Identification, distribution, and genetic diversity of olive lace bugs and olive flea beetles in the Western Cape province of South Africa

By

Vaylen Hlaka

Thesis presented in partial fulfilment of the requirements for the degree of Master of Science in the Faculty of Science at Stellenbosch University

Supervisor: Dr B. van Asch
Department of Genetics
December 2021

Declaration

By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification.

This thesis includes one original paper published in a peer-reviewed journal. The development and writing of the paper were the principal responsibility of myself and, for each of the cases where this is not the case, a declaration is included in the dissertation indicating the nature and extent of the contributions of co-authors.
December 2021

Abstract

South Africa is a minor contributor to the olive industry globally. However, that has not stopped the country from making a mark in the industry by achieving several awards for producing the world's finest olive oil. Although the production of olives in South Africa is still new compared to Europe, it has created employment for many and has alleviated poverty in surrounding communities. The production of olives has its fair share of challenges, which include stress from insect pests and diseases. Olive lace bugs and olive flea beetles are considered pests of the olive industry in South Africa, but little is known about these pests and their impact on the production of olives. The similarity between wild African olive trees and cultivated olive suggests that these pests, along with other species associated with olives, jumped from wild olive trees to cultivated olive trees.

The study aimed to contribute to the catalogue of entomofauna associated with wild and cultivated olives in South Africa by identifying olive lace bug and olive flea beetle species using morphological and DNA-based methods in which four olive lace bug species (Cysteochila lineata, Neoplerochila paliatseasi, Neoplerochila sp., and Plerochila australis) and two olive flea beetles (Argopistes capensis and Argopistes sexvitattus) were identified. Phylogenetic analyses and estimates of intra- and inter-specific genetic divergences were determined using novel and publicly available DNA barcodes for the family Tingidae for olive lace bugs, and the tribe Alticini for olive flea beetles. Novel mitochondrial genomes for olive lace bugs and olive flea beetles were generated and the phylogenetic position of olive lace bugs and olive flea beetles within their respective family or tribe. In addition, a survey was conducted for the purpose of identifying olive lace bug and olive flea beetle species distributed in olive orchards farms in the Western Cape.

Phylogenetic analysis and genetic divergence supported the morphological identification of olive lace bugs and olive flea beetles. The complete mitogenomes of olive lace bugs and olive flea beetle species in South Africa were sequenced. The phylogenetic position of olive lace bugs and olive flea beetles was inferred in context of other complete and partial mitogenomes available within their family/tribe. The four olive lace bugs and two olive flea beetles formed clusters of closely related species in their respective phylogenetic trees. These results show that the group of olive lace bugs and the group of olive flea beetles have a recent common mitochondrial ancestor and indicate that adaptation to feeding on Olea may have a common ancestral evolutionary origin.

Opsomming

Suid Afrika lewer wêreldwyd ' n geringe bydrae tot die olyfbedryf. Dit het die land egter nie gekeer om ' n merk in die bedryf te maak deur verskeie toekennings te behaal vir die vervaardiging van die beste olyfolie in die wêreld nie. Alhoewel die produksie van olywe in Suid -Afrika nog nuut is in vergelyking met Europa, het dit vir baie werksgeleenthede geskep en armoede in omliggende gemeenskappe verlig. Die produksie van olywe het baie uitdagings wat stres van insekplae en siektes insluit. Olyf kantgoggas en olyf vlooikewers word beskou as plae in die olyfbedryf in Suid Afrika; min is egter bekend oor hierdie plae en die impak daarvan op die produksie van olywe. Die ooreenkoms tussen die wilde Afrika-olyfbome en gekweekte olyf dui daarop dat hierdie plae saam met ander spesies wat met olywe verband hou, van wilde olyfbome na gekweekte olyfbome spring.

Die doel van die studie was om by te dra tot die katalogus van entomofauna wat verband hou met wilde en gekweekte olywe in Suid Afrika deur die identiteit en die bevestiging van die identiteit van die olyf kantgoggas en die olyf vlooikewer te identifiseer en te bevestig met behulp van morfologiese en DNS-gebaseerde metodes waarin vier olyf kantgoggas (Cysteochila lineata, Neoplerochila paliatseasi, Neoplerochila sp. en Plerochila australis) en twee olyf vlooikruie (Argopistes capensis en Argopistes sexvitattus) geïdentifiseer is. Filogenetiese ontledings en ramings van intra- en interspesifieke genetiese afwykings is bepaal met behulp van nuwe en in die openbaar beskikbare DNS-strepieskodes vir die familie Tingidae vir die olyf kantgogga, en die stam Alticini vir olyf vlooikewers. Nuwe mitochondriale genome vir olyfkantbesies en olyfvlooikewers is gegenereer en die filogenetiese posisie van olyfkantbesies en olyfvlooikewers binne hul onderskeie familie of stam. Daarby, is 'n opname gedoen met die oog op die identifisering van spesies van olyf kantgogga en olyf vlooikewers wat op olyfboorde in die Wes Kaap provinsie versprei word.

Filogenetiese groepering en p-afstande ondersteun die morfologiese identifikasie van olyf kantgogga en olyf vlooikewers. Die volledige mitogenome van olyf kantgogga en spesies olyf vlooikewer in Suid Afrika is opgestel. Die filogenetiese posisie van olyf kantgogga en olyf vlooikewers is afgelei in verband met ander volledige en gedeeltelike mitogenome wat binne hul familie/stam beskikbaar is. Die vier olyf kantgoggas en twee olyf vlooikewers het ' n groep naverwante spesies in hul onderskeie filogenetiese bome gevorm. Hierdie resultate toon aan dat die groep olyf kantgogga en die groep olyf vlooikewers 'n onlangse algemene mitochondriale voorouer het en dui aan dat aanpassing by die voeding van Olea ' n gemeenskaplike evolusionêre oorsprong kan hê.

Acknowledgements

Throughout the pursuit of this research and the writing of this dissertation, I have received a great deal of support and assistance. I would like to acknowledge the roles of several individuals who were instrumental in the completion of my MSc research.

I would like to first acknowledge my supervisor, Dr. Barbara van Asch, whose expertise was invaluable in formulating this research. Your feedback has been insightful and has pushed me to broaden and sharpen my thinking.

I am grateful to all of those I have had the privilege of working with during this research which includes Dr. Eric Guilbert, Dr. Jacobus Smit, Dr. Simon van Noort, Dr. Elleunorah Allsopps, Prof. Maurizio Biondi, and Jethro Langley.

This work would not have been possible without the financial support of SA Olive. I would also like to express gratitude to the National Research Foundation for partially funding me. I am most grateful to the farm and private landowners for trusting me and allowing me to collect samples.

These acknowledgments would not be complete without mentioning my lab colleagues: it was a pleasure working with you. I appreciate your ideas, help, and (sometimes) distractions. Special thanks goes to Mr. Kees Roose for his valuable contribution.

I wish to express my deepest gratitude to my family, especially my late grandmother, Anna Moroa Gumbi. Your words of encouragement and love remain with me every day. "Robala ka Kagiso Mme"- Rest in peace, my mother. I would also like to thank my child for her love and patience. This dissertation is dedicated to them. To my friends, thank you for your constant support and love. And for always pretending to understand my project even when I tried to simplify it the best way I possibly could.

Above all, I sincerely appreciate the almighty God, for everything begins with Him and ends with Him.

Table of contents

Declaration i
Abstract ii
Opsomming iii
Acknowledgements iv
List of Figures viii
List of Tables xi
Abbreviations xii
Chapter 1 Study overview, rationale, and outcomes 1
1.1 GENERAL INTRODUCTION 1
1.2 AIMS AND OBJECTIVES 2
1.3 CHAPTER LAYOUT 3
1.4 RESEARCH OUTPUTS 4
Chapter 2 Literature Review 5
2.1 INTRODUCTION 5
2.2 ORIGIN AND DISTRIBUTION OF THE CULTIVATED OLIVE 6
2.2 IMPORTANCE OF OLIVES 8
2.3 MORPHOLOGICAL CHARACTERIZATION AND THE NUTRITIONAL COMPOSITION OF OLIVES 8
2.3.1 Ripening stage 8
2.3.2 Processing method 9
2.3.3 Agronomical factors 9
2.3.4 Nutritional characteristics of olives 9
2.4 THE PRODUCTION OF OLIVES GLOBALLY 9
2.5 THE PRODUCTION OF OLIVES IN SOUTH AFRICA 11
2.6 PEST THREATS TO THE OLIVE INDUSTRY 12
2.6.1 Insect pests affecting olive orchards overseas 12
2.6.2 Insect pests affecting olive orchards in South Africa 12
2.8 MOLECULAR METHODS FOR SPECIES IDENTIFICATION 15
2.7. 7.1 DNA barcoding 15
2.7.2 Mitogenomics 16
2.8 POPULAR ANALYTICAL METHODS IN PHYLOGENETIC STUDIES 16
Chapter 3 Species diversity and phylogenetic relationships of olive lace bugs (Hemiptera: Tingidae) found in South Africa 17
3.1 ABSTRACT. 17
3.2 INTRODUCTION 17
3.3 MATERIALS AND METHODS 20
3.3.1 Specimen Collection, Morphological Identification and DNA Extraction 20
3.3.2 DNA Barcoding 21
3.3.3 Intraspecific and Interspecific Genetic Diversity 21
3.3.4 Sequencing, Assembly, and Annotation of Mitogenomes 22
3.3.5 Mitogenome Analyses 23
3.3.6 Phylogenetic Reconstruction of Tingidae 23
3.4 RESULTS AND DISCUSSION 24
3.4.1 Morphological Identification of Olive Lace Bug Species 24
3.4.2 Distribution of C. lineata, P. australis, N. paliatseasi, and Neoplerochila sp 25
3.4.3 Haplotype Diversity of C. lineata, P. australis, N. paliatseasi, and Neoplerochila sp. 27
3.4.4 Genetic Diversity of 30 Species of Tingidae Based on DNA Barcodes 29
3.4.5 Potential Amplification of NUMTs in Cross-Species PCR 30
3.4.6 Mitogenomics of Olive Lace Bugs 32
3.4.7 Phylogenetic Position of Olive Lace Bugs within Tingidae 37
3.5 CONCLUSION 39
Chapter 4 Mitogenomics and phylogenetic position of the olive flea beetles Argopistes capensis and Argopistes sexvitattus (Coleoptera: Chrysomelidae) and an overview of DNA barcoding in the tribe Alticini 40
4.1 ABSTRACT. 40
4.2 INTRODUCTION 40
4.3 MATERIALS \& METHODS 42
4.3.1 Specimen collection, morphological identification, and DNA extraction 42
4.3.2 DNA barcoding of Argopistes spp. 42
4.3.3 Sequencing, assembly, and annotation of complete mitogenomes 43
4.3.4 Mitogenome analyses 43
4.3.5 Phylogenetic analysis within the tribe Alticini 43
4.3.6 Intra- and interspecific genetic divergence 44
4.4 RESULTS AND DISCUSSION 45
4.2.1 Morphological identification of olive flea beetle species 45
4.4.2 Distribution of A. capensis, A. oleae, and A. sexvitattus in wild and cultivated olive trees 46
4.4.3 The mitogenomes of Argopistes capensis and Argopistes sexvitattus 49
4.4.4 transfer RNAs, ribosomal RNAs, and AT-rich region 53
4.4.5 Start codons and stop codons 54
4.4.6 Intergenic regions and spacers 55
4.4.7 Nucleotide composition and codon usage 55
4.4.8 Synonymous and nonsynonymous rates of protein-coding genes of Alticini 56
4.4.9 Phylogenetic position of A. capensis and A. sexvitattus within Alticini 62
4.4.10 Variation in mitochondrial genomes of A. sexvitattus morphotypes 63
4.4.11 Intraspecific divergence of A. capensis and A. sexvitattus. 65
4.4.12 Alticini species have a high incidence of non-monophyly 66
4.4.12 Interspecific divergence in Alticini 74
4.5 CONCLUSION 74
Chapter 5: Conclusion 75
Supplementary data 76
REFERENCES 121

List of Figures

Figure 2.1 Geographical distribution of the olive complex (Olea europaea L.) in which six subspecies are currently recognized (according to Rubio de Casas et al., 2006). Reproduced from Besnard et al. 2018.
Figure 2.2 Geographical distribution of olive-producing regions. Reproduced from Cimato et al. 2011
Figure 2.3 The production of olive oil in the European Union. 10
Figure 2.4 Worldwide olive oil and table olive production in 2020/21(IOOC). (A) The production of olive oil worldwide. (B) The production of table olives worldwide. 10
Figure 2.5 Common olive cultivar in South Africa, Mission. Image credit: Hans Braxmeier. 11Figure 2.6 Olive pests in South Africa. (A) Olive fruit fly, Bactrocera oleae by Chante Powell;(B) Olive seed wasp, Eupelmus spermophilus by Powell et al. (2019); (C) Olive flea beetle,Argopistes sexvitattus striped morphotype by Beth Grobbelaar; (D) Olive flea beetle,Argopistes sexvitattus black morphotype by Beth Grobbelaar; (E) Olive lace bug, Plerochilaaustralis by Hlaka et al., (2021); and (F) Olive lace bug, Neoplerochila paliatseasi by Langleyet al., (2020).14Figure 3.1 Representative adult specimens of olive lace bug (Hemiptera: Tingidae) speciesfound in South Africa. (A) Cysteochila lineata Duarte Rodrigues (SAM-HEM-A01275), (B)Neoplerochila paliatseasi Duarte Rodrigues (SAM-HEM-A011647), (C) Neoplerochila sp.(SAM-HEM-A012753), and (D) Plerochila australis (Distant) (SAM-HEM-A010383). 25

Figure 3.2 (A) Approximate geographic location of broad sampling areas (red dots) of olive lace bugs (Cysteochila lineata, Neoplerochila paliatseasi, Neoplerochila sp. and Plerochila australis) in the Western Cape province of South Africa. (B) Study area in the Western Cape. (C) Characteristic chlorotic spots on the leaves of a cultivated olive tree caused by feeding activity of olive lace bugs.
Figure 3.3 (A) Olive lace bug species found at 16 sample collection sites in the Western Cape province of South Africa. (B) Olive lace bug species and the number of sites where each species was found27

Figure 3.4 Median-joining network of COI haplotypes of three olive lace bug species (Hemiptera: Tingidae) found in South Africa.
Figure 3.5 Maximum likelihood tree of lace bug species (Hemiptera: Tingidae) based on a $501-\mathrm{bp}$ alignment of standard COI barcoding sequences. The analyses included 349 sequences representing 30 species in 18 genera retrieved from BOLD Systems and the new sequences of the olive lace bugs Cysteochila lineata, Neoplerochila paliatseasi, Neoplerochila sp., and Plerochila australis generated in this study (bold, underlined).
Triangles represent collapsed groups of sequences belonging to the same species. * Outgroup (Hemiptera: Miridae).31
Figure 3.6 Intraspecific maximum p-distances (\%) in 30 species of lace bugs (Hemiptera: Tingidae) based on a 501-bp alignment of the standard COI barcoding region ($\mathrm{n}=349$). 32
Figure 3.7 Circular map of the complete mitogenome of Cysteochila lineata (Hemiptera:Tingidae). Mitochondrial gene content and arrangement are conserved in Tingidae andidentical to the hypothetical Arthropoda ancestor. Arrows indicate the direction of genetranscription.33
Figure 3.8 Predicted structure of tRNA ${ }^{\text {Ser1 }}$ in the complete mitochondrial genomes of four olive lace bugs (Hemiptera: Tingidae) found in South Africa, with nucleotide differences highlighted. Inferred canonical Watson-Crick bonds are represented by lines, and non- canonical bonds are represented by dots 34
Figure 3.9 Usage of start codons in the complete set of 13 mitochondrial protein-coding genes in 18 species in the family Tingidae (Hemiptera). 35
Figure 3.10 Evolutionary rates in 13 mitochondrial protein-coding genes of 18 species of Tingidae (Hemiptera). Ka—number of nonsynonymous substitutions. Ks-number of synonymous substitutions. Ka/Ks—ratio of the number of nonsynonymous to the number of synonymous substitutions. 37
Figure 4.1 Representative adult specimens of olive flea beetles (Chrysomelidae: Alticini) species found in South Africa. (A) Argopistes sexvitattus striped morphotype (male), (B) Argopistes sexvitattus striped morphotype (female), (C) Argopistes sexvitattus black morphotype (male), (D) Argopistes sexvitattus black morphotype (female), (E) Argopistes sexvitattus black morphotype (male), and (F) Argopistes capensis (female). Image credit: Beth Grobbelaar 46
Figure 4.2 (A) Distribution of the olive flea beetle species, Argopistes capensis, and Argopistes sexvitattus in wild and cultivated olive orchards in the Western Cape province of South Africa. (B) Study area in the Western Cape province. (C) Characteristic holes on leaves caused by feeding of olive flea beetles. 47
Figure 4.3 Olive flea beetle species found at 14 collection sites in the Western Cape province of South Africa. 48
Figure 4.4 Linear map of the complete mitochondrial genomes of Argopistes capensis and Argopistes sexvitattus. tRNA genes are represented by single-letter abbreviations. Arrows indicate the direction of gene transcription. 49
Figure 4.5 Predicted structure of tRNA ${ }^{\text {Ser1 }}$ in the complete mitochondrial genomes of Argopistes capensis and Argopistes sexvitattus (Chrysomelidae: Alticini). The differences between the two tRNAs are highlighted in grey. Inferred canonical Watson-Crick bonds are represented by lines. 53

Figure 4.6 Usage of start codons found in the complete set of mitochondrial protein-coding genes in 62 flea beetle species within the tribe Alticini.54

Figure 4.7 Evolutionary rates of 13 protein-coding genes in the mitogenomes of 62 Alticini species. The rate of nonsynonymous substitutions (Ka), the rate of synonymous substitutions (Ks), and the ratio of the rate of nonsynonymous substitutions to synonymous substitutions ($\mathrm{Ka} / \mathrm{Ks}$) were estimated for each protein-coding gene
Figure 4.8. Phylogenetic relationships among 62 flea beetle species (Chrysomelidae: Alticini) based on 13 mitochondrial protein-coding genes using Bayesian Inference. (A) PCG123 - all codon positions; (B) PCG12 - only $1^{\text {st }}$ and $2^{\text {nd }}$ codon positions and (C) PCGAAamino acid. Chrysomela vigintipunctata and Entomoscelis adonidis (Chrysomelidae: Chrysomelini) were used as outgroups. Nodal statistical support is given as Bayesian posterior probability
Figure 4.9 Median-joining network of COI haplotypes of the two morphotypes of A. sexvitattus 65
Figure 4.10 Maximum likelihood trees of flea beetle species (Hemiptera: Tingidae) based on501-bp alignments of standard COI barcoding sequences that showed polyphyly possibledue to misidentification68

Figure 4.11 Maximum likelihood trees of flea beetle species (Hemiptera: Tingidae) based on 501-bp alignments of standard COI barcoding sequences that showed paraphyly possible due to misidentification 72
Figure 4.12 Maximum intraspecific p-distances (\%; K2P) in 116 species of flea beetles (Chrysomelidae: Alticini) based on a 500 bp sequence alignment of the standard COI barcoding region.
Figure S4.1 Maximum likelihood tree of flea beetle species (Hemiptera: Tingidae) based on a 501-bp alignment of standard COI barcoding sequences. The analyses included 349 sequences representing 117 species in 22 genera retrieved from GenBank and the new sequences of the olive flea beetles Argopistes capensis and Argopistes sexvitattus generated in this study (underlined). Triangles represent collapsed groups of sequences belonging to the same species. * Outgroup (Chrysomelidae: Chrysomelini)80

Figure S4.2 Maximum likelihood trees of flea beetle species (Hemiptera: Tingidae) based on 501-bp alignments of standard COI barcoding sequences that showed multiple lineages possible due to cryptic diversity

List of Tables

Table 1.1 Genetic diversity estimates for four species of olive lace bugs (Hemiptera:
Tingidae) based on the standard COI barcoding region. k—number of haplotypes; S-
number of polymorphic sites. .. 28
Table 2.1 Main features of the complete mitochondrial genome of the olive flea beetles Argopistes capensis and Argopistes sexvitattus (Coleoptera: Chrysomelidae). J - majority strand; N - minority strand; IGN - number of intergenic nucleotides (negative values indicate overlapping between genes).
Table 2.2 Nucleotide compositions of the complete mitochondrial sequences of the olive flea beetles, Argopistes capensis and Argopistes sexvitattus. AT-skew $=(\mathrm{A}-\mathrm{T}) /(\mathrm{A}+\mathrm{T}) ; \mathrm{CG}-$ skew $=(G-C) /(G+C)$
Table 2.3 Codon usage in the complete mitochondrial genomes of the olive flea beetles Argopistes capensis and Argopistes sexvitattus. Amino acids are labeled according to the IUPAC-IUB single-letter codes. N - the total number of occurrences in all protein-coding genes, RSCU - relative synonymous codon usage. 59
Table S4.1 List of adult specimens representative of olive flea beetles Argopistes capensis and Argopistes sexvitattus (Coleoptera: Chrysomelidae) used for imaging, DNA barcoding and sequencing of complete mitochondrial genomes. Cultivated host: Olea europaea subsp. europaea; Wild host: Olea europaea subsp. cuspidata 84
Table S4.2 List of the 64 partial and complete mitochondrial sequences used to assess the phylogenetic position of the olive flea beetles Argopistes capensis and Argopistes sexvitattus within the tribe Alticini. Chrysomela vigintipunctata and Entomoscelis adonidis (Chrysomelidae: Chrysomelini) were used as outgroups 87
Table S4.3 List of COI barcoding sequences of Argopistes sexvitattus morphotypes used for the construction of a median-joining network. 89
Table S4.4 Intraspecific p-distances (K2P) in 116 species in the tribe Alticini, based on a 500 bp alignment of COI barcoding sequences ($n=2,673$). Standard errors were calculated using 1,000 bootstrap replicates. 90
Table S4.5 Interspecific p-distances (K2P) among 116 species within the tribe Alticini, based on a 500 bp alignment of COI barcoding sequences ($n=2,673$). Standard errors were calculated using 1,000 bootstrap replicates 93

Abbreviations

\% - Percentage
${ }^{\circ} \mathrm{C}$ - Degrees Celsius
3' - Three-prime
5' - Five-prime
A - Adenine
AA - Amino acid
ATP6 - Adenine triphosphate synthase membrane subunit 6
ATP8 - Adenine triphosphate synthase membrane subunit 8
BBP - Bayesian posterior probabilities
BOLD - Barcode of Life Database
Bp - Base pairs
C - Cytosine
CIPRES - Cyberinfrastructure for Phylogenetic Research
COI / COX1 - Cytochrome oxidase subunit 1
COII / COX2- Cytochrome oxidase subunit 2
COIII / COX3 - Cytochrome oxidase subunit 3
CYTB - Cytochrome b
DHU - dihydrouridine
DNA - Deoxyribonucleic acid
F - Forward primer
G - Gamma distribution
G - Guanine
GTR - General Time-Reversible model
H - haplotype diversity

I - proportion of invariable sites
IF - Infestation rate
IOOC - International Olive Oil Council
ITS - Internal transcribed spacer
k - number of haplotypes
K2P - Kimura 2-parameter
Ka - number of nonsynonymous substitutions
$\mathrm{Ka} / \mathrm{Ks}$ - ratio of the number of nonsynonymous to the number of synonymous substitutions
Ks - number of synonymous substitutions
MAFFT - Multiple alignment using fast Fourier transform
MEGA X - Molecular Evolutionary Genetic Analysis X
min - minute
ML - Maximum-likelihood
mM - Millimolar
ND1 - NADH dehydrogenase subunit 1
ND2 - NADH dehydrogenase subunit 2
ND3 - NADH dehydrogenase subunit 3
ND4 - NADH dehydrogenase subunit 4
ND4L - NADH dehydrogenase subunit 4L
ND5 - NADH dehydrogenase subunit 5
ND6 - NADH dehydrogenase subunit 6
NGS - Next-generation sequencing
NJ - Neighbour-joining
NUMTs - nuclear mitochondrial DNA origin
PCG12 - Protein-coding genes excluding the 3rd codon position
PCG123 - Protein-coding genes including all codon positions

PCGs - Protein-coding genes
PCR - Polymerase chain reaction
R - Reverse primer
RNA - Ribonucleic acid
rRNA - Ribosomal ribonucleic acid
S - number of polymorphic sites
SD - Standard deviation
SNPS - single nucleotide polymorphisms
T-Thymine
tRNA - Transfer ribonucleic acid
TM - Trademark
$\mu \mathrm{L}$ - Microlitre(s)
$\mu \mathrm{M}$ - Micromolar
π - nucleotide diversity

Chapter 1 Study overview, rationale, and outcomes

1.1 GENERAL INTRODUCTION

The olive (Olea europaea L.) is the main cultivated species in the family Oleaceae, which comprises 30 genera and ~600 species (Chiappetta and Muzzalupo, 2012). The olive tree has been widely cultivated for its fruits and the oils expressed from its fruits. The uses of the fruit tree are not limited to being used as food but include their provision of active phenolic compounds and fine wood, and for their ornamental value. The cultivation of olives has been dated back to about six millennia ago, linked with the early emergence of ancient civilizations (Besnard et al., 2018). Its domestication is considered to have occurred in the Near East of the Mediterranean basin and spread to other regions around the Mediterranean basin and beyond (Zohary and Spiegel, 1976). Today, several cultivars are grown for the production of high-quality olive oil and table olives (Bartolini et al., 2005).

The global annual consumption of olive oil is between 3.1 and 3.2 million tons (IOOC, 2019). The largest olive producers in the world include Spain, Italy, and Turkey. The leading African producer is Morocco, followed by Tunisia, Algeria, Libya, and Egypt (Saleh, 2021). The economic importance of the fruit tree is not completely recognized in South Africa as the olive industry in the country is relatively new and a minor contributor globally (Louw, 2019). Even so, it has indirectly contributed to the economy of the country through job creation, skills development, and poverty alleviation. Despite being a small player in the olive industry, South Africa has won several awards for producing some of the world's finest olive oil and has become a major quality olive oil-producing country (Tinline, 2021).

Olive production, much like all other crop production, is challenged by biotic and abiotic stresses. Biotic stresses, particularly insect pests, and diseases cause severe damage to the fruit tree affecting yield and quality. Agricultural losses in olive production as a result of biotic stress have been estimated to be as high as 30%, with half being caused by insect pests (Bueno and Jones, 2002). The largest producers of the world's olives are free of olive pests. Few serious pests of olives are native to South Africa and Australia (Addison et al., 2015; Drake \& Ruhoff, 1960; Langley et al., 2020; Powell et al., 2020).

Olive lace bugs (Hemiptera: Tingidae) known as "tingids" are small sap-sucking insects that damage the leaves when they feed on the olive trees (Addison et al., 2015). These insects are known to cause damage to leaves, which manifests as yellow spotting, with loss of vigour, leaf fall, and ultimately reduces fruit yield for about 1-2 years (Addison et al., 2015). Tingids are a poorly studied taxonomic group in South Africa. Previously, one species
(Plerochila australis) was reported to be the only species affecting olive orchards in the Western Cape province (Addison et al., 2015; Costa, 1998). Another species, Neoplerochila paliatseasi was later identified (Langley et al.,2020). Evidence was gathered that supports the presence of at least two other distinct species (Cysteochila lineata and Neoplerochila sp.) in the Western Cape province of South Africa.

Olive flea beetles (Coleoptera: Chrysomelidae) are phytophagous, leaf-mining insects that infest olive trees Olive flea beetles attack young growth and can stunt the growth of young trees (Addison et al., 2015). There are several Argopistes species associated with Oleaceae, however, three species (A. capensis, A. sexvitattus, and A. oleae) native to South Africa have been reported to be pests of olive orchards in the Western Cape province (Addison et al., 2015)

This project represents a significant addition to the comprehensive description of the entomofauna associated with olive trees based on morphological, genetic, and infestation data that has been assembled for other olive insects (e.g. olive fruit flies, parasitoids, and seed wasps) (Teixeira da Costa et al., 2019; Powell et al., 2020; Langley et al., 2020). The focus of the study was to contribute to the catalogue of olive entomofauna in South Africa and to provide olive growers in the Western Cape with foundational information on the diversity of phytophagous pests affecting the crop.

1.2 AIMS AND OBJECTIVES

The study aims to contribute to a comprehensive catalogue of the entomofauna associated with wild and cultivated olives in South Africa, primarily focusing on species identification and genetic diversity of some species in the Western Cape. The following objectives were set out to achieve this aim:

1. To conduct a survey of olive lace bug and olive flea beetle infestations in some Western Cape olive orchards.
2. To identify species of olive lace bugs and olive flea beetles affecting wild and cultivated olives in the Western Cape using the integrated approach of morphological identification and DNA barcoding.
3. To determine the genetic diversity and phylogenetic position of South African olive lace bugs and olive flea beetles within their respective family or tribe.

1.3 CHAPTER LAYOUT

This thesis is divided into five chapters: introduction, literature review, two research chapters, and a conclusion. The references of all chapters are given at the end of the document.

Chapter 1: Introduction

A general introduction of the research, aims and objectives, an overview of the layout of the chapters, and the research outputs generated throughout the research.

Chapter 2: Literature review

An overview of the literature on the origin and distribution of olives, the importance of olives, the production of olives globally and in South Africa, threats to the olive industry focusing on pests, and molecular methods.

Chapter 3: Species diversity and phylogenetic relationships of olive lace bugs (Hemiptera: Tingidae) found in South Africa
The combination of morphological and molecular techniques was used to identify olive lace bugs species. The complete mitochondrial genomes of three olive lace bugs species were recovered by NGS and used for phylogenetic reconstruction to infer evolutionary relationships within the Tingidae.

Chapter 4: Mitogenomics and phylogenetic position of the olive flea beetles Argopistes capensis and Argopistes sexvitattus (Coleoptera: Chrysomelidae) and an overview of DNA barcoding in the Alticini
The combination of morphological and molecular techniques was used to identify two olive flea beetle species. The complete mitochondrial genomes of two olive flea beetle species were recovered by NGS and used for phylogenetic reconstruction to infer evolutionary relationships within the tribe Alticini.

Chapter 5: Conclusion

General concluding remarks about the study.

1.4 RESEARCH OUTPUTS

Article in international peer-reviewed journal
Hlaka, V., Guilbert, É., Smit, S.J., van Noort, S., Allsopp, E., Langley, J., van Asch, B. Species diversity and phylogenetic relationships of olive lace bugs (Hemiptera: Tingidae) found in South Africa. Insects 2021, 12, 830. doi:10.3390/insects12090830

This publication forms part of Chapter 3. The supplementary data can be accessed online at: https://www.mdpi.com/article/10.3390/insects12090830/s1

Conference contributions
Oral presentation summarising the research performed in Chapter 3, presented by V. Hlaka Hlaka, P.P.V., Guilbert, É., van Noort, S., Allsopp, E., Langley, J., van Asch, B. Identification, distribution, and genetic diversity of olive lace bugs (Hemiptera: Tingidae) in Western Cape province of South Africa. Entomological Society of Southern Africa $22^{\text {nd }}$ Congress. Tshipise, South Africa. June 28 - July 01, 2021.

Conference proceedings paper summarising the research performed in Chapter 3 Hlaka, V.; van Asch, B. DNA barcoding of olive lace bugs (Hemiptera: Tingidae) reveals previously unknown species diversity in South Africa, in Proceedings of the 1st International Electronic Conference on Entomology, 1-15 July 2021, MDPI: Basel, Switzerland, doi:10.3390/IECE-10610

Chapter 2 Literature Review

2.1 INTRODUCTION

Olive trees, Olea europaea L. are evergreen trees that belong to the family Oleaceae which is comprised of 24 genera and 900 species (Sahin and Bilgin, 2017). Within the tribe Oleeae, Olea is the main cultivated species. The olive (O. europaea subsp. europaea) includes the wild form, Olea subsp. europaea var. sylvestris, and the cultivated form, Olea europaea subsp. europaea var. europaea. Olea europaea L. is a complex of species in which six subspecies associated with specific often isolated geographical areas are recognised. These include Olea europaea subsp. cerasiformis, O. e. cuspidata, O. e. europaea, O. e. guanchica, O. e. laperninei, and O. e. marocanna which are composed of different morphotypes associated with specific often isolated geographical areas (Chiappetta and Muzzalupo, 2012) (Figure 2.1)

Figure 2.1 Geographical distribution of the olive complex (Olea europaea L.) in which six subspecies are currently recognized (according to Rubio de Casas et al., 2006). Reproduced from Besnard et al. 2018.

Olea europaea subsp. cerasiformis (Webb \& Berth.) Kunk. \& Sund. is found in Madeira; Olea europaea subsp. cuspidata, African wild olive (Wall ex. G. Don) Cif. is distributed in southern and eastern Africa, parts of Asia and China and Arabia; Olea europaea subsp. europaea is native to the Mediterranean basin; Olea europaea subsp. guanchica is native to the Canary Islands (Vargas, Hess, Muñoz, \& Kadereit); Olea europaea subsp. laperrinei (Batt. \& Trab.) Cif. is distributed in the Saharan mountains; and Olea europaea subsp. maroccana Greut. \& Burd. is distributed in Southwestern Morocco (Besnard et. al., 2002). These subspecies are diploid, except for the polyploid maroccana and cerasiformis (Besnard et al., 2018). The six subspecies are considered to be the primary genetic resource for cultivated olives. Currently, there are several cultivars including Barouni, Frantoio, Kalamata, Manzanilla, and Mission (Costa 1998). Mission is the most common cultivar in the Western Cape because it is suitable for its oil and table olives.

2.2 ORIGIN AND DISTRIBUTION OF THE CULTIVATED OLIVE

The olive has played a vital role in the lives of humankind for many centuries and has been at the core of the development of food and culture. The origin of the olive has been traced back to the Middle East and has been established in countries bordering the Mediterranean Sea and, in many areas, suitable for its cultivation. Over time, the cultivation of the olive spread to the Fertile Crescent then to Israel, Turkey, Egypt, Aegean, Greece, Balkans, Spain, and Italy. Following the discovery of America, the cultivation of olives spread from the south to the north of America in countries including Peru, Argentina, Uruguay, Chile, Mexico, and the United States of America. More recently, the production of olives has been established in other countries without prior traditions of olive oil consumption. Currently, the cultivation of olive is also found in South Africa, Australia, and New Zealand, and China (Figure 2.2) (Cimato 2008). The olive was introduced to South Africa by Jan van Riebeeck, the first Dutch governor of the Cape colony in the 17th century(Karsten, 1955). The current olive industry in South Africa was established in the early 1900s by Ferdinando Costa, an Italian immigrant after observing the natural growth of the wild African olive (Olea europaea subsp. cuspidata). Ferdinando imported known cultivars from Italy and propagated the cultivars using the indigenous wild olive seedlings as rootstock. He bought a farm in Paarl where he continued to cultivate olives and process olive oil. The greater part of the olive industry is situated in Paarl (Costa, 1998).

Figure 2.2 Geographical distribution of olive-producing regions. Reproduced from Cimato et al. 2011.

2.2 IMPORTANCE OF OLIVES

The olive is one of the oldest crop trees and has been cultivated for many years because of its various uses and benefits. The fruits are economically important in the Mediterranean region and other regions with similar climate conditions for their source of olive oil and table olives (Besnard et al., 2018). The olive is cultivated for its many uses including its use in religious practices, cosmetic and medicinal products. Olives are rich in antioxidants and vitamins and have been used for a variety of health benefits such as lowering cholesterol and blood pressure (Lopez-Lopez et al., 2010). The olive industry represents an important source of income for many families that own these farms and the communities surrounding the farms that are employed directly as farm workers or indirectly in the supply chain of olives.

2.3 MORPHOLOGICAL CHARACTERIZATION AND THE NUTRITIONAL COMPOSITION OF OLIVES

The olive fruit is a single-seeded drupe with a fleshy outer layer composed of three anatomical parts which include the epicarp (protective tissue), mesocarp (pulp), and the endocarp (kernel) containing the seed. The color of the epicarp changes with ripening from a bright green to a purplish-black colour at maturity. The colour change is due to the accumulation of major pigments such as chlorophylls, carotenoids, and anthocyanin (Bianchi 2003). The edible portion of the fruit consist of the epicarp and mesocarp. The mesocarp is the reserve tissue of all constituents including water and fats (Bianchi 2003). The nutritional composition of olives is determined by the ripening stage, processing method, and agronomical factors (Pereira et al. 2006).

2.3.1 Ripening stage

The ripening stage in which the fruits of olives are harvested is dependent on the processing method. However, most olives are harvested during mid-autumn when they are green to yellow in colour and firm (Uylaser \& Yildiz 2014). As ripening progresses, the fat content increases as the water content decrease. Therefore, green olives will have a lower fat content than black olives. The phenolic compounds and pigmentation change as the fruit ripens. The phenolic compound, oleuropein increases to its maximum level at mature green (Bianchi 2003).

2.3.2 Processing method

Olives are harvested "green ripe" and are regarded inedible because of the phenolic compound oleuropein responsible for the bitter taste. Olives require processing before being released to the market as edible table olives and olive oil. There are three international processing methods used which include the Californian processing method, the Spanish processing method, and the Greek processing method (Pereira et al. 2006; Uylaser \& Yildiz 2014).

2.3.3 Agronomical factors

The composition of olives is dependent on cultivar type, geographic origin, agricultural practices, agroclimatic condition, and irrigation management. The cultivar type has the most influence on the nutritional composition and varies in size, shape, fat content, and flavor. The phenolic composition differs between cultivars (Ghanbari et al. 2012).

2.3.4 Nutritional characteristics of olives

Olives are rich in vitamins, flavonoids, and phenolic substances. Several studies have found in the Mediterranean region a low prevalence of cardiovascular disease due to the intake of olive-based products (Uylaser \& Yildiz 2014). A significant amount of phenolic compounds serve as antioxidants and free radical scavengers (Lopez-Lopez et al., 2010). Lipids are a major component of olives. The protein content in olives is low, however, essential amino acids such as glutamic acid and aspartic acid are present. Carbohydrates are absent due to their removal during processing (Lopez-Lopez et al., 2010). Olives are an important source of dietary and fiber. The mineral contents vary within cultivars (Lopez-Lopez et al., 2010).

2.4 THE PRODUCTION OF OLIVES GLOBALLY

The European Union (EU) is the largest contributor to the olive industry worldwide. The EU includes nine olive-producing countries (Spain, Italy, Greece, Portugal, France, Slovenia, Croatia, Cyprus, and Malta) that account for a total of 5 million hectares of olive groves in which the majority is dedicated for the production of olive oil. Spain is the largest producer of olive oil in the EU which accounts for 63% of the EU olive production followed by Italy (17\%), Greece (14\%), and Portugal (5\%) (Figure 2.3)(European Commision 2020). According to the International Olive Oil Council (IOOC, 2021), the production of olive oil worldwide
was estimated at 3,197,000 tonnes with the EU contributing 2,232,500 tonnes (69.8\%) (Figure 2.4 A) (IOOC, 2021). The production of table olives worldwide was estimated at $3,134,000$ tonnes with the EU producing the most table olives (28.4%) while other countries producing a great amount included Egypt (26.0\%), Turkey (14.0\%), Algeria (10.0\%), Morocco (4.0\%) and Syria (3.0\%) (Figure 2.4 B) (IOOC, 2021).

- Italy
—Greece
- Spain
- Portugal

Figure 2.3 The production of olive oil in the European Union
A

Figure 2.4 Worldwide olive oil and table olive production in 2020/21(IOOC). (A) The production of olive oil worldwide. (B) The production of table olives worldwide.

2.5 THE PRODUCTION OF OLIVES IN SOUTH AFRICA

The olive industry has the potential to grow in South Africa, as cultivated olives are suitable crops in the Western Cape because they can be farmed with less water in comparison to other deciduous fruits. Hence, the production of olives is suitable for areas that have fewer amounts of water available for agricultural practices. Despite olives being introduced in the late 17th century in South Africa, the olive industry only started gaining momentum in the 1970s. The rapid growth of the olive industry is due to awareness raised about the health benefits of olives, and increased research on the nutritional value and active compounds present (Costa 1998). Currently, 2849 hectares of olives are farmed in South Africa. This is a 110% increase over the past ten years from 2008, where previously it was 1357 hectares. In 2018, there were over 170 olive growers with only 11 growers being the largest with more than 50 hectares each, and the rest farming less than five hectares. The Western Cape is a major contributor to the olive industry in South Africa producing 93\% of the country's olive oil. However, South Africa remains a minor contributor to the production of olives globally (Louw 2019). South Africa imports about $\sim 7,000$ tonnes of olive oil and 70% of the olive oil are imported from Spain with 19% from Italy. South Africa contributes only 2% of the olive oil imports into the country. The most planted olive cultivar in South Africa is Frantoio (749 hectares), reducing the planting of other cultivars. The second most popular cultivar is Mission (659 hectares), used for the production of both oil and table olive (Figure 2.5) (Louw 2019).

Figure 2.5 Common olive cultivar in South Africa, Mission. Image credit: Hans Braxmeier

2.6 PEST THREATS TO THE OLIVE INDUSTRY

The increased trade and movement of goods, variation in climate conditions, and changes in farming practices have promoted the introduction, re-emergence, and spread of pests and diseases. Several insect pests, diseases, and nematodes affect olives causing moderate to severe damage to olive production (Landa 2019). Various arthropods cause damage to olive trees. The pests are either polyphagous (damaging more than one host species, oligophagous (feeding on a few species), or monophagous (feeding on a single species) to the olive tree, and not all of these pests are equally injurious. Polyphagous pests include the occasional pests on the olives whereas monophagous and oligophagous pests cause the greatest economic losses and pose a threat to olive yield annually (Landa, 2019).

2.6.1 Insect pests affecting olive orchards overseas

2.6.1.2 Olive fruit flies

The olive fruit fly, Bactrocera oleae (Rossi) is monophagous and one of the most important olive pests responsible for up to 15% of production losses (Figure 1.6 A). The pest is thought to have originated from Africa and has spread to other important olive-producing areas including the Mediterranean basin and south-central Asia. The larvae of fruit flies feed on olive fruits which can cause premature fruit ripening or drop and loss of quality (Mkize et al., 2008).

2.6.1.2 Olive lace bugs

The olive lace bug, Froggattia olivina (Horvath) (Hemiptera; Tingidae) is an agricultural pest of cultivated olives in Australia. The species is native to Australia and reported to have moved from its native host, Notelaea longifolia to the cultivated olive. Froggattia olivina feeds on the underside of leaves olives which results in yellow chlorotic spotting and severe cases can lead to the defoliation of the host (Spooner-Hart 2005).

2.6.2 Insect pests affecting olive orchards in South Africa

Olive growers in South Africa are fortunate that there are few local pests of cultivated olives. These include olive fruit flies, seeds wasps, olive lace bugs, and olive flea beetles (Mkize, 2009; Powell et al., 2019; Teixeira da Costa et al., 2019). Other pests include longhorn beetles, moths, and scale insect. These pests are native to South Africa and are thought to have jumped from the wild African olive to the cultivated olive.

2.6.2.1 Olive fruit flies

The olive fruit flies cause less harm to South African olive production in comparison to other olive-producing regions. This is likely due to the presence of parasitoid wasps in southern and eastern Africa (Mkize, 2009). The presence of parasitoid wasp species controls olive fruit fly populations from reaching economically damaging levels in cultivated olives. The diversity of the parasitoid wasps is high in South Africa and has been understudied (Mkize, 2009).

2.6.2.2 Olive seed wasps

Olive seed wasps cause premature fruit drop in olive orchards and are responsible for the production losses. Three olive seed wasps have been confirmed in the Western Cape and include Eupelmus spermophilus, Eurytoma oleae, and Sycophila aethiopica (Figure 2.6 B) (Powell et al., 2020).

