Insects, temperature and the metabolic theory of ecology

Ulrike Marianne Irlich

Thesis presented in partial fulfillment of the requirements for the degree of Master of Science (Zoology) at the University of Stellenbosch

Supervisor: Prof S. L. Chown

March 2007

DECLARATION

I, the undersigned, hereby declare that the work contained in this thesis is my own original work and that I have not previously in its entirety or in part submitted it at any university for a degree.

Date

Signature

22/02/2007

ABSTRACT

Metabolism is a fundamental characteristic of all living organisms. That metabolic rate varies substantially between species and environments has long been recognized and the significance of this variance has gained renewed interest with the introduction of the metabolic theory of ecology (MTE). The theory states that variation in metabolism accounts for variation in a large number of organismal traits, such as development and speciation rates and a range of population parameters. This quantitative theory is based on the assumption that metabolic rate varies principally as a consequence of body mass and temperature. Thus the MTE can be divided into two main components, the mass component and the temperature component, both of which are heavily debated. The empirical values and theoretical explanations underlying the mass scaling of metabolic rate remain a subject of contention. To date, the temperature component, the Universal Temperature Dependence (UTD) of metabolism, has received far less attention than the mass component. In this study the effect of temperature on insect metabolic rate and development rate in the context of the MTE was investigated. The four main predictions of the MTE were examined: (i) the mean activation energy should not be significantly different from the mean value of 0.65 eV, with most values lying between 0.6 and 0.7 eV; (ii) little phylogenetic signal should be evident in the slopes of the rate-temperature relationships; (iii) slopes of the rate-temperature relationships should show minimal environmental variation; (iv) intra- and interspecific rate-temperature relationships should not differ. This study clearly illustrated that the first step in any assessment of the MTE must be to understand the artefacts that might be associated with the data collection, specifically the methods used to measure metabolic rates. Although the intraspecific activation energies were close to the predicted value of 0.65 eV, only 21-31% of all values fell within the predicted range. Consistent variation about the rate-temperature relationships was found in the form of a weak phylogenetic signal, explaining a small proportion of the variation. A greater proportion of variance was however explained by a set of environmental variables, specifically geographic locality and environmental temperature. In the case of development rate the slopes of the interspecific relationship were typically lower than the mean slopes of the intraspecific relationships, while for metabolic rate this pattern was only apparent in some cases, depending on the method used to calculate the interspecific slopes. Furthermore, this study showed that the environmental temperature at which the insect was thought to live its adult life, or its entire development, plays a pivotal role in shaping the between species rate-temperature relationships. This study showed that the hard version of the UTD of metabolism does not appear to be supported by the data for insect metabolic and development rates, and thus the MTE is rejected. However, some support was obtained for the soft UTD as well as the evolutionary trade-off hypothesis.

OPSOMMING

Metabolisme is 'n basiese eienskap van alle lewende organismes. Dit is lankal bekend dat metaboliese tempo substantieel varieer tussen spesies en omgewings en die belangrikheid van hierdie verskil het nuutgevonde belangstelling met die inleiding van die Metaboliese Teorie van Ekologie (MTE) tot gevolg gehad. Die teorie verklaar dat variasie in metabolisme gee aanleiding tot variasie in 'n groot getal organismiese kenmerke, soos die tempo van ontwikkeling en soortvorming en 'n verskeidenheid van populasie parameters. Hierdie kwantitatiewe teorie mik op 'n verduideliking van hoe metaboliese tempo op grondvlak varieer as 'n gevolg van liggaamsmassa en temperatuur. Dus kan die MTE verdeel word in twee hoof komponente, die massa en die temperatuur komponent waarvan albei ernstig gedebateer word. Die empiriese waardes en teoretiese verduidelikings, wat die massa komponent onderlig, bly onderworpe aan bewering. Die temperatuur komponent, die Universele Temperatuur Afhanklikheid (UTA) van metabolisme het tot op datum veel minder aandag geniet as die massa komponent. In hierdie studie is die effek van temperatuur op insek metaboliese tempo en ontwikkelings tempo in die konteks van die MTE bestudeer. Die vier hoof voorspellings van die MTE was ondersoek: (i) die gemiddelde aktiverings energie behoort nie kenmerkend te verskil van die gemiddelde waarde van 0.65 eV met meeste waardes tussen 0.6 an 0.7 eV; (ii) min filogenetiese seine mag sigbaar wees in die hellings van die temperatuur-tempo verhoudings; (iii) die hellings van die temperatuur-tempo verhoudings mag minimale variasie wys as gevolg van omgewings veranderlikkes; (iv) intraen interspesiefieke temperatuur-tempo verhoudings behoort nie te verskil nie. Hierdie studie illustreer duidelik dat die eerste stap in enige bepaling van die MTE is die begrip van die artefakte wat met die data versameling geassosieer mag word, spesifiek die metodes wat gebruik is om metaboliese tempo te bereken. Alhoewel die intraspesifieke aktiverings energieë na aan die voorspelde waarde van 0.65 eV was, het slegs 21-31% van al die waardes binne die voorspelde reeks geval. Konstante variasie oor die temperatuur-tempo verhoudings was gevind in die vorm van swak filogenetiese seine wat n klein deel van die variasie verduidelik. 'n Groot deel van die variasie was verduidelik deur n stel omgewings veranderlikes, spesifiek geografiese lokasie en omgewings temperatuur. In die geval van ontwikkelings tempo was die hellings van die interspesifieke verhoudings tipies laer as die gemiddelde hellings van die intraspesifieke verhoudings, terwyl ten opsigte van metaboliese tempo hierdie patroon slegs in sekere gevalle bekend was, afhanklik van die metode wat gebruik is om die interspesifieke hellings te bereken. Verder het hierdie studie gewys dat die omgewings temperatuur waarby die insek skynbaar sy volwasse lewe uitleef of dat sy volkome ontwikkeling 'n wesenlikke rol speel in die vorming tussen spesies se temperatuurtempo verhoudings. Hierdie studie het verder gewys dat die harde weergawe van die UTA van metabolisme blyk nie ondersteun te wees deur die data vir insek metaboliese en ontwikkelings tempos en dus word die MTE verwerp. Alhoewel 'n bietjie ondersteuning verwerf is vir die sagte UTA sowel as die evolusionêre kompromis hipotese.

ACKNOWLEDGEMENTS

It is a great pleasure to thank the all the people that have made this thesis possible.

First of all I would like to thank my supervisor, Steven Chown, for his guidance, constructive criticism and advice. His patience and motivation allowed me to reach beyond what I ever believed possible.

I am indebted to my student colleagues. The ex-SPACE group created an environment, which made coming to work a pleasure, even during the most difficult times. Especially I would like to thank Elrike, Jeanne, Antoinette, Ruan, CJ, Jacques and John for their support, be it statistical, theoretical or moral, I cannot thank you enough. I would also like to thank the staff and students of the CIB for their support.

For technical assistance I would like to thank Kari, Cristiane and Marlene.

Lastly, and most importantly, I wish to thank my parents, Mona and Norbert, for their support and for believing in me. Although they never understood my work, they always listened and tried to understand. Without them I would have never made it this far. Very importantly, I would like to thank my grandmother, Inge, for the best holidays during my studies. I would also like to thank the Parkers, you have been the light at the end of the tunnel for me.

I would also like to thank Nico. I cannot thank you enough for your never ending support.

For financial support I would like to thank the National Research Foundation (NRF) and the Harry Crossley Foundation.

This work was supported financially by a grant to Steven Chown and Sue Jackson from the National Research Foundation (NRF).

THANK YOU!!!

TABLE OF CONTENTS

and a stranger

Non-weighter the second s

The second se

į

Declaration			ii
Abstract			iii
Opsomming			v
Acknowledgeme	ents		vii
Table of Contents			viii
Chapter 1:	General Introduction		1
	References		20
Chapter 2:	Insect rate-temperatu	ire relationships: does the temperature	
	component of	the metabolic theory of ecology apply?	31
	Introduction		32
	Methods		36
	Results		45
	Discussion		63
	References		69
Chapter 3:	General Conclusion		80
	References		85
		wature velotionships	
Appendix 1a:	Metabolic rate-temperature relationships		88
	of grouped at	limais	01
	References		71
Appendix 1b:	Metabolic rate-temperature relationships		0.2
	of insects mea	asured individually	92
	References		98
Appendix 2a:	Development rate-temperature relationships		
	for total egg-adult development		101
	References		129
Appendix 2b:	Development rate-temperature relationships		
	for various d	evelopmental stages	161
	References		175

Stellenbosch University https://scholar.sun.ac.za

Chapter 1

General Introduction

۰.

.

Explaining global variation in biodiversity has been a major challenge for decades (Gaston, 2000; Ricklefs, 2004). Several large-scale patterns have been identified, of which the latitudinal gradient in species richness is probably the oldest and most well known (Gaston and Blackburn, 2000; Willig et al., 2003). However, the processes underlying these patterns remain controversial (Rohde, 1992; Gaston, 2000; Allen et al., 2003; Storch, 2003; Currie et al., 2004). Many ecological mechanisms have been proposed aiming at explaining large-scale patterns in species richness, which can be grouped into three main categories: null models, historical factors and ecological processes (Willig et al., 2003; Chown et al., 2004; Pimm and Brown, 2004).

The most recent, comprehensive approach to explaining global variation in biodiversity is the metabolic theory of ecology (MTE) (Brown et al., 2004). This quantitative theory states that metabolism, being the basis of ecology, controls ecological processes at all organizational levels, thus explaining much of biodiversity (West et al., 1997; Ritchie and Olff, 1999; Allen et al., 2002, 2006; Brown and Gillooly, 2003; Brown et al., 2003). Metabolism comprises the entire network of biochemical reactions, including anabolic and catabolic reactions, carried out by living cells that alter energy and materials to produce the required products to sustain life and to maintain a variety of life structures and functions (Schmidt-Nielsen, 1984; West et al., 1999a; Gillooly et al., 2001; Brown et al., 2004; Glazier, 2005). Furthermore, metabolic rate forms a basis for many biological activities at various levels of organization, thus setting the 'pace of life' (Brown et al., 2004; Glazier, 2005).

The metabolic rate of organisms is known to be affected by several important traits, such as body size (Peters, 1983; Schmidt-Nielsen, 1984), physiological status, feeding state or dehydration (Brown et al., 2004; Chown and Nicolson, 2004), and the activity state of the organisms (Schmidt-Nielsen, 1984; Cossins and Bowler, 1987; Spicer and Gaston, 1999). Probably the most important abiotic factor influencing metabolic rate in the inactive state over

2

short time scales is temperature (Keister and Buck, 1964; Peters, 1983; Cossins and Bowler, 1987; Clarke and Johnston, 1999; Brown et al., 2004). Because the effects of temperature and body mass on biological processes, such as metabolic rate, are multiplicative (Gillooly et al., 2001; Brown et al., 2003), Gillooly et al. (2001) linked the metabolic rate (Y) of an organism to its body mass (M) and temperature (T), to construct the fundamental equation of the MTE:

$$Y = b_0 M^b e^{-\mathcal{E}/kT} \tag{1}$$

The first part of the equation describes the mass component of the MTE, where b_0 is the species-specific normalization constant which is fitted empirically (Brown et al., 2004). The universal scaling exponent, *b*, is said to be indistinguishable from $\frac{3}{4}$, as explained by West et al. (1997). The second part of the equation describes the temperature component of the MTE, where *T* is the absolute temperature in degrees Kelvin, *E* is the mean activation energy of the respiratory complex in electron Volts (eV) and *k* is the Boltzmann's constant (8.617×10⁻⁵ eV/K). The empirically estimated activation energies for different organisms should all be similar, normally within a range of 0.6 – 0.7 eV (Gillooly et al., 2001; Brown et al., 2004). This component of the MTE was termed the 'Universal Temperature Dependence' (UTD) of metabolic rate (Gillooly et al., 2001).

The body size component of the fundamental equation

Organismal body size is an important variable since it affects the rates of all biological processes and structures at all hierarchical organizational levels (Peters, 1983; Schmidt-Nielsen, 1984; West et al., 1997; Brown et al., 2000, 2003). Moreover, many ecologically relevant physiological traits vary with organismal size (Peters, 1983; Schmidt-Nielsen, 1984). The relationship between metabolic rate and body size has long been recognized and is one of the most intriguing problems in ecology and physiology (McMahon and Bonner, 1983;

Schmidt-Nielsen, 1984). Understanding how this relationship is formed is likely to have a substantial influence on all levels of biology (Suarez et al., 2004; Whitfield, 2004). The size of any living organism affects metabolic rate by setting the rate at which resources can be taken up and distributed. Body size also enforces geometric constraints on exchange surfaces as well as distribution networks (Brown et al., 2003). The relationship between mass and metabolic rate is typically characterized by an allometric equation:

$$Y = b_0 M^b \tag{2}$$

where Y is metabolic rate, b_0 the species specific normalization constant, M is body mass and b is the scaling exponent (Kleiber, 1932; West et al., 1997; Hochachka et al., 2003). By making use of logarithms, this equation becomes:

$$\log Y = \log b_0 + b \log M \tag{3}$$

revealing a linear relationship with a slope of b and an intercept of b_0 (Schmidt-Nielsen, 1984; Brown et al., 2000). However, the exact value of the scaling exponent and the nature of the relationship between metabolic rate and body mass remain controversial.

In 1883 Rubner first proposed that the scaling exponent should have a value of ²/₃. This relationship was suggested to be a result of simple surface to volume ratios and heat dissipation of mammals, a result of the 'surface law' (Keister and Buck, 1964; Peters, 1983; McMahon and Bonner, 1983; Schmidt-Nielsen, 1984; McNab, 2002; Chown and Nicolson, 2004). Years later, in his study on mammals and birds, Kleiber (1932) found that the relationship between basal metabolic rate and body mass had a slope of 0.74, a value not significantly different from ³/₄ (McMahon and Bonner, 1983; Schmidt-Nielsen, 1983; Schmidt-Nielsen, 1983; Schmidt-Nielsen, 1983; Schmidt-Nielsen, 1983; Schmidt-Nielsen, 1984). For

decades researchers have proposed a variety of explanations for the scaling relationship, but little consensus was typically achieved (Heusner, 1991; West et al., 1997; Brown et al., 2000; Dodds et al., 2001; Hochachka et al., 2003; Agutter and Wheatley, 2004; Glazier, 2005).

The model proposed by West et al. (1997), aimed at describing the origin of the quarter-power scaling relationship, states that the exact value of the scaling relationship is the result of the rate at which organisms can take up resources from the environment and the rate at which these are distributed through the branching networks supplying various parts of the organism (West et al., 1997, 1999a, b, 2000, 2002). This is suggested to be applicable to all hierarchical levels. Examples of these branching hierarchical transport networks and internal exchange surfaces are the respiratory and circulatory systems of mammals and birds, insect tracheal systems, the vascular systems of plants and intracellular transport systems (West et al., 1997, 2000; Whitfield, 2001). This quantitative model is based on three general principles: First, a space-filling, hierarchical branching system is required to supply every part of the organism with the necessary materials. Second, the terminal unit of this branching network is size-invariant. Third, the energy required to transport the materials is minimized, a result of natural selection (West et al., 1997, 2000, 2002; West and Brown, 2005). In other words metabolic rate is largely supply-limited (Suarez et al., 2004).

However, a number of problems concerning the nutrient supply network model proposed by West et al. (1997) have been raised, resulting in the model being debated vigorously (Dodds et al., 2001; Agutter and Wheatley, 2004; Glazier, 2005; Etienne et al., 2006; see also the special forum in *Ecology* and *Functional Ecology* 2004 and the special issue of *The Journal of Experimental Biology* 2005). Some of the mathematical arguments of the nutrient supply network model have been criticized and it has thus been suggested that the model is flawed (Dodds et al., 2001; Agutter and Wheatley, 2004). Kozłowski and Konarzewski (2004) also argued that several of the model's assumptions seem unrealistic. Of

the assumptions, the size-invariance of the terminal branching units is apparently not in keeping with the mathematics of the model. To obtain the scaling coefficient of 3/4, as the model predicts, this assumption has to be violated as the metabolic rate would otherwise scale isometrically with body mass. It was also noted that the model restricts the range of organismal body size, as larger animals would have blood volumes exceeding the body size (Banavar et al., 2002; Kozłowski and Konarzewski, 2004). Furthermore, the model has been criticized on the grounds of its limited range of applicability and its inability to explain the diverse array of scaling exponents so far obtained (Agutter and Wheatley, 2004; Glazier, 2005). Moreover, it has also been pointed out that some organisms lack fractal networks (Glazier, 2005) and that vascular, tracheal and cardiovascular systems do not conform to the assumptions of nutrient supply network model (Kozłowski and Konarzewski, 2004). However, West et al. (1997, 2002) argue that the model should be viewed as a "zeroth-order model", which only incorporates the most important features of the supply networks, and can be extended at later stages for more thorough analyses. Moreover, Etienne et al. (2006) took the nutrient supply network model and investigated its assumptions and the mathematics in more detail. They highlighted some problems and proposed ways to overcome them by reformulating the model, showing also that self-similarity is not required. However, the debate surrounding the nutrient supply network model is still far from being resolved (see Brown et al., 2005; Kozłowski and Konarzewski, 2005).

Besides the nutrient supply network model, several alternative models have been proposed, all aimed at explaining empirical scaling relationships. Banavar et al. (1999) proposed a single-cause model for the same scaling relationship, similar to the one proposed by West et al. (1997, 2002), stating that the scaling relationship is a result of the constraint body mass sets on the delivery of resources to the exchange sites. This model also suggests that the scaling relationship is a result of the internal, physical constraints set by the transport systems. Similarly, it is also based on the idea that the transport networks minimize the volume of transport-fluid needed but that the demand on resources is met (Banavar et al., 1999, 2002; Whitfield, 2001; Glazier, 2005). However, the delivery-constraint model is simpler, in that the supply network does not necessarily have to be fractal. Importantly, Etienne et al. (2006) showed that this is the case with the nutrient supply network model too. McMahon and Bonner (1983) proposed a different explanation for the quarter-power scaling relationship between metabolic rate and organismal size. Their elastic similarity theory states that the scaling relationship can be explained by biomechanical adaptations to gravitational forces. A multiple-cause model, rather than the above single-cause models, was proposed by Darveau et al. (2002). The allometric cascade model states that the scaling exponent is a result of the joint effects of multiple contributors that control metabolic rate.

Besides these and other models which attempt to explain why metabolic rate scales to mass³⁴ (see Glazier, 2005), several models have been developed to account for other scaling exponents, in particular the exponent of ²/₃. This is probably the most well known allometric relationship which is based on simple geometric scaling resulting in exponents being multiples of ¹/₃ (Brown et al., 2000; West et al., 1997). The basis of these exponents is said to be the result of the relationship between heat production and surface area of endotherms (Keister and Buck, 1964; Schmidt-Nielsen, 1984; Chown and Nicolson, 2004). Furthermore, this scaling relationship was suggested to be a result of the three-dimensionality of organisms (Whitfield, 2001).

An alternative explanation for the relationship between metabolic rate and body size was proposed by Kozłowski et al. (2003a, b). They based their model on the conclusion that there is no unique slope for this scaling relationship. The size optimization model proposed by Kozłowski et al. (2003a, b) is an extension of the model proposed by Kozłowski and Weiner (1997) in which they state that interspecific allometries are a by-product of selection through

7

evolutionary time, shaping intraspecific scaling relationships. The model suggests that the optimum body size would be the one at which fitness would be at its maximum, which in turn is governed by the size-dependence of mortality and production rates and determines the scaling relationship between metabolic rate and body mass (Kozłowski et al., 2003a, b). The body size optimization model is aimed at explaining the relationship between interspecific and intraspecific scaling relationships, which are said to differ as a result of differences in production and mortality rates between species (Kozłowski and Gawelczyk, 2002; Kozłowski et al., 2003a). Body size differences are generally a result of either an increase in the cell volume or the cell numbers, both of which will result in the scaling relationship between body size and size dependent traits to differ. Cell size was proposed to be determined by the genome size (Kozłowski et al., 2003b). While size increases mediated solely by cell number increases will generally result in metabolic rate scaling isometrically, i.e. b = 1, cell size mediated increases in body size will cause metabolic rate to increase less drastically resulting in a lower scaling exponent, $b = \frac{2}{3}$ (Kozłowski et al., 2003a, b). The interspecific scaling exponents are said to fall between ²/₃ and ³/₄, which is lower than the range of intraspecific slopes of 3/4 and 1 (Kozłowski et al., 2003a). For those organisms making use of both strategies to alter body size the slope of the scaling relationship will fall between $\frac{2}{3}$ and 1 (Kozłowski et al., 2003a, b). This model's predictions differ greatly from the nutrient supply network model, which predicts that the scaling exponent of metabolic rate is a constant 3/4 for both interspecific as well as intraspecific allometries (West et al., 2002). However, it has been claimed that for vertebrates the within-species scaling exponents are lower than betweenspecies exponents (Andrews and Pough, 1985; McNab, 2002).

Empirical evidence for the mass scaling exponent

The empirical value of the scaling exponent of the MTE is heavily debated, specifically, whether the mass scaling exponent is a multiple of ¹/₄ or some other value. Metabolic rate, and its scaling relation with mass, has been investigated in a range of taxa and the debate on whether metabolic rate scales to $\frac{2}{3}$ or $\frac{3}{4}$ with mass continues (Dodds et al., 2001; McNab, 2002). In a recent review Glazier (2005) stated that because many biological processes scale with mass^{$\frac{3}{4}$} (e.g. West et al., 2001; Savage et al., 2004a; Gillooly et al., 2005) should count towards the idea of having found a universal scaling law, the quarter-power scaling law. However, Glazier (2005) also highlighted some problems concerning this relationship, suggesting that the law is not universal. Some of the problems he pointed out concerned the broad range of scaling exponents obtained by some scientists (e.g. Peters, 1983; Withers, 1992), the ignorance of other scaling exponents, and ignorance of intraspecific metabolic scaling. Thus the universality of the quarter-power scaling law remains questionable. For mammals, some studies have found support for a scaling exponent of ³/₄ (Kleiber, 1932; Savage et al., 2004b), while others have found scaling exponents that differ from ³/₄ (Heusner, 1991; Lovegrove, 2000; Dodds et al., 2001; Kozłowski et al., 2003a, b; White and Seymour, 2003, 2005a, b). The deviation in scaling exponents was suggested to be a possible result of microbial fermentation in artiodactyls which results in metabolic rates being elevated (White and Seymour, 2003, 2005a). Furthermore, difference in scaling exponents were also suggested to be caused by ecological types, taxa and body mass range examined in each study (Schmidt-Nielsen, 1984; Heusner, 1991; Lovegrove, 2000; McNab, 2002) as well as a range of extrinsic and intrinsic factors (see Glazier, 2005 for details). After reanalysing data from earlier studies Dodds et al. (2001) found that for smaller mammals the scaling exponents are generally closer to ³/₃, while for larger mammals (larger than 500g) the scaling exponent is usually closer to ³/₄ (Glazier, 2005), possibly a result of differences in

UNIVERSITY OF THE CARDOSCH

geographical locations (Lovegrove, 2000). Studies on avian metabolic rate-mass scaling relationships (Kleiber, 1932; McKechnie and Wolf, 2004; McKechnie et al., 2006) have found that scaling exponents are more often closer to ²/₃ than ³/₄ (Dodds et al., 2001; Glazier, 2005). Phenotypic plasticity, specifically in the case of captive-raised birds, was found to be a major contributor to variation in metabolic rate-mass scaling relationships (McKechnie et al., 2006).

To date, the majority of studies have examined scaling relationships in mammals and birds (Glazier, 2005), but for the scaling law to be universal, it should apply to all living organisms. While most work has so far focused on endotherms, the empirical work suggests that unicells as well as ectotherms follow the same trends (Robinson et al., 1983; West et al., 2002; West and Brown, 2005). Andrews and Pough (1985) found an interspecific mass scaling exponent significantly higher than ³/₄ for reptiles. It was found that temperature as well as ecological category plays a vital role in shaping the metabolic rate-mass relationship observed in squamates. Clarke and Johnston (1999) investigated the scaling relationship in teleost fish and found a slope significantly different from the expected values. Empirical work done on arthropods suggested that the slope of the relationship between metabolic rate and body mass is neither ²/₃ nor ³/₄ (Lighton and Fielden, 1995; Lighton et al., 2001; Meehan, 2006), while another study found that mites, springtails and spiders combined have a scaling exponent of ³/₄ (Meehan, 2006). Furthermore, studies on insects also indicated that the scaling relationships differ significantly from the predicted values (Bartholomew and Casey, 1977; Lighton and Wehner, 1993; Hack, 1997; Davis et al., 1999; Duncan et al., 2002). However, one recent study on insect metabolic rate found that the scaling relationship has a slope not significantly different from ²/₃ (Niven and Scharlemann, 2005). Using a larger dataset Chown et al. (2007) found that insect metabolic rate scaled as mass³⁴, after correcting for phylogenetic non-independence, a procedure ignored by many previous studies (Clarke and Johnston,

1999; Glazier, 2005; Seymonds and Elgar, 2002). Besides animals, the 3/4-power scaling of metabolic rate and size has also been investigated and supported by some studies on plants (Enquist et al., 1998; Enquist and Niklas, 2001, 2002). Further evidence suggesting that metabolic rate does not scale to mass with an exponent of 3/4 comes form work done on intraspecific comparisons (Hulbert and Else, 2004; Glazier, 2005). However, little work has been done on intraspecific scaling relationships as a result of the narrow body size ranges in fully grown animals (Chown et al., 2007). Heusner (1991) found that the intraspecific scaling exponent for mammals was not significantly different from 2/3. For squamate reptiles, Andrews and Pough (1985) observed an intraspecific mass scaling exponent of ²/₃. However, the range of exponents included 3/4. Bokma (2004) found that in fish the intraspecific scaling exponent was significantly different from both the ²/₃ as well as the ³/₄ scaling exponents. Clarke and Johnston (1999) found similar results and also found no difference between interspecific and intraspecific scaling exponents in fish. One recent study on the intraspecific metabolic rate-mass scaling relationship for insects was conducted by Chown et al. (2007) in which they found that the slopes of the ants varied between values that were not significantly different from 3/3 to values not different from 1. In his review Glazier (2005) suggested that intraspecific exponents that deviate from 3/4 could be a result of pure chance or due to measurement errors caused by the small body mass range or small available sample sizes. He further suggested that it is likely that different mechanisms drive the interspecific scaling relationship than the intraspecific ones, thus resulting in slopes differing in between- and within-species comparisons (Glazier, 2005). Furthermore, the significance of body mass scaling is vital in understanding processes at many biological levels despite the precise value of the scaling exponent (Peters, 1983).

The temperature component of the fundamental equation

Probably the most important abiotic factor influencing metabolic rate over short time scales is temperature (Keister and Buck, 1964; Peters, 1983; Cossins and Bowler, 1987; Clarke and Johnston, 1999; Brown et al., 2004). Temperature has a marked effect on metabolic rate, similar to temperature effects on the kinetics of chemical and biochemical reactions, generally resulting in an exponential increase in metabolic rate with increasing temperature until some upper level, set by thermal tolerance, is reached (Kleiber, 1932; Robinson et al., 1983; Brown et al., 2003). By altering the rates of biochemical reactions within an organism, temperature alters the metabolic rate of the whole organism (Gillooly et al., 2001; West and Brown, 2005), specifically so for ectotherms (Clarke and Johnston, 1999; Addo-Bediako et al., 2002; Glazier, 2005; Niven and Scharlemann, 2005). The effect of temperature on metabolism is generally expressed as a temperature coefficient (Q_{10} – the change in metabolic rate with a change of 10°C) (Keister and Buck, 1964; Cossins and Bowler, 1987). However, several concerns have been raised regarding the use of Q_{10} as a parameter describing the effects of temperature (Chaui-Berlinck et al., 2002, 2004). An alternative to the Q_{10} was originally proposed by Arrhenius (1889) and extended by Gillooly et al. (2001) who suggested that the temperature dependence of metabolic rate can be explained by the Boltzmann's factor:

$$e^{-E/kT} \tag{4}$$

where T is the absolute temperature in degrees Kelvin, E is the activation energy for metabolism in electron Volts (eV) and k is Boltzmann's constant (8.617×10^{-5} eV/K). This temperature dependence term is a rediscovery of the Arrhenius equation and van't Hoff's law (Arrhenius, 1889; Chown and Nicolson, 2004). The Boltzmann factor, together with the van't

Hoff-Arrhenius relationship, explains the effect temperature has on biological processes (Brown et al., 2004). The Boltzmann's factor is a well known factor widely used in physical chemistry, but it is not widely used in macroecological studies (Brown et al., 2003). The Arrhenius plot, showing the effect of temperature on the logarithmic value of the rate of the biological process of interest, yields a straight line, the slope of which provides the Arrhenius activation energy, which is the rate limiting factor for biochemical reactions (Keister and Buck, 1964; Hochachka and Somero, 2002). Within a range of 'biologically relevant' temperatures (between $0 - 40^{\circ}$ C) (Cossins and Bowler, 1987) the activation energies for different biological processes should all be similar, normally within a range of 0.6 - 0.7 eV (Gillooly et al., 2001; Brown et al., 2004). These predicted values are similar to the range of minimal energy levels required for biochemical reactions of metabolism to take place (Gillooly et al., 2001; Hochachka and Somero, 2002; Brown et al., 2004). Gillooly et al. (2001) referred to their equation as the 'Universal Temperature Dependence' (UTD) of metabolic rate as well as other biological rates and times, suggesting that temperature is one of the major factors underlying metabolic rate variation (Gillooly et al., 2002; Brown et al., 2004; Clarke, 2004; Savage et al., 2004b).

However, the idea and assumptions of the UTD of metabolism as proposed by Gillooly et al. (2001) have been criticized as it is known that several biochemical reactions appear to remain constant at a wide range of ecologically relevant temperatures and are thus considered to be independent of environmental temperature (Hochachka and Somero, 2002; Clarke, 2003, 2004, 2006; Clarke and Fraser, 2004). Furthermore, it has been argued that ATP demand, not temperature *per se*, is the factor driving metabolic rate (Darveau et al., 2002; Hochachka and Somero, 2002; Hochachka et al., 2003). An alternative to the UTD of metabolic rate was proposed by Clarke (2003, 2004), based on the idea that the relationship between metabolic rate and temperature is a result of evolutionary optimizations. This idea

was termed the 'Evolutionary Trade-Off hypothesis' (ETO), and is based on the assumptions that metabolic rate is a result of the trade-offs between energetic requirements of a species, the temperature it experiences in its environment, and its lifestyle, not temperature *per se* as the UTD argues (Clarke, 2004, 2006). Furthermore, while the UTD suggests that the relationship between metabolic rate and temperature is the same for interspecific as well as intraspecific relationships (Brown and Sibly, 2006), the ETO states that between-species slopes of the logarithm of metabolic rate versus temperature are shallower than within-species slopes (Clarke and Fraser, 2004). Thus, Clarke (2004) suggested that two forms of the UTD hypothesis should be distinguished: the 'hard UTD' as proposed by Gillooly et al. (2001), which Clarke (2004) argues is not supported either empirically or theoretically, and the 'soft UTD' which can be thought of as a statistical description of the relationship between metabolic rate variation. However, the debate surrounding the UTD of metabolism continues (Clarke, 2006; Gillooly et al., 2006a).

Empirical evaluations of the UTD

The temperature component of the MTE has been less carefully explored than the mass scaling component. The UTD of biological rates was proposed by Gillooly et al. (2001) and subsequently tested for several taxa ranging from unicellular microbes to multicellular ectotherms, endotherms and plants. Initially, Gillooly et al. (2001, 2002) stated that the UTD predicted a wide range of activation energies (0.2 - 1.2 eV, with an average of 0.6 eV) applicable to all organisms. In subsequent work this was refined to a range of 0.6 - 0.7 eV, with an average of 0.65 eV (Brown et al., 2004; Gillooly et al., 2006a). To date, few studies have investigated the temperature component of the MTE. Although the UTD has not been confirmed yet, it has been applied in a number of studies, to either further develop the MTE or

to test the MTE and its underlying assumptions. Although the UTD was incorporated in studies to determine global biodiversity estimates (Allen et al., 2002), evolutionary rates (Gillooly et al., 2005; Allen et al., 2006), development rate (Gillooly et al., 2002) and metabolic rate (Gillooly et al., 2001; Meehan, 2006) few studies have tested the actual validity of the temperature term of the fundamental equation. The debate on whether the UTD is correct or not thus continues. Clarke (2003, 2004, 2006) pointed out a range of problems with this theory and proposed an alternative, the ETO. Meehan (2006) in his study on metabolic rate variation found that for litter and soil invertebrates the activation energy falls within the range of 0.2 and 1.2 eV, with some species having activation energies significantly different from the range of 0.6 - 0.7 eV, as predicted by Brown et al. (2004). Clarke and Johnston (1999) investigated the effect of temperature on metabolic rate of several fish species. They used three different statistical transformations to linearize the data, namely log/linear, log/log and Arrhenius models. The latter was observed to provide the best statistical description of the metabolic rate-temperature relationship in fish. Furthermore, Clarke and Johnston (1999) found some support for the ETO. To date, the MTE cannot be considered to be the unifying theory scientists have been seeking, as both the mass scaling and the temperature component of the MTE continue to be debated vigorously.

Implications of the MTE

The MTE does not only apply to metabolic rate and its variation, but can also be applied to investigate other biological processes (Brown et al., 2004). Mass-specific biological rates R, such as heart rate, developmental rate, mortality rate and rate of molecular evolution, can generally be described by:

$$R = cM^{-\prime\prime} e^{-E/kT}$$
⁽⁵⁾

15

Biological times D, such as turnover times for generations of individuals and metabolic substrates, as well as for ecosystem processes can generally be explained by the reciprocal of rates:

$$D = dM^{\prime\prime} e^{E/kT} \tag{6}$$

where M is body mass, E is the mean activation energy of the respiratory complex, k is the Boltzmann's constant, T is absolute environmental temperature, and c and d being the species specific normalization constants (Gillooly et al., 2001; Brown et al., 2003, 2004; West and Brown, 2005).

Allen et al. (2002) employed the UTD to explain biodiversity gradients by making use of theoretical frameworks which explain richness and abundance gradients in terms of energetics. They extended the "energetic-equivalence rule" by including temperature and then applied it to predict changes in ectotherm species diversity along temperature gradients. The energetic equivalence rule states that the energy flux of a population per area unit will stay constant with body size. The rule was extended by incorporating environmental temperature in the form of biochemical kinetics of metabolism. Allen et al. (2002) explored both the effect of temperature as well as the effect of quarter-power scaling of mass on the variation of global biodiversity. The Boltzmann's constant of the model can account for large proportions of the variation observed in global diversity patterns (Brown et al., 2003). In their study, Allen et al. (2002, 2006) found support for the idea brought forward by Rohde (1992) that with increasing temperature developmental times become shorter. This again results in faster generation turnover and accelerated biochemical reactions, which eventually results in increased evolutionary rates and an increase in species richness (Rohde, 1992, 1999; Allen et al., 2006).

16

Furthermore, Kaspari et al. (2004) evaluated three hypotheses (energy-speciation, energyabundance and area hypothesis) that can be applied to predict variations in species richness patterns in response to large and small-scale changes in the environment. Predictions of home range size and population density have also been investigated by making use of scaling relationships (Damuth, 1981; Belgrano et al., 2002; Enquist et al., 1998; 2002; Jetz et al., 2004). Furthermore, both Savage et al. (2004a) and Frazier et al. (2006) found that the MTE can be used to estimate population growth rates. A further model, based on quarter-power scaling, was introduced fairly recently, which can be used to model ontogenetic growth rates, development rates as well as the timing of life history events (West et al., 2001; Gillooly et al., 2002). However, after re-analyzing the assumptions of the ontogenetic growth models Makarieva et al. (2004) found that these models are unable to predict or even explain growth rates. This conclusion was based on the energy conservation law being violated should the assumptions be met. Moreover, rates of molecular evolution (Gillooly et al., 2005; Allen et al., 2006) as well as the structure and dynamics of food webs (Brown and Gillooly, 2003; Brown et al., 2004) can also be investigated using the MTE. Most recently, Gillooly et al. (2006b) used the MTE to predict the body temperatures of dinosaurs. These are just a few examples giving an indication of the implications and the extent to which the MTE can be used to describe a large range of organismal traits.

The third component of the MTE, resources, is not yet well understood (Brown et al., 2004; Whitfield, 2004). The role of nutrient stoichiometry, the ratios of resources which are the essential elements of life, in ecological scaling is yet to be determined (Agrawal, 2004). Limited resource supply is known to affect population density, biomass, and other traits, through its restricting effects on metabolic rate. Thus Brown et al. (2004) incorporated this term in their model:

$$X = aM^{-4} e^{-E/kT} [R]$$
(7)

where X is the ecological parameter of interest, such as carrying capacity, M is body mass, E is the mean activation energy of the respiratory complex, k is the Boltzmann's constant, T is absolute environmental temperature, a being the species specific normalization constant and [R] represents the concentration of the limiting resources (Brown et al., 2004). Furthermore, Brown et al. (2003) stated that "stoichiometry influences many aspects of ecological structure and dynamics (Elser et al., 2000), including residual variation in ontogenetic growth rates not explained by body size and temperature (Gillooly et al., 2002)". This is likely to be a result of growth rates being dependent on organsimal chemical composition, specifically the nitrogen, carbon and phosphorous ratio (Woods et al., 2003, references therein).

