
Motion planning algorithms for autonomous navigation for a
rotary-wing UAV

by

Coenraad Johannes Beyers

Thesis presented in partial fulfilment of the requirements for the degree of
Master of Science in Engineering

at Stellenbosch University

Supervisors:

Dr C.E. van Daalen Mr J.A.A. Engelbrecht
Department Electrical and Electronic Engineering

March 2013

Declaration

By submitting this thesis electronically, I declare that the entirety of the work contained
therein is my own, original work, that I am the owner of the copyright thereof (unless to the
extent explicitly otherwise stated) that reproduction and publication thereof by Stellenbosch
University will not infringe any third party rights and that I have not previously in its
entirety or in part submitted it for obtaining any qualification.

March 2013

Copyright © 2012 Stellenbosch University
All rights reserved

Stellenbosch University http://scholar.sun.ac.za

Abstract

A typical autopilot system is capable of steering an Unmanned Aerial Vehicle (UAV) along
a set of defined waypoints. The defined waypoints are static, and if change is necessary (e.g.
due to environmental changes) a human operator has to intervene. In order to fully achieve
autonomous navigation the vehicle must be able to act on changing situations, and to this
end motion planning and conflict detection is employed.
This project concerns motion planning for a rotary wing UAV, where vehicle controllers are
already in place, and map data is readily available to a collision detection module. In broad
terms, the goal of the motion planning algorithm is to provide a safe (i.e. obstacle free)
flight path between an initial- and goal waypoint. This project looks at two specific motion
planning algorithms, the Rapidly Exploring Random Tree (or RRT*), and the Probabilistic
Roadmap Method (or PRM).
The primary focus of this project is learning how these algorithms behave in specific envi-
ronments and an in depth analysis is done on their differences. A secondary focus is the
execution of planned paths via a Simulink simulation and lastly, this project also looks at
the effect of path replanning.
The work done in this project enables a rotary wing UAV to autonomously navigate an
uncertain, dynamic and cluttered environment. The work also provides insight into the
choice of an algorithm for a given environment: knowing which algorithm performs better
can save valuable processing time and will make the entire system more responsive.

iii

Stellenbosch University http://scholar.sun.ac.za

Uittreksel

’n Tipiese vliegstuuroutomaat is daartoe in staat om ’n onbemande lugvaartvoertuig (UAV)
so te stuur dat ’n stel gedefinieerde punte gevolg word. Die punte moet egter vooraf beplan
word, en indien enige verandering nodig is (bv. as gevolg van veranderinge in die omgewing)
is dit nodig dat ’n menslike operateur betrokke moet raak. Vir voertuie om ten volle
outonoom te kan navigeer, moet die voertuig in staat wees om te kan reageer op veranderende
situasies. Vir hierdie doel word kinodinamiese beplanningsalgoritmes en konflikdeteksie-
metodes gebruik.
Hierdie projek behels kinodinamiese beplanningsalgoritmes vir ’n onbemande helikopter,
waar die beheerders vir die voertuig reeds in plek is, en omgewingsdata beskikbaar is vir
’n konflikdeteksie-module. In breë terme is die doel van die kinodinamiese beplanningsal-
goritme om ’n veilige (d.w.s ’n konflikvrye) vlugpad tussen ’n begin- en eindpunt te vind.
Hierdie projek kyk na twee spesifieke kinodinamiese beplanningsalgoritmes, die “Rapidly
exploring Random Tree*” (of RRT*), en die “Probabilistic Roadmap Method” (of PRM).
Die primêre fokus van hierdie projek is om die gedrag van hierdie algoritmes in spesifieke
omgewings te analiseer en ’n volledige analise te doen op hul verskille. ’n Sekondêre fokus is
die uitvoering van ’n beplande vlugpad d.m.v ’n Simulink-simulasie, en laastens kyk hierdie
projek ook na die effek van padherbeplanning.
Die werk wat gedoen is in hierdie projek stel ’n onbemande helikopter in staat om outonoom
te navigeer in ’n onsekere, dinamiese en besige omgewing. Die werk bied ook insig in die
keuse van ’n algoritme vir ’n gegewe omgewing: om te weet watter algoritme beter uitvoertye
het kan waardevolle verwerkingstyd bespaar, en verseker dat die hele stelsel vinniger kan
reageer.

iv

Stellenbosch University http://scholar.sun.ac.za

Contents

Abstract iii

Uittreksel iv

List of Figures ix

List of Tables xii

Nomenclature xiv

Acknowledgements xvi

1 Introduction 1
1.1 The relevance of Autonomous Navigation . 1
1.2 System architecture . 2
1.3 Thesis overview . 3
1.4 Conclusion . 4

2 Vehicle Model and Controllers 5
2.1 Axis System Definition . 5

2.1.1 Earth Reference Frame . 5
2.1.2 Body Reference Frame . 5
2.1.3 Reference Frame Relationship . 6

2.2 The Vehicle . 7
2.2.1 Vehicle choice . 7
2.2.2 Vehicle actuators . 8
2.2.3 Vehicle Model . 9
2.2.4 Vehicle controllers . 12

2.2.4.1 Heading angle controller . 12
2.2.4.2 Heave position controller . 13
2.2.4.3 Lateral and Longitudinal position controllers 14
2.2.4.4 Vehicle model and controller simulation with Simulink 15

2.2.5 Vehicle Estimator . 15
2.3 Conclusion . 16

3 Motion planning 17
3.1 Motion planning problem statement . 17
3.2 Available motion planning algorithms . 18

3.2.1 Complete motion planning . 18
3.2.2 Almost complete motion planners . 18

3.2.2.1 Grid-based search . 18
3.2.2.2 Potential fields . 19

v

Stellenbosch University http://scholar.sun.ac.za

CONTENTS vi

3.2.2.3 Sampling based . 19
3.2.2.4 Conclusion . 19

3.3 Sampling based motion planning . 20
3.3.1 The Probabilistic Roadmap Method 20
3.3.2 The Rapidly exploring Random Tree 21

3.4 Problem statement requirements . 22
3.4.1 Kinodynamic and nonholonomic motion constraints 22
3.4.2 Manoeuvres . 23
3.4.3 Conflict detection . 24
3.4.4 Cost function . 24

4 Algorithm implementation 26
4.1 Introduction . 26
4.2 Hardware and software specifications . 26
4.3 Generic sampling based algorithm . 26
4.4 Sampling milestones . 27
4.5 The manoeuvre library . 27
4.6 Data structures . 30

4.6.1 The milestone data structure . 30
4.6.2 The node linked list data structure . 31

4.7 Conflict detection . 32
4.8 The Probabilistic Roadmap Method - PRM 33

4.8.1 The Local Planning Method - LPM 34
4.8.2 The Extend method . 34
4.8.3 The Path Planner . 36

4.9 The Rapidly exploring Random Tree* - RRT* 37
4.9.1 The Steer method . 38
4.9.2 The Extend method . 39
4.9.3 Path planner . 43

4.10 Conclusion . 44

5 Algorithm Analysis 45
5.1 Introduction . 45
5.2 PRM analysis . 46

5.2.1 Key concepts necessary to determine the theoretical upper bound . . . 46
5.2.1.1 Definition of the β-lookout(S) 50
5.2.1.2 Definition of α . 51

5.2.2 Theoretical performance bound for finding a path with a PRM 51
5.2.3 Determining α and the β-lookout(S) for the PRM 55

5.2.3.1 Probability with relative frequency 55
5.2.3.2 Determining α and the β-lookout(S) using relative frequency 56

5.2.4 Relating α and β on a computer for a specific environment and a
specific vehicle . 57

5.2.5 Conclusion . 60
5.3 RRT* Analysis . 60

5.3.1 Theoretical Upper bound for finding a path with a RRT* 61
5.3.1.1 The Attraction sequence . 63
5.3.1.2 Probability of sampling a milestone in each attraction set . . 64
5.3.1.3 Determining the location of the attraction sequence 64
5.3.1.4 Determining the volume of the subsets of the attraction se-

quence . 65
5.3.2 Conclusion . 67

5.4 Histogram analysis . 67

Stellenbosch University http://scholar.sun.ac.za

CONTENTS vii

5.4.1 Iteration count . 67
5.4.1.1 Theoretical versus Practical iteration requirement 69

5.4.2 Milestone count . 69
5.4.2.1 Theoretical versus Practical milestone requirement 71

5.4.3 CPU-time . 71
5.4.3.1 CPU time of theoretical bound 73

5.4.4 Path cost . 73
5.5 Conclusion . 75

6 Path Replanning 76
6.1 Introduction . 76
6.2 Implementation . 77
6.3 Simulation example . 77

6.3.1 Initial path . 77
6.3.2 Improving the path . 78
6.3.3 Path with new environment information 79

6.4 Conclusion . 80

7 Software simulation 82
7.1 Introduction . 82
7.2 Simulink model . 82

7.2.1 Path planner block . 86
7.2.1.1 Necessary path information 86
7.2.1.2 Manoeuvre controllers . 87

7.3 Results . 89
7.3.1 Path following . 89
7.3.2 Cost function . 91

7.4 Conclusion . 91

8 Environments 93
8.1 Environment one . 93

8.1.1 Performance of the RRT* vs the PRM 93
8.2 Environment two . 95

8.2.1 Performance of the RRT* vs the PRM 95
8.2.2 Summary . 99

8.3 Environment three . 99
8.3.1 Performance of the RRT* vs the PRM 100
8.3.2 Summary . 103

9 Conclusion 105
9.1 Project Scope . 105
9.2 Motion planning algorithms . 105
9.3 Algorithm implementation . 106

9.3.1 Probabilistic Roadmap Method . 106
9.3.2 Rapidly exploring Random Tree* . 106

9.4 Analysis . 106
9.4.1 Theoretical . 106
9.4.2 Histogram . 106

9.4.2.1 CPU time . 107
9.4.2.2 Path cost . 107

9.5 Path Replanning . 107
9.6 Software simulation . 107

Stellenbosch University http://scholar.sun.ac.za

CONTENTS viii

A MATLAB Code to execute a Path 108

Bibliography 110

Stellenbosch University http://scholar.sun.ac.za

List of Figures

1.1 Shows the architecture of the entire autonomous navigation project. Source:
C.E. van Daalen . 3

2.1 Earth Axis System Definition. 6
2.2 Aircraft Body Axis System Definition [1]. 6
2.3 The X-Cell during autonomous hover [1]. 8
2.4 On the left a hinged rotor hub is shown, and on the right a rigid rotor hub is

shown [1]. 8
2.5 The longitudinal model of the vehicle [7]. 11
2.6 The lateral model of the vehicle [7]. 11
2.7 The heave model of the vehicle [7]. 11
2.8 The heading model of the vehicle [7]. 11
2.9 Successive-loop-closure for the heading plant [7]. 12
2.10 Heading angle step response [7]. The amplitude is given in radians. 13
2.11 Successive-loop-closure for the heave plant [7]. 13
2.12 Heave position step response [7]. The amplitude is given in meters. 14
2.13 Successive-loop-closure for the lateral plant [7]. 14
2.14 Successive-loop-closure for the longitudinal plant [7]. 15
2.15 Longitudinal position step response [7]. The amplitude is given in meters. 15
2.16 The kinematic state estimator structure by Hough [2]. 16

3.1 This figure shows the PRM algorithm with several milestones in its tree. 20
3.2 This figure shows the classic RRT algorithm after 100 iterations. 21
3.3 A plot showing the cost function used to determine costs. The numbers on

the vertical axis represent sample averages of the measured (during simulation)
force of the main and tail rotors. The measurements are dimensionless and only
provide information relative to each other. 25

4.1 A LPM manoeuvre consisting of a left turn, straight line, and a right turn. . . . 29
4.2 A Steer manoeuvre consisting of a left turn and a straight line. 29
4.3 The execution time for adding 300 milestones to a tree is shown here for both

the classic and updated PRM Extend algorithms. 36
4.4 This figure shows a recently added milestone in blue, a ball (shown as a circle in

2 dimensions) of radius η in black, and a path between the start point and goal
in green. The milestones shown in red are in the listrrt∗ list but do not form
part of the path to the goal. 42

4.5 This figure shows the improved path of Figure 4.4. 43

5.1 LPM reachability for a point p. 47

ix

Stellenbosch University http://scholar.sun.ac.za

LIST OF FIGURES x

5.2 In blue the β-lookout of S is shown for a small (close to zero) value of β. The
red area shows the LPM reachability set Rlpm(p1)\S and the green area shows
the LPM reachability set Rlpm(p0)\S. 48

5.3 β-lookout of S for a large (close to one) value of β. 49
5.4 In blue, the β-lookout(S1), in red the β-lookout(S2), and in green the β-lookout(S3). 50
5.5 Introducing Cases A and B. 52
5.6 This figure illustrates a large intersection between the endgame region andRlpm(PRMtree),

as well as a milestone in the intersection. For this case a path is formed between
the initial milestone and goal milestones. 53

5.7 The environment wherein the PRM and RRT* algorithms are analysed. 58
5.8 Plot of α vs β in the environment shown in Figure 5.7. 59
5.9 Upper-bound plot of the number of milestones necessary for a 99.99% probability

that the PRM will not require more than r milestones to find a path vs β for
the environment shown in Figure 5.7. The smallest value of r = 1328, with
β = 0.03075 and α = 0.4408 . 60

5.10 Steer reachability of p. 61
5.11 Attraction set of A1. 62
5.12 Attraction set of A1. 63
5.13 Six subsets (k = 5) are shown. A path between the initial and goal milestones is

formed by sampling a milestones in the subsets 1 to 4. 65
5.14 This figure shows an example attraction sequence as determined by the approach

in Subsection 5.3.1.4. 66
5.15 Histogram plot of iterations required by the PRM algorithm to find a path in

the environment shown in Figure 8.1(a) and 8.1(b) for 100000 runs. 68
5.16 Histogram plot of iterations required by the RRT* algorithm to find a path

in the environment shown in Figure 8.1(a) and 8.1(b) for 100000 runs. The
measurements show that 0 times out of 100000 runs the algorithm required more
than 7174 iterations. 69

5.17 Histogram plot of number of milestones required by the PRM algorithm to find
a path in the environment shown in Figure 8.1(a) and 8.1(b) for 100000 runs.
The measurements showed that 0 time out of 100000 runs the algorithm required
more than 1328 milestones. 70

5.18 Histogram plot of number of milestones required by the RRT* algorithm to find
a path in the environment shown in Figure 8.1(a) and 8.1(b) for 100000 runs. . . 71

5.19 Histogram plot of CPU-time required by the PRM algorithm to find a path in
the environment shown in Figure 8.1(a) and 8.1(b) for 100000 runs. 72

5.20 Histogram plot of cpu time required by the RRT* algorithm to find a path in
the environment shown in Figure 8.1(a) and 8.1(b) for 100000 runs. 73

5.21 Histogram plot of path costs for the PRM in the environment shown in Fig-
ures 8.1(a) and 8.1(b) for 100000 runs. 74

5.22 Histogram plot of path costs for the RRT* in the environment shown in Fig-
ures 8.1(a) and 8.1(b) for 100000 runs. 74

6.1 A plot showing the top and side view plots of the first path the RRT* path
planner found and the initial path the replanner will execute. 78

6.2 A plot showing the top and side view plots of an improved path (cost: 7887)
the RRT* path planner found in blue and the old path in red. 78

6.3 A plot showing the top and side view plots of an improved path (cost: 7556)
the RRT* path planner found in blue and the old path in red. 79

6.4 A plot showing the top and side view plots of an improved path (cost: 7227)
the RRT* path planner found in blue and the old path in red. 79

6.5 A plot showing the top and side view plots of the path the RRT* path planner
found with the updated environment information. 80

Stellenbosch University http://scholar.sun.ac.za

LIST OF FIGURES xi

6.6 A plot showing the top and side view plots of the path (cost: 6789) the vehicle
traversed. 80

7.1 This figure shows the high level Simulink simulation. The simulation consists of
three parts, the helicopter model (the block shown in blue), the autopilot (the
block shown in red) and the data viewer or logger (the block shown in orange). . 83

7.2 This figure shows an overview of the Autopilot in the Simulink simulation. 84
7.3 This figure shows the inner loop controllers. 85
7.4 This figure shows the path planner block and its interaction with the inner loop

controllers. 85
7.5 This figure shows a planned path superimposed on the simulated path of the

vehicle. 90

8.1 Path generated by the RRT*. 94
8.2 Path generated by the PRM. 94
8.3 Path generated by the RRT*. 95
8.4 Path generated by the PRM. 96
8.5 Iteration histograms of 100000 runs for both the PRM and RRT* algorithms. . . 97
8.6 Milestone histograms of 100000 runs for both the PRM and RRT* algorithms. . 97
8.7 CPU time histograms of 100000 runs for both the PRM and RRT* algorithms. . 98
8.8 Path cost histograms of 100000 runs for both the PRM and RRT* algorithms. . 98
8.9 Path generated by the RRT*. 100
8.10 Path generated by the PRM. 100
8.11 Iteration histograms of 100000 runs for both the PRM and RRT* algorithms. . . 101
8.12 Milestone histograms of 100000 runs for both the PRM and RRT* algorithms. . 102
8.13 CPU time histograms of 100000 runs for both the PRM and RRT* algorithms. . 102
8.14 Path cost histograms of 100000 runs for both the PRM and RRT* algorithms. . 103

Stellenbosch University http://scholar.sun.ac.za

List of Tables

2.1 Summary of the vehicle states included in its model. 9

4.1 The milestone data structure. 31
4.2 The milestone node data structure. 32
4.3 The milestone node list data structure. 32

7.1 Maximum, mean and standard deviation errors in x,y,z and time dimension
(along-track) between the planned and travelled path. 90

7.2 Maximum, mean and standard deviation errors in x,y,z dimension (cross-track)
between the planned and travelled path. 91

7.3 Difference in cost between Simulink simulation and that determined by the cost
function. 91

8.1 Summary of the iteration, milestone, CPU time, and path cost histograms from
Subsection 8.2.1. 99

8.2 Summary of the iteration, milestone, CPU time, and path cost histograms from
Section 8.3. 104

xii

Stellenbosch University http://scholar.sun.ac.za

List of Algorithms

1 A generic sampling based algorithm. 27
2 The conflict detection algorithm. 33
3 The Local planning algorithm. 34
4 The PRM Extend algorithm. 35
5 The PRM path planner algorithm. 37
6 The RRT* steer algorithm. 38
7 The RRT* extend algorithm. 41
8 The RRT* path planner algorithm. 44

xiii

Stellenbosch University http://scholar.sun.ac.za

Nomenclature

Abbreviations and Acronyms

PRM Probabilistic Roadmap Method.

RRT(*) Rapidly Exploring Random Tree (star).

LPM or lpm Local planning method.

UAV Unmanned Aerial Vehicle.

EC Energy Cost.

CF Cost fraction, fraction of a total cost.

CCPM Cyclic-, Collective Pitch Mixing.

TTP Tip path plane.

GPS Global Positioning System.

DCM Direction Cosine Matrix.

Notational convention

N is used to indicate North, and is used interchangeably with the x dimen-
sion.

E is used to indicate East, and is used interchangeably with the y dimension.

D is used to indicate Down, and is used interchangeably with the negative z
dimension.

η Limit on the length of a RRT* steer manoeuvre.

mb denotes the start/initial space × time (or milestone) configuration.

mrand denotes a random milestone.

mg denotes the end/stop/goal milestone.

mnewest denotes the milestone most recently added to an algorithm’s data struc-
ture.

mnearest denotes the closest milestone (in euclidean distance) to another milestone.

S denotes a state space.

T denotes a time space.

F denotes the set of all collision-free points.

xiv

Stellenbosch University http://scholar.sun.ac.za

NOMENCLATURE xv

F ⊂ S × T denotes a free space.

R(S) denotes the set of reachable points1 from the set S:

R(S) =
⋃
p∈S
R(p)

where p refers to different points in S.

Rlpm(S) denotes the set of reachable points from the set S through executing a
single lpm run:

Rlpm(S) =
⋃
p∈S
Rlpm(p)

where p refers to different points in S.

X = R(mb) denotes the set of all points reachable from mb.

treeprm denotes a tree data structure used by the PRM where each node in the
tree has parent and child relationships except the root node.

treerrt∗ denotes a tree data structure used by the RRT* where each node in the
tree has parent and child relationships except the root node.

ρ(a, b) is the euclidean distance between the points a and b in S.

mp∗ denotes a manoeuvre primitive, where * can be lt for a left turn, rt for a
right turn or fl for a straight line

man∗ denotes a manoeuvre library entry, where * may be any combination of l
for left turn, r for right turn, or f for forward ex. manlfr is left forward
right manoeuvre library entry.

1A reachable point is a point to which it is possible to connect to with multiple local planning method
runs.

Stellenbosch University http://scholar.sun.ac.za

Acknowledgements

I would like to thank the following people:

• Dr Corné van Daalen, for all his guidance and feedback.

• For all the support and motivation of my family.

• All my friends in the ESL.

• My wife to be, Pascalle, for her love, support and motivation.

• My mother for proofreading this thesis.

xvi

Stellenbosch University http://scholar.sun.ac.za

Chapter 1

Introduction

1.1 The relevance of Autonomous Navigation

The use of Unmanned Aerial Vehicles (UAVs) in both commercial and military applications
are becoming ever more significant. An autonomous UAV1 does not require any human
intervention2 after assigning a goal to it; that is, after the vehicle is assigned a job to do, it
is capable of completing the navigational aspects of its job without any human intervention.
Applications of autonomous navigation range from military purposes, to the surveying of
crops, and includes unmanned space exploration.

• UAVs have been mostly used by the military because of their ability to operate in dan-
gerous locations without endangering their human operators. Autonomous navigation
seeks to remove human interaction even further, perhaps even to a point where certain
military tasks (e.g. reconnaissance) are performed fully autonomously, by an UAV.

• Surveying of crops is currently a relatively costly task; it requires hiring a pilot, an
aeroplane, and surveillance equipment, as opposed to an autonomous UAV being a
once-off investment. Furthermore, an autonomous UAV would be able to survey crops
(almost) on-demand.

• For space exploration, real time control of a rover is not possible3 at great distances,
hence necessitating some form of autonomous navigation for the rover.

The intended application of this thesis is autonomous navigation of rotary-wing UAVs. Au-
tonomous rotary-wing UAVs, as opposed to fixed-wing UAVs, have a number of applications,
e.g. where:

• a surveillance stream is required of an agile target,

• vertical take-off and landing is required, or

• manoeuvring space is limited.
1This project specifically focuses on an Unmanned Aerial Vehicle, however the aspects relating to au-

tonomous navigation in this document are also applicable to other vehicles, including but not limited to,
manned, unmanned, aerial, water-based or land-based vehicles.

2Regarding navigation.
3E.g. communication with rovers on Mars takes between 10 and 20 minutes [3], and the Deep Space

Network (or DSN) is used by other projects, which renders real time control of the vehicle impossible.

1

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 2

This chapter discusses an autonomous navigation system architecture (Section 1.2) and the
necessary modules (or building blocks) required to build such a system. The chapter then
identifies the modules in the system architecture which forms the focus of this project.
Chapter 2 looks at the vehicle for which this system is being built, as well as the work
already completed on the vehicle.

1.2 System architecture

In order to achieve autonomous navigation, a couple of modules are required, namely: vehicle
controllers, sensors, converting sensor data into map information, testing flight paths for
conflict, and motion planning. The focus of this project is on the motion planning required
to autonomously navigate from one waypoint to another.
The architecture required for autonomous navigation is shown in Figure 1.1. The route
planner module takes input from an user, and accordingly determines the initial and goal
vehicle states, which are passed to the motion planning module. The motion planning
module plans the path between the initial and goal states, and it uses the conflict detection
module to obtain the probability of conflict along any path segment. If the accumulated
probability of conflict along the entire path is below a chosen threshold, then the motion
planing module passes the necessary input to the vehicle’s controllers, estimator, and
modelling module. The vehicle’s controllers are responsible for commanding the vehicle’s
actuators, and the vehicle’s estimator is responsible for approximating the vehicle’s states
through the vehicle’s state sensors. The modelling module contains models of the vehicle,
as well as the environment. The purpose of the modelling module is to:

1. provide the conflict detection module with predicted mean and covariance states of
the vehicle and the environment,

2. provide the conflict detection module with the exclusion regions4 of the vehicle and
the environment,

3. update the environment model through the vehicle’s environmental sensors, and

4. update the vehicle’s model through the vehicle’s estimator.
4These are regions which the vehicle may not enter.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 3

Route
Planner
Module

Motion
Planning
Module

Conflict
Detection
Module

Modelling Module

Identify and match landmarks;

update map and landmarks

SLAM: Simultaneously

determine landmark

and vehicle positions

Dynamic

map

Static

map

Land-

marks

Vehicle environ-
ment sensors

Vehicle
estimator
(Kalman
filter)

Vehicle state sensorsVehicle
controller

User input

Initial and goal

vehicle states

Probability

of Conflict

Predicted mean

and covariance

of vehicle and

environment states

Exclusion regions

Updated mean and

covariance of a

subset of vehicle

states

Mean and covari-

ance of vehicle

states

Mean

vehicle

states

Vehicle input

Candidate vehicle input

Figure 1.1 – Shows the architecture of the entire autonomous navigation project. Source:
C.E. van Daalen

This project’s focus concerns the algorithms that will solve the problems presented by the
motion planning module in Figure 1.1. These specific problems are solved by a class
of algorithms referred to as motion planning algorithms, and a discussion on the different
algorithms is presented in Chapter 3.
The work in this project uses a simplified deterministic conflict detection module, which
doesn’t calculate probabilities of conflict as done by C.E. van Daalen [4]. It is seen in
Figure 1.1 that a different conflict detection module (provided that it returns results in a
similar manner) can be used without changing the motion planning module.
A secondary focus of this project is the execution of planned paths using vehicle controllers.
Vehicle controllers are already built in previous projects, and are therefore only briefly
discussed in the next chapter (Chapter 2). In the next section an overview of this thesis is
presented.

1.3 Thesis overview

Chapter 2 The vehicle for which the autonomous navigation system is being built is pre-
sented, along with the axis system definition used throughout this document.

Chapter 3 This project’s problem statement is presented, and the motion planning ap-
proaches used in this project are introduced.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 4

Chapter 4 The implementations of the PRM and RRT* motion planning algorithms are
discussed.

Chapter 5 Theoretical analyses of the PRM and RRT* motion planning algorithms are
conducted, and compared to practical measurements.

Chapter 6 A discussion on the effect of introducing path replanning for the RRT* algo-
rithm is presented.

Chapter 7 The Simulink simulation used to verify the validity of several theoretical aspects
of this project is presented, along with several results.

Chapter 8 Different example environments are presented, along with practical measure-
ments of the performance of the PRM and RRT* algorithms.

Chapter 9 The conclusion of this document, wherein the achievements of this thesis are
briefly presented.