2.6.2.3 Olive flea beetles

Olive flea beetles are leaf miners that cause damage to the leaves of olive trees. At least six species of flea beetles associated with wild and cultivated olives have been identified which include Argopistes capensis (Bryant), Argopistes epomistus nov. sp., Argopistes lilliputiamus nov. sp., Argopistes melanus nov. sp. , Argopistes oleae (Bryant), and Argopistes sexvitattus (Bryant) (Mkize 2009). However, three olive flea beetle species have been reported to be pests of olives trees including A. capensis (Bryant), A. oleae (Bryant), and A. sexvitattus (Bryant) (Figure 2.6 C - D) (Addison et al., 2015).

2.6.2.4 Olive lace bugs

Neoplerochila paliatseasi and Plerochila australis (Hemiptera: Tingidae) are the only olive lace bugs reported infesting wild and cultivated olives in South Africa (Figure 2.6 E - F) (Langley et al. 2020). Olive lace bugs feed on the underside of the leaves of olive trees causing chlorotic spotting on the leaves and may result in the reduction of fruit yield.

Figure 2.6 Olive pests in South Africa. (A) Olive fruit fly, Bactrocera oleae by Chante Powell; (B) Olive seed wasp, Eupelmus spermophilus by Powell et al. (2019); (C) Olive flea beetle, Argopistes sexvitattus striped morphotype by Beth Grobbelaar; (D) Olive flea beetle, Argopistes sexvitattus black morphotype by Beth Grobbelaar; (E) Olive lace bug, Plerochila australis by Hlaka et al., (2021); and (F) Olive lace bug, Neoplerochila paliatseasi by Langley et al., (2020).

2.7 IMPORTANCE OF SPECIES IDENTIFICATION OF INSECT PESTS OF OLIVES

Insect pests present in olive orchards are often managed using a broad spectrum of insecticides, regardless of whether species have been identified or a proper damage assessment on orchards has been made. The excessive use of chemical pesticides threatens biodiversity and may lead to environmental contamination and health hazards (Landa, 2019). Unnecessary treatments can also lead pests to develop resistance to insecticides. Hence the correct identification of pests is important to ensure that the
appropriate control measure is followed should the pest be known and developed should the pest be unknown. It is necessary to identify pests to adopt an agricultural management practice that gives the best results. Morphological identification is time-consuming and requires trained taxonomists or entomologists for species determination (Barrett and Hebert 2005). However, misidentifications, distinguishing species at immature or developmental stages, damaged samples due to improper handling, cryptic diversity, and species differing by minor morphological characters can make identification challenging and sometimes almost impossible(Ball and Armstrong, 2006; Barrett and Hebert, 2005). Molecular methods, such as DNA barcoding and mitogenomics are available and allow species identification at any developmental stages. These approaches have been successful in identifying a wide range of insects of Arthropoda (Raupach \& Radulovici 2015).

2.8 MOLECULAR METHODS FOR SPECIES IDENTIFICATION

For many years, insect identification has been based on traditional taxonomy. The difficulty experienced in morphological identification led to the use of molecular methods. In molecular techniques, molecular markers are routinely used for accurate species identification of organisms. The use of molecular markers in phylogenetic analysis can also infer evolutionary relationships between taxa. Several molecular markers including mitochondrial and nuclear markers are available for the phylogenetic analysis of insects (Raupach \& Radulovici 2,015).

There are many advantages of using mitochondrial DNA as a molecular marker such as its strict maternal transmission, high mutation rates, high copy number, lack of recombination, and is highly conserved (Park et al., 2010). These properties make mitochondrial DNA a suitable marker for phylogenetic studies. Molecular methods such as DNA barcoding and mitogenomics rely on the use of mitochondrial DNA (Cameron, 2014; Jimbo et al., 2011).

2.7. 7.1 DNA barcoding

DNA barcoding makes use of a short standardized region referred to as "DNA barcodes" used to provide accurate species identification. The molecular approach is dependent on variation within the short standardized region of a genome and is useful for establishing relationships among taxa (Hebert et al., 2003). In insects barcoding, the COI gene has shown high efficiency for species identification (Wilson, 2012). The COI gene is chosen because it has high insertion/deletion events and high substitution rates which makes it suitable for distinguishing among cryptic species (Barrett and Hebert, 2005). It is a suitable
marker because of its low intraspecific variation than interspecific variation. The barcoding method usually does not require taxonomic expertise however, the method is best used as a complement to classic morphological methods. However, there are limitations to the molecular method. The major limitation of DNA barcoding is that it relies upon barcode reference libraries for taxonomic identification of sequences. It is well known that barcode reference libraries can habour errors such as misidentification and spelling errors and most databases are still incomplete (Pentinsaari et al. 2020).

2.7.2 Mitogenomics

Mitochondrial genomes have been widely used in phylogenetic studies, population genetics, and molecular comparative genomics. In insects, the mitochondrial genome is a circular double-stranded molecule between $14-20 \mathrm{~kb}$ in size, comprising 37 genes including 13 protein-coding genes, 2 rRNA, 2 tRNA, and a control region referred to as the AT-rich region (Boore, 1999). The mitochondrial genome is well organized, conserved, and has been used because of its unique properties such as low recombination rates, maternal inheritance, high copy numbers, and evolutionary frequency (Boore 1999). In addition, the complete mitogenome can provide sets of genome-level characters which include the gene order, structural and compositional genomic features which could be useful in phylogenetic analysis (Boore 1999). The complete mitogenome as a marker instead of single-gene markers has been used extensively to construct robust phylogenies. The use of complete mitogenomes can resolve phylogenetic relationships and provide theoretical support in pest control (Ramfrez-Rios et al. 2017).

2.8 POPULAR ANALYTICAL METHODS IN PHYLOGENETIC STUDIES

There are so many methods to consider reconstructing phylogenetic trees. Neighbour-joining and UPGMA are clustering methods that produce trees quickly but are the least reliable when dealing with deeper divergence (Saitou and Nei, 1987; Sokal and Michener, 1958). Maximum likelihood and Bayesian approaches are the most robust and commonly used. These methods are character-based and can apply a model of sequence evolution which is ideal for reconstructing phylogenies (Yang and Rannala 2012). Both these methods are also more statistical than other available methods. The choice of a method for phylogenetic reconstruction is dependent on the dataset and the parameters set. Bayesian and Maximum likelihood tend to discriminate less in a dataset with low diversity.

Chapter 3 Species diversity and phylogenetic relationships of olive lace bugs (Hemiptera: Tingidae) found in South Africa

3.1 ABSTRACT

Olive lace bugs (Hemiptera: Tingidae) are small sap-sucking insects that feed on wild and cultivated Olea europaea. The diversity of olive lace bug species in South Africa, the most important olive producer in the country, has been incompletely surveyed. Adult specimens were collected in the Western Cape province for morphological and DNA-based species identification, and sequencing of complete mitogenomes. Cysteochila lineata, Plerochila australis, Neoplerochila paliatseasi, and Neoplerochila sp. were found at 12 sites. Intra- and interspecific genetic divergences and phylogenetic clustering in 30 species in 18 genera of Tingidae using new and publicly available DNA barcodes showed high levels of congruity between taxonomic and genetic data. The phylogenetic position of the four species found in South Africa was inferred using new and available mitogenomes of Tingidae. Notably, olive lace bugs formed a cluster of closely related species. However, Cysteochila was nonmonophyletic as C. lineata was recovered as a sister species to P. australis whereas Cysteochila chiniana, the other representative of the genus, was grouped with Trachypeplus jacobsoni and Tingis cardui in a different cluster. This result suggests that feeding on O. europaea may have a common origin in Tingidae and warrants future research on potential evolutionary adaptations of olive lace bugs to this plant host.

3.2 INTRODUCTION

Lace bugs (Hemiptera: Tingidae) comprise approximately 2500 species of small phytophagous insects in 300 genera distributed in all tropical and temperate continental and most oceanic regions except for the frigid zones (Guilbert et al., 2014). Lace bug adults and nymphs feed by piercing the abaxial surface of the leaves of living plants to extract sap from cellular tissues (Drake and Ruhoff, 1960). Continuous feeding can result in chlorotic spots that may necrotize with detriment to plant vitality, and heavy infestations may cause premature death of young shoots and defoliation of the host. Lace bugs are generally monophagous, and a species feeds on the same kind of plant or group of closely related plants, including several agricultural crops and ornamentals.

Sub-Saharan Africa has a rich assemblage of native insects associated with Oleaceae, including several species of olive fruit flies and olive flea beetles, and a diversity of parasitoid, hyperparasitoid, and olive seed wasps (Copeland et al., 2004; Mkize et al., 2008; Powell et al., 2020a; b; Teixeira da Costa et al.,2019). Lace bugs feeding on Oleaceae are only found in sub-Saharan Africa: Catoplatus dilatatus Jakovlev (on Olea sp.), Cysteochila pallens Horvath (on O. chrysophylla), Cysteochila sordida Stål (on O. verrucosa), Olastrida oleae Schouteden (on O. europaea) (Drake and Ruhoff, 1965), Cysteochila lineata Duarte Rodrigues (on O. capensis), Cysteochila nervosana Drake and Caffrocysta aliwalana Duarte Rodrigues (on Olea europaea subsp. cuspidata), and Plerochila australis (Distant) and Neoplerochila paliatseasi Duarte Rodrigues (on O. europaea) (Göllner-Scheiding, 2007; Langley et al., 2020). The exception to this pattern is Froggattia olivinia Froggatt, which is native to Australia and feeds not only on Notelaea Iongifolia (Oleaceae) but also on imported O. europaea (Drake and Ruhoff, 1965).

In South Africa, cultivated olives are often grown in proximity to African wild olives (Olea europaea subsp. cuspidata), which may act as a source of both olive pests and their natural enemies. African wild olives and cultivated olives are closely related hence, most insects associated with African wild olives have been found to also occur on cultivated olives (Powell et al., 2020b). Despite the diversity of the native olive-associated entomofauna, South African olive growers face less aggressive threats from phytophagous insects, namely Bactrocera oleae Rossi (Diptera: Tephritidae), than their Mediterranean and Californian counterparts. Globally, South Africa is a small producer of boutique olive products mostly sold locally, but the industry also exports table olives and olive oil to neighbouring African countries, the European Union, and the United States of America. Lace bugs affecting wild and cultivated olive trees in the Western Cape province, the most important region for olive production in the country, are commonly referred to as "olive tingids" by local farmers and have been reported to include P. australis (Addison et al., 2015; Costa, 1998) and N. paliatseasi (Langley et al., 2020). Perceptions on the extent of olive lace bug injury to cultivated olive trees vary from "olive tingids" being a minor pest that does not require management to a threat that impacts olive production and requires insecticide treatment.

The genus Neoplerochila was erected by Duarte Rodrigues (Deckert and Göllner-Scheiding, 2006) to hold the species inflata Duarte Rodrigues. Neoplerochila is only known from Namibia and South Africa and now includes eight species of which N. millari Göllner-

Scheiding, N. dispar Duarte Rodrigues, N. weenenana (Drake), and N. paliatseasi are found on Oleaceae. The hosts of N. inflata Duarte Rodrigues, N. katbergana Drake, N. uniformis Duarte Rodrigues and N. youngai Duarte Rodrigues are presently unknown (GöllnerScheiding, 2007). Neoplerochila paliatseasi is probably distributed countrywide in South Africa, as it was found in the Limpopo, North West, and Western Cape provinces (GöllnerScheiding, 2007; Langley et al., 2020), and in Gauteng province in the present study.

The genus Plerochila was erected by Drake (1954) to hold Plerochila australis Distant and P. horvathi Schouteden as close to the genus Cysteochila but differing on the shape of paranota and carinae. Plerochila currently includes 17 species restricted to Africa, of which P. australis, P. horvathi, and P. rutshurica Schouteden are known to feed on Olea. The host plants of most Plerochila species are not known (Deckert and Gollner-Scheiding, 2006). Plerochila australis has been reported in Ethiopia, the Democratic Republic of Congo, Kenya, Madagascar, Mauritius, Mozambique, Namibia, Sudan, Tanzania, Uganda, and South Africa (Deckert and Gollner-Scheiding, 2006).In South Africa, Plerochila australis is probably distributed countrywide as it was reported in the Western Cape, Northern Cape, Gauteng, Limpopo, Mpumalanga, and North West provinces (Deckert and GollnerScheiding, 2006).

The Mediterranean Basin and California are currently free from olive lace bugs, but these may become a threat if translocated from their original geographic range. Since a previous report of N. paliatseasi in South Africa (Langley et al., 2020), the species is found to be present on Madeira Island (Portugal), where it feeds on cultivated olives (Aukema et al., 2013), but it seems to be restricted to that insular region and has not been found in mainland Europe.

Under the right circumstances, olive lace bugs can become a problem, as is the case of the native Australian F. olivinia, which moved to cultivated olive trees and African wild olives when imported plants became established in the country starting in the 19th century (Spooner-Hart, 2005). Froggattia olivinia is now a serious pest of cultivated olives in New South Wales and Queensland, but it has not yet been reported outside Australia.

This work is part of a larger effort to catalogue the diversity of insect species associated with wild and cultivated olives in South Africa. The main objectives were (1) to gain further insights into the diversity of olive lace bugs found in South Africa and (2) to investigate the phylogenetic position of those species within the family Tingidae using new and publicly available mitogenome sequences.

3.3 MATERIALS AND METHODS

3.3.1 Specimen Collection, Morphological Identification, and DNA Extraction

Olive lace bugs were collected in nine areas in the Western Cape (cultivated and wild olive trees) and one site in Pretoria (wild olive trees) between November 2015 and March 2020 (Table S1). Additionally, eight olive farms in the Western Cape were visited between October 2020 and March 2021 during the South African olive growing season when olive lace bugs are likely to be present. Specimens were collected from cultivated olive blocks identified as infested by farm workers. The number of trees surveyed at each farm varied from 10 to 50, and every second tree was sampled in any given block. Specimens were collected directly into individual plastic tubes, euthanized by freezing, and stored in 100% ethanol at $-20^{\circ} \mathrm{C}$ until downstream analyses. DNA was extracted from individual specimens using a standard phenol-chloroform method (Sambrook and Russell, 2001) and stored at $-20^{\circ} \mathrm{C}$ until further use.

Morphological identification of ethanol-preserved specimens was performed by É. Guilbert following original descriptions, photos of type material, and collections available (Deckert and Gollner-Scheiding, 2006; Göllner-Scheiding, 2007). Representative specimens of C. lineata, P. australis, N. paliatseasi, and a nonspecific Neoplerochila were imaged and deposited in the entomological collection of the Iziko Museum (Cape Town) for future reference: C. lineata SAM-HEM-A012751, Neoplerochila sp. SAM-HEM-A012753, P. australis SAM-HEM-A010383, and N. paliatseasi SAM-HEM-A011647 (SAMC; Curator Simon van Noort). Codens of institutional depositories of voucher specimens follow Evenhuis (2019). Images were acquired with a Leica LAS 4.9 imaging system, comprised of a Leica ${ }^{\circledR}$ Z16 microscope (using either a $2 \times$ or $5 \times$ objective) with a Leica DFC450 Camera and $0.63 \times$ video objective attached. The imaging process, using an automated Z-stepper,
was managed using the Leica Application Suite V 4.9 software. Diffused lighting was achieved using a Leica LED5000 HDI dome.

3.3.2 DNA Barcoding

Specimens of C. lineata ($n=25$), P. australis ($n=32$), N. paliatseasi $(n=11)$, and Neoplerochila sp. $(n=14)$ were sequenced for the standard COI barcoding region ($\sim 650 \mathrm{bp}$) for assessing the congruency between morphological and DNA-based identifications using genetic clustering analysis and estimates of inter- and intraspecific genetic diversity. New species-specific PCR primers were designed for DNA barcoding of P. australis and C. lineata, based on their mitochondrial genomes (Table S2). Neoplerochila paliatseasi and Neoplerochila sp. were barcoded using PCR primers specific to N. paliatseasi designed in a previous study (Langley et al., 2020). Initial attempts to barcode C. lineata were made using the PCR primers specific to P. australis and the PCR primers specific to N. paliatseasi, but limited success (see Section 3.5) led to the design of species-specific primers for C. lineata once the mitogenome of latter species was assembled. All new species-specific PCR primer pairs anneal to the same COI region as the universal DNA barcoding primers, and were designed to be a perfect match to the COI sequence of each species.

PCR amplifications were performed in a total volume of $5 \mu \mathrm{~L}$ containing $1 \times$ of KAPA2G Robust HotStart Ready Mix PCR kit (KAPPA Biosystems), $0.5 \mu \mathrm{M}$ of each primer, $0.5 \mu \mathrm{~L}$ of MilliQ H 2 O , and $1.0 \mu \mathrm{~L}$ of template DNA ($\sim 100 \mathrm{ng}$), as follows: $95^{\circ} \mathrm{C}$ for $3 \mathrm{~min} ; 35$ cycles of $95{ }^{\circ} \mathrm{C}$ for $15 \mathrm{~s}, 15 \mathrm{~s}$ at $58^{\circ} \mathrm{C}$ for C. lineata and $54^{\circ} \mathrm{C}$ for N. paliatseasi and P. australis, $72^{\circ} \mathrm{C}$ for 1 min ; and a final extension at $72{ }^{\circ} \mathrm{C}$ for 1 min . PCR products were sequenced using the reverse PCR primers specific to each species with the BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Waltham, MA, USA) at the Central Analytical Facilities of Stellenbosch University, South Africa.

3.3.3 Intraspecific and Interspecific Genetic Diversity

All DNA barcodes assigned to Tingidae species were downloaded from the Barcode of Life Database (BOLD) Systems v4 (http://v3.boldsystems.org/, accessed on 20 October 2020) to provide a broader context for the intra- and interspecific divergence and genetic clustering patterns of the four olive lace bug species found in South Africa. The initial dataset included 1141 sequences that were subsequently filtered for (a) sequences identified to species level, (b) sequences with a minimum length of 500 bp overlapping the standard COI barcoding
region, and (c) species represented by a minimum of three sequences. The final dataset included 367 sequences representing 30 species in 18 genera, including the new sequences ($n=82$) generated in this study. Multiple sequence alignments were performed with the MAFFT algorithm (Katoh and Standley, 2013) in Geneious Prime v2021.1 (https://www.geneious.com, accessed on 20 October 2020).

Genetic clustering of the COI sequence dataset of 30 species was assessed using a maximum likelihood (ML) tree constructed in IQ-Tree (Minh et al., 2020), with Adelphocoris fasciaticollis (NC_023796.1) (Hemiptera: Miridae) as an outgroup. The best partitioning scheme was determined using the edge-linked greedy strategy (Lanfear et al., 2012) with automatic model selection (Chernomor et al., 2016; Kalyaanamoorthy et al., 2017) commands (-m MFP + MERGE). Branch supports were determined using 1000 replicates for both ultrafast bootstrapping and SH-aLRT branch tests (Guindon et al., 2010; Hoang et al., 2018). The final ML tree was drawn using FigTree v1.4.4 (http://tree.bio.ed.ac.uk/, accessed on 4 September 2021).

Intra- and interspecific genetic divergences were estimated as p-distances (\%) under the Kimura 2-parameter model (Kimura, 1980) in MEGA X (Kumar et al., 2018), with statistical support calculated from 1000 bootstrap replicates. Intraspecific diversity measures (number of haplotypes, number of polymorphic sites, haplotype diversity, and nucleotide diversity) were calculated with Arlequin 3.5 [29]. Median-joining haplotype networks were constructed with Network 10.2, under the default settings (Bandelt et al., 1999). The new sequences COI generated in this study were deposited on GenBank: C. lineata (MZ673445 to MZ673468), N. paliatseasi (MZ666853 to MZ666863), Neoplerochila sp. (MZ673417 to MZ673429), and P. australis (MZ676957 to MZ676987) (Table S1).

3.3.4 Sequencing, Assembly, and Annotation of Mitogenomes

The complete mitochondrial genomes for one specimen each of C. lineata, P. australis, and Neoplerochila sp. were sequenced using the Ion Torrent ${ }^{\text {TM }}$ S5 $^{\text {TM }}$ platform (ThermoFisher Scientific, Waltham, MA, USA) available at the Central Analytical Facilities of Stellenbosch University, South Africa. Sequence libraries were prepared using the Ion Xpress ${ }^{\text {TM }}$ Plus gDNA Fragment Library Kit (ThermoFisher Scientific, Waltham, MA, USA), according to the
protocol MAN0009847 REV J.0. Libraries were pooled and sequenced using the lon $540^{\text {TM }}$ Chef Kit (ThermoFisher Scientific). The NGS reads of each species were mapped against the complete mitogenome of N. paliatseasi (MN794065) and assembled using Geneious Prime. Open reading frames were identified with Geneious Prime using the invertebrate mitochondrial genetic code. Transfer RNA genes (tRNAs) and their secondary structures were predicted using ARWEN software (http://130.235.244.92/ARWEN/, accessed on 15 March 2021) (Laslett and Canback, 2008). The two ribosomal RNA genes (12S rRNA and 16 S rRNA) and the large non-coding region presumed to contain the control for transcription and translation (AT-rich region) were manually annotated by comparison with the mitogenomes of other Tingidae available on GenBank. The new complete mitogenomes of C. lineata, Neoplerochila sp., and P. australis were deposited on GenBank under the accession numbers MZ935684, MZ935685, and MZ935686.

3.3.5 Mitogenome Analyses

Nucleotide composition and compositional biases were calculated using Geneious Prime as AT skew $=(A-T) /(A+T)$ and $G C$ skew $=(G-C) /(G+C)]$. Relative synonymous codon usage was calculated in MEGA X. Repeated regions in the AT-rich region were identified using Tandem Repeats Finder v4.09 (Benson, 1999). Start codons and overlapping and intergenic spaces were counted manually. Nonsynonymous (Ka) and synonymous (Ks) substitution rates were calculated using DnaSP6 (Rozas et al., 2017).

3.3.6 Phylogenetic Reconstruction of Tingidae

The phylogenetic position of the olive lace bugs within Tingidae was assessed in the context of the 18 mitogenomes available for the family in GenBank as of October 2020, with Apolygus lucorum and Adelphocoris fasciaticollis (Hemiptera: Miridae) as outgroups (Table S3). Individual PCGs were extracted from the complete mitogenome sequences and aligned using the translation algorithm in Geneious Prime. Stop codons were removed manually, and individual gene alignments were concatenated to form a single alignment. Poorly aligned regions and gaps in the concatenated alignment were eliminated using GBlocks v0.91b (Castresana, 2000). The final alignment was used to generate three sub-datasets: PCG123 (all codon positions), PCG12 (excluding the 3rd codon position), and an amino acid (AA) alignment.

Bayesian analyses were performed on the three datasets under the site-heterogeneous mixture model CAT-GTR in Phylobayes MPI in XSEDE v1.8c (Lartillot et al.,2007; Lartillot \& Philippe, 2004) to minimize the effect of mitochondrial compositional heterogeneity on phylogenetic reconstructions (Cai et al., 2020; Timmermans et al., 2016). Constant sites were removed from the alignments and the minimum number of cycles was set to 30,000 with the burn-in set to 1000 . The "maxdiff" was set to 0.3 , and the minimum effective size was set to 50 . Nodal support was estimated as Bayesian posterior probabilities (BPP). PhyloBayes analyses were run on the CIPRES Science Gateway Portal (Miller, Pfeiffer, and Schwartz, 2010). The final trees were drawn using FigTree v1.4.4 (http://tree.bio.ed.ac.uk/).

3.4 RESULTS AND DISCUSSION

Olive lace bug infestations are known to affect the development, health, and fruit yield of cultivated olive trees in South Africa, but the diversity of the species present in the region has been incompletely described. A previous study reported the presence of P. australis and N. paliatseasi in the Western Cape on Olea europaea, but definite morphological identification and genetic data were only generated for N. paliatseasi at that point (Langley et al., 2020). The present study follows up by confirming the identity of P. australis and by reporting the presence of C. lineata and one Neoplerochila sp. genetically distinct from N. paliatseasi. Furthermore, the phylogenetic position of the four species was assessed in the context of mitogenomes publicly available for other Tingidae.

3.4.1 Morphological Identification of Olive Lace Bug Species

Images of representative specimens of C. lineata, P. australis, N. paliatseasi, and Neoplerochila sp. analyzed in this study are shown in Figure 3.1. Cysteochila, Neoplerochila, and Plerochila have a similar habitus with slight differences. All of the species analyzed here have wide paranota reflexed onto the pronotum. The paranota are adjoined to the pronotum in C. lineata and P. australis but not in the two Neoplerochila species. Cysteochila lineata has paranota reaching and partly covering the lateral carinae. Plerochila australis differs from the other species by the paranota being less developed and not reaching the lateral carinae. The paranota of both Neoplerochila species reach the lateral carinae but do not cover them. The costal area of these species is uniseriate, but C. lineata and P. australis have small and round areolae, while N. paliatseasi and Neoplerochila sp. have larger and subquadrate areolae. Neoplerochila sp. is very similar to N. paliatseasi: the only morphological difference would be the width of the sutural area, making the width of all the
hemelytra quite uniform similar to N. youngai, and not narrowed opposite to the sutural area as in N. paliatseasi. Therefore, N. paliatseasi and Neoplerochila sp. could not be distinguished unambiguously, and comparative morphometric analyses for a full description of Neoplerochila sp. will have to be performed in the future.

Figure 3.1 Representative adult specimens of olive lace bug (Hemiptera: Tingidae) species found in South Africa. (A) Cysteochila lineata Duarte Rodrigues (SAM-HEM-A01275), (B) Neoplerochila paliatseasi Duarte Rodrigues (SAM-HEM-A011647), (C) Neoplerochila sp. (SAM-HEM-A012753), and (D) Plerochila australis (Distant) (SAM-HEM-A010383).

3.4.2 Distribution of C. lineata, P. australis, N. paliatseasi, and Neoplerochila sp.

Olive lace bug specimens were collected spanning a period of five years (2015-2020) over the course of other studies, but a survey of olive farms in the Western Cape was only performed during the South African olive-growing season of 2020. In total, 16 sites were visited, and specimens were collected from wild and cultivated ornamental trees in public and private spaces (Figure 3.2A). Most wild and cultivated trees from which specimens were collected showed typical symptoms of olive lace bug infestation, such as chlorotic spots and dried-out leaf tips (Figure 3.2C). Olive lace bugs were found in 12 sites out of the 16 sites visited (75\%), including five out of the nine olive farms (56\%) (Figure 3.3A). Plerochila australis was the most frequently found species (10 sites; 62.5\%), N. paliatseasi and C. lineata were found at four sites (25%), and Neoplerochila sp. was only found at one site
(Figure 3.3B). The four species were not found simultaneously at any site, but two sites had three species, two sites had two species, and 50% of the sites had only one species. Formal questionnaires were not performed, but some olive farmers mentioned using insecticides against olive lace bugs, in which case cultivated trees were sprayed twice a year. In cases of heavy infestations, insecticides have been used up to four times a year to significantly reduce populations. As insecticides represent additional economic and environmental costs, it will be interesting to investigate if olive lace bugs have efficient natural enemies that may contribute to managing infestations. In Australia, F. olivinia is reportedly difficult to manage and control, and low toxicity pyrethrum products are commonly used (Spooner-Hart, 2005).

Figure 3.2 (A) Approximate geographic location of broad sampling areas (red dots) of olive lace bugs (Cysteochila lineata, Neoplerochila paliatseasi, Neoplerochila sp. and Plerochila australis) in the Western Cape province of South Africa. (B) Study area in the Western Cape. (C) Characteristic chlorotic spots on the leaves of a cultivated olive tree caused by feeding activity of olive lace bugs.
A. Olive lace bug species at 16 collection sites

B. Olive lace bug species and number of sites

Figure 3.3 (A) Olive lace bug species found at 16 sample collection sites in the Western Cape province of South Africa. (B) Olive lace bug species and the number of sites where each species was found.

3.4.3 Haplotype Diversity of C. lineata, P. australis, N. paliatseasi, and Neoplerochila sp.

Neoplerochila sp. was the least genetically diverse of the four species as all specimens had the same haplotype. Haplotype diversity is the probability that two randomly selected haplotypes in the sample are different. Cysteochila lineata, which was found at four sites, had the highest haplotype diversity $(\mathrm{H}=0.963)$, followed by Plerochila australis, the most frequently found species $(\mathrm{H}=0.901)$ (Table 3.1). The haplotype diversity of N. paliatseasi $(\mathrm{H}$ $=0.787$) was lower than that of C. lineata and P. australis but can still be considered high. Nucleotide diversity is the probability that two randomly chosen homologous nucleotide sites in the sample are different. The nucleotide diversity of the three species was relatively low,
especially the of N. paliatseasi $(\pi=0.005)$; therefore, the two Neoplerochila were the least diverse species among the four olive lace bugs.

Table 3.1 Genetic diversity estimates for four species of olive lace bugs (Hemiptera:
Tingidae) based on the standard COI barcoding region. k-number of haplotypes; Snumber of polymorphic sites.

Species	n	k	S	Haplotype Diversity \pmNucleotide Diversity \pm SD Cysteochila lineata	25
18	26	0.9633 ± 0.0235	0.007644 ± 0.004294		
Neoplerochila paliatseasi	17	5	7	0.7868 ± 0.0590	0.005311 ± 0.003243
Neoplerochila sp.	14	1	0	n.a.	n.a.
Plerochila australis	32	14	25	0.9012 ± 0.0324	0.014416 ± 0.007612

None of the species had high-frequency haplotypes or the classic star-like cluster around a central haplotype that is frequently interpreted as a sign of historical population expansion, and the intraspecific haplotype structure broadly reflected the diversity measures (Figure 3.4). However, the network of C. lineata showed several hypothetical haplotypes, and reticulations that were not present in the networks of the other two species. These features often result from the presence of multiple very low-frequency single nucleotide polymorphisms (SNPs) caused by erroneous base-calling due to the presence of double peaks. However, this was not the case as all sequences were of high quality and all SNP positions had single peaks in the electropherograms. It is possible that some of the sequences of C. lineata represent NUMTs despite the use of species-specific primers for PCR amplifications (see Section 3.5). If this is the case, the estimates of intraspecific genetic diversity presented here are inflated, but the broad genetic homogeneity and conspecificity of the specimens are not challenged.

Figure 3.4 Median-joining network of COI haplotypes of three olive lace bug species (Hemiptera: Tingidae) found in South Africa.

3.4.4 Genetic Diversity of 30 Species of Tingidae Based on DNA Barcodes

The intra- and interspecific divergence of C. lineata, Neoplerochila sp. and P. australis were assessed in the context of DNA barcodes for other Tingidae retrieved from BOLD Systems. The genetic clustering analyses based on a ML tree showed that all species in the dataset formed monophyletic clusters with high statistical support (Figure 3.5). Intraspecific genetic divergence was estimated using maximum p-distances (Table S4; Figure 3.6). Most species (83%) had intraspecific maximum p-distances below 2%, and only four species fell in the range between 2% and 3%, indicating a general trend of consistency in specimen identification. The only evident case of potential misidentification or cryptic diversity was D. foliacea, which had an intraspecific maximum p-distance of 9.28% due to the presence of a single highly diverged sequence (BOLD Record GMGMM1352-14) (Figure 3.5). Based on the results of a search on BOLD Systems using the "Identification" tool implemented on the platform, GMGMM1352-14 was most similar to a sequence deposited as D. foliacea foliacea collected in the Netherlands, but this sequence was not publicly available, as is the case for other Derephysia. Therefore, it was not possible to infer the monophyly of Derephysia. Plerochila australis had an intraspecific maximum p-distance of 3.29%, which may indicate ongoing differentiation in this group. The high divergence of Neoplerochila paliatseasi and Neoplerochila sp. as a single group supported the hypothesis of two distinct species (max pdistance $=7.12 \%$). The choice of thresholds for intra- and interspecific distances is arbitrary, and no fixed value can be universally applied because variation in intraspecific divergence
can be due to introgression, incomplete lineage sorting and recent speciation (Meier et al., 2006). Nonetheless, estimates of sequence divergence can be useful for inferring patterns of genetic variation that allow for cataloguing of specimens and species into categories and complement morphological and ecological information when observable characters are absent, insufficient, or non-informative. In the case of Tingidae, the data analyzed here indicate that the range of maximum p-distances between 2% and 3% is a reasonable proxy for inferring conspecificity among sequences. Could this notion be extrapolated to congeneric pairs of species, i.e., are congeneric species of Tingidae consistently less diverged than non-congeneric species? Interspecific p-distances between all species pairs ranged from 5.22% to 28.72% (Table S5). Among congeneric species pairs (Acalypta, Corythucha, Gargaphia, Neoplerochila, Stephanitis, and Tingis), these values ranged from 5.21% to 22.83%, and among non-congeneric species pairs, the range was from 13.80% to $\mathbf{2 8 . 7 2 \%}$. The least diverged species pairs were indeed congeneric and involved most of the Corythucha species pairs, and the pair N. paliatseasi/Neoplerochila sp. (5.21-12.93\%); however, the ranges of genetic divergences between congeneric and non-congeneric species pairs largely overlap, indicating that p-distances are not an adequate proxy for inferring congeners in Tingidae.

3.4.5 Potential Amplification of NUMTs in Cross-Species PCR

The assessments of genetic diversity and haplotype structure in P. australis, C. lineata, N. paliatseasi, and Neoplerochila sp. were based on COI sequences obtained using newly designed species-specific PCR primers. However, we first attempted to barcode C. lineata using the primers specific to P. australis (Ple-F/Ple-R) and N. paliatseasi (Neo-F/Neo-R) because the mitogenome of C. lineata was the last to be sequenced in the course of this study. These cross-species amplifications of C. lineata generated sequences differing by several nucleotides for the same individual and nonspecific PCR products that resulted in low-quality sequences (data not shown). This may have been due to amplifications of nuclear mitochondrial DNA regions (NUMTs). Mitochondrial DNA is undoubtedly useful for assessments of genetic diversity due to its high copy number in the cell, lack of genetic recombination, and high evolutionary rate (Park et al., 2010), but the presence of NUMTs may confound the analyses. The loss of function of NUMTs results in the accumulation of sequence variation over time, which can be detected in protein-coding genes if amino acid codons are converted into internal stop codons and/or indels that generate frameshift mutations. These degraded versions are considered "older" (paleonumts) than "younger" NUMTs that are very similar to true mitochondrial DNA (Song et al., 2014). Spurious
amplification of NUMTs may lead to overestimation of species diversity and erroneous conclusions in phylogenetic and phylogeographic studies. These problems have been pointed out as a major hindrance to DNA barcoding since the early stages of the development and dissemination of the methodology, which often relies on the use of "universal primers" for generating PCR amplicons across wide ranges of taxa (Bensasson et al.. 2001; Pereira et al., 2021; Song et al., 2014). In our study, the use of species-specific primers eliminated sequence inconsistencies in C. lineata, but this solution may not work across all insect taxa. In organisms with large genomes and that are, therefore, more tolerant to the presence of NUMTs, these are likely to be amplified even when speciesspecific primers are used. For example, a recent study showed that DNA barcoding in Orthoptera is particularly challenging due to the widespread presence of NUMTs, and other mitochondrial markers may have to be employed to infer species diversity correctly (Pereira et al., 2021).

Figure 3.5 Maximum likelihood tree of lace bug species (Hemiptera: Tingidae) based on a 501-bp alignment of standard COI barcoding sequences. The analyses included 349 sequences representing 30 species in 18 genera retrieved from BOLD Systems and the new sequences of the olive lace bugs Cysteochila lineata, Neoplerochila paliatseasi, Neoplerochila sp., and Plerochila australis generated in this study (bold, underlined). Triangles represent collapsed groups of sequences belonging to the same species. * Outgroup (Hemiptera: Miridae).

Intraspecific maximum p-distances in 30 species of Tingidae

Figure 3.6 Intraspecific maximum p-distances (\%) in 30 species of lace bugs (Hemiptera: Tingidae) based on a 501-bp alignment of the standard COI barcoding region ($n=349$).

3.4.6 Mitogenomics of Olive Lace Bugs

The NGS runs generated 8,298,222 reads with an average length of 176 bp for C. lineata, 13,335,929 reads with an average length of 176 bp for Neoplerochila sp., and 15,637,818 reads with an average read length of 168 bp for P. australis. A total of 80,411 reads from C. lineata, 121,545 reads from Neoplerochila sp., and 43,401 reads from P. australis were mapped to the reference sequence (N. paliatseasi, NC_046031). The coverage of the final mitochondrial sequences of C. lineata ($15,209 \mathrm{bp}$), Neoplerochila sp. ($15,339 \mathrm{bp}$), and P. australis ($15,208 \mathrm{bp}$) was $964 \times, 1384 \times$ and $473 \times$, respectively. The quality of mitogenomes is directly associated with read coverage, and low coverage is known to result in sequence gaps and undetermined regions (Ring et al., 2017). The read coverage of each final consensus sequence was high and largely exceeded the minimum required for mitogenomic studies (15x) (Mizuno et al., 2017). The average length of the new mitogenomes (15,252 bp) was in line with other Tingidae ($15,355 \mathrm{bp}$), and the three species had the typical set of mitochondrial genes found in Metazoa: 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal (rRNAs) genes, and a non-coding region presumed to contain the control for replication and transcription (AT-rich region) (Figure 3.7). Twenty-three genes were located on the majority (J) strand, and 14 genes were located on the minority (N) strand (Table S6). The gene arrangement of the PCGs, tRNAs, rRNA and putative control
region (AT-rich region) was conserved in all Tingidae analysed here, and identical to the hypothetical Arthropoda ancestral (Boore, 1999).

Figure 3.7 Circular map of the complete mitogenome of Cysteochila lineata (Hemiptera: Tingidae). Mitochondrial gene content and arrangement are conserved in Tingidae and identical to the hypothetical Arthropoda ancestor. Arrows indicate the direction of gene transcription.

The set of tRNA genes identified with ARWEN was manually compared with those identified in other Tingidae, and the most probable 22 tRNAs were annotated. All tRNAs had the typical cloverleaf-like structure, except tRNA ${ }^{\text {Ser1 }}$ (TCT) of C. lineata and P. australis in that the dihydrouridine (DHU) arm was reduced and replaced with a simple loop, as commonly is the case in Metazoa (Bernt et al., 2013) (Figure 3.8). In contrast, the DHU arm of tRNA ${ }^{\text {Ser1 }}$ of Neoplerochila sp. and N. paliatseasi was complete. A complete DHU arm of tRNA ${ }^{\text {Ser1 }}$ was also present in the mitogenomes of Pseudacysta perseae (Kocher et al., 2015) and Corythucha ciliata, the latter of which had a different anticodon (TTC) [50]. The length of the tRNAs ranged from 63 bp (tRNA ${ }^{\text {Ala }}$) to 76 bp ($\mathrm{tRNA}{ }^{\text {Thr }}$) in C. lineata, 61 bp (tRNA ${ }^{\text {Ala }}$) to 74 bp (tRNA ${ }^{\text {Lss }}$) in Neoplerochila sp., and 63 bp (tRNA ${ }^{\text {Cys }}$) to 75 bp (tRNA ${ }^{\text {Lys }}$) in P. australis. The location and average size of 16 S rRNA (1228 bp ; between tRNA ${ }^{\text {Leut }}$ and tRNA ${ }^{\text {Val }}$) and 12S
rRNA (771 bp; between tRNA ${ }^{\mathrm{Val}}$ and the AT-rich region) in the four species were in line with the average size of the two genes in other Tingidae (1230 bp and 784 bp , respectively).

Figure 3.8 Predicted structure of tRNA ${ }^{\text {Ser1 }}$ in the complete mitochondrial genomes of four

A. Cysteochila lineata

B. Plerochila australis

C. Neoplerochila sp. and Neoplerochila paliatseasi
olive lace bugs (Hemiptera: Tingidae) found in South Africa, with nucleotide differences highlighted. Inferred canonical Watson-Crick bonds are represented by lines, and noncanonical bonds are represented by dots.

The large non-coding (AT-rich) region believed to contain the control for replication and transcription was located between 12S rRNA and the I-Q-M tRNA cluster, as in other Tingidae. The sizes of the AT-rich region were similar in the four olive lace bugs and ranged from 733 bp in C. lineata to 854 bp in N. paliatseasi. In other Tingidae, the AT-rich region ranged from 287 bp in Tingis cardui to 2215 bp in Stephanitis chinensis. Tandem repeats in the control region are common in animals, most likely as a result of slipped-strand mispairing during DNA replication [51]. Neoplerochila sp. had two repeats of a 170 -bp motif at the 3'end of the AT-rich region, which were separated by 4 bp and represented 40% of the region, P. australis had two repeats of a 166 -bp motif separated by 6 bp representing 45% of the region, but no tandem repeats were identified in C. lineata. Tandem repeats in the 3-end of the control region have also been identified in P. perseae (six repeats of 36 bp), C. ciliata (two repeats of 189 bp), and N. paliatseasi (two repeats of 156 bp) (Kocher et al., 2015; Langley et al.,2020).

All PCGs in Tingidae started with a canonical ATN except for ND5 in Corythucha marmorata (GTG), and the most frequently used start codon was ATG (Figure 3.9). PCGs in C. lineata, Neoplerochila sp., N. paliatseasi and P. australis initiated with ATG in ATP6, COIII, COI, CYTB, ND1, ND4, and ND5; ATT in COII, ND2 and ND6; and ATA in ND4L and ND3, except for ND3 in C. lineata (GTG). The alternative start codon GTG has been previously found across a range of insect taxa including some species of Diptera (Zhang et al., 2016), Mecoptera (Beckenbach, 2011), Plecoptera (Stewart and Beckenbach ,2006), and Hemiptera such as Sogatella furcifera (Delphacidae) (Zhang et al., 2014) and Triatoma dimidiata (Reduviidae) (Dotson and Beard, 2001). Most PCGs in the four olive lace bugs terminated with TAA, except ND4 in Neoplerochila sp., ATP6 and ND4 in P. australis, and CYTB in N. paliatseasi, which terminated with TAG. Incomplete stop codons (TA and T) were present in C. lineata (ND5, COII, and ND2), Neoplerochila sp. (CYTB and ND5), N. paliatseasi (COII, ND3, and ND5), and P. australis (COII and ND5). Incomplete stop codons are common in animal mitochondrial genes and are presumed to be completed by posttranscriptional polyadenylation (Ojala et al., 1981).

Figure 3.9 Usage of start codons in the complete set of 13 mitochondrial protein-coding genes in 18 species in the family Tingidae (Hemiptera).

The mitogenomes of C. lineata, Neoplerochila sp., and P. australis were highly compact, with an average of 32 bp of intergenic nucleotides at 11 locations. The longest intergenic spacers were located between tRNA ${ }^{T h r}$ and COI in C. lineata (9 bp) and Neoplerochila sp. (12 bp) and between tRNA ${ }^{G l n}$ and tRNAMet in P. australis (10 bp), in line with N. paliatseasi and other Tingidae where the total number of intergenic nucleotides ranged from 1 to 48 bp .

Olive lace bugs had an average of 19 gene overlaps, mostly involving tRNAs. The longest overlap (19 bp) was in C. lineata between ND4L and tRNA ${ }^{\text {Thr }}$, followed by 14 bp between COIII and ATP6 in Neoplerochila sp., 14 bp between ATP6 and COIII in N. paliatseasi, and 14 bp between tRNA ${ }^{\text {Gin }}$ and tRNA ${ }^{\text {Met }}$ in P. australis. The total number of gene overlaps varied in other Tingidae and was lower than the average for the four olive lace bugs, ranging from 8 bp in P. perseae to 17 bp in C. ciliata.