This thesis

Arthropods, especially insects, make an excellent case study to test the MTE, as they are receiving an increased amount of attention in the present debate (reviewed in Chown et al., 2007). This is not surprising, as they are such an abundant and species rich group. Insects play a very significant roles in all ecosystems, from the low to high latitudes, and to date, macroecological and macrophysiological patterns are poorly understood in this group. It is estimated that there are 4 to 8 million extant insect species, of which only a small number have been described (Hawksworth and Kalin-Arroyo, 1995; Ødegaard et al., 2000; Novotny et al., 2002). Furthermore, many studies have been conducted on a large variety of insect physiological traits as well as their life histories, and the data are readily available in the published literature. Specifically metabolic and developmental rate measurements have been investigated on a large number of insect species. Thus the aim of this project is to determine, whether the MTE applies to insects. Chown et al. (2007) have found an interspecific scaling

exponent of ³/₄ in insects, but have argued that the intraspecific scaling values in ants, varying from 0.67 to 1.0, mean that the insect data are inconsistent with the mass component of the fundamental equation of the MTE. The aims of this work are therefore to determine whether the temperature term of the MTE also applies to insects, making use of metabolic rate and development rate-temperature relationships. By making use of the published literature dating back as far as 1900, with major emphasis on the last 50 years, the MTE and its applicability to insects can be investigated.

First, it will be determined whether there is any directional variance about the ratetemperature relationships. This will be done by investigating whether there is a pronounced phylogenetic signal present as well as the effect of environmental variables, such as temperature, on the rate-temperature relationships. Furthermore, the interspecific ratetemperature relationships will be compared to the intraspecific ones to determine whether there is a difference as the ETO predicts (Clarke, 2004), or whether they are identical, as the UTD predicts (Gillooly et al., 2001). The last test will be to determine whether the interspecific activation energies of the rate-temperature relationships fall within the range of values predicted by Brown et al. (2004).

REFERENCES

Addo-Bediako, A., Chown, S. L. and Gaston, K. J. (2002). Metabolic cold adaptation in insects: a large-scale perspective. *Functional Ecology* 16, 332-338.

Agrawal, A. A. (2004). The metabolic theory of ecology. *Ecology* 85, 1790-1791.

- Agutter, P. S. and Wheatley, D. N. (2004). Metabolic scaling: consensus or controversy? Theoretical Biology and Medical Modelling 1, 13.
- Allen, A. P., Brown, J. H. and Gillooly, J. F. (2002). Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. *Science* 297, 1545-1548.
- Allen, A. P., Brown, J. H. and Gillooly, J. F. (2003). Response to comment on "Global biodiversity, biochemical kinetics, and the energetic-equivalence rule". Science 299, 346c.
- Allen, A. P., Gillooly, J. F., Savage, V. M. and Brown, J. H. (2006). Kinetic effects of temperature on rates of genetic divergence and speciation. *Proceedings of the National Academy of Sciences, USA* 103, 9130-9135.
- Andrews, R. M. and Pough, F. H. (1985). Metabolism of squamate reptiles: allometric and ecological relationships. *Physiological Zoology* 58, 214-231.
- Arrhenius, S. (1889). Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Zeitschrift für physikalische Chemie 4, 226-248.
- Banavar, J. R., Damuth, J., Maritan, A. and Rinaldo, A. (2002). Supply-demand balance and metabolic scaling. Proceedings of the National Academy of Sciences, USA 99, 10506-10509.
- Banavar, J. R., Maritan, A. and Rinaldo, A. (1999). Size and form in efficient transportation networks. *Nature* **399**, 130-132.

- Bartholomew, G. A. and Casey, T. M. (1977). Body temperature and oxygen consumption during rest and activity in relation to body size in some tropical beetles. *Journal of Thermal Biology* 2, 173-176.
- Belgrano, A., Allen, A. P., Enquist, B. J. and Gillooly, J. F. (2002). Allometric scaling of maximum population density: a common rule for marine phytoplankton and terrestrial plants. *Ecology Letters* 5, 611-613.
- Bokma, F. (2004). Evidence against universal metabolic allometry. Functional Ecology 18, 184-187.
- Brown, J. H. and Gillooly, J. F. (2003). Ecological food webs: high-quality data facilitate theoretical unification. *Proceedings of the National Academy of Sciences, USA* 100, 1467-1468.
- Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. and West, G. B. (2004). Toward a metabolic theory of ecology. *Ecology* 85, 1771-1789.
- Brown, J. H., Gillooly, J. F., West, G. B. and Savage, V. M. (2003). The next step in macroecology: from general empirical patterns to universal ecological laws. In *Macroecology: Concepts and Consequences* (ed. T. M. Blackburn and K. J. Gaston), pp. 408-423. Oxford: Blackwell Science.
- Brown, J. H. and Sibly, R. M. (2006). Life-history evolution under a production constraint. Proceedings of the National Academy of Sciences, USA 103, 17595-17599.
- Brown, J. H., West, G. B. and Enquist, B. J. (2000). Scaling in biology: patterns and processes, causes and consequences. In Scaling in Biology (ed. J. H. Brown and G. B. West), pp. 1-24. Oxford: Oxford University Press.
- Brown, J. H., West, G. B. and Enquist, B. J. (2005). Yes, West, Brown and Enquist's model of allometric scaling is both mathematically correct and biologically relevant. *Functional Ecology* 19, 735-738.

- Chaui-Berlinck, J. G., Monteiro, L. H. A., Navas, C. A. and Bicudo, J. E. P. W. (2002). Temperature effects on energy metabolism: a dynamic system analysis. *Proceedings* of the Royal Society of London, B 269, 15-19.
- Chaui-Berlinck, J. G., Navas, C. A., Monteiro, L. H. A. and Bicudo, J. E. P. W. (2004). Temperature effects on a whole metabolic reaction cannot be inferred from its components. *Proceedings of the Royal Society of London, B* 271, 1415-1419.
- Chown, S. L., Marais, E., Terblanche, J. S., Klok, C. J., Lighton, J. R. B. and Blackburn,
 T. M. (2007). Scaling of insect metabolic rate is inconsistent with the nutrient supply network model. *Functional Ecology*, in press.
- Chown, S. L. and Nicolson, S. W. (2004). Insect Physiological Ecology. Mechanisms and Patterns. Oxford: Oxford University Press.
- Chown, S. L., Sinclair, B. J., Leinaas, H. P. and Gaston, K. J. (2004). Hemispheric asymmetries in biodiversity a serious matter for ecology. *PLoS Biology* 2, e406.
- Clarke, A. (2003). Costs and consequences of evolutionary temperature adaptation. Trends in Ecology and Evolution 18, 573-581.
- Clarke, A. (2004). Is there a Universal Temperature Dependence of metabolism? *Functional Ecology* 18, 252-256.
- Clarke, A. (2006). Temperature and the metabolic theory of ecology. *Functional Ecology* 20, 405-412.
- Clarke, A. and Fraser, K. P. P. (2004). Why does metabolism scale with temperature? Functional Ecology 18, 243-251.
- Clarke, A. and Johnston, N. M. (1999). Scaling of metabolic rate with body mass and temperature in teleost fish. *Journal of Animal Ecology* 68, 893-905.
- Cossins, A. R. and Bowler, K. (1987). Temperature Biology of Animals. London: Chapman and Hall.

Currie, D. J., Mittelbach, G. G., Cornell, H. V., Field, R., Guégan, J.-F., Hawkins, B. A., Kaufman, D. M., Kerr, J. T., Oberdorff, T., O'Brien, E. et al. (2004). Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. *Ecology Letters* 7, 1121-1134.

Damuth, J. (1981). Population density and body size in mammals. Nature 290, 699-700.

- Darveau, C.-A., Suarez, R. K., Andrews, R. D. and Hochachka, P. W. (2002). Allometric cascade as a unifying principle of body mass effects on metabolism. *Nature* **417**, 166-170.
- Davis, A. L. V., Chown, S. L. and Scholtz, C. H. (1999). Discontinuous gas-exchange cycles in *Scarabaeus* dung beetles (Coleoptera: Scarabaeidae): mass-scaling and temperature dependence. *Physiological and Biochemical Zoology* 72, 555-565.
- Dodds, P. S., Rothman, D. H. and Weitz, J. S. (2001). Re-examination of the "³/₄-law" of metabolism. *Journal of Theoretical Biology* **209**, 9-27.
- Duncan, F. D., Krasnov, B. and McMaster, M. (2002). Metabolic rate and respiratory gasexchange patterns in tenebrionid beetles from the Negev Highlands, Israel. *The Journal of Experimental Biology* **205**, 791-798.
- Elser, J. J., Sterner, R. W., Gorokhova, E., Fagan, W. F., Markow, T. A., Cotner, J. B., Harrison, J. F., Hobbie, S. E., Odell, G. M. and Weider, L. J. (2000). Biological stoichiometry from genes to ecosystems. *Ecology Letters* 3, 540-550.
- Enquist, B. J., Brown, J. H. and West, G. B. (1998). Allometric scaling of plant energetics and population density. *Nature* 395, 163-165.
- Enquist, B. J., Haskell, J. P. and Tiffney, B. H. (2002). General patterns of taxonomic and biomass partitioning in extant and fossil plant communities. *Nature* **419**, 610-613.
- Enquist, B. J. and Niklas, K. J. (2001). Invariant scaling relations across tree-dominated communities. *Nature* 410, 655-660.

- Enquist, B. J. and Niklas, K. J. (2002). Global allocation rules for patterns of biomass partitioning in seed plants. *Science* 295, 1517-1520.
- Etienne, R. S., Apol, M. E. and Olff, H. (2006). Demystifying the West, Brown and Enquist model of the allometry of metabolism. *Functional Ecology* **20**, 394-399.
- Frazier, M. R., Huey, R. B. and Berrigan, D. (2006). Thermodynamics constrains the evolution of insect population growth rates: "warmer is better". *The American Naturalist* 168, 512-520.
- Gaston, K. J. (2000). Global patterns in biodiversity. Nature 405, 220-227.
- Gaston, K. J. and Blackburn, T. M. (2000). Pattern and Process in Macroecology. Oxford: Blackwell Science.
- Gillooly, J. F., Allen, A. P. and Charnov, E. L. (2006b). Dinosaur fossils predict body temperatures. *PLoS Biology* 4, e248
- Gillooly, J. F., Allen, A. P., Savage, V. M., Charnov, E. L., West, G. B. and Brown, J. H. (2006a). Response to Clarke and Fraser: effects of temperature on metabolic rate. *Functional Ecology* 20, 400-404.
- Gillooly, J. F., Allen, A. P., West, G. B. and Brown, J. H. (2005). The rate of DNA evolution: effects of body size and temperature on the molecular clock. *Proceedings of the National Academy of Sciences, USA* 102, 140-145.
- Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. and Charnov, E. L. (2001). Effects of size and temperature on metabolic rate. *Science* 293, 2248-2251.
- Gillooly, J. F., Charnov, E. L., West, G. B., Savage, V. M. and Brown, J. H. (2002). Effects of size and temperature on developmental time. *Nature* **417**, 70-73.
- Glazier, D. S. (2005). Beyond the '3/4-power law': variation in the intra- and interspecific scaling of metabolic rate in animals. *Biological Reviews* 80, 611-662.

- Hack, M. A. (1997). The effects of mass and age on standard metabolic rate in house crickets. *Physiological Entomology* 22, 325-331.
- Hawksworth, D. L. and Kalin-Arroyo, M. T. (1995). Magnitude and distribution of biodiversity. In *Global Biodiversity Assessment* (ed. V. H. Heywood and R. T. Watson), pp. 107-191. New York: Cambridge University Press.
- Heusner, A. A. (1991). Size and power in mammals. *The Journal of Experimental Biology* 160, 25-54.
- Hochachka, P. W., Darveau, C.-A., Andrews, R. D. and Suarez, R. K. (2003). Allometric cascade: a model for resolving body mass effects on metabolism. *Comparative Biochemistry and Physiology, A* 134, 675-691.
- Hochachka, P. W. and Somero, G. N. (2002). Biochemical Adaptation. Mechanism and Process in Physiological Evolution. Oxford: Oxford University Press.
- Hulbert, A. J. and Else, P. L. (2004). Basal metabolic rate: history, composition, regulation, and usefulness. *Physiological and Biochemical Zoology* **77**, 869-876.
- Jetz, W., Carbone, C., Fulford, J. and Brown, J. H. (2004). The scaling of animal space use. Science 306, 266-268.
- Kaspari, M., Ward, P. S. and Yuan, M. (2004). Energy gradients and the geographic distribution of local ant diversity. *Oecologia* 140, 407-413.
- Keister, M. and Buck, J. (1964). Some endogenous and exogenous effects on rate of respiration. In *Physiology of Insecta Volume 3* (ed. M. Rockstein), pp. 617-658. New York: Academic Press.
- Kleiber, M. (1932). Body size and metabolism. Hilgardia 6, 315-353.
- Kozłowski, J. and Gawelczyk, A. T. (2002). Why are species' body size distributions usually skewed to the right? *Functional Ecology* 16, 419-432.

- Kozlowski, J. and Konarzewski, M. (2004). Is West, Brown and Enquist's model of allometric scaling mathematically correct and biologically relevant? *Functional Ecology* 18, 283-289.
- Kozłowski, J. and Konarzewski, M. (2005). West, Brown and Enquist's model of allometric scaling again: the same questions remain. *Functional Ecology* **19**, 739-743.
- Kozłowski, J., Konarzewski, M. and Gawelczyk, A. T. (2003a). Intraspecific body size optimization produces interspecific allometries. In *Macroecology: Concepts and Consequences* (ed. T. M. Blackburn and K. J. Gaston), pp. 299-320. Oxford: Blackwell Science.
- Kozlowski, J., Konarzewski, M. and Gawelczyk, A. T. (2003b). Cell size as a link between noncoding DNA and metabolic rate scaling. *Proceedings of the National Academy of Sciences, USA* 100, 14080-14085.
- Kozłowski, J. and Weiner, J. (1997). Interspecific allometries are by-products of body size optimization. *The American Naturalist* 149, 352-380.
- Lighton, J. R. B., Brownell, P. H., Joos, B. and Turner, R. J. (2001). Low metabolic rate in scorpions: implications for population biomass and cannibalism. *The Journal of Experimental Biology* 204, 607-613.
- Lighton, J. R. B. and Fielden, L. J. (1995). Mass scaling of standard metabolism in ticks: a valid case of low metabolic rates in sit-and-wait strategists. *Physiological Zoology* 68, 43-62.
- Lighton, J. R. B. and Wehner, R. (1993). Ventilation and respiratory metabolism in the thermophilic desert ant, *Cataglyphis bicolor* (Hymenoptera, Formicidae). Journal of Comparative Physiology, B 163, 11-17.
- Lovegrove, B. G. (2000). The zoogeography of mammalian basal metabolic rate. The American Naturalist 156, 201-219.

- Makarieva, A. M., Gorshkov, V. G. and Li, B.-L. (2004). Ontogenetic growth: models and theory. *Ecological Modelling* 176, 15-26.
- Marquet, P. A., Quiñones, R. A., Abades, S., Labra, F., Tognelli, M., Arim, M. and Rivadeneira, M. (2005). Scaling and power-laws in ecological systems. *The Journal* of Experimental Biology 208, 1749-1769.
- McKechnie, A. E., Freckleton, R. P. and Jetz, W. (2006). Phenotypic plasticity in the scaling of avian basal metabolic rate. *Proceedings of the Royal Society of London, B* 273, 931-937.
- McKechnie, A. E. and Wolf, B. O. (2004). The allometry of avian basal metabolic rate: good predictions need good data. *Physiological and Biochemical Zoology* 77, 502-521.
- McMahon, T. A. and Bonner, J. T. (1983). On Size and Life. New York: Scientific American Books.
- McNab, B. K. (2002). The scaling of metabolism and thermal relations. In *The Physiological Ecology of Vertebrates: a View from Energetics*, pp. 31-43. Ithaca: Cornell University Press.
- Meehan, T. D. (2006). Mass and temperature dependence of metabolic rate in litter and soil invertebrates. *Physiological and Biochemical Zoology* **79**, 878-885.
- Niven, J. E. and Scharlemann, J. P. W. (2005). Do insect metabolic rates at rest and during flight scale with body mass? *Biology Letters* 1, 346-349.
- Novotny, V., Basset, Y., Miller, S. E., Weiblen, G. D., Bremer, B., Cizek, L. and Drozd, P. (2002). Low host specificity of herbivorous insects in a tropical forest. *Nature* 416, 841-844.
- Ødegaard, F., Diserud, O. H., Engen, S. and Aagaard, K. (2000). The magnitude of local host specificity for phytophagous insects and its implications for estimates of global species richness. *Conservation Biology* 14, 1182-1186.

- Peters, R. H. (1983). The Ecological Implications of Body Size. Cambridge: Cambridge University Press.
- Ricklefs, R. E. (2004). A comprehensive framework for global patterns in biodiversity. Ecology Letters 7, 1-15.
- Pimm, S. L. and Brown, J. H. (2004). Domains of diversity. Science 304, 831-833.
- Ritchie, M. E. and Olff, H. (1999). Spatial scaling laws yield a synthetic theory of biodiversity. *Nature* 400, 557-560.
- Robinson, W. R., Peters, R. H. and Zimmerman, J. (1983). The effects of body size and temperature on metabolic rate of organisms. *Canadian Journal of Zoology* 61, 281-288.
- Rohde, K. (1992). Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65, 514-527.
- Rohde, K. (1999). Latitudinal gradients in species diversity and Rapoport's rule revisited: a review of recent work and what can parasites teach us about the causes of the gradients? *Ecography* 22, 593-613.
- Savage, V. M., Gillooly, J. F., Brown, J. H., West, G. B. and Charnov, E. L. (2004a). Effects of body size and temperature on population growth. *The American Naturalist* 163, 429-441.
- Savage, V. M., Gillooly, J. F., Woodruff, W. H., West, G. B., Allen, A. P., Enquist, B. J. and Brown, J. H. (2004b). The predominance of quarter-power scaling in biology. *Functional Ecology* 18, 257-282.
- Seymonds, M. R. E. and Elgar, M. A. (2002). Phylogeny affects estimation of metabolic scaling in mammals. *Evolution* 56, 2330-2333.
- Schmidt-Nielsen, K. (1984). Scaling: Why is Animal Size so Important? Cambridge: Cambridge University Press.
- Spicer, J. I. and Gaston, K. J. (1999). Physiological Diversity and its Ecological Implications. Oxford: Blackwell Science.
- Storch, D. (2003). Comment on "Global biodiversity, biochemical kinetics, and the energeticequivalence rule". Science 299, 346b.
- Suarez, R. K., Darveau, C. A. and Childress, J. J. (2004). Metabolic scaling: a manysplendoured thing. *Comparative Biochemistry and Physiology*, B 139, 531-541.
- West, G. B. and Brown, J. H. (2005). The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. *The Journal of Experimental Biology* **208**, 1575-1592.
- West, G. B., Brown, J. H. and Enquist, B. J. (1997). A general model for the origin of allometric scaling laws in biology. *Science* 276, 122-126.
- West, G. B., Brown, J. H. and Enquist, B. J. (1999a). The fourth dimension of life: fractal geometry and allometric scaling of organisms. *Science* 284, 1677-1679.
- West, G. B., Brown, J. H. and Enquist, B. J. (1999b). A general model for the structure and allometry of plant vascular systems. *Nature* 400, 664-667.
- West, G. B., Brown, J. H. and Enquist, B. J. (2000). The origin of universal scaling laws in biology. In *Scaling in Biology*, (ed. J. H. Brown and G. B. West), pp. 87-112. Oxford: Oxford University Press.
- West, G. B., Brown, J. H. and Enquist, B. J. (2001). A general model for ontogenetic growth. *Nature* 413, 628-631.
- West, G. B., Woodruff, W. H. and Brown, J. H. (2002). Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals. *Proceedings of the National Academy of Sciences, USA* 99, 2473-2478.
- White, C. R. and Seymour, R. S. (2003). Mammalian basal metabolic rate is proportional to body mass³⁴. *Proceedings of the National Academy of Sciences, USA* **100**, 4046-4049.

- White, C. R. and Seymour, R. S. (2005a). Allometric scaling of mammalian metabolism. The Journal of Experimental Biology 208, 1611-1619.
- White, C. R. and Seymour, R. S. (2005b). Sample size and mass range effects on the allometric exponent of basal metabolic rate. Comparative Biochemistry and Physiology, A 142, 74-78.

Whitfield, J. (2001). All creatures great and small. Nature 413, 342-344.

- Whitfield, J. (2004). Ecology's big, hot idea. PLoS Biology 2, e440.
- Willig, M. R., Kaufman, D. M. and Stevens, R. D. (2003). Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annual Review of Ecology, Evolution and Systematics 34, 273-309.
- Withers, P. C. (1992). Comparative Animal Physiology. Fort Worth: Saunders College Publishing.
- Woods, H. A., Makino, W., Cotner, J. B., Hobbie, S. E., Harrison, J. F., Acharya, K. and Elser, J. J. (2003). Temperature and the chemical composition of poikilothermic organisms. *Functional Ecology* 17, 237-245.

Chapter 2

Insect rate-temperature relationships: does the temperature

component of the metabolic theory of ecology apply?

INTRODUCTION

Metabolic rate is a fundamental characteristic of organisms which varies substantially among species and environments. The significance of this variation has long been appreciated (Calow, 1977; Schmidt-Nielsen, 1984; Spicer and Gaston, 1999; McNab, 2002). However, the scope of this significance has been broadened considerably by the metabolic theory of ecology (MTE). According to the MTE, variation in metabolic rate can account for much of the variation in population parameters, generation times and the mutation rates of organisms (Ernest et al., 2003; Gillooly et al., 2002, 2005; Savage et al., 2004a; Frazier et al., 2006), ultimately explaining variation in speciation rates across the planet and large-scale patterns in biodiversity (Allen et al., 2002, 2006, but see also Thomas et al., 2006). Although it is widely acknowledged that metabolic rate may vary for several reasons (Peters, 1983; Schmidt-Nielsen, 1984; Cossins and Bowler, 1987; Spicer and Gaston, 1999; Brown et al., 2004; Chown and Nicolson, 2004), the fundamental equation of the MTE posits that basal (or standard) metabolic rate varies principally as a consequence of organismal body mass and environmental temperature in the following manner (Gillooly et al., 2001; Brown et al., 2004):

$$Y = b_0 M^b e^{-E/kT} \tag{1}$$

where Y is metabolic rate, M is body mass, b a universal scaling exponent (³/₄), b_0 a taxonspecific constant, E the mean activation energy of the respiratory complex (≈ 0.65 electron Volts), k the Boltzmann's constant (8.617×10^{-5} eV/K), and T the absolute environmental temperature (in Kelvin).

Both the mass and temperature components of this fundamental equation of the MTE have been the subject of contention, although most of the attention has been focussed on the

former (see Glazier, 2005). Empirical values of and theoretical explanations underpinning the mass scaling of metabolic rate have been questioned (e.g. Dodds et al., 2001; Banavar et al., 2002; White and Seymour, 2003; Agutter and Wheatley, 2004; Kozłowski and Konarzewski, 2004, 2005; McKechnie and Wolf, 2004), and the proponents of the MTE have replied (Allen et al., 2002; Savage et al., 2004b; Brown et al., 2005), with much of the dialogue still ongoing (West and Brown, 2005; Etienne et al., 2006; Makarieva et al., 2006; White et al., 2006). By contrast, discussion of the way in which temperature affects metabolic rate has been less extensive.

Gillooly et al. (2001) proposed that the many different reactions that comprise metabolic rate each depend on the concentration of reactants, their fluxes, and the kinetic energy of the system. The first two terms are accounted for by mass dependence because they are constrained by resource transportation described by the fractal nature of transport systems which lead to a mass-scaling of $\frac{3}{4}$ (see West et al., 1997). The third term therefore incorporates the major influence of temperature, which is in turn governed by simple Boltzmann kinetics (see also Brown et al., 2004; West and Brown, 2005). The activation energy, *E*, is apparently relatively invariant among organisms with a mean value of 0.65 eV. This temperature dependence term of the fundamental equation of the MTE has therefore been termed the 'Universal Temperature Dependence' (UTD) (Gillooly et al., 2001).

The validity of the UTD has subsequently been questioned on the grounds that organismal metabolism is very different to the conditions of simple systems, such as molecules in solution, for which the Boltzmann distribution provides a comprehensive description (Clarke, 2004; Clarke and Fraser, 2004). Moreover, as a result of changes in key enzymes among species, reaction rate is rendered relatively independent of environmental temperature (Hochachka and Somero, 2002). In consequence, although a positive relationship between temperature and metabolic rate should remain amongst species, this among-species relationship should apparently be different to the rate-temperature relationship within species. Indeed, Clarke (2004) argued that the UTD as described by Gillooly et al. (2001) (termed the hard UTD hypothesis) predicts a similar among- and within-species rate-temperature relationship, whereas the alternative, the evolutionary trade-off hypothesis (ETO) he proposed, predicts a steeper intraspecific relationship (see also Clarke, 2003). Clarke (2004) further proposed that two forms of the UTD hypothesis should be distinguished: a hard version as envisaged by Gillooly et al. (2001), and a soft version which can be thought of as little more than a statistical description of the metabolic rate-temperature relationship, but which can be used for large scale investigations of the implications of metabolic rate variation.

Gillooly et al. (2006) have responded to these criticisms. They argued that, notwithstanding the complexity of biochemical reactions, the UTD continues to explain a very large proportion of variation in mass-corrected metabolic rates, that whole-organismal metabolic rate does indeed reflect the statistical thermodynamics of many of the reactions that comprise metabolic rate, and that evolutionary adaptation, acclimatization and acclimation are reflected predominantly in changes to b_0 of the fundamental equation. They also noted that some variation about the rate-temperature relationships is to be expected, and therefore that the hard UTD hypothesis does not necessarily predict identical within- and among-species relationships. Clarke (2006) has responded to several of these arguments. More recently, Brown and Sibly (2006) have re-iterated this point, stating that 'this very general relationship holds both within and between species'.

According to the proponents of the MTE, other biological rates, such as heart rate, growth rate and development rate vary with mass and temperature in a similar fashion to that described for metabolic rate (Gillooly et al., 2001, 2002; West et al., 2001; Charnov and Gillooly, 2003; Brown et al., 2004). For example, embryonic development rate is considered a

function both of mass and of temperature, with the relationship being described, at its simplest as:

$$\frac{dm}{dt} = am^{3/4} \tag{2}$$

where dm/dt is growth rate, *m* is embryonic mass, and *a* is a function of b_0 (the normalization factor for metabolic rate, see Gillooly et al., 2001), and the mass of a cell and the energy required to grow it (Gillooly et al., 2002). As might be expected, given that $a \propto b_0$, the temperature dependence of *a* is given by:

$$a(T) \propto \exp^{(-E/kT)} \tag{3}$$

where E, k and T are as described for Equation 1. Like other aspects of the MTE, these ontogenetic growth models have also been vigorously criticized on several grounds (e.g. Ricklefs, 2003; Makarieva et al., 2004), and the proponents have replied (West et al., 2004). They have also indicated that post-embryonic growth is likely to show similar dependencies on mass and temperature (Gillooly et al., 2002; Brown et al., 2004). Nonetheless, as is the case with the universal temperature dependence of metabolic rate, investigations of the temperature dependence of development rate have been much less extensive than studies of the way in which development rate scales with size (though see Makarieva et al., 2004).

A critical, but perhaps not fully appreciated, point has emerged from these discussions: significant empirical tests of the fundamental equation of the MTE depend not so much on whether there is variation about the scaling and temperature terms, but what form that variation takes and whether it is in a consistent direction. Thus, the proponents of the MTE expect that, once the effects of temperature and mass on rates have been taken into

account, most of the remaining variation should be found in the normalization constant (Brown et al., 2004; Gillooly et al., 2006), with little directional variation about the slope of the rate-temperature and mass-scaling relationships. By contrast, alternative explanations, such as the ETO proposed by Clarke (2004) or the optimization hypothesis proposed by Kozłowski et al. (2003a, b) predict that variation should be found in the slopes of the relationships, and that directional variation in these slopes, especially among different levels in the genealogical hierarchy should be common. To date, only a single, controversial dataset on fish has been used to test these ideas in the context of the rate-temperature term of the fundamental equation of the MTE (Clarke, 2004; Gillooly et al., 2006).

Here, the temperature component of the MTE, as it applies to metabolic rate and development rate, and the form and directionality of variation about it are investigated using insects as model organisms. Given that insects are such a diverse and abundant group of animals, comprising over 70% of extant animal species (Hawksworth and Kalin-Arroyo, 1995; Ødegaard et al., 2000; Novotny et al., 2002), any universal model should apply to this group of animals. Specifically, for both metabolic rate and development rate the following predictions of the MTE are examined: (i) E should assume a mean value of 0.65 eV, with most values lying between 0.6 and 0.7 eV; (ii) little phylogenetic signal should be apparent in the slopes of the rate-temperature relationships; (iii) slopes of the rate-temperature relationships should show minimal environmental variation; (iv) intra- and interspecific rate-temperature relationships should not differ.

MATERIALS AND METHODS

Data collection

Temperature effects on metabolic rate and development rate have been extensively studied in insects (Addo-Bediako et al., 2002; Chown and Nicolson, 2004). To conduct a

global investigation on the relationship between temperature and these two variables the published Anglophone literature dating back as far as 1900, with a major emphasis on the last 50 years, was examined. Only studies that measured metabolic or development rate at three or more constant temperatures were considered.

Metabolic Rate

From studies on adult insect metabolic rate-temperature relationships, the metabolic rate at each trial temperature, trial temperature, and body mass were extracted. For some species, the authors only published the regression equation of the metabolic rate-temperature relationships, which was then used to calculate the specific metabolic rates for each experimental temperature they had used. In studies that reported sex-related variation in metabolic rate-temperature relationships, the sex with the lower metabolic rate, together with its corresponding body mass was used. The experimental method used to measure metabolic rate was scored as closed or flow-through respirometry, as the former often results in higher estimates of metabolic rate (Lighton and Fielden, 1995; Addo-Bediako et al., 2002). Furthermore, wing status (flying or non-flying) was noted for each species (mostly determined secondarily from taxonomic literature) as it is known that the ability to fly is generally accompanied by elevated standard metabolic rates (Reinhold, 1999).

A study was excluded if data for any of the above variables were not given. Laboratory colonies were excluded to eliminate the possible effects of laboratory adaptation and acclimation (Harshman and Hoffmann, 2000; Terblanche et al., 2004a, 2005a, b), and studies that tested the effect of gas concentrations, diet or any other variables were not considered. Furthermore, when any doubt existed regarding the methods used, the quality of the data or the activity state of the animals, the data were excluded. If multiple data for the same species were obtained from the literature, the data from the locality most unrepresented were chosen. This approach was necessarily iterative. Metabolic rates were converted to microwatts (μ W) (Lighton, 1991; Chown et al., 2007) as a standard unit, assuming a respiratory quotient of 0.84, unless otherwise stated in the particular study. Furthermore, volumetric units were converted on the assumption of standard temperature and pressure (STP).

Development Rate

From studies of development rate-temperature relationships, development time (in days) at each trial temperature, trial temperature and life stage were extracted. If development times were given for several life stages they were summed to obtain times as close as possible to total development times (egg to adult development). In three cases, rate-temperature relationships of the various developmental stages of the same species were published separately. They were combined here to obtain developmental times of total egg-adult development as the methods and collection sites were identical. Where given, the adult body mass was also extracted from the study. However, because few developmental studies record body masses (Chown et al., 2002), these were secondarily determined from the primary literature where possible. For studies that investigated the effect of diet in conjunction with temperature, the developmental times were pooled and the geometric mean of all diets, excluding artificial diets, was used to calculate development rate-temperature relationships. If the effect of humidity on development was tested the humidity most beneficial for the species' development was chosen according to the authors' findings. If studies reported development rate for males and females separately the geometric mean of the ratetemperature relationship of the two sexes was used. For each study it was noted whether the animals were field-collected or reared for several generations in a laboratory.

A study was excluded if data for any of the above variables were not given. Studies that tested the effect of cold exposure prior to the development studies, unusual photoperiods, fluctuating temperatures or the effect of crowding were not considered. Furthermore, when any doubt existed regarding the methods used or the quality of the data, the study was excluded. If multiple data for the same species were obtained from the literature, fieldcollected animals were chosen first and then the locality least represented in the database. This procedure was necessarily iterative as the database developed.

For each species only the biologically relevant temperature range required for normal development was selected and temperatures detrimental to development were excluded. Although it is widely acknowledged that development rate and temperature show a non-linear relationship, and that this relationship is unimodal (e.g. Honěk and Kocourek, 1990; Birkemoe and Leinaas, 2000; Angiletta and Dunham, 2003), as are so many performance curves (Huey and Stevenson, 1979; Angilletta, 2006), the aim here was to investigate the relationship over its linear range, as has been done previously (Campbell et al., 1974; Lamb, 1992; Honěk and Kocourek, 1990; Honěk, 1996a, b; Jarošík et al., 2002), and as is implied by the metabolic theory of ecology. All developmental times (D) were converted to developmental rates (${}^{l}/_{D}$). The slopes and intercepts of the relationships between temperature and non-transformed values of development rate were obtained by ordinary least-squares regression of each species individually (Somerfield et al., 2002).

For each study on metabolic or development rate the collection site was noted, and its latitudinal and longitudinal position recorded. If the latter were not presented in the original study, the information was obtained from an appropriate gazetteer. For studies that did not specifically state the geographic locality, and where the species range, as could be ascertained from the literature, was not at odds with the assumption, the authors address was used as the

locality. A suite of environmental variables were obtained from a high resolution, interpolated climate database (www.diva-gis.org) with a 1 km² resolution, and typically a time-series of 50 years (Hijmans et al., 2005). Mean annual temperature (MAT), mean annual precipitation (MAP), temperature of the warmest quarter (TWQ) and precipitation of the warmest quarter (PWQ) were extracted for this study for the particular grid within which each species' locality fell. Temperature and precipitation seasonality, calculated from the mean monthly data, were also obtained from the climate database.

Analyses

Intraspecific level

The slopes of the intraspecific relationships between temperature and natural logarithmic values of the metabolic and development rate were obtained by ordinary least-squares regression of each species separately (Somerfield et al., 2002). Because metabolic rate is strongly dependent on both temperature and body mass, it is often considered necessary to remove the effect of mass, to effectively determine the relationship between metabolic rate and temperature (Clarke and Johnston, 1999). The interspecific scaling exponent for insects is $\frac{1}{4}$ (Chown et al., 2007). Thus the metabolic rate of each species was divided by mass⁴⁴ resulting in mass specific metabolic rate (μ W/g⁴⁶). However, in the intraspecific analyses this is not strictly required because dividing through by constant mass will leave the slope of the power relationship unchanged. Intraspecific development rates for total egg-adult development were not mass corrected because most authors do not report masses of the species they investigated (for the 506 species finally used here, masses for 119 species were found). However, because final adult size and development rate are often negatively related (Atkinson, 1994, 1995; Angilletta and Dunham, 2003) it is also inappropriate to include a correction for size. In all cases, to obtain intraspecific activation energy (*E*) a least-squares

linear regression of ln rate against inverse absolute temperature (1/kT) was used (see Cossins and Bowler, 1987).

Before proceeding with the investigations of variation in slopes (or activation energies) at this level, it was necessary to determine whether the slopes of the metabolic ratetemperature relationships are likely to be influenced by two artefacts associated with the method of data collection, and whether wing status had an effect on the slopes. It is widely known that activity of individuals during trials may confound estimates of standard metabolic rate (Schmidt-Nielsen, 1984; Chown and Nicolson, 2004). Closed-system respirometry often fails to account for activity and usually results in higher estimates of metabolic rate than realtime, open (flow-through) or similar methods (Lighton and Fielden, 1995). It was reasoned that higher temperatures would result in a higher probability of activity and therefore that for closed system methods slopes of the rate-temperature relationship would be steeper. Likewise, it was reasoned that where individuals were measured in groups, rather than individually, steeper rate-temperature slopes would also be found owing to increasing opportunities for disturbance of the whole group at higher temperatures or a greater proportion of the group being active. Previous studies have also noted that flying insects have higher metabolic rates than non-volant ones (Reinhold, 1999), but no investigations of consistent variation in ratetemperature relationships have been undertaken. In a similar vein, the difference between field and laboratory-acclimated animals in the development rate analyses was investigated because laboratory adaptation/acclimation has been commonly reported (Harshman and Hoffmann, 2000; Terblanche et al., 2004a, 2005a, b). In all cases generalized linear models assuming a normal distribution with a log-link function to examine differences among the groups defined above were used.

To determine whether the intraspecific activation energies had a mean of 0.65 eV and lay mostly between 0.6 and 0.7 eV, a single-sample t-test was applied and the proportion of

the empirical estimates lying between the values was determined, respectively. This was done separately for metabolic rate and development rate. To assess the extent of phylogenetic signal in the data a nested, hierarchical analysis of variance (nested ANOVA) with Satterthwaite's approximation for unequal sample sizes was used (Sokal and Rohlf, 1995; Addo-Bediako et al., 2000, 2002) to determine the significance of each level and the proportion of variation explained. Phylogenetic generalized least squares (PGLS), a more superior method to the one used here, and equivalent to phylogenetic independent contrast analyses (Chown et al., 2007), could not be run due to the lack of a complete phylogeny for insects and the difficulty of implementing this method. The extent of environmental variation in the data was examined using generalized linear models (GLZs) assuming a normal distribution with a log link function (McCullagh and Nelder, 1989). First, following Addo-Bediako et al. (2002), it was determined whether variation in the slopes of the ratetemperature relationships could be explained by latitude and hemisphere. However, latitude is a surrogate for environmental variation. Therefore, mean annual temperature and precipitation (MAT and MAP) together with the seasonality of these two variables were included with hemisphere in a second set of models. It has been argued that mean annual environmental data are not appropriate for use in macroecological studies because most insects are typically inactive during the winter, and that data from the activity season of the species should be used (see Addo-Bediako et al., 2002; Chown et al., 2003; Hodkinson, 2003). Therefore, the effect of temperature and precipitation of the warmest quarter (TWQ and PWQ) were also analysed in a third set of models. In all cases, if confounding or biologically important variables such as respirometry method or wing status were significant in the previous assessments, they were included in the models. In analyses incorporating environmental variables, only development rate-temperature relationships of field collected animals were included, as the latitudinal position for laboratory colonies does not necessarily indicate the true origin of the species and as environmental temperature for the locality is not a representative of the temperatures experienced by the animals.