1.4 Conclusion

In this chapter the architecture of an autonomous navigation system is presented together
with the modules necessary to build the entire system. The chapter then highlights that
this project’s aim is to solve the problems presented by the motion planning module. These
problems will be solved using a class of algorithms called motion planning algorithms, and
in Chapter 3, a discussion of these algorithms is presented. The next chapter (Chapter 2)
concerns the work already completed on the vehicle, along with this document’s axis system
definition.

Stellenbosch University http://scholar.sun.ac.za

Chapter 2

Vehicle Model and Controllers

In the previous chapter the relevance of autonomous UAVs are discussed, and a system
architecture for achieving autonomous navigation is presented. The vehicle, for which the
autonomous navigation system is being built will now be introduced, together with previous
work already completed on the vehicle.
This chapter starts by defining the axis reference frame (Section 2.1) used in this docu-
ment, then continues by presenting the chosen vehicle (Section 2.2). For the chosen vehicle,
the available actuators (Subsection 2.2.2), the model of the vehicle (Subsection 2.2.3), the
developed controllers of the vehicle (Subsection 2.2.4), and the vehicle estimator (Subsec-
tion 2.2.5) are presented.

2.1 Axis System Definition

2.1.1 Earth Reference Frame

The origin (denoted by O in Figure 2.1) is chosen to coincide with the starting position of
the vehicle, and remains earth-fixed. The axis components for the earth reference frame is
defined as follows: the OXE-axis points to the North pole and is tangential to the earth’s
surface. The OYE-axis points to the East, also tangential to the earth’s surface. The OZE-
axis is perpendicular to both the OXE and OYE axes, and points down towards the centre
of the earth. The position offset components are defined as North, East, and Down (NED
displacement). This is shown in Figure 2.1.
Throughout this document, the OXE-axis is also referred to as the x-axis, the OYE-axis
referred to as the y-axis, and the OZE-axis referred to as the negative of the z-axis.

2.1.2 Body Reference Frame

The reference frame of the body of the vehicle is fixed to the body of the vehicle and has
its origin at the centre of gravity (CG) of the vehicle. Figure 2.2 shows the reference frame,
as well as definitions used throughout this document. The axis components are defined as
follows: the OXB-axis points forwards towards the nose of the aircraft, the OYB-axis is
perpendicular to the OXB-axis and points to the right of the aircraft, and the OZB-axis is
perpendicular to the XBYB-plane and points downwards.
Furthermore, the vehicle rolls around the OXB-axis, pitches around the OYB-axis, and
yaws around the OZB-axis, where the respective angles relative to the earth reference frame
are introduced in the next subsection. The position (x, y, and z) place the vehicle CG at a

5

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. VEHICLE MODEL AND CONTROLLERS 6

OXE

North
O

OYE

East

OZE

Towards
centre of
earth

Origin at some
convenient posi-
tion on surface

Figure 2.1 – Earth Axis System Definition.

Figure 2.2 – Aircraft Body Axis System Definition [1].

specific location relative to the earth reference frame. The velocity (u, v, and w) describe
the motion of the CG in body coordinates. The angular rates (p, q, and r) are defined in
body coordinates.
The vector TMR shows the force generated by the main rotor of the vehicle, and TTR shows
the force generated by the tail rotor.

2.1.3 Reference Frame Relationship

This subsection discusses the relationship between the earth and body reference frames. The
body reference frame is defined to be fixed to the body of the vehicle, and earth reference
frame is defined to be fixed to the earth. To determine the vehicle’s position and attitude
within the earth reference frame, it is important to know how the body reference frame
is spatially oriented relative to the earth reference frame. Euler angles are used in this
document to describe this orientation, and the transformation from one reference frame to
another is achieved through three rotations.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. VEHICLE MODEL AND CONTROLLERS 7

This document uses the Euler 3-2-1 order of rotation, meaning that the transformation from
the body to the earth reference frame is performed by:

1. first rotating the body reference frame about the OZE-axis, through the yaw angle ψ,

2. then about the OYE-axis, through the pitch angle θ, and

3. lastly about the OXE-axis, through the roll angle φ.

For a vector VB in the body reference frame and a Direct Cosine Matrix1 (DCM) T(φ, θ, ψ),
the same vector located in the earth reference frame VE is related by the following:

VB = T(φ, θ, ψ) ·VE , (2.1.1)
VE = TT (φ, θ, ψ) ·VB . (2.1.2)

The Euler 3-2-1 DCM is defined as:

T(φ, θ, ψ) =

 cosθcosψ cosθsin(ψ −sin(θ
sin(φsin(θcosψ − cosφsin(ψ sin(φsin(θsin(ψ + cosφcosψ sin(φcosθ
cosφsin(θcosψ + sin(φsin(ψ cosφsin(θsin(ψ − sin(φcosψ cosφcosθ


(2.1.3)

2.2 The Vehicle

This section provides an overview of the vehicle upon which the research for this project is
conducted. Firstly, the vehicle is presented, and its available actuators and their limitations
are introduced. Thereafter, the model of the vehicle is presented together with the states
present in the model, as well as an introduction to the model used during simulation. Lastly,
the vehicle’s available controllers, and its estimator are presented.

2.2.1 Vehicle choice

In a previous project at Stellenbosch University, research was done by S. Groenewald [1]
to choose a RC helicopter to be used in subsequent projects at the university. The vehicle
chosen by Groenewald is the X-Cell Fury .60 Expert (fitted with a .70 size engine), and
the work done in this project will be based on it. The X-Cell helicopter is a methanol
powered aircraft with a .70 size glow2 engine, capable of lifting a maximum payload of 2kg3.
Throughout this document the X-Cell will be referred to as the vehicle. A photograph of
the vehicle during autonomous hover is shown in Figure 2.3.

1For a complete derivation of the DCM see [5].
2Glow fuel consists of Methanol as base, and is usually mixed with Synthetic Oil and Nitro Methane.
3With a set of 680mm rotor diameter blades.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. VEHICLE MODEL AND CONTROLLERS 8

Figure 2.3 – The X-Cell during autonomous hover [1].

The next subsection presents the actuators of the vehicle.

2.2.2 Vehicle actuators

To control the vehicle, actuators are used to influence the force vectors (TMR and TTR)
generated by the main and tail rotors, as shown in Figure 2.2. To understand how this
works, it is first necessary to look at how the rotor blades of a helicopter are connected to
the helicopter itself. Large helicopters usually have a hinged rotor hub, as shown on the left
of Figure 2.4, where the rotor blade is connected to the hub of the helicopter via a hinge [6].
The hinges allow the tip path plane4 (TPP) to change its orientation, and therefore change
the direction of the force vector produced at the hub. For small helicopters (such as RC
helicopters) the blade and hub provides a similar function, except that the hub typically
does not have hinges.

Hinge

Hub
Blade

Tilted Blade
Bent Blade

Figure 2.4 – On the left a hinged rotor hub is shown, and on the right a rigid rotor hub is
shown [1].

The angle that the tip of a blade makes with the hub, along the lateral or longitudinal axis,
is called the flapping angle5, and is denoted by a1 and b1 respectively. The control system

4The tip path plane is the path the tip of the rotor blade traces as it rotates around the hub.
5As noted by S. Groenewald [1], a1 and b1 actually denotes the first harmonics of the blade flapping

angles.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. VEHICLE MODEL AND CONTROLLERS 9

of the vehicle is able to control these angles with the cyclic input commands, δa and δb. The
collective angle of attack of the blades can be varied by δc, which controls the magnitude of
the thrust. These control inputs are transferred to the main rotor by using cyclic collective
pitch mixing (CCPM). Typically, three servos are used to control the swashplate, which
forces the TPP to trace the required path. The last control input is the collective pitch of
the tail rotor, which adjusts the thrust of the tail rotor, and is denoted by δr. These inputs
control all the degrees of freedom of the vehicle.
The next subsection provides details about the model of the vehicle.

2.2.3 Vehicle Model

A nonlinear hover model for low advance ratio flight was developed by E. Rossouw [7]. The
vehicle states in the model are described in Table 2.1:

State Description
u, v, w Velocity components in the x,y and z-directions of the body frame
p, q, r Roll-, pitch-, and yaw rates of the body reference frame
φ, θ Roll-, and pitch angles relative to the earth reference frame
a1, b1 First harmonics of the blade flapping angles

Table 2.1 – Summary of the vehicle states included in its model.

Relation of actuators and states

Now that the states of the vehicle model are known, it is possible to qualitatively describe
the influence the actuators have on the states of the vehicle model.
The input δa controls the lateral flapping angle a1, which changes the force vector TMR
about the longitudinal-axis of the body frame, and results in acceleration to the left or
right of the vehicle. Intuitively, the input δa influences the lateral velocity v, the roll angle
φ, and the roll rate p.
The input δb controls the longitudinal flapping angle b1, which changes the force vector
TMR about the lateral-axis of the body frame, and results in acceleration to the front or
rear of the vehicle. Intuitively, the input δb influences the longitudinal velocity u, the pitch
angle θ, and the pitch rate q.
The input δc controls the collective angle of attack of the main rotor, and therefore changes
the magnitude of the force vector TMR

6. The states that δc effects will depend on a1 and b1,
however it can potentially influence v, u, φ, θ, p, and q. In addition to the states dependant
on a1 and b1, δc will mainly influence the vertical velocity w, and the yaw rate r.
The input δr controls the angle of attack of the tail rotor, which changes the magnitude of
the force vector TTR. Intuitively, the input δr influences the lateral velocity v, and the yaw
rate r.

Definition of the non-linear model

The non-linear model of the vehicle is defined by Rossouw as follows:
6Note that a governor is used to keep the rotor at a fixed speed.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. VEHICLE MODEL AND CONTROLLERS 10

ẋ = F(x, u), (2.2.1)

with:

x = [u q θ a1 v p φ b1 w r]T , (2.2.2)
u = [δa δb δc δr]T . (2.2.3)

To develop the feedback controllers for the vehicle, Rossouw linearised the non-linear model
around hover trim conditions using MATLAB.

Linearised hover model

The linearised hover model is defined as:

ẋ = Ax +Bu, (2.2.4)

where the linearised A and B matrices are:

A =



−0.036 0 −g −9.55 0 0 0 0 0 0
−0.001 0 0 203.1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0
0.002 −1 0 −8.39 0 0 0 0 0 0

0 0 0 0 −0.13 0 g 9.55 0 0
0 0 0 0 −0.16 0 0 383.6 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0.002 −1 0 −8.39 0 0
0 0 0 0 0 0 0 0 −1.11 0
0 0 0 0 0 0 0 0 0 −23.37


, (2.2.5)

B =



0 0 0 0
0 0 0 0
0 0 0 0
0 35.31 0 0
0 0 1.28 −6.77
0 0 11.23 −20.15
0 0 0 0

35.31 0 0 0
0 0 −164.5 0
0 0 0 147.3


. (2.2.6)

In the B-matrix four cross-coupling terms are identified: 1.28, 11.23, −6.77, and − 20.15,
which are on the δc and δr input commands. The rudder creates a side force (−6.77),
however the roll cyclic cancels this quickly through feedback. The rudder could also cause a
roll moment (−20.15) if it is offset from the body x-axis, however this offset is small enough
for the effect to be negligible. Side force from the collective (1.28) arises due to the roll angle
the helicopter hangs at during hover. Similarly, a roll moment (11.23) will result if the tail
rotor is offset such that the main rotor needs to provide a steady state moment in trim7.
The above mentioned effects can be reasoned as small, therefore Rossouw reasoned that
the cross coupling terms may be neglected and thereby the full helicopter model could

7The above insights regarding the cross coupling terms are provided by Dr. Iain K. Peddle.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. VEHICLE MODEL AND CONTROLLERS 11

be decoupled into four separate models, which is advantageous since a separate feedback
controller could be designed for each model.
The helicopter model is decoupled into separate longitudinal (Figure 2.5), lateral (Fig-
ure 2.6), heave (Figure 2.7), and heading (Figure 2.8) models.

Figure 2.5 – The longitudinal model of the vehicle [7].

Figure 2.6 – The lateral model of the vehicle [7].

Figure 2.7 – The heave model of the vehicle [7].

Figure 2.8 – The heading model of the vehicle [7].

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. VEHICLE MODEL AND CONTROLLERS 12

The next subsection presents the controllers developed for the vehicle.

2.2.4 Vehicle controllers

The control method used by Rossouw is successive-loop-closure, which has been widely used
to automate unmanned helicopters. The method works by first controlling the fast modes of
motion of the system by closing control loops with the dominant states that influence these
modes. The slower dynamics are then controlled by successive outer loops.

2.2.4.1 Heading angle controller

The first controller designed by Rossouw is the heading angle controller. It should be noted
that the gyro of the vehicle is operated in normal mode, not heading hold mode. The
design specifications of the heading angle controller are:

• rise time of less than 3s,

• overshoot of less than 20%, and

• zero steady state errors.

Since zero steady state errors are required, proportional-integral (PI) control is used by
Rossouw. Figure 2.9 shows the successive-loop-closure block diagram of the heading con-
troller. A heading angle step response is shown in Figure 2.10.

Figure 2.9 – Successive-loop-closure for the heading plant [7].

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. VEHICLE MODEL AND CONTROLLERS 13

Figure 2.10 – Heading angle step response [7]. The amplitude is given in radians.

2.2.4.2 Heave position controller

Next, the heave position controller is designed by Rossouw. The design specifications of the
heave position controller are:

• rise time of less than 3s,

• overshoot of less than 20%, and

• zero steady state errors.

Once again, PI control is used by Rossouw to achieve zero steady state errors. Figure 2.9
shows the successive-loop-closure block diagram of the heave controller. A heave position
step response is shown in Figure 2.12.

Figure 2.11 – Successive-loop-closure for the heave plant [7].

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. VEHICLE MODEL AND CONTROLLERS 14

Figure 2.12 – Heave position step response [7]. The amplitude is given in meters.

2.2.4.3 Lateral and Longitudinal position controllers

Lastly, the lateral and longitudinal position controllers are designed be Rossouw. The spec-
ification for the horizontal position controllers are:

• rise time of less than 5s,

• overshoot of less than 10%, and

• zero steady state errors.

PI control, together with successive-loop-closure methods, are once again employed, and a
resultant longitudinal position step response is shown in Figure 2.15. Figures 2.13 and 2.14
shows the successive-loop-closure block diagrams of the lateral and longitudinal controllers.

Figure 2.13 – Successive-loop-closure for the lateral plant [7].

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. VEHICLE MODEL AND CONTROLLERS 15

Figure 2.14 – Successive-loop-closure for the longitudinal plant [7].

Figure 2.15 – Longitudinal position step response [7]. The amplitude is given in meters.

2.2.4.4 Vehicle model and controller simulation with Simulink

The full non-linear equations for the vehicle, as developed by V. Gavrilets, B. Mettler, and
E. Feron [8], were used by Medellín-Colombia [9] to create a Simulink model of the vehicle
in MATLAB. The model parameters were tailored to this project’s vehicle specifications, as
summarised by Groenewald [1].
The Simulink model is covered in Chapter 7; Figure 7.3 shows the inner loop controllers in
a Simulink diagram. Hardware implementations of these controllers have undergone flight
tests, and the software implementation of them in Simulink is deemed to accurately represent
their real world behaviour.

2.2.5 Vehicle Estimator

A state estimator is used to obtain the translational and rotational states of a vehicle, even
if the states are not directly measurable. This is achieved by combining measurements from
a number of sensors and making use of the kinematic relationships between the states and
measurements.
A full state kinematic estimator was designed in the ESL by W.J. Hough [2]. The esti-
mator uses measurements from strapped down gyroscopes to determine the attitude of the
vehicle. Once the attitude is known, strapped down accelerometer measurements can be

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. VEHICLE MODEL AND CONTROLLERS 16

coordinated in an inertial reference frame. After gravitational accelerations is compensated
for, the measurements are integrated twice to determine the platform’s inertial frame, and
its coordinated velocity and position.
A problem is that the integrated position, velocity, and attitude states will lose accuracy
over time since an approximated integration process is used, as well as the inertial sensors
having biases. However, it is possible to correct this by using measurements from the GPS
and magnetometer to update the integrated states. The structure, as designed by Hough,
is shown in Figure 2.16, and is implemented in the Simulink simulation.

Figure 2.16 – The kinematic state estimator structure by Hough [2].

2.3 Conclusion

Several key aspects of the vehicle, for which the autonomous navigation system is being
built, are introduced in this chapter. The chapter starts by introducing the earth and body
reference frames, and accordingly the axis conventions used throughout this document.
Next, this chapter introduces the vehicle used in this project as the X-Cell Fury, as well as
its available actuators, and its identified model. Lastly, the available controllers and their
characteristics are presented, and the vehicle’s estimator is discussed.
In the next chapter (Chapter 3), the problem statement for this project is presented, along
with a discussion on different motion planning algorithms, and the requirements of the
motion planning module for this project.

Stellenbosch University http://scholar.sun.ac.za

Chapter 3

Motion planning

The focus of this project is on motion planning. In general, motion planning finds a path that
a vehicle can execute to move from one waypoint to another. To place the motion planning
module in context of the entire autonomous navigation system, Section 1.2 presents a system
architecture wherein the role of the motion planning module is illustrated.
This chapter starts by defining the problem statement for this thesis (Section 3.1), after
which a discussion on the different motion planning algorithms (Section 3.2) is presented.

3.1 Motion planning problem statement

This project concerns motion planning for a rotary wing UAV, where vehicle controllers are
already in place, and map data is readily available to a conflict detection module. The basic
motion planning problem is to determine how a vehicle should move so that it can reach
a goal position, while avoiding obstacles. The problem statement for this thesis is listed
below:

1. For given initial and goal milestones, it is necessary to find an executable and conflict
free path between the initial and goal milestones.

2. This path must satisfy nonholonomic1 motion, as well as kinodynamic constraints of
the chosen vehicle.

3. Given that a conflict free path exists, it is necessary to guarantee that such a path
will be found.

4. The environment in which the vehicle operates is uncertain, dynamic and cluttered.

5. The algorithm must be able to improve already existing paths.

6. The algorithm must be usable on practical systems, where almost real time motion
planning is required.

The aforementioned problems are all solved using the motion planning algorithms that are
implemented in Chapter 4. The subsequent chapters of this thesis focuses on specific points
of the problem statement, and aim to provide an in depth understanding as to how the
algorithms solve the above problems. Chapter 5 performs an in depth analysis on two

1Subsection 3.4.1 explains nonholonomic and kinodynamic constraints, and why they are relevant to this
project.

17

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. MOTION PLANNING 18

motion planning algorithms, and shows that the algorithms are usable on practical systems.
Chapter 6 focuses on path replanning, and shows that the algorithm is able to improve an
existing path, and that the environment in which the vehicle operates may be uncertain.
Chapter 7 performs a Simulink simulation, wherein it shows that the path provided by the
motion planning algorithm satisfies the nonholonomic motion and kinodynamic constraints
of a vehicle. Chapter 8 shows that the motion planning algorithm finds a conflict free path
between given initial and goal milestones, even in cluttered environments.
The rest of this chapter (Chapter 3) discusses different motion planning algorithms, and
concludes with choosing two motion planning algorithms capable of solving the above prob-
lems.

3.2 Available motion planning algorithms

As previously discussed, this project forms part of a larger goal to achieve autonomous flight
of an unmanned rotary wing aircraft. Many building blocks are required to achieve such
a goal, and for this project the motion planning, conflict resolution, and vehicle controller
blocks form its focus. These blocks are presented in the architecture diagram shown in Fig-
ure 1.1. The motion planning and conflict detection blocks are responsible for solving most
of the problems in Section 3.1. In this section algorithms are introduced that are suitable
for solving these problems; these algorithms are known as motion planning algorithms.

3.2.1 Complete motion planning

An algorithm that solves the motion planning problem is said to be complete if it finds a
path in any given environment (given that a path exists), and for environments where no
path exists, it is able to determine that no path exists.
Early works by T. Lozano-Perez, M. A. Wesley [10], and J. T. Schwartz, M. Sharir [11],
focused on complete motion planning algorithms for polygonal robots and obstacles using
algebraic approaches. However, work by J.H. Reif [12] proved that even a basic motion
planning problem, called the Piano Movers Problem, is polynomial space hard. This strongly
suggests that complete motion planning algorithms are execution time expensive due to their
computational complexity, which means that they are unsuitable for practical applications.
Since this project requires motion planning in (close to) real time, other solutions have to be
considered. In the next subsection, algorithms that are not strictly complete are presented
along with a discussion on the path finding guarantees they provide.

3.2.2 Almost complete motion planners

In the previous subsection it is concluded that complete planners are computationally too
expensive for practical considerations. By relaxing the strict completeness constraint, it is
possible to consider motion planning algorithms that still offer some form of completeness.

3.2.2.1 Grid-based search

One example of an algorithm that does not provide strict completeness is the grid-based
search algorithm, which guarantees resolution completeness, that is, with a fine enough
grid resolution, a solution to the motion planning problem will be found, if one exists [13].

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. MOTION PLANNING 19

Grid-based search algorithms overlay a grid on the configuration space and associate robot
or vehicle configurations to the points on the grid. Vehicles can move to adjacent grid points
only if the line connecting the two points is entirely conflict free.
Discretising the configuration space means that for rough resolutions of the grid, a path
through narrow parts of the free configuration space might not be found. This is a problem,
because for very fine resolutions, or high dimensions of the configuration space, this algo-
rithm becomes computationally very expensive to execute. This is due to the exponential
growth of points in the grid that is necessary to cover the entire configuration space.

3.2.2.2 Potential fields

One approach used in potential field algorithms is to create a potential field that attracts
towards the goal, and repulses from obstacles. The vehicle is then a point in this potential
field, which is attracted towards the goal and repulsed from obstacles.
The main problem with potential field based algorithms is getting stuck in a local minima,
and not being able to escape [13]. However, recent advances to the potential field algorithm
was made by S. Ansari, K. Ok, B. Gallagher and W. Sica [14], where Voronoi vertexes are
employed to solve the local minima problem. The improved algorithm is said to be complete,
however formal proof thereof is not shown by Ansari et al. Furthermore, the Voronoi vertex
generation is computationally very expensive and in Table 1 by Ansari et al., execution
times exceeding 9 seconds are necessary with many (in this case 500) obstacles present in
the environment.

3.2.2.3 Sampling based

Sampling based motion planning algorithms arguably present the most influential recent
advances, as is seen from the amount of research done by E. Frazzoli, M.A. Daleh, and
E. Feron [15], D. Hsu, R. Kindel, J.C Latombe, and S. Rock [16], S. Karaman, and E.
Frazzoli [17], L. Kavraki, and J. Latombe [18], L.E. Kavraki, P. Svestka, J Latombe, and
M.H. Overmars [19], S.M. LaValle, and J.J. Kuffner [20], J. vd. Berg, D. Ferguson, and
J.J. Kuffner [21], and more. These algorithms typically generate uniform samples (or mile-
stones) over the entire configuration space, and then try to add these milestones to a tree
of milestones which is rooted to the initial milestone, or start state of the vehicle.
The Rapidly Exploring Random Tree (RRT) and Probabilistic Roadmap Method (PRM)
are examples of sampling based motion planning algorithms, and formal proofs of proba-
bilistic completeness exist for both the RRT and PRM algorithms. Generally speaking,
probabilistic completeness means that the probability of finding a path, given that a path
exists, will approach certainty by generating more and more milestones.
The RRT and PRM motion planning algorithms are widely used, and real time motion plan-
ning is achievable for both algorithms. Overviews of the histories, and major contributions
to the PRM and RRT algorithms are presented in Subsections 3.3.1, and 3.3.2.

3.2.2.4 Conclusion

Following this brief discussion, it is decided that the PRM and RRT*2 algorithms will be
used in this project. In the next section an overview of the research done on the PRM and
RRT* algorithms is presented.

2A recent paper [17] made huge improvements to the classic RRT. The improved algorithm is now
referred to as the RRT*.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. MOTION PLANNING 20

3.3 Sampling based motion planning

In this section, developments regarding the PRM and RRT* sampling based algorithms are
presented.

3.3.1 The Probabilistic Roadmap Method

The Probabilistic Roadmap Method (PRM), is introduced in a paper by L.E. Kavraki, P.
Svestka, J.C. Latombe, and M.H. Overmars [19] in 1996. The PRM works in two phases: a
learning and a query phase. In the learning phase, a probabilistic roadmap is constructed of
conflict free vehicle configurations, where the edges of the roadmap corresponds to feasible
paths between the configurations. Next, the roadmap is queried for a path between an
initial and goal configuration, and a path is returned that connects the initial and goal
vehicle configurations. Perhaps the biggest advantage the PRM offered, when compared to
previous planners, is that the time required by the PRM to find a solution does not increase
exponentially in high dimensional configurations spaces.
Since its conception, the PRM has seen a multitude of papers published suggesting differing
strategies for connecting vehicle configurations, as well as several sampling strategies3. One
major difference between the classical PRM and the PRM implemented for this paper is the
fusing of the learning and query phases. The implementation of the PRM used in this paper
is presented in Section 4.8. Figure 3.1 shows a typical PRM with several milestones in its
roadmap.

0 100 200 300 400 500 6000

100

200

300

400

500

600

x-axis (meters)

y-
ax

is
(m

et
er
s)

Figure 3.1 – This figure shows the PRM algorithm with several milestones in its tree.

3The PRM uses a sampling strategy while it is constructing its roadmap.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. MOTION PLANNING 21

A theorem presented by D. Hsu, R. Kindel, J.C. Latombe, and S. Rock [16] proves that the
PRM is guaranteed to find a solution (given that one exists) with increasing probability, as
the number of known milestones4 increases. This is referred to as probabilistic completeness,
and is arguably the single most important contribution to the PRM. Building on this,
Section 5.2.2 uses parts of the proof of probabilistic completeness to obtain insight into the
workings of the PRM in a specific environment.
In the next subsection, a second sampling based motion planning algorithm is introduced,
the Rapidly exploring Random Tree.

3.3.2 The Rapidly exploring Random Tree

The Rapidly exploring Random Tree (RRT) algorithm was first introduced by S.M. LaValle
in 1998 [22]. The RRT was originally designed to handle nonholonomic, dynamic constraints
in search spaces with high degrees of freedom. The RRT algorithm has been widely used
for practical applications and a variant thereof was proposed for use on the Mars rovers by
J. Kwak [23].
The classic RRT algorithm expands by iteratively applying control inputs that drive a system
only slightly in the direction of randomly selected points, whereas the PRM requires point to
point convergence. S.M. LaValle notes that at the introduction of the RRT, it was already
capable of dealing with holonomic, nonholonomic, and kinodynamic planning problems of
up to twelve degrees of freedom. The classic RRT is shown in Figure 3.2, with the difference
that manoeuvres (discussed in Subsection 3.4.2), instead of control inputs, are used to drive
the system in the direction of points, or milestones.

0 100 200 300 400 500 6000

100

200

300

400

500

600

x-axis (meters)

y-
ax

is
(m

et
er
s)

Figure 3.2 – This figure shows the classic RRT algorithm after 100 iterations.

4For the definition of a milestone, refer to Subsection 4.6.1. A milestone is essentially a waypoint with
some added data members.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. MOTION PLANNING 22

In 2001, S.M. LaValle and J.J. Kuffner [20] presented a mathematical proof that the RRT
guarantees probabilistic completeness. This is arguably the single most important feature
of the RRT, as it now guarantees the probability of finding a path, if one exists, strives
to certainty, as the number of iterations increases. Parts of the proof of probabilistic com-
pleteness is used to gain insight into the workings of the RRT in a specific environment, in
Section 5.3.1.
In 2010, S. Karaman and E. Frazzoli [17] made significant improvements to the RRT. Kara-
man et al. addresses issues of the RRT such as the quality of the path it finds. The first
contribution from the authors is mathematical proof that the cost of the best path in the
RRT converges almost surely to a non-optimal value. This is a negative result for the RRT
as it means that when a RRT is used for motion planning the path, it finds will almost
surely be non optimal, and better paths might be found with another algorithm.
The second contribution of Karaman et al. is a new algorithm called the Rapidly-exploring
Random Graph (RRG), for which it is proven that the cost of the best path in the RRG
converges to the optimum almost surely. Next, the authors introduce a tree version of the
RRG, referred to as the RRT*. The RRT* maintains the asymptotic optimality of the RRG,
while maintaining a tree structure like the RRT. Lastly, Karaman et al. also shows that
the computational complexity of the RRG and RRT* algorithms are asymptotically within
a constant factor of the RRT.
The RRT* algorithm by Karaman et al. does not deal with several requirements of this
project’s problem statement; therefore the next section discusses these requirements.

3.4 Problem statement requirements

The problem statement for this project requires motion planning in uncertain, dynamic
environments for vehicles with nonholonomic and kinodynamic constraints. In the previous
sections the available motion planning options are briefly discussed, and their respective
weaknesses and strengths are presented. Accordingly, it is decided that sampling based
algorithms are best suited for this project, specifically the PRM and RRT* motion planning
algorithms.
The PRM algorithm has been implemented with nonholonomic and kinodynamic constraints
in previous projects, however the RRT* algorithm proposed by Karaman et al. [17] use
straight lines to connect milestones, thus not taking nonholonomic nor kinodynamic con-
strains into account. In this section, various requirements of the problem statement are
discussed, and the approaches used in this project to adhere to these requirements are in-
troduced.

3.4.1 Kinodynamic and nonholonomic motion constraints

Kinodynamic

The kinodynamic planning problem refers to robotic (or vehicle) motion that is subject to
simultaneous kinematic and dynamic constraints, as well as avoiding obstacles. Constraints
on vehicle dynamics includes bounds on velocity, acceleration and force [24]. Since this
project concerns planning for a real world vehicle, it is important to adhere to the aforemen-
tioned constraints. Furthermore, the control inputs of the vehicle are via actuators, which
also impose kinodynamic constraints.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. MOTION PLANNING 23

Obstacle avoidance is achieved via the conflict detection algorithm outlined in Subsec-
tion 3.4.3. The vehicle’s dynamic constraints are adhered to by placing bounds on the
allowable vehicle velocity during planning.

Nonholonomic

A nonholonomic system, in this project’s context, refers to a system where the controllable
degrees of freedom are less than the total degrees of freedom of the vehicle. The controllable
degrees of freedom of the vehicle are u = [δa δb δc δr]T , as opposed to the states in the model
x = [u q θ a1 v p φ b1 w r]T . This means that the system is path dependent: the heading at
which the vehicle arrives at any point is also the heading at which the vehicle must leave the
point. These constraints are adhered to in this project through using manoeuvres, outlined
in Subsection 3.4.2.
In Chapter 7, a Simulink simulation is performed using simulated vehicle controllers, which
have been used during real world flight of the vehicle. The simulation simulates the vehicle
executing a path generated by the motion planning algorithm. It is seen that the vehicle is
able to execute a planned path while staying in its envelope5 of operation.

3.4.2 Manoeuvres

From the previous subsection it is apparent that the motion planning required in this project
should adhere to nonholonomic bounds. This requirement is addressed by using manoeu-
vres to determine a flight path of a vehicle. Informally, a manoeuvre consists of multiple
trajectories (or manoeuvre primitives), where each of these manoeuvres are predetermined
to be executable by a vehicle.
Take for example a manoeuvre that consists of two manoeuvre primitives, a left turn and a
straight line. The left turn manoeuvre primitive is constructed by determining the minimum
turning circle for the vehicle (at a specified forward velocity), and then executing such a
turn. Next, it is necessary to determine the vehicle manoeuvre primitive for transitioning
between a left turn and straight line. It is now possible to connect the left turn manoeuvre
primitive to the straight line manoeuvre primitive by prepending this transition manoeuvre
primitive to the straight line manoeuvre primitive. Together, this forms a single manoeuvre
in the manoeuvre library, which is the set of all executable manoeuvres by the vehicle. The
reader is referred to Section 4.5 where the implementation of manoeuvres is discussed.
An example where manoeuvres are used is by E. Frazzoli, M.A. Dahleh, and E. Feron [25],
where control of a small helicopter was developed though using manoeuvres. Frazzoli et al.
notes that through the quantisation of system dynamics, the computational complexity of
the motion planning problem for non-linear, high dimensional systems is reduced in the sense
that the feasible nominal trajectories are restricted to a family of time parametrised curves (a
manoeuvre library) which is constructed by the interconnection of appropriately defined
primitives to form manoeuvres. These primitives will then constitute multiple manoeuvres
from which the nominal trajectories may be constructed, and these nominal trajectories are
then stored in a manoeuvre library. Instead of solving an optimal control problem over a
high-dimensional, continuous space, the problem is reduced to a mixed integer programming
problem, over a much smaller space.
Formally, a manoeuvre is defined in this project as a finite time transition from the vehicle’s
hover (zero translation in the horizontal and vertical directions) state to one of its manoeuvre
library6 entries. While the manoeuvre is executed, the vehicle maintains an average velocity

5The envelope of operation refers to the inherent constraints a vehicle has while moving. In particular,
the kinodynamic and nonholonomic motion constraints are referred to in this context.

6The reader is referred to Section 4.5.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. MOTION PLANNING 24

as required by a time constraint.

3.4.3 Conflict detection

In the problem statement it is required that a planned path is conflict free. To achieve this,
information about the environment is necessary. The only information the motion planning
algorithms have about the environment is provided by the conflict detection module. The
conflict detection module is therefore the only part of the motion planning algorithm that
requires a description of the environment.
For this project, it is assumed that all information needed by a conflict detection module
is readily available, and that there are no uncertainties regarding obstacle locations. This
means that all information about the environment, i.e. future obstacle locations etc., must
be known beforehand. C.E. van Daalen [4] developed a novel probabilistic conflict detection
method that determines a tight upper bound on the probability of conflict, and the conflict
detection method therein is shown to be executable in real time.
The implementation of a probabilistic conflict detection module is considered outside the
scope of this project. However, since the conflict detection module is the only part of the
motion planning algorithm that requires information about the environment, replacing it
with a probabilistic conflict detection module will enable the motion planning algorithm to
deal with uncertainties in the environment.

3.4.4 Cost function

A requirement for this project is that an algorithm must be able to improve already existing
paths. To achieve this, it must be capable of comparing two different paths that reach
the same point, and then determine which path is preferable. For this project, the path
which is more energy effective is the preferable path. This project uses manoeuvres to
connect subsequent milestones, and therefore it is necessary to determine for each manoeuvre
primitive the energy cost of executing that particular manoeuvre.
The cost of executing a circle segment mplt (manoeuvre primitive left turn) or mprt (ma-
noeuvre primitive right turn) is relatively easy to determine:

1. Determine energy cost (EC) of executing a full circle turn.

2. Determine the fraction (CF) the segments mplt or mprt is of a full circle.

3. Cost of executing mplt or mprt is EC × CF .

Determining the cost of executing a manoeuvre (consisting of multiple primitives) is a bit
more complicated. Since a manoeuvre will always consist of a circle segment, a line segment,
and then optionally another circle segment, a circle segment is always executed before a line
segment. Thus, in order to calculate the cost of executing a manoeuvre consisting of a circle
segment and a line segment, the cost of transitioning between the circle and line segments
may be added to the line execution cost. This realisation is important since the line segments
are not flat in the xy plane, as opposed to the circle segments: they have heave angles in the
z dimension. That is, executing line segments will have different execution costs, depending
on their respective heave angle, because a steeper heave angle will require more energy.
Transition costs between circle and line segments with steeper heave angles will also differ.
Let EC be the circle execution cost, TCLC(heave angle) the transition from circle to line
cost, LC(heave angle) the line execution cost, and LTC(heave angle) be the combined

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. MOTION PLANNING 25

TCLC(heave angle) and LC(heave angle) cost. It is then possible to formulate:

Cost = EC × CF + TCLC(heave angle) + LC(heave angle), (3.4.1)
= EC × CF + LTC(heave angle). (3.4.2)

As can be seen from Equation 3.4.2 both TCLC(heave angle) and LC(heave angle) are
linearly dependant on the heave angle, which indicates that grouping the costs is possible.
A plot of energy cost vs different (line segment) heave angles is shown in Figure 3.3. The
vertical axis shows the cost LTC(heave angle), and the horizontal axis shows the heave
degrees. The different costs are determined through measurements of a simulation, presented
in Chapter 7. For the measurements, circle and line segments with different heave angles are
executed, and the forces exerted by the main and tail rotors of the simulated vehicle model
are recorded. The velocity of the helicopter is kept constant during the measurements.

−100 −80 −60 −40 −20 0 20 40 60 80 100630

640

650

660

670

680

690

700

710

Heave angle (degrees)

C
os
t

Cost function

Figure 3.3 – A plot showing the cost function used to determine costs. The numbers on the
vertical axis represent sample averages of the measured (during simulation) force of the main
and tail rotors. The measurements are dimensionless and only provide information relative to
each other.

Calculating the cost of executing a manoeuvre is then achieved by using Equation 3.4.3:

Cost = CC × CF + LTC(heave angle)× LF, (3.4.3)

where LF is the line fraction executed. It should be noted that this calculation is only valid
at a specific velocity. In the implementation several samples at different velocities are used
and interpolated to enable the calculation of manoeuvre costs at different velocities.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4

Algorithm implementation

4.1 Introduction

For this project, the problem statement presented in Section 3.1 has to be solved. This
chapter (Chapter 4) provides solutions to key parts of the problem statement. In the previous
chapters, available options to solve the problems are discussed, and it is concluded therein
that sampling based motion planning algorithms are to be used. It is also seen that there
are two sampling based algorithms that are of particular interest since work already done on
them closely aligns with solving the problem statement’s problems, especially the PRM. The
other algorithm, the RRT*, does not take nonholonomic constraints into account during the
planning process. The implementation by S. Karaman, and E. Frazzoli [17] does not use
manoeuvres to connect subsequent milestones.
Section 4.3 provides an introduction to the working of a sampling based algorithm. In
Section 4.4 the sampling strategy used by both the PRM and RRT* is discussed, and
in Section 4.5 the manoeuvre libraries used by the PRM and RRT* are introduced. Next,
Section 4.6 presents the data structure which is used by both the PRM and RRT* algorithms.
The chapter then continues with the conflict detection algorithm in Section 4.7, which is
also used by both the PRM and RRT*.
In Section 4.8 the PRM motion planning algorithm is presented, and in Section 4.9 the RRT*
is presented. The PRM and RRT* algorithms are compared and analysed in Chapter 5.

4.2 Hardware and software specifications

All algorithms are implemented using GNU project C, following C99 standards, running in a
single thread. All code is compiled with gcc version 4.6.3 (Ubuntu/Linaro 4.6.3-1ubuntu5).
The code is executed on an AMD Athlon x4 630, capable of 33.16/4 = 8.29 GFLOPS per
core.

4.3 Generic sampling based algorithm

This section presents the working of a sampling based algorithm. The algorithm is generic
in that it does not contain any of the PRM or RRT* specifics.
The sampling based class of algorithms take as input an initial and goal waypoint. The
algorithm starts by using the initial waypoint as the root of a tree. The algorithm then
samples a waypoint, at a random position, and connects the sample to the tree. After

26

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. ALGORITHM IMPLEMENTATION 27

the above steps have been completed, the algorithm has a tree with two vertices and one
edge. The tree serves as the storage mechanism of the algorithm, each vertex in the tree
corresponds to a waypoint, and each edge corresponds to a path between two vertices. Algo-
rithm 1 shows the above steps, with the addition of repeating the sampling and connecting
steps until the tree contains a vertex that can connect to the goal waypoint.

Input: Initial waypoint, goal waypoint
Output: Path between the initial and goal waypoints
create tree with initial waypoint as root;
while Path to goal not found do

sample;
connect sample to tree;

end
return Path connecting the initial and goal waypoints;

Algorithm 1: A generic sampling based algorithm.
The data structure used to store the tree, and all its information is presented in Section 4.6.
The sampling mechanism is presented in Section 4.4, and Section 4.5 presents how an edge
(or path) is constructed. The area where the PRM and RRT* differ the most is how the
two algorithms connect a waypoint to the tree data structure. Sections 4.8 and 4.9 provides
implementation details on PRM and RRT* specifics.

4.4 Sampling milestones

A requirement of the problem statement is to guarantee1 that a path will be found to the goal
milestone2. There exists mathematical proofs for both the PRM and RRT which guarantees
that a path will be found, however, a requirement of the proofs are that milestones are
sampled randomly, uniformly distributed over the entire configuration space.
Milestones in this project are sampled uniformly distributed in the x, y, z, time and heading
dimensions, and it is assumed that the sampling range of these dimensions are provided.
Each newly sampled milestone is tested for conflict, and if the conflict detection module
indicates that conflict occurs between the sample and the environment, the sample is dis-
carded. A new milestone is then sampled and tested for conflict, and this is repeated until
a milestone is found that does not conflict with the environment.

4.5 The manoeuvre library

The previous section discusses the sampling of milestones, and this section (Section 4.5)
discusses how a vehicle moves from one milestone to a next, that is, the construction of
the path the vehicle must travel to reach a milestone is presented in this section. In this
project manoeuvres are used to construct the flight path of a vehicle. Manoeuvres3 are
used since they will ensure that the flight path is executable by a vehicle with kinodynamic
and nonholonomic constraints.

Definition 4.5.1 A single manoeuvre consists of various manoeuvre primitives (or building
blocks), and for this project very simple manoeuvre primitives are chosen: left turn, right
turn, or forward.

1This guarantee is conditional on the fact that a path does exist. Throughout this thesis this condition
is always implied.

2The goal milestone is defined in Table 4.1
3The reader is referred to Subsection 3.4.2 for a discussion thereof.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. ALGORITHM IMPLEMENTATION 28

This means that any manoeuvre is executed by executing several of these manoeuvre primi-
tives in a specific order. It is necessary to define a structure (or library) in which a manoeuvre
and the order of its manoeuvre primitives are contained:

Definition 4.5.2 A manoeuvre library contains all the possible manoeuvres which the ve-
hicle may execute, that is, each entry in the library contains one manoeuvre and the order
of its corresponding manoeuvre primitives.

This project requires two manoeuvre libraries, one for the LPM and one for the Steer method.
The reader is referred to Subsections 4.8.1 and 4.9.1 for discussions on both methods (or
algorithms).
The manoeuvre library chosen for the LPM is listed below:

1. left turn; forward; left turn

2. left turn; forward; right turn

3. right turn; forward; left turn

4. right turn; forward; right turn

where the length of any manoeuvre primitive may be zero, and the turn radius is constant.
An example is presented in Figure 4.1.
The Steer manoeuvre library consists of:

1. left turn; forward

2. right turn; forward

where the length of any manoeuvre primitive may be zero, and the turn radius is constant.
The reason for this difference is discussed in Subsection 4.9.1. An example is presented in
Figure 4.2.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. ALGORITHM IMPLEMENTATION 29

0 100 200 300 400 500 6000

100

200

300

400

500

600

x-axis (meters)

y-
ax

is
(m

et
er
s)

LPM manoeuvre

Figure 4.1 – A LPM manoeuvre consisting of a left turn, straight line, and a right turn.

0 100 200 300 400 500 6000

100

200

300

400

500

600

x-axis (meters)

y-
ax

is
(m

et
er
s)

RRT* manoeuvre

Figure 4.2 – A Steer manoeuvre consisting of a left turn and a straight line.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. ALGORITHM IMPLEMENTATION 30

During the planning, several constraints need to be placed on the manoeuvres. This is to
ensure the vehicle is not operated outside its envelope of operation. Another consideration
is the limitations of the Simulink model used later in this thesis during simulation. Taking
the above considerations into account, a turning radius of 50m, and a maximum allowable
velocity of 1.2m/s is used during planning.
Using manoeuvres provides various benefits, however using manoeuvres also limit the ma-
noeuvrability of the vehicle. For example, the manoeuvre library of the LPM only allows a
set sequence (i.e. turn-line-turn), and executing three consecutive turns, or line-turn-line, is
not allowed.
In the previous section, the sampling method used by the PRM and RRT* algorithms is
discussed, and in this section the manoeuvres used to construct an executable path be-
tween two milestones is presented. The next section (Section 4.6) discusses how all of the
aforementioned information is stored during algorithm execution.

4.6 Data structures

A key part of both the PRM and RRT* algorithms is growing a tree of reachable points
across the entire search space. This tree is grown until it contains the goal milestone, or
after a path to the goal is found, the algorithms can improve the path by continuing to
grow their respective tree. During every algorithm iteration the milestones in the PRM and
RRT* trees are accessed multiple times. If the data structure does not efficiently handle the
mass of information it contains, it will directly influence algorithm performance. The way
the data structure is implemented is therefore very important.

4.6.1 The milestone data structure

The milestone data structure uses a tree type structure of which the vehicle starting point
is used as the root milestone. The tree is then built by adding milestones as children to
the root milestone. All milestones, except for the root, have parents. The significance of
the normal parent-child relationship is that child milestones are reached via its parent, and
building on this, a child milestone only knows how to reach itself from its parent. That is,
at each milestone, only the path between it and its parent is stored. If the path from the
starting point to a specific milestone m is required, the path is built (in reverse) starting
at m. The path is built with calls to m’s parent, the parent’s parent, and so forth; each
time their respective paths are added (in reverse) to that of m until the starting milestone
is reached.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. ALGORITHM IMPLEMENTATION 31

Variable Type Description
x, y, z Double Position of milestone
time Double Time reachable from initial milestone
psi Double Heading of milestone
theta Double Heave angle
cost Double Cost from initial milestone
*path Double pointer Array of coordinates, forms trajectory
turn1_length Double Length of turn 1
turn2_length Double Length of turn 2
line_length Double Length of the line segment
manoeuvre_primitive1 Integer First manoeuvre primitive type
manoeuvre_primitive2 Integer Second manoeuvre primitive type
manoeuvre_primitive3 Integer Third manoeuvre primitive type

Table 4.1 – The milestone data structure.

The data structure in Table 4.1 is used to represent different points in the state space to
where a vehicle can travel. The x, y and z members are used to store where the milestone is
located in the x,y, and z dimensions. The time member is used to store the time by which
this milestone can be reached from the starting point. The psi member stores the heading
at which the vehicle must arrive at this milestone and the theta member stores the heave
angle4 required during the execution of the line manoeuvre primitive. The cost member
stores the cost to reach a milestone from the starting milestone.
The manoeuvre primitives that form the path are either segments of geometrically describ-
able circles or a straight line; therefore, the only information of a path that is necessary to
store, is the manoeuvre primitive types and lengths. The turn1_length, turn2_length,
line_length members are used to store the lengths of the respective manoeuvre primitives,
andmanoeuvre_primitive1,manoeuvre_primitive2,manoeuvre_primitive3mem-
bers are used to store the manoeuvre primitive types (i.e. left turn, right turn, or straight
line) of the path.
A path is described by points on a trajectory, where each point on the trajectory is separated
by a set time interval5. These points are stored as an array of x, y, and z points in *path.
Since this can use a lot of memory, the *pathmember is unused initially and is only allocated
once it is required to contain a path, e.g. when the path to the goal must be returned.
Each milestone has a reference to its parent milestone as well as a linked list of nodes
(defined in the next Subsection 4.6.2) containing references to children of this milestone. It
is often required to traverse milestones in a sorted order, which is why the node and linked
list data structures are introduced in the next Subsection 4.6.2.

4.6.2 The node linked list data structure

The milestone data structure is used to keep track of all the points the vehicle can reach,
and the inherent parent-child relationship thereof is beneficial for this purpose. The mile-
stone data structure is therefore a good representation of the information it holds, however,
it is much more difficult to sort a tree than a simple list. In addition, the parent-child
relationships in the milestone data structure are not important when searching for a nearest
neighbour; this is because it does not make sense to traverse points in a tree-like order for

4The angle between the x-y plane and the z axis.
5This time interval can be changed.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. ALGORITHM IMPLEMENTATION 32

this purpose. To address these issues, a linked list data structure is proposed to be used in
addition to the tree data structure.
The node data structure contains references to its successor node, and therefore forms a
linked list. Each node also contains a reference to a milestone, whereby it provides an easy
way of traversing through milestones ordered by the respective node’s successor relation-
ships. This is especially helpful when a sorted list is used, or when a traversal of all known
milestones is required. Table 4.2 shows the milestone node data structure, and Table 4.3
shows the milestone node list data structure.

Variable Type Description
*data milestone Reference to a milestone
*next milestone_node Reference to a successor milestone node
temp_cost Double Temporary cost

Table 4.2 – The milestone node data structure.

The *data member points to a milestone and the *next member points to the successor
node in the list. The temp_cost member is used when the list needs to be sorted by some
value other than that of the cost member in a milestone.

Variable Type Description
*head milestone_node Reference to the first milestone node
*tail milestone_node Reference to the last milestone node
length Integer Number of nodes in the list

Table 4.3 – The milestone node list data structure.

The *head member points to the first node in the list, and this node contains a reference
to the first milestone in the list, which is normally the starting point or initial milestone.
The *tail member points to the most recently added node. The length member stores the
number of nodes in this list.

4.7 Conflict detection

A requirement of the problem statement for this project is that the path the vehicle executes
is conflict free, and for this purpose a conflict detection algorithm was developed. The
conflict detection algorithm used in this project is deterministic, and allows for dynamic
environments. Even though the algorithm is currently implemented to work with only
spheres and cubes, it can be extended to work with other shapes.
The conflict detection algorithm works by examining the points on a path between two
milestones, and for each point the algorithm determines whether the point is outside of all
the obstacles present in an environment. If the point is outside of all the obstacles, the point
is deemed conflict free.
For static objects this is simple, but dynamic objects are at different locations at different
time intervals. This project assumes that the conflict detection algorithm knows where the
dynamic obstacles are at any point in time, that is, in the past, present and future. In order
to detect path conflict with dynamic obstacles all points on the path need to have a x,y, and

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. ALGORITHM IMPLEMENTATION 33

z position, as well as a time associated with it. Note that the . operator is used to access a
data member from a data structure, e.g.: m1.time accesses the time associated with m1.

Input: milestones m1 and m2, and the environment
Output: Whether the path was conflict free or not.
time_elapsed = m1.time;
static_shapes = get static shapes from environment;
dynamic_shapes = get dynamic shapes from environment;
for Points on the path between m1 and m2 do

determine the next x, y, and z point on the path, pxyz;
test whether pxyz is inside one of the static_shapes;
if conflict detected then

return true;
end
time_elapsed += one time step;
test whether pxyz is inside one of the dynamic_shapes at time time_elapsed;
if conflict detected then

return true;
end

end
return false;

Algorithm 2: The conflict detection algorithm.
Algorithm 2 shows that in order to test whether a path is conflict free every point on the
path has to be tested. This is a major performance bottleneck in both the PRM and RRT*
motion planning algorithms.
To address this problem, the time steps used in this algorithm can be adjusted. If the time
steps are too fine it will result in a very (CPU-time) expensive conflict detection process,
but for course time steps a path might be detected as conflict free even though it is not. It
should be noted that for a practical system a probabilistic conflict detection algorithm (as
mentioned in Section 3.4.3) should be used.

Conclusion

The basic building blocks used by both the PRM and RRT* motion planning algorithms
are described previously in this chapter. It is now possible to present both algorithms, the
PRM in Section 4.8 and the RRT* in 4.9.

4.8 The Probabilistic Roadmap Method - PRM

A major part of this project is about finding a path between a start and goal milestone.
In the problem statement it is required to find not only a path, but this path has to be
executable, and conflict free, and it is necessary to guarantee that a path will be found.
This problem is referred to as the motion planning problem. Chapter 3 concludes that
sampling based algorithms will be used to solve this problem, and that there are two main
algorithms still actively researched. The PRM motion planning algorithm is presented in
this section, and is loosely based on the PRM implemented by C.E. van Daalen [4].
The PRM algorithm uses the LPM algorithm (Subsection 4.8.1) to determine which ma-
noeuvre to use to connect two milestones. It uses the Extend algorithm (Subsection 4.8.2)
to determine the parent milestone of a newly sampled milestone, and the Path planner
algorithm (Subsection 4.8.3) to keep track of everything.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. ALGORITHM IMPLEMENTATION 34

4.8.1 The Local Planning Method - LPM

To get the manoeuvre that forms the path between two milestones, the PRM uses a method
called the Local Planning Method (LPM). This method takes as parameters two milestones,
where a position, time, and heading is associated with each. The LPM then executes all
manoeuvres in its library and stores the path that minimises6 the cost function in the end
point milestone, m2. Note that the path the LPM returns is not necessarily conflict free as
it does not consider any information about the environment.
Input: milestones m1, and m2
Output: A path from m1 to m2, stored in m2
m2rfr = copy of m2;
m2rfl = copy of m2;
m2lfl = copy of m2;
m2lfr = copy of m2;
use right, forward, right manoeuvre primitives to form a path between m1 and m2rfr;
use right, forward, left manoeuvre primitives to form a path between m1 and m2rfl;
use left, forward, left manoeuvre primitives to form a path between m1 and m2lfl;
use left, forward, right manoeuvre primitives to form a path between m1 and m2lfr;
m2 = milestone with smallest cost (m2rfr, m2rfl, m2lfl, m2lfr);

Algorithm 3: The Local planning algorithm.
Algorithm 3 only gives an overview of the tasks the LPM has to do. Most of the tasks
are straight forward, and determining the characteristics7 of the manoeuvre primitives are
not of importance to this discussion. The left and right manoeuvre primitives are formed
using trigonometric functions and thus form a segment of a geometrically describable circle.
Subsection 4.5 presents a discussion on the choice of manoeuvre primitives.
The algorithm starts off by making copies of m2, and then uses a different entry in the
manoeuvre library to connect to each copy, thereby forming multiple paths between m1 and
m2. The cost of executing each individual path is calculated and stored with its respective
milestone copy. The path with the smallest cost is then deemed the most cost effective way
to reach m2 from m1 (within the allowable manoeuvre library), and as such is stored in m2.

Conclusion

The work in this subsection enables us to get the manoeuvre (or path) between two mile-
stones. The next section (Section 4.8.2) continues the discussion of the PRM algorithm,
with specific focus on which milestone a newly sampled milestone should be connected to,
i.e. finding the best parent for a child milestone.

4.8.2 The Extend method

The PRM Extend method takes a newly sampled milestone, mrand, and tries to add it to the
PRM-tree treeprm. The classic Extend method loops though the entire treeprm, running
the LPM for every milestone in the treeprm. The classic Extend method does this to
minimise the cost to get to mrand from the initial milestone. If the LPM can connect to the
mrand from any milestone in the treeprm and conflict isn’t detected along the manoeuvre,
then the milestone is added to the treeprm.
The problem with the classic approach is that two (CPU-time) expensive methods8 are
called for each milestone in the treeprm. As the size of the treeprm grows the execution of

6Within the allowable manoeuvre library.
7I.e. the length of the right or left manoeuvre primitive.
8I.e. the LPM and conflict detection methods

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. ALGORITHM IMPLEMENTATION 35

the Extend method becomes very (CPU-time) expensive. This behaviour is unwanted as it
means the time between adding new milestones to the tree is constantly increasing.
A proposed solution to this problem is to first add all the milestones in the treeprm into a
list listprm, and then sort the list according to the distance a milestone therein is from the
mrand.
Input: Tree of reached listprm, a pointer to the latest_milestone, the mrand to add to

listprm, the goal_milestone, and the environment.
Output: The algorithm adds the random milestone to its tree of milestones.
sort the listprm list by distance to the mrand;
for the first 50 milestones in listprm do

let m be the next milestone in listprm;
connect the mrand to m using the LPM();
test the path between mrand and m for conflict;
if random_milestone.path is conflict free then

add random_milestone to milestones;
random_milestone.parent = m;
latest_milestone = mrand;
return;

end
end

Algorithm 4: The PRM Extend algorithm.

In Algorithm 4 it is seen that by sorting listprm it is unnecessary to iterate through the entire
treeprm, and the algorithm can stop as soon as a path is found. While this does no longer
guarantee that the mrand is connected to the tree via the most cost efficient path, it reduces
the execution time dramatically. Calculating the distance between the mrand and every
other milestone in listprm, and then sorting the list is a relatively (CPU-time) inexpensive
operation when compared to the execution of the LPM and the conflict detection methods
for the same amount of milestones.
Another difference to the classic PRM Extend algorithm is limiting the number of milestones
in the listprm from which the algorithm tries to connect to the mrand. The RRT* discussed
in Section 4.9 only tries to connect to the mrand from its nearest neighbour, and if that fails
the mrand is discarded.
Sorting and limiting the number of milestones results in much less time between adding new
milestones to the listprm list. In Figure 4.3 the execution times of the classic and updated
Extend methods are compared. It should be noted that the path cost of the classic algorithm
(10304 units) was better than that of the updated algorithm (12045 units); however, the
classic algorithm took much longer for the same amount of milestones. For the same amount
of time as the classic algorithm took to add all 300 milestones to its tree, the updated Extend
algorithm managed to add 476 milestones in its tree, and thereby found a much better path
(8617 units) to the goal.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. ALGORITHM IMPLEMENTATION 36

0 50 100 150 200 250 3000

1

2

3

4

5

6

7

8

Milestones (count)

Ex
ec
ut
io
n
tim

e
(s
ec
on

ds
)

Milestones vs Execution time

Classic extend()
Updated extend()

Figure 4.3 – The execution time for adding 300 milestones to a tree is shown here for both
the classic and updated PRM Extend algorithms.

4.8.3 The Path Planner

The building blocks of the PRM algorithm are presented in the previous subsections, how-
ever, one more algorithm is necessary to bring everything together. The PRM path planner
algorithm uses the LPM, Extend, milestone sampling, and conflict detection algorithm.
The path planner algorithm starts by trying to connect the newest milestonemnewest in its
tree treeprm (initially mnewest is the initial milestone), to the goal milestone. If no conflict
is detected, a path to the goal is found, and the path planner can stop. If conflict exists or
the LPM cannot connect mnewest to the goal milestone, a new random milestone mrand is
sampled, and the PRM Extend function is used to try and add mrand to the treeprm. If
mrand is successfully added to the tree, mnewest now points to mmrand, and the process

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. ALGORITHM IMPLEMENTATION 37

starts again by trying to connect mnewest to the goal milestone.

Input: The initial milestone, the goal milestone, and the environment.
Output: The algorithm finds a path between the initial and goal milestone.
initialise listprm tree;
latest_milestone = initial;
while algorithm should keep searching do

use the LPM to try and connect the latest_milestone to the goal;
test for conflict between the latest_milestone and the goal;
if the path between the latest_milestone and the goal is conflict free then

if the cost to the goal is improved then
save the new path to the goal;

end
if algorithm stop condition is satisfied then

return path to the goal;
end

else
generate new mrand;
use extend_prm() to insert mrand into listprm;
latest_milestone = returned by extend_prm();

end
end

Algorithm 5: The PRM path planner algorithm.
Algorithm 5 has several modes of operation: by altering the stop condition, it is possible to
either limit the number of algorithm iterations, the number of milestones in the treeprm,
the time the algorithm has to solve the problem, or use the algorithm to search only while
no path has been found to the goal.
The difference between limiting the iterations and milestones is subtle but important, the
next section (Section 4.9) will elaborate further. Chapter 5 uses the proof of probabilistic
completeness to calculate a limit on the number of milestones the PRM needs to guarantee
a probability of finding a path.

4.9 The Rapidly exploring Random Tree* - RRT*

The PRM algorithm was presented in the previous section. It was presented as one of two
possibilities for solving the motion planning part of this project’s problem statement. In
this section the RRT* is presented as the second motion planning algorithm.
The classic RRT algorithm had a recent overhaul by S. Karaman and E. Frazzoli [17]. The
improvements presented by the authors are related to the cost of the path the classic RRT
finds. First, the authors show that the probability of the RRT finding the (almost) optimal
path to a goal is zero. The authors then propose several changes to the classic RRT through
which they achieve finding almost optimal paths. This new algorithm is referred to as the
RRT* motion planning algorithm. The authors also present mathematical proof that their
algorithm converges to the (almost) optimal path, as the number of sampled milestones
increases.
S. Karaman, et al. implemented the algorithm without taking kinodynamic and nonholo-
nomic motion constraints into account. For this project these constraints cannot be relaxed,
and they need to be taken into account during planning. Subsection 3.4.1 presents a dis-
cussion on kinodynamic and nonholonomic motion planning. The manoeuvres presented in
Subsection 3.4.2 are used in this project to address this problem.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. ALGORITHM IMPLEMENTATION 38

The Steer method (Subsection 4.9.1) uses manoeuvres to connect subsequent milestones,
which allows the vehicle to travel from one milestone to the next while staying within its
envelope of operation9.
For this project, the environment may also be dynamic, and therefore the motion planner
must associate time with each vehicle position. The motion planner thus plans in three
position (x,y, and z) dimensions, the heading (psi or ψ) dimension, as well as the time (t)
dimension.

4.9.1 The Steer method

To connect milestones, the RRT* uses a method called Steer. This method takes the same
parameters as the LPM, however, the heading of the second milestone is ignored. This is
because the RRT* only “steers” toward the second milestone, i.e. it does not necessarily
generate a path that reaches the second milestone. This is because the Steer method uses
a constant to limit the length of any manoeuvre so that the sum of the lengths of the
manoeuvre primitives are smaller than or equal to η.
The problem with this is that certain milestones (e.g. the goal milestone) cannot be con-
nected via the Steer method because the end point headings cannot be ignored. Subsec-
tion 4.9.3, as well as the theoretical analysis of the next chapter presents more on this
problem.

Input: m1, and m2.
Output: Returns a path from m1 to m2 and stores it in m2.
right_distance = the distance between a point to the right of m1 and m2;
left_distance = the distance between a point to the left of m1 and m2;
if right_distance ≤ left_distance then

determine the mid point of the right turning circle;
determine the point at which the vehicle should leave the turning circle, (bx, by);
determine the arc length l1 from m1 to (bx, by);
determine the length l2 from (bx, by) to m2;
limit the combined length of l1 and l2 to be smaller than η;
m2.turn1_length = l1;
m2.line_length = l2;
move m2 to coincide with the end of the manoeuvre.

else
do the same, except by using a left turning circle;

end
Algorithm 6: The RRT* steer algorithm.

Algorithm 6 determines when to leave the turning circle through use of trigonometric func-
tions. That is, the manoeuvre primitive (or curve) connecting m1 and (bx, by) is charac-
terised by trigonometric functions and form a segment of a geometrically describable circle.
The manoeuvre primitive is flat in the x,y plane, which means that the vehicle does not
heave while traversing the manoeuvre primitive.
Determining the length of the second manoeuvre primitive (or straight line segment) from
(bx, by) to m2 is straightforward. While the first manoeuvre primitive is flat in the x,y
plane, the second manoeuvre primitive connects in the x,y and z dimension. Figure 4.2
shows a RRT* manoeuvre.

9The envelope of operation refers to the inherent constraints a vehicle has while moving. In particular,
the kinodynamic and nonholonomic motion constraints are referred to in this context.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. ALGORITHM IMPLEMENTATION 39

The RRT* only steers towards a milestone, not necessarily reaching the milestone; that
is, the manoeuvre is limited. The manoeuvre is limited by restricting the length of the
combined manoeuvre primitives (or circle and line segment) by η. The reasons for this are
discussed throughout this section as well as in Chapter 5.
Lastly, m2 is moved to where the limited manoeuvre ends. This is necessary since the
manoeuvre is shortened and will often stop before m2 is reached.

4.9.2 The Extend method

The Extend method bridges the gap between being able to connect to milestones (Steer
method) and the path planner. The Extend method’s responsibility is to find if a suitable
parent milestone exists for a newly sampled milestone, and if one exists determine which
parent is the best. The method also determines if this newly sampled milestone can become
a better parent for some other milestone in the treerrt∗.

Nearest neighbour

First, a search is done for the nearest milestone to mrand; let mnearest be the nearest
milestone to mrand in the treerrt∗. The Steer method is then used to steer towards mrand

and the path it returns is tested for conflict. If conflict is detected, mrand is discarded and
a new mrand is sampled. If no conflict is detected, mrand is moved to coincide with where
the path returned by the Steer function ended.
As mentioned in Section 4.4, this project samples milestones in five dimensions: x, y, z,
time, and heading; however, the nearest neighbour search in this project only looks at the
x, y, z dimensions.

Parent optimisation

Parent optimisation refers to searching for the best parent for a milestone mchild, such that
the cost of reaching mchild is as low as possible. The result is lower costs to reach milestones,
and will result in a lower cost path to the goal.
To determine this, an area defined by a ball of radius r around mrand is searched for
milestones (within the treerrt∗) to which mrand can be connected. All of these milestones
are connected to mrand via the Steer method, and the milestone from which mrand can be
reached with the smallest cumulative cost is then set as the parent of mrand. The radius r
is determined according to Equation 4.9.4.

Determining r

unit_sphere = 4π
3 (4.9.1)

γ = 2d ×
(

1 + 1
d

)
× (volume of search space) (4.9.2)

growth_decay = log(n)
n

(4.9.3)

r =
(
γ × growth_decay
unit_sphere

) 1
d

(4.9.4)

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. ALGORITHM IMPLEMENTATION 40

The equation above is taken from S. Karaman, et al. [17]. Equation 4.9.1 is the volume of a
unit sphere in three dimensions, d in Equations 4.9.2 and 4.9.4 is the number of dimensions,
n in Equation 4.9.3 is the number of milestones in the treerrt∗, and Equation 4.9.4 is used
to determine r.
It is seen from Equation 4.9.3 that the value of r will decrease as n increases; that is, as
more milestones are included in the treerrt∗ the value of r decreases which enables the
the Parent optimisation and New milestone optimisation to occur without becoming
very (CPU-time) expensive. For an in depth discussion the reader is referred to the paper
of origin.

New milestone optimisation

Aftermrand is successfully added to the treerrt∗, the milestones that fall within the r radius
ball from mrand are checked to see if mrand can lower any cumulative path-cost to connect
to them. It should be noted that the LPM (not Steer) method is used for this case as the

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. ALGORITHM IMPLEMENTATION 41

heading of both milestones should be taken into account for any path shortening.

Input: the listrrt∗ list, latest_milestone, mrand, goal, environment
Output: Attempts to add the mrand to the listrrt∗ list
nearest_milestone = nearest milestone to mrand;
use the steer method to connect nearest_milestone to mrand;
test for conflict on the path between nearest_milestone to mrand;
best_cost = random_milestone.cost;
if the path is conflict free then

for each m in listrrt∗ do
distance = distance between m and mrand;
if distance < η then

temp_milestone = copy of mrand;
use steer to connect m to temp_milestone;
test for conflict on path between m and temp_milestone;
if random_milestone.cost > temp_milestone then

random_milestone.cost = temp_milestone.cost;
random_milestone.path = temp_milestone.path;

end
end

end
insert mrand into listrrt∗;
latest_milestone = mrand;
for each m in listrrt∗ do

distance = distance between mrand and m;
if distance < η then

temp_milestone = copy of m;
use the LPM to connect mrand to temp_milestone;
test for conflict on path between mrand and temp_milestone;
if m.cost > temp_milestone.cost then

m.cost = temp_milestone.cost;
m.path = temp_milestone.path;
update the children of m with the lower cost;

end
end

end
end

Algorithm 7: The RRT* extend algorithm.

The RRT* Extend algorithm presented in Algorithm 7 works very differently to its PRM
counterpart. The Extend algorithm starts by testing if mrand can be connected to from its
nearest neighbour; if this test fails, then mrand is discarded. This test vets random samples
that are difficult to add to the tree, and potentially saves a lot of CPU-time as only one
steer and conflict test is needed.
If mrand can be reached from its nearest neighbour, then more milestones in the listrrt∗
are checked. Since the Steer algorithm limits the distance that a single path between two
milestones can reach, it does not make sense to iterate through the entire listrrt∗. In
algorithm 7 it is seen that (before the CPU-time expensive operations are executed) the
distance between m and mrand is checked, and milestones further than η away are discarded
immediately. That is, a ball of radius η is formed around mrand, and milestones outside
of this ball are not considered in this process. After the best path to mrand is found it is
inserted into listrrt∗.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. ALGORITHM IMPLEMENTATION 42

Next, it is necessary to check whether any known path can be improved by going through
mrand. In Figure 4.4 a recently added mrand is shown in blue. It is seen that this milestone
can decrease the cost of the path to the goal, shown in green. It is also seen that only
milestones within the black dotted circle need to be considered, as only those milestones are
close enough, i.e. they are within a distance η from mrand.

0 100 200 300 400 500 6000

100

200

300

400

500

600

x-axis (meters)

y-
ax

is
(m

et
er
s)

Parent optimisation

Figure 4.4 – This figure shows a recently added milestone in blue, a ball (shown as a circle in
2 dimensions) of radius η in black, and a path between the start point and goal in green. The
milestones shown in red are in the listrrt∗ list but do not form part of the path to the goal.

From Figure 4.4 it is seen that the size of the ball directly influences the number of milestones
that has to be considered when searching to improve paths, as well as when mrand is added
to the listrrt∗ list. Hence the choice of η is very important and is discussed further in
Subsection 5.3.1.4. Figure 4.5 shows the improved path.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. ALGORITHM IMPLEMENTATION 43

0 100 200 300 400 500 6000

100

200

300

400

500

600

x-axis (meters)

y-
ax

is
(m

et
er
s)

New milestone optimisation

Figure 4.5 – This figure shows the improved path of Figure 4.4.

4.9.3 Path planner

The RRT* path planner presented in algorithm 8 works very similar to the PRM path
planner method. It also has a pointer to mnewest which it tries to connect to the goal
milestone, however the goal has to be reached at a specific heading, which means that the
Steer method cannot be used for this. Fortunately, another method already exists that takes
the initial and end heading into account, the LPM. Thus, instead of using the Steer method,
the LPM is used to try and connect mnewest to the goal milestone.
This has another benefit, the RRT* algorithm now no longer needs to explore until it happens
to reach a goal region: A manoeuvre from the LPM is not limited by η. This means that as
soon as one milestone can “see” another milestone it can be connected in a single manoeuvre,

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. ALGORITHM IMPLEMENTATION 44

resulting in a single RRT* path planner iteration once the goal comes into view.
Input: the initial milestone, the goal milestone, and the environment
Output: A path between the initial and goal milestone is returned
initialise listrrt∗ tree;
latest_milestone = initial;
while algorithm should keep searching do

use the LPM to try and connect the latest_milestone to the goal;
test for conflict between the latest_milestone and the goal;
if the path between the latest_milestone and the goal is conflict free then

if the cost to the goal is improved then
save the new path to the goal;

end
if algorithm should stop as soon as a path is found then

return path to the goal;
end

else
if number of iterations exceeds limit then

return path to the goal;
end
if number of milestones exceeds limit then

return path to the goal;
end
if execution time exceeds limit then

return path to the goal;
end
generate new mrand;
use extend_rrt to insert mrand into listrrt∗;
latest_milestone = returned by extend_rrt;

end
end

Algorithm 8: The RRT* path planner algorithm.

4.10 Conclusion

In this chapter two sampling based algorithms are implemented, the PRM and RRT*. Both
algorithms use a few common building blocks: the data structure, conflict detection algo-
rithm and the sampling algorithm. However, the similarities stop there, and at a very low
level they differ significantly: The PRM uses the LPM to connect milestones and the RRT*
uses the Steer algorithm. These two algorithms differ significantly, and both offer advantages
as well as disadvantages to their respective motion planning algorithm.
Next, the respective Extend algorithms are found, and they also differ significantly, even
though they provide the same function. The function of both Extend algorithms is to add a
random milestone to its tree of known milestones. The respective path planner algorithms
of the PRM and RRT* are essentially the same, again providing the same function. Both
path planner algorithms take exactly the same parameters, and provide the same output: a
path between the initial and goal milestones.
Since both algorithms can provide solutions to the problem statement, it is necessary to
explore two more aspects: how good are the solutions, and how long does it take to find a
solution? As it is known that there are implementation differences, it is necessary to know
what effect these differences have. For this reason, Chapter 5 is presented next, wherein
both the PRM and RRT* are analysed.

Stellenbosch University http://scholar.sun.ac.za

Chapter 5

Algorithm Analysis

5.1 Introduction

This project concerns autonomous navigation for UAVs, of which motion planning is an
essential part. Different options for motion planning are discussed in Section 3.2, and it is
concluded therein that sampling based motion planning algorithms are the best option for
this project. The implementation of two sampling based algorithms, the PRM and RRT* are
presented in Chapter 4. At the top level, the two algorithms provide the same functionality,
that is, they both provide a path between the initial and goal milestones1. In contrast, the
working of the low level building blocks of the PRM and RRT* differ significantly.
As part of this project’s problem statement, a path must be found in real time, and therefore
it is important to analyse the performance2 of the PRM and RRT*. By analysing the effect
different environments have on the algorithms’ performance, it is possible to identify the
effect the aforementioned differences have: if the performance of the PRM and RRT* differs
for similar environments, and the only differences are those from the respective LPM, Steer,
and Extend algorithms (Subsections 4.8.1, 4.9.1, 4.8.2, and 4.9.2), then the difference in
performance is a direct result from the differences between those algorithms.
In this chapter the performance3 of the PRM (Section 5.2) and RRT* (Section 5.3) is
analysed and compared in a specific environment. By analysing the effect an environment
has on the performance of the PRM and RRT* algorithms, it is possible to gain insight
into the effect their differences have. Furthermore, if it is possible to determine how many
iterations4 or milestones each algorithm requires in a specific environment, the CPU time
required to guarantee finding a solution can be determined. From this analysis, it is then
possible to determine which algorithm to use, given a specific type of environment.
For the analysis, parts of the respective proofs for probabilistic completeness of the PRM and
RRT* are used to determine theoretical performance bounds. Lastly, a histogram analysis
(Section 5.4) is performed to confirm whether the theoretical performance bounds of the
PRM and RRT* holds when compared to practical measurements.

1For a discussion on what a milestone is and how it is used the reader is referred to Subsection 4.6.1.
2The cost of a path and the time it takes to find a path.
3With respect to how many milestones or iterations are necessary to guarantee that a path between the

initial and goal milestone in a given environment will be found with a required probability.
4For each algorithm iteration exactly one milestone is sampled, however, the milestone may be discarded

and not inserted into the PRM or RRT tree.

45

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. ALGORITHM ANALYSIS 46

5.2 PRM analysis

At the top level, the PRM and RRT* algorithms provide the same functionality, however, the
inner working of the algorithms differ significantly. The area where this difference matters
most is performance, that is, how fast an algorithm can provide a path and what the quality
of such a path is.
To analyse the PRM, a theorem presented by Hsu, Kindel, Latombe and Rock [16] is used
to provide an upper bound on the PRM’s performance in a specific environment. This
theorem forms part of the proof for probabilistic completeness for the PRM. It is seen that
this theorem has three variables (α, β and g) which are environment dependent. If these
three variables can be determined for a given environment, then it is possible to determine
performance bounds for the PRM for a specific environment.
Determining α and β analytically may be possible for very simple cases (as noted by Hsu,
et al. [16]), however, calculating α and β for more complex environments is still an open
problem. This section presents non-analytical methods of estimating values for both α and
β.

5.2.1 Key concepts necessary to determine the theoretical upper
bound

In order to analyse the PRM, a theorem presented by Hsu, et al. is used to determine
a theoretical performance bound for finding a path5 in a specific environment. In this
subsection, concepts critical to the theorem of Hsu, et al. are introduced before the theorem
is presented in Subsection 5.2.2.

5A path is found with a guaranteed success percentage.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. ALGORITHM ANALYSIS 47

Introducing the concept of the LPM reachability of a point

0 100 200 300 400 500 6000

100

200

300

400

500

600

x-axis (meters)

y-
ax

is
(m

et
er
s)

S S̄

Figure 5.1 – LPM reachability for a point p.

In Figure 5.1 two walls are shown in the middle of the x-axis, one stretches from y = 0m to
y = 260m and the other stretches from y = 340m to y = 600m. In the figure S denotes a
set of points to the left of the wall, and S̄ (read not S) denotes the set of points to the right
of the wall. The green triangle denotes a point p located in S, and the set of points shown
in blue is outside S (denoted by S̄) wherein p can reach any point using a single LPM6 run.
Formally, let:

Rlpm(p) (5.2.1)

denote the LPM reachable area from p, and let:

Rlpm(p)\S (5.2.2)

denote the LPM reachable area from p outside of S.

Introducing the concept of the reachability of a set

The reachability of a set of points is the set of points reachable through multiple LPM runs.
In Figure 5.1 the reachability of S will include almost all the points included in the combined
set S ∪ S̄.
Formally, let:

R(S)\S (5.2.3)

6Straight lines are used for illustrative purposes only, in the rest of the chapter the LPM will use the
manoeuvre library as defined in Section 4.5.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. ALGORITHM ANALYSIS 48

denote the reachability of the set S outside of S.
The major difference between a set of points denoted byR(S) andRlpm(p) is that the former
includes points that are only reachable by multiple LPM runs, and the latter is restricted to
points that are reachable by no more than a single LPM run. Another difference is that a
point is considered in R(S) if it is reachable from any point in S, whereas Rlpm(p) denotes
a set of points that must be reachable from p.

Introducing the concept of the β-lookout of S

Following the introduction ofR(S) andRlpm(p) it is now possible to introduce the β-lookout
of S in Figure 5.2.

0 100 200 300 400 500 6000

100

200

300

400

500

600

x-axis (meters)

y-
ax

is
(m

et
er
s)

S S̄

p0

p1

Figure 5.2 – In blue the β-lookout of S is shown for a small (close to zero) value of β.
The red area shows the LPM reachability set Rlpm(p1)\S and the green area shows the LPM
reachability set Rlpm(p0)\S.

In Figure 5.2, the blue area is referred to as the β-lookout of a set of points S; generally
speaking it is the set of points in S that can reach a required percentage of points in R(S)\S
through a single LPM run.
Formally, let p be a point in the set S denoted by:

{p ∈ S} (5.2.4)

and let:

volume of (Rlpm(p)\S) ≥ volume of (R(S)\S)× required percentage (5.2.5)

denote the required percentage of points.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. ALGORITHM ANALYSIS 49

The red area of Figure 5.2 is the LPM reachability set Rlpm(p1)\S and it is seen that p1 lies
just outside the blue area. This is because the volume of the points in R(p1)\S relative to
the volume of points in R(S)\S is smaller than the required percentage of Equation 5.2.5.
The green area shows the LPM reachability set R(p2)\S and it is seen that point p0 is inside
the blue area. This is because the required percentage of Equation 5.2.5 is large enough
for p0 to be inside the blue area.
By letting µ(S) denote the volume of the set of points S, β denote the required percentage,
and combining Equations 5.2.4 and 5.2.5, a mathematical definition of the blue area is
formed:

{p ∈ S | µ(Rlpm(p)\S) ≥ β × µ(R(S)\S)}. (5.2.6)

Figure 5.2 shows the β-lookout of S for a small (close to zero) value of β, and Figure 5.3
shows the β-lookout of S for a large (close to one) value of β. In the latter figure the blue
area is very small because for a point p to lie in the β-lookout of S the LPM reachability
Rlpm(p) has to include most of R(S)\S since its volume has to be almost equal to the
volume of R(S)\S.

0 100 200 300 400 500 6000

100

200

300

400

500

600

x-axis (meters)

y-
ax

is
(m

et
er
s)

S S̄

p0
p1

Figure 5.3 – β-lookout of S for a large (close to one) value of β.

The red area of Figure 5.3 is the LPM reachability set Rlpm(p1)\S and it is seen that p1 lies
just outside the blue area. This is because the volume of the points in R(p1)\S relative to
the volume of points in R(S)\S is smaller than the required percentage of Equation 5.2.5.
The green area shows the LPM reachability set R(p2)\S and it is seen that point p0 is inside
the blue area. This is because the required percentage of Equation 5.2.5 is large enough
for p0 to be inside the blue area.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. ALGORITHM ANALYSIS 50

5.2.1.1 Definition of the β-lookout(S)

Next, a formal definition of the β-lookout of a set S is presented. Let S denote the state
space of the vehicle, T denote the time space of the vehicle, F denote the set of conflict
free points in S ×T , and X denote the set of points reachable from the initial vehicle state.
Further, let β be a constant in (0, 1], and µ(A) denote the volume of a set A ⊂ F .
The β-lookout of a set S ⊂ F is:

β-lookout(S) = {p ∈ S | µ(Rlpm(p)\S) ≥ β × µ(R(S)\S)} (5.2.7)

It should be noted that Hsu, et al. scaled all volumes so that µ(X) = 1.

