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ABSTRACT 

Anaerobic Digestion Model 1 (ADM1) is the mainstay modelling tool for Anaerobic Digestion research and 

development. Its growing popularity is attributed to its sophisticated yet expandable structure. Not only does 

ADM1 encompass a broad range of biochemical, physicochemical and inhibition reactions, it provides the 

modeller a structured framework to add or remove reactions per application requirements. Two major 

challenges that ADM1 faces are the difficulty in translating common quality indicators into ADM1’s 26 state 

variables, and the complication with calibrating a large number of model parameters – 58 by default. There is 

currently no consensus with regards to the parameter calibration approach. Researchers utilise various 

sensitivity analysis techniques to identify sensitive parameters, but the selection of parameters to be calibrated 

relies largely on the modeller’s discretion. In some cases, decisions are simply made based on prior or expert 

knowledge.  

Since the installation, operation and maintenance of advanced instrumentation are often expensive, most 

industrial digesters are inadequately monitored and thus intentionally over-designed. A model that can be used 

on-site with acceptable accuracy could serve as a soft sensor to forecast inhibition risks and automate 

preventive actions. Therefore, this study aimed to develop a standardised way to calibrate parameters when 

optimising ADM1 models built for industrial-scale digesters.  

The proposed method, Partial Least Squares (PLS) Method, consists of four steps. In Step 1, a series of Monte 

Carlo simulations is carried out. For each Monte Carlo run, ADM1 is executed with all its model parameters 

sampled from independent probability distributions. These probability distributions were obtained by 

conducting a literature survey across 62 publications and all published parameters compiled into a domain 

which represents the uncertainty range of each parameter. In Step 2, a multivariate regression technique called 

PLS Regression (PLSR) is applied to the Monte Carlo results. The motives for employing PLSR are to reduce 

parameter dimensionality and to identify the underlying relationships between the model parameters and the 

model outputs. In Step 3, these relationships, which are mathematically described as PLS weights, loadings 

and latent variables, are utilised to guide parameter calibration. Lastly, the calibrated parameter set is validated 

against unseen data.  

This method successfully improved, in the absence of any modeller’s bias, the overall accuracy of a model 

based on data from an industrial-scale digester. The model is tasked to fit six typical plant measurements: 

Volatile Fatty Acids (VFA), ammonia, Volatile Suspended Solids (VSS), pH, methane gas flow & carbon dioxide 

gas flow. A configuration consisting of at least 500 Monte Carlo runs and two latent variables is required to 

produce a reasonably accurate fit. Although the use of more latent variables could enable PLSR to capture 

interactions of lesser weighted output variables, the model becomes increasingly prone to overfitting. However, 

it is envisaged that more latent variables would be necessary if more outputs are modelled. It is recommended 

to start the PLSR algorithm with one latent variable and only introduce more if necessary. 

Different parameter calibration methods produce different model outcomes. The PLS Method was 

benchmarked against two other methods, namely the Group Method and the “Brute Force” Method. In the 

former method, kinetic parameters were grouped into the three groups of sensitivities (High, Medium, Low) as 

suggested in the ADM1 Scientific and Technical Report. The three groups are then calibrated sequentially in 
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order of decreasing sensitivity. The “Brute Force” Method involved calibrating all 58 parameters without any 

particular sequence, prioritisation or expert inputs. Lower and upper limits are, however, set as per the 

minimum and maximum values identified from the literature.  

Besides proving to be a suitable method for industrial-scale digester modelling, the PLS Method was found to 

exhibit several unique traits: 

• It is the only method that did not show signs of overfitting.   

• It is the only method that concluded the model optimisation with all calibrated parameter values within 

the surveyed minimum and maximum range.  

• It converges on the objective function 30-60% faster than the Group Method and 14 times quicker than 

the “Brute Force” Method 

The success is attributed to the fundamentals of PLS regression. Unlike other regression methods where 

parameters are adjusted independently, PLS enables parameters to be manipulated collectively in a manner 

that ensures maximum impact on the outputs while considering collinearities among the parameters.  This 

guided approach effectively mitigates the so-called “curse of dimensionality” and, potentially, overfitting and 

thereby speeds up the calibration process.  
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OPSOMMING 
 

Anaerobiese Verteerder Model 1 (ADM1) is die hoof modelleringsinstrument vir Anaerobiese Verteerder 

navorsing en ontwikkeling. Sy groeiende populariteit word toegeskryf aan sy gesofistikeerde tog uitbreibare 

struktuur. ADM1 sluit nie net ŉ wye bestek van biochemiese, fisikochemiese en inhibisie-reaksies in nie, dit 

verskaf ook die modelleerder met ŉ gestruktureerde raamwerk om reaksies by te voeg of weg te neem in 

ooreenstemming met toepassingvereistes. Twee groot uitdagings wat ADM1 in die gesig staar is hoe moeilik 

dit is om gewone kwaliteit aanwysers in ADM1 se 26 toestandveranderlikes oor te dra, en die komplikasie met 

die kalibrering van ŉ groot aantal model parameters – 58 by verstek. Daar is tans geen konsensus met 

betrekking tot die parameter-kalibrasie-benadering nie. Navorsers gebruik verskeie sensitiwiteit 

analisetegnieke om sensitiewe parameters te identifiseer, maar die keuse van parameters wat gekalibreer 

moet word steun grootliks op die modelleerder se diskresie. In sommige gevalle word besluite eenvoudig 

gemaak op voorafgaande of deskundige kennis.          

Aangesien die installasie, bedryf en onderhoud van gevorderde instrumentasie dikwels duur is, is meeste 

industriële verteerders gebrekkig gemonitor en dus opsetlik oor-ontwerp. ŉ Model wat op die perseel gebruik 

kan word met aanvaarbare akkuraatheid kan as ŉ sagte sensor dien wat inhibisie risiko’s kan voorspel en 

voorkomende aksies outomatiseer. Daarom is die doel van hierdie studie die ontwikkeling van ŉ 

gestandaardiseerde manier om parameters te kalibreer wanneer ADM1-modelle geoptimeer word wat vir 

industriële verteerders gebou is. 

Die voorgestelde metode, Parsiële Kleinste Kwadrate (PLS)-metode, bestaan uit vier stappe. In Stap 1, word 

ŉ reeks Monte Carlo-simulasies uitgevoer. Vir elke Monte Carlo lopie, is ADM1 uitgevoer met al sy 

modelparameter monsters geneem uit onafhanklike waarskynlikheidsverdeling. Hierdie 

waarskynlikheidsverdeling is verkry deur ŉ literatuuropname oor 62 publikasies en alle gepubliseerde 

parameters uit te voer en alle gepubliseerde parameters in ŉ definisiegebied wat die onsekerheidsbestek van 

elke parameter voorstel, saam te stel. In Stap 2 word ŉ meerveranderlike regressie-tegniek by name PLS 

Regressie (PLSR), toegepas op die Monte Carlo resultate. Die motivering om PLSR te gebruik is om parameter 

dimensionaliteit te verminder en om die onderliggende verhouding tussen modelparameters en die 

modeluitsette te identifiseer. In Stap 3 word hierdie verhoudings, wat wiskundig as PLS-gewigte, -ladings en  

latente veranderlikes beskryf word, gebruik om die kalibrasie van parameters te lei. Laastens word die 

gekalibreerde parameterstel gevalideer teen ongesiene data.     

Hierdie metode het, in die afwesigheid van enige modelleerder se vooroordeel, die algehele akkuraatheid van 

ŉ model gebaseer op data van ŉ industriële-skaal verteerder, suksesvol verbeter. Die model is die taak opgelê 

om ses tipiese aanlegmetings te pas: VFA, ammoniak, VSS, pH, metaangasvloei en koolstofdioksiedgasvloei. 

ŉ Konfigurasie wat uit ten minste 500 Monte Carlo-lopies en twee latente-veranderlikes bestaan, word benodig 

om ŉ redelike akkurate passing te produseer. Al kan die gebruik van meer latente veranderlikes PLSR in staat 

stel om interaksies van minder gewigtige uitsetveranderlikes te vang, word die model meer geneig tot 

oorpassing. Dit word egter verwag dat meer latente-veranderlikes nodig sal wees as meer uitsette gemodelleer 

word. Dit word voorgestel om die PLSR-algoritme met een latente-veranderlike te begin en slegs meer in te 

voeg soos nodig. 
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Verskillende parameter kalibrasie metodes produseer verskillende model uitkomste. Die PLS-Metode is 

genormeer teen twee ander metodes, naamlik die Groep Metode en die “Brute Krag” Metode. In die 

eersgenoemde metode, is kinetiese parameters gegroepeer in drie groepe van sensitiwiteit (Hoog, Medium, 

Laag) soos voorgestel in die ADM1 Scientific and Technical Report. Die drie groepe word dan sekwensieel 

gekalibreer  in orde van afnemende sensitiwiteit. Die “Brute Krag” Metode sluit kalibrasie van al 58 parameter 

in, sonder enige besondere orde, prioritisering of deskundige insette. Laer en hoër limiete is egter gestel soos 

per die minimum en maksimum waardes uit die literatuur geïdentifiseer. 

Buiten die bewys dat dit ŉ gepaste model is vir modellering van industriële-skaal verteerders, is die PLS-

Metode gevind om verskeie unieke eienskappe te vertoon:  

• Dit is die enigste metode wat nie tekens van oorpassing gewys het nie. 

• Dit is die enigste metode wat die model optimering met al die gekalibreerde parameterwaardes binne 

die opname se minimum en maksimum bestek, gesluit het. 

• Dit konvergeer 30–60% vinniger na die doelfunksie as die Groep Metode en 14 keer vinniger as die 

“Brute Krag” Metode. 

Die sukses word toegeskryf aan die grondslag van PLS-regressie. Anders as ander regressiemetodes waar 

parameters onafhanklik aangepas word, stel PLS-konstruksies parameters in staat om gesamentlik 

gemanipuleer te word op ŉ manier wat maksimum impak op die uitsette verseker terwyl kolineariteite onder 

parameters oorweeg word. Hierdie geleide benadering versag effektief die sogenaamde “vloek van dimensie” 

en, moontlik, oorpassing en daarby versnel dit die kalibrasieproses. 
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NOMENCLATURE  

ADM1 Dynamic State Variables 

i Variable Unit Description  i Variable Unit Description 

1 Ssu kgCOD/m³ Monosaccharides  16 Xli kgCOD/m³ Lipids 

2 Saa kgCOD/m³ Amino acids  17 Xsu kgCOD/m³ 
Monosaccharide 
degraders 

3 Sfa kgCOD/m³ Total LCFA  18 Xaa kgCOD/m³ 
Amino acid 
degraders 

4 Sva kgCOD/m³ Total valerate  19 Xfa kgCOD/m³ LCFA degraders 

5 Sbu kgCOD/m³ Total butyrate  20 Xc4 kgCOD/m³ C4-degraders 

6 Spro kgCOD/m³ Total propionate  21 Xpro kgCOD/m³ 
Propionate 
degraders 

7 Sac kgCOD/m³ Total acetate  22 Xac kgCOD/m³ Acetate degraders 

8 Sh2 kgCOD/m³ Hydrogen  23 Xh2 kgCOD/m³ 
Hydrogen 
degraders 

9 Sch4 kgCOD/m³ Methane  24 XI kgCOD/m³ Particulate inerts 

10 SIC kmol C/m³ Inorganic carbon  25 San kmol/m³ Anions 

11 SIN kmol N/m³ Inorganic nitrogen  26 Scat kmol/m³ Cations 

12 SI kgCOD/m³ Soluble inerts  27 Sh2,g kgCOD/m³ Hydrogen (gas) 

13 Xc kgCOD/m³ Composites  28 Sch4,g kgCOD/m³ Methane (gas) 

14 Xch kgCOD/m³ Carbohydrates  29 Sco2,g kgCOD/m³ 
Carbon dioxide 
(gas) 

15 Xpr kgCOD/m³ Proteins      

 

ADM1 Stoichiometric Parameters 

Parameter Description  Parameter Description 

fSI,XC 
Soluble inerts fraction from 
composites  

fPRO,SU 
Propionate fraction from 
monosaccharides 

fXI,XC 
Particulate inerts fraction from 
composites  

fAC,SU 
Acetate fraction from 
monosaccharides 

fCH,XC 
Carbohydrates fraction from 
composites  

fH2,AA 
Hydrogen fraction from amino acids 

fPR,XC 
Proteins fraction from 
composites  

fVA,AA 
Valerate fraction from amino acids 

fLI,XC Lipids fraction from composites  fBU,AA Butyrate fraction from amino acids 

fFA,LI 
Fatty acids fraction from lipids  

fPRO,AA 
Propionate fraction from amino 
acids 

fH2,SU 
Hydrogen fraction from 
monosaccharides  

fAC,AA 
Acetate fraction from amino acids 

fBU,SU Butyrate fraction from monosaccharides 
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ADM1 Kinetic Parameters 

Parameter Unit Description 

kdis d-1 Disintegration factor 

khyd_CH d-1 Carbohydrates hydrolysis rate constant 

khyd_PR d-1 Proteins hydrolysis rate constant 

khyd_LI d-1 Lipids hydrolysis rate constant 

Ks_IN kmol/m³ 
Inorganic nitrogen concentration threshold; growth ceases when 
exceeded 

pHUL_acid - pH threshold; no inhibition when pH is above this level 

pHLL_acid - pH threshold; full inhibition when pH is below this level 

km_su COD.COD-1.d-1 
Monod maximum specific uptake rate for monosaccharide 
degraders 

Ks_su kgCOD.m-3 Monod half saturation value for monosaccharide degradation 

Ysu COD.COD-1 Biomass yield on uptake of monosaccharides 

kdec_xsu d-1 Decay rate constant of monosaccharide degraders 

km_aa COD.COD-1.d-1 Monod maximum specific uptake rate for amino acid degraders 

Ks_aa kgCOD.m-3 Monod half saturation value for amino acid degradation 

Yaa COD.COD-1 Biomass yield on uptake of amino acids 

kdec_xaa d-1 Decay rate constant of amino acid degraders 

km_fa COD.COD-1.d-1 Monod maximum specific uptake rate for LCFA degraders 

Ks_fa kgCOD.m-3 Monod half saturation value for LCFA degradation 

Yfa COD.COD-1 Biomass yield on uptake of LCFA 

kdec_xfa d-1 Decay rate constant of LCFA degraders 

KIh2_fa kgCOD.m-3 Hydrogen inhibitory concentration for LCFA degraders 

km_c4 COD.COD-1.d-1 
Monod maximum specific uptake rate for valerate & butyrate 
degraders 

Ks_c4 kgCOD.m-3 Monod half saturation value for valerate & butyrate degradation 

Yc4 COD.COD-1 Biomass yield on uptake of valerate & butyrate 

kdec_xc4 d-1 Decay rate constant of valerate & butyrate degraders 

km_pro COD.COD-1.d-1 Monod maximum specific uptake rate for propionate degraders 

Ks_pro kgCOD.m-3 Monod half saturation value for propionate degradation 

Ypro COD.COD-1 Biomass yield on uptake of propionate 

kdec_xpro d-1 Decay rate constant of propionate degraders 

KIh2_pro kgCOD.m-3 Hydrogen inhibitory concentration for propionate degraders 

km_ac COD.COD-1.d-1 Monod maximum specific uptake rate for acetate degraders 

Ks_ac kgCOD.m-3 Monod half saturation value for acetate degradation 

Yac COD.COD-1 Biomass yield on uptake of acetate 

kdec_xac d-1 Decay rate constant of acetate degraders 
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Parameter Unit Description 

KInh3_ac kgCOD.m-3 Free ammonia inhibitory concentration on acetate degraders 

pHUL_ac - 
pH threshold; no inhibition on acetate degradation when pH is 
above this level 

pHLL_ac - 
pH threshold; full inhibition on acetate degradation when pH is 
below this level 

km_h2 COD.COD-1.d-1 Monod maximum specific uptake rate for hydrogen degraders 

Ks_h2 kgCOD.m-3 Monod half saturation value for hydrogen degradation 

Yh2 COD.COD-1 Biomass yield on uptake of hydrogen 

Kdec_xh2 d-1 Decay rate constant of hydrogen degraders 

pHUL_h2 - 
pH threshold; no inhibition on acetate degradation when pH is 
above this level 

pHLL_h2 - 
pH threshold; full inhibition on acetate degradation when pH is 
below this level 
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 CHAPTER 1 
 
 

INTRODUCTION 
 

1.1.   Background  

Anaerobic digestion (AD) has remained the mainstream approach for treating high strength organic waste 

since its invention as a waste/wastewater treatment technology. Its application is wide: ranging from municipal 

wastes such as municipal solid wastes and sewage sludge to industrial wastes such as livestock manure and 

food processing wastewater. Co-digestion of municipal wastes in combination with industrial wastes is also a 

well-accepted application (Angelidaki & Ellegaard, 2003).      

Contrary to aerobic biological processes, anaerobic digestion can operate at significantly higher organic 

loading rates (i.e. more compact), produces lesser sludge as well as recovers energy from the waste as biogas 

(McCarty, 1964). These advantages are undeniably attractive to the industries because on-site space 

designated for waste treatment is often limited; plus the ever-increasing drive to reduce utility costs, and to 

create an environmentally sustainable image. Being a low energy-intensive process, the treatment plant is 

generally net energy positive, meaning that excess energy could be repurposed for other users in the form of 

either electricity or heat/steam. Another major cost-saving, which often left unaccounted for, is the disposal 

cost and penalties that would otherwise be incurred if no treatment was undertaken.        

In spite of the benefits, modern anaerobic digestion plants still rely heavily on human monitoring and inputs 

due to lack of affordable advanced instrumentations. Anaerobic processes, in contrast to aerobic processes, 

require operators with higher technical abilities because the system is more susceptible to process upsets 

(Madsen, Holm-Nielsen & Esbensen, 2011). A severe process failure would require long periods to recover, 

and the financial impact of such a scenario remains the primary concern of adopting this technology (McCarty, 

1964). To reduce risk, designers tend to undertake a conservative approach by selecting a lower organic 

loading rate intentionally (i.e. oversizing the digesters). This approach results in design redundancy and capital 

wastage.      

Nonetheless, by 2007, there was already more than of 2250 anaerobic digestion plants implemented globally 

for treating industrial type wastewater (Van Lier, 2008). The field of application continues to broaden thanks to 

the immense research effort on the microbial, biochemical and physicochemical mechanisms within AD. It has 

led to the development of higher-rate reactors, wider digester operating temperature ranges and advancement 

in modelling and process control techniques. (Costello, Greenfield & Lee, 1991; Ge, Jensen & Batstone, 2011; 

Jimenez et al., 2015).  
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1.2.   Research Motivation and Rationale 

Troubleshooting a full-scale anaerobic digestion plant is not straightforward; generally relies on operational 

experience and a trial and error approach. The difficulty is attributed to a lack of on-line process monitoring, 

automated diagnosis and management. Online instruments commonly employed on industrial scale are basic 

in functionality because advanced instruments are expensive, intricate and require a higher level of 

maintenance and calibration (Steyer et al., 2002; Vanrolleghem & Lee, 2003).  

Many useful data are acquired through manual sampling followed by offline analysis in a laboratory. Some 

constituents may be analysed on- site if simple and economical to perform, but others may require an external 

better-equipped laboratory. This process is cumbersome and does not allow the reactor to be managed via 

dynamic feedback; instead, it relies entirely on the plant operators’ experience (Madsen et al., 2011; Spanjers 

& Lier, 2006). Moreover, many sites do not have dedicated technical personnel to interpret the collected data 

correctly.  

A process diagnosis & management tool, based on basic on-site obtainable data as inputs, would be highly 

valuable. The tool could be designed to foresee instability and to initiate corrective actions. Furthermore, since 

most existing digesters were designed rather conservatively, this tool would allow one to operate above the 

initial design set-points and exploit the true effective capacity of the digester (Liu, Olsson & Mattiasson, 2004). 

Developing such a tool before the advent of affordable advanced instruments would, otherwise, first require a 

reasonably accurate model. 

Several mathematical models have been developed for AD process modelling. Despite differences in model 

structure and number of biochemical conversion processes incorporated, accuracy of the model outputs are 

fundamentally governed by the values that are assigned as the stoichiometric and kinetic parameters. 

Parameter calibration is thus an important step in model development.  

Models with higher degrees of sophistication generally feature higher number of parameters. For instance, the 

most widely used model of recent years called Anaerobic Digestion Model No. 1 (ADM1) has 58 parameters 

by default. The high degrees of freedom mean that the calibration process can become extremely time-

consuming if the parameters are adjusted one at a time. As such, sensitivity analysis techniques or expert 

knowledge are commonly employed to reduce the degrees of freedom. There is currently no common protocol 

regarding parameter calibration. Selection of parameters to be calibrated relies largely on the modeller’s 

discretion. A method that is free from modeller’s bias could offer a standardised way to calibrate ADM1 

parameters.    

Partial Least Squares Regression (PLSR) is a popular statistical tool used in chemometrics to identify and to 

regress the non-linear relationship between two matrices as a linear model. It is envisaged that this tool could 

present a methodical way to relate ADM1 parameters and the model outputs. An integral part of PLSR is 

dimensionality reduction. This means that a large number of model parameters could potentially be 

transformed into a smaller subset called latent variables, and simplify the calibration process due to the 

reduced degrees of freedom. In theory, a reduction in bias avoids overfitting.  
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Soft sensors have a prospective role in industrial AD plant operation. Using online measurements from 

conventional field sensors as inputs to a process model, a soft sensor allows other valuable process 

measurements that are expensive (e.g. microbial species) or time-consuming to analyse (e.g. VFA species) to 

be predicted instead. Access to this information would empower advanced monitoring and control strategies 

that further enhance the digester’s stability. 

As pointed out in a review paper by Jimenez et al. (2015), research involving soft sensoring generally utilise 

simplified models instead of ADM1. Simplified models can predict basic lumped measurements (e.g. total 

COD, VFA, etc.) which are appropriate for basic plant control, but inadequate for ultimate soft sensor 

development as it lacks the level of sophistication that ADM1 provides. Challenges that ADM1 faces are the 

high degrees of freedom and the model’s requirement for detailed substrate composition. As ADM1 remains 

the forefront of AD modelling research, the ultimate goal should be aimed at addressing these challenges such 

that ADM1 is compatible for soft sensor applications.   

1.3.   Research Aim and Limitations 

This research aims to develop a parameter calibration method that could be included in the ADM1 framework. 

The method shall adopt the concepts of PLSR and demonstrate whether model optimisation can be achieved 

without the need to manually select parameters for calibration. Performance of this method shall be 

benchmarked against other calibration methods.   

The data available for the modelling demonstration in this thesis were sourced from the operational data log 

of an industrial-scale AD plant. Additional in-depth characterisation tests or change to sample frequency were 

not possible because access to the plant is restricted. Analytical constraints are normal for industrial 

applications due to affordability reasons (Arnell et al., 2016). This limitation, however, did not impede the 

research objectives because the research focuses on framework development rather than the fit accuracy. In 

fact, for an industrial setting, high accuracy of every model outputs may not be unnecessary, as models are 

used for assessing changes in output trends (Batstone & Keller, 2003).  

1.4.   Research Questions and Objectives 

1.4.1. Research Questions 

1. How can the concept of Partial Least Squares Regression be exploited for parameter calibration? 

2. What are the procedures when applying this method for industrial-scale anaerobic digestion 

modelling? 

3. Is this method capable of simplifying the calibration process and avoid over-calibration? 

 

1.4.2. Objectives 

• Construct an ADM1 model on a numerical computational platform 
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• Translate experimental data obtained from an industrial-scale digester into the format required by 

ADM1 

• Conduct a literature survey for stoichiometric and kinetic parameter values to establish the variance 

in each parameter 

• Perform Monte Carlo simulation using the surveyed information to generate input and output data set 

• Identify latent relationships between model parameters and outputs using PLSR algorithm and data 

set generated from Monte Carlo simulation 

• Attempt parameter calibration by using the latent relationships as guidance 

• Benchmark the new calibration method against other calibration methods 
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 CHAPTER 2  
 
 

LITERATURE REVIEW 
 

2.1.   Anaerobic Digestion Theory 

2.1.1. Fundamental Biochemical Reactions 

Hydrolysis 

Hydrolysis (also referred to as solubilisation) involves the disintegration of complex, insoluble polymeric matter 

by extracellular enzymes into structurally smaller products. In this step, as illustrated in Figure 1, 

carbohydrates, proteins and lipids are broken down predominantly into monosaccharides, amino acids and 

LCFAs, respectively (Heukelekian, 1958). Being soluble, these products can enter the biomass and undergo 

further breakdown intracellularly. Carbohydrates were found to hydrolyse faster than proteins and lipids 

(Eastman & Ferguson, 1981). 

Acidogenesis 

The process of acidogensis (also referred to as fermentation) follows hydrolysis. In this step, acidogens convert 

monosaccharides into predominantly low molecular weight VFAs such as acetate, propionate and butyrate, 

lactic acid, H2 and CO2 (Gujer & Zehnder, 1983). Lactic acid is an intermediary compound that converts rapidly 

into VFAs; however, it could potentially accumulate within the digester when a high load of readily degradable 

substance such as glucose (Costello et al., 1991) is received. The acidification products of amino acids are 

higher molecular weight VFAs such as i-butyrate, valerate and i-valerate, H2, CO2, ammonium and sulphides. 

Hydrogen production is mostly related to the acidification of monosaccharides rather than amino acids.  

For proteinaceous substrates, hydrolysis is regarded as the rate-limiting step because the rate of fermentation 

is considerably faster (Pavlostathis & Gossett, 1988). Yu & Fang (2001) further observed, in a study on dairy 

wastewaters, that carbohydrates tend to suppress the degradation of proteins. This causes carbohydrates to 

acidify preferentially and more rapidly in comparison to proteins and lipids.  

Fermentation pathways of LCFAs depend on the carbon structure of the acids. If the acid has an odd number 

of carbon atoms, both acetate and propionate will form. However, if the acid has even carbon counts, acetate 

is the only short-chained VFA that will be formed (McInerney & Bryant, 1981). Another fermentation product is 

molecular hydrogen. Hydrogen serves as a sink for the electrons liberated when LCFAs are oxidised (Gujer & 

Zehnder, 1983).  

Acidification favours the VFA and hydrogen production pathway when the substrate COD concentration is low. 

However, at a higher COD concentration, the pathway would shift towards alcohols such as propanol and 

butanol when excessive amounts of low molecular weight VFAs accumulate. Gottschal & Morris (1981) 
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explained this metabolic shift as a mechanism for acidifiers to counter the VFA build-up and consequential pH 

inhibition. The pathway change is reported to trigger only when acetate or butyrate exceed a threshold 

concentration of 0.4 - 0.6 g/l (Jones & Woods, 1986).  

Figure 1: Breakdown of complex organic material to simpler components during anaerobic digestion - process scheme 
adapted from Gujer & Zehnder (1983); Siegrist et al. (2002); Madsen, Holm-Nielsen & Esbensen (2011) 

 

Acetogenesis 

According to McCarty & Smith (1986), the conversion from ethanol and propionate to acetate and hydrogen 

requires a Gibbs free energy ΔGo’ of 9.65 kJ/mol and 71.67 kJ/mol, respectively (Equation 1 & Equation 2). 

Conversion of other intermediate VFAs such as butyrate and valerate also holds positive free energy. This fact 

implies that these reactions will remain non-spontaneous until acetate and/or hydrogen concentrations are low 

enough to induce a negative free energy.  

Stellenbosch University https://scholar.sun.ac.za



Chapter 2: Literature Review 

7 
 

Hydrogen is consumed by H2-utilising bacteria during methanogenesis to produce methane. Under sufficiently 

low hydrogen level, acidogens are observed to deviate from the ethanol (C2H6O) production pathway because 

ethanol acts as an electron sink. Instead, H2 is produced from the oxidation of NADH, a process which leads 

to a preferential formation of acetate (C2H3O2
-) (Wolin, 1982). The production ratio between acetate and 

ethanol is therefore dependent on the concentration of H2-utilising methanogenic bacteria present during 

fermentation. 

Oxidation of ethanol:         !"#!"$%" + "$% → !"#!%%
( + ") + 2"$ Equation 1 

Oxidation of propionate: !"#!"$!%%
( + 2"$% → !"#!%%

( + 3"$ + !%$ Equation 2 

 

Methanogenisis 

Methanogensis refers to the final carbon degradation step in which methane gas is produced. This process 

only occurs when all alternative forms of electron acceptors (e.g. O2, NO3
-, SO4

2-,) are depleted. Two major 

pathways are well known: (i) the uptake of acetic acid by acetoclastic methanogens; and (ii) the reduction of 

carbon dioxide by hydrogenotrophic methanogens.  

The first pathway, termed acetolastic methanogenesis, follows the oxidation of acetate into carbon dioxide and 

methane (Equation 3). In the second pathway, termed hydrogenotrophic methanogenesis, methane is formed 

through the reduction of carbon dioxide by hydrogen (Equation 4). This pathway takes place only when acetate 

is depleted and carbon dioxide left as the sole electron acceptor. Theoretically, up to a third of the total methane 

could be produced via this route (Conrad, 1999).  

!"#!%%" → !", + !%$ Equation 3 

1

2
!%$ + 2"$ →

1

2
!", + "$% 

Equation 4 

Hydrogenotrophic methanogenesis serves as an important sink for reducing hydrogen concentration in the 

digester. If hydrogen is allowed to accumulate, for example, due to suppressed methanogenic activity, fatty 

acid degrading organisms will become inhibited and initiate the reduction of low molecular VFAs (i.e. acetate, 

propionate) into alcohols and higher molecular VFAs (i.e. butyrate). This impedes methane production 

consequently because methanogens utilise products from acetogenesis as substrates (McInerney & Bryant, 

1981). 

On the contrary, if hydrogen is effectively consumed and kept below the inhibitory level, hydrogen production 

will regulate in conjunction with the hydrogen partial pressure (Pavlostathis & Giraldo-Gomez, 1991). 

Sustaining the syntrophy between acetogenic organisms (which produces hydrogen) and hydrogenotrophic 

methanogens (which consumes hydrogen) is therefore crucial for efficient AD operation.   
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Sulphate Reduction 

Under anaerobic conditions, sulphate will be reduced to sulphide first before methane production occurs. The 

reason is that the biological reduction of sulphate is slightly more thermodynamically favoured than 

methanogenesis. The reaction (Equation 5) is mediated by sulphate reducing bacteria (SRB) which competes 

for the same electron donors as methanogens, and as a consequence, lesser acetate and hydrogen are 

available for methane production (Kalyuzhnyi & Fedorovich, 1998). Theoretically, 0.67 mg/l of COD is required 

to reduce 1 mg/l of sulphate (Liamleam & Annachhatre, 2007).  

!"#!%%
( + .%,

$( → ".( + "!%#
( Equation 5 

 

Denitrification 

Nitrate will undergo a series of reduction processes, termed denitrification, when subject to anaerobic 

conditions. Facultative anaerobic bacteria tend to use nitrate as an electron acceptor because the reduction 

reaction is highly favoured thermodynamically. During denitrification, nitrate is converted into ammonia and 

nitrogen gas, via nitrite as an intermediate (Tiedje, 1988).  

The conversion path to ammonia, called ammonification, is a selective process that depends on the ammonia 

concentration. Under ammonia-limiting or nitrate-limiting conditions, ammonifiers compete well against 

denitrifiers which mediate the reduction of nitrate (Equation 6) and nitrite (Equation 7). As the reduction process 

utilises organic carbon, the theoretical COD required for (or loss due to) denitrification is 2.86 mg/l and 1.71 

mg/l per mg/l of NO3 and NO2, respectively (Akunna, Bizeau & Moletta, 1992). This fact effectively implies that 

methane gas production will decrease when denitrification occurs.  

/%#
(
+
5

24
C3H5$O3 + H$O	 →

1

2
/$ +

5

4
!%$ +

7

4
"$% + %"

( 
Equation 6 

/%$
(
+
1

8
C3H5$O3 + H$O	 →

1

2
/$ +

3

4
!%$ +

5

4
"$% + %"

( 
Equation 7 

 

 

2.1.2. Anaerobic Digestion Kinetics 

Kinetics are key factors when developing dynamic models. They describe the rates of biomass growth, 

substrate uptake, product formation and microbial decay during biochemical reactions. Good understanding of 

microbial decay kinetics is particularly essential for anaerobic digestion because specific growth rates are 

much lower than aerobic processes (Pavlostathis & Giraldo-Gomez, 1991).  

Several mathematical equations have been derived to describe biological growth kinetics. In general, they are 

based on the relationship between growth rate and substrate concentration. The kinetic model applied in ASM 

(Activated Sludge Model) is the Monod equation (Monod, 1942). It has further found success in describing 

anaerobic digestion processes other than the hydrolysis process which is best modelled by first-order kinetics.  

Stellenbosch University https://scholar.sun.ac.za



Chapter 2: Literature Review 

9 
 

The Monod equation describes microbial growth by relating it to the growth-limiting substrate’s concentration 

(Equation 8). Parameters such as μmax and Ks are empirical, which are obtained by fitting the observed 

substrate utilisation data using non-linear regression (Robinson & Tiedje, 1983). These parameters can differ 

between different studies even if the substrate is similar. Pavlostathis & Giraldo-Gomez (1991) explained this 

variability as a result of difference in mode of operation (batch or continuous) and/or operating conditions (e.g. 

temperature, pH) applied during each study.  

: = :<=>
.

?@ + .
 

Equation 8 

where: 

μ is the specific microorganism growth rate [d-1];  

μmax is the maximum specific microorganism growth rate [d-1]; 

S is the limiting substrate concentration [kgCOD.m-3]; 

Ks is the half-saturation constant; 

From the Monod equation, the substrate uptake rate (km) can be calculated by relating the growth rate to the 

biomass yield ratio (Equation 9). 

A< = :<=>B Equation 9 

 

2.1.3.   Toxicity & Inhibition 

Toxicity related to pH is the most commonly encountered form of toxicity. It is caused by the presence of weak 

acids e.g. hydrogen sulphide (H2S) and unionised VFAs, and weak bases e.g. unionised ammonium. Other 

forms of toxicity, such as biocides and heavy metals, are described further in the literature by van Haandel and 

van der Lubbe (2007).  

Sulphides are formed when sulphate ions are reduced during methanogenesis or when sulphur-containing 

amino acids (cysteine and methionine) are degraded. H2S, which is a toxin for methanogenic bacteria, exists 

in equilibrium with HS- whereby their concentrations are functions of pH (Equation 10). The pKa value of the 

H2S/HS- equilibrium is 6.99 at 30°C. This implies that at a pH of 6.99, 50% of the sulphides will be in the H2S 

form and increasing concentrations at lower pH values. 

"$.	 ↔ ".( + ") Equation 10 

Although each VFA has different pKa values, VFA exists predominantly in the unionised form at lower pH 

values. Unionised VFAs are considered toxic because it can diffuse through the cell membrane and cause cell 

lysis due to a large internal pH drop as it dissociates within. The loss in microbial activity inhibits the 

degradation of hydrogen and organic acids (Siegrist, Renggli & Gujer, 1993). 
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An easily acidifying substrate with high organic content could lead to rapid accumulation of acetic acid. Unless 

sufficient alkalinity buffer is present or corrective action taken to reduce the influent loading rate, the decrease 

in pH will amplify the above-mentioned inhibition effects.  

Ammonia is generated when the protein component of a waste is digested. Given the fact that NH3/NH4
+ 

equilibrium has a pKa of 9.3 at 25°C, ammonia toxicity is only a concern at high pH where the unionised form 

prevails. Microbial activity is reported to be inhibited when the free NH3 level reaches 150 mg/l (Braun, Huber 

& Meyrath, 1981). 

 

2.1.4. Commonly Monitored Process Indicators 

This section discusses the relevance of measurements commonly monitored at an industrial-scale AD plant. 

Except for pH, temperature and volumetric flow rates, most of the measurements are off-line analyses from 

manually taken samples. Feedback control strategies are thus limited due to the long measurement delay. In 

spite of significant advancement made in recent years to develop sensors that allow in-situ measurements, 

affordability remains a major obstacle to the deployment of advanced instruments at industrial plants in 

developing countries (Jimenez et al., 2015).  

COD 

Chemical Oxygen Demand (COD) indicates the generic pollution strength within a wastewater stream. It refers 

to the amount of oxygen required to completely oxidise the organic material present. Total COD (TCOD) is a 

term used to describe the COD content of a well-mixed wastewater sample inclusive of all entrained solids. 

Soluble COD (SCOD) refers to the COD of a filtered or centrifuged wastewater sample, whilst the contribution 

of the suspended solids to TCOD is referred to as particulate COD (PCOD). The relationship between the 

terms is described in Equation 11. 

D!%E = .!%E + F!%E Equation 11 

TSS & VSS 

Total Suspended Solids (TSS) indicates the total quantity of suspended, or non-filterable, solid particulates in 

a wastewater stream. Closely related to TSS is the Volatile Suspended Solids (VSS) component which 

describes the concentration of volatile solid particulates. When a sample is taken from the digester, VSS 

represents the organics content within both influent waste and biomass; however, given a highly soluble 

digester feed, the VSS concentration is an approximate quantitative measure of the biomass sludge inventory 

within the digester. This information allows one to control the food-to-microorganism (F/M) ratio and to detect 

biomass loss due to wash-outs. 

In anaerobic digestion, little energy is allocated to cell growth and therefore the yield/growth of anaerobic 

biomass – particularly LCFAs, acetate and propionate degraders - is considerably slower compared to aerobic 

oxidation process (McCarty & Smith, 1986; Siegrist et al., 1993). This fact further emphasizes the importance 

of tracking VSS in maintaining digester stability.  
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Inert, or non-biodegradable, particulates such as inorganic precipitates (calcium carbonate, struvite, etc.) may 

enter the digester as part of the substrate feed or form within the digester. Its concentration is calculated as 

the difference between the measured TSS and VSS concentrations.   

pH & Alkalinity 

pH indicates how acidic or basic an aqueous solution is, and is defined as the negative logarithm of hydrogen 

ion concentration (Equation 12). pH is regarded as an important parameter because some constituents (e.g. 

H2S, NH3) that are known to induce microbial toxicity or inhibition exists in equilibria relative to other harmless 

species. Fractional amounts of each species change as a function of hydrogen ion concentration. Key equilibria 

of relevance in AD research are the carbonate equilibrium (CO2/HCO3
-/CO3), hydrogen sulphide equilibrium 

(S2
-/HS-,H2S), ammonium equilibrium (NH4

+, NH3) and VFA equilibrium. 

G" =	− log5L["
)] Equation 12 

Alkalinity is a measure of the digester’s pH buffering capacity and a key control parameter for steady digester 

functioning (McCarty & Smith, 1986). Without adequate buffering, a sudden pH drop will occur when VFA 

formation outpaces its metabolism rate, resulting in pH related toxicity. This occurrence is common, particularly 

during transient conditions. External alkalinity (e.g. lime or caustic soda) could be added as a countermeasure.  

The carbon dioxide-bicarbonate system serves as the main pH buffering mechanism for anaerobic digestion 

(Equation 13 & Equation 14). Alkalinity is naturally formed through the production of CO2 during the metabolism 

of VFAs, which then converts to bicarbonate. A portion of the produced CO2 is stripped to the biogas as 

gaseous CO2, whilst most of the CO2 remain dissolved in the liquid as bicarbonate HCO3
-. The stripping 

process is the primary contributor to alkalinity recovery during anaerobic digestion.  

!%$ + "$% ↔ "$!%# Equation 13 

"$!%# ↔ "!%#
( + ") Equation 14 

Another source of alkalinity is ammonia, which is produced when protein or organic nitrogen in the feed 

substrate is mineralised during the digestion process (van Haandel & van der Lubbe, 2007). The subsequent 

formation of ammonium carbonate serves as alkalinity (Equation 15). Products of sulphate reduction reaction 

also contribute to alkalinity (Equation 5). 

/"# +"$% + !%$ → /","!%# Equation 15 

Excess amounts of VFAs are toxic to methanogenic bacteria. In a well-buffered system, pH measurements 

will fail to detect the accumulation of VFAs because pH change would occur only when alkalinity is close to 

depletion (Hawkes et al., 1993). A popular monitoring strategy employed on industrial is to maintain a good 

ratio of VFA relative to alkalinity, which is known as the Ripley’s ratio (Ripley et al., 1986). 
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VFA 

Total VFA level has been widely reported as a reliable process status indicator (Madsen et al., 2011). 

According to Boe et al. (2010), a good understanding of individual VFA constituents (n-butyric, iso-butyric and 

propionate in particular) could provide even better insight on the digester’s stress level and potentially act as 

a precautionary indicator towards process imbalance.   

Measurement of individual VFA constituents is conventionally performed off-line using gas chromatography or 

high-performance liquid chromatography (HPLC) methods. Development of automated online devices for 

continuous measurement on industrial-scale plants are not yet mature in terms of affordability and robustness 

(Jimenez et al., 2015). Nonetheless, the advantage of online VFA measurement is well acknowledged and 

much interest has been vested in its research and development.  

 

Temperature 

The operating temperature in anaerobic digesters has a prominent effect on the degradation efficiency and 

biogas production. In most cases, an increase in temperature up to 42 °C, will lead to improved performance 

(Donoso-Bravo et al., 2009; Rebac et al., 1995). The reason is that kinetic rates and equilibrium coefficients 

which governs biochemical reactions and physicochemical processes including gas-liquid transfer are all 

functions of temperature. Temperature influence on biogas production is approximately 3.4% per degree from 

25 - 30°C and 1.6% per degree from 30 - 35°C (Bergland, Dinamarca & Bakke, 2015).  

For digesters operating in the mesophilic temperature range, the influence of temperature on biochemical 

reactions and physicochemical processes can be corrected by the double Arrhenius equation (Equation 16) 

and van’t Hoff equation (Equation 17) respectively, according to Batstone (2006). 

O = 	P5	QRG S
−T=5

UD
V − P$	QRG S

−T=$

UD
V 

Equation 16 

where: 

ρ is the microbial activity;  

A is the pre-exponential constant (empirical); 

Ea is the apparent activation energy [J.mol-1]; 

R is the universal gas constant [J.K-1.mol-1]; 

T is the absolute temperature [K] 

WX
?$

?5
= 	
∆"°

U
S
1

D5
−
1

D$
V 

Equation 17 

where: 

K1, K2 are the equilibrium constants before and after temperature-correction respectively;  

∆H° is the enthalpy change [J.mol-1]; 

T1, T2 are the initial and final temperatures respectively [K];  
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2.2. Overview of Anaerobic Digestion Modelling Development 

Key milestones in anaerobic digestion modelling are listed in a review by Donoso-Bravo et al. (2011). This 

section reviews some of the milestones in greater detail, as these models contributed to the development of 

the Anaerobic Digestion Model No. 1 (ADM1). A comprehensive list of all AD models is provided in review 

papers by Appels et al. (2008) and Lauwers et al. (2013). 

2.2.1. Two-microbial-culture model 

In 1977, Hill & Barth (1977) developed a mathematical model to simulate the digestion process of animal 

waste. The development was motivated by the benefits that a dynamic model would allow one to study the 

digester’s stability when it is subjected to different operating conditions.  

The model considers only two microbial groups, namely acid-formers and methane-formers, to be responsible 

for the conversion of organics to VFAs and from VFAs to methane gas respectively. Other variables accounted 

in the model are commonly analysed parameters such as volatile matter/solids, VFAs, soluble organics, 

cations, carbon dioxide and ammonia. This model assumes the stoichiometry of soluble organics to be the 

same as glucose, and that VFAs is broadly representable as acetic acid.  

Variables are represented by a set of multiple non-linear differential equations that ensure mass and charge 

balances are maintained continuously. All insoluble organics must be solubilised first before it is amenable to 

degradation. This conversion is simply based on a 1:1 stoichiometry and is not subjected to any kinetic rates. 

The only inhibitor taken into account by the model is the presence of unionised ammonia on the growth of 

methane-formers.  

All kinetic and physicochemical constants applied for the model were sourced from previous investigation 

works related to similar waste substrate, and no parameter calibration was made. For model validation, the 

author selected four variables which were deemed most important for animal waste digestion, namely methane 

gas, volatile matter/solids, VFAs and alkalinity. For the steady-state period the model was found capable of 

fitting actual experiment data with reasonable accuracy but failed to predict well during transient periods.   

 

2.2.2. Steady-state acid phase model 

A study by Eastman & Ferguson (1981) pointed out the likelihood of the acid phase, which consists of the 

hydrolysis of particulates to soluble organics and the subsequent fermentation to VFAs, to be the rate-limiting 

step during anaerobic digestion. In retrospect, earlier models (Andres, 1969; Graef & Andrew, 1974) 

considered acetolastic methanogenesis as the rate-limiting step and thus did not include any acid phase 

mechanisms. 