Olive lace bugs had the high $\mathrm{A}+\mathrm{T}$ content typically found in insect mitogenomes, with an average of 75.1% for the total sequences. The $A+T$ content of the AT-rich regions of the three new mitogenomes (C. lineata, 78.2\%; Neoplerochila sp., 76.9\%; P. australis, 75.2\%) was higher than that of their complete sequences, which was also the case of N. paliatseasi and all other Tingidae except C. ciliata [49]. Olive lace bugs also had a similar A+T content for the combined tRNAs (average $=77.8 \%$), and combined rRNAs (average $=79.2 \%$). The A + T content of the total PCGs in olive lace bugs varied from 65.8% in C. lineata to 81.3% in Neoplerochila sp. and N. paliatseasi. The A+T content of individual PCGs was lowest in COI in all three species (66.4\%), and highest in ATP8 (C. lineata, 79.5%) and ND4L (P. australis, 80.3\%; Neoplerochila sp., 81.3\%) (Table S7).

The mitochondrial GC content varies among species and is influenced by mutation bias, selection, and DNA repair bias on the complementary DNA strand (Qian et al., 2018). According to the second parity rule, bases in the complementary DNA strand exist at equal frequencies when there are no mutations or selection bias [59]. The presence of AT and GC skews on the same DNA strand may indicate that the species underwent mutations or environmental selection (Qian et al., 2018). Cysteochila lineata, Neoplerochila sp., and P. australis had positive AT skews and negative GC skews in most genes and AT-rich regions, except COI and CYTB. ND6 also did not have a positive AT skew and a negative GC skew in Neoplerochila sp. and P. australis. In the four olive lace bugs, four of 13 PCGs on the N strand had higher AT skews than PCGs on the J strand. The nucleotide bias towards A and T was reflected in codon usage, with AT-rich codons (UUU, UUA, AUU, AUA, UAU, AAU and AAA) representing an average of 42.3% of all codons. Relative synonymous codon usage (RSCU) for each codon is calculated as the relative frequency of a codon within a mitogenome. An RSCU value higher than 1.0 indicates an over-represented codon, whereas an RSCU value lower than 1.0 indicates an under-represented codon [60]. RSCU was higher than 1.0 in all synonymous codons, indicating that AT-rich codons are favoured (Table S8).

The ratio of non-synonymous to synonymous nucleotide substitutions ($\mathrm{Ka} / \mathrm{Ks}$) is generally used as an indicator of selective pressure on protein-coding sequences among different species. A Ka/Ks ratio greater than 1 indicates positive selection, which is assumed to have occurred during the evolution of the sequence. Average $\mathrm{Ka} / \mathrm{Ks}$ were calculated for individual PCGs across the 18 Tingidae species included in this study (Figure 3.10). All genes had $\mathrm{Ka} / \mathrm{Ks}<1$, which indicates purifying or stabilizing selection, of which ATP8 had the highest $\mathrm{Ka} / \mathrm{Ks}(0.65)$, and ND1, COI, COII, COIII, and CYTB had the lowest $\mathrm{Ka} / \mathrm{Ks}(0.20)$.

Figure 3.10 Evolutionary rates in 13 mitochondrial protein-coding genes of 18 species of Tingidae (Hemiptera). Ka—number of nonsynonymous substitutions. Ks—number of synonymous substitutions. Ka/Ks—ratio of the number of nonsynonymous to the number of synonymous substitutions.

3.4.7 Phylogenetic Position of Olive Lace Bugs within Tingidae

The mitochondrial phylogeny of Tingidae has been recovered inconsistently across different studies, and this instability may be due to atypical sequence heterogeneity and high levels of mutation rates in the family, and differences in phylogenetic methodological approaches (Kocher et al., 2015; Li et al., 2017; Lin et al., 2017; Liu et al., 2018; Yang et al.2013, 2018). Furthermore, patterns of non-monophyly in mitochondrial phylogenies can result from hybridization and introgression events, and incomplete lineage sorting during speciation, which are more likely to occur among recently diverged species than in older lineages
species (Mutanen et al., 2016). The phylogenetic positions of C. lineata, N. paliatseasi, Neoplerochila sp., and P. australis were recovered using the novel sequences and all Tingidae mitogenomes available on GenBank at the time of this study, except Eteoneus sigillatus (KU896784; unverified sequence). Phylogenetic analyses were restricted to PCGs because these have the advantage of being translatable and do not generally contain many length variable regions at the genera and species level, and the third codon position is mostly neutral and not constrained by selection (Zardoya, 2020).

The PCG123 and PCG12 data recovered the same tree topology with three unresolved nodes, but PCG12 had slighter higher support for some nodes (Figure 3.11A). The AA tree had only one unresolved node and high statistical support for most nodes (Figure 3.11B). All trees recovered Phatnoma laciniatum (Phatnomini) as basal to Tingini, and the same main clades but a different order of deeper nodes. The genera Stephanitis and Corythucha, which are represented by more than one species, formed monophyletic clades in agreement with previous phylogenies (Langley et al., 2020; Lin et al., 2017). Ammianus toi and Perissonemia borneenis were also recovered as sister taxa in agreement with previous reconstructions (Langley et al., 2020). The genus Cysteochila is represented by two species; however, these did not form a monophyletic clade as C. lineata was recovered as a sister species to P. australis but C. chiniana was placed in a different cluster with T. jacobsoni and T. cardui. Nevertheless, the four olive lace bugs were placed in the same phylogenetic cluster with high support in both trees. Cysteochila is a large genus holding around 136 species closely related to Plerochila in which species of Cysteochila have been transferred (C. horvathi Schouteden, and C. tzitikamana Drake). In fact, these genera need to be revised, as the morphological characters used to distinguish species show very small differences and many are homoplastic [see (Guilbert et al., 2014)]. This is also the case for Neoplerochila, in which species of Physatocheila were transferred (N. katbergana Drake and N. weenenana Drake). Our results show that C. lineata, P. australis, N. paliatseasi and Neoplerochila sp. share a mitochondrial ancestor and suggest that feeding on O. europaea may have a common evolutionary origin in lace bugs. To test this hypothesis, it will be necessary to confirm which other lace bug species feed on O. europaea and to determine their phylogenetic position within a wider range of Tingidae. Candidate species could include species that have been found on Olea such as Neoplerochila millari; N. dispar; N. weenenana; P. horvath;; Cysteochila impressa Horvath; Physatocheila namibiana Duarte Rodrigues; and the Australian F. olivinia, a known pest of cultivated olives.

Figure 3.11 Phylogenetic relationships among 18 lace bug species (Hemiptera: Tingidae) based on 13 mitochondrial protein-coding genes. (A) PCG12-only first and second codon positions. (B) Amino acid tree. Adelphocoris fasciaticollis and Apolygus lucorum (Hemiptera: Miridae) were used as outgroups. Nodal statistical support is given as Bayesian posterior probability. * Phatnomatini.

3.5 CONCLUSION

Cultivated olive trees were introduced to the Western Cape province of South Africa less than 100 years ago, but African wild olives are widely distributed in this and other regions of South Africa. Previous works have shown that the entomofauna affecting O. europaea in sub-Saharan Africa most likely co-evolved with African wild olives. We confirm the presence of four species of olive lace bugs in South Africa (C. lineata, P. australis, Neoplerochila sp., and N. paliatseasi), of which P. australis was the most frequent. The four olive lace bugs have a close phylogenetic relationship among Tingidae, in agreement with their utilization of O. europaea. As relatively few olive lace bug species are adapted to O. europaea. These results may also suggest highly conserved host preferences and a lack of host-herbivore cospeciation. It will be interesting to gather further evidence for a common origin of this feeding habit.

Chapter 4 Mitogenomics and phylogenetic position of the olive flea beetles Argopistes capensis and Argopistes sexvitattus (Coleoptera: Chrysomelidae) and an overview of DNA barcoding in the tribe Alticini

4.1 ABSTRACT

Olive flea beetles (Chrysomelidae: Alticini) of the genus Argopistes are phytophagous insects that feed on wild and cultivated Olea europaea trees in sub-Saharan Africa. Olive flea beetles attack young growth, which ultimately stunts the development of young trees. These olive pests are an understudied group of leaf beetles and currently, there is no genetic data available for these species. The objective of this study was to assess the species diversity of olive flea beetles in the Western Cape province and their phylogenetic position within the tribe Alticini. Adult olive flea beetles were collected from wild and cultivated olive trees in the Western Cape province and morphologically identified as Argopistes capensis (Byrant 1944) and Argopistes sexvitattus (Byrant 1922). The complete mitochondrial genomes of A. capensis and two morphotypes of A. sexvitattus (striped and black) were sequenced and annotated. The total length of the mitogenomes ranged between $16,542 \mathrm{bp}-16,566 \mathrm{bp}$, including 13 PCGs, 2 ribosomal RNAs, 22 transfer RNAs, and a noncoding AT-rich region. The mitogenomes were used for phylogenetic reconstruction using 59 other mitogenomes publicly available for the tribe. The olive flea beetles formed a clade with Argopistes tsekooni, suggesting that their host-specificity on Oleaceae may have a common evolutionary origin. Novel and publicly available DNA barcodes for the tribe Alticini were used for phylogenetic analyses and estimates of intra- and inter-specific genetic divergence in 117 species, and most sequences were placed in conspecific clusters; however, non-monophyly affected 14.66% of the total number of species, likely due to taxonomic over-splitting, cryptic diversity, or misidentification among many other issues.

4.2 INTRODUCTION

Flea beetles (Chrysomelidae: Alticini) are small to moderately sized jumping beetles characterized by enlarged hindleg femora that allow the insect to spring into action when disturbed. The tribe Alticini is monophyletic and closely related to the tribe Galerucini, both contained within the subfamily Galerucinae (Bouchard et al., 2011). Alticini includes 4,000 to 8,000 species in approximately 500 genera with worldwide distribution but occurring mainly in the tropical regions of South America, Africa, and Asia (Biondi and D'Alessandro, 2010).

Most flea beetles are specialized feeders, and both adults and larva bore small holes on the external surface of leaves, stems, and, more rarely, flowers of a wide range of higher plants (Feeny et al., 1970). Flea beetle feeding exposes the lower epidermis of the leaves too high levels of sunlight, eventually causing defoliation (Feenyl et al., 1970). Leaf damage also leads to a loss of vigour of surrounding tissues which is aggravated in hot and dry conditions. Heavy infestations of flea beetles can be detrimental at the early stages of plant development and will lead to the death of the host if not addressed (Feenyl et al., 1970).

Flea beetles affect many agricultural and ornamental plants of economic significance. For example, the crucifer flea beetle (Phyllotreta cruciferae) (Goeze 1777), the striped flea beetle (Phyllotreta striolata) (Fabricius 1801), Zimmermann's flea beetle (Phyllotreta zimmermanni) (Crotch 1873), and the pale-striped flea beetle (Systena blanda) (Melsheimer 1847) feed on cruciferous crops (Feeeny, 1970), Epitrix fuscula (Crotch 1873) feeds on eggplants, and Epitrix hirtipennis (Melsheimer 1847) defoliates tobacco. Three Chaetocnema species (Stephens 1831), C. aridula, C. hortensis, and C. mannerheimi are pests of cereals, and C. concinna is a pest of beetroot, buckwheat, sorrel, and strawberry (Bukejs, 2008). Luperomorpha xanthodera (Fairemaire 1888) is a known polyphagous pest of floriculture and ornamental plants, especially roses (Bienkowski and Orlova-Bienkowski, 2018).

Olive flea beetles are found in sub-Saharan Africa feeding on the leaves and stems of the African Wild Olive (Olea europaea subs. cuspidata) and the European Olive (Olea europaea subs. europaea). However, it has been reported that some may feed on the actual fruits and have become serious pests of olives (Costa, 1998). Biondi and D'Alessandro (2012) asserted that there are15 species of Argopistes associated with Oleaceae in sub-Saharan Africa. In South Africa, the sixth-largest producer of olives and olive-derived products on the continent, Argopistes capensis (Bryant 1944), Argopistes oleae (Byrant 1922), and Argopistes sexvitattus (Byrant 1922) have been reported as pests of olive orchards in the Western Cape province of South Africa (Addison et al., 2015). A study in the Eastern Cape province of South Africa reported at least three other species of Argopistes (Argopistes epomistus sp. nov., Argopistes lilliputiamus sp. nov., and Argopistes melanus sp. nov.) associated with wild and cultivated olives (Mkize, 2009).

Byrant (1922) described and illustrated adults of A. oleae and A. sexvitattus, and later described A. capensis. However, the morphological characters used to describe these species, such as colour and elytra, were not sufficient to accurately differentiate them. As distinguishing the striped form of A. sexvitattus from A. oleae proved to be challenging, additional morphological characters such as aedeagus shape, the colour and width of the
elytra stripes, and the colour and puncta in the pronotum are now used to identify A. capensis, A. oleae and A. sexvitattus (Mkize, 2009).

This work is part of a larger endeavour to catalogue the rich entomofauna associated with wild and cultivated olives in South Africa. To that purpose, we aimed to identify olive flea beetle species found on wild and cultivated olives in the Western Cape and to assess their phylogenetic position within the tribe Alticini using new complete mitochondrial genomes. The composition of the novel mitogenomes were described. Furthermore, an overview of the potential utility of molecular methods for the identification of Alticini was assessed in 117 species using new and publicly available DNA barcodes.

4.3 MATERIALS \& METHODS

4.3.1 Specimen collection, morphological identification, and DNA extraction

Olive flea beetles were collected from wild and cultivated olives at 14 locations in the Western Cape province of South Africa between November 2015 and March 2020 (Table 4.1). In addition, a survey was conducted in eight olive farms during the peak season of the olive flea beetles, between November 2020 and March 2021, where olive flea beetles were collected in potentially infested blocks on the farm, identified by farm workers before field visits. The number of trees surveyed at each farm varied from 10 to 50 , and every second tree was sampled at any given block. Olive flea beetles were collected directly from the trees into plastic bags, euthanized by freezing, and individually preserved in 100% ethanol at $-4^{\circ} \mathrm{C}$ for taxonomic identification and DNA analyses. Morphological identifications were initially performed by M. Biondi (University of L'Aquila, Italy) based on high-resolution images and later on representative ethanol-preserved specimens, following the current taxonomic keys. Total DNA was extracted from individual specimens using a standard phenol-chloroform method (Sambrook and Russell, 2001) and stored at $-4^{\circ} \mathrm{C}$ until downstream analyses.

4.3.2 DNA barcoding of Argopistes spp.

Adult olive flea beetles were amplified for the standard barcoding region (COI) using the universal arthropod primers LCO1490 5'-GGTCAACAAATCATAAAGATATTGG-3' and HCO 2198 5'-TAAACTTCAGGGTGACCAAAAAATCA-3' (Folmer et al., 1994). PCR amplifications were performed in a total volume of $5 \mu \mathrm{~L}$ containing 1X of KAPA2G Robust HotStart Ready Mix PCR kit (KAPPA Biosystems), $0.5 \mu \mathrm{M}$ of each primer, $0.5 \mu \mathrm{~L}$ of MilliQ $\mathrm{H}_{2} \mathrm{O}$, and $1.0 \mu \mathrm{~L}$ of template DNA ($\sim 100 \mathrm{ng}$). The thermal cycling program consisted of 3 min at $95^{\circ} \mathrm{C} ; 35$ cycles of 15 s at $94^{\circ} \mathrm{C}$, Ta of $54^{\circ} \mathrm{C}, 1 \mathrm{~min}$ at $72^{\circ} \mathrm{C}$; and a final extension of 1 min at $72^{\circ} \mathrm{C}$. PCR
products were sequenced using the reverse PCR primers with the BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems) at the Central Analytical Facilities of Stellenbosch University, South Africa.

4.3.3 Sequencing, assembly, and annotation of complete mitogenomes

Two specimens of A. sexvitattus (striped and black morphotype) and one specimen of A. capensis and were sequenced using the lon Torrent ${ }^{\mathrm{TM}} \mathrm{S5}^{\mathrm{TM}}$ platform (ThermoFisher Scientific, Waltham, MA, USA) at the Central Analytical Facilities of Stellenbosch University. Sequence libraries were prepared using the Ion Xpress ${ }^{\text {TM }}$ Plus gDNA Fragment Library Kit (ThermoFisher Scientific, Waltham, MA, USA), according to the protocol MAN0009847 REV J.0. Libraries were pooled and sequenced using the lon $540^{\text {TM }}$ Chef Kit (ThermoFisher Scientific). The next-generation sequencing (NGS) reads for each specimen were separately mapped against the complete mitogenome of Argopistes tsekooni (Chen 1934) (NC_045929.1) (Long et al., 2019) and assembled using Geneious Prime v2021.1 (https://www.geneious.com). under the default settings. Open reading frames were identified with Geneious Prime using the invertebrate mitochondrial genetic code. Transfer RNA genes (tRNAs) and their secondary structures were identified using the ARWEN software (Laslett and Canback, 2008). The two ribosomal RNA genes (12S rRNA and 16S rRNA) and the putative control region (AT-rich region) were manually annotated by comparison with mitogenomes of other Alticini. The DNA barcodes and complete mitogenomes of Argopistes capensis and Argopistes sexvitattus generated in this study were deposited in GenBank under accession numbers [upon acceptance for publication].

4.3.4 Mitogenome analyses

Start codons and overlapping and intergenic spaces were counted manually. Nucleotide composition and compositional biases were calculated using Geneious Prime as AT-skew = $(A-T) /(A+T)$ and GC-skew $=(G-C) /(G+C)]$. Relative synonymous codon usage was calculated using MEGA X (Kumar et al., 2018). The ratio of nonsynonymous (Ka) to synonymous (Ks) substitutions (Ka/Ks) were calculated using DnaSP6 (Rozas et al., 2017).

4.3.5 Phylogenetic analysis within the tribe Alticini

The phylogenetic position of A. capensis and A. sexvitattus (including morphotypes) within the tribe Alticini was assessed in the context of other complete and partial mitogenomes
available on GenBank as of April 2021, with Chrysomela vigintipunctata and Entomoscelis adonidis (Chrysomelidae: Chrysomelini) as outgroups (Table S4.1). Individual PCGs were extracted from the mitogenomic sequences and aligned using the translation algorithm in Geneious Prime. Stop codons were removed manually, and individual gene alignments were concatenated to form a single alignment. Poorly aligned regions and gaps in the concatenated alignment were filtered using GBlocks v0.91b (Castresana, 2000). The final alignment was used to generate three sub-datasets: PCG123 (all codon positions), PCG12 (excluding the 3rd codon position), and an amino acid (AA) alignment. The PCG123, PCG12, and amino acid alignments were partitioned with PartitionFinder2 v2.1.1 (Lanfear et al., 2016), using the greedy algorithm for scheme search and the Bayesian Information Criterion for scheme selection. Bayesian inference analysis was performed on MrBayes v3.2.7a (Ronquist and Huelsenbeck, 2003) under the GTR + GAMMA + I substitution model, using two simultaneous runs, with four heated chains of 10,000,000 generations, with a subsampling frequency of 1,000 generations, and a burn-in length of 2,500,000. Confidence in tree topology was estimated as Bayesian posterior probability (BPP). Partitioning schemes and BI were run on the CIPRES Portal v.3.3 (https://www.phylo.org/) (Miller et al.,2010).

4.3.6 Intra- and interspecific genetic divergence

All of the barcoding sequences taxonomically assigned to the tribe Alticini were downloaded from GenBank (April 2021). The initial dataset consisted of 5,372 sequences that were subsequently filtered for a) sequences identified to species level, b) sequences with a minimum length of 500 bp overlapping the standard COI barcoding region, and c) species represented by a minimum of six sequences. The final dataset included 2,676 sequences representing 117 species across 22 genera, including the A. capensis and A. sexvitattus sequences generated in this study. Multiple sequence alignments were performed using the MAFFT algorithm (Katoh and Standley, 2013) in Geneious Prime v2021.1 (https://www.geneious.com/). Genetic clustering of the COI sequence dataset of 117 species was assessed using a maximum likelihood (ML) tree constructed in IQ-Tree (Minh et al., 2020), with Entomoscelis adonidis (KX94349.1) (Chrysomelidae: Chrysomelini) as an outgroup. Branch supports were determined using 1000 replicates for both ultrafast bootstrapping and SH-aLRT branch tests (Guindon et al., 2010; Hoang et al., 2018). The final ML tree was drawn using FigTree v1.4.4 (http://tree.bio.ed.ac.uk). Intraspecific genetic divergences were estimated as a percentage of maximum pairwise distances (p-distance, \%) under the K2P model on MEGA X, and interspecific genetic divergence was estimated as mean p-distance (\%) under the same model.

4.4 RESULTS AND DISCUSSION

Olive flea beetles are found feeding on wild and cultivated olive trees in sub-Saharan Africa and previous studies have reported a number of Argopistes species in South Africa, including A. capensis, A. oleae, and A. sexvitattus in the Western Cape (Addison et al., 2015) and A. epomistus, A. lilliputiamus and A. melanus in the Eastern Cape (Mkize, 2009). However, genetic data for species identification and assessment of their phylogenetic position within the tribe Alticini was not available. To contribute to filling this gap, olive flea beetle specimens were incidentally collected from cultivated and wild olive trees at 14 sites between 2015 and 2020. Additionally, a survey of cultivated olive trees at eight olive farms in the Western Cape and of wild olive trees in the vicinity of the farms was performed during the South African olive growing season of 2020.

4.2.1 Morphological identification of olive flea beetle species

Images of representative specimens of A. capensis and A. sexvitattus morphotypes analyzed in this study are shown in Figure 4.1. Olive flea beetles are characterized by their oval shape and are usually 4-5 mm in length. Their heads are usually hidden below the thorax. Species are distinguishable by the colouration and pattern of the elytra (Addison et al., 2015). The colour of the elytra of A. capensis and A. sexvitattus is uniformly yellowish brown (Figure 4.1 A - B and Figure 4.1 F). The stripes on the elytra in A. sexvitattus are generally wider, dark brown, median longitudinal, inner, and lateral margins, while the stripes in A. capensis are dark brown, faint, irregular longitudinal stripes. The elytra and thorax in A. sexvitattus can be entirely black/brown as shown in (Figure 4.1 C - D) (Addison et al., 2015).

Figure 4.1 Representative adult specimens of olive flea beetles (Chrysomelidae: Alticini) species found in South Africa. (A) Argopistes sexvitattus striped morphotype (male), (B) Argopistes sexvitattus striped morphotype (female), (C) Argopistes sexvitattus black morphotype (male), (D) Argopistes sexvitattus black morphotype (female), (E) Argopistes sexvitattus black morphotype (male), and (F) Argopistes capensis (female). Image credit: Beth Grobbelaar.

4.4.2 Distribution of A. capensis, A. oleae, and A. sexvitattus in wild and cultivated olive trees

Olive flea beetles were collected covering a period of five years (2015-2020) over the course of other studies, but a survey of olive farms in the Western Cape (Figure 4.2 B) was only conducted in 2020 during the South African olive-growing season of 2020. A total of 14 sites were visited, and adult olive flea beetle specimens were collected from ornamental wild and cultivated trees in public and private areas, including wild and cultivated trees on olive farms (Figure 4.2 A). Specimens were only collected from wild and cultivated trees which exhibited typical symptoms of olive flea beetle such as holes on the leaves and dried-out leaf tips (Figure 4.2 C).

Figure 4.2 (A) Distribution of the olive flea beetle species, Argopistes capensis, and Argopistes sexvitattus in wild and cultivated olive orchards in the Western Cape province of South Africa. (B) Study area in the Western Cape province. (C) Characteristic holes on leaves caused by feeding of olive flea beetles.

Argopistes capensis and A. oleae were originally described from the Western Cape province and their distribution appeared to be restricted to this particular region of South Africa (Addison et al., 2015). However, a study performed in 2008 confirmed the presence of these and other Argopistes species in the Eastern Cape province of South Africa (Mkize, 2009). Argopistes sexvitattus may have a wider distribution as it has been reported from various localities in South Africa and Namibia (Addison et al., 2015). Argopistes capensis, A. oleae, and A. sexvitattus have been previously reported in the Western Cape (Addison et al., 2015). However, in the present study A. sexvitattus was the dominant species present in numbers (92.86% of sites), only two specimens of A. capensis were found at one site (7.14\% of sites) and A. oleae was never found in over five years (Figure 4.3).

Olive flea beetle species found at 14 collection sites

Figure 4.3 Olive flea beetle species found at 14 collection sites in the Western Cape province of South Africa.

In practical terms, A. sexvitattus seems to be the only olive flea beetle species currently affecting wild and cultivated olive trees in the Western Cape. Formal questionnaires were not administered, but some olive farmers stated that they use insecticides to combat olive flea beetle infestation, in which cultivated trees are sprayed twice a year. In severe infestations, insecticides have been used up to four times per year to significantly reduce pest populations. Managing olive flea beetle infestations with insecticides is costly and excessive spraying increases the risk of pests developing resistance to the treatment (Landa, 2019). Therefore, other methods of pest combat should be preferred, including the promotion of the presence of natural enemies (Landa, 2019).

A survey of natural enemies of Argopistes larvae conducted in the Eastern Cape between 2003-2005 confirmed that the parasitic wasp, Pseudophanomeris inopinatus Belokobylskij (Hymenoptera: Braconidae) is the only known enemy to parasitize the larvae of Argopistes species in South Africa (Mkize, 2009). However, the rate of parasitism was found to be low, and further assessments of natural enemies of olive flea beetles have not been performed.

4.4.3 The mitogenomes of Argopistes capensis and Argopistes sexvitattus

The lon Torrent sequencing runs generated for $8,121,365$ reads with an average length of 174 bp for A. capensis, 13,755,855 reads with an average read length of 162 bp for A. sexvitattus (striped), and 15,919,208 reads with an average read length of 160 bp for A. sexvitattus (black). A total of 5,116 reads from A. capensis, 113,345 reads from A. sexvitattus (striped), and 1,188,759 reads from A. sexvitattus (black) were mapped to the reference sequence (A. tsekooni). The coverage of the final sequence of A. capensis ($16,543 \mathrm{bp}$), A. sexvitattus (striped) ($16,542 \mathrm{bp}$), and A. sexvitattus (black) ($16,566 \mathrm{bp}$) was 52X, 653X, and 9371X, respectively, exceeding the minimum required (15X) for mitogenomic studies (Ring et al., 2017).

The mitogenome length of A. capensis and the A. sexvitattus morphotypes were similar to the average length found in the other Alticini species included in this study ($16,009 \mathrm{bp}$), and the species possessed the typical set of 37 mitochondrial genes found in metazoans (Boore, 1999), including 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal (rRNAs) genes, and one control region (AT-rich region) presumed to contain the initiation of transcription and replication (Saito et al., 2005) (Figure 4.4). The majority strand (J-strand) contains most of the genes (23 genes; 9 PCGS and 14 tRNAs), while the remaining 14 genes (PCG's, tRNA, and rRNA) are encoded on the minority strand (N -strand) (Table 4.1). The gene arrangement of the PCGs, tRNAs, rRNA, and putative control region (AT-rich region) seems to be conserved in Alticini and was identical to the hypothetical ancestral organization for Arthropoda in all species included in these analyses (Boore, 1999).

Figure 4.4 Linear map of the complete mitochondrial genomes of Argopistes capensis and Argopistes sexvitattus. tRNA genes are represented by single-letter abbreviations. Arrows indicate the direction of gene transcription.

Table 4.1 Main features of the complete mitochondrial genome of the olive flea beetles Argopistes capensis and Argopistes sexvitattus (Coleoptera: Chrysomelidae). J - majority strand; N - minority strand; IGN - number of intergenic nucleotides (negative values indicate overlapping between genes).

				Argopistes capensis				
Gene/region	Code	Strand	Anticodon	Coordinates	Size (bp)	Start	Stop	IGN
tRNA ${ }^{1 /}$	I	J	GAT	2-63	61	-	-	-
tRNA ${ }^{\text {G/n }}$	Q	N	TTG	65-135	71	-	-	0
tRNA ${ }^{\text {Met }}$	M	J	CAT	134-202	69	-	-	-1
ND2	-	J	-	203-1214	1012	ATT	T--	0
tRNA ${ }^{\text {Trp }}$	W	J	TCA	1214-1279	66	-	-	-1
tRNA ${ }^{\text {cys }}$	C	N	GCA	1270-1335	66	-	-	-10
tRNA ${ }^{\text {Tyr }}$	Y	N	GTA	1336-1399	64	-	-	0
COI	-	J	-	1401-2934	1534	AAT	T--	1
tRNA ${ }^{\text {Leu2 }}$	L2	J	TAA	2934-3002	69	-	-	-1
COII	-	J	-	3002-3689	688	ATG	T--	-1
tRNA ${ }^{\text {Lys }}$	K	J	TTT	3690-3761	72	-	-	0
tRNA ${ }^{\text {Asp }}$	D	J	GTC	3760-3827	68	-	-	-2
ATP8	-	J	-	3828-3983	156	ATT	TAA	0
ATP6	-	J	-	3977-4648	672	ATG	TAA	-7
COIII	-	J	-	4648-5429	782	ATG	TA-	-1
tRNA ${ }^{\text {G/y }}$	G	J	TCC	5430-5493	64	-	-	0
ND3	-	J	-	5494-5845	352	ATT	T--	-1
tRNA ${ }^{\text {Ala }}$	A	J	TGC	5845-5911	67	-	-	-1
tRNA ${ }^{\text {Arg }}$	R	J	TCG	5910-5972	63	-	-	-2
tRNA ${ }^{\text {Asn }}$	N	J	GTT	5972-6037	66	-	-	-1
tRNA ${ }^{\text {Ser1 }}$	S1	J	TCT	6038-6096	59	-	-	0
tRNA ${ }^{\text {G/u }}$	E	J	TTC	6096-6161	66	-	-	-1
tRNA ${ }^{\text {Phe }}$	F	N	GAA	6157-6221	65	-	-	-5
ND5	-	N	-	6221-7919	1699	ATT	T--	-1
tRNA ${ }^{\text {His }}$	H	N	GTG	7920-7981	62	-	-	0
ND4	-	N	-	7981-9298	1318	ATG	T--	-1
ND4L	-	N	-	9292-9573	282	ATG	TAA	-7
tRNA ${ }^{\text {Thr }}$	T	J	TGT	9577-9643	67	-	-	3
tRNA ${ }^{\text {Pro }}$	P	N	TGG	9641-9706	66	-	-	-3
ND6	-	J	-	9708-10205	498	ATT	TAA	1
CYTB	-	J	-	10205-11342	1138	ATG	T--	-1
tRNA ${ }^{\text {Ser2 }}$	S2	J	TGA	11343-11409	67	-	-	0
ND1	-	N	-	11427-12377	951	TTG	TAG	17

tRNA ${ }^{\text {Leu1 }}$	L1	N	TAG	12443-12378	66	-	-	0
16s rRNA	-	N	-	12444-13721	1278	-	-	0
tRNA ${ }^{\text {Val }}$	-	N	TAC	13722-13790	69	-	-	0
12s rRNA	-	N	-	13791-14528	738	-	-	0
AT-rich region	-	-	-	14529-16543	2015	-	-	0

				Argopistes sexvitattus (striped morphotype)				
Gene/region	Code	Strand	Anticodon	Coordinates	$\begin{aligned} & \hline \text { Size } \\ & \text { (bp) } \\ & \hline \end{aligned}$	Start	Stop	IGN
tRNA ${ }^{1 / 8}$	1	J	GAT	1-63	63	-	-	-
tRNA ${ }^{\text {G/n }}$	Q	N	TTG	75-145	71	-	-	11
tRNA ${ }^{\text {Met }}$	M	J	CAT	145-213	69	-	-	-1
ND2	-	J	-	214-1225	1012	ATT	T--	0
tRNA ${ }^{\text {Trp }}$	W	J	TCA	1225-1290	66	-	-	-1
tRNA ${ }^{\text {cys }}$	C	N	GCA	1281-1346	66	-	-	-10
tRNA ${ }^{\text {Tyr }}$	Y	N	GTA	1347-1410	64	-	-	0
COI	-	J	-	1412-2945	1534	AAT	T--	1
tRNA ${ }^{\text {Leu2 }}$	L2	J	TAA	2945-3013	69	-	-	-1
COII	-	J	-	3013-3700	668	ATG	T--	-1
tRNA ${ }^{\text {Lys }}$	K	J	TTT	3701-3772	72	-	-	0
tRNA ${ }^{\text {Asp }}$	D	J	GTC	3771-3835	65	-	-	-2
ATP8	-	J	-	3836-3991	156	ATC	TAA	0
ATP6	-	J	-	3985-4653	669	ATG	TAA	-7
COIII	-	J	-	4653-5434	782	ATG	TA-	-1
tRNA ${ }^{\text {Gly }}$	G	J	TCC	5435-5499	65	-	-	0
ND3	-	J	-	5502-5835	352	ATT	T--	0
tRNA ${ }^{\text {Ala }}$	A	J	TGC	5851-5916	66	-	-	-1
tRNA ${ }^{\text {Arg }}$	R	J	TCG	5915-5979	65	-	-	-2
tRNA ${ }^{\text {Asn }}$	N	J	GTT	5979-6043	65	-	-	-1
tRNA ${ }^{\text {Ser1 }}$	S1	J	TCT	6044-6101	58	-	-	0
tRNA ${ }^{\text {G/u }}$	E	J	TTC	6101-6165	66	-	-	-1
tRNA ${ }^{\text {Phe }}$	F	N	GAA	6162-6226	65	-	-	-4
ND5	-	N	-	6226-7924	1699	ATT	T--	-1
tRNA ${ }^{\text {His }}$	H	N	GTG	7925-7986	62	-	-	0
ND4	-	N	-	7987-9304	1318	ATG	T--	-1
ND4L	-	N	-	9298-9579	282	ATG	TAA	-7
tRNA ${ }^{\text {Thr }}$	T	J	TGT	9583-9649	67	-	-	3
tRNA ${ }^{\text {Pro }}$	P	N	TGG	9647-9712	66	-	-	-3
ND6	-	J	-	9714-10211	498	ATT	TAA	1
CYTB	-	J	-	10211-11348	1138	ATG	T--	-1
tRNA ${ }^{\text {Ser2 }}$	S2	J	TGA	11349-11415	67	-	-	0

ND1	-	N	-	$11433-12383$	951	TTG	TAG	17
tRNA $^{\text {Leu1 }}$	L1	N	TAG	$12384-12449$	66	-	-	0
16s rRNA	-	N	-	$12450-13727$	1278	-	-	0
tRNA $^{\text {Val }}$	-	N	TAC	$13728-13795$	68	-	-	0
12s rRNA	-	N	-	$13796-14533$	738	-	-	0
AT-rich region	-	-	-	$14534-16542$	2009	-	-	0

				Argopistes sexvitattus (black morphotype)				
Gene/region	Code	Strand	Anticodon	Coordinates	$\begin{aligned} & \text { Size } \\ & \text { (bp) } \end{aligned}$	Start	Stop	IGN
tRNA ${ }^{1 /}$	I	J	GAT	1-63	63	-	-	-
tRNA ${ }^{\text {G/n }}$	Q	N	TTG	75-145	71	-	-	11
tRNA ${ }^{\text {Met }}$	M	J	CAT	145-213	69	-	-	-1
ND2	-	J	-	214-1225	1012	ATT	T--	0
tRNA ${ }^{\text {Trp }}$	W	J	TCA	1225-1290	66	-	-	-1
tRNA ${ }^{\text {cys }}$	C	N	GCA	1281-1346	66	-	-	-10
tRNA ${ }^{\text {Tyr }}$	Y	N	GTA	1346-1410	65	-	-	-1
COI	-	J	-	1412-2945	1534	AAT	T--	1
tRNA ${ }^{\text {Leu2 }}$	L2	J	TAA	2945-3013	69	-	-	-1
COII	-	J	-	3013-3700	688	ATG	T--	-1
tRNA ${ }^{\text {Lys }}$	K	J	TTT	3701-3772	72	-	-	0
tRNA ${ }^{\text {Asp }}$	D	J	GTC	3771-3836	66	-	-	-2
ATP8	-	J	-	3837-3992	156	ATC	TAA	0
ATP6	-	J	-	3986-4654	669	ATG	TAA	-7
COIII	-	J	-	4654-5435	782	ATG	TA-	-1
tRNA ${ }^{\text {Gly }}$	G	J	TCC	5436-5499	64	-	-	0
ND3	-	J	-	5500-5851	352	ATT	T--	0
tRNA ${ }^{\text {Ala }}$	A	J	TGC	5851-5916	66	-	-	-1
tRNA ${ }^{\text {Arg }}$	R	J	TCG	5915-5979	65	-	-	-2
tRNA ${ }^{\text {Asn }}$	N	J	GTT	5979-6043	65	-	-	-1
tRNA ${ }^{\text {Ser1 }}$	S1	J	TCT	6044-6101	58	-	-	0
tRNA ${ }^{\text {G/u }}$	E	J	TTC	6101-6166	66	-	-	-1
tRNA ${ }^{\text {Phe }}$	F	N	GAA	6162-6226	65	-	-	-5
ND5	-	N	-	6226-7924	1699	ATT	T--	-1
tRNA ${ }^{\text {His }}$	H	N	GTG	7925-7986	62	-	-	0
ND4	-	N	-	7987-9304	1318	ATG	T--	0
ND4L	-	N	-	9298-9579	282	ATG	TAA	-7
tRNA ${ }^{\text {Thr }}$	T	J	TGT	9583-9649	67	-	-	3
tRNA ${ }^{\text {Pro }}$	P	N	TGG	9647-9712	66	-	-	-3
ND6	-	J	-	9714-10211	498	ATT	TAA	1
CYTB	-	J	-	10211-11348	1138	ATG	T--	-1

tRNA $^{\text {Ser2 }}$	S 2	J	TGA	$11349-11415$	67	-	-	0
ND1 2	-	N	-	$11433-12383$	951	TTG	TAG	17
tRNA $^{\text {Leu1 }}$	L 1	N	TAG	$12449-12384$	66	-	-	0
16s rRNA	-	N	-	$12450-13728$	1279	-	-	0
tRNA $^{\text {Val }}$	-	N	TAC	$13729-13796$	68	-	-	0
12s rRNA $^{\text {AT-rich region }}$	-	N	-	$13797-14534$	738	-	-	0

4.4.4 transfer RNAs, ribosomal RNAs, and AT-rich region

The set of tRNA genes identified with the ARWEN software was manually compared to those identified in other Alticini, and the most probable 22 tRNAs were annotated. Typical cloverleaf-like structures were predicted for all genes except tRNA ${ }^{\text {Ser1 }}$, which had an identical structure in both species (including morphotypes), but two differences in the nucleotide sequence, including an additional nucleotide in the tRNA ${ }^{\text {Ser1 }}$ of A. capensis (Figure 4.5). The dihydrouridine (DHU) arm of tRNA ${ }^{\text {Ser1 }}$ (TCT) was reduced and replaced by a simple loop in both species, as is commonly observed in many metazoan mitogenomes (Bernt et al., 2013). This feature was also observed in other Alticini species such as Agasicles hygrophila (Selman and Vogt 1971) (Li et al., 2015).

A. Argopistes capensis

B. Argopistes sexvittatus morphotypes (striped and black)

Figure 4.5 Predicted structure of tRNA ${ }^{\text {Ser1 }}$ in the complete mitochondrial genomes of Argopistes capensis and Argopistes sexvitattus (Chrysomelidae: Alticini). The differences between the two tRNAs are highlighted in grey. Inferred canonical Watson-Crick bonds are represented by lines.

The length of tRNAs ranged from 59 bp (tRNA ${ }^{\text {Ser1 }}$) to 72 bp (tRNA ${ }^{\text {Lys }}$) in A. capensis, and 58 bp (tRNA ${ }^{\text {Ser1 }}$) to 72 bp (tRNA ${ }^{\text {Lys }}$) in A. sexvitattus morphotypes. The 16 S rRNA gene was located between tRNA ${ }^{\text {Leu } 1}$ and tRNA ${ }^{\text {Val }}$, and the 12 S rRNA was located between tRNA ${ }^{\mathrm{Val}}$ and the AT-rich region. The length of the large ribosomal RNA (16S rRNA) gene was $1,278 \mathrm{bp}$ for A. capensis and A. sexvitattus (striped), and 1,279 bp for A. sexvitattus (black) which is slightly higher than the average length of other Alticini species ($1,220 \mathrm{bp}$), while the small ribosomal RNA (12 S rRNA) gene was 738 bp for A. capensis and A. sexvitattus morphotypes which is slightly lower than the average length of other Alticini species (756 bp). The control region was located between the 12 S rRNA and I-Q-M tRNA cluster and was annotated as the AT-rich region in comparison to other Alticini mitogenomes. The size of the AT-rich region was similar in A. capensis ($2,015 \mathrm{bp}$), A. sexvitattus (striped) ($2,009 \mathrm{bp}$), and A. sexvitattus (black) ($2,032 \mathrm{bp}$), and similar to the AT-rich region in A. tsekooni ($2,020 \mathrm{bp}$). The AT-rich region of A. capensis and A. sexvitattus (striped) was within the wide range found in other Alticini species, which varies from 1,309 bp in Macrohaltica subplicata (Leconte 1859) to $2,020 \mathrm{bp}$ in A. tsekooni.

4.4.5 Start codons and stop codons

Most PCGs in Alticini started with ATN, except ND1 in 14 species, COI in four species, ND5 in three species, COIl and ND2 in two species, and ATP8 and ND4L in one species, all of which used alternative start codons (GTG and AAT). The most frequently used start codon was ATG and the least frequently used was AAT (Figure 4.6).

Figure 4.6 Usage of start codons found in the complete set of mitochondrial protein-coding genes in 62 flea beetle species within the tribe Alticini.

All PCGs in A. capensis and the A. sexvitattus morphotypes also used ATN start codons: ATG in ATP6, COII, COIII, CYTB, ND4, and ND4L, ATT in ND2, ND3, ND4, ND5, and ND6, and ATC in ATP8, except for COI (AAT) and ND1 (TTG). TTG has been previously found as a start codon for other coleopteran mitogenomes including Altica cirsicola (Ohno 1960), Altica fragariae (Nakane 1955), and Altica viridicyanea (Baly 1874) (Nie et al., 2019), and A. tsekooni (Long et al., 2019). Most PCGs in both species terminated with the typical complete stop codon TAA, except ND1 which terminated with TAG. Incomplete stop codons (TA and T) were present in A. capensis and A. sexvitattus (COI, COII, COIII, CYTB, ND2, ND3, ND4, and ND5), and are generally presumed to be completed by posttranscriptional polyadenylation (Ojala et al., 1981; Sheffield et al., 2008).

4.4.6 Intergenic regions and spacers

Both species had highly compact mitogenomes with only short intergenic spaces at four locations in a total of 22 bp in A. capensis, and five locations (total of 33 bp) in A. sexvitattus morphotypes. Intergenic spacers ranged between 1 and 17 bp , with the longest located between ND1 and tRNA ${ }^{\text {Ser2 }}$ in both species (17 bp) similar to A. tsekooni (17 bp) and other Alticini where the total number of intergenic nucleotides range from 1 to 61 bp . Argopistes capensis had a total of 19 gene overlaps and the A. sexvitattus morphotypes had 18, mostly involving tRNAs. The longest overlap in both species was between tRNA ${ }^{\text {Cys }}$ and tRNA ${ }^{\operatorname{Trp}}$ (10 bp) in opposite directions. ND4L-ND4 and ATP8-ATP6 overlap by 7 bp , as in A. tsekooni.

4.4.7 Nucleotide composition and codon usage

Argopistes capensis and the two A. sexvitattus morphotypes had the high $\mathrm{A}+\mathrm{T}$ content typically found in insect mitogenomes. The A+T content of the AT-rich regions of the mitogenomes (A. capensis, 90.5\%; A. sexvitattus (striped), 85.7\%; A. sexvitattus (black), 86.9%) was higher than that of their complete sequences (average, 80%). The $A+T$ content of the combined tRNAs in A. sexvitattus (black) (81.0%) was higher than that of A. capensis (80.2%) and A. sexvitattus (striped) (80.8%). The A+T content of the combined rRNAs in A. capensis (82.9%) and the A. sexvitattus morphotypes (82.8%) were similar. The total PCGs of A. capensis and the A. sexvitattus morphotypes had an $A+T$ content of 78.2% and 78.5% respectively. The $A+T$ content in all genes ranged from $\operatorname{COI}(71.6 \%)$ to ATP8 (90.3\%) in A. capensis, from $\mathrm{COI}(71.6 \%)$ to ATP8 (87.0\%) in A. sexvitattus (striped), and from COI (71.6%) to ATP8 (87.4%) in A. sexvitattus (black). The PCG with the highest A+T content in both species was ATP8 (Table 4.2).