Introducing the concept of expansiveness

Generally speaking, expansiveness refers to the percentage of points in S that can reach
points outside of S through a singe LPM run. Intuitively, if this percentage is high then
points in S can easily be connected to points outside of S, and inversely so for a low
percentage.
Formally, let this percentage be defined as an expansiveness ratio:

expansiveness ratio = µ(β-lookout(S))
µ(S) . (5.2.8)

0 100 200 300 400 500 6000

100

200

300

400

500

600

x-axis (meters)

y-
ax

is
(m

et
er
s)

S1 S2 S3

Figure 5.4 – In blue, the β-lookout(S1), in red the β-lookout(S2), and in green the
β-lookout(S3).

The β-lookout(S1), β-lookout(S2), and β-lookout(S3) are shown in blue, red and green in
Figure 5.4 for a small value (close to zero) of β.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. ALGORITHM ANALYSIS 51

Next, consider a point p anywhere in the blue area of Figure 5.4. The set of points R(p) can
be divided into three subsets: S1, S2, and S3, where the subsets must be strongly connected.
This means that, for any two points m,n in S1, n must be in Rlpm(m) and m must be in
Rlpm(n). Other choices of subsets are elaborated on later in this chapter.
If there exists an expansiveness ratio α and a value for β such that the following:

µ(β-lookout(S1)) ≥ α× µ(S1) (5.2.9)
µ(β-lookout(S2)) ≥ α× µ(S2) (5.2.10)
µ(β-lookout(S3)) ≥ α× µ(S3) (5.2.11)

is mathematically sound, then the set R(p) is said to be (α, β)-expansive. That is, the
expansiveness of the set R(p) is now characterised by α and β. Lastly, this is extended to
any set of points: any set of points A can be characterised as (α, β)-expansive, if for every
p ∈ A, R(p) is (α, β)-expansive.

5.2.1.2 Definition of α

Following the formal definition of the β-lookout(S) and the introduction of (α, β)-expansiveness,
a formal definition of α is presented. Let α and β be two constants in the range (0, 1]. For
any p ∈ F , the set R(p) is (α, β)-expansive, if for every connected subset S ⊂ R(p):

µ(β-lookout(S)) ≥ α× µ(S). (5.2.12)

Summary

In order to use the theorems by Hsu et al. [16], several key concepts are first introduced
in this subsection (Subsection 5.2.1). The theorems are used to determine a performance
bound on the number of milestones the PRM requires to guarantee finding a path, with a
specified success probability.
The key concepts are:

• the LPM reachability of a point p, denoted by Rlpm(p),

• the reachability of a set, denoted by R(S),

• the β-lookout of a set S, denoted by β-lookout(S), and

• the (α, β)-expansiveness of an environment.

5.2.2 Theoretical performance bound for finding a path with a PRM

In order to determine a theoretical performance bound on the number of milestones that
the PRM requires to find a path, the previous subsection (Subsection 5.2.1) first introduces
several key concepts that are used in this subsection. The theorem by Hsu, et al. which is
used to determine this performance bound is introduced in this subsection (Subsection 5.2.2).
This subsection also presents a less conservative performance bound by rewriting some of
the equations of the theorem by Hsu, et al.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. ALGORITHM ANALYSIS 52

Introducing Cases A and B

For a path to exist between an initial and goal milestones it is necessary to sample new
milestones until:

1. a sampled milestone mnew falls in a region where it can connect to the goal milestone
using the LPM, and

2. at least one milestone in the PRMtree can connect to mnew.

In other words, it is necessary to expand the LPM reachability Rlpm(PRMtree)7 until it
intersects with the goal milestone, and then sample a milestone in this intersection to find
a path. This forms the basis of the theorem by Hsu, et al.

m0

m1

m2

m3

E

Rlpm(PRMtree)

(a) This figure illustrates the case where there is
no intersection between the Rlpm(PRMtree) and the
endgame region.

m0

m1

m2

m3

I E

Rlpm(PRMtree)

(b) This figure illustrates the case where
no milestones of a subset of all reachable
milestones fall in the intersection between
the endgame region and Rlpm(PRMtree).

Figure 5.5 – Introducing Cases A and B.

For this discussion let E denote a set of points wherein any point p is within the LPM
reachable set of the goal milestone, formally let:

E = {p ∈ X | goal milestone ∈ Rlpm(p)} (5.2.13)

Furthermore, let I denote the intersection between E and Rlpm(PRMtree). It is necessary
to sample a milestone mnew in I to enable Rlpm(PRMtree) to include the goal milestone.
This concept is illustrated in Figures 5.5(a), 5.5(b), and 5.6. A path can only be formed
between the initial and goal milestones when Rlpm(PRMtree) includes the goal milestone.
Lastly, let the PRMtree consist of two subsets of milestones, PRMtree = {M ′,M ′′}, where
M ′ consists of the first r′ milestones of PRMtree, and M ′′ consists of the next r′′ = r − r′
milestones. In Figures 5.5(a), 5.5(b), and 5.6, let M ′ = {m0,m1} and M ′′ = {m2,m3}
The theorem presented by Hsu, et al. defines two cases which leads to PRMtree not con-
taining a milestone in E . Let the first case (Case A) be defined as the case where there

7Defined in Subsection 5.2.1.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. ALGORITHM ANALYSIS 53

is no intersection between the Rlpm(PRMtree) and the endgame region, as illustrated in
Figure 5.5(a). Let the second case (Case B) be defined as the case that no milestone of M ′′
is contained in I, as illustrated in Figure 5.5(b).

Introducing the union of Cases A and B

The union of cases A and B denotes the probability of not finding a path between the initial
and goal milestones. Let the probability of not finding a path be denoted by γ. The union
of Cases A and B is formally written as P(A ∪B), and using:

P(A ∪B) ≤ P(A) + P(B) ≤ γ, (5.2.14)

a lower bound on the probability of not finding a path can be determined if P(A) and P(B)
is determined.

m0

m1

m2

m3

I E

Rlpm(PRMtree)

Figure 5.6 – This figure illustrates a large intersection between the endgame region and
Rlpm(PRMtree), as well as a milestone in the intersection. For this case a path is formed
between the initial milestone and goal milestones.

Divergence from the work by Hsu et al.

It is important to note that the work done for this project, and that done by Hsu et al.
diverges from this point onwards. The work by Hsu et al. strives to determine an equation
with which the relationship between the following is characterised:

1. the number of milestones the PRM requires to guarantee finding a path, with a spec-
ified probability, and

2. the probability of finding a path.

It is important that this characterisation shows that a number of milestones r can be de-
termined, from a required success probability, that guarantees a path will be found. This
is because it will show that: for any required success probability, there exists a number of
milestones with which the PRM will find a path, even as that success probability strives to-
wards one (or certainty). It is important since the proof of probabilistic completeness works
on this premise.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. ALGORITHM ANALYSIS 54

In order to obtain such a characterisation, Hsu et al. made a few substitutions which causes
the value of r to be more conservative than need be. However, for this analysis it is important
to work with the least conservative value of r, while still providing a mathematical guarantee
that a path will be found. The discussion on determining a performance bound for the PRM
is continued below.

Determining the probabilities of P(A) and P(B)

The conditions necessary to determine the probability to not find a path is split up into two
cases, A and B.
To determine P(A), Lemma 2 by Hsu et al. is used. To determine the lemma, it is necessary
to determine the values of α and β8 that characterise the specific environment for which the
performance bound is being calculated. Furthermore, let g = µ(E) and k = 1

β ln(2
g). Note

that r = r′ + r′′ denotes the number of milestones in the PRMtree. The lemma states that
the probability of Case A is bounded by:

k(1− α)r
′/k ≤ P(A) (5.2.15)

where the smallest value for r′9 that satisfies the inequality is used.
To determine P(B), Lemma 1 by Hsu et al. is used. The Lemma is used to determine the
volume of Rlpm(PRMtree) relative to g:

µ(Rlpm(PRMtree)) ≥ 1− g

2 . (5.2.16)

Note that X denotes the set of all points reachable from the initial milestone, and that all
volumes used are scaled X so that µ(X) = 1. Also note that the point sets Rlpm(PRMtree)
and E must be a subset of X 10.
Since the volume of X is 1, Equation 5.2.16 can be rewritten as:

µ(Rlpm(PRMtree)) ≥ µ(X)− g

2 , (5.2.17)

⇒ µ(Rlpm(PRMtree)) + g

2 ≥ µ(X), (5.2.18)

which is only possible if Rlpm(PRMtree) and E overlap. Therefore, from Equation 5.2.18
an intersection I exists with a volume µ(I) ≥ g

2 .
Since milestones are sampled uniformly over X , M ′′ does not contain a milestone in I with
probability at least:

(1− µ(I))r
′′
≤ P(B), (5.2.19)

⇒ (1− g

2)r
′′
≤ P(B). (5.2.20)

Equations 5.2.15 and 5.2.20 can now be combined:

k(1− α)r/k + (1− g/2)r ≤ γ, (5.2.21)

where r should be the smallest value that satisfies the inequality.
To determine a value of r, values for α, β, and g is required, and a choice for γ is required.
The value of γ is the probability of not finding a path, and noting that the cases:

8The parameters α and β are defined in Subsections 5.2.1.2 and 5.2.1.1, however determining its value
is left until Subsection 5.2.3.

9I.e. the smallest amount of milestones necessary to find a path.
10Note that it is assumed a path between the initial and goal milestones is possible, hence Rlpm(goal) = E

lies in R(initial) = X .

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. ALGORITHM ANALYSIS 55

1. finding a path (success), and

2. not finding a path (failure),

are mutually exclusive, it is possible to state that:

P(failure) = γ, (5.2.22)
⇒ P(success) = 1− γ, (5.2.23)

whereby a value of γ can be determined for a required success probability. For example, a
success probability of 99.99% or 0.9999 is required, using Equation 5.2.23 it is possible to
determine that γ = 0.0001.

Summary

To determine the probability of not finding a path between the initial and goal milestones,
this subsection starts by introducing two cases (A and B) that are necessary to not find
a path. Cases A and B are illustrated in Figures 5.5(a) and 5.5(b). Next, this subsection
continues with introducing the union of Cases A and B in Equation 5.2.14, where it is seen
that the union provides a bound on the probability of not finding a path, if the probabilities
of Cases A and B are determined. Following this, the subsection continues with determining
the probabilities P(A) and P(B). The subsection then concludes with combining probabil-
ities P(A) and P(B) to form Equation 5.2.21, which provides a bound on the number of
milestones necessary to guarantee that the PRM will find a path.

5.2.3 Determining α and the β-lookout(S) for the PRM

A theorem by Hsu et a. which provides a performance bound on the number of milestones
required to find a path is discussed in the previous subsection. The theorem by Hsu et al.
is rewritten in a less conservative form, and the result is shown in Equation 5.2.21. In order
to use Equation 5.2.21 to calculate a performance bound, values for α and β need to be
determined.
Two lemmas are presented in this subsection with which Equations 5.2.7 and 5.2.12 are
rewritten, thereby enabling the calculation of α and β for a specific environment and vehicle,
using a computer.

5.2.3.1 Probability with relative frequency

Lemma 5.2.1 For any set of points S1 ⊂ S that has a volume larger than zero:

µ(S1)
µ(S) = P(p ∈ S1 | p ∈ S), (5.2.24)

where P(A) denotes the probability of event A, and point p is uniformly chosen in S.

Lemma 5.2.2 For n points chosen uniformly in S and np∈S1 points out of n landing in S1,
the probability of a point p being in S1 is:

lim
n→∞

np∈S1

n
= P(p ∈ S1) (5.2.25)

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. ALGORITHM ANALYSIS 56

5.2.3.2 Determining α and the β-lookout(S) using relative frequency

Equation 5.2.7 states that the β-lookout(S) is defined as the set of points, {p ∈ S}, where:

µ(Rlpm(p)\S) ≥ β × µ(R(S)\S), (5.2.26)

which means that a point p is in the β-lookout(S) if the inequality is satisfied.
By dividing both sides by µ(S̄), the volume not in S, and rewriting Equation 5.2.26, the
following is obtained:

µ(Rlpm(p)\S)
µ(S̄)

≥ β × µ(R(S)\S)
µ(S̄)

. (5.2.27)

Let pS̄ be a newly sampled point in S̄. By using Lemma 5.2.1, with pS̄ ∈ S̄, it is possible
to write:

P (pS̄ ∈ Rlpm(p)) ≥ β × P (pS̄ ∈ R(S)) . (5.2.28)

Next, Lemma 5.2.2 is used to write the following: for n uniformly distributed new points in
S̄, npS̄∈Rlpm(p) denotes the number of new points sampled in Rlpm(p)\S. Similarly, for m
uniformly distributed new points in S̄, mpS̄∈R(S) denotes the number of new points sampled
in R(S)\S:

lim
n→∞

npS̄∈Rlpm(p)

n
≥ β × lim

m→∞

mpS̄∈R(S)

m
. (5.2.29)

By using Equation 5.2.29, it can be determined whether any sampled point p in S is part
of the set of points {p ∈ β-lookout(S)}, by:

1. sampling n points in S̄ and testing how many points lie within Rlpm(p) (denoted by
npS̄∈Rlpm(p)),

2. sampling m points in S̄ and testing how many points lie within R(S) (denoted by
mpS̄∈R(S)), and

3. evaluating whether β ×
mpS̄∈R(S)

m ≤
npS̄∈Rlpm(p)

n ,

where the number of samples for npS̄∈Rlpm(p) and mpS̄∈R(S) must be enough to provide
consistent approximations11 for the ratios

npS̄∈Rlpm(p)

n and
mpS̄∈R(S)

m .

Now that it is possible to determine the β-lookout(S), it is possible to move on to de-
termining α. From Subsection 5.2.1.2:

α ≤ µ(β-lookout(S))
µ(S) , (5.2.30)

and by noting that the µ(β-lookout(S)) ⊂ µ(S), Lemma 5.2.1 may be used to write:

α ≤ P(p ∈ β-lookout(S)), (5.2.31)

and Lemma 5.2.2 may be used to write that:

α ≤ lim
k→∞

kp∈β-lookout(S)

k
(5.2.32)

which enables the calculation of α for a specific β-lookout(S), on a computer.
11By determining each ratio multiple times and comparing multiple results from one ratio, it is possible

to determine how many samples are required to accurately approximate the ratios.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. ALGORITHM ANALYSIS 57

The relationship between α and β

In the process to determine values for α and β, it is important to note two choices; it is
possible to:

1. choose a range of values for β ∈ (0, 1], where each value in the range will correspond
to a bound on the value of α, or

2. choose a range of values for α ∈ (0, 1], where each value in the range will correspond
to a bound on the value of β.

Choice 1 For a specific value of β, a specific set of points β-lookout(S) exists (Equa-
tion 5.2.7), which has a specific volume, µ(β-lookout(S)). From this volume a bound on
the size of α can be determined through Equation 5.2.12. By looking at Equation 5.2.21,
specifically the term k(1−α)r/k, it is noticed that a value of α closer to 1 than 0 allows the
aforementioned term to decrease in value faster12 for increasing values of r. This means that
the inequality of Equation 5.2.21 is satisfied for smaller values of r when larger values of α
is used. Therefore, the largest value of α, allowable by its bound, is the optimum choice for
α, as a smaller number of milestones are required to guarantee the PRM will find a path.

Choice 2 For a specific value of α, a range of volumes µ(β-lookout(S)) exist (Equa-
tion 5.2.12), where each of these volumes has a specific value of β associated with it (Equa-
tion 5.2.7). However, determining the associated value of β is cumbersome since it is not
possible to directly determine β from only the volume of the set β-lookout(S). For a range of
values for β the corresponding volumes will have to be calculated until a calculated volume
matches the volume of the set β-lookout(S), as specified by α.

Choices 1 vs. 2 The amount of operations required to calculate β from α (Choice 2)
is significantly more than that required by calculating α from β (Choice 1). In the next
subsection (Subsection 5.2.4 the implementation of Choice 1 is discussed.

Summary

This subsection continues the work on determining a bound on the number of milestones
required to guarantee the PRM will find a path. The concept of relative frequency is
introduced with Lemmas 5.2.1 and 5.2.2, which enabled the rewriting of Equations 5.2.7
and 5.2.12 into Equations 5.2.32 and 5.2.29. It is seen that two choices are available to
calculate α and β, and after a short discussion it is decided that the implementation of
Choice 1 will be presented in the next subsection (Subsection 5.2.4).

5.2.4 Relating α and β on a computer for a specific environment and a
specific vehicle

This subsection uses equations introduced in the previous subsection to relate α and β,
determine values for each, and then calculate a performance bound on the number of mile-
stone that will guarantee the PRM will find a path, for a specific environment and vehicle.
Figure 5.7 shows the environment.

12Note that the value of α lies in (0, 1].

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. ALGORITHM ANALYSIS 58

0 100 200 300 400 500 6000

100

200

300

400

500

600

x-axis (meters)

y-
ax

is
(m

et
er
s)

Environment for analysis

Figure 5.7 – The environment wherein the PRM and RRT* algorithms are analysed.

Choice 1 from the previous subsection is chosen to be implemented for this project. In order
to establish the relationship between α and β, a vector vβ of values for β (increasing with
a specified step size from close to zero to one) is created, and then α is determined for
each value of β in this vector. The process starts by determining the points that lie in the
β-lookout(S), hence the process to determine whether a single points lies in the β-lookout(S)
is first presented.

Determining whether a single point p lies in β-lookout(S)

The process starts by first determining the right-hand side
(
β ×

mpS̄∈R(S)

m

)
of Equation 5.2.29,

which is achieved by sampling m points in S̄, and testing how many of these points lie in
R(S). To determine whether a point lies in R(S), a tree is grown backwards for each of the
m points until the tree can be connected to the initial milestone, or the number of milestones
in the tree exceed some specified number e13.

Next, the left-hand side
(
npS̄∈Rlpm(p)

n

)
of Equation 5.2.29 is determined by sampling a point

p in S, and then sampling n points in S̄. For each of the n points, the LPM and conflict
detection algorithms are used to determine the number points to which p can connected to
in S̄. The point p lies in the β-lookout(S) if the left-hand side is larger than the right hand
side.

13As long as the choice of e is significantly larger than the predicted amount of milestones necessary to
guarantee finding a path, the choice of e is deemed acceptable.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. ALGORITHM ANALYSIS 59

Determining the set of points β-lookout(S)

To determine the set of points β-lookout(S) the above process is repeated a times, each
time sampling a new point p. The number of p points that fall in β-lookout(S) divided
by a denotes the volume of β-lookout(S) relative to S. Note that the right-hand side of
Equation 5.2.29 does not change for a newly sampled point, hence it is only determined
once.

Determining values for α

After the set of volume µ(β-lookout(S)) is determined, Equation 5.2.32 is used to determine
a value for α. The process of determining a value for α from a value of β is now completed;
however, it is necessary to repeat the process for the rest of the values of β in vβ . When
this is completed, the values in vβ can be plotted against the determined values of α, as in
Figure 5.8.

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.350

0.2

0.4

0.6

0.8

1

β

α

Relationship of α vs. β

Figure 5.8 – Plot of α vs β in the environment shown in Figure 5.7.

From the values of α and β in Figure 5.8, it is possible to plot r vs. β by using Equa-
tion 5.2.21. To calculate values for r it is necessary to specify a success percentage (1− γ).
The success percentage denotes the probability that the PRM will not require more than
r milestones to find a path. For this analysis, and that done for the RRT*, a success per-
centage of 99.99%, or 0.9999 is chosen, and by using Equation 5.2.23 it is determined that
γ = 0.0001.
It is important to note that all the calculated values for r denotes a number of milestones
that will guarantee the PRM will find a path. Therefore, the smallest value of r in Figure 5.9

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. ALGORITHM ANALYSIS 60

is the least conservative guarantee of the number of milestones that will guarantee the PRM
will find a path.

1 1.5 2 2.5 3 3.5 4 4.5 5
· 10−2

1,300

1,400

1,500

1,600

1,700

1,800

1,900

2,000

beta

r

better upper bound

Figure 5.9 – Upper-bound plot of the number of milestones necessary for a 99.99% probability
that the PRM will not require more than r milestones to find a path vs β for the environment
shown in Figure 5.7. The smallest value of r = 1328, with β = 0.03075 and α = 0.4408

5.2.5 Conclusion

In this section parts of the proof for probabilistic completeness of the PRM is used to
calculate a theoretical bound on the number of milestones that will guarantee the PRM will
find a path. This is done for a specific environment as well as a specific vehicle. The theorem
used for the proof of probabilistic completeness is developed by Hsu et al. [16], however, parts
of the theorem is rewritten in order to obtain a less conservative performance bound.
Following this, two lemmas are presented which enabled the rewriting of ratios of volumes to
probabilities, which enabled the use of relative frequency, which allowed these probabilities
to be approximated on a computer. After all the equations required to determine the PRM’s
performance bound is rewritten into relative frequency form, values are calculated for the
upper bound. In the next section the RRT* is analysed in a similar manner.

5.3 RRT* Analysis

Some of the problems presented by the problem statement (Section 3.1) are solved using
the PRM and RRT* motion planning algorithms. The motion planning algorithms are
implemented in Sections 4.8 and 4.9, respectively, and the PRM is analysed in the previous
section (Section 5.2). The analysis is conducted to provide insight into the behaviour of

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. ALGORITHM ANALYSIS 61

the algorithms in specific environments, with the end goal of being able to determine which
algorithm performs better in a given environment. This section provides the analysis of the
RRT* algorithm.
The RRT* is analysed using a theorem presented by S.M. LaValle and J.J. Kuffner [20],
which provides an upper bound on the performance of the RRT*, in a specific environment.
It is seen that the theorem works by determining key areas wherein a random milestone must
be sampled such that a path can be formed between the initial and the goal milestones. If
the probability of generating a milestone in each of these key areas can be determined,
then performance bounds can be calculated for the RRT*, for a specific environment. As
with the PRM, the theorem used for the RRT* depends on parameters that are not easily
determined. Once again non-analytical methods are employed to estimate values for these
parameters.
Regarding the choice of η, another insight is gained from this analysis. The area within
a ball of radius η is searched for better paths towards and though mrand, as shown in
Subsection 4.9.2. The larger the value of η, the more milestones this ball will contain, and
for each milestone therein the path optimisation code has to be executed. Thus the choice
of η will indirectly influence the CPU-time required for the path optimisation of the RRT*.

5.3.1 Theoretical Upper bound for finding a path with a RRT*

For the analysis of the RRT*, a theorem and notation by LaValle is introduced. The
theorem forms part of the proof for probabilistic completeness of the RRT*, and is used
specifically to determine an upper bound on the iterations necessary to find a path14, in a
given environment.
Since the RRT* uses manoeuvres to connect subsequent milestones, the results of this anal-
ysis is vehicle specific; that is, the results of this analysis is only valid for vehicles that can
execute the manoeuvre libraries of Subsection 4.5, and for vehicles incapable of doing so,
this analysis will yield different results.
In order to analyse the RRT*, a few concepts are first introduced that are similar to those
introduced for the PRM (Section 5.2.1), however, there are subtle differences, and therefore
the concepts of this section should be viewed as independent of those in Section 5.2.

Introducing the concepts of the Steer reachability set

p

Rsteer(p)

Figure 5.10 – Steer reachability of p.

14A path is found with a guaranteed success percentage.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. ALGORITHM ANALYSIS 62

Figure 5.10 shows a point p, and a set of points Rsteer(p) enclosed by a circle. Let the set
Rsteer(p) denote the set of points from which p can be reached through a single Steer15
run.

Introducing the concept of an attraction set

Ai−1
p0

Ai

p1

Rsteer(Ai)

p2

Figure 5.11 – Attraction set of A1.

Figure 5.11 shows three points, p0, p1, p2, and three sets of points, Ai−1, Ai, and Rsteer(Ai).
The sets Ai−1 and Ai form an attraction sequence, which is indicated by the fact that
any point outside of Rsteer(Ai) is further than any point in the set Ai−1 to any point in the
set Ai, and any point in Rsteer(Ai) can connect to any point in Ai.
Informally, points contained within an attraction sequence must satisfy two requirements:
let ρ(p0, p1) denote some distance metric, i.e. ρ(p0, p1) =

√
(xp0 − xp1)2 + (yp0 − yp1)2,

1. for a point p0 in Ai−1, a point p1 in Ai, and a point p2 anywhere outside of Rsteer(Ai),
ρ(p1, p0) < ρ(p1, p2) must hold, and

2. any point within Rsteer(Ai) can be connected to Ai though a single manoeuvre, using
the Steer algorithm.

15defined in Subsection 4.9.1.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. ALGORITHM ANALYSIS 63

Introducing the concepts of the Attraction sequence

0 100 200 300 400 500 6000

100

200

300

400

500

600

x-axis (meters)

y-
ax

is
(m

et
er
s)

A0

A1 A2

A3

Figure 5.12 – Attraction set of A1.

Figure 5.12 shows four sets of points:

1. the set A0, which contains only a single point, the initial point,

2. the set A1,

3. the set A2, and

4. the set A3, which contains only a single point, the goal point.

The sets are chosen so that A0 falls in Rsteer(A1), A1 falls in Rsteer(A2), and A2 falls in
Rsteer(A3). This means that each set falls within the Steer reachability of a subsequent set,
and it is therefore possible to form a path between the initial and goal points using the Steer
algorithm, provided that the sets A1 and A2 are non-empty.
The sequence of attraction sets, A = {A0, ...,A3}, form an attraction sequence of length
4. Next, this concept is formally defined.

5.3.1.1 The Attraction sequence

Let F denote the set of all conflict-free points, S denote the state space of the vehicle, and
T denote the time space. Furthermore, let A = {A0, A1, ..., Ak} be a sequence of subsets of
F ⊂ ST , referred to as an attraction sequence, where each Ai contains points in F ⊂ ST .
Formally, for all Ai ∈ A there must exist a Steer reachability set Rsteer(Ai) ⊂ ST , such
that:

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. ALGORITHM ANALYSIS 64

1. the points p0 ∈ Ai−1, p1 ∈ Ai, and p2 : {p2 /∈ Rsteer(Ai) | p2 ∈ (F ⊂ ST)}, the
inequality ρ(p1, p0) < ρ(p1, p2) holds, and

2. any point p3 ∈ Rsteer(Ai) it is possible to use the Steer algorithm to generate a single
manoeuvre that will connect p3 to any point p1 ∈ Ai, where Ai ⊂ Rsteer(Ai),

with the exception that A0 = {mb}, the initial milestone, and Ak = {mg}, the goal mile-
stone.
Note that the choice of the parameter η will directly influence the size ofRsteer(Ai); however,
a discussion hereof is only presented later.