Hydrolysis, in particular, was reported to be a potential rate-limiting step in anaerobic digestion, especially 

when digesting particulate organic substances. The overall digestion rate could be constrained during periods 

of organic overloading as a result of hydrolysis being the slowest of all processes. Inclusion of hydrolysis 

kinetics into the model structure was thus acknowledged as a milestone development. For this reason, 
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understanding the composition make-up between particulate and soluble organics is regarded as crucial for 

establishing the rate-limiting factor in context. This fact was well supported by other researchers (Gujer & 

Zehnder, 1983; Pavlostathis & Gossett, 1988).    

The acid phase model includes a first-order function to describe the hydrolysis step and Monod’s equation to 

describe the growth of acid-formers (in association with the utilisation of soluble organics). Recognising that 

different particulates within a complex substrate could hydrolyse at dissimilar rates, a first-order function was 

proposed as the most appropriate method to describe the lumped/effective hydrolysis effect.  

The research confirmed robustness of the acid phase across a wide range of pH and/or solids concentration. 

Following the “two-phase digestion” approach proposed by Pohland & Ghosh (1971) where two separate 

reactors are operated in series but under different conditions, Eastman & Ferguson (1981) proved that the 

digester’s stability can be greatly improved when each reactor is operated at conditions most optimally suited 

for the acid-forming bacteria and methanogenic archaea. 

  

2.2.3. Dynamic single-stage high-rate anaerobic reactor model 

A major advancement in anaerobic modelling was presented in the work by Costello et al. (1991). Using the 

model framework developed by Mosey (1983), this model introduced the effects of hydrogen inhibition, product 

inhibition, and most notably, a larger ecosystem of anaerobic bacteria which are fundamentally involved in the 

degradation process. Unlike prior models which only considered a single acidogenic step to form acetic acids, 

this model accounts for intermediate volatile acids such as propionic and butyric acids as well.  

A unique development made by the author was to incorporate a comprehensive set of inhibition and regulation 

functions into the model structure. It is implemented by multiplying the relevant inhibition functions to a 

substrate’s utilisation rate formula as described by Monod’s equation. The inclusion of inhibition and regulation 

effects based on hydrogen gas concentration in the biogas is an important feature of this model.  

Inhibition functions influence substrate uptake rates of acidogens and acetogens, whilst regulation functions 

modify the production rates of the acidifiers’ end-products (propionic acid, butyric acid, acetic acid and lactic 

acid). Other inhibitory phenomena built into the model were: 

• Individualised pH inhibition function for each type of bacteria - glucose, lactic acid, propionic acid 

and butyric acid  

• Product inhibition effect as a result of product accumulation and high product-to-substrate ratio:  

- A competitive inhibition function was proposed for propionic acid and butyric acid bacteria. 

Only acetic acid is considered as the cause of inhibition. VFAs, including lactic acid, were 

deemed non-influential    

- A non-competitive inhibition function was proposed for glucose and lactic acid bacteria. 

VFAs are the cause of inhibitory products.    
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2.2.4. Development of higher complexity models 

Angelidaki et al. (1993) enhanced the model initially developed by Hill & Barth (1977), with the intention to 

simulate free ammonia inhibition on methanogens more accurately. This improvement is critical for digesters 

treating substrates containing high protein or ammonia in particular. As free ammonia concentration depends 

on pH and temperature the research focused on improving pH prediction and the temperature correction of 

dissociation constants. According to the authors, free ammonia inhibition could recover spontaneously and 

prevent system failure. It was reported that as VFAs accumulates, the reduction in pH would cause a shift in 

ammonia equilibrium, resulting in lower free ammonia concentration.  

One of the first universal non-substrate specific models was created by Vavilin et al. (1994). The model is 

intentionally simplified to describe key anaerobic steps only, where carbohydrates, proteins and lipids are 

lumped as a single hydrolysed substrate term, while propionate served as the only fatty acid intermediate. 

Despite having a simplified structure the model included decay mechanisms for dead biomass to assimilate 

back to the ecosystem as degradable and non-degradable components. The inclusion of extra processes, 

such as sulphate reduction and syntrophic methanogenesis, further adds sophistication to this generic model. 

The sulphate reduction process involves the conversion of sulphates into sulphides, with acetate and 

propionate as substrates. Consequently, sulphate reducing bacteria are added to the model’s ecosystem.  

  

Stellenbosch University https://scholar.sun.ac.za



Chapter 2: Literature Review 

16 
 

2.3. Anaerobic Digestion Model No. 1 (ADM1) 

2.3.1.   Introduction 

In 1997, the IWA Task Group for Mathematical Modelling of Anaerobic Digestion Processes was formed with 

the task to create a generic anaerobic digestion model. Developed by international experts from different 

anaerobic digestion modelling backgrounds the model intends to provide a common basis – in terms of the 

model structure, process mechanisms and nomenclature – for future modelling research such that 

collaboration and validation of results are possible. The model was published in 2002, under volume 13 of IWA 

Scientific and Technical Report (STR), as “Anaerobic Digestion Model No.1 (ADM1)”.   

 

Figure 2: Block flow diagram depicting the concept of ADM1 

The default/original version of ADM1 model features 29 dynamic state variables (Table 17). These variables 

represent 26 constituents present in the liquid phase, of which 14 are soluble and 12 are particulate, as well 

as 3 gas phase constituents within a CSTR system. State variables in the outlet streams are outputs calculated 

from the model’s differential mass balance equations which describe the biochemical and physicochemical 

reactions taking place inside the digester. The conversion rate and kinetics of each reaction are governed by 

stoichiometric and kinetic parameters listed in Table 18.  

  

2.3.2.  Nomenclature and Units 

Refer to Table 17 – Table 19 in the Appendix for definition of the nomenclatures used in ADM1. 

 

 

 

Influent

Flow (qin)

26 liquid compositions
(Ssu,in , Saa,in , etc.)

3 gas compositions
(Sh2_g,in , SCH4_g,in , etc.)

Gas

Flow (qgas)

3 gas compositions
(Sh2_g,out , SCH4_g,out , etc.)

Liquid 

Flow (qout)

26 liquid compositions
(Ssu,out , Saa,out , etc.)

Dynamic CSTR System 
(DAE mass balance solver)

Gas Phase

Liquid Phase

19 biochemical & physico-
chemical reactions

58 stoichiometric & kinetic 
parameters

(Kdis, khyd,ch , etc.)

Reactor Specifications
(Temperature, digester 

volume, etc.)

Sludge 

Flow (qwaste)
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2.3.3.   Model Design Philosophy 

In comparison with other AD models, the default version of ADM1 is already a highly sophisticated model. It 

has integrated physical and biochemical mechanisms widely accepted in AD research (Batstone et al., 2002). 

Following the same format as a Petersen matrix to describe stoichiometric conversions and kinetic rates, 

ADM1 presents an organised structure that allows modellers to modify or add mechanisms in a manner which 

fellow researchers can interpret easily.  

Another unique feature of ADM1 is the introduction of an additional breakdown step preceding hydrolysis called 

disintegration. This step is deemed necessary by the IWA Task Group, as there is a need to account for dead 

biomass and other particulates in the influent that have no distinct composition. ADM1 thus lumped these pool 

of particulates as a state variable called composite particulates (Xc). During disintegration, these composite 

particulates are broken down to carbohydrates (Xch), proteins (Xpr), lipids (Xli), particulate inerts (XI) and soluble 

inerts (SI).  

Effect of temperature is only partially incorporated in the default ADM1. By default, some physicochemical 

equilibrium constants are corrected by applying the Arrhenius equation (Equation 17). Kinetic parameters are 

not temperature-corrected but research has suggested that correcting kinetic parameters may improve model 

fitting (Bergland et al., 2015). However, according to the IWA Scientific and Technical Report (STR), 

temperature variation less than 3 °C is known to have a negligible effect on ADM1’s predictions. 

Liquid Phase Mass Balance 

Concentrations of soluble and particulate constituents in the liquid phase are governed by mass balance 

equations, Equation 18 and Equation 19, respectively. The term ∑ O\]^,\
5`
\a5  represents the net change in a 

constituent concentration (i) after undergoing all 19 biochemical processes (j). It is calculated by summing the 

specific kinetic rates (pj) for each biochemical process multiplied by the corresponding stoichiometric 

coefficients (vi,j). SIC and SIN are state variables representing inorganic carbon and inorganic nitrogen, which 

in the default ADM1 version refer to carbon dioxide and ammonia, respectively. These two terms serve as 

“sinks” for any excess carbon and nitrogen produced during the biochemical processes and ensures that the 

mass balance is closed.  

Table 2 and Table 3 show the default Petersen matrices originally published in the STR but updated with the 

corrections (in blue) suggested by Rosen & Jeppsson (2006). The authors pointed out errors related to the law 

of conservancy of mass; therefore these corrections are considered fundamentally critical for the default 

ADM1. Firstly, the default parameter values for the carbon content (Cxc) and nitrogen content (Nxc) of composite 

particulates were found to cause carbon and nitrogen imbalances when composite particulates undergo the 

disintegration process as per the stoichiometric relationship proposed by the STR. To close the balance, the 

authors suggested that Cxc should be modified from 0.03 kmol C/kg COD to 0.02786 kmol C/kg COD, and Nxc 

modified from 0.002 kmol N/kg COD to 0.00269 kmol N/kg COD. 

Secondly, only a selected few processes allocate their excess carbon and nitrogen to the SIC and SIN state 

variables. The authors, however, argued that the same philosophy should be applied for all 19 processes so 
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that carbon and nitrogen balances are truly fulfilled. These corrections must be incorporated because any 

discrepancy in SIC and SIN would influence carbon dioxide, ammonia and pH predictions.  

b.c^d,^

be
=

f

gc^d
h.^i,^ − .c^d,^j +kO\]^,\

5`

\a5

 
Equation 18 

i = 1, 2, …, 12; i = 25, 26 

blc^d,^

be
=

f

gc^d
hl^i,^ − lc^d,^j +kO\]^,\

5`

\a5

 
Equation 19 

i = 13, 14, …, 24 

where: 

Sliq,i represents the soluble state variables no. 1 – 12, 25 & 26 listed in Table 17; 

Xliq,i represents the particulate state variables no. 13 – 24 listed in Table 17; 

Q is the influent volumetric flow, which is also equivalent to the flow exiting the digester; 

Vliq is the digester volume; 

Sin,i and Xin,i refer to the concentration of soluble and particulate constituents in the influent stream 

 

Specific kinetic rates (pj) are described in ADM1 in the form of Equation 20 which is effectively a combination 

of Monod kinetics (Equation 8) and Equation 9. The Task Group preferred to structure kinetic rates as substrate 

uptake rate instead of biomass growth rate because other kinetic models (e.g. inhibition, physicochemical) 

could be adapted easily into the model structure as add-on/extensions.  

O\ = A<
.

?m + .
l 

Equation 20 

 

Gas Phase Mass Balance 

By default, ADM1 considers only three gases: hydrogen, methane and carbon dioxide. These gases are 

represented as the last 3 state variables i.e. 27 – 29. Mass balance for the gas phase components (Equation 

21) takes into account: (i) the gas outflow from the digester and (ii) the transfer of gases from the liquid phase 

to the gas phase, in which the rate of gas transfer is described by the general theory of two-film mass transfer 

(Equation 22).  

b.n=@,^

be
= −

on=@

gn=@
.n=@,^ +

gc^d

gn=@
Op,^ 

Equation 21 

i = 27 - 29 
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Op,^ = Aq=h?r. Fn=@,^ − .c^d,^j Equation 22 

where: 

Sgas,i is the gas state variables no. 27 – 29 listed in Table 17; 

qgas is the total gas flow exiting the digester; 

Vgas is the gas headspace volume; 

pT,i  is the specific mass transfer rate of gas; 

kLa is the volumetric gas-liquid mass transfer coefficient; 

KH is the Henry’s law coefficient 

 

ADM1 models all gases as ideal gases under the same temperature as the liquid contents (i.e. Tgas = T). The 

partial pressure of each gas component is thus determined per ideal gas law as described in Equation 23 - 

Equation 25. The denominators, 16 and 24, are COD equivalents for unit conversion purpose.  

Fn=@,rt = .n=@,rt.
U. Dn=@

16
 

Equation 23 

Fn=@,vrw = .n=@,vrw.
U. Dn=@

64
 

Equation 24 

Fn=@,vxt = .n=@,vxt. U. Dn=@ Equation 25 

In addition to the three gases, water vapour contributes to the total headspace pressure (Pgas) as well because 

the headspace is considered to be saturated with water vapour. Its partial pressure (Pgas,H2O) is therefore 

discounted from Pgas when calculating the gas production rate qgas (Equation 26). Water vapour pressure is 

highly dependent on temperature. Equation 27 is applied to correct the reference water vapour pressure at 

298 K to the actual temperature (T). 

on=@ =
U. D

Fn=@ − Fn=@,rtx
gc^d y

Op,rt

16
+
Op,vrw

64
+ Op,vxtz 

Equation 26 

where: 

qgas is the total gas volumetric flow leaving the digester 

Pgas is the total headspace pressure. Under constant headspace pressure, Pgas is equivalent to the 
atmospheric pressure. Pgas = Patm = 1.013 bar 

Gn=@,r$x = 0.0313	QRG|5290 S
1

298
V + S

1

D
V~ 

Equation 27 
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Charge Balance 

Besides mass balancing, ADM1 is set up to maintain a charge balance as well such that ionic neutrality is 

observed i.e. sum of cationic charges equals to the sum of anionic charges (Equation 28).  

The cations group shown on the left-hand side of the equation includes hydrogen ion, ammonium ion and a 

cation component (Scat+) which lumps any other metallic cations such as sodium and potassium that do not 

take part in the reaction. For the anions group, it includes bicarbonate ions, organic acids, hydroxide ions and 

an anionic component (San-). Similar to the cationic component, the anionic component lumps inert metallic 

anions such as sulphate and chloride together.     

During each simulation time-step, this equation is solved for the hydrogen ion concentration (SH+) and then 

Equation 12 is applied to determine the pH value. In other words, pH value is dependent on the concentrations 

of these ionic components in the digester influent as well as how these components evolve with time.  

.r� + .Ärw
� + .v=Å� = .rvxÇ

É +
.=ÑÉ

64
+
.ÖÜáÉ

112
+
.àâÉ

160
+
.ä=É

208
+ .xrÉ + .ãiÉ 

Equation 28 

where the ionic forms are calculated as follows: 

.rvxÇ
É =

?=,vxt.åv

?=,vxt + .r�
 

 

.çéãÉ =
?=,çéã.çéã,ÅáÅ=c

?=,çéã + .r�
 

 

.Är,� =
.r�.åÄ

?=,Ärw + .r�
 

 

.xrÉ =
?è

.r�
 

 

Inhibition Factors 

As discussed in Section 2.1.3 the degradation process may be affected as a result of toxicity and inhibition. 

The derating effect on kinetic rates is described by applying the relevant inhibition factors (I1, I2…In) alongside 

the specific kinetic rates (Equation 20). The effective kinetic rate for a particular biochemical process (j) is thus 

as follows: 

O\ =
A<.

?m + .
l. ê5. ê$ … êi 

 

where: 

I is the inhibition function of inhibitor i on process j 

An inhibition factor is a combination of one or more inhibition equations described in Table 1. Even though only 

four types of inhibition are featured in the default version of ADM1, it is regarded adequate to cover conditions 

encountered when treating ordinary substrates.   
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Table 1: Types of inhibition described in default ADM1 

Description Inhibited Process (j) Equation 
(1) pH Inhibition All substrate uptake  

(j = 5 – 12) 
If pH < pHUL: 

êÖr = exp	 |−3S
G" − G"ïq

G"ïq − G"qq
V

$

~ 

If pH > pHUL: 

êÖr = 1 

(2) Inhibition due to limited 
inorganic nitrogen 

All substrate uptake 
(j = 5 – 12) 

êåÄ,c^< =
1

1 +?m,åÄ/.å,åÄ
 

(3) Hydrogen inhibition LCFA, valerate, butyrate and 
propionate uptake only 

(j = 7 – 10) 

êó$ =
1

1 + .ó$/?å,ó$
 

(4) Free ammonia inhibition Acetate uptake process only (j 
= 11) 

êÄr# =
1

1 + .Är#/?å,Är#
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i 1 2 3 4 5 6 7 8 9 10 11 12
j Ssu Saa Sfa Sva Sbu Spro Sac Sh2 Sch4 SIC SIN SI

1 f sI,xc kdisXc

2 1 khyd,chXch

3 1 khyd,prXpr

4 1 - f fa,li f fa,li khyd,liXli

5 -1 (1 - Ysu) f bu,su (1 - Ysu) f pro,su (1 - Ysu) f ac,su (1 - Ysu) f h2,su -(Ysu) Nbac

6 -1 (1 - Yaa) f va,aa (1 - Yaa) f bu,aa (1 - Yaa) f pro,aa (1 - Yaa) f ac,aa (1 - Yaa) f h2,aa Naa -(Yaa) Nbac

7 -1 (1 - Yfa) 0,7 (1 - Yfa) 0,3 -(Yfa) Nbac

8 -1 (1 - Yc4) 0,54 (1 - Yc4) 0,31 (1 - Yc4) 0,15 -(Yc4) Nbac

9 -1 (1 - Yc4) 0,8 (1 - Yc4) 0,2 -(Yc4) Nbac

10 -1 (1 - Ypro) 0,57 (1 - Ypro) 0,53 -(Ypro) Nbac

11 -1 1 - Yac -(Yac) Nbac

12 -1 1 - Yh2 -(Yh2) Nbac

13 kdec,XsuXsu

14 kdec,XaaXaa

15 kdec,XfaXfa

16 kdec,Xc4Xc4

17 kdec,XproXpro

18 kdec,XacXac

19 kdec,Xh2Xh2
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Inhibition factors:

I1 = IpHIIN,lim

I2 = IpHIIN,limIh2

I3 = IpHIIN,limINH3,Xac

Uptake of Valerate

Uptake of Butyrate

Uptake of Propionate

Component  →
Process ↓

Disintegration

Hydrolysis of Carbohydrates

Hydrolysis of Proteins

Hydrolysis of Lipids

Decay of Xpro

Decay of Xac

Decay of Xh2

Kinetic Rate 
(ρj, kg COD.m-3,d-1)

Uptake of Acetate

Uptake of Hydrogen

Decay of Xsu

Decay of Xaa

Decay of Xfa

Decay of XC4

Uptake of Sugars

Uptake of Amino Acids

Uptake of LCFA
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Table 2: Corrected default biochemical rate coefficients (νi,j) and kinetic rate equations (ρj) for soluble organic compounds (Batstone et al., 2002; Rosen & Jeppsson, 2006) 
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i 1 2 3 4 5 6 7 8 9 10 11 12
j Xc Xch Xpr Xli Xsu Xaa Xfa Xc4 Xpro Xac Xh2 XI

1 -1 f ch,xc f pr,xc f li,xc f xI,xc kdisXc

2 -1 khyd,chXch

3 -1 khyd,prXpr

4 -1 khyd,liXli

5 Ysu

6 Yaa

7 Yfa

8 Yc4

9 Yc4
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Table 3: Corrected biochemical rate coefficients (νi,j) and kinetic rate equations (ρj) for particulate components (Batstone et al., 2002; Rosen & Jeppsson, 2006) 
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2.3.4.   Model Limitations 

Although ADM1 allows one to take into account a broad range of substrate composition and numerous 

reactions, the need to define a large number of influent state variables (Table 17) and model parameters (Table 

18 & Table 19) is widely criticised as the model’s main drawback (Bernard et al., 2001; Donoso-Bravo et al., 

2011).  

Experimental data obtainable in reality lack the level of description required by the ADM1 structure. It is 

acknowledged to be technically difficult to characterise the influent substrate experimentally in the term of input 

state variables, as well as costly to quantify different species of biomass within a consortium. Several authors 

have pointed out the impracticality to perform such a detailed analysis on a frequent basis (Donoso-Bravo et 

al., 2011; Arnell et al., 2016). 

The ADM1 model, in its default version, does not consider the following reactions (Batstone et al., 2002): 

• Alternative products from acidogenesis of sugars 

• Sulphate reduction and sulphide inhibition 

• Nitrate reduction 

• Weak acid and base inhibition 

• LCFA inhibition 

• Acetate oxidation and homoacetogenesis 

• Solids precipitation 

They are intentionally omitted to keep the model as simple as possible since these reactions are not relevant 

universally for all cases. The model instead relies on the user’s discretion to implement model extensions 

where a certain biochemical reaction is considered to have significant influence on the model outputs. For 

instance, the process of sulphate reduction can be added by modifying the Petersen matrix as described by 

Batstone (2006); and LCFA inhibition can be accounted by incorporating the inhibition term proposed by Arnell 

et al. (2016) into the effective kinetic rate. 

It is noted that other extensions in addition to the above-listed reactions exist. For example, Boubaker and 

Ridha (2008) proposed an extra inhibition factor to describe the effect of high total VFA concentration on 

methanogenesis and inorganic nitrogen profile more precisely. By including the factor into the acetate uptake 

equation, ADM1 would be able to detect reactor failure as a result of transient inhibition. 

Furthermore, Bergland, Dinamarca & Bakke (2015) proved that temperature influences steady-state biogas 

production rates more remarkably than what the default ADM1 model predicts. The authors recommended 

temperature correction to be extended to kinetic parameters as well, such as the disintegration constants (kdis), 

hydrolysis constants (khyd), Monod uptake constants (km) and mass transfer coefficient (kLa). 
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2.4.   ADM1 Parameters Literature Survey 

An ADM1 model requires an initial set of parameters before the simulation can commence. In the Scientific 

and Technical Report (STR) which the ADM1 framework is published, a table of suggested values for each 

parameter is provided. These values are reported to be applicable for generic cases and suitable for model 

initialisation. Alternatively, specific values may be referenced from previous studies of similar applications. The 

suggested values for mesophilic digesters are provided as two types, namely “high-rate” and “solids”. The 

former refers to digesters that receive a heterogeneous mixture of liquid and solid substrates, whilst the latter 

refers specifically to digesters treating homogenous solid substrates.  

A literature survey across 42 articles (in addition to the 20 references reported in the STR) was conducted. 

The purpose of the survey is to understand the variability of each parameter. Refer to the Appendix, Section 

8.3, for all the values obtained from the survey. There is a wide variation in the parameter values even for 

identical substrate types. As explained by Pavlostathis & Giraldo-Gomez (1991) and Donoso-Bravo et al., 

(2011), parameter variations could be attributed to the difference in experiment conditions employed during 

each research study. The inoculum composition, operation mode (batch or continuous) and environmental 

conditions (such as pH, temperature, etc.) all influence the experimental data and hence the final calibrated 

parameters.  

Although the survey covered a wide range of substrate types, there are arguably too few references to identify 

the parameter variability specific to each substrate category. Nonetheless, understanding the variability of 

parameter values across all categories is still valuable, as it potentially represents the “universal” uncertainty 

range of each parameter. Table 4 presents this “universal” range of values alongside the STR suggested 

values. It is noted that temperature ranges from 25 – 38°C in the survey, whereas the STR suggested values 

are based on a digester temperature of 35°C. 

Table 4: Summary statistics of parameter values surveyed from literature for mesophilic digesters in comparison to the 

default values suggested in the ADM1 Scientific and Technical Report 

Parameter 
Suggested Values in 

ADM1 STR 
Parameter Survey – All Categories 

High-rate Solids Min Max Avg LQ UQ 

fSI,XC 0.1 0.1 0.013 0.422 0.185 0.087 0.321 

fXI,XC 0.25 0.25 0.02 0.55 0.25 0.13 0.38 

fCH,XC 0.2 0.2 0.0718 0.797 0.405 0.262 0.515 

fPR,XC 0.2 0.2 0.01 0.4 0.17 0.07 0.25 

fLI,XC 0.25 0.25 0.014 0.478           0.118 0.034 0.161 

fFA,LI 0.95 0.95 - - - N/A N/A 

fH2,SU 0.19 0.19 - - - N/A N/A 

fBU,SU 0.13 0.13 0.111 0.13 0.121 N/A N/A 

fPRO,SU 0.27 0.27 0.27 0.54 0.405 N/A N/A 

fAC,SU 0.41 0.41 0.202 0.41 0.306 N/A N/A 

fH2,AA 0.06 0.06 - - - N/A N/A 

fVA,AA 0.23 0.23 0.23 0.309 0.284 0.273 0.299 
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Parameter 
Suggested Values in 

ADM1 STR 
Parameter Survey – All Categories 

High-rate Solids Min Max Avg LQ UQ 

fBU,AA 0.26 0.26 0.186 0.29 0.253 0.236 0.271 

fPRO,AA 0.05 0.05 0.041 0.12 0.065 0.045 0.072 

fAC,AA 0.4 0.4 0.273 0.399 0.316 0.287 0.328 

kdis 0.4 0.5 0.001 1.743 0.450 0.115 0.782 

khyd_ch 0.25 10 0.037 2.75 0.679 0.210 0.941 

khyd_pr 0.2 10 0.0014 18.23 0.898 0.110 0.650 

khyd_li 0.1 10 0.0086 2.1 0.45 0.10 0.73 

Ks_IN 0.0001 0.0001 - - - N/A N/A 

pHUL_acid 5.5 5.5 5.5 8.5 6.5 5.5 8.0 

pHLL_acid 4 4 4 6 5 4 6 

pHUL_acet 5.5 5.5 5.5 6.7 6.0 5.8 6.4 

pHLL_acet 4 4 4 5.8 4.4 4.0 4.9 

km_su 30 30 11.9 125 54.0 27.0 98.0 

Ks_su 0.5 0.5 0.022 4.5 0.85 0.049 1.28 

Ysu 0.1 0.1 0.01 0.17 0.09 0.01 0.15 

kdec_xsu 0.02 0.02 0.01 0.8 0.28 0.01 0.80 

km_aa 50 50 19.8 53 35.2 27.3 41.8 

Ks_aa 0.3 0.3 0.01 1.198 0.623 0.050 1.15 

Yaa 0.08 0.08 0.058 0.15 0.095 0.065 0.134 

kdec_xaa 0.02 0.02 0.02 0.8 0.19 0.02 0.45 

km_fa 6 6 0.93 12 5.5 1.7 9.1 

Ks_fa 0.4 0.4 0.024 9.21 1.79 0.10 2.22 

Yfa 0.06 0.06 0.004 0.055 0.043 0.027 0.055 

kdec_xfa 0.02 0.02 0.01 0.06 0.017 0.01 0.018 

KIh2_fa 5 x 10-6 5 x 10-6 3 x 10-6 5 x 10-6 4 x 10-6 N/A N/A 

km_c4 20 20 5 60 18 7 22 

Ks_c4 0.3 0.2 0.012 0.6 0.22 0.049 0.33 

Yc4 0.06 0.06 0.0193 0.066 0.055 0.043 0.066 

kdec_xc4 0.02 0.02 0.02 0.03 0.027 0.027 0.03 

KIh2_c4 1 x 10-5 1 x 10-5 1 x 10-8 1 x 10-5 5 x 10-6 5 x 10-8 8 x 10-6 

km_pro 13 13 0.16 100 15 5.5 16 

Ks_pro 0.3 0.1 0.02 1.146 0.259 0.058 0.392 

Ypro 0.04 0.04 0.019 0.075 0.048 0.031 0.055 

kdec_xpro 0.02 0.02 0.001 0.06 0.022 0.008 0.046 

KIh2_pro 3.5 x 10-6 3.5 x 10-6 2.4 x 10-8 8.0 x 10-6 3.1 x 10-6 4.7 x 10-8 7.0 x 10-6 

km_ac 8 8 3.1 48 13 6.7 14 

Ks_ac 0.15 0.15 0.011 0.93 0.26 0.045 0.49 
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Parameter 
Suggested Values in 

ADM1 STR 
Parameter Survey – All Categories 

High-rate Solids Min Max Avg LQ UQ 

Yac 0.05 0.05 0.014 0.1 0.048 0.027 0.073 

kdec_xac 0.02 0.02 0.001 0.05 0.022 0.008 0.036 

KInh3_ac 0.0018 0.0018 0.00026 0.0223 0.0060 0.0009 0.0119 

pHUL_ac 7 7 6.7 7 6.9 6.7 7 

pHLL_ac 6 6 5.2 6 5.8 5.4 6 

km_h2 35 35 1.68 209 50.6 25.3 59.0 

Ks_h2 2.5 x 10-6 7 x 10-5  1 x 10-6 0.0006 0.0001 8.3 x 10-6 7.2 x 10-5 

Yh2 0.06 0.06 0.0089 0.183 0.057 0.021 0.065 

kdec_xh2 0.02 0.02 0.001 0.3 0.080 0.003 0.227 

pHUL_h2 6 6 6 6.7 6.4 N/A N/A 

pHLL_h2 5 5 5 5.8 5.4 N/A N/A 

LQ = Lower quartile; UQ = Upper quartile; N/A = Not applicable for parameters with less than 3 references 

The STR suggested the model outputs’ sensitivity relevant to each kinetic parameter. The level of sensitivity 

is categorised into 3 levels, namely (1) low or no sensitivity, (2) medium sensitivity under dynamic conditions 

and (3) high sensitivity under both steady-state and dynamic conditions. No suggestion was given for the 

stoichiometric parameters.   

From the survey, it was observed that 31 articles have applied ADM1 modelling, wherein 305 counts of 

parameter calibrations were made. Researchers calibrate parameters to optimise the fit accuracy of their 

models. By grouping these counts according to their level of sensitivity suggested in the STR (Table 5), it is 

evident that parameters classified with high sensitivity indeed have a higher tendency (or bias/preference) to 

be calibrated. However, parameters with lower suggested sensitivities do not necessarily mean fewer 

adjustment frequency (cf. km_su versus kdec_xsu). This observation supports the fact that parameters have an 

inter-correlated effect on the model outputs, and that STR-suggested sensitivities might not be a reliable 

indication of the sequence or priorities with regards to calibration. 

Stoichiometric parameters are usually not calibrated because their conversions are theoretical. In contrast, 

composite particulate conversions (fSI,XC, fXI,XC, fCH,XC, fPR,XC, fLI,XC) are modified frequently. Typically these 

conversions are determined through experimental observations (Lübken et al., 2007; Mairet et al., 2011). It is 

also pointed out in the STR that these conversions are highly variable and dependent on the substrate type 

and process. Adoption of the “composite particulate” (Xc) concept in ADM1 means that, depending on how 

these conversion parameters are defined, distribution of COD (as a result of disintegration process) to 

carbohydrates, proteins and lipids state variables has an indirect influence on the output sensitivities.  
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Table 5: Number of ADM1 parameter modifications observed during literature survey 

 Parameter Sensitivity as Suggested by STR 
Calibration 
Counts 

No Suggestion 
Low or No 
Sensitivity 

Medium 
Sensitivity 

High Sensitivity 

0 – 4 

fFA,LI ; fH2,SU ; fBU,SU ; 

fPRO,SU ; fAC,SU ; 

fH2,AA ; fVA,AA ; fBU,AA 

; fPRO,AA ; fAC,AA 

Ks_IN ; pHUL_acid ; 

pHLL_acid ; pHUL_acet 

; pHLL_acet ; Ysu ; 

Ks_aa ; Yaa ; km_fa ; 

Ks_fa ; Yfa ; KIh2_fa ; 

Yc4 ; Ypro ; Yac ; Yh2 

; pHLL_h2 

kdec_xsu ; kdec_xaa ; 

kdec_xfa ; kdec_xc4 ; 

kdec_xpro ; kdec_xac ; 

pHLL_ac ; kdec_xh2 ; 

pHUL_h2 

pHUL_ac 

5 – 9 

fSI,XC km_su ; Ks_su ; km_aa ; 

km_c4 ; Ks_c4 ; Klh2_c4 

; km_h2 

Klh2_pro ; Klnh3_ac ; 

Ks_h2 

 

10 – 14 
  khyd_li ; Ks_pro Ks_ac 

15+ 

fXI,XC ; fCH,XC ; fPR,XC 

; fLI,XC 

 km_pro kdis ; khyd_ch ; khyd_pr 

; km_ac 
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2.5. Current Practices of ADM1 Parameter Estimation 

Parameter estimation is known to be a highly subjective procedure, as it relies on the modeller’s discretion and 

experience (Koch et al., 2010). The simplest approach would be to reference calibrated parameters from 

previous studies where similar substrate type is experimented; however such data is often neither available 

nor exactly applicable to the scenario at hand (Astals et al., 2014).  

Batch tests have been used to study model parameters. For instance, a specific bacteria type could be isolated 

in a batch system together with a particular soluble substrate. Given the substrate-limited condition, it would 

allow one to determine the specific substrate uptake rate which is a parameter required by ADM1. Some 

modellers prefer estimating kinetic parameters through the use of a batch test called BMP (Biomethane 

Potential) test first and then applying the parameters for continuous modelling (Antonopoulou et al., 2012). 

BMP test involves introducing a calculated quantity of substrate into a known quantity of sludge based on a 

certain substrate to biomass ratio. Biogas production rate is continuously monitored whilst samples are 

extracted at fixed time intervals to monitor the evolution of specific constituents. Thereafter, kinetic parameters 

(e.g. hydrolysis rate, hydrogen and VFA uptake rates) can be approximated by fitting ADM1 against the batch 

experimental data using non-linear estimation methods.  

Despite its popularity, Baltes et al. (1994) cautioned against estimating kinetic parameters of Monod growth 

kinetic model (which ADM1 uses) from batch systems, as the estimated parameters would fail under dynamic 

feed situations. Instead, the author suggested that the estimation should be applied to experiments with 

continuous, time-varying feed rates. Batstone, Tait and Starrenburg (2009) further pointed out that as a batch 

system the BMP testing is unable to conduct under the same conditions (except temperature) as the full-scale 

digester. Therefore, batch testing is deemed not entirely representative. Another drawback is that the test 

requires specialised experimental setup which is costly and time-consuming. 

A major limitation of batch systems is the absence of inputs variance. The only model input is the initial 

conditions, which as a consequence, induces inadequate outputs sensitivity (Lokshina & Vavilin, 1999). 

Donoso-Bravo et al. (2011) concurred that experimental data from continuous systems are appropriate for 

kinetic parameter estimation, provided that the experiment ran at different dilution rates or where inputs are 

dynamic. Many publications have demonstrated estimation of ADM1 parameters using data obtained from 

continuous or semi-continuous systems on lab-scale (Blumensaat & Keller, 2005; Boubaker & Ridha, 2008); 

however only a few actually featured modelling of full-scale industrial plants (Batstone et al., 2009; Girault & 

Steyer, 2010; López & Borzacconi, 2009).  

In a study by Batstone, Tait & Starrenburg (2009), a full-scale plant operating at variable flow and organic 

loading was modelled. The authors compared the modelling performance when using biodegradability extent 

and hydrolysis parameter (khyd) estimated separately from BMP test data and 1.5 years full-scale plant data. 

Parameters estimated from the BMP test were found to result in poorer modelling performance, supposedly 

due to the estimated hydrolysis rates being too low. Hydrolysis values estimated from continuous data were 

an order of magnitude higher.      

The typical procedure taken for estimating ADM1 parameters is summarised by Donoso-Bravo et al. (2011) in   

Figure 3. When minimising the objective function, it is common practice to only calibrate parameters that exhibit 
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high sensitivity towards the model outputs instead of the entire group of ADM1 parameters. By reducing the 

number of degrees of freedom and bias, it allows one to execute model fitting quicker and avoid parameter 

equifinality situations where more than one set of parameters have the same model fitting accuracy. For that 

reason, researchers often apply some sort of sensitivity analysis techniques to rank model parameters 

according to their sensitivities on model outputs.  

 

Figure 3: Parameter estimation procedure typically followed in anaerobic digestion modelling (Donoso-Bravo et al., 2011) 

A literature survey into the methods used in published ADM1 research was conducted (see Appendix, Table 

20). The survey suggests that there is currently no protocol on parameter calibration, and in many cases, the 

method applied is not described explicitly. It is common practice that stoichiometric parameters are left 

uncalibrated and their default values (as suggested in the STR) retained unless sensitivity analysis suggests 

otherwise. For kinetic parameters, different approaches were noted: 

• Only adjust kinetic parameters that are suggested in the STR as highly sensitive while parameters 

deemed less sensitive are left unchanged. e.g. Blumensaat & Keller (2005) 

• Select kinetic parameters based on outcomes of a sensitivity analysis and only calibrate a few of the 

most sensitive ones. e.g. Jeong et al. (2005), Koch et al. (2010), Razaviarani & Buchanan (2015) 

• Calibrate a selected group of parameters based on expert knowledge about the substrate or its 

degradation behaviour. e.g. Mairet et al. (2011) 

• Calibrate parameters in groups in conjunction with digester design-related constants e.g. Bernard et 

al., (2001) decoupled the calibration process by first classifying parameters into three subsets then 

calibrate them sequentially: (1) kinetic parameters, (2) transfer coefficient kLa and (3) the yield 

coefficients. 
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• Group parameters according to different level of sensitivity, then calibrate parameters in the high 

sensitivity subset first, followed by the next sensitivity subset if the objective function objective is not 

met e.g. Coelho et al. (2006) grouped the kinetic parameters into the 3 groups of sensitivities (High, 

Medium, Low) as suggested in the STR, and calibrate each group sequentially. 

In an alternative approach, Girault & Steyer (2010) aimed at balancing total nitrogen, ammonium and COD 

whilst keeping the model parameters as default. To achieve nitrogen and ammonium balance, the nitrogen 

contents of composite particulate (Xc), protein (XPr) and soluble and particulate inerts (SI, XI) were calibrated. 

COD balance is achieved by adjusting the proportion of SI and XI relative to the total COD. These constants 

are normally fixed values by default.   

In conclusion, it can be said that there is currently no consensus or common framework for sensitivity analysis 

and which parameters subset to be calibrated.  
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2.6. Sensitivity Analysis Techniques 

The purpose of performing sensitivity analysis is to understand the change in model outputs as a result of a 

predefined change in model inputs (Sin et al., 2011). Most commonly varied inputs in ADM1 are the kinetic 

and stoichiometric parameters but could also include influent conditions and system conditions.  

2.6.1.   Local Sensitivity Analysis 

Local sensitivity analysis involves evaluating the differential changes in the model outputs with respect to the 

change in an input parameter value at a specific time (Equation 29). To determine the sensitivity of a complete 

parameter set, parameters are varied one at a time and the relative change in outputs are totalised as the 

weighted sum or as errors (Donoso-Bravo et al., 2011).  

While this technique is relevant for research in process control and problem identification, it is limited to 

describe the linear relationship between the input and output. It does not identify correlations between the 

inputs and does not consider the combined effect of two or more inputs on the outputs (Sin et al., 2011).      

!"#
!$%

=
"'($% + ∆$%)

∆$%
 

Equation 29 

where: 

yi is the jth output; 

θi is the ith input  

 

2.6.2.   Global Sensitivity Analysis 

Global sensitivity analysis is often referred to in the literature as an analysis of variance (ANOVA) case because 

it is commonly performed in conjunction with uncertainty analysis (Saltelli et al., 2008). A common use of these 

techniques is to rank each input according to their individual impact on the outputs’ variance, by which the 

most influential parameter results in the most uncertainty in the outputs, and vice versa. Furthermore, it 

quantifies how much variance each input parameter is contributing to the outputs; therefore provides the plant 

designer valuable insights as to which uncertainty should be reduced in order to achieve a robust process (Sin 

et al., 2011). 

According to a review by Donoso-Bravo et al. (2011), various global sensitivity analysis techniques have been 

applied in WWTP modelling research. These include Morris Screening (Morris, 1991), Standard Regression 

Coefficient (SRC) method (Helton & Davis, 2003) and variance decomposition (Saltelli et al., 2008).  

The SRC method involves applying first-order linear regressions to each model output generated from the 

Monte Carlo (MC) simulation. Thereafter, the regression coefficients are normalised using the standard 

deviations of the MC simulation data. These coefficients represent the sensitivity of each parameter. As noted 

by Sin et al. (2011), this method may not be suited for non-linear models because it requires a coefficient of 

determination (R2) above 0.7 to be valid.  
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For non-linear models, variance decomposition techniques (e.g. FAST, Sobol Indices) could be applied 

instead. These techniques decompose variance from results of Monte-Carlo into indices/components that 

represent the interaction between input variables and outputs (Sobol & Kucherenko, 2005).  

Potentially, multivariate regression methods could present an alternative approach to global sensitivity 

analysis, given their ability to recognise underlying patterns between the model inputs and outputs, and to 

describe them linearly after mathematical transformation (Madsen et al., 2011). Regardless of which method, 

the computational time is typically long due to the iterative MC runs, and thus a concern often pointed out by 

researchers. 

2.7. Uncertainty Analysis Using Monte Carlo Simulation 

Uncertainty analysis involves sampling values from uncertain inputs and then applying these samples through 

a mathematical model to generate output uncertainty – a process commonly referred to as propagation of 

uncertainty. Input uncertainty is a range of values presumed, based on limited knowledge, to represent the 

true value. Output uncertainty typically varies more when additional sources of input uncertainty are included 

(Sin et al., 2009).  

The Monte Carlo (MC) method is regarded as a simplistic yet effective way for propagating uncertainty. Apart 

from the advantage that the original process model requires no modification, MC results are intuitively easy to 

interpret and compatible with a wide variety of sensitivity analysis techniques (Diwekar & David, 2015).  

Selecting an appropriate number of simulation/iteration runs and the type of sampling procedure are important 

aspects of the Monte Carlo method. This ensures that the MC results have adequate resolution for identification 

of each output’s distribution. Latin Hypercube Sampling (LHS) and Random Sampling are two sampling 

procedures commonly applied in Monte Carlo simulations (Diwekar & David, 2015). While Random Sampling 

generates random values within the respective subset based on uniform probability, LHS incorporates 

probability as part of sampling by assigning weights to each sample element/parameter subset. Due to the 

stratified approach, LHS is generally considered to be more efficient and better suited for computationally 

expensive models. However, if stoichastic uncertainty exists, Random Sampling is the preferred option (Sin et 

al., 2009).   

Input uncertainty framing is a critical step of uncertainty analysis (Sin et al., 2009). Framing is defined as the 

reasoning behind the input uncertainties i.e. range and statistical distribution of values selected. It influences 

the result produced by the subsequent sensitivity analysis and the interpretation thereof.  
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2.8. Multivariate Regression Methods  

Modelling of dependent/output variable(s) from a large number of independent/input variables within a 

multivariate data set is known as “multivariate regression”. Linear regression methods are considered 

inadequate because multicollinearity often exists within the data set. Multicollinearity is a term that describes 

a scenario where some independent variables are highly correlated or collinear.  

Kleinbaum et al., (1998) noted that variance in the regression parameters increases as the degree of 

correlation increases; a phenomenon that leads to poor accuracy when predicting unseen data. For this 

reason, dimension reduction is the foremost step in multivariate regression methods. The objective of 

dimension reduction is to reduce the number of independent variables so that the influence of multicollinearity 

is lessened (Bair et al., 2006). 

Understanding the influence of a particular independent variable with respect to a specific dependent variable 

within a large multivariate data set is difficult but it is possible to identify the underlying patterns/relationships 

within the data set that describes their relationships (Madsen et al., 2011). Two popular multivariate regression 

methods namely, PCR (Principal Component Regression) and PLSR (Partial Least Squares Regression), are 

known for their dimension reduction and pattern recognition functions. 

PCR (Principal Component Regression) 

The concept behind PCR lies in the statistical method called Principal Component Analysis (PCA). PCA brings 

about dimensionality reduction through a linear projection of high dimensionality data into a lower dimensional 

space while retaining the maximum variance in the data. A set of Principal Components constitutes the lower 

dimensional space (Maitra & Yan, 2008). The first principal component provides a direction in the data where 

the highest variation lies, meanwhile the subsequent principal components indicate the direction perpendicular 

(i.e. uncorrelated) to the previous component’s direction along which the next highest covariance exists. PCR 

is simply a regression of response variables using principal components as predictors. 

The PCA algorithm is summarised as follows (Geladi & Kowalski, 1986): 

• Step 1:   Create a covariance matrix from the input variable matrix  

• Step 2:   Obtain the eigenvectors, together with a corresponding set of eigenvalues, by 

applying Singular Value Decomposition technique on the variance matrix. These 

eigenvectors are the so-called principal components. Collinearity is completely 

avoided due to orthogonality.  

• Step 3:    Rank the components in descending order of corresponding eigenvalues’ magnitude 

• Step 4:    The user may select the number of components to use for regression. In general, 

eigenvectors corresponding to small eigenvalues are omitted, since most of the 

information is held by the higher eigenvalues.     

Stellenbosch University https://scholar.sun.ac.za



Chapter 2: Literature Review 

35 

A notable drawback of PCA is the fact that the technique focuses solely on describing the variation in the 

predictive variables and does not factor any relations with the dependent variables into the directional 

searching. This implies that the directions of the components might not be the best for predicting the model 

outputs. Furthermore, some components with large weightings (i.e. eigenvalues) may retain information 

irrelevant for prediction. PCR is thus referred to as an unsupervised regression method (Maitra & Yan, 2008; 

Sarkar & Sobie, 2010).  

PLSR (Partial Least Squares Regression) 

Unlike PCA, the PLSR algorithm takes into account the correlation between the independent and dependent 

variables as part of its dimension reduction procedure. The new components created in PLSR, termed Latent 

Variables, aims to capture as much information in the original independent variables as well as the importance 

of each variable in relation to the dependent variables. As such, PLSR is considered a supervised regression 

method (Maitra & Yan, 2008).    

An overview of the concept is illustrated in Figure 4 and the Nonlinear Iterative PLS (NIPALS) algorithm is 

outlined in Table 6. Consider a data set that consists of an input matrix X and an output matrix Y, whereby 

each matrix is composed of n number of samples for every X and Y variable. PLSR follows an iterative 

algorithm that identifies weight vectors (one for each data matrix), which upon linear combinations with the two 

data matrices, will give rise to two sets of latent variables (T and U) with maximum covariance. 

The inner relation between the two latent variables is described by the regression coefficient vector B. At this 

point, the latent input and latent output variables correlate the greatest variation in the inputs to the outputs. 

According to Geladi & Kowalski (1986), a high number of latent variables selected for regression should be 

avoided because higher degree components may only describe data noise and induce collinearity problems. 

Moreover, there could be a risk of overfitting (Madsen et al., 2011). 

 

 

 

 

X: Input matrix; Y: Output matrix; T: Latent Input; U: Latent Output; R: X-weights; P: X-loading; Q: Y-loading; F: Y-residual 

Figure 4: Illustration of the PLSR concept showing dimensions of the data matrices, weight and loading vectors 

 

 

 

 

 

 

 

X T U Y

X ≈ TPT

T = XR U = YQU = BT

Measurable Inputs Latent Input Latent Output Measurable Outputs
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Table 6: Summary of the NIPALS algorithm for PLSR (Geladi & Kowalski, 1986; de Jong, 1993) 

 Description Algorithm 

I.  Data Preparation 

Step 1 Mean-centering Calculate the average value of each variable 

within the data set, then subtract the 

averages from the corresponding variables.   

Step 2 Variance scaling 

 

Calculate the standard deviation of each 

variable within the data set, then divide each 

variable by the corresponding deviations.  

The resultant X and Y blocks are now termed 

X0 and Y0 respectively. 

II.  Determine 1st set of latent variables, weights and loading vectors 

Step 3 Initial guess for u1 Select a random column of Y0 

Step 4 Find t: latent variable of X w1 = X’0u1 

t1 = X0w1 

Step 5 Find u: latent variable of Y q1 = Y’0t1 

u1 = Y0q1 

Step 6 Converging t and u values Repeat steps 4 and 5 until u converges. 

These are the final latent variables, also 

known as scores. 

Step 7 Find b: regression coefficient relating t and u u1 » b1t1 

Step 8 Find p: loading vector of X Since X0 » t1p’1 , the loading vector can be 

calculated as: 

p1 = X’0t1 / (t’1t1) 

III.  Determine 2nd set of latent variables, weights and loading vectors  

    (Optional – Only if two or more latent variables are desired) 

Step 9 Deflate X and Y data matrices 

This step removes the variation attributed to 

the first input and output latent variables from 

their respective matrices. 

Deflated data matrices are simply residuals 

from the previous regression: 

X1 = X0 – t1p’1 

Y1 = Y0 – b1t1q’1 

Step 10 Find new latent variables, weights and loading 

vectors 

Repeat steps 4 – 7 using the deflated data 

matrices 

Indices of all newly determined vectors shall 

increase by 1  

IV.   Concluding steps 
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 Description Algorithm 

Step 11 Extract all possible latent factors Repeat step 10 until the number of PLS 

components meet the user’s objective 

Step 12 Collate all vectors calculated during each 

iteration 

Compile the vectors into matrices: 

T = [t1, t2, t3,…] 

U = [u1, u2, u3,…] 

P = [p1, p2, p3,…] 

Q = [q1, q2, q3,…] 

W = [w1, w2, w3,…] 

Step 13 Find R: alternative weighting matrix for X data 

matrix 

This step replaces W (which relates to the 

depleted X matrices) with R (which relates to 

the original X matrix), as it provides more 

relevant insights to the relationship between 

each X variables and the latent variable T.  

Since T = XR, the alternate weighting matrix 

can be calculated as: 

R = (T’T)-1T’X 

Note: The subscripted indices beneath each vector indicates the latent variable number. 

 

  

Stellenbosch University https://scholar.sun.ac.za



Chapter 2: Literature Review 

38 

2.9. Model Objective Function & Validation 

Objective function, also referred to as the cost function, is a criterion chosen by the modeller that measures 

the model’s goodness of fit. Model optimisation aims to optimise this function by calibrating model parameters 

using numerical algorithms. Selection of an objective function is a critical factor as it influences how parameters 

are calibrated and hence the outcomes of model fitting (Batstone, Pind & Angelidaki, 2003).  

According to Donoso-Bravo et al. (2011) the most popular objective function utilised for AD modelling is the 

sum of least squares. The concept lies in minimising the squared distance between measured and predicted 

data points (Equation 30). A slight variant is the Root Mean Square Error (RMSE), Equation 31, which is a 

commonly applied function in chemometrics to validate model predictions (Esbensen & Julius, 2010). Note 

that the output variables, yexp and ysim, are first scaled before RMSE is calculated. 

Biogas flow is sometimes applied as the sole criterion of objective function evaluation (Donoso-Bravo et al., 

2011). However, based on the literature survey (Table 20), research works involving ADM1 tend to include 

other experiment measurements as well, such as gas constituents (commonly methane, carbon dioxide & 

hydrogen), VFA (total or individual species), VSS, NH4, pH and alkalinity.  

,($) = -%./0"123(4) − "6#7(4, $)9
:

;

<=>

 

 Equation 30 

?@AB = C∑ 0"123(4) − "6#7(4)9
:

E
<=>

.  

 Equation 31 

Evaluating a calibrated model against an unseen set of data is an important step of model development 

(Esbensen & Julius, 2010). A common model validation practice involves dividing experimental data into two 

sets intentionally: the first set is utilised for parameter calibration, while the second set is subjected to 

validation. Parameters calibrated from the first set are applied in the modelling of the second set and then the 

goodness-of-fit is evaluated against the first set’s.  

There are no definite rules on how the data set should be divided. For instance, Bernard et al. (2001) 

designated the steady-state period as the first set and the transient period as the second set. The author 

concluded that calibration using steady-state data is capable of producing valid modelling of transient 

behaviours. On the other hand, Barrera et al. (2015) partitioned the data into two subsets, both of which have 

different operating conditions (varying COD and sulphate loadings). Thamsiriroj & Murphy (2011) validated the 

first subset with another subset of which the reactor operated at distinctly different hydraulic retention time. 
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 CHAPTER 3  
 
 

RESEARCH METHODOLOGY 

3.1.   ADM1 Model Setup 

3.1.1.   Background of Full-scale Plant 

The case study considered in this research work is a newly commissioned industrial-scale anaerobic digestion 

plant that is designed to treat wastewater generated from a dairy factory. Various types of milk products 

including cheese is produced at this factory. The treatment plant was constructed with the aim to reduce 

hydraulic and COD load to the local municipal sewage treatment plant; by doing so, valuable resources such 

as energy and water are recovered. Energy recovered in the form of biogas is used to produce steam whilst 

the treated wastewater is further upgraded for reuse as boiler feed water.  

The design of this plant is categorised as an Anaerobic MBR (Membrane Bio-Reactor) process. Unlike 

conventional AD processes where biomass is separated by clarification or three-phase separators, this 

technology utilises externally pressurised ultrafiltration (UF) membranes to facilitate the solid-liquid separation. 

This unique process produces exceptionally clean effluent which could be fed to a reverse osmosis process 

without further treatment.  

3.1.2.   Plant Configuration 

Wastewater produced by the factory consists of Cleaning-in-Place (CIP) water, flushing water and tanker rinse 

water. Also, whey is released intermittently into the wastewater stream to boost the COD concentration. The 

blended wastewater is sent over a self-cleaning filter with a filtration diameter of 1.5mm before entering the 

buffer tank. Figure 5 illustrates an overview of the Anaerobic MBR process. 

Variations in flow, concentration and pH of the combined wastewater are equalised in the buffer tank. The tank 

is designed to operate at a minimum retention time of 8 hours to promote hydrolysis and pre-acidification. 

Nutrients such as ferric chloride and micro-nutrients are added into the buffer tank. Given the high pH CIP, no 

external alkalinity addition is required.  

From the buffer tank, the pre-acidified wastewater is sent to the anaerobic digester (Figure 5 – Stream 1). The 

wastewater is pre-heated with treated wastewater in an heat exchanger, in order to minimise energy 

consumption. Organic matters such as VFAs in the wastewater are converted to biogas in the anaerobic 

digester. The produced biogas is fed to a steam boiler whilst any excess is flared (Figure 5 – Stream 2).  

A portion of the anaerobic digester content is recycled and sprayed via spray nozzles onto the liquid surface 

to prevent foaming. The recirculation line passes through a heat exchanger to maintain the digester 

temperature as closely as possible to 35°C. Due to the nature of the wastewater (i.e. acidic whey and 

predominantly alkaline CIP), no external alkalinity is introduced into the digestion process. Hydrochloric acid 

dosing is available as a backup to ensure that pH is maintained below 7.5.  
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In order to retain the anaerobic biomass in the digester and to produce a high-quality filtrate for the downstream 

reverse osmosis system, cross-flow type ultrafiltration (UF) is deployed. The contents of the anaerobic digester 

are continuously recirculated across these UF skids, where the pressure forces clean liquid through the 

membranes and leave particulate biomass behind in the return loop to the digester (Figure 5 – Streams 4 & 

5). In order to maintain the flux rate at an acceptable level, the cake layer formation on the UF membrane 

surface is controlled by means of periodic backwash and chemical Cleaning-In-Place (CIP).     

Waste Anaerobic Sludge (WAnS) is discharged from the anaerobic digester periodically to prevent excessive 

biomass concentration build-up which would jeopardise the membrane performance (Figure 5 – Stream 3). 

The excess WAnS is dewatered in a decanter centrifuge subsequently and the reject water is returned to the 

anaerobic digester.   
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3.1.3. Plant Data Analytical Methods 

Data used in the research study are collected utilising either online measuring devices or offline (manual) 

sampling. The frequency of data recording, as summarised in Table 7, follows the operation philosophy set 

out by the plant designer. Note that some parameters are only analysed occasionally; therefore in order to 

construct a complete set of data that covers the entire period, analyses not measured daily were interpolated 

according to a “4 days earlier and 3 days future” basis. Refer to Appendix Section 8.4 for the raw data.  

Table 7: List of measurements and sample frequency 

Component Test Method 
Digester 

Feed 

(Stream 1) 

Biogas 

(Stream 2) 

WAnS 

(Stream 3) 
Digester 
Contents 

Permeate 
(Stream 6) 

Flow [m³/day] Online flowmeter Daily total1 Daily total2 Daily total3 - - 

pH Online probe 4 Daily - - Daily - 

Temperature [°C] Online probe 4 Daily - - Daily - 

TCOD [mg/l]  Hach TNTplus822 5  Daily - - Daily Daily 

SCOD [mg/l] Hach TNTplus822 5 Daily - - - - 

TSS [mg/l] APHA 2540 6 1 x / week - - 3 x / week - 

VSS [mg/l] APHA 2540 6 1 x / week - - 3 x / week - 

VFA [meq/l] Hach TNT872 5 1 x / week - - - 3 x / week 

Alkalinity [meq/l] APHA 2320 6 1 x / week - - - 2 x / week 

TN [mg N/l] Hach TNT823 5 1 x / week - - - 1 x / week 

NH4-N [mg N/l] Hach LCK302 5 1 x / week - - - 3 x / week 

NO2-N [mg N/l] Hach TNT839 5 3 x / week - - - 3 x / week 

NO3-N [mg N/l] Hach TNT835 5 3 x / week - - - 3 x / week 

Total-P [mg P/l] Hach TNT844 5 1 x / week - - - 1 x / week 

PO4-P [mg P/l] Hach TNT846 5 1 x / week - - - 1 x / week 

Ca [mg/l] Hach 0.8M EDTA 5 1 x / week - - - 1 x / week 

Mg [mg/l] Hach 0.8M EDTA 5 1 x / week - - - 1 x / week 

SO4 [mg/l] Hach TNT864 5 2 x / week - - - 2 x / week 

CH4 content [%] Online probe 2 - Daily - - - 

CO2 content [%] 100% - CH4% - Daily - - - 

Notes  

1 Endress & Hauser Proline Promag 50L Electromagnetic Flowmeter (Max error: ±0.5%) 

2 Endress & Hauser Proline Prosonic Flow B 200 Ultrasonic Flowmeter (Max error: ±1.5%) 

3 Endress & Hauser Proline Promag 50P Electromagnetic Flowmeter (Max error: ±0.5%) 

4 Endress & Hauser Orbisint CPS11D Glass Electrode Sensor 

5 Measured using Hach DR 6000TM spectrophotometer together with the Hach reagent as indicated 

6 Standard Methods (APHA, 1992) 

Table 8 presents a summary of the wastewater composition during the steady-state period. The average 

values exhibit similar characteristics (except for flow rate and ammonia) as expected by the plant designer. 

When comparing the composition against Cheese Whey Wastewater (CWW) compositions published by other 
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researchers, it is evident that the wastewater composition is highly variable. The reason for the variability, 

according to Carvalho, Prazeres & Rivas (2013), is that the composition is dependent on the fraction of non-

valorised cheese whey and quantity of cleaning wastewater disposed of. Particularly for this case study, 

variability is expected because whey is introduced and blended into the other wastewater in batches. 

Table 8: Comparison of measured data versus the digester’s design basis and various published cheese whey 

wastewater characteristics 

Component Unit 
Steady-state Data# Design 

Basis* 
Literature References 

Min Max Avg 1 2 3 

Flow m3/d 440 1613 1158 1500  - - - 

Temperature °C 32.9 38.9 36.3 35 ± 3 - - - 

COD mg/l 3504 11939 7352 8260 
5400 - 

77300 
71410 

8800 - 

25600 

pH - 5.3 8.8 6.3 4 - 7 4.3 - 8.7 5.92 4.0 - 4.6 

Particulate COD 

(PCOD) 
mg/l 542 6603 3448 4090 - - - 

Soluble COD (SCOD) mg/l 1495 5983 3904 4170 - - - 

Total Suspended 

Solids (TSS) 
mg/l 210 2580 1360 2600 - - 1600 - 4800 

Volatile Suspended 

Solids (VSS) 
mg/l 200 2400 1270 - - - - 

Total Kjeldahl Nitrogen 

(TKN) 
mg/l 14 355 193 360 - 1610 310 - 360 

Ammonia Nitrogen 

(NH4-N) 
mg/l 5 91 40 720 - 161 52 - 71 

Nitrate (NO3-N) mg/l 172 239 203 170 - - - 

Nitrite (NO2-N) mg/l 81 111 94 70 - - - 

Total Phosphorus (TP) mg/l 5 58 44 62 - - 6.6 - 7.2 

Calcium mg/l 24 116 56 60 - - - 

Magnesium mg/l 1 118 25 95 - - - 

Sulphate mg/l 5 58 44 45 - - - 

Volatile Fatty Acids 

(VFA) 
mg/l 301 2041 1279 - - - - 

Alkalinity 
mg/l as 

CaCO3 
180 1248 673 - - - - 

Lactose g/l - - - - - 44.37 
0.178 - 

0.182 

Proteins g/l - - - - 2.3 - 33.5 9.06 - 

Fats & oils g/l - - - - 0.4 - 5.7 - 1.83 - 3.76 

#  Refers to Day 80 – 230 of actual plant operation. Data corresponds to the Digester Feed stream (Stream 1).  

*  Refers to the reference design basis followed by the plant designer. 

Lit. Ref. 1  Kalyuzhnyi, Perez Martinez and Rodriguez Martinez (1997) 

Lit. Ref. 2  Yang, Yu and Hwang (2003) 

Lit. Ref. 3  Rivas et al. (2010) 
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3.1.4. Translating full-scale plant data to ADM1 

ADM1 requires the influent substrate to be described as 26 state variables, of which 20 variables are COD-

based variables. These variables are far more sophisticated than the rather basic type of measurements taken 

in full-scale operation (cf. Table 7). The use of some reasonable assumptions is therefore necessary in order 

to decompose the measurement data.  

SCOD and PCOD measurements are considered as key starting points for COD decomposition. The 

theoretical relationship between each state variables with these two measurements is illustrated in Figure 6. 

The first step involves estimating the biodegradability of the COD because it allows one to classify the 

proportion of inerts and the biodegradable components with respect to SCOD and PCOD respectively.  

The second step involves differentiating the biodegradable components into the more sophisticated 

components as required by ADM1 structure. Published literature that have reported composition of similar 

substrate type had to be referenced since the plant measurements do not have such analysis.  

Lastly, all components are converted to kgCOD/m3 based on their theoretical specific COD. The philosophy 

used for non-COD based state variables is discussed further in subsequent sections. 

 

 

Figure 6: Schematic describing how COD measurements are differentiated and translated into ADM1 state variables 

 

3.1.5. Substrate Biodegradability 

Establishing the biodegradability of the substrate is one of the most critical steps when translating the substrate 

characteristics to ADM1 input components. It allows one to differentiate the degradable organic components 

of the COD apart from the inert fraction, which as a result, defines the amount of COD available for reactions. 

Biodegradability factor therefore has a direct influence on all modelling outputs.  

To evaluate a substrate’s biodegradability, a BMP (Bio-Methane Potential) test could be performed (Angelidaki 

et al., 2009). The BMP test aims to quantify the volume of methane produced from a known quantity of 

PCODSCOD

Soluble Inerts VFAs Solubles Part. Inerts Particulates Biomass

Valerate
Butyrate
Propionate
Acetate

Monosaccharides
Amino acids
LCFAs

Carbohydrates
Proteins
Lipids
Composites

1) Plant Measurements:

2) Differentiation:

SI Sva Sbu Spro Sac Ssu Saa Sfa XI Xc Xch Xpr Xli Biomass

Xsu Xaa Xfa Xc4
Xpro Xac Xh2

3) Translation to ADM1:
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substrate per given quantity of biomass, thereafter Equation 32 is applied to quantify the biodegradable portion 

of the substrate.  

FG =
HI

350	NOP<
QA 

Equation 32 

where: 

fd is the biodegradable part of CODt; 

B0 is the ultimate methane potential [Nm³.CH4 ton VS-1]; 

CODt is the total COD of substrate added at the start of the test [kg COD.m-³]; 

VS is the concentration of volatile solids [kg.m-³]; 

However, as discussed in Section 2.4, using parameters (including biodegradability factor) determined from a 

batch test may not be appropriate for modelling a full-scale continuous plant. It is proposed that the substrate’s 

biodegradability is approximated from the continuous plant data by evaluating the amount of COD consumed 

for: (i) methane gas production, (ii) biomass production and (iii) denitrification against the total amount of COD 

that has entered the digester during the steady-state period.  

For biodegradability evaluation, “steady-state” period is defined as Day 80 to Day 230 of plant operation, as it 

is evident from Figure 7 that plant ramp-up took place predominantly from Day 1 to Day 79. 

 

Figure 7: Daily influent volumetric flow into digester, showing the ramp-up period (Day 1 - Day 79) and the steady-state 

period (Day 80 - Day 230) 
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Equation 33 describes how the biodegradability factor (fd) is estimated from the continuous plant data. It should 

be noted that this factor refers to the overall degree of biodegradability describing both soluble and particulate 

components in the substrate. Although specific biodegradability of soluble components may differ from that of 

the particulate components, provided that the digestion process is not hydrolysis limited, a universal factor is 

considered to be reasonable.        

FG ≈ 	
ST4UV	NOP	WT.XYZ4Y!

ST4UV	NOP	Y.4YZY!	!%[Y\4YZ																		 

≈
NOP]^_ + NOP`a

bNOPc1de<fc,# − NOPc1de<fc,gh + bNOP#Eg − NOP1ggh
 

Equation 33 

 

where: 

fd is the biodegradable part of total COD within the digester during the steady-state period; 

CODCH4 is the theoretical amount of COD attributed to methane gas produced during the steady-

state period [kg]; 

CODBM is the amount of COD consumed for microbial growth (evaluated as the excess sludge 

wasted) during the steady-state period [kg];  

CODreactor,i is the amount of COD present in the digester on the first evaluated day i.e. Day 80 [kg]; 

CODreactor,f is the amount of COD present in the digester on the last evaluated day i.e. Day 230 [kg]; 

CODinf is the amount of COD that entered the digester as influent during the steady-state period [kg]; 

CODeff is the amount of COD that exits the digester as  during the steady-state period [kg]   

 

Denitrification 

It is important to take into account the potential loss to denitrification, particularly when treating substrates with 

high concentrations of nitrates and nitrites, such as in this case.  

The denitrification term (CODDN) is defined to quantify the portion of total COD lost due to denitrification. Since 

the ADM1 model employed in this study is the default model, which does not have the mechanism to simulate 

the denitrification process, the amount of biodegradable COD would be an overestimation unless the loss to 

denitrification is discounted from the influent COD. The biodegradability factor without denitrification is hence 

corrected from Equation 34 as:  

FGi ≈ 	
NOP]^_ + NOP`a

bNOPc1de<fc,# − NOPc1de<fc,gh + bNOP#Eg − NOP1ggh − NOPj;
	≈ 0.88 

Equation 34 

 

where: 

CODDN is the amount of COD consumed due to denitrification of nitrates and nitrites during the 

steady-state period [kg]; 

Refer to the Appendix, Section 8.6.1, for an example of how the above factor is calculated. 
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Sulphate Reduction 

COD loss to sulphate reduction is deliberately omitted. Based on the theoretical loss as described in Section 

2.1.1, the low sulphate concentration in the influent implies that the impact will be insignificant.    

 

3.1.6. Influent Soluble State Variables 

The biodegradable portion of SCOD, which represents the hydrolysed products (monosaccharides, amino 

acids and LCFA) and VFAs, can be determined once the biodegradability factor is known. Next, to differentiate 

the COD contribution of hydrolysed products and VFAs, VFA constituents are first determined because VFA 

measurements are available.  

VFA is measured as a lumped concentration in mg/l. Compositional make-up of individual VFA constituents 

(valerate, butyrate, propionate & acetate) is approximated from a study investigating acidification of lactose 

wastewater (Yu & Fang, 2001). Thereafter, the COD contribution of each VFA constituents is calculated based 

on their specific COD content (Grau et al., 2007).   

Once the COD content of VFA is established the remainder of SCOD refers to the hydrolysed products. 

Compositional make-up of monosaccharides, amino acids and LCFA is assumed to have identical proportion 

as the carbohydrates, protein and lipids fractions respectively. Composition of carbohydrates, protein and lipids 

for cheese whey wastewater is widely reported in literature. Similar to the method followed for VFA, literature 

compositional guidelines are referenced and their specific COD values applied accordingly.   

Some dissolved hydrogen is expected in the influent since partial acidification will occur in the buffer tank. 

However, its concentration is negligible in comparison to the concentration within the methanogenic digester; 

hence the state variable for dissolved hydrogen is set to zero. Methanogenic activity in the buffer tank is 

expected to be non-existent, given the fact that no sludge was recirculated to the buffer tank. The state variable 

for dissolved methane is thus set to zero as well.  

Cations are calculated by summing the concentration of dissolved Ca2+, Mg2+, Na+ and K+ ions. The bivalent 

ions are plant measurements, whereas the monovalent ions are referenced from a dairy wastewater 

characterisation study (Danalewich et al., 1998). Remaining anions is calculated by ionic balancing: 

m.%T.\ = 	NU4%T.\ − [Oop] − [oNOrp] − [Qsm\] Equation 35 

 

An overview of the methodology applied to estimate soluble state variables is provided in Table 9 and Table 

10. Refer to the Appendix, Section 8.6.2, for calculation examples. 
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Table 9: Translating full-scale plant data to influent soluble state variables in ADM1 

State 
variable 

Description Method of estimation 

Ssu,in Monosaccharides (SCOD x fd’ – VFACOD) x ηsu 

Saa,in Amino acids (SCOD x fd’ – VFACOD) x ηaa 

Sfa,in Long-chain fatty acids (SCOD x fd’ – VFACOD) x ηfa 

Sva,in Valerate VFA x ηva,VFA x ϒva 

Sbu,in Butyrate VFA x ηbu,VFA x ϒbu 

Spro,in Propionate VFA x ηpro,VFA x ϒpro 

Sac,in Acetate VFA x ηac,VFA x ϒac 

Sh2,in Dissolved hydrogen Set to zero  

Sch4,in Dissolved methane Set to zero  

SIC,in Inorganic carbon Converted from bicarbonate alkalinity measurements 

SIN,in Inorganic nitrogen Converted from ammonium-N measurements 

SI,in Soluble inerts SCOD x (1 – fd’) 

San,in Anions Ionic balancing (see Equation 35) 

Scat,in Cations Sum of Ca2+, Mg2+, Na+ & K+ ions as kmol/m³ 

 

Table 10: Definition of terms denoted in Table 9 

Term Description Unit Definition/Reference 

SCOD Soluble COD 

concentration 

kg 

COD/m³ 

Obtained from actual plant sampling and analysis 

fd’ Biodegradability w/o 

denitrification 

- Equation 34 from Section 3.3.4 

VFACOD VFA COD kg 

COD/m³ 

Sum of COD associated with valeric acid, butyric acid, 

propionic acid and acetic acid 

ηsu Monosaccharides 

fraction 

- Assume similar proportion as carbohydrates fraction (ηch  

= 0.44). See definition in Table 12 for ηch 

ηaa Amino acids fraction - Assume similar proportion as protein fraction (ηpr = 

0.40). See definition in Table 12 for ηpr 

ηfa Long-chain fatty acids 

fraction 

- Assume similar proportion as lipids fraction (ηli = 0.16). 

See definition in Table 12 for ηli 

VFA Volatile fatty acids 

concentration 

mg/l Obtained from actual plant sampling and analysis 

ηva,VFA Valerate fraction - Approximated from acidification of dairy wastewater (Yu 

& Fang, 2001) as 0.09 

ηbu,VFA Butyrate fraction - Approximated from acidification of dairy wastewater (Yu 

& Fang, 2001) as 0.37 

ηpro,VFA Propionate acid 

fraction 

- Approximated from acidification of dairy wastewater (Yu 

& Fang, 2001) as 0.22 
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Term Description Unit Definition/Reference 

ηac,VFA Acetate fraction - Approximated from acidification of dairy wastewater (Yu 

& Fang, 2001) as 0.31 

ϒva COD equivalent of 

valerate 

kg COD. 

(kg va)-1 

ϒva = 2.039216 (Grau et al., 2007) 

ϒbu COD equivalent of 

butyrate 

kg COD. 

(kg va)-1 

ϒbu = 1.818182 (Grau et al., 2007) 

ϒpro COD equivalent of 

propionate 

kg COD. 

(kg va)-1 

ϒpro = 1.513514 (Grau et al., 2007) 

ϒac COD equivalent of 

acetate 

kg COD. 

(kg va)-1 

ϒac = 1.066667 (Grau et al., 2007) 

Ca2+ Calcium ions kmol.m³ Obtained from actual plant sampling and analysis as 

mg/l 

Mg2+ Magnesium ions kmol.m³ Obtained from actual plant sampling and analysis as 

mg/l 

Na+ Sodium ions kmol.m³ Interpolated from dairy wastewater characterisation 

survey (Danalewich et al., 1998) as 0.0536 kmol/m³ 

K+ Potassium kmol.m³ Interpolated from dairy wastewater characterisation 

survey (Danalewich et al., 1998) as 0.00387 kmol/m³ 

 

 

3.1.7.   Influent Particulate State Variables 

The composite particulate variable (Xc) is defined in ADM1 to represent a broad consortium of organic matter 

that includes dead biomass and miscellaneous organic matter with complex composition. It is not possible to 

estimate this variable given the available plant data. However, assuming disintegration is complete in the buffer 

tank, all particulate COD in the influent wastewater would have already disintegrated and Xc may be set to 

zero. This philosophy is in line with the recommendation made by Batstone et al. (2015) and Arnell et al., 

(2016) which suggests that Xc shall be disregarded when describing feed substrate due to its broad definition 

as well as the difficulty to quantify it by means of analytical methods.  

Acidifiers (Xsu, Xaa, Xfa) are expected to be present in the influent, considering the fact that some degree of 

pre-acidification will occur in the buffer tank. The amount of acidifiers is estimated based on its yield. According 

to a study by Yu & Fang (2002) which investigated acidogenesis of dairy wastewater, biomass yield is observed 

to be 0.26 g-VSS per g-COD removed. The amount of COD removed due to acidogenesis in this case study 

is however unknown because no data regarding the raw untreated wastewater entering the buffer tank is 

available. For this reason, COD of this stream is approximated by basing the ratio of COD converted to VFAs 

similar to that of the referenced study.   

Acetogens and methanogens (Xc4, Xpro, Xac, Xh2) are considered negligible. Growth of these species are not 

favoured since pH of the buffer tank remains at most times below 6.5 (Yu & Fang, 2001). An overview of the 

methodology applied to estimate soluble state variables is provided in Table 11 and Table 12. Refer to the 

Appendix, Section 8.6.3, for calculation examples. 
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Table 11: Translating full-scale plant data to particulate soluble state variables in ADM1 

State 
variable 

Description Method of estimation 

Xc,in Composite particulate Set to zero  

Xch,in Carbohydrates (PCOD x fd’ – Xdegr) x ηch 

Xpr,in Proteins (PCOD x fd’ – Xdegr) x ηpr 

Xli,in Lipids (PCOD x fd’ – Xdegr) x ηli 

Xsu,in 

Monosaccharide 

degraders/biomass [VFACOD ÷ facid – SCOD x fd’] x Yacid x ϒbm x ηch   

Xaa,in 

Amino acids 

degraders/biomass [VFACOD ÷ facid – SCOD x fd’] x Yacid x ϒbm x ηpr   

Xfa,in 

Long-chain fatty acids 

degraders/biomass [VFACOD ÷ facid – SCOD x fd’] x Yacid x ϒbm x ηli   

Xc4,in 

Valerate & Butyrate 

degraders/biomass 
Set to zero  

Xpro,in 

Propionate 

degraders/biomass 

Set to zero  

Xac,in Acetate degraders/biomass 
Set to zero  

Xh2,in Hydrogen degraders/biomass 
Set to zero 

XI,in Particulate inerts PCOD x (1 – fd’) 

 

Table 12: Definition of terms denoted in Table 11 

Term Description Unit Definition/Reference 

PCOD Particulate COD 
kg 

COD/m³ 

Obtained from actual plant sampling and analysis. 

PCOD = TCOD – SCOD 

Xdegr 
Degraders COD 

kg 

COD/m³ 

Sum of all degraders (i.e. Xsu, Xaa, Xfa, Xc4, Xpro, Xac, Xh2) 

ηch Carbohydrates 

fraction 

- Composition of typical cheese whey wastewater 

(Kalyuzhnyi et al., 1997; Yang et al., 2003): ηch = 0.44  

ηpr Protein fraction - Composition of typical cheese whey wastewater 

(Kalyuzhnyi et al., 1997; Yang et al., 2003): ηpr = 0.40  

ηli Lipids fraction - Composition of typical cheese whey wastewater 

(Kalyuzhnyi et al., 1997; Yang et al., 2003): ηli = 0.16  

facid Acidification - Fraction of COD in the buffer tank converted to VFAs 

and alcohols as a result of acidification of dairy 

wastewater (Yu & Fang, 2002): facid = 0.484  

Yacid Acidogen Yield g VSS/g 

COD 

Production rate of acidogens during acidification of dairy 

wastewater at pH of 6.5 (Yu & Fang, 2002): Yacid = 0.26  

ϒbm COD-equivalent of 

biomass  

g COD/g 

VSS 

Commonly accepted COD value for biomass (Eastman 

& Ferguson, 1981): ϒbm = 1.42 
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3.1.8.   Sludge Extraction 

Sludge is periodically wasted from the digester such that a F/M (Food-to-Mass) ratio of no less than 0.3 is 

maintained. The sludge wasting process is initiated manually under the discretion of the plant operator, and 

the amount of sludge to be wasted is determined according to the daily COD loading relative to the digester’s 

VSS content. An average ratio of 0.4 was maintained during the experiment. 

Having sufficient, but not excessive, biomass sludge with respect to the COD loading is critical for good 

digestion performance, as it promotes optimum microbial activity (Chen & Hashimoto, 1996). Optimal F/M ratio 

varies with different types of substrates. For example, F/M ratio for cellulosic substrates were found be around 

0.5 while substrates with high-fat content tend to degrade well at F/M ratios between 0.33 – 1.25 (Chynoweth 

et al., 1993; Raposo et al., 2006).  

ADM1’s mass balance equation calculates the net change in concentration of each particulate component (cf. 

Equation 19) during each ODE time-step. Although it takes into account the influent concentration, growth and 

decay reactions, the default equation does not consider losses due to sludge wastage. In that regard, an 

additional “sludge wastage” term (Xliq,sw) is introduced into Equation 19, which modifies to Equation 36. 

!tu#v,#
!4 =

w
Qu#v

bt#E,# − tu#v,#h + / x'y#,'
'=>p>z

− tu#v,6{ 
Equation 36 

 

where: tu#v,6{ =
w6u|G}1 × tu#v,#

Qu#v
 

 

where: 

Xliq,sw is the concentration of a particulate variable relative to the digester volume that is lost due to 

sludge wastage [kgCOD/m3]; 

Qsludge is the volume of sludge wasted daily [m3/day]; 

Xliq,i is the concentration of a particulate variable within the digester [kgCOD/m3] 

 

3.1.9.   Mass Balance Modification 

As described in Section 3.3.2 the type of AD process employed in this study is an Anaerobic MBR process 

whereby a CSTR digester is coupled with an externally pressurised ultrafiltration (UF) process. Even though 

ADM1 is adequate to model the CSTR process, by default it does not take into account the biomass separation 

and recirculation process. Because practically all particulates are held back by the UF membrane, the mass 

balance equation for particulates (Equation 36) further simplifies to Equation 37.  

!tu#v,#
!4 =

w
Qu#v

t#E,# + / x'y#,'
'=>p>z

− tu#v,6{ 
Equation 37 
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3.1.10.   Computational Software Setup 

The ADM1 model was coded and implemented using Scilab version 5.5.2. Refer to the Appendix, Section 8.7, 

for the Scilab codes. The model is designed to retrieve data from a Microsoft Excel spreadsheet which contains 

information required to initialise the simulation, such as: 

• Influent volume for each time interval 

• Influent state variables (calculated from actual plant water analysis) for each time interval 

• Actual plant measurands (e.g. VFA, N-NH4, VSS, pH, CH4 and CO2) for each time interval 

• Sludge wastage volume for each time interval 

• Digester initial state variables 

• Lower and upper bounds of parameters for which Monte Carlo is applied 

Besides stoichiometric and kinetic parameters, all other model parameters (kLa, pKa, acidity, carbon & nitrogen 

contents, etc.) are assigned their default values throughout the study, as they are mostly theoretical values 

and unlikely to change. Model inputs related to the digester were defined according to the digester’s 

specifications (Table 13). 

Table 13: Values specific to the digester modelled in this study 

Model 
Input 

Description Unit Value 

Vdigester Volume of CSTR m³ Actual liquid volume in digester: Vdigester = 2875 

Vheadspace Volume of headspace m³ Actual volume above liquid in digester: Vheadspace = 165 

T Digester temperature K Temperature is controlled by heat exchanging digester 

contents with steam. Set-point is 35°C and fluctuation is 

maintained well within 3°C despite slight fluctuations in 

the influent temperature (cf. Table 8). Constant 

temperature applied for model: K = 308 

Patm Atmospheric pressure  bar Plant is situated near sea level. Patm = 1.013 

 

 

3.1.11.   Limitations & Assumptions 

• Concentrations of toxic or inhibiting substances present in the raw wastewater are assumed to remain 

constant throughout the study period 

• A single biodegradability value is assumed to be generalisable across the entire study period 

• Temperature correction is only applied for those parameters suggested for the default ADM1 model 

because temperature fluctuation was well controlled within 3°C 

• It is assumed that homogenous mixing is achieved in the CSTR, such that the extracted sludge has 

an identical composition as the digester’s content.  

• The formation and accumulation of inorganic precipitates such as calcium carbonate and struvite are 

not considered in the modelling  
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3.2.   PLS Method 

3.2.1.   Definition of Terms 

Key terminologies applicable to the PLS Method are defined below: 

• “STR” – Refers to the IWA Scientific and Technical Report, which elaborates the ADM1 model 

framework and the default value for each parameter. 

 

• “Parameters” – Refers to the 58 stoichiometric and kinetic parameters related to the biochemical 

reactions in ADM1. 

 

• “Model inputs” – Refers to the information required by ADM1 in order to commence simulation. 

These are analyses recorded relating to the digester feed stream and digester conditions during 

actual plant operation, which are subsequently translated into ADM1 format.  

 

• “Measured outputs” – Refers to the 6 plant measurements recorded during actual plant operation, 

which are subjected to modelling i.e. VFA, Ammonium, VSS, pH, Methane flow and Carbon dioxide 

flow. 

 

• “Model outputs” – Refers to the results produced from ADM1 simulation, of which correspond to 

the 6 plant measurements. 

 

• “Input Matrix” – Refers to the first of the two data matrices required by the PLSR algorithm. In this 

study, it contains all the randomised parameter sets produced during Monte Carlo.  

 

• “Output Matrix” – Refers to the second of the two data matrices required by the PLSR algorithm. In 

this study, it contains all the model outputs produced during Monte Carlo.  

 

 

3.2.2.   Concept Introduction  

Calibrating large numbers of parameters in ADM1 is a challenge. Besides being a lengthy process, overfitting 

is known to occur. The PLS method developed in this thesis aims to exploit the merits of PLS regression. 

Firstly, through its dimension reduction function, calibration is expected to simplify since the scope reduces 

from 58 parameters to a few latent variables. Secondly, PLS regression is capable of mapping a latent 

relationship between two multivariate matrices (input matrix and output matrix) while taking into account the 

collinearity between the inputs. Therefore, by specifying the parameters and model outputs as the two 

matrices, one could establish how each parameter is transformed in order to effect the highest variance in the 

outputs. This understanding could allow parameters to calibrate in a guided/supervised manner and potentially 

shorten the time required to optimise or recalibrate a model.   

Figure 8 illustrates how the PLSR framework is employed to extract the latent relationship and to generate a 

newly calibrated parameter set. An overview is provided in this section. Detailed description of each step is 

provided in the subsequent sections. 

The first step involves the use of Monte Carlo to generate the two matrices. The input matrix XMC includes 

randomised parameter values, whilst the output matrix YMC collects the model outputs corresponding to each 

randomised set of parameters.  
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How PLSR is Utilised in the PLS Method 

Step 1:   Produce XMC and YMC matrices using Monte Carlo 

 

 

Step 2:   Apply PLSR algorithm (Figure 4) to extract relationship as reference weights and loadings (Ri, Pi, Qi) 

 

 

 

 

Step 3.1:  Use the extracted input weight vector (Ri) to produce a reference input latent variable (Ti) 

 

 

 

Step 3.2:  Generate a calibrated parameter set by adjusting the scaling factor (λ). λ is initially set as zero.  

 

 

 

Consolidate experimental data and ADM1 outputs (based on calibrated parameter set) into respective output matrices.  

 

 

Step 3.3:  Apply the extracted output weight vector (Qi) to transform simulated and measured outputs to latent variables 

 

 

 

 

Optimise the model by repeating Steps 3.2 &3.3 until the objective function (Udiff) is minimised 

 

 

 

Figure 8: Illustration showing how the PLSR framework is incorporated into the PLS Method. First, the relationship 

between the parameters and the model outputs are mapped as weights and loadings. Thereafter, these PLS constructs 

are applied to guide parameter calibration. i - no. of latent variables; m - no. of parameters; p - no. of outputs; t - no. of 

time intervals simulated.  
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In the subsequent step, PLSR algorithm uncovers the latent relationship in the form of parameter weighting 

vector (R), input loading vector (P) and output weighting vector (Q). These PLS constructs describe how the 

parameters and outputs need to be transformed such that the covariance between the input & output latent 

variables are maximised.  

Parameter calibration takes place in Step 3. The PLS Method exploits the fact that P represents the vector 

direction between the latent input variable(s) T and X, which corresponds to maximum change in the output 

latent variable(s). Hence, by making use of a scaling factor (λ) to adjust T, effectively all parameters within X 

would alter relative to the relationship captured in P. This newly calibrated parameter set is then applied in 

ADM1 to produce new simulated outputs Ys. Note that λ is a diagonal matrix with each element corresponding 

to the scaling of a particular latent input variable.  

The final part of Step 3 evaluates the model’s objective function. Q represents the weighting that each output 

contributes towards the output latent variable U. With a smaller dimension than Y, U serves a useful score that 

represents a consolidation of the model outputs. Each output’s sensitivity, as learnt from the Monte Carlo 

simulation (Step 1), is taken into account during the calculation of U.  

The objective function is defined as the difference between the output latent variables of the simulated data 

and measured data. A model is said to be optimised when this function is minimised. At each iteration, λ is 

adjusted depending on the previous objective function.  

Lastly, once the optimised parameter set is identified, a validation check is performed. This final step is deemed 

necessary to ensure that the parameter set does not only fit the training data but fits new unseen data as well.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University https://scholar.sun.ac.za



Chapter 3: Research Methodology 

56 

3.2.3.   Step 1 – Uncertainty Analysis Using Monte Carlo Method 

In this step, Monte Carlo (MC) simulation is applied by running ADM1 repeatedly using randomised 

stoichiometric and kinetic parameters. The objective is to propagate parameter uncertainties into the outputs 

such that sensitivity analysis can be applied in Step 3.  

The lower and upper bounds of the range, in which the parameters are randomised, were based on the 

minimum and maximum values observed in the literature survey (Table 4). For fractional stoichiometric 

parameters, the algorithm is set up in such a way that the sum of fractional parameters adds up to 1.  

Random Sampling is selected for this study because firstly the literature survey took reference from articles 

that covered many types of substrates; and secondly, these referenced experiments were carried out under 

different conditions and with different inoculum compositions. As such, there is no valid population distribution 

available to apply stratified sampling methods. Parameter uncertainties are considered stochastic and 

randomisation follows a uniform probability distribution.    

At the end of each MC run, the randomised set of parameters and simulation results are collected in an “input” 

matrix and an “output” matrix, herewith referred to as XMC and YMC respectively in accordance to the PLSR 

nomenclature described in Section 2.8. XMC possesses a dimension that has rows corresponding to Monte 

Carlo samples and columns corresponding to randomised parameter sets.  

Specific to this study, the “output” matrix includes 6 components constituted from ADM1 simulated outputs 

(Table 14). Although a total of 29 dynamic state variables are available in ADM1, only 6 plant measurands are 

applicable for model fitting. Evolution of these 6 components across all time intervals are stored as YMC.  

Table 14: Description of the 6 outputs/measurands included in the output matrix 

Output Matrix Component ADM1 Constituents 

VFA Sum of Sfa, Sva, Sbu, Spro, Sac 

Ammonium [SIN] SIN 

VSS Sum of Xc, Xch, Xpr, Xli, Xsu, Xaa, Xfa, Xc4, Xpro, Xac, Xh2, XI 

pH Calculated from charge balance 

Methane Gas Flow Rate [qCH4] Calculated from gas phase mass balance 

Carbon Dioxide Gas Flow Rate [qCO2] Calculated from gas phase mass balance 
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3.2.4.   Step 2 – Determining PLSR Weights and Loadings 

The intention of applying PLSR in this study is not for its main function i.e. regression. Instead, the technique 

is utilised for its sub-function which identifies weight vectors that, in linear combination with input variables, 

would induce greatest output sensitivity. In some literature this sub-function is referred to as the underlying 

interaction (Chin, Marcolin & Newsted, 2003; Maitra & Yan, 2008).  

Using the XMC and YMC matrices obtained in Step 1, the PLSR technique as described in Section 2.8 is applied 

to map out the underlying interactions which are represented as the weight and loading vectors (i.e. r, p, q). 

The key outcome from performing PLSR is to generate these vectors corresponding to the number of latent 

variables selected. 

An alternative normalisation method, instead of mean-centering and variance scaling, was applied on the X 

and Y matrices. Equation 38 normalises the data generated from the Monte Carlo simulations into a range 

between -1 and +1. In other words, minimum values at each time interval are normalised to a value of -1 and 

the maximum values are normalised to +1. 

�ÄÅÇÉ = 2b(� − �7#E)/(�7d2 − �7#E)h − 1 Equation 38 

áÄÅÇÉ = 2b(á − á7#E)/(á7d2 − á7#E)h − 1  

where: 

XNorm is the normalised X matrix;  

X is the “input” matrix that contains ADM1 parameters used for each Monte Carlo runs; 

Xmax is a vector that contains the maximum values in X at each time interval 

Xmin is a vector that contains the minimum values in X at each time interval  

 

3.2.5.   Step 3 – Model Fitting 

Contrary to conventional model fitting procedures whereby only parameters selected by the modellers are 

calibrated, this study proposes to adjust the input latent variable(s) during each iteration. In essence, as the 

latent variable(s) change, all parameters will adjust proportionally according to the interaction construct with 

the outputs as identified in Step 2. Parameter calibration thus does not depend on parameter ranking or the 

modeller’s discretion.  