Mitochondrial G+C content differs between species and is influenced by mutation bias, selection, and DNA repair bias (Qian et al., 2018). When there are no mutations or selection bias, bases in the complementary DNA strand exist at equal frequencies, according to the second parity rule (Chen et, al. 2019). The occurrence of AT- and GC-skews on the same DNA strand could mean that the species underwent mutations or environmental selection (Qian et al., 2018).
The three mitogenomes had negative AT-skew and negative GC-skew in most genes (PCGs, tRNAs, rRNA, and AT-rich region) except ATP8, ND1, ND4, ND4L, and ND5, as well as COII in A. sexvitattus. In both species, four of the 13 PCGs encoded by the minority strand (N) had higher AT-skew values than PCGs encoded on the majority strand (J). The nucleotide bias towards A and T was reflected in codon usage, with the AT-rich codons (UUU, UUA, AUU, AUA, UAU, AAU, and AAA) representing 42.3\% of all codons in A. capensis, 51.5% in A. sexvitattus (striped) and 52.1% in A. sexvitattus (black).
Relative synonymous codon usage (RSCU) for each codon is calculated as the relative frequency of a codon within a mitogenome. An RSCU value higher than 1.0 indicates an over-represented codon, whereas an RSCU value lower than one indicates an underrepresented codon (Sharp et al., 1986). RSCU was higher than 1.0 among all synonymous codons, indicating that AT-rich codons are favored among synonymous codons (Table 4.3).

4.4.8 Synonymous and nonsynonymous rates of protein-coding genes of Alticini

Average $\mathrm{Ka} / \mathrm{Ks}$ was calculated for individual PCGs across the 62 Alticini species included in this study (Figure 4.7). The $\mathrm{Ka} / \mathrm{Ks}$ ratio of non-synonymous (Ka) nucleotide substitutions to synonymous nucleotide substitutions (Ks) is used as an indicator of selective pressure on protein-coding sequences among different sequences (Wang et al.,2009). A Ka/Ks ratio greater than 1 indicates positive selection, which is assumed to have occurred during the evolution of the sequence. ATP8 had the highest $\mathrm{Ka} / \mathrm{Ks}(0.61)$, followed by ND4L and ND6 (0.39) and COX1 had the lowest $\mathrm{Ka} / \mathrm{Ks}$ ratio (0.07). All genes had $\mathrm{Ka} / \mathrm{Ks}<1$, which indicates that all PCGs are evolving under purifying selection.

Table 4.2 Nucleotide compositions of the complete mitochondrial sequences of the olive flea beetles, Argopistes capensis and Argopistes sexvitattus. AT-skew $=(\mathrm{A}-\mathrm{T}) /(\mathrm{A}+\mathrm{T})$; CGskew $=(G-C) /(G+C)$.

	Argopistes capensis										
Gene/region	A\%	C\%	G\%	T\%	A+T\%	G+C\%	AT- skew	GC- skew	Size (bp)	(size)	
COI	33.0	14.3	14.1	38.6	71.6	28.4	-0.08	-0.01	1534	9.3	
COII	37.1	13.4	9.6	40.0	77.1	23.0	-0.04	-0.17	688	4.2	
COIII	33.4	13.8	11.8	40.2	73.6	25.6	-0.09	-0.08	782	4.7	
CYTB	35.9	13.2	10.9	40.0	75.9	24.1	-0.05	-0.10	1138	6.9	
ATP6	37.9	13.7	8.8	39.6	77.5	22.5	-0.02	-0.22	672	4.1	
ATP8	47.4	7.7	1.9	42.9	90.3	9.6	0.05	-0.60	156	0.9	
ND1	49.0	13.7	7.8	29.5	78.5	21.5	0.25	-0.27	951	5.7	
ND2	39.1	12.0	6.5	42.4	81.5	18.5	-0.04	-0.30	1012	6.1	
ND3	36.6	13.4	7.4	42.6	79.2	20.8	-0.08	-0.29	352	2.1	
ND4	51.1	12.3	7.2	29.4	80.5	19.5	0.27	-0.26	1318	8.0	
ND4L	53.2	11.7	4.6	30.5	83.7	16.3	0.27	-0.44	282	1.7	
ND5	48.1	11.8	8.0	32.0	80.1	19.8	0.20	-0.19	1699	10.3	
ND6	39.8	10.4	5.2	44.6	84.4	15.6	-0.06	-0.33	498	3.0	
16s rRNA	44.6	11.4	5.6	38.3	82.9	17.0	0.08	-0.34	1278	7.7	
12s rRNA	44.2	11.2	5.8	38.8	83	17.0	0.07	-0.32	738	4.5	
Total PCGs	41.5	12.8	9.0	36.7	78.2	21.8	0.06	-0.17	11082	67.0	
Total tRNAs	41.6	11.3	8.5	38.6	80.2	19.8	0.04	-0.14	1383	8.4	
Total rRNAs	44.4	11.4	5.7	38.5	82.9	17.1	0.07	-0.33	2016	12.2	
AT-rich region	49.2	4.0	5.4	41.3	90.5	9.4	0.09	0.15	2015	12.2	
Complete mtDNA	42.5	11.8	8.2	37.5	80	20.0	0.06	-0.18	16543	100.0	

Argopistes sexvitattus (striped morphotype)

Gene/region	$\mathbf{A} \%$	$\mathbf{C} \%$	$\mathbf{G} \%$	$\mathbf{T} \%$	$\mathbf{A + T \%}$	$\mathbf{G}+\mathbf{C} \%$	AT- skew	GC- skew	Size (bp)	\% (size)
COI	32.7	14.4	14.0	38.9	71.6	28.4	-0.09	-0.01	1534	9.3
COII	38.1	14.8	9.6	37.5	75.6	24.4	0.01	-0.21	688	0.0
COIII	34.0	14.1	11.8	40.2	74.2	25.9	-0.08	-0.09	782	4.7
CYTB	35.7	12.5	10.6	41.2	76.9	23.1	-0.07	-0.08	1138	6.9
ATP6	37.3	13.2	9.6	40.0	77.3	22.8	-0.03	-0.16	669	4.0
ATP8	44.8	10.4	2.6	42.2	87.0	13.0	0.03	-0.60	156	0.9
ND1	49.3	11.9	8.0	30.8	80.1	19.9	0.23	-0.20	951	5.7
ND2	39.1	11.7	6.8	42.4	81.5	18.5	-0.04	-0.26	1012	6.1
ND3	37.5	11.1	8.2	43.2	80.7	19.3	-0.07	-0.15	352	2.1
ND4	51.3	12.1	7.6	29.1	80.4	19.7	0.28	-0.23	1318	8.0
ND4L	53.9	10.3	4.3	31.6	85.5	14.6	0.26	-0.41	282	1.7
ND5	49.4	11.5	7.8	31.3	80.7	19.3	0.22	-0.19	1699	10.3
ND6	40.4	8.0	5.2	46.3	86.7	13.2	-0.07	-0.21	497	3.0

16s rRNA	44.6	11.6	5.6	38.4	83.0	17.2	0.07	-0.35	1278	7.7
12s rRNA	43.2	11.5	6.0	39.3	82.5	17.5	0.05	-0.31	738	4.5
Total PCGs	41.7	12.4	9.1	36.8	78.5	21.5	0.06	-0.15	11078	67.0
Total tRNAs	41.8	11.0	8.2	39.0	80.8	19.2	0.03	-0.15	1382	8.4
Total rRNAs	44.1	11.4	5.6	38.7	82.8	17.0	0.07	-0.34	2016	12.2
AT-rich region	46.1	8.2	6.1	39.6	85.7	14.3	0.08	-0.15	2009	12.1
Complete mtDNA	42.4	11.7	8.3	37.5	79.9	20.0	0.06	-0.17	16542	100.0

	Argopistes sexvitattus (black morphotype)										
Gene/region	A\%	C\%	G\%	T\%	A+T\%	G+C\%	AT- skew	GC- skew	Size (bp)	(size)	
COI	32.7	14.4	14.0	38.9	71.6	28.4	-0.09	-0.01	1534	9.3	
COII	37.9	14.8	9.7	37.5	75.4	24.5	0.01	-0.21	688	4.2	
COIII	33.9	14.1	11.8	40.3	74.2	25.9	-0.09	-0.09	782	4.7	
CYTB	35.6	12.7	10.6	41.0	76.6	23.3	-0.07	-0.09	1138	6.9	
ATP6	37.4	13.0	9.6	40.1	77.5	22.6	-0.03	-0.15	669	4.0	
ATP8	45.0	9.7	2.6	42.4	87.4	12.3	0.03	-0.58	156	0.9	
ND1	49.3	11.9	8.0	30.8	80.1	19.9	0.23	-0.20	951	5.7	
ND2	38.9	11.7	7.0	42.4	81.3	18.7	-0.04	-0.25	1012	6.1	
ND3	37.5	11.1	8.2	43.2	80.7	19.3	-0.07	-0.15	352	2.1	
ND4	51.3	12.1	7.6	29.1	80.4	19.7	0.28	-0.23	1318	8.0	
ND4L	53.9	10.3	4.3	31.6	85.5	14.6	0.26	-0.41	282	1.7	
ND5	49.6	11.5	7.7	31.3	80.9	19.2	0.23	-0.20	1699	10.3	
ND6	40.4	8.0	5.2	46.3	86.7	13.2	-0.07	-0.21	498	3.0	
16s rRNA	44.6	11.3	5.6	38.4	83.0	16.9	0.07	-0.34	1279	7.7	
12s rRNA	43.2	11.5	6.0	39.3	82.5	17.5	0.05	-0.31	738	4.5	
Total PCGs	41.7	12.4	9.1	36.8	78.5	21.5	0.06	-0.15	11079	66.9	
Total tRNAs	41.8	10.9	8.1	39.2	81.0	19.0	0.03	-0.15	1452	8.8	
Total rRNAs	44.1	11.4	5.8	38.7	82.8	17.2	0.07	-0.33	2017	12.2	
AT-rich region	45.8	7.5	5.6	41.1	86.9	13.1	0.05	-0.15	2032	12.3	
Complete	42.4	11.6	8.2	37.7	80.1	19.8	0.06	-0.17	16566	100.0	
mtDNA											

Table 4.3 Codon usage in the complete mitochondrial genomes of the olive flea beetles Argopistes capensis and Argopistes sexvitattus. Amino acids are labeled according to the IUPAC-IUB single-letter codes. N - the total number of occurrences in all protein-coding genes, RSCU - relative synonymous codon usage.

Argopistes capensis							
Amino acid	Codon	N	RSCU	Amino acid	Codon	N	RSCU
F	UUU	352	1.56	Y	UAU	252	1.54
	UUC	99	0.44		UAC	75	0.46
L	UUA	304	2.95	H	CAU	80	1.58
	UUG	64	0.62		CAC	21	0.42
	CUU	101	0.98	Q	CAA	87	1.47
	CUC	25	0.24		CAG	31	0.53
	CUA	88	0.85	N	AAU	428	1.62
	CUG	36	0.35		AAC	99	0.38
1	AUU	380	1.65	K	AAA	501	1.76
	AUC	80	0.35		AAG	69	0.24
M	AUA	302	1.72	D	GAU	64	1.51
	AUG	50	0.28		GAC	21	0.49
V	GUU	36	1.48	E	GAA	109	1.63
	GUC	13	0.54		GAG	25	0.37
	GUA	36	1.48	C	UGU	26	0.95
	GUG	12	0.49		UGC	29	1.05
S	UCU	72	1.66	W	UGA	62	1.48
	UCC	32	0.74		UGG	22	0.52
	UCA	82	1.89	R	CGU	7	0.93
	UCG	14	0.32		CGC	3	0.4
P	CCU	51	1.51		CGA	19	2.53
	CCC	36	1.07		CGG	1	0.13
	CCA	41	1.21	S	AGU	34	0.78
	CCG	7	0.21		AGC	24	0.55
T	ACU	70	1.48		AGA	53	1.22
	ACC	44	0.93		AGG	37	0.85
	ACA	64	1.35	G	GGU	23	1.35
	ACG	11	0.23		GGC	9	0.53
A	GCU	27	1.48		GGA	26	1.53
	GCC	16	0.88		GGG	10	0.59
	GCA	28	1.53				
	GCG	2	0.11				

Argopistes sexvitattus (striped morphotype)							
Amino acid	Codon	N	RSCU	Amino acid	Codon	N	RSCU
F	UUU	331	1.57	Y	UAU	269	1.58
	UUC	91	0.43		UAC	72	0.42
L	UUA	327	3.3	H	CAU	76	1.6
	UUG	57	0.58		CAC	19	0.4
	CUU	79	0.8	Q	CAA	105	1.72
	CUC	31	0.31		CAG	17	0.28
	CUA	75	0.76	N	AAU	403	1.67
	CUG	25	0.25		AAC	81	0.33
1	AUU	415	1.62	K	AAA	431	1.75
	AUC	96	0.38		AAG	62	0.25
M	AUA	329	1.77	D	GAU	63	1.54
	AUG	43	0.23		GAC	19	0.46
V	GUU	42	1.49	E	GAA	67	1.79
	GUC	9	0.32		GAG	8	0.21
	GUA	54	1.91	C	UGU	23	1.1
	GUG	8	0.28		UGC	19	0.9
S	UCU	74	1.33	W	UGA	77	1.5
	UCC	38	0.68		UGG	26	0.5
	UCA	100	1.8	R	CGU	6	0.83
	UCG	14	0.25		CGC	0	0
P	CCU	42	1.3		CGA	20	2.76
	CCC	33	1.02		CGG	3	0.41
	CCA	49	1.52	S	AGU	35	0.63
	CCG	5	0.16		AGC	53	0.95
T	ACU	76	1.34		AGA	102	1.84
	ACC	39	0.69		AGG	28	0.5
	ACA	93	1.64	G	GGU	25	1.04
	ACG	19	0.33		GGC	5	0.21
A	GCU	40	1.82		GGA	57	2.38
	GCC	17	0.77		GGG	9	0.38
	GCA	30	1.36				
	GCG	1	0.05				

Argopistes sexvitattus (black morphotype)							
Amino acid	Codon	N	RSCU	Amino acid	Codon	N	RSCU
F	UUU	344	1.55	Y	UAU	301	1.64
	UUC	100	0.45		UAC	67	0.36
L	UUA	363	3.47	H	CAU	80	1.65
	UUG	48	0.46		CAC	17	0.35
	CUU	86	0.82	Q	CAA	84	1.57
	CUC	22	0.21		CAG	23	0.43
	CUA	93	0.89	N	AAU	396	1.54
	CUG	15	0.14		AAC	119	0.46
1	AUU	398	1.62	K	AAA	453	1.63
	AUC	92	0.38		AAG	104	0.37
M	AUA	321	1.72	D	GAU	50	1.43
	AUG	53	0.28		GAC	20	0.57
V	GUU	31	1.57	E	GAA	84	1.62
	GUC	9	0.46		GAG	20	0.38
	GUA	34	1.72	C	UGU	33	0.97
	GUG	5	0.25		UGC	35	1.03
S	UCU	73	1.35	W	UGA	71	1.22
	UCC	49	0.91		UGG	45	0.78
	UCA	99	1.83	R	CGU	10	0.89
	UCG	14	0.26		CGC	5	0.44
P	CCU	30	1.05		CGA	24	2.13
	CCC	29	1.02		CGG	6	0.53
	CCA	50	1.75	S	AGU	45	0.83
	CCG	5	0.18		AGC	44	0.81
T	ACU	74	1.44		AGA	63	1.17
	ACC	40	0.78		AGG	45	0.83
	ACA	80	1.55	G	GGU	17	1.05
	ACG	12	0.23		GGC	8	0.49
A	GCU	25	1.47		GGA	36	2.22
	GCC	14	0.82		GGG	4	0.25
	GCA	26	1.53				
	GCG	3	0.18				

Ka, Ks and $\mathrm{Ka} / \mathrm{Ks}$ ratio in mitochondrial genes of the tribe Alticini

Figure 4.7 Evolutionary rates of 13 protein-coding genes in the mitogenomes of 62 Alticini species. The rate of nonsynonymous substitutions (Ka), the rate of synonymous substitutions (Ks), and the ratio of the rate of nonsynonymous substitutions to synonymous substitutions (Ka/Ks) were estimated for each protein-coding gene.

4.4.9 Phylogenetic position of A. capensis and A. sexvitattus within Alticini

The phylogenetic position of A. capensis and A. sexvitattus morphotypes within the tribe Alticini was recovered using the novel mitogenome sequences and all available mitogenomes available on GenBank as of April 2021 (Table S10). Three datasets were used in the phylogenetic reconstruction: PCG123 (all codon positions) with each codon position partitioned, PCG12 (except $3^{\text {rd }}$ position), and PCGAA (amino acid). The phylogenetic trees recovered different topologies (Figure 4.8). The PCGAA tree had higher statistical support for the majority of nodes (BPP =1) and the positions of all the species were completely resolved. The positions of all the species in PCG123 were also completely resolved. However, this was not the case for the PCG12 tree as the position of Mantura chrysanthemi (Koch 1803), and the position of the sister species Neocrepidodera brevicollis (Daniel 1904) and Orestia punctipennis (Lucas 1849) were unresolved. Agasicles hygrophila occupied the basal position in PCG123, but not in PCG12 and PCGAA, the species formed a clade with the genus Altica and Macrohaltica subplicata. In all the trees, Argopistes clade was sister to the Apteropeda Chevrolat 1836 clade. The position of Batophila aerata (Marsham 1802) differed in the three trees with low statistical support in PCG123 and PCG12. Batophila aerata was recovered closely related to genera Argopistes and Apteropeda in PCG123. In contrast, B. aerata was recovered closely related to a clade formed between Altica and M. subplicata in PCG12. In PCGAA, B. aerata formed a clade
with the genus Phyllotreta with high statistical support (BPP = 1). Neocrepidodera brevicollis formed a clade with Orestia punctipennis in all three trees with high statistical support. The position of Mantura chrysanthemi differed in all phylogenetic analyses. Mantura chrysanthemi formed a clade with the genus Psylliodes in PCG123 whereas in PCG12 the position of M. chrysanthemi is unresolved. In PCGAA, M. chrysanthemi formed a clade with N. brevicollis and O. punctipennis with high statistical support. All genera represented by multiple species formed monophyletic clades with high statistical support in all phylogenetic analyses. Longitarsus (Latreille 1829) and Aphthona (Chevrolat 1836) were recovered as sister genera in agreement with previous phylogenies (Nie et al., 2018). The arrangements of Longitarsus species were identical in PCG 123 and PCG12 but differed in PCGAA. The genus Altica (Geoffroy 1762) and M. subplicata were also recovered as sister taxa, as in previous reconstructions (Nie et al., 2018). Chaetocnema (Stephens 1831) and Phyllotreta (Chevrolat 1836) were recovered as sister genera in disagreement with previous phylogenies. Previously, Chaetocnema was recovered as closely related to Psylliodes (Latreille 1829) and Crepidodera (Chevrolat 1836) (Nie et al., 2018). The two olive flea beetles were placed in the same phylogenetic clade with A. tsekooni with high statistical support (BPP = 1) in all the trees. This result show adaptation of olive flea beetles, Argopistes spp. feeding on Oleaceae. As shown here, mitogenome data is useful for inferring phylogenetic patterns and relationships among individual organisms, provided that the morphology is congruent with the genetic data. Mitogenome data are very informative for the phylogenetic placement of individual organisms at tribe level.

4.4.10 Variation in mitochondrial genomes of A. sexvitattus morphotypes

A. sexvitattus (striped) and A. sexvitattus (black) had similar mitochondrial genome sequences with 96.7% identical sites. A total of 19 nucleotide substitutions were identified in the 13 PCGs in the alignment of A. sexvitattus (striped) and A. sexvitattus (black) mitochondrial genome sequences. ATP6, COX1, COX2, and COX3 had only a single nucleotide substitution, followed by ATP8, ND2, and ND5 with two nucleotide substitutions, ND4 with four nucleotide substitutions, and CYTB with five nucleotide substitutions. No nucleotide substitutions were identified in the genes ND1, ND3, ND4L, and ND6. These types of nucleotide substitutions are referred to as single nucleotide polymorphisms (SNP), which is usually a variation at a single position in DNA among individuals (Khlestkina and Salina, 2005). A gene is described as having more than one allele if SNPs occur within it. Some SNPs may lead to variations in the amino acid sequence; however, this is not the case in

Figure 4.8. Phylogenetic relationships among 62 flea beetle species (Chrysomelidae: Alticini) based on 13 mitochondrial protein-coding genes using Bayesian Inference. (A) PCG123 - all codon positions; (B) PCG12 - only $1^{\text {st }}$ and $2^{\text {nd }}$ codon positions and (C) PCGAA- amino acid. Chrysomela vigintipunctata and Entomoscelis adonidis (Chrysomelidae: Chrysomelini) were used as outgroups. Nodal statistical support is given as Bayesian posterior probability.
these two A. sexvitattus specimens. CYTB had the most nucleotide substitutions. In previous studies, CYTB has been proven to be more variable when sequences belonging to the same species are considered (Ndong et al., 2015). In this study, the COI was used as a DNA barcode marker for A. sexvitattus, but there were no significant variations in the sequences of the different morphotypes barcoded. Therefore, CYTB should be considered a DNA marker for A. sexvitattus morphotypes and other species that have more than one morphotype.

4.4.11 Intraspecific divergence of A. capensis and A. sexvitattus

DNA-based species identification was consistent with morphological identification, and different morphotypes of A. sexvitattus were not associated with specific COI haplotypes (Table S4.2, Figure 4.9). The intraspecific genetic divergence of A. sexvitattus based on DNA barcodes for 31 individuals (intraspecific max p-distances $=0.40 \%$) was similar to the majority of Alticini species (67%), which had maximum intraspecific p -distances below 3%. As only one specimen of A. capensis was sequenced it was not possible to gain insights into the intraspecific genetic divergence for this species. Therefore, only the intraspecific genetic divergence of A. sexvitattus was assessed in the context of 115 other species of Alticini.

Figure 4.9 Median-joining network of COI haplotypes of the two morphotypes of A. sexvitattus.

4.4.12 Alticini species have a high incidence of non-monophyly

Intraspecific maximum p-distances in Alticini ranged from 0.00% to 25.28%, and were lowest for Andersonaltica villabarrancoli, Longitarsus dorsalis, Longitarsus symphyti, Phyllotreta albionica, and Psylliodes crambicola (0.00\%), and highest for Altica cirsicola (25.28\%) (TABLE S4.3, Figure 4.10). Genetic clustering showed that 99 species (85.34%) formed monophyletic clades with high statistical support, but 17 species (14.66\%) were nonmonophyletic (Figure S4.1). A significant amount of the monophyletic species (24 out of the 99) had high maximum intraspecific p-distances ($3.09 \%-25.28 \%$).

There are several reasons for species appearing non-monophyletic in phylogenetic analyses which include incomplete lineage sorting, introgression, and hybridization; likely to occur in recently diverged species than older lineages. Other reasons include misidentifications, clerical errors, presence of NUMTs, contamination, and methodological issues in phylogenetic inference and taxonomic inconsistencies that result from over-splitting of species, lumping of species that are usually cryptic (Mutanen et al., 2016). Overall, these results showed the incidence of non-monophyly due to potential misidentifications, cryptic diversity, and instances of possible taxonomic over-splitting.

Possible cases of cryptic diversity

Twenty-four species (Aphthona cyparissiae, Aphthona lutescens, Aphthona nonstriata, Batophila rubi, Chaetocnema concinna, Derocrepis rufipes, Hermaeophaga mercurialis, Longitarsus lycopi, Longitarsus melanocephalus, Longitarsus obliterates, Longitarsus parvulus, Longitarsus pellucidus, Longitarsus suturellus, Longitarsus tabidus, Mandarella flaviventris, Mandarella tsoui, Mandarella uenoi, Neocrepidodera femorata, Neocrepidodera ferruginea, Neocrepidodera transversa, Phyllotreta nigripes, Phyllotreta striolata, Podagrica fuscicornis and Psylliodes cucullatus) were monophyletic but had high intraspecific maximum p-distances, including well supported multiple lineages, suggesting that these could represent cryptic diversity (Figure S4.2).In the case of Manderella spp., the multiple lineages are very common and may indicate local adaption or an even more complicated evolutionary process (Lee et al., 2011). Phyllotreta nigripes recovered two clades which have been observed previously (Şahin et al. 2019).

Possible cases of misidentification or over-splitting

Altica cirsicola, Altica engstroemi, Chaetocnema aridula, Chaetocnema pluta, Longitarsus erro, and Phyllotreta astrachanica were polyphyletic with high max p-distances as a result of one or more sequences that were highly diverged (Figure S4.3). The polyphyly of L. erro is
common and has been observed in a previous study (Salvi et al., 2020). This may be likely to misidentification or contamination. A highly diverged sequence belonging to P. astrachanica grouped with P. atra (intraspecific max p-distance $=1.01 \%$) indicating that the sequence was misidentified (Figure S4.3 G).

Figure 4.10 Maximum likelihood trees of flea beetle species (Hemiptera: Tingidae) based on 501-bp alignments of standard COI barcoding sequences that showed polyphyly possible due to misidentification.

Altica aenescens (intraspecific max p-distance $=2.45 \%$) and Altica chamaenerii (intraspecific max p-distance 2.04\%) had maximum p-distances lower than 3%; however, A. chamaenerii was paraphyletic. The maximum intraspecific p-distance of both species was 2.46% and indicated that these are a single species, which may be a result of taxonomic over-splitting or recent speciation (Figure 4.11 A).Altica chamaenerii also formed group with Altica engstroemi (intraspecific max p-distance $=3.31 \%$) (Figure 4.11 B). These suggest that they may be difficulty in distinguishing morphologically between A. chamaenerii, A. chamaenerii, and A. engstroemi.

Altica cirsicola, A. fragariae, and A. viridicynanea appeared paraphyletic and had high maximum intraspecific p-distances of $25.28 \%, 4.59 \%$, and 3.51%, respectively; indicating heterospecificity of the sequences, which may be due to misidentification or contamination, NUMTs, and hybridization. Altica fragariae, A. cirsicola, and A. viridicynanea formed a group of highly similar sequences (intraspecific max p-distance 1.41%), which indicated that
the group may be conspecific (Figure 4.11 C). Altica fragariae and A. viridicynanea also formed a group of similar sequences (intraspecific max p-distance 1.42\%) indicating that the group may also be conspecific. Altica cirsicola, Altica fragariae, and Altica viridicynanea are highly similar morphologically and require additional characters to differentiate them (Yu et al., 1996)(Nie et al., 2019; Yu et al., 1996).

Crepidodera aurata (intraspecific max p-distance $=17.94 \%$), Crepidodera aurea (intraspecific max p-distance $=18.77 \%$), and Crepidodera fulvicornis (intraspecific max pdistance $=18.71 \%$) were also paraphyletic and had high maximum intraspecific p-distances likely due to misidentification. Crepidodera aurea and a single sequence C. aurata also formed a group of similar sequences (intraspecific p-max 0.81\%) (Figure 4.11 D). Crepidodera aurata and a single sequence of C. fulvicornis formed a group of highly similar sequences (intraspecific max p-distance 0.81%), which indicates that the group may be conspecific (Figure 4.11 E). Crepidodera aurea formed another group with C. fulvicornis (intraspecific p-max 1.42%) (Figure 4.11 F). Crepidodera aurata, C. aurea, and C. fulvicornis may be morphologically similar, and therefore difficult to distinguish by non-expert expert taxonomists.

Phyllotreta albionica (intraspecific max p-distance $=0.00 \%$) and Phyllotreta cruciferae (intraspecific max p-distance 0.20%) formed a group of similar sequences. The intraspecific $\max p$-distance between both species (0.20%) suggests that the sequences represented conspecific individuals, which may be a result of taxonomic over-splitting or recent speciation (Figure 4.11 G). The grouping of sequences belonging to these species was also observed in a previous study (Şahin et al., 2019). Despite molecular data suggesting that these may be a single species, morphologically P. cruciferae and P. albionica are similar with the only significant difference being the colour of the lustre which is blue in P. cruciferae, and bronze in P. albionica (Capinera, 2001). Phyllotreta cruciferae and P. albionica may require taxonomic revision and additional morphological characters apart from colour to confirm or dispute that these species may be overspilt.

Longitarsus atricillus had a high maximum p-distance (4.61\%) when including a single sequence that grouped with the Longitarsus aeneicollis cluster in the ML tree (FIGURE S1). The maximum intraspecific p-distance of the L. aeneicollis cluster, including the outlying L. atricillus sequence, was 0.82%, which is significantly lower than the threshold suggesting
that the sequences are conspecific and the single sequence of L. atricillus may be misidentified (Figure 4.11 H).

Longitarsus luridus (intraspecific max p-distance $=2.88 \%$) and Longitarsus testaceus (intraspecific max p-distance 0.60\%) had low maximum p-distances; however, L. Iuridus (was paraphyletic. The maximum intraspecific p-distance of both species was 3.07% and indicated that these are a single species, which may be due to taxonomic over-splitting or recent speciation(Figure 4.11 I).

Longitarsus pratensis had a high intraspecific max p-distance intraspecific max p-distance (6.31\%) when including a single highly diverged sequence. The identity of this sequence remains unknown, based on the results of a search on BOLD Systems. Longitarsus scutellaris (intraspecific max p-distance 0.00%) and L. pratensis (intraspecific max pdistance 2.87%) excluding the misidentified L. pratensis sequence formed a group of similar sequences. The intraspecific max p-distance between both species was determined (3.08\%) and indicated that the sequences represented conspecific individuals, suggesting that this is a case of taxonomic over-splitting (Figure 4.11 J). The species were morphologically similar making it different to distinguish from one another and are genetically undifferentiated as observed as well in a previous study (Salvi et al., 2020). The taxonomic revision of these species is necessary.

Despite the low maximum intraspecific p-distance, Psylliodes isatidis (2.88\%) appeared to be paraphyletic, as a single sequence P. isatidis grouped with the P. crambicola cluster. The interspecific distance between both species (2.88\%) was below 3%, which indicates that they belong to the same species (Figure 4.11 K).

K

$-\overline{0}$

Figure 4.11 Maximum likelihood trees of flea beetle species (Hemiptera: Tingidae) based on 501-bp alignments of standard COI barcoding sequences that showed paraphyly possible due to misidentification.

Maximum intraspecific COI p-distances (\%) of species in the tribe Alticini

Figure 4.12 Maximum intraspecific p-distances (\%; K2P) in 116 species of flea beetles (Chrysomelidae: Alticini) based on a 500 bp sequence alignment of the standard COI barcoding region.

4.4.12 Interspecific divergence in Alticini

Interspecific maximum p-distances between all species pairs ranged from 0.01% to 31.77% and were lowest for the congeneric pair Phyllotreta albionica and Phyllotreta cruciferae, and highest between the pair Altica palustris and Phyllotreta nodicornis (Table S13). The interspecific maximum p-distances among congeneric species pairs (Altica, Aphthona, Argopistes, Chaetocnema, Crepidodera, Epitrix, Longitarsus, Mandarella, Neocrepidodera, Phyllotreta, Podagrica, and Psylliodes) ranged from 0.01% to 31.77%, and among all noncongeneric species pairs the range was from 16.40% to 24.99%. The ranges of genetic divergences between congeneric and non-congeneric species overlap, and maximum pdistances are not reliable for inferring congeners in the tribe Alticini. The level of incongruence between genetic clustering and species names, and between maximum intraspecific and average interspecific p-distances indicates a high level of taxonomic inconsistencies and misidentifications for 14.66% of the Alticini species available on GenBank. In many instances, the inconsistency is caused when morphological characters of species do not clearly distinguish one species from another and when morphological characters are interpreted incorrectly. DNA barcoding is a useful tool that should be used to complement taxonomy; therefore, we propose that voucher specimens for Alticini should be revisited after thorough morphological analysis.

4.5 CONCLUSION

The genus Argopistes has been poorly studied in South Africa and worldwide. Previously, Argopistes species have been reported to feed on wild and cultivated olives in Western Cape province. In this study, we confirmed the identity of two olive flea beetles (A. capensis and A. sexvitattus) associated with wild and cultivated olive orchards, with A. sexvitattus being the dominant species. Three complete mitochondrial genome of A. capensis and A. sexvitattus morphotypes and COI barcodes for A. sexvitattus. The two olive flea beetles formed a close phylogenetic relationship among the tribe Alticini congruent to belonging to the same genus and their utilization of the same host O. europaea. The incidence of cases of non-monophyly and genetic divergences incompatible with taxonomic identifications suggests that the COI sequences of Alticini currently available on BOLD systems are likely to include misidentifications and cryptic diversity. Therefore, we recommend appropriate coupling of DNA-based methods and alpha taxonomy for recording and cataloguing Alticini species.

Chapter 5: Conclusion

The olive industry in South Africa faces agricultural pests such as olive lace bugs and olive flea beetles and very little is known about these native pests. Apart from the native olive lace bug, F. olivinia from Australia, olive lace bugs, and olive flea beetle are known not to occur in other olive-producing regions. Currently, growers make use of pesticides to control olive lace bugs and olive flea beetles which can over time cause major problems like adverse effects on humans, environmental contamination, and pesticide resistance in target and non-target organisms.

The identification of the pests is very crucial in developing control measures that aid in targeting only the pests and avoiding injury to beneficial organisms. The purpose of this research was to comprehensively catalogue olive lace bug and olive flea beetle species associated with wild and cultivated olives in Western Cape province of South Africa, to determine their phylogenetic position within their respective family/tribe and gain insight into their phylogenetic relationships, and to determine their distribution in olive orchards in the Western Cape province of South Africa.

The survey of wild and cultivated olives in the Western Cape province of South Africa confirmed a higher species diversity of olive lace bugs than previously reported and confirmed the presence of two olive flea beetles (A. capensis and A. sexvitattus) that were previously reported in the region. Before this study, only two olive lace bugs (P. australis and N. paliatseasi) were previously reported in the Western Cape. The Eastern Cape was surveyed for olive flea beetles; however, no genetic data was generated. This study confirms the accuracy of DNA-based methods as a tool for species identification and has contributed the first DNA barcodes and mitochondrial genomes for several species including olive lace bugs (C. lineata, Neoplerochila sp., P. australis) and olive flea beetles (A. capensis and A. sexvitattus). In addition, the phylogenetic position of the olive lace bugs and olive flea beetles within their respective family/tribe was determined. The four olive lace bugs and two olive flea beetles clustered together in their respective phylogenetic trees, indicating that the species may have evolutionary adaptation to their host.

This work presented by this dissertation provides a baseline for future studies. The assessment of species diversity is very important as the correct identification of pests is a necessary step, which will lead to published information such as the insect's history, behaviour, and ecology, all important in the development of suitable control procedures.

Supplementary data

Phyllotreta crucferae 5
Phyliotreta crucferae 14
Phyliotreta crucrearae 8
Phyliotreta albionica 32
Phyliotreta crucrerae 10 Phyllotreta albionica 10 Phyllotreta crucrerae 10 Phyllotreta albionica 11 Phyllotreta albionica 20 Phyllotreta cruclerae 11 Phyliotreta albionica 10 Phyllotreta albionica 45 Phyliotreta albionica 40 Phyllotreta albionica 39 Phyilotreta alionicas Phyiliotreta albionica 8 Phyliotreta albionica 01 Phyliotreta albionica 48 Phyllotreta crucrerae 13 Phyliotreta albionica 14 Phyllotreta albionica 50 Phyllotreta albionica 43 Phyllotreta albionica 57 Phyllotreta crucirerae 17 Phyliotreta albionica 00 Phyliotreta albionica 41 Phyliotreta albionica 15 Phyliotreta crucrerae 20 Phyllotreta crucrerae 7 Phyllotreta albionica 27 Phyliotreta albionica 25 Phyliotreta albionica 12 Phyliotreta albionica 38 Phyllotreta albionica 54 Phyllotreta alionica 40 Phyllotreta crucrerae o Phyllotreta albionica 28 Phyliotreta albionica 17 Phyliotreta albionica 53 Phyliotreta albionica 04 Phyllotreta crucrerae 2 Phyliotreta albionica 22 Phyliotreta albionica 18 Phyliotreta albionica 70 Phyllotreta albionica 71 Phyliotreta albionica 50 Phyliotreta albionica 07 Phyliotreta albionica 02 Phyliotreta Crucrerae 18 Phyllotreta albionica 20 Phyliotreta albionica 58 Phyliotreta crucrerae 15 Phyliotreta crucrerae 3

Anca tombacina (n = 180)
Antica cirsicola 20
Antica viridicyanea 13
Aitica vilidicyanea 8
Antica vridicyanea 2
Antca fragariae 11

Figure S4. 1 Maximum likelihood tree of flea beetle species (Hemiptera: Tingidae) based on a 501-bp alignment of standard COI barcoding sequences. The analyses included 349 sequences representing 117 species in 22 genera retrieved from GenBank and the new sequences of the olive flea beetles Argopistes capensis and Argopistes sexvitattus generated in this study (underlined). Triangles represent collapsed groups of sequences belonging to the same species. * Outgroup (Chrysomelidae: Chrysomelini).

Outgroup

\square
$\overline{0.04}$

- Outgroup

L	Longitarsus pellucidus 5 Longitorsus pellucidus 9 Longitarsus pellucidus 14 Longitarsus pellucidus 8 Longitarsus pellucidus 20 Longitarsus pellucidus 19 Longitarsus pellucidus 15 Longitorsus pellucidus 11 Longitorsus pellucidus 21 Longitarsus pellucidus 10 Longitarsus pellucidus 12
0.03	Outgroup

Figure S4. 2 Maximum likelihood trees of flea beetle species (Hemiptera: Tingidae) based on 501-bp alignments of standard COI barcoding sequences that showed multiple lineages possible due to cryptic diversity.

Table S4. 1 List of adult specimens representative of olive flea beetles Argopistes capensis and Argopistes sexvitattus (Coleoptera:
Chrysomelidae) used for imaging, DNA barcoding, and sequencing of complete mitochondrial genomes. Cultivated host: Olea europaea subsp. europaea; Wild host: Olea europaea subsp. cuspidata

Collection date	Collection site	Olive Farm / Wild tree on farm vicinity / Ornamental tree	Region	GPS	Host	Use in this study	GenBank accession
10-Nov-15	Foxenburg Estate	Olive Farm	Wellington	33³4'21.0"S 19º $03{ }^{\prime} 39.0$ "E	Cultivated	Complete mitogenome/lmage	Upon acceptance
10-Nov-15	Foxenburg Estate	Wild tree on farm vicinity	Wellington	33³4'21.0"S 19º'03'39.0"E	Wild	Image	n.a.
06-Feb-20	Alexanderhof	Ornamental tree	Stellenbosch	3356'13.2"S 1851'13.2"E	Cultivated	Complete mitogenome	Upon acceptance
06-Feb-20	Alexanderhof	Ornamental tree	Stellenbosch	3356'13.2"S 1851'13.2"E	Cultivated	Complete mitogenome	Upon acceptance
30-Dec-15	Alexanderhof	Ornamental tree	Stellenbosch	3356'13.2"S 1851'13.2"E	Cultivated	DNA barcode	Upon acceptance
13-Jan-16	$\begin{aligned} & \text { IT (SU } \\ & \text { Campus) } \end{aligned}$	Ornamental tree	Stellenbosch	3355'34.0"S 1851'53.0"E	Wild	DNA barcode	Upon acceptance
08-Nov-15	Foxenburg Estate	Wild tree on farm vicinity	Wellington	33³4'21.0"S 19º3'39.0"E	Wild	DNA barcode	Upon acceptance
30-Dec-15	Foxenburg Estate	Olive Farm	Wellington	33³4'21.0'S 19º $03{ }^{\prime} 39.0{ }^{\prime \prime} \mathrm{E}$	Cultivated	DNA barcode	Upon acceptance
30-Dec-15	Alexanderhof	Ornamental tree	Stellenbosch	3356'13.2"S 1851'13.2"E	Cultivated	DNA barcode	Upon acceptance
10-Nov-15	Foxenburg Estate	Olive Farm	Wellington	33³4'21.0"S 19º $03 ' 39.0$ "	Cultivated	DNA barcode	Upon acceptance
10-Nov-15	Foxenburg Estate	Olive Farm	Wellington	33³4'21.0"S 19º $03 ' 39.0$ "	Cultivated	DNA barcode	Upon acceptance
16-Jan-16	Alexanderhof	Ornamental tree	Stellenbosch	3356'13.2"S 1851'13.2"E	Cultivated	DNA barcode	Upon acceptance
13-Jan-16	$\begin{aligned} & \text { IT (SU } \\ & \text { Campus) } \end{aligned}$	Ornamental tree	Stellenbosch	3355'34.0"S 1851'53.0"E	Wild	DNA barcode	Upon acceptance

10-Nov-15	$\begin{aligned} & \text { IT (SU } \\ & \text { Campus) } \end{aligned}$	Ornamental tree	Stellenbosch	3355'34.0"S 1851'53.0"E	Wild	DNA barcode	Upon acceptance
17-Jan-16	Foxenburg Estate	Olive Farm	Wellington	33³4'21.0"S 19º03'39.0"E	Cultivated	DNA barcode	Upon acceptance
17-Jan-16	$\begin{aligned} & \text { IT (SU } \\ & \text { Campus) } \end{aligned}$	Ornamental tree	Stellenbosch	3355'34.0"S 1851'53.0"E	Wild	DNA barcode	Upon acceptance
23-Jan-16	$\begin{aligned} & \text { IT (SU } \\ & \text { Campus) } \end{aligned}$	Ornamental tree	Stellenbosch	3355'34.0"S 1851'53.0"E	Wild	DNA barcode	Upon acceptance
24-Jan-16	Alexanderhof	Ornamental tree	Stellenbosch	3356'13.2"S 1851'13.2"E	Cultivated	DNA barcode	Upon acceptance
24-Jan-16	Alexanderhof	Ornamental tree	Stellenbosch	3356'13.2"S 1851'13.2"E	Cultivated	DNA barcode	Upon acceptance
24-Jan-16	Alexanderhof	Ornamental tree	Stellenbosch	3356'13.2"S 1851'13.2"E	Cultivated	DNA barcode	Upon acceptance
24-Jan-16	Alexanderhof	Ornamental tree	Stellenbosch	3356'13.2"S 1851'13.2"E	Cultivated	DNA barcode	Upon acceptance
24-Jan-16	Alexanderhof	Ornamental tree	Stellenbosch	3356'13.2"S 1851'13.2"E	Cultivated	DNA barcode	Upon acceptance
24-Jan-16	Alexanderhof	Ornamental tree	Stellenbosch	3356'13.2"S 1851'13.2"E	Cultivated	DNA barcode	Upon acceptance
28-Jan-16	Alexanderhof	Ornamental tree	Stellenbosch	3356'13.2"S 1851'13.2"E	Cultivated	DNA barcode	Upon acceptance
28-Jan-16	Alexanderhof	Ornamental tree	Stellenbosch	3356'13.2"S 1851'13.2"E	Cultivated	DNA barcode	Upon acceptance
28-Jan-16	Alexanderhof	Ornamental tree	Stellenbosch	3356'13.2"S 1851'13.2"E	Cultivated	DNA barcode	Upon acceptance
13-Jan-16	$\begin{aligned} & \text { IT (SU } \\ & \text { Campus) } \end{aligned}$	Ornamental tree	Stellenbosch	3355'34.0"S 1851'53.0"E	Wild	DNA barcode	Upon acceptance
13-Jan-16	$\begin{aligned} & \text { IT (SU } \\ & \text { Campus) } \end{aligned}$	Ornamental tree	Stellenbosch	3355'34.0"S 1851'53.0"E	Wild	DNA barcode	Upon acceptance
13-Jan-16	$\begin{aligned} & \text { IT (SU } \\ & \text { Campus) } \end{aligned}$	Ornamental tree	Stellenbosch	3355'34.0"S 1851'53.0"E	Wild	DNA barcode	Upon acceptance
10-Nov-15	Foxenburg Estate	Olive Farm	Wellington	33³4'21.0"S 19º $03 ' 39.0$ "E	Cultivated	DNA barcode	Upon acceptance

04-Nov-15	Foxenburg Estate	Olive Farm	Wellington	33³4'21.0"S 19º03'39.0"E	Cultivated	DNA barcode	Upon acceptance
28-Jan-16	Alexanderhof	Ornamental tree	Stellenbosch	3356'13.2"S 1851'13.2"E	Cultivated	DNA barcode	Upon acceptance
10-Feb-20	ARC Nursery	Ornamental tree	Stellenbosch	3355'27.0"S 1852'25.0"E	Cultivated	DNA barcode	Upon acceptance
13-Jan-16	$\begin{aligned} & \text { IT (SU } \\ & \text { Campus) } \end{aligned}$	Ornamental tree	Stellenbosch	3355'34.0"S 1851'53.0"E	Wild	Image	n.a.
13-Jan-16	$\begin{aligned} & \text { IT (SU } \\ & \text { Campus) } \end{aligned}$	Ornamental tree	Stellenbosch	3355'34.0"S 1851'53.0"E	Wild	Image	n.a.
13-Jan-16	$\begin{aligned} & \text { IT (SU } \\ & \text { Campus) } \end{aligned}$	Ornamental tree	Stellenbosch	3355'34.0"S 1851'53.0"E	Wild	Image	n.a.
13-Jan-16	$\begin{aligned} & \text { IT (SU } \\ & \text { Campus) } \end{aligned}$	Ornamental tree	Stellenbosch	3355'34.0"S 1851'53.0"E	Wild	Image	n.a.
17-Jan-16	$\begin{aligned} & \text { IT (SU } \\ & \text { Campus) } \end{aligned}$	Ornamental tree	Stellenbosch	3355'34.0"S 1851'53.0"E	Wild	Image	n.a.
17-Jan-16	$\begin{aligned} & \text { IT (SU } \\ & \text { Campus) } \end{aligned}$	Ornamental tree	Stellenbosch	3355'34.0"S 1851'53.0"E	Wild	Image	n.a.
17-Jan-16	$\begin{aligned} & \text { IT (SU } \\ & \text { Campus) } \end{aligned}$	Ornamental tree	Stellenbosch	3355'34.0"S 1851'53.0"E	Wild	Image	n.a.
17-Jan-16	$\begin{aligned} & \text { IT (SU } \\ & \text { Campus) } \end{aligned}$	Ornamental tree	Stellenbosch	3355'34.0"S 1851'53.0"E	Wild	Image	n.a.
10-Nov-15	$\begin{aligned} & \text { Foxenburg } \\ & \text { Estate } \end{aligned}$	Olive Farm	Wellington	33³4'21.0"S 19º03'39.0"E	Cultivated	Image	n.a.
30-Dec-15	Alexanderhof	Ornamental tree	Stellenbosch	3356'13.2"S 1851'13.2"E	Cultivated	Image	n.a.
16-Jan-16	Alexanderhof	Ornamental tree	Stellenbosch	3356'13.2"S 1851'13.2"E	Cultivated	Image	n.a.
16-Jan-16	Alexanderhof	Ornamental tree	Stellenbosch	3356'13.2"S 1851'13.2"E	Cultivated	Image	n.a.