5.3.1.2 Probability of sampling a milestone in each attraction set

Let µ(Ai) denote the volume of a set of points Ai, and let p equal the smallest µ(Ai), scaled
by the volume of the total free space:

p =
(
µ(Ai)smallest
µ(F ⊂ ST)

)
. (5.3.1)

Note that the value of p is the probability of sampling a random milestone in Ai. Next,
Theorem 2 of LaValle is presented:
If an attraction sequence of length k exists, the probability γ ∈ (0, 1] that the RRT* fails to
find a path after n iterations is governed by the inequality:

γ < e
−1
2 (np−2k) (5.3.2)

or rewritten, the number of iterations required to guarantee a failure rate of at most γ:

n <
2 ln(γ) + 2k

p
(5.3.3)

Since the events of finding a path, and not finding a path, are mutually exclusive, it is
possible to state that:

P(fail) = γ, (5.3.4)
⇒ P(success) = 1− γ. (5.3.5)

The above result, together with Equation 5.3.3, enables a performance bound to be defined
for the RRT*: by ensuring that,

n ≥ 2 ln(γ) + 2k
p

, (5.3.6)

a 1− γ success probability is guaranteed.

5.3.1.3 Determining the location of the attraction sequence

Previously, concepts and equations necessary to understand a theorem by LaValle and
Kuffner are introduced, as well as the theorem itself. The theorem provides a performance
bound on the RRT*, and is presented in Equation 5.3.6.
For the performance bound on the number of iterations n the RRT* requires to guarantee it
finding a path, with a specified success probability, the value of n needs to be as conservative
(or small) as possible, while still adhering to the mathematical bound of Equation 5.3.6,

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. ALGORITHM ANALYSIS 65

which means that, the values of p and k should minimise n. By analysing Equation 5.3.6,
it is seen that this is achieved by using a value of p that is as large as possible, and as small
as possible a value for k. The values of p and k are directly influenced by the location of
the subsets of the attraction sequence A = {A0,A1, ...,Ak}, as choosing locations for the
subsets might require a larger than necessary k, or a very small value for p.

0 100 200 300 400 500 6000

100

200

300

400

500

600

x-axis (meters)

y-
ax

is
(m

et
er
s)

A0

A1 A2

A3 A4

A5

Figure 5.13 – Six subsets (k = 5) are shown. A path between the initial and goal milestones
is formed by sampling a milestones in the subsets 1 to 4.

Figure 5.13 shows six attractions sets, which form an attraction sequence of length k = 5,
and by sampling a random milestone in each set, A1 to A4, a path between the initial (A0)
and goal (A5) milestones is formed.
Other choices for the locations of the attractions sets are possible. Intuitively, the locations
shown in Figure 5.13 allows a small value of k, and a large value of p, given the positions
of A0 and A5; however, ensuring that the locations are optimal, remains an open prob-
lem. It is important to note that, independent of the locations of the attraction sequence,
Equation 5.3.6 still provides a mathematical bound on n, even when the locations yield a
conservative value for n.
For the attraction sequence, the value of η must be chosen so that each Ai−1 have to be in
the set Rsteer(Ai), while keeping the value of η to a minimum so that the path optimisation
outlined in Subsection 4.9.2 does not become too costly. In regard to this, η is chosen
to be exactly equal to the maximum distance between subsequent attraction sets, thereby
satisfying both requirements.

5.3.1.4 Determining the volume of the subsets of the attraction sequence

To determine the value of p it is necessary to determine the volume of the subsets of the
attraction sequence. The volume of the subsets is determined by using relative frequency

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. ALGORITHM ANALYSIS 66

(defined in Lemma 5.2.2), as was done in Section 5.2.2 for the PRM. The concept of relative
frequency works by generating numerous random samples, and by comparing the amount of
samples that fall in a specific region to the total amount of generated samples, the volume
of region is approximated16.
The attraction sequence shown in Figure 5.13 adheres to the rules presented in Subsec-
tion 5.3.1.1, and using these rules it is possible to determine whether a sampled milestone
lies in an attraction set or not. For example, let a milestonemrand be sampled at coordinates
x = 100m, y = 300m in Figure 5.13. According to the rules set out in Subsection 5.3.1.1,
for mrand to form part of the attraction set A1, it must lie in Rsteer(A2). However, mrand

does not lie in Rsteer(A2) as the manoeuvre connecting mrand to some of the points in A2
is not entirely conflict free. Hence, the milestone mrand is not considered part of A1. In a
similar manner, any sampled milestone can be tested whether it lies in a specific subset of
the attraction sequence, and therewith the volume of the respective subsets can be deter-
mined by using relative frequency. The results of the above described procedure is shown
below in Figure 5.14.

0 100 200 300 400 500 6000

100

200

300

400

500

600

x-axis (meters)

y-
ax

is
(m

et
er
s)

Figure 5.14 – This figure shows an example attraction sequence as determined by the ap-
proach in Subsection 5.3.1.4.

By using the approach outlined in this subsection, p is calculated to be 0.003926, and
therewith a value for n can be calculated by using Equation 5.3.6. For a required success
probability of P(success) = 0.9999 (or 99.99%), γ = 0.0001, and n is calculated to be 7174
iterations.

16Note that for this discussion the time dimension is left out for clarity, but the arguments presented here
are valid for higher dimensions as well.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. ALGORITHM ANALYSIS 67

5.3.2 Conclusion

This section introduces parts of the probabilistic completeness proof for the RRT*. These
parts are then used to calculate a theoretical bound on the performance of the RRT*.
Firstly, this section introduces the concept of the Steer reachability set of a point, and then
continues to introduce the concept of an attraction sequence. By sampling a milestone in
each subset of the attraction sequence, a path between the initial and goal milestones is
found. To calculate the probability of sampling a milestone in each subset of the attraction
sequence, a theorem by LaValle [20] is introduced. The theorem by LaValle relates the
number of samples which are necessary to guarantee sampling a milestone in each subset to
a specified probability. To calculate the performance bound of the theorem by LaValle, it
is necessary to calculate the volumes of the subsets of the attraction sequence, and relative
frequency17 is used to achieve this. Lastly, implementation details are discussed and the
performance bound for the RRT* is calculated as 7174 iterations (or samples of milestones)
to guarantee a 99.00% probability of finding a path.
The calculated performance bound for the RRT* (together with the performance bound on
the PRM) is analysed and compared to practical results, in the next section (Section 5.4).

5.4 Histogram analysis

In the previous two sections the PRM and RRT* motion planning algorithms are analysed.
Their analyses allows theoretical bounds to be calculated on the amount of milestones (or
iterations) required to find a path in a specific environment. In this section, the PRM
and RRT* algorithms are compared using histograms, for the environment shown in Fig-
ure 8.1(a). This subsection provides real measurements of the iterations, milestones, run
times and path costs of the PRM and RRT* algorithms during execution. These measure-
ments are presented in histogram form and they are used to assert the theoretical results
from the two previous sections.

5.4.1 Iteration count

In this subsection, the iterations required by the PRM and RRT* algorithms to find a path,
is compared. The analysis of the RRT* provides us with a theoretical bound on the number
of iterations the algorithm requires to find a path, whereas the analysis of the PRM provides
us with a theoretical bound on the number of milestones in its tree. It is still important to
compare iteration measurements for both algorithms as it provides us with insight into the
differences between the PRM and RRT*.
Figure 5.15 shows us a histogram of the amount of iterations the PRM algorithm required
to find a path in the above environment, as does Figure 5.16 for the RRT*. From these
figures, it is possible to see that the PRM algorithm required less iterations than the RRT*
algorithm. Next, the two algorithms are compared in order to identify the cause for this
result.
For the environment shown in Figure 8.1(a) suppose that the RRT* tree has grown from
the initial milestone to just before the first wall, and there exists a milestone mnearest in
the tree at position x = 190 and y = 400. Suppose that the algorithm now generates a
new random milestone mnew just to the right of the wall (i.e. so that x > 210) so that
the nearest neighbour search returns mnearest. The Steer method of the RRT* will now
attempt to connect the two milestones, however it cannot because of the wall, and now the

17Introduced in Subsection 5.2.3.1

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. ALGORITHM ANALYSIS 68

milestone mnew is discarded. This means that even though mnew might be contained in
Rsteer(RRT ∗-tree) it is still discarded.
For the same case as above the classic PRM algorithm will loop though its entire tree to try
and connectmnew to its tree. This means that as long asmnew lies withinRlpm(PRM -tree)
it will be connected. However, in Subsection 4.8.2 a change is proposed where the entire
PRM tree is not searched for a parent milestone, which means that it is not guaranteed that
as long as mnew lies within Rlpm(PRM -tree) it will be connected. While this guarantee is
dropped the PRM still tries longer than the RRT* to connect mnew to its tree.
From this discussion it is evident that the PRM algorithm does not “waste” as many itera-
tions as the RRT* which results in less iterations. The average iterations for the PRM and
RRT* algorithms are 80 and 502 respectively.

0 200 400 600 800 1,000 1,200 1,400100

101

102

103

104

Number of iterations (count)

Fr
eq
ue
nc

y
(l
og

10
)

Iterations

Figure 5.15 – Histogram plot of iterations required by the PRM algorithm to find a path in
the environment shown in Figure 8.1(a) and 8.1(b) for 100000 runs.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. ALGORITHM ANALYSIS 69

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000100

101

102

103

104

Number of iterations (count)

Fr
eq
ue
nc
y
(l
og

10
)

Iterations

Figure 5.16 – Histogram plot of iterations required by the RRT* algorithm to find a path in
the environment shown in Figure 8.1(a) and 8.1(b) for 100000 runs. The measurements show
that 0 times out of 100000 runs the algorithm required more than 7174 iterations.

5.4.1.1 Theoretical versus Practical iteration requirement

In Section 5.3.1 a theoretical performance upper bound on the number of algorithm iterations
the RRT* requires to find a path is calculated. In this subsection, the theoretical bound is
compared with practical measurements of the RRT* algorithm. The same is done for the
PRM algorithm, however, its performance bound is on the number of milestones it requires.
The comparison for the PRM is done in Subsection 5.4.2.
To obtain measurements of the iterations the RRT* required the algorithm is run a 100000
times. Each run stops as soon as a path was found, and for each run the number of iterations
the algorithm required is recorded. In Figure 5.16 a histogram is shown that presents the
amount of milestones the RRT* required on its x-axis. On the y-axis the frequency of the
number of iterations is shown.
In Section 5.3.1 the theoretical performance bound for the RRT* is calculated at 7174 iter-
ations to guarantee a 99.99% success rate for finding a path. For the theoretical calculation
to hold, the practical measurements may require 1 in 10000 algorithm runs to require more
than 7174 iterations; that is, for 100000 runs this may occur no more than 10 times. The
practical measurements show that the RRT* required more than 7174 algorithm iterations
exactly 0 times out of 100000, which means that the theoretical performance bound holds.

5.4.2 Milestone count

As mentioned in the previous subsection, the PRM provides us with a theoretical bound on
the number of milestones it needs to find a path whereas the RRT*’s theoretical bound is
with iterations.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. ALGORITHM ANALYSIS 70

Figure 5.17 shows us a histogram of the amount of milestones the PRM algorithm requires
to find a path in the above environment, as does Figure 5.18 for the RRT*. From these
figures, it is possible to see that the PRM algorithm required less milestones than the RRT*
algorithm. After considering both algorithms, the most obvious reason for the much higher
number of milestones required by the RRT* algorithm is because the length of a manoeuvre
is limited by η, whereas the PRM algorithm’s manoeuvres have no such restriction. The
average number of milestones required by the PRM and RRT* algorithms are 32 and 78,
respectively.

0 50 100 150 200 250 300 350 400 450 500100

101

102

103

104

Number of milestones (count)

Fr
eq
ue
nc
y
(l
og

10
)

Milestone count

Figure 5.17 – Histogram plot of number of milestones required by the PRM algorithm to find a
path in the environment shown in Figure 8.1(a) and 8.1(b) for 100000 runs. The measurements
showed that 0 time out of 100000 runs the algorithm required more than 1328 milestones.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. ALGORITHM ANALYSIS 71

0 100 200 300 400 500 600 700 800100

101

102

103

104

Number of milestones (count)

Fr
eq
ue
nc
y
(l
og

10
)

Milestone count

Figure 5.18 – Histogram plot of number of milestones required by the RRT* algorithm to
find a path in the environment shown in Figure 8.1(a) and 8.1(b) for 100000 runs.

5.4.2.1 Theoretical versus Practical milestone requirement

In Section 5.2.2, a theoretical performance bound is determined on the number of milestones
the PRM requires to find a path in a specific environment. In this subsection, the theoretical
bound is compared to practical measurements of the amount of milestones the PRM required
to find a path. The same is done for the RRT*; however its performance bound is on the
number of iterations and its comparison of theoretical to practical measurements is done in
Subsection 5.4.1.
For the practical measurements the PRM algorithm is run 100000 times. For each run the
amount of milestones it required in its tree is recorded and as soon as a path is found the
algorithm is stopped. In Figure 5.17 a histogram is shown that presents the number of
milestones the PRM required to find a path on the x-axis. On the y-axis a frequency count
of the number of milestones is displayed.
For the theoretical results to hold it is required that the histogram shows that no more than
99.99% of the 100000 runs required more than 132818 milestones. That is, if the PRM uses
more than 1328 milestones more than 10 times out of a 100000 runs, the theoretical result
is flawed. It is clear from the histogram that the PRM required more than 1328 milestones
not even once out of a 100000 runs. This means that the theoretical results holds, albeit
somewhat conservatively.

5.4.3 CPU-time

In the previous subsections of this section, theoretical performance bounds of the PRM and
RRT* are compared to practical measurements. In Subsection 5.4.1 the iterations required

18This number was determined in Section 5.2.2.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. ALGORITHM ANALYSIS 72

by the RRT* was analysed and compared, and in Subsection 5.4.2 the milestones required
by the PRM was analysed and compared. While these analyses provides us with valuable
insight into the differences between the PRM and RRT* it cannot provide a definitive answer
to which algorithm performed the best.
Figure 5.19 shows a histogram of the CPU-time the PRM algorithm required to find a path
in environment 8.1, as does Figure 5.20 for the RRT*. The average CPU-time for the PRM
algorithm is 0.0470 seconds, whereas the average CPU-time for the RRT* algorithm is even
less at 0.0285. It can be seen from the histograms that the RRT* algorithm never took
longer than 0.330 seconds to find a path; however, the PRM once took 1.598 seconds to find
a path. This is because the RRT* algorithm only tries to connect a new random milestone
mnew to its nearest neighbour mnearest whereas the PRM tries to connect mnew to multiple
milestones in its tree. It is seen from Figures 5.19 and 5.20 that this results in a much more
consistent CPU-time required by the RRT*. That is, the tail of the CPU-histogram of the
RRT* algorithm is almost non existent relative to the tail of the PRM’s CPU-histogram.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6100

101

102

103

104

105

CPU-time (seconds)

Fr
eq
ue
nc

y
(l
og

10
)

CPU run times

Figure 5.19 – Histogram plot of CPU-time required by the PRM algorithm to find a path in
the environment shown in Figure 8.1(a) and 8.1(b) for 100000 runs.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. ALGORITHM ANALYSIS 73

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35100

101

102

103

104

105

CPU-time (seconds)

Fr
eq
ue
nc
y
(l
og

10
)

CPU run times

Figure 5.20 – Histogram plot of cpu time required by the RRT* algorithm to find a path in
the environment shown in Figure 8.1(a) and 8.1(b) for 100000 runs.

5.4.3.1 CPU time of theoretical bound

As noted in Subsection 5.4.1 and 5.4.2 the iteration and milestone performance bounds of
the RRT* and PRM algorithms can’t be compared directly. It is necessary to first convert
these bounds to something common to both algorithms. CPU time is common to both
algorithms, and it is possible to convert the performance bounds to CPU time. For the
PRM it is proposed to repetitively record the CPU time it takes to add 1328 milestones into
its tree; for enough repetitions this will determine a guaranteed maximum time it requires to
find a path. Similarly for the RRT* it is possible to determine this maximum time, except
that the time it takes to iterate 7174 times is recorded.

5.4.4 Path cost

Path cost is not really relevant to this discussion, as no theoretical bounds on it was deter-
mined. Nonetheless, a path cost comparison is of interest since the RRT* performs a number
of path operations that should result in lower path costs. The average path costs for the
PRM and RRT* algorithms are 16337 and 11877 units, and it is seen from the histogram
plots that the path costs of the RRT* are much more closely distributed as opposed to the
PRM path costs that have a somewhat wider distribution.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. ALGORITHM ANALYSIS 74

0.5 1 1.5 2 2.5 3 3.5
· 104

100

101

102

103

104

Path costs (relative cost)

Fr
eq
ue
nc
y
(l
og

10
)

Path costs

Figure 5.21 – Histogram plot of path costs for the PRM in the environment shown in Fig-
ures 8.1(a) and 8.1(b) for 100000 runs.

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
· 104

100

101

102

103

Path costs (relative cost)

Fr
eq
ue
nc

y
(l
og

10
)

Path costs

Figure 5.22 – Histogram plot of path costs for the RRT* in the environment shown in
Figures 8.1(a) and 8.1(b) for 100000 runs.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. ALGORITHM ANALYSIS 75

5.5 Conclusion

In Section 5.2.2 the PRM motion planning algorithm is analysed by looking at theorems
from its proof of probabilistic completeness. These theorems are rewritten using relative
frequency which enables their computation on a computer, which in turn provides a the-
oretical performance bound for the PRM. Similarly the RRT* is analysed in Section 5.3.1
wherein a theoretical performance bound is also determined.
In Subsections 5.4.1 and 5.4.2 the theoretical bounds of the PRM and RRT* are compared
to respective practical measurements and it is confirmed that the theoretical performance
bounds hold for both the PRM and RRT*. In Section 5.4.3 the maximum CPU-time the
PRM and RRT* algorithms require to guarantee finding a path is determined, and it is
seen that the RRT* algorithm requires less (maximum) time than the PRM algorithm,
even though the average execution time of the PRM is slightly lower than the RRT*. In
Subsection 5.4.4 the differences between the quality of the paths the PRM and RRT* create
is presented and it is seen that the average path cost of the PRM is lower than the RRT*;
however, the PRM generates a few paths that are very expensive, and the RRT*’s path
costs are closely bound.
In this chapter it is seen that both the PRM and RRT* algorithms have strengths and
weaknesses. However, it is seen that the RRT* has much more consistent behaviour, and
therefore the RRT* is used in the next chapter wherein path replanning is presented.

Stellenbosch University http://scholar.sun.ac.za

Chapter 6

Path Replanning

6.1 Introduction

This project forms part of a larger goal to achieve autonomous navigation of a vehicle.
Specifically, this project looks at the motion planning aspect thereof, and in Chapter 3
it was concluded that the RRT* and PRM motion planning algorithms are to be used in
this project. In Section 3.4 different constraints of the PRM and RRT* motion planning
algorithms are presented, amongst others the conflict detection algorithm. Some issues of
the conflict detection algorithm are discussed therein and in this chapter path replanning is
introduced to address some of these issues:

1. The conflict detection algorithm assumes all information about the environment is
known beforehand; that is, positions of obstacles in the future as well as obstacles
not in view of the vehicle or far away are all known, without uncertainty. This is not
possible for practical implementations as any predictions into future behaviour of the
environment will have increasing uncertainty with time.

2. The motion planner (in its current state) does not use any additional information
about the environment post initial planning and the planned path stays ‘as is’ during
the entire path traversal.

Regarding the first issue, replanning allows the algorithm to reset environment uncertainties
at regular intervals. This results in propagating uncertainty only during a replan interval
as opposed to propagating uncertainty for the duration of executing the entire path. This
benefit will not directly influence this project as a non probabilistic conflict detection algo-
rithm is used; however, as mentioned in Subsection 3.4.3 this project can be adapted to use
a probabilistic conflict detection module.
Regarding the second issue, replanning allows the motion planning algorithm to include new
information about the environment up until each replan occurrence, thereby enabling the
algorithm to adjust or change a path accordingly. This means that if the behaviour of the
environment differs from what is initially assumed, a previously safe path might experience
conflict. Replanning will enable the motion planning algorithm to plan a different conflict
free path. In Section 6.3 other benefits of replanning are also presented.
This chapter starts with discussing implementation details in Section 6.2 and thereafter a
simulation example is presented in Section 6.3.

76

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. PATH REPLANNING 77

6.2 Implementation

In Chapter 5 the PRM and RRT* motion planning algorithms are analysed and it is con-
cluded that the RRT* has a much more consistent behaviour compared to the PRM; there-
fore the path replanning algorithms will be based on the RRT* algorithm presented in
Subsection 4.9.3. The steps involved in replanning are:

1. Plan an initial path1 - The RRT* path planner is used to find a path as soon as
possible. This path might be cost ineffective but the vehicle can start to execute the
path.

2. While the vehicle is executing path1 the replanner determines where (pt=1) on the
path the vehicle will be at the next replan interval. That is, if the replan interval is 1
second the algorithm determines where the vehicle will be on the path after 1 second
of execution.

3. Position pt=1 is then passed to the RRT* path planner algorithm as the initial mile-
stone while the goal is kept the same, and the path planner algorithm may then search
for 1 second for a better path, path2. The milestones that form path1 are also passed
to the algorithm.

4. If path2 has a better cost than path1 the vehicle will switch to executing path2 as soon
as pt=1 is reached.

5. The last step is to update the environment to reflect any new information. If path2
now contains conflict, the milestones of the path are discarded and not passed to the
path planner in the next iteration.

6. The process is repeated from where the replanner algorithm determines where the
vehicle will be (for the next iteration pt=2) after another replan interval.

In the next section the above process is presented together with an example.

6.3 Simulation example

6.3.1 Initial path

The RRT* motion planning algorithm is used to find a path between the goal and initial
milestone as fast as possible. This path is shown in Figure 6.1 where the left hand figure
shows a path from the top, the right hand shows a path from the side, and the red ’+’ shows
the progress of the vehicle. As soon as this path is found the vehicle can start to execute it,
this initial path is found in 10ms1. In Chapter 5 it was shown that the RRT* algorithm has
a 99.99% chance to find a path under 0.330 seconds, thereby providing an upper bound on
the time the motion planner requires before the vehicle can start to execute a path.
The cost of the path is 9009 which is expensive compared to 6789, which is achieved by the
end of this chapter through replanning. While the vehicle is executing part of this path the
replanner determines where the vehicle will be after the replan period and uses this position
as the initial position during the next replan interval. This position is given to the RRT*
algorithm as the initial milestone and now the algorithm plans for the duration of the replan
interval. This path is shown in the next subsection.

1Refer to Section 4.2 for details about the hardware and software used in the implementation.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. PATH REPLANNING 78

0 200 400 6000

200

400

600

x-axis (meters)

y-
ax

is
(m

et
er
s)

(a)

0 200 400 6000

200

400

600

x-axis (meters)

z-
ax

is
(m

et
er
s)

(b)

Figure 6.1 – A plot showing the top and side view plots of the first path the RRT* path
planner found and the initial path the replanner will execute.

6.3.2 Improving the path

For the duration of the replan interval the existing path (shown in red) is improved by the
RRT* algorithm. The improved path (shown in blue) has a cost of 7887 and is shown below.
The rest of the figures in this subsection shows how the path improves due to replanning.

0 200 400 6000

200

400

600

x-axis (meters)

y-
ax

is
(m

et
er
s)

(a)

0 200 400 6000

200

400

600

x-axis (meters)

z-
ax

is
(m

et
er
s)

(b)

Figure 6.2 – A plot showing the top and side view plots of an improved path (cost: 7887)
the RRT* path planner found in blue and the old path in red.

These figures and their respective path costs show that replanning enables a vehicle to start
executing a path very quickly while still allowing the vehicle to traverse a path that is
continually improved. In this subsection, the information the conflict detection algorithm
had did not change: however, as a vehicle explores an environment, its sensors might become
more confident of where objects are. This might lead to observing that obstacle positions

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. PATH REPLANNING 79

0 200 400 6000

200

400

600

x-axis (meters)

y-
ax

is
(m

et
er
s)

(a)

0 200 400 6000

200

400

600

x-axis (meters)

z-
ax

is
(m

et
er
s)

(b)

Figure 6.3 – A plot showing the top and side view plots of an improved path (cost: 7556)
the RRT* path planner found in blue and the old path in red.

0 200 400 6000

200

400

600

x-axis (meters)

y-
ax

is
(m

et
er
s)

(a)

0 200 400 6000

200

400

600

x-axis (meters)

z-
ax

is
(m

et
er
s)

(b)

Figure 6.4 – A plot showing the top and side view plots of an improved path (cost: 7227)
the RRT* path planner found in blue and the old path in red.

that differ from their initial observed positions2, and paths that where previously thought
of as conflict free are in fact not. In the next subsection a change in the environment is
observed that causes the path to have conflict.

6.3.3 Path with new environment information

In this subsection, the environment of the previous subsection has slightly changed, which
causes the path to have conflict. From Figure 6.5(a) onwards, the gap in the wall at x =
200m has moved further away from the vehicle. Fortunately, replanning allows the conflict

2This also applies to dynamic obstacles not behaving as predicted.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. PATH REPLANNING 80

detection algorithm to update its information about the environment, which enables the
motion planning algorithm to search for a conflict free path.

0 200 400 6000

200

400

600

x-axis (meters)

y-
ax

is
(m

et
er
s)

(a)

0 200 400 6000

200

400

600

x-axis (meters)

z-
ax

is
(m

et
er
s)

(b)

Figure 6.5 – A plot showing the top and side view plots of the path the RRT* path planner
found with the updated environment information.

0 200 400 6000

200

400

600

x-axis (meters)

y-
ax

is
(m

et
er
s)

(a)

0 200 400 6000

200

400

600

x-axis (meters)

z-
ax

is
(m

et
er
s)

(b)

Figure 6.6 – A plot showing the top and side view plots of the path (cost: 6789) the vehicle
traversed.

Figure 6.6 shows the path the vehicle traversed in red ’+’s. The traversed path cost is 6789
units, which is a major improvement over the cost (9009) of the initial path.

6.4 Conclusion

In this chapter the path replanning algorithm is introduced as a modification of the RRT*
motion planning algorithm. The implementation difference between the RRT* and RRT*
with replanning is discussed and it is seen that the algorithms are very similar. The only

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. PATH REPLANNING 81

differences are to the path planner Algorithm 8, the rest of the RRT* algorithm as discussed
in Section 4.9 stays the same.
The key difference is that the path replanner doesn’t stop planning, until the vehicle reaches
the goal. At each replan interval, the replanner moves the initial milestone to a predicted
future position, and tries to improve upon the current path to the goal.
Next, an example is presented wherein the vehicle could start executing the path after only
10ms. The initial path’s cost of 9009 units is much more than 6789, as was achieved through
continual use of path replanning. Thus the path replanner enables this project’s vehicle to
quickly start traversing a path to a goal while still providing it with a cost effective path.
Next, new information about the environment is introduced and the environment changes in
such a way that the path the vehicle is traversing has conflict. The path replanner allows this
new information to be used by the conflict detection module, thereby allowing the motion
planning algorithm to create a new path that is free of conflict. Thus, the path replanning
algorithm enables the motion planning algorithm to take new information into account when
planning that might not have been available when initial planning begun.