The models that best explained the variation in the rate-temperature relationships were selected using the Akaike Information Criterion (AIC). It is insufficient to simply choose the models with the lowest AIC values to compare the fit of competing models, as models might have similar AIC values. This contributes to model uncertainty, which cannot be ignored (Westphal et al., 2003). Akaike weights (w_i) on the other hand can be used to denote the support for a specific model (Burnham and Anderson, 2002; Johnson and Omland, 2004). As the difference between values is more important than the absolute AIC values itself, Akaike weights were calculated. Akaike weights take the AIC differences (Δ_i) into consideration. The calculated AIC weights indicate which model is the best fit model, or rather the probability that it provides the best fit to the data, by explaining the greatest amount of variation (Burnham and Anderson, 2002). Models with $w_i \ge 0.1$ give a set of candidate models to be used for further investigation (Burnham and Anderson, 2002; Westphal et al., 2003).

Interspecific level

For both metabolic rate and development rate interspecific rate-temperature relationships were also calculated. Previous assessments (e.g. Gillooly et al., 2001, 2002) have simply taken a single metabolic or development rate value (or set of values) at a specific experimental temperature (or a few temperatures) for a variety of species and then calculated the interspecific rate-temperature relationship for these species. This presumes that the experimental temperature used was somehow representative of the thermal environments commonly encountered by the species concerned. Although this seems a reasonable assumption, it was reasoned that the form of the interspecific relationship might be substantially affected especially if the experimental temperatures departed to any great extent

or in any systematic fashion from environmental temperatures (see also Addo-Bediako et al., 2002; Chown et al., 2003; Hodkinson, 2003). In particular, it is not uncommon for studies from cool environments to use temperatures slightly warmer than the mean annual temperature, and those from warm environments to do the converse. Moreover, when dealing with studies for which a range of temperature data are available, it is not always clear which temperature should be selected as representative for the metabolic or development rate of that species, especially if authors do not report microclimate data, which is typically the case. Therefore, a range of approaches for determining the interspecific activation energy or slope of the rate-temperature relationship were adopted. Specifically:

- 1) For each species a metabolic or development rate measurement together with the specific experimental temperature was selected at random from the available data. These values were then used to determine an interspecific slope. This process was repeated a thousand times. The mean slope with its corresponding confidence intervals of this randomization was used for further investigation.
- 2) The slopes were calculated such that a metabolic or development rate value at the temperature closest to the MAT for each species was used as the dependent variable and temperature closest to MAT for each species as the independent variable.
- 3) Metabolic or development rate at the MAT for each species was determined by interpolation of the intraspecific rate-temperature relationship to provide the independent variable, and MAT was used as the independent variable.
- 4) Same procedure as in 2, but with TWQ.

- 5) Same procedure as in 3, but with TWQ.
- 6) For each species the median experimental temperature was selected. However, if no median was available, due to an even number of experimental temperatures, the temperature closest to MAT was selected.

In each case, activation energy was calculated from a least-squares linear regression of ln rate against inverse absolute temperature (1/kT). Mass-corrected data were used throughout which necessarily meant a substantial reduction in the development rate database: of the original 377 field collected species, 85 were used here. The extent to which the six interspecific activation energy values included 0.65 eV was examined by determining whether this value lay within the 95% confidence intervals. Thereafter, an assessment of the differences between the intraspecific and interspecific relationships was made by determining whether the 95% confidence intervals of the data for each of the levels overlapped, for each of the six interspecific relationships, for metabolic rate and for development rate, respectively.

RESULTS

Intraspecific level

The initial dataset on adult insect metabolic rate-temperature relationships contained 129 species, from 9 orders and 37 families (Appendices 1a and b). The mean slope of the metabolic rate-temperature relationship was significantly higher in studies where animals were examined in groups than where single individuals were used (8.95% variance explained, $\chi^2 = 12.10$, df = 127, p<0.001; Figure 1). After excluding studies that examined groups of individuals (Appendix 1a), the data base contained 91 species, in 8 orders and 22 families (Table 1, Appendix 1b), of which 30 species were collected in the southern hemisphere and 61 in the northern hemisphere (Figure 2).

> Table 1: The number of species, orders and families for which metabolic rate-temperature relationships were obtained from the literature and were used for further analyses.

	Order	Family	Species
	Coleoptera	Carabidae	3
		Cicindelidae	1
		Coccinellidae	1
		Curculionidae	7
		Perimylopidae	2
		Scarabaeidae	7
		Scolytidae	1
		Tenebrionidae	4
	Diptera	Asilidae	2
		Glossinidae	1
		Helcomyzidae	2
		Sphaeroceridae	1
	Hemiptera	Cercopidae	1
		Cicadidae	2
	Hymenoptera	Formicidae	36
	Mantophasmatodea	Austrophasmatidae	1
	Odonata	Libellulidae	3
	Orthoptera	Acrididae	8
		Gryllidae	5
		Romaleidae	1
		Tettigoniidae	1
	Siphonaptera	Pulicidae	1
 Total	8	22	91

Figure 1: The effect of grouping on the relationship between metabolic rate (in $\ln \mu W/g^{3/4}$) and temperature. Vertical bars denote 95% confidence intervals. The mean (± StDev) activation energy in electron Volts for each group is also given.

Figure 2: Global geographic extent of studies reporting metabolic rate-temperature relationships in 91 insect species.

Respirometry method likewise had an effect on the slopes of the rate-temperature relationships, with open system methods resulting in a shallower slope estimates and activation energies (8.72% variance explained, $\chi^2 = 8.30$, df = 89, p<0.005, Figure 3). This distinction was therefore included as an independent categorical predictor variable in subsequent analyses. The ability to fly had no significant effect on the estimated slope of the metabolic rate-temperature relationships ($\chi^2 = 2.97$, df = 89, p>0.05) and was thus not considered further in subsequent analyses.

Figure 3: The method used to measure metabolic rate had a significant effect on the relationship between metabolic rate (in $\ln \mu W/g^{3/4}$) and temperature. Vertical bars denote 95% confidence intervals. The mean (± StDev) activation energy in electron Volts for each group is also given.

For the development rate dataset a total of 753 species, from 15 orders and 132 families was obtained (Appendices 2a and b). For a total of 506 species, in 12 orders and 101 families (Table 2), total development time from egg to adult was obtained (Appendix 2a), while for the remainder of the species only partial development could be extracted from the published literature and these were thus excluded from subsequent analyses (Appendix 2b). Of the 506 species data for 377 species were from field-collected animals and data for 129 species were from laboratory-reared animals. No significant difference was found in the slopes of the development rate-temperature relationship between field collected and laboratory reared animals ($\chi^2 = 0.70$, df = 504, p>0.05, Figure 4). Of the field collected animals 67 species were collected in the southern and 310 in the northern hemisphere (Figure 5).

Table 2: The number of species, orders and families from which the development rate-temperature relationship was obtained for total egg to adult stage development.

	Order	Family	Species
	Blattodea	1	1
	Coleoptera	20	111
	Dermaptera	1	1
	Diptera	19	75
	Hemiptera	15	77
	Hymenoptera	18	134
	Lepidoptera	19	85
	Neuroptera	2	6
	Orthoptera	2	5
	Psocoptera	1	1
	Siphonaptera	1	2
	Thysanoptera	2	8
Total	12	101	506

Figure 4: No significant difference was observed between the slope of the development ratetemperature relationships of field collected and laboratory reared animals. The mean (\pm StDev) activation energy in electron Volts for each group is also given.

Figure 5: Global geographic extent of studies reporting development rate-temperature relationships for total egg to adult development in 377 insect species. Only the field collected animals were mapped.

The mean intraspecific activation energy of 0.62 ± 0.15 eV for the metabolic ratetemperature relationship was not significantly different from the mean predicted value of 0.65 eV (t = 1.759, df = 90, p>0.05), although only 31% of the values lay between 0.6 and 0.7 eV (Figure 6). In the case of the development rate-temperature relationship the mean activation energy (0.68 ± 0.17 eV) was significantly larger than the predicted value of 0.65 eV. However, the mean value still fell within the predicted range of 0.6 and 0.7 eV, but only 21% of the empirical values lay within this range (Figure 7).

Figure 6: Frequency distribution of the intraspecific activation energies of the metabolic rate data compared with the predicted range of 0.6 - 0.7 eV. The solid line shows the predicted mean value of 0.65 eV and the dashed lines the 0.6 and 0.7 eV range.

Figure 7: Frequency distribution of the intraspecific activation energies of the development rate data compared with the predicted range of 0.6 - 0.7 eV. The solid line shows the predicted mean value of 0.65 eV and the dashed lines the 0.6 and 0.7 eV range.

The nested ANOVA revealed little phylogenetic signal in the metabolic ratetemperature data because no significant proportion of the variance was partitioned at either the order (F = 2.088; df = 7; p>0.05) or the family levels (F = 0.921; df = 14; p>0.05). By contrast, a weak phylogenetic signal was detected in the relationship between development rate and temperature, where a small, but significant proportion of the variance was partitioned at the family level (6.0%, F = 1.310; df = 89; p<0.05) but not at the order level (F = 1.037; df = 11; p>0.05).

Significant systematic variation in both rate-temperature relationships was found. Geographic location in the form of absolute latitude and hemisphere was selected as the best fit model for both metabolic (Table 3) and development (Table 4) rate-temperature relationships. In both cases the rate-temperature relationships become steeper towards higher latitudes, showing distinct hemispheric differences. For metabolic rate-temperature relationships the increase in rate is steeper in the northern than in the southern hemisphere (Figure 8). The opposite was observed for the development rate-temperature relationships of the field collected animals, where the steeper, significantly positive relationship is found in the southern hemisphere (Figure 9). When annual environmental data were included, the positive influence of temperature seasonality together with the system used to measure metabolic rate formed the best fit model explaining 16.9% of the variance in the slopes of the metabolic rate-temperature relationships. Mean annual temperature together with hemisphere, with and without the system used, were also included in the best fit models (Table 3). In the case of the slopes of the development rate-temperature relationships, best fit annual environmental data models included temperature and precipitation seasonality together with mean annual temperature and hemisphere, although the variance explained was typically low, all of these variables showed a negative relationship with development rate-temperature relationships (Table 4). In the models investigating the environmental variables of the activity season, TWQ and hemisphere were included in most of the models, often with larger Akaike weights than in any of the other environmental models examined (Tables 3 and 4), although the signs of the estimates were typically in the same direction as in the other models. Both MAT and TWQ showed a consistent negative relationship with the rate-temperature relationships in all selected models.

Table 3: Generalized linear models (Normal error distribution with a log link function) of the influence of the explanatory variables on the slope of the relationship between metabolic rate ($\ln \mu W/g^{\frac{3}{4}}$) and temperature. χ^2 = chi squared values, AIC = Akaike value, w_i = Akaike weight, %expl = percentage variance explained. MAT = mean annual temperature, TWQ = temperature of warmest quarter, N vs S = northern and southern hemisphere, system = closed or open system respirometry.

Predictor	df	Estimate ± SE	р	χ^2	AIC	Wi	% expl
Absolute Latitude N vs S	2	$\begin{array}{c} 0.0070 \pm 0.0019 \\ 0.0771 \pm 0.0269 \end{array}$	0.0002 0.0042	19.892	-459.13	0.474	19.64
Absolute Latitude N vs S System	3	$\begin{array}{l} 0.0060 \pm 0.0019 \\ 0.0690 \pm 0.0275 \\ -0.0417 \pm 0.0314 \end{array}$	0.0020 0.0123 0.1836	21.727	-458.96	0.436	21.24
Temp. Seasonality System	2	0.0002 ± 0.0001 -0.0688 ± 0.0306	0.0020 0.0246	16.805	-456.04	0.187	16.86
N vs S MAT System	3	0.0787 ± 0.0288 -0.0068 ± 0.0031 -0.0455 ± 0.0325	0.0064 0.0289 0.1611	17.633	-454.87	0.104	17.62
N vs S MAT	2	0.0903 ± 0.0276 -0.0085 ± 0.0029	0.0011 0.0035	15.592	-454.83	0.102	15.75
System N vs S	2	-0.0698 ± 0.0312 0.0635 ± 0.0289	0.0255 0.0283	13.337	-452.57	0.233	13.63
N vs S System TWQ	3	$\begin{array}{l} 0.0881 \pm 0.0334 \\ -0.0543 \pm 0.0326 \\ -0.0051 \pm 0.0037 \end{array}$	0.0084 0.0955 0.1648	15.223	-452.46	0.220	15.40
N vs S TWQ	2	0.1081 ± 0.0312 -0.0073 ± 0.0035	0.0005 0.0365	12.292	-451.53	0.138	12.63

Table 4: Generalized linear models (Normal error distribution with a log link function) of the influence of the explanatory variables on the slope of the relationship between development rate ($\ln 1/D$) and temperature. χ^2 = chi squared values, AIC = Akaike value, w_i = Akaike weight, %expl = percentage variance explained. MAT = mean annual temperature, TWQ = temperature of warmest quarter, PWQ = precipitation of warmest quarter, N vs S = northern and southern hemisphere.

Predictor	df	Estimate ± SE	р	χ^2	AIC	Wi	% expl
N vs S Absolute Latitude	2	-0.0584 ± 0.0194 0.0030 ± 0.0014	0.0026 0.0287	9.342	-1745.73	0.779	2.45
N vs S	1	-0.0376 ± 0.0172	0.0291	4.519	-1742.91	0.190	1.19
Absolute Latitude	1	0.0012 ± 0.0012	0.3465	0.898	-1739.29	0.031	0.24
Temp. Seasonality Prec. Seasonality MAT N vs S	4	$\begin{array}{c} -0.0002 \pm 0.0001 \\ -0.0011 \pm 0.0005 \\ -0.0064 \pm 0.0033 \\ -0.0313 \pm 0.0197 \end{array}$	0.0266 0.0368 0.0519 0.1127	16.115	-1748.50	0.153	4.18
Temp. Seasonality Prec. Seasonality MAT	3	$\begin{array}{l} -0.0002 \pm 0.0001 \\ -0.0011 \pm 0.0005 \\ -0.0067 \pm 0.0032 \end{array}$	0.0017 0.0380 0.0412	13.650	-1748.04	0.121	3.56
TWQ N vs S	2	-0.0080 ± 0.0032 -0.0381 ± 0.0171	0.0112 0.0257	10.995	-1747.38	0.514	2.87
TWQ N vs S PWQ	3	$\begin{array}{l} -0.0083 \pm 0.0033 \\ -0.0365 \ \pm 0.0178 \\ 0.00002 \ \pm 0.0001 \end{array}$	0.0110 0.0407 0.7549	11.093	-1745.48	0.199	2.90
TWQ	1	-0.0079 ± 0.0032	0.0128	6.278	-1744.66	0.132	1.65

Figure 8: The slopes of the relationship between metabolic rate (in $\ln \mu W/g^{3/4}$) and temperature plotted against absolute latitude. For the northern hemisphere the relationship between latitude and the slope of the relationship was significant ($R^2 = 0.185$, p<0.05), while for the southern hemisphere the relationship was not significant ($R^2 = 0.003$, p>0.05).

{

Figure 9: The slopes of the relationship between development rate $(\ln {}^{1}/_{D})$ and temperature plotted against absolute latitude. For the northern hemisphere the development rate-temperature relationship was not significant (R² = 0.006, p>0.05) while for the southern hemisphere the relationship was significant (R² = 0.068, p<0.05).

Interspecific level

In the case of metabolic rate, the range of activation energy values predicted by the MTE did not overlap with the 95% confidence intervals of the calculated values for the randomly selected values, at TWQ, and at the median temperature, but not in the other cases (Figure 10). By contrast, the range of values predicted by the MTE did not overlap with the 95% confidence intervals of the interspecific activation energy for development rate in all cases with the exception of development rate interpolated to the mean annual temperature (Figure 11).

The 95% confidence intervals of the mean intraspecific activation energies for metabolic rate did not differ from the 95% confidence intervals of the interspecific activation energy in all but one of the cases. Only where metabolic rate at the temperature of the warmest quarter and this temperature were used to calculate the interspecific activation energy for metabolic rate was the interspecific value smaller than the mean intraspecific one (Figure 10). In the case of development rate, the upper 95% confidence interval of the interspecific activation energy was lower than the lower 95% confidence interval of the mean intraspecific activation energy in all cases except where the interspecific activation energy was calculated using development rate interpolated to the mean annual temperature and MAT (Figure 11).

Figure 10: Mean and 95% confidence intervals of the intraspecific activation energies of the metabolic rate compared with the mean interspecific activation energies of metabolic rate and its 95% confidence intervals, calculated in six different ways. The intraspecific and interspecific ectivation energies were further compared to the predicted range of 0.6 - 0.7 eV. MAT = mean annual temperature, TWQ = temperature of the warmest quarter. See test for details.

Figure 11: Mean and 95% confidence intervals of the intraspecific activation energies of the metabolic rate compared with the mean interspecific activation energies of metabolic rate and its 95% confidence intervals, calculated in six different ways. The intraspecific and interspecific ectivation energies were further compared to the predicted range of 0.6 - 0.7 eV. MAT = mean annual temperature, TWQ = temperature of the warmest quarter. See test for details.

DISCUSSION

According to the metabolic theory of ecology, vital rates vary largely as a consequence of body mass and temperature, with residual variation largely lying in the normalization constant b_0 (Gillooly et al., 2001, 2006; Brown et al., 2004). Moreover, the theory does not typically predict consistent variation in the form of the body size and temperature components of its fundamental equation, except perhaps in the case of the mass scaling of metabolic rate in mammals (Savage et al., 2004b), which is contentious (Kozłowski and Konarzewski, 2004; White and Seymour, 2004). Indeed, Clarke (2004, 2006) has argued that a substantial difference between the universal temperature dependence component of the fundamental equation, and other explanations for rate-temperature relationships at the wholeorganismal level (such as his evolutionary trade-off hypothesis) is that the former posits equivalent slopes or activation energies, whilst the latter does not. This idea has been confirmed by the proponents of the MTE (Brown and Sibly, 2006), though not consistently so (Gillooly et al., 2006). Nonetheless, this prediction of intra- versus interspecific similarity in slopes of the rate-temperature relationship, as well as for little phylogenetic variation, and little consistent, directional environmental variation in the exponents of the fundamental equation of the MTE provide readily testable predictions of the idea that do not just concern the mean value of the exponents, which might be equally well predicted by a range of models (see discussions in Angilletta and Dunham, 2003; Kozłowski et al., 2003a, b; Clarke, 2004; Glazier, 2005; Chown et al., 2007).

This study showed that the first step in any assessment of the universal temperature dependence (UTD) of the MTE must be to understand the artefacts that might be associated with the data collection process. Here, it is clear that the method used to acquire metabolic rate data has a pronounced effect on the slope of the rate-temperature relationship and therefore on the activation energy. Indeed, studies that use groups of individuals are likely to

conclude that the slope of the relationship (or activation energy) is much steeper (larger) than it is in reality. The same is true of investigations that use closed versus open respirometry systems (see Lighton, 1991; Chown and Nicolson, 2004 for discussion of methods). It seems most likely that these results are the consequence of the fact that the closed system method cannot detect movement of individuals as readily as flow-through system methods (see Lighton and Fielden, 1995; Chown et al., 2003; Hodkinson, 2003; Terblanche et al., 2004b), and that movement rate increases with increasing temperature (Gilchrist, 1996; Deere and Chown, 2006). Therefore, rate temperature relationships are likely to be steeper when assessed using closed system methods. This effect is likely to be compounded when groups of individuals are used simply by probability of more individuals being active as temperature increases. This would suggest very steep values for rate-temperature relationship of the grouped animals which is indeed what was found. By contrast, little effect of laboratory adaptation or acclimation was found on the slope of the development rate-temperature relationship. In consequence, assessments of UTD must screen the data that are used carefully to avoid the introduction of likely confounding factors, or should at least explicitly take them into account in formal analyses. Investigations of the mass scaling component of the fundamental equation of the MTE have also shown that several confounding factors must be taken into account during empirical assessments thereof (McKechnie and Wolf, 2004; Farrell-Gray and Gotelli, 2005; White and Seymour, 2005; McKechnie et al., 2006; Chown et al., 2007).

Having taken confounding factors into account, this study showed that the mean intraspecific activation energies for both metabolic rate and development rate lay close to the values predicted by the MTE (Gillooly et al., 2001, 2002; Brown et al., 2004), and certainly well within the 0.6 - 0.7 eV range, although the mean for the latter was significantly larger than the 0.65 eV mean value predicted by the MTE. However, only 21-31% of the activation
energies fell within the 0.6 - 0.7 eV range. It is possible to interpret these results either as providing support for the MTE or as rejecting the idea, depending, unfortunately, on the perspective adopted. For example, the biochemical activation energies Gillooly et al. (2001) used to form the basis for their whole-organismal predictions varied between 0.2 and 1.2 eV; approximately the range found in this study (see Figures 6 and 7). Therefore, it might be argued that the present data support the UTD component of the fundamental equation of the MTE, but then the reasoning might be considered suspiciously circular. Alternatively, it might be argued that because so few of the intraspecific activation energies lie between 0.6 and 0.7, the UTD cannot be applied at the intraspecific level, especially since more recent statements by the proponents of the MTE have suggested that the activation energy should be reasonably tightly constrained between 0.6 and 0.7 eV (Brown et al., 2004; Gillooly et al., 2006). However, because such conclusions might be considered an assessment of the soft UTD hypothesis (i.e. statistical description hypothesis of Clarke, 2004), rather than the hard UTD hypothesis intended by Gillooly et al. (2001), it is necessary first to examine the outcomes of the tests of the consistent phylogenetic and environmental variation about these relationships, and the differences between the intra- and interspecific activation energies.

Unlike the situation for the scaling exponent of the fundamental equation of the MTE (see Kozłowski et al., 2003a, b; White and Seymour, 2003; Chown et al., 2007), little of the variation in the slopes of the rate-temperature relationships was accounted for by phylogenetic relatedness, at least as far as is suggested by the nested hierarchical analysis of variance. However, the nested ANOVA approach is a weak method of investigating the extent of phylogenetic signal (see Harvey and Pagel, 1991 for discussion of limitations of this approach). Moreover, it does not enable the form of the phylogenetic effect to be shown and taken into consideration. A comprehensive understanding of the influence of phylogeny on the present results will require a more sophisticated approach such as that provided by

phylogenetic generalized least squares. By contrast, for the metabolic rate-temperature data at least 20% of the variance was a result of consistent variation with latitude and hemisphere, mostly as a consequence of differences in the extent of seasonality among latitudes and hemispheres. Such consistent variation is larger than that estimated by Gillooly et al. (2006) from a previous investigation (Addo-Bediako et al., 2002) of a smaller data set, and is not predicted by the MTE. Moreover, it is consistent with the outcome of the previous investigation, which concluded that differences in climate (see also Bonan, 2002; Chown et al., 2004) and the opportunities for behavioural thermoregulation might account for the marked difference in the change of slope of the rate-temperature relationship with hemisphere. In the case of development rate, much less of the variation in the slope of the relationships was explained by environmental variables. Moreover environmental influences were more complicated than in the case of metabolic rate. However, consistent variation in the relationships was found, although it was in a different direction to that found for metabolic rate. Why this might be the case likely has to do with the range of environments encountered by all developmental stages (see discussions in Honěk, 1996a, b; Chown et al., 2002), and is beyond the scope of the present investigation. Nonetheless, it is clear that for both development rate and metabolic rate, consistent variation in the form of the rate-temperature relationship was present.

In the case of the difference between the interspecific and intraspecific activation energies or slopes, it was clear that in the case of development rate the slopes of the interspecific relationship were typically lower than the mean slopes of the intraspecific relationships, although the range of the latter encompassed the former. Likewise, the interspecific activation energy value tended to be lower than the 0.6 - 0.7 eV predicted by the MTE, irrespective of the method used to calculate it. For metabolic rate, the converse appeared to be the case. Moreover, at least half of the calculated interspecific activation

66

energies had 95% confidence intervals that overlapped with the predicted 0.6 - 0.7 eV value. Therefore, the interspecific and intraspecific activiation energies certainly did differ, and often in the direction predicted by Clarke (2003, 2004, 2006): i.e. the intraspecific slopes are steeper than the interspecific ones. However, this was dependent to some extent on the environmental temperature at which the insect was thought to live its adult life or its entire development.

Given that so many insect species in more temperate latitudes undergo some form of inactivity, quiescence or diapause during the winter months (Leather et al., 1993; Convey, 1996; Danks, 2002) it seems reasonable to suppose that temperature of the warmest quarter is a better predictor of the temperatures at which the animals find themselves growing and (in adults) metabolizing than mean annual temperature (Hodkinson, 2003). In turn, such an assumption presumes that all of the species examined are largely active in summer, that Stevenson Screen temperatures are a reasonable proxy for microclimates experienced and selected by insects (see Chown et al., 2003), and that the evolution of responses to deal with environmental extremes at other times of the year in no way constrains the temperature sensitivity of growth, development and metabolism to a certain range of values. Most of the studies used here did not provide explicit information on the activity times of the species they examined, nor the likely microclimates they inhabited. Therefore, it is difficult to determine the extent to which these assumptions are correct. Although it is well known that insects actively regulate their body temperatures in a wide variety of ways (reviewed in Heinrich, 1993; Chown and Nicolson, 2004), and that microhabitat selection can influence experienced ambient temperature considerably (Leather et al., 1993; Addo-Bediako et al., 2000; Pincebourde and Casas, 2006a, b) the extent to which this affects macrophysiological investigations at such a scale has not been thoroughly explored (see discussions in Chown et al., 2003; Hodkinson, 2003; Chown and Terblanche, 2007). Similarly, it is difficult to

determine what the likely influence is of biochemical strategies to avoid environmental stress on metabolism and ontogeny generally. Whilst some studies suggest that the stress phenotype results from considerable biochemical resculpting (e.g. Zachariassen, 1985; Bale, 2002; Storey, 2002; Storey and Storey, 2004), others emphasize the tight linkage between stressful and non-stressful conditions (Voituron et al., 2002; Makarieva et al., 2006). Therefore, it is not clear which temperature is the 'right' one to use when conducting interspecific examinations of rate-temperature dependence of the kind originally proposed by Gillooly et al. (2001). Clearly the choice can make a substantive difference, although in turn this depends on the trait under investigation. Future studies clearly need to be specific about the temperatures used, and some investigation of what are the most appropriate temperatures is required.

Bearing in mind these issues, the hard version of the UTD hypothesis does not appear to be supported by the data for insect metabolic and development rates. The large majority of the intraspecific values for activation energy lay outside the 0.6 - 0.7 eV range, as did many of the estimates of interspecific activation energy. Moreover, the inter- and intraspecific values differed for development rate and at least in one case for metabolic rate, and environmental variation in a consistent direction (i.e. not at random with respect to the central tendency) was found in the rate-temperature relationships. Therefore, the empirical data for insects do not support the MTE. Rather, at the least they support the soft version of the UTD, and more optimistically, they support the evolutionary trade-off hypothesis proposed by Clarke (2004). In the case of development rate, the lack of fit between the data and the MTE is perhaps not surprising given that Makarieva et al. (2004) are of the view that the formulation of the MTE for growth and development is problematic.

REFERENCES

- Addo-Bediako, A., Chown, S. L. and Gaston, K. J. (2000). Thermal tolerance, climatic variability and latitude. *Proceedings of the Royal Society of London, B* 267, 739-745.
- Addo-Bediako, A., Chown, S. L. and Gaston, K. J. (2002). Metabolic cold adaptation in insects: a large-scale perspective. *Functional Ecology* 16, 332-338.
- Agutter, P. S. and Wheatley, D. N. (2004). Metabolic scaling: consensus or controversy? Theoretical Biology and Medical Modelling 1, 13.
- Allen, A. P., Brown, J. H. and Gillooly, J. F. (2002). Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. *Science* 297, 1545-1548.
- Allen, A. P., Gillooly, J. F., Savage, V. M. and Brown, J. H. (2006). Kinetic effects of temperature on rates of genetic divergence and speciation. *Proceedings of the National Academy of Sciences, USA* 103, 9130-9135.
- Angilletta, M. J. (2006). Estimating and comparing thermal performance curves. Journal of Thermal Biology 31, 541-545.
- Angilletta, M. J. and Dunham, A. E. (2003). The temperature-size rule in ectotherms: simple evolutionary explanations may not be general. *The American Naturalist* 162, 332-342.
- Atkinson, D. (1994). Temperature and organism size a biological law for ectotherms? Advances in Ecological Research 25, 1-58.
- Atkinson, D. (1995). Effects of temperature on the size of aquatic ectotherms: exceptions to the general rule. *Journal of Thermal Biology* 20, 61-74.
- Bale, J. S. (2002). Insects and low temperatures: from molecular biology to distributions and abundance. *Philosophical Transactions of the Royal Society of London, B* 357, 849-861.

- Banavar, J. R., Damuth, J., Maritan, A. and Rinaldo, A. (2002). Supply-demand balance and metabolic scaling. *Proceedings of the National Academy of Sciences, USA* 99, 10506-10509.
- Birkemoe, T. and Leinaas, H. P. (2000). Effects of temperature on the development of an arctic Collembola (*Hypogastrura tullbergi*). *Functional Ecology* 14, 693-700.
- Bonan, G. (2002). Ecological Climatology: Concepts and Applications. Cambridge: Cambridge University Press.
- Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. and West, G. B. (2004). Toward a metabolic theory of ecology. *Ecology* 85, 1771-1789.
- Brown, J. H. and Sibly, R. M. (2006). Life-history evolution under a production constraint. Proceedings of the National Academy of Sciences, USA 103, 17595-17599.
- Brown, J. H., West, G. B. and Enquist, B. J. (2005). Yes, West, Brown and Enquist's model of allometric scaling is both mathematically correct and biologically relevant. *Functional Ecology* 19, 735-738.
- Burnham, K. P. and Anderson, D. R. (2002). Model selection and multimodel inference: a practical information-theoretic approach. New York: Springer-Verlag.
- Calow, P. (1977). Ecology, evolution and energetics: a study in metabolic adaptation. Advances in Ecological Research 10, 1-62.
- Campbell, A., Frazer, B. D., Gilbert, N., Gutierrez, A. P. and Mackauer, M. (1974). Temperature requirements of some aphids and their parasites. *Journal of Applied Ecology* 11, 431-438.
- Charnov, E. L. and Gillooly, J. F. (2003). Thermal time: body size, food quality and the 10°C rule. *Evolutionary Ecology Research* 5, 43-51.

- Chown, S. L., Addo-Bediako, A. and Gaston, K. J. (2002). Physiological variation in insects: large-scale patterns and their implications. *Comparative Biochemistry and Physiology*, B 131, 587-602.
- Chown, S. L., Addo-Bediako, A. and Gaston, K. J. (2003). Physiological diversity: listening to the large-scale signal. *Functional Ecology* 17, 568-572.
- Chown, S. L., Marais, E., Terblanche, J. S., Klok, C. J., Lighton, J. R. B. and Blackburn, T. M. (2007). Scaling of insect metabolic rate is inconsistent with the nutrient supply network model. *Functional Ecology*, in press.
- Chown, S. L. and Nicolson, S. W. (2004). Insect Physiological Ecology. Mechanisms and Patterns. Oxford: Oxford University Press.
- Chown, S. L., Sinclair, B. J., Leinaas, H. P. and Gaston, K. J. (2004). Hemispheric asymmetries in biodiversity a serious matter for ecology. *PLoS Biology* 2, e406.
- Chown, S. L. and Terblanche, J. S. (2007). Physiological diversity in insects: ecological and evolutionary contexts. *Advances in Insect Physiology*, in press.
- Clarke, A. (2003). Costs and consequences of evolutionary temperature adaptation. *Trends in Ecology and Evolution* 18, 573-581.
- Clarke, A. (2004). Is there a Universal Temperature Dependence of metabolism? Functional Ecology 18, 252-256.
- Clarke, A. (2006). Temperature and the metabolic theory of ecology. *Functional Ecology* 20, 405-412.
- Clarke, A. and Fraser, K. P. P. (2004). Why does metabolism scale with temperature? Functional Ecology 18, 243-251.
- Clarke, A. and Johnston, N. M. (1999). Scaling of metabolic rate with body mass and temperature in teleost fish. *Journal of Animal Ecology* 68, 893-905.

- Convey, P. (1996). The influence of environmental characteristics on life history attributes of Antarctic terrestrial biota. *Biological Reviews* 71, 191-225.
- Cossins, A. R. and Bowler, K. (1987). Temperature Biology of Animals. London: Chapman and Hall.
- Danks, H. V. (2002). The range of insect dormancy responses. European Journal of Entomology 99, 127-142.
- Deere, J. A. and Chown, S. L. (2006). Testing the beneficial acclimation hypothesis and its alternatives for locomotor performance. *The American Naturalist* 168, 630-644.
- Dodds, P. S., Rothman, D. H. and Weitz, J. S. (2001). Re-examination of the "³/₄-law" of metabolism. *Journal of Theoretical Biology* **209**, 9-27.
- Ernest, S. K. M., Enquist, B. J., Brown, J. H., Charnov, E. L., Gillooly, J. F., Savage, V., White, E. P., Smith, F. A., Hadly, E. A., Haskell, J. P. et al. (2003). Thermodynamic and metabolic effects on the scaling of production and population energy use. *Ecology Letters* 6, 990-995.
- Etienne, R. S., Apol, M. E. and Olff, H. (2006). Demystifying the West, Brown and Enquist model of the allometry of metabolism. *Functional Ecology* **20**, 394-399.
- Farrell-Gray, C. C. and Gotelli, N. J. (2005). Allometric exponents support a ³/₄-power scaling law. *Ecology* 86, 2083-2087.
- Frazier, M. R., Huey, R. B. and Berrigan, D. (2006). Thermodynamics constrains the evolution of insect population growth rates: "warmer is better". *The American Naturalist* 168, 512-520.
- Gilchrist, G. W. (1996). A quantitative genetic analysis of thermal sensitivity in the locomotor performance curve of *Aphidius ervi*. *Evolution* 50, 1560-1572.

- Gillooly, J. F., Allen, A. P., Savage, V. M., Charnov, E. L., West, G. B. and Brown, J. H. (2006). Response to Clarke and Fraser: effects of temperature on metabolic rate. *Functional Ecology* 20, 400-404.
- Gillooly, J. F., Allen, A. P., West, G. B. and Brown, J. H. (2005). The rate of DNA evolution: effects of body size and temperature on the molecular clock. *Proceedings of the National Academy of Sciences, USA* 102, 140-145.
- Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. and Charnov, E. L. (2001). Effects of size and temperature on metabolic rate. *Science* 293, 2248-2251.
- Gillooly, J. F., Charnov, E. L., West, G. B., Savage, V. M. and Brown, J. H. (2002). Effects of size and temperature on developmental time. *Nature* 417, 70-73.
- Glazier, D. S. (2005). Beyond the '³/₄-power law': variation in the intra- and interspecific scaling of metabolic rate in animals. *Biological Reviews* 80, 611-662.
- Harshman, L. G. and Hoffmann, A. A. (2000). Laboratory selection experiments using Drosophila: what do they really tell us? Trends in Ecology and Evolution 15, 32-36.
- Harvey, P. H. and Pagel, M. D. (1991). The Comparative Method in Evolutionary Biology. Oxford: Oxford University Press.
- Hawksworth, D. L. and Kalin-Arroyo, M. T. (1995). Magnitude and distribution of biodiversity. In *Global Biodiversity Assessment* (ed. V. H. Heywood and R. T. Watson), pp. 107-191. New York: Cambridge University Press.
- Heinrich, B. (1993). The Hot-Blooded Insects. Strategies and Mechanisms of Thermoregulation. Berlin: Springer-Verlag.
- Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. and Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. *International Journal of Climatology* 25, 1965-1978.

- Hochachka, P. W. and Somero, G. N. (2002). Biochemical Adaptation. Mechanism and Process in Physiological Evolution. Oxford: Oxford University Press.
- Hodkinson, I. D. (2003). Metabolic cold adaptation in arthropods: a smaller-scale perspective. *Functional Ecology* 17, 562-567.
- Honěk, A. (1996a). Geographical variation in thermal requirements for insect development. European Journal of Entomology 93, 303-312.
- Honěk, A. (1996b). The relationship between thermal constants for insect development: a verification. Acta Societatis Zoologicae Bohemicae 60, 115-152.
- Honěk, A. and Kocourek, F. (1990). Temperature and development time in insects: a general relationship between thermal constants. Zoologische Jahrbücher Abteilung für Systematik und Ökologie der Tiere 117, 401-439.
- Huey, R. B. and Stevenson, R. D. (1979). Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. *American Zoologist* 19, 357-366.
- Jarošík, V., Honek, A. and Dixon, A. F. G. (2002). Developmental rate isomorphy in insects and mites. *The American Naturalist* 160, 497-510.
- Johnson, J. B. and Omland, K. S. (2004). Model selection in ecology and evolution. Trends in Ecology and Evolution 19, 101-108.
- Kozłowski, J. and Konarzewski, M. (2004). Is West, Brown and Enquist's model of allometric scaling mathematically correct and biologically relevant? *Functional Ecology* 18, 283-289.
- Kozłowski, J. and Konarzewski, M. (2005). West, Brown and Enquist's model of allometric scaling again: the same questions remain. *Functional Ecology* **19**, 739-743.
- Kozłowski, J., Konarzewski, M. and Gawelczyk, A. T. (2003a). Intraspecific body size optimization produces interspecific allometries. In *Macroecology: Concepts and*

74

Consequences (ed. T. M. Blackburn and K. J. Gaston), pp. 299-320. Oxford: Blackwell Science.

- Kozlowski, J., Konarzewski, M. and Gawelczyk, A. T. (2003b). Cell size as a link between noncoding DNA and metabolic rate scaling. *Proceedings of the National Academy of Sciences, USA* 100, 14080-14085.
- Lamb, R. J. (1992). Developmental rate of Acyrthosiphon pisum (Homoptera: Aphididae) at low temperatures: implications for estimating rate parameters for insects. Environmental Entomology 21, 10-19.
- Leather, S. R., Bale, J. S. and Walters, K. F. A. (1993). The Ecology of Insect Overwintering. Cambridge: Cambridge University Press.
- Lighton, J. R. B. (1991). Insects: measurements. In Concise Encyclopedia on Biological and Biomedical Measurement Systems, (ed. P. A. Payne), pp. 201-208. Oxford: Pergamon Press.
- Lighton, J. R. B. and Fielden, L. J. (1995). Mass scaling of standard metabolism in ticks: a valid case of low metabolic rates in sit-and-wait strategists. *Physiological Zoology* 68, 43-62.
- Makarieva, A. M., Gorshkov, V. G. and Li, B.-L. (2004). Ontogenetic growth: models and theory. *Ecological Modelling* 176, 15-26.
- Makarieva, A. M., Gorshkov, V. G., Li, B.-L. and Chown, S. L. (2006). Size- and temperature-independence of minimum life-supporting metabolic rates. *Functional Ecology* 20, 83-96.
- McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models. London: Chapman and Hall.

- McKechnie, A. E., Freckleton, R. P. and Jetz, W. (2006). Phenotypic plasticity in the scaling of avian basal metabolic rate. Proceedings of the Royal Society of London, B 273, 931-937.
- McKechnie, A. E. and Wolf, B. O. (2004). The allometry of avian basal metabolic rate: good predictions need good data. *Physiological and Biochemical Zoology* 77, 502-521.
- McNab, B. K. (2002). The scaling of metabolism and thermal relations. In *The Physiological Ecology of Vertebrates: a View from Energetics*, pp. 31-43. Ithaca: Cornell University Press.
- Novotny, V., Basset, Y., Miller, S. E., Weiblen, G. D., Bremer, B., Cizek, L. and Drozd, P. (2002). Low host specificity of herbivorous insects in a tropical forest. *Nature* 416, 841-844.
- Ødegaard, F., Diserud, O. H., Engen, S. and Aagaard, K. (2000). The magnitude of local host specificity for phytophagous insects and its implications for estimates of global species richness. *Conservation Biology* 14, 1182-1186.
- Peters, R. H. (1983). The Ecological Implications of Body Size. Cambridge: Cambridge University Press.
- Pincebourde, S. and Casas, J. (2006a). Leaf miner-induced changes in leaf transmittance cause variations in insect respiration rates. *Journal of Insect Physiology* 52, 194-201.
- Pincebourde, S. and Casas, J. (2006b). Multitrophic biophysical budgets: thermal ecology of an intimate herbivore insect-plant interaction. *Ecological Monographs* 76, 175-174.
- Reinhold, K. (1999). Energetically costly behaviour and the evolution of resting metabolic rate in insects. *Functional Ecology* 13, 217-224.
- Ricklefs, R. E. (2003). Is rate of ontogenetic growth constrained by resource supply or tissue growth potential? A comment on West *et al.*'s model. *Functional Ecology* 17, 384-393.

- Savage, V. M., Gillooly, J. F., Brown, J. H., West, G. B. and Charnov, E. L. (2004a). Effects of body size and temperature on population growth. *The American Naturalist* 163, 429-441.
- Savage, V. M., Gillooly, J. F., Woodruff, W. H., West, G. B., Allen, A. P., Enquist, B. J. and Brown, J. H. (2004b). The predominance of quarter-power scaling in biology. *Functional Ecology* 18, 257-282.
- Schmidt-Nielsen, K. (1984). Scaling: Why is Animal Size so Important? Cambridge: Cambridge University Press.
- Sokal, R. R. and Rohlf, F. J. (1995). Biometry. New York: W. H. Freeman and Company.
- Somerfield, P. J., Clarke, K. R. and Olsgard, F. (2002). A comparison of the power of categorical and correlational tests applied to community ecology data from gradient studies. *Journal of Animal Ecology* 71, 581-593.
- Spicer, J. I. and Gaston, K. J. (1999). Physiological Diversity and its Ecological Implications. Oxford: Blackwell Science.
- Storey, K. B. (2002). Life in the slow lane: molecular mechanisms of estivation. Comparative Biochemistry and Physiology, A 133, 733-754.
- Storey, K. B. and Storey, J. M. (2004). Metabolic rate depression in animals: transcriptional and translational controls. *Biological Reviews* 79, 207-233.
- Terblanche, J. S., Klok, C. J. and Chown, S. L. (2004b). Metabolic rate variation in *Glossina pallidipes* (Diptera: Glossinidae): gender, ageing and repeatability. *Journal of Insect Physiology* **50**, 419-428.
- Terblanche, J. S., Klok, C. J. and Chown, S. L. (2005a). Temperature-dependence of metabolic rate in *Glossina morsitans morsitans* (Diptera, Glossinidae) does not vary with gender, age, feeding, pregnancy or acclimation. *Journal of Insect Physiology* 51, 861-870.

- Terblanche, J. S., Klok, C. J., Marais, E. and Chown, S. L. (2004a). Metabolic rate in the whip-spider, *Damon annulatipes* (Arachnida: Amblypygi). *Journal of Insect Physiology* 50, 637-645.
- Terblanche, J. S., Sinclair, B. J., Klok, C. J., McFarlane, M. L. and Chown, S. L. (2005b). The effects of acclimation on thermal tolerance, desiccation resistance and metabolic rate in *Chirodica chalcoptera* (Coleoptera: Chrysomelidae). *Journal of Insect Physiology* 51, 1013-1023.
- Thomas, J. A., Welch, J. J., Woolfit, M. and Bromham, L. (2006). There is no universal molecular clock for invertebrates, but rate variation does not scale with body size. *Proceedings of the National Academy of Sciences, USA* 103, 7366-7371.
- Voituron, Y., Mouquet, N., de Mazancourt, C. and Clobert, J. (2002). To freeze or not to freeze? An evolutionary perspective on the cold-hardiness strategies of overwintering ectotherms. *The American Naturalist* 160, 255-270.
- West, G. B. and Brown, J. H. (2005). The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. *The Journal of Experimental Biology* 208, 1575-1592.
- West, G. B., Brown, J. H. and Enquist, B. J. (1997). A general model for the origin of allometric scaling laws in biology. Science 276, 122-126.
- West, G. B., Brown, J. H. and Enquist, B. J. (2001). A general model for ontogenetic growth. *Nature* 413, 628-631.
- West, G. B., Brown, J. H. and Enquist, B. J. (2004). Growth models based on first principles or phenomenology? Functional Ecology 18, 188-196.
- Westphal, M. I., Field, S. A., Tyre, A. J., Paton, D. and Possingham, H. P. (2003). Effects of landscape pattern on bird species distribution in the Mt. Lofty Ranges, South Australia. *Landscape Ecology* 18, 413-426.

- White, C. R. and Seymour, R. S. (2003). Mammalian basal metabolic rate is proportional to body mass³⁴. *Proceedings of the National Academy of Sciences, USA* **100**, 4046-4049.
- White, C. R. and Seymour, R. S. (2004). Does basal metabolic rate contain a useful signal? Mammalian BMR allometry and correlations with a selection of physiological, ecological, and life-history variables. *Physiological and Biochemical Zoology* 77, 929-941.
- White, C. R. and Seymour, R. S. (2005). Sample size and mass range effects on the allometric exponent of basal metabolic rate. *Comparative Biochemistry and Physiology*, A 142, 74-78.
- White, C. R., Phillips, N. F. and Seymour, R. S. (2006). The scaling and temperature dependence of vertebrate metabolism. *Biology Letters* 2, 125-127.
- Zachariassen, K. E. (1985). Physiology of cold tolerance in insects. *Physiological Reviews* 65, 799-832.

Chapter 3

General Conclusion

The metabolic theory of ecology (MTE) has two main components, the mass component and the temperature component (Gillooly et al., 2001; Brown et al., 2004). Although a great deal of attention has been paid to the empirical values and theoretical explanations underlying the mass component (see Glazier, 2005), far less work has been done on testing the assumptions of the temperature component. For insects the mass component of the MTE was explicitly tested by Chown et al. (2007). They rejected the nutrient supply network model, the mechanism underlying the mass component (West et al., 1997; Brown et al., 2004), due to the large variation in intraspecific mass scaling exponents. Rather they found support for the size optimization model proposed by Kozłowski et al. (2003a, b). In this study, the temperature component, the Universal Temperature Dependence (UTD) of metabolism was investigated. Data on insect metabolic rate and development rate-temperature relationships were used to test the main predictions of the UTD. Support for the UTD was limited to the soft version, as proposed by Clarke (2004), while the hard version was rejected. Limited support for the evolutionary trade-off hypothesis, an alternative to the UTD proposed by Clarke (2004), was obtained. Due to the lack of support for both the mass and the temperature component, the MTE with its current assumptions was rejected for insects.

Rather than readdressing some of the assumptions and results obtained in this study, the aim of this section is to highlight several issues that have emerged from this data compilation study, several of which were previously highlighted by Chown et al. (2002). As in previous studies, the geographic extent to which studies were conducted on metabolic rate as well as development rate-temperature relationships is most concentrated in the Holarctic (see Addo-Bediako et al., 2000, 2002), with less than 25% of all studies used in this study collected in the southern hemisphere (Figure 1). Furthermore, little work has so far been done

on tropical species, with less than 15% of all species tested between 25°N and 25°S. Variation in the rate-temperature relationships was found to show pronounced hemispheric differences, mostly as a result of differences in the extent of seasonality among latitudes and hemispheres (Bonan, 2002; Chown et al., 2004).

Figure 1: Global geographic extent of studies reporting metabolic and development ratetemperature relationships in 468 field collected insect species. A total of 371 species were collected in the northern hemisphere, while only 97 species were collected in the southern hemisphere. A further issue raised by Chown et al. (2002) concerns the extent to which body masses are reported in studies, or rather the lack thereof. Several studies on insect metabolic rate-temperature relationships had to be excluded from analyses due to the lack of body masses. For insect development rate-temperature relationships adult body masses were obtained for less than 25% of all the species, most of which were obtained secondarily form other published studies. Body size influences a large range of physiological traits (Peters, 1983; Schmidt-Nielsen, 1984; Kozłowski and Weiner, 1997) and is thus of great importance. Development rate of ectotherms has been shown to negatively influence final adult body size (Atkinson, 1994, 1995; Angilletta and Dunham, 2003). This could have an impact on the rate-temperature relationships of insects, but is unlikely to affect the outcomes of this study.

The last issue raised concerns the environmental temperature experienced by insects. Most studies that investigated the effect of environmental temperature on organismal traits used the mean annual temperature of the locality where the animals were collected (e.g. Addo-Bediako et al., 2002; Veldtman and McGeoch, 2003; Lovegrove, 2003; Lardies et al., 2004; Frazier et al., 2006). However, it has been argued that annual temperature is not the best representative for insects as they are generally inactive during the cold winter months. Instead it was suggested that the temperature of their activity season should be used (Hodkinson, 2003) and some discussion of this matter has permeated the entire literature on insect macrophysiology (Addo-Bediako et al., 2002; Chown et al., 2003). This study has highlighted the fact that the selected environmental temperature can have a substantial effect on the outcomes. Thus, future studies need to be more specific about the temperatures used and some investigation of what are the most appropriate temperatures is required. Understanding the body temperatures of insects in the field is also significant for this reason. However, it does not seem wise at this stage to reject all macrophysiological studies using mean annual temperature. The veracity of these studies will depend both on the signal to noise ratio that

REFERENCES

- Addo-Bediako, A., Chown, S. L. and Gaston, K. J. (2000). Thermal tolerance, climatic variability and latitude. *Proceedings of the Royal Society of London, B* 267, 739-745.
- Addo-Bediako, A., Chown, S. L. and Gaston, K. J. (2002). Metabolic cold adaptation in insects: a large-scale perspective. *Functional Ecology* 16, 332-338.
- Angilletta, M. J. and Dunham, A. E. (2003). The temperature-size rule in ectotherms: simple evolutionary explanations may not be general. *The American Naturalist* 162, 332-342.
- Atkinson, D. (1994). Temperature and organism size a biological law for ectotherms? Advances in Ecological Research 25, 1-58.
- Atkinson, D. (1995). Effects of temperature on the size of aquatic ectotherms: exceptions to the general rule. *Journal of Thermal Biology* 20, 61-74.
- Bonan, G. (2002). Ecological Climatology: Concepts and Applications. Cambridge: Cambridge University Press.
- Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. and West, G. B. (2004). Toward a metabolic theory of ecology. *Ecology* 85, 1771-1789.
- Chown, S. L., Addo-Bediako, A. and Gaston, K. J. (2002). Physiological variation in insects: large-scale patterns and their implications. *Comparative Biochemistry and Physiology*, B 131, 587-602.
- Chown, S. L., Addo-Bediako, A. and Gaston, K. J. (2003). Physiological diversity: listening to the large-scale signal. *Functional Ecology* 17, 568-572.
- Chown, S. L., Marais, E., Terblanche, J. S., Klok, C. J., Lighton, J. R. B. and Blackburn,
 T. M. (2007). Scaling of insect metabolic rate is inconsistent with the nutrient supply network model. *Functional Ecology*, in press.

- Chown, S. L., Sinclair, B. J., Leinaas, H. P. and Gaston, K. J. (2004). Hemispheric asymmetries in biodiversity a serious matter for ecology. *PLoS Biology* 2, e406.
- Chown, S. L. and Terblanche, J. S. (2007). Physiological diversity in insects: ecological and evolutionary contexts. *Advances in Insect Physiology*, in press.
- Clarke, A. (2004). Is there a Universal Temperature Dependence of metabolism? Functional Ecology 18, 252-256.
- Deere, J. A. and Chown, S. L. (2006). Testing the beneficial acclimation hypothesis and its alternatives for locomotor performance. *The American Naturalist* 168, 630-644.
- Frazier, M. R., Huey, R. B. and Berrigan, D. (2006). Thermodynamics constrains the evolution of insect population growth rates: "warmer is better". *The American Naturalist* 168, 512-520.
- Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. and Charnov, E. L. (2001). Effects of size and temperature on metabolic rate. *Science* 293, 2248-2251.
- Glazier, D. S. (2005). Beyond the '³/₄-power law': variation in the intra- and interspecific scaling of metabolic rate in animals. *Biological Reviews* **80**, 611-662.
- Hodkinson, I. D. (2003). Metabolic cold adaptation in arthropods: a smaller-scale perspective. *Functional Ecology* 17, 562-567.
- Kozłowski, J., Konarzewski, M. and Gawelczyk, A. T. (2003a). Intraspecific body size optimization produces interspecific allometries. In *Macroecology: Concepts and Consequences* (ed. T. M. Blackburn and K. J. Gaston), pp. 299-320. Oxford: Blackwell Science.
- Kozłowski, J., Konarzewski, M. and Gawelczyk, A. T. (2003b). Cell size as a link between noncoding DNA and metabolic rate scaling. *Proceedings of the National Academy of Sciences, USA* 100, 14080-14085.

- Kozlowski, J. and Weiner, J. (1997). Interspecific allometries are by-products of body size optimization. *The American Naturalist* 149, 352-380.
- Lardies, M. A., Bacigalupe, L. D. and Bozinovic, F. (2004). Testing the metabolic cold adaptation hypothesis: an intraspecific latitudinal comparison in the common woodlouse. *Evolutionary Ecology Research* 6, 567-578.
- Lovegrove, B. G. (2003). The influence of climate on the basal metabolic rate of small mammals: a slow-fast metabolic continuum. *Journal of Comparative Physiology B* 173, 87-112.
- Peters, R. H. (1983). The Ecological Implications of Body Size. Cambridge: Cambridge University Press.
- Schmidt-Nielsen, K. (1984). Scaling: Why is Animal Size so Important? Cambridge: Cambridge University Press.
- Veldtman, R. and McGeoch, M. A. (2003). Gall-forming insect species richness along a non-scleromorphic vegetation rainfall gradient in South Africa: the importance of plant community composition. *Austral Ecology* 28, 1-13.
- West, G. B., Brown, J. H. and Enquist, B. J. (1997). A general model for the origin of allometric scaling laws in biology. Science 276, 122-126.

APPENDIX 1a

Slopes of the relationships between metabolic rate (in $\ln \mu W/g^{\frac{1}{2}}$) and experimental temperature for the insect species extracted from the published literature. The animals were measured in groups of two or more individuals simultaneously and were excluded from subsequent analyses. The temperature range (in °C) at which the metabolic rates were measured and body masses (in mg) are also given.

~ •		Ondon	Mass	Slong	Temp	range	Reference
Species	Family	Order	(mg)	Slope	Min	Max	
Chauliognathus marginatus	Cantharidae	Coleoptera	33.00	0.0817	22.0	34.0	Menhinick, 1967
Diabrotica 12-punctata	Chrysomelidae	Coleoptera	19.50	0.0742	22.0	34.0	Menhinick, 1967
Maecolaspis flavida	Chrysomelidae	Coleoptera	12.30	0.0719	22.0	34.0	Menhinick, 1967
Pantomorus taeniatulus	Curculionidae	Coleoptera	14.70	0.0872	22.0	34.0	Menhinick, 1967
Conoderus aversus	Elateridae	Coleoptera	13.50	0.0652	22.0	34.0	Menhinick, 1967
Collops 4-maculatus	Melyridae	Coleoptera	9.00	0.1044	22.0	34.0	Menhinick, 1967
Bothrotes fortis	Tenebrionidae	Coleoptera	162.00	0.1382	22.0	34.0	Menhinick, 1967
Asilus sp.	Asilidae	Diptera	37.80	0.1072	22.0	34.0	Menhinick, 1967
Proctacanthus sp.	Asilidae	Diptera	405.00	0.1287	22.0	34.0	Menhinick, 1967
Clastoptera xanthocephala	Cercopidae	Hemiptera	2.10	0.0578	22.0	34.0	Menhinick, 1967
Prosapia bicincta	Cercopidae	Hemiptera	28.50	0.0858	22.0	34.0	Menhinick, 1967
Cuerna costalis	Cicadellidae	Hemiptera	22.20	0.0796	22.0	34.0	Menhinick, 1967
Deltocephalus sp.	Cicadellidae	Hemiptera	20.10	0.1206	22.0	34.0	Menhinick, 1967

Appendix	1a	continued
----------	-----------	-----------

			Mass	Slone	Temp	range	Reference
Species	Family	Order	(mg)	Slope	Min	Max	
<i>Gyponana</i> sp.	Cicadellidae	Hemiptera	1.80	0.0796	22.0	34.0	Menhinick, 1967
Alydus eurinus	Coreidae	Hemiptera	30.00	0.0923	22.0	34.0	Menhinick, 1967
Alydus pilosulus	Coreidae	Hemiptera	27.00	0.0882	22.0	34.0	Menhinick, 1967
Harmostes reflexulus	Coreidae	Hemiptera	17.10	0.0889	22.0	34.0	Menhinick, 1967
Ormenis septentrionalis	Fulgoridae	Hemiptera	15.60	0.1038	22.0	34.0	Menhinick, 1967
Stictocephala diminuta	Membracidae	Hemiptera	16.80	0.0906	22.0	34.0	Menhinick, 1967
Vanduzea leata	Membracidae	Hemiptera	5.40	0.1048	22.0	34.0	Menhinick, 1967
Lygus lineolaris	Miridae	Hemiptera	6.00	0.0771	22.0	34.0	Menhinick, 1967
Acrosternum hilaris	Pentatomidae	Hemiptera	294.00	0.0706	22.0	34.0	Menhinick, 1967
Euschistus servus	Pentatomidae	Hemiptera	123.00	0.0954	22.0	34.0	Menhinick, 1967
Hymenarcys nervosa	Pentatomidae	Hemiptera	30.00	0.1808	22.0	34.0	Menhinick, 1967
Solubea pugnax	Pentatomidae	Hemiptera	54.00	0.0620	22.0	34.0	Menhinick, 1967
Thyanta custator	Pentatomidae	Hemiptera	63.00	0.1109	22.0	34.0	Menhinick, 1967
Sinea diadema	Reduviidae	Hemiptera	42.00	0.1061	22.0	34.0	Menhinick, 1967
Zelus cervicalis	Reduviidae	Hemiptera	33.00	0.1118	22.0	34.0	Menhinick, 1967
Apis mellifera	Apidae	Hymenoptera	66.00	0.1636	22.0	34.0	Menhinick, 1967
Chelaner rothsteini	Formicidae	Hymenoptera	0.75	0.1088	10.0	35.0	Davison, 1987
Chelaner whitei	Formicidae	Hymenoptera	6.00	0.0888	10.0	35.0	Davison, 1987
Dorymyrmex pyramicus	Formicidae	Hymenoptera	0.90	0.1044	22.0	34.0	Menhinick, 1967

	Family	Order	Mass	Slone	Temp	range	Reference
Species	Family	Order	(mg)	Slope	Min	Max	
Pogonomyrmex badius	Formicidae	Hymenoptera	6.60	0.0811	10.0	40.0	Golley & Gentry, 1964
Megachile mendica	Megachilidae	Hymenoptera	78.00	0.1069	22.0	34.0	Menhinick, 1967
Osmia sp.	Megachilidae	Hymenoptera	198.00	0.1189	22.0	34.0	Menhinick, 1967
Campsomeris plumipes	Scolytidae	Hymenoptera	147.00	0.0883	22.0	34.0	Menhinick, 1967
Noctuidae sp.	Noctuidae	Lepidoptera	99.00	0.0847	22.0	34.0	Menhinick, 1967
Mesothemia sp.	Libellulidae	Odonata	420.00	0.0806	22.0	34.0	Menhinick, 1967

Appendix 1a continued

.

REFERENCES

- **Davison, E. A.** (1987). Respiration and energy flow in two Australian species of desert harvester ants, *Chelander rothsteini* and *Chelander whitei*. Journal of Arid Environments 12, 61-82.
- Golley, F. B. and Gentry, J. B. (1964). Bioenergetics of the southern harvester ant, *Pogonomyrmex badius. Ecology* 45, 217-225.
- Menhinick, E. F. (1967). Structure, stability, and energy flow in plants and arthropods in a Sericea lespedeza stand. Ecological Monographs 37, 255-272.

APPENDIX 1b

Slopes of the relationships between metabolic rate (in $\ln \mu W/g^{\frac{1}{2}}$) and experimental temperature of the insects used in this study, together with the temperature range (in °C) and body mass (in mg) used. These are the metabolic rate-temperature relationships of animals that were measured individually and used for analyses.

		Order	Mass	Slone	Temp	range	Reference	
Species	Family	Urder	(mg)	Slope	Min	Max		
Abax ater	Carabidae	Coleoptera	244.69	0.0864	5.0	25.0	Chaabane et al., 1999	
<i>Carenum</i> sp.	Carabidae	Coleoptera	4167.50	0.0673	20.0	35.0	Duncan and Dickman, 2001	
Cerotalis sp.	Carabidae	Coleoptera	567.80	0.0437	20.0	40.0	Duncan and Dickman, 2001	
Cicindela longilabris	Cicindelidae	Coleoptera	118.00	0.0815	15.0	30.0	Schultz et al., 1992	
Hippodamia convergens	Coccinellidae	Coleoptera	17.00	0.0897	0.0	40.0	Acar et al., 2001	
Bothrometopus elongatus	Curculionidae	Coleoptera	1.80	0.0646	2.5	25.0	Chown et al., 1997	
Bothrometopus parvulus	Curculionidae	Coleoptera	3.60	0.0610	5.0	25.0	Chown et al., 1997	
Bothrometopus randi	Curculionidae	Coleoptera	13.80	0.0640	5.0	30.0	Chown et al., 1997	
Canonopsis sericeus	Curculionidae	Coleoptera	60.35	0.0930	0.0	15.0	Klok and Chown, 2005	
Ectemnorhinus marioni	Curculionidae	Coleoptera	6.30	0.0669	2.5	25.0	Chown et al., 1997	
Ectemnorhinus similis	Curculionidae	Coleoptera	25.50	0.0833	5.0	30.0	Chown et al., 1997	
Palirhoeus eatoni	Curculionidae	Coleoptera	6.80	0.0666	5.0	30.0	Chown et al., 1997	

		Ondon	Mass	Slone	Temp	range	Reference
Species	Family	Urder	(mg)	Slope	Min	Max	
Hydromedion sparsutum	Perimylopidae	Coleoptera	23.50	0.0621	5.0	20.0	Sømme et al., 1989
Perimylops antarcticus	Perimylopidae	Coleoptera	14.50	0.0728	5.0	20.0	Sømme et al., 1989
Pleocoma australis	Scarabaeidae	Coleoptera	1000.00	0.0920	5.0	25.0	Morgan, 1987
Scarabaeus galenus	Scarabaeidae	Coleoptera	1470.00	0.0836	16.0	32.0	Chown and Davis, 2003
Scarabaeus gariepinus	Scarabaeidae	Coleoptera	1130.00	0.0952	16.0	32.0	Chown and Davis, 2003
Scarabaeus hippocrates	Scarabaeidae	Coleoptera	2010.00	0.0842	16.0	32.0	Davis et al., 2000
Scarabaeus rusticus	Scarabaeidae	Coleoptera	1060.00	0.1001	16.0	32.0	Chown and Davis, 2003
Scarabaeus striatum	Scarabaeidae	Coleoptera	790.00	0.0956	16.0	32.0	Davis et al., 2000
Scarabaeus westwoodi	Scarabaeidae	Coleoptera	1800.00	0.0836	16.0	32.0	Chown and Davis, 2003
Ips acuminatus	Scolytidae	Coleoptera	2.84	0.0981	10.0	20.0	Gherken, 1985
- Cryptoglossa verrucosa	Tenebrionidae	Coleoptera	700.00	0.0896	10.0	30.0	Cooper, 1993
Eleodes armata	Tenebrionidae	Coleoptera	917.00	0.0320	10.0	30.0	Cooper, 1993
Heleus waiti	Tenebrionidae	Coleoptera	713.00	0.0526	20.0	40.0	Duncan and Dickman, 2001
Pterohelaeus sp.	Tenebrionidae	Coleoptera	246.80	0.0677	20.0	40.0	Duncan and Dickman, 2001
Pilica formidolosa	Asilidae	Diptera	200.00	0.0610	22.0	37.0	Morgan et al., 1985
Promachus sp.	Asilidae	Diptera	180.00	0.0908	22.0	37.0	Morgan et al., 1985
Glossina morsitans orientalis	Glossinidae	Diptera	22.34	0.0947	6.0	41.0	Rajagopal and Bursell, 1966
Paractora dreuxi	Helcomyzidae	Diptera	19.17	0.0846	5.0	30.0	Chown, 1997
Paractora trichosterna	Helcomyzidae	Diptera	13.26	0.0948	2.0	25.0	Chown, 1997

٠

<u> </u>	Family	Order	Mass	Slope	Temp range		Reference	
Species	ганну		(mg)		Min	Max		
Antrops truncipennis	Sphaeroceridae	Diptera	2.21	0.0774	2.0	25.0	Chown, 1997	
Neophilaenus lineatus	Cercopidae	Hemiptera	5.74	0.0931	10.0	25.0	Hinton, 1971	
Cystosoma saundersii	Cicadidae	Hemiptera	1158.00	0.0850	10.0	25.0	Mac Nally and Doolan, 1982	
Diceroprocta apache	Cicadidae	Hemiptera	622.00	0.0641	30.0	42.1	Hadley et al., 1991	
Aphaenogaster cockerelli	Formicidae	Hymenoptera	14.16	0.1280	5.0	35.0	Nielsen, 1986	
Atta laevigata	Formicidae	Hymenoptera	15.00	0.0621	5.0	35.0	Beraldo and Mendes, 1982	
Atta sexdens rubropilosa	Formicidae	Hymenoptera	15.00	0.0755	5.0	35.0	Beraldo and Mendes, 1982	
- Camponotus fulvopilosus	Formicidae	Hymenoptera	43.00	0.0850	10.0	40.0	Lighton, 1989	
Camponotus herculeanus	Formicidae	Hymenoptera	26.85	0.1182	5.0	25.0	Nielsen, 1986	
Camponotus laevigatus	Formicidae	Hymenoptera	57.45	0.0717	5.0	25.0	Nielsen, 1986	
<i>Camponotus</i> sp.	Formicidae	Hymenoptera	46.23	0.0728	5.0	25.0	Nielsen, 1986	
Camponotus vafer	Formicidae	Hymenoptera	13.53	0.1034	5.0	35.0	Nielsen, 1986	
Camponotus vicinus	Formicidae	Hymenoptera	52.90	0.0580	10.0	40.0	Lighton, 1988	
Crematogaster californica	Formicidae	Hymenoptera	1.43	0.0594	20.0	40.0	Schilman et al., 2005	
Dorvmvrmex insanus	Formicidae	Hymenoptera	0.59	0.0806	20.0	40.0	Schilman et al., 2005	
Forelius foetidus	Formicidae	Hymenoptera	0.30	0.1026	15.0	35.0	Nielsen, 1986	
Forelius mccooki	Formicidae	Hymenoptera	0.27	0.0709	20.0	40.0	Schilman et al., 2005	
Formica fusca	Formicidae	Hymenoptera	4.45	0.0864	5.0	25.0	Jensen and Nielsen, 1975	
Formica fusca var. subaenescens	Formicidae	Hymenoptera	4.04	0.1294	5.0	25.0	Nielsen, 1986	

Species	Family	Order	Mass (mg)	Slope	Temp Min	range Max	Reference
Formica occulta	Formicidae	Hymenoptera	3.90	0.0900	5.0	25.0	Nielsen, 1986
Formica perpilosa	Formicidae	Hymenoptera	11.73	0.0681	15.0	35.0	Kay and Whitford, 1975
Formica pratensis	Formicidae	Hymenoptera	6.08	0.1091	15.0	30.0	Jensen and Nielsen, 1975
Lasius niger	Formicidae	Hymenoptera	1.84	0.1098	5.0	25.0	Jensen and Nielsen, 1975
Lasius sitiens	Formicidae	Hymenoptera	0.87	0.1199	5.0	25.0	Nielsen, 1986
Leptogenys nitida	Formicidae	Hymenoptera	1.71	0.0456	20.0	30.0	Duncan and Crewe, 1993
Leptothorax acerovorum	Formicidae	Hymenoptera	1.11	0.1183	5.0	25.0	Nielsen, 1986
Linepithema humile	Formicidae	Hymenoptera	0.44	0.0542	20.0	40.0	Schilman et al., 2005
Messor capitatus	Formicidae	Hymenoptera	9.25	0.0923	10.0	40.0	Nielsen and Baroni-Urbani, 1990
Myrmica alaskensis	Formicidae	Hymenoptera	2.73	0.1145	5.0	25.0	Nielsen, 1986
Myrmica rubra	Formicidae	Hymenoptera	2.40	0.0976	5.0	25.0	Jensen and Nielsen, 1975
Novomessor cockerelli	Formicidae	Hymenoptera	3.21	0.0816	15.0	35.0	Kay and Whitford, 1975
Pogonomyrmex californicus	Formicidae	Hymenoptera	4.17	0.1151	15.0	35.0	Kay and Whitford, 1975
Pogonomyrmex desetorum	Formicidae	Hymenoptera	6.63	0.0805	15.0	35.0	Kay and Whitford, 1975
Pogonomyrmex maricopa	Formicidae	Hymenoptera	11.07	0.0621	5.0	45.0	Ettershank and Whitford, 1973
Pogonomyrmex occidentalis	Formicidae	Hymenoptera	9.00	0.0564	10.0	40.0	Rogers et al., 1972
Pogonomyrmex rugosus	Formicidae	Hymenoptera	14.85	0.0628	5.0	45.0	Ettershank and Whitford, 1973
Solenopsis invicta	Formicidae	Hymenoptera	2.95	0.0819	15.0	40.0	Elzen, 1986
Solenopsis xyloni	Formicidae	Hymenoptera	0.50	0.0595	20.0	40.0	Schilman et al., 2005

.

Species	Family	Order	Mass (mg)	Slope	Temp	range	Reference
Tetramorium caespitum	Formicidae	Hymenoptera	(ing) 0.76	0.1228	<u>10111</u> 5.0	25.0	Jensen and Nielsen, 1975
Trachymyrex smithi							
neomexicanus	Formicidae	Hymenoptera	3.03	0.0720	15.0	35.0	Kay and Whitford, 1975
Karoophasma biedouwensis	Austrophasmatidae	Mantophasmatodea	94.22	0.0342	10.0	25.0	Chown et al., 2006
Erythrodiplax connata	Libellulidae	Odonata	51.67	0.0904	20.0	40.0	May, 1979
Miathyria marcella	Libellulidae	Odonata	175.67	0.0843	20.0	40.0	May, 1979
Pachydiplax longipennis	Libellulidae	Odonata	192.50	0.0862	15.0	40.0	May, 1979
Bootettix punctatus	Acrididae	Orthoptera	141.15	0.0785	10.0	40.0	Mispagel 1978
Encoptolophus sordidus costalis	Acrididae	Orthoptera	174.60	0.0865	10.0	25.0	Bailey and Riegert, 1973
Melanoplus bivittatus	Acrididae	Orthoptera	1800.00	0.1299	15.0	35.0	Harrison and Fewell, 1995
Melanoplus sanguinipes	Acrididae	Orthoptera	295.00	0.0794	13.0	42.0	Chappel, 1983
Taeniopoda eques	Acrididae	Orthoptera	2043.00	0.0959	15.0	30.0	Quinlan and Hadley, 1993
Trimerotropis pallidipennis	Acrididae	Orthoptera	174.60	0.0502	25.0	40.0	Massion, 1983
Trimerotropis saxatilis	Acrididae	Orthoptera	135.88	0.1001	15.0	32.0	Duke and Crossley, 1975
Trimerotropis suffusa	Acrididae	Orthoptera	297.50	0.0985	25.0	40.0	Massion, 1983
Anurogryllus arboreus	Gryllidae	Orthoptera	377.00	0.0941	10.0	30.0	Prestwich and Walker, 1981
Hophlosphyrum griseus	Gryllidae	Orthoptera	38.93	0.0882	7.0	27.0	Nespolo et al., 2003
Oceanthus celerinicus	Gryllidae	Orthoptera	53.00	0.1157	10.0	35.0	Prestwich and Walker, 1981
Oceanthus quadripunctatus	Gryllidae	Orthoptera	49.00	0.1035	10.0	35.0	Prestwich and Walker, 1981

-

Appendix 1b continued

		Ordon	Mass	Slope	Temp range		Reference
Species	Family	Order	(mg)	Slope	Min	Max	
Pteronemobius fasciatus	Gryllidae	Orthoptera	78.51	0.0858	15.0	25.0	van Hook, 1971
Romalea guttata	Romaleidae	Orthoptera	2921.00	0.0929	15.0	30.0	Hadley and Quinlan, 1993
Orchelimum fidicinium	Tettigoniidae	Orthoptera	303.42	0.0610	20.0	30.0	Smalley, 1960
Xenopsylla ramesis	Pulicidae	Siphonaptera	0.16	0.0731	10.0	30.0	Fielden et al., 2004

REFERENCES

Έ,

- Acar, E. B., Smith, B. N., Hansen, L. D. and Booth, G. M. (2001). Use of calorespirometry to determine effects of temperature on metabolic efficiency of an insect. *Environmental Entomology* 30, 811-816.
- Bailey, C. G. and Riegert, P. W. (1973). Energy dynamics of *Encoptolophus sordidus* costalis (Scudder) (Orthoptera: Acrididae) in a grassland ecosystem. Canadian Journal of Zoology 51, 91-100.
- Beraldo, M. J. A. H. and Mendes, E. G. (1982). The influence of temperature on oxygen consumptiom rates of workers of two leaf cutting ants, *Atta laevigata* (F. Smith, 1858) and *Atta sexdens rubropilosa* (Forel, 1908). *Comparative Biochemistry and Physiology*, A 71, 419-424.
- Chaabane, K., Josens, G. and Loreau, M. (1999). Respiration of *Abax ater* (Coleoptera, Carabidae): a complex parameter of the energy budget. *Pedobiologia* 43, 305-318.
- Chappell, M. A. (1983). Metabolism and thermoregulation in desert and montane grasshoppers. *Oecologia* 56, 126-131.
- Chown, S. L. (1997). Thermal sensitivity of oxygen uptake of Diptera from sub-Antarctic South Georgia and Marion Island. *Polar Biology* 17, 81-86.
- Chown, S. L. and Davis, A. L. V. (2003). Discontinuous gas exchange and the significance of respiratory water loss in scarabaeine beetles. *The Journal of Experimental Biology* **206**, 3547-3556.
- Chown, S. L., Marais, E., Picker, M. D. and Terblanche, J. S. (2006). Gas exchange characteristics, metabolic rate and water loss of the Heelwalker, Karoophasma biedouwensis (Mantophasmatodea: Austrophasmatidae). Journal of Insect Physiology 52, 442-449.
- Chown, S. L., van der Merwe, M. and Smith, V. R. (1997). The influence of habitat and altitude on oxygen uptake in sub-Antartic weevils. *Physiological Zoology* 70, 116-124.
- Cooper, P. D. (1993). Field metabolic rate and cost of activity in two tenebrionid beetles from the Mojave Desert of North America. *Journal of Arid Environments* 24, 165-175.
- Davis, A. L. V., Chown, S. L., McGeoch, M. A. and Scholtz, C. H. (2000). A comparative analysis of metabolic rate in six *Scarabaeus* species (Coleoptera: Scarabaeidae) from southern Africa: further caveats when inferring adaptation. *Journal of Insect Physiology* 46, 553-562.
- Duke, K. M. and Crossley, D. A. (1975). Population energetics and ecology of the rock grasshopper, *Trimerotropis saxatilis*. *Ecology* 56, 1106-1117.
- Duncan, F. D. and Crewe, R. M. (1993). A comparison of the energetics of foraging of three species of *Leptogenys* (Hymenoptera, Formicidae). *Physiological Entomology* 18, 372-378.
- **Duncan, F. D. and Dickman, C. R.** (2001). Respiratory patterns and metabolism in tenebrionid and carabid beetles from the Simpson Desert, Australia. *Oecologia* **129**, 509-517.
- Elzen, G. W. (1986). Oxygen consumption and water loss in the imported fire ant Solenopsis invicta Buren. Comparative Biochemistry and Physiology, A 84, 13-17.

- Ettershank, G. and Whitford, W. G. (1973). Oxygen consumption of two species of *Pogonomyrmex* harvester ants (Hymenoptera: Formicidae). *Comparative Biochemistry* and Physiology, A 46, 605-611.
- Fielden, L. J., Krasnov, B. R., Khokhlova, I. S. and Arakelyan, M. S. (2004). Respiratory gas exchange in the desert flea *Xenopsylla ramesis* (Siphonaptera: Pulicidae): response to temperature and blood-feeding. *Comparative Biochemistry and Physiology*, A 137, 557-565.
- Gehrken, U. (1985). Physiology of diapause in the adult bark beetle, *Ips acuminatus* Gyll., studied in relation to cold hardiness. *Journal of Insect Physiology* **31**, 909-916.
- Hadley, N. F. and Quinlan, M. C. (1993). Discontinuous carbon dioxide release in the Eastern lubber grasshopper *Romalea guttata* and its effect on respiratory transpiration. *The Journal of Experimental Biology* 177, 169-180.
- Hadley, N. F., Quinlan, M. C. and Kennedy, M. L. (1991). Evaporative cooling in the desert cicada: thermal efficiency and water/metabolic costs. *The Journal of Experimental Biology* 159, 269-283.
- Harrison, J. F. and Fewell, J. H. (1995). Thermal effects on feeding behaviour and net energy intake in a grasshopper experiencing large diurnal fluctuations in body temperature. *Physiological Zoology* **68**, 453-473.
- Hinton, J. M. (1971). Energy flow in a natural population of *Neophilaenus lineatus* (Homoptera). *Oikos* 22, 155-171.
- Jensen, T. F. and Nielsen, M. G. (1975). The influence of body size and temperature on worker ant respiration. *Natura Jutlandica* 18, 21-25.
- Kay, C. A. and Whitford, W. G. (1975). Influences of temperature and humidity on oxygen consumption of five Chihuahuan Desert ants. *Comparative Biochemistry and Physiology*, A 52, 281-286.
- Klok, C. J. and Chown, S. L. (2005). Temperature- and body mass-related variation in cyclic gas exchange characteristics and metabolic rate of seven weevil species: broader implications. *Journal of Insect Physiology* **51**, 789-801.
- Lighton, J. R. B. (1988). Discontinuous CO₂ emission in a small insect, the formicine ant Camponotus vicinus. The Journal of Experimental Biology 134, 363-376.
- Lighton, J. R. B. (1989). Individual and whole-colony respiration in an African formicine ant. *Functional Ecology* **3**, 523-530.
- Mac Nally, R. C. and Doolan, J. M. (1982). Comparative reproductive energetics of the sexes in the cicada Cystosoma saundersii. Oikos 39, 179-186.
- Massion, D. D. (1983). An altitudinal comparison of water and metabolic relations in two acridid grasshoppers (Orthoptera). Comparative Biochemistry and Physiology, A 74, 101-105.
- May, M. L. (1979). Energy metabolism of dragonflies (Odonata: Anisoptera) at rest and during endothermic warm-up. *The Journal of Experimental Biology* 83, 79-94.
- Mispagel, M. E. (1978). The ecology and bioenergetics of the acridid grasshopper, *Bootettix punctatus* on creosotebush, *Larrea tridentata*, in the northern Mojave Desert. *Ecology* 59, 779-788.

- Morgan, K. R. (1987). Temperature regulation, energy metabolism and mate-searching in rain beetles (*Pleocoma* spp.), winter-active, endothermic scarabs (Coleoptera). *The Journal of Experimental Biology* **128**, 107-122.
- Morgan, K. R., Shelly, T. E. and Kimsey, L. S. (1985). Body temperature regulation, energy metabolism, and foraging in light-seeking and shade-seeking robber flies. *Journal of Comparative Physiology*, B 155, 561-570.
- Nespolo, R. F., Lardies, M. A. and Bozinovic, F. (2003). Intrapopulational variation in the standard metabolic rate of insects: repeatability, thermal dependence and sensitivity (Q_{10}) of oxygen consumption in a cricket. *The Journal of Experimental Biology* 206, 4309-4315.
- Nielsen, M. G. (1986). Respiratory rates of ants from different climatic areas. Journal of Insect Physiology 32, 125-131.
- Nielsen, M. G. and Baroni-Urbani, C. (1990). Energetics and foraging behaviour of the European seed harvesting ant *Messor capitatus* I. Respiratory metabolism and energy consumption of unloaded and loaded workers during locomotion. *Physiological Entomology* 15, 441-448.
- Prestwich, K. N. and Walker, T. J. (1981). Energetics of singing in crickets: effect of temperature in three trilling species (Orthoptera: Gryllidae). Journal of Comparative Physiology, B 143, 199-212.
- Quinlan, M. C. and Hadley, N. F. (1993). Gas exchange, ventilatory patterns, and water loss in two lubber grasshoppers: quantifying cuticular and respiratory transpiration. *Physiological Zoology* **66**, 628-642.
- Rajagopal, P. K. and Bursell, E. (1965). The respiratory metabolism of resting tsetse flies. Journal of Insect Physiology 12, 287-297.
- Rogers, L., Lavigne, R. and Miller, J. L. (1972). Bioenergetics of the western harvester ant in the shortgrass plains ecosystem. *Environmental Entomology* 1, 763-768.
- Schilman, P. E., Lighton, J. R. B. and Holway, D. A. (2005). Respiratory and cuticular water loss in insects with continuous gas exchange: comparison across five ant species. *Journal of Insect Physiology* 51, 1295-1305.
- Schultz, T. D., Quinlan, M. C. and Hadley, N. F. (1992). Preferred body temperature, metabolic physiology, and water balance of adult *Cicindela longilabris*: a comparison of populations from boreal habitats and climatic refugia. *Physiological Zoology* 65, 226-242.
- Smalley, A. E. (1960). Energy flow of a salt marsh grasshopper population. *Ecology* 41, 672-677.
- Sømme, L., Ring, R. A., Block, W. and Worland, M. R. (1989). Respiratory metabolism of Hydromedion sparsutum and Perimylops antarcticus (Col., Perimylopidae) from South Georgia. Polar Biology 10, 135-139.
- Van Hook, R. I. (1971). Energy and nutrient dynamics of spider and orthopteran populations in a grassland ecosystem. *Ecological Monographs* 41, 1-26.

APPENDIX 2a

Slopes of the relationships between development rate $(\ln 1/D)$ and experimental temperature of the insects used in this study, together with the temperature range (in °C) used. Given are all the species for which total egg to adult development rate-temperature relationships were obtained.

		0	Slong	Temp	range	Reference
Species	Family	Order	Slope	Min	Max	
Periplaneta fuliginosa	Blattidae	Blattodea	0.0950	20.0	35.0	Benson et al., 1994
Stegobium paniceum	Anobiidae	Coleoptera	0.1305	17.5	25.0	Lefkovitch, 1967
Cylas puncticollis	Apionidae	Coleoptera	0.1033	18.6	31.2	Nteletsana et al., 2001
Prostephanus truncatus	Bostrichidae	Coleoptera	0.0748	22.0	32.0	Bell and Watters, 1982
Rhizopertha dominica	Bostrichidae	Coleoptera	0.0992	22.0	34.0	Birch, 1945
Callosobruchus maculatus	Bruchidae	Coleoptera	0.0605	25.0	35.0	Lale and Viddal, 2003
Callosobruchus rhodesianus	Bruchidae	Coleoptera	0.0977	20.0	30.0	Giga and Smith, 1983
Callosobruchus subinnotatus	Bruchidae	Coleoptera	0.0530	25.0	35.0	Lale and Viddal, 2003
Amara aenea	Carabidae	Coleoptera	0.1007	17.0	28.0	Saska and Honěk, 2003
Amara familiaris	Carabidae	Coleoptera	0.0899	17.0	28.0	Saska and Honěk, 2003
Amara fulvipes	Carabidae	Coleoptera	0.1066	17.0	28.0	Saska and Honěk, 2003
Amara littorea	Carabidae	Coleoptera	0.0926	17.0	28.0	Saska and Honěk, 2003
Amara ovata	Carabidae	Coleoptera	0.0965	17.0	28.0	Saska and Honěk, 2003

157 252
Appendix	2a	continued
----------	----	-----------

	E a milar	Order	Slope	Temp	o range	Reference
Species	Family	Order	Slope	Min	Max	
Amara similata	Carabidae	Coleoptera	0.0899	17.0	28.0	Saska and Honěk, 2003
Monochamus carolinensis	Cerambycidae	Coleoptera	0.0931	22.0	30.0	Pershing and Linit, 1986
Cassida rubiginosa	Chrysomelidae	Coleoptera	0.0743	21.1	32.5	Ward and Pienkowski, 1978
Cerotoma arcuatus	Chrysomelidae	Coleoptera	0.0735	18.0	32.0	Nava and Parra, 2003
Crioceris asparagi	Chrysomelidae	Coleoptera	0.0940	10.0	32.0	Taylor and Harcourt, 1978
Diorhabda elongata	Chrysomelidae	Coleoptera	0.0721	20.0	35.0	Herrera et al., 2005
Galerucella calmariensis	Chrysomelidae	Coleoptera	0.0978	15.0	25.0	McAvoy and Kok, 2004
Galerucella pusilla	Chrysomelidae	Coleoptera	0.0856	15.0	27.5	McAvoy and Kok, 2004
Gastrophysa viridula	Chrysomelidae	Coleoptera	0.0658	18.0	28.0	Honěk et al., 2003
Leptinotarsa decemlineata	Chrysomelidae	Coleoptera	0.0916	15.0	29.0	Logan et al., 1985
- Oulema melanopus	Chrysomelidae	Coleoptera	0.0985	8.0	30.0	Guppy and Harcourt, 1978
Pyrrhalta luteola	Chrysomelidae	Coleoptera	0.0952	15.6	32.2	King et al., 1985
Adalia bipunctata	Coccinellidae	Coleoptera	0.0804	15.6	29.4	Obrycki and Tauber, 1981
Calvia quatuordecimguttata	Coccinellidae	Coleoptera	0.1116	10.0	26.0	LaMana and Miller, 1995
Chilocorus nigritus	Coccinellidae	Coleoptera	0.1126	20.0	30.0	Ponsonby and Copland, 1996
Coccinella novemnotata	Coccinellidae	Coleoptera	0.1052	15.6	32.2	McMullen, 1967
Coccinella septempunctata	Coccinellidae	Coleoptera	0.1262	14.0	23.0	Katsarou et al., 2005
Coccinella transversoguttata						
richardsoni	Coccinellidae	Coleoptera	0.0883	18.3	29.4	Obrycki and Tauber, 1981

			<u></u>	Temp	range	Dafarance
Species	Family	Order	Slope	Min	Max	Kelerence
Coccinella trifasciata	Coccinellidae	Coleoptera	0.0868	18.0	34.0	Miller and LaMana, 1995
Coleomegilla maculata lengi	Coccinellidae	Coleoptera	0.1215	19.0	27.3	Wright and Laing, 1978
Diomus austrinus	Coccinellidae	Coleoptera	0.0975	20.0	30.0	Chong et al., 2005
Epilachna varivestis	Coccinellidae	Coleoptera	0.0871	15.0	27.0	Fan et al., 1992
Eriopis connexa	Coccinellidae	Coleoptera	0.1126	14.0	26.0	Miller and Paustian, 1992
Harmonia axyridis	Coccinellidae	Coleoptera	0.0946	14.0	34.0	LaMana and Miller, 1998
Hippodamia convergens	Coccinellidae	Coleoptera	0.1313	14.0	23.0	Katsarou et al., 2005
Hippodamia parenthesis	Coccinellidae	Coleoptera	0.1025	14.0	30.0	Orr and Obrycki, 1990
Hippodamia sinuata	Coccinellidae	Coleoptera	0.0784	15.0	25.0	Michels and Behle, 1991
Lioadalia flavomaculata	Coccinellidae	Coleoptera	0.0997	13.0	32.0	Brown, 1972
Nephus bisignatus	Coccinellidae	Coleoptera	0.0692	15.0	32.5	Kontodimas et al., 2004
Nephus includens	Coccinellidae	Coleoptera	0.0907	15.0	32.5	Kontodimas et al., 2004
Oenopia conglobata contaminata	Coccinellidae	Coleoptera	0.0905	17.5	30.0	Mehrnejad and Jalali, 2004
Propylea dissecta	Coccinellidae	Coleoptera	0.0387	20.0	35.0	Omkar, 2004
17						Ba M'Hamed and Chemseddine,
Pullus mediterraneus	Coccinellidae	Coleoptera	0.0815	15.0	30.0	2001
Rhyzobius lophanthae	Coccinellidae	Coleoptera	0.0769	15.0	30.0	Stathas, 2000
Rodolia cardinalis	Coccinellidae	Coleoptera	0.1216	5 14.0	26.0	Grafton-Cardwell et al., 2005

Appendix	2a	continued
----------	----	-----------

			Slope	Temp	range	Reference
Species	Family	Urder	Slope	Min	Max	
Scymnus levaillanti	Coccinellidae	Coleoptera	0.0607	20.0	35.0	Uygun and Atlihan, 2000
Stethorus japonicus	Coccinellidae	Coleoptera	0.1121	15.0	30.0	Mori et al., 2005
Stethorus punctillum	Coccinellidae	Coleoptera	0.1116	14.0	30.0	Roy et al., 2002
Cryptolestes ferrugineus	Cucujidae	Coleoptera	0.0856	22.0	35.0	White and Bell, 1994
Cryptolestes pusillus	Cucujidae	Coleoptera	0.0953	20.0	32.5	Currie, 1967
Anthonomus eugenii	Curculionidae	Coleoptera	0.0856	15.0	30.0	Toapanta et al., 2005
Anthonomus grandis thurberiae	Curculionidae	Coleoptera	0.0955	15.0	30.0	Fye et al., 1969
Anthonomus signatus	Curculionidae	Coleoptera	0.0504	15.6	30.0	Clarke and Howitt, 1975
Aubeonymus mariaefranciscae	Curculionidae	Coleoptera	0.1092	20.0	26.0	Marco et al., 1997
Bagous affinis	Curculionidae	Coleoptera	0.1023	18.0	32.0	Godfrey and Anderson, 1994
Baris lepidii	Curculionidae	Coleoptera	0.0733	15.0	27.0	Sherrod et al., 1982
Calandra oryzae	Curculionidae	Coleoptera	0.1266	18.2	29.1	Birch, 1945
Conotrachelus nenuphar	Curculionidae	Coleoptera	0.0924	17.0	28.0	Lan et al., 2004
Cylas formicarius elegantulus	Curculionidae	Coleoptera	0.1532	20.0	27.0	Mullen, 1981
Euhrychiopsis lecontei	Curculionidae	Coleoptera	0.0911	15.0	29.0	Mazzei et al., 1999
Gonipterus scutellatus	Curculionidae	Coleoptera	0.0923	10.5	26.8	Santolamazza-Carbone et al., 2006
Hylobius pales	Curculionidae	Coleoptera	0.0490	21.0	28.0	Salom et al., 1987
Hypera brunneipennis	Curculionidae	Coleoptera	0.0823	15.0	26.7	Butler and Ritchie, 1967
Hypera meles	Curculionidae	Coleoptera	0.1052	12.0	35.0	Chan et al., 1990

Appendix 2a continued	Appendix	2a	continued	
-----------------------	----------	----	-----------	--

		0	Slowe	Temp	range	Reference
Species	Family	Urder	Slope	Min	Max	
Hypera postica	Curculionidae	Coleoptera	0.1046	12.0	32.0	Guppy and Mukerji, 1974
Listronotus oregonensis	Curculionidae	Coleoptera	0.1207	12.7	23.9	Simonet and Davenport, 1981
Listronotus texanus	Curculionidae	Coleoptera	0.1055	17.5	30.0	Woodson and Edelson, 1988
Otiorrhynchus sulcatus	Curculionidae	Coleoptera	0.0442	15.0	24.0	Stenseth, 1979
Sitophilus granarius	Curculionidae	Coleoptera	0.0623	20.0	30.0	Campbell et al., 1976
Sitophilus oryzae	Curculionidae	Coleoptera	0.0825	20.0	28.0	Ryoo and Cho, 1988
Cybocephalus micans	Cybocephalidae	Coleoptera	0.0742	20.0	36.0	Blumberg and Swirski, 1982
Cybocephalus nigriceps nigriceps	Cybocephalidae	Coleoptera	0.0655	24.0	36.0	Blumberg and Swirski, 1982
Dermestes ater	Dermestidae	Coleoptera	0.0330	25.0	35.0	Coombs, 1981
Dermestes frischii	Dermestidae	Coleoptera	0.1135	20.0	30.0	Amos, 1968
Dermestes haemorrhoidalis	Dermestidae	Coleoptera	0.0927	20.0	30.0	Coombs, 1979
Dermestes maculatus	Dermestidae	Coleoptera	0.0851	20.0	30.0	Richardson and Goff, 2001
Trogoderma anthrenoides	Dermestidae	Coleoptera	0.1286	20.0	35.0	Burges and Cammell, 1964
Trogoderma glabrum	Dermestidae	Coleoptera	0.0559	26.7	35.0	Archer and Strong, 1975
Trogoderma variabile	Dermestidae	Coleoptera	0.0521	23.9	37.8	Partida and Strong, 1975
Trogoderma versicolor	Dermestidae	Coleoptera	0.1105	20.0	35.0	Hadaway, 1955
Laricobius nigrinus	Derodontidae	Coleoptera	0.1051	9.0	18.0	Zilahi-Balogh et al., 2003
Collops vittatus	Malachiidae	Coleoptera	0.1253	22.8	32.2	Butler and Wardecker, 1973
Typhaea stercorea	Mycetophagidae	Coleoptera	0.1036	20.0	30.0	Jacob, 1988

Appendix	2a	continued
----------	----	-----------

· · · · · · · · · · · · · · · · · · ·				Temp range		Deference
Species	Family	Order	Slope	Min	Max	Kelerence
Carpophilus dimidiatus	Nitidulidae	Coleoptera	0.1018	20.0	30.0	Porter, 1986
Glischrochilus quadrisignatus	Nitidulidae	Coleoptera	0.0713	15.0	30.0	Mussen and Chiang, 1974
Maladera matrida	Scarabaeidae	Coleoptera	0.0858	20.0	29.0	Harari et al., 1998
Onitis caffer	Scarabaeidae	Coleoptera	0.1596	15.0	25.0	Edwards, 1986
Popillia japonica	Scarabaeidae	Coleoptera	0.1375	20.0	25.0	Ludwig, 1928
Dendroctonus ponderosae	Scolytidae	Coleoptera	0.1060	15.0	25.0	Bentz et al., 1991
Ips avulsus	Scolytidae	Coleoptera	0.0880	20.0	35.0	Wagner et al., 1988
Ips calligraphus	Scolytidae	Coleoptera	0.0928	15.0	35.0	Wagner et al., 1987
Ips confusus	Scolytidae	Coleoptera	0.0695	15.0	35.0	Berryman and Stark, 1962
Ips typographus	Scolytidae	Coleoptera	0.0715	15.0	33.0	Wermelinger and Seifert, 1998
Ahasverus advena	Silvanidae	Coleoptera	0.1132	17.5	30.0	Jacob, 1996
Oryzaephilus acuminatus	Silvanidae	Coleoptera	0.0972	20.0	32.5	Jacob, 1981
Oryzaephilus surinamensis	Silvanidae	Coleoptera	0.0784	20.0	35.0	Jacob and Fleming, 1990
Alphitobius diaperinus	Tenebrionidae	Coleoptera	0.1161	20.0	35.0	Rueda and Axtell, 1996
Coelopalorus foveicollis						
(=Palorus foveicollis)	Tenebrionidae	Coleoptera	0.1080	20.0	32.5	Halstead, 1967
Gnathocerus maxillosus	Tenebrionidae	Coleoptera	0.0925	20.0	32.5	Ntifo and Nowosielski-Slepowron
		• •				1973

		Quidan	Slope	Tem	p range	Reference
Species	Family	Order	Slope	Min	Max	
Latheticus oryzae	Tenebrionidae	Coleoptera	0.0867	27.5	37.0	Nowosielski-Slepowron and
						Aryeetey, 1980
Palorus laesicollis	Tenebrionidae	Coleoptera	0.1250	15.0	22.5	Halstead, 1967
Palorus ratzeburgii	Tenebrionidae	Coleoptera	0.0962	20.0	32.5	Halstead, 1967
Palorus subdepressus	Tenebrionidae	Coleoptera	0.0925	20.0	32.5	Halstead, 1967
Pterohelaeus alternatus	Tenebrionidae	Coleoptera	0.0653	24.4	30.2	Allsopp, 1981
Pterohelaeus darlingensis	Tenebrionidae	Coleoptera	0.0659	24.4	30.2	Allsopp, 1981
Tribolium castaneum	Tenebrionidae	Coleoptera	0.0870	25.0	35.0	Abdelsamad et al., 1988
Tribolium confusum	Tenebrionidae	Coleoptera	0.1211	20.0	32.5	Howe, 1960
Tribolium freemani	Tenebrionidae	Coleoptera	0.0874	25.0	32.5	Imura and Nakakita, 1984
Tribolium madens	Tenebrionidae	Coleoptera	0.1416	20.0	35.0	Howe, 1962
Nala lividipes	Labiduridae	Dermaptera	0.1212	22.0	32.5	Simpson, 1993
Agromyza frontella	Agromyzidae	Diptera	0.0812	15.0	25.0	Mellors and Helgesen, 1978
Chromatomyla syngenesiae	Agromyzidae	Diptera	0.0853	16.0	25.0	Cheah, 1987
Liriomyza bryoniae	Agromyzidae	Diptera	0.0865	15.0	25.0	Minkenberg and Helderman, 1990
Liriomyza huidobrensis	Agromyzidae	Diptera	0.0996	15.0	25.0	Lanzoni et al., 2002
Liriomyza trifolii	Agromyzidae	Diptera	0.0929	15.0	30.0	Leibee, 1984
Ophiomyia centrosematis	Agromyzidae	Diptera	0.0794	20.0	35.0	Talekar and Lee, 1988
Delia florilega	Anthomyiidae	Diptera	0.0721	15.0	30.0	Throne and Eckenrode, 1986

Appendix	2a	continued
----------	----	-----------

	Eamily	Order	Slone	Temp	range	Reference
Species	ranny		ыоре	Min	Max	
Delia platura	Anthomyiidae	Diptera	0.0606	15.0	35.0	Throne and Eckenrode, 1986
Calliphora vicina	Calliphoridae	Diptera	0.0699	15.8	23.3	Anderson, 2000
Eucalliphora latifrons	Calliphoridae	Diptera	0.0694	15.8	23.3	Anderson, 2000
Lucilia sericata	Calliphoridae	Diptera	0.1315	17.0	25.0	Grassberger and Reiter, 2001
Phaenicia pallescens	Calliphoridae	Diptera	0.0647	19.0	35.0	Ash and Greenberg, 1975
Phaenicia sericata	Calliphoridae	Diptera	0.0929	19.0	35.0	Ash and Greenberg, 1975
Phormia regina	Calliphoridae	Diptera	0.0520	15.0	35.0	Byrd and Allen, 2001
Protophormia terraenovae	Calliphoridae	Diptera	0.0695	15.0	35.0	Grassberger and Reiter, 2002
Aphidoletes aphidimyza	Cecidomyiidae	Diptera	0.0747	15.0	25.0	Havelka, 1980
Contarinia nasturtii	Cecidomyiidae	Diptera	0.1040	15.0	25.0	Readshaw, 1965
Contarinia sorghicola	Cecidomyiidae	Diptera	0.0598	20.0	34.0	Baxendale et al., 1984
Cystiphora schmidti	Cecidomyiidae	Diptera	0.0924	15.0	30.0	Moore, 1987
Feltiella acarisuga	Cecidomyiidae	Diptera	0.0989	15.0	27.0	Gillespie et al., 2000
Mayetiola destructor	Cecidomyiidae	Diptera	0.0597	15.6	26.7	Foster and Taylor, 1975
Culicoides mississippiensis	Ceratopogonidae	Diptera	0.0539	15.0	25.0	Davis et al., 1983
Culicoides variipennis	Ceratopogonidae	Diptera	0.0583	20.0	30.0	Mullens and Rutz, 1983
Chironomus crassicaudatus	Chironomidae	Diptera	0.1289	15.0	22.5	Frouz et al., 2002
Chironomus tepperi	Chironomidae	Diptera	0.1089	12.5	27.5	Stevens, 1998
Glyptotendipes paripes	Chironomidae	Diptera	0.0403	22.5	32.5	Lobinske et al., 2002

			<u>Class</u>	Temp	range	Deference
Species	Family	Order	Slope	Min	Max	
Hippelates bishoppi	Chloropidae	Diptera	0.0827	18.3	35.0	Karandinos and Axtell, 1967
Hippelates pallipes	Chloropidae	Diptera	0.0397	23.9	35.0	Karandinos and Axtell, 1967
Hippelates pusio	Chloropidae	Diptera	0.0538	23.9	35.0	Karandinos and Axtell, 1967
Oscinella frit	Chloropidae	Diptera	0.0874	17.5	27.5	Tolley and Niemczyk, 1988
Aedes albopictus	Culicidae	Diptera	0.0466	22.0	30.0	Alto and Juliano, 2001
Aedes campestris	Culicidae	Diptera	0.0341	23.0	27.0	Tauthong and Brust, 1976
Anopheles gambiae	Culicidae	Diptera	0.0901	18.0	28.0	Bayoh and Lindsay, 2003
Anopheles quadrimaculatus	Culicidae	Diptera	0.1311	12.1	27.2	Huffaker, 1944
Culex annulirostris	Culicidae	Diptera	0.0814	20.0	35.0	Mottram et al., 1986
Culex tarsalis	Culicidae	Diptera	0.0552	15.0	35.0	Reisen, 1995
Culex theileri	Culicidae	Diptera	0.0674	15.0	33.0	Van der Linde et al., 1987
						Van der Linde and Mitchell 1991
Toxorhynchites brevipalpis	Culicidae	Diptera	0.0804	20.0	30.0	Trpis, 1972
Toxorhynchites rutilus						
septentrionalis	Culicidae	Diptera	0.1040	13.0	31.0	Trimble and Lund, 1983
Drosophila iri	Drosophilidae	Diptera	0.1050	17.0	28.0	Cohet et al., 1980
Drosophila lutescens	Drosophilidae	Diptera	0.0776	15.0	27.0	Kimura et al., 1994
Drosophila melanogaster	Drosophilidae	Diptera	0.0858	12.0	30.0	McKenzie, 1978
Drosophila prostipennis	Drosophilidae	Diptera	0.0882	15.0	27.0	Kimura et al., 1994

		Order	Slope	Temp	range	Reference
Species	Family	Oruer	Slope	Min	Max	
Drosophila simulans	Drosophilidae	Diptera	0.1235	12.0	28.0	Cohet et al., 1980
Drosophila takahashii	Drosophilidae	Diptera	0.0974	15.0	27.0	Kimura et al., 1994
Drosophila trilutea	Drosophilidae	Diptera	0.0716	15.0	25.0	Kimura et al., 1994
Drosophila yakuba	Drosophilidae	Diptera	0.0981	14.0	28.0	Cohet et al., 1980
Haematobia irritans exigua	Muscidae	Diptera	0.0750	17.5	30.0	Cook and Spain, 1981
Haematobia thirouxi potans	Muscidae	Diptera	0.0989	15.0	30.0	Fay, 1985
Musca autumnalis	Muscidae	Diptera	0.0806	13.8	34.7	Moon, 1983
Musca domestica	Muscidae	Diptera	0.1019	16.0	31.0	Lysyk and Axtell, 1987
Musca vetustissima	Muscidae	Diptera	0.0986	18.0	28.0	Vogt et al., 1990
Ophyra aenescens	Muscidae	Diptera	0.0849	17.0	30.0	Lefebvre and Pasquerault, 2004
Ophyra capensis	Muscidae	Diptera	0.1240	17.0	30.0	Lefebvre and Pasquerault, 2004
Stomoxys calcitrans	Muscidae	Diptera	0.1152	15.0	30.0	Gilles et al., 2005
Stomoxys niger niger	Muscidae	Diptera	0.1078	15.0	30.0	Gilles et al., 2005
Piophila casei	Piophilidae	Diptera	0.0826	15.0	32.0	Russo et al., 2006
Psila rosae	Psilidae	Diptera	0.0676	12.5	20.0	Stevenson, 1981
Parasarcophaga (Liopygia)						
ruficornis	Sarcophagidae	Diptera	0.0592	19.0	31.0	Amoudi et al., 1994
Bradysia impatiens	Sciaridae	Diptera	0.0733	12.8	23.9	Wilkinson and Daugherty, 1970
Sepedon fuscipennis	Sciomyzidae	Diptera	0.0842	15.0	30.0	Barnes, 1976

Appendix	2a	continued
----------	----	-----------

Species	Family	Order	Slope	Temp range		Reference
	гашпу	oruer		Min	Max	
Episyrphus balteatus	Syrphidae	Diptera	0.1022	10.0	20.0	Ankersmit et al., 1986
Merodon equestris	Syrphidae	Diptera	0.1423	10.0	21.5	Collier and Finch, 1992
Exorista mella	Tachinidae	Diptera	0.0729	20.0	27.2	Butler et al., 1968
Leschenaultia adusta	Tachinidae	Diptera	0.0729	15.0	30.0	Jackson et al., 1970
Palexorista laxa	Tachinidae	Diptera	0.1007	15.0	30.0	Jackson et al., 1976
Voria ruralis	Tachinidae	Diptera	0.0607	20.0	30.0	Jackson et al., 1969
Anastrepha suspensa	Tephritidae	Diptera	0.0969	15.0	30.0	Prescott and Baranowski, 1971
Bactrocera cucurbitae	Tephritidae	Diptera	0.0753	16.0	32.0	Vargas et al., 1996
Bactrocera dorsalis	Tephritidae	Diptera	0.0543	19.0	34.0	Yang et al., 1994
Bactrocera latifrons	Tephritidae	Diptera	0.0912	16.0	29.0	Vargas et al., 1996
Ceratitis capitata	Tephritidae	Diptera	0.0875	16.0	29.0	Vargas et al., 1996
Dacus tryoni	Tephritidae	Diptera	0.0535	20.0	30.0	Bateman, 1967
Rhagoletis completa	Tephritidae	Diptera	0.0697	8.0	24.0	Kasana and AliNiazee, 1994
Tipula subnodicornis	Tipulidae	Diptera	0.0834	7.0	15.0	Butterfield, 1976
Aleurocanthus woglumi	Aleyrodidae	Hemiptera	0.0816	20.0	34.0	Dowell and Fitzpatrick, 1978
Aleyrodes proletella	Aleyrodidae	Hemiptera	0.1009	15.0	25.0	Iheagwam, 1978
Bemisia argentifolii	Aleyrodidae	Hemiptera	0.1000	15.0	30.0	Yang and Chi, 2006
Bemisia tabaci	Aleyrodidae	Hemiptera	0.0705	20.0	29.0	Powell and Bellows, 1992
Trialeurodes abutilonea	Aleyrodidae	Hemiptera	0.0355	23.9	35.0	Butler, 1967

	Temp rang		Temp range		Reference	
Species	Family	Order	Slope	Min	Max	
Trialeurodes vaporariorum	Aleyrodidae	Hemiptera	0.0548	15.0	32.0	Greenberg et al., 2000
Lyctocoris campestris	Anthocoridae	Hemiptera	0.0928	17.0	29.0	Parajulee et al., 1995
Orius insidiosus	Anthocoridae	Hemiptera	0.1226	20.0	28.0	Isenhour and Yeargan, 1981
Orius sauteri	Anthocoridae	Hemiptera	0.0975	15.0	30.0	Nagai and Yano, 1999
Orius tristicolor	Anthocoridae	Hemiptera	0.0418	20.0	35.0	Butler, 1966a
Xylocoris flavipes	Anthocoridae	Hemiptera	0.1179	20.0	30.0	Arbogast, 1975
Acyrthosiphon kondoi	Aphididae	Hemiptera	0.0975	7.2	26.7	Summers et al., 1984
Acyrthosiphon pisum	Aphididae	Hemiptera	0.1017	10.0	25.0	Lamb and MacKay, 1988
Aphis gossypii	Aphididae	Hemiptera	0.0659	15.0	30.0	Kersting et al., 1999
Aphis pomi	Aphididae	Hemiptera	0.0651	10.0	30.0	Carroll and Hoyt, 1986
Brevicoryne brassicae	Aphididae	Hemiptera	0.0594	15.0	25.0	Satar et al., 2005
Diuraphis noxia	Aphididae	Hemiptera	0.0690	12.0	27.0	Kieckhefer and Elliott, 1989
Drepanosiphum acerinum	Aphididae	Hemiptera	0.0960	6.0	20.0	Wellings, 1981
Drepanosiphum platanoidis	Aphididae	Hemiptera	0.0776	6.0	20.0	Wellings, 1981
Dysaphis plantaginea	Aphididae	Hemiptera	0.1044	11.6	19.5	Blommers et al., 2004
Lipaphis erysimi	Aphididae	Hemiptera	0.0679	15.0	30.0	Liu and Yue, 2001
Macrosiphum avenae	Aphididae	Hemiptera	0.0857	11.0	23.0	Kieckhefer et al., 1989
- Metopolophium dirhodum	Aphididae	Hemiptera	0.0605	10.0	20.0	Dean, 1974
Rhopalosiphum padi	Aphididae	Hemiptera	0.0739	10.0	25.0	Dean, 1974

· · · · · · · · · · · · · · · · · · ·		0	Slone	Temp	range	Reference
Species	Family	Order	Slope	Min	Max	
Sitobion avenae	Aphididae	Hemiptera	0.0706	10.0	25.0	Acreman and Dixon, 1989
Austroasca viridigrisea	Cicadellidae	Hemiptera	0.0791	20.0	32.0	Page, 1983
Cicadulina mbila	Cicadellidae	Hemiptera	0.1032	17.3	30.1	Rose, 1973
Cicadulina parazeae	Cicadellidae	Hemiptera	0.0930	23.0	30.0	Rose, 1973
Cicadulina storeyi	Cicadellidae	Hemiptera	0.0928	23.0	30.0	Rose, 1973
Empoasca fabae	Cicadellidae	Hemiptera	0.0914	13.0	29.0	Simonet and Pienkowski, 1980
Eutettix tenellus	Cicadellidae	Hemiptera	0.1036	18.3	33.3	Harries and Douglass, 1948
Graminella nigrifrons	Cicadellidae	Hemiptera	0.1041	18.0	30.0	Larsen et al., 1990
Acanthomia tomentosicollis	Coreidae	Hemiptera	0.0920	20.0	34.0	Egwuatu and Taylor, 1977
Anasa tristis	Coreidae	Hemiptera	0.1066	20.0	31.1	Fargo and Bonjour, 1988
Aonidiella aurantii	Diaspididae	Hemiptera	0.1130	15.0	30.0	Kennett and Hoffmann, 1985
Gerris buenoi	Gerridae	Hemiptera	0.0634	18.5	26.0	Spence et al., 1980
Gerris comatus	Gerridae	Hemiptera	0.0961	15.0	26.0	Spence et al., 1980
Gerris paludum insularis	Gerridae	Hemiptera	0.0909	15.0	35.0	Park, 1988
Gerris pingreensis	Gerridae	Hemiptera	0.0815	15.0	26.0	Spence et al., 1980
Geocoris atricolor	Lygaeidae	Hemiptera	0.0732	26.7	35.0	Dunbar and Bacon, 1972
Geocoris pallens	Lygaeidae	Hemiptera	0.1284	20.0	30.0	Butler, 1966a
Geocoris punctipes	Lygaeidae	Hemiptera	0.0979	20.0	30.0	Butler, 1966a
Nysius vinitor	Lygaeidae	Hemiptera	0.1085	20.0	32.0	Kehat and Wyndham, 1972

Append	lix 2a	continued
--------	--------	-----------

	Family	Order	Slone	Temp	range	Reference
Species	Family	Order	Diope	Min	Max	
Oncopeltus fasciatus	Lygaeidae	Hemiptera	0.1145	23.0	31.0	Baldwin and Dingle, 1986
Creontiades dilutus	Miridae	Hemiptera	0.0850	19.0	31.0	Foley and Pyke, 1985
Deraeocoris brevis	Miridae	Hemiptera	0.0987	15.0	32.0	Kim and Riedl, 2005
Dicyphus hesperus	Miridae	Hemiptera	0.0837	14.0	27.0	Gillespie et al., 2004
Lygus desertus	Miridae	Hemiptera	0.0745	20.0	30.0	Butler, 1970a
Lygus elisus	Miridae	Hemiptera	0.0797	10.0	35.0	Bommireddy et al., 2004
Lygus hesperus	Miridae	Hemiptera	0.0673	15.0	35.0	Champlain and Butler, 1967
Lygus lineolaris	Miridae	Hemiptera	0.0889	16.0	28.0	Khattat and Stewart, 1977
Macrolophus pygmaeus	Miridae	Hemiptera	0.0833	15.0	27.5	Perdikis and Lykouressis, 2002
Pseudatomoscelis seriatus	Miridae	Hemiptera	0.0457	23.9	35.0	Gaylor and Sterling, 1975
Rhinacloa forticornis	Miridae	Hemiptera	0.0715	25.0	30.0	Butler, 1970b
Nabis americoferus	Nabidae	Hemiptera	0.1338	15.0	27.0	Braman et al., 1984
Nabis roseipennis	Nabidae	Hemiptera	0.0984	15.0	30.0	Braman et al., 1984
Nabis rufusculus	Nabidae	Hemiptera	0.0912	18.0	30.0	Braman and Yeargan, 1988
Acrosternum hilare	Pentatomidae	Hemiptera	0.1195	18.0	27.0	Simmons and Yeargan, 1988
Biprorulus bibax	Pentatomidae	Hemiptera	0.0925	20.0	32.5	James, 1990
Cermatulus nasalis	Pentatomidae	Hemiptera	0.0970	20.0	30.0	Awan, 1988
Euschistus conspersus	Pentatomidae	Hemiptera	0.0473	21.0	32.0	Toscano and Stern, 1976
Oebalus pugnax	Pentatomidae	Hemiptera	0.0822	21.0	30.0	Naresh and Smith, 1983

.

		0.1	Slama	Temp	range	Reference
Species	Family	Order	Slope	Min	Max	
Oechalia schellenbergii	Pentatomidae	Hemiptera	0.0751	20.0	35.0	Awan, 1988
Podisus acutissimus	Pentatomidae	Hemiptera	0.1156	15.0	30.0	Stoner et al., 1974
Podisus maculiventris	Pentatomidae	Hemiptera	0.0670	15.0	33.0	Drummond et al., 1984
Podisus sagitta	Pentatomidae	Hemiptera	0.0790	19.0	33.0	De Clercq and Degheele, 1992
Phenacoccus herreni	Pseudococcidae	Hemiptera	0.1617	18.0	25.0	Herrera et al., 1989
Phenacoccus manihoti	Pseudococcidae	Hemiptera	0.0742	20.0	27.0	Lema and Herren, 1985
Saccharicoccus sacchari	Pseudococcidae	Hemiptera	0.1488	20.0	30.0	Rae and De'ath, 1991
Psylla pyricola	Psyllidae	Hemiptera	0.0505	10.0	26.7	McMullen and Jong, 1977
Pristhesancus plagipennis	Reduviidae	Hemiptera	0.1073	22.5	30.0	James, 1992
Sinea confusa	Reduviidae	Hemiptera	0.0994	20.0	30.0	Butler, 1966a
Zelus renardii	Reduviidae	Hemiptera	0.0347	25.0	35.0	Ali and Watson, 1978
Zelus socius	Reduviidae	Hemiptera	0.0726	20.0	30.0	Butler, 1966a
Corythucha cydoniae	Tingidae	Hemiptera	0.0407	20.6	37.7	Neal and Douglass, 1990
Corythucha morrilli	Tingidae	Hemiptera	0.1292	20.0	25.6	Stone and Watterson, 1985
Stephanitis pyrioides	Tingidae	Hemiptera	0.0646	20.6	31.7	Neal and Douglass, 1988
Aphelinus asychis	Aphelinidae	Hymenoptera	0.1009	14.0	26.0	Lee and Elliott, 1998
Aphelinus gossypii	Aphelinidae	Hymenoptera	0.0712	15.0	30.0	Tang and Yokomi, 1995
Aphelinus semiflavus	Aphelinidae	Hymenoptera	0.0959	15.6	29.4	Force and Messenger, 1964
Aphelinus sp. nr. Varipes	Aphelinidae	Hymenoptera	0.0791	14.0	30.0	Prinsloo and du Plessis, 2000

,

Appendix 2a	continued
-------------	-----------

	Family	Ordon	Slone	Temp range		Reference
Species		Order	Stope	Min	Max	
Aphelinus spiraecolae	Aphelinidae	Hymenoptera	0.0773	15.0	30.0	Tang and Yokomi, 1995
Aphelinus varipes	Aphelinidae	Hymenoptera	0.0580	20.0	30.0	Röhne, 2002
Aphytis chrysomphali	Aphelinidae	Hymenoptera	0.0651	20.0	30.0	Abdelrahman, 1974
Aphytis melinus	Aphelinidae	Hymenoptera	0.0771	20.0	30.0	Abdelrahman, 1974
Encarsia citrina	Aphelinidae	Hymenoptera	0.0752	17.5	27.5	Matadha et al., 2004
Encarsia perniciosi	Aphelinidae	Hymenoptera	0.0715	20.0	28.0	McClain et al., 1990
Encarsia tricolor	Aphelinidae	Hymenoptera	0.0943	14.0	28.0	Avilla and Copland, 1988
Eretmocerus eremicus	Aphelinidae	Hymenoptera	0.0696	16.3	30.9	Tullett et al., 2004
Aphidius ervi pulcher	Aphidiidae	Hymenoptera	0.0883	10.3	25.9	Campbell and Mackauer, 1975
Aphidius matricariae	Aphidiidae	Hymenoptera	0.0796	11.0	26.0	Miller and Gerth, 1994
Aphidius platensis	Aphidiidae	Hymenoptera	0.0508	15.0	24.0	Hofsvang and Hågvar, 1975
Aphidius smithi	Aphidiidae	Hymenoptera	0.0926	10.3	25.9	Campbell and Mackauer, 1975
Aphidius sonchi	Aphidiidae	Hymenoptera	0.0915	12.5	26.0	Liu and Hughes, 1984
Ephedrus californicus	Aphidiidae	Hymenoptera	0.0629	17.6	26.4	Cohen and Mackauer, 1987
Lysiphlebia japonica	Aphidiidae	Hymenoptera	0.0729	10.0	25.0	Deng and Tsai, 1998
Lysiphlebia mirzai	Aphidiidae	Hymenoptera	0.0860	10.0	25.0	Liu and Tsai, 2002
Lysiphlebus testaceipes	Aphidiidae	Hymenoptera	0.1031	10.0	26.0	Royer et al., 2001
Praon pequodorum	Aphidiidae	Hymenoptera	0.1437	10.3	19.7	Campbell and Mackauer, 1975
Cephalonomia stephanoderis	Bethylidae	Hymenoptera	0.1056	17.0	32.0	Infante et al., 1992

116

			Class	Temp	range	Deference
Species	Family	Order	Slope	Min	Max	
Goniozus legneri	Bethylidae	Hymenoptera	0.1258	17.0	30.0	Butler and Schmidt, 1985
Prorops nasuta	Bethylidae	Hymenoptera	0.0876	18.0	30.0	Infante, 2000
Apanteles fumiferanae	Braconidae	Hymenoptera	0.0946	12.5	26.0	Régnière, 1984
Apanteles glomeratus	Braconidae	Hymenoptera	0.1194	13.9	30.0	Nealis et al., 1984
Apanteles ornigis	Braconidae	Hymenoptera	0.1336	15.0	20.0	Johnson et al., 1979
Apanteles rubecula	Braconidae	Hymenoptera	0.1323	13.9	30.0	Nealis et al., 1984
Apanteles scutellaris	Braconidae	Hymenoptera	0.0566	23.9	35.0	Cardona and Oatman, 1975
Apanteles sp. group ultor	Braconidae	Hymenoptera	0.0525	20.0	29.0	Al-Maliky et al., 1988
Apanteles subandinus	Braconidae	Hymenoptera	0.0915	15.6	32.2	Cardona and Oatman, 1975
Apanteles yakutatensis	Braconidae	Hymenoptera	0.0378	21.0	31.0	Madar and Miller, 1983
Bracon mellitor	Braconidae	Hymenoptera	0.0695	15.6	37.8	Barfield et al., 1977
Chelonus blackburni	Braconidae	Hymenoptera	0.0745	20.0	32.2	Jackson et al., 1978
Chelonus inanitus	Braconidae	Hymenoptera	0.0812	20.0	36.0	Rechav and Orion, 1975
Chelonus sp. nr. curvimaculatus	Braconidae	Hymenoptera	0.0785	20.0	33.0	Hentz et al., 1998
Chelonus texanus	Braconidae	Hymenoptera	0.0858	15.0	35.0	Butler, 1966b
Cotesia marginiventris	Braconidae	Hymenoptera	0.1633	15.0	25.0	Sourakov and Mitchell, 2001
Cotesia melanoscela	Braconidae	Hymenoptera	0.0853	15.0	30.0	Gould and Elkinton, 1990
Cotesia urabae	Braconidae	Hymenoptera	0.0842	15.0	25.0	Allen and Keller, 1991
Dendrosoter sulcatus	Braconidae	Hymenoptera	0.1071	15.0	30.0	Jones and Stephen, 1994

Appendix 2a continued	Appendix	2a	continued	
-----------------------	----------	----	-----------	--

		Ordor	Slope	Temp	range	Reference
Species	Family	Order	Stope	Min	Max	
Diaeretiella rapae	Braconidae	Hymenoptera	0.0615	10.0	30.0	Hayakawa et al., 1990
Dolichogenidea eucalypti	Braconidae	Hymenoptera	0.0959	15.0	25.0	Allen and Keller, 1991
Macrocentrus grandii	Braconidae	Hymenoptera	0.1168	15.0	30.0	Dittrick and Chiang, 1982
Microplitis rufiventris	Braconidae	Hymenoptera	0.0949	15.0	30.0	Hutchison et al., 1986
<i>Opius</i> sp.	Braconidae	Hymenoptera	0.1003	15.6	29.4	Tyron and Poe, 1981
Perilitus coccinellae	Braconidae	Hymenoptera	0.0940	15.6	26.7	Obrycki and Tauber, 1978
Peristenus stygicus	Braconidae	Hymenoptera	0.0424	20.0	30.0	Butler and Wardecker, 1974
Praon palitans	Braconidae	Hymenoptera	0.0757	18.3	26.7	Force and Messenger, 1964
Spathius pallidus	Braconidae	Hymenoptera	0.1246	15.0	30.0	Jones and Stephen, 1994
Trioxys utilis	Braconidae	Hymenoptera	0.0918	15.6	26.7	Force and Messenger, 1964
Dendrocerus niger	Ceraphronidae	Hymenoptera	0.0938	14.8	25.9	Campbell and Mackauer, 1975
Brachymeria lasus	Chalcididae	Hymenoptera	0.0906	18.0	32.0	Mao and Kunimi, 1994
Trichopria atrichomelinae	Diapriidae	Hymenoptera	0.0837	15.0	30.0	O'Neill, 1973
Trichopria popei	Diapriidae	Hymenoptera	0.0548	20.0	30.0	O'Neill, 1973
Acerophagus coccois	Encyrtidae	Hymenoptera	0.0754	20.0	30.0	Herrera et al., 1989
Anagyrus pseudococci	Encyrtidae	Hymenoptera	0.1119	14.0	32.0	Daane et al., 2004
Copidosoma koehleri	Encyrtidae	Hymenoptera	0.0994	15.0	29.0	Horne and Horne, 1991
- Epidinocarsis diversicornis	Encyrtidae	Hymenoptera	0.0698	18.0	30.0	Herrera et al., 1989
Leptomastidea abnormis	Encyrtidae	Hymenoptera	0.1109	18.0	30.0	Tingle and Copland, 1988

		Ondon	Slone	Temp	range	Reference
Species	Family	Order	Slope	Min	Max	
Leptomastix dactylopii	Encyrtidae	Hymenoptera	0.0923	20.0	30.0	Tingle and Copland, 1988
Ooencvrtus anasae	Encyrtidae	Hymenoptera	0.0974	20.8	26.6	Tracy and Nechols, 1987
<i>Ooencyrtus</i> sp. nr. anasae	Encyrtidae	Hymenoptera	0.0948	20.8	26.6	Tracy and Nechols, 1987
Tachinaephagus zealandicus	Encyrtidae	Hymenoptera	0.0968	16.0	25.0	Ferreira de Almeida et al., 2002
Gronotoma micromorpha	Eucoilidae	Hymenoptera	0.0957	15.0	30.0	Abe and Tahara, 2003
Leptopilina boulardi	Eucoilidae	Hymenoptera	0.1108	18.3	26.7	Hertlein, 1986
Aprostocetus vaquitarum	Eulophidae	Hymenoptera	0.0562	20.0	30.0	Ulmer et al., 2006
Chrysocharis parksi	Eulophidae	Hymenoptera	0.0446	21.1	32.2	Christie and Parrella, 1987
Cirrospilus pictus	Eulophidae	Hymenoptera	0.0612	16.0	26.0	Lo Pinto et al., 2005
Cirrospilus sp. nr. lyncus	Eulophidae	Hymenoptera	0.1173	10.0	30.0	Urbaneja et al., 1999
Cirrospilus vittatus	Eulophidae	Hymenoptera	0.0746	15.0	30.0	Urbaneja et al., 2002
Citrostichus phyllocnistoides	Eulophidae	Hymenoptera	0.0746	15.0	30.0	Urbaneja et al., 2003
Colpoclypeus florus	Eulophidae	Hymenoptera	0.0800	15.0	25.0	Milonas and Savopoulou-Soultani,
						2000b
Diglyphus intermedius	Eulophidae	Hymenoptera	0.0841	15.5	26.7	Patel and Schuster, 1983
Diglyphus isaea	Eulophidae	Hymenoptera	0.0932	15.0	25.0	Minkenberg, 1989
Edovum puttleri	Eulophidae	Hymenoptera	0.0874	15.6	29.4	Obrycki et al., 1987
Hyssopus thymus	Eulophidae	Hymenoptera	0.1141	16.0	28.0	Syme, 1972
Pediobius furvus	Eulophidae	Hymenoptera	0.0656	20.0	30.0	Duale, 2005

- ----

			Slama	Temp	range	Pafarance
Species	Family	Urder	Slope	Min	Max	
Pnigalio soemius	Eulophidae	Hymenoptera	0.1131	10.0	30.0	Bernardo et al., 2006
Quadrastichus haitiensis	Eulophidae	Hymenoptera	0.1147	20.0	30.0	Castillo et al., 2006
– Thripobius semiluteus	Eulophidae	Hymenoptera	0.0824	15.0	30.0	Bernardo et al., 2005
Solenopsis invicta	Formicidae	Hymenoptera	0.0837	24.5	35.0	Porter, 1988
Campoletis sonorensis	Ichneumonidae	Hymenoptera	0.0520	20.0	30.0	Isenhour, 1986
Diadromus collaris	Ichneumonidae	Hymenoptera	0.0732	15.0	30.0	Liu et al., 2001
Hyposoter exiguae	Ichneumonidae	Hymenoptera	0.0588	15.5	32.2	Browning and Oatman, 1981
Venturia canescens	Ichneumonidae	Hymenoptera	0.1023	15.0	30.0	Eliopoulos and Stathas, 2003
Megachile rotundata	Megachilidae	Hymenoptera	0.1220	22.0	29.0	Kemp and Bosch, 2000
Osmia lignaria	Megachilidae	Hymenoptera	0.0598	18.0	29.0	Bosch and Kemp, 2000
Anagrus atomus	Mymaridae	Hymenoptera	0.0904	16.0	24.0	Agboka et al., 2004
Anagrus giraulti	Mymaridae	Hymenoptera	0.0626	20.0	32.0	Meyerdirk and Moratorio, 1987
Anaphes nitens	Mymaridae	Hymenoptera	0.1342	10.4	20.1	Santolamazza-Carbone et al., 2006
Gonatocerus ashmeadi	Mymaridae	Hymenoptera	0.0860	15.0	30.0	Pilkington and Hoddle, 2006
Gonatocerus tuberculifemur	Mymaridae	Hymenoptera	0.0337	24.5	27.5	Virla et al., 2005
Patasson lameerei	Mymaridae	Hymenoptera	0.1250	7.2	26.7	Leibee et al., 1979
Stethynium sp.	Mymaridae	Hymenoptera	0.0961	15.0	25.0	Jacob et al., 2006
Amitus fuscipennis	Platygastridae	Hymenoptera	0.0729	15.0	30.0	De Vis et al., 2002
Anisopteromalus calandrae	Pteromalidae	Hymenoptera	0.1291	20.0	30.0	Smith, 1992

		0.1	Clana	Temp	range	Reference
Species	Family	Order	Stope	Min	Max	Kelerence
Asaphes lucens	Pteromalidae	Hymenoptera	0.0924	14.8	25.9	Campbell and Mackauer, 1975
Catolaccus grandis	Pteromalidae	Hymenoptera	0.0753	18.0	33.0	Morales-Ramos and Cate, 1993
Dibrachys boarmiae	Pteromalidae	Hymenoptera	0.0815	15.0	32.5	Mehrnejad, 2003
Dinotiscus dendroctoni	Pteromalidae	Hymenoptera	0.1240	15.0	25.0	Jones and Stephen, 1994
Heydenia unica	Pteromalidae	Hymenoptera	0.0783	15.0	30.0	Jones and Stephen, 1994
Muscidifurax raptor	Pteromalidae	Hymenoptera	0.0784	15.6	32.2	Ables et al., 1976
Muscidifurax raptorellus	Pteromalidae	Hymenoptera	0.1039	14.8	30.9	Lysyk, 2001a
Muscidifurax zaraptor	Pteromalidae	Hymenoptera	0.1494	15.2	29.8	Lysyk, 2001b
Nasonia vitripennis	Pteromalidae	Hymenoptera	0.0893	15.0	30.0	Grassberger and Frank, 2003
Pteromalus venustus	Pteromalidae	Hymenoptera	0.0855	20.0	30.0	Whitfield and Richards, 1985
Spalangia cameroni	Pteromalidae	Hymenoptera	0.0917	20.0	30.0	Mann et al., 1990
Spalangia endius	Pteromalidae	Hymenoptera	0.0965	18.0	32.2	Ables et al., 1976
Spalangia gemina	Pteromalidae	Hymenoptera	0.1364	15.0	30.0	Geden, 1997
Trichomalopsis sarcophagae	Pteromalidae	Hymenoptera	0.1191	15.0	30.0	Lysyk, 1998
Urolepis rufipes	Pteromalidae	Hymenoptera	0.1081	20.0	30.0	Smith and Rutz, 1986
Telenomus chloropus	Scelionidae	Hymenoptera	0.1082	15.0	30.0	Orr et al., 1985
Telenomus chrysopae	Scelionidae	Hymenoptera	0.1147	15.6	26.7	Ruberson et al., 1995
Telenomus cyamophylax	Scelionidae	Hymenoptera	0.0937	15.0	30.0	Foerster and Butnariu, 2004
Telenomus lobatus	Scelionidae	Hymenoptera	0.1199	15.6	26.7	Ruberson et al., 1995

Appendix	2a	continued
----------	----	-----------

•

·		0.1	Sland	Temp	range	Peference
Species	Family	Order	Slope	Min	Max	Kelerence
Telenomus reynoldsi	Scelionidae	Hymenoptera	0.0992	18.0	33.0	Cave and Gaylor, 1988
Telenomus utahensis	Scelionidae	Hymenoptera	0.0738	20.0	35.0	Jubb and Watson, 1971
Trissolcus basalis	Scelionidae	Hymenoptera	0.0851	18.3	32.2	Powell et al., 1981
Trissolcus brochymenae	Scelionidae	Hymenoptera	0.0798	17.0	32.0	Torres et al., 2002
Trissolcus euschisti	Scelionidae	Hymenoptera	0.1005	18.0	30.0	Yeargan, 1983
Trissolcus oenone	Scelionidae	Hymenoptera	0.1196	15.0	30.0	James and Warren, 1991
Lathromeris ovicida	Trichogrammatidae	Hymenoptera	0.1256	18.0	30.0	Chabi-Olaye et al., 2004
Trichogramma acacioi	Trichogrammatidae	Hymenoptera	0.0848	15.0	35.0	Pratissoli et al., 2004
Trichogramma bournieri	Trichogrammatidae	Hymenoptera	0.0441	18.0	34.0	Haile et al., 2002
Trichogramma chilonis	Trichogrammatidae	Hymenoptera	0.1050	13.0	34.0	Haile et al., 2002
Trichogramma evanescens	Trichogrammatidae	Hymenoptera	0.1032	13.0	34.0	Haile et al., 2002
Trichogramma exiguum	Trichogrammatidae	Hymenoptera	0.1050	15.0	30.0	Harrison et al., 1985
Trichogramma minutum	Trichogrammatidae	Hymenoptera	0.1074	14.0	27.0	Lawrence et al., 1985
Trichogramma ostriniae	Trichogrammatidae	Hymenoptera	0.1139	17.0	24.0	Wang et al., 2004
Trichogramma pretiosum	Trichogrammatidae	Hymenoptera	0.0977	18.0	32.0	Pratissoli and Parra, 2000
Trichogramma sp. nr. mwanzai	Trichogrammatidae	Hymenoptera	0.0498	18.0	34.0	Haile et al., 2002
Uscana mukerjii	Trichogrammatidae	Hymenoptera	0.0552	20.0	33.0	Kapila and Agarwal, 1995
Acrolepiopsis assectella	Acrolpiidae	Lepidoptera	0.1077	12.0	20.0	Åsman, 2001
Hyphantria cunea	Arctiidae	Lepidoptera	0.0932	18.0	27.0	Gomi et al., 2003

Appendix 2a continued	Appendix	2a	continued	
-----------------------	----------	----	-----------	--

_

			<u> </u>	Temp	range	Defense
Species	Family	Order	Slope	Min	Max	
Carposina sasakii	Carposinidae	Lepidoptera	0.0813	15.5	30.0	Kim et al., 2001
Cochylis hospes	Cochylidae	Lepidoptera	0.0616	22.0	28.0	Barker and Enz, 1993
Chilo sacchariphagus	Crambidae	Lepidoptera	0.1051	17.0	30.0	Goebel, 2006
Crambus trisectus	Crambidae	Lepidoptera	0.0642	21.1	32.2	Banerjee, 1969
Aproaerema modicella	Gelechiidae	Lepidoptera	0.0395	25.0	35.0	Shanower et al., 1993a
Keiferia lycopersicella	Gelechiidae	Lepidoptera	0.0845	14.0	35.0	Lin and Trumble, 1985
Pectinophora gossypiella	Gelechiidae	Lepidoptera	0.0928	20.0	32.0	Raina et al., 1977
Phthorimaea operculella	Gelechiidae	Lepidoptera	0.0970	15.0	32.0	Horne and Horne, 1991
Sitotroga cerealella	Gelechiidae	Lepidoptera	0.0829	20.0	30.0	Hansen et al., 2004
Lithocolletis blancardella	Gracillariidae	Lepidoptera	0.1320	10.0	20.0	Johnson et al., 1979
Phyllonorycter blancardella	Gracillariidae	Lepidoptera	0.0735	15.0	25.0	Trimble, 1994
Lymantria dispar	Lymantriidae	Lepidoptera	0.0725	5.0	30.0	Gray et al., 1995
Bedellia somnulentella	Lyonetiidae	Lepidoptera	0.0584	18.3	29.4	Parrella and Kok, 1977
Agrotis ipsilon	Noctuidae	Lepidoptera	0.0944	18.3	26.7	Luckmann et al., 1976
Anticarsia gemmatalis	Noctuidae	Lepidoptera	0.0875	15.6	32.2	Johnson et al., 1983
Calophasia lunula	Noctuidae	Lepidoptera	0.1004	18.0	30.0	McClay and Hughes, 1995
Copitarsia decolora	Noctuidae	Lepidoptera	0.1054	· 9.7	29.5	Gould et al., 2005
Eudocima salaminia	Noctuidae	Lepidoptera	0.1336	15.0	27.0	Sands et al., 1991
Heliothis virescens	Noctuidae	Lepidoptera	0.0990	17.5	32.0	Butler and Hamilton, 1976

•

Appendix	2a	continued
----------	----	-----------

		Ouder	Slope	Temp range		Reference
Species	Family	Order	Slope	Min	Max	
Heliothis zea	Noctuidae	Lepidoptera	0.0879	17.5	34.0	Sharpe et al., 1981
Lacanobia subjuncta	Noctuidae	Lepidoptera	0.1056	20.0	30.0	Doerr et al., 2002
Mamestra configurata	Noctuidae	Lepidoptera	0.0900	8.0	28.0	Bailey, 1976
Mythimna convecta	Noctuidae	Lepidoptera	0.0714	15.0	33.0	Smith, 1984
Papaipema nebris	Noctuidae	Lepidoptera	0.0790	12.8	23.9	Levine, 1983
Peridroma margaritosa	Noctuidae	Lepidoptera	0.0799	15.0	32.0	Snyder, 1954
Peridroma saucia	Noctuidae	Lepidoptera	0.0691	10.0	30.0	Shields, 1983
Plathypena scabra	Noctuidae	Lepidoptera	0.0757	15.6	29.4	Hammond et al., 1979
Pseudaletia unipuncta	Noctuidae	Lepidoptera	0.0994	13.0	29.0	Guppy, 1969
Sesamia calamistis	Noctuidae	Lepidoptera	0.0791	20.0	35.0	Shanower et al., 1993b
Sesamia nonagrioides	Noctuidae	Lepidoptera	0.0610	20.0	30.0	Fantinou et al., 2003
Simyra henrici	Noctuidae	Lepidoptera	0.0684	18.3	32.2	Decker and Maddox, 1971
Spodoptera exigua	Noctuidae	Lepidoptera	0.0965	18.0	33.0	Ali and Gaylor, 1992
Spodoptera frugiperda	Noctuidae	Lepidoptera	0.0764	21.0	33.0	Ali et al., 1990
Spodoptera litura	Noctuidae	Lepidoptera	0.0527	20.0	35.0	Ranga Rao et al., 1989
Trichoplusia ni	Noctuidae	Lepidoptera	0.1155	16.6	27.2	Toba et al., 1973
Uraba lugens	Noctuidae	Lepidoptera	0.1277	15.0	25.0	Allen and Keller, 1991
Danaus chrysippus	Nymphalidae	Lepidoptera	0.0991	19.0	29.0	Zalucki, 1982
Danaus plexippus	Nymphalidae	Lepidoptera	0.1273	17.0	25.0	Zalucki, 1982

App	pendix	2a	continued
-----	--------	-----------	-----------

		~ .	CI	Temp range		Deference
Species	Family	Order	Stope	Min	Max	Kelerence
Ectomyelois ceratoniae	Phycitidae	Lepidoptera	0.0736	20.0	30.0	Cox, 1976
Ephestia calidella	Phycitidae	Lepidoptera	0.1343	15.0	30.0	Cox, 1974
Ephestia figulilella	Phycitidae	Lepidoptera	0.0911	17.5	30.0	Cox, 1974
Catopsilia pomona	Pieridae	Lepidoptera	0.1039	21.0	28.2	Jones et al., 1987
Eurema brigitta	Pieridae	Lepidoptera	0.0751	19.0	32.0	Jones et al., 1987
Eurema hecabe	Pieridae	Lepidoptera	0.0862	18.5	29.0	Jones et al., 1987
Eurema herla	Pieridae	Lepidoptera	0.1144	19.0	28.0	Jones et al., 1987
Eurema laeta	Pieridae	Lepidoptera	0.0795	19.0	32.5	Jones et al., 1987
Eurema smilax	Pieridae	Lepidoptera	0.0803	17.9	32.4	Jones et al., 1987
Pieris brassicae	Pieridae	Lepidoptera	0.0626	20.0	30.0	David and Gardiner, 1962a, b
Homadaula anisocentra	Plutellidae	Lepidoptera	0.1013	19.0	30.0	Bastian and Hart, 1991
Plutella xylostella	Plutellidae	Lepidoptera	0.1176	8.0	28.0	Liu et al., 2002
Anagasta kuehniella	Pyralidae	Lepidoptera	0.0711	20.0	27.5	Siddiqui and Barlow, 1973
Cadra cautella	Pyralidae	Lepidoptera	0.1015	15.5	30.0	Burges and Haskins, 1964
Corcyra cephalonica	Pyralidae	Lepidoptera	0.1034	17.5	35.0	Cox et al., 1981
Diaphania nitidalis	Pyralidae	Lepidoptera	0.1038	15.5	29.4	Elsey, 1980
Diatraea grandiosella	Pyralidae	Lepidoptera	0.0708	18.3	32.2	Whitworth and Poston, 1979
Diatraea lineolata	Pyralidae	Lepidoptera	0.0573	22.0	31.0	Rodríguez-del-Bosque et al., 1989
Diatraea saccharalis	Pyralidae	Lepidoptera	0.0783	22.0	30.0	King et al., 1975

Appendix	2a	continued
----------	----	-----------

	Family	Ordor	Slone	Temp range		Reference
Species		Order	Slope	Min	Max	
Dioryctria amatella	Pyralidae	Lepidoptera	0.1320	15.0	30.0	Hanula et al., 1984, 1987
Eldana saccharina	Pyralidae	Lepidoptera	0.0795	30.0	35.0	Shanower et al., 1993
Ephestia kuehniella	Pyralidae	Lepidoptera	0.0859	15.0	25.0	Jacob and Cox, 1977
Euzopherodes vapidella	Pyralidae	Lepidoptera	0.0607	20.0	33.0	Ashamo and Odeyemi, 2001
Evergestis rimosalis	Pyralidae	Lepidoptera	0.0878	15.0	35.0	Mays and Kok, 1997
Herpetogramma licarsisalis	Pyralidae	Lepidoptera	0.1149	15.0	25.0	Jensen and Cameron, 2004
Ostrinia nubilalis	Pyralidae	Lepidoptera	0.1119	12.8	29.4	Matteson and Decker, 1965
Plodia interpunctella	Pyralidae	Lepidoptera	0.0953	17.0	32.0	Na and Ryoo, 2000
Pararge aegeria	Satyridae	Lepidoptera	0.0783	13.0	25.0	Nylin et al., 1993
Dasyses rugosella	Tineidae	Lepidoptera	0.0937	20.0	33.0	Ashamo and Odeyemi, 2004
Adoxophyes orana	Tortricidae	Lepidoptera	0.0809	14.0	25.0	Milonas and Savopoulou-Soultani,
						2000a
Ancylis comptana	Tortricidae	Lepidoptera	0.0975	14.0	30.0	Gabriel and Obrycki, 1990
Argyrotaenia velutinana	Tortricidae	Lepidoptera	0.1285	10.0	25.0	Hawthorne et al., 1988
Choristoneura occidentalis	Tortricidae	Lepidoptera	0.1183	10.0	25.0	Reichenbach and Stairs, 1984
Choristoneura rosaceana	Tortricidae	Lepidoptera	0.1203	14.0	26.0	Gangavalli and AliNiazee, 1985
Crocidosema plebejana	Tortricidae	Lepidoptera	0.1060	14.0	31.0	Hamilton and Zalucki, 1991
Cydia pomonella	Tortricidae	Lepidoptera	0.0902	14.8	29.6	Howell and Neven, 2000
Epiphyas postvittana	Tortricidae	Lepidoptera	0.1120	11.5	25.0	Danthanarayana, 1975

	Family			Temp range		Deference
Species		Order	Slope	Min	Max	Kelefence
Grapholitha molesta	Tortricidae	Lepidoptera	0.0385	18.3	35.0	Chaudhry, 1955
Lobesia botrana	Tortricidae	Lepidoptera	0.1216	14.0	26.0	Briere and Pracros, 1998
Merophyas divulsana	Tortricidae	Lepidoptera	0.1083	11.3	27.5	Allsopp et al., 1983
Platynota flavedana	Tortricidae	Lepidoptera	0.0798	15.6	29.4	David et al., 1989
Platynota idaeusalis	Tortricidae	Lepidoptera	0.0738	15.6	29.4	David et al., 1989
Rhyacionia frustrana	Tortricidae	Lepidoptera	0.0948	14.0	34.0	Haugen and Stephen, 1984
Zeiraphera canadensis	Tortricidae	Lepidoptera	0.0707	12.0	28.0	Régnière and Turgeon, 1989
Harrisina brillians	Zygaenidae	Lepidoptera	0.1449	17.9	28.5	Roltsch et al., 1990
Anomalochrysa frater	Chrysopidae	Neuroptera	0.0951	11.4	28.0	Tauber at al., 1992
Anomalochrysa maclachlani	Chrysopidae	Neuroptera	0.1269	15.6	23.4	Tauber et al., 1990
Chrysopa carnea	Chrysopidae	Neuroptera	0.0642	20.0	32.2	Butler and Ritchie, 1970
Chrysopa harrisii	Chrysopidae	Neuroptera	0.1092	18.3	26.7	Tauber and Tauber, 1974
Chrysopa oculata	Chrysopidae	Neuroptera	0.1033	15.6	26.7	Tauber et al., 1987
Hemerobius pacificus	Hemerobiidae	Neuroptera	0.0589	13.3	26.7	Neuenschwander, 1975
Chorthippus brunneus	Acrididae	Orthoptera	0.0552	25.0	40.0	Walters and Hassall, 2006
Chortoicetes terminifera	Acrididae	Orthoptera	0.0904	25.9	36.0	Gregg, 1983
Melanoplus femurrubrum	Acrididae	Orthoptera	0.0707	26.5	38.0	Bellinger and Pienkowski, 1989
Melanoplus sanguinipes	Acrididae	Orthoptera	0.0908	21.0	36.0	Fielding, 2004
Gryllulus domesticus	Gryllidae	Orthoptera	0.1392	23.0	35.0	Busvine, 1955

	Family Order	Onder	Slone	Temp range		Reference
Species		Slope	Min	Max		
Liposcelis bostrychophila	Liposcelididae	Psocoptera	0.0709	20.0	32.5	Wang et al., 2000
Ctenocephalides felis	Pulicidae	Siphonaptera	0.1091	13.0	32.0	Silverman et al., 1981
Spilopsyllus cuniculi	Pulicidae	Siphonaptera	0.0991	15.0	30.0	Cooke and Skewes, 1988
Gynaikothrips ficorum	Phlaeothripidae	Thysanoptera	0.0764	15.0	30.0	Paine, 1992
Frankliniella fusca	Thripidae	Thysanoptera	0.0511	20.0	35.0	Lowry et al., 1992
Frankliniella occidentalis	Thripidae	Thysanoptera	0.0796	15.0	30.0	Gitonga et al., 2002
Megalurothrips sjostedti	Thripidae	Thysanoptera	0.0842	15.0	30.0	Gitonga et al., 2002
Thrips major	Thripidae	Thysanoptera	0.0947	12.0	25.0	Stacey and Fellows, 2002
Thrips obscuratus	Thripidae	Thysanoptera	0.0845	10.0	27.0	Teulon and Penman, 1991
Thrips palmi	Thripidae	Thysanoptera	0.0900	15.0	30.0	McDonald et al., 1999
Thrips tabaci	Thripidae	Thysanoptera	0.0892	12.0	28.0	Stacey and Fellows, 2002

Appendix 2a continued

REFERENCES

- Abdelrahman, I. (1974). Growth, development and innate capacity for increase in Aphytis chrysomphali Mercet and A. melinus DeBach, parasites of California red scale, Aonidiella aurantii (Mask.), in relation to temperature. Australian Journal of Zoology 22, 213-230.
- Abdelsamad, R. M., Elhag, E. A. and Eltayeb, Y. M. (1988). Studies on the phenology of *Tribolium castaneum* (Herbst) (Coleoptera: Tenebrionidae) in the Sudan Gezira. *Journal of Stored Products Research* 24, 101-105.
- Abe, Y. and Tahara, M. (2003). Daily progeny production and thermal influence on development and adult longevity of the leafminer parasitoid, *Gronotoma micromorpha* (Hym., Eucoilidae). Journal of Applied Entomology 127, 477-480.
- Ables, J. R., Shepard, M. and Holman, J. R. (1976). Development of the parasitoids Spalangia endius and Muscidifurax raptor in relation to constant and variable temperature: simulation and validation. Environmental Entomology 5, 329-332.
- Acreman, S. J. and Dixon, A. F. G. (1989). The effects of temperature and host quality on the rate of increase of the grain aphid (*Sitobion avenae*) on wheat. *Annals of Applied Biology* 115, 3-9.
- Agboka, K., Tounou, A. K., Al-Moaalem, R., Poehling, H.-M., Raupach, K. and Borgemeister, C. (2004). Life-table study of *Anagrus atomus*, an egg parasitoid of the green leafhopper *Empoasca decipiens*, at four different temperatures. *BioControl* 49, 261-275.
- Al-Maliky, S. K., Al-Izzi, M. A. J. and Jabbo, N. F. (1988). Effects of temperature and photoperiod on the development and oviposition of *Apanteles* sp. group *ultor* (Hym.: Braconidae), a larval parasite of the carob moth *Ectomyelois ceratoniae* (Lep.: Pyralidae). *Entomophaga* 33, 193-200.
- Ali, A. and Gaylor, M. J. (1992). Effects of temperature and larval diet on development of the beet armyworm (Lepidoptera: Noctuidae). *Environmental Entomology* 21, 780-786.
- Ali, A., Luttrell, R. G. and Schneider, J. C. (1990). Effects of temperature and larval diet on development of the fall armyworm (Lepidoptera: Noctuidae). Annals of the Entomological Society of America 83, 725-733.
- Ali, A.-S. A. and Watson, T. F. (1978). Effect of temperature on development and survival of Zelus renardii. Environmental Entomology 7, 889-890.
- Allen, G. R. and Keller, M. A. (1991). Uraba lugens (Lepidoptera: Noctuidae) and its parasitoids (Hymenoptera: Braconidae): temperature, host size, and development. *Environmental Entomology* 20, 458-469.
- Allsopp, P. G. (1981). Development, longevity and fecundity of the false wireworms *Pterohelaeus darlingensis* and *P. alternatus* (Coleoptera: Tenebrionidae) I. Effect of constant temperature. *Australian Journal of Zoology* 29, 605-619.
- Allsopp, P. G., Cowie, B. A. and Franzmann, B. A. (1983). Development of immature stages of the lucerne leafroller *Merophyas divulsana* (Walker) (Lepidoptera: Tortricidae) under constant temperatures and on several larval diets. *Journal of the Australian Entomological Society* 22, 287-291.

- Alto, B. W. and Juliano, S. A. (2001). Precipitation and temperature effects on populations of Aedes albopictus (Diptera: Culicidae): implications for range expansion. Journal of Medical Entomology 38, 646-656.
- Amos, T. G. (1968). Some laboratory observations on the rates of development, mortality and oviposition of *Dermetes frischii* (Kug.) (Col., Dermestidae). *Journal of Stored Products Research* 4, 103-117.
- Amoudi, M. A., Diab, F. M. and Abou-Fannah, S. S. M. (1994). Development rate and mortality of immature *Parasarcophaga (Liopygia) ruficornis* (Diptera: Sarcophagidae) at constant laboratory temperatures. *Journal of Medical Entomology* 31, 168-170.
- Anderson, G. S. (2000). Minimum and maximum development rate of some forensically important Calliphoridae (Diptera). *Journal of Forensic Sciences* **45**, 824-832.
- Ankersmit, G. W., Dijkman, H., Keuning, N. J., Mertens, H., Sins, A. and Tacoma, H.
 M. (1986). Episyrphus balteatus as a predator of the aphid Sitobion avenae on winter wheat. Entomologia Experimentalis et Applicata 42, 271-277.
- Arbogast, R. T. (1975). Population growth of *Xylocoris flavipes*: influence of temperature and humidity. *Environmental Entomology* **4**, 825-831.
- Archer, T. L. and Strong, R. G. (1975). Comparative studies on the biologies of six species of Trogoderma: T. glabrum. Annals of the Entomological Society of America 68, 105-114.
- Ash, N. and Greenberg, B. (1975). Developmental temperature responses of the sibling species Phaenicia sericata and Phaenicia pallescens. Annals of the Entomological Society of America 68, 197-200.
- Ashamo, M. O. and Odeyemi, O. O. (2001). Effect of rearing temperature on the fecundity and development of *Euzopherodes vapidella* Mann (Lepidoptera: Pyralidae), a pest of stored yam. *Journal of Stored Products Research* **37**, 253-261.
- Ashamo, M. O. and Odeyemi, O. O. (2004). Effect of temperature on the development of the yam moth, *Dasyses rugosella* Stainton (Lepidoptera: Tineidae). *Journal of Stored Products Research* 40, 95-102.
- Åsman, K. (2001). Effect of temperature on development and activity periods of the leek moth *Acrolepiopsis assectella* Zell. (Lep., Acrolepiidae). *Journal of Applied Entomology* 125, 361-364.
- Avilla, J. and Copland, M. J. W. (1988). Development rate, number of mature oocytes at emergence and adult size of *Encarsia tricolor* at constant and variable temperatures. *Entomophaga* 33, 289-298.
- Awan, M. S. (1988). Development and mating behaviour of Oechalia schellenbergii (Guérin-Méneville) and Cermatulus nasalis (Westwood) (Hemiptera: Pentatomidae). Journal of the Australian Entomological Society 27, 183-187.
- Ba M'hamed, T. and Chemseddine, M. (2001). Assessment of temperature effects on the development and fecundity of *Pullus mediterraneus* (Col., Coccinellidae) and consumption of *Saissetia oleae* eggs (Hom., Coccoida). *Journal of Applied Entomology* 125, 527-531.

- Bailey, C. G. (1976). Temperature effects on non-diapause development in *Mamestra* configurata (Lepidoptera: Noctuidae). The Canadian Entomologist 108, 1339-1344.
- Baldwin, J. D. and Dingle, H. (1986). Geographic variation in the effects of temperature on life-history traits in the large milkweed bug Oncopeltus fasciatus. Oecologia 69, 64-71.
- Banerjee, A. C. (1969). Development of *Crambus trisectus* at controlled constant temperatures in the laboratory. *Journal of Economic Entomology* 62, 703-705.
- Barfield, C. S., Sharpe, P. J. H. and Bottrell, D. G. (1977). A temperature-driven developmental model for the parasite *Bracon mellitor* (Hymenoptera: Braconidae). *The Canadian Entomologist* 109, 1503-1514.
- Barker, J. F. and Enz, J. W. (1993). Development of laboratory reared banded sunflower moth, *Cochylis hospes* Walsingham (Lepidoptera: Cochylidae), in relation to temperature. *Journal of the Kansas Entomological Society* 66, 420-426.
- Barnes, J. K. (1976). Effect of temperature on development, survival, oviposition, and diapause in laboratory populations of *Sepedon fuscipennis* (Diptera: Sciomyzidae). *Environmental Entomology* 5, 1089-1098.
- Bastian, R. A. and Hart, E. R. (1991). Temperature effects on developmental parameters of the mimosa webworm (Lepidoptera: Plutellidae). *Environmental Entomology* 20, 1141-1148.
- Bateman, M. A. (1967). Adaptations to temperature in geographic races of the Queensland fruit fly, *Dacus (Strumeta) tryoni. Australian Journal of Zoology* 15, 1141-1161.
- Baxendale, F. P., Teetes, G. L., Sharpe, P. J. H. and Wu, H. (1984). Temperaturedependent model for development of nondiapausing sorghum midges (Diptera: Cecidomyiidae). *Environmental Entomology* 13, 1572-1576.
- Bayoh, M. N. and Lindsay, S. W. (2003). Effect of temperature on the development of the aquatic stages of *Anopheles gambiae* sensu stricto (Diptera: Culicidae). *Bulletin of Entomological Research* 93, 375-381.
- Bell, R. J. and Watters, F. L. (1982). Environmental factors influencing the development and rate of increase of *Prostephanus truncatus* (Horn) (Coleoptera: Bostrichidae) on stored maize. *Journal of Stored Products Research* 18, 131-142.
- Bellinger, R. G. and Pienkowski, R. L. (1989). Polymorphic development in relation to the life history of *Melanoplus femurrubrum* (Orthoptera: Acrididae). Annals of the Entomological Society of America 82, 166-171.
- Benson, E. P., Zungoli, P. A. and Smith, L. M. (1994). Comparison of developmental rates of two separate populations of *Periplaneta fuliginosa* (Dictyoptera: Blattidae) and equations describing development, preoviposition, and oviposition. *Environmental Entomology* 23, 979-986.
- Bentz, B. J., Logan, J. A. and Amman, G. D. (1991). Temperature-dependent development of the mountain pine beetle (Coleoptera: Scolytidae) and simulation of its phenology. *The Canadian Entomologist* 123, 1083-1094.
- Bernardo, U., Pedata, P. A. and Viggiani, G. (2006). Life history of *Pnigalio soemius* (Walker) (Hymenoptera: Eulophidae) and its impact on a leafminer host through

parasitization, destructive host-feeding and host-stinging behaviour. *Biological* Control 37, 98-107.

- Bernardo, U., Viggiani, G. and Sasso, R. (2005). Biological parameters of Thripobius semiluteus Bouček (Hym., Eulophidae), a larval endoparasitoid of Heliothrips haemorrhoidalis (Bouché) (Thysan., Thripidae). Journal of Applied Entomology 129, 250-257.
- Berryman, A. A. and Stark, R. W. (1962). Studies on the effects of temperature on the development of *Ips confusus* using radiographic techniques. *Ecology* 43, 722-726.
- Birch, L. C. (1945). The influence of temperature on the development of the different stages of Calandra oryzae L. and Rhizopertha dominica Fab. (Coleoptera). Australian Journal of Experimental Biology and Medicinal Science 23, 29-35.
- Blommers, L. H. M., Helsen, H. H. M. and Vaal, F. W. N. M. (2004). Life history data of the rosy apple aphid *Dysaphis plantaginea* (Pass.) (Homopt., Aphididae) on plantain and as migrant to apple. *Journal of Pest Science* 77, 155-163.
- Blumberg, D. and Swirski, E. (1982). Comparative biological studies on two species of predatory beetles of the genus *Cybocephalus* (Col.: Cybocephalidae). *Entomophaga* 27, 67-76.
- Bommireddy, P. L., Parajulee, M. N. and Porter, D. O. (2004). Influence of constant temperatures on life history of immature *Lygus elisus* (Hemiptera: Miridae). *Environmental Entomology* 33, 1549-1553.
- Bosch, J. and Kemp, W. P. (2000). Development and emergence of the orchard pollinator Osmia lignaria (Hymenoptera: Megachilidae). Environmental Entomology 29, 8-13.
- Braman, S. K., Sloderbeck, P. E. and Yeargan, K. V. (1984). Effects of temperature on the development and survival of Nabis americoferus and N. roseipennis (Hemiptera: Nabidae). Annals of the Entomological Society of America 77, 592-596.
- Braman, S. K. and Yeargan, K. V. (1988). Comparison of development and reproductive rates of *Nabis americoferus*, *N. roseipennis*, and *N. rufusculus* (Hemiptera: Nabidae). *Annals of the Entomological Society of America* **81**, 923-930.
- Briere, J.-F. and Pracros, P. (1998). Comparison of temperature-dependent growth models with the development of *Lobesia botrana* (Lepidoptera: Tortricidae). *Environmental Entomology* 27, 94-101.
- Brown, H. D. (1972). On the biology of Lioadalia flavomaculata (Deg.) (Col., Coccinellidae), a predator of the wheat aphid (Schizaphis graminum (Rond.)) in South Africa. Bulletin of Entomological Research 61, 673-679.
- Browning, H. W. and Oatman, E. R. (1981). Effects of different constant temperatures on adult longevity, development time, and progeny production of *Hyposoter exiguae* (Hymenoptera: Ichneumonidae). Annals of the Entomological Society of America 74, 79-82.
- Burges, H. D. and Cammell, M. E. (1964). Effect of temperature and humidity on *Trogoderma anthrenoides* (Sharp) (Coleoptera, Dermestidae) and comparisons with related species. *Bulletin of Entomological Research* 55, 313-325.

- Burges, H. D. and Haskins, K. P. F. (1964). Life-cycle of the tropical warehouse moth, Cadra cautella (Wlk.), at controlled temperatures and humidities. Bulletin of Entomological Research 55, 775-789.
- **Busvine, J. R.** (1955). Simple methods for rearing the cricket (*Gryllulus domesticus* L.) with some observations on speed of development at different temperatures. *Proceedings of the Royal Entomological Society of London, A* **30**, 15-18.
- Butler, G. D. (1966a). Development of several predaceous Hemiptera in relation to temperature. Journal of Economic Entomology 59, 1306-1307.
- Butler, G. D. (1966b). Development of the beet armyworm and its parasite *Chelonus texanus* in relation to temperature. *Journal of Economic Entomology* **59**, 1324-1327.
- Butler, G. D. (1967). Development of the banded-wing whitefly at different temperatures. Journal of Economic Entomology 60, 877-878.
- Butler, G. D. (1970a). Temperature and the development of egg and nymphal stages of Lygus desertus. Journal of Economic Entomology 63, 1994-1995.
- Butler, G. D. (1970b). Temperature and the development of Spanagonicus albofasciatus and Rhinacloa forticornis. Journal of Economic Entomology 63, 669-671.
- Butler, G. D., Bryan, D. E. and Jackson, C. G. (1968). Development of the salt-marsh caterpillar parasite, *Exorista mella* at controlled constant and variable temperatures in the laboratory. *Journal of Economic Entomology* **61**, 161-162.
- Butler, G. D. and Hamilton, A. G. (1976). Development time of *Heliothis virescens* in relation to constant temperature. *Environmental Entomology* 5, 759-760.
- Butler, G. D. and Ritchie, P. L. (1967). The life cycle of Hypera brunneipennis and a parasite, Bathyplectes curculionis, in relation to temperature. Journal of Economic Entomology 60, 1239-1241.
- Butler, G. D. and Ritchie, P. L. (1970). Development of Chrysopa carnea at constant and fluctuating temperatures. Journal of Economic Entomology 63, 1028-1031.
- Butler, G. D. and Schmidt, K. M. (1985). Goniozus legneri (Hymenoptera: Bethylidae): development, oviposition, and longevity in relation to temperature. Annals of the Entomological Society of America 78, 373-375.
- Butler, G. D. and Wardecker, A. L. (1973). Collops vittatus (Coleoptera: Malachiidae): development at constant temperatures. Annals of the Entomological Society of America 66, 1168-1170.
- Butler, G. D. and Wardecker, A. L. (1974). Development of *Peristenus stygicus*, a parasite of *Lygus hesperus*, in relation to temperature. *Journal of Economic Entomology* 67, 132-133.
- Butterfield, J. (1976). The response of development rate to temperature in the univoltine cranefly, *Tipula subnodicornis* Zetterstedt. *Oecologia* 25, 89-100.
- Byrd, J. H. and Allen, J. C. (2001). The development of the black blow fly, *Phormia regina* (Meigen). *Forensic Science International* **120**, 79-88.
- Campbell, A. and Mackauer, M. (1975). Thermal constants for development of the pea aphid (Homoptera: Aphididae) and some of its parasites. *The Canadian Entomologist* 107, 419-423.

- Campbell, A., Singh, N. B. and Sinha, R. N. (1976). Bioenergetics of the granary weevil, Sitophilus granarius (L.) (Coleoptera: Curculionidae). Canadian Journal of Zoology 54, 786-798.
- Cardona, C. and Oatman, E. R. (1975). Biology and physical ecology of *Apanteles* subandinus Blanchard (Hymenoptera: Braconidae), with notes on temperature responses of *Apanteles scutellaris* Muesebeck and its host, the potato tuberworm. *Hilgardia* 43, 1-51.
- Carroll, D. P. and Hoyt, S. C. (1986). Developmental rate, weight, and ovarian parameters of apple aphids, *Aphis pomi* (Homoptera: Aphididae), reared at one or two constant temperatures, with evidence of residual effects. *Environmental Entomology* 15, 607-613.
- Castillo, J., Jacas, J. A., Peña, J. E., Ulmer, B. J. and Hall, D. G. (2006). Effect of temperature on life history of *Quadrastichus haitiensis* (Hymenoptera: Eulophidae), an endoparasitoid of *Diaprepes abbreviatus* (Coleoptera: Curculionidae). *Biological Control* 36, 189-196.
- Cave, R. D. and Gaylor, M. J. (1988). Influence of temperature and humidity on development and survival of *Telenomus reynoldsi* (Hymenoptera: Scelionidae) parasitizing *Geocoris punctipes* (Heteroptera: Lygaeidae) eggs. *Annals of the Entomological Society of America* 81, 278-285.
- Chabi-Olaye, A., Fiaboe, M. K. and Schulthess, F. (2004). Host suitability and thermal requirements of *Lathromeris ovicida* Risbec (Hymenoptera: Trichogrammatidae), an egg parasitoid of cereal stemborers in Africa. *Biological Control* **30**, 617-623.
- Champlain, R. A. and Butler, G. D. (1967). Temperature effects on development of the egg and nymphal stages of *Lygus hesperus* (Hemiptera: Miridae). Annals of the Entomological Society of America 60, 519-521.
- Chan, W.-P., Ellsbury, M. M. and Baker, G. T. (1990). Effects of temperature on preimaginal development of *Hypera meles* (Coleoptera: Curculionidae). Annals of the Entomological Society of America 83, 1116-1124.
- Chaudhry, G.-U. (1955). The development and fecundity of the Oriental Fruit Moth, Grapholitha (Cydia) molesta (Busck) under controlled temperatures and humidities. Bulletin of Entomological Research 46, 869-898.
- Cheah, C. S.-J. (1987). Temperature requirements of the chrysanthemum leaf miner, *Chromatomyla syngenesiae* (Dip.: Agromyzidae), and its ectoparasitoid, *Diglyphus isaea* (Hym.: Eulophidae). *Entomophaga* 32, 357-365.
- Chong, J.-H., Oetting, R. D. and Osborne, L. S. (2005). Development of *Diomus austrinus* Gordon (Coleoptera: Coccinellidae) on two mealybug prey species at five constant temperatures. *Biological Control* 33, 39-48.
- Christie, G. D. and Parrella, M. P. (1987). Biological studies with Chrysocharis parksi (Hym.: Eulophidae) a parasite of Liriomyza spp. (Dipt.: Agromyzidae). Entomophaga 32, 115-126.
- Clarke, R. G. and Howitt, A. J. (1975). Development of the strawberry weevil under laboratory and field conditions. Annals of the Entomological Society of America 68, 715-718.

- Cohen, M. B. and Mackauer, M. (1987). Intrinsic rate of increase and temperature coefficients of the aphid parasite *Ephedrus californicus* Baker (Hymenoptera: Aphidiidae). *The Canadian Entomologist* **119**, 231-237.
- Cohet, Y., Vouidibio, J. and David, J. R. (1980). Thermal tolerance and geographic distribution: a comparison of cosmopolitan and tropical endemic *Drosophila* species. *Journal of Thermal Biology* 5, 69-74.
- Collier, R. H. and Finch, S. (1992). The effects of temperature on development of the large narcissus fly (Merodon equestris). Annals of Applied Biology 120, 383-390.
- Cook, I. M. and Spain, A. V. (1981). Rates of development of the immature stages of the buffalo fly, *Haematobia irritans exigua* de Meijere (Diptera: Muscidae), in relation to temperature. *Australian Journal of Zoology* 29, 7-14.
- Cooke, B. D. and Skewes, M. A. (1988). The effects of temperature and humidity on the survival and development of the European rabbit flea, *Spilopsyllus cuniculi* (Dale). *Australian Journal of Zoology* 36, 649-659.
- Coombs, C. W. (1979). The effect of temperature and humidity upon the development and fecundity of *Dermestes haemorrhoidalis* Küster and *Dermestes peruvianus* Laporte de Castelnau (Coleoptera: Dermestidae). *Journal of Stored Products Research* 15, 43-52.
- Coombs, C. W. (1981). The development, fecundity and longevity of *Dermetes ater* Degeer (Coleoptera: Dermestidae). *Journal of Stored Products Research* 17, 31-36.
- Cox, P. D. (1974). The influence of temperature and humidity on the life-cycles of *Ephestia* figulilella Gregson and *Ephestia calidella* (Guenée) (Lepidoptera: Phycitidae). Journal of Stored Products Research 10, 43-55.
- Cox, P. D. (1976). The influence of temperature and humidity on the life-cycle of Ectomyelois ceratoniae (Zeller) (Lepidoptera: Phycitidae). Journal of Stored Products Research 12, 111-117.
- Cox, P. D., Crawford, L. A., Gjestrud, G., Bell, C. H. and Bowley, C. R. (1981). The influence of temperature and humidity on the life-cycle of *Corcyra cephalonica* (Stainton) (Lepidoptera: Pyralidae). *Bulletin of Entomological Research* 71, 171-181.
- Currie, J. E. (1967). Some effects of temperature and humidity on the rates of development, mortality and oviposition of *Cryptolestes pusillus* (Schönherr) (Coleoptera, Cucujidae). *Journal of Stored Products Research* **3**, 97-108.
- Daane, K. M., Malakar-Kuenen, R. D. and Walton, V. M. (2004). Temperature-dependent development of Anagyrus pseudococci (Hymenoptera: Encyrtidae) as a parasitoid of the vine mealybug, Planococcus ficus (Homoptera: Pseudococcidae). Biological Control 31, 123-132.
- Danthanarayana, W. (1975). The bionomics, distribution and host range of the light brown apple moth, *Epiphyas postvittana* (Walk.) (Tortricidae). *Australian Journal of Zoology* 23, 419-437.
- David, P. J., Horsburgh, R. L. and Holtzman, G. I. (1989). Development of *Platynota flavedana* and *P. idaeusalis* (Lepidoptera: Tortricidae) at constant temperatures in the laboratory. *Environmental Entomology* 18, 15-18.

- David, W. A. L. and Gardiner, B. O. C. (1962a). Observations on the larvae and pupae of Pieris brassicae (L.) in a laboratory culture. Bulletin of Entomological Research 53, 417-436.
- David, W. A. L. and Gardiner, B. O. C. (1962b). Oviposition and the hatching of the eggs of *Pieris brassicae* (L.) in a laboratory culture. *Bulletin of Entomological Research* 53, 91-109.
- Davis, E. L., Kline, D. L., Reinert, J. F., Roberts, R. H. and Butler, J. F. (1983). Development of immature *Culicoides mississippiensis* (Diptera: Ceratopogonidae) in the laboratory. *Annals of the Entomological Society of America* 76, 918-924.
- De Clercq, P. and Degheele, D. (1992). Development and survival of *Podisus maculiventris* (Say) and *Podisus sagitta* (Fab.) (Heteroptera: Pentatomidae) at various constant temperatures. *The Canadian Entomologist* 124, 125-133.
- De Vis, R. M. J., Fuentes, L. E. and van Lenteren, J. C. (2002). Life history of Amitus fuscipennis (Hym., Platygastridae) as parasitoid of the greenhouse whitefly Trialeurodes vaporariorum (Hom., Aleyrodidae) on tomato as function of temperature. Journal of Applied Entomology 126, 24-33.
- **Dean, G. J.** (1974). Effect of temperature on the cereal aphids *Metopolophium dirhodum* (Wlk.), *Rhopalosiphum padi* (L.) and *Macrosiphum avenae* (F.) (Hem., Aphididae). *Bulletin of Entomological Research* 63, 401-409.
- Decker, G. C. and Maddox, J. V. (1971). Effect of temperature on rate of development and survival of Simyra henrici. Journal of Economic Entomology 64, 94-98.
- **Deng, Y. X. and Tsai, J. H.** (1998). Development of *Lysiphlebia japonica* (Hymenoptera: Aphidiidae), a parasitoid of *Toxoptera citricida* (Homoptera: Aphididae) at five temperatures. *Florida Entomologist* **81**, 415-423.
- Dittrick, L. E. and Chiang, H. C. (1982). Developmental characteristics of *Macrocentrus* grandii as influenced by temperature and instar of its host, the European corn borer. *Journal of Insect Physiology* 28, 47-52.
- Doerr, M. D., Brunner, J. F. and Jones, V. P. (2002). Temperature-dependent development of *Lacanobia subjuncta* (Lepidoptera: Noctuidae). *Environmental Entomology* 31, 995-999.
- **Dowell, R. V. and Fitzpatrick, G. E.** (1978). Effects of temperature on the growth and survivorship of the citrus blackfly (Homoptera: Aleyrodidae). *The Canadian Entomologist* **110**, 1347-1350.
- Drummond, F. A., James, R. L., Casagrande, R. A. and Faubert, H. (1984). Development and survival of *Podisus maculiventris* (Say) (Hemiptera: Pentatomidae), a predator of the Colorado potato beetle (Coleoptera: Chrysomelidae). *Environmental Entomology* 13, 1283-1286.
- **Duale, A. H.** (2005). Effect of temperature and relative humidity on the biology of the stem borer parasitoid *Pediobius furvus* (Gahan) (Hymenoptera: Eulophidae) for the management of stem borers. *Environmental Entomology* **34**, 1-5.
- **Dunbar, D. M. and Bacon, O. G.** (1972). Influence of temperature on development and reproduction of *Geocoris atricolor*, *G. pallens* and *G. punctipes* (Heteroptera: Lygaeidae) from California. *Environmental Entomology* 1, 596-599.

- Edwards, P. B. (1986). Development and larval diapause in the southern African dung beetle Onitis caffer Boheman (Coleoptera: Scarabaeidae). Bulletin of Entomological Research 76, 109-117.
- Egwuatu, R. I. and Taylor, T. A. (1977). The effects of constant and fluctuating temperatures on the development of *Acanthomia tomentosicollis* Stål (Hemiptera, Coreidae). *Journal of Natural History* 11, 601-608.
- Eliopoulos, P. A. and Stathas, G. J. (2003). Temperature-dependent development of the koinobiont endoparasitoid *Venturia canescens* (Gravenhorst) (Hymenoptera: Ichneumonidae): effect of host instar. *Environmental Entomology* **32**, 1049-1055.
- Elsey, K. D. (1980). Pickleworm: effect of temperature on development, fecundity, and survival. *Environmental Entomology* 9, 101-103.
- Fan, Y., Groden, E. and Drummond, F. A. (1992). Temperature-dependent development of Mexican bean beetle (Coleoptera: Coccinellidae) under constant and variable temperatures. *Journal of Economic Entomology* 85, 1762-1770.
- Fantinou, A. A., Perdikis, D. and Chatzoglou, C. S. (2003). Development of immature stages of *Sesamia nonagrioides* (Lepidoptera: Noctuidae) under alternating and constant temperatures. *Environmental Entomology* 32, 1337-1342.
- Fargo, W. S. and Bonjour, E. L. (1988). Developmental rate of the squash bug, Anasa tristis (Heteroptera: Coreidae), at constant temperatures. Environmental Entomology 17, 926-929.
- **Fay, H. A. C.** (1985). Temperature-regulated development rates of the immature stages of the African buffalo fly, *Haematobia thirouxi potans* (Bezzi) (Diptera: Muscidae). *Environmental Entomology* **14**, 38-41.
- Ferreira de Almeida, M. A., Pires do Prado, A. and Geden, C. J. (2002). Influence of temperature on development time and longevity of *Tachinaephagus zealandicus* (Hymenoptera: Encyrtidae), and effects of nutrition and emergence order on longevity. *Environmental Entomology* 31, 375-380.
- Fielding, D. J. (2004). Developmental time of *Melanoplus sanguinipes* (Orthoptera: Acrididae) at high latitudes. *Environmental Entomology* 33, 1513-1522.
- Foerster, L. A. and Butnariu, A. R. (2004). Development, reproduction, and longevity of *Telenomus cyamophylax*, egg parasitoid of the velvetbean caterpillar *Anticarsia gemmatalis*, in relation to temperature. *Biological Control* 29, 1-4.
- Foley, D. H. and Pyke, B. A. (1985). Developmental time of *Creontiades dilutus* (Stål) (Hemiptera: Miridae) in relation to temperature. *Journal of the Australian Entomological Society* 24, 125-127.
- Force, D. C. and Messenger, P. S. (1964). Duration of development, generation time, and longevity of three hymenopterous parasites of *Therioaphis maculata*, reared at various constant temperatures. *Annals of the Entomological Society of America* 57, 405-413.
- Foster, J. E. and Taylor, P. L. (1975). Thermal-unit requirements for development of the Hessian fly under controlled environments. *Environmental Entomology* 4, 195-202.
- Frouz, J., Ali, A. and Lobinske, R. J. (2002). Influence of temperature on developmental rate, wing length, and larval head capsule size of pestiferous midge *Chironomus*

ny.

Ca K N

31
crassicaudatus (Diptera: Chironomidae). Journal of Economic Entomology 95, 699-705.

- Fye, R. E., Patana, R. and McAda, W. C. (1969). Developmental periods for boll weevils reared at several constant and fluctuating temperatures. *Journal of Economic Entomology* 62, 1402-1405.
- Gabriel, A. D. and Obrycki, J. J. (1990). Thermal requirements for preimaginal development of the strawberry leafroller (Lepdoptera: Tortricidae). *Environmental Entomology* 19, 339-344.
- Gangavalli, R. R. and AliNiazee, M. T. (1985). Temperature requirements for development of the obliquebanded leafroller, *Choristoneura rosaceana* (Lepidoptera: Tortricidae). *Environmental Entomology* 14, 17-19.
- Gaylor, M. J. and Sterling, W. L. (1975). Effects of temperature on the development, egg production, and survival of the cotton fleahopper, *Pseudatomoscelis seriatus*. *Environmental Entomology* 4, 487-490.
- Geden, C. J. (1997). Development models for the filth fly parasitoids *Spalangia gemina*, *S. cameroni*, and *Muscidifurax raptor* (Hymenoptera: Pteromalidae) under constant and variable temperatures. *Biological Control* 9, 185-192.
- Giga, D. P. and Smith, R. H. (1983). Comparative life history studies of four Callosobruchus species infesting cowpeas with special reference to Callosobruchus rhodesianus (Pic) (Coleoptera: Bruchidae). Journal of Stored Products Research 19, 189-198.
- Gilles, J., David, J.-F. and Duvallet, G. (2005). Temperature effects on development and survival of two stable flies, *Stomoxys calcitrans* and *Stomoxys niger niger* (Diptera: Muscidae), in La Réunion Island. *Journal of Medical Entomology* 42, 260-265.
- Gillespie, D. R., Opit, G. and Roitberg, B. (2000). Effects of temperature and relative humidity on development, reproduction, and predation in *Feltiella acarisuga* (Vallot) (Diptera: Cecidomyiidae). *Biological Control* 17, 132-138.
- Gillespie, D. R., Sanchez, J. A. S. and McGregor, R. R. (2004). Cumulative temperature requirements and development thresholds in two populations of *Dicyphus hesperus* (Hemiptera: Miridae). *The Canadian Entomologist* **136**, 675-683.
- Gitonga, L. M., Löhr, B., Overholt, W. A., Magambo, J. K. and Mueke, J. M. (2002). Temperature-dependent development of *Megalurothrips sjostedti* and *Frankliniella* occidentalis (Thrysanoptera: Thripidae). African Entomology 10, 325-331.
- Godfrey, K. E. and Anderson, L. W. J. (1994). Developmental rates of *Bagous affinis* (Coleoptera: Curculionidae) at constant temperatures. *Florida Entomologist* 77, 516-519.
- Goebel, R. (2006). The effect of temperature on development and reproduction of the sugarcane stalk borer, *Chilo sacchariphagus* (Bojer 1856) (Lepidoptera: Crambidae). *African Entomology* 14, 103-111.
- Gomi, T., Inudo, M. and Yamada, D. (2003). Local divergence in developmental traits within a trivoltine area of *Hyphantria cunea* Drury (Lepidoptera: Arctiidae). *Entomological Science* 6, 71-75.

- Gould, J. R. and Elkinton, J. S. (1990). Temperature-dependent growth of *Cotesia* melanoscela (Hymenoptera: Braconidae), a parasitoid of the gypsy moth (Lepidoptera: Lymantriidae). *Environmental Entomology* 19, 859-865.
- Gould, J. R., Venette, R. and Winograd, D. (2005). Effect of temperature on development and population parameters of *Copitarsia decolora* (Lepidoptera: Noctuidae). *Environmental Entomology* 34, 548-556.
- Grafton-Cardwell, E. E., Gu, P. and Montez, G. H. (2005). Effects of temperature on development of vedalia beetle, *Rodolia cardinalis* (Mulsant). *Biological Control* 32, 473-478.
- Grassberger, M. and Frank, C. (2003). Temperature-related development of the parasitoid wasp *Nasonia vitripennis* as forensic indicator. *Medical and Veterinary Entomology* 17, 257-262.
- Grassberger, M. and Reiter, C. (2001). Effect of temperature on *Lucilia sericata* (Diptera: Calliphoridae) development with special reference to the isomegalen- and isomorphen- diagram. *Forensic Science International* **120**, 32-36.
- Grassberger, M. and Reiter, C. (2002). Effect of temperature on development of the forensically important Holartic blow fly *Protophormia terraenovae* (Robineau-Desvoidy) (Diptera: Calliphoridae). *Forensic Science International* **128**, 177-182.
- Gray, D. R., Ravlin, F. W., Régnière, J. and Logan, J. A. (1995). Further advances toward a model of gypsy moth (*Lymantria dispar* (L.)) egg phenology: respiration rates and thermal responsiveness during diapause, and age-dependent developmental rates in postdiapause. *Journal of Insect Physiology* 41, 247-256.
- Greenberg, S. M., Legaspi, B. C., Jones, W. A. and Enkegaard, A. (2000). Temperaturedependent life history of *Eretmocerus eremicus* (Hymenoptera: Aphelinidae) on two whitefly hosts (Homoptera: Aleyrodidae). *Environmental Entomology* 29, 851-860.
- Gregg, P. (1983). Development of the Australian plague locust, *Chortoicetes terminifera*, in relation to weather. 1. Effects of constant temperature and humidity. *Journal of the Australian Entomological Society* 22, 247-251.
- Guppy, J. C. (1969). Some effects of temperature on the immature stages of the armyworm, *Pseudaletia unipuncta* (Lepidoptera: Noctuidae), under controlled conditions. *The Canadian Entomologist* 101, 1320-1327.
- Guppy, J. C. and Harcourt, D. G. (1978). Effects of temperature on development of the immature stages of the cereal leaf beetle, *Oulema melanopus* (Coleoptera: Chrysomelidae). *The Canadian Entomologist* 110, 257-263.
- Guppy, J. C. and Mukerji, M. K. (1974). Effects of temperature on developmental rate of the immature stages of the alfalfa weevil, *Hypera postica* (Coleoptera: Curculionidae). *The Canadian Entomologist* 106, 93-100.
- Hadaway, A. B. (1955). The biology of the Dermestid beetles, *Trogoderma granarium* Everts and *Trogoderma versicolor* (Creutz.). *Bulletin of Entomological Research* 46, 781-796.
- Haile, A. T., Hassan, S. A., Ogol, C. K. P. O., Baumgärtner, J., Sithanantham, S., Monje, J. C. and Zebitz, C. P. W. (2002). Temperature-dependent development of four egg

parasitoid *Trichogramma* species (Hymenoptera: Trichogrammatidae). *Biocontrol* Science and Technology **12**, 555-567.

- Halstead, D. G. H. (1967). Biological studies on species of *Palorus* and *Coelopalorus* with comparative notes on *Tribolium* and *Latheticus* (Coleoptera: Tenebrionidae). *Journal of Stored Products Research* 2, 273-313.
- Hamilton, J. G. and Zalucki, M. P. (1991). Effect of temperature on development rate, survival and fecundity of cotton tipworm, *Crocidosema plebejana* Zeller (Lepidoptera: Trotricidae). *Australian Journal of Zoology* 39, 191-200.
- Hammond, R. B., Poston, F. L. and Pedigo, L. P. (1979). Growth of the green cloverworm and thermal-unit system for development. *Environmental Entomology* **8**, 639-642.
- Hansen, L. S., Skovgård, H. and Hell, K. (2004). Life table study of Sitotroga cerealella (Lepidoptera: Gelichiidae), a strain from West Africa. Journal of Economic Entomology 97, 1484-1490.
- Hanula, J. L., Debarr, G. L. and Berisford, C. W. (1984). Oviposition behaviour and temperature effects on egg development of the southern pine coneworm, *Dioryctria amatella* (Lepidoptera: Pyralidae). *Environmental Entomology* 13, 1624-1626.
- Hanula, J. L., Debarr, G. L. and Berisford, C. W. (1987). Threshold temperature and degree-day estimates for development of immature southern pine coneworms (Lepidoptera: Pyralidae) at constant and fluctuating temperatures. Journal of Economic Entomology 80, 62-64.
- Harari, A. R., Ben-Yakir, D., Chen, M. and Rosen, D. (1998). Temperature-dependent developmental models for predicting the phenology of *Maladera matrida* (Coleoptera: Scarabaeidae). *Environmental Entomology* 27, 1220-1228.
- Harries, F. H. and Douglass, J. R. (1948). Bionomic studies on the beet leafhopper. Ecological Monographs 18, 45-79.
- Harrison, W. W., King, E. G. and Ouzts, J. D. (1985). Development of *Trichogramma* exiguum and *T. pretiosum* at five temperature regimes. *Environmental Entomology* 14, 118-121.
- Haugen, D. A. and Stephen, F. M. (1984). Development rates of Nantucket pine tip moth, *Rhyacionia frustrana* (Comstock) (Lepidoptera: Tortricidae), life stages in relation to temperature. *Environmental Entomology* 13, 56-60.
- Havelka, J. (1980). Effect of temperature on the developmental rate of preimaginal stages of *Aphidoletes aphidimyza* (Diptera, Cecidomyiidae). *Entomologia Experimentalis et Applicata* 27, 83-90.
- Hawthorne, D. J., Rock, G. C. and Stinner, R. E. (1988). Redbanded leafroller (Lepidoptera: Tortricidae): thermal requirements for development and simulation of within-season phenology in North Carolina. *Environmental Entomology* 17, 40-46.
- Hayakawa, D. L., Grafius, E. and Stehr, F. W. (1990). Effects of temperature on longevity, reproduction, and development of the asparagus aphid (Homoptera: Aphididae) and the parasitoid, *Diaeretiella rapae* (Hymenoptera: Braconidae). *Environmental Entomology* **19**, 890-897.
- Hentz, M. G., Ellsworth, P. C., Naranjo, S. E. and Watson, T. F. (1998). Development, longevity, and fecundity of *Chelonus* sp. nr. *curvimaculatus* (Hymenoptera:

Braconidae), an egg-larval parasitoid of pink bollworm (Lepidoptera: Gelechiidae). *Environmental Entomology* **27**, 443-449.

- Herrera, A. M., Dahlsten, D. D., Tomic-Carruthers, N. and Carruthers, R. I. (2005). Estimating temperature-dependent developmental rates of *Diorhabda elongata* (Coleoptera: Chrysomelidae), a biological control agent of saltcedar (*Tamarix* spp.). Environmental Entomology 34, 775-784.
- Herrera, C. J., Van Driesche, R. G. and Bellotti, A. C. (1989). Temperature-dependent growth rates for the cassava mealybug, *Phenacoccus herreni*, and two of its encyrtid parasitoids, *Epidinocarsis diversicornis* and *Acerophagus coccois* in Colombia. *Entomologia Experimentalis et Applicata* 50, 21-27.
- Hertlein, M. B. (1986). Seasonal development of *Leptopilina boulardi* (Hymenoptera: Eucoilidae) and its hosts, *Drosophila melanogaster* and *D. simulans* (Diptera: Drosophilidae), in California. *Environmental Entomology* 15, 859-866.
- Hofsvang, T. and Hågvar, E. B. (1975). Duration of development and longevity in Aphidius ervi and Aphidius platensis (Hym.: Aphididae), two parasites of Myzus persicae (Hom.: Aphididae). Entomophaga 20, 11-22.
- Honěk, A., Jarošík, V. and Martinková, Z. (2003). Effect of temperature on development and reproduction in *Gastrophysa viridula* (Coleoptera: Chrysomelidae). *European Journal of Entomology* 100, 295-300.
- Horne, P. A. and Horne, J. A. (1991). The effects of temperature and host density on the development and survival of *Copidosoma koehleri*. Entomologia Experimentalis et Applicata 59, 289-292.
- Howe, R. W. (1960). The effects of temperature and humidity on the rate of development and the mortality of *Tribolium confusum* Duval (Coleoptera, Tenebrionidae). *Annals of Applied Biology* 48, 363-376.
- Howe, R. W. (1962). The effect of temperature and relative humidity on the rate of development and the mortality of *Tribolium madens* (Charp.) (Coleoptera, Tenebrionidae). *Annals of Applied Biology* 50, 649-660.
- Howell, J. F. and Neven, L. G. (2000). Physiological development time and zero development temperature of the codling moth (Lepidoptera: Tortricidae). *Environmental Entomology* 29, 766-772.
- Huffaker, C. B. (1944). The temperature relations of the immature stages of the malarial mosquito, *Anopheles quadrimaculatus* Say, with a comparison of the developmental power of constant and variable temperatures in insect metabolism. *Annals of the Entomological Society of America* 37, 1-27.
- Hutchison, W. D., Butler, G. D. and Martin, J. M. (1986). Temperature-dependent development, mortality, and longevity of *Microplitis rufiventris* (Hymenoptera: Braconidae), a parasitoid of the beet armyworm (Lepidoptera: Noctuidae). *Annals of* the Entomological Society of America 79, 262-265.
- Iheagwam, E. U. (1978). Effects of temperature on development of the immature stages of the cabbage whitefly, Aleyrodes proletella (Homoptera: Aleyrodidae). Entomologia Experimentalis et Applicata 23, 91-95.

- Imura, O. and Nakakita, H. (1984). The effect of temperature and relative humidity on the development of *Tribolium freemani* Hinton (Coleoptera: Tenebrionidae). *Journal of Stored Products Research* 20, 87-95.
- Infante, F. (2000). Development and population growth rates of *Prorops nasuta* (Hym., Bethylidae) at constant temperatures. *Journal of Applied Entomology* 124, 343-348.
- Infante, F., Luis, J. H., Barrera, J. F., Gomez, J. and Castillo, A. (1992). Thermal constants for preimaginal development of the parasitoid *Cephalonomia stephanoderis* Betrem (Hymenoptera: Bethylidae). *The Canadian Entomologist* **124**, 935-941.
- Isenhour, D. J. (1986). Developmental time, adult reproductive capability, and longevity of Campoletis sonorensis (Hymenoptera: Ichneumonidae) as a parasitoid of fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Annals of the Entomological Society of America 79, 893-897.
- Isenhour, D. J. and Yeargan, K. V. (1981). Effect of temperature on the development of Orius insidiosus, with notes on laboratory rearing. Annals of the Entomological Society of America 74, 114-116.
- Jackson, C. G., Bryan, D. E., Butler, G. D. and Patana, R. (1970). Development, fecundity, and longevity of *Leschenaultia adusta*, a tachinid parasite of the salt-marsh caterpillar. *Journal of Economic Entomology* **63**, 1396-1397.
- Jackson, C. G., Bryan, D. E., Neeman, E. G. and Patana, R. (1976). Palexorista laxa: development, longevity, and production of progeny on *Heliothis* spp. *Environmental Entomology* 5, 431-434.
- Jackson, C. G., Butler, G. D. and Bryan, D. E. (1969). Time required for development of Voria ruralis and its host, the cabbage looper, at different temperatures. Journal of Economic Entomology 62, 69-70.
- Jackson, C. G., Delph, J. S. and Neeman, E. G. (1978). Development, longevity and fecundity of *Chelonus blackburni* (Hym.: Braconidae) as a parasite of *Pectinophora gossypiella* (Lep.: Gelechiidae). *Entomophaga* 23, 35-42.
- Jacob, H. S., Joder, A. and Batchelor, K. L. (2006). Biology of *Stethynium* sp. (Hymenoptera: Mymaridae), a native parasitoid of an introduced weed biological control agent. *Environmental Entomology* **35**, 630-636.
- Jacob, T. A. (1981). Observations on the biology of *Oryzaephilus acuminatus* Halstead with comparative notes on the common species of *Oryzaephilus* (Coleoptera: Silvanidae). *Journal of Stored Products Research* 17, 17-23.
- Jacob, T. A. (1988). The effect of temperature and humidity on the developmental period and mortality of *Thyphaea stercorea* (L.) (Coleoptera: Mycetophagidae). *Journal of Stored Products Research* 24, 221-224.
- Jacob, T. A. (1996). The effect of constant temperature and humidity on the development, longevity and productivity of *Ahasverus advena* (Waltl.) (Coleoptera: Silvanidae). *Journal of Stored Products Research* 32, 115-121.
- Jacob, T. A. and Cox, P. D. (1977). The influence of temperature and humidity on the lifecycle of *Ephestia kuehniella* Zeller (Lepidoptera: Pyralidae). Journal of Stored Products Research 13, 107-118.

- Jacob, T. A. and Fleming, D. A. (1990). The effect of humidity on the development and survival of the immature stages of strains of *Oryzaephilus surinamensis* (L.) (Coleoptera: Silvanidae) at constant temperatures. *Journal of Stored Products Research* 26, 163-167.
- James, D. G. (1990). Development and survivorship of *Biprorulus bibax* (Hemiptera: Pentatomidae) under a range of constant temperatures. *Environmental Entomology* 19, 874-877.
- James, D. G. (1992). Effect of temperature on development and survival of *Pristhesancus* plagipennis (Hem.: Reduviidae). Entomophaga 37, 259-264.
- James, D. G. and Warren, G. N. (1991). Effect of temperature on development, survival, longevity and fecundity of *Trissolcus oenone* Dodd (Hymenoptera: Scelionidae). *Journal of the Australian Entomological Society* **30**, 303-306.
- Jensen, J. G. and Cameron, C. A. (2004). Development and kikuyu consumption of preimaginal *Herpetogramma licarsisalis* (Lepidoptera: Pyralidae) reared at temperatures between 15 and 25°C. *Environmental Entomology* 33, 1178-1184.
- Johnson, D. W., Barfield, C. S. and Allen, G. E. (1983). Temperature-dependent developmental model for the velvetbean caterpillar (Lepidoptera: Noctuidae). *Environmental Entomology* 12, 1657-1663.
- Johnson, E. F., Trottier, R. and Laing, J. E. (1979). Degree-day relationships to the development of *Lithocolletis blancardella* (Lepidoptera: Gracillariidae) and its parasite *Apanteles ornigis* (Hymenoptera: Braconidae). *The Canadian Entomologist* 111, 1177-1184.
- Jones, J. M. and Stephen, F. M. (1994). Effect of temperature on development of hymenopterous parasitoids of *Dendroctonus frontalis* (Coleoptera: Scolytidae). *Environmental Entomology* 23, 457-463.
- Jones, R. E., Rienks, J., Wilson, L., Lokkers, C. and Churchill, T. (1987). Temperature, development and survival in monophagous and polyphagous tropical pierid butterflies. *Australian Journal of Zoology* **35**, 235-246.
- Jubb, G. L. and Watson, T. F. (1971). Development of the egg parasite *Telenomus* utahensis in two pentatomid hosts in relation to temperature and host age. Annals of the Entomological Society of America 64, 202-205.
- Kapila, R. and Agarwal, H. C. (1995). Biology of an egg parasite of Callosobruchus maculatus (Fab.) (Coleoptera: Bruchidae). Journal of Stored Products Research 31, 335-341.
- Karandinos, M. G. and Axtell, R. C. (1967). Temperature effects on the immature stages of Hippelates pusio, H. bishoppi, and H. pallipes (Diptera: Chloropidae). Annals of the Entomological Society of America 60, 1055-1062.
- Kasana, A. and AliNiazee, M. T. (1994). Effect of constant temperatures on development of the walnut husk fly, *Rhagoletis completa*. Entomologia Experimentalis et Applicata 73, 247-254.
- Katsarou, I., Margaritopoulos, J. T., Tsitsipis, J. A., Perdikis, D. and Zarpas, K. D. (2005). Effect of temperature on development, growth and feeding of *Coccinella*

septempunctata and Hippodamia convergens reared on the tobacco aphid, Myzus persicae nicotianae. BioControl 50, 565-588.

- Kehat, M. and Wyndham, M. (1972). The influence of temperature on development, longevity, and fecundity in the Rutherglen bug, *Nysius vinitor* (Hemiptera: Lygaeidae). *Australian Journal of Zoology* 20, 67-78.
- Kemp, W. P. and Bosch, J. (2000). Development and emergence of the alfalfa pollinator Megachile rotundata (Hymenoptera: Megachilidae). Annals of the Entomological Society of America 93, 904-911.
- Kennett, C. E. and Hoffmann, R. W. (1985). Seasonal development of the California red scale (Homoptera: Diaspididae) in San Joaquin Valley citrus based on degree-day accumulation. *Journal of Economic Entomology* 78, 73-79.
- Kersting, U., Satar, S. and Uygun, N. (1999). Effect of temperature on development rate and fecundity of apterous *Aphis gossypii* Glover (Hom., Aphididae) reared on *Gossypium hirsutum* L. *Journal of Applied Entomology* 123, 23-27.
- Khattat, A. R. and Stewart, R. K. (1977). Development and survival of Lygus lineolaris exposed to different laboratory rearing conditions. Annals of the Entomological Society of America 70, 274-278.
- Kieckhefer, R. W. and Elliott, N. C. (1989). Effect of fluctuating temperatures on development of immature Russian wheat aphid (Homoptera: Aphididae) and demographic statistics. *Journal of Economic Entomology* 82, 119-122.
- Kieckhefer, R. W., Elliott, N. C. and Walgenbach, D. D. (1989). Effects of constant and fluctuating temperatures on developmental rates and demographic statistics of the English grain aphid (Homoptera: Aphididae). Annals of the Entomological Society of America 82, 701-706.
- Kim, D.-S., Lee, J.-H. and Yiem, M.-S. (2001). Temperature-dependent development of Carposina sasakii (Lepidoptera: Carposinidae) and its stage emergence models. Environmental Entomology 30, 298-305.
- Kim, D.-S. and Riedl, H. (2005). Effect of temperature on development and fecundity of the predaceous plant bug *Deraeocoris brevis* reared on *Ephesia kuehniella* eggs. *BioControl* 50, 881-897.
- Kimura, M. T., Ohtsu, T., Yoshida, T., Awasaki, T. and Lin, F.-J. (1994). Climatic adaptations and distributions in the *Drosophila takahashii* species subgroup (Diptera: Drosophilidae). Journal of Natural History 28, 401-409.
- King, E. G., Brewer, F. D. and Martin, D. F. (1975). Development of *Diatraea saccharalis* (Lep.: Pyralidae) at constant temperatures. *Entomophaga* 20, 301-306.
- King, J. E., Price, R. G., Young, J. H., Willson, L. J. and Pinkston, K. N. (1985). Influence of temperature on development and survival of the immature stages of the elm leaf beetle, *Pyrrhalta luteola* (Müller) (Coleoptera: Chrysomelidae). *Environmental Entomology* 14, 272-274.
- Kontodimas, D. C., Eliopoulos, P. A., Stathas, G. J. and Economou, L. P. (2004). Comparative temperature-dependent development of *Nephus includens* (Kirsch) and *Nephus bisignatus* (Boheman) (Coleoptera: Coccinellidae) preying on *Planococcus*

citri (Risso) (Homoptera: Pseudococcidae): evaluation of a linear and various nonlinear models using specific criteria. *Environmental Entomology* **33**, 1-11.

- Lale, N. E. S. and Vidal, S. (2003). Effect of constant temperature and humidity on oviposition and development of *Callosobruchus maculatus* (F.) and *Callosobruchus subinnotatus* (Pic) on bambara groundnut, *Vigna subterranea* (L.) Verdcourt. *Journal of Stored Products Research* 39, 459-470.
- LaMana, M. L. and Miller, J. C. (1995). Temperature-dependent development in a polymorphic lady beetle, *Calvia quatuordecimguttata* (Coleoptera: Coccinellidae). *Annals of the Entomological Society of America* 88, 785-790.
- LaMana, M. L. and Miller, J. C. (1998). Temperature-dependent development in an Oregon population of *Harmonia axyridis* (Coleoptera: Coccinellidae). *Environmental Entomology* 27, 1001-1005.
- Lamb, R. J. and MacKay, P. A. (1988). Effects of temperature on developmental rate and adult weight of Australian populations of *Acyrthosiphon pisum* (Harris) (Homoptera: Aphididae). *Memoirs of the Entomological Society of Canada* 146, 49-55.
- Lan, Z., Scherm, H. and Horton, D. L. (2004). Temperature-dependent development and prediction of emergence of the summer generation of plum curculio (Coleoptera: Curculionidae) in the southeastern United States. *Environmental Entomology* 33, 174-181.
- Lanzoni, A., Bazzocchi, G. G., Burgio, G. and Fiacconi, M. R. (2002). Comparative life history of *Liriomyza trifolii* and *Liriomyza huidobrensis* (Diptera: Agromyzidae) on beans: effect of temperature on development. *Environmental Entomology* **31**, 797-803.
- Larsen, K. J., Madden, L. V. and Nault, L. R. (1990). Effect of temperature and host plant on the development of the blackfaced leafhopper. *Entomologia Experimentalis et Applicata* 55, 285-294.
- Lawrence, R. K., Houseweart, M. W., Jennings, D. T. and Halteman, W. A. (1985). Development rates of *Trichogramma minutum* (Hymenoptera: Trichogrammatidae) and implications for timing augmentative releases for suppression of egg populations of *Choristoneura fumiferana* (Lepidoptera: Tortricidae). *The Canadian Entomologist* 117, 556-563
- Lee, J.-H. and Elliott, N. C. (1998). Comparison of developmental responses to temperatures in *Aphelinus asychis* (Walker) from two different geographic regions. *Southwestern Entomologist* 23, 77-82.
- Lefebvre, F. and Pasquerault, T. (2004). Temperature-dependent development of *Ophyra* aenescens (Wiedemann, 1830) and *Ophyra capensis* (Wiedemann, 1818) (Diptera, Muscidae). Forensic Science International 139, 75-79.
- Lefkovitch, L. P. (1967). A laboratory study of *Stegobium paniceum* (L.) (Coleoptera: Anobiidae). *Journal of Stored Products Research* 3, 235-249.
- Leibee, G. L. (1984). Influence of temperature on development and fecundity of *Liriomyza* trifolii (Burgess) (Diptera: Agromyzidae) on celery. *Environmental Entomology* 13, 497-501.

- Leibee, G. L., Pass, B. C. and Yeargan, K. V. (1979). Developmental rates of *Patasson* lameerei (Hym.: Mymaridae) and the effect of host egg age on parasitism. *Entomophaga* 24, 345-348.
- Lema, K. M. and Herren, H. R. (1985). The influence of constant temperature on population growth rates of the cassava mealybug, *Phenacoccus manihoti*. *Entomologia Experimentalis et Applicata* 38, 165-169.
- Levine, E. (1983). Temperature requirements for development of the stalk borer, *Papaipema nebris* (Lepidoptera: Noctuidae). *Annals of the Entomological Society of America* 76, 892-895.
- Lin, S. Y. H. and Trumble, J. T. (1985). Influence of temperature and tomato maturity on development and survival of *Keiferia lycopersicella* (Lepidoptera: Gelechiidae). *Environmental Entomology* 14, 855-858.
- Liu, S., Chen, F. and Zalucki, M. P. (2002). Development and survival of diamondback moth (Lepidoptera: Plutellidae) at constant and alternating temperatures. *Environmental Entomology* 31, 221-231.
- Liu, S. and Hughes, R. D. (1984). The relationships between temperature and rate of development in two geographic stocks of *Aphidius sonchi* in the laboratory. *Entomologia Experimentalis et Applicata* 36, 231-238.
- Liu, S., Wang, X., Shi, Z. and Gebremeskel, F. B. (2001). The biology of Diadromus collaris (Hymenoptera: Ichneumonidae), a pupal parasitoid of Plutella xylostella (Lepidoptera: Plutellidae), and its interactions with Oomyzus sokolowskii (Hymenoptera: Eulophidae). Bulletin of Entomological Research 91, 461-469.
- Liu, T.-X. and Yue, B. (2001). Comparison of some life history parameters between alate and apterous forms of turnip aphid (Homoptera: Aphididae) on cabbage under constant temperatures. *Florida Entomologist* 84, 239-242.
- Liu, Y. H. and Tsai, J. H. (2002). Effect of temperature on development, survivorship, and fecundity of *Lysiphlebia mirzai* (Hymenoptera: Aphidiidae), a parasitoid of *Toxoptera citricida* (Homoptera: Aphididae). *Environmental Entomology* **31**, 418-424.
- Lo Pinto, M., Salerno, G. and Wajnberg, E. (2005). Biology and behaviour of Cirrospilus diallus and Cirrospilus pictus, parasitoids of Phyllocnistis citrella. BioControl 50, 921-935.
- Lobinske, R. J., Ali, A. and Frouz, J. (2002). Laboratory estimation of degree-day developmental requirements of *Glyptotendipes paripes* (Diptera: Chironomidae). *Environmental Entomology* **31**, 608-611.
- Logan, P. A., Casagrande, R. A., Faubert, H. H. and Drummond, F. A. (1985). Temperature-dependent development and feeding of immature Colorado potato beetles, *Leptinotarsa decemlineata* (Say) (Coleoptera: Chrysomelidae). *Environmental Entomology* 14, 275-283.
- Lowry, V. K., Smith, J. W. and Mitchell, F. L. (1992). Life-fertility tables for *Frankliniella fusca* (Hinds) and *F. occidentalis* (Pergande) (Thysanoptera: Thripidae) on peanut. *Annals of the Entomological Society of America* **85**, 744-754.

- Luckmann, W. H., Shaw, J. T., Sherrod, D. W. and Ruesink, W. G. (1976). Developmental rate of the black cutworm. *Journal of Economic Entomology* 69, 386-388.
- Ludwig, D. (1928). The effects of temperature on the development of an insect (*Popillia japonica* Newman). *Physiological Zoology* 1, 358-389.
- Lysyk, T. J. (1998). Relationships between temperature and life history parameters of *Trichomalopsis sarcophagae* (Hymenoptera: Pteromalidae). *Environmental Entomology* 27, 488-498.
- Lysyk, T. J. (2001a). Relationships between temperature and life history parameters of Muscidifurax raptorellus (Hymenoptera: Pteromalidae). Environmental Entomology 30, 982-992.
- Lysyk, T. J. (2001b). Relationships between temperature and life history parameters of *Muscidifurax zaraptor* (Hymenoptera: Pteromalidae). *Environmental Entomology* 30, 147-156.
- Lysyk, T. J. and Axtell, R. C. (1987). A simulation model of house fly (Diptera: Muscidae) development in poultry manure. *The Canadian Entomologist* **119**, 427-437.
- Madar, R. J. and Miller, J. C. (1983). Developmental biology of Apanteles yakutatensis (Hymenoptera: Braconidae), a primary parasite of Autographa californica (Lepidoptera: Noctuidae). Annals of the Entomological Society of America 76, 683-687.
- Mann, J. A., Axtell, R. C. and Stinner, R. E. (1990). Temperature-dependent development and parasitism rates of four species of Pteromalidae (Hymenoptera) parasitoids of house fly (*Musca domestica*) pupae. *Medical and Veterinary Entomology* 4, 245-253.
- Mao, H. and Kunimi, Y. (1994). Effects of temperature on the development and parasitism of *Brachymeria lasus*, a pupal parasitoid of *Homona magnanima*. Entomologia Experimentalis et Applicata 71, 87-90.
- Marco, V., Taberner, A. and Castañera, P. (1997). Development and survival of immature Aubeonymus mariaefranciscae (Coleoptera: Curculionidae) at constant temperatures. Annals of the Entomological Society of America 90, 169-176.
- Matadha, D., Hamilton, G. C. and Lashomb, J. H. (2004). Effect of temperature on development, fecundity, and life table parameters of *Encarsia citrina* Craw (Hymenoptera: Aphelinidae), a parasitoid of euonymus scale, *Unaspis euonymi* (Comstock), and *Quadraspidiotus perniciosus* (Comstock) (Homoptera: Diaspididae). *Environmental Entomology* 33, 1185-1191.
- Matteson, J. W. and Decker, G. C. (1965). Development of the European corn borer at controlled constant and variable temperatures. *Journal of Economic Entomology* 58, 344-349.
- Mays, W. T. and Kok, L. T. (1997). Oviposition, development, and host preference of the cross-striped cabbageworm (Lepidoptera: Pyralidae). *Environmental Entomology* 26, 1354-1360.
- Mazzei, K. C., Newman, R. M., Loos, A. and Ragsdale, D. W. (1999). Developmental rates of the native milfoil weevil, *Euhrychiopsis lecontei*, and damage to Eurasian watermilfoil at constant temperatures. *Biological Control* 16, 139-143.

- McAvoy, T. J. and Kok, L. T. (2004). Temperature dependent development and survival of two sympatric species, *Galerucella calmariensis* and *G. pusilla*, on purple loosestrife. *BioControl* 49, 467-480.
- McClain, D. C., Rock, G. C. and Stinner, R. E. (1990). Thermal requirements for development and simulation on the seasonal phenology of *Encarsia perniciosi* (Hymenoptera: Aphelinidae), a parasitoid of the San Jose scale (Homoptera: Diaspididae) in North Carolina orchards. *Environmental Entomology* 19, 1396-1402.
- McClay, A. S. and Hughes, R. B. (1995). Effects of temperature on developmental rate, distribution, and establishment of *Calophasia lunula* (Lepidoptera: Noctuidae), a biocontrol agent for toadflax (*Linaria* spp.). *Biological Control* 5, 368-377.
- McDonald, J. R., Bale, J. S. and Walters, K. F. A. (1999). Temperature, development and establishment potential of *Thrips palmi* (Thysanoptera: Thripidae) in the United Kingdom. *European Journal of Entomology* **96**, 169-173.
- McKenzie, J. A. (1978). The effect of developmental temperature on population flexibility in Drosophila melanogaster and D. simulans. Australian Journal of Zoology 26, 105-112.
- McMullen, R. D. (1967). The effects of photoperiod, temperature, and food supply on rate of development and diapause in *Coccinella novemnotata*. The Canadian Entomologist 99, 578-586.
- McMullen, R. D. and Jong, C. (1977). Effect of temperature on developmental rate and fecundity of the pear psylla, *Psylla pyricola* (Homoptera: Psyllidae). *The Canadian Entomologist* 109, 165-169.
- Mehrnejad, M. R. (2003). The influence of host species on some biological and behavioural aspects of *Dibrachys boarmiae* (Hymenoptera: Pteromalidae), parasitoid of *Kermania pistaciella* (Lepidoptera: Tineidae). *Biocontrol Science and Technology* 13, 219-229.
- Mehrnejad, M. R. and Jalali, M. A. (2004). Life history parameters of the coccinellid beetle, *Oenopia conglobata contaminata*, an important predator of the common pistachio psylla, *Agonoscena pistaciae* (Hemiptera: Psylloidea). *Biocontrol Science and Technology* 14, 701-711.
- Mellors, W. K. and Helgesen, R. G. (1978). Developmental rates for the alfalfa blotch leafminer, Agromyza frontella, at constant temperatures. Annals of the Entomological Society of America 71, 886-888.
- Meyerdirk, D. E. and Moratorio, M. S. (1987). Biology of Anagrus giraulti (Hymenoptera: Mymaridae), an egg parasitoid of the beet leafhopper, Circulifer tenellus (Homoptera: Cicadellidae). Annals of the Entomological Society of America 80, 272-277.
- Michels, J. G. J. and Behle, R. W. (1991). Effects of two prey species on the development of *Hippodamia sinuata* (Coleoptera: Coccinellidae) larvae at constant temperatures. *Journal of Economic Entomology* 84, 1480-1484.
- Miller, J. C. and Gerth, W. J. (1994). Temperature-dependent development af *Aphidius* matricariae (Hymenoptera: Aphidiidae), as a parasitoid of the Russian wheat aphid. *Environmental Entomology* 23, 1304-1307.

- Miller, J. C. and LaMana, M. L. (1995). Assessment of temperature-dependent development in the general population and among isofemale lines of *Coccinella trifasciata* (Col.: Coccinellidae). *Entomophaga* **40**, 183-192.
- Miller, J. C. and Paustian, J. W. (1992). Temperature-dependent development of *Eriopis* connexa (Coleoptera: Coccinellidae). *Environmental Entomology* 21, 1139-1142.
- Milonas, P. G. and Savopoulou-Soultani, M. (2000a). Development, survivorship, and reproduction of *Adoxophyes orana* (Lepidoptera: Tortricidae) at constant temperatures. *Annals of the Entomological Society of America* **93**, 96-102.
- Milonas, P. G. and Savopoulou-Soultani, M. (2000b). Temperature dependent development of the parasitiod *Colpoclypeus florus* (Hymenoptera: Eulophidae) in the laboratory. *Journal of Economic Entomology* 93, 1627-1632.
- Minkenberg, O. P. J. M. (1989). Temperature effects on the life history of the eulophid wasp Diglyphus isaea, an ectoparasitoid of leafminers (*Liriomyza* spp.), on tomatoes. Annals of Applied Biology 115, 381-397.
- Minkenberg, O. P. J. M. and Helderman, C. A. J. (1990). Effects of temperature on the life history of *Liriomyza bryoniae* (Diptera: Agromyzidae) on tomato. *Journal of Economic Entomology* 83, 117-125.
- Moon, R. D. (1983). Simulating developmental time of preadult face flies (Diptera: Muscidae) from air temperature records. *Environmental Entomology* 12, 943-948.
- Moore, A. D. (1987). Effects of temperature and length of photophase on development and diapause in *Cystiphora schmidti* (Rübsaamen) (Diptera: Cecidomyiidae). Journal of the Australian Entomological Society 26, 349-354.
- Morales-Ramos, J. A. and Cate, J. R. (1993). Temperature-dependent developmental rates of *Catolaccus grandis* (Hymenoptera: Pteromalidae). *Environmental Entomology* 22, 226-233.
- Mori, K., Nozawa, M., Arai, K. and Gotoh, T. (2005). Life-history traits of the acarophagous lady beetle, *Stethorus japonicus* at three constant temperatures. *BioControl* 50, 35-51.
- Mottram, P., Kay, B. H. and Kettle, D. S. (1986). The effect of temperature on eggs and immature stages of *Culex annulirostris* Skuse (Diptera: Culicidae). *Journal of the Australian Entomological Society* 25, 131-135.
- Mullen, M. A. (1981). Sweetpotato weevil, Cylas formicarius elegantulus (Summers): development, fecundity, and longevity. Annals of the Entomological Society of America 74, 478-481.
- Mullens, B. A. and Rutz, D. A. (1983). Development of immature Culicoides variipennis (Diptera: Ceratopogonidae) at constant laboratory temperatures. Annals of the Entomological Society of America 76, 747-751.
- Mussen, E. C. and Chiang, H. C. (1974). Development of the picnic beetle, *Glischrochilus quadrisignatus* (Say), at various temperatures. *Environmental Entomology* **3**, 1032-1034.
- Na, J. H. and Ryoo, M. I. (2000). The influence of temperature on development of *Plodia interpunctella* (Lepidoptera: Pyralidae) on dried vegetable commodities. *Journal of Stored Products Research* **36**, 125-129.

- Nagai, K. and Yano, E. (1999). Effects of temperature on the development and reproduction of *Orius sauteri* (Poppius) (Heteroptera: Anthocoridae), a predator of *Thrips palmi* Karny (Thysanoptera: Thripidae). *Applied Entomology and Zoology* 34, 223-229.
- Naresh, J. S. and Smith, C. M. (1983). Development and survival of rice stink bugs (Hemiptera: Pentatomidae) reared on different host plants at four temperatures. *Environmental Entomology* 12, 1496-1499.
- Nava, D. E. and Parra, J. R. P. (2003). Biology of *Cerotoma arcuatus* (Coleoptera: Chrysomelidae) and field validation of a laboratory model for temperature requirements. *Journal of Economic Entomology* **96**, 609-614.
- Neal, J. W. and Douglass, L. W. (1988). Development, oviposition rate, longevity, and voltinism of *Stephanitis pyrioides* (Heteroptera: Tingidae), an adventive pest of azalea, at three temperatures. *Environmental Entomology* 17, 827-831.
- Neal, J. W. and Douglass, L. W. (1990). Seasonal dynamics and effect of temperature in Corythucha cydoniae (Heteroptera: Tingidae). Environmental Entomology 19, 1299-1304.
- Nealis, V. G., Jones, R. E. and Wellington, W. G. (1984). Temperature and development in host-parasite relationships. *Oecologia* 61, 224-229.
- Neuenschwander, P. (1975). Influence of temperature and humidity on the immature stages of *Hemerobius pacificus*. Environmental Entomology 4, 215-220.
- Nowosielski-Slepowron, B. J. A. and Aryeetey, E. A. (1980). Developmental biology of field and laboratory populations of *Latheticus oryzae* Waterhouse (Coleoptera, Tenebrionidae) under various conditions of temperature and humidity. *Journal of Stored Products Research* 16, 55-66.
- Nteletsana, L., Schoeman, A. S. and McGeoch, M. A. (2001). Temperature effects on development and survival of the sweetpotato weevil, *Cylas puncticollis* Boheman (Coleoptera: Apionidae). *African Entomology* 9, 49-57.
- Ntifo, S. E. A. and Nowosielski-Slepowron, B. J. A. (1973). Developmental period and mortality of *Gnathocerus maxillosus* (F.) (Coleoptera, Tenebrionidae) under various conditions of temperature and humidity. *Journal of Stored Products Research* 9, 51-59.
- Nylin, S., Wiklund, C. and Wickman, P.-O. (1993). Absence of trade-offs between sexual size dimorphism and early male emergence in a butterfly. *Ecology* 74, 1414-1427.
- O'Neill, W. L. (1973). Biology of *Trichopria popei* and *T. atrichomelinae* (Hymenoptera: Diapriidae), parasitoids of the Sciomyzidae (Diptera). *Annals of the Entomological Society of America* 66, 1043-1050.
- **Obrycki, J. J. and Tauber, M. J.** (1978). Thermal requirements for development of *Coleomegilla maculata* (Coleoptera: Coccinellidae) and its parasite *Perilitus coccinellae* (Hymenoptera: Braconidae). *The Canadian Entomologist* **110**, 407-412.
- Obrycki, J. J. and Tauber, M. J. (1981). Phenology of three coccinelid species: thermal requirements for development. Annals of the Entomological Society of America 74, 31-36.

- Obrycki, J. J., Tauber, M. J., Tauber, C. A. and Gollands, B. (1987). Developmental responses of the Mexican biotype of *Edovum puttleri* (Hymenoptera: Eulophidae) to temperature and photoperiod. *Environmental Entomology* 16, 1319-1323.
- Omkar, A. P. (2004). Temperature-dependent development and immature survival of an aphidophagous ladybeetle, *Propylea dissecta* (Mulsant). *Journal of Applied Entomology* **128**, 510-514.
- Orr, C. J. and Obrycki, J. J. (1990). Thermal and dietary requirements for development of *Hippodamia parenthesis* (Coleoptera: Coccinellidae). *Environmental Entomology* 19, 1523-1527.
- Orr, D. B., Boethel, D. J. and Jones, W. A. (1985). Development and emergence of Telenomus chloropus and Trissolcus basalis (Hymenoptera: Scelionidae) at various temperatures and relative humidities. Annals of the Entomological Society of America 78, 615-619.
- Page, F. D. (1983). Biology of Austroasca viridigrisea (Paoli) (Hemiptera: Cicadellidae). Journal of the Australian Entomological Society 22, 149-153.
- Paine, T. D. (1992). Cuban laurel thrips (Thysanoptera: Phlaeothripidae) biology in southern California: seasonal abundance, temperature dependent development, leaf suitability, and predation. Annals of the Entomological Society of America 85, 164-172.
- Parajulee, M. N., Phillips, T. W., Throne, J. E. and Nordheim, E. V. (1995). Life history of immature *Lyctocoris campestris* (Hemiptera: Anthocoridae): effects of constant temperatures and relative humidities. *Environmental Entomology* 24, 889-897.
- Park, S. O. (1988). Effects of temperature on the development of the water strider, Gerris paludum insularis (Hemiptera: Gerridae). Environmental Entomology 17, 150-153.
- Parrella, M. P. and Kok, L. T. (1977). The development and reproduction of Bedellia somnulentella on hedge bindweed and sweet potato. Annals of the Entomological Society of America 70, 925-928.
- **Partida, G. J. and Strong, R. G.** (1975). Comparative studies on the biologies of six species of *Trogoderma: T. variabile. Annals of the Entomological Society of America* 68, 115-125.
 - Patel, K. J. and Schuster, D. J. (1983). Influence of temperature on the rate of development of *Diglyphus intermedius* (Hymenoptera: Eulophidae) Girault, a parasite of *Liriomyza* spp. (Diptera: Agromyzidae). *Environmental Entomology* 12, 885-887.
 - Perdikis, D. and Lykouressis, D. P. (2002). Thermal requirements for development of the polyphagous predator *Macrolophus pygmaeus* (Hemiptera: Miridae). *Environmental Entomology* 31, 661-667.
 - Pershing, J. C. and Linit, M. J. (1986). Development and seasonal occurrence of Monochamus carolinensis (Coleoptera: Cerambycidae) in Missouri. Environmental Entomology 15, 251-253.
 - Pilkington, L. J. and Hoddle, M. S. (2006). Reproductive and developmental biology of Gonatocerus ashmeadi (Hymenoptera: Mymaridae), an egg parasitoid of Homalodisca coagulata (Hemiptera: Cicadellidae). Biological Control 37, 266-275.

- Ponsonby, D. J. and Copland, M. J. W. (1996). Effect of temperature on development and immature survival in the scale insect predator, *Chilocorus nigritus* (F.) (Coleoptera: Coccinellidae). *Biocontrol Science and Technology* 6, 101-109.
- Porter, J. (1986). Some studies on the life history and oviposition of Carpophilus dimidiatus (F.) (Coleoptera: Nitidulidae) at various temperatures and humidities. Journal of Stored Products Research 22, 135-139.
- Porter, S. D. (1988). Impact of temperature on colony growth and developmental rates of the ant, *Solenopsis invicta. Journal of Insect Physiology* 34, 1127-1133.
- Powell, D. A. and Bellows, T. S. (1992). Preimaginal development and survival of *Bemisia* tabaci on cotton and cucumber. *Environmental Entomology* 21, 359-363.
- Powell, J. E., Shepard, M. and Sullivan, M. J. (1981). Use of heating degree day and physiological day equations for predicting development of the parasitoid *Trissolcus* basalis. Environmental Entomology 10, 1008-1011.
- Pratissoli, D., Fernandes, O. A., Zanuncio, J. C. and Pastori, P. L. (2004). Fertility life table of *Trichogramma pretiosum* and *Trichogramma acacioi* (Hymenoptera: Trichogrammatidae) on *Sitotroga cerealella* (Lepidoptera: Gelechiidae) eggs at different constant temperatures. *Annals of the Entomological Society of America* 97, 729-731.
- Pratissoli, D. and Parra, J. R. P. (2000). Fertility life table of Trichogramma pretiosum (Hym., Trichogrammatidae) in eggs of Tuta absoluta and Phthorimaea operculella (Lep., Gelechiidae) at different temperatures. Journal of Applied Entomology 124, 339-342.
- Prescott, J. A. and Baranowski, R. M. (1971). Effects of temperature on the immature stages of *Anastrepha suspensa* (Diptera: Tephritidae). *Florida Entomologist* 54, 297-303.
- Prinsloo, G. J. and du Plessis, U. (2000). Temperature requirements of Aphelinus sp. nr. varipes (Foerster) (Hymenoptera: Aphelinidae) a parasitoid of the Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Homoptera: Aphididae). African Entomology 8, 75-79.
- Rae, D. J. and De'ath, G. (1991). Influence of constant temperature on development, survival and fecundity of sugarcane mealybug, Saccharicoccus sacchari (Cockerell) (Hemiptera: Pseudococcidae). Australian Journal of Zoology 39, 105-122.
- Raina, A. K., Bell, R. A. and Carlson, R. B. (1977). Influence of temperature on development of an India strain of the pink bollworm in the laboratory and observations on fecundity. Annals of the Entomological Society of America 70, 628-630.
- Ranga Rao, G. V., Wightman, J. A. and Ranga Rao, D. V. (1989). Threshold temperatures and thermal requirements for the development of *Spodoptera litura* (Lepidoptera: Noctuidae). *Environmental Entomology* 18, 548-551.
- Readshaw, J. L. (1965). The ecology of the swede midge, *Contarinia nasturtii* (Kieff.) (Diptera, Cecidomyiