiting the uptake of EMs changed from transformer 
loading to voltage unbalance. Although when including risk, 
the limiting factor was still the transformer loading and the 
allowable penetration percentage did not decrease, the effect 
of the feeder property tested was significant. This is 
highlighted by the fact that when the distance between nodes 
increased from 30 m to 45 m, the percentage at which the 
minimum voltage level is violated drops from 111% to 34% 
and the percentage at which voltage unbalance exceeds the 
allowed value drops from 66% to 28%. 

B. EM Load Model 
The EMs were initially modelled as 3.5 kW loads when 

charging. To account for the uncertainty in the EM load 
model, the network was also tested with EMs modelled as 
both 2.1 kW and 4 kW loads, and the results compared to that 
of the initial (grey row in the table) 3.5 kW loads. Table 2 
shows that when the EM load size is reduced to 2.1 kW, when 
including risk there are no violations to the minimum voltage 
level or voltage unbalance even when each customer is 
assigned the maximum number of EMs allowed in the 
simulation. It is also noticed that when the load size is 
increased, the penetration percentage at which violations 
occur decreases.  

TABLE 1. HC SENSITIVITY TO FEEDER PROPERTIES 

d 
(m) 

Hosting Capacity based on Technical Variable 

Voltage Unbalance Trfmr 
Loading 

Conductor 
Loading 

Excl. 
risk 

5% 
risk 

Excl. 
risk 

5% 
risk 

Excl. 
risk 

5% 
risk 

Excl. 
risk 

5% 
risk 

30 56 111 56 66 56 26 56 31 

45 20 34 20 28 20 26 20 31 
 

TABLE 2. HC SENSITIVITY TO EM LOAD MODEL 

 
TABLE 3. HC SENSITIVITY TO RESIDENTIAL LOAD MODEL 

C. Transformer Size 
The transformer used for the initial simulation was sized to 

operate at around 80% of its peak capacity under passive 
conditions (no dispersed ESS). As shown in the results 
section, this transformer became overloaded at an EM 
penetration percentage of 26%. If the transformer was sized 
to operate at 90% of its peak capacity under passive 
conditions, it would become overloaded at an EM penetration 
percentage of 11%. Increasing the size of the transformer 
would be effective at alleviating the transformer overloading 
problem. However, before significantly increasing the 
transformer size it is advised to look at the next most pressing 
issue limiting uptake so that the transformer is not 
unnecessarily oversized.  

D. Load Model 
The residential load model needs to be characterized by 

the consumer class behaviour. When the load used for the 
simulation was changed from class 4 (township area) to class 
3 (informal settlement), the residential load beta PDF was 
given the following parameters: alpha = 0.248,    beta = 1.008 
and scaling factor C = 20. The ADMD of the load was then 
0.91 kVA. Table 3 shows the results, the grey row showing 
the results of the initial simulation and the white row the 
results of the adjusted load. With the adjusted load model, the 
penetration percentage at which violations to minimum 
voltage, unbalance and cable loading occurred all increased. 

When interpreting the results including risk the minimum 
voltage level drops below the allowed value at 160% while the 
voltage unbalance exceeds the supply standards at a 
penetration percentage of 72%. The cables become 
overloaded at a penetration percentage of about 57% and the 
transformer around 67%. With this smaller residential load, 
the cable overloading became the factor limiting the uptake of 
EMs. 

VI. CONCLUSIONS 
It is evident that even with the assumptions and 

simplifications made in the case study due to a lack of 
available information, EM charging will affect low voltage 
distribution networks especially if the uptake of EMs is 
significant and charging takes place at a residential level.  

The simulation shows that the primary factor limiting the 
uptake of EMs is the transformer loading. A solution to this 
may be to increase the transformer size, while a second and 
cheaper way may be to control or disincentivize the charging 
of EMs during the peak demand period.  

The voltage drop along the feeder length caused by mass 
simultaneous charging appears to be the least problematic 
issue. Violations occur at relatively high penetration 
percentages without allowing risk and over 100% when 
allowing a 5% risk margin and chance of violating the limit. 

The simulation highlights some risks that policy makers 
and network planners need to at least be aware of, especially 
when embracing technology before its effect on the network 
is fully understood.  

The sensitivity analysis calls attention to the importance of 
accurately modelling the simulation inputs as the effect of 
these inputs significantly affects the simulation results. 
Because these results inform policy makers and network 
planners, it is suggested that further research – ideally with 

EM 
Load 
[kW] 

Hosting Capacity based on Technical Variable 

Voltage Unbalance Trfmr 
Loading 

Conductor 
Loading 

Excl. 
risk 

5% 
risk 

Excl. 
risk 

5% 
risk 

Excl. 
risk 

5% 
risk 

2.1 116 none 62 none 26 27 33 
3.5 56 111 31 66 26 24 31 
4 55 99 28 60 26 23 28 

Load 
Class 

Hosting Capacity based on Technical Variable 

Voltage Unbalance Trfrmr 
Loading 

Conductor 
Loading 

Excl. 
risk 

5% 
risk 

Excl. 
risk 

5% 
risk 

Excl. 
risk 

5% 
risk 

4 56 111 31 66 26 24 31 
3 116 160 48 72 67 49 57 
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more accurate data, network and load models if available - be 
done to see the full extent of the issues shown in this sample 
network simulation. 
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Abstract The transport sector is following the global movement towards a cleaner and more sustainable environment. This is 
evident in the rapidly increasing number of electric vehicles (EVs) around the world. This substantial increase in EV uptake 
introduces various technical challenges to the power network. To ensure that power quality standards are adhered to, and to 
inform network planners and policymakers, the extent and associated risk of these challenges need to be determined. This is 
achieved by conducting impact assessment studies on distribution networks. However, many existing methodologies for 
conducting such impact assessment studies fail to model the inherent uncertainty and variability in several critical assessment 
inputs.  This paper proposes a comprehensive methodology, making use of a stochastic-probabilistic approach, for impact 
assessment studies investigating the effects of EV charging on low voltage residential distribution networks. The methodology 
makes use of the Monte Carlo method to account for the randomness in the EV placement, while using beta probability density 
functions to account for the uncertainty and variability in both the residential customer and EV load models. The extended 
Herman-Beta algorithm is used to solve the probabilistic load flow analysis. A case study is documented in which the 
methodology is demonstrated on a practical feeder located in South Africa. The case study finds that the primary factor limiting 
the uptake of EVs, especially during the evening residential consumption peak, is the conductor cable loading, and that the 
period during which the hosting capacity is the highest falls between midnight and 6 am – highlighting the potential value of 
implementing charge schemes in increasing the hosting capacity of the network. Although more studies are required before 
generalised conclusions can be made regarding the technical impacts of EVs on LV distribution networks, the methodology 
proposed in this paper offers a comprehensive framework within which to conduct detailed integration studies, ultimately 
providing valuable information to policy makers and distribution network planners. 
 
Index Terms— distribution network, electric vehicles, impact assessment, stochastic-probabilistic 
 

I. INTRODUCTION 

A. Context 
S the world becomes more environmentally conscious, actions to combat climate change and increase sustainability have 

been deliberate. In December of 2015, the Paris Agreement was adopted by more than 195 nations and marks a conscious 
effort to fight global climate change [1]. Governments have implemented many policies, incentives, rebates, and mandates to 
ensure the transport sector plays its part in this change. For instance, by 2040 China’s target is to completely terminate the 
production of internal combustion engine vehicles. Norway and South Korea aim to place a ban on the sale of petrol and diesel 
vehicles by 2025, while France and the UK aim to do so by 2040 [2]. Germany, India, Israel, Japan and the Netherlands intend to 
cease internal combustion engine vehicles sales by 2030 and ensure all vehicles on their roads are at least partly electric by 
2050 [2].  

In 2019, the top five countries in terms of electric vehicle (EV) uptake were China, Norway, Netherlands, Sweden and the 
USA [3]. Research also indicates that currently most EVs, owned by private individuals, are charged at home [4]–[8]. However, 
in high density countries like China, where space is limited, a dedicated parking spot where residential EV charging can take 
place is a luxury that a substantial portion of the country does not have [5], [9]. Here the government promotes the development 
of public charging networks to ensure the efficient coverage of charging stations  thereby encourage EV uptake [9].  

Countries with high EV penetrations are starting to experience technical challenges due to the charging of EVs, especially in 
residential, low voltage (LV) networks. Sweden’s EV sales, for example, has increased substantially due to the increase in 
government grants, causing the electricity demand in cities like Stockholm to grow and exceed the local grid capacity in some 
areas [4], [6].  High EV uptake has been reported to be associated with a range of technical challenges, such as voltage level and 
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voltage unbalance [10]–[17], an increase in network losses [10], [12], [16], [18], [19], and frequent transformer and cable current 
overloading and associated overheating [10]–[12], [15], [16], [18], [19]. 

Impact assessment studies to determine the likelihood and severity of these problems are of critical importance to distribution 
network planners and energy regulators.  These studies can be used for short-term planning and operational purposes considering 
the current penetration of EVs, or for future planning based on forecasted scenarios. The studies for example inform EV uptake 
policies and regulations, decisions on the necessity for network upgrades and reinforcement to accommodate desired EV 
penetration levels, and mitigation techniques such as smart charging. 

The formulation of impact assessment studies is complicated by a combination of uncertainties affecting the modelling of 
inputs and the simulation of feeder performance: customer loads are influenced by stochastic factors, EV loads are influenced by 
variable customer behaviours primarily mobility, and conditions of EV placement in future uptake scenarios are unknown. These 
complexities have stimulated a lot of research on the formulation of suitable solutions. 

B. Review of existing EV impact assessment methodologies 
Several methodologies for simulating the impacts of EVs charging on residential LV feeders have been proposed  [10]-  [22]. 

The methodologies differ in several aspects linked to uncertainty characterization: modelling of the input uncertainty (loads and 
EV loads), propagation of the uncertainty using an appropriate probabilistic load flow (PLF) approach, the simulation of 
unknown EV placement details, and the  interpretation of the uncertain outputs.  