Stellenbosch University http://scholar.sun.ac.za

Chapter 7

Software simulation

7.1 Introduction

This project forms part of a larger goal to achieve autonomous flight of an unmanned rotary
wing aircraft, and in Chapter 1 the necessary building blocks are outlined. This project’s
focus is on the motion planning module, and in Chapter 3 the problem statement for this
project is presented. A requirement of the problem statement is that the planned path must
satisfy nonholonomic and kinodynamic constraints of a chosen vehicle, i.e. the path must
be executable by the vehicle.
The motion planning algorithms used in this project use manoeuvres to adhere to the non-
holonomic and kinodynamic constraints of a vehicle during planning. Since manoeuvres are
used to construct the path, the planned path is assumed to be executable by the vehicle.
In this chapter, this assumption is tested by executing a planned path using vehicle con-
trollers that have been used in flight tests. Unfortunately, all the necessary building blocks
to allow for real world testing of this project are not finished. However, a Simulink simula-
tion that uses software implementations of flight tested controllers is available. The purpose
of this chapter is to use the Simulink simulation to determine whether the manoeuvre library
used in this project allows the vehicle to remain within its envelope of operation.
In the first section of this chapter (Section 7.2) the Simulink model of the vehicle is discussed,
thereafter the necessary changes to the Simulink model to enable executing a planned path
are presented.

7.2 Simulink model

The Simulink model consists purely of software components; that is, no flight related hard-
ware is included in the simulation. Using such a simulation is beneficial for this project for
various reasons:

• Data from the simulation can be accessed quickly and analysed through the MAT-
LAB/Simulink environment.

• Since no hardware is included in the simulation it can be performed faster than real
time, which allows for a very short turnaround time for modifications.

• Getting started with the Simulink environment is very quick as it is not necessary to
build any custom hardware modules.

82

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 7. SOFTWARE SIMULATION 83

• Some of the building blocks1 required for autonomous navigation are not completed
or are unavailable in hardware form.

In previous projects by Groenewald [1] and Rossouw [7], components of the Simulink simu-
lation were developed in either block diagram form or MATLAB specific M-code. Figure 7.1
shows the Simulink simulation at a high level. The blocks shown present three main aspects
of the simulation:

1. The helicopter model wherein a non-linear mathematical model resides that im-
itates the behaviour of the helicopter. A discussion on this model is presented in
Subsection 2.2.3.

2. The Views block is responsible for handling the data of the simulation, as well as
logging selected data entries.

3. The autopilot block was developed partially by Groenewald and Rossouw, and in
Figure 7.2 an overview of the autopilot system is shown. The autopilot block contains
the controllers of the system and in Figure 7.3 the inner loop controllers are shown.
The controllers used here was previously developed and only an overview of them are
presented in Subsection 2.2.4.

Autonomous Heli Software Simulation

Views

Data Vector

Control Vector

Offset Correction Vector

Estimator Data

Mon Apr 18 09:02:02 2005

09−Sep−2012 16:40:46

Helicopter Model: Bessie

Control Vector Data Vector

−C−

Autopilot

Data Vector

Offset Corrected GPS

Outerloop

Control Vector

Estimator Data

Figure 7.1 – This figure shows the high level Simulink simulation. The simulation consists of
three parts, the helicopter model (the block shown in blue), the autopilot (the block shown in
red) and the data viewer or logger (the block shown in orange).

Note that the outer loop is already disconnected in this figure as it is not used in this project.
The helicopter model block (shown in blue) contains the model of the vehicle as discussed

1The reader is referred to Chapter 1.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 7. SOFTWARE SIMULATION 84

in Subsection 2.2.3, and the autopilot block (shown in red) contains the controllers for the
vehicle, as discussed in Subsection 2.2.4.

Estimator Data
3

Offset Corrected GPS
2

Actuator Commands
mixing

1

Swash Plate

Virtual Actuator Servo Commands

Simplified Estimator

Gyros

Accelerometers

Magnetometer

GPS NED Position

GPS NED Velocity

Visual Attitude

Visual NED Position

Visual Range

Visual Update

Final Stage

NED Position

NED Velocity

Euler

Offset Corrected GPS

D:3

[offsetCorrectedGPS]

Heli_Euler_est

Heli_NED_est

[offsetCorrectedGPS]

[finalStage]

Extract and Convert

Sensors

Gyros

Accelerometers

Magnetometers

GPS NED Position

GPS NED Velocity

Visual Attitude

Visual NED Position

Visual Range

Visual Update

Controllers

Rates

NED

NED Velocity

Euler

Control Inputs

Sensor Data
2

True NED
1

Figure 7.2 – This figure shows an overview of the Autopilot in the Simulink simulation.

Figure 7.2 shows the inside of the autopilot block of Figure 7.1. The controller block (shown
in blue) is of particular interest, as it contains the controllers used later in this chapter.
The controller block receives input from the estimator2, and provides control inputs to
the swashplate3 (shown in aqua blue). Inside the controller block, the Rates, NED, NED
Velocity, and Euler inputs to the controller block is passed to the inner loop controllers of
Figure 7.3.
Figure 7.3 shows the inner loop controllers: that is, the heave, longitudinal, lateral, and
heading controllers4. From the figure it is seen that the inner loop controllers can receive the
following references as input: NED Reference, Heading Reference, and Velocity Reference,
as shown in Figure 7.4. It is important to note that Figure 7.4 shows how the inputs of the
control block of Figure 7.2 are passed to the inputs of Figure 7.3.

2Discussed in Subsection 2.2.5.
3Control inputs and actuators are discussed in Subsection 2.2.2.
4These controllers are discussed in Subsection 2.2.4.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 7. SOFTWARE SIMULATION 85

 control

1

Longitudinal Controller

theta_ref

theta

q

reset

 delta a

Lateral Controller

phi_ref

phi

p

reset

 delta b

Heave Controller

VD

D Dref

D

VDRef

reset

 deltaC

Heading Controller

Psi Ref

Psi

r

reset

 delta r

[D]

[E]

[N]

[psiRef]

[theta]

[psi]

[phi]

[r]

−T−

[reset]

[VDRef]

[ERef]

[NRef]

[DRef]

[VD]

[VE]

[VN]

[q]

[p]

[N]

[NRef]

[psiRef]

[psi]

[psi]

[theta]

[phi]

[reset]

[longRef]

[r]

[commandLong]

[VDRef]

[E]

[ERef]

[DRef]

[VD]

[VE]

[VN]

[D]

[q]

[p]

Extract Velocity References

refs

Heave Velocity

Longitudinal Velocity

Extract Rates

pqr

 p

 q

 r

Extract NED Velocity

In1

Out1

Out2

Out3

Extract NED References

refs

N Ref

E Ref

D Ref

Extract NED

NED

N

E

D

Extract Euler

euler

phi

psi

theta

Angle References

VN

VE

psi

NRef

N

ERef

E

Long Velocity Ref

Command Long Velocity

reset

theta ref

phi ref

Reset

8

Velocity References

7

Heading Reference

6

NED Reference

5

NED

4

Rates

3

NED Velocity

2

Euler

1

Figure 7.3 – This figure shows the inner loop controllers.

For this project, a design goal is to make as little as possible change to the system, while
adding the capability to follow a path generated by the motion planner. For this reason it
was decided to add a S-Function block (the path planner block shown in Figure 7.4) on a level
between the autopilot system and the inner loop controllers. This allows the path planner
block to provide position, heading and velocity references to the inner loop controllers, and
in Subsection 7.3.1 it is found that this is enough to enable path execution with acceptable
error bounds. In the next subsection, the controllers within the path planner block are
presented.

Figure 7.4 – This figure shows the path planner block and its interaction with the inner loop
controllers.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 7. SOFTWARE SIMULATION 86

7.2.1 Path planner block

The main goal of the Simulink simulation is to determine whether the manoeuvre library
used in this project allows the vehicle to remain within its envelope of operation. Therefore
it is sufficient to plan a path offline, give the path to the path planner block, and let the
path planner block provide references to the inner loop controllers based on the given path.
That is, the path planner block in Figure 7.4 is responsible for providing position, heading
and velocity references to the inner loop controllers so that a path planned by a motion
planning algorithm may be executed.

7.2.1.1 Necessary path information

The path generated by the motion planning algorithm is given to the path planner block
as a list of manoeuvres and milestones. For an example, the manoeuvres and milestones
of the path shown in Figure 7.5 are given to the path planner block in MATLAB code.
All the MATLAB code necessary to follow the path is shown in Appendix A. Note that the
presented list of milestones and manoeuvres (in the appendix) is defined starting at the goal.
Nonetheless, the first entry in the actual list is the first milestone from the initial milestone,
that is, the list is constructed backwards.
A segment of the necessary MATLAB code is presented below:

list = [];
manoeuvre1=struct(’m’, 6, ’x’, 430.0230, ’y’, 146.2181, ’z’, 237.2146,
’t’, 589.6619, ’xm’, 381.6167, ’ym’, 158.7411);
manoeuvre2=struct(’m’, 8, ’x’, 531.5585, ’y’, 542.3869, ’z’, 580.5756,
’t’, 1034.5687);
manoeuvre3=struct(’m’, 4, ’x’, 580.0000, ’y’, 580.0000, ’z’, 580.0000,
’t’, 1089.5647, ’xm’, 579.9931, ’ym’, 529.9734);
milestone1=struct(’x’, 580.0000, ’y’, 580.0000, ’z’, 580.0000, ’manoeuvre1’,
manoeuvre1, ’manoeuvre2’, manoeuvre2, ’manoeuvre3’, manoeuvre3);
list = [milestone1 list];

Where list is the list that contains all the necessary information to reach a milestone from
a parent milestone, and struct creates a MATLAB structure with members. The members
of a manoeuvre are:

• m denotes the manoeuvre to execute, either right turn (6), left turn (4) or forward (8)
as defined in Section 4.5. The -1 indicates a ‘no manoeuvre’ which is used when this
manoeuvre is generated by the Steer (Subsection 4.9.1) algorithm which consists of
only two manoeuvres.

• x, y, z, and t denotes the x,y and z coordinates of the end of a manoeuvre as well as
the time by which this point must be reached.

• xm, and ym denotes the x and y coordinates of the midpoint of the turning circle.

The members of a milestone are:

• x, y, and z which denotes the x,y and z coordinates of the milestone.

• manoeuvre1, manoeuvre2, and manoeuvre3 denotes the manoeuvres defined above.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 7. SOFTWARE SIMULATION 87

7.2.1.2 Manoeuvre controllers

Next, the manner by which the path planner processes the above defined information is
discussed. The information is in a list of milestones, where each milestone contains the
information necessary to reach it from its parent milestone. The path planner block executes
the entire path by simply processing the list one milestone at a time.
To reach a milestone, the path planner block executes a milestone’s associated manoeuvres,
and for this purpose manoeuvre specific controllers are used. The references the path planner
block provides to the inner loop controllers are:

• A position vector consisting of a x, y and z coordinate [xref, yref, zref].

• A velocity vector consisting of a forward and heave velocity [vxyref, vzref].

• A heading reference ψ.

Left turn manoeuvre The first step is to calculate the heading that the vehicle should
have:

ψcurr = atan2(ycurr − ymid, xcurr − xmid) + π/2 (7.2.1)

Where ψcurr denotes the current heading of the vehicle, xcurr and ycurr denotes the current
x and y position of the vehicle, and xmid and ymid are xm and ym as defined earlier. Next
the heading at the end of the turn is determined:

ψend = atan2(ystop − ymid, xstop − xmid) (7.2.2)

Where ψend is the heading of the vehicle at the end of the manoeuvre, and xstop and ystop
are the coordinates of the end of the manoeuvre. Next the distance is determined between
where the vehicle is at the moment and where the manoeuvre stops.

distance = abs(ψend − ψcurr)× r (7.2.3)

Where abs() denotes the absolute value, and r is a constant representing the turning radius
used when the path was planned by the motion planning algorithm. This distance is then
used to calculate the velocity at which the vehicle must travel in order to reach xstop, ystop
at the specified time t.

timeleft = timeend − timeelapsed, (7.2.4)
vforward = distance/timeleft, (7.2.5)

where timeend is the time the vehicle must reach the end of the manoeuvre, and timeelapsed
is the elapsed time since the start of the simulation.
Next, proportional control is used to determine the reference velocity and position the
path planner block provides the inner loop controllers. The heading reference is calculated
somewhat differently.

verr = vforward − vcurr, (7.2.6)
vxyref = vforward × Pv, (7.2.7)

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 7. SOFTWARE SIMULATION 88

where verr denotes the difference between the current velocity (vcurr) of the vehicle and
the velocity the vehicle should be travelling, Pv is the proportional gain, and vref is the
reference velocity in the forward direction. The heading reference calculation simply adds a
small fraction of a circle to the current heading:

ψref = ψcurr + Pψ/(2πr), (7.2.8)

where ψref is the heading reference, and Pψ is the small fraction of a circle added to the
current heading. Lastly, the position reference is determined through proportional control:

xest = r × cos(ψcurr), (7.2.9)
xerr = xest − xcurr, (7.2.10)
xref = r × cos(ψref) + xmid + xerr × Px, (7.2.11)
yest = r × cos(ψcurr), (7.2.12)
yerr = yest − ycurr, (7.2.13)
yref = r × cos(ψref) + ymid + yerr × Py, (7.2.14)

where xest and yest are the estimated x and y positions where the vehicle should be based
on its current heading, xerr and yerr are differences between where the vehicle should be and
where it currently is, Px and Py are the proportional gain used for position, and xref and
yref are the references the path planner block provides the inner loop controller.
As the vehicle does not translate in the z dimension (that is, it does not move up or down)
during a left turn manoeuvre the position reference for the z dimension is simply its current
z position.
The controller for executing a Right turn manoeuvre operates in a very similar manner
to the controller for executing a Left turn manoeuvre.

Forward manoeuvre The first step in this controller is to determine where the vehicle
should be at the current time:

tdiff = tstop − tprev, (7.2.15)
t = (telapsed − tstop)/tdiff, (7.2.16)

xest = xstop + t× (xstop − xprev), (7.2.17)
yest = ystop + t× (ystop − yprev), (7.2.18)
zest = −(zstop + t× (zstop − zprev)), (7.2.19)

where tdiff is the difference between the time associated with the end of this manoeuvre
(tstop) and the time associated with the end of the previous manoeuvre (tprev). The variable
t is a measurement of the amount of time already elapsed for the execution of the current
manoeuvre, and telapsed is the elapsed time of the entire simulation. The variables xest, yest,
and zest are the estimated x, y, and z positions where the vehicle should be according to the
telapsed. The variables xstop, ystop, and zstop are the x, y, and z positions at the end of the
manoeuvre. The variables xprev, yprev, and zprev are the x, y, and z positions at the end of
the previous manoeuvre.
The next step is to calculate the heave angle:

θ = atan2(zstop − zprev,distancexy), (7.2.20)

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 7. SOFTWARE SIMULATION 89

where θ is the heave angle, and distancexy is the total distance of the manoeuvre in the x, y
plane. The heave angle is then used to determine the reference output for the z dimension:

zstep = xyzstep × sin(θ), (7.2.21)
zerr = zest − zcurr, (7.2.22)
zref = zest − zstep + Pz × zerr, (7.2.23)

where zstep is a portion of the xyzstep which is used to determine the vehicle’s position
reference, zerr is the difference between where the vehicle should be and it currently is
(zcurr), and Pz is a proportional gain.
Next, the x and y position and heading references are calculated:

ψ = atan2(ystop − yprev, xstop − xprev), (7.2.24)
xystep = xyzstep × cos(θ), (7.2.25)
xerr = xest − xcurr, (7.2.26)
xref = xest + xystep × cos(ψ) + Px × xerr, (7.2.27)
yerr = yest − ycurr, (7.2.28)
yref = yest + ystep × cos(ψ) + Py × yerr, (7.2.29)

where ψ is the heading angle between the end of the previous manoeuvre and the end of the
current manoeuvre, xystep is a portion of the xyzstep which is used to determine the vehicle’s
position reference, xerr and yerr is the difference between where the vehicle currently is and
where it should be, and Px and Py are proportional gains. The ψ calculated here is also
used a the heading reference.
Lastly, the references for the forward and heave velocity are calculated:

vreq = distancerem/timerem, (7.2.30)
verr = vreq − vcurr, (7.2.31)
vref = vreq + Pv × verr, (7.2.32)

vxyref = vref × cos(θ), (7.2.33)
vzref = vref × sin(θ), (7.2.34)

(7.2.35)

where vreq is the velocity required to reach the end of the manoeuvre on time, distancerem
and timerem is the distance and time remaining from their current positions to the end of
the manoeuvre, verr is the difference between the required velocity (vreq) and the current
velocity (vcurr) of the vehicle, vref is the total reference velocity, Pv is the proportional gain
used for velocity, vxyref is the velocity reference in the x, y plane, and vzref is the velocity
reference in the z dimension.

7.3 Results

7.3.1 Path following

The purpose of this chapter is to ascertain whether the manoeuvres used in this project
enables a vehicle to remain within its envelope of operation while executing a planned path.
In the previous section the Simulink model and the controllers of the vehicle are discussed
as well as the necessary changes to enable execution of this project’s manoeuvres. In this
section results are presented that show the vehicle is able to execute a planned path within
acceptable cross and along-track errors.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 7. SOFTWARE SIMULATION 90

In Figure 7.5, the planned path is superimposed on a trace of the vehicle executing the
planned path. The error between the planned path and the trace is not visible from these
figures, however in Tables 7.1 and 7.2 the along- and cross-track errors are shown.

0 200 400 6000

200

400

600

x-axis (meters)

y-
ax

is
(m

et
er
s)

Planned vs. simulated path

Planned path
Simulated path

(a) The plot viewed from the top.

0 200 400 6000

200

400

600

x-axis (meters)
z-
ax

is
(m

et
er
s)

Planned vs. simulated path

Planned path
Simulated path

(b) The plot viewed from the side.

Figure 7.5 – This figure shows a planned path superimposed on the simulated path of the
vehicle.

Note that a path is represented by an array of xyz-coordinates, and each xyz-coordinate
also has a time associated with it. To illustrate the along-track error, take for example xyz-
coordinates (xplanned, yplanned, zplanned) and (xactual, yactual, zactual), both associated with
time tnow. The coordinate (xplanned, yplanned, zplanned) denotes where the vehicle should be
at tnow, however the vehicle is actually located at the coordinate (xactual, yactual, zactual).
The along-track error is calculated as:

along-trackerror =
√

(xplanned − xactual)2 + (yplanned − yactual)2 + (zplanned − zactual)2.

(7.3.1)

Table 7.1 shows the along-track error. These errors are maximum values obtained during
executing the path shown in Figure 7.5 and show that the error never exceeded 1 meter.
Considering the size of the vehicle5, this error is acceptable.

Dimension Maximum Error (meters) Mean Error (meters) Standard deviation (meters)
x 0.28895m 0.038632m 0.07401m
y 0.45459m 0.066087m 0.11926m
z 0.81075m 0.14734m 0.09524m
distance 0.97337m 0.16604m 0.1696m

Table 7.1 – Maximum, mean and standard deviation errors in x,y,z and time dimension
(along-track) between the planned and travelled path.

5The reader is referred to Section 2.2 for details about the vehicle.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 7. SOFTWARE SIMULATION 91

If the time dimension is disregarded6, the x,y and z distance that the vehicle is from the path
is known as the cross-track error. The cross-track errors shown in Table 7.2 also decrease if
the sampling time of the simulation is decreased.

Dimension Maximum Error (meter) Mean Error (meters) Standard deviation (meters)
x 0.11494m 0.028716m 0.015158m
y 0.22695m 0.080904m 0.029007m
z 0.27853m 0.10747m 0.025969m
distance 0.37722m 0.13755m 0.0418m

Table 7.2 – Maximum, mean and standard deviation errors in x,y,z dimension (cross-track)
between the planned and travelled path.

Following the results from Tables 7.1 and 7.2, it is concluded that the manoeuvres chosen
for this project are executable by the vehicle, and that the vehicle stays within its envelope
of operation.

7.3.2 Cost function

For this project a cost function was determined to facilitate comparing two manoeuvres and
determine which is more cost effective. This cost function is established using measurements
from the Simulink simulation, specifically, measurements of the force the main and tail rotor
exert while executing a specific manoeuvre. The goal of the cost function is to determine
the cost of a manoeuvre during motion planning by the PRM or RRT*, that is, it must
provide an approximation of the cost to execute any given manoeuvre. In this subsection
it is determined whether the cost function approximation is close to the Simulink cost of
executing a path.

Cost (relative units)
Simulink 6987
Cost function 7393
Difference 5.1%

Table 7.3 – Difference in cost between Simulink simulation and that determined by the cost
function.

In Table 7.3 the path costs calculated by the cost function and the Simulink simulation are
shown, and the difference between the costs is slightly more than 5%, which is acceptable.
These costs are calculated for the path shown in Figure 7.5.

7.4 Conclusion

This chapter concerns validating theoretical assumptions related to the manoeuvre choice
in Section 4.5 as well the cost function introduced in Subsection 3.4.4. To validate these
assumptions a Simulink simulation is used, where the controllers therein are software im-
plementations of controllers used in real world flight tests of the vehicle.

6This means that the vehicle does not adhere to a specific time it must reach a x,y and z coordinate

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 7. SOFTWARE SIMULATION 92

In Section 7.2 the Simulink model is presented as well as the changes necessary to enable
execution of manoeuvres.
In Section 7.3 results following from the Simulink simulation are shown. Specifically, Sub-
section 7.3.1 presents the maximum along and cross-track errors. The errors are within
acceptable bounds which indicates that the Simulink vehicle model was capable of execut-
ing the given path where the path consisted of a sequence of manoeuvres. That is, the
vehicle operated within its envelope of operation indicating that the theoretical assump-
tions regarding manoeuvre choices are sound. In Subsection 7.3.2 the (actual) cost of the
path determined through measurements of the Simulink simulation are compared to the
calculation of the path cost during motion planning via the cost function. It is seen that the
calculated cost is close to the actual cost which indicates that the assumptions regarding
the cost function are valid.

Stellenbosch University http://scholar.sun.ac.za

Chapter 8

Environments

This project forms part of a larger goal to achieve autonomous navigation where this project
specifically focuses on the motion planning aspect thereof. The goal of this chapter is to show
different environments and solutions to the respective problems they present to the motion
planning algorithms. Refer to Section 4.2 for details about the software and hardware used
in this project. For the planning, a turning radius of 50m is used, and the parameter η set
to 641m.

8.1 Environment one

The first environment is designed to test the ability of an algorithm to find a path through a
relatively small gap. As per the discussions of Sections 5.2.2 and 5.3.1, a small gap presents
the motion planning algorithms with the problem of low connectivity between regions on
either side of it. This means that only a few milestones in one region can reach milestones
through the gap in another region. Note that a large part of the analysis for this environment
is presented in Section 5.4.
This environment represents any real word situation where tight openings are present. This
might be open doors inside a building, a situation where a ground based vehicle must move
across a bridge, or where a helicopter must fly above a specific patch of land (e.g. the walls
in the environment can represent a keep out zone where the helicopter can be shot down).

8.1.1 Performance of the RRT* vs the PRM

The RRT* solution

The path shown in Figure 8.1 is generated by the RRT* motion planning algorithm.

93

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 8. ENVIRONMENTS 94

0 200 400 6000

200

400

600

x-axis (meters)

y-
ax

is
(m

et
er
s)

RRT* Solution

(a) A plot showing the top view of a solution in this
environment.

0 200 400 6000

200

400

600

x-axis (meters)

z-
ax

is
(m

et
er
s)

RRT* Solution

(b) A plot showing the side view of a solution in this
environment.

Figure 8.1 – Path generated by the RRT*.

The PRM solution

The path shown in Figure 8.2 is generated by the PRM motion planning algorithm.

0 200 400 6000

200

400

600

x-axis (meters)

y-
ax

is
(m

et
er
s)

PRM Solution

(a) A plot showing the top view of a solution in this
environment.

0 200 400 6000

200

400

600

x-axis (meters)

z-
ax

is
(m

et
er
s)

PRM Solution

(b) A plot showing the side view of a solution in this
environment.

Figure 8.2 – Path generated by the PRM.

PRM and RRT* solutions

The best paths found by both algorithms are almost identical and no clear distinction is
observable.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 8. ENVIRONMENTS 95

PRM and RRT* histograms

Histograms for this solution, and their in depth analysis can be found in Section 5.4. From
the histograms in Section 5.4, the RRT* requires less CPU-time to find a path in this
environment. The quality of the paths found by the RRT* is also better than that of
the PRM. From this, the RRT* is the recommended motion planning algorithm to use in
environments similar to environment shown in this section.

8.2 Environment two

The environment in the previous section had plenty of open space for manoeuvrability, which
is not always the case. The environment in this section has little open space compared to the
amount of free space of the previous environment. Another difference in this environment
is that the corridors are too narrow for a turn, i.e. the diameter of a turn is 100m, and the
corridors are only 80m wide.
This environment represents any real world situation where the vehicle has very little space
to manoeuvre. This might be inside corridors of a building, or in urban environments
wherein the vehicle must fly close to the ground (e.g. for surveillance purposes).

8.2.1 Performance of the RRT* vs the PRM

RRT* Solution

0 200 400 6000

200

400

600

x-axis (meters)

y-
ax

is
(m

et
er
s)

RRT* Solution

(a) A plot showing the top view of a solution in this
environment.

0 200 400 6000

200

400

600

x-axis (meters)

z-
ax

is
(m

et
er
s)

RRT* Solution

(b) A plot showing the side view of a solution in this
environment.

Figure 8.3 – Path generated by the RRT*.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 8. ENVIRONMENTS 96

PRM Solution

0 200 400 6000

200

400

600

x-axis (meters)

y-
ax

is
(m

et
er
s)

PRM Solution

(a) A plot showing the top view of a solution in this
environment.

0 200 400 6000

200

400

600

x-axis (meters)

z-
ax

is
(m

et
er
s)

PRM Solution

(b) A plot showing the side view of a solution in this
environment.

Figure 8.4 – Path generated by the PRM.

PRM and RRT* solutions

In this section, and the next, the number of corners a path very nearly touches is compared.
A path is said to be hugging a corner when it very nearly touches the corner. In an envi-
ronment with narrow corridors, an algorithm will possibly hug many corners if it struggles
to add milestones to its tree. This is seen consistently throughout this and the next section.
The best path found by the RRT* has much more curves when compared to the PRM
solution. A possible reason for this is because the manoeuvres of the RRT* are limited by
η, and in environments with narrow corridors, it is easier for the RRT* to find paths with
lots of curves. The best path found by the PRM hugs four corners of the environment very
tightly, compared to the three corners tightly hugged by the RRT*.
In the side view, the RRT* has a much more gradual climb, when compared to the PRM.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 8. ENVIRONMENTS 97

PRM and RRT* histograms

0 0.5 1
· 105

100

101

102

103

104

105
RRT* Iterations

(a) RRT*: Histogram showing the number of
iterations required to find solutions in this en-
vironment. The maximum number of iterations
is 123948, and the average is 3500.