First, the weight vector (ri) is applied on the default ADM1 parameters (x0) to generate its latent input variable 

ti (Equation 39). Thereafter, a scaling vector, λ, is introduced to scale the input latent variable(s) - this is the 

only term that adjusts during each iteration. As λ changes, a newly calibrated set of ADM1 parameters is 

generated (Equation 40). It should be noted that xc is a normalised vector; therefore to obtain the new 

parameter set in its original scale, a reversal of the normalisation procedure was carried out. 
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à# = âIÇ# Equation 39 

âä = âI +/ã#à#å#ç 
Equation 40 

where: 

xc is the newly calibrated parameters;  

x0 is the default ADM1 parameters;  

r is the input weight vector; 

ti is the i-th input latent variable;  

p is the input loading vector; 

λ is the scaling vector 

 

Definition of the objective function is described in Equation 41. For each iteration step, simulated outputs are 

compared to the measured outputs in the form of output latent variable(s) uj. The use of latent variable(s) as 

an objective function eliminates the need to assign aggregates to each output, as it is already weighted 

intrinsically to the outputs’ sensitivities. The vector λ is initially set as [0,0,..] and is calibrated until udiff is 

minimised. Assigning a value of 0 to λ means that calibration process always initiates with the default ADM1 

parameters i.e. xc = x0. Objective function minimisation is performed using the default LeastSq function in 

Scilab. This function is based on the quasi-Newton method. 

 

éG#gg = -%.//0é7,'(4) − é6,'(4)9
:

E

<=>

#

'=>

 

Equation 41 

where: 

udiff is the model objective function  

n is the total number of time intervals; 

i is the total number of latent variables selected;  

um,j is the j-th output latent variable for the measured outputs at time interval t; 

us,j is the j-th output latent variable for the simulated outputs at time interval t; 

An example calculation demonstrating how udiff is calculated is shown in Section 8.6.4. To evaluate the fitting 

accuracy of individual outputs, conventional RMSE (Equation 31) is applied.  
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3.2.6.   Step 4 – Validation  

The process of generating PLSR vectors (Step 3) and parameter calibration (Step 4) is based on experimental 

data (plant measurands) gathered from Day 1 to Day 230. There is a possibility, as pointed out in Section 2.9, 

that the calibrated parameter set only fits this specific set of data and not a true representation of the digester’s 

mechanics. 

Validation is applied as the method to validate the calibrated parameter set. Using unseen data collected from 

the subsequent 90 days of plant operation (Day 231 to Day 320), ADM1 ran with its simulation timeframe 

extended to 320 days. This extended period is referred to as the Validation Period. The simulated outputs are 

thereafter evaluated in terms of Udiff and RMSE . 

3.3.   Research Limitations 

The methodology proposed in this study uses the default parameter set as a baseline starting point for model 

calibration. It is thus noted that the calibrated parameters could risk being a local search/minima solution.  

Monte Carlo simulations are structured according to the parameters gathered from literature survey. The extent 

of uncertainty propagation, and hence the min/max values used for normalising the dataset, is dependent on 

the quantity of published data available for each parameter.  

Quality of experimental data may be influenced by measurement error and low sampling frequency of off-line 

(i.e. manual) measurements (Guisasola et al., 2006). Since it is not the scope of this research to interfere with 

the sampling and analysis schedule of the full-scale plant, there is limited control over the integrity of the 

experimental data, and hence necessitates assumptions to be made when fractionating the influent substrate 

into the ADM1 format. In that respect, this desktop study focuses primarily on the procedure and effectiveness 

of the parameter calibration framework. 
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3.4. Methodology Map 

A methodology map summarising the four steps of PLS Method is presented in Figure 9 and Figure 10. It 

illustrates how the proposed method integrates into ADM1. 

 

Figure 9: Overview of the PLS Method for ADM1 parameter calibration – Part 1 of 2  
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Figure 10: Overview of the PLS Method for ADM1 parameter calibration – Part 2 of 2 
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3.5. Model Benchmarking 

As discussed in the literature review (Section 2.5), there is currently no single mainstream method for 

parameter calibration. For that reason, it is crucial to benchmark the PLS Method against other methods in 

order to verify the applicability of this method in terms of (i) model accuracy and (ii) optimisation speed. 

The first method selected for benchmarking the PLS Method shall be referred to as the “Group Method”. This 

method was used by Coelho et al. (2006) to model digestion of dairy type wastewater. In this method, kinetic 

parameters were grouped into the 3 groups of sensitivities (High, Medium, Low) as suggested in the STR. The 

3 groups are then calibrated sequentially in order of decreasing sensitivity. Stoichiometric parameters are not 

calibrated. Selection of this method is also supported by the observations made from the literature survey 

(Table 5) where parameters labelled with higher sensitivities are more exposed to calibration. Two variants of 

the Group Method were investigated, namely: 

• “Group Method (Unbounded)” – This term refers to the application of the Group Method without any 

lower and upper limits imposed on the parameters during calibration. In other words, parameters are 

allowed to take on any low or high values.  

• “Group Method (Bounded)” – This term refers to the application of the Group Method but with lower 

and upper limits assigned to each parameter according to the minimum and maximum values identified 

from the literature survey, respectively. 

The second method selected for benchmarking against the PLS Method shall be referred to as the “Brute 

Force Method”. In this method, all 58 parameters are calibrated without any particular sequence, prioritisation 

or expert inputs. Lower and upper limits are, however, set as per the minimum and maximum values identified 

from the literature survey.  

In order to benchmark the model accuracies between different methods, a single score representing the overall 

model accuracy was required. MAPE (Mean Absolute Percentage Error) is selected for this purpose because 

it expresses model accuracy in the form of percentage which is scale-independent. As all 6 outputs have 

different scales, RMSE (as applied for PLS Method) would affect bias towards outputs with larger scales (i.e. 

CH4, CO2) when an average RMSE score across all model outputs is taken. The objective function for both 

Group Method and Brute Force Method is expressed as the “Average MAPE of the six outputs”. 
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 CHAPTER 4  
 
 

DEVELOPMENT OF THE PLS METHOD 
 

4.1.   ADM1 Simulation using Default Parameters 

Figure 11 shows the projections of the 6 outputs when default parameters (as recommended by the STR) are 

applied. This outcome represents the uncalibrated model. It is evident, by visual inspection, that all simulated 

outputs except Ammonia (SIN), followed the trend of the industrial plant measurements reasonably well. The 

projected trend of Ammonia is considered irregular because, even though there were close resemblances at 

certain time intervals (e.g. Day 100 – 120, Day 165 – 240 and Day 290 – 310), contradictory responses were 

observed across other time intervals. 

Figure 11: ADM1 simulation using default parameters. Projected values are represented in grey lines and actual plant 

measurements are plotted as green dots. 
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This observation is possibly a consequence of applying ADM1 for an influent with highly variable substrate 

composition. The fact that a fixed compositional ratio is used for translating particulate COD concentration into 

the ADM1 state variables representing carbohydrates, proteins and fats, means that discrepancy is inevitable 

when the substrate’s composition ratio changes. In reality, such as in this scenario, the substrate composition 

is dynamically variable. How the wastewater is constituted depends on the factory’s activities (types of CIP’s, 

section cleaned, etc.) and the timing of whey addition. Since ammonia production is closely linked to the 

degradation of protein content in the substrate, a wastewater stream with low whey addition could result in an 

overestimation of protein, and consequently an overestimated ammonia/ammonium response (e.g. Day 30 – 

100). 

Volatile suspended solids (VSS) concentration was grossly overestimated. However, considering the fact that 

the projection has a close resemblance in its trend, the poor fit is likely a result of incorrect kinetic parameters 

related to organic particulate degradation such as hydrolysis, biomass growth or biomass decay. Calibration 

is therefore expected to target these parameters. 

pH, VFA and methane gas flow (qCH4) exhibited relatively good fits even though parameters were uncalibrated. 

Good pH fit is expected because, as pointed out by Donoso-Bravo et al. (2011), pH will remain stable in a well-

buffered digester. Since the digester possesses a long hydraulic retention time (+/- 2 days), most of the 

alkalinity produced during methanisation (i.e. in the form of bicarbonates and ammonium) is retained. 

Furthermore, the predominantly alkaline substrate guarantees a consistent alkalinity buffer. 

Conversion to methane from the three components (acetate, carbon dioxide and hydrogen) is stoichiometric 

based. The production rate is thus relative to the concentrations of these components, which are dependent 

on the influent’s composition and degradation kinetics. In other words, how COD is fractionated into ADM1 

state variables as well as the calibrated model parameters are key influencing factors. Nevertheless, it is still 

possible to obtain fairly accurate prediction of methane gas production using uncalibrated parameters, because 

regardless of how COD is fractionated, all degradable COD will participate unrestrictedly in the 

methanogenesis reactions when no inhibition is in effect.    

Simulated carbon dioxide flow (qCO2) was consistently higher than the plant measurement despite having a 

similar trend. This outcome could be a result of a lower than actual pH prediction and/or over-prediction of 

inorganic carbon (SIC). 

4.2.   Sensitivity Analysis using Monte Carlo and PLSR 

4.2.1. Monte Carlo Simulation 

Model uncertainties were propagated through a series of Monte Carlo (MC) runs. During each MC run, ADM1 

was executed using a randomised set of parameters. In order to understand the relationship between 

uncertainty with respect to the number of MC runs, simulations were carried out in batches of 250, 500, 1000 

and 1500 MC runs. A plot for 500 MC is composed of 500 lines, each of which represents the output that 

corresponds to a particular random parameter set. The extent of uncertainty in each output is expressed by its 

variance, or graphically speaking, higher uncertainty is portrayed in the form of a wider uncertainty band (i.e. 
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spread across the vertical axis). For ease of viewing, only the mean and percentiles are plotted in Figure 12 

and Figure 13.  

VFA has the widest uncertainty band among all outputs where the difference between the upper bounds and 

lower bounds could be a factor of as high as 1000 (cf. Figure 12 and Figure 13). This outcome is expected 

given the fact that the “VFA” term is a sum of all volatile fatty acid constituents (acetate, propionate, etc.) which 

collectively are influenced, directly or indirectly, by a majority of biochemical reactions. Evolution of these 

constituents’ concentrations is thus related to most ADM1 parameters. Kinetic rates of preceding degradation 

processes (disintegration, hydrolysis, acidogenesis and biomass decay) influence VFA accumulation, whilst 

parameters associated with the uptake kinetics affect VFA consumption. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Monte Carlo results for VFA, SIN and VSS at 250, 500 and 1500 Monte Carlo runs. The uncertainty band is 

represented using mean, 10th, 25th, 75th and 90th percentile values.  
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Figure 13: Monte Carlo results for pH, CH4 and CO2 at 250, 500 and 1500 Monte Carlo runs. The uncertainty band is 

represented using mean, 10th, 25th, 75th and 90th percentile values.  
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not inhibited. 
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on methanogeneis becomes effective. Elevated hydrogen concentration (SH2) were also detected (Appendix, 

Figure 31). Inhibition signifies that VFA uptake rate is retarded and explains the build-up of VFA.    

It is not practical to run MC simulations for all possible combinations due to a large number of parameters. 

Therefore, it is important to understand how many MC runs are necessary in order to capture the trends 

required for PLSR. From the above graphs, 250 MC runs were noted to have percentiles different from those 

of higher MC runs, whereas 500 MC runs showed a closer statistical resemblance to 1500 MC runs. 

Convergence continues as the number of MC runs increase. This observation suggests that it may be 

redundant to execute a high number of MC runs unless calibration time is not a critical consideration for the 

modeller. 

Another point to consider, however, is the fact that parameters are randomised stochastically. It is possible to 

simulate a batch of 500 MC runs without generating an exact randomised parameter set as in a 1000 MC 

batch, even though both scenarios produce similar-looking uncertainty bands. From a statistical perspective, 

redundancy is good because too few MC runs may risk poor data quality and result in inaccurate PLSR 

evaluation. Modellers are encouraged to strike a balance between data quality and redundancy.  

The minimum and maximum values at each time interval are important for the purpose of data normalisation. 

Although it is evident from the figures that fairly similar minimum and maximum values could be propagated 

given a different number of MC runs, it may not always be true because each parameter set is unique. Hence, 

it is advisable to run an adequate number of MC runs so that the absolute minimum and maximum values can 

be identified.  

Refer to the Appendix, Section 8.5.2, for the Monte Carlo plots of all 26 state variables.  

 

4.2.2. Outlier Removal 

Outputs from the Monte Carlo simulation are stored in an “output” matrix. First step of the PLSR algorithm 

involves normalising this matrix; however, considering the presence of abnormally high and low values (as a 

result of system failures), it was presumed that normalisation without outlier removal could produce a skewed 

data set. A simple outlier classification technique based on the IQR (Interquartile Range) was applied in this 

study. The conventional rule states that any data point with a value below Q1 minus 1.5 x IQR, or above Q3 

plus 1.5 x IQR, shall be classified as an outlier. Q1 and Q3 refer to the 1st quartiles and 3rd quartiles of a data 

set respectively.  

Although it is acknowledged that all data points may contain valuable information, the influence of outliers on 

PLSR and hence the model fitting performance is unknown. Different degrees of outlier removal was therefore 

investigated in this thesis by testing various outlier classification thresholds: 1.5 x IQR, 1.0 x IQR and 3.0 x 

IQR. The objective is to verify whether outlier removal is necessary; if so, what is the outlier removal extent 

required.  

Figure 14 and Figure 15 demonstrate how the uncertainty bands change when outliers are removed. As tighter 

outlier classification thresholds are applied, more data points are removed, resulting in smaller uncertainty 

bands. The substantial shrinking of the uncertainty bands from their original bounds confirmed that MC 
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simulations do yield extremities. These extreme values are unidirectional – either upper bound (e.g. VFA and 

VSS) or lower bound (e.g. SIN, pH, qCO2 and qCH4). This trend corresponds to the signs when a digester fails. 

Biogas production ceases due to inhibited methanogens, which results in VFA accumulation and consequent 

pH drop.  

Increasing the number of MC runs has limited impact on the Monte Carlo data after outliers are removed. As 

shown in Figure 32 – Figure 35 in the Appendix, similar results were produced for MC above 500 runs while 

the graph representing 250 runs displayed some deviations. Normalisation of the “output” matrix is thus 

independent of the number of MC runs provided that a sufficiently high number of MC runs is selected.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Maximum and minimum bounds of 1500 Monte Carlo runs for VFA, SIN & VSS before and after outlier removal 
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Figure 15: Maximum and minimum bounds of 1500 Monte Carlo runs for pH, qch4 & qco2 before and after outlier removal 
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According to the loading vector distribution, VFA displayed the highest weighting towards the latent output 

variable. However, as previously noted, VFA’s uncertainty band possessed the most extreme variances. In 

that respect, normalisation is likely to produce very small normalised values unless the values are close to the 

upper/lower bounds. Since the latent output variable is calculated as a linear combination of normalised 

outputs and q loading vector, the effective weighting, or contribution, of VFA towards U is actually insignificant. 

In contrast, VSS and SIN have a tighter sensitivity band and relatively high weighting. As such, these two 

components are expected to have more influence than VFA on U.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Evolution of output loading vector (q) for the 1st latent variable  
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4.3. Model Optimisation 

The model objective function (Udiff) is defined as the combined differences in the output latent variables (U) 

before and after parameter calibration. A reduced Udiff value resembles an improvement in the overall weighted 

fit accuracy of the 6 outputs. Calibration simply involves adjusting the scaling vector (λ) iteratively until the 

objective function can no longer be minimised further. At this point, the model is deemed optimised. Goodness-

of-fit for each output variable is evaluated in terms of RMSE. Note that in this thesis RMSE serves only as a 

comparative measure and does not form part of the objective function criterion.  

Figure 14 shows two calibrated models. The first example, labelled as “PLS Method (1)” on the graph, utilised 

PLSR vectors that were constructed using 1500 Monte Carlo runs without outlier removal and two latent 

variables. The calibration process started with λ = [1,1] and ended as [0.035, 1.657] after 105 calibration runs. 

In relation to the default simulation (grey line), the objective function reduced from a value of 182 to 116 while 

a substantial improvement in the RMSE of VSS was achieved.  

 

Figure 17: Two ADM1 simulations with similar objective function after calibrated using the PLS Method. Green lines 

represent actual plant measurements; grey lines represent simulation before calibration; solid blue lines represent 

Method (1)is based on 1500 Monte Carlo runs, no outlier removal and two latent variables; dotted blue lines represent 

Method (2) which is based on 1500 Monte Carlo runs with outlier removal and 4 latent variables   
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Yet, besides VSS and pH, other output variables ended with higher RMSE values after calibration. This 

outcome correlates with the fact that VSS has the highest effective weighting towards the value of U. In other 

words, as long as the VSS model fit improves, Udiff could still achieve a significant reduction, even if fitting 

accuracies of other components are compromised. 

To exemplify the impact of normalisation, “PLS Method (2)” presents a simulation which saw a similar 

magnitude reduction on the objective function (~39%) after calibration. This example utilised PLSR vectors 

that were based on 1500 Monte Carlo runs with outlier removal (1.5 x IQR) and four latent variables. It can be 

seen that VFA has a much poorer fit than the previous example. VFA tends to compromise its fit accuracy in 

favour for other outputs with higher effective weighting because its influence on the objective function is 

relatively insignificant��Extreme upper and lower bounds in combination with higher mean uncertainty (0.5-1.0; 

Figure 12) than the range of interest (0.05-0.1; Figure 17), explains why the normalised VFA values are 

inevitably small. This is especially true since the starting calibration parameter set is the default STR 

parameters which already has a reasonably acceptable fit. 

In addition to a very poor VFA fitment, VSS, pH and qCH4 also fitted worse in Method (2). Despite so, similar 

objective function reduction to Method (1) was still achieved due to superior accuracy in the SIN and qCO2 

models. These two outputs boast small uncertainty bands (Figure 12; Figure 13) and high q-loading vector 

distributions (Figure 16), as such they are the second and third most effective weighting outputs on the 

objective function following VSS. A substantial improvement in qCO2 fitment hence directly translate to a 

significant objective function reduction.  

4.4. Effect of Outlier Removal & Number of Latent Variables on Model Fitting 

According to Geladi & Kowalski (1986), the number of latent variables selected is critical because nonlinearities 

in non-linear models can only be described by assigning multiple latent variables. This section aims to establish 

the relationship between outliers and the number of latent variables with respect to model fit accuracy.  

Results plotted in Figure 18 showed that fitting performance fare worse as more outliers are removed. This 

outcome suggests that data generated from the Monte Carlo simulation that would normally qualify as outliers 

could in fact possess information critical to the development of the PLS interaction constructs. Lesser outlier 

removal further enables the use of fewer latent variables without expending more fitting time. For instance, 

outlier removal thresholds based on IQR multipliers of 1.0 and 1.5 required four latent variables in order to 

attain similar objective function improvement. However, these scenarios are disregarded due to signs of 

overfitting (Figure 19) where VSS and qCO2 fits exceptionally well but at the expense of VFA. Outlier removal 

is therefore concluded to be an unnecessary procedure prior to applying the PLSR algorithm. 

The tendency for lower weighted outputs to become influenced during calibration is higher when more latent 

variables are introduced. Latent variables can thus be viewed as “sensitivity controls”. Modeller’s discretion 

must be exercised though, because more latent variables tend to increase overfitting risk and also increase 

the number of iterations required to complete the calibration.  
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Figure 18: Model fitting performance at various IQR (extent of outlier removal) and number of latent variables 

 

 

Figure 19: Output RMSE at various outlier removal and number of latent variables 
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4.5. Conclusion 

The PLS Method has demonstrated to be a viable parameter calibration method for ADM1 optimisation. The 

number of Monte Carlo runs and latent variables chosen is important factors that could influence the calibration 

outcome. A high number of Monte Carlo runs is welcomed as it produces data redundancy which allows PLSR 

to identify underlying trends more accurately. In addition, data normalisation relies on the upper and lower 

bounds and mean values from the Monte Carlo data. 500 or more Monte Carlo runs were found to be 

statistically adequate for normalisation purpose, but since parameter randomisation is done stochastically, it 

is advisable to simulate as many as practically possible such that all major uncertainty trends are captured.  

The outlier removal procedure is unnecessary even though Monte Carlo produces extreme values. In fact, all 

data serve as valuable information for PLSR. Utilising too many latent variables may induce overfitting, while 

too few latent variables could leave lower weighted outputs unaffected. It is advisable to start with one latent 

variable and increase only if necessary. In this thesis, two latent variables were found to produce the best 

result.     
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 CHAPTER 5  
 
 

BENCHMARKING AGAINST OTHER PARAMETER CALIBRATION METHODS 
 

5.1. Results: Model Fit Accuracy 

5.1.1. Total VFA 

Figure 20 presents the VFA simulations produced by the 4 methods alongside an uncalibrated model which 

utilises default parameters. A residual plot is plotted adjacent to allow easy interpretation of the model accuracy 

at each simulation interval. High volatility is evident across all methods, with the PLS method consistently over-

predicts and both Group methods under-predict. Even though the Group Methods exhibited superior MAPE 

scores (i.e. lower residuals) during calibration, they failed to continue the trend than during the validation 

period. This attributes to the fact that the Group Methods are more prone to overfitting.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: Graphical comparison between various parameter calibration methods and residual error plot - Total VFA 
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During the calibration process, all methods were seen to prioritise on improving the fit accuracy of VSS instead 

of VFA (Figure 22). The reason is that the uncalibrated model for VSS has the worst fit out of all 6 outputs and 

any marginal improvement brings about the largest influence on the objective function. In exchange for better 

VSS fit accuracy, all methods concluded with poorer MAPE scores for VFA fitment after calibration.  

Since the Group Method (Unbounded) is unrestricted during calibration, the disintegration and hydrolysis rates 

became over-exaggerated in attempt to reduce the VSS concentration. The increase in particulate breakdown 

rates corresponds to an increase in the production of VFA. To counteract against the rise in VFA concentration, 

Monod uptake rate (km,ac) and the half-saturation value of acetate (Ks,ac) were the only two parameters that 

could be calibrated in the first group of parameters which relate to VFA; hence these parameters were 

calibrated to very high values. Then, during the second group calibration, the decay rate of monosaccharide 

degraders (kdec,su) was modified to an exceptionally high value which accelerates the death of this specific 

degraders. The breakdown of monosaccharides into VFA is consequently throttled due to a lack of degraders. 

A build-up of monosaccharides (Ssu) is expected and could reach levels that do not correlate with reality. 

Verification is not possible because no experimental data is available.  

A similar scenario for Group Method (Bounded) was noted. However, in this case, the maximum values for 

disintegration and hydrolysis rates are capped. As such, VFA production in response to particulate breakdown 

is not as excessive in comparison. This explains why kinetic parameters for acetate (km,ac and Ks,ac) were left 

uncalibrated. kdec,su is again the main manipulated parameter in the second sensitivity group and maxed out 

against its upper cap.  

The “Brute Force” Method attempted to improve VSS model fitment through several mechanisms. Firstly, 

hydrolysis rates for carbohydrates and lipids are maxed out; and secondly, the yield constants of most 

degraders were decreased. Both factors attribute to the reduction in VSS concentration. Elevated hydrolysis 

rates also implied quicker formation of monosaccharides (Ssu), amino acids (Saa) and LCFA (Sfa) than the 

uncalibrated model. The subsequent conversion to VFA should be rapid, but maxed out decay rates of all 

acidogens, acidogensis is throttled and these three components are expected to accumulate. Decay rate of 

acetate is also maxed out. This explains why VFA concentration is relative high while methane production is 

the lowest out of all methods (Figure 24).   

Similar to other methods, the PLS Method elevated the values of hydrolysis and biomass decay parameters 

(Table 15) to lower VSS concentration. An increase in the stoichiometric parameter fCH,XC was noted. This 

adjustment has allowed composite particulates (xc), which are formed from biomass lysis, to fractionate 

predominantly into carbohydrates instead of other forms of organic particulates. Combined with an increase in 

both hydrolysis rate (khyd_ch) and Monod uptake rate of sugar (km,su), the rate at which simpler short-chain VFA 

(such as acetate and propionate) and hydrogen are produced is expected to be higher. Thus, as seen in Figure 

14, VFA concentration is higher than that of the uncalibrated model.  
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5.1.2. Ammonia/Ammonium (SIN) 

From Figure 21, it can be seen that all 4 methods produce identical ammonium trends as the uncalibrated 

model, despite each method having significantly different parameters. Model fitting is grossly overestimated 

during plant start-up (transient conditions) but improved when transitioning past Day 150 (steady-state 

conditions) and into the validation period. As explained in Section 4.1, this particular wastewater does not have 

a fixed protein content. In fact, to improve the model’s accuracy, substrate characterisation accuracy is 

regarded as more critical than parameter calibration. Nonetheless, a distinction between different methods 

exists. Group Methods performed worse than other methods because of its over-exaggerated protein 

hydrolysis rate. Although the “Brute Force” Method also has high protein hydrolysis rate, the breakdown of 

amino acids (and hence ammonium production) is restricted by the high decay rate of amino acids biomass.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: Graphical comparison between various model optimisation methods and residual error plot – Ammonia 
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5.1.3. Volatile Suspended Solids (VSS) 

All 4 methods succeeded in improving the model fitting accuracy of VSS (Figure 22). Apart from the PLS 

method, other methods saw an increase in MAPE score (i.e. higher residuals) when transitioning into the 

validation period despite having superior MAPE scores during calibration (Figure 28). This occurrence 

suggests that these methods may have overfitted.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: Graphical comparison between various model optimisation methods and residual error plot - VSS 
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5.1.4. pH 

pH is the most accurately modelled output. All methods, including the uncalibrated model, showed a low level 

of residuals consistently across both periods. It is evident from Figure 23 that the Group Method (Unbounded) 

and the “Brute Force” Method have overestimated pH projections. Since pH is indirectly correlated to the 

soluble carbon dioxide concentration, lower carbon dioxide production in the models produced by these two 

methods explains why pH is higher. Carbon dioxide is formed when monosaccharides, amino acids and 

propionate are degraded. However, as described in Section 5.1.1, parameters were calibrated in such a way 

that the metabolism of monosaccharides and amino acids are slowed down tremendously. Consequently, the 

formation of carbon dioxide and propionate is lowered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23: Graphical comparison between various model optimisation methods and residual error plot - pH 
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5.1.5. Methane (qCH4) & Carbon Dioxide Production (qCO2) 

Calibrated models produced by the Group Method (Bounded) and PLS Method were found to project higher 

biogas volumes than the uncalibrated model. For the PLS Method, higher gas volumes is a result of increased 

Monod uptake rates for acetate (km,ac) and hydrogen (km,h2), which translates to faster acetoclastic 

methanogensis and hydrogenotrophic methanogenesis respectively. Another contributing factor to higher gas 

volumes is the reduced inhibition effect imposed on propionate and acetate uptake. The increase of two 

inhibition parameters, namely KInh3_ac and KIh2_pro, means that methanogenesis and propionate degradation 

are less inhibited by free ammonia and hydrogen respectively.  

The other two methods yielded opposite results. For the “Brute Force” Method, high methanogens decay rate 

(kdec,xac) in combination with reduced acetate degrader yield (Yac) after calibration implies that acetoclastic 

methanogenesis (and hence methane gas production) is partly impeded by biomass deficiency. The root cause 

for low biogas production, however, is a result of the bottleneck as explained in Section 5.1.1. Without adequate 

monosaccharides and amino acids degradation, the substrates required for biogas production is limited. 

Nonetheless, by visual inspection or MAPE scores, both methods displayed superior biogas fitting accuracy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: Graphical comparison between various model optimisation methods and residual error plot – CH4 production 
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Figure 25: Graphical comparison between various model optimisation methods and residual error plot – CO2 production 
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5.2. Results: Parameter Calibration Speed 

The number of iterations, or time, taken to complete the calibration differs much between the 4 methods. Figure 

26 illustrates how the Grand Average MAPE score evolves with each iteration step of calibration. Grand 

Average MAPE is defined as the average of all 6 outputs’ MAPE values.  

Model optimisation using the PLS Method is notably faster, even though it did not achieve a grand average 

MAPE as low as the other methods. This method arrived at its minimal MAPE of 32.5% within 40 iterations 

whereas the Group Methods took at least 100 iterations to attain similar MAPE reduction. Meanwhile, the 

“Brute Force” method required more than 4500 iterations. The shortened duration is attributed to the reduced 

degrees of freedom where only two latent variables instead of 58 parameters need to be manipulated. It is 

learnt from previous sections that a lower MAPE score during the calibration period does not necessarily 

guarantee a better fit when tested against unseen data. As such, the MAPE scores shown on Figure 26 serve 

only as a quantitative measure of the model accuracy during calibration. It is necessary to scrutinise how the 

scores change from the calibration period to the validation period holistically in order to identify the best 

method. Another possible reason for PLS Method to exhibit higher grand average MAPE is that its objective 

function is defined to minimum RMSE instead of MAPE. 

Both Group Methods demonstrated that MAPE improves as calibration progresses from a higher sensitivity 

group to a lower sensitivity group. This stepwise reduction in MAPE has decreasing effectiveness since the 

room for objective function improvement becomes increasingly limited. When parameters are unbounded, 

lower MAPE score could be attained but at the expense of more iterations and extreme calibrated values.  

 

 

 

 

 

 

 

 

 

Figure 26: Iterations/time taken by various methods to optimise model i.e. minimise MAPE 
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the “Brute Force” Method took more than 20 days to complete, whereas the PLS Method only took 6 hours. A 

PC running with Windows 10 64-bit, Intel® i5 processor and 8 gigabytes of RAM was used for the computation. 

If the PLS Method were to compare to other methods that involve sensitivity analysis, then the duration taken 

to generate the Monte Carlo data (i.e. 500 iterations) could be regarded as part of sensitivity analysis, which 

effectively means the calibration duration is merely 105 runs. The same would also apply if the PLS loadings 

are reusable for regular calibration.  

 

 

 

 

 

 

 

 

 

 

Figure 27: Iterations/time taken by “Brute Force” method to optimise model 
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5.3.   Calibrated Parameters 

Table 15 presents a summary of the parameters before and after model calibration. In accordance with the 

concept behind the PLS Method, all parameters underwent some degree of calibration but only a few adjusted 

more than 30% with respect to the default STR value. Although PLS Method is unbounded during calibration, 

all of its parameters have remained within the minimum and maximum surveyed values. It is noted that the 

parameters calibrated by this method does not correlate to the sensitivity groups reported by the STR. In 

contrast, the Group Methods only calibrate the most sensitive parameters and seems to always over-

exaggerate the calibration. The “Brute Force” Method saw most of the parameters undergo significant 

calibration, whereby some have shown the tendency to exceed the minimum or maximum limits.  

Table 15: Calibrated ADM1 parameters produced by the various model optimisation methods. Parameters are colour-

coded according to the level of sensitivity reported by the STR: Red = high, Blue = medium, Green = low. Values in 

parenthesis indicate the percentage change from the default STR parameters. 

Parameter 
Literature Survey Default 

STR  

Group 
Method 

(Unbounded) 

Group 
Method 

(Bounded) 

“Brute Force” 
Method 

PLS Method 
Min Max 

fSI,XC 0.013 0.422 0.1 0.1 0.1 0.1 0.113 (↑13%) 

fXI,XC 0.02 0.55 0.25 0.25 0.25 0.25 0.22 (↓11%) 

fCH,XC 0.0718 0.797 0.2 0.2 0.2 0.2 0.290 (↑45%) 

fPR,XC 0.01 0.4 0.2 0.2 0.2 0.2 0.17 (↓14%) 

fLI,XC 0.014 0.478 0.25 0.25 0.25 0.25 0.203 (↓19%) 

fFA,LI 0.665 1 0.95 0.95 0.95 0.95 0.965 (↑2%) 

fH2,SU 0 0.19 0.19 0.19 0.19 0.19 0.17 (↓9%) 

fBU,SU 0.111 0.13 0.13 0.13 0.13 0.13 0.153 (↑17%) 

fPRO,SU 0.27 0.54 0.27 0.27 0.27 0.27 0.24 (↓13%) 

fAC,SU 0.202 0.41 0.41 0.41 0.41 0.41 0.438 (↑7%) 

fH2,AA 0.042 0.078 0.06 0.06 0.06 0.06 0.063 (↑5%) 

fVA,AA 0.23 0.309 0.23 0.23 0.23 0.23 0.237 (↑3%) 

fBU,AA 0.186 0.29 0.26 0.26 0.26 0.26 0.26 (0%) 

fPRO,AA 0.041 0.12 0.05 0.05 0.05 0.05 0.048 (↓4%) 

fAC,AA 0.273 0.399 0.4 0.4 0.4 0.4 0.392 (↓2%) 

kdis 0.001 1.743 0.4 23.1 (↑5680%) 1.565 (↑291%) 0.068 (↓83%) 0.444 (↑11%) 

khyd_ch 0.037 2.75 0.25 151 (↑60000%) 2.75 (↑1000%) 2.75 (↑1000%) 0.391 (↑56%) 

khyd_pr 0.0014 18.23 0.2 61 (↑30000%) 1.803 (↑800%) 0.112 (↓44%) 0.638 (↑219%) 

khyd_li 0.0086 2.1 0.1 0.058 (↓42%) 0.1 (0%) 2.1 (↑2000%) 0.17 (↑67%) 

Ks_IN 0.00007 0.0013 0.0001 0.0001 (0%) 0.0001 (0%) 0.0013 (↑1200%) 0.00011 (↑13%) 

pHUL_acid 5.5 8.5 5.5 5.5 (0%) 5.5 (0%) 5.5 (0%) 5.6 (↑2%) 

pHLL_acid 4 6 4 4 (0%) 4 (0%) 4 (0%) 4.2 (↑5%) 

km_su 11.9 125 30 30 (0%) 30 (0%) 11.9 (↓60%) 44.0 (↑47%) 

Ks_su 0.022 4.5 0.5 0.5 (0%) 0.5 (0%) 2.469 (↑394%) 0.815 (↑63%) 

Ysu 0.01 0.17 0.1 0.1 (0%) 0.1 (0%) 0.01 (↓90%) 0.12 (↑17%) 
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Parameter 
Literature Survey Default 

STR  

Group 
Method 

(Unbounded) 

Group 
Method 

(Bounded) 

“Brute Force” 
Method 

PLS Method 
Min Max 

kdec_xsu 0.01 0.8 0.02 7.7 (↑38500%) 0.8 (↑3900%) 0.8 (↑3900%) 0.06 (↑195%) 

km_aa 19.8 53 50 50 (0%) 50 (0%) 52.97 (↑6%) 52.5 (↑5%) 

Ks_aa 0.01 1.198 0.3 0.3 (0%) 0.3 (0%) 1.198 (↑300%) 0.314 (↑4%) 

Yaa 0.058 0.15 0.08 0.08 (0%) 0.08 (0%) 0.058 (↓28%) 0.087 (↑8%) 

kdec_xaa 0.02 0.8 0.02 0.02 (0%) 0.02 (0%) 0.8 (↑3900%) 0.10 (↑389%) 

km_fa 0.93 12 6 6 (0%) 6 (0%) 11.85 (↑98%) 7.05 (↑18%) 

Ks_fa 0.024 9.21 0.4 0.4 (0%) 0.4 (0%) 9.21 (↑2200%) 0.758 (↑89%) 

Yfa 0.004 0.055 0.06 0.06 (0%) 0.055 (↓8%) 0.0184 (↓69%) 0.067 (↑12%) 

kdec_xfa 0.01 0.06 0.02 0.02 (0%) 0.02 (0%) 0.06 (↑200%) 0.03 (↑34%) 

KIh2_fa 3 x 10-6 5 x 10-6 5 x 10-6 6 x 10-6 
(↑20%) 5 x 10-6 

(0%) 3 x 10-6 (↓40%) 5 x 10-6 
(0%) 

km_c4 5 60 20 20 (0%) 20 (0%) 56 (↑180%) 24 (↑20%) 

Ks_c4 0.012 0.6 0.3 0.3 (0%) 0.3 (0%) 0.6 (↑50%) 0.349 (↑16%) 

Yc4 0.0193 0.066 0.06 0.06 (0%) 0.06 (0%) 0.066 (↑10%) 0.0625 (↑4%) 

kdec_xc4 0.02 0.03 0.02 0.02 (0%) 0.02 (0%) 0.02 (0%) 0.02 (↑2%) 

KIh2_c4 1 x 10-8 1 x 10-5 1 x 10-5 1.3 x 10-5 (↑30%) 1 x 10-5 
(0%) 1 x 10-7 (↓99%) 1.1 x 10-5 

(↑10%) 

km_pro 0.16 100 13 13 (0%) 13 (0%) 100 (↑670%) 14.46 (↑11%) 

Ks_pro 0.02 1.146 0.3 0.3 (0%) 0.3 (0%) 1.146 (↑74%) 0.482 (↑60%) 

Ypro 0.019 0.075 0.04 0.04 (0%) 0.04 (0%) 0.019 (↑53%) 0.043 (↑7%) 

kdec_xpro 0.001 0.06 0.02 0.02 (0%) 0.02 (0%) 0.023 (↑15%) 0.025 (↑26%) 

KIh2_pro 2.4 x 10-8 8 x 10-6 3.5 x 10-6 2 x 10-4 (↑6470%) 8 x 10-6 (↑129%) 8 x 10-6 (↑129%) 5 x 10-6 (↑43%) 

km_ac 3.1 48 8 205 (↑2460%) 8.07 (↑1%) 48 (↑500%) 12.6 (↑57%) 

Ks_ac 0.011 0.93 0.15 3.48 (↑2220%) 0.119 (↓21%) 0.097 (↓35%) 0.246 (↑64%) 

Yac 0.014 0.1 0.05 0.05 (0%) 0.05 (0%) 0.014 (↓72%) 0.055 (↑10%) 

kdec_xac 0.001 0.05 0.02 0.02 (0%) 0.02 (0%) 0.05 (↑150%) 0.024 (↑17%) 

KInh3_ac 0.00026 0.0223 0.0018 0.0018 (0%) 0.0018 (0%) 0.00026 (↓86%) 0.0047 (↑160%) 

pHUL_ac 6.7 7 7 7 (0%) 7 (0%) 7 (0%) 7 (0%) 

pHLL_ac 5.2 6 6 6 (0%) 6 (0%) 6 (0%) 6.1 (↑1%) 

km_h2 1.68 209 35 35 (0%) 35 (0%) 1.68 (↓95%) 53.5 (↑53%) 

Ks_h2 1 x 10-6 0.0006 2.5 x 10-5  1.8 x 10-4 (↑620%) 1 x 10-6 (↓96%) 1 x 10-6 (↓96%) 7.7 x 10-5 (↑220%) 

Yh2 0.0089 0.183 0.06 0.06 (0%) 0.06 (0%) 0.183 (↑205%) 0.072 (↑19%) 

kdec_xh2 0.001 0.3 0.02 0.02 (0%) 0.02 (0%) 0.012 (↓40%) 0.047 (↑134%) 

pHUL_h2 6 6.7 6 6 (0%) 6 (0%) 6 (0%) 6 (0%) 

pHLL_h2 5 5.8 5 5 (0%) 5 (0%) 5 (0%) 5.2 (↑3%) 
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5.4. Benchmark Summary 

MAPE results from the 4 parameter calibration methods are summarised in Figure 28. The dotted and solid 

bar graphs represent the calibration period and validation period respectively. Generally speaking, validation 

error should be higher than the calibration error because calibration is carried out using known data, which 

means in this context the solid bars should be higher than the dotted bars. However, in this study, MAPE 

values have appeared otherwise lower during the validation period. This phenomenon is possible because the 

data used for model training includes both transient (plant ramp-up) and steady-state conditions, whereas 

validation only considered data under steady-state conditions. Transient data has high variance and is more 

likely to include “noise”; therefore, the training data is considered to be more complex to model than the 

validation set. 

The Group Methods showed repeated signs of overfitting with respect to VSS, pH and CH4. The term 

“overfitting” refers to a scenario where the model achieved superior MAPE during calibration period but failed 

to fit well during the validation period. A possible cause for this discrepancy is the fact that the first parameter 

group tends to calibrate too far beyond the surveyed range or past meaningful values. By calibrating 

parameters in segregated groups, the synergistic effect between two parameters of different groups could be 

left unaccounted. This resulted in some parameters in the second and third groups to over-exaggerate while 

attempting to counter the overfitting caused by the prior group’s calibration. 

 

 

 

 

 

 

 

 

 

Figure 28: Comparing the accuracy of models produced by various parameter calibration methods during calibration 

period and validation period. Higher MAPE indicates poorer model accuracy.   

The “Brute Force” Method was found to provide the best overall accuracy. It is one of the two investigated 

methods that could model CO2 production with high accuracy. The other outputs were also modelled 

satisfactorily. VSS is the only output that overfitted. The long duration required to optimise a model using this 

method is a practicality problem. Moreover, it is suspected that this method has forced the model to fit through 

the accumulation of monosaccharides and amino acids. If true, this calibrated model shall be deemed invalid.       
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The PLS method has shown to be a more reliable method. There were no signs of overfitting; and overall, it 

was able to predict unseen data better than the Group Methods. Even though this method was unable to 

improve the model for CH4 and CO2, it was capable of projecting correct movement of the trends including 

sudden low and high spikes across transient and steady-state conditions. Another advantage that this method 

offers is the relatively short calibration duration.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29: Comparing the accuracy of models produced by various parameter calibration methods during calibration 

period and validation period. Higher MAPE indicates poorer model accuracy 

Table 16 ranks the various methods according to the accuracy of each output model and their optimisation 

speed. None of the methods was able to improve the fitting for VFA, SIN and CH4 than a model simply based 

on default STR parameters; however, it was understood that the fitting accuracy for these outputs had to be 

compromised in order to improve the fitting of VSS. The behaviour and outcome of model optimisation are 

dependent on which output(s) are included in the objective function. For example, if the objective function 

considers CH4 only and VSS excluded, then the Group Methods will perform much better since it will not over-

calibrate hydrolysis and decay parameters to force-fit VSS. This explains why selective calibration of only high 

sensitivity parameters, such as the Group Method, worked well for most literature (Table 20) where the 

objective function featured only VFA and gases.    

Table 16: Ranking of the various parameter calibration methods according to the model’s accuracy during validation and 

the duration taken to complete the calibration 

Method 
Ranking of Model Accuracy (Validation Period) Calibration 

Speed* VFA SIN VSS pH CH4 CO2 

Default STR Parameters 1 1 5 3 1 3 N/A 

Group Method (Unbounded) 4 5 4 5 2 2 1.6 

Group Method (Bounded) 5 4 2 1 5 5 1.3 

"Brute Force" Method 2 2 3 4 4 1 14 

PLS Method 3 3 1 2 3 4 1.0 

* Order of magnitude relative to the PLS Method 
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 CHAPTER 6  
 
 

CONCLUSION AND RECOMMENDATIONS 
 

6.1.   Summary of Findings 

Industrial-scale AD plants currently do not perform compositional analysis with the same level of detail as 

required by ADM1 for model input. For practical reasons, industrial operations focus only on key performance 

indicators that can be analysed conveniently and economically. For instance, knowing the “total VFA 

concentration” is adequate for plant operation, but it is mandatory for ADM1 that VFA is described as four 

specific short-chain VFAs. The methodology and assumptions applied to translate these indicators into ADM1 

state variables are therefore major sources of model uncertainties. It is important that they are scrutinised or 

verified through further investigations, if possible.   

The parameter calibration method proposed in this thesis successfully improved the overall accuracy of an 

ADM1 model based on data from an industrial-scale anaerobic digester. It makes use of the PLSR algorithm 

to capture the underlying interaction effects between ADM1 model parameters and the model outputs as PLS 

weights and loadings. The data matrices, onto which PLSR are applied, are generated from a Monte Carlo 

simulation that repeatedly ran ADM1 with randomised parameter sets. Each parameter is constrained to 

randomise within the range of values surveyed from other ADM1 research works.  

Model optimisation is accomplished by minimising the objective function using a least squares method. Instead 

of assigning the aggregate of RMSE from various output graphs as the objective function, this study 

demonstrated that optimisation can be achieved by defining the objective function as the difference in PLS 

output latent variables between the simulated data and actual data. The advantage of this alternative approach 

is that it does not require the modeller to stipulate how the aggregate weightings are distributed. The latent 

variables intrinsically take into account the sensitivities of each output variable. 

Increasing the number of Monte Carlo iterations enhances data redundancy which is essential for the PLSR 

algorithm to capture underlying trends more accurately. Furthermore, it promotes the development of the 

absolute upper bounds, lower bounds and mean values in the uncertainty data. These components influence 

how data is normalised and ultimately the influence each output has on the objective function. For the 

industrial-scale plant studied in this thesis, 500 or more Monte Carlo runs were found to be statistically 

adequate for normalisation purpose. However, since parameter randomisation is done stochastically, it is 

advisable to execute as many Monte Carlo runs as practically feasible such that all major uncertainty trends 

are exposed. Given adequate iterations, the only input required by the modeller is the choice of number of 

latent variables. 