Table S4. 2 List of the 64 partial and complete mitochondrial sequences used to assess the phylogenetic position of the olive flea beetles Argopistes capensis and Argopistes sexvitattus within the tribe Alticini. Chrysomela vigintipunctata and Entomoscelis adonidis
(Chrysomelidae: Chrysomelini) were used as outgroups.

Species	Genbank	Size (bp)	Reference	Status
Agasicles hygrophila	NC_028332.1	15,917	Li et al., 2015	Complete
Altica cirsicola	NC_042876.1	15,864	Nie et al., 2019	Complete
Altica ericeti	KX943460.1	16,290	Gomez-Rodriguesz et al., 2015	Partial
Altica fragariae	NC_042875.1	16,220	Nie et al., 2019	Complete
Altica viridicyanea	NC_048472.1	16,706	Nie et al., 2019	Complete
Aphthona albertinae	KX943467.1	16,161	Gomez-Rodriguesz et al., 2015	Partial
Aphthona lutescens	KX943361.1	15,606	Gomez-Rodriguesz et al, 2015	Partial
Apteropeda orbiculata	KX943507.1	16,822	Gomez-Rodriguesz et al., 2015	Partial
Apteropeda ovulum	KX943422.1	16,794	Gomez-Rodriguesz et al.,2015	Partial
Argopistes capensis	Upon acceptance	16,543	This study	Complete
Argopistes sexvitattus striped	Upon acceptance	16,566	This study	Complete
Argopistes sexvitattus black	Upon acceptance	16,542	This study	Complete
Argopistes tsekooni	NC_045929.1	16,552	Long et al., 2020	Complete
Batophila aerata	KX943466.1	15,986	Gomez-Rodriguesz et al., 2015	Partial
Chaetocnema arida	KX943445.1	15,830	Gomez-Rodriguesz et al., 2015	Partial
Chaetocnema depressa	KX943408.1	16,210	Gomez-Rodriguesz et al., 2015	Partial
Chaetocnema hortensis	KX943358.1	15,799	Gomez-Rodriguesz et al., 2015	Partial
Chaetocnema obesa	KX943442.1	15,775	Gomez-Rodriguesz et al., 2015	Partial
Chaetocnema paganettii	KX943482.1	15,888	Gomez-Rodriguesz et al., 2015	Partial
Chaetocnema pelagica	NC_041170.1	16,331	Nie et al., 2018	Complete
Chaetocnema scheffleri	KX943431.1	15,952	Gomez-Rodriguesz et al., 2015	Partial
Chaetocnema tibialis	KX943476.1	15,758	Gomez-Rodriguesz et al., 2015	Partial
Crepidodera pluta	KX087265.1	16,339	Hunter et al., 2016	Partial
Longitarsus aeneus	KX943357.1	15,836	Gomez-Rodriguesz et al., 2015	Partial
Longitarsus atricillus	KX943363.1	14,136	Gomez-Rodriguesz et al., 2015	Partial
Longitarsus candidulus	KX943430.1	15,865	Gomez-Rodriguesz et al., 2015	Partial
Longitarsus cerinthes	KX943478.1	16,169	Gomez-Rodriguesz et al., 2015	Partial
Longitarsus curtus	KX943501.1	15,919	Gomez-Rodriguesz et al., 2015	Partial
Longitarsus exsoletus	KX943418.1	15,735	Gomez-Rodriguesz et al., 2015	Partial
Longitarsus ibericus	KX943455.1	15,984	Gomez-Rodriguesz et al., 2015	Partial
Longitarsus luridus	KX943364.1	13,787	Gomez-Rodriguesz et al., 2015	Partial
Longitarsus melanocephalus	KX943469.1	16,348	Gomez-Rodriguesz et al., 2015	Partial
Longitarsus membranaceus	KX943473.1	15,868	Gomez-Rodriguesz et al., 2015	Partial

Longitarsus niger	KX943504.1	16,212	Gomez-Rodriguesz et al., 2015	Partial
Longitarsus nigrocillus	KX943464.1	16,316	Gomez-Rodriguesz et al., 2015	Partial
Longitarsus nigrofasciatus	KX943438.1	15,846	Gomez-Rodriguesz et al., 2015	Partial
Longitarsus pratensis	KX943360.1	15,642	Gomez-Rodriguesz et al., 2015	Partial
Longitarsus rutilus	KX943491.1	15,988	Gomez-Rodriguesz et al., 2015	Partial
Longitarsus tabidus	KX943424.1	16,155	Gomez-Rodriguesz et al., 2015	Partial
Macrohaltica subplicata	NC_041169.1	15,840	Nie et al., 2019	Complete
Mantura chrysanthemi	KX943486.1	15,986	Gomez-Rodriguesz et al., 2015	Partial
Neocrepidodera brevicollis	KX943440.1	16,408	Gomez-Rodriguesz et al., 2015	Partial
Orestia punctipennis	KX943441.1	16,191	Gomez-Rodriguesz et al., 2015	Partial
Phyllotreta cruciferae	KX943506.1	15,716	Gomez-Rodriguesz et al., 2015	Partial
Phyllotreta foudrasi	KX943502.1	15,586	Gomez-Rodriguesz et al., 2015	Partial
Phyllotreta hemipoda	KX943496.1	15,640	Gomez-Rodriguesz et al., 2015	Partial
Phyllotreta parallela	KX943456.1	16,115	Gomez-Rodriguesz et al., 2015	Partial
Phyllotreta striolata	NC_045901.1	15,689	Zu and Yan, 2018	Complete
Phyllotreta tetrastigma	KX943497.1	15,775	Gomez-Rodriguesz et al., 2015	Partial
Phyllotreta undulata	KX943475.1	15,698	Gomez-Rodriguesz et al., 2015	Partial
Psylliodes affinis	KX943355.1	16,006	Gomez-Rodriguesz et al., 2015	Partial
Psylliodes chlorophana	NC_053362.1	14,561	Gao et al., 2020	Complete
Psylliodes chrysocephala	KX943483.1	17,128	Gomez-Rodriguesz et al., 2015	Partial
Psylliodes circumdatus	KX943454.1	16,724	Gomez-Rodriguesz et al., 2015	Partial
Psylliodes cupreatus	KX943439.1	15,447	Gomez-Rodriguesz et al., 2015	Partial
Psylliodes cupreus	KX943425.1	16,328	Gomez-Rodriguesz et al., 2015	Partial
Psylliodes fusiformis	KX943421.1	16,033	Gomez-Rodriguesz et al., 2015	Partial
Psylliodes gougeleti	KX943356.1	15,984	Gomez-Rodriguesz et al., 2015	Partial
Psylliodes heydeni	KX943452.1	16,292	Gomez-Rodriguesz et al., 2015	Partial
Psylliodes hispanus	KX943503.1	17,357	Gomez-Rodriguesz et al., 2015	Partial
Psylliodes laevicollis	KX943451.1	16,019	Gomez-Rodriguesz et al., 2015	Partial
Psylliodes thlaspis	KX943362.1	15,598	Gomez-Rodriguesz et al., 2015	Partial
Chrysomela vigintipunctata*	NC_050933.1	17,474	Yan et al. 2020	Complete
Entomoscelis adonidis*	KX943493.1	16,353	Gomez-Rodriguesz et al., 2015	Partial

Table S4. 3 List of COI barcoding sequences of Argopistes sexvitattus morphotypes used for the construction of a median-joining network.

Sample	Sample code	Morphotype	Sequence
Argopistes sexvitattus 1	AG001	Striped	Complete mitogenome
Argopistes sexvitattus 2	AG009	Black	DNA barcode
Argopistes sexvitattus 3	AG008	Black	Complete mitogenome
Argopistes sexvitattus 4	AM68	Black	DNA barcode
Argopistes sexvitattus 5	AM69	Black	DNA barcode
Argopistes sexvitattus 6	AM71	Black	DNA barcode
Argopistes sexvitattus 7	AM72	Black	DNA barcode
Argopistes sexvitattus 8	AM74	Black	DNA barcode
Argopistes sexvitattus 9	AM75	Black	DNA barcode
Argopistes sexvitattus 10	AM77	Black	DNA barcode
Argopistes sexvitattus 11	AM78	Black	DNA barcode
Argopistes sexvitattus 12	AS1	Striped	DNA barcode
Argopistes sexvitattus 13	AS78	Striped	DNA barcode
Argopistes sexvitattus 14	AB1	Striped	DNA barcode
Argopistes sexvitattus 15	AB3	Striped	DNA barcode
Argopistes sexvitattus 16	AB5	Striped	DNA barcode
Argopistes sexvitattus 17	AB6	Striped	DNA barcode
Argopistes sexvitattus 18	AE2	Striped	DNA barcode
Argopistes sexvitattus 19	AE5	Striped	DNA barcode
Argopistes sexvitattus 20	AE6	Striped	DNA barcode
Argopistes sexvitattus 21	AE9	Striped	DNA barcode
Argopistes sexvitattus 22	AM1	Striped	DNA barcode
Argopistes sexvitattus 23	AM5	Striped	DNA barcode
Argopistes sexvitattus 24	AM42	Striped	DNA barcode
Argopistes sexvitattus 25	AM80	Striped	DNA barcode
Argopistes sexvitattus 26	AM82	Striped	DNA barcode
Argopistes sexvitattus 27	AM83	Striped	DNA barcode
Argopistes sexvitattus 28	AS3	Black	DNA barcode
Argopistes sexvitattus 29	AS5	Black	DNA barcode
Argopistes sexvitattus 30	AS38	Black	DNA barcode
Argopistes sexvitattus 31	AS120	Black	DNA barcode

Table S4. 4 Intraspecific p-distances (K2P) in 116 species in the tribe Alticini, based on a 500 bp alignment of COI barcoding sequences ($n=2,673$). Standard errors were calculated using 1,000 bootstrap replicates.

Species	\mathbf{n}	Max	Min	Mean	SE
Altica aenescens	8	2.45	0.00	0.83	0.26
Altica chalybea	34	1.63	0.00	0.51	0.20
Altica chamaenerii	7	2.04	0.00	0.99	0.31
Altica cirsicola	30	25.28	0.00	11.52	1.15
Altica corni	33	0.81	0.00	0.14	0.07
Altica engstroemi	10	12.24	0.00	2.86	0.38
Altica fragariae	12	4.59	0.00	2.03	0.44
Altica kalmiae	33	2.03	0.00	0.32	0.10
Altica oleracea	10	2.04	0.00	1.20	0.29
Altica palustris	6	2.65	0.00	0.88	0.24
Altica tombacina	189	2.25	0.00	0.28	0.09
Altica viridicyanea	14	3.51	0.00	0.58	0.14
Andersonaltica villabarrancoli	8	0.00	0.00	0.00	0.00
Aphthona cyparissiae	23	9.72	0.00	3.41	0.47
Aphthona euphorbiae	10	1.21	0.00	0.43	0.17
Aphthona herbigrada	15	1.63	0.00	0.78	0.25
Aphthona lutescens	10	3.09	0.00	1.00	0.26
Aphthona nonstriata	16	3.29	0.00	1.20	0.28
Aphthona venustula	21	1.83	0.00	0.75	0.24
Argopistes capensis	1	-	-	-	-
Argopistes sexvitattus	30	0.40	0.00	0.10	0.08
Batophila rubi	20	3.73	0.00	1.21	0.27
Chaetocnema aridula	9	11.22	0.00	2.53	0.35
Chaetocnema concinna	63	10.64	0.00	3.68	0.54
Chaetocnema hortensis	40	0.81	0.00	0.10	0.03
Chaetocnema mannerheimii	10	0.20	0.00	0.04	0.04
Chaetocnema sahlbergii	6	0.81	0.00	0.35	0.18
Chaetocnema tibialis	8	0.40	0.00	0.10	0.07
Crepidodera aurata	53	17.94	0.00	2.49	0.37
Crepidodera aurea	28	18.77	0.00	3.80	0.44
Crepidodera browni	17	1.21	0.00	0.50	0.15
Crepidodera digna	6	0.60	0.00	0.32	0.18
Crepidodera fulvicornis	26	18.71	0.00	2.35	0.31
Crepidodera heikertingeri	14	2.04	0.00	0.38	0.12
Crepidodera nigricoxis	9	1.63	0.00	0.90	0.28
Crepidodera pluta	13	18.92	0.00	3.04	0.33
Derocrepis rufipes	16	4.82	0.00	1.31	0.25
Dibolia borealis	26	2.88	0.00	0.88	0.24
Disonycha latifrons	34	0.81	0.00	0.19	0.06

Epitrix atropae	13	1.01	0.00	0.41	0.17
Epitrix cucumeris	23	0.40	0.00	0.07	0.04
Epitrix pubescens	10	1.84	0.00	0.94	0.31
Epitrix tuberis	10	0.81	0.00	0.16	0.08
Hermaeophaga mercurialis	12	6.33	0.00	2.21	0.42
Hippuriphila modeeri	9	1.01	0.00	0.38	0.18
Longitarsus aeneicollis	7	0.61	0.00	0.35	0.20
Longitarsus anchusae	17	1.44	0.00	0.52	0.20
Longitarsus atricillus	6	4.61	0.00	2.24	0.41
Longitarsus ballotae	17	1.83	0.00	0.54	0.17
Longitarsus brunneus	10	0.81	0.00	0.34	0.15
Longitarsus dorsalis	7	0.00	0.00	0.00	0.00
Longitarsus echii	8	1.02	0.00	0.54	0.23
Longitarsus erro	32	16.53	0.00	2.88	0.34
Longitarsus exsoletus	32	0.60	0.00	0.14	0.10
Longitarsus holsaticus	6	1.42	0.00	0.51	0.20
Longitarsus jacobaeae	6	1.42	0.00	0.59	0.22
Longitarsus lewisii	12	0.20	0.00	0.03	0.03
Longitarsus luridus	28	2.86	0.00	0.53	0.14
Longitarsus lycopi	7	7.19	0.00	3.51	0.62
Longitarsus melanocephalus	24	4.56	0.00	2.30	0.43
Longitarsus minusculus	6	0.20	0.00	0.07	0.07
Longitarsus nigerrimus	7	0.40	0.00	0.11	0.08
Longitarsus nigrofasciatus	7	0.60	0.00	0.25	0.16
Longitarsus obliteratus	15	4.57	0.00	1.79	0.34
Longitarsus ochroleucus	10	0.20	0.00	0.04	0.04
Longitarsus parvulus	10	10.96	0.00	4.65	0.66
Longitarsus pellucidus	21	6.31	0.00	0.58	0.18
Longitarsus pratensis	12	6.31	0.00	2.11	0.40
Longitarsus pulmonariae	7	0.20	0.00	0.06	0.06
Longitarsus rubiginosus	18	0.60	0.00	0.14	0.08
Longitarsus salviae	8	0.20	0.00	0.05	0.05
Longitarsus scutellaris	70	2.66	0.00	0.31	0.12
Longitarsus strigicollis	6	1.21	0.00	0.50	0.19
Longitarsus succineus	14	2.25	0.00	0.99	0.27
Longitarsus suturellus	6	4.36	0.00	2.33	0.52
Longitarsus symphyti	6	0.00	0.00	0.00	0.00
Longitarsus tabidus	20	4.14	0.00	0.55	0.13
Longitarsus testaceus	35	0.60	0.00	0.11	0.08
Lythraria salicariae	22	2.04	0.00	0.92	0.30
Mandarella flaviventris	38	12.96	0.00	7.04	0.80
Mandarella tsoui	25	10.70	0.00	6.05	0.80
Mandarella uenoi	57	16.41	0.00	9.97	0.95
Mantura chrysanthemi	9	1.01	0.00	0.38	0.15

Neocrepidodera femorata	20	3.30	0.00	0.78	0.16
Neocrepidodera ferruginea	41	5.44	0.00	0.95	0.20
Neocrepidodera melanostoma	10	13.03	0.00	7.76	0.99
Neocrepidodera peirolerii	10	0.81	0.00	0.27	0.12
Neocrepidodera transversa	15	14.85	0.00	4.61	0.57
Phyllotreta albionica	72	0.00	0.00	0.00	0.00
Phyllotreta armoraciae	12	1.63	0.00	0.54	0.19
Phyllotreta astrachanica	8	17.03	0.00	4.46	0.54
Phyllotreta atra	16	1.01	0.00	0.40	0.17
Phyllotreta cruciferae	23	0.20	0.00	0.02	0.02
Phyllotreta exclamationis	8	0.40	0.00	0.20	0.10
Phyllotreta nemorum	16	0.40	0.00	0.08	0.04
Phyllotreta nigripes	34	12.43	0.00	3.83	0.52
Phyllotreta nodicornis	15	0.81	0.00	0.18	0.09
Phyllotreta ochripes	15	0.40	0.00	0.12	0.08
Phyllotreta procera	15	2.46	0.00	1.19	0.29
Phyllotreta pusilla	11	1.62	0.00	0.85	0.28
Phyllotreta striolata	350	5.22	0.00	1.49	0.35
Phyllotreta tetrastigma	9	0.60	0.00	0.37	0.16
Phyllotreta undulata	19	1.21	0.00	0.54	0.23
Phyllotreta vittula	24	1.02	0.00	0.10	0.04
Podagrica fuscicornis	22	20.39	0.00	3.72	0.42
Podagrica fuscipes	12	0.40	0.00	0.11	0.06
Psylliodes affinis	60	1.01	0.00	0.22	0.11
Psylliodes chalcomera	12	1.02	0.00	0.34	0.14
Psylliodes chrysocephala	18	1.21	0.00	0.46	0.15
Psylliodes crambicola	6	0.00	0.00	0.00	0.00
Psylliodes cucullatus	26	13.93	0.00	2.22	0.30
Psylliodes dulcamarae	17	2.66	0.00	1.18	0.31
Psylliodes instabilis	13	0.40	0.00	0.11	0.08
Psylliodes isatidis	15	2.88	0.00	0.56	0.16
Psylliodes napi	45	2.03	0.00	0.43	0.17
Psylliodes picinus	25	0.81	0.00	0.21	0.11
Systena marginalis	17	1.43	0.00	0.23	0.08

Table S4. 5 Interspecific p-distances (K2P) among 116 species within the tribe Alticini, based on a 500 bp alignment of COI barcoding sequences ($n=2,673$). Standard errors were calculated using 1,000 bootstrap replicates.

	Species	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	Altica aenescens		1.53	0.35	1.60	1.48	0.55	1.54	1.60	1.51	1.65	1.01	1.64	2.31	2.22	2.33	2.16
2	Altica chalybea	10.89		1.55	1.57	1.32	1.38	1.42	1.53	1.34	1.53	1.46	1.45	2.15	2.20	2.39	2.25
3	Altica chamaenerii	1.18	11.18		1.61	1.52	0.68	1.57	1.62	1.53	1.69	1.06	1.63	2.31	2.25	2.32	2.17
4	Altica cirsic	16.24	15.37	16.31		1.49	1.62	0.97	1.71	1.51	1.64	1.55	0.84	2.01	1.93	1.96	1.98
5	Altica corni	9.74	7.95	10.14	14.71		1.47	1.32	1.61	1.41	1.50	1.49	1.39	2.22	2.21	2.34	2.30
6	Altica engstroemi	3.05	10.40	3.78	16.41	10.48		1.51	1.47	1.44	1.61	1.05	1.61	2.20	2.14	2.27	2.10
7	Altica fragariae	11.31	10.24	11.67	9.88	8.85	11.50		1.54	1.35	1.42	1.45	0.58	2.22	2.17	2.17	2.17
8	Altica kalmiae	11.30	10.59	11.64	16.88	11.09	10.75	11.13		1.31	1.49	1.53	1.66	2.26	2.32	2.23	2.26
9	Altica oleracea	10.79	8.46	11.17	15.1	8.91	10.63	9.74	8.94		1.45	1.40	1.41	2.30	2.14	2.05	2.17
10	Altica palustris	11.49	10.45	12.04	15.78	9.69	11.87	9.73	10.25	9.98		1.64	1.51	2.40	2.32	2.28	2.33
11	Altica tombacin	5.34	9.38	5.82	15.80	9.79	6.52	10.57	10.62	9.30	12.16		1.51	2.26	2.31	2.25	2.21
12	Altica viridicyanea	11.97	9.81	12.05	8.43	9.13	12.1	2.51	11.87	9.73	10.12	11.00		2.22	2.22	2.22	2.21
13	Andersonaltica villabarran	21.14	19.63	21.08	21.72	20.76	20.53	20.84	20.59	20.78	22.86	20.58	20.34		2.16	2.24	2.27
14	Aphthona cyparissiae	21.20	20.92	21.78	21.35	21.65	20.88	21.56	22.21	20.84	23.24	22.30	21.85	20.95		1.62	1.73
15	Aphthona euphorbiae	21.47	22.18	21.31	20.46	21.62	21.50	20.56	20.41	19.58	21.35	21.23	20.94	19.95	13.82		1.50
16	Aphthona herbigrada	19.01	20.01	19.04	20.27	20.12	19.06	19.45	20.63	19.94	21.51	19.29	19.60	20.43	15.09	10.81	
17	Aphthona lutescens	22.40	23.39	22.95	23.04	23.07	22.51	23.27	24.15	22.46	23.54	23.00	23.37	21.34	14.10	14.08	14.93
18	Aphthona nonstriata	26.38	26.23	26.40	25.80	26.23	26.16	26.63	26.44	24.15	27.51	24.47	26.12	27.71	19.15	15.30	17.28
19	Aphthona venustula	21.63	21.21	21.99	21.79	21.95	22.02	22.65	23.95	21.66	23.48	21.44	22.28	20.56	15.49	12.26	13.91
20	Argopistes capensis	21.31	21.51	22.04	23.52	22.88	21.14	22.63	21.59	20.64	23.89	19.94	22.93	20.33	18.98	18.74	18.15
21	Argopistes sexvitattus	21.78	19.80	21.77	20.99	22.47	21.31	21.11	22.92	20.61	23.72	19.65	21.48	17.00	18.09	19.09	19.19
22	Batophila rubi	24.34	25.36	24.72	25.15	25.90	25.11	23.78	24.47	24.00	23.51	22.70	25.09	24.55	23.58	20.22	23.25

23	Chaetocnema aridula	18.41	16.66	18.63	19.30	17.12	18.45	19.26	17.88	18.02	20.03	18.23	19.06	18.18	14.47	16.27	16.
24	Chaetocnema concinna	22.89	22.15	22.84	22.46	21.19	23.27	23.09	23.20	22.10	22.61	22.96	22.37	22.22	18.01	19.86	10.
25	Chaetocnema hortensis	17.75	17.89	18.07	20.54	18.94	18.03	20.43	17.82	19.14	20.54	18.59	20.30	19.08	16.44	17.36	18.7
26	Chaetocnema mannerheimii	18.98	19.27	19.33	21.33	19.75	18.79	21.45	18.71	18.97	21.42	19.37	21.15	21.45	16.90	17.53	17.
27	Chaetocnema sahlbergii	17.69	17.99	17.68	20.64	18.91	17.53	20.55	19.33	18.26	20.65	17.40	20.24	20.79	15.48	16.97	16.13
28	Chaetocnema tibialis	19.48	19.98	19.60	21.85	19.97	19.28	21.91	21.13	19.08	22.71	18.70	21.46	14.82	19.33	17.64	17
29	Crepidodera aurata	21.88	23.72	22.46	23.87	22.88	22.13	23.84	22.88	21.69	24.23	21.30	24.20	20.42	17.63	17.49	19.
30	Crepidodera aurea	23.46	24.32	23.70	24.63	23.65	23.82	24.27	24.34	24.56	23.49	23.18	24.98	23.29	16.98	21.79	19.99
31	Crepidodera browni	21.82	23.74	22.74	24.33	22.90	22.40	23.30	23.56	21.90	23.36	21.03	23.59	23.71	17.59	18.12	18.8
32	Crepidodera digna	22.12	22.09	22.56	25.38	22.34	21.93	24.51	21.71	20.53	21.64	22.52	25.23	24.26	17.26	19.63	21.20
33	Crepidodera fulvicornis	25.15	26.48	25.44	25.00	26.82	25.62	25.70	26.06	25.47	27.43	24.86	26.17	23.33	19.04	20.88	22.28
34	Crepidodera heikertingeri	20.27	22.58	20.47	22.16	21.58	20.73	20.75	22.51	19.69	21.42	19.53	21.35	20.53	18.43	17.84	18.0
35	Crepidodera nigricoxis	21.66	23.78	22.56	24.47	23.16	21.87	23.72	23.90	22.52	22.85	21.71	24.13	23.80	18.68	19.27	20.
36	Crepidodera pluta	25.24	25.71	25.32	26.62	27.14	26.05	27.74	27.37	25.88	27.69	24.82	27.78	26.30	20.36	20.46	23.
37	Derocrepis rufipes	20.19	22.79	20.67	22.28	21.45	20.27	20.65	21.86	20.2	20.3	21.26	21.25	21.39	18.84	18.13	8.00
38	Dibolia borealis	22.30	21.98	22.83	22.41	21.23	21.96	22.82	21.84	18.72	23.38	22.18	22.34	20.55	16.78	17.42	20.15
39	Disonycha latifrons	23.25	24.06	23.94	23.51	24.83	23.61	23.29	25.61	22.83	24.87	24.11	23.48	21.18	18.31	18.42	22.2
40	Epitrix atropae	24.86	24.68	24.61	23.42	24.03	25.52	24.43	27.69	24.99	25.42	23.98	24.38	23.38	19.47	18.91	19.7
41	Epitrix cucumeris	21.85	21.35	22.27	23.19	22.13	20.90	22.45	22.03	20.93	24.24	21.29	22.96	24.14	17.12	19.29	19.4
42	Epitrix pubescens	23.19	22.29	23.20	22.75	23.20	23.33	22.30	23.24	21.68	24.52	22.54	22.66	20.77	17.70	17.54	18.6
43	Epitrix tuberis	20.51	20.14	21.19	23.32	21.57	19.84	21.66	21.07	19.58	22.19	20.56	22.12	24.53	18.02	18.70	19.7
44	Hermaeophaga mercurialis	22.06	22.80	21.91	24.96	24.60	22.63	25.34	24.41	21.84	24.42	22.05	24.90	23.34	20.55	21.01	21.27
45	Hippuriphila modeeri	21.77	20.76	21.99	21.57	21.03	21.88	20.64	22.15	19.50	22.51	21.95	21.00	22.65	17.37	18.9	20.35
46	Longitarsus aeneicollis	19.51	20.86	19.31	19.43	19.60	19.20	19.05	20.77	19.46	21.57	19.46	19.07	17.74	16.70	15.08	15.90
47	Longitarsus anchusae	22.23	22.39	22.56	23.11	21.78	22.40	23.55	23.90	19.86	25.15	21.76	23.53	20.90	17.46	18.40	21.1
8	Longitarsus atricillus	19.80	21.76	19.63	20.41	19.86	19.60	19.87	20.99	20.20	20.96	20.06	20.11	17.57	17.60	16.15	15.61
49	Longitarsus ballotae	21.57	21.64	22.10	20.37	21.32	21.49	20.85	23.13	20.70	23.56	21.35	20.59	19.77	13.55	13.50	15.0

	sus brunneus	21.82	20.34	22.22	23.23	21.56	21.19	22.34	22.66	19.22	22.79	20.34	22.78	17.31	17.30	18.49	20.17
51	Longitarsus dorsalis	21.14	22.86	21.73	23.82	23.19	21.10	22.93	21.02	19.20	23.79	20.79	23.51	21.18	18.82	21.30	22.39
52	Longitarsus echii	22.33	22.86	22.67	22.88	22.93	22.09	22.6	23.98	22.47	23.97	22.89	23.21	19.64	17.67	13.61	13.97
53	Longitarsus erro	9.84	21.81	19.67	23.47	20.95	20.36	23.24	20.60	19.19	21.23	20.17	23.67	20.65	17.34	14.50	16.91
54	Longitarsus exsole	22.36	23.31	23.01	23.08	23.91	22.61	23.42	24.91	23.18	24.04	22.47	23.78	18.95	16.5	15.65	15.
55	Longitarsus holsaticus	15	20.3	21.2	21.0	21.2	21.9	21.3	22.4	18.	21.8	21.7	20.9	19.83	17.4	17.5	9.5
56	Longitarsus ja	23.64	21.5	24.19	23.09	22.07	23.5	23.5	24.9	20.7	24	22.5	23.	18.8	15.3	17.9	18.54
57	Longitarsus	21.55	20.88	21.81	21.24	22	21.24	06	61	19.69	23.10	20.32	8	20.61	15.82	. 16	16.9
58	Longitarsus luridus	20.68	2.19	21.39	21.25	19.83	0.3	20.57	23.29	20.3	22.3	20.58	20.9	20.07	16.17	5.1	16.4
59	Longitarsus lycopi	20.20	20.5	20.70	21.54	19.42	20.6	20.93	21.06	18.75	23.5	19.69	20.78	19.14	17.24	16.68	17.
60	Longitarsus melanoce	21.30	19.34	21.60	21.07	21.03	21.30	21.87	21.60	18.63	22.0	21.16	21.68	20.30	16.90	17.20	19.7
61	Longitarsus minusculus	21.88	22.86	22.54	20.27	20.11	22.22	20.18	22.33	20.83	21.9	21.53	20.88	19.07	15.78	15.54	15.9
62	Longitarsus nigerrimus	93	22.52	20.0	23.28	21.09	20.48	23.40	22.2	20	22.2	20.40	23.03	20.30	21.64	18.6	21.87
63	Longitarsus nigrofasciatus	23.40	20	23	22.83	21.57	23	21.33	21.49	20.9	22.67	20.72	21.8	19.77	16.38	15.3	17.76
64	Longitarsus obliteratus	23.99	21.43	23.9	2.03	22.28	24.33	22.43	23.8	21.3	24.4	23.35	22.3	23.8	16.2	17.10	17.8
65	Longitarsus ochroleucus	18.47	18	19	2.94	18.47	17.95	19.8	21.23	18.9	21.20	19.09	0.29	17.3	16.93	8.8	17.5
66	Longitarsus parvulus	23.38	22.1	23.2	21.5	21.69	23.77	21.89	24.77	21.3	24.1	22.47	21.9	20.81	16.78	5.0	15.3
67	Longitarsus pellucidus	84	21.75	18.9	22.37	21.71	19.43	22.18	24.87	20.9	23.5	19.36	22.7	20.3	16.6	16.	16.
68	Longitarsus pratensis	1.15	22.40	21.21	21.65	20.9	20.9	21.80	21.2	20.5	23.	21.3	22.0	18.8	17.07	3.	16.75
69	Longitarsus pulmonariae	1.21	22.12	21.20	22.93	22.34	21.21	22.64	22.8	23.17	22.98	21.9	2.7	17.7	17.7	6.8	16.
70	Longitarsus rubiginos	20.03	2.6	20.5	24	21.87	20.14	21.71	23.41	21.3	22.63	22.00	2.4	8.3	18.3	17.48	15.54
71	Longitarsus salviae	20.34	20.30	20.01	21.31	20.25	20.35	20.00	20.90	19.03	21.7	19.54	20.06	18.79	15.16	14.9	16.6
72	Longitarsus scutellaris	1.72	22.78	21.80	21.79	21.28	21.48	22.31	21.6	21.48	23.7	22.33	22.3	19.49	17.83	13.9	17.2
73	Longitarsus strigicollis	20.74	23.47	20.87	21.46	20.28	20.86	22.06	22.65	21.48	22.20	21.36	21.63	20.12	14.55	16.22	16.8
74	Longitarsus succineus	0.86	20.23	21.27	21.67	19.91	20.40	21.35	23.1	20.0	21.4	20.46	22.16	17.90	16.4	17.3	16.7
75	Longitarsus suturellus	19.89	20.86	20.20	22.05	19.83	20.37	20.68	20.1	18.9	21.04	21.69	21.8	21.83	18.6	19.2	19.2
76	Longitarsus symphyti	5.39	25.81	25.51	25.57	25.75	24.82	25.26	26.17	23.03	26.7	24.50	26.09	18.78	19.0	18.7	22.6
77	Longitarsus tabidus	20.5	18.3	20.86	19.9	18	20.6	19.28	20.4	17.	20.7	18.67	19.4	17.7	14.9	12.5	14.3

78	Longitarsus testaceus	20.83	22.21	21.54	21.40	20.21	20.45	20.88	23.88	20.28	22.88	20.37	21.25	20.55	16.28	15.42	16.18
79	Lythraria salicariae	21.62	22.54	21.89	22.00	21.39	22.37	21.61	21.60	19.86	22.43	20.34	21.54	20.42	20.18	19.06	19.86
80	Mandarella flaviventris	26.45	26.66	27.19	25.09	27.01	25.79	26.04	28.57	27.64	27.04	26.77	26.07	26.41	21.50	20.44	21.99
81	Mandarella tsoui	24.45	23.94	24.40	24.37	24.26	24.39	24.03	25.40	24.90	24.83	25.54	24.41	22.33	22.64	22.47	22.43
82	Mandarell	26.13	25.88	26.72	24.72	27.18	26.39	26.50	28.91	27.64	28.76	25.83	26.49	25.38	23.51	25.07	23.66
83	Mantu	17.34	18.33	17.39	18.56	18.13	17.74	17.78	19.01	16.74	20.45	17.37	17.91	18.38	15.97	13.83	15.96
8	Neocrepidodera femorata	22.79	22.63	23.64	23.68	23.15	23.01	24.85	27.01	21.66	23.42	24.33	24.95	22.75	17.96	20.37	23.62
85	Neocrepidodera ferruginea	20.87	22.02	21.19	22.97	21.19	21.16	22.87	21.90	21.31	23.15	22.06	23.31	21.89	19.21	19.20	19.72
86	Neocrepidodera melanostoma	23.50	24.27	23.76	24.41	24.42	23.58	24.34	24.44	22.91	23.68	24.07	24.79	22.87	19.24	19.58	21.96
87	Neocrepidod	26.39	25.39	26.6	24.65	25.46	26.10	25.29	25.33	24.77	26.41	26.10	25.84	24.21	18.20	17.15	20
88	Neocrepidodera transvers	21.66	21.10	22.22	22.74	22.05	22.11	22.13	22.49	21.05	22.76	22.05	22.86	22.72	17.88	19.19	17.06
89	Phyllotreta albionica	23.06	23.27	23.59	23.85	21.64	22.75	23.20	23.87	21.74	21.71	22.75	22.98	26.04	20.53	19.53	20.13
90	Phyllotreta armoraciae	23.19	22.16	23.77	23.67	21.51	22.42	22.82	22.20	21.01	23.29	22.99	22.90	24.81	22.44	21.03	19.10
9	Phyllotreta astrachanica	26.52	28.22	26.82	26.55	27.1	26.54	27.63	27.91	25.16	27.92	26.23	27.56	26.52	21.21	20.88	24.38
92	Phyllotreta atra	22.86	26.80	23.38	26.02	24.76	24.24	25.90	26.67	25.12	26.72	23.57	26.91	25.57	22.87	21.39	20.97
93	Phyllotreta cruciferae	23.06	23.27	23.59	23.85	21.63	22.75	23.20	23.87	21.74	21.71	22.75	22.98	26.03	20.52	19.52	20.12
94	Phyllotreta exclamation	25.76	24.27	26.05	26.96	23.47	25.86	27.06	27.13	24.63	25.99	26.10	27.44	28.71	21.31	22.13	20.49
95	Phyllotreta nemorum	22.99	23.29	23.27	23.58	24.35	23.31	23.88	25.76	22.88	22.34	22.79	23.83	26.36	22.82	21.04	20.93
96	Phyllotreta nigripes	27.54	28.30	28.28	27.06	27.05	27.13	28.37	27.84	25.72	27.40	27.00	27.49	25.04	22.43	22.63	23.30
97	Phyllotreta nodicornis	28.37	30.25	28.53	28.48	31.23	28.83	30.24	29.73	27.66	31.77	28.29	30.37	24.99	24.55	23.03	24.25
98	Phyllotreta ochripes	25.47	23.55	25.58	25.98	23.56	26.15	26.94	26.59	23.54	26.69	24.60	26.42	26.16	20.14	21.20	23.07
99	Phyllotreta procera	24.67	27.48	24.77	25.76	26.18	25.38	27.24	26.46	25.41	27.89	25.73	26.84	25.37	23.83	22.11	23.73
100	Phyllotreta pusilla	24.09	22.64	24.18	23.18	23.04	23.79	23.86	25.18	21.90	24.31	24.18	23.73	24.33	24.09	20.64	20.97
101	Phyllotreta striolata	24.47	23.42	24.57	25.63	24.64	24.38	26.20	25.86	23.59	25.66	25.18	25.43	25.43	24.20	22.77	22.57
102	Phyllotreta tetrastigma	27.46	27.62	27.31	26.42	26.27	26.98	25.30	25.54	25.28	26.70	25.82	25.75	26.72	20.80	22.99	22.75
103	Phyllotreta undulata	27.88	27.79	27.66	27.00	26.73	28.43	27.18	24.84	24.02	27.08	28.37	27.10	29.18	22.69	22.67	22.84
104	Phyllotreta vittula	25.38	27.05	25.11	23.11	24.79	25.97	24.41	27.02	24.08	25.73	24.72	23.64	23.01	24.41	22.41	21.07

| 105 | Podagrica fuscicornis | 21.41 | 21.54 | 21.62 | 22.56 | 21.91 | 21.60 | 22.48 | 23.10 | 22.04 | 23.41 | 21.37 | 23.09 | 20.21 | 17.61 | 19.92 | 19.19 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 106 | Podagrica fuscipes | 21.20 | 21.25 | 21.39 | 21.76 | 20.88 | 21.67 | 21.04 | 21.18 | 19.47 | 23.63 | 20.60 | 21.07 | 19.43 | 17.34 | 18.97 | 19.48 |
| 107 | Psylliodes affinis | 25.93 | 26.48 | 25.87 | 25.45 | 28.10 | 25.06 | 26.48 | 27.33 | 25.23 | 29.02 | 25.32 | 26.22 | 22.44 | 19.76 | 18.85 | 19.61 |
| 108 | Psylliodes chalcomera | 18.14 | 17.88 | 17.99 | 18.15 | 16.38 | 17.99 | 17.83 | 19.25 | 15.69 | 19.78 | 18.24 | 17.78 | 16.56 | 13.56 | 13.76 | 15.35 |
| 109 | Psylliodes chrysocephala | 17.00 | 17.32 | 17.70 | 18.57 | 17.19 | 17.91 | 17.65 | 17.85 | 16.43 | 17.54 | 17.58 | 17.41 | 16.92 | 15.82 | 15.79 | 14.77 |
| 110 | Psylliodes crambicola | 19.42 | 20.86 | 19.56 | 20.67 | 19.03 | 19.58 | 20.96 | 21.81 | 19.73 | 21.92 | 20.00 | 20.87 | 18.28 | 15.33 | 14.38 | 16.16 |
| 111 | Psylliodes cucullatus | 19.15 | 19.62 | 19.50 | 19.80 | 19.80 | 20.00 | 19.40 | 21.04 | 18.74 | 20.50 | 19.34 | 19.33 | 17.14 | 17.12 | 16.30 | 17.33 |
| 112 | Psylliodes dulcamarae | 20.67 | 22.61 | 21.16 | 21.40 | 20.38 | 21.52 | 20.85 | 22.64 | 19.85 | 21.78 | 20.21 | 21.46 | 25.21 | 19.60 | 19.59 | 20.77 |
| 113 | Psylliodes instabilis | 20.39 | 21.33 | 20.50 | 21.53 | 20.50 | 20.59 | 21.32 | 20.18 | 18.40 | 20.46 | 20.80 | 21.63 | 21.07 | 17.33 | 16.05 | 15.23 |
| 114 | Psylliodes isatidis | 18.45 | 20.52 | 18.68 | 20.59 | 18.77 | 18.93 | 20.72 | 21.08 | 19.44 | 21.56 | 19.40 | 20.68 | 19.42 | 16.15 | 14.42 | 15.26 |
| 115 | Psylliodes napi | 22.35 | 22.03 | 22.82 | 22.08 | 21.27 | 22.65 | 21.74 | 22.41 | 21.70 | 22.84 | 21.54 | 22.54 | 22.06 | 16.59 | 14.16 | 16.12 |
| 116 | Psylliodes picinus | 20.53 | 20.70 | 21.10 | 20.06 | 20.27 | 20.82 | 20.59 | 22.04 | 18.22 | 21.72 | 19.93 | 20.39 | 18.80 | 17.14 | 17.72 | 18.49 |
| 117 | Systena marginalis | 24.10 | 24.45 | 24.57 | 23.70 | 23.91 | 23.73 | 24.78 | 25.33 | 24.15 | 26.24 | 23.96 | 24.88 | 21.01 | 18.50 | 20.17 | 21.12 |

$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 6}$	$\mathbf{2 7}$	$\mathbf{2 8}$	$\mathbf{2 9}$	$\mathbf{3 0}$	$\mathbf{3 1}$	$\mathbf{3 2}$	$\mathbf{3 3}$	$\mathbf{3 4}$	$\mathbf{3 5}$	$\mathbf{3 6}$	$\mathbf{3 7}$
2.34	2.61	2.32	2.27	2.36	2.58	2.05	2.30	2.07	2.20	2.07	2.14	2.31	2.40	2.35	2.32	2.58	2.29	2.34	2.57	2.17
2.52	2.65	2.34	2.38	2.22	2.58	1.95	2.25	2.07	2.27	2.11	2.21	2.46	2.41	2.43	2.31	2.65	2.41	2.51	2.61	2.41
2.37	2.61	2.35	2.33	2.37	2.61	2.06	2.30	2.09	2.23	2.07	2.15	2.35	2.43	2.40	2.34	2.61	2.31	2.40	2.59	2.19
2.14	2.38	2.09	2.14	1.98	2.24	1.83	1.99	1.95	2.06	2.00	2.05	2.18	2.24	2.25	2.34	2.32	2.12	2.29	2.39	2.08
2.43	2.64	2.44	2.43	2.37	2.64	2.00	2.21	2.11	2.28	2.17	2.18	2.47	2.43	2.42	2.37	2.68	2.35	2.49	2.71	2.36
2.29	2.54	2.26	2.21	2.29	2.55	1.99	2.28	2.01	2.10	1.99	2.05	2.26	2.39	2.34	2.26	2.57	2.26	2.31	2.56	2.12
2.37	2.60	2.39	2.39	2.30	2.46	2.06	2.27	2.22	2.36	2.26	2.29	2.49	2.43	2.47	2.50	2.59	2.27	2.51	2.67	2.27
2.51	2.58	2.51	2.38	2.48	2.56	2.07	2.29	2.08	2.18	2.24	2.31	2.46	2.39	2.49	2.34	2.68	2.45	2.54	2.72	2.33
2.29	2.39	2.21	2.23	2.29	2.45	1.95	2.21	2.09	2.16	2.06	2.16	2.34	2.39	2.33	2.23	2.55	2.17	2.43	2.57	2.19
2.48	2.73	2.52	2.52	2.47	2.45	2.20	2.29	2.32	2.43	2.31	2.45	2.57	2.39	2.49	2.37	2.72	2.37	2.47	2.77	2.29
2.47	2.46	2.30	2.20	2.25	2.44	2.04	2.30	2.15	2.25	2.07	2.09	2.28	2.34	2.32	2.32	2.52	2.27	2.33	2.54	2.25
2.38	2.63	2.39	2.43	2.35	2.55	2.07	2.22	2.21	2.38	2.30	2.29	2.53	2.52	2.50	2.57	2.66	2.35	2.59	2.69	2.34

2.26	2.76	2.24	2.24	2.00	2.58	2.01	2.34	2.14	2.37	2.27	1.86	2.23	2.42	2.50	2.48	2.51	2.32	2.48	2.62	2.28
1.65	2.00	1.69	2.05	1.98	2.33	1.66	1.93	1.90	1.91	1.78	2.05	1.90	1.75	1.94	1.88	2.10	1.95	2.02	2.11	2.00
1.78	1.90	1.60	2.02	2.14	2.24	1.89	2.12	2.01	2.03	1.95	2.04	1.98	2.19	2.06	2.14	2.36	2.05	2.14	2.22	2.03
1.78	2.03	1.7	2.06	2.22	2.40	1.85	2.05	2.10	2.01	1.89	2.	2.15	2.	2.05	2.21	2.36	2.03	2.16	2.39	1.92
	2	1	2.07	2.22	2.49	2.00	2.04	1.96	2	2.02	1.	2.	2	2.20	0	8	9	6	3	5
20		1.90	2.33	. 53	2.64	2.18	2.	2.38	2.2	2.2	2.	2.	2.	2.52	2.48	2.62	5	2.56	5	2.44
15	16		2.13	2.18	2.36	1.89	2.07	1.93	2.07	1.97	2.09	2.08	2.10	2.1	2.09	2.39	2.08	2.19	2.19	2.04
18.5	21.9	18		1.	2.30	1.96	2.21	1.99	1.99	1.98	2.1	2.09	2.25	2.26	2.31	2.34	2.31	2.20	2.40	2.01
20.4	23.5	19.0	9.6		2.	1.90	2.16	2.00	2.22	2.05	2.1	2.12	2.38	2.19	2.30	2.26	2.08	2.15	2.40	2.11
24	26	22	21	20		2.	2	2.	2.	2.	2.	2.	2.	2.24	2.31	2.33	2.12	2.09	2.60	9
17	20	16	17	16	22.0		2.01	1	1.	1.	2.	1.	2.	2.	2.	2.	.	7	2.12	2.07
18.6	23.3	18	20	20	23	18		2	2.13	2.16	2.	2.	2.2	2.28	2.36	2.	2.32	2.36	2.45	2.12
16	22	16	16	17	2	10	18		1.	1.	1.	2.	2	2.	2.16	8	2.11	2	3	7
18.5	21.7	17.6	16.5	19.6	24.3	9.47	19.5	11		1.45	2.10	2.34	2.30	2.46	2.12	2.55	2.45	2.41	2.44	1.95
17	21.	18	16	17	2	10	19	12	9.		2.	2.	2	2.	2.04	2.43	2.26	2.33	2.34	2.00
15	23	18	17	18	2	19	1	16	17	18		2.	2	2.	2	2.42	2.26	2.36	2.56	2.10
17	23	19	18	18	19	17	2	19	2	18	17.8		1.8	1.8	1.92	1.89	1.80	1.68	1.99	2.08
22	24	20.	20	2	2	20	2	2	2	20	20	16.8		1.	1.	1.85	1.76	2.11	2.14	2.11
19.3	24.	18.6	20.3	19	20	20	21	19	23	22	20	15	17		1.8	1.98	1.08	1.60	2.05	2.07
20.3	24.1	19.1	20.9	20.2	20.7	18.5	22.4	19.2	18.5	17.8	20.1	15.9	18.3	14		2.21	1.58	1.73	2.08	2.09
21.6	25.3	21.9	21.7	20.3	21.3	21.7	23.4	23.4	23.9	23.5	22.7	16.5	16.2	16.3	19.1		1.82	2.05	2.15	2.47
19.7	24.9	18.5	21.2	18.2	18.8	18.8	22.2	19.3	23.6	21.2	20.9	14.7	15.4	6.15	11.8	14.8		1.59	1.99	2.09
21.5	24.8	19.3	20.0	18.7	18.6	20.6	22.7	22.0	22.3	21.4	22.6	13.9	19.3	12.3	13.5	18.0	12.1		1.92	2.21
22.2	23.1	20.6	23.4	22.8	26.0	19.2	23.4	21.6	22.7	20.9	25.6	18.0	20.8	19.0	19.7	20.1	18.0	16.1		2.29
19.7	23.4	18.4	16.9	18.9	24.9	18.9	19.1	18.1	16.7	17.9	18.2	18.6	19.6	18.7	18.5	23.4	19.2	20.6	23.5	
18.2	21.9	17.2	18.4	19.4	24.9	14.5	20.1	15.3	16.0	16.2	18.4	20.3	22.9	20.5	18.5	23.5	20.9	21.5	21.1	19.6

18.9	23.5	19.1	19.3	19.0	22.6	16.6	20.7	16.5	20.1	19.2	19.3	20.1	22.2	20.8	21.4	23.8	20.6	22.5	23.1	21.2
18.4	23.7	15.8	22.4	19.8	23.3	21.9	18.5	22.2	22.9	22.2	22.4	21.1	21.7	20.3	19.5	22.3	18.6	20.6	25.1	21.3
18.1	23.6	22.5	17.5	19.8	23.0	20.4	21.0	18.0	19.6	19.	19.2	21.1	20.6	21.1	21.2	24	20.9	23.5	25.2	22.3
14.7	23.	17	20.2	19.9	25	21.0	20.7	19	21	20.	17	20.2	24	19	21	24	19.5	21.4	3.1	8
20.8	23	20	20	21.1	20.4	19	20	18	2	19	2	20	19	19.8	19.0	22.9	9	2	24.3	6
21.2	2	21.	19.6	22	24	18	22.3	20	20	17.9	18	20	23	22.9	23	25	22.3	23.8	23.5	23.0
19.5	23.3	19.3	17.6	18.8	22.9	16.8	19.7	18.4	20.	19.	19.0	18.0	21.3	21	22.2	23.2	21.2	21.3	23.3	19.3
15.1	21.6	15.5	19.6	17.5	21.1	18.3	19.2	17.5	19.	15.5	16.0	17.5	20.9	19.3	18.8	21	17.3	18.3	19.6	17.6
19.0	21.9	19.3	21.	20.6	21	17.4	20.6	18	19.	18.	18.2	18.9	19.2	21	20.7	21.3	20.5	23.1	23.7	22.1
14	23	15	18	17	22	19	18	18	19	17	15	18.	20	19	19	21	17.7	19.8	21.2	6
1	19	13	18	18	2	1	16	1	16	16	16.	19	19	1	20.	21	18.7	18.9	22.4	. 5
1	22	15	16	15	19.9	16.9	20	15	17.	15	17	18	20.8	18.9	18.2	21.0	18.2	18.6	21.5	20.0
20	25	18.	16	16	23	19	20	19	2	19	19	18	19	20	22.4	20.2	2	21.2	23.9	2
17.7	21.1	14	19.	17	20.8	19.4	17.5	18.	19.	19.	18	18.	21.3	18	19	22.3	17.9	18.0	21.1	17.6
15	20	15	20	20	2	18	18	17	18	18	16	18	2	18	16	23	17.7	19.5	23.1	19.4
18	23	14	17	18	2	19	18	19	20.	17.4	19	19	19	2	2	2	20.5	19.7	21.3	19.8
18	21	17	19	19	2	19	19	1	20	16	18	19	2	20	20.	2	19.6	22.6	21.6	9.9
18	23.	15	18	17	20	19	18	17	18	19	15	18	1	18.1	1	18	18.5	19.5	0	5
15.	21	15	19	17	21	14	16	16	17	17	18	17	19	17	17	22	17.5	17.8	19.7	19.4
16.7	21.6	14.	19.	18	21.0	19.6	17.4	19	18	20.7	16.	19.7	2	17	18	20	18.5	19.1	20.9	18.2
19.2	22.0	18.3	19.7	17.9	23.9	17.4	20.5	17.3	18.9	18.2	17.4	18.9	22.	19.1	19.3	22.1	19.0	21.3	23.4	18.2
17.4	21.3	17.0	18.5	17.2	21.7	18.0	19.4	16.9	19.2	18.8	16.6	18.9	21.0	20.5	21.3	22.4	20.1	21.7	22.3	20.2
16.3	24.0	16.7	21.5	18.9	21	16.9	18.2	19.	20.2	18.6	17.8	16.9	19.8	19.4	20.3	20.8	18.6	20.3	23.6	18.5
20.8	23.0	20.9	21.3	22.5	22.1	19.2	20.7	18.	21.	21.3	18.2	20.4	23.3	21.2	22.4	23.7	22.4	22.0	24.2	23.3
16.7	20.9	15.5	18.6	16.6	17.8	17.0	18.0	17.3	16.4	17.1	17.8	17.4	21.9	19.3	20.4	22.4	17.7	18.9	20.2	19.4
16.9	21.3	16.1	20.5	20.2	24.2	19.7	19.0	18.7	18.5	18.1	18.9	19.0	22.5	21.2	20.4	22.6	21.8	21.8	22.6	21.3

19.8	22.7	14.7	18.0	17.3	21.4	18.8	19.7	17.8	19.3	17.6	15.5	18.6	18.3	19.5	21.0	21.4	20.1	20.7	21.9	18.2
16.9	19.7	14.6	20.6	18.8	20.9	18.7	18.8	17.4	18.6	17.7	17.7	19.0	20.2	21.0	19.4	21.3	18.7	20.5	22.1	19.8
15.8	22.	15	17	17	23	17	17.9	16.1	18.0	17.7	16.3	18.	20.9	20.8	21.1	20.1	20.0	21.0	21.2	19.1
14.9	2	17.4	19	19.0	22.5	16.2	17.2	15.9	18.2	18.0	15.3	18.4	23.2	20.4	20.4	25.0	18.8	20.5	20.6	19.1
17.1	2	13	18	18	22.0	20.3	18.9	19.1	20.1	19.8	18.3	20.4	21.3	21.4	21.3	23.7	19.6	20.8	22.8	7
16.9	25.3	19.3	20.4	21.	24.3	21	20.2	20.7	21.7	21.7	17.0	19.3	20.7	. 4	24.2	22.8	19.8	21.8	25.4	19.0
16	20.3	17.6	18.2	19.5	22.7	18	17.0	17.2	19.3	19.3	16.5	17.6	21.2	18.0	20.8	22.7	19.3	19.2	20.5	16.2
15	23.	18	20.	19.6	23	16	17	16	18.3	18.6	15	19	23	20.8	21.2	25	19.3	20	20.4	19.4
16.2	21	14	19	18	2	19	17	17	20	19	17.8	17.6	17.8	19.3	21.0	20.1	18	19	20.4	17.0
16	23	16.	18	16	22	18	21	18	19	17	17.1	19.1	20.	19.6	21.0	21.3	19.3	19.7	9	8
18.8	2	18	2	18	24.0	18.3	23.1	18.	18	17.3	22.2	22.2	21.0	18.1	19.0	20.9	17.6	20.3	20.5	19.4
20.4	25	17	20.	18	21.5	22	23.5	20	22	21	19	19.2	22.0	21.4	19.7	21.1	19.2	21.7	9	2
15.8	19.8	12.	18.	15	18	15	18	15	16.2	16.0	15	16	18.	18.8	19.8	21.6	17.8	19.2	20.9	16.9
17	21	13	19.	18	2	1	18	19	18	20.	16	20	2	18.4	18.0	20.3	18.3	19.5	20.7	18.4
22	22	19	20	2	2	18	20	19	2	18.0	19.4	18	19.5	19.9	20.1	21.4	18.2	2	22.6	21.0
2	24	20	20	22	26	20	22	20	22	20	2	23	23	2	23	25	23	23.4	27	21.7
2	27	21	21	20	26	22	21	22	21	22	2	2	22	24.7	2	2	23	23	22.3	20.8
23	28.	22.	24	22.	26.	22	25	23	24.0	22	24	24	24	23	24	22.3	24	24	26.6	23.9
14.7	20.7	16.2	17.6	17.9	22.0	15	17.3	15.4	16.6	16.0	12.5	15.2	19.5	18.1	18.5	22.0	18.0	20.0	20.4	15.7
20.4	27	17	22	21	2	19	20	21.8	20.8	20.7	21.2	19.9	23.6	22.9	22.4	23.3	22.7	23.5	25.9	22.4
21.5	22.0	17	22	20	25	20	18	18.7	21.8	20.8	19.9	20.5	22.4	20.2	23.4	24.5	22.2	23.2	23.7	21.0
21.4	24.7	19.3	21	21.3	22	20	21	21.0	21.5	19.8	20.5	19	21.	22.0	20.5	22.1	20.7	21.6	23.2	22.2
19.0	23.3	16.	21.	18.5	22	21	20.5	20.4	21.7	20.2	23.3	18.3	24.3	20.3	21.0	21.5	21.1	21.4	24.2	22.0
21.6	23.8	19.6	21.5	19.5	22.4	18.5	21.7	19.1	19.9	19.7	21.8	19.8	21.2	22.3	20.3	23.4	19.8	20.7	21.0	21.4
21.3	26.9	21.5	24.7	23.8	27.9	19.9	23.8	20.8	21.7	21.0	21.3	21.7	23.1	20.7	23.5	25.4	21.0	22.5	24.7	20.4
22.8	26.3	23.4	21.5	21.9	25.7	16.7	23.4	19.7	18.5	20.1	20.1	19.9	23.8	22.5	22.7	24.7	21.7	23.7	27.4	20.4

2	26.2	22.6	25.1	25.4	28.0	20.3	23.3	21.1	22.0	21.6	23.6	21.6	26.7	25.2	24.1	26.4	25.8	25.9	24.1	24.5
22.5	27.7	22.8	24.6	22.9	23.4	19.7	23.7	22.2	23.4	21.7	21.7	20.3	22.3	20.9	22.9	23.6	20.2	22.2	22.1	21.6
1.3	26.8	21.5	24	23.8	27	19.9	23.7	20.8	21	20.9	21	21	23	20	23.5	25.3	21	22	24	20.3
23.1	24.	20.8	24	24	28	20	23.2	20	22.5	23.1			23.5			27.3	23.8	25.5	26.3	9
2	25	22	25	21	24	21	2	20	22	22.0	23	22.8	21.0	22.4	23	24.1	20.4	21.9	4	0
21.5	26.6	22.8	22.0	24.2	26.2	20.2	23.8	21	22	21.8	22	22	26.8	24.3	23.5	2	23.8	25.3	27.8	24.7
2	27	25	24	24	28	20	24.8	21.1	22.2	21.6	23.4	23	27.9	23.7	23.9	25.6	23.6	24.8	27.2	26.3
23	2	2	2	23	26	19	21	2	20	2	23	2	22	22.9	22.9	27.0	23.9	23.1	25.3	21.1
22.7	2	2	25	24.7	26.2	21.0	24.1	21.2	21.4	20.9	22.4	2	26.2	21.9	22.1	24.1	22.1	25.0	25.9	24.1
22.0	26	2	23	23	27.1	18	23.9	18.5	2	19.6	2	20	22.6	24.5	23.3	24.6	21.7	24.1	25.0	21.4
25.2	2	2	28	26	26.6	20.9		21.6	22.6	2	25	23.2	26.1	26.0	23.8	26.7	25.3	25.9	27.9	. 9
4.7	26	25.	28	27	28	22	23	23	24	23	25	23	24.7	26	25	25.5	26.2	25.3	24.1	25.0
25	27	24	26	27	29	2	2	23.	2		26	2	25	25	23.9	26.8		2	23.5	26.2
22	27	23	23	2	26	2	2	19.	25	23	20	2	22.9	21.8	24.8	23.4	3	25.3	1	6
18	2	20	18	18	22.4	1	1	18	18	19.7	18.0	19.7	20.6	20.6	21.3	21.2	2	22.1	25.4	6
15	25	19	19	18.	2	18	18	19	2	2	16	17.5	19.9	20.5	20.6	20.4	18.0	22.5	23.5	21.1
2	23	20	23	2	24.6	20.5	21.4	2	2	20	18	17	2	2	23.6	2	23	19	22.3	20.7
16.9	21.8	16	18	16	21.0	13	16.7	15	16	17	15	16.	18	19.8	17	19.7	15	18.	21.9	17.1
15.9	18	16	17.5	19	21	13	16	15.2	15.6	14	15.5	17	19	19.6	18	23.6	17.	19.3	22.2	15.7
16.	19	16	19	19	23	16	18	15	16.7	16.5	15.8	18	20.8	19.0	19.5	20.3	9.6	18.8	20.9	16.9
18	21	16	18	15	18	16	18	16	16	16	18	18	21	19	17.3	21.6	16.8	16.9	22.5	16.8
20	23	21	21	22	22	19	20	20	20	21.2	2	21	23	20.2	19.1	25.3	18.9	19.8	22.5	21.3
17.	21.	16.9	20.	20	21.	16.	18.7	17	15.0	16.	17	18.	22.8	22.6	19.5	24.3	20.4	21.5	21.4	18.8
16.5	20.4	16.6	19.4	19.2	23.5	16.	17	16.2	17.2	16.5	15.8	18.	20.9	18.5	20.1	20.6	18.7	19.4	21.1	17.0
16.0	22.9	16.5	20.5	22.4	21.8	17.5	15.4	16.0	18.9	19.5	17.7	19.8	18.5	17.2	19.7	20.9	17.0	21.7	20.7	18.8
19.7	22.1	17.5	18.8	17.6	22.2	16.2	18.4	17.0	17.2	17.9	16.1	19.2	22.0	21.2	20.4	22.9	19.1	20.2	23.1	17.6

38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57
2.36	2.47	2.57	2.32	2.38	2.24	2.33	2.32	2.18	2.34	2.15	2.33	2.36	2.38	2.45	2.11	2.41	2.27	2.51	2.24
2.40	2.55	2.51	2.32	2.34	2.23	2.35	2.34	2.28	2.38	2.31	2.36	2.28	2.52	2.49	2.30	2.49	2.26	2.35	2.28
2.39	2.50	2.59	2.35	. 40	28	2.3	. 35	2.18	2.35	2.14	2.36	2.39	2.4	2.46	2.09	2.4	2.30	2.55	2.25
07	2.18	2.16	2.16	2.08	19	2.24	. 05	1.91	2.14	1.94	1.95	2.2	2.23	2.23	2.09	2.1	1.98	2.18	2.04
2.35	2.5	2.52	2.35	2.40	2.33	2.49	2.28	2.23	2.38	2.22	2.32	2.40	2.50	. 5	2.25	2.50	2.31	2.3	2.21
28	2.4	2.55	2.1	2.3	2.14	2.29	. 30	2.10	2.27	2.06	2.2	2.26	2.3	2.33	2.0	2.3	2.28	2.43	2.18
35	2.45	2.50	2.36	2.3	. 33	2.48	2.25	2.1	2.41	2.16	2.2	2.41	2.47	2.45	2.30	2.45	2.26	2.47	2.25
2.37	2.67	2.72	2.35	2.43	2.29	2.50	2.45	2.28	2.47	2.23	2.45	2.47	2.36	2.49	2.17	2.61	2.38	2.63	2.38
04	2.3	2.46	2.23	2.23	2.15	2.27	. 18	2.12	2.12	2.15	2.1	2.16	2.16	2.40	1.98	2.39	2.09	2.27	2.09
2.43	2.57	2.54	2.55	2.52	2.42	2.50	2.41	2.3	2.56	2.26	2.53	2.49	2.56	2.56	2.29	2.5	2.40	2.61	2.45
35	2.53	2.50	2.29	2.35	. 22	2.3	2.37	2.1	2.33	2.16	2.31	2.25	2.33	2.49	2.19	2.39	2.35	2.42	2.17
35	2.4	2.52	2.41	2.3	38	2.4	29	2.1	2.44	2.20	2.	46	2.5	2.51	2.3	2.5	2.24	2.48	2.28
26	2.32	2.48	2.50	2.2	43	2.43	45	2.00	2.28	1.94	2.22	2.02	2.40	2.21	2.21	2.19	2.22	2.18	2.2
88	1.90	2.06	1.9	1.95	1.96	2.1	1.96	1.87	1.93	1.8	1.58	1.99	2.14	1.92	1.83	1.8	1.9	1.76	1.8
1.98	2.08	2.15	2.17	1.99	. 11	2.21	. 14	1.83	2.03	. 8	1.70	2.11	2.31	1.75	1.74	1.9	2.05	2.10	1.88
13	2.23	24	2.1	2.0	19	2.1	. 16	1.9	2.26	1.88	1.8	2.21	2.47	1.76	1.88	1.92	2.16	2.09	2.00
2.03	2.05	2.13	2.0	1.85	26	2.2	2.16	1.80	2.16	1.72	1.85	2.19	2.28	2.07	1.83	2.03	2.12	2.13	1.92
32	2.4	2.51	2.40	2.45	2.44	2.4	. 41	2.31	2.33	2.35	2.1	2.35	2.51	2.29	2.18	2.41	2.27	2.40	2.33
1.96	2.08	1.87	2.40	2.00	23	2.24	2.15	1.86	2.06	1.79	1.6	1.82	2.10	1.85	1.82	1.75	1.94	1.89	1.91
2.16	2.21	2.44	2.10	2.20	29	2.1	.16	2.17	2.33	2.04	2.07	2.01	1.9	2.20	2.20	2.01	2.18	2.16	2.17
2.18	2.10	2.24	2.31	2.19	. 37	2.37	. 21	2.05	2.23	1.96	2.1	1.99	1.9	2.19	2.30	2.07	2.23	2.09	2.05
2.54	2.37	2.31	2.44	2.59	2.18	2.47	2.45	2.28	2.28	2.35	2.26	2.20	2.47	2.36	2.25	2.34	2.28	2.26	2.32
1.76	1.92	2.2	2.21	2.2	11	2.03	1.93	2.08	1.9	2.0	1.80	2.00	2.18	2.20	2.00	2.08	2.08	2.17	. 8

2.15	2.19	2.08	2.22	2.21	2.16	2.30	2.16	2.11	2.17	1.99	1.81	2.26	2.15	1.98	2.03	1.98	2.13	2.05	1.81
1.92	1.94	2.37	2.13	2.23	2.11	2.19	2.09	2.07	2.10	2.06	1.82	1.98	2.20	2.17	1.96	2.15	1.93	2.07	1.93
1.94	2.29	2.42	2.24	2.32	2.32	2.25	2.29	2.1	2.22	2.1	1.98	2.06	2.38	2.28	2.02	2.24	2.23	2.14	2.06
1.94	2.13	2.37	2.26	2.21	2.22	2.03	2.16	1.93	2.09	2.00	1.91	1.89	2.25	2.23	1.99	1.97	1.95	2.17	2.06
2.14	2.17	2.38	2.16	1.96	2.32	2.14	2.20	1.91	2.08	1.82	1.95	1.98	2.23	2.18	1.90	2.10	2.04	1.90	2.07
2.10	2.17	2.25	2.24	2.19	2.14	2.16	2.10	1.95	2.09	1.96	2.09	2.13	2.05	2.13	1.99	2.15	2.17	2.17	2.05
2.33	2.19	2.26	2.12	2.39	2.06	2.42	2.29	2.1	2.05	2.05	2.13	2.24	2.22	2.25	2.19	2.15	2.27	2.14	2.10
2.16	2.30	2.23	2.29	2.20	2.17	2.43	2.40	2.1	2.32	2.13	2.04	2.18	2.31	2.15	1.96	2.30	2.31	2.13	2.02
2.1	2.36	2.1	2.3	2.	2.	2.	2.	2.	2.25	2.0	2.28	2.0	2.36	2.2	1.85	2.3	2.20	2.17	2.09
2.40	2.50	2.38	2.5	2.55	2.3	2.5	2.55	2.3	2.36	2.3	2.35	2.3	2.27	2.	2.50	2.53	2.	2.11	2.37
2.16	2.25	2.1	2.27	2.1	2.16	2.36	2.30	1.9	2.20	1.98	2.10	2.10	2.35	2.06	1.99	2.27	2.25	2.10	2.03
2.26	2.39	2.21	2.	2.27	2.23	2.49	2.36	2.05	2.36	2.04	2.15	2.14	2.32	2.10	2.05	2.19	2.37	2.17	2.08
2.19	2.37	2.55	2.51	2.39	2.	2.38	2.36	2.1	2.37	2.19	2.38	2.30	2.51	2.33	2.33	2.30	2.37	2.37	2.19
2.21	2.28	2.3	2.4	2.2	2.2	2.4	2.3	1.9	2.3	1.8	2.05	2.1	2.33	2.0	2.05	2.1	2.20	2.12	2.12
	2.00	2.4	2.2	2.3	2.	1.9	1.93	2.0	2.	2.0	1.8	2.10	2.1	2.1	2.13	2.2	2.16	1.98	2.00
16.9		2.3	2.3	2.3	2.35	2.1	1.9	1.9	2.05	1.93	1.88	2.2	2.09	2.22	2.09	2.0	2.04	1.92	2.00
23.2	23.2		2.22	2.13	2.16	2.5	2.38	1.9	2.21	1.93	2.05	2.21	2.34	2.07	2.10	1.92	2.05	2.09	1.99
19.6	20.9	19.9		2.13	1.49	2.35	2.31	2.12	2.29	2.07	2.10	2.30	2.48	2.15	2.14	2.14	2.10	2.20	2.17
22.2	21.8	19.1	18.4		2.3	2.	2.30	1.93	2.06	1.88	1.98	2.22	2.33	2.04	1.96	1.99	2.10	2.10	2.17
19.5	22.3	18.5	9.72	20.8		2.4	2.26	2.0	2.23	2.00	2.05	2.27	2.40	2.10	2.11	2.16	2.10	2.16	1.88
17.6	19.0	25.8	21.9	23.7	23.3		2.05	2.	2.2	2.2	2.12	2.30	2.35	2.18	2.09	2.22	2.31	2.31	2.33
16.4	17.1	21	20.5	21.2	20.3	18.5		2.10	2.17	2.1	2.09	2.37	2.24	2.26	2.02	2.34	2.15	2.14	2.12
18.0	17.2	16.7	18.4	16.2	18.4	20.7	18.7		1.94	0.76	1.63	1.97	1.98	1.65	1.73	1.71	1.90	1.85	1.83
20.3	17.5	20.9	20.8	18.2	20.3	21.4	18.9	16.9		1.93	1.65	2.12	2.12	2.05	1.75	1.98	2.09	1.98	1.93
18.6	17.6	16.3	18.5	16.7	18.5	21.8	19.3	3.95	17.3		1.62	1.93	1.85	1.62	1.69	1.59	1.88	1.76	1.75
15.6	16.3	17.5	18.5	17.5	17.9	20.2	17.8	12.0	13.2	13.0		2.02	2.03	1.71	1.67	1.77	1.97	1.69	1.52

18.1	19.5	20.3	20.2	19.5	20.5	21.5	20.9	15.4	18.6	15.9	16.7		2.03	2.04	2.08	1.87	1.95	1.66	1.94
18.4	18.7	21.9	22.7	21.6	22.5	21.7	19.4	17.0	18.4	15.4	16.4	16.2		2.19	2.19	1.88	2.08	1.92	2.17
18.7	20.1	17.1	18.7	17.5	18.4	19.9	19.8	12.1	19.1	12.6	13.1	16.9	19		1.86	1.66	1.96	1.87	1.88
20.3	19.7	19.0	19.0	17	18.6	20.	17.9	15	14	15	14	18.8	20	15.4		1.87	1.8	1.96	1.70
20.8	18.1	16.0	18.9	18.2	20.0	21.2	21.6	13.3	17.6	12.7	13.8	13.6	14.5	12	16.5		1.90	1.88	1.86
19.9	18.4	17.3	18.6	18.8	18.6	22.2	18.9	16.	18.3	16.6	17.6	17.0	7.9	16.3	16.2	15.9		1.97	1.95
16.5	16.7	17.3	19.5	18.3	19.2	21.4	18.2	13.8	16.1	13.8	13.0	12.1	14.7	15.0	16.9	14.6	16.1		1.78
18.1	17.	16.6	18.1	19.0	14.8	22.8	18.0	14.6	16.0	14.5	11.5	16.2	19.5	15.0	13.9	15.4	16.2	14.1	
18.2	18	15	19	16	18	24.6	19	10	17	10	10	14	16.5	12	15.7	14	17.9	12.1	11.0
16	20	20	17	18	18	21	19	12	19	13	14	16	18	12	16	17	17.	15.2	14.8
18.	17	17	18	18	17	22	17	16	17	16	16	17.7	20	15	15	16.	11	15.6	13.7
19.3	19.6	18.2	19.7	16.7	17.4	23.8	20.2	10.5	17.2	11.1	12.6	17.9	17.9	13.5	15.2	14.9	16.7	14.0	12.2
20.1	20.4	21.5	21	19.7	20.4	21	20.9	18.0	17.6	18.7	18.4	20.4	20.8	16.2	15.9	18.9	15.0	18.1	16.7
18.1	18.3	17	17	18	17.2	21	18.3	12	18	13	14	12.1	18.5	11.6	16.7	12.2	17.2	13.1	14.5
18	19	18	20	18	19	22	19	12	20.	12	14	18	19	13	1	17	17.2	14.0	14.9
18.3	18	19	17	20	16.	21	16	12	18	12	13	12	14	13.	17.6	13	15.5	10.6	15.5
17.5	19	16	17	18	18	20	19.0	13	16	13	12.5	16	18.6	13.	15.5	15.	14.9	13.1	14.3
16.2	16.8	18.7	20.2	17.7	21.2	19	17.3	12	18.1	11.2	12.8	14.9	16.1	14.1	17.7	13.6	18.4	11.3	15.3
18.2	18.9	18.6	17.1	16.8	18.4	23.4	18.5	14	13.9	13.7	13.3	16.8	19.7	15.0	12.5	16.5	17.8	15.8	11.3
21.3	19.9	15.5	19.2	17.2	19.6	23.1	20.7	11.8	18.8	10.7	14.1	14.3	15.0	11.6	15.6	7.80	15.4	13.9	16.4
21.7	21.8	22.0	21.1	17.8	20.6	19.9	20.3	14.6	17.8	13.6	15.4	17.8	18.6	13.9	18.3	15.3	19.2	16.5	16.8
19.0	19.0	19.4	17.8	15.9	16.7	18.6	17.6	12.3	16.9	12.3	13.6	16.4	19.3	12.5	15.3	15.9	16.7	13.9	13.0
19.4	19.3	18.8	17.1	16.2	19.4	24.6	18.9	14.5	15.0	13.7	13.9	17.2	20.8	15.2	13.3	16.5	18.4	16.1	12.0
19.4	18.3	15.4	19.4	19.1	18.0	22.2	18.4	11.5	17.0	11.0	14.3	15.5	15.9	14.3	14.8	12.7	14.7	11.8	12.6
18.0	19.2	19.2	18.0	17.8	17.8	21.2	17.4	11.8	17.6	11.7	14.4	13.6	16.9	13.8	17.5	15.5	17.3	13.1	15.8
19.5	21.3	19.8	22.3	19.4	22.0	23.2	22.5	14.8	18.0	15.5	16.5	17.2	16.7	16.5	18.7	16.7	18.2	16.5	17.0

18.3	20.3	18.9	20.2	19.8	20.0	23.5	19.6	14.9	18.0	14.1	17.5	14.1	17.8	16.7	17.8	16.3	19.5	13.0	16.3
16.2	17.2	16.2	16.3	16.1	14.8	20.9	18.2	11.4	12.7	11.7	10.8	12.3	16.7	11.	13.1	11.8	12.3	11.5	11.7
18.2	19.5	14.6	19.3	17.0	18.1	24.6	20.8	10.6	17.3	10.9	11.3	13.9	18.0	12.3	16.1	14.9	17.9	12.2	10.9
19.0	18.5	22.5	18.6	20.1	18.2	20.5	19.3	16.4	17.0	17.1	16.2	16.7	17.5	18.3	17.6	17.4	15.2	17.8	17.1
22.9	22.6	21.5	21.6	22.2	22.5	24.4	22.7	20.8	22.6	19.9	19.7	22.9	21.9	20.6	22.0	19.2	21.9	21.4	21.3
22.2	24.5	23.8	24.3	23.5	23.6	23.2	23.	19.9	22.	19.6	21.0	21.2	22.5	19.6	24.5	21.2	25.1	19.7	20.4
23.5	21.9	24	24.5	24	24.0	26	24.4	21.3	22	21	23	20.8	2	23	25.2	21	22.3	22.5	. 0
15.5	15.	18	18.	15	19	18	15	12	17	13	14	16.8	16	15	15	16	16.2	15	14.4
20.0	19.0	20.9	23.	21.3	21.9	23.8	19.	19.2	16.0	20.5	17.8	18.8	20.5	21.4	18.2	19.0	18.5	16.1	19.6
19.8	20.0	22.7	20.4	22.8	20.8	22.1	21.4	19.0	20.0	18.6	16.0	19.5	19.6	16.8	18.4	17.3	19.2	19.1	17.3
20.6	18.9	23	20.	21	21	22	20	17.1	19.	17.7	18	17.9	19.4	21.4	18.3	18.7	19.4	15.9	19.2
21.1	18	22.3	21	20.6	21	24	18	18	21	19	21	17.8	18	20	19.	18	19.5	18.8	19.0
21.7	19	21	20	19	20	23.2	22	17.2	21	18	17	20.0	22.7	18	19.8	18.8	18.6	17.5	17.7
22.3	21.9	21	23.	21	22	24	20	18	21	18	19	2	23	19	19.	20.5	22.	19.9	19.7
23.7	22.7	25.5	22.	23	22.2	23	19.	21.1	23	21.0	20.5	23.4	23.0	21.7	20.3	24.6	20.9	22.5	20.4
21.0	23.1	23.4	22.0	22.6	24	24.7	20.9	22.5	23.5	21.9	19.9	24.6	24.5	22.7	20.8	23.3	20.1	23.1	19.6
22.7	21.8	22.7	24.0	21.0	23.2	25.6	21.1	19.0	20.7	18.4	20.0	21.4	23.3	18.8	20.7	19.0	19.8	18.7	19.6
22.3	21	21	23	21	22	2	20	18.5	2	18	19	24.3	23.0	19.8	19.5	20.5	22.1	19.9	19.7
23	24	23	24	2	25	26	21	2	25	2	20	2	25.8	22	20.5	25.7	21.2	22.1	20.5
23	21.9	22	23.	23	23	25	19	20.9	2	21.2	22.3	24.6	26.1	22.9	20.4	24.3	21.5	22.9	21.6
20.7	23.2	24.5	23.5	25.6	25	23.9	21.	22.4	23	22.2	22.6	22.1	23.7	22.2	20.3	24.2	22.2	22.0	23.6
22.2	21.1	27.1	24.9	26.0	26.6	24.0	21.6	25.2	24.5	24.8	23.9	25.2	25.8	24.1	21.2	24.8	23.5	24.2	22.4
21.8	21.2	23.0	24.2	23.2	23.6	24.5	19.0	21.0	22.8	20.9	19.9	22.3	22.3	23.6	20.6	22.2	20.1	21.4	19.7
21.2	22.3	24.2	26.1	24.9	26.0	23.1	20.3	22.5	21.1	23.0	21.1	26.6	24.8	21.6	18.0	25.7	22.3	23.3	21.5
20.7	22.2	23.0	23.2	21.8	21.6	22.1	18.8	20.1	22.4	19.8	20.9	22.8	23.4	20.6	20.3	23.6	20.6	21.2	19.9
25.3	27.1	23.2	23.8	25.4	23.5	27.4	22.0	23.2	23.0	23.2	23.3	21.2	23.9	23.2	20.8	22.8	20.5	21.7	21.5

23.8	27.2	26.5	24.0	24.8	22.9	25.0	23.1	21.1	25.9	20.3	21.8	25.7	23.9	20.6	22.8	24.3	24.3	23.5
23.3	27.9	25.7	25.9	27.4	25.3	25.6	21.7	24.6	26.2	24.4	23.4	25.5	23.5	24.6	21.3	24.5	23.6	23.1
24.2	22.5	21.0	23.5	22.7	23.2	25.2	20.8	18.5	19.1	18.1	19.5	23.3	24.2	20.3	20.8	20.8	18.9	20.8
19.4	19.4	21.2	19.2	20.9	20.0	22.0	18.4	18.8	19.8	18.3	16.8	16.8	18.5	19.2	20.2	19.0	18.3	15.4
19.2	16.3	17.4	20.2	18.3	21.1	21.3	19.0	16.2	16.8	15.7	17.9	19.4	16.0	19.0	18.6	17.5	16.0	13.8
22.3	22.6	21.0	21.9	20.3	21.1	22.4	21.8	18.3	22.2	18.6	19.8	20.9	21.6	17.6	20.4	18.1	21.2	17.0
15.9	18.9	15.0	17.3	17.2	18.3	20.5	17.2	14.1	15.9	13.3	13.3	17.3	18.7	16.4	14.6	16.3	16.3	16.2
18.0	21.0	18.5	17.6	17.8	16.5	18.7	18.3	14.1	19.1	14.6	15.5	18.4	21.2	14.5	15.9	17.8	15.4	17.4
16.4	19.8	17.7	17.5	17.2	17.8	19.2	18.8	12.6	18.4	13.8	14.1	17.2	21.7	14.3	18.3	16.4	18.2	15.9
18.8	19.9	15.8	19.1	17.8	19.0	22.6	22.0	15.2	19.5	15.4	15.0	16.0	19.9	16.0	17.6	16.1	16.9	17.5
21.6	23.7	18.7	21.2	21.4	21.4	22.3	20.2	18.9	22.9	19.0	19.6	20.4	22.7	20.2	19.5	21.2	19.8	20.8
18.0	22.4	19.6	19.0	19.0	21.2	20.9	19.3	14.4	19.7	15.0	17.2	19.0	22.2	14.0	16.0	17.4	17.6	18.2
16.9																		
17.3	19.8	17.7	17.5	17.7	17.8	19.6	19.5	12.9	18.2	13.4	14.1	17.3	21.5	14.8	17.7	16.2	18.4	16.5
19.2	20.7	18.8	18.9	20.2	18.6	21.3	19.6	15.6	21.4	15.5	16.5	20.7	22.6	14.3	17.1	18.3	20.2	18.1
14.7	18.9	20.5	18.4	17.5	18.3	20.8	19.8	16.0	18.2	15.9	14.4	17.3	21.7	15.4	17.4	17.0	17.5	15.9
20.0	18.8	23.2	21.4	20.2	22.0	21.9	22.0	18.6	20.8	19.7	19.2	21.0	22.4	19.0	20.5	22.3	22.3	20.9
	20.8																	

| $\mathbf{5 8}$ | $\mathbf{5 9}$ | $\mathbf{6 0}$ | $\mathbf{6 1}$ | $\mathbf{6 2}$ | $\mathbf{6 3}$ | $\mathbf{6 4}$ | $\mathbf{6 5}$ | $\mathbf{6 6}$ | $\mathbf{6 7}$ | $\mathbf{6 8}$ | $\mathbf{6 9}$ | $\mathbf{7 0}$ | $\mathbf{7 1}$ | $\mathbf{7 2}$ | $\mathbf{7 3}$ | $\mathbf{7 4}$ | $\mathbf{7 5}$ | $\mathbf{7 6}$ | $\mathbf{7 7}$ |
| :---: |
| 2.23 | 2.07 | 2.21 | 2.35 | 2.19 | 2.46 | 2.43 | 2.10 | 2.36 | 2.14 | 2.18 | 2.32 | 2.24 | 2.21 | 2.27 | 2.24 | 2.21 | 2.20 | 2.61 | 2.23 |
| 2.35 | 2.09 | 2.12 | 2.43 | 2.39 | 2.28 | 2.31 | 2.09 | 2.21 | 2.36 | 2.25 | 2.37 | 2.40 | 2.26 | 2.31 | 2.49 | 2.14 | 2.30 | 2.67 | 2.15 |
| 2.27 | 2.08 | 2.23 | 2.37 | 2.19 | 2.49 | 2.41 | 2.17 | 2.35 | 2.15 | 2.18 | 2.34 | 2.28 | 2.19 | 2.27 | 2.25 | 2.24 | 2.20 | 2.62 | 2.25 |
| 1.99 | 1.92 | 1.99 | 1.96 | 2.12 | 2.15 | 2.06 | 2.00 | 1.96 | 2.09 | 1.96 | 2.16 | 2.07 | 2.02 | 2.03 | 2.02 | 2.05 | 2.08 | 2.40 | 1.90 |
| 2.22 | 2.06 | 2.26 | 2.22 | 2.30 | 2.36 | 2.35 | 2.15 | 2.24 | 2.35 | 2.23 | 2.44 | 2.38 | 2.28 | 2.31 | 2.27 | 2.21 | 2.22 | 2.68 | 2.16 |
| 2.12 | 2.03 | 2.18 | 2.30 | 2.15 | 2.35 | 2.39 | 2.01 | 2.33 | 2.09 | 2.12 | 2.22 | 2.18 | 2.12 | 2.19 | 2.19 | 2.11 | 2.15 | 2.50 | 2.17 |
| 2.20 | 2.14 | 2.28 | 2.19 | 2.39 | 2.30 | 2.33 | 2.18 | 2.21 | 2.35 | 2.19 | 2.41 | 2.27 | 2.19 | 2.29 | 2.34 | 2.26 | 2.25 | 2.65 | 2.14 |
| 2.44 | 2.12 | 2.31 | 2.37 | 2.40 | 2.32 | 2.44 | 2.33 | 2.46 | 2.52 | 2.20 | 2.41 | 2.46 | 2.24 | 2.28 | 2.39 | 2.43 | 2.23 | 2.69 | 2.23 |