0 0.2 0.4 0.6 0.8 1
· 104

100

101

102

103

104
PRM Iterations

(b) PRM: Histogram showing the number of it-
erations required to find solutions in this envi-
ronment. The maximum number of iterations is
9688, and the average is 815.

Figure 8.5 – Iteration histograms of 100000 runs for both the PRM and RRT* algorithms.

0 200 400 600 800 1,000100

101

102

103

104
RRT* Milestone count

(a) RRT*: Histogram showing the number of mile-
stones required to find solutions in this environ-
ment. The maximum number of milestones is 953,
and the average is 63.

0 50 100 150 200100

101

102

103

104
PRM Milestone count

(b) PRM: Histogram showing the number of mile-
stones required to find solutions in this environ-
ment. The maximum number of milestone is 188,
and the average is 22.

Figure 8.6 – Milestone histograms of 100000 runs for both the PRM and RRT* algorithms.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 8. ENVIRONMENTS 98

0 1 2100

101

102

103

104

105
RRT* CPU run times

(a) RRT*: Histogram showing the CPU times
required to find a solution. The maximum CPU
time is 2.387 seconds and the average is 0.0555
seconds.

0 2 4 6100

101

102

103

104
PRM CPU run times

(b) PRM: Histogram showing the CPU times
required to find a solution. The maximum CPU
time is 6.053 seconds and the average is 0.2056
seconds.

Figure 8.7 – CPU time histograms of 100000 runs for both the PRM and RRT* algorithms.

1 1.5 2
· 104

100

101

102

103
RRT* Path costs

(a) RRT*: Histogram showing the Path costs
of the solutions. The maximum cost is 21494
units and the average cost is 12608 units

0.8 1 1.2 1.4 1.6 1.8
· 104

100

101

102

103
PRM Path costs

(b) PRM: Histogram showing the Path costs of
the solutions. The maximum cost is 17804 units
and the average cost is 12948 units

Figure 8.8 – Path cost histograms of 100000 runs for both the PRM and RRT* algorithms.

From Figures 8.5(a), 8.5(b), 8.6(a), 8.6(b), it is seen that the RRT* used much more itera-
tions and milestones in comparison to the PRM.
When comparing the CPU-time (Figures 8.7(a), and 8.7(b)) required by the PRM and RRT*,
the RRT* clearly finds solutions quicker on average, and the maximum time required by the
RRT* is also far shorter than that required by the PRM.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 8. ENVIRONMENTS 99

From Figures 8.8(a) and 8.8(b), it is seen that while the average path cost of the RRT* is
slightly lower than the PRM, the maximum path cost is significantly higher of the RRT*.
Interestingly, the histogram of the PRM forms three peaks, which is possibly due to there
being three lines of possible solutions, where each line has a significantly different cost. This
is because the manoeuvres of the PRM are not limited (as opposed to that of the RRT*),
and the area wherein the PRM must sample milestones to be able to connect them to its
tree, is therefore much smaller than the area wherein the RRT* may sample milestones and
still connect them to its tree. This is evident from the much longer solve time by PRM, the
much lower amount of milestones present in the tree of the PRM, and the histogram of the
PRM having three clear peaks.
Looking at the above comparison, the RRT* is the best choice to use in similar environments.

8.2.2 Summary

The data from the histograms in the previous subsection is summarised in Table 8.1.

PRM RRT*
Maximum Average Maximum Average

Iterations 9688 815 123948 3500
Milestones 188 22 953 63
CPU times 6.0530s 0.2056s 2.3870s 0.0555s
Path Costs 17804 12948 21494 12608

Table 8.1 – Summary of the iteration, milestone, CPU time, and path cost histograms from
Subsection 8.2.1.

8.3 Environment three

This environment is similar to the environment in Section 8.2, with the exception that
everything in the environment is scaled up by a factor of two. The vehicle’s turning radius,
and η are kept the same.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 8. ENVIRONMENTS 100

8.3.1 Performance of the RRT* vs the PRM

RRT* Solution

0 500 1,0000

500

1,000

x-axis (meters)

y-
ax

is
(m

et
er
s)

RRT* Solution

(a) A plot showing the top view of a solution in this
environment.

0 500 1,0000

500

1,000

x-axis (meters)
z-
ax

is
(m

et
er
s)

RRT* Solution

(b) A plot showing the side view of a solution in this
environment.

Figure 8.9 – Path generated by the RRT*.

PRM Solution

0 500 1,0000

500

1,000

x-axis (meters)

y-
ax

is
(m

et
er
s)

PRM Solution

(a) A plot showing the top view of a solution in this
environment.

0 500 1,0000

500

1,000

x-axis (meters)

z-
ax

is
(m

et
er
s)

PRM Solution

(b) A plot showing the side view of a solution in this
environment.

Figure 8.10 – Path generated by the PRM.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 8. ENVIRONMENTS 101

PRM and RRT* solutions

The best path found by the RRT* differs from the path found in the previous section (same
environment, but scaled down). In this section, the manoeuvrability of the vehicle isn’t as
tightly constrained, and the amount of corners that are tightly hugged are less (only two).
For the PRM, the best path also differs from the previous section, and the number of tightly
hugged corners is down to only two.

PRM and RRT* histograms

0 2,000 4,000 6,000100

101

102

103

104
RRT* Iterations

(a) Histogram showing the amount of iterations
required to find solutions in this environment.
The maximum iteration amount is 6334 and the
average is 782.

0 200 400100

101

102

103

104
PRM Iterations

(b) Histogram showing the amount of iterations
required to find solutions in this environment.
The maximum iteration amount is 440 and the
average is 98.

Figure 8.11 – Iteration histograms of 100000 runs for both the PRM and RRT* algorithms.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 8. ENVIRONMENTS 102

0 100 200 300100

101

102

103

104
RRT* Milestone count

(a) Histogram showing the amount of mile-
stones required to find solutions in this envi-
ronment. The maximum milestone amount is
316 and the average is 55.

0 50 100 150100

101

102

103

104
PRM Milestone count

(b) Histogram showing the amount of mile-
stones required to find solutions in this environ-
ment. The maximum milestone amount is 180
and the average is 35.

Figure 8.12 – Milestone histograms of 100000 runs for both the PRM and RRT* algorithms.

0 0.1 0.2100

101

102

103

104

105
RRT* CPU run times

(a) Histogram showing the CPU times required
to find a solution. The maximum CPU time is
0.2400 seconds and the average is 0.0400 sec-
onds.

0 0.2 0.4 0.6 0.8100

101

102

103

104

105
PRM CPU run times

(b) Histogram showing the CPU times required to
find a solution. The maximum CPU time is 0.72
seconds and the average is 0.0671 seconds.

Figure 8.13 – CPU time histograms of 100000 runs for both the PRM and RRT* algorithms.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 8. ENVIRONMENTS 103

1 2 3 4
· 104

100

101

102

103
RRT* Path costs

(a) Histogram showing the Path costs of the so-
lutions. The maximum cost is 39595 units and
the average cost is 27247 units

2 4 6
· 104

100

101

102

103

104
PRM Path costs

(b) Histogram showing the Path costs of the
solutions. The maximum cost is 60862 units
and the average cost is 30496 units

Figure 8.14 – Path cost histograms of 100000 runs for both the PRM and RRT* algorithms.

From Figures 8.11(a), 8.11(b), 8.12(a), and 8.12(b), it is seen that the RRT* uses much
more iterations than the PRM; however, in contrast to the previous section where the same,
but scaled down environment is used, the number of milestones in the RRT* and PRM trees
are not that different. This is because the RRT* doesn’t need as many milestones (when
compared to the previous section) before it can find a path. The maximum milestones
required for the PRM is even less than the previous section, even though the environment
of this section is double in size.
When comparing the CPU-time (Figures 8.13(a) and 8.13(b)) to that of the previous section,
the maximum CPU time required by the RRT* and PRM is far lower.
From Figures 8.14(a) and 8.14(b), the paths found by the RRT* have a lower average and
maximum cost in comparison to the PRM. Comparing the path costs of this section to the
previous section does not make sense as the lengths of the paths in this section are much
longer. However, note that the histogram of the PRM has a single peak, more evidence that
the PRM didn’t struggle as much as in the previous section.
Looking at the above comparison, the RRT* is the best choice to use in similar environments,
independent of scale.

8.3.2 Summary

The data from the histograms in the previous subsection is summarised in Table 8.2.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 8. ENVIRONMENTS 104

PRM RRT*
Maximum Average Maximum Average

Iterations 440 98 6334 782
Milestones 180 35 316 55
CPU times 0.72s 0.0671s 0.2400s 0.0400s
Path Costs 60862 30496 39595 27247

Table 8.2 – Summary of the iteration, milestone, CPU time, and path cost histograms from
Section 8.3.

Stellenbosch University http://scholar.sun.ac.za

Chapter 9

Conclusion

This chapter concludes the project with remarks on the work achieved throughout this
document.

9.1 Project Scope

Chapter 1 establishes that this project is part of a larger project to achieve autonomous
navigation, as well as establishing that this project firstly looks at problems presented by
the path planner and conflict resolution modules within the greater autonomous navigation
system architecture. For this project these problems are solved using a class of algorithms
known as motion planning algorithms.

9.2 Motion planning algorithms

After defining the project scope, Chapter 3 presents this project’s problem statement, with
which it defines the problems presented by the path planner and conflict resolution modules.
To solve the problem statement, a class of algorithms known as motion planning algorithms
are proposed, for which several algorithms exist. Generally speaking, these algorithms plan
a path from a given initial point to a given end point. These planning algorithms include:

• Complete algorithms which provides formal proof of guaranteeing to find a path,
however they are proven to be computationally too expensive.

• Almost Complete algorithms which lack the proof of guaranteeing to find path,
however they provide similar guarantees:

– Grid based algorithms which guarantee resolution completeness, however they
become computationally too expensive for high grid resolutions as well as high
dimensional problems.

– Potential Field based algorithms which use Voronoi vertex generation to avoid
getting stuck in local minima. However, the vertex generation becomes compu-
tationally too expensive for environments containing many obstacles.

– Sampling based algorithms which provide probabilistic completeness and have
been successfully used in real world projects.

Sampling based algorithms are therefore used in this project, specifically the Probabilistic
Roadmap Method (PRM) and the Rapidly exploring Random Tree* (RRT*).

105

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 9. CONCLUSION 106

9.3 Algorithm implementation

Next this project discusses in Chapter 4 the data structures used for the PRM and RRT*,
as well as presenting details of the implementations and improvements of the algorithms.

9.3.1 Probabilistic Roadmap Method

The classic PRM is implemented with a small improvement for this project. The small
improvement is to sort potential parent milestones according to the distance they are from a
newly sampled milestone and only iterate through this sorted list until a parent can connect
to the newly sampled milestone. While this does not guarantee an optimal parent for a newly
sampled milestone it is still a good approximation of a locally distance-optimal parent. This
improvement reduces the CPU time required by the algorithm.

9.3.2 Rapidly exploring Random Tree*

The basic RRT* explores an environment until it happens to reach a goal area, which is
undesirable. A proposed addition is to use the Local Planning Method (already developed
for the PRM) to connect all newly reached milestones to the end milestone. This enables
the RRT* to reach the end milestone as soon as it is ‘visible’ from a known milestone, as
well as reaching the goal at a specific position and heading. This also reduces the CPU time
required by the algorithm.

9.4 Analysis

After the implementation and improvements to the RRT* and PRM motion planning algo-
rithms are discussed, the algorithms are analysed in a specific environment in Chapter 5.
The techniques used for this analysis can easily be extended to other environments.

9.4.1 Theoretical

This project looks at theoretically determining performance bounds for the PRM and RRT*.
For both algorithms their proof of probabilistic completeness is rewritten so that portions
of it can be determined for a chosen environment using a computer. Using these rewritten
forms, bounds on the number of milestones the PRM requires to guarantee finding a path
(with a chosen probability) as well as the bounds on the number iterations the RRT* requires
(with a chosen probability) is found. The portion of the probabilistic proof required to
determine the PRM’s performance bound is also rewritten into a less conservative form.
The theoretical performance bounds of the PRM and RRT* is tested using a histogram
analysis of the iterations and milestones required by the algorithms and it is seen that the
theoretical results hold.

9.4.2 Histogram

For this project a histogram analysis is also conducted. For this analysis histograms are
constructed of 100000 algorithm runs whereby CPU time and Path costs are represented as
a distribution. Refer to Section 4.2 for details about the hardware and software used in this
project.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 9. CONCLUSION 107

9.4.2.1 CPU time

A histogram analysis of the CPU time the PRM and RRT* requires to find a path reveals
the PRM algorithm has an acceptably fast average solve time (0.0470 seconds), however its
distribution’s shape has a long tail ending at a maximum solve time of 1.598 seconds. The
RRT* has an even faster average solve time (0.0285 seconds), and a maximum solve time
of only 0.330 seconds. The shape of the RRT*’s histogram suggests that it is much more
consistent in its behaviour regarding solve time.

9.4.2.2 Path cost

A histogram analysis of the cost to execute a path found by the PRM and RRT* algorithms
shows that the PRM algorithm’s path cost distribution has a sharp peak, and a higher
average (16337 vs. 11877 units) relative to that of the RRT* algorithm. The shape of the
path cost distribution of the RRT* algorithm suggests a much more consistent behaviour
regarding the execution cost of a path found by the RRT* algorithm.

9.5 Path Replanning

It was found that the RRT* has a much more consistent behaviour regarding solve time
as well as path costs, and therefore the RRT* algorithm is extended to implement path
replanning. Path replanning enables the algorithm to include new information about the
environment post initial planning. This is successfully implemented and shown to work in
Chapter 6. It is shown that replanning enabled the vehicle to start moving after only a short
duration while still executing a very cost efficient path. It is also shown that a change in
the environment is handled by the path replanning algorithm since information about the
change can be included after the initial path planning.

9.6 Software simulation

In Chapter 7 a Simulink simulation is used to execute a path planned by the RRT* algorithm
by executing the manoeuvres defined in Section 4.5. It is determined that the vehicle is able
to follow the path within small error bounds, indicating that the manoeuvre choices used
by the Motion Planner is acceptable.
In Subsection 3.4.4 a cost function is described using measurements from the Simulink sim-
ulation. In Chapter 7 this cost function is tested by comparing the cost function calculated
cost to execute a path to the cost of actually executing the path, and it is seen that the
difference is within acceptable bounds.

Stellenbosch University http://scholar.sun.ac.za

Appendix A

MATLAB Code to execute a Path

list = [];
manoeuvre1=struct(’m’, 6, ’x’, 430.0230, ’y’, 146.2181, ’z’, 237.2146,
’t’, 589.6619, ’xm’, 381.6167, ’ym’, 158.7411);
manoeuvre2=struct(’m’, 8, ’x’, 531.5585, ’y’, 542.3869, ’z’, 580.5756,
’t’, 1034.5687);
manoeuvre3=struct(’m’, 4, ’x’, 580.0000, ’y’, 580.0000, ’z’, 580.0000,
’t’, 1089.5647, ’xm’, 579.9931, ’ym’, 529.9734);
milestone1=struct(’x’, 580.0000, ’y’, 580.0000, ’z’, 580.0000, ’manoeuvre1’,
manoeuvre1, ’manoeuvre2’, manoeuvre2, ’manoeuvre3’, manoeuvre3);
list = [milestone1 list];

manoeuvre1=struct(’m’, 6, ’x’, 341.2132, ’y’, 120.2741, ’z’, 244.6028,
’t’, 498.7267, ’xm’, 358.7956, ’ym’, 167.0807);
manoeuvre2=struct(’m’, 8, ’x’, 364.2043, ’y’, 111.8723, ’z’, 236.4507,
’t’, 520.0676);
manoeuvre3=struct(’m’, -1, ’x’, 364.4549, ’y’, 111.7786, ’z’, 236.7108,
’t’, 520.0676, ’xm’, 381.3661, ’ym’, 158.8348);
milestone2=struct(’x’, 364.4549, ’y’, 111.7786, ’z’, 236.7108, ’manoeuvre1’,
manoeuvre1, ’manoeuvre2’, manoeuvre2, ’manoeuvre3’, manoeuvre3);
list = [milestone2 list];

manoeuvre1=struct(’m’, 4, ’x’, 260.6835, ’y’, 228.0861, ’z’, 145.2000, ’t’,
348.2027, ’xm’, 218.2730, ’ym’, 201.6031);
manoeuvre2=struct(’m’, 8, ’x’, 316.5014, ’y’, 140.4080, ’z’, 244.7438, ’t’,
471.4675);
manoeuvre3=struct(’m’, 6, ’x’, 317.5137, ’y’, 138.8706, ’z’, 244.8027, ’t’,
472.8529, ’xm’, 358.6795, ’ym’, 167.2595);
milestone3=struct(’x’, 317.5137, ’y’, 138.8706, ’z’, 244.8027, ’manoeuvre1’,
manoeuvre1, ’manoeuvre2’, manoeuvre2, ’manoeuvre3’, manoeuvre3);
list = [milestone3 list];

manoeuvre1=struct(’m’, 6, ’x’, 118.2914, ’y’, 87.5823, ’z’, 35.7337, ’t’,
104.0246, ’xm’, 72.0998, ’ym’, 106.7223);
manoeuvre2=struct(’m’, 8, ’x’, 169.7299, ’y’, 214.5113, ’z’, 144.9956, ’t’,
250.1856);
manoeuvre3=struct(’m’, 6, ’x’, 170.9340, ’y’, 217.6972, ’z’, 144.6374, ’t’,
252.5736, ’xm’, 123.3904, ’ym’, 233.2905);
milestone4=struct(’x’, 170.9340, ’y’, 217.6972, ’z’, 144.6374, ’manoeuvre1’,

108

Stellenbosch University http://scholar.sun.ac.za

APPENDIX A. MATLAB CODE TO EXECUTE A PATH 109

manoeuvre1, ’manoeuvre2’, manoeuvre2, ’manoeuvre3’, manoeuvre3);
list = [milestone4 list];

manoeuvre1=struct(’m’, 6, ’x’, 48.7253, ’y’, 29.0750, ’z’, 20.1436,
’t’, 25.5821, ’xm’, 20.0000, ’ym’, 70.0000);
manoeuvre2=struct(’m’, 8, ’x’, 100.7129, ’y’, 65.7182, ’z’, 35.3658,
’t’, 80.1997);
manoeuvre3=struct(’m’, -1, ’x’, 100.9057, ’y’, 65.8539, ’z’, 35.2551,
’t’, 80.1997, ’xm’, 71.9071, ’ym’, 106.5866);
milestone5=struct(’x’, 100.9057, ’y’, 65.8539, ’z’, 35.2551, ’manoeuvre1’,
manoeuvre1, ’manoeuvre2’, manoeuvre2, ’manoeuvre3’, manoeuvre3);
list = [milestone5 list];

Stellenbosch University http://scholar.sun.ac.za

Bibliography

[1] Groenewald, S.: Development of a rotary-wing test bed for autonomous flight. 2005.

[2] Hough, W.: Autonomous aerobatic flight of a fixed wing unmanned aerial vehicle. 2007.

[3] Nye, B.: Mars exploration rovers. 2005.
Available at: http://athena.cornell.edu/kids/bn_special_report.html

[4] van Daalen, C.E.: Conflict detection and resolution for autonomous vehicles. 2010.

[5] Peddle, I.: Autonomous flight of a model aircraft. masters dissertation, stellenbosch
university. 2005.

[6] Coyle, S.: The art and science of flying helicopters, iowa state university press. 1996.

[7] Rossouw, E.: Autonomous flight of an unmanned heli. 2008.

[8] Gavrilets, V., Mettler, B. and Feron, E.: Dynamic model for x-cell 60 helicopter in low
advance ration flight.

[9] Medellín-Colombia: 2006.
Available at: http://www.control-systems.net

[10] Lozano-Perez, T. and Wesley, M.A.: An algorithm for planning collision-free paths
among polyhedral obstacles. 1979.

[11] Schwartz, J.T. and Sharir, M.: On the âpiano moversâ problem: Ii. general techniques
for computing topological properties of real algebraic manifolds. 1982.

[12] Reif, J.: Complexity of the moverâs problem and generalizations. 1979.

[13] LaValle, S.M.: Planning algorithms. 2006.

[14] Ansari, S., Ok, K., Gallagher, B. and Sica, W.: Planning with uncertainty for au-
tonomous uav. 2011.

[15] Frazzoli, E., Daleh, M.A. and Feron, E.: Real-time motion planning for autonomous
vehicles. 2000.

[16] Hsu, D., Kindel, R., Latombe, J.-C. and Rock, S.: Randomized kinodynamic motion
planning with moving obstacles.

[17] Karaman, S. and Frazzoli, E.: Incremental sampling-based algorithms for optimal mo-
tion planning. 2010.

[18] Kavraki, L. and Latombe, J.: Randomized preprocessing of configuration space for fast
path planning. 1994.

110

Stellenbosch University http://scholar.sun.ac.za

http://athena.cornell.edu/kids/bn_special_report.html
http://www.control-systems.net

BIBLIOGRAPHY 111

[19] Kavraki, L., Svestka, P., Latombe, J. and Overmars, M.: Probabilistic roadmaps for
path planning in high-dimensional configuration spaces. 1996.

[20] LaValle, S.M. and Kuffner, J.J.: Randomized kinodynamic planning. 2001.

[21] van den Berg, J., Ferguson, D. and Kuffner, J.: Anytime path planning and replanning
in dynamic environments. 2006.

[22] Lavalle, S.: Rapidly-exploring random trees: A new tool for path planning. 1998.

[23] Kwak, J.: Rough terrain navigation for mars rovers. 2007.

[24] Donald, B., Xavier, P., Canny, J. and Reif, J.: Kinodynamic motion planning. 1993.

[25] Frazzoli, E., Dahleh, M.A. and Feron, E.: Robust hybrid control for autonomous vehicle
motion planning.

Stellenbosch University http://scholar.sun.ac.za

	Abstract
	Uittreksel
	List of Figures
	List of Tables
	Nomenclature
	Acknowledgements
	1 Introduction
	1.1 The relevance of Autonomous Navigation
	1.2 System architecture
	1.3 Thesis overview
	1.4 Conclusion

	2 Vehicle Model and Controllers
	2.1 Axis System Definition
	2.1.1 Earth Reference Frame
	2.1.2 Body Reference Frame
	2.1.3 Reference Frame Relationship

	2.2 The Vehicle
	2.2.1 Vehicle choice
	2.2.2 Vehicle actuators
	2.2.3 Vehicle Model
	2.2.4 Vehicle controllers
	2.2.4.1 Heading angle controller
	2.2.4.2 Heave position controller
	2.2.4.3 Lateral and Longitudinal position controllers
	2.2.4.4 Vehicle model and controller simulation with Simulink

	2.2.5 Vehicle Estimator

	2.3 Conclusion

	3 Motion planning
	3.1 Motion planning problem statement
	3.2 Available motion planning algorithms
	3.2.1 Complete motion planning
	3.2.2 Almost complete motion planners
	3.2.2.1 Grid-based search
	3.2.2.2 Potential fields
	3.2.2.3 Sampling based
	3.2.2.4 Conclusion

	3.3 Sampling based motion planning
	3.3.1 The Probabilistic Roadmap Method
	3.3.2 The Rapidly exploring Random Tree

	3.4 Problem statement requirements
	3.4.1 Kinodynamic and nonholonomic motion constraints
	3.4.2 Manoeuvres
	3.4.3 Conflict detection
	3.4.4 Cost function

	4 Algorithm implementation
	4.1 Introduction
	4.2 Hardware and software specifications
	4.3 Generic sampling based algorithm
	4.4 Sampling milestones
	4.5 The manoeuvre library
	4.6 Data structures
	4.6.1 The milestone data structure
	4.6.2 The node linked list data structure

	4.7 Conflict detection
	4.8 The Probabilistic Roadmap Method - PRM
	4.8.1 The Local Planning Method - LPM
	4.8.2 The Extend method
	4.8.3 The Path Planner

	4.9 The Rapidly exploring Random Tree* - RRT*
	4.9.1 The Steer method
	4.9.2 The Extend method
	4.9.3 Path planner

	4.10 Conclusion

	5 Algorithm Analysis
	5.1 Introduction
	5.2 PRM analysis
	5.2.1 Key concepts necessary to determine the theoretical upper bound
	5.2.1.1 Definition of the -lookout(S)
	5.2.1.2 Definition of

	5.2.2 Theoretical performance bound for finding a path with a PRM
	5.2.3 Determining and the -lookout(S) for the PRM
	5.2.3.1 Probability with relative frequency
	5.2.3.2 Determining and the -lookout(S) using relative frequency

	5.2.4 Relating and on a computer for a specific environment and a specific vehicle
	5.2.5 Conclusion

	5.3 RRT* Analysis
	5.3.1 Theoretical Upper bound for finding a path with a RRT*
	5.3.1.1 The Attraction sequence
	5.3.1.2 Probability of sampling a milestone in each attraction set
	5.3.1.3 Determining the location of the attraction sequence
	5.3.1.4 Determining the volume of the subsets of the attraction sequence

	5.3.2 Conclusion

	5.4 Histogram analysis
	5.4.1 Iteration count
	5.4.1.1 Theoretical versus Practical iteration requirement

	5.4.2 Milestone count
	5.4.2.1 Theoretical versus Practical milestone requirement

	5.4.3 CPU-time
	5.4.3.1 CPU time of theoretical bound

	5.4.4 Path cost

	5.5 Conclusion

	6 Path Replanning
	6.1 Introduction
	6.2 Implementation
	6.3 Simulation example
	6.3.1 Initial path
	6.3.2 Improving the path
	6.3.3 Path with new environment information

	6.4 Conclusion

	7 Software simulation
	7.1 Introduction
	7.2 Simulink model
	7.2.1 Path planner block
	7.2.1.1 Necessary path information
	7.2.1.2 Manoeuvre controllers

	7.3 Results
	7.3.1 Path following
	7.3.2 Cost function

	7.4 Conclusion

	8 Environments
	8.1 Environment one
	8.1.1 Performance of the RRT* vs the PRM

	8.2 Environment two
	8.2.1 Performance of the RRT* vs the PRM
	8.2.2 Summary

	8.3 Environment three
	8.3.1 Performance of the RRT* vs the PRM
	8.3.2 Summary

	9 Conclusion
	9.1 Project Scope
	9.2 Motion planning algorithms
	9.3 Algorithm implementation
	9.3.1 Probabilistic Roadmap Method
	9.3.2 Rapidly exploring Random Tree*

	9.4 Analysis
	9.4.1 Theoretical
	9.4.2 Histogram
	9.4.2.1 CPU time
	9.4.2.2 Path cost

	9.5 Path Replanning
	9.6 Software simulation

	A MATLAB Code to execute a Path
	Bibliography