Most methodologies do not adequately represent the uncertainty in the load flow inputs [10], [16], [18]–[20]. In most cases, 
deterministic modelling – based on a single load profile applied to each household in the network – is applied without explicit 
characterisation of load diversity [16], [19]. Several studies have identified the limitation in deterministic models and have 
attempted a broader characterisation of load diversity. In a study conducted on nine different residential networks in the UK, the 
diversity in the residential consumer load is addressed by means of a Monte-Carlo simulation (MCS) method using a pool of 
1000 load profiles generated using the CREST tool [11]. Using this tool, appropriate feeder-specific profiles can be generated 
considering a series of factors including the characterization of consumer electrical behaviour and segmentation, such as the type 
of day and the month. This data-based approach allows for detailed load modelling. However, the approach has two limitations. 
Firstly, the MCS approach for load flow analysis attracts huge computational burden, often leading to a compromise on the 
number of samples applied, which affects accuracy. Secondly, the load modelling approach could not be extended to EV loads, 
which are characterised deterministically as fixed loads. Similarly, in [15], extensive modelling using probability density 
functions (PDFs) is applied to characterize the diversity of grouped customer loads but without addressing the diversity in the 
EV loads. The authors in [12] attempted to model the uncertainty in the EV load by generating 24 different EV profiles based on 
diversified customer behavioural factors such as start charging times (or home arrival time) and battery state of charge (SOC) at 
arrival.  However, the residential customer load model is based on a single profile without diversification.  

The approach to input modelling is usually linked to the load flow approach applied. In cases where deterministic models are 
used, deterministic load flow (DLF) techniques are applied to solving the load flow [16], [19]. Similarly, approaches with 
statistical input models, whether MCS-sampled or PDF-characterized inputs,  would be linked to probabilistic load flow (PLF) 
approaches [11], [12]. DLF methods, although widely applied and with correction factors that can be adjusted in an attempt to 
account for the diversity and stochasticity of the input variables, are not able to fully simulate the effects of the inherent load 
input uncertainties the way PLF methods do.  

In addition to input modelling and load flow computation, the simulation of unknown EV uptake conditions is another critical 
aspect of impact assessment methodologies. Here three approaches are possible: deterministic or fixed placement [19], worst-
case scenarios [20], and stochastic simulation [12]. Fixed placement, which usually involves uniform loading of EVs to each 
customer, is not consistent with the expectation of gradual adoption and is based on a single scenario whose likelihood of 
occurrence cannot be clearly determined. Worst-case approaches based on a few extreme scenarios do not lead to optimal 
decisions as they do not adequately reflect the range of feeder performance. For instance, in [20], the effect of uneven 
distribution of EVs assigned per phase is simulated using only two scenarios whose conditions are based on arbitrarily selected 
phase allocation proportions: a moderate unbalance scenario involving a (50:30:20) % proportion and an extreme unbalance 
scenario with (80:20:0) % proportion to phases a, b and c respectively. Although the uneven distribution of EVs across the 
phases is addressed, with only two scenarios, the broader scope of possibilities is not, nor the likelihood of the two scenarios 
simulated. The limitations in worst-case simulation led to proposals on the use of stochastic approaches that allow the simulation 
of larger number of scenarios [12], [14], [21], [22]. 

Most papers acknowledge the effect of EVs on voltage level, voltage unbalance and component loading of the conductor 
cables and the transformer [11]–[14], [20]. However, studies that make use of uniform EV placement across the three phases [19] 
or worst-case scenario placement strategies [20], fail to account for the effect that unpredictable EV placement has on voltage 
unbalance. 

The detailed review points to the significance of the following key characteristics of a comprehensive analysis of feeder 
performance under EV penetration: 
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1. The residential customer load and EV load models should account for the diversity in these loads, and the 
unpredictability of the customers’ behaviour. 

2. The method used to simulate the allocation of EVs should reflect the randomness in EV uptake and therefore the 
uncertainty in EV location (node and phase). 

3. The load flow analysis method should accurately and efficiently propagate the input uncertainty to the outputs.  
4. The scope of technical parameters assessed should include all sensitive variables linked to power quality standards and 

equipment loading limits.  
A comprehensive methodology should fulfil all the listed characteristics (1) – (4).  

C. Contribution and organisation of this paper 
Informed by the key characteristics of a comprehensive EV impact assessment study explored above, this paper formulates 

and demonstrates a comprehensive methodology to assess the impact of EV charging on LV residential networks. The 
methodology makes use of a stochastic-probabilistic approach to cater for the uncertainty associated with customer loads and EV 
placement, covers the key technical parameters for thermal loading and power quality assessment, and ensures computational 
efficiency by employing an analytical PLF method.  

In addition to demonstrating the proposed methodology, a charge scheme intervention and various EV charge rates are tested 
to demonstrate the possibility of hosting capacity enhancement. 

The remainder of the paper is organised as follows: firstly, the description of the proposed methodology is detailed in 
Section II. Then, in Section III the methodology is demonstrated through a case study involving a practical LV residential feeder 
located in South Africa. Section IV discusses the case study simulation results and the applicability of the proposed 
methodology. The paper finally concludes and gives recommendations for further work. 