2.15	1.95	2.03	2.23	2.26	2.26	2.20	2.14	2.09	2.23	2.05	2.38	2.27	2.15	2.19	2.29	2.19	2.05	2.40	1.95
2.39	2.35	2.32	2.39	2.38	2.45	2.45	2.31	2.42	2.49	2.40	2.50	2.4	2.34	2.47	2.43	2.31	2.37	2.75	2.31
2.24	2.05	2.23	2.3	2.24	2.3	2.42	2.	2.3	2.	2.2	2.35	2.	2.	2.31	2.	2.23	2.32	2.56	2.14
2.25	2.12	2.29	2.27	2.38	2.33	2.34	2.26	2.2	2.40	2.	2.	2.	2.22	2.29	2.33	2.34	2.34	2.73	2.17
2.18	2.02	2.19	2.08	2.31	2.21	2.38	2.05	2.15	2.29	1.97	2.08	2.17	2.19	2.08	2.26	2.00	2.24	2.15	2.07
1.82	1.83	1.84	1.82	2.23	1.88	1.81	1.91	1.75	1.86	1.80	1.94	2.05	1.81	1.91	1.70	1.87	1.93	2.12	1.73
1.86	1.88	1.98	1.93	2.18	1.8	1.90	2.10	1.73	1.9	1.67	2.0	2.0	1.82	1.76	1.96	2.03	2.06	2.18	1.67
1.98	1.9	2.1	1.93	2.38	2.08	2.	2.	1.75	1.9	1.82	2.	1.9	1.95	1.93	2.0	2.01	2.05	2.45	1.81
1.9	2.	1.9	1.97	2.	1.	1.	2.	1.	1.	1.	1.	2.	1.	1.	1.	1	2.04	2	4
2.33	2.2	2.3	2.47	2.	2.	2.25	2.	2.	2.	2.	2.36	2.	2.	2.53	2.2	2.	2.29	2.	24
1	1.9	1.9	1.9	2.	1.	1.		1.	1.	1.		2.	2.0	2.	1.	1.92	2.	1.98	1.62
2	2.	2.0	2.	2.		2.		2.	2.	2.08		2.	2.09	2.16	2.26	2.04	2.25	2.29	2.07
2.03	2.0	1.9	2.	2.	1.	2.	2.	2.	2.	2.	2.	2.3	2.	2.16	2.13	1.99	2.03	2.15	1.97
2.32	2.4	2.3	2.3	2	2.	2.	2.	2	2.	2.	2.	2.	2	2.	2.3	2.43	2.	2.	2.10
2.21	1.9	1.97	1.97	2.0	1.	2.	2.	1.9	1.9	1.	2.	2.	2.0	1.	2.	2.	2.0	2.32	8
1.95	2.0	2.01	1.95	2.23	2.	2.	2.	1.9	1.9	1.8	2.	2.	1.9	1.9	2.0	2.25	2.3	2.	2.03
2.18	1.88	1.92	2.13	2.12	2.06	2.10	2.06	1.9	1.98	1.8	2.1	2.1	2.0	1.91	2.0	2.09	2.08	2.26	1.86
2.11	1.99	2.18	2.22	2.39	2.03	2.16	2.19	2.02	2.07	2.01	2.22	2.29	2.12	2.08	2.2	2.21	2.15	2.41	1.94
2.31	1.99	2.05	2.0	2.	2.03	2.	2.06	1.89	2.	1.96	2.16	2.30	2.18	2.08	2.11	2.06	1.97	2.32	1.98
1.98	1.91	1.92	1.9	2.	2.	2.	1.9	1.93	1.9	1.	2.02	1.98	2.00	1.81	2.08	1.96	2.34	2.18	1.96
2.18	1.	2.	1.9	2.	2.	2	2	2.	2.	1.99	2.	2.	2.03	2.08	2.03	2.12	2.26	2.12	1.98
2.26	2.20	2.18	2.	2.39	2.	2.2	2.00	2.	2.23	2.23	2.25	2.23	2.24	2.35	1.98	2.17	2.08	2.37	2.00
2.01	2.04	2.17	2.18	2.27	2.14	2.29	2.20	2.15	2.27	2.17	2.27	2.43	2.10	2.25	2.14	2.21	2.01	2.37	2.10
2.12	2.04	2.26	2.29	2.43	2.26	2.25	2.28	2.08	2.30	2.15	2.24	2.57	2.32	2.26	2.22	2.35	2.04	2.24	2.17
2.23	2.23	2.36	2.26	2.50	2.37	2.30	2.31	2.21	2.27	2.53	2.51	2.47	2.44	2.56	2.21	2.32	2.18	2.28	2.32
2.12	1.99	2.15	2.11	2.39	2.04	2.30	2.18	1.97	2.26	2.08	2.17	2.30	2.18	2.16	2.07	2.18	1.93	2.24	2.04

2.15	2.19	2.28	2.20	2.34	2.10	2.28	2.25	2.15	2.25	2.18	2.18	2.32	2.17	2.23	2.15	2.18	2.17	2.35	2.15
2.26	2.35	2.29	2.47	2.49	2.17	2.38	2.36	2.24	2.26	2.20	2.38	2.65	2.27	2.22	2.26	2.25	2.18	2.48	2.29
2.02	1.95	2.09	2.03	2.38	2.1	2.25	2.08	2.08	2.13	2.00	2.03	2.1	1.94	2.09	1.99	2.25	2.03	2.50	1.92
2.08	1.89	2.00	2.08	2.21	2.0	2.0	2.10	1.84	1.90	1.97	2.25	2.32	2.11	2.12	2.12	2.02	2.10	2.05	1.89
2.08	2.20	1.93	2.06	2.29	2.13	2.15	2.02	1.93	1.95	2.03	2.11	2.36	2.19	2.12	1.99	2.07	2.18	2.24	1.96
1.87	2.14	1.96	2.11	2.38	2.03	2.03	2.21	1.88	2.12	2.04	1.93	2.39	2.23	2.08	1.93	2.14	2.17	2.15	1.95
2.24	1.91	2.07	2.27	2.42	2.0	2.2	2.08	1.99	2.2	1.94	2.13	2.2	2.05	2.00	2.20	2.09	2.43	2.29	2.04
1.93	2.01	2.06	1.97	2.30	2.1	2.08	2.23	1.98	2.0	1.86	1.9	2.0	1.94	1.86	2.1	2.01	2.09	2.17	1.95
2.07	1.9	1.95	2.0	2.	1.9	2.	1.98	2.0	2.3	2.	2.	2.	2.0	2.2	2.	2.07	2.35	2.23	1.84
2.50	2.16	2.27	2.31	2.31	2.23	2.38	2.31	2.04	2.	2.25	2.31	2.09	2.09	2.39	2.34	2.25	2.34	2.41	2.23
2.23	2.08	1.98	2.15	2.3	2.	2.	2.01	2.03	2.0	2.	2.2	2.	2.	2.08	2.	2.06	2.38	2.	2.07
1.53	1.59	1.87	1.	2.	1.7		1.	1.5	1.6	1.	1.6	1.8	1.	1.7	1.	1.57	1.76	1.89	1.64
1.93	2.05	1.99	2.	2.04	2.	2.	2.	1.85	2.	1.67	2.06	2.0	1.97	1.8	2.	2.00	1.92	2.09	1.59
1.43	1.6	1.	1.	2.07	1.	1.	1.	1.	1.	1.	1.	1.7	1.	1.6	1.	1.50	1.79	1.75	1.56
1.50	1.73	1.89	1.6	2.09	1.8	1.6	1.8	1.5	1.6	1.6	1.8	1.9	1.7	1.7	1.	1.80	1.87	2.09	1.50
1.8	1.91	2.00	2.12	2.26	1.6	2.1	1.7	1.8	1.9	1.9	1.86	2.1	2.0	1.98	1.97	1.83	2.05	1.88	1.72
1.97	2.06	2.13	2.07	2.30	2.1	2.17	1.82	2.06	1.99	2.14	1.91	2.1	2.25	2.26	2.01	2.06	1.98	2.15	1.99
1.71	1.60	1.89	1.79	1.98	1.59	1.68	1.83	1.60	1.86	1.79	1.64	1.76	1.64	1.85	1.83	1.82	1.93	2.04	1.61
1.80	1.82	1.73	1.	1.89	1.9	1.8	2.01	1.70	2.0	1.51	1.80	2.0	1.80	1.64	1.72	2.01	1.99	2.06	1.65
1.88	2.03	1.90	1.83	2.	1.6	2.05	1.87	1.78	1.7	1.85	1.29	1.91	2.00	1.93	1.70	1.91	1.91	1.98	1.62
2.05	1.9	1.	2.	1.	1.	1.	1.	1.	2.	1.96	1.85	2.	1.97	2.06	1.	2.02	2.05	2.16	1.60
1.	1.8	1.8	1.	2.	1.	1.	1.	1.	1.	1.	1.8	2.	1.	1.96	1.	1.7	1.97	1.82	1.64
1.55	1.76	1.69	1.67	2.03	1.86	1.78	1.95	1.72	1.87	1.56	1.94	2.00	1.74	1.68	1.62	1.94	2.01	2.04	1.63
	1.69	1.89	1.77	2.13	1.68	1.69	1.54	1.67	1.72	1.69	1.74	1.88	1.75	1.76	1.43	1.54	1.84	1.89	1.54
13.90		1.77	1.62	1.80	1.80	1.70	1.73	1.65	1.76	1.73	1.78	1.87	1.65	1.79	1.71	1.82	1.99	1.92	1.70
16.31	16.32		1.90	1.78	2.01	1.76	1.90	1.73	1.89	1.72	1.86	2.10	1.85	1.77	1.79	1.84	2.10	2.14	1.60

13.25	12.24	16.01		2.06	1.86	1.75	1.89	1.73	1.80	1.71	1.83	1.96	1.83	1.78	1.69	1.78	2.06	2.01
18.32	16.02	14.51	17.95		2.21	2.12	2.22	2.00	2.05	1.98	2.17	2.18	1.96	2.05	1.86	2.01	2.24	2.19
12.32	15.02	16.93	15.15	18.97		1.88	1.75	1.69	1.88	1.76	1.65	2.01	1.73	1.79	1.72	1.70	1.97	1.85
13.31	14.34	15.15	14.89	19.40	15.19		1.89	1.67	1.81	1.91	1.90	2.15	1.72	1.97	1.79	1.79	2.17	1.99

11.0	14.5	16.2	14.6	19.5	12.6	15.4		1.60	1.74	1.96	1.78	1.76	1.78	2.04	1.64	1.51	1.93	1.96
14.0	15.5	15.9	14.7	18.2	14.2	15.2	13.1		1.72	1.65	1.73	1.77	1.75	1.73	1.59	1.80	1.90	1.81
13.4	15.0	16.1	14.8	17.8	14.6	14.8	12.7	14.2		2.00	1.97	1.92	1.76	2.07	1.75	1.70	2.04	1.90
13.8	15.4	14.5	14.0	16.7	14.5	17.2	16.7	14.5	17.4		1.75	1.81	1.67	0.46	1.79	1.83	1.97	1.95
1.51																		
12.9	15.2	15.7	14.4	19.0	12.4	16.4	12.9	14.4	15.6	15.6		1.70	1.80	1.84	1.78	1.84	1.89	1.89
15.0	16.7	18.4	16.2	19.6	17.3	19.1	13.4	15.8	15.5	16.5	12.2		1.68	1.90	2.09	1.76	2.07	2.06
13.2	14.2	15.7	15.1	16.4	13.3	13.3	13.1	15.2	13.6	13.4	13.3	12.0		1.73	1.87	1.79	1.96	2.04
13.8	15.8	14.3	14.2	16.6	14.3	17.0	17.2	14.9	17.7	2.07	15.5	16.9	13.8		1.90	1.94	2.06	2.06
9.47	14.1	15.6	13.0	15.8	13.5	14.9	11.7	13.6	13.5	15.4	13.2	17.4	14.3	15.9		1.82	2.04	1.77
11.2	15.7	15.7	13.3	17.3	12.8	15.1	11.2	15.5	13.5	16.2	14.5	13.5	13.9	16.7	13.9		1.97	1.88
15.6	18.6	19.6	18.0	21.3	16.7	19.8	16.1	17.9	18.1	18.4	15.9	18.4	17.8	18.9	18.1	17.1		2.15
2.01																		
14.1	16.7	18.3	16.4	19.3	14.6	17.1	15.6	14.9	14.8	16.3	15.1	17.2	17.1	17.1	13.2	15.0	19.0	
10.4	12.5	12.5	11.2	14.8	8.59	13.5	11.9	12.0	13.3	11.8	11.2	14.5	13.0	12.6	10.1	11.9	16.9	12.9
1.88	14.5	17.0	13.8	17.7	11.4	12.8	11.6	13.7	14.0	14.6	13.5	15.0	13.2	14.6	9.78	11.3	15.5	13.1
19.6	18.3	17.3	17.2	17.3	18.6	20.8	17.8	17.1	18.9	17.0	18.9	21.9	19.5	17.3	18.4	19.1	18.8	19.2
20.7	22.4	21.5	21.3	21.5	20.4	20.2	19.8	19.9	19.2	21.7	20.7	21.9	21.2	21.3	22.1	20.2	21.5	22.7
20.0																		
19.6	23.5	21.6	22.1	23.4	20.2	23.0	18.8	20.9	18.5	20.9	19.1	20.0	19.7	21.0	21.7	20.0	20.5	20.9
19.8																		
22.6	24.5	21.9	22.1	23.8	23.5	23.2	23.3	22.3	22.9	24.1	23.6	23.9	23.8	24.1	23.6	22.0	24.0	23.9
22.3																		
13.2	13.5	15.2	15.1	16.0	14.5	15.5	14.5	16.1	13.5	15.4	16.7	15.9	12.7	15.8	14.3	15.8	18.8	17.1
17.5	21.0	20.1	20.1	20.8	18.1	19.1	17.5	18.6	18.8	19.3	20.1	21.3	19.2	19.6	18.4	18.2	20.2	20.6
16.5																		
18.5	20.4	20.4	21.1	21.1	18.6	18.1	16.3	17.6	17.6	19.9	17.7	19.3	17.1	20.6	18.1	20.1	17.9	21.8
17.8																		

18.0	21.0	21.5	19.6	21.7	17.6	18.0	17.	18.0	19.	19.4	19.5	20.1	19.2	19.6	17.7	18.5	21.2	18.8	17.1
20.0	20.6	21.9	18.7	23.4	17.	20.7	19.3	20.4	19.	20.3	17.8	22.4	21	20.8	18.1	19.5	19.8	18.8	17.5
18.4	20.6	19.6	17.3	20.7	17.9	19.7	17.2	16.9	18.4	17.9	18.1	18.5	18.1	17.9	20.3	17.2	17.9	23.1	16.0
17.6	21.0	19.3	18.6	22.2	22.5	21.7	20.6	19.1	20.4	18.9	20.8	23.0	20.8	19.0	17.1	21.0	21.3	22.8	19.3
21.1	19.3	21.4	19.1	21.8	21.9	23.6	20.1	20.1	21.9	18.4	22.	20.9	20.4	18.1	22.5	21.5	23.8	20.2	18.8
19.5	22.5	20.2	20.9	20.9	22.8	21.6	23.2	19.	21.	20.3	24.	24.5	22.2	20.4	21.8	21.5	23.1	22.8	21.3
18.6	20.7	20.3	16	20.1	20.	21.9	19.8	19.2	19.2	19.8	20.9	22.2	21.	19.3	20.1	20.4	22.0	20.9	17.6
17	21.	19.3	18	22.2	22	21.7	20	19	20	18.9	20.	23	20.	19	17.1	21.0	21	22.8	19.3
21.	23	2		22	23.0	20.8	22				23	24.8	22	21.2	20.	21.8	23.6	22.8	21.1
20.7	21.6	19.1	22	22.8	21	21.5	20.	19.5	20.3	21.2	23.0	23.2	21.7	20.8	19.9	21.5	23.4	23.1	21.1
22.0	20.7	22.1	22	21.9	22.	23.6	22.	22	22.	19.9	23	25.5	22.	20	21.9	23.5	25.0	22.0	20.2
24.9	23.2	22.8	24	23	23	23.	25	23	24	20	26	26.	2	21	25	24	25.6	24.4	22.9
20.2	21.9	20.2	19	22	21	21	20	19	19	20.	22	25	2	21	18	22	24	21.0	19.3
22.2	21.3	19.9	21	22	23	20.8	24	21	23	19.8	24	25	22	19	23	24	23.6	22.8	20.9
20.9	19.5	19.8	20.8	22.4	21.	22.	20.	19.5	20.	19.0	21.	20.8	20.	18	21	20.6	23.7	19.6	19.3
20.7	20.3	21.1	23.1	20.3	24	23.5	20.4	20.2	22.	20.5	21.8	21.9	23.1	20.3	20.3	22.0	24.4	20.2	21.3
20.2	23.5	27.3	22.2	24.9	21.7	23.1	22.5	22.2	23.6	22.3	22.6	24.5	19.4	23.0	22.1	22.1	22.8	22.6	23.0
21.9	23.3	23.9	21	25	2	22	2	21	2	20.6	23	25.9	22.	21.2	22.9	25.0	24.0	23.2	22.7
18.8	21.	21	20	20.6	23	21	21	19	20	20	2	22.5	21.	20.7	17	22.8	22.6	21.1	18.0
18.3	19.4	14.9	17	19	16	18.5	17	19.3	16	18.3	19	17.7	17.8	18.5	20.6	16.6	19.3	18.6	16.8
17.7	18.2	14.0	16	17.5	16	16.8	18	18.5	15	16.4	18.3	17.1	18.4	16.3	17.2	18.4	18.8	17.1	15.1
19.5	21.6	19.1	20.8	22.8	20.3	21.7	19.7	18.2	19.1	18.9	20.3	22.5	20.5	19.0	18.8	20.7	22.0	21.4	18.8
13.9	14.9	15.5	14.9	16.8	16.6	16.6	17.1	14.7	15.7	12.6	16.1	17.6	14.8	13.1	14.4	16.9	17.4	17.4	11.7
18.3	14.4	15.1	14.5	17.5	16.5	18.1	15.4	17.3	17.8	15.2	16.0	16.7	14.7	15.6	17.1	16.9	19.8	21.3	13.7
13.4	15.6	16.6	15.6	15.0	17.0	16.7	16.5	16.8	15.0	15.3	15.2	16.1	13.0	15.5	15.4	14.3	18.9	18.8	13.9
15.5	16.7	15.9	16.1	20.3	16.2	18.6	17.6	16.0	17.8	16.1	17.1	20.3	18.2	16.3	15.7	16.9	17.6	19.0	13.8

19.2	20.0	21.2	20.4	21.6	19.9	20.4	20.9	20.3	20.5	17.9	20.9	19.8	17.5	18.0	21.0	19.5	21.5	24.6
19.5																		
15.2	18.0	17.1	17.5	19.5	15.3	17.2	17.7	16.1	17.8	16.6	17.9	20.6	18.2	16.6	16.1	18.6	18.4	19.0
13.1	15.8	16.6	15.4	16.2	16.8	17.4	16.6	16.9	15.5	15.4	15.1	15.7	13.6	15.6	15.3	14.3	18.1	18.6
17.3	16.8	17.9	16.5	20.2	15.3	17.5	17.3	16.8	18.2	15.4	18.4	18.1	15.6	15.5	17.6	19.0	22.3	21.1
17.0	15.0	17.8	14.6	18.8	16.3	17.3	17.8	16.5	16.6	15.3	17.3	19.0	15.5	15.7	18.4	17.9	19.6	19.1
18.9	19.2	19.9	19.8	23.4	20.3	19.6	20.2	21.1	18.4	21.3	21.5	21.7	19.5	21.6	21.3	18.9	22.8	21.8

78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97
2.27	2.31	2.47	2.37	2.43	1.99	2.41	2.21	2.25	2.61	2.18	2.45	2.45	2.48	2.42	2.45	2.60	2.43	2.51	2.68
2.36	2.44	2.50	2.35	2.40	2.08	2.39	2.28	2.37	2.58	2.15	2.41	2.30	2.58	2.75	2.41	2.49	2.43	2.61	2.77
2.3	2.35	2.52	2.38	2.4	1.99	2.	2.23	2.28	2.66	2.21	2.	2.46	2.50	2.45	2.	2.62	2.45	2.56	2.71
2.01	2.1	2.14	2.	2.	1.	2.15	2.0	2.	2.3	2.	2.	2.	2.	2.36	2.22	2.	2.	2.22	7
2.24	2.32	2.58	2.40	2.5	2.	2.45	2.23	2.38	2.60	2.	2.3	2.	2.5	2.60	2.3	2.51	2.54	2.51	2.85
2.16	2.32	2.39	2.30	2.39	1.94	2.37	2.16	2.23	2.52	2.15	2.34	2.33	2.42	2.46	2.34	2.56	2.38	2.40	2.64
2.23	2.32	2.40	2.28	2.42	2.01	2.46	2.31	2.3	2.58	2.18	2.45	2.32	2.5	2.63	2.45	2.66	2.50	2.51	2.79
2.50	2.3	2.65	2.45	2.6	2.12	2.7	2.3	2.3	2.5	2.2	2.5	2.	2.5	2.	2.5	2.	2.6	2.49	2.75
2.15	2.2	2.5	2.3	2.	1.89	2.	2.2	2.	2.4	2.	2.2	2.	2.3	2.	2.2	2.	2.3	2.38	2.56
2.45	2.39	2.5	2.36	2.6	2.26	2.	2.4	2.3	2.67	2.3	2.3	2.	2.6	2.72	2.30	2.61	2.36	2.53	2.91
2.23	2.26	2.52	2.4	2.40	2.00	2.5	2.29	2.32	2.63	2.27	2.4	2.	2.49	2.48	2.4	2.67	2.48	2.54	2.72
2.27	2.35	2.42	2.35	2.43	2.05	2.52	2.38	2.42	2.67	2.25	2.	2.32	2.51	2.71	2.44	2.67	2.50	2.48	2.82
2.22	2.20	2.	2.2	2.	2.	2.40	2.3	2.28	2.	2.28	2.59	2.46	2.4	2.57	2.59	2.74	2.64	2.43	2.45
1.83	2.1	2.	2.2	2.2	1.8	2.	2.04	1.8	2.00	1.89	2.05	2.	2.	2.18	2.05	2.21	2.31	2.12	2.38
1.86	2.12	2.09	2.27	2.39	1.82	2.26	2.17	1.95	2.08	2.0	2.20	2.24	2.1	2.28	2.20	2.35	2.36	2.29	2.43
1.94	2.19	2.16	2.35	2.21	2.00	2.46	2.14	2.13	2.20	1.88	2.19	2.10	2.36	2.17	2.18	2.23	2.32	2.27	2.41
1.99	2.37	2.07	2.36	2.27	1.84	2.26	2.31	2.12	2.18	2.17	2.30	2.39	2.13	2.33	2.30	2.50	2.36	2.17	2.44
2.26	2.36	2.40	2.70	2.62	2.24	2.69	2.31	2.26	2.43	2.38	2.67	2.66	2.51	2.69	2.67	2.53	2.62	2.54	2.65

1.75	2.10	2.08	2.29	2.20	1.93	2.03	2.02	1.93	1.89	2.08	2.29	2.48	2.24	2.29	2.29	2.29	2.46	2.34	2.59
2.19	2.20	2.12	2.17	2.31	2.05	2.33	2.37	2.07	2.35	2.24	2.53	2.27	2.36	2.46	2.52	2.61	2.66	2.23	2.46
2.06	2.33	2.21	2.09	2.0	2.0	2.32	2.2	2.	2.	2.	2.5	2.	2.	2.	2.50	2.	2.47	2.	2.59
2.32	2.23	2.61	2.62	2.43	2.36	2.	2.61	2.14	2.32	2.24	2.	2.52	2.74	2.48	2.67	2.80	2.62	2.52	2.80
2.19	2.07	2.03	2.26	2.15	1.89	2.16	2.26	2.09	2.25	1.99	2.12	1.85	2.12	2.16	2.12	2.19	2.34	2.06	2.19
2.02	2.19	2.22	2.11	2.38	1.98	2.24	1.96	2.10	2.15	2.20	2.37	2.34	2.27	2.37	2.37	2.35	2.40	2.28	2.44
2.20	2.1	2.1	2.30	2.	1.93	2.38	2.18	2.12	2.	2.08	2.	2.16	2.17	2.41	2.21	2.30	2.34	2.21	2.29
2.1	2.26	2.2	2.2	2.33	2.	2.3	2.38	2.20	2.	2.	2.33	2.1	2.34	2.5	2.32	2.46	2.45	2.31	2.32
2	2.	2.0	2.	2.	1.	2.	2.	2.	2.	2	2.20	2.17	2.	2.30	2.20	2.34	2.	2.18	9
2	2.2	2.	2.3	2	1.	2.	2.21	2.0	2.	2	2.	2.11	2.	2.32	2	2.47	2.	2.2	2.47
2.26	2.09	2.3	2.3	2.2	1.8	2.	2.	1.9	1.9	2.	2.	2	2.	2.16	2.	2.2	2.40	2.	2.34
2.26	2.0	2.2	2.	2.		2.	2.		2.		2.	2.35	2.		2.30	2.36	2.18	2.45	2.64
2.10	2.2	2.2	2.	2.	2.	2.35	2.2	2.	2.28	2.28	2.23	2.30	2.39	2.	2.23	2.35	2.38	2.37	2.50
2	2.20	2.3	2.	2.	2.	2.	2.	2.	2.	2	2.	2.	2.	2.	2.	2.	2.45	2.29	2.49
2.21	2.2	2.4	2.2	2.	2.3	2.	2.5	2.	2.	2.	2.	2.4	2.	2.3	2.	2.6	2.	2.5	2.60
2.1	2.0	2.27	2.39	2.29	2.0	2.32	2.3	2.0	2.2	2.	2.2	2.2	2.	2.1	2.23	2.3	2.24	2.28	2.50
2.19	2.28	2.30	2.39	2.2	2.25	2.4	2.3	2.1	2.26	2.18	2.36	2.43	2.5	2.3	2.36	2.58	2.34	2.42	2.55
2.23	2.34	2.58	2.25	2.38	2.25	2.62	2.4	2.25	2.48	2.17	2.48	2.70	2.29	2.23	2.48	2.53	2.56	2.59	2.70
2.07	2.25	2.15	2.	2.	1.8	2.	2.3	2.17	2.35	2.17	2.17	2.18	2.32	2.24	2.17	2.34	2.44	2.40	2.56
2.07	2.09	2.20	2.	2.	1.8	2.	2.22	2.09	2.21	2.23	2.21	2.36	2.16	2.32	2.21	2.35	2.40	2.12	2.31
2.	2.	2.	2	2.	1.	2.	2.	1.	2	2.	2.	2.	2.	2.25	2.26	2.4	2.39	2.35	2.26
1.8	2.	2.	2.	2.	2	2.	2.	2.	2.33	2.16	2.30	2.59	2.33	2.38	2.30	2.54	2.35	2.44	2.71
2.21	2.12	2.20	2.46	2.32	2.15	2.45	2.26	2.15	2.42	2.26	2.47	2.33	2.25	2.56	2.47	2.50	2.35	2.37	2.52
1.96	2.22	2.22	2.33	2.26	1.91	2.27	2.42	2.06	2.23	2.06	2.29	2.41	2.25	2.25	2.28	2.54	2.47	2.43	2.64
2.12	2.08	2.30	2.48	2.28	2.22	2.33	2.27	2.14	2.37	2.19	2.38	2.42	2.44	2.47	2.38	2.65	2.48	2.51	2.73
2.51	2.21	2.34	2.26	2.37	2.06	2.43	2.35	2.17	2.42	2.28	2.41	2.37	2.33	2.45	2.41	2.55	2.52	2.29	2.40

2.31	2.17	2.22	2.36	2.33	1.81	2.19	2.31	2.09	2.07	2.28	2.18	2.18	2.12	2.16	2.18	2.26	2.20	2.16	2.35
1.58	1.95	2.10	2.07	2.06	1.71	2.13	2.06	1.81	2.14	1.93	2.11	2.23	2.22	2.09	2.10	2.43	2.26	2.27	2.64
1.95	1.97	2.25	2.25	2.	2.02	1.93	2.18	2.02	2.31	2.09	2.30	2.32	2.25	2.18	2.30	2.48	2.51	2.27	2.43
1.	1.9	1.9	1.	2.	1.	2.	2.00	1.80	2.15	1.	2.	2.17	2	1.97	2.	2.	2	2.20	53
1.5	2.00	2.06	2.16	2.29	1.80	2.05	1.8	1.9	2.2	1.88	2.	2.2	2.	2.	2.16	2.21	2.36	2.23	2.46
1.8	1.96	2.30	2.18	2.03	2.08	2.10	2.16	1.88	2.0	2.16	2.	2.44	2.	2.	2.50	2.5	2.60	2.29	2.55
2.12	2.07	2.17	2.26	2.30	1.99	2.28	2.20	2.06	2.10	2.32	2.42	2.44	2.47	2.42	2.42	2.68	2.63	2.40	2.57
1.	2.1	2.16	2.	2.3	1.9	2.33	1.9	2.12	2.	2.08	2.	2.	2.32	2.12	2.23	2.	2.	2.3	2.53
1.8	1.9	2.	2.44	2.	1.	2.	1.	1.	2.	1.	2.	2.14	2.	2.23	2.	2.20	2.18	2.02	5
1.	1.97	2.	2.	2.	1.	2.	1.	2.	2	2.	2.	2.52	2	2.11	2	2.	2.55	2.43	8
2.	1.8	2.	2.47	2.	1.	2.	2.	1.	2.	1.	2.	2.29	2.	2.18	2.	2.24	2	6	2
1.	2.0	2.	2.	2.	1.	1.9	2.	1.	2.	1.9	2.	2.	2.	2.13	2.16	2.34	2.42	2.23	2.45
1.5	2.0	2.	2.	2.	1.8	2.	1.9	1.	2.	1.9	2.	2.	2	2.22	2.23	2.36	2.36	2.36	2.40
0.5	2.2	2.	2.	2.	1.	1.	2.	1.	2.	1.9	2.	2.	2.	2	2.	2.40	2.29	2.27	2.56
1.	1.	2.	2	2.	1.	2.	2	2	2	2	2.	2	2	2	2.	2.35	2.16	2.06	8
1.9	1.97	2.	2.	2.	1.	2.	2.	2.	2.	2.	2.	2.	2.	2.	2.	2.	2.15	2.24	2.42
1.8	2.07	2.	2.	2.	1.	2.	2.	1.	2.	1.	2.	2.	2.	1.	2.	2.3	2.34	2.22	2.53
2.	2.10	2.	2.	2.	1.9	2.32	2.2	2.18	2.5	2.16	2.3	2.	2.25	2.27	2.37	2.4	2.48	2.2	2.52
1.6	2.17	2.13	2.1	2.26	1.89	2.05	2.10	1.86	2.0	1.9	2.40	2.32	2.35	2.30	2.39	2.48	2.35	2.31	2.44
1.6	2.25	2.1	2.	2.	1.	2.	2.0	1.8	2.	2.	2.32	2.39	2.14	2.	2.32	2.22	2.27	2.37	2.48
1.59	2.08	2.08	2.0	2.18	1.8	2.05	1.9	1.8	2.	1.95	2.25	2.19	2.29	2.18	2.25	2.40	2.27	2.30	2.63
1.6	1.8	2.07	2.	2.	1.8	2.	1.8	1.80	2.	1.	2.	2.06	1.93	2.01	2.01	1.88	2.03	2.19	2.31
1.7	2.1	1.99	1.9	2.19	1.80	2.1	2.	2.04	2.25	2.01	2.26	2.36	2.16	2.15	2.26	2.48	2.34	2.30	2.57
1.77	2.00	2.10	2.06	2.23	1.86	2.06	2.17	1.94	2.17	1.90	2.11	2.00	2.08	2.16	2.10	2.30	2.22	2.02	2.24
1.81	2.14	2.12	2.00	2.26	1.99	2.17	1.97	2.00	2.01	1.91	2.28	2.35	2.36	2.25	2.27	2.45	2.47	2.29	2.53
1.89	2.32	2.15	2.02	2.25	1.90	2.32	2.15	2.05	2.32	1.94	2.45	2.15	2.37	2.34	2.45	2.48	2.40	2.32	2.54

1.76	2.18	2.16	2.06	2.25	1.74	2.20	1.95	1.98	2.32	1.96	2.25	2.16	2.21	2.29	2.25	2.41	2.33	2.26	2.52
1.84	2.08	2.11	2.10	2.25	1.94	2.10	2.27	2.00	2.26	1.94	2.21	2.04	2.14	2.18	2.21	2.39	2.25	2.08	2.30
1.46	2.05	2.26	2.25	2.20	1.88	2.05	2.07	1.80	2.07	2.09	1.98	2.30	2.18	2.14	1.98	2.34	2.18	2.22	2.50
1.53	2.18	2.04	2.06	2.08	1.92	2.10	2.17	1.93	2.18	1.92	2.32	2.29	2.16	2.26	2.32	2.34	2.32	2.32	2.49
1.86	2.09	2.20	2.16	2.19	2.10	2.12	1.99	2.06	2.16	1.87	2.23	2.41	2.29	2.24	2.23	2.39	2.42	2.35	2.49
1.80	2.16	2.34	2.19	2.29	2.14	2.24	2.32	1.99	2.09	2.33	2.40	2.18	2.38	2.31	2.40	2.38	2.48	2.28	2.55
1.48	1.80	2.08	2.10	2.15	1.69	1.93	1.99	1.81	2.04	1.80	2.20	2.12	2.20	2.08	2.20	2.31	2.38	2.14	2.43
	2.30	2.18	2.04	2.20	1.72	1.99	2.10	1.85	2.27	1.94	2.17	2.35	2.10	2.15	2.17	2.43	2.34	2.31	2.57
20.6		2.28	2.26	2.21	2.06	2.	2.22	1.89	2.13	2.21	2.4	2.37	2.23	2.26	2.43	2.62	2.54	2.48	2.62
21.0	23.0		2.22	2.02	1.91	2.47	2.36	2.19	2.38	2.33	2.46	2.31	2.32	2.31	2.46	2.51	2.33	2.36	2.49
19.6	22.1	23.3		2.24	2.2	2.31	2.32	2.18	2.4	2.18	2.52	2.36	2.48	2.33	2.52	2.62	2.43	2.63	2.67
23.1	23.9	22.6	24		2.15	2.24	2.49	2.14	2.29	2.34	2.46	2.46	2.33	2.22	2.46	2.38	2.41	2.59	2.53
13.2	17.5	18.8	23.0	22.3		2.08	2.16	1.80	2.1	2.18	2.21	2.30	2.05	2.08	2.21	2.51	2.37	2.11	2.44
17.9	19.9	24.3	24.1	24.4	17.8		2.1	1.5	1.9	1.95	2.5	2.53	2.36	2.54	2.54	2.55	2.55	2.39	2.69
18.5	20.3	23.2	24.1	27.5	18.7	19.3		2.1	2.0	1.8	2.3	2.55	2.3	2.49	2.39	2.43	2.55	2.50	2.41
18.0	18.7	23.9	23.8	24.4	16.8	12.8	20.5		1.7	2.01	2.3	2.35	2.19	2.29	2.37	2.38	2.38	2.31	2.50
21.1	18.3	24.0	25.2	24.9	18.8	15.8	17.7	17.1		2.07	2.51	2.46	2.40	2.52	2.51	2.49	2.51	2.53	2.67
18.3	21.0	25.1	23.1	26.2	20.0	18.0	17.3	20.0	19.0		2.27	2.24	2.23	2.25	2.27	2.24	2.38	2.34	2.47
18.2	23.9	25.1	25.2	26.9	19.6	24.8	23.9	25.8	25.0	23.4		1.76	1.85	1.66	0.01	1.88	1.87	1.95	2.20
21.4	21.9	24.0	23.8	27.1	20.7	25.2	26.0	25.3	24.4	23.2	13.1		1.98	1.88	1.76	1.65	1.79	1.84	2.14
19.6	22.1	24.0	26.7	26.0	19.2	23.6	23.9	24.0	23.8	23.7	16.8	16.8		1.78	1.85	1.88	1.96	1.94	2.13
18.6	21.1	23.8	23.6	23.7	18.3	24.3	25.5	24.0	25.2	22.6	11.5	14.1	14.7		1.66	1.93	2.14	1.95	2.22
18.2	23.9	25.1	25.1	26.9	19.5	24.8	23.9	25.8	25.0	23.4	0.01	13.1	16.8	11.5		1.88	1.87	1.95	2.20
21.5	26.4	26.3	26.2	26.8	24.4	24.9	23.8	25.3	24.3	22.4	14.5	11.5	15.7	14.9	14.5		1.90	2.02	2.11
21.3	24.0	23.5	24.1	26.5	21.4	24.4	25.3	24.7	23.4	23.9	14.8	13.7	17.5	17.3	14.7	15.1		2.19	2.34
22.2	25.5	25.6	29.5	29.7	19.9	23.8	26.5	25.7	26.2	25.6	17.9	17.5	18.8	17.6	17.9	19.3	21.6		1.77

24.9	25.6	26.6	28.6	28.3	22.3	26.7	23.8	26.2	25.9	25.1	20.1	19.6	20.1	20.2	20.1	19.7	21.6	15.0
20.8	23.1	26.4	24.3	26.1	21.2	23.3	25.4	23.1	24.1	24.0	14.4	12.3	15.2	14.3	14.4	10.0	14.6	18.6
22.2	24.1	26.1	26.1	27.1	19.0	23.4	25.3	23.6	25.3	24.4	16.1	17.6	16.7	17.1	16.1	17.4	18.5	15.4
21.2	22.1	26.0	23.8	24.0	19.0	23.4	23.4	23.8	23.3	22.8	15.2	11.0	16.0	14.3	15.2	15.2	15.8	17.5
21.3	21.6	26.4	28.4	25.3	21.7	24.9	24.4	24.5	23.6	25.1	18.0	14.3	17.6	17.1	18.0	16.4	17.2	20.6
20.5	22.3	27.6	25.5	29.3	22.0	27.1	23.5	27.2	24.3	24.3	19.0	17.3	14.1	17.5	19.0	17.0	20.0	20.8
22.2	24.4	29.5	27.3	29.1	22.4	25.2	28.0	24.0	27.5	25.5	17.8	16.5	17.6	17.9	17.8	17.1	21.5	19.7
18.7	21.9	24.4	23.8	25.6	18.8	23.5	24.0	24.3	26.7	26.6	13.4	14.7	17.9	10.4	13.3	15.8	16.7	16.5
18.8	19.1	21.9	20.0	22.8	17.1	23.0	20.2	20.9	20.5	21.1	25.6	23.1	24.9	22.9	25.6	26.2	25.5	24.6
18.5	17.3	21.1	22.8	23.7	15.6	18.3	20.9	19.0	17.3	21.5	23.2	21.8	22.6	21.4	23.2	25.9	21.8	25.2
20.0	19.3	25.3	22.5	26.9	19.4	24.3	20.7	21.5	20.7	22.1	20.1	22.3	19.6	20.3	20.1	23.4	23.0	26.5
13.9	17.6	20.3	21.2	24.3	12.4	17.7	18.7	18.5	20.2	17.2	18.7	18.0	18.4	19.4	18.7	20.7	20.2	20.0
18.5	17.2	21.3	19.2	23.6	15.3	20.2	18.4	20.5	22.1	17.9	22.7	19.9	24.7	23.5	22.7	22.4	21.6	24.0
13.2	18.9	19.2	18.3	21.4	14.2	21.9	18.3	21.7	19.6	19.2	20.6	21.7	21.0	21.1	20.5	24.2	22.0	25.2
26.0																		
15.0	19.2	23.5	20.7	23.0	16.2	18.7	19.4	20.5	19.6	16.3	20.9	22.3	21.8	21.9	20.9	22.8	22.9	23.9
19.4																		
19.1	21.5	23.5	23.8	23.7	18.9	22.7	23.8	22.9	22.1	20.1	23.4	22.7	22.7	23.3	23.4	24.8	23.5	27.4
15.2	19.4	20.8	21.5	23.2	15.9	19.9	21.8	21.7	22.5	20.2	21.7	22.1	23.4	20.2	21.6	21.6	22.4	24.2
24.4																		
12.8	19.2	19.3	18.3	21.5	14.8	22.0	18.0	21.6	21.0	19.0	21.0	21.3	21.3	20.1	21.0	23.6	22.0	24.7
26.3																		
17.4	20.8	20.3	19.3	23.3	17.1	22.5	23.1	22.3	21.9	20.5	21.4	21.2	22.3	22.2	21.4	21.0	21.8	23.1
16.2	18.9	21.0	22.7	23.4	14.9	19.8	20.0	19.5	22.9	18.9	22.7	21.3	22.0	20.2	22.7	23.2	23.5	22.0
25.3																		
19.9	22.1	22.3	21.7	22.0	19.3	22.5	19.8	23.8	21.4	21.9	25.7	24.2	22.9	22.1	25.7	24.3	23.7	26.8
26.1																		

98	99	$\mathbf{1 0 0}$	$\mathbf{1 0 1}$	$\mathbf{1 0 2}$	$\mathbf{1 0 3}$	$\mathbf{1 0 4}$	$\mathbf{1 0 5}$	$\mathbf{1 0 6}$	$\mathbf{1 0 7}$	$\mathbf{1 0 8}$	$\mathbf{1 0 9}$	$\mathbf{1 1 0}$	$\mathbf{1 1 1}$	$\mathbf{1 1 2}$	$\mathbf{1 1 3}$	$\mathbf{1 1 4}$	$\mathbf{1 1 5}$	$\mathbf{1 1 6}$
$\mathbf{1 1 1 7}$																		
2.50	2.47	2.49	2.38	2.68	2.72	2.57	2.19	2.31	2.66	2.12	1.98	2.16	2.18	2.28	2.34	2.09	2.40	2.24
2.5																		
2.41	2.57	2.32	2.28	2.71	2.72	2.73	2.25	2.32	2.70	2.09	2.06	2.33	2.11	2.38	2.43	2.28	2.42	2.38
2.53	2.50	2.50	2.39	2.68	2.71	2.58	2.19	2.32	2.67	2.11	2.02	2.17	2.19	2.32	2.35	2.11	2.43	2.27

2.29	2.26	2.13	2.25	2.38	2.40	2.12	2.03	2.07	2.41	1.75	1.79	1.98	1.85	1.95	2.09	1.94	2.06	1.86	2.1
2.38	2.53	2.42	2.40	2.62	2.62	2.55	2.26	2.27	2.82	2.02	2.04	2.17	2.13	2.24	2.47	2.14	2.36	2.31	2.4
2.50	2.44	2.39	2.31	2.55	2.67	2.55	2.15	2.30	2.53	2.02	2.03	2.10	2.17	2.31	2.27	2.05	2.36	2.22	2.4
2.57	2.59	2.42	2.46	2.51	2.61	2.4	2.26	2.28	2.6	1.98	1.9	2.25	2.11	2.15	2.33	2.18	2.26	2.18	2.4
2.58	2.56	2.58	2.44	2.52	2.48	2.72	2.37	2.32	2.81	2.13	2.07	2.40	2.26	2.40	2.27	2.30	2.40	2.34	2.6
2.33	2.40	2.31	2.30	2.48	2.41	2.44	2.23	2.16	2.58	1.86	1.97	2.17	2.03	2.15	2.14	2.11	2.25	2.07	2.4
2.59	2.65	2.55	2.48	2.65	2.70	2.64	2.41	2.49	2.90	2.17	2.06	2.42	2.23	2.38	2.38	2.39	2.44	2.41	2.6
2.52	2.57	2.50	2.4	2.55	2.81	2.53	2.21	2.29	2.61	2.11	2.02	2.22	2.14	2.23	2.41	2.15	2.37	2.20	2.5
2.56	2.5	2.4	2.4	2.5	2.6	2.	2.3	2.3	2.	2.	1.99	2.	2.12	2.2	2.37	2.18	2.34	2.20	2.4
2.5	2.5	2.4	2.5	2.	2.8	2.	2.	2.2	2.39	2.0	2.08	2.	1.96	2.59	2.34	2.2	2.44	2.13	2.2
2.04	2.27	2.30	2.3	2.	2.3	2.3	1.8	1.9	2.07	1.6	1.	1.	1.82	2.	2.01	1.80	1.89	1.87	. 9
2.28	2.32	2.27	2.36	2.44	2.35	2.33	2.1	2.1	2.09	1.7	1.88	1.85	1.84	2.16	1.87	1.82	1.83	2.01	2.2
2.40	2.38	2.22	2.29	2.39	2.	2.19	2.09	2.20	2.	1.95	1.85	2.00	1.94	2.23	1.87	1.93	1.92	2.12	2.2
2.41	2.37	2.29	2.55	2.52	2.4	2.3	2.06	1.93	2.2	1.88	1.96	1.95	2.05	2.21	2.04	1.96	1.98	2.09	2.2
2.6	2.	2.	2.5	2.	2.	2.	2.	2.	2.	2.	2.	2.	2.29	2.	2.27	2.27	2.44	2.34	2.4
2.32	2.3	2.3	2.3	2.	2.5	2.	2.	2.	2.	2.0	1.	2.00	1.92	2.29	1.95	2.01	2.03	2.00	2.2
2.39	2.50	2.5	2.68	2.	2.6	2.	2.0	2.1	2.48	2.12	2.03	2.10	2.07	2.33	2.28	2.11	2.29	2.09	2.2
2.47	2.51	2.4	2.57	2.76	2.77	2.	2.00	2.02	2.35	1.95	2.21	2.18	1.84	2.34	2.33	2.16	2.38	2.05	2.1
2.61	2.52	2.62	2.55	2.91	2.81	2.58	2.36	2.40	2.59	2.24	2.29	2.44	2.09	2.33	2.38	2.44	2.39	2.28	2.5
2.05	2.20	2.05	2.19	2.34	2.23	2.22	1.99	2.04	2.25	1.66	1.65	1.97	1.89	2.12	1.92	1.94	2.05	1.85	2.1
2.22	2.41	2.41	2.35	2.39	2.37	2.41	2.02	2.08	2.36	1.93	1.90	2.12	2.07	2.17	2.09	2.01	1.84	1.98	2.2
2.27	2.26	2.1	2.27	2.51	2.42	2.22	2.01	2.17	2.44	1.83	1.84	1.97	1.93	2.23	2.06	1.96	1.99	1.97	2.2
2.22	2.27	2.24	2.37	2.58	2.45	2.60	2.05	2.39	2.44	1.96	1.88	1.98	1.94	2.28	1.95	1.98	2.20	1.97	2.3
2.20	2.18	2.12	2.40	2.53	2.48	2.42	2.09	2.21	2.29	2.00	1.81	1.99	1.92	2.26	2.03	1.98	2.19	2.03	2.1
2.42	2.40	2.21	2.49	2.60	2.64	2.15	1.99	1.95	2.14	1.92	1.97	1.92	2.01	2.27	2.09	1.93	2.08	1.94	2.2
2.27	2.23	2.17	2.28	2.35	2.51	2.27	2.11	2.01	2.02	1.94	2.03	2.03	2.05	2.36	2.15	2.03	2.23	2.10	2.1

2.26	2.50	2.23	2.49	2.37	2.53	2.38	2.09	2.13	2.40	2.04	2.04	2.24	2.22	2.41	2.34	2.23	1.99	2.31	2.3
2.36	2.32	2.44	2.55	2.60	2.52	2.33	2.19	2.27	2.34	2.08	2.18	2.15	2.12	2.21	2.40	2.05	2.01	2.29	2.3
2.40	2.31	2.45	2.38	2.62	2.45	2.54	2.28	2.28	2.54	2.04	2.02	2.23	2.06	2.17	2.21	2.21	2.25	2.37	2.4
2.57	2.40	2.43	2.52	2.50	2.61	2.38	2.28	2.23	2.37	2.18	2.51	2.21	2.31	2.56	2.56	2.24	2.28	2.36	2.3
2.39	2.34	2.28	2.52	2.56	2.49	2.28	2.17	2.09	2.40	1.89	2.02	2.18	1.95	2.16	2.19	2.09	1.96	2.18	2.3
2.39	2.50	2.42	2.51	2.56	2.67	2.52	2.32	2.36	2.19	2.14	2.15	2.10	1.94	2.16	2.32	2.12	2.34	2.28	2.3
2.45	2.54	2.47	2.70	2.47	2.43	2.50	2.52	2.46	2.31	2.32	2.39	2.30	2.42	2.39	2.30	2.30	2.24	2.39	2.3
2.22	2.44	2.31	2.58	2.5	2.63	2.30	2.13	2.28	2.22	1.97	1.92	1.94	1.92	2.30	2.13	1.94	2.15	1.97	2.3
2.18	2.1	2.1	2.4	2.	2.33	2.	2.0	2.	2.3	1.8	2.0	1.	2.10	2.26	2.	1.98	2.17	1.80	2.1
2.1	2.28	2.	2.6	2.6	2.6	2.	2.0	1.	2.	2.	2.	2.	2.15	2.39	2.45	2.22	2.24	2.09	. 1
2.45	2.46	2.40	2.36	2.7	2.6	2.3	2.	2.	2.38	1.8	2.	2.	1.86	2.07	2.19	2.08	2.17	2.23	. 4
2.59	2.62	2.32	2.42	2.53	2.68	2.46	2.23	2.38	2.39	2.0	2.07	2.03	2.20	2.28	2.22	2.03	2.19	2.09	2.2
2.40	2.47	2.30	2.52	2.51	2.7	2.3	2.21	2.	2.27	1.9	2.06	2.02	1.96	2.25	2.13	2.01	2.25	1.99	2.1
2.53	2.6	2.26	2.4	2.	2.6	2.	2.20	2.3	2.30	2.0	1.99	2.0	2.12	2.35	2.36	2.09	2.19	2.06	2.3
2.4	2.3	2.	2.	2.	2.	2.	2.	2.	2.	2.	2.	2.	2.36	2.	2.	2.12	2.27	2.21	2.2
2.08	2.1	2.0	2.2	2.3	2.	2.	2.	2.	2.	2.	2.	2.	2.38	2.2	2.25	2.18	2.19	2.18	2.4
2.24	2.32	2.16	2.36	2.26	2.47	2.0	2.0	1.9	2.	1.77	1.79	1.6	1.86	2.09	1.91	1.69	1.91	1.97	2.0
2.28	2.15	2.26	2.33	2.52	2.53	2.05	2.12	2.03	2.40	1.85	2.13	2.09	2.06	2.33	2.19	2.03	2.30	1.98	2.1
2.16	2.32	2.07	2.32	2.13	2.38	1.99	1.93	1.87	2.04	1.65	1.79	1.73	1.84	2.08	1.86	1.70	1.88	1.89	2.0
2.12	2.20	2.24	2.34	2.30	2.35	2.05	1.87	1.99	2.26	1.65	1.89	1.81	1.79	2.13	2.05	1.78	2.02	1.75	2.1
2.37	2.61	2.42	2.27	2.	2.63	2.45	1.95	2.21	2.32	2.11	2.15	2.09	1.92	2.24	2.23	2.10	2.34	2.09	2.3
2.37	2.50	2.4	2.44	2.4	2.5	2.58	2.05	1.9	2.38	2.19	2.35	2.41	2.17	2.40	2.39	2.36	2.44	2.38	2.4
2.52	2.25	2.23	2.36	2.30	2.55	2.25	2.11	2.25	2.08	2.08	1.83	1.88	1.96	2.30	1.82	1.90	1.83	1.97	2.1
2.20	1.95	2.16	2.12	2.34	2.25	2.19	2.11	2.05	2.19	1.75	1.87	2.03	1.94	2.13	1.92	1.97	2.00	1.96	2.2
2.32	2.51	2.40	2.38	2.49	2.56	2.23	2.08	2.06	2.17	1.94	2.04	1.96	1.88	2.25	1.99	1.96	2.08	1.97	2.3
2.20	2.30	2.22	2.17	2.49	2.49	2.17	2.09	1.96	2.24	1.89	1.89	2.11	1.97	2.16	2.06	2.07	2.29	2.00	2.2

2.26	2.32	2.24	2.27	2.43	2.43	2.23	1.77	1.73	2.06	1.99	2.10	2.01	2.02	2.26	2.19	2.06	2.12	1.96	2.2
2.19	2.25	2.27	2.29	2.27	2.36	2.27	1.80	1.87	2.18	1.81	1.85	1.79	1.88	2.06	2.05	1.69	1.96	1.93	2.3
2.23	2.26	2.23	2.23	2.27	2.31	2.14	2.02	2.08	2.24	1.82	2.14	1.78	1.84	2.16	1.96	1.74	2.03	2.02	2.0
2.25	2.16	2.02	2.02	2.43	2.33	2.18	2.01	2.0	2.20	1.7	1.7	1.83	1.87	2.09	2.05	1.81	1.88	1.85	2.0
2.17	2.12	2.17	2.19	2.67	2.46	2.26	1.76	1.76	2.18	1.84	1.80	1.96	1.80	2.22	2.02	1.95	2.07	2.00	2.2
2.12	2.28	2.23	2.35	2.41	2.32	2.17	1.98	1.95	2.21	1.87	1.80	1.88	1.90	2.27	2.05	1.82	1.99	1.86	2.1
2.41	2.33	2.41	2.24	2.55	2.63	2.20	2.15	2.15	2.47	1.97	2.12	1.94	2.18	2.33	2.28	2.02	2.35	2.19	2.5
2.24	2.44	2.31	2.48	2.39	2.58	2.45	1.94	1.95	2.32	2.0	1.95	2.04	1.92	2.18	1.93	1.99	1.89	1.93	2.2
2.29	2.1	2.2	2.35	2.	2.	2.3	2.0	2.	2.33	1.9	2.02	1.95	1.96	2.20	1.99	1.98	2.00	2.03	2.0
2.2	2.4	2.26	2.	2.3	2.5	2.	1.9	2.	2.22	2.	1.95	2.	2.02	2.32	2.09	2.02	2.02	2.16	1
2.0	2.1	1.96	2.03	2.28	2.	2.0	2.05	2.0	1.	1.	1.9	1.9	1.	2.06	1.86	1.90	1.87	1.86	1
2.1	2.45	2.24	2.37	2.5	2.56	2.25	1.83	1.9	2.15	1.95	2.06	1.82	2.03	2.18	2.13	1.83	2.10	1.96	2.0
2.21	2.16	2.06	2.16	2.36	2.18	2.	1.99	1.86	2.04	1.59	1.76	1.81	1.80	2.00	1.88	1.78	1.85	1.81	2.2
2.35	2.36	2.28	2.28	2.36	2.	2.3	2.	2.	2.30	1.9	1.94	1.9	1.95	2.32	2.07	1.91	2.13	2.07	2.2
2.5	2.4	2.	2.2	2.	2.	2.	1.	2.	2.	2.	1.	1.	2.	2.2	2.26	1.93	2.06	2.14	. 3
2.3	2.30	2.2	2.3	2.	2.	2.3	1.9	2.	2.2	1.8	1.8	1.	2.05	2.09	2.16	1.77	1.99	1.97	2.1
2.30	2.20	2.08	2.20	2.	2.29	2.2	2.0	1.9	2.10	1.7	1.84	1.9	1.87	2.06	1.94	1.87	1.89	1.87	2.3
2.10	2.27	2.31	2.16	2.36	2.35	2.0	2.20	2.06	2.12	1.85	2.06	1.94	1.83	2.30	2.00	1.92	2.08	2.08	2.2
2.41	2.38	2.19	2.28	2.38	2.60	2.37	1.89	2.08	2.26	2.01	2.02	1.86	1.92	2.20	2.17	1.84	2.14	2.12	2.0
2.41	2.31	2.36	2.4	2.34	2.45	2.32	2.11	2.13	2.37	2.00	2.17	2.07	1.94	2.19	2.11	2.01	2.33	2.18	2.3
2.26	2.38	2.12	2.25	2.	2.47	2.27	2.10	2.03	2.28	2.06	2.27	2.18	2.11	2.56	2.21	2.17	2.29	2.19	2.3
2.13	2.23	2.15	2.27	2.	2.39	2.05	1.96	1.88	2.11	1.62	1.78	1.88	1.70	2.16	1.81	1.81	1.96	1.66	2.1
2.30	2.26	2.30	2.29	2.31	2.36	2.14	2.07	2.13	2.28	1.85	2.16	1.77	1.83	2.16	1.98	1.73	2.06	1.95	2.1
2.40	2.48	2.38	2.20	2.27	2.47	2.31	2.13	2.10	2.19	2.03	2.03	2.20	2.18	2.31	2.16	2.22	2.32	2.17	2.3
2.52	2.48	2.49	2.46	2.56	2.77	2.41	2.16	2.18	2.42	2.08	2.09	1.97	2.24	2.25	2.08	1.98	2.05	2.05	2.2
2.46	2.50	2.36	2.66	2.48	2.71	2.40	1.99	2.29	2.27	2.20	2.01	2.01	2.10	2.34	2.26	2.00	2.04	2.19	2.1

2.40	2.37	2.20	2.26	2.57	2.67	2.30	2.14	2.26	2.49	2.29	2.22	2.12	2.14	2.23	2.25	2.14	2.16	2.27	2.0
2.25	2.13	2.13	2.31	2.35	2.31	2.10	1.88	1.89	2.22	1.68	1.90	1.87	1.93	2.16	2.00	1.87	2.09	1.85	2.1
2.42	2.40	2.35	2.45	2.73	2.58	2.41	2.27	2.07	2.57	2.03	2.27	2.42	2.06	2.38	2.25	2.38	2.40	2.24	2.
2.54	2.55	2.4	2.3	2.34	2.74	2.42	2.	2.29	2.	2.12	2.	2.	2.	2.	2.40	2.09	2.50	2.24	2
2.18	2.20	2.28	2.24	2.51	2.28	2.30	2.00	1.92	2.1	1.94	2.0	2.17	2.09	2.26	2.21	2.17	2.21	2.05	2.3
2.46	2.53	2.45	2.43	2.52	2.7	2.66	2.14	2.01	2.28	2.20	2.36	2.18	2.1	2.30	2.42	2.25	2.38	2.38	2.3
2.33	2.32	2.23	2.37	2.38	2.48	2.42	2.10	2.18	2.30	1.92	2.02	2.05	1.82	2.07	2.17	2.03	2.21	2.07	2.2
1.78	1.86	1.86	2.10	2.15	2.	1.80	2.5	2.39	2.2	2.05	2.43	2.23	2.19	2.44	2.38	2.24	2.33	2.40	2.6
1.7	1.9	1.55	1.8	2.1	2.	1.88	2.	2.3	2.	2.03	2.	2.3	2.28	2.33	2.	2.27	2	2.28	2.
1.	1.8	1.8	2.01	1.	1.	1.9	2.	2.	2.	1.	2.	2.	2.	2.28	2.44	2.16	2.27	2.18	2.3
1.8	1.9	1.7	2.06	2.05	2.	1.5	2.	2.32	2.	2.	2.	2.	2.33	2.38	2.20	2.	2.39	2.19	2.4
1.78	1.86	1.86	2.10	2.1	2.	1.8	2.	2.39	2.2	2.04	2.43	2.23	2.19	2.43	2.38	2.24	2.33	2.40	2.6
1.56	1.95	1.89	1.98	2.	2.	1.95	2.6	2.59	2.	2.30	2.39	2.55	2.42	2.47	2.37	2.48	2.27	2.48	2.5
1.90	2.09	1.97	2.05	2.26	2.	2.	2.	2.46	2.	2.27	2.	2.32	2.	2.39	2.40	2.32	2.35	2.44	2.4
1.	1.	1.	2.	2	2.	1.	2	2.	2.	2.	2.	2.	2.	2.	2.49	2.39	2.34	2.21	2.5
2.0	1.5	2.	2.	2.	2.	2.	2.	2.	2.	2.	2.	2.	2.	2.69	2.49	2.62	2.47	2.52	2.
	1.9	1.9	1.	2.0	2.	1.	2.	2.	2.	2.	2.3	2.27	2.26	2.5	2.43	2.27	2.32	2.25	2.49
16.7		1.92	2.17	2.36	2.1	1.96	2.33	2.27	2.6	2.30	2.5	2.41	2.40	2.54	2.40	2.38	2.31	2.44	2.46
15.0	17.0		1.85	2.03	2.16	1.75	2.28	2.43	2.38	2.12	2.20	2.35	2.13	2.28	2.30	2.32	2.25	2.36	2.50
15.5	20.3	15		2.10	2.06	2.15	2.	2.47	2.40	2.25	2.36	2.37	2.22	2.41	2.42	2.41	2.54	2.58	2.58
17.2	22.2	17.5	17.5		2.15	2.23	2.52	2.58	2.30	2.29	2.44	2.48	2.67	2.58	2.45	2.50	2.53	2.48	2.36
15.5	19.4	19.1	17.0	18		2.13	2.	2.57	2.	2.31	2.43	2.59	2.49	2.73	2.44	2.53	2.38	2.44	2.77
14.1	17.5	13.9	19.4	19.3	17.2		2.37	2.39	2.33	2.08	2.39	2.36	2.29	2.47	2.50	2.28	2.51	2.28	2.63
22.4	23.6	22.8	24.8	25.2	26.8	23.8		1.49	2.30	2.04	1.98	1.99	2.04	2.33	2.34	2.01	2.21	2.11	2.20
22.9	22.2	22.5	24.7	26.2	25.0	22.5	12.0		2.23	1.92	2.11	2.05	2.08	2.21	2.26	2.01	2.10	2.17	2.14
21.4	25.5	22.1	22.0	21.3	24.8	21.9	22.0	20.2		2.04	2.24	2.16	2.21	2.43	2.37	2.16	2.24	2.18	2.52

19.4	21.9	19.3	20.9	20.9	20.9	18.8	18.5	16.3	15.9		1.80	1.77	1.68	1.90	1.94	1.72	1.79	1.66
2.15																		
21.9	25.4	19.8	23.2	22.9	23.3	22.9	18.0	17.7	19.0	13.8		1.64	1.59	1.85	1.72	1.62	1.70	1.75
21.4	24.4	21.1	22.5	23.0	25.4	22.7	18.2	17.6	18.4	13.6	11.8		1.86	1.90	1.97	0.69	1.85	1.73
2.11																		
21.3	23.2	20.3	21.7	25.1	24.5	22.5	19.6	19.3	18.3	12.7	12.2	15.3		1.93	1.86	1.83	2.00	1.83
25.1	25.8	22.2	24.1	24.7	27.1	25.2	22.5	21.2	22.5	15.7	15.4	15.7	16.8		2.21	1.88	1.98	2.05
22.21																		
22.5	22.7	21.3	23.2	23.1	23.1	24.0	21.5	19.8	20.5	14.8	12.5	15.2	15.2	19.4		1.88	1.91	2.01
21.5	24.7	21.0	23.2	23.7	25.1	21.9	18.3	17.4	18.5	13.2	11.3	2.57	15.0	16.0	14.6		1.80	1.73
21.3	21.8	20.9	25.5	23.8	22.5	24.2	20.7	18.5	20.0	14.0	12.3	13.8	16.9	17.2	14.9	13.4		2.05
2.24																		
20.7	24.4	21.9	24.7	23.8	23.3	21.8	19.7	19.9	19.4	12.3	13.8	12.6	14.9	18.1	16.5	12.7	17.3	
24.0	24.2	23.3	25.4	23.2	27.7	26.4	20.5	19.3	23.3	19.3	18.5	18.5	19.6	21.0	20.6	18.8	20.2	18.7

REFERENCES

Addison, M.F., Addison, P. \& Barnes, B.N. (2015) Insects of Cultivated Plants and Natural Pastures in Southern Africa. Entomological Society of Southern Africa, 394-405.

Aukema, B., Riegier, C. \& Rabistch, W. (2013) Catalogue of the Heteroptera of the Palaearctic Region. The Netherlands Entomological Society 6:Suppleme.

Ball, S.L. \& Armstrong, K.M. (2006) DNA barcodes for insect pest identification: a test case with tussock moths (Lepidoptera: Lymantriidae). Canadian Journal of Forest Research 36, 337-350.

Bandelt, H.J., Forster, P. \& Röhl, A. (1999) Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 37-48.

Barrett, R.D.H. \& Hebert, P.D.N. (2005) Identifying spiders through DNA barcodes. Canadian Journal of Zoology 83, 481-491.

Bartolini, G., Prevost, G., Messeri, C. \& Carignani, C. (2005) Olive germplasm: cultivars and world-wide collections. FAO/Plant Production and Protection. Available from: http://www.apps3.fao.org/wiews/olive/oliv.jsp.

Beckenbach, A.T. (2011) Mitochondrial genome sequences of representatives of three families of scorpionflies (Order Mecoptera) and evolution in a major duplication of the coding sequence. Genome 54, 368-376.

Bensasson, D., Zhang, D.X., Hartl, D.. \& Hewitt, G.. (2001) Mitochondrial pseudogenes: evolution's misplaced witnesses. Trends in Ecology and Evolution 16, 314-321.

Benson, G. (1999) Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Research 27, 573-580.

Bernt, M., Braband, A., Schierwater, B. \& Stadler, P.F. (2013) Genetic aspects of mitochondrial genome evolution. Molecular Phylogenetics and Evolution, 328-338.

Besnard, G., Khadari, B., Baradat, P. \& Bervillé, A. (2002) Olea europaea (Oleaceae) phylogeography based on chloroplast DNA polymorphism. Theoretical and Applied Genetics 104, 1353-1361.

Besnard, G., Terral, J. \& Cornille, A. (2018) On the origins and domestication of the olives: a review and perspectives. Annals of Botany 121, 385-403.

Bianchi, G. (2003) Lipids and phenols in table olives. European Journal of Lipid Science and

Technology 105, 229-242.
Bienkowski, A.O. \& Orlova-Bienkowski, M.J. (2018) Quick spread of invasive rose flea beetle Luperomorpha xanthodera (Fairmaire, 1888) in Europe and its first record from Russia. SPIXIANA 1, 99-104.

Biondi, M. and D'Alessandro, P. (2012) Afrotropical flea beetle genera: a key to their identification, updated catalogue and biogeographical analysis (Coleoptera, Chrysomelidae, Galerucinae, Alticini). ZooKeys 253, 1-158.

Biondi, M. \& D'Alessandro, P. (2010) Genus-group names of Afrotropical flea beetles (Coleoptera: Chrysomelidae: Alticinae): Annotated catalogue and biogeographical notes. European Journal of Entomology 107, 401-424.

Boore, J.L. (1999) Animal mitochondrial genomes. Nucleic Acids Res 27, 1767-1780. https://doi.org/10.1093/nar/27.8.1767

Bouchard, P., Bousquet, Y., Davies, A.E., Alonso-Zarazaga, M.A., Lawrence, J.F., Lyal, C.H.C., Newton, A.F., Reid, C.A.M., Schmitt, M., Slipinski, S.A. \& Smith, A.B.T. (2011) Family-group names in Coleoptera (Insecta). ZooKeys 88, 1-972. https://doi.org/10.3897/zookeys. 88

Bueno, A.M. \& Jones, O. (2002) Alternative methods for controlling the olive fly, Bactrocera oleae, involving semiochemicals. IOBC/WPRS Bulletin 25, 147-155.

Bukejs, A. (2008) To the knowledge of flea beetles (Coleoptera: Chrysomelidae: Alticinae) in the fauna of Latvia. 1.1 genus Chaetocnema Stephans, 1931. Acta Zoologica Lituanica 18, 191-197.

Cai, C., Tihelka, E., Pisani, D. \& Donoghue, P.. (2020) . Data curation and modeling of compositional heterogeneity in insect phylogenomics: A case study of the phylogeny of Dytiscoidea (Coleoptera: Adephaga). Molecular Phylogenetics and Evolution 147.

Cameron, S.L. (2014) Insect Mitochondrial Genomics: Implications for Evolution and Phylogeny. Annual Review of Entomology 59, 95-117.

Capinera, J.L. (2001) Handbook of vegetable pests. Academic Press, New York.
Castresana, J. (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540-542.

Chen, C., Li, Q. \& Fu, R. (2019) Characterization of the mitochondrial genome of the pathogenic fungus Scytalidium auriculariicola (Leotiomycetes) and insights into its phylogenetics. Scientific Reports 9, 1-12.

Chernomor, O., Von Haeseler, A. \& Minh, B.Q. (2016) Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology 65, 997-1008.

Chiappetta, A. and Muzzalupo, I. (2012) Botanical Description, Olive Germplasm - The Olive Cultivation, Table Olive and Olive Oil Industry in Italy. IntechOpen.

Cimato, A. (2008) Olive nursery production and plant production techniques. International Olive Council.

Copeland, R., White, I., Okumu, M., Machera, P. \& Wharton, R. (2004) Insects Associated with Fruits of the Oleaceae (Asteridae, Lamiales) in Kenya, with Special Reference to the Tephritidae (Diptera). Bishop Museum Bulletin in Entomology 12, 135-164.

Costa, C. (1998) Olive Production in South Africa: A Handbook for Olive Growers. A. R. Council_Infruitec (Ed). ABC Press, Stellenbosch, 89-90 pp..

Deckert, J. \& Gollner-Scheiding, U. (2006) Lace bugs of Namibia (Heteroptera, Tingoidea, Tingidae). Denisia 50, 823-856.

Dotson, E.M. \& Beard, C.B. (2001) Sequence and organization of the mitochondrial genome of the Chagas disease vector, Triatoma dimidiata. Insect Molecular Biology 10, 205215.

Drake, C.J. \& Ruhoff, F.A. (1960) Lace-Bug genera of the world (Hemiptera: Tingidae). Proceeding of the National Academy of Sciences of the United States of America 111, 4.

Drake, C.J. \& Ruhoff, F.A. (1965) Lacebugs of the world: A catalog (Hemiptera: Tingidae). Bulletin of the United States National Museum.

European Commision (2020) Producing 69\% of the world's production, the EU is the largest producer of olive oil.

Feeny, P., Paauwe, K.L. \& Demong, N.J. (1970) Flea beetles and mustard oils: host plant specificity of Phyllotreta cruciferae and P. striolata adults (Coleoptera: Chrysomelidae). Annals of the Entomological Society of America, 832-841.

Folmer, O., Black, M., Hoeh, W., Lutz, R. \& Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294-299. https://doi.org/10.1371/journal.pone. 0013102

Ghanbari, R., Anwar, F., Alkharfy, K.M., Gilani, A.H. \& Saari, N. (2012) Valuable nutrients and functional bioactives in different parts of olive (Olea europaea L.). Journal of

Molecular Science 3, 3291-32340.
Göllner-Scheiding, U. (2007) Die Arten der afrotropischen Gattung Neoplerochila Duarte Rodrigues, 1982 (Insecta, Heteroptera, Tingidae, Tinginae). Beiträge zur Entomologie 57, 419-428.

Guilbert, E., Damgaard, J. \& D'Haese, C.A. (2014) Phylogeny of the lace bugs (Insecta: Heteroptera: Tingidae) using morphological and molecular data. Systematic Entomology 39, 431-441. https://doi.org/10.1111/syen. 12045

Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W. \& Gascuel, O. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology 59, 307-321.

Hebert, P.D.N., Cywinska, A., Ball, S.L. \& DeWaard, J.R. (2003) Biological identification through DNA barcodes. Proceeding of the Royal Society of London 270, 313-321.

Hoang, D.T., Chernomor, O., Von Haeseler, A., Minh, B.Q. \& Vinh, L.. (2018) UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35, 518-522.

International Olive Oil Council (IOOC) (2021) . Available from: https://www.internationaloliveoil.org/

Jimbo, U., Kato, T. \& Ito, M. (2011) Current progress in DNA barcoding and future implications for entomology. Entomological Science 14, 107-124.

Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., Von Haeseler, A. \& Jermiin, L.. (2017) ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods 14, 587-589.

Katoh, K. \& Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution 30, 772780. https://doi.org/10.1093/molbev/mst010

Khlestkina, E.K. \& Salina, E.A. (2005) SNP markers: Methods of analysis, ways of development and comparison on an example of common wheat. Russian Journal of Genetics 42, 585-594.

Kimura, M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111-120. https://doi.org/10.1007/BF01731581

Kocher, A., Guilbert, É., Lhuillier, É. \& Murienne, J. (2015) Sequencing of the mitochondrial
genome of the avocado lace bug Pseudacysta perseae (Heteroptera, Tingidae) using a genome skimming approach. Comptes Rendus Biologies, 338, 149-160.

Kumar, S., Stecher, G., Li, M., Knyaz, C. \& Tamura, K. (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 1547-1549.

Landa, B.B. (2019) Pests and diseases of the olive tree. EIP-AGRI Focus Group.
Lanfear, R., Calcott, B., Ho, S.Y.W. \& Guindon, S. (2012) PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29, 1695-1701.

Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T. \& Calcott, B. (2016) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 2, 772-773.

Langley, J., Cornwall, M., Powell, C., Costa, C., Allsopp, E., van Noort, S., Guilbert, E. \& van Asch, B. (2020) First report of the lace bug Neoplerochila paliatseasi (Rodrigues, 1981)(Hemiptera: Tingidae) infesting cultivated olive trees in South Africa, and its complete mitochondrial sequence. Zootaxa 4722, 443-462.

Lartillot, N., Brinkmann, H. \& Philippe, H. (2007) Suppression of long-branch attraction artifacts in the animal phylogeny using a site-heterogeneous model. BMC Evolutionary biology 7.

Lartillot, N. \& Philippe, H.A. (2004) Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Molecular Biology and Evolution 21, 1095-1109.

Laslett, D. \& Canback, B. (2008) ARWEN, a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics 24, 142-175.

Lee, C., Tsai, C., Konstantinov, A. \& Yeh, W. (2011) Revision of Mandarella Duvivier from Taiwan, with a new species, new synonymies, and identities of highly variable species (Insecta, Chrysomelidae, Galerucinae, Alticini). ZooKeys 568: 23-49, 23-49.

Li, N., Wei, J., Jia, D., Li, S. \& Ma, R. (2015) The complete mitochondrial genome of the flea beetle Agasicles hygrophila. Mitochondrial DNA, 1-2.

Li, P., Wang, X., Chen, S. \& Peng, P. (2017) The complete mitochondrial genome of the tea lace bug, Stephanitis chinensis. Mitochondrial DNA Part B 2, 607-608.

Lin, A., Zhao, X., Li, X. \& Song, N. (2017) The complete mitochondrial genome of Corythucha marmorata (Hemiptera: Tingidae). 2, 897-899.

Liu, Y., Song, F., Jiang, P., Wilson, J.J., Cai, W. \& Li, H. (2018) Compositional heterogeneity in true bug mitochondrial phylogenomics. Molecular Phylogenetics and Evolution, 135144.

Long, C., Liu, P., Guo, Q., Xu, J. \& Dai, X. (2019) Complete mitochondrial genome of a leaf mining beetle, Argopistes tsekooni (Coleoptera: Chrysomelidae). Mitochondrial DNA Part B4, 418-419.

Lopez-Lopez, A., Montano, A. \& Garrido-Fernandez, A. (2010) Olives and olive oil in health and diseases prevention. Academic Press, 715-724.

Louw, M. (2019) Olive oil production. Fruit farming in south Africa. southafrica.co.za.
Meier, R., Shiyang, K., Vaidya, G. \& NG, P.K.L. (2006) DNA Barcoding and Taxonomy in Diptera: A Tale of High Intraspecific Variability and Low Identification Success. Society of Systematic Biologists 55, 715-728.

Miller, A.M., Pfeiffer, W. \& Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic treestrees, in 2010 Gateway Computing Environments Workshop, GCE 2010. , 1-8.

Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., Von Haeseler, A., Lanfear, R. \& Teeling, E. (2020) New models and efficient methods for phylogenetic inference in genomic era. Molecular Biology and Evolution 37, 1530-1534.

Mizuno, F., Kumagai, M. \& Kurosaki, K. (2017) Imputation approach for deducing a complete mitogenome sequence from low-depth-coverage next-generation sequencing data: application to ancient remains from the Moon Pyramid, Mexico. Journal of Human Genetics, 631-635.

Mkize, N., Hoelmer, K.A. and Villet, M.H. (2008) A survey of fruit-feeding insects and their parasitoids occurring on wild olives, Olea europaea sp. cuspidata, in the Eastern Cape of South Africa. Biocontrol Science and Technology 18, 991-1004.

Mkize, N. (2009) Insect Pests of Cultivated and Wild Olives, and Some of Their Natural Enemies, in the Eastern Cape, South Africa. Rhodes University, 93-124.

Mutanen, M., Kivela, S.M., Vos, R.A., Doorenweerd, C., Ratnasingham, S., Hausmann, A., Huemer, P., Dinc`a, V., van Nieukerken, E.J., Lopez-Vaamonde, C., Vila, R., Aarvik, L., Decaens, T., Efetov, K.A., Hebert, P.D.N., Johnsen, A., Karsholt, O., Pentinsaari, M., Rougerie, R., Segerer, A. \& Tarmann, G. (2016) Species-Level Para- and Polyphyly in DNA Barcode Gene Trees: Strong Operational Bias in European Lepidoptera.

Systematic Biology 65, 1024-1040.
Ndong, A., Thiaw, C., Diallo, B., Sarr, M., Diome, T., Kane, M. \& Sembene, M. (2015) Barcoding: Comparison of variation of COI and cytochrome b mitochondrial markers in two species primary maize pests (Sitophilus zeamais and Sitophilus oryzae). International Journal of Scieneces 20, 373-393.

Nie, R., Breeschoten, T., Timmermans, M.J.T.N., Nadein, K., Xue, H., Bai, M., Huang, Y., Yang, X. \& Vogler, A.P. (2018) The phylogeny of Galerucinae (Coleoptera: Chrysomelidae) and the performance of mitochondrial genomes in phylogenetic inference compared to nuclear rRNA genes. Cladistics 34, 113-130.

Nie, R., Zhang, S., Vogler, A.P., Wu, L., Konstantinov, A.S., Li, W., Yang, X. \& Xue, H. (2019) Diversification of mitogenomes in three sympatric Altica flea beetles (Insecta, Chrysomelidae). Zoologica Scripta 48, 657-666.

Ojala, D., Montoya, J. \& Attardi, G. (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature. Nature 290, 470-474.

Park, D., Suh, S., Oh, H. \& Hebert, P.D.N. (2010) Recovery of the mitochondrial COI barcode region in diverserve Hexapoda through tRNA-based primers. BMC Genomics, 423.

Pentinsaari, M., Ratnasingham, S., Miller, S.E. \& Hebert, P.D.N. (2020) BOLD and GenBank revisited - Do identification errors arise in the lab or in the sequence libraries? Public Library of Science, 1-10.

Pereira, J.A., Pereira, A.P., Ferreira, I.C., Valentão, P., Andrade, P.B., Seabra, R., Estevinho, L. \& Bento, A. (2006) Table olives from portugal: phenolic compounds, antioxidant potential, and antimicrobial activity. Journal of Agricultural and Food Chemistry 54, 8425-8431.

Pereira, R.J., Ruiz-Ruano, F.J., Thomas, C.J.E., Pérez-Ruiz, M., Jiménez-Bartolomé, M., Liu, S., de la Torre, J. \& Bella, J.L. (2021) Mind the numt: Finding informative mitochondrial markers in a giant grasshopper genome. Journal of Zoological Systematics and Evolutionary Research. https://doi.org/10.1111/jzs. 12446

Powell, C., Caleca, V., Knipe, M., Rhode, C., Allsopp, E. \& Van Asch, B. (2020a) DNA-based identification of larvae offers insights into the elusive lifestyles of native olive seed wasps in South Africa. African Entomology 28. https://doi.org/10.4001/003.028.0433

Powell, C., Caleca, V., Sinno, M., van Staden, M., van Noort, S., Rhode, C., Allsopp, E. \&
van Asch, B. (2020b) Barcoding of parasitoid wasps (Braconidae and Chalcidoidea) associated with wild and cultivated olives in the Western Cape of South Africa. Genome. https://doi.org/10.1139/gen-2018-0068

Qian, L., Wang, X., Chen, X. \& Han, B. (2018) Complete mitochondrial genome of the tea looper caterpillar, Ectropis obliqua (Lepidoptera: Geometridae) with a phylogenetic analysis of Geometridae. International Journal of Biological Macromolecules, 491-496.

Ramfrez-Rios, V., Alvarez, J. V. \& Villanuevs-Mejia, D. (2017) Mitochondrial genomes of Lepidopteran insects considered crop pests. IntechOpen.

Raupach, M.J. \& Radulovici, A.E. (2015) Looking back on a decade of barcoding crustaceans. ZooKeys 539, 53-81.

Ring, D.J., Sturk-Anreaggi, K., Peck, M.A. \& Marshall, C. (2017) A performance evaluation of Nextera XT and KAPA HyperPlus for rapid Illumina library preparation of long-range mitogenome amplicons. Forensic Science International:Genetics, 174-180.

Ronquist, F. \& Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. https://doi.org/10.1093/bioinformatics/btg180

Rozas, J., Ferrer-Mata, A., Sanchez-DelBarrio, J.C., Guirao-Rico, S., Librado, P., RamosOnsins, S.E. \& Sanchez-Gracia, A. (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution. https://doi.org/10.1093/molbev/msx248

Sahin, S. and Bilgin, M. (2017) Olive tree (Olea europaea L.) leaf as a waste by-product of table olive and olive oil industry: a review. Journal of the Science of Food and Agriculture 98, 1271-1279.

Şahin, D.C., Magoga, G., Özdikmen, H. \& Montagna, M. (2019) DNA Barcoding as useful tool to identify crop pest flea beetles of Turkey. Journal of Applied Entomology 143, 105-117.

Saito, S., Tamura, K. \& Aotsuka, T. (2005) Replication origin of mitochondrial DNA in insects. Genetics. Genetics 171, 1695-705.

Saitou, N. \& Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406-425.

Saleh, M. (2021) Oil oil production in North Africa 2016-2019, by country. statista.
Salvi, D., Berrilli, E., D'Alessandro, P. \& Biondi, M. (2020) Sharpening the DNA barcoding tool through a posteriori taxonomic validation: The case of Longitarsus flea beetles
(Coleoptera: Chrysomelidae). Public Library of Science One 15, 5.
Sambrook, J. \& Russell, D.W. (2001) preparation and analysis of eucariotic genomic DNA. In: Molecular cloning: a laboratory manual.

Sharp, P.M., Tuohy, T.M.F. \& Mosurski, K.R. (1986) Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Research 14, 5125-5143.

Sheffield, N.C., Song, H., Cameron, S.L. \& Whiting, M.F. (2008) A comparative analysis of mitochondrial genomes in Coleoptera (Arthropoda: Insecta) and genome descriptions of six new beetles. Molecular Biology and Evolution 25, 2499-2509.

Sokal, R.R. \& Michener, C.D. (1958) A statistical method for evaluating systematics relationships. Bulletin 38, 1409-1438.

Song, H., Moulton, M.J. \& Whiting, M.F. (2014) Rampant nuclear insertion of mtDNA across Diverse Lineages within Orthoptera. Public Library of Science One 9, 1-14.

Spooner-Hart, R. (2005) Sustainable pest and disease management in Australia olive production. Australian Government.

Stewart, J.B. \& Beckenbach, A.T. (2006) Insect mitochondrial genomics 2: the complete mitochondrial genome sequence of a giant stonefly, Pteronarcys princeps, asymmetric directional mutation bias, and conserved plecopteran A+T-region elements. Genome 49, 815-824.

Teixeira da Costa, L., Powell, C., van Noort, S., Costa, C., Sinno, M., Caleca, V., Rhode, C., Kennedy, R.J., van Staden, M. \& van Asch, B. (2019) The complete mitochondrial genome of Bactrocera biguttula (Bezzi) (Diptera: Tephritidae) and phylogenetic relationships with other Dacini. International Journal of Biological Macromolecules 126, 130-140. https://doi.org/10.1016/j.jijbiomac.2018.12.186

Timmermans, M.J., Barton, C., Haran, J., Ahrens, D., Culverwell, C.L., Ollikainen, A., Dodsworth, S., Foster, P.G., Bocak, L. \& Vogler, A.P. (2016) Family-level sampling of mitochondrial genomes in Coleoptera: Compositional heterogeneity and phylogenetics. Genome Biology and Evolution 8, 161-175.

Tinline, T. (2021) SA Pride at NYIOOC 2021. Wired communications.
Uylaser, V. \& Yildiz, G. (2014) The historical development and nutritional importance of olive and olive oil constituted an important part pf the Mediterrnean diet. Critical Reviews in Food Science and Nutrition 54, 1092-1101.

Wang, D., Zhang, S., He, F., Zhu, J., Hu, S. \& Yu, J. (2009) How do variable substitution rates influence Ka and Ks calculations? Genomics Proteomics Bioinformatics 7, 116127.

Wilson, J.J. (2012) DNA Barcodes for insects. Molecular Biology 858.
Yang, H., Li, T., Dang, K. \& Bu, W. (2018) Compositional and mutational rate heterogeneity in mitochondrial genomes and its effect on the phylogenetic inferences of Cimicomorpha (Hemiptera: Heteroptera). BMC Genomics 19, 264.

Yang, W., Yu, W. \& Du, Y. (2013) The complete mitochondrial genome of the sycamore lace bug Corythucha ciliata (Hemiptera: Tingidae). Gene, 27-40.

Yang, Z. \& Rannala, B. (2012) Molecular phylogenetics: principles and practice. Nature Review Genetics 13, 303-314.

Yu, P.Y., Wang, S.Y. \& Yang, X.K. (1996) Ecological insect fauna of China. Fasc. 54 Coleoptera: Chrysomeloidea (II). Science Press.

Zardoya, R. (2020) Recent advances in understanding mitochondrial genome diversity [version 1; peer review: 4 approved]. F1000Research, 1-19.

Zhang, K.J., Zhu, W.C. Rong, X., Liu, J., Ding, X.L. \& Hong, X.Y. planthoppers. G. 533: (2014) The complete mitochondrial genome sequence of Sogatella furcifera (Horváth) and a comparative mitogenomic analysis of three predominant rice planthoppers. Gene 553, 100-109.

Zhang, X., Kang, Z., Mao, M., Li, X., Cameron, S.L., Jong, H.D., Wang, M. \& Yang, D. (2016) Comparative mt genomics of the Tipuloidea (Diptera: Nematocera: Tipulomorpha) and its implications for the phylogeny of the Tipulomorpha. Public Library of Science One 11, e0158167.

Zohary, D. \& Spiegel, R.P. (1976) Beginnings of fruit growing in the old world. Science 187, 319-327.