Utilising more latent variables enables the PLSR algorithm to capture the interactions of lesser weighted 

outputs. This enhances the influence of calibration on these variables during model optimisation. Utilising too 

many latent variables may induce overfitting, while too few latent variables could leave lower weighted outputs 
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unaffected. Specific to this study where six outputs were modelled, as few as two latent variables were found 

to be adequate in producing improved models. Additional latent variables may need to be introduced if more 

outputs are to be modelled. 

The uncertainty data gathered from the Monte Carlo simulation do not require any outlier removal before it is 

subjected to the PLSR algorithm. Removing outliers was found to cause poor model fitting. All data points, 

including those that would normally be classified as outliers, were found to contain valuable information for 

PLS constructs development.  

The PLS Method can become computationally demanding. In general, increasing the number of Monte Carlo 

runs or the number of latent variables tends to increase the number of iterations taken to calibrate the 

parameter set. The number of simulated time intervals (e.g. days) also influences the computation 

requirements; however, this factor is not within the modeller’s control. It is thus critical to remain conservative 

when selecting the number of Monte Carlo runs and to start the PLSR algorithm with one latent variable; 

introducing more if necessary.  

Different parameter calibration methods approach the process differently and thus yield different model 

outcomes. When benchmarked against other methods such as the Group Method and “Brute Force” Method, 

the PLS Method displayed promising results: 

• It is the only method that did not show signs of overfitting.   

• It is the only method that concluded the model optimisation with all calibrated parameter values within 

the surveyed minimum and maximum range.  

• Overall model accuracy is quite acceptable, although less superior than the “Brute Force” Method. 

• It converges on the objective function was 30-60% faster than the Group Method and 14 times quicker 

than the “Brute Force” Method 

The success is attributed to the fundamentals of PLS regression, in which the interactions between the 

parameters and the model sensitivity of each outputs are mapped into PLS constructs and latent variables. 

Unlike other methods where parameters are adjusted one by one, PLS constructs enable parameters to be 

manipulated collectively in a manner that ensures maximum impact on the outputs while considering 

collinearities among the parameters. This guided approach effectively prevents overfitting during calibration 

and speeds up the process.  

Although the “Brute force” method enables a better model accuracy, its extreme long execution duration 

renders it a rather impractical option for industrial (on-site) use. Moreover, many of its calibrated parameters 

are capped by either the maximum or minimum values of the surveyed range. This fact could suggest that the 

substrate bears no resemblance to the substrates studied in the survey, and thereby reiterates the importance 

of how experimental data (COD, VFA, etc.) are translated into ADM1 state variables.    

Lastly, it is noted that the outcome of model optimisation could differ depending on the outputs included in the 

objective function evaluation. For instance, the poor performance of the Group Methods is attributed to the 

inclusion of VSS as part of the objective function. Over-calibration of the hydrolysis and decay parameters in 
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the first parameter group subsequently resulted in a corrective reaction (over-calibration) in the second 

parameter group.  

6.2.   Final Conclusions 

An ADM1 parameter calibration method based on the PLS regression framework, called “PLS Method”, has 

been developed. Benchmarking the PLS Method against two other parameter calibration methods confirmed 

the PLS Method as a suitable alternative method for industrial-scale digester modelling. Not only does it 

eliminates the risk of overfitting, the total calibration duration is also attractively shorter.  

By using this method, it is no longer necessary for modellers to take any decision on the sensitivity analysis 

method to apply, or the model parameters to calibrate. Instead, all parameters will undergo calibration 

simultaneously in accordance to the PLS constructs extracted from simple Monte Carlo simulations. A notable 

drawback of this method is the fact that a Monte Carlo simulation is a mandatory procedure regardless of the 

number of outputs predicted, whereas methods that do not require prerequisite sensitivity analysis (e.g. Group 

Method) could commence immediately.  

The methodology consists of four steps which modellers can apply to optimise ADM1: 

1. Perform a Monte Carlo simulation using values within the surveyed parameter ranges. 

2. Apply a PLSR algorithm on the Monte Carlo results to produce PLS constructs. 

3. Optimise the model by minimising the objective function, which is defined as the difference in PLS 

output latent variables between the simulated outputs and experimental outputs. 

4. Validate the calibrated parameter set against unseen data.  

6.3.   Recommendations 

Prior to the availability of affordable advanced instruments, regular calibration of a plant model serving as a 

soft sensor may be the short-term answer to address the dynamic nature of industrial wastewater 

compositions. The fact that the PLS latent structures do not change unless the model structure (i.e. rate 

equations, stoichiometry, etc.) changes, it is not necessary to run Monte Carlo simulations when the model re-

calibrates. This means that the soft sensor model using the PLS Method will be able to update parameters 

within a short time on a regular, or even online, basis using three latest plant measurements.  

It is inevitable that assumptions or references to other literature have to be made when translating experimental 

data into the ADM1 structure. A major uncertainty noted pertains to how soluble COD and particulate COD 

values are translated into the various ADM1 state variables. As a prerequisite to ADM1 modelling, it is 

recommended that a once-off substrate characterisation test is carried out. The purpose of this test is to 

establish the COD fractions between carbohydrates, proteins and lipids, as well as to identify the compositional 

make-up by the various VFAs. Understanding these factors will ensure that the substrate is correctly described 

within ADM1. 
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6.4.   Future Research 

In spite of the extensive research in ADM1 there is currently no consolidated database of calibrated 

parameters. It is encouraged that the research community continue to build on the parameter database 

established in this study. A growing database does not only benefit the framework presented in this study, it 

would serve well as a directory for similar substrate type or a statistical resource for the development of new 

techniques. For the convenience of future research, resources developed in this study such as the parameter 

database and Scilab codes can be reused.  

The applicability of the proposed framework should be trialled under different scenarios in which different 

substrate types and loading rates are experimented. Further investigation could look at using a different 

parameter set (besides the default set given in the STR) as the starting set for optimisation.   

Hydrogen is widely acknowledged as a key methanogenic activity inhibitor and a precursor to process failure. 

Future research should, whenever possible, include hydrogen concentration measurements into the 

experimental setup and to include it as one of the modelled outputs.   
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 APPENDICES 

8.1. Appendix A – ADM1 Nomenclature 

Dynamic State Variables 

Table 17: Description of the state variables used in ADM1 models 

i Variable Unit Description  i Variable Unit Description 

1 Ssu kgCOD/m³ Monosaccharides  16 Xli kgCOD/m³ Lipids 

2 Saa kgCOD/m³ Amino acids  17 Xsu kgCOD/m³ 

Monosaccharide 

degraders 

3 Sfa kgCOD/m³ Total LCFA  18 Xaa kgCOD/m³ 

Amino acid 

degraders 

4 Sva kgCOD/m³ Total valerate  19 Xfa kgCOD/m³ LCFA degraders 

5 Sbu kgCOD/m³ Total butyrate  20 Xc4 kgCOD/m³ C4-degraders 

6 Spro kgCOD/m³ Total propionate  21 Xpro kgCOD/m³ 

Propionate 

degraders 

7 Sac kgCOD/m³ Total acetate  22 Xac kgCOD/m³ Acetate degraders 

8 Sh2 kgCOD/m³ Hydrogen  23 Xh2 kgCOD/m³ 

Hydrogen 

degraders 

9 Sch4 kgCOD/m³ Methane  24 XI kgCOD/m³ Particulate inerts 

10 SIC kmol C/m³ Inorganic carbon  25 San kmol/m³ Anions 

11 SIN kmol N/m³ Inorganic nitrogen  26 Scat kmol/m³ Cations 

12 SI kgCOD/m³ Soluble inerts  27 Sh2,g kgCOD/m³ Hydrogen (gas) 

13 Xc kgCOD/m³ Composites  28 Sch4,g kgCOD/m³ Methane (gas) 

14 Xch kgCOD/m³ Carbohydrates  29 Sco2,g kgCOD/m³ 

Carbon dioxide 

(gas) 

15 Xpr kgCOD/m³ Proteins      

 

Model Parameters 

(i) Stoichiometric Parameters 

Table 18: Description of the stoichiometric parameters used in ADM1 models 

Parameter Unit Description  Parameter Unit Description 

fSI,XC - 
Soluble inerts fraction 

from composites  
fPRO,SU - 

Propionate fraction from 

monosaccharides 

fXI,XC - 
Particulate inerts fraction 

from composites  
fAC,SU - 

Acetate fraction from 

monosaccharides 
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Parameter Unit Description  Parameter Unit Description 

fCH,XC - 
Carbohydrates fraction 

from composites  
fH2,AA - 

Hydrogen fraction from 

amino acids 

fPR,XC - 
Proteins fraction from 

composites  
fVA,AA - 

Valerate fraction from 

amino acids 

fLI,XC - 
Lipids fraction from 

composites  
fBU,AA - 

Butyrate fraction from 

amino acids 

fFA,LI - 
Fatty acids fraction from 

lipids  
fPRO,AA - 

Propionate fraction from 

amino acids 

fH2,SU - 
Hydrogen fraction from 

monosaccharides  
fAC,AA - 

Acetate fraction from amino 

acids 

fBU,SU - 
Butyrate fraction from 

monosaccharides  
  

 

 

(ii) Kinetic Parameters 

Table 19: Description of the kinetic parameters used in ADM1 models 

Parameter Unit Description 

kdis d-1 Disintegration factor 

khyd_CH d-1 Carbohydrates hydrolysis rate constant 

khyd_PR d-1 Proteins hydrolysis rate constant 

khyd_LI d-1 Lipids hydrolysis rate constant 

Ks_IN kmol/m³ 

Inorganic nitrogen concentration threshold; growth ceases when 

exceeded 

pHUL_acid - pH threshold; no inhibition when pH is above this level 

pHLL_acid - pH threshold; full inhibition when pH is below this level 

km_su COD.COD-1.d-1 

Monod maximum specific uptake rate for monosaccharide 

degraders 

Ks_su kgCOD.m-3 Monod half saturation value for monosaccharide degradation 

Ysu COD.COD-1 Biomass yield on uptake of monosaccharides 

kdec_xsu d-1 Decay rate constant of monosaccharide degraders 

km_aa COD.COD-1.d-1 Monod maximum specific uptake rate for amino acid degraders 

Ks_aa kgCOD.m-3 Monod half saturation value for amino acid degradation 

Yaa COD.COD-1 Biomass yield on uptake of amino acids 

kdec_xaa d-1 Decay rate constant of amino acid degraders 

km_fa COD.COD-1.d-1 Monod maximum specific uptake rate for LCFA degraders 

Ks_fa kgCOD.m-3 Monod half saturation value for LCFA degradation 

Yfa COD.COD-1 Biomass yield on uptake of LCFA 

kdec_xfa d-1 Decay rate constant of LCFA degraders 

KIh2_fa kgCOD.m-3 Hydrogen inhibitory concentration for LCFA degraders 
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Parameter Unit Description 

km_c4 COD.COD-1.d-1 

Monod maximum specific uptake rate for valerate & butyrate 

degraders 

Ks_c4 kgCOD.m-3 Monod half saturation value for valerate & butyrate degradation 

Yc4 COD.COD-1 Biomass yield on uptake of valerate & butyrate 

kdec_xc4 d-1 Decay rate constant of valerate & butyrate degraders 

km_pro COD.COD-1.d-1 Monod maximum specific uptake rate for propionate degraders 

Ks_pro kgCOD.m-3 Monod half saturation value for propionate degradation 

Ypro COD.COD-1 Biomass yield on uptake of propionate 

kdec_xpro d-1 Decay rate constant of propionate degraders 

KIh2_pro kgCOD.m-3 Hydrogen inhibitory concentration for propionate degraders 

km_ac COD.COD-1.d-1 Monod maximum specific uptake rate for acetate degraders 

Ks_ac kgCOD.m-3 Monod half saturation value for acetate degradation 

Yac COD.COD-1 Biomass yield on uptake of acetate 

kdec_xac d-1 Decay rate constant of acetate degraders 

KInh3_ac kgCOD.m-3 Free ammonia inhibitory concentration on acetate degraders 

pHUL_ac - 

pH threshold; no inhibition on acetate degradation when pH is 

above this level 

pHLL_ac - 

pH threshold; full inhibition on acetate degradation when pH is 

below this level 

km_h2 COD.COD-1.d-1 Monod maximum specific uptake rate for hydrogen degraders 

Ks_h2 kgCOD.m-3 Monod half saturation value for hydrogen degradation 

Yh2 COD.COD-1 Biomass yield on uptake of hydrogen 

Kdec_xh2 d-1 Decay rate constant of hydrogen degraders 

pHUL_h2 - 

pH threshold; no inhibition on acetate degradation when pH is 

above this level 

pHLL_h2 - 

pH threshold; full inhibition on acetate degradation when pH is 

below this level 
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8.2. Appendix B – Model Optimisation Method Survey 
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Table 20: Survey of current ADM1 model optimisation methods 

Reference Experiment 
Type Starting Parameter Set  

No. of 
parameters 
calibrated 

Measured Outputs  Sensitivity 
Analysis 

Simulation 
Platform Model Optimisation Method 

Coelho et 
al. (2006) 

Continuous 
Lab-scale Default STR set 12 CH4 gas flow, TCOD 

Adopted 
sensitivities 

as reported in 
the STR. 

AQUASIM 

Minimising Chi-square function by first 
calibrating parameter group with 
highest sensitivity, then other two 
groups classified with decending 
sensitivities.  

Boubaker 
and Ridha 

(2008) 

Semi-
continuous 
Lab-scale 

(i) Disintegration and hydrolysis rate 
constants set according to past 
literature values.  
(ii) Stoichiometric parameters 
determined from substrate chemical 
composition. 
(iii) Other parameters follow default 
STR set 

3 
Biogas flow, CH4 & CO2 
gas composition, VFA, 
NH4, pH 

Applied but 
did not 

specify which 
method. 

MATLAB/Sim
ulink 

Method was not specified. Only the 
most sensitive parameters were 
calibrated.  

Blumensaat 
and Keller 

(2005) 

Continuous 
Pilot-scale 

(i) Stoichiometric parameters follow 
default STR set 
(ii) Kinetic parameters with low 
sensitivities set according to past 
literature values. 
(iii) Kinetic parameters with low 
sensitivities follow default STR set 

6 

Biogas flow, CH4 & CO2 
gas composition,  
VFAs including 
Propionate & Acetate 

Adopted 
sensitivities 

as reported in 
the STR. 

MATLAB/Sim
ulink 

Method was not specified. Only eight of 
the most sensitive parameters reported 
in STR were calibrated.  

Razaviarani 
and 

Buchanan 
(2015) 

Batch Lab-
scale &  
Semi-
continuous 
Lab-scale 

(i) Disintegration and kinetic rates 
obtained from BMP fitting are used 
(ii) Hydrolysis rates set according to 
past literature values. 
(iii) Other parameters follow default 
STR set 

14 

Biogas flow, CH4 & CO2 
gas composition, VSS, 
Alkalinity,  pH, NH4,  
COD, VFAs including 
Acetate, Propionate, 
Butyrate & Valerate 

None GPS-X 

Method was not specified. BMP test 
results used for calibration. Fitting 
criteria for certain parameters are 
specific: 
(i) Disintegration rate is calibrated by 
fitting methane gas production while 
hydrolysis rates are held constant. 
(ii) Kinetic rates for acidogenesis of 
monosaccharides & LCFA and 
acetogenesis of all VFA constituents 
are calibrated by fitting  VFA 
constituents. 
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Reference Experiment 
Type Starting Parameter Set  

No. of 
parameters 
calibrated 

Measured Outputs  Sensitivity 
Analysis 

Simulation 
Platform Model Optimisation Method 

(iii) Only stoichiometric parameters with 
high variability as reported in the STR 
are calibrated. 

Koch et al. 
(2010) 

Continuous 
Lab-scale 

(i) Fractionation parameters related to 
disintegration are estimated using 
detailed substrate composition. 
(ii) Hydrolysis rate for protein set 
according to past literature values. 
(iii) Other parameters follow default 
STR set 

11 Biogas flow, CH4, CO2 
& H2 gas composition None MATLAB/Sim

ulink 

Modified Nash-Sutcliffe coefficient 
applied to produce goodness-of-fit 
maps, which assists in identifying the 
most sensitive parameters to calibrate. 

Wichern et 
al. (2009) 

Semi-
continuous 
Lab-scale 

Default STR set 8 

Biogas flow, CH4, CO2 
& H2 gas composition, 
pH, TS, VFAs including 
Acetate, Propionate & 
Butyrate 

Single Step 
Variation 
Method 
(SVM) 

MATLAB/Sim
ulink 

(i) Manual calibration based on expert 
knowledge  
(ii) Use of Genetic Algorithm in 
conjuction with Square Error Sum 
function 

Mairet et al. 
(2011) 

Semi-
continuous 
Lab-scale 

(i) Fractionation parameters related to 
disintegration are estimated using 
detailed substrate composition. 
(ii) Other parameters follow default 
STR set. 

12 

Biogas flow, CH4 gas 
composition,  pH, 
TCOD,  SCOD, NH4,  
VFAs including Acetate, 
Propionate, Butyrate & 
Valerate 

None MATLAB/Sim
ulink 

(i) pH inhibition factor of acetate 
calibrated manually based on expert 
knowledge 
(ii) Hydrolysis rates and half saturation 
constants of carbohydrates, proteins 
and lipids calibrated by trial and error 

Jurado et 
al. (2016) 

Semi-
continuous 
Lab-scale 

Default STR set 7 

Biogas flow, CH4 gas 
composition,  pH, 
VFAs including Acetate, 
Propionate & Butyrate 

None AQUASIM 

Secant method applied in conjunction 
with Square Error Sum. Calibrated 
parameters are selected based on 
expert knowledge 

Antonopoul
ou et al. 
(2012) 

Batch Lab-
scale &  
Semi-
continuous 
Lab-scale 

(i) Maximum specific uptake rates for 
hydrogen and VFAs obtained from 
BMP fitting are used. 
(ii) Other parameters follow default 
STR set. 

4 Biogas flow, CH4 gas 
composition,  pH None AQUASIM 

Secant method applied for BMP fitting. 
Maximum specific uptake rates for 
hydrogen and VFAs calibrated against 
BMP test results 

Jeong et al. 
(2005) 

Batch Lab-
scale Default STR set 10 

Biogas flow, CH4 gas 
composition,   VFAs 
including Acetate, 
Propionate & Butyrate 

Dynamic 
sensitivity 
analysis  

MATLAB 
Genetic Algorithms applied in 
conjuction with Square Error Sum on 
sensitivity analysis results 
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Reference Experiment 
Type Starting Parameter Set  

No. of 
parameters 
calibrated 

Measured Outputs  Sensitivity 
Analysis 

Simulation 
Platform Model Optimisation Method 

Thamsiriroj 
and Murphy 

(2011) 

Continuous 
Lab-scale 

(i) Stoichiometric parameters estimated 
from VS content of substrate. 
(ii) 6 kinetic parameters referenced 
from another study on similar 
substrate. 
(iii) Other kinetic parameters follow 
default STR set. 

1 

Biogas flow, CH4 gas 
composition,   Total 
VFA,  pH, DS & VS 
content 

None MATLAB/Sim
ulink Method was not specified.  

Barrera et 
al. (2015) 

Continuous 
Lab-scale Default STR set 4 

Biogas flow, CH4 & CO2 

& H2S gas composition,  
pH, COD, VFAs 
including Acetate & 
Propionate,  SO4 & 
H2S 

Local relative 
sensitivity 
analysis 

MATLAB/Sim
ulink 

(i) Select parameters to calibrate based 
on expert knowledge and sensitivity 
analysis 
(ii) Minimise mean absolute relative 
errors 

Derbal et al. 
(2009) 

Continuous 
Full-scale 

(i) Disintegration and hydrolysis 
parameters are estimated from BMP 
fitting. 
(ii) Other parameters follow default 
STR set. 

4 

Biogas flow, CH4 & CO2 
gas composition,  pH, 
TCOD & SCOD, Total 
VFA,  NH4 and 
Alkalinity 

None Not specified Method was not specified.  

Lübken et 
al. (2007) 

Continuous 
Pilot-scale Default STR set 11 

Biogas flow, CH4 & CO2 
& H2 gas composition,  
pH, VFAs including 
Acetate & Propionate 

None MATLAB/Sim
ulink 

(i) Select parameters to calibrate based 
on expert knowledge  
(ii) Referenced some kinetic 
parameters from another study 
(iii) Calibrate parameters iteratively. 
Method was not specified. 

Normak et 
al. (2015) 

Batch Lab-
scale 

(i) 6 kinetic parameters referenced from 
other studies on similar substrate. 
(ii) Other kinetic parameters follow 
default STR set. 

11 
Biogas flow, CH4 gas 
composition,  pH, Total 
VFA  

None MATLAB/Sim
ulink 

Minimise residual sum of squares of 
errors based on biogas flow 

Ozkan-
Yucel & 
Gökçay 
(2010) 

Continuous 
Full-scale Default STR set 10 Biogas flow, pH, Total 

VFA, TCOD 

Applied but 
did not 

specify which 
method. 

AQUASIM 
Minimise residual sum of squares of 
errors based on total VFA, pH and 
biogas flow 

Lee et al. 
(2009) 

Semi-
continuous 
Lab-scale 

Default STR set 4 CH4, TCOD, SCOD, 
Acetate 

Local relative 
sensitivity 
analysis 

Not specified Method was not specified.  
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Reference Experiment 
Type Starting Parameter Set  

No. of 
parameters 
calibrated 

Measured Outputs  Sensitivity 
Analysis 

Simulation 
Platform Model Optimisation Method 

Chen et al. 
(2016) 

Batch Lab-
scale Default STR set 7 

Biogas flow, CH4 & H2 
gas composition,  
VFAs including Acetate 
& Propionate 

Local relative 
sensitivity 
analysis 

AQUASIM 

(i) Select parameters to calibrate based 
on sensitivity analysis 
(ii) Minimise residual sum of squares of 
errors based on biogas flow 

Fezzani & 
Cheikh 
(2009) 

Semi-
continuous 
Lab-scale 

Default STR set 2 Biogas flow, pH, Phenol 

Applied but 
did not 

specify which 
method. 

MATLAB/Sim
ulink Method was not specified.  

Silva et al. 
(2009) 

Semi-
continuous 
Lab-scale 

Default STR set 2 Methane flow, pH, 
Acetic acid 

Local relative 
sensitivity 
analysis 

AQUASIM Secant method applied only on two 
most sensitive parameters 

Biernacki et 
al. (2013) 

Continuous 
Full-scale Default STR set 4 Biogas flow None MATLAB/Sim

ulink Simplex method algorithm 

Bulkowska 
et al. (2015) 

Semi-
continuous 
Lab-scale 

Default STR set 10 

Biogas flow, CH4 gas 
composition,  pH, VFAs 
including Acetate, 
Propionate & Butyrate 

None MATLAB/Sim
ulink Genetic Algorithms  

Ngo et al. 
(2016) 

Continuous 
Lab-scale Default STR set 17 

Methane flow, Soluble 
COD, Sugar, Protein, 
Lipids, pH, VFAs 
including Acetate & 
Propionate  

None GPS-X Method was not specified.  

Mendes et 
al. (2015) 

Continuous 
Lab-scale 

(i) Stoichiometric parameters estimated 
from substrate composition. 
(ii) Kinetic parameters follow default 
STR set. 

4 

Biogas flow, CH4 & CO2 
& H2 gas composition, 
pH,  VFAs including 
Acetate & Propionate 

Local relative 
sensitivity 
analysis 

MATLAB/Sim
ulink 

(i) Select parameters to calibrate based 
on sensitivity analysis 
(ii) Minimise residual sum of squares of 
errors based on methane concentration 
only 

Yu et al. 
(2012) 

Continuous 
Pilot-scale Default STR set 7 

CH4 gasflow, VFAs 
including Acetate, 
Propionate, Butyrate & 
Valerate 

Local relative 
sensitivity 
analysis 

AQUASIM 

(i) Select parameters to calibrate based 
on sensitivity analysis and expert 
knowledge 
(ii) Minimise residual sum of squares of 
errors 

Biernacki et 
al. (2013) 

Batch Lab-
scale Default STR set 4 Biogas flow 3-D Graph MATLAB/Sim

ulink Simplex method algorithm 
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Reference Experiment 
Type Starting Parameter Set  

No. of 
parameters 
calibrated 

Measured Outputs  Sensitivity 
Analysis 

Simulation 
Platform Model Optimisation Method 

Colussi et 
al. (2016) 

Batch Lab-
scale Default STR set 4 CH4 & CO2 gas flows None AQUASIM Secant method 

Galí et al. 
(2009) 

Semi-
continuous 
Lab-scale 

Default STR set 1 CH4 gas flow None MATLAB/Sim
ulink 

Minimise residual sum of squares of 
errors based on methane flow 

Shi et al. 
(2014) 

Semi-
continuous 
Lab-scale 

(i) 5 kinetic parameters referenced from 
other studies on similar substrate. 
(ii) Other kinetic parameters follow 
default STR set. 

3 CH4 gas flow, pH 
Local relative 

sensitivity 
analysis 

AQUASIM 

(i) Select parameters to calibrate based 
on sensitivity analysis 
(ii) Minimise residual sum of squares of 
errors 

This study Continuous 
Full-scale Default STR set All 

Total VFA, NH4, VSS,  
pH, CH4 gas flow & CO2 
gas flow 

Monte Carlo 
& Partial 

Least 
Squares 

Regression 

SCILAB 

(i) Apply PLS regression on Monte 
Carlo data to identify underlying 
relationships between parameters and 
model outputs 
(ii) Calibrate by manipulating PLS input 
latent variables instead of parameters 
(iii) Minimise objective function which is 
expressed in the form of PLS output 
latent variables 
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8.3. Appendix C – Parameter Survey Data 

Notes on Parameter Survey Tables 

General:  For literature references that have applied ADM1 simulation, only parameters that differ from the 
STR suggested parameters are indicated. In other words, only modified parameters (as a result of 

model fitting) are noted.  

Note 1:  Literature references highlighted in yellow are references provided in STR (Batstone et al., 2002). 

Note 2:  Substrate is tested with excess carbohydrates, protein and lipid compositions in individual 

experiments. It is assumed that the hydrolysis constants obtained can be represented as khyd_ch, 

khyd_pr and khyd_li respectively. 

Note 3:  Single first-order hydrolysis constant was determined to describe lumped effect of disintegration 

and hydrolysis. The constant is classified under disintegration constant (kdis) based on the 
assumption that disintegration is the rate limiting step. 
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Stoichiometric Parameters Survey – Parameter 1 to 15  

Description Stoichiometric Parameters 
Lit. 

Ref. 

Substrate 

Category 
Substrate Type 

Applied 

ADM1 
Temp fSI,XC fXI,XC fCH,XC fPR,XC fLI,XC fFA,LI fH2,SU fBU,SU fPRO,SU fAC,SU fH2,AA fVA,AA fBU,AA fPRO,AA fAC,AA 

    °C                

6 Acetate Acetate (Max) No 
25-

35 
               

6 Acetate Acetate (Min) No 
25-

35 
               

11 Acetate Acetate (Max) No 
25-

35 
               

11 Acetate Acetate (Min) No 
25-

35 
               

18 Acetate Acetate No 37                

7 
Agricultural 

solid wastes 
Forest soil No 30                

7 
Agricultural 

solid wastes 

Forest soil 

(Max) 
No 20                

7 
Agricultural 

solid wastes 

Forest soil 

(Min) 
No 20                

7 
Agricultural 

solid wastes 
Pond silt No 28                

25 Aquatic culture Blue algae No             0.293 0.242 0.041 0.325 

25 Aquatic culture 
Chlorella 
vulgaris No             0.278 0.271 0.064 0.301 

25 Aquatic culture 
Scenedesmus 

obliquus  
No             0.275 0.265 0.063 0.315 

28 Aquatic culture Microalgae Yes   0.3 0.08 0.4 0.22           

39 Aquatic culture 
Hydrilla 

verticillata Yes 35  0.55 0.072 0.313 0.017           

6 Butyrate Butyrate No 35                

11 Butyrate Butyrate (Max) No 
35-

60 
               

11 Butyrate Butyrate (Min) No 
35-

60 
               

57 Carbohydrates 
Carbohydrates 

(Max) 
No 35                

57 Carbohydrates 
Carbohydrates 

(Min) 
No 35                

35 
Cattle manure 

+ REC 

Cattle manure 

+ REC 
Yes                 

17 Cellulose Cellulose No 28                

60 Cellulose Cellulose3 No 35                

62 Cellulose Cellulose No                 

4 Dairy Dairy No 35                

21 Dairy Dairy Yes 35                

25 Energy crops Rye No             0.272 0.264 0.078 0.328 

25 Energy crops Soybean No             0.298 0.29 0.063 0.287 

25 Energy crops Sweet potato No             0.262 0.257 0.055 0.319 

30 Energy crops 
Sorghum 

extract 
Yes                 

43 Energy crops Corn stover No 
20-

40 
               

52 Energy crops Rape Yes  0.122 0.166 0.556 0.126 0.122           

52 Energy crops Sunflower Yes  0.184 0.078 0.506 0.198 0.034           

8 Fatty acids Linoleate No 37                

8 Fatty acids Myristate No 37                

8 Fatty acids Oleate No 37                

8 Fatty acids Palmitate No 37                

8 Fatty acids Stearate No 37                

14 Fatty acids 
Slaughterhouse 

(palmitate) 
No 35                

14 Fatty acids 
Slaughterhouse 

(stearate) 
No 35                

20 Food wastes Food waste No 37                

38 Food wastes 
Dog food + 

Flour 
Yes 35                

46 Food wastes 
Heterogeneous 

food wastes 
Yes 35                

50 Food wastes Food waste Yes   0.21 0.183 0.268 0.338           

55 Food wastes 
Restaurant 

waste2 
No                 

60 Food wastes Kitchen waste3 No 35                

52 Fruit wastes Apple pulp Yes  0.422 0.255 0.256 0.011 0.055           

52 Fruit wastes Orange pulp Yes  0.153 0.337 0.477 0.02 0.014           

52 Fruit wastes Pear pulp Yes  0.367 0.134 0.399 0.016 0.084           

6 General 
General/Non-

specific 
No 33                

6 General 
General/Non-

specific (Max) 
No 

34-

40 
               

6 General 
General/Non-

specific (Min) 
No 

34-

40 
               

54 General 
General/Non-

specific 
No                 
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Stoichiometric Parameters Survey – Parameter 1 to 15 (Cont’d) 

Description Stoichiometric Parameters 

Lit. Ref. Substrate Category Substrate Type 
Applied 

ADM1 
Temp fSI,XC fXI,XC fCH,XC fPR,XC fLI,XC fFA,LI fH2,SU fBU,SU fPRO,SU fAC,SU fH2,AA fVA,AA fBU,AA fPRO,AA fAC,AA 

    °C                

6 Glucose Glucose No 30                

11 Glucose Glucose (Max) No 35-37                

11 Glucose Glucose (Min) No 35-37                

16 Glucose Glucose No 35                

17 Glucose Glucose No                 

31 Glucose Glucose Yes 35        0.111 0.54 0.202      

11 H2/butyrate H2/butyrate (Max) No 33-60                

11 H2/butyrate H2/butyrate (Min) No 33-60                

44 Industrial glycerine Industrial glycerine Yes   0.02 0.492 0.01 0.478           

51 
Industrial solid 

wastes 

Brewer's spent 

grain 
Yes   0.133 0.403 0.244 0.22           

60 
Industrial solid 

wastes 
Biowaste3 No 35                

61 
Industrial solid 

wastes 

Solid household 

waste 
No 35                

5 Lactose Lactose No 35                

57 Lipids Lipids (Max) No 35                

57 Lipids Lipids (Min) No 35                

58 Lipids Lipids No                 

59 Lipids Lipids No 25                

4 Livestock manure Piggery No 35                

19 Livestock manure Pig manure No 28                

29 Livestock manure Swine manure Yes                 

36 Livestock manure Cattle manure Yes                 

47 Livestock manure Cattle manure Yes 35  0.41047 0.2093 0.36047 0.01977           

50 Livestock manure Cattle manure Yes   0.509 0.264 0.185 0.042           

50 Livestock manure Chicken manure Yes   0.356 0.306 0.219 0.119           

52 Livestock manure Pig manure Yes  0.143 0.033 0.461 0.202 0.161           

53 Livestock manure 
Dairy manure + 

SMS 
Yes                 

13 Molasses Molasses No 35                

33 Molasses 
Cane-molasses 

vinasse 
Yes                 

41 Molasses 
EC from SPM with 

molasses 
Yes 35                

2 MWS Primary sludge No 35                

3 MWS Primary sludge No 35                

3 MWS Primary sludge No 35                

3 MWS Primary sludge No 35                

9 MWS 
Primary sludge 

(Max) 
No 35                

9 MWS 
Primary sludge 

(Min) 
No 35                

15 MWS Primary sludge No 35                

23 MWS MWS Yes 35                

34 MWS MWS Yes                 

37 MWS MWS Yes 35                

48 MWS MWS Yes 35                

24 MWS + GTW MWS + GTW Yes                 

49 OFMSW OFMSW Yes 35 0.075 0.075 0.5 0.28 0.068           

4 Olive Olive-mill No 35                

22 Olive Olive Yes 35  0.45 0.35 0.074 0.1           

40 Olive OMSW Yes 37 0.013 0.45 0.35 0.074 0.1           

6 Propionate Propionate (Max) No 25-35                

6 Propionate Propionate (Min) No 25-35                

18 Propionate Propionate No 37                
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Stoichiometric Parameters Survey – Parameter 1 to 15 (Cont’d) 

Description Stoichiometric Parameters 
Lit. 

Ref. 

Substrate 

Category 
Substrate Type 

Applied 

ADM1 
Temp fSI,XC fXI,XC fCH,XC fPR,XC fLI,XC fFA,LI fH2,SU fBU,SU fPRO,SU fAC,SU fH2,AA fVA,AA fBU,AA fPRO,AA fAC,AA 

    °C                

5 Proteins Gelatin No 35                

7 Proteins Proteins No 28                

12 Proteins Casein No 35                

12 Proteins Casein No 35                

12 Proteins Casein No 35                

12 Proteins Casein No 35                

12 Proteins Casein No 35                

12 Proteins Casein No 35                

25 Proteins Casein No             0.299 0.28 0.072 0.279 

25 Proteins Egg No             0.309 0.26 0.068 0.273 

25 Proteins Galantine No             0.293 0.186 0.12 0.399 

57 Proteins Proteins (Max) No 35                

57 Proteins Proteins (Min) No 35                

25 Silage Grass silage No             0.292 0.236 0.045 0.334 

25 Silage Maize silage No             0.304 0.236 0.044 0.321 

26 Silage Grass silage Yes 38  0.379 0.401 0.187 0.033           

27 Silage Grass silage Yes                 

32 Silage Grass silage Yes 37  0.075 0.797 0.095 0.033           

42 Silage Grass silage No 38                

44 Silage Grass silage Yes   0.21 0.54 0.21 0.04           

44 Silage 
Green weed 

silage 
Yes   0.21 0.604 0.135 0.051           

44 Silage Maize silage Yes   0.14 0.695 0.11 0.055           

45 Silage 
Maize silage + 

cattle manure 
Yes 29                

1 Slaughterhouse Slaughterhouse No 33                

10 Slaughterhouse 
Fish waste 

(Max) 
No 33                

10 Slaughterhouse 
Fish waste 

(Min) 
No 33                

14 Slaughterhouse Slaughterhouse No 35                

56 Slaughterhouse 
Paunch + Blood 

+ DAF sludge 
Yes 35  0.2   0.3           

61 Slaughterhouse 

Solid 

slaughterhouse 

waste 

No 35                
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Kinetic Parameters Survey – Parameter 16 to 30 

Description Kinetic Parameters 

Lit. Ref. Substrate Category Substrate Type 
Applied 

ADM1 
Temp kdis khyd_ch khyd_pr khyd_li Ks_IN pHUL_acid pHLL_acid km_su Ks_su Ysu kdec_xsu km_aa Ks_aa 

    °C d-1 d-1 d-1 d-1 kgCOD.m-3 - - 
COD.COD-

1d-1 
kgCOD.m-3 COD.COD-1 d-1 

COD.COD-

1d-1 
kgCOD.m-3 

6 Acetate Acetate (Max) No 25-35              

6 Acetate Acetate (Min) No 25-35              

11 Acetate Acetate (Max) No 25-35              

11 Acetate Acetate (Min) No 25-35              

18 Acetate Acetate No 37              

7 
Agricultural solid 

wastes 
Forest soil No 30 0.54             

7 
Agricultural solid 

wastes 
Forest soil (Max) No 20 0.09             

7 
Agricultural solid 

wastes 
Forest soil (Min) No 20 0.031             

7 
Agricultural solid 

wastes 
Pond silt No 28 0.013             

25 Aquatic culture Blue algae No               

25 Aquatic culture 
Chlorella vulgaris 

(green alga) 
No               

25 Aquatic culture 

Scenedesmus 
obliquus (green 

alga) 

No               

28 Aquatic culture Microalgae Yes               

39 Aquatic culture Hydrilla verticillata Yes 35 0.18  0.62         35 0.58 

6 Butyrate Butyrate No 35              

11 Butyrate Butyrate (Max) No 35-60              

11 Butyrate Butyrate (Min) No 35-60              

57 Carbohydrates 
Carbohydrates 

(Max) 
No 35  2            

57 Carbohydrates 
Carbohydrates 

(Min) 
No 35  0.5            

35 
Cattle manure + 

REC 

Cattle manure + 

REC 
Yes   0.31 0.31 0.31  8 6       

17 Cellulose Cellulose No 28  0.15            

60 Cellulose Cellulose3 No 35 0.066             

62 Cellulose Cellulose No   0.45            

4 Dairy Dairy No 35  0.13 0.24           

21 Dairy Dairy Yes 35  2.75 0.15     97.961 1.745 0.01  42  

25 Energy crops Rye No               

25 Energy crops Soybean No               

25 Energy crops Sweet potato No               

30 Energy crops Sorghum extract Yes               

43 Energy crops Corn stover No 20-40  0.94 0.94 0.94          

52 Energy crops Rape Yes  0.24             

52 Energy crops Sunflower Yes  0.23             

8 Fatty acids Linoleate No 37              

8 Fatty acids Myristate No 37              

8 Fatty acids Oleate No 37              

8 Fatty acids Palmitate No 37              

8 Fatty acids Stearate No 37              

14 Fatty acids 
Slaughterhouse 

(palmitate) 
No 35              

14 Fatty acids 
Slaughterhouse 

(stearate) 
No 35              

20 Food wastes Food waste No 37 0.41             

38 Food wastes Dog food + Flour Yes 35 1             

46 Food wastes 
Heterogeneous 

food wastes 
Yes 35        40 0.05  0.01  0.01 

50 Food wastes Food waste Yes  1.043 1.044 0.233 0.98          

55 Food wastes Restaurant waste2 No   0.32 0.24 0.12          

60 Food wastes Kitchen waste3 No 35 0.34             

52 Fruit wastes Apple pulp Yes  0.15             

52 Fruit wastes Orange pulp Yes  0.29             

52 Fruit wastes Pear pulp Yes  0.18             

6 General 
General/Non-

specific 
No 33              

6 General 
General/Non-

specific (Max) 
No 34-40  0.13 0.03 0.08          

6 General 
General/Non-

specific (Min) 
No 34-40  0.041 0.02 0.4          

54 General 
General/Non-

specific 
No               
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Kinetic Parameters Survey – Parameter 16 to 30 (Cont’d) 

Description Kinetic Parameters 

Lit. Ref. Substrate Category Substrate Type 
Applied 

ADM1 
Temp kdis khyd_ch khyd_pr khyd_li Ks_IN pHUL_acid pHLL_acid km_su Ks_su Ysu kdec_xsu km_aa Ks_aa 

    °C d-1 d-1 d-1 d-1 kgCOD.m-3 - - 
COD.COD-

1d-1 
kgCOD.m-3 COD.COD-1 d-1 

COD.COD-

1d-1 
kgCOD.m-3 

6 Glucose Glucose No 30        51 0.022 0.14    

11 Glucose Glucose (Max) No 35-37        125 0.63 0.17    

11 Glucose Glucose (Min) No 35-37        29 0.023 0.01    

16 Glucose Glucose No 35        5067 0.049     

17 Glucose Glucose No               

31 Glucose Glucose Yes 35          0.05    

11 H2/butyrate H2/butyrate (Max) No 33-60              

11 H2/butyrate H2/butyrate (Min) No 33-60              

44 Industrial glycerine Industrial glycerine Yes  1.3236 1.2516 0.0018 0.0086          

51 
Industrial solid 

wastes 

Brewer's spent 

grain 
Yes  0.823 0.941 1.056 0.124          

60 
Industrial solid 

wastes 
Biowaste3 No 35 0.12             

61 
Industrial solid 

wastes 

Solid household 

waste 
No 35 0.95             

5 Lactose Lactose No 35  106            

57 Lipids Lipids (Max) No 35    0.7          

57 Lipids Lipids (Min) No 35    0.1          

58 Lipids Lipids No     0.76          

59 Lipids Lipids No 25    0.63          

4 Livestock manure Piggery No 35  0.28 0.68           

19 Livestock manure Pig manure No 28 0.096             

29 Livestock manure Swine manure Yes               

36 Livestock manure Cattle manure Yes         11.9 4.5   19.8 0.3 

47 Livestock manure Cattle manure Yes 35              

50 Livestock manure Cattle manure Yes  1.54 0.037 0.099 0.225          

50 Livestock manure Chicken manure Yes               

52 Livestock manure Pig manure Yes  0.17             

53 Livestock manure 
Dairy manure + 

SMS 
Yes  0.365  18.23           

13 Molasses Molasses No 35      5.5 4 120 1.28 0.07 0.02   

33 Molasses 
Cane-molasses 

vinasse 
Yes               

41 Molasses 
EC from SPM with 

molasses 
Yes 35              

2 MWS Primary sludge No 35   0.2           

3 MWS Primary sludge No 35  0.3 0.28           

3 MWS Primary sludge No 35  0.41 0.39           

3 MWS Primary sludge No 35  0.58 0.58           

9 MWS 
Primary sludge 

(Max) 
No 35  1.94 0.1 0.17          

9 MWS 
Primary sludge 

(Min) 
No 35  0.21 0.0096 0.0096          

15 MWS Primary sludge No 35 0.25     5.5 4.5 27 0.05 0.15 0.8 27 0.05 

23 MWS MWS Yes 35 1             

34 MWS MWS Yes  0.5 1.017 0.3842 0.999          

37 MWS MWS Yes 35  1 1 1    35 0.5     

48 MWS MWS Yes 35        20.22    41.12  

24 MWS + GTW MWS + GTW Yes  0.2 0.75 0.7 2.1    37.4 0.496     

49 OFMSW OFMSW Yes 35 0.15             

4 Olive Olive-mill No 35  0.19 0.35           

22 Olive Olive Yes 35 0.006             

40 Olive OMSW Yes 37 0.001             

6 Propionate Propionate (Max) No 25-35              

6 Propionate Propionate (Min) No 25-35              

18 Propionate Propionate No 37              
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Kinetic Parameters Survey – Parameter 16 to 30 (Cont’d) 

Description Kinetic Parameters 

Lit. Ref. Substrate Category Substrate Type 
Applied 

ADM1 
Temp kdis khyd_ch khyd_pr khyd_li Ks_IN pHUL_acid pHLL_acid km_su Ks_su Ysu kdec_xsu km_aa Ks_aa 

    °C d-1 d-1 d-1 d-1 kgCOD.m-3 - - 
COD.COD-

1d-1 
kgCOD.m-3 COD.COD-1 d-1 

COD.COD-

1d-1 
kgCOD.m-3 

5 Proteins Gelatin No 35   2.7           

7 Proteins Proteins No 28   0.12           

12 Proteins Casein No 35              

12 Proteins Casein No 35      5.5 4     36 1.198 

12 Proteins Casein No 35      5.5 4     28 1.027 

12 Proteins Casein No 35      7.2 5     53 1.198 

12 Proteins Casein No 35              

12 Proteins Casein No 35              

25 Proteins Casein No               

25 Proteins Egg No               

25 Proteins Galantine No               

57 Proteins Proteins (Max) No 35   0.8           

57 Proteins Proteins (Min) No 35   0.25           

25 Silage Grass silage No               

25 Silage Maize silage No               

26 Silage Grass silage Yes 38  0.5 0.8 0.5          

27 Silage Grass silage Yes  0.26     8.5 6       

32 Silage Grass silage Yes 37 0.05             

42 Silage Grass silage No 38  0.6 0.6 0.6          

44 Silage Grass silage Yes  1.7433 0.7366 0.0104 0.0149          

44 Silage Green weed silage Yes  0.8168 0.6659 0.0014 0.0513          

44 Silage Maize silage Yes  0.7705 0.6865 0.2446 0.1216          

45 Silage 
Maize silage + 

cattle manure 
Yes 29 0.1             

1 Slaughterhouse Slaughterhouse No 33   0.29 0.12          

10 Slaughterhouse Fish waste (Max) No 33   0.15           

10 Slaughterhouse Fish waste (Min) No 33   0.1           

14 Slaughterhouse Slaughterhouse No 35 0.7             

56 Slaughterhouse 
Paunch + Blood + 

DAF sludge 
Yes 35 10 0.2 0.3 0.1          

61 Slaughterhouse 

Solid 

slaughterhouse 

waste 

No 35 0.35             
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Kinetic Parameters Survey – Parameter 31 to 45  

Description Kinetic Parameters 

Lit. Ref. Substrate Category Substrate Type 
Applied 

ADM1 Temp Yaa kdec_xaa km_fa Ks_fa Yfa kdec_xfa KIh2_fa km_c4 Ks_c4 Yc4 kdec_xc4 KIh2_c4 km_pro Ks_pro Ypro 

    
°C COD.COD-1 d-1 

COD.COD-

1d-1 
kgCOD.m-3 COD.COD-1 d-1 kgCOD.m-3 

COD.COD-

1d-1 
kgCOD.m-3 COD.COD-1 d-1 kgCOD.m-3 

COD.COD-

1d-1 
kgCOD.m-3 COD.COD-1 

6 Acetate Acetate (Max) No 25-35                

6 Acetate Acetate (Min) No 25-35                

11 Acetate Acetate (Max) No 25-35                

11 Acetate Acetate (Min) No 25-35                

18 Acetate Acetate No 37                

7 

Agricultural solid 

wastes Forest soil No 30                

7 

Agricultural solid 

wastes Forest soil (Max) No 20                

7 

Agricultural solid 

wastes Forest soil (Min) No 20                

7 

Agricultural solid 

wastes Pond silt No 28                

25 Aquatic culture Blue algae No                 

25 Aquatic culture Chlorella vulgaris  No                 

25 Aquatic culture 

Scenedesmus 
obliquus No                 

28 Aquatic culture Microalgae Yes                 

39 Aquatic culture Hydrilla verticillata Yes 35                

6 Butyrate Butyrate No 35        5.6 0.013 0.066 0.027     

11 Butyrate Butyrate (Max) No 35-60        14 0.298 0.066 0.027     

11 Butyrate Butyrate (Min) No 35-60        5.3 0.012 0.066 0.027     

57 Carbohydrates 

Carbohydrates 

(Max) No 35                

57 Carbohydrates 

Carbohydrates 

(Min) No 35                

35 

Cattle manure + 

REC 

Cattle manure + 

REC Yes         13.7 0.357    5.5 0.392  

17 Cellulose Cellulose No 28                

60 Cellulose Cellulose3 No 35                

62 Cellulose Cellulose No                 

4 Dairy Dairy No 35                

21 Dairy Dairy Yes 35   7     60     100   

25 Energy crops Rye No                 

25 Energy crops Soybean No                 

25 Energy crops Sweet potato No                 

30 Energy crops Sorghum extract Yes         9.1     13   

43 Energy crops Corn stover No 20-40                

52 Energy crops Rape Yes                 

52 Energy crops Sunflower Yes                 

8 Fatty acids Linoleate No 37   10 5.19 0.055 0.01          

8 Fatty acids Myristate No 37   1.6 1.23 0.053 0.01          

8 Fatty acids Oleate No 37   8.174 9.21 0.054 0.01          

8 Fatty acids Palmitate No 37   2.03 0.41 0.054 0.01          

8 Fatty acids Stearate No 37   1.88 0.295 0.055 0.01          

14 Fatty acids 

Slaughterhouse 

(palmitate) No 35   201 0.1 0.004           

14 Fatty acids 

Slaughterhouse 

(stearate) No 35   363 0.1 0.021           

20 Food wastes Food waste No 37                

38 Food wastes Dog food + Flour Yes 35             12.5 0.3  

46 Food wastes 

Heterogeneous 

food wastes Yes 35  0.1  0.024  0.01       16.25 0.02  

50 Food wastes Food waste Yes                 

55 Food wastes Restaurant waste2 No                 

60 Food wastes Kitchen waste3 No 35                

52 Fruit wastes Apple pulp Yes                 

52 Fruit wastes Orange pulp Yes                 

52 Fruit wastes Pear pulp Yes                 

6 General 

General/Non-

specific No 33                

6 General 

General/Non-

specific (Max) No 34-40                

6 General 

General/Non-

specific (Min) No 34-40                

54 General 

General/Non-

specific No                 
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Kinetic Parameters Survey – Parameter 31 to 45 (Cont’d) 

Description Kinetic Parameters 

Lit. Ref. Substrate Category Substrate Type 
Applied 

ADM1 
Temp Yaa kdec_xaa km_fa Ks_fa Yfa kdec_xfa KIh2_fa km_c4 Ks_c4 Yc4 kdec_xc4 KIh2_c4 km_pro Ks_pro Ypro 

    °C 
COD.COD-1 d-1 

COD.COD-

1d-1 
kgCOD.m-3 COD.COD-1 d-1 kgCOD.m-3 

COD.COD-

1d-1 
kgCOD.m-3 COD.COD-1 d-1 kgCOD.m-3 

COD.COD-

1d-1 
kgCOD.m-3 COD.COD-1 

6 Glucose Glucose No 30                

11 Glucose Glucose (Max) No 35-37                

11 Glucose Glucose (Min) No 35-37                

16 Glucose Glucose No 35             19 0.021  

17 Glucose Glucose No                 

31 Glucose Glucose Yes 35          0.0193    0.582 0.052 

11 H2/butyrate H2/butyrate (Max) No 33-60                

11 H2/butyrate H2/butyrate (Min) No 33-60                

44 Industrial glycerine Industrial glycerine Yes                 

51 

Industrial solid 

wastes 

Brewer's spent 

grain Yes                 

60 

Industrial solid 

wastes Biowaste3 No 35                

61 

Industrial solid 

wastes 

Solid household 

waste No 35                

5 Lactose Lactose No 35                

57 Lipids Lipids (Max) No 35                

57 Lipids Lipids (Min) No 35                

58 Lipids Lipids No                 

59 Lipids Lipids No 25                

4 Livestock manure Piggery No 35                

19 Livestock manure Pig manure No 28                

29 Livestock manure Swine manure Yes    0.93     13.1     6.56   

36 Livestock manure Cattle manure Yes         12.2 0.6    3.5 0.4  

47 Livestock manure Cattle manure Yes 35                

50 Livestock manure Cattle manure Yes                 

50 Livestock manure Chicken manure Yes                 

52 Livestock manure Pig manure Yes                 

53 Livestock manure 

Dairy manure + 

SMS Yes                 

13 Molasses Molasses No 35        41 0.28 0.066 0.03 0.000008 15 0.373 0.055 

33 Molasses 

Cane-molasses 

vinasse Yes              16   

41 Molasses 

EC from SPM with 

molasses Yes 35                

2 MWS Primary sludge No 35                

3 MWS Primary sludge No 35                

3 MWS Primary sludge No 35                

3 MWS Primary sludge No 35                

9 MWS 

Primary sludge 

(Max) No 35                

9 MWS 

Primary sludge 

(Min) No 35                

15 MWS Primary sludge No 35 0.15 0.8 12 1 0.045 0.06 0.000003      11 0.02 0.05 

23 MWS MWS Yes 35             9 0.2  

34 MWS MWS Yes                 

37 MWS MWS Yes 35        5     2.2   

48 MWS MWS Yes 35                

24 MWS + GTW MWS + GTW Yes    5.9 0.3815    14.1 0.193    17.1 0.0635  

49 OFMSW OFMSW Yes 35                

4 Olive Olive-mill No 35                

22 Olive Olive Yes 35                

40 Olive OMSW Yes 37                

6 Propionate Propionate (Max) No 25-35             0.31 1.146 0.05 

6 Propionate Propionate (Min) No 25-35             0.16 0.06 0.025 

18 Propionate Propionate No 37             23 0.151 0.019 
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Kinetic Parameters Survey – Parameter 31 to 45 (Cont’d) 

Description Kinetic Parameters 

Lit. Ref. Substrate Category Substrate Type 
Applied 

ADM1 
Temp Yaa kdec_xaa km_fa Ks_fa Yfa kdec_xfa KIh2_fa km_c4 Ks_c4 Yc4 kdec_xc4 KIh2_c4 km_pro Ks_pro Ypro 

    
°C COD.COD-1 d-1 

COD.COD-

1d-1 
kgCOD.m-3 COD.COD-1 d-1 kgCOD.m-3 

COD.COD-

1d-1 
kgCOD.m-3 COD.COD-1 d-1 kgCOD.m-3 

COD.COD-

1d-1 
kgCOD.m-3 COD.COD-1 

5 Proteins Gelatin No 35 
               

7 Proteins Proteins No 28                

12 Proteins Casein No 35             20 0.056 0.055 

12 Proteins Casein No 35 0.085 0.02              

12 Proteins Casein No 35 0.085 0.02              

12 Proteins Casein No 35 0.058 0.02              

12 Proteins Casein No 35        22 0.062 0.055 0.03 0.000008    

12 Proteins Casein No 35        32 0.08 0.066 0.03 0.000008    

25 Proteins Casein No                 

25 Proteins Egg No                 

25 Proteins Galantine No                 

57 Proteins Proteins (Max) No 35                

57 Proteins Proteins (Min) No 35                

25 Silage Grass silage No                 

25 Silage Maize silage No                 

26 Silage Grass silage Yes 38            5.0E-08    

27 Silage Grass silage Yes             5.4E-08 13   

32 Silage Grass silage Yes 37        13.7 0.357    5.5 0.392  

42 Silage Grass silage No 38                

44 Silage Grass silage Yes                 

44 Silage Green weed silage Yes                 

44 Silage Maize silage Yes                 

45 Silage 

Maize silage + 

cattle manure Yes 29         0.23   1.0E-08 8.5 0.15  

1 Slaughterhouse Slaughterhouse No 33                

10 Slaughterhouse Fish waste (Max) No 33                

10 Slaughterhouse Fish waste (Min) No 33                

14 Slaughterhouse Slaughterhouse No 35                

56 Slaughterhouse 

Paunch + Blood + 

DAF sludge Yes 35                

61 Slaughterhouse 

Solid 

slaughterhouse 

waste No 35        7.04 0.036 0.039   5.76 0.08 0.075 
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Surveyed Kinetic Parameters – Parameter 46 to 58 

Description Kinetic Parameters 

Lit. Ref. 
Substrate 

Category 
Substrate Type 

Applied 

ADM1 
Temp kdec_xpro KIh2_pro km_ac Ks_ac Yac kdec_xac KInh3_ac pHUL_ac pHLL_ac km_h2 Ks_h2 Yh2 kdec_xh2 pHUL_h2 pHLL_h2 

    °C d-1 kgCOD.m-3 
COD.COD-

1d-1 
kgCOD.m-3 COD.COD-1 d-1 kgCOD.m-3   COD.COD-

1d-1 
kgCOD.m-3 COD.COD-1 d-1   

6 Acetate Acetate (Max) No 25-35   6.2 0.93 0.076 0.036          

6 Acetate Acetate (Min) No 25-35   3.1 0.028 0.032 0.012          

11 Acetate Acetate (Max) No 25-35   19 0.93 0.076 0.004          

11 Acetate Acetate (Min) No 25-35   3.4 0.011 0.014 0.036          

18 Acetate Acetate No 37   7.9 0.213 0.038           

7 
Agricultural solid 

wastes Forest soil No 30                

7 
Agricultural solid 

wastes Forest soil (Max) No 20                

7 
Agricultural solid 

wastes Forest soil (Min) No 20                

7 
Agricultural solid 

wastes Pond silt No 28                

25 Aquatic culture Blue algae No                 

25 Aquatic culture Chlorella vulgaris  No                 

25 Aquatic culture Scenedesmus obliquus No                 

28 Aquatic culture Microalgae Yes          5.2       

39 Aquatic culture Hydrilla verticillata Yes 35   5 0.26      28      

6 Butyrate Butyrate No 35                

11 Butyrate Butyrate (Max) No 35-60                

11 Butyrate Butyrate (Min) No 35-60                

57 Carbohydrates Carbohydrates (Max) No 35                

57 Carbohydrates Carbohydrates (Min) No 35                

35 
Cattle manure + 

REC Cattle manure + REC Yes    7.1        3.0E-05     

17 Cellulose Cellulose No 28                

60 Cellulose Cellulose3 No 35                

62 Cellulose Cellulose No                 

4 Dairy Dairy No 35                

21 Dairy Dairy Yes 35   42.788 0.457      88.89      

25 Energy crops Rye No                 

25 Energy crops Soybean No                 

25 Energy crops Sweet potato No                 

30 Energy crops Sorghum extract Yes    5       2      

43 Energy crops Corn stover No 20-40                

52 Energy crops Rape Yes                 

52 Energy crops Sunflower Yes                 

8 Fatty acids Linoleate No 37                

8 Fatty acids Myristate No 37                

8 Fatty acids Oleate No 37                

8 Fatty acids Palmitate No 37                

8 Fatty acids Stearate No 37                

14 Fatty acids 
Slaughterhouse 

(palmitate) No 35                

14 Fatty acids 
Slaughterhouse 

(stearate) No 35                

20 Food wastes Food waste No 37                

38 Food wastes Dog food + Flour Yes 35   6.5             

46 Food wastes 
Heterogeneous food 

wastes Yes 35 0.001 4.0E-06 19 0.1  0.001    33.3 1.00E-06  0.001   

50 Food wastes Food waste Yes                 

55 Food wastes Restaurant waste2 No                 

60 Food wastes Kitchen waste3 No 35                

52 Fruit wastes Apple pulp Yes                 

52 Fruit wastes Orange pulp Yes                 

52 Fruit wastes Pear pulp Yes                 

6 General General/Non-specific No 33          25 0.0006 0.056    

6 General 
General/Non-specific 

(Max) No 34-40                

6 General 
General/Non-specific 

(Min) No 34-40                

54 General General/Non-specific No                 
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Surveyed Kinetic Parameters – Parameter 46 to 58 (Cont’d) 

Description Kinetic Parameters 

Lit. Ref. 

Substrate 

Category Substrate Type 

Applied 

ADM1 Temp kdec_xpro KIh2_pro km_ac Ks_ac Yac kdec_xac KInh3_ac pHUL_ac pHLL_ac km_h2 Ks_h2 Yh2 kdec_xh2 pHUL_h2 pHLL_h2 

    °C d-1 
kgCOD.m-

3 

COD.COD-

1d-1 

kgCOD.m-

3 

COD.COD-

1 
d-1 

kgCOD.m-

3   
COD.COD-

1d-1 

kgCOD.m-

3 

COD.COD-

1 
d-1   

6 Glucose Glucose No 30                

11 Glucose Glucose (Max) No 35-37                

11 Glucose Glucose (Min) No 35-37                

16 Glucose Glucose No 35   48 0.034            

17 Glucose Glucose No    6.4 0.035 0.063 0.02          

31 Glucose Glucose Yes 35    0.259 0.1       0.0282    

11 H2/butyrate H2/butyrate (Max) No 33-60          64 0.0006 0.183 0.009   

11 H2/butyrate H2/butyrate (Min) No 33-60          1.68 0.000018 0.014    

44 

Industrial 

glycerine Industrial glycerine Yes                 

51 

Industrial solid 

wastes Brewer's spent grain Yes                 

60 

Industrial solid 

wastes Biowaste3 No 35                

61 

Industrial solid 

wastes Solid household waste No 35                

5 Lactose Lactose No 35                

57 Lipids Lipids (Max) No 35                

57 Lipids Lipids (Min) No 35                

58 Lipids Lipids No                 

59 Lipids Lipids No 25                

4 Livestock manure Piggery No 35                

19 Livestock manure Pig manure No 28                

29 Livestock manure Swine manure Yes    45.02             

36 Livestock manure Cattle manure Yes    11.1 0.5   0.0223         

47 Livestock manure Cattle manure Yes 35                

50 Livestock manure Cattle manure Yes                 

50 Livestock manure Chicken manure Yes                 

52 Livestock manure Pig manure Yes                 

53 Livestock manure Dairy manure + SMS Yes    16.34             

13 Molasses Molasses No 35 0.01 0.000008 9.4 0.384 0.048 0.02  7 6 43 0.000088 0.06 0.009 6 5 

33 Molasses Cane-molasses vinasse Yes    12       43  0.07    

41 Molasses 
EC from SPM with 

molasses 
Yes 35   13.2 0.06            

2 MWS Primary sludge No 35                

3 MWS Primary sludge No 35                

3 MWS Primary sludge No 35                

3 MWS Primary sludge No 35                

9 MWS Primary sludge (Max) No 35                

9 MWS Primary sludge (Min) No 35                

15 MWS Primary sludge No 35 0.06 1.0E-06 13 0.04 0.025 0.05 0.0012 6.7 5.8 44 0.000001 0.045 0.3 6.7 5.8 

23 MWS MWS Yes 35  3.5E-06 9 0.15   0.0011    7.00E-06     

34 MWS MWS Yes                 

37 MWS MWS Yes 35   10 0.18        0.05    

48 MWS MWS Yes 35   13.8       26.01      

24 MWS + GTW MWS + GTW Yes    10.9 0.0961            

49 OFMSW OFMSW Yes 35   8.16 0.026            

4 Olive Olive-mill No 35                

22 Olive Olive Yes 35   9 0.65   0.0028         

40 Olive OMSW Yes 37                

6 Propionate Propionate (Max) No 25-35 0.041               

6 Propionate Propionate (Min) No 25-35 0.01               

18 Propionate Propionate No 37   19 0.107 0.027           

5 Proteins Gelatin No 35                

7 Proteins Proteins No 28                

12 Proteins Casein No 35 0.01 0.000008 8.4 0.096 0.048 0.02  7 6       

12 Proteins Casein No 35                

12 Proteins Casein No 35                

12 Proteins Casein No 35                

12 Proteins Casein No 35                

12 Proteins Casein No 35                

25 Proteins Casein No                 

25 Proteins Egg No                 

25 Proteins Galantine No                 

57 Proteins Proteins (Max) No 35                

57 Proteins Proteins (Min) No 35                
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Surveyed Kinetic Parameters – Parameter 46 to 58 (Cont’d) 

Description Kinetic Parameters 

Lit. Ref. 
Substrate 

Category 
Substrate Type 

Applied 

ADM1 
Temp kdec_xpro KIh2_pro km_ac Ks_ac Yac kdec_xac KInh3_ac pHUL_ac pHLL_ac km_h2 Ks_h2 Yh2 kdec_xh2 pHUL_h2 pHLL_h2 

    °C d-1 kgCOD.m-3 
COD.COD-

1d-1 
kgCOD.m-3 

COD.COD-

1 
d-1 kgCOD.m-3   COD.COD-

1d-1 
kgCOD.m-3 

COD.COD-

1 
d-1   

5 Proteins Gelatin No 35                

7 Proteins Proteins No 28                

12 Proteins Casein No 35 0.01 0.000008 8.4 0.096 0.048 0.02  7 6       

12 Proteins Casein No 35                

12 Proteins Casein No 35                

12 Proteins Casein No 35                

12 Proteins Casein No 35                

12 Proteins Casein No 35                

25 Proteins Casein No                 

25 Proteins Egg No                 

25 Proteins Galantine No                 

57 Proteins Proteins (Max) No 35                

57 Proteins Proteins (Min) No 35                

25 Silage Grass silage No                 

25 Silage Maize silage No                 

26 Silage Grass silage Yes 38  4.6E-08 4.4        5.60E-05     

27 Silage Grass silage Yes   4.8E-08     0.0084    4.20E-05     

32 Silage Grass silage Yes 37   7.1        3.0E-05     

42 Silage Grass silage No 38                

44 Silage Grass silage Yes                 

44 Silage Green weed silage Yes                 

44 Silage Maize silage Yes                 

45 Silage 
Maize silage + cattle 

manure Yes 29  2.4E-08 7.64 0.6   0.00026         

1 Slaughterhouse Slaughterhouse No 33                

10 Slaughterhouse Fish waste (Max) No 33                

10 Slaughterhouse Fish waste (Min) No 33                

14 Slaughterhouse Slaughterhouse No 35                

56 Slaughterhouse 
Paunch + Blood + DAF 

sludge Yes 35                

61 Slaughterhouse 
Solid slaughterhouse 

waste No 35   14.5 0.085 0.027     208.5 9.60E-06 0.009    
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8.4. Appendix D – Plant Data 

This section collates all raw data gathered from the industrial-scale AD plant. Original measurements are 

represented in black font, and interpolated/calculated data are represented in blue font.  

All missing measurements, except for TSS and VSS, are subjected to interpolation. Interpolations are 
estimated as averages according to a “4 days earlier and 3 days future” basis. 

Missing TSS and VSS values are calculated according to a pre-determined VSS/TSS and PCOD/VSS ratios, 

respectively. These ratios are estimated from specific days where data sets are more comprehensive i.e. 

consist of TCOD, SCOD, TSS and VSS.  

Digester Feed (Stream 1) – Day 1 - 60 

(Removed due to confidentiality reasons) 

Digester Feed (Stream 1) – Day 61 - 150 

(Removed due to confidentiality reasons) 

Digester Feed (Stream 1) – Day 151 - 240 

(Removed due to confidentiality reasons) 

Digester Feed (Stream 1) – Day 241 - 325 

(Removed due to confidentiality reasons) 

Reactor Content (Stream 4) and Product (Stream 6) – Day 1 - 90 
 
(Removed due to confidentiality reasons) 

Reactor Content (Stream 4) and Product (Stream 6) – Day 91 - 180 
(Removed due to confidentiality reasons) 

Reactor Content (Stream 4) and Product (Stream 6) – Day 181 - 270 
 
(Removed due to confidentiality reasons) 

Reactor Content (Stream 4) and Product (Stream 6) – Day 271 - 325 
 
(Removed due to confidentiality reasons) 

Biogas (Stream 2) and Excess Sludge (Stream 3) – Day 1 - 85 
 
(Removed due to confidentiality reasons) 

Biogas (Stream 2) and Excess Sludge (Stream 3) – Day 86 - 170 
 
(Removed due to confidentiality reasons) 

Biogas (Stream 2) and Excess Sludge (Stream 3) – Day 171 - 255 
 
(Removed due to confidentiality reasons) 

Biogas (Stream 2) and Excess Sludge (Stream 3) – Day 256 - 325  
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8.5. Appendix E – Supplementary Graphs 

8.5.1. Simulation using Default Parameters 

This section presents evolution plots of 27 state variables when ADM1 is executed using default parameters. 
Anions and cations are not plotted. 

State variables 1 – 6: Ssu, Saa, Sfa, Sva, Sbu, Spro: 

 
 
 
 
State variables 7 – 12: Sac, Sh2, Sch4, SIC, SIN, SI: 
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State variables 13 – 18: Xc, Xch, Xpr, Xli, Xsu, Xaa: 

 
 
 
 
State variables 19 – 24: Xfa, Xc4, Xpro, Xac, Xh2, XI: 
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State variables 27 – 29: qh2, qch4, qco2: 

 
 
 
 
Plots of 6 plant measurements (green line) versus simulated results (red line): 
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8.5.2. Monte Carlo Graphs 

This section presents the 1000 runs Monte Carlo plots of all 26 state variables. 
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Figure 30: Plot showing 500 Monte Carlo simulation runs 

 

Figure 31: Plot showing 1000 Monte Carlo simulation runs 
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Figure 32: 250 Monte Carlo simulation runs with outliers beyond ±1.5 x IQR removed 

 

Figure 33: 500 Monte Carlo simulation runs with outliers beyond ±1.5 x IQR removed 
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Figure 34: 1000 Monte Carlo simulation runs with outliers beyond ±1.5 x IQR removed 

 

Figure 35: 1500 Monte Carlo simulation runs with outliers beyond ±1.5 x IQR removed 
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Figure 36: 500 Monte Carlo simulation runs with outliers beyond ±1.0 x IQR removed 

 
 
 

 
 
 
 
Figure 37: 500 Monte Carlo simulation runs with outliers beyond ±3.0 x IQR removed 
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8.6. Appendix F – Example Calculations 

8.6.1. Biodegradability Factor 

In this study, the biodegradability factor is estimated using Equation 35. Components in this equation are 

calculated from actual plant data where only the steady-state period is considered.  

Step 1: COD load attributed to methane gas (CODCH4) 

The volume of methane gas produced is summed and then converted to COD using the theoretical methane 

yield (0.35 m3/kg COD): 

!"#$%& = ( )$%&

*+,	./0

*+,	10

	÷ 	0.35	
7/

89!"#
 

 

= 328508	7/ ÷ 	0.35	
7/

89!"#
 

 

= 938594	89!"#  

Step 2: COD load attributed to biomass production (CODBM) 

The volume of sludge wasted is summed and then converted to COD using the theoretical biomass COD 

content (1.42 kg COD/kg VSS). Given that the inconsistent solid concentration in digester, density of the sludge 

extracted is expected to fluctuate significantly. It is hence assumed that the average density (8.6 kg TSS/m3) 

across the steady-state period is applicable. The ratio of organic solids to total solids, VSS/TSS, is taken as 
the average ratio observed from the plant data.   

!"#>? = ( )>?

*+,	./0

*+,	10

	× 16	
89	CDD

7/
× 0.89	

89	)DD

89	CDD
× 1.42	

89	!"#

89	EFG7HII
	 

 

= 6765	7/ × 8.6	
89

7/
× 0.89	

89	)DD

89	CDD
× 1.42	

89	!"#

89	EFG7HII
 

 

= 73531	89!"#  

Step 3: Net COD load change in the digester content 

The net COD load change is calculated as the difference between the first and last day of steady-state period: 

!"#KL+MNOK,Q − !"#KL+MNOK,S = TC!"#KL+MNOK,*+,	10 − C!"#KL+MNOK,*+,	./0U × )KL+MNOK	  

= V10378
79

W
− 11028

79

W
X × 2875	7/  

= 1868	89!"#  
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Step 4: Net COD load entered and exited the reactor 

The net COD load processed by the reactor is calculated as the accumulated difference in COD load between 

the influent and treated  evaluated from the first day to the last day of steady-state period: 

!"#QYS − !"#LSS = ( TC!"#QYSZ[LYN − C!"#LSSZ[LYNU × )KL+MNOK

*+,	./0

*+,	10

	 
 

= 1292741	89 − 15450	89  

= 1277291	89!"#  

 

Step 5: COD loss to denitrification 

The amount of COD lost to denitrification is estimated using the theoretical COD demand for nitrate and nitrite 

denitrification, which are 2.86 mg/l and 1.71 mg/l per mg/l NO3 and NO2, respectively.  

!"#*\ = ( 89	]"/ × 2.86	

*+,	./0

*+,	10

+ 89	]". 	× 	1.71 
 

= 35583	89	]"/ × 2.86 − 16465	89	]". 	× 	1.71  

= 129922	89!"#  

 

Step 6: Calculate biodegradability factor (fd’) 

Substituting all the components into Equation 35: 

_̀ ′ ≈ 	
!"#$%& + !"#>?

T!"#KL+MNOK,Q − !"#KL+MNOK,SU + T!"#QYS − !"#LSSU − !"#*\
 

Equation 42 

 

≈ 	
938594 + 73531

1868 + 1277291 − 129922
≈ c. dd 
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8.6.2. Translating Soluble Plant Measurements to ADM1 Format 

The influent data is translated into ADM1 format by following the methods described in Table 9 and Table 10. 
Note that for demonstration purpose, the example calculation only consider one day of data (Day 230). Similar 

philosophy is applied for all time intervals.                                                                                                             

Step 1: Translate SCOD to VFA constituents 

Total VFA measured on Day 230 = 1528 mg/l 

(i) Valerate:    Sva,in = VFA x ηva,VFA x ϒva  

= (1528 mg/l / 1000) x 0.09 x 2.039216 kg COD.(kg va)-1  

= 0.288511 kg COD/m3.day 

 

(ii) Butyrate:   Sbu,in = VFA x ηbu,VFA x ϒbu  

       = (1528 mg/l / 1000) x 0.37 x 1.818182 kg COD.(kg bu)-1  

       = 1.028956 kg COD/m3.day 

 

(iii) Propionate:   Spro,in = VFA x ηpro,VFA x ϒpro  

       = (1528 mg/l / 1000) x 0.22 x 1.513514 kg COD.(kg pro)-1  

       = 0.513922 kg COD/m3.day 

 

(iv) Acetate:   Sac,in = VFA x ηac,VFA x ϒac  

       = (1528 mg/l / 1000) x 0.31 x 1.066667 kg COD.(kg ac)-1  

       = 0.513106 kg COD/m3.day 

 

Step 2: Translate SCOD to Monosaccharides, Amino acids & LCFA 

SCOD measured on Day 230 = 3655 mg/l 

VFACOD = Sva,in + Sbu,in + Spro,in + Sac,in = 0.289 + 1.029 + 0.514 + 0.513 = 2.345 kg COD/m3.day 

 

(i) Monosaccharides:  Ssu,in = (SCOD x fd’ – VFACOD) x ηsu  

         = [(3655 mg/l / 1000) x 0.88 – 2.345] x 0.44 

         = 0.386 kg COD/m3.day 
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(ii) Amino acids:  Saa,in = (SCOD x fd’ – VFACOD) x ηaa  

         = [(3655 mg/l / 1000) x 0.88 – 2.345] x 0.40 

         = 0.351 kg COD/m3.day 

 

(iii) LCFA:  Sfa,in = (SCOD x fd’ – VFACOD) x ηfa  

         = [(3655 mg/l / 1000) x 0.88 – 2.345] x 0.16 

         = 0.137 kg COD/m3.day 

 

Step 3: Translate SCOD to Soluble Inerts 

(i) Soluble Inerts:  SI,in = SCOD x (1 – fd’) = (3655 / 1000) x (1 – 0.88) = 0.439 kg COD/m3.day 

 

Step 4: Translate Alkalinity & Ammonium to Inorganic Carbon & Inorganic Nitrogen 

Alkalinity measured on Day 230 = 950 mg/l as CaCO3 

Ammonium concentration measured on Day 230 = 32 mg/l as N 

(i) Inorganic Carbon:   SIC = (950 mg/l / 1000) / 44 = 0.022 kmol/m3 

(ii) Inorganic Nitrogen:  SIN = (32 mg/l / 1000) / 14 = 0.0023 kmol/m3 

 

Step 5: Calculate Cations & Anions 

Calcium concentration measured on Day 230 = 42 mg/l 

Magnesium concentration measured on Day 230 = 1 mg/l 

Sodium concentration referenced = 0.0546 kmol/m3  

Potassium concentration referenced = 0.00387 kmol/m3 

(i) Cations:  Scat = [Ca2+] + [Mg2+] + [Na+] + [K+] 

   = (42 mg/l / 1000 / 40 kmol/kg) + (1 mg/l / 1000 / 24 kmol/kg) + 0.0546 kmol/m3 + 0.00387 kmol/m3 

   = 0.0586 kmol/m3 

 

Hydrogen concentration [H+] calculated from Equation 2 = 3.16 x 10-7 kmol/m3 

Ammonium concentration [NH4+] calculated from Equation 32 = 0.0021 kmol/m3 

Hydroxide concentration [OH-] calculated from Equation 33 = 6.58 x 10-8 kmol/m3 

Bicarbonate concentration [HCO3-] calculated from Equation 30 = 0.115 kmol/m3 

VFA concentrations [Ac-], [Pro-], [Bu-], [Va-] calculated from Equation 31 
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(ii) Anions:  San = [H+] + [NH4+] + Scat – [OH-] – [HCO3-] – [Ac-] – [Pro-] – [Bu-] – [Va-]  

   = 3.16 x 10-7 kmol/m3 + 0.0021 kmol/m3 + 0.0586 kmol/m3 - 6.58 x 10-8 kmol/m3 - 0.115 
kmol/m3 – 0.0058 kmol/m3 – 0.00334 kmol/m3 – 0.00469 kmol/m3 – 0.001 kmol/m3  

     = 0.0332 kmol/m3 

 

Step 6: Set all other soluble components to zero 

(i) Dissolved hydrogen:  Sh2,in = 0 

(ii) Dissolved methane:  Sch4,in = 0 

 

 

8.6.3. Translating Particulate Plant Measurements to ADM1 Format 

The influent data is translated into ADM1 format by following the methods described in Table 11 and Table 12. 
Note that for demonstration purpose, the example calculation only consider one day of data (Day 230). Similar 

philosophy is applied for all time intervals.                                                                                                             

Step 1: Estimate Total Acidogens 

(Note that this step is necessary for this specific case as insufficient data about the raw  is available) 

SCOD measured on Day 230 = 3655 mg/l 

VFACOD calculated in previous section = 2.345 kg COD/m3.day  

facid = Fraction of COD in buffer tank converted to VFAs and alcohols as a result of acidification of dairy 

wastewater is reported to be 0.484.  

Yacid = Yield of acidogens during acidification of dairy wastewater at pH 6.5 is reported to be 0.26 g VSS/ g 

COD 

ϒbm = COD content of biomass = 1.42 g COD/ g VSS 

Firstly, the total COD entering the buffer tank is assumed using facid. The difference between this estimated 

COD and the measured TCOD is the COD load converted during acidification. Using the typical yield Yacid an 

estimate for the total acidogens is obtained.  

(i) Total Acidogens: Xdegr = [VFACOD ÷ facid – SCOD x fd’] x Yacid x ϒbm  

= (2.345 kg COD/m3.day ÷ 0.484 – 3655 mg/l / 1000 x 0.88) x 0.26 g VSS/ g COD x 1.42 g COD / g VSS 

= 0.60 kg COD/m3.day 
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Step 2: Calculate composition of various acidogens 

Carbohydrates fraction ηch = 0.44 

Protein fraction ηpr = 0.40 

Lipids fraction ηli = 0.16 

Assuming acidogen composition is relative to the fractional composition of carbohydrates, proteins and lipids: 

Monosaccharide degraders:  Xsu,in = Acidogens x ηch = 0.60 x 0.44 = 0.264 kg COD/m3.day 

Amino acids degraders:  Xaa,in = Acidogens x ηch = 0.60 x 0.40 = 0.240 kg COD/m3.day 

LCFA degraders:   Xfa,in = Acidogens x ηch = 0.60 x 0.16 = 0.096 kg COD/m3.day 

 

Step 3: Translate PCOD to Carbohydrates, Proteins & Lipids 

SCOD measured on Day 230 = 3655 mg/l 

TCOD measured on Day 230 = 7060 mg/l 

PCOD = TCOD – SCOD = 7060 mg/l – 3655 mg/l = 3405 mg/l 

Carbohydrates:  Xch,in = (PCOD x fd’ – Xdegr) x ηch  

      = (3405 / 1000 x 0.88 – 0.60) x 0.44 

         = 1.05 kg COD/m3.day 

Proteins:  Xpr,in = (PCOD x fd’ – Xdegr) x ηch  

      = (3405 / 1000 x 0.88 – 0.60) x 0.40 

         = 0.96 kg COD/m3.day 

Lipids:   Xli,in = (PCOD x fd’ – Xdegr) x ηch  

      = (3405 / 1000 x 0.88 – 0.60) x 0.16 

         = 0.38 kg COD/m3.day 

 

Step 4: Translate PCOD to Particulate Inerts 

(i) Soluble Inerts:  SI,in = PCOD x (1 – fd’) = (3405 / 1000) x (1 – 0.88) = 0.409 kg COD/m3.day 

 

Step 5: Set all other particulate components to zero 

(i) Composite particulate:  Xc,in = 0 

(ii) C4 degraders:   Xc4,in = 0 

(iii) Propionate degraders: Xpro,in = 0 
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(iv) Acetate degraders:  Xac,in = 0 

(v) Hydrogen degraders: Xh2,in = 0 

 

 

 

8.6.4. Calculating Objective function (Udiff) 

The objective during model optimisation is to minimise the objective function (udiff), which is defined in this 

study as the difference between the latent variables of measured variables (um) and the latent variables of 

simulated results (us). Objective function evaluation is performed using Equation 43 every time after 

parameters are calibrated.   

e`QSS = 7Ff((Veg,Q(i) − ek,Q(i)X
.

Y

Nlm

n

Qlm

 
 

where: 

udiff is the model objective function  

n is the total number of time intervals;  

p is the total number of latent variables selected; 

um,i is the output latent variable for the measured outputs at time interval t; 

us,i is the output latent variable for the simulated outputs at time interval t; 

 

The following data set is referenced for example calculation. For demonstration purpose the simulation scope 

is simplified to two time intervals and a PLSR consisting of two latent variables. 

Time Interval (Day) Simulated output vector, Ys Measured output vector, Ym 

1 

VFA:     0.18299 VFA:     0.134103 

S_IN:     0.006705 S_IN:     0.004251 

VSS:     2.595955 VSS:     4.932968 

pH:      6.909906 pH:      6.9 

q_CH4:   566.698 q_CH4:   358.3214 

q_CO2:   251.5566 q_CO2:   80.10716 

2 VFA:     0.163243 VFA:     0.091351 
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S_IN:     0.007085 S_IN:     0.004566 

VSS:     2.556666 VSS:     5.038868 

pH:      6.90786 pH:      6.8 

q_CH4:   541.7001 q_CH4:   507.744 

q_CO2:   248.7446 q_CO2:   111.456 

   

From the PLSR results (i.e. Step 3), an output loading vector (q) corresponding to two latent variables is 

obtained: 

Time Interval (Day) 1st Latent Variable Output Loading 
Vector, q1 

2nd Latent Variable Output 
Loading Vector, q2 

1 

0.875497 0.160572 

0.321773 0.77736 

0.665149 0.251696 

0.50236 0.623451 

0.309176 0.681115 

0.449083 0.509797 

2 

0.910941 0.126062 

0.332756 0.752034 

0.68398 0.244362 

0.498085 0.636422 

0.261499 0.721064 

0.347944 0.601484 
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Before applying the loading vector, the output vectors first need to be normalised. From the Monte Carlo results 

(i.e. Step 2), maximum and minimum values at each time interval are noted as follows:  

Time Interval (Day) Maximum values, Ymax Minimum values, Ymin 

1 

VFA:     0.703089 VFA:     0.010929 

S_IN:     0.008758 S_IN:     0.00301 

VSS:     3.725297 VSS:     1.178361 

pH:      7.037791 pH:      6.829438 

q_CH4:   625.6168 q_CH4:   273.5294 

q_CO2:   292.2564 q_CO2:   119.7491 

2 

VFA:     0.735666 VFA:     0.00726 

S_IN:     0.009058 S_IN:     0.003373 

VSS:     3.781064 VSS:     1.196652 

pH:      7.032901 pH:      6.827943 

q_CH4:   573.372 q_CH4:   226.8117 

q_CO2:   275.7924 q_CO2:   90.36569 

 

Normalising using the algorithm given in Equation 39 thus results in: 

Time Interval (Day) Normalised simulated output 

vector, Ys,norm 

Normalised measured output 

vector, Ym,norm 

1 

VFA:     -0.50283 VFA:     -0.64409 

S_IN:     0.285665 S_IN:     -0.5682 

VSS:     -0.37646 VSS:     0.651489 

pH:      -0.22758 pH:      -0.32267 

q_CH4:   0.665317 q_CH4:   -0.51835 

q_CO2:   0.528139 q_CO2:   -0.99663 

2 VFA:     -0.57171 VFA:     -0.76911 

Stellenbosch University https://scholar.sun.ac.za



Appendices 

142 

S_IN:     0.305893 S_IN:     -0.5803 

VSS:     -0.40668 VSS:     0.676209 

pH:      0.689323 pH:      0.421334 

q_CH4:   0.817221 q_CH4:   0.621261 

q_CO2:   0.708264 q_CO2:   -0.77252 

 

Finally, the difference in latent variables for both simulated and measured outputs is determined. Latent 

variables are calculated by applying the vector multiplication function: u = Yq. It should be noted that, instead 

of taking the difference between full latent variables, the difference is calculated for each sub-latent variable 

components and then summed as grand total. This approach is preferred as it prevents high and low value 

components from cancelling each other out.  