II. PROPOSED EV IMPACT ASSESSMENT METHODOLOGY 
The proposed methodology consists of three key assessment inputs (network model, residential customer load model – defined 

as excluding any EV loads - and EV load model) and accounts for three key assessment considerations (simulation of unknown 
placement, definition and quantification of EV penetration, and charge scheme or tariff incentive implementation). This 
methodology uses four technical parameters (voltage level, voltage unbalance, transformer loading and cable loading) as 
indicators to assess the hosting capacity of the distribution network to EVs. All of these components will be discussed in more 
detail below. 

A. Assessment Inputs 
1) Network Model 

In this paper ‘network model’ refers to an amalgamation of properties. These include the feeder type (radial, parallel, ring or 
meshed), the customer location and phase distribution along the feeder, transformer size and properties of the conductor cables 
such as length and impedance.  

In the case of assessing the hosting capacity of an existing network, the proposed method is to make use of a detailed and real 
network model or models that closely reflect conditions on practical feeders. This would ensure realistic network properties such 
as customer location and phase distribution, transformer size as well as conductor cable lengths and impedances, which are 
expected to influence the hosting capacity significantly. 

2) Residential Load Model 
When conducting distribution network design for new networks, knowledge of the expected residential customer loads is 

important to ensure that the network infrastructure can handle these loads. When conducting EV impact assessments on existing 
networks to inform planners and policymakers, insight into the existing residential loads is valuable as the additional EV loads 
will be superimposed onto these loads. 

The load that the network “sees” is dependent on the customer load at a specific point in time. Even though the customers in a 
specific residential area may have similar overall consumption totals, the load coincidence for these customers need to be taken 
into account as all the customers do not necessarily hit their peak demand at the same time [23]. 

It is possible to model the customer load deterministically, giving one specific and predefined value for all the customer loads, 
but it is important to keep in mind that customer behaviour is unpredictable. Modelling the customer load probabilistically may 
be more appropriate, as such models account for the stochasticity and variability inherent in such loads. It is possible to model 
the load probabilistically using a common representative model, while still keeping the load diversity of the grouped customers.  

Numerous approaches to probabilistic load modelling are reported in literature. The use of standard PDFs is one of such 
approaches. Load modelling using the beta PDF has been shown to be convenient for efficient analytical solutions of the PLF 
[24]. Moreover, the beta PDF is versatile; it can model a wide range of distribution shapes using only three parameters. Two 
shape parameters, α and β, control the shape of the distribution, and a third parameter allows for scalability. Based on this 
motivation, the EV loads (described in the following subsection) and residential customer loads are modelled using beta PDFs in 
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the proposed methodology. 
3) EV Load Model 

The modelling of the EV load is dependent on several factors including the EV battery capacity, method of charging, EV 
connection time and location, the SOC of the EV battery when connecting to charge or discharge and the availability of a 
secondary place to charge [10], [25]. An additional factor to consider is the implementation of a charge scheme or tariff 
incentive, as this will influence the EV load model simulated.  

The battery capacity, method of charging and SOC of the battery when connecting at home to charge or discharge will 
determine both the size and duration of the EV load. The SOC of the EV battery when connecting to charge is dependent on the 
usage pattern of the EV, energy consumption rate and whether the owner makes use of a secondary charging facility. The EV 
connection time and location will inform time periods of interest and sections in the network of maximum effect, respectively. 
The unpredictability of EV uptake and therefore the unknown location (node and phase) of EV loads is discussed in more detail 
in the Assessment Consideration: Simulation of Unknown EV Placement section. 

The battery of an EV can charge, and therefore act as a load, or discharge and act as distributed generation (DG) along the 
feeder. The EV load model will be superimposed onto the residential load model, which means that in the case of EV charging, 
the size of the net load will increase, while in the case of discharging the net load will decrease up to the point where reverse 
power flow might occur. Information regarding whether EVs will only charge, will both charge and discharge, and whether 
restrictions apply to reverse power flow at the utility point of connection will influence whether a “time instant” or time series 
analysis is deemed appropriate. In the case where only the effects of either EV charging or discharging are considered, the 
analysis of a single time instant representing the period of maximum impact on the network is typically sufficient. 

According to British, German and French standards, electricity to LV consumers is supplied predominantly as single phase, at 
230 V [26], while according to American standards electricity is supplied as 2-phase at 120/240 V [26]. The residential charge 
voltage level is therefore dependent on the standards adopted by the country in question. As previously mentioned, most 
privately owned EV charging takes place at home [4]–[8]. It is therefore proposed that the charging curve for residential level 
EV charging, depending on the country’s standards, be modelled. It should however be noted that the charge curve modelled 
should be adapted to represent the likelihood that customers make use of their ordinary household wall sockets to charge their 
EVs and customers who have fast charging units installed at home. 

The SOC of the EV battery is dependent on the availability of a secondary charging point, energy consumption rate of the EV 
and the daily travel distance. When looking at the generic charging profile of a lithium-ion EV battery shown in Figure 1 below 
[27], the amount of power being drawn during charging is almost constant for a substantial period of charging. To ensure 
longevity of the battery life, it is not advised to let the battery discharge below around 15-20 % SOC [28], [29] . After about 65-
85 % SOC (T1 in Figure 1), the power being drawn decreases, until the battery is fully charged (T2). 

To account for variability the proposed methodology suggests modelling the EV load probabilistically. Once again, due to the 
versatility of the beta PDF explained in the Residential Load Model subsection above, the beta PDF can be used to model the 
SOC curve (charge power and corresponding likelihood) above. 

Restricting uptake of EVs as a result of static penetration limits under worst-case scenario conditions is called into question 
when the network can accommodate these EVs during less constrained periods. The modelling of charge schemes and tariff 
incentives should therefore also be considered as part of a comprehensive methodology. 

a) Charge Scheme and Tariff Incentive Modelling 
Although charge schemes and tariff incentives are identified as assessment considerations, it is discussed under the EV load 

modelling section as it relates to the EV profile. To reiterate, the EV load model will be superimposed onto the residential load 
model. The net effect of this superposition is what the network will “see” as a single load coming from a household along the 
feeder. The period of maximum grid impact would typically be when mass simultaneous EV charging coincides with the evening 
peak in the residential load. When the EV is charging, this net load will be higher than that of the ordinary household load. A 
way to reduce the coincidence of the residential peak demand and EV charging would be to introduce a charge scheme or 

Figure 1: Generic SOC Curve for Lithium-ion EV Battery 

Stellenbosch University https://scholar.sun.ac.za



104 
 

flexible time of use (ToU) tariff. 
Charge schemes are restrictions that prohibit charging of EVs during certain periods (usually peak consumption periods) and 

allow charging during other (usually off-peak) periods. Tariff incentives aim to achieve the same, but through financially 
incentivising charge behaviour. 

The implementation of charge schemes and tariff incentives could increase the “hosting capacity” of the network as shown in 
[5], [11], [12], [34] . In an attempt to accommodate as many EVs as possible, impact assessment studies could assist 
policymakers in optimizing charge schemes to ensure a higher “hosting capacity” while adhering to power quality standards and 
maintaining the integrity of the network infrastructure. 

Depending on the purpose of the impact assessment study, it is necessary to consider whether a charge scheme or tariff 
incentive should be implemented or not. It may even be beneficial to run more than one simulation scenario. In one scenario no 
charge scheme or tariff incentive might be implemented, so that the baseline effect of EV charging can be observed. Further 
scenarios can then investigate the impact of charge schemes or tariff incentives on EV charging and its effects on the network. 

B. Assessment Considerations 
1) Simulation of Unknown EV Placement 

A stochastic placement strategy is proposed. Such a strategy is proposed and is deemed more suitable and realistic than worst-
case placement strategies as it accounts for the unknown location (node and phase) of EVs. One such stochastic simulation 
method is the Monte Carlo (MC) method. The MC method is a well-known and widely used algorithm that uses repeated random 
sampling of probability distributions to model risk or uncertainty in a variable. It is proposed that the MC method be used to 
account for the uncertainty in EV location (node and phase). The MC method will be used to first select a random household 
(node) along the feeder then select a random phase (phase a, b or c) and assign the EV loads in this manner during the 
simulation.   

2) EV Penetration Percentage Definition 
There is not a strict or specific definition for penetration percentage as far as impact assessments are concerned. However, 

when it comes to EV impact assessments there have been have a variety of penetration percentage definitions introduced. One 
definition defines the penetration percentage of EVs as the number of EVs over the total number of vehicles considered for the 
impact assessment [22], [35]. Another defines the penetration of EVs as the number of EVs over the total number of households 
or customers considered for the study [12], [14], [18]. Identical technical problems in the network might be found at very 
different penetration levels, based on which penetration percentage definition is used, producing a wide range of what is deemed 
“acceptable” penetration percentages. Therefore, without the same measure of penetration percentage used, direct comparison of 
assessment results may not be possible and these definitions are subsequently not of direct use to the distribution network 
planner or the to the DSO when defining standards or regulations. 

This proposed definition, used in [36], as a measure of the capacity (in kW or kVA) of installed EVs in relation to the 
technical characteristics of the network, such as the peak demand or feeder maximum demand  (FMD), could be deemed more 
useful. This measure of penetration is defined in Equation 1 below. 
 

  (1) 
 

C. Technical Parameters Assessed 
In the review of EV impact assessments, it was found that the purpose of the study is important as this influences the technical 

impacts that are monitored during the assessment simulation. For the purpose of informing policy implementation where the aim 
is to understand to what extent the existing network can accommodate the charging of EVs, it is proposed that the following four 
technical parameters be monitored; voltage level, voltage unbalance and transformer loading and conductor cable loading. The 
maximum and minimum voltage value throughout the feeder will be monitored to ensure that the voltage level remains within 
the bounds of the power quality standards. Voltage unbalance will be calculated using the Equation 2 below and once again be 
compared to the power quality standards. 

 

  (2) 
 
Finally, the total current in each branch of the feeder can be calculated and compared to the rated current carrying capacity of 

the conductors and rated transformer output to assess whether these components are being overloaded. 
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D. Simulation Method 
1) Probabilistic Load Flow 

The proposed methodology makes use of the HBE-MCS tool used is [36]. The residential customer and EV loads are modelled 
using beta PDFs. The HBE-MCS tool takes in beta PDF inputs and produces beta PDF defined outputs. Each household node is 
split into two sub-nodes that are placed an insignificantly short distance apart. The first sub-node receives a beta PDF 
representative of the residential customer load. If the household is selected to have an EV, the second sub-node receives a beta 
PDF representative of the EV load. 

For each PLF assessment, the maximum and minimum voltage, maximum voltage unbalance and maximum transformer and 
conductor loading on the feeder are recorded and displayed. 

2) Overall Program Flow 
The overall program flow can be split into the following five steps.  

1. The FMD is determined by loading the first sub-node of each household (residential customer load node) and linearly 
incrementing the load until the first occurrence of either a voltage or conductor loading violation. 

2. Reset the first sub-nodes of each household to the original residential customer loads. Randomly add EV loads to the 
second sub-node of households using the MCS method guided by the penetration level under analysis and the limits per 
household. 

3. Perform the HBE and record the worst-condition of each technical variable (maximum voltage, minimum voltage, 
maximum voltage unbalance, maximum conductor loading, and maximum transformer loading) based on a desired level 
of risk. 

4. Repeat processes 2 and 3 for a defined number of scenarios selected (e.g. 1000) to balance simulation accuracy with 
computational speed. 

5. Increment the penetration level and repeat processes 2 to 4 until every node reaches the maximum specified EV limit per 
household. 

Figure 2 shows a schematic of the overall simulation program flow. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 2: Simulation Program Flow Diagram 
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III. CASE STUDY  
The availability of detailed distribution network and residential load data plays a significant role in the reliability of the impact 

assessment results. Because of access to such information, the case study will focus on South Africa. In the global picture 
regarding EV uptake, South Africa has room for improvement with approximately only 1 119 EVs on South African roads [37]–
[39]. South Africa does not manufacture any EVs locally, and the steep import tax has been said to be a major contributing factor 
to the slow EV uptake [37], [38], [40]. South Africa has about 214 public chargers, located at malls, airports and along major 
highways [38]–[40]. Because public charges are not abundantly available, an EV owner in South Africa may need to rely on 
residential charging as the primary charging place.  South Africa is a signatory to the Paris Agreement adopted in 2015, in which 
the goal  for 2030 is for 20 % of all road vehicles to be EVs and 35 % of all new vehicle sales to be EVs by 2035 [37], [40]. 
Given the current EV statistics in the country, this is a seemingly optimistic goal. However, if South Africa wishes to increase 
the EV uptake significantly over the next few years, the country needs to be prepared. As seen in many countries with ambitious 
EV uptake goals, they ran into trouble due to unexpected issues with the distribution network not being able to accommodate the 
new loads introduced by the EVs. Therefore, before policies are implemented and incentives are put in place in South Africa, EV 
impact assessment studies aimed at getting a better understanding of the potential technical impacts and severity thereof could 
prove helpful. 

The simulation inputs and considerations used in the case study simulation is described below. 

A. Simulation Inputs 
1)  Network Model 

South African residential areas are grouped according to 10 Living Standards Measure (LSM) classes based on 29 different 
factors including the ownership of a motor vehicle and certain large appliances [41], [42]. LV residential distribution networks 
are designed accordingly, to accommodate the loads expected from the type of customers residing in these different areas. The 
LSM classes that are most likely to adopt EVs are LSM classes 9 and 10. The residential network chosen for the simulation is 
that of an LSM class 10 area in Western Cape, South Africa. The network modelled is a three-phase four-wire, 11-node radial 
feeder with a 225 kVA transformer serving 53 customers. 

2) Residential Load Model 
As mentioned in the previous section, the residential area modelled for the simulation is one having residents that fall under an 

LSM class 10. To account for the worst-case scenario, the simulation is conducted under residential load conditions 
corresponding to the maximum demand interval. In South Africa this is usually a winter weekday evening during which the use 
of heating appliances is high and coincides with the evening consumption peak.  

A study done on the traffic flow on roads in South Africa stated that the peak traffic period is between 4 pm and 6 pm [43]. A 
different study on the cost of daily commuting in South African cities concluded that people in the higher labour income quintile 
(LSM class 9 and 10 and most likely owners of EVs) have an average commuting duration of between 48-50 minutes [44]. This 
places the likely home arrival time between 5 pm and 7 pm. Data collected from monitoring the electricity consumption of 42 
LSM 10 customers for a year was used to generate a daily load profile showing the mean and standard deviation of LSM 10 
customers for a winter weekday. The likely home arrival period corresponds to the period of significant rise in electricity 
consumption with the peak at around 7 pm. Using the mean and standard deviation values for the peak time period (7 pm) 
identified in Figure 3, the alpha and beta parameters for the beta PDF modelling the residential load is calculated.  

Figure 3: Winter Weekday Load Profile 
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The residential load model, shown in Figure 4 below, used in the simulation is defined by a beta PDF with the following 
parameter values: alpha = 1.167, beta = 2.908, shape parameter C = 60 and an after diversity maximum demand (ADMD) of 
3.952 kVA. The beta PDF is representative of a winter weekday evening at 7 pm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3) EV Load Model 

There are currently three models of battery electric vehicles in South Africa namely the Nissan Leaf, BMW i3 and Jaguar i-
Pace [37]–[39]. Although the Nissan Leaf has been present in South Africa the longest - introduced in 2013 - since its launch in 
2015 the BMW i3 quickly surpassed the Nissan Leaf in sales. The BMW i3 currently dominates the EV sector in South Africa, 
accounting for more than 70 % of EVs [39]. Characteristics of the BMW i3 is modelled in the simulation.  

a) EV Specifications 
The battery capacity of the BMW i3 is 33 kWh [45]. Looking at the charge curve of the BMW i3, it is confirmed that for 

majority of the charging period, the power being drawn during charging is almost constant [46]. At home charging of the BMW 
i3 takes less than 9.7 hours to reach 80 % of the maximum capacity [45], when using an ordinary residential wall socket in South 
Africa, where the supply voltage is 230 V [47]. 

b) Charge Scheme/Tariff Incentive  
For the case study simulation, while no tariff incentives are implemented, two scenarios are simulated. 
- Scenario 1: No charge scheme (EVs can charge at any time, including during residential consumption peak) 
- Scenario 2: All EV charging restricted to start after midnight until 6 am (charge scheme 1) 

c) Final EV Load Model 
As with the residential load model, the EV load model is defined using a beta PDF, shown in Figure 5. The alpha and beta 

values were chosen to model the EV load with little variability. This is done to mimic the almost constant power being drawn for 
majority of the charge period. The constant power value modelled (2.76 kW, 230 V, 12 A) is based on AC charging with a 
standard BWW i3 charging cable from a household socket [45]. 

Figure 5: Beta PDF for EV Load 

Figure 4: Beta PDF for Residential Load at 7 PM 
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B. Simulation Considerations 
The MCS method is used to account for this random placement of EVs along the feeder.  For the simulation, the household 

limit is set to one EV. This means that each household may be assigned a maximum of one EV. The case study simulation makes 
use of the EV penetration percentage definition previously defined in section 2 under Assessment Considerations. This definition 
may be of more use to the network planner than the average person. Therefore, the results make use of a second measure of 
penetration. This definition defines the measure of penetration based on the number of households, along the simulated feeder, 
that has EVs. 

C. Limits to Technical Parameters 
The following technical parameters will be monitored to determine the successful accommodation of the network to EV 

charging; voltage level, voltage unbalance, transformer loading and cable loading. The maximum hosting capacity of the 
network to EV charging is reached when the limits of any one of these technical parameters are exceeded.  

In South Africa, the NRS048 power quality standards state that at a residential level, the supply voltage level should be 
230 V ± 10 % [47]. The voltage level should therefore lie between 207 V and 253 V. This standard also states that the maximum 
voltage unbalance allowed is 3 % [47] and that the electricity supply should comply with these standards 90 % of the time. This 
allows a 10 % risk of the standards being violated. The risk applied to the results and the interpretation thereof of discussed in 
more detail in the following section. 

The transformer and cables are sized to operate under certain rated conditions. Operating beyond the bounds of these rated 
conditions, for prolonged periods of time, not only decreases efficiency but can cause permanent damage. As a result, the limits 
for the thermal loading of conductors and transformers are set to 100 % or 1 pu. 

IV. SIMULATION RESULTS 
 The scatterplots that follow represent the technical performance of the simulated feeder corresponding to the 1000 MCS 

placement scenarios and PLF assessments conducted at each penetration level. The penetration level ranges from zero (passive 
conditions without EVs) to a maximum, where each customer has the maximum number of EVs. These results are compared to 
the power quality standards. The scatter plot shows the statistical distribution of values for the 1000 placement simulations and 
can therefore be analysed incorporating risk. The PLF outputs are at 2.5 % risk, while the blue trendline is generated by 
considering a further 2.5 % risk in the MCS allocation of EV represented by the variation of outputs in the y-direction. The 
results are therefore displayed with a 5 % level of risk, or inversely 95 % confidence. The red dots in the plots represent the 
results for each of the 1000 placement scenarios per penetration percentage, while the blue trendline indicates the risk interval. 
The results will be discussed based on the trendline incorporating risk.  

The measure of penetration is defined as a percentage of the FMD. At 63 % penetration each household is assigned the 
maximum number of EVs (in this case one EV). Hence, the simulation results stop at 63 %. 

A. Scenario 1 Results 
From Figure 6, the feeder minimum voltage of 0.9 pu is violated at a penetration percentage of 23 %. Figure 7 and Figure 8 

shows that there are no violations to the maximum voltage of 1.1 pu and the maximum voltage unbalance allowed of 3 %, when 
interpreting the results to include risk. Figure 9 and Figure 10 show that conductor cable overloading and transformer 
overloading occur at penetration percentages of 5% and 26% respectively.  
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 6: Feeder Minimum Voltage 
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Figure 8: Maximum Voltage Unbalance 

Figure 9: Conductor Cable Loading 

Figure 7: Feeder Maximum Voltage 
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Although EV charging is likely to result in voltage drop, Fig. 6 shows scenarios (red dots) in which the minimum voltage level 
observed actually rises. This is attributed to the effects of voltage unbalance on voltage level.  It should also be noted that under 
passive conditions, the feeder loading is unbalanced. Random single phased assignment of EV loads cause the voltage unbalance 
along the feeder to increase. As seen in Fig. 8, as more and more EVs are randomly assigned to household along the feeder the 
unbalance of the loads across the three phases is reduced and the voltage unbalance actually decreases.   

The results are summarised in the bar graph in Figure 11 below. The blue bar (left bar) shows the penetration percentage as a 
measure of the FMD while the orange bar (right bar) the penetration percentage as a measure of the number of households that 
have been assigned an EV. 

The technical impact that results in the lowest hosting capacity is deemed the limiting factor for uptake. In this case, the factor 
limiting uptake is the conductor cable loading, resulting in a hosting capacity of 5 % penetration (as a measure of FMD). This 
can also be expressed as 7.55 % of households in the simulated network having an EV. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B. Scenario 2 Results 
Figure 12 shows the hosting capacity as a function of time, from 7 pm till 7 am. From the figure it is evident that the simulated 

network’s hosting capacity is the highest between midnight and 6 am. The electricity consumption rises again at 7 am as 

Figure 10: Transformer Loading 
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Figure 11: Hosting Capacity vs Technical Impact at 7 PM 
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residents wake up and start their day, shower, make breakfast etc. 
For the period between midnight and 6 am, all of the households in the simulated network can charge their EV with no 

violations to any of the power quality standards. This is at a charging rate of 2.76 kW. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 As previously mentioned, the BMW i3 requires 9.7 hours to achieve 80 % SOC. This 6-hour period may therefore not be 

sufficient.  If the charge rate is increased from 2.76 kW to 3.45 kW and further to 4.6 kW, Figure 13 below shows how the 
hosting capacity during this period is affected. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12: Hosting Capacity from 7 PM till 7 AM 

Figure 13: Hosting Capacity vs Charge Rate 
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When the charge rate is increased to 3.45 kW, the hosting capacity decreases and only 55 % of households may charge their 
EVs before violating power quality standards. When the charge rate is increased again, to 4.6 kW, the hosting capacity is 
decreased even further resulting in 44 % of households charging their EVs before violations occur. 

C. Result Summary 
It is evident that the hosting capacity of EV charging is the lowest during the residential peak consumption period. During this 

period, for the network simulated, the conductor cable loading is the factor limiting EV uptake. A time-series simulation 
indicates that the highest hosting capacity is possible between midnight and 6 am. Different charge rates are simulated during 
this period.  When charging at 2.76 kW, all households in the simulated network charge without power quality violations. While 
at 4.6 kW, less than 50 % of the households may charge their EVs before violations to the power quality standards start to occur. 

V. CONCLUSION 
This paper proposed a comprehensive impact assessment methodology with the following characteristics: (1) the aspects of 

stochasticity and variability in the residential loads and EV loads are addressed, (2) the network model simulated is detailed and 
represents practical feeder conditions, (3) the placement strategy used to assign the EVs during the simulation accounts for the 
unpredictability in location (node and phase) of EVs, and (4) the load flow method directly accounts for the stochasticity and 
variability in the simulation inputs modelled.  

This proposed methodology was demonstrated in a case study on a practical feeder in South Africa. The case study first 
simulated unconstrained charging of EVs which occurred coincident with the residential consumption peak, analysing a single 
time instant. This resulted in significant feeder voltage-drops and overloading of both the transformer and the conductor cables. 
The technical parameter that limited the uptake of EVs for the simulated network first was found to be the conductor cable 
loading.  

A second simulation was then conducted investigating a full time series as opposed to a single time stamp and the period 
during which the hosting capacity is the highest was identified. This was between midnight and 6 am. During this period three 
different charger ratings were tested (2.76 kW, 3.45 kW and 4.6 kW). At 2.76 kW, all of the households could charge their EVs 
with no violations to any of the technical parameters monitored. As the charge rate was increased (to 3.45 kW and then 4.6 kW), 
the percentage of households that were able to charge their EVs decreased to 55% and 44 % respectively. It can be concluded 
that charge scheme implementation considering both charging period and charger power rating can aid in EV accommodation. 

The case study demonstrated how the proposed methodology can be used. The results obtained from the simulations 
conducted on a single network do not allow for general conclusions to be made regarding hosting capacities of networks but are 
applicable to the network model simulated. Further studies, exploring the sensitivity of the technical impacts to various input 
parameters and conditions, are however needed before generalised conclusions can be made. The methodology proposed here 
does however offer a comprehensive framework within which future studies may be conducted,  ultimately informing policy 
makers and distribution network planners regarding the required EV uptake regulations, new network component sizing and the 
need for future upgrades to existing networks.  
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