Time Interval 

(Day) 

Us,1 Us,2 Um,1 Um,2 (Us,1 – Um,1)2 (Us,2 – Um,2)2 

1 

-0.4402 -0.080 -0.5638 -0.1034 0.0152 0.0005 

0.0919 0.2220 -0.1828 -0.4416 0.0754 0.440 

-0.2504 -0.0947 0.4333 0.1639 0.4675 0.066 

-0.1143 -0.1418 -0.1620 -0.2011 0.0022 0.0035 

0.2057 0.4531 -0.1602 -0.3530 0.1339 0.6499 

0.2770 0.3145 -0.4475 -0.5080 0.5250 0.6766 

2 

-0.5207 -0.0720 -0.7006 -0.0969 0.0323 0.0006 

0.1017 0.2300 -0.1930 -0.4364 0.0869 0.4441 

-0.2781 -0.0993 0.4625 0.1652 0.5485 0.0700 

0.3433 0.4387 0.2098 0.2681 0.0178 0.0290 

0.2137 0.5892 0.1624 0.4479 0.0026 0.0199 

0.2464 0.4260 -0.2687 -0.4646 0.2654 0.7932 

Grand Total - Udiff Sum(0.0152,…,0.7932) = 

5.369 
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8.7. Appendix G – SCILAB Codes 

//================================================================================================ 
//ADM1 MODEL  
//IWA TASK GROUP, SCIENTIFIC AND TECHNICAL REPORT NO.13 
//File: Main.sce 
//================================================================================================ 
 
//1. INITIALISATION 
//================== 
clear;                                               //clears all variables 
clearglobal; 
stacksize('max'); 
 
exec('Inputs.sce',-1);                               //Load all model inputs 
exec('Parameters.sce',-1);                          //Initiate parameters & constants 
exec('Functions.sce',-1);                            //Initiate ADM1 functions 
 
MC_data = zeros(1,33); 
VFA_data = zeros(1,1); 
VSS_data = zeros(1,1); 
 
 
//2. SENSITIVITY ANALYSIS 
//======================== 
if run_mc == "Yes" then                                                  //If true, a new set of MC data will be generated 
    sim_mode = "single"; 
    exec('ADM1.sce',-1);                                                           //Run ADM1 model 
    exec('Plot_Sens.sce',-1);                                                       //plot default results in red lines 
 
    sim_mode = "monte-carlo"; 
    for mont_car = 1:MC_nr 
        disp(mont_car) 
        exec('Rand_Parameters.sce',-1); 
        exec('Inputs.sce',-1); 
        exec('ADM1.sce',-1); 
    end 
     
    MC_data_test = MC_data(2:size(MC_data,1),:); 
    VFA_data_test = VFA_data(2:size(VFA_data,1),:); 
    VSS_data_test = VSS_data(2:size(VSS_data,1),:); 
    t = t(2:length(t)); 
    if run_mc_plot == "Yes" then 
        for mont_car = 1:MC_nr 
            count = 1; 
            DSV = zeros(sim_dur,33); 
            for index = (mont_car*sim_dur + 1) : ((mont_car + 1) * sim_dur) 
                DSV(count,:) = MC_data_test(index,:);                   //Record Dynamic State Variables of each MC run 
                VFA_s(count,:) = VFA_data_test(index,:);                //Record total VFA of each MC run  
                VSS_s(count,:) = VSS_data_test(index,:);                //Record VSS of each MC run 
                count = count + 1; 
            end 
            DSV = DSV'; 
            exec('Plot_Sens.sce',-1);                                      //plot MC results in blue lines 
        end 
    end 
end 
 
if run_mc == "No" then                                  //If true, MC data will be extracted from external source (.txt or .xls) 
    MC_data_test = zeros(sim_dur*(MC_nr+1),33); 
    sim_mode = "single"; 
    exec('ADM1.sce',-1);                                                               //Run ADM1 model 
    exec('Plot_Sens.sce',-1);                                                           //plot default results in red lines 
     
    MC_data_test(1:sim_dur,1:33) = MC_data(2:size(MC_data,1),:); 
    clear('MC_data'); 
    co = size(MC_lib,2); 
    MC_data_test((sim_dur+1):size(MC_data_test,1),1:33) = MC_lib(1:sim_dur*MC_nr,1:co); 
    VFA_data_test = [MC_data_test(:,4)+MC_data_test(:,5)+MC_data_test(:,6)+MC_data_test(:,7)]; 
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    VSS_data_test = 
[MC_data_test(:,13)+MC_data_test(:,14)+MC_data_test(:,15)+MC_data_test(:,16)+MC_data_test(:,17)+MC_data_test(:,18)+MC
_data_test(:,19)+MC_data_test(:,20)+MC_data_test(:,21)+MC_data_test(:,22)+MC_data_test(:,23)+MC_data_test(:,24)]; 
 
    t = linspace(t_0+1,sim_dur,sim_dur); 
    if run_mc_plot == "Yes" then 
        sim_mode = "monte-carlo"; 
        for mont_car = 1:MC_nr 
            count = 1; 
            DSV = zeros(sim_dur,33); 
            for index = (mont_car*sim_dur + 1) : ((mont_car + 1) * sim_dur) 
                DSV(count,:) = MC_data_test(index,:); 
                VFA_s(count,:) = VFA_data_test(index,:); 
                VSS_s(count,:) = VSS_data_test(index,:); 
                count = count + 1; 
            end 
            DSV = DSV'; 
            exec('Plot_Sens.sce',-1);                                                 //plot MC results in blue lines 
        end 
    end 
end 
 
 
//3. PLSR 
//======== 
if run_plsr == "Yes" then 
    MC_data_pls = 
[(MC_data_test(:,4)+MC_data_test(:,5)+MC_data_test(:,6)+MC_data_test(:,7)),MC_data_test(:,11),(MC_data_test(:,13)+MC_da
ta_test(:,14)+MC_data_test(:,15)+MC_data_test(:,16)+MC_data_test(:,17)+MC_data_test(:,18)+MC_data_test(:,19)+MC_data_t
est(:,20)+MC_data_test(:,21)+MC_data_test(:,22)+MC_data_test(:,23)),MC_data_test(:,30),MC_data_test(:,32),MC_data_test(:,
33)];                 //arrange matrix to [VFA;S_IN;VSS;pH;q_ch4;q_co2] 
    pls_Ran_Par = Ran_Par; 
 
    clear('MC_data_test'); 
    clear('VFA_data_test'); 
    clear('VSS_data_test'); 
 
    exec('PLSR.sce',-1); 
 
    fprintfMat('W_pls.xls',W_pls); 
    fprintfMat('Q_pls.xls',Q_pls); 
    fprintfMat('P_pls.xls',P_pls); 
    fprintfMat('R_pls.xls',R_pls); 
end 
 
 
//4. MODEL FITTING 
//================= 
if run_modfit == "Yes" then 
    exec('Mod_Fit.sce',-1); 
end 
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//================================================================================================ 
//ADM1 MODEL  
//IWA TASK GROUP, SCIENTIFIC AND TECHNICAL REPORT NO.13 
//File: Inputs.sce 
//================================================================================================ 
 
//1. DEFINITION OF SYSTEM 
//======================== 
V_digester = 2875;                            //[m3] volume of digester tank 
V_headspace = 165;                                                 //[m3] volume of digester headspace 
Q_in = 600;                                   //[m3/day] flow rate into digester 
Q_was = 0;                                    //[m3/day] waste flow rate discharged from digester 
Q_eff = Q_in - Q_was;                           //[m3/day]  flow rate out of AD system 
T = 308;                                      //[K] Temperature 
P_atm = 1.013;                                //[bar] Pressure of atmosphere 
 
 
//2. OTHER SIMULATION INPUTS 
//==================== 
t_0 = 0; 
S_h_ion = 0.00000001;                         //initial S_h_ion guess 
sim_dur = 230;                                //days to simulate 
MC_nr = 500;                                  //select no. of Monte Carlo runs 
no_LV = 2;                                    //select no. of latent variables 
lamda0 = [1;1];                   //initial guess of Lamda value for parameter fitting:  

e.g. select [1] if no_LV = 1; [1;1] if no_LV = 2; etc. 
sim_dur_CV = 320; 
 
run_mc = "No";                                //select yes to run Monte-Carlo algorithm 
run_mc_plot = "No";                          //select yes to plot Monte-Carlo results 
run_plsr = "No";                              //select yes to run PLSR algorithm 
run_modfit = "No";                            //select yes to run Model Fitting algorithm 
//run_pca = "No";                           //select yes to run PCA algorithm (INACTIVE) 
 
counter = 1; //plot counter 
 
 
//3. INFLUENT COMPOSITION 
//======================== 
sheets = readxls("Inputs.xls");                 //influent composition with respect to time stored in Excel sheet "Inputs" 
s1 = sheets(1); 
s2 = sheets(2); 
s3 = sheets(3); 
s4 = sheets(4); 
s5 = sheets(5); 
s6 = sheets(6); 
s7 = sheets(7); 
 
if run_mc == "No" then 
MC_lib = read('MC_lib.txt',sim_dur*MC_nr,33) 
//sheets = readxls("Ran_Par_lib.xls"); 
//Ran_Par_lib = sheets(1); 
Ran_Par = read('Ran_Par_lib.txt',MC_nr,58) 
end 
 
ro = size(s1,1); 
co = size(s1,2); 
t_data = s1.value(2:ro,1); 
inf_data = s1.value(2:ro,2:co-3); 
Q_in = s1.value(2:ro,co-2); 
Q_was = s1.value(2:ro,co-1); 
T_data = s1.value(2:ro,co); 
 
ro = size(s2,1); 
co = size(s2,2); 
ini_data = s2.value(2:ro,2:co); 
 
ro = size(s3,1); 
co = size(s3,2); 
q_ch4_m = s3.value(2:ro,co-6); 
q_co2_m = s3.value(2:ro,co-5); 
pH_m = s3.value(2:ro,co-4); 
S_IN_m = s3.value(2:ro,co-3); 
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VFA_m = s3.value(2:ro,co-2); 
VSS_m = s3.value(2:ro,co-1); 
C_was = s3.value(2:ro,co); 
 
ro = size(s4,1); 
co = size(s4,2); 
surv_min = (s4.value(2,2:co))'; 
surv_max = (s4.value(3,2:co))'; 
 
ro = size(s5,1);                                      //Load data for cross-validation 
co = size(s5,2); 
t_data_cv = s5.value(2:ro,1); 
inf_data_cv = s5.value(2:ro,2:co-3); 
Q_in_cv = s5.value(2:ro,co-2); 
Q_was_cv = s5.value(2:ro,co-1); 
T_data_cv = s5.value(2:ro,co); 
 
ro = size(s6,1);                                      //Load data for cross-validation 
co = size(s6,2); 
q_ch4_m_cv = s6.value(2:ro,co-6); 
q_co2_m_cv = s6.value(2:ro,co-5); 
pH_m_cv = s6.value(2:ro,co-4); 
S_IN_m_cv = s6.value(2:ro,co-3); 
VFA_m_cv = s6.value(2:ro,co-2); 
VSS_m_cv = s6.value(2:ro,co-1); 
C_was_cv = s6.value(2:ro,co); 
 
ro = size(s7,1);                                      //Load data for cross-validation 
co = size(s7,2); 
CV_Par = (s7.value(2,2:co))'; 
 
 
//4. REACTOR INITIAL COMPOSITION 
//=============================== 
 
DSV_0 = ini_data'; 
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//================================================================================================ 
//ADM1 MODEL  
//IWA TASK GROUP, SCIENTIFIC AND TECHNICAL REPORT NO.13 
//File: Functions.sce 
// 
//<Modifications> 
//Note 1: Corrected Carbon and Nitrogen balances for all 19 processes [Rosen & Jeppson,2006] 
//================================================================================================ 
 
//Function 1 - Charge Balance  
//============================ 
function balance=charge_bal(S_h_ion, S_cat, S_IN, S_IC, S_ac, S_pro, S_bu, S_va, S_an, Ka, cpc) 
    balance = S_cat+... 
            ((S_IN.*S_h_ion)./(Ka.nh4+S_h_ion)) + ... 
            S_h_ion-((Ka.co2.*S_IC)./(Ka.co2+S_h_ion)) - ... 
            ((Ka.ac.*S_ac)./(Ka.ac+S_h_ion))./cpc.ac - ... 
            ((Ka.pro*S_pro)./(Ka.pro+S_h_ion))./cpc.pro - ... 
            ((Ka.bu.*S_bu)./(Ka.bu+S_h_ion))./cpc.bu - ... 
            ((Ka.va.*S_va)./(Ka.va+S_h_ion))./cpc.va - ... 
            (Ka.h2o./S_h_ion)-S_an; 
endfunction 
 
 
//Function 2 - pH Inhibition: Acetogens & Acidogens 
//================================================= 
function pH_inhibit=I_pH(pH) 
    if pH < I_pH_ul then 
        pH_inhibit = exp(-3*((pH-I_pH_ul)/(I_pH_ul-I_pH_ll))^2) 
    else 
        pH_inhibit = 1 
    end 
endfunction 
 
 
//Function 3 - pH Inhibition: Acetate Degraders 
//============================================= 
function pH_ac_inhibit=I_pH_ac(pH) 
    if pH < I_pH_ac_ul then 
        pH_ac_inhibit = exp(-3*((pH-I_pH_ac_ul)/(I_pH_ac_ul-I_pH_ac_ll))^2) 
    else 
        pH_ac_inhibit = 1 
    end 
endfunction 
 
 
//Function 4 - pH Inhibition: H2 Degraders 
//======================================== 
function pH_h2_inhibit=I_pH_h2(pH) 
    if pH < I_pH_h2_ul then 
        pH_h2_inhibit = exp(-3*((pH-I_pH_h2_ul)/(I_pH_h2_ul-I_pH_h2_ll))^2) 
    else 
        pH_h2_inhibit = 1 
    end 
endfunction 
 
 
//Function 5 - Inorganic Nitrogen Inhibition 
//========================================== 
//Limit to growth due to lack of IN 
function IN_inhibit=I_IN_lim(S_IN, Ks_IN) 
    if S_IN < 0 then 
        IN_inhibit = 0 
    else 
        IN_inhibit = 1/(1+Ks_IN/S_IN) 
    end 
endfunction 
 
 
//Function 6 - Hydrogen Inhibition 
//================================ 
function h2_inhibit=I_h2(S_h2, KI_h2) 
    h2_inhibit = 1/(1+S_h2/KI_h2) 
endfunction 
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//Function 7 - Ammonia Inhibition 
//=============================== 
function nh3_inhibit=I_nh3_ac(S_nh3, KI_nh3_ac) 
    nh3_inhibit = 1/(1+S_nh3/KI_nh3_ac) 
endfunction 
 
 
//Function 8 - ADM1 Model 
//======================== 
function dDSVdt=f_dDSVdt(t, DSV)  
//    global('DSV_data','DSV_t','t_count','sim_dur'); 
S_su = DSV(1);S_aa = DSV(2);S_fa = DSV(3);S_va = DSV(4);S_bu = DSV(5);S_pro = DSV(6); 
S_ac = DSV(7);S_h2 = DSV(8);S_ch4 = DSV(9);S_IC = DSV(10);S_IN = DSV(11);S_I = DSV(12); 
X_c = DSV(13);X_ch = DSV(14);X_pr = DSV(15);X_li = DSV(16);X_su = DSV(17);X_aa = DSV(18); 
X_fa = DSV(19);X_c4 = DSV(20);X_pro = DSV(21);X_ac = DSV(22);X_h2 = DSV(23);X_I = DSV(24); 
S_an = DSV(25);S_cat = DSV(26);S_h2_g = DSV(27);S_ch4_g = DSV(28);S_co2_g = DSV(29); 
 
m = zeros(19,26); 
 
 
//Equilibrium & Charge Balances 
//------------------------------ 
h_solver_list = list(charge_bal,S_cat,S_IN,S_IC,S_ac,S_pro,S_bu,S_va,S_an,Ka,cpc); 
S_h_ion = fsolve(S_h_ion,h_solver_list); 
 
pH = -log10(S_h_ion);                                                           //pH of reactor content 
 
S_nh4_ion = (S_IN*S_h_ion)/(Ka.nh4+S_h_ion);                                     //IN equilibrium 
S_nh3 = S_IN-S_nh4_ion; 
S_hco3 = (Ka.co2*S_IC)/(Ka.co2+S_h_ion);                                                   //IC equilibrium 
S_co2 = S_IC-S_hco3; 
 
 
//Liquid-Gas Transfer 
//-------------------- 
p_h2 = S_h2_g/M.h2*R*T;                                              //[bar] partial pressure of h2 
p_ch4 = S_ch4_g/M.ch4*R*T;                                           //[bar] partial pressure of CH4 
p_co2 = S_co2_g*R*T;                                                 //[bar] partial pressure of CO2 
p_h2o = p_h2o_0*exp(deltaHvap0_h2o/(R*100)*(1/T_0-1/T));               //[bar] partial pressure of h2o, van't Hoff equation 
P_headspace = p_co2+p_h2+p_ch4+p_h2o;                              //[bar] total gas phase pressure 
 
kr_h2 = kLa*(S_h2-M.h2*KH.h2*p_h2); 
kr_ch4 = kLa*(S_ch4-M.ch4*KH.ch4*p_ch4); 
kr_co2 = kLa*(S_co2-KH.co2*p_co2); 
 
q_gas = R*T/(P_atm-p_h2o)*V_digester*(kr_h2/M.h2+kr_ch4/M.ch4+kr_co2);           //[m3.d-1] total gas flow 
 
 
//Process 1: Disintegration 
//-------------------------- 
m(1,10) = C.Xc - ... 
          f.xi_xc*C.XI - ... 
          f.si_xc*C.SI - ... 
          f.pr_xc*C.pr - ... 
          f.ch_xc*C.ch - ... 
          f.li_xc*C.li;                                      //[kmol.kgCOD-1] determines amount/portion of C in composite 
                   particulates that disintegrates to inorganic carbon, Note 1 
m(1,11) = N.Xc - ... 
          f.xi_xc*N.XI - ... 
          f.si_xc*N.SI - ... 
          f.pr_xc*N.aa;                                    //[kmol.kgCOD-1] determines amount/portion of N in composite 
          particulates that disintegrates to inorganic nitrogen 
m(1,12) = f.si_xc;                                          //[kgCOD.kgCOD-1] catabolic yield of soluble inerts from  
          composite particulates 
m(1,13) = -1; 
m(1,14) = f.ch_xc; 
m(1,15) = f.pr_xc; 
m(1,16) = f.li_xc; 
m(1,24) = f.xi_xc; 
kr(1) = kdis*X_c;                                                               //kinetic rate  
 
//Process 2: Hydrolysis carbohydrates 
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//----------------------------------- 
m(2,1) = 1; 
m(2,10) = C.ch-C.su;                                                                //Note 1 
m(2,14) = -1; 
kr(2) = khyd.ch*X_ch; 
 
 
//Process 3: Hydrolysis proteins 
//------------------------------- 
m(3,2) = 1; 
m(3,10) = C.pr-C.aa;                                                              //Note 1 
m(3,15) = -1; 
kr(3) = khyd.pr*X_pr; 
 
 
//Process 4: Hydrolysis lipids 
//----------------------------- 
m(4,1) = 1-f.fa_li; 
m(4,3) = f.fa_li;  
m(4,10) = C.li - ... 
          (1-f.fa_li)*C.su - ... 
          f.fa_li*C.fa;                                                                   //Note 1 
m(4,16) = -1;  
kr(4) = khyd.li*X_li; 
 
 
//Process 5: Uptake of Sugars 
//----------------------------- 
m(5,1) = -1; 
m(5,5) = (1-Y.su)*f.bu_su;                                        //(Yield of other substances)*(fractional yield of butyrate) 
m(5,6) = (1-Y.su)*f.pro_su; 
m(5,7) = (1-Y.su)*f.ac_su; 
m(5,8) = (1-Y.su)*f.h2_su; 
m(5,10) = C.su - ... 
          (1-Y.su)*f.bu_su*C.bu - ... 
          (1-Y.su)*f.pro_su*C.pro - ... 
          (1-Y.su)*f.ac_su*C.ac - ... 
          Y.su*C.bm;                                         //determines amount/portion of carbon in monosaccharides  
             that is utilised for CO2 production 
m(5,11) = -Y.su*N.bm;                                         //consumption of nitrogen into growth of monosaccharide  
             degraders 
m(5,17) = Y.su; 
kr(5) = km.su*X_su*S_su/(KS.su+S_su)* ... 
        I_pH(pH)* ... 
        I_IN_lim(S_IN,KS.IN); 
 
 
//Process 6: Uptake of Amino Acids 
//-------------------------------- 
m(6,2) = -1; 
m(6,4) = (1-Y.aa)*f.va_aa; 
m(6,5) = (1-Y.aa)*f.bu_aa; 
m(6,6) = (1-Y.aa)*f.pro_aa; 
m(6,7) = (1-Y.aa)*f.ac_aa; 
m(6,8) = (1-Y.aa)*f.h2_aa; 
m(6,10) = C.aa - ... 
          (1-Y.aa)*f.va_aa*C.va - ... 
          (1-Y.aa)*f.bu_aa*C.bu - ... 
          (1-Y.aa)*f.pro_aa*C.pro - ... 
          (1-Y.aa)*f.ac_aa*C.ac - ... 
          Y.aa*C.bm; 
m(6,11) = N.aa - Y.aa*N.bm; 
m(6,18) = Y.aa; 
kr(6) = km.aa*X_aa*S_aa/(KS.aa+S_aa)* ... 
       I_pH(pH)* ... 
       I_IN_lim(S_IN,KS.IN); 
 
 
 
 
 
 
//Process 7: Uptake of LCFA 
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//-------------------------- 
m(7,3) = -1; 
m(7,7) = 0.7*(1-Y.fa); 
m(7,8) = 0.3*(1-Y.fa); 
m(7,10) = C.fa - ... 
          0.7*(1-Y.fa)*C.ac - ... 
          Y.fa*C.bm;                                                                //Note 1 
m(7,11) = -Y.fa*N.bm; 
m(7,19) = Y.fa; 
kr(7) = km.fa*X_fa*S_fa/(KS.fa+S_fa)* ... 
       I_pH(pH)* ... 
       I_IN_lim(S_IN,KS.IN)*I_h2(S_h2,KI.h2_fa); 
 
 
//Process 8: Uptake of Valerate 
//----------------------------- 
m(8,4) = -1; 
m(8,6) = 0.54*(1-Y.c4); 
m(8,7) = 0.31*(1-Y.c4); 
m(8,8) = 0.15*(1-Y.c4); 
m(8,10) = C.va - ... 
          0.54*(1-Y.c4)*C.pro - ... 
          0.31*(1-Y.c4)*C.ac - ... 
          Y.c4*C.bm;                                                               //Note 1 
m(8,11) = -Y.c4*N.bm; 
m(8,20) = Y.c4; 
kr(8) = km.c4*X_c4*S_va/(KS.c4+S_va)*1/(1+S_bu/S_va)* ... 
       I_pH(pH)* ... 
       I_IN_lim(S_IN,KS.IN)* ... 
       I_h2(S_h2,KI.h2_c4); 
 
 
//Process 9: Uptake of Butyrate 
//----------------------------- 
m(9,5) = -1; 
m(9,7) = 0.8*(1-Y.c4); 
m(9,8) = 0.2*(1-Y.c4); 
m(9,10) = C.bu - ... 
          0.8*(1-Y.c4)*C.ac - ... 
          Y.c4*C.bm;                                                               //Note 1 
m(9,11) = -Y.c4*N.bm; 
m(9,20) = Y.c4; 
kr(9) = km.c4*X_c4*S_bu/(KS.c4+S_bu)*1/(1+S_va/S_bu)* ... 
       I_pH(pH)* ... 
       I_IN_lim(S_IN,KS.IN)* ... 
       I_h2(S_h2,KI.h2_c4); 
 
 
//Process 10: Uptake of Propionate 
//-------------------------------- 
m(10,6) = -1; 
m(10,7) = 0.57*(1-Y.pro); 
m(10,8) = 0.43*(1-Y.pro); 
m(10,10) = C.pro - ... 
           0.57*(1-Y.pro)*C.ac - ... 
           Y.pro*C.bm; 
 
m(10,11) = -Y.pro*N.bm; 
m(10,21) = Y.pro; 
kr(10) = km.pro*X_pro*S_pro/(KS.pro+S_pro)* ... 
        I_pH(pH)* ... 
        I_IN_lim(S_IN,KS.IN)* ... 
        I_h2(S_h2,KI.h2_pro); 
 
 
//Process 11: Uptake of Acetate 
//------------------------------ 
m(11,7) = -1; 
m(11,9) = (1-Y.ac); 
m(11,10) = C.ac - ... 
           (1-Y.ac)*C.ch4 - ... 
           Y.ac*C.bm; 
m(11,11) = -Y.ac*N.bm; 
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m(11,22) = Y.ac; 
kr(11) = km.ac*X_ac*S_ac/(KS.ac+S_ac)* ... 
        I_pH_ac(pH)* ... 
        I_IN_lim(S_IN,KS.IN)* ... 
        I_nh3_ac(S_nh3,KI.nh3_ac); 
 
 
//Process 12: Uptake of Hydrogen 
//------------------------------ 
m(12,8) = -1; 
m(12,9) = (1-Y.h2); 
m(12,10) = -(1-Y.h2)*C.ch4 - Y.h2*C.bm; 
m(12,11) = -Y.h2*N.bm; 
m(12,23) = Y.h2; 
kr(12) = km.h2*X_h2*S_h2/(KS.h2+S_h2)* ... 
        I_pH_h2(pH)*... 
        I_IN_lim(S_IN,KS.IN); 
 
 
//Process 13: Decay of Monosaccharide Degraders 
//--------------------------------------------- 
m(13,10) = C.bm - C.Xc;                                                            //Note 1 
m(13,11) = N.bm - N.Xc;                                                            //Note 1 
m(13,13) = 1; 
m(13,17) = -1; 
kr(13) = kdec.xsu*X_su; 
 
 
//Process 14: Decay of Amino Acid Degraders 
//----------------------------------------- 
m(14,10) = C.bm - C.Xc;                                                        //Note 1 
m(14,11) = N.bm - N.Xc;                                                           //Note 1 
m(14,13) = 1; 
m(14,18) = -1; 
kr(14) = kdec.xaa*X_aa; 
 
 
//Process 15: Decay of LCFA Degraders 
//------------------------------------ 
m(15,10) = C.bm - C.Xc;                                                             //Note 1 
m(15,11) = N.bm - N.Xc;                                                             //Note 1 
m(15,13) = 1; 
m(15,19) = -1; 
kr(15) = kdec.xfa*X_fa; 
 
 
//Process 16: Decay of C4 Degraders 
//---------------------------------- 
m(16,10) = C.bm - C.Xc;                                                            //Note 1 
m(16,11) = N.bm - N.Xc;                                                             //Note 1 
m(16,13) = 1; 
m(16,20) = -1; 
kr(16) = kdec.xc4*X_c4; 
 
 
//Process 17: Decay of Propionate Degraders 
//----------------------------------------- 
m(17,10) = C.bm - C.Xc;                                                                 //Note 1 
m(17,11) = N.bm - N.Xc;                                                       //Note 1 
m(17,13) = 1; 
m(17,21) = -1; 
kr(17) = kdec.xpro*X_pro; 
 
 
//Process 18: Decay of Acetate Degraders 
//--------------------------------------- 
m(18,10) = C.bm - C.Xc;                                                             //Note 1 
m(18,11) = N.bm - N.Xc;                                                           //Note 1 
m(18,13) = 1; 
m(18,22) = -1; 
kr(18) = kdec.xac*X_ac; 
 
//Process 19: Decay of Hydrogen Degraders 
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//--------------------------------------- 
m(19,10) = C.bm - C.Xc;                                                             //Note 1 
m(19,11) = N.bm - N.Xc;                                                          //Note 1 
m(19,13) = 1; 
m(19,23) = -1; 
kr(19) = kdec.xh2*X_h2; 
 
 
//State variables balance - Digester 
//---------------------------------- 
DSV_change = m'*kr;                                                  //totaling concentration changes (summation of all  
           rows in matrix) for each dynamic state variable 
 
DSV_change(8) = DSV_change(8) - kr_h2;                                            //gas-liquid transfer kinetic rates 
DSV_change(9) = DSV_change(9) - kr_ch4; 
DSV_change(10) = DSV_change(10) - kr_co2; 
DSV_change = DSV_change'; 
 
t0 = floor(t)+1; 
I = inf_data(t0,:)+... 
    (t-t_data(t0))/(t_data(t0+1)-t_data(t0))... 
    .*(inf_data(t0+1,:)-inf_data(t0,:));                //interpolate influent composition relative to influent  
          data and t in ode function 
Q_I = Q_in(t0)+... 
    (t-t_data(t0))/(t_data(t0+1)-t_data(t0))... 
    .*(Q_in(t0+1)-Q_in(t0));                                          //interpolate influent flow relative to influent data and  
         t in ode function 
Q_was_I = Q_was(t0)+... 
    (t-t_data(t0))/(t_data(t0+1)-t_data(t0))... 
    .*(Q_was(t0+1)-Q_was(t0));                                      //interpolate WAns flow relative to influent data and t  
         in ode function 
//C_was_I = C_was(t0)+... 
//    (t-t_data(t0))/(t_data(t0+1)-t_data(t0))... 
//    .*(C_was(t0+1)-C_was(t0));                                      //interpolate WAns concentration relative to influent  
         data and t in ode function 
     
Q_eff = Q_I; 
 
for i = 1 : 12 
    dDSVdt(i) = Q_I*I(i)/V_digester - ... 
                Q_eff*DSV(i)/V_digester + ... 
                DSV_change(i);                                                     //mass balance around digester 
end 
 
for j = 13 : 24 
    f_X = DSV(j)/sum(DSV(13:24)); 
    dDSVdt(j) = Q_I*I(j)/V_digester - ... 
                Q_was_I*DSV(j)/V_digester + ... 
                DSV_change(j);                                                       //mass balance around digester 
end 
 
for k = 25 : 26 
    dDSVdt(k) = Q_I*I(k)/V_digester - ... 
                Q_eff*DSV(k)/V_digester + ... 
                DSV_change(k);                                                    //mass balance around digester 
end 
 
//State variables balance - Headspace 
//---------------------------------- 
dDSVdt(27) = -S_h2_g*q_gas/V_headspace + kr_h2*V_digester/V_headspace; 
dDSVdt(28) = -S_ch4_g*q_gas/V_headspace + kr_ch4*V_digester/V_headspace;                //gas phase mass balances 
dDSVdt(29) = -S_co2_g*q_gas/V_headspace + kr_co2*V_digester/V_headspace; 
 
endfunction 
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//================================================================================================ 
//ADM1 MODEL  
//IWA TASK GROUP, SCIENTIFIC AND TECHNICAL REPORT NO.13 
//File: Parameters.sce 
//================================================================================================ 
 
//1. Physico-chemical 
//==================== 
R = 0.08314;                                                            //[bar.K-1.M-1] ideal gas law constant 
kLa = 200;                                                              //[d-1] oxygen liquid-gas transfer coefficient 
 
pKa.ac = 4.76;                                                          //pKa of acetate at T=298K 
pKa.bu = 4.84;                                                          //pKa of butyrate at T=298K 
pKa.co2 = 6.35;                                                         //pKa of CO2 at T=298K 
pKa.h2o = 14;                                                           //pKa of water at T=298K 
pKa.nh4 = 9.25;                                                         //pKa of ammonium at T=298K 
pKa.pro = 4.88;                                                         //pKa of propionate at T=298K 
pKa.va = 4.8;                                                           //pKa of valerate at T=298K 
deltaH0_Ka.co2 = 7646;                                                  //[J] enthalpy of reaction: CO2 -> HCO3 
deltaH0_Ka.h2o = 55900;                                                 //[J] enthalpy of reaction: h2o -> OH + H+ 
deltaH0_Ka.nh4 = 51965;                                                 //[J] enthalpy of reaction: nh4 -> nh3 
deltaH0_KH.ch4 = -14240;                                                //[J] enthalpy of reaction of CH4(g) -> CH4(l) 
deltaH0_KH.co2 = -19410;                                                //[J] enthalpy of reaction of CO2(g) -> CO2(l) 
deltaH0_KH.h2 = -4180;                                                  //[J] enthalpy of reaction of h2(g) -> h2(l) 
 
k_AB_co2 = 10^14;                                            //kinetic constant for Acid-Base CO2-HCO3 reaction 
Ka.ac = 10^(-pKa.ac);                                          //acetate acidity constant (without temperature correction) 
Ka.bu = 10^(-pKa.bu);                                          //butyrate acidity constant (without tempeature correction) 
Ka.co2 = 10^(-pKa.co2)*exp(deltaH0_Ka.co2/(R*100)*(1/298-1/T));  //CO2 acidity constant (temperature corrected) 
Ka.h2o = 10^(-pKa.h2o)*exp(deltaH0_Ka.h2o/(R*100)*(1/298-1/T));  //water acidity constant (temperature corrected) 
Ka.nh4 = 10^(-pKa.nh4)*exp(deltaH0_Ka.nh4/(R*100)*(1/298-1/T));  //ammonium acidity constant (temperature corrected) 
Ka.pro = 10^(-pKa.pro);                                      //propionate acidity constant (without temperature correction) 
Ka.va = 10^(-pKa.va);                                          //valerate acidity constant (without temperature correction) 
 
KH.ch4 = 0.0014*exp(deltaH0_KH.ch4/(R*100)*(1/298-1/T));       //[Mliq.Mgas-1] non-dimensional Henry's law constant for  
             CH4 (temperature corrected) 
KH.co2 = 0.035*exp(deltaH0_KH.co2/(R*100)*(1/298-1/T));        //[Mliq.Mgas-1] non-dimensional Henry's law constant for  
             CO2 (temperature corrected) 
KH.h2 = 0.00078*exp(deltaH0_KH.h2/(R*100)*(1/298-1/T));        //[Mliq.Mgas-1] non-dimensional Henry's law constant for  
             H2 (temperature corrected) 
 
p_h2o_0 = 0.0313;                                                       //[bar] vapour pressure of water at STP 
T_0 = 298;                                                              //[K] temp at STP 
deltaHvap0_h2o = 43980;                                                 //[J.mol-1] heat of vaporisation at STP 
 
//2. Biochemical Stoichiometric 
//============================== 
C.ch = 0.0313;                                                   //[mol.gCOD-1] carbon content in carbohydrates 
C.pr = 0.03;                                                     //[mol.gCOD-1] carbon content in proteins 
C.li = 0.022;                                                     //[mol.gCOD-1] carbon content in lipids 
C.su = 0.0313;                                                  //[mol.gCOD-1] carbon content in monosaccharides 
C.aa = 0.03;                                                    //[mol.gCOD-1] carbon content in amino acids  
C.fa = 0.0217;                                                  //[mol.gCOD-1] carbon content in LCFA 
C.va = 0.024;                                                   //[mol.gCOD-1] carbon content in valerate 
C.bu = 0.025;                                                   //[mol.gCOD-1] carbon content in butyrate 
C.pro = 0.0268;                                                 //[mol.gCOD-1] carbon content in propionate 
C.ac = 0.0313;                                                  //[mol.gCOD-1] carbon content in acetate 
C.ch4 = 0.0156;                                                 //[mol.gCOD-1] carbon content in methane 
C.bm = 0.0313;                                                 //[mol.gCOD-1] carbon content in biomass 
C.SI = 0.03;                                                    //[mol.gCOD-1] carbon content in soluble inert COD 
C.Xc = 0.02                                                    //[mol.gCOD-1] carbon content in composite particulates 
C.XI = 0.03;                                                    //[mol.gCOD-1] carbon content in particulate inert COD 
 
N.aa = 0.007;                                           //[mol.gCOD-1] nitrogen content in amino acids 
N.bm = 0.08/14;                                         //[mol.gCOD-1] nitrogen content in biomass, Note 1 
N.SI = 0.06/14;                                          //[mol.gCOD-1] nitrogen content of soluble inert COD, Note 1 
N.Xc = 0.0376/14;                                       //[mol.gCOD-1] nitrogen content of composite particulates, Note 1 
N.XI = 0.06/14;                                          //[mol.gCOD-1] nitrogen content of particulate inert COD, Note 1 
 
nu.su_1 = 0.495;                                   //fraction of monosaccharides that degrades to acetate only 
nu.su_2 = 0.345;                                   //fraction of monosaccharides that degrades to acetate and propionate 
nu.su_3 = 1-nu.su_1-nu.su_2;                       //fraction of monosaccharides that degrades to butyrate only 
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f.pro_su = 0.78*nu.su_2;                           //[kgCOD.kgCOD-1] catabolic yield of propionate from monosaccharides 
f.bu_su = 0.83*nu.su_3;                            //[kgCOD.kgCOD-1] catabolic yield of butyrate from monosaccharides 
f.ac_su = 0.67*nu.su_1+0.22*nu.su_2;               //[kgCOD.kgCOD-1] catabolic yield of acetate from monosaccharides 
f.h2_su = 0.33*nu.su_1+0.17*nu.su_3;               //[kgCOD.kgCOD-1] catabolic yield of hydrogen from monosaccharides 
 
f.va_aa = 0.23;                                         //[kgCOD.kgCOD-1] catabolic yield of valerate from amino acids 
f.bu_aa = 0.26;                                         //[kgCOD.kgCOD-1] catabolic yield of butyrate from amino acids 
f.pro_aa = 0.05;                                        //[kgCOD.kgCOD-1] catabolic yield of propionate from amino acids 
f.ac_aa = 0.4;                                          //[kgCOD.kgCOD-1] catabolic yield of acetate from amino acids 
f.h2_aa = 0.06;                                         //[kgCOD.kgCOD-1] catabolic yield of hydrogen from amino acids 
 
f.fa_li = 0.95;                                           //[kgCOD.kgCOD-1] catabolic yield of LCFAs from lipids 
 
f.ch_xc = 0.2;                            //[kgCOD.kgCOD-1] catabolic yield of carbohydrates from composite particulates 
f.pr_xc = 0.2;                            //[kgCOD.kgCOD-1] catabolic yield of protein from composite particulates 
f.si_xc = 0.1;                            //[kgCOD.kgCOD-1] catabolic yield of soluble inerts from composite particulates 
f.xi_xc = 0.25;                           //[kgCOD.kgCOD-1] catabolic yield of particulate inerts from composite particulates 
f.li_xc = 1-f.ch_xc-f.pr_xc-f.si_xc-f.xi_xc;    //[kgCOD.kgCOD-1] catabolic yield of lipids from composites particulates 
 
M.h2 = 16;                                                     //[kgCOD.kmol-1] molecular mass of hydrogen 
M.ch4 = 64;                                                    //[kgCOD.kmol-1] molecular mass of methane 
cpc.ac = 64;                                                   //[gCOD.charge-1] COD content per charge of acetate 
cpc.pro = 112;                                                 //[gCOD.charge-1] COD content per charge of propionate 
cpc.bu = 160;                                                  //[gCOD.charge-1] COD content per charge of butyrate 
cpc.va = 208;                                                  //[gCOD.charge-1] COD content per charge of valerate 
 
//3. Biochemical Kinetic 
//======================= 
kdis = 0.4;                                                   //[d-1] disintegration rate constant of composite particulates 
khyd.ch = 0.25;                                              //[d-1] carbohydrates hydrolysis rate constant 
khyd.li = 0.1;                                                //[d-1] lipids hydrolysis rate constant 
khyd.pr = 0.2;                                               //[d-1] proteins hydrolysis rate constant 
 
km.su = 30;                //[kgCODS.kgCODX.d-1] specific Monod maximum uptake rate for monosaccharide degraders 
km.aa = 50;                //[kgCODS.kgCODX.d-1] specific Monod maximum uptake rate for amino acid degraders 
km.fa = 6;                 //[kgCODS.kgCODX.d-1] specific Monod maximum uptake rate for LCFA degraders 
km.c4 = 20;               //[kgCODS.kgCODX.d-1] specific Monod maximum uptake rate for butyrate and valerate degraders 
km.pro = 13;              //[kgCODS.kgCODX.d-1] specific Monod maximum uptake rate for propionate degraders 
km.ac = 8;                //[kgCODS.kgCODX.d-1] specific Monod maximum uptake rate for acetate degraders 
km.h2 = 35;               //[kgCODS.kgCODX.d-1] specific Monod maximum uptake rate for hydrogen degraders 
 
kdec.xsu = 0.02;                  //[d-1] decay rate constant of monosaccharide degraders 
kdec.xaa = 0.02;                                            //[d-1] decay rate constant of amino acid degraders 
kdec.xfa = 0.02;                                            //[d-1] decay rate constant of LCFA degraders 
kdec.xpro = 0.02;                                           //[d-1] decay rate constant of propionate degraders 
kdec.xc4 = 0.02;                                            //[d-1] decay rate constant of butyrate and valerate degraders 
kdec.xac = 0.02;                                            //[d-1] decay rate constant of acetate degraders 
kdec.xh2 = 0.02;                                            //[d-1] decay rate constant of hydrogen degraders 
 
KS.su = 0.5;                            //[kgCOD.m-3] Monod half saturation constant for monosaccharide degradation 
KS.aa = 0.3;                            //[kgCOD.m-3] Monod half saturation constant for amino acid degradation 
KS.fa = 0.4;                            //[kgCOD.m-3] Monod half saturation constant for LCFA degradation 
KS.c4 = 0.3;                            //[kgCOD.m-3] Monod half saturation constant for butyrate and valerate degradation 
KS.pro = 0.3;                           //[kgCOD.m-3] Monod half saturation constant for propionate degradation 
KS.ac = 0.15;                          //[kgCOD.m-3] Monod half saturation constant for acetate degradation 
KS.h2 = 2.5*10^-5;                     //[kgCOD.m-3] Monod half saturation constant for hydrogen uptake 
KS.IN = 0.0001;                        //[M] inorganic nitrogen concentration at which growth ceases 
 
KI.h2_c4 = 10^-5;                      //[kgCOD.m-3] hydrogen inhibitory concentration for butyrate and valerate degraders 
KI.h2_fa = 5 * 10^-6;                   //[kgCOD.m-3] hydrogen inhibitory concentration for LCFA degraders 
KI.h2_pro = 3.5*10^-6;                 //[kgCOD.m-3] hydrogen inhibitory concentration for propionate degraders 
KI.nh3_ac = 0.0018;                   //[kgCOD.m-3] free ammonia inhibitory concentration for acetate degraders 
 
Y.su = 0.1;                                        //[kgCODX.kgCODS-1] yield of biomass on uptake of monosaccharides 
Y.aa = 0.08;                                       //[kgCODX.kgCODS-1] yield of biomass on uptake of amino acids 
Y.fa = 0.06;                                       //[kgCODX.kgCODS-1] yield of biomass on uptake of LCFA 
Y.c4 = 0.06;                                      //[kgCODX.kgCODS-1] yield of biomass on uptake of valerate or butyrate 
Y.pro = 0.04;                                     //[kgCODX.kgCODS-1] yield of biomass on uptake of propionate 
Y.ac = 0.05;                                      //[kgCODX.kgCODS-1] yield of biomass on uptake of acetate 
Y.h2 = 0.06;                                      //[kgCODX.kgCODS-1] yield of biomass on uptake of hydrogen 
 
I_pH_ll = 4;                                                            //pH level at which full inhibition applies 
I_pH_ul = 5.5;                                                          //pH level at which no inhibition applies 
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I_pH_ac_ll = 6;                                          //pH level at which full inhibition of acetate degradation applies 
I_pH_ac_ul = 7;                                         //pH level at which no inhibition of acetate degradation applies 
I_pH_h2_ll = 5;                                          //pH level at which full inhibition of hydrogen degradation applies 
I_pH_h2_ul = 6;                                         //pH level at which no inhibition of hydrogen degradation applies 
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//================================================================================================ 
//ADM1 MODEL  
//IWA TASK GROUP, SCIENTIFIC AND TECHNICAL REPORT NO.13 
//File: Rand_Parameters.sce 
//================================================================================================ 
 
 
//Biochemical Stoichiometric 
//============================== 
f.li_xc = -1; 
while (f.li_xc < surv_min(5)) 
     f.si_xc = surv_min(1)+(surv_max(1)-surv_min(1))*rand(); 
     f.xi_xc = surv_min(2)+(surv_max(2)-surv_min(2))*rand(); 
     f.ch_xc = surv_min(3)+(surv_max(3)-surv_min(3))*rand(); 
     f.pr_xc = surv_min(4)+(surv_max(4)-surv_min(4))*rand(); 
     f.li_xc = 1-f.ch_xc-f.pr_xc-f.si_xc-f.xi_xc;  
     while (f.li_xc > surv_max(5)) 
         f.si_xc = surv_min(1)+(surv_max(1)-surv_min(1))*rand(); 
         f.xi_xc = surv_min(2)+(surv_max(2)-surv_min(2))*rand(); 
         f.ch_xc = surv_min(3)+(surv_max(3)-surv_min(3))*rand(); 
         f.pr_xc = surv_min(4)+(surv_max(4)-surv_min(4))*rand(); 
         f.li_xc = 1-f.ch_xc-f.pr_xc-f.si_xc-f.xi_xc; 
     end 
 end 
  
f.fa_li = surv_min(6)+(surv_max(6)-surv_min(6))*rand(); 
 
f.ac_su = -1; 
while (f.ac_su < surv_min(10)) 
    f.h2_su = surv_min(7)+(surv_max(7)-surv_min(7))*rand(); 
    f.bu_su = surv_min(8)+(surv_max(8)-surv_min(8))*rand(); 
    f.pro_su = surv_min(9)+(surv_max(9)-surv_min(9))*rand(); 
    f.ac_su = 1-f.h2_su-f.bu_su-f.pro_su; 
    while (f.ac_su > surv_max(10)) 
        f.h2_su = surv_min(7)+(surv_max(7)-surv_min(7))*rand(); 
        f.bu_su = surv_min(8)+(surv_max(8)-surv_min(8))*rand(); 
        f.pro_su = surv_min(9)+(surv_max(9)-surv_min(9))*rand(); 
        f.ac_su = 1-f.h2_su-f.bu_su-f.pro_su; 
    end 
end 
 
f.ac_aa = -1; 
while (f.ac_aa < surv_min(15)) 
    f.h2_aa = surv_min(11)+(surv_max(11)-surv_min(11))*rand(); 
    f.va_aa = surv_min(12)+(surv_max(12)-surv_min(12))*rand(); 
    f.bu_aa = surv_min(13)+(surv_max(13)-surv_min(13))*rand(); 
    f.pro_aa = surv_min(14)+(surv_max(14)-surv_min(14))*rand(); 
    f.ac_aa = 1-f.h2_aa-f.va_aa-f.bu_aa-f.pro_aa; 
    while (f.ac_aa > surv_max(15)) 
        f.h2_aa = surv_min(11)+(surv_max(11)-surv_min(11))*rand(); 
        f.va_aa = surv_min(12)+(surv_max(12)-surv_min(12))*rand(); 
        f.bu_aa = surv_min(13)+(surv_max(13)-surv_min(13))*rand(); 
        f.pro_aa = surv_min(14)+(surv_max(14)-surv_min(14))*rand(); 
        f.ac_aa = 1-f.h2_aa-f.va_aa-f.bu_aa-f.pro_aa; 
    end 
end 
 
//Biochemical Kinetic 
//======================= 
kdis = surv_min(16)+(surv_max(16)-surv_min(16))*rand(); 
khyd.ch = surv_min(17)+(surv_max(17)-surv_min(17))*rand(); 
khyd.pr = surv_min(18)+(surv_max(18)-surv_min(18))*rand(); 
khyd.li = surv_min(19)+(surv_max(19)-surv_min(19))*rand(); 
 
KS.IN = surv_min(20)+(surv_max(20)-surv_min(20))*rand(); 
 
I_pH_ll = 10; 
while I_pH_ll > I_pH_ul 
    I_pH_ul = surv_min(21)+(surv_max(21)-surv_min(21))*rand(); 
    I_pH_ll = surv_min(22)+(surv_max(22)-surv_min(22))*rand(); 
end 
 
km.su = surv_min(23)+(surv_max(23)-surv_min(23))*rand(); 
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KS.su = surv_min(24)+(surv_max(24)-surv_min(24))*rand(); 
Y.su = surv_min(25)+(surv_max(25)-surv_min(25))*rand(); 
kdec.xsu = surv_min(26)+(surv_max(26)-surv_min(26))*rand(); 
 
km.aa = surv_min(27)+(surv_max(27)-surv_min(27))*rand(); 
KS.aa = surv_min(28)+(surv_max(28)-surv_min(28))*rand(); 
Y.aa = surv_min(29)+(surv_max(29)-surv_min(29))*rand(); 
kdec.xaa = surv_min(30)+(surv_max(30)-surv_min(30))*rand(); 
 
km.fa = surv_min(31)+(surv_max(31)-surv_min(31))*rand(); 
KS.fa = surv_min(32)+(surv_max(32)-surv_min(32))*rand(); 
Y.fa = surv_min(33)+(surv_max(33)-surv_min(33))*rand(); 
kdec.xfa = surv_min(34)+(surv_max(34)-surv_min(34))*rand(); 
KI.h2_fa = surv_min(35)+(surv_max(35)-surv_min(35))*rand(); 
 
km.c4 = surv_min(36)+(surv_max(36)-surv_min(36))*rand(); 
KS.c4 = surv_min(37)+(surv_max(37)-surv_min(37))*rand(); 
Y.c4 = surv_min(38)+(surv_max(38)-surv_min(38))*rand(); 
kdec.xc4 = surv_min(39)+(surv_max(39)-surv_min(39))*rand(); 
KI.h2_c4 = surv_min(40)+(surv_max(40)-surv_min(40))*rand(); 
 
km.pro = surv_min(41)+(surv_max(41)-surv_min(41))*rand(); 
KS.pro = surv_min(42)+(surv_max(42)-surv_min(42))*rand(); 
Y.pro = surv_min(43)+(surv_max(43)-surv_min(43))*rand(); 
kdec.xpro = surv_min(44)+(surv_max(44)-surv_min(44))*rand(); 
KI.h2_pro = surv_min(45)+(surv_max(45)-surv_min(45))*rand(); 
 
km.ac = surv_min(46)+(surv_max(46)-surv_min(46))*rand(); 
KS.ac = surv_min(47)+(surv_max(47)-surv_min(47))*rand(); 
Y.ac = surv_min(48)+(surv_max(48)-surv_min(48))*rand(); 
kdec.xac = surv_min(49)+(surv_max(49)-surv_min(49))*rand(); 
KI.nh3_ac = surv_min(50)+(surv_max(50)-surv_min(50))*rand(); 
I_pH_ac_ul = surv_min(51)+(surv_max(51)-surv_min(51))*rand(); 
I_pH_ac_ll = surv_min(52)+(surv_max(52)-surv_min(52))*rand(); 
 
km.h2 = surv_min(53)+(surv_max(53)-surv_min(53))*rand(); 
KS.h2 = surv_min(54)+(surv_max(54)-surv_min(54))*rand(); 
Y.h2 = surv_min(55)+(surv_max(55)-surv_min(55))*rand(); 
kdec.xh2 = surv_min(56)+(surv_max(56)-surv_min(56))*rand(); 
I_pH_h2_ul = surv_min(57)+(surv_max(57)-surv_min(57))*rand(); 
I_pH_h2_ll = surv_min(58)+(surv_max(58)-surv_min(58))*rand(); 
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//================================================================================================ 
//IWA TASK GROUP, SCIENTIFIC AND TECHNICAL REPORT NO.13 
//File: ADM1.sce 
//================================================================================================ 
 
t = linspace(t_0,sim_dur,sim_dur+1);                                             //simulation range 
%ODEOPTIONS=[1,0,0,%inf,0,2,1000,12,5,0,-1,-1];                               //ODE configurations 
DSV = ode(DSV_0,t_0,t,f_dDSVdt);                                              //calling ODE function: f_dDSVdt 
 
//pH & Gas Flows 
//================ 
pH = 0; 
q_h2 = 0; 
q_ch4 = 0; 
q_co2 = 0; 
 
for i = 1:size(DSV,'c')  
    h_solver_list = list(charge_bal,DSV(26,i),DSV(11,i),DSV(10,i),DSV(7,i),DSV(6,i),DSV(5,i),DSV(4,i),DSV(25,i),Ka,cpc); 
    S_h_ion = fsolve(S_h_ion,h_solver_list); 
    pH(length(pH)+1) = -log10(S_h_ion);                                       //pH of reactor content 
 
    S_h2 = DSV(8,i); 
    S_ch4 = DSV(9,i); 
    S_co2 = DSV(10,i)-(Ka.co2*DSV(10,i)/(Ka.co2+S_h_ion)); 
 
    p_h2 = DSV(27,i)/M.h2*R*T;                                        //partial pressure of h2 [bar] 
    p_ch4 = DSV(28,i)/M.ch4*R*T;                                      //partial pressure of CH4 [bar] 
    p_co2 = DSV(29,i)*R*T;                                            //partial pressure of CO2 [bar] 
    p_h2o = p_h2o_0*exp(deltaHvap0_h2o/(R*100)*(1/T_0-1/T));           //[bar] partial pressure of h2o, van't Hoff equation 
    P_headspace = p_co2+p_h2+p_ch4+p_h2o;                          //total gas phase pressure [bar] 
 
    kr_h2 = kLa*(S_h2-M.h2*KH.h2*p_h2); 
    kr_ch4 = kLa*(S_ch4-M.ch4*KH.ch4*p_ch4); 
    kr_co2 = kLa*(S_co2-KH.co2*p_co2); 
 
    q_gas = R*T/(P_atm-p_h2o)*V_digester*(kr_h2/M.h2+kr_ch4/M.ch4+kr_co2);          //total gas flow [m3.d-1] 
    q_h2(length(q_h2)+1) = p_h2/P_headspace*q_gas; 
    q_ch4(length(q_ch4)+1) = p_ch4/P_headspace*q_gas; 
    q_co2(length(q_co2)+1) = p_co2/P_headspace*q_gas; 
end 
 
DSV($+1,:) = pH(2:length(pH))'; 
DSV($+1,:) = q_h2(2:length(q_h2))'; 
DSV($+1,:) = q_ch4(2:length(q_ch4))'; 
DSV($+1,:) = q_co2(2:length(q_co2))'; 
for j = 2 : size(DSV,2) 
    MC_data($+1,:) = DSV(:,j)'; 
end 
 
DSV = DSV'; 
 
VFA_s = [DSV(:,4)+DSV(:,5)+DSV(:,6)+DSV(:,7)]; 
VSS_s = 
[DSV(:,13)+DSV(:,14)+DSV(:,15)+DSV(:,16)+DSV(:,17)+DSV(:,18)+DSV(:,19)+DSV(:,20)+DSV(:,21)+DSV(:,22)+DSV(:,23)]; 
 
for i = 1 : sim_dur 
    VFA_data($+1) = VFA_s(i); 
    VSS_data($+1) = VSS_s(i); 
end 
 
DSV = DSV'; 
 
if sim_mode == "single" then 
Ran_Par = 
[f.si_xc,f.xi_xc,f.ch_xc,f.pr_xc,f.li_xc,f.fa_li,f.h2_su,f.bu_su,f.pro_su,f.ac_su,f.h2_aa,f.va_aa,f.bu_aa,f.pro_aa,f.ac_aa,kdis,khyd.c
h,khyd.pr,khyd.li,KS.IN,I_pH_ul,I_pH_ll,km.su,KS.su,Y.su,kdec.xsu,km.aa,KS.aa,Y.aa,kdec.xaa,km.fa,KS.fa,Y.fa,kdec.xfa,KI.h2
_fa,km.c4,KS.c4,Y.c4,kdec.xc4,KI.h2_c4,km.pro,KS.pro,Y.pro,kdec.xpro,KI.h2_pro,km.ac,KS.ac,Y.ac,kdec.xac,KI.nh3_ac,I_pH_
ac_ul,I_pH_ac_ll,km.h2,KS.h2,Y.h2,kdec.xh2,I_pH_h2_ul,I_pH_h2_ll];            
             //keep track of the random parameters used for each Monte-Carlo run 
end 
 
if sim_mode == "monte-carlo" then 
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Ran_Par(mont_car+1,:) = 
[f.si_xc,f.xi_xc,f.ch_xc,f.pr_xc,f.li_xc,f.fa_li,f.h2_su,f.bu_su,f.pro_su,f.ac_su,f.h2_aa,f.va_aa,f.bu_aa,f.pro_aa,f.ac_aa,kdis,khyd.c
h,khyd.pr,khyd.li,KS.IN,I_pH_ul,I_pH_ll,km.su,KS.su,Y.su,kdec.xsu,km.aa,KS.aa,Y.aa,kdec.xaa,km.fa,KS.fa,Y.fa,kdec.xfa,KI.h2
_fa,km.c4,KS.c4,Y.c4,kdec.xc4,KI.h2_c4,km.pro,KS.pro,Y.pro,kdec.xpro,KI.h2_pro,km.ac,KS.ac,Y.ac,kdec.xac,KI.nh3_ac,I_pH_
ac_ul,I_pH_ac_ll,km.h2,KS.h2,Y.h2,kdec.xh2,I_pH_h2_ul,I_pH_h2_ll];            
            //keep track of the random parameters used for each Monte-Carlo run 
end 
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//================================================================================================ 
//ADM1 MODEL  
//IWA TASK GROUP, SCIENTIFIC AND TECHNICAL REPORT NO.13 
//File: PLSR.sce 
//================================================================================================ 
 
//PLSR Initialisation 
//==================== 
output_no = size(MC_data_pls,2); 
 
pls_data_sel = zeros(MC_nr,output_no * sim_dur); 
row_count = 1; 
 
for i = 0 : MC_nr 
    col_count = 1; 
    for j = 1 : sim_dur 
        row = i * sim_dur + j; 
        pls_data_sel(row_count,col_count:j*output_no) = MC_data_pls(row,:);         
        col_count = col_count + output_no; 
    end 
    row_count = row_count + 1; 
end 
 
pls_data_sel = pls_data_sel(2:size(pls_data_sel,1),:); 
 
//PLSR Algorithm 
//============== 
 
Y_pls = pls_data_sel;                                                     //Raw output data - Y_pls 
X_pls = pls_Ran_Par;                                                      //Raw input data - X_pls 
 
 
Y_sort = gsort(Y_pls,'r','d'); 
Y_IQR = iqr(Y_sort,1); 
qt_index = 3/4*(size(Y_sort,1)+1); 
lower_qt = (Y_sort(ceil(qt_index),:)+Y_sort(floor(qt_index),:))/2; 
upper_qt = lower_qt + Y_IQR; 
 
low_bound = lower_qt - 99 * Y_IQR; 
up_bound = upper_qt + 99 * Y_IQR; 
row_remv = 0; 
 
for row_Y = 1 : size(Y_pls,1) 
    outlr = "No" 
    for col_Y = 1 : size(Y_pls,2) 
        if Y_pls(row_Y,col_Y) < low_bound(col_Y) then  
            outlr = "Yes"; 
            disp(row_Y) 
            disp(col_Y) 
            row_remv($+1) = row_Y;              
        end 
        if Y_pls(row_Y,col_Y) > up_bound(col_Y) then  
            outlr = "Yes";  
            disp(row_Y) 
            disp(col_Y) 
            row_remv($+1) = row_Y 
        end 
    end 
end 
 
Y_new = zeros(1,size(Y_pls,2)); 
X_new = zeros(1,size(X_pls,2)); 
for row_Y = 1 : size(Y_pls,1) 
    remove = "No" 
    for k = 1 : length(row_remv) 
        if row_Y == row_remv(k) then 
            remove = "Yes" 
        end 
    end 
    if remove == "No" then 
        Y_new($+1,:) = Y_pls(row_Y,:) 
        X_new($+1,:) = X_pls(row_Y,:) 
    end 
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end 
 
Y_pls = Y_new(2:size(Y_new,1),:); 
X_pls = X_new(2:size(X_new,1),:); 
 
Y_0 = zeros(size(Y_pls,1),size(Y_pls,2)); 
X_0 = zeros(size(X_pls,1),size(X_pls,2)); 
W_1 = zeros(size(X_pls,2),1); 
W_pls = zeros(size(X_pls,2),no_LV); 
P_pls = zeros(size(X_pls,2),no_LV); 
T_pls = zeros(size(X_pls,1),no_LV); 
Q_pls = zeros(size(Y_pls,2),no_LV); 
U_pls = zeros(size(Y_pls,1),no_LV); 
b_coeff = zeros(no_LV,1); 
Y_pred = zeros(size(Y_pls,1),size(Y_pls,2)); 
R_pls_norm = zeros(size(X_pls,2),no_LV); 
LV_Y = zeros(size(Y_pls,1),no_LV * size(Y_pls,2)); 
mean_Y = zeros(size(Y_pls,1),size(Y_pls,2)); 
 
Y_min = min(Y_pls,"r"); 
Y_max = max(Y_pls,"r"); 
 
numrows = size(Y_pls,1); 
for i = 1:numrows        //Normalise & standardise Y_pls dataset 
    Y_0(i,:) = 2*((Y_pls(i,:) - Y_min) ./ (Y_max - Y_min)) - 1;   
//    Y_0(i,:) = ((Y_pls(i,:) - Y_min) ./ (Y_max - Y_min)); 
end 
 
Y_0i = Y_0; 
 
numrows = size(X_pls,1);                                             
for i = 1:numrows        //Normalise & standardise X_pls dataset 
    X_0(i,:) = 2*((X_pls(i,:) - surv_min') ./ (surv_max' - surv_min')) - 1;   
//    X_0(i,:) = ((X_pls(i,:) - surv_min') ./ (surv_max' - surv_min')); 
end 
 
X_0i = X_0; 
 
first_iter = "Yes" 
for j = 1 : no_LV 
    if first_iter == "Yes" then 
        U_0 = Y_0(:,1);                                                   //Initialise U by choosing first column of Y_pls 
    else  
        U_0 = U_1; 
        X_0 = X_1; 
        Y_0 = Y_1; 
        end 
converge = "No";                                                         //This section repeats until U converges 
tolerance = 0.00000001; 
while (converge == "No") 
    Err = 0; 
    W_1x = X_0' * U_0; 
 
    numrows = size(W_1x,1); 
    max_data = max(W_1x,"r"); 
    min_data = min(W_1x,"r"); 
    for i = 1:numrows 
        W_1(i,:) = (W_1x(i,:) - min_data)/(max_data - min_data); 
    end 
 
    T_1 = X_0 * W_1 
    Q_1x = Y_0' * T_1; 
 
    numrows = size(Q_1x,1); 
    max_data = max(Q_1x,"r"); 
    min_data = min(Q_1x,"r"); 
    for i = 1:numrows 
        Q_1(i,:) = (Q_1x(i,:) - min_data)/(max_data - min_data); 
    end 
 
    U_1 = Y_0 * Q_1; 
 
    for i = 1 : size(U_1,1) 
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        Err = Err + (U_1(i) - U_0(i))^2; 
    end 
disp(Err) 
    if (Err < tolerance) then                                             //Stops loop when Error is smaller than tolerance 
        converge = "Yes" 
        first_iter = "No" 
    else Err_0 = Err  
        U_0 = U_1 
end 
end 
b_1 = (T_1' * T_1) \ (U_1' * T_1); 
P_1 = (T_1' * T_1) \ (X_0' * T_1); 
X_1 = X_0 - (T_1 * P_1'); 
Y_1 = Y_0 - (b_1 * T_1 * Q_1'); 
b_coeff(j,1) = b_1; 
W_pls(:,j) = W_1; 
P_pls(:,j) = P_1; 
T_pls(:,j) = T_1; 
Q_pls(:,j) = Q_1; 
U_pls(:,j) = U_1; 
low_index = j*size(Y_pls,2)-(size(Y_pls,2)-1); 
up_index = j*size(Y_pls,2); 
LV_Y(:,low_index : up_index) = b_1* T_1 * Q_1';                           //Calculates Y_pls-prediction for each LV 
end 
 
R_pls = (X_0i' * X_0i) \ (X_0i' * T_pls);  
b_pls = R_pls * diag(b_coeff) * Q_pls'; 
Y0_pred = X_0i * b_pls; 
 
Pred_Err = 0; 
SS_tot = 0; 
mean_data_Y = mean(Y_0i,"r"); 
 
for num_col = 1 : size(Y0_pred,2) 
    for num_row = 1 : size(Y0_pred,1) 
        Pred_Err = Pred_Err + (Y_0i(num_row,num_col) - Y0_pred(num_row,num_col))^2;      //Residual sum of squares 
        SS_tot = SS_tot + (Y_0i(num_row,num_col) - mean_data_Y(num_col))^2;              //Total sum of sqaures 
        mean_Y(num_row,:) = mean_data_Y; 
    end 
end 
 
R_sqr = 1 - (Pred_Err/SS_tot);                                                            //Coefficient of determination 
disp(R_sqr); 
 
Y_pred = mean_Y + LV_Y(:,1:size(Y_pls,2)); 
 
for k = 2 : no_LV 
    Y_pred = Y_pred + LV_Y(:,(k * size(Y_pls,2)-(size(Y_pls,2)-1)): k * size(Y_pls,2)); 
end 
 
max_data = max(R_pls,"r"); 
min_data = min(R_pls,"r"); 
for num_col = 1 : size(R_pls,2) 
    for num_row = 1:size(R_pls,1) 
        R_pls_norm(num_row,num_col) = (R_pls(num_row,num_col) - min_data(num_col))/(max_data(num_col) - 
min_data(num_col)); 
    end 
end 
 
LV_Y_perc = zeros(size(LV_Y,1),size(LV_Y,2)); 
sum_elem = zeros(size(Y_pls,1),size(Y_pls,2)); 
 
for j = 1 : size(LV_Y,1) 
    for k = 1 : size(Y_pls,2) 
        for l = 1 : no_LV 
            sum_elem(j,k) = sum_elem(j,k) + abs(LV_Y(j,l * size(Y_pls,2) - (size(Y_pls,2) - 1) + k - 1)); 
        end 
    end 
end 
 
for i = 1 : no_LV 
    for j = 1 : size(LV_Y,1) 
        count = 1; 
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        for k = (i * size(Y_pls,2) - (size(Y_pls,2) - 1)) : i * size(Y_pls,2) 
            LV_Y_perc(j,k) = abs(LV_Y(j,k)) / sum_elem(j,count); 
            count = count + 1; 
        end 
    end 
end 
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//================================================================================================ 
//ADM1 MODEL  
//IWA TASK GROUP, SCIENTIFIC AND TECHNICAL REPORT NO.13 
//File: Optimisation.sce 
//================================================================================================ 
 
global counter  
global mf_X_data 
global U_diff_data 
global lamda_data 
 
function U_diff=Mod_Opt(lamda) 
 
lamda = lamda'; 
 
global ('counter')  
global ('mf_X_data') 
global ('U_diff_data') 
global ('lamda_data') 
 
exec('Parameters.sce',-1) 
mf_X_0i = 
[f.si_xc,f.xi_xc,f.ch_xc,f.pr_xc,f.li_xc,f.fa_li,f.h2_su,f.bu_su,f.pro_su,f.ac_su,f.h2_aa,f.va_aa,f.bu_aa,f.pro_aa,f.ac_aa,kdis,khyd.c
h,khyd.pr,khyd.li,KS.IN,I_pH_ul,I_pH_ll,km.su,KS.su,Y.su,kdec.xsu,km.aa,KS.aa,Y.aa,kdec.xaa,km.fa,KS.fa,Y.fa,kdec.xfa,KI.h2
_fa,km.c4,KS.c4,Y.c4,kdec.xc4,KI.h2_c4,km.pro,KS.pro,Y.pro,kdec.xpro,KI.h2_pro,km.ac,KS.ac,Y.ac,kdec.xac,KI.nh3_ac,I_pH_
ac_ul,I_pH_ac_ll,km.h2,KS.h2,Y.h2,kdec.xh2,I_pH_h2_ul,I_pH_h2_ll]; 
 
mf_X = 0; 
 
mf_X_0 = 2*((mf_X_0i  - surv_min') ./ (surv_max' - surv_min')) - 1; 
 
mf_t = mf_X_0 * R_pls; 
mf_X_e = mf_t * P_pls'; 
mf_X_res = mf_X_0 - mf_X_e; 
 
mf_X_delta = (lamda .* mf_t) * P_pls'; 
mf_X_c = mf_X_res + mf_X_delta; 
mf_X = (mf_X_c + 1)/2 .* (surv_max' - surv_min') + surv_min'; 
 
neg = 0; 
for k = 1 : size(mf_X,2) 
    if mf_X(k) < 0 then  
        neg = neg + 1; 
        mf_X(k) = surv_min(k); 
        end 
end 
 
if mf_X(22) > mf_X(21) then 
    mf_X(22) = mf_X(21) - 1; 
end 
 
disp(strcat(["No. of neg. parameters = ",string(neg)])) 
 
    f_xc = mf_X(1) + mf_X(2) + mf_X(3) + mf_X(4) + mf_X(5); 
    f_su = mf_X(7) + mf_X(8) + mf_X(9) + mf_X(10); 
    f_aa = mf_X(11) + mf_X(12) + mf_X(13) + mf_X(14) + mf_X(15);  
 
    mf_X(1) = mf_X(1)/f_xc; 
    mf_X(2) = mf_X(2)/f_xc; 
    mf_X(3) = mf_X(3)/f_xc; 
    mf_X(4) = mf_X(4)/f_xc; 
    mf_X(5) = mf_X(5)/f_xc; 
 
    mf_X(7) = mf_X(7)/f_su; 
    mf_X(8) = mf_X(8)/f_su; 
    mf_X(9) = mf_X(9)/f_su; 
    mf_X(10) = mf_X(10)/f_su; 
 
    mf_X(11) = mf_X(11)/f_aa; 
    mf_X(12) = mf_X(12)/f_aa; 
    mf_X(13) = mf_X(13)/f_aa; 
    mf_X(14) = mf_X(14)/f_aa; 
    mf_X(15) = mf_X(15)/f_aa; 
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f.si_xc = mf_X(1); f.xi_xc = mf_X(2); f.ch_xc = mf_X(3); f.pr_xc = mf_X(4); f.li_xc = mf_X(5); f.fa_li = mf_X(6); f.h2_su = mf_X(7); 
f.bu_su = mf_X(8); f.pro_su = mf_X(9); f.ac_su = mf_X(10); 
f.h2_aa = mf_X(11); f.va_aa = mf_X(12); f.bu_aa = mf_X(13); f.pro_aa = mf_X(14); f.ac_aa = mf_X(15); kdis = mf_X(16); 
khyd.ch = mf_X(17); khyd.pr = mf_X(18); khyd.li = mf_X(19); KS.IN = mf_X(20); 
I_pH_ul = mf_X(21); I_pH_ll = mf_X(22); km.su = mf_X(23); KS.su = mf_X(24); Y.su = mf_X(25); kdec.xsu = mf_X(26); km.aa = 
mf_X(27); KS.aa = mf_X(28); Y.aa = mf_X(29); kdec.xaa = mf_X(30); 
km.fa = mf_X(31); KS.fa = mf_X(32); Y.fa = mf_X(33); kdec.xfa = mf_X(34); KI.h2_fa = mf_X(35); km.c4 = mf_X(36); KS.c4 = 
mf_X(37); Y.c4 = mf_X(38); kdec.xc4 = mf_X(39); KI.h2_c4 = mf_X(40); 
km.pro = mf_X(41); KS.pro = mf_X(42); Y.pro = mf_X(43); kdec.xpro = mf_X(44); KI.h2_pro = mf_X(45); km.ac = mf_X(46); 
KS.ac = mf_X(47); Y.ac = mf_X(48); kdec.xac = mf_X(49); KI.nh3_ac = mf_X(50); 
I_pH_ac_ul = mf_X(51); I_pH_ac_ll = mf_X(52); km.h2 = mf_X(53); KS.h2 = mf_X(54); Y.h2 = mf_X(55); kdec.xh2 = mf_X(56); 
I_pH_h2_ul = mf_X(57); I_pH_h2_ll = mf_X(58); 
 
MC_data = zeros(1,33); 
disp(strcat(["Running Mod Fit ",string(lamda)])) 
S_h_ion = 0.00000001;                                                          //initial S_h_ion guess 
exec('ADM1.sce',-1);                                                            //Run ADM1 model 
disp("OK") 
sim_data = MC_data(2:size(MC_data,1),:); 
sim_data_sel0 = 
[(sim_data(:,4)+sim_data(:,5)+sim_data(:,6)+sim_data(:,7)),sim_data(:,11),(sim_data(:,13)+sim_data(:,14)+sim_data(:,15)+sim_
data(:,16)+sim_data(:,17)+sim_data(:,18)+sim_data(:,19)+sim_data(:,20)+sim_data(:,21)+sim_data(:,22)+sim_data(:,23)),sim_d
ata(:,30),sim_data(:,32),sim_data(:,33)];                               //arrange matrix to [VFA;S_IN;VSS;pH;q_ch4;q_co2] 
m_data_sel0 = [VFA_m,S_IN_m,VSS_m,pH_m,q_ch4_m,q_co2_m]; 
m_data_sel0 = m_data_sel0(2:size(m_data_sel0,1)-1,:); 
 
              //Convert to Latent Var. 
 
sim_data_sel = zeros(1,output_no * sim_dur); 
m_data_sel = zeros(1,output_no * sim_dur); 
col_count = 1; 
 
for j = 1 : sim_dur 
    sim_data_sel(1,col_count:j*output_no) = sim_data_sel0(j,:); 
    m_data_sel(1,col_count:j*output_no) = m_data_sel0(j,:); 
    col_count = col_count + output_no; 
end 
 
Y_sim = 2*((sim_data_sel - Y_min) ./ (Y_max - Y_min)) - 1; 
Y_m = 2*((m_data_sel - Y_min) ./ (Y_max - Y_min)) - 1; 
 
U_sim_i = zeros(sim_dur,no_LV); 
U_m_i = zeros(sim_dur,no_LV); 
U_diff_i = zeros(sim_dur,no_LV); 
for k = 1 : no_LV 
    for p = 1 : size(Y_sim,2) 
        U_sim_i(p,k) = Y_sim(1,p) * Q_pls(p,k); 
        U_m_i(p,k) = Y_m(1,p) * Q_pls(p,k); 
        U_diff_i(p,k) = (U_sim_i(p,k) - U_m_i(p,k))^2; 
    end 
end 
 
U_diff = sum(U_diff_i); 
 
output_s = sim_data_sel0; 
output_m = m_data_sel0; 
 
opt_lsqr0 = zeros(size(output_s,1),size(output_s,2)); 
 
for j = 1 : size(output_s,2) 
    for i = 1 : size(output_s,1) 
        opt_lsqr0(i,j) = (output_s(i,j) - output_m(i,j))^2; 
    end 
end 
 
opt_lsqr = sqrt(sum(opt_lsqr0,'r')/sim_dur); 
 
disp(strcat(["U_diff = ",string(U_diff)])) 
 
mf_X_data($+1,:) = mf_X; 
U_diff_data($+1,:) = U_diff; 
lamda_data($+1,:) = lamda; 
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exec('Plot_Mod_Fit.sce',-1); 
 
endfunction 
 
exec('Parameters.sce',-1) 
mf_X_0i = 
[f.si_xc,f.xi_xc,f.ch_xc,f.pr_xc,f.li_xc,f.fa_li,f.h2_su,f.bu_su,f.pro_su,f.ac_su,f.h2_aa,f.va_aa,f.bu_aa,f.pro_aa,f.ac_aa,kdis,khyd.c
h,khyd.pr,khyd.li,KS.IN,I_pH_ul,I_pH_ll,km.su,KS.su,Y.su,kdec.xsu,km.aa,KS.aa,Y.aa,kdec.xaa,km.fa,KS.fa,Y.fa,kdec.xfa,KI.h2
_fa,km.c4,KS.c4,Y.c4,kdec.xc4,KI.h2_c4,km.pro,KS.pro,Y.pro,kdec.xpro,KI.h2_pro,km.ac,KS.ac,Y.ac,kdec.xac,KI.nh3_ac,I_pH_
ac_ul,I_pH_ac_ll,km.h2,KS.h2,Y.h2,kdec.xh2,I_pH_h2_ul,I_pH_h2_ll]; 
 
mf_X_data = zeros(1,size(mf_X_0i,2)); 
U_diff_data = zeros(1,no_LV); 
lamda_data = zeros(1,no_LV); 
 
[fopt,xopt] = leastsq(list(Mod_Opt),lamda0,"ar",100,25,0.1,0.01,lamda0); 
 
fprintfMat('Mod_Fit_X.xls',mf_X_data); 
fprintfMat('Mod_Fit_U_diff.xls',U_diff_data); 
fprintfMat('Mod_Fit_lamda.xls',lamda_data); 
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//================================================================================================ 
//ADM1 MODEL  
//IWA TASK GROUP, SCIENTIFIC AND TECHNICAL REPORT NO.13 
//File: Cross_Validate.sce 
//================================================================================================ 
 
f.si_xc = CV_Par(1); f.xi_xc = CV_Par(2); f.ch_xc = CV_Par(3); f.pr_xc = CV_Par(4); f.li_xc = CV_Par(5); f.fa_li = CV_Par(6); 
f.h2_su = CV_Par(7); f.bu_su = CV_Par(8); f.pro_su = CV_Par(9); f.ac_su = CV_Par(10); 
f.h2_aa = CV_Par(11); f.va_aa = CV_Par(12); f.bu_aa = CV_Par(13); f.pro_aa = CV_Par(14); f.ac_aa = CV_Par(15); kdis = 
CV_Par(16); khyd.ch = CV_Par(17); khyd.pr = CV_Par(18); khyd.li = CV_Par(19); KS.IN = CV_Par(20); 
I_pH_ul = CV_Par(21); I_pH_ll = CV_Par(22); km.su = CV_Par(23); KS.su = CV_Par(24); Y.su = CV_Par(25); kdec.xsu = 
CV_Par(26); km.aa = CV_Par(27); KS.aa = CV_Par(28); Y.aa = CV_Par(29); kdec.xaa = CV_Par(30); 
km.fa = CV_Par(31); KS.fa = CV_Par(32); Y.fa = CV_Par(33); kdec.xfa = CV_Par(34); KI.h2_fa = CV_Par(35); km.c4 = 
CV_Par(36); KS.c4 = CV_Par(37); Y.c4 = CV_Par(38); kdec.xc4 = CV_Par(39); KI.h2_c4 = CV_Par(40); 
km.pro = CV_Par(41); KS.pro = CV_Par(42); Y.pro = CV_Par(43); kdec.xpro = CV_Par(44); KI.h2_pro = CV_Par(45); km.ac = 
CV_Par(46); KS.ac = CV_Par(47); Y.ac = CV_Par(48); kdec.xac = CV_Par(49); KI.nh3_ac = CV_Par(50); 
I_pH_ac_ul = CV_Par(51); I_pH_ac_ll = CV_Par(52); km.h2 = CV_Par(53); KS.h2 = CV_Par(54); Y.h2 = CV_Par(55); kdec.xh2 
= CV_Par(56); I_pH_h2_ul = CV_Par(57); I_pH_h2_ll = CV_Par(58); 
 
sim_dur0 = sim_dur; 
sim_dur = sim_dur_CV; 
t_data = t_data_cv; 
inf_data = inf_data_cv; 
Q_in = Q_in_cv; 
Q_was = Q_was_cv; 
T_data = T_data_cv; 
q_ch4_m = q_ch4_m_cv; 
q_co2_m = q_co2_m_cv; 
pH_m = pH_m_cv; 
S_IN_m = S_IN_m_cv; 
VFA_m = VFA_m_cv; 
VSS_m = VSS_m_cv; 
C_was = C_was_cv; 
 
sim_mode = "cross validate"; 
MC_data = zeros(1,33); 
VFA_data = zeros(1,1); 
VSS_data = zeros(1,1); 
 
exec('ADM1.sce',-1);                                                           //Run ADM1 model 
 
output_s = [VFA_s DSV(11,:)' VSS_s pH(2:length(pH)) q_ch4(2:length(q_ch4)) q_co2(2:length(q_co2))]; 
output_m = [VFA_m S_IN_m VSS_m pH_m q_ch4_m q_co2_m]; 
 
CV_lsqr0 = zeros(size(output_s,1),size(output_s,2)); 
 
for j = 1 : size(output_s,2) 
    for i = 1 : size(output_s,1) 
        CV_lsqr0(i,j) = (output_s(i,j) - output_m(i,j))^2; 
    end 
end 
 
CV_lsqr = sqrt(sum(CV_lsqr0,'r')/sim_dur_CV); 
//CV_lsqr = sum(CV_lsqr0,'r'); 
 
sim_dur = sim_dur0;                                                         //days to simulate 
 
exec('Plot_Sens.sce',-1);                                                   //plot results in red lines 
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//================================================================================================ 
//ADM1 MODEL  
//IWA TASK GROUP, SCIENTIFIC AND TECHNICAL REPORT NO.13 
//File: Plot_Sens.sce 
//================================================================================================ 
 
//Graphs Plotting 
//================ 
 
if sim_mode == "single" then 
 
scf(1); 
//clf(1); 
fig=get("current_figure")  
fig.figure_position 
fig.figure_size=[1936,1056] 
subplot(231) 
plot(t,DSV(1,:),'r-') 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('S_Su') 
subplot(232) 
plot(t,DSV(2,:),'r-') 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('S_aa') 
subplot(233) 
plot(t,DSV(3,:),'r-') 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('S_fa') 
subplot(234) 
plot(t,DSV(4,:),'r-') 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('S_va') 
subplot(235) 
plot(t,DSV(5,:),'r-') 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('S_bu') 
subplot(236) 
plot(t,DSV(6,:),'r-') 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('S_pro') 
 
scf(2); 
//clf(2); 
fig=get("current_figure")  
fig.figure_position 
fig.figure_size=[1936,1056] 
subplot(231) 
plot(t,DSV(7,:),'r-') 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('S_ac') 
subplot(232) 
plot(t,DSV(8,:),'r-') 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('S_h2') 
subplot(233) 
plot(t,DSV(9,:),'r-') 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('S_ch4') 
subplot(234) 
plot(t,DSV(10,:),'r-') 
xlabel("Days");  
ylabel(["Concentration";"(kmoleC.m-3)"]);  
title('S_IC') 
subplot(235) 
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plot(t,DSV(11,:),'r-') 
xlabel("Days");  
ylabel(["Concentration";"(kmoleN.m-3)"]);  
title('S_IN') 
subplot(236) 
plot(t,DSV(12,:),'r-') 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('S_I') 
 
scf(3); 
//clf(3); 
fig=get("current_figure")  
fig.figure_position 
fig.figure_size=[1936,1056] 
subplot(231) 
plot(t,DSV(13,:),'r-') 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('X_c') 
subplot(232) 
plot(t,DSV(14,:),'r-') 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('X_ch') 
subplot(233) 
plot(t,DSV(15,:),'r-') 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('X_pr') 
subplot(234) 
plot(t,DSV(16,:),'r-') 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('X_li') 
subplot(235) 
plot(t,DSV(17,:),'r-') 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('X_su') 
subplot(236) 
plot(t,DSV(18,:),'r-') 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('X_aa') 
 
scf(4); 
//clf(4); 
fig=get("current_figure")  
fig.figure_position 
fig.figure_size=[1936,1056] 
subplot(231) 
plot(t,DSV(19,:),'r-') 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('X_fa') 
subplot(232) 
plot(t,DSV(20,:),'r-') 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('X_c4') 
subplot(233) 
plot(t,DSV(21,:),'r-') 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('X_pro') 
subplot(234) 
plot(t,DSV(22,:),'r-') 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('X_ac') 
subplot(235) 
plot(t,DSV(23,:),'r-') 
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xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('X_h2') 
subplot(236) 
plot(t,DSV(24,:),'r-') 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('X_I') 
 
scf(5); 
//clf(5); 
fig=get("current_figure")  
fig.figure_position 
fig.figure_size=[1936,1056] 
subplot(221) 
plot(t,pH(2:length(pH))','r-') 
xlabel("Days");  
ylabel(["pH"]);  
title('pH') 
subplot(222) 
plot(t,q_h2(2:length(q_h2))','r-') 
xlabel("Days");  
ylabel(["Flowrate";"(m3.day-1)"]);  
title('q_h2') 
subplot(223) 
plot(t,q_ch4(2:length(q_ch4))','r-') 
xlabel("Days");  
ylabel(["Flowrate";"(m3.day-1)"]);  
title('q_ch4') 
subplot(224) 
plot(t,q_co2(2:length(q_co2))','r-') 
xlabel("Days");  
ylabel(["Flowrate";"(m3.day-1)"]);  
title('q_co2') 
 
scf(6); 
//clf(6); 
fig=get("current_figure")  
fig.figure_position 
fig.figure_size=[1936,1056] 
subplot(231) 
plot(t,VFA_s(1:length(VFA_s))','r-') 
plot(t,VFA_m(2:length(VFA_m))','g--') 
xlabel("Days");  
ylabel(["VFA";"(kgCOD.m-3)"]);  
title('VFA') 
subplot(232) 
plot(t,DSV(11,:),'r-') 
plot(t,S_IN_m(2:length(S_IN_m))','g--') 
xlabel("Days");  
ylabel(["Concentration";"(kgmoleN.m-3)"]);  
title('S_IN') 
subplot(233) 
plot(t,VSS_s(1:length(VSS_s))','r-') 
plot(t,VSS_m(2:length(VSS_m))','g--') 
xlabel("Days");  
ylabel(["VSS";"(kgCOD.m-3)"]); 
title('VSS') 
subplot(234) 
plot(t,pH(2:length(pH))','r-') 
plot(t,pH_m(2:length(pH_m))','g--') 
xlabel("Days");  
ylabel(["pH"]);  
title('pH') 
subplot(235) 
plot(t,q_ch4(2:length(q_ch4))','r-') 
plot(t,q_ch4_m(2:length(q_ch4_m))','g--') 
xlabel("Days");  
ylabel(["Flowrate";"(m3.day-1)"]);  
title('q_ch4') 
subplot(236) 
plot(t,q_co2(2:length(q_co2))','r-') 
plot(t,q_co2_m(2:length(q_co2_m))','g--') 
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xlabel("Days");  
ylabel(["Flowrate";"(m3.day-1)"]);  
title('q_co2') 
 
end 
 
if sim_mode == "monte-carlo" then 
 
scf(1); 
//clf(1); 
fig=get("current_figure")  
fig.figure_position 
fig.figure_size=[1936,1056] 
subplot(231) 
plot(t,DSV(1,:)) 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('S_Su') 
subplot(232) 
plot(t,DSV(2,:)) 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('S_aa') 
subplot(233) 
plot(t,DSV(3,:)) 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('S_fa') 
subplot(234) 
plot(t,DSV(4,:)) 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('S_va') 
subplot(235) 
plot(t,DSV(5,:)) 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('S_bu') 
subplot(236) 
plot(t,DSV(6,:)) 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('S_pro') 
 
scf(2); 
//clf(2); 
fig=get("current_figure")  
fig.figure_position 
fig.figure_size=[1936,1056] 
subplot(231) 
plot(t,DSV(7,:)) 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('S_ac') 
subplot(232) 
plot(t,DSV(8,:)) 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('S_h2') 
subplot(233) 
plot(t,DSV(9,:)) 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('S_ch4') 
subplot(234) 
plot(t,DSV(10,:)) 
xlabel("Days");  
ylabel(["Concentration";"(kmoleC.m-3)"]);  
title('S_IC') 
subplot(235) 
plot(t,DSV(11,:)) 
xlabel("Days");  
ylabel(["Concentration";"(kmoleN.m-3)"]);  
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title('S_IN') 
subplot(236) 
plot(t,DSV(12,:)) 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('S_I') 
 
scf(3); 
//clf(3); 
fig=get("current_figure")  
fig.figure_position 
fig.figure_size=[1936,1056] 
subplot(231) 
plot(t,DSV(13,:)) 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('X_c') 
subplot(232) 
plot(t,DSV(14,:)) 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('X_ch') 
subplot(233) 
plot(t,DSV(15,:)) 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('X_pr') 
subplot(234) 
plot(t,DSV(16,:)) 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('X_li') 
subplot(235) 
plot(t,DSV(17,:)) 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('X_su') 
subplot(236) 
plot(t,DSV(18,:)) 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('X_aa') 
 
scf(4); 
//clf(4); 
fig=get("current_figure")  
fig.figure_position 
fig.figure_size=[1936,1056] 
subplot(231) 
plot(t,DSV(19,:)) 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('X_fa') 
subplot(232) 
plot(t,DSV(20,:)) 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('X_c4') 
subplot(233) 
plot(t,DSV(21,:)) 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('X_pro') 
subplot(234) 
plot(t,DSV(22,:)) 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('X_ac') 
subplot(235) 
plot(t,DSV(23,:)) 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('X_h2') 
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subplot(236) 
plot(t,DSV(24,:)) 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('X_I') 
 
scf(5); 
//clf(5); 
fig=get("current_figure")  
fig.figure_position 
fig.figure_size=[1936,1056] 
subplot(221) 
plot(t,DSV(30,:)) 
xlabel("Days");  
ylabel(["pH"]);  
title('pH') 
subplot(222) 
plot(t,DSV(31,:)) 
xlabel("Days");  
ylabel(["Flowrate";"(m3.day-1)"]);  
title('q_h2') 
subplot(223) 
plot(t,DSV(32,:)) 
xlabel("Days");  
ylabel(["Flowrate";"(m3.day-1)"]);  
title('q_ch4') 
subplot(224) 
plot(t,DSV(33,:)) 
xlabel("Days");  
ylabel(["Flowrate";"(m3.day-1)"]);  
title('q_co2') 
 
scf(6); 
//clf(6); 
fig=get("current_figure")  
fig.figure_position 
fig.figure_size=[1936,1056] 
subplot(231) 
plot(t,VFA_s(2:length(VFA_s))') 
xlabel("Days");  
ylabel(["VFA";"(kgCOD.m-3)"]);  
title('VFA') 
subplot(232) 
plot(t,DSV(11,:)) 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('S_IN') 
subplot(233) 
plot(t,VSS_s(2:length(VSS_s))') 
xlabel("Days");  
ylabel(["VSS";"(kgCOD.m-3)"]); 
title('VSS') 
subplot(234) 
plot(t,DSV(30,:)) 
xlabel("Days");  
ylabel(["pH"]);  
title('pH') 
subplot(235) 
plot(t,DSV(32,:)) 
xlabel("Days");  
ylabel(["Flowrate";"(m3.day-1)"]);  
title('q_ch4') 
subplot(236) 
plot(t,DSV(33,:)) 
xlabel("Days");  
ylabel(["Flowrate";"(m3.day-1)"]);  
title('q_co2') 
 
end 
 
if sim_mode == "cross validate" then 
 
scf(6); 
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//clf(6); 
fig=get("current_figure")  
fig.figure_position 
fig.figure_size=[1936,1056] 
 
subplot(231) 
plot(t(1:sim_dur),VFA_s(1:sim_dur)','b-') 
plot(t(sim_dur+1:sim_dur_CV+1),VFA_s(sim_dur+1:length(VFA_s))','r-') 
plot(t,VFA_m(2:sim_dur_CV+2)','g--') 
xlabel("Days");  
ylabel(["VFA";"(kgCOD.m-3)"]);  
title(["VFA";strcat(["RMSE = ",string(CV_lsqr(1))])]); 
subplot(232) 
plot(t(1:sim_dur),DSV(11,1:sim_dur),'b-') 
plot(t(sim_dur+1:sim_dur_CV+1),DSV(11,sim_dur+1:size(DSV,2)),'r-') 
plot(t,S_IN_m(2:sim_dur_CV+2)','g--') 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title(['S_IN';strcat(["RMSE = ",string(CV_lsqr(2))])]) 
subplot(233) 
plot(t(1:sim_dur),VSS_s(1:sim_dur)','b-') 
plot(t(sim_dur+1:sim_dur_CV+1),VSS_s(sim_dur+1:length(VSS_s))','r-') 
plot(t,VSS_m(2:sim_dur_CV+2)','g--') 
xlabel("Days");  
ylabel(["VSS";"(kmoleN.m-3)"]); 
title(['VSS';strcat(["RMSE = ",string(CV_lsqr(3))])]) 
subplot(234) 
plot(t(1:sim_dur),pH(2:sim_dur+1)','b-') 
plot(t(sim_dur+1:sim_dur_CV+1),pH(sim_dur+2:length(pH))','r-') 
plot(t,pH_m(2:sim_dur_CV+2)','g--') 
xlabel("Days");  
ylabel(["pH"]);  
title(['pH';strcat(["RMSE = ",string(CV_lsqr(4))])]) 
subplot(235) 
plot(t(1:sim_dur),q_ch4(2:sim_dur+1)','b-') 
plot(t(sim_dur+1:sim_dur_CV+1),q_ch4(sim_dur+2:length(q_ch4))','r-') 
plot(t,q_ch4_m(2:sim_dur_CV+2)','g--') 
xlabel("Days");  
ylabel(["Flowrate";"(m3.day-1)"]);  
title(['q_ch4';strcat(["RMSE = ",string(CV_lsqr(5))])]) 
subplot(236) 
plot(t(1:sim_dur),q_co2(2:sim_dur+1)','b-') 
plot(t(sim_dur+1:sim_dur_CV+1),q_co2(sim_dur+2:length(q_co2))','r-') 
plot(t,q_co2_m(2:sim_dur_CV+2)','g--') 
xlabel("Days");  
ylabel(["Flowrate";"(m3.day-1)"]);  
title(['q_co2';strcat(["RMSE = ",string(CV_lsqr(6))])]) 
 
end 
 
if sim_mode == "pls" then 
 
scf(6); 
//clf(6); 
fig=get("current_figure")  
fig.figure_position 
fig.figure_size=[1936,1056] 
subplot(231) 
plot(t,DSV_temp(:,1)') 
xlabel("Days");  
ylabel(["VFA";"(kgCOD.m-3)"]);  
title('VFA') 
subplot(232) 
plot(t,DSV_temp(:,2)') 
xlabel("Days");  
ylabel(["Concentration";"(kgCOD.m-3)"]);  
title('S_IN') 
subplot(233) 
plot(t,DSV_temp(:,3)') 
xlabel("Days");  
ylabel(["VSS";"(kgCOD.m-3)"]); 
title('VSS') 
subplot(234) 
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plot(t,DSV_temp(:,4)') 
xlabel("Days");  
ylabel(["pH"]);  
title('pH') 
subplot(235) 
plot(t,DSV_temp(:,5)') 
xlabel("Days");  
ylabel(["Flowrate";"(m3.day-1)"]);  
title('q_ch4') 
subplot(236) 
plot(t,DSV_temp(:,6)') 
xlabel("Days");  
ylabel(["Flowrate";"(m3.day-1)"]);  
title('q_co2') 
 
end 
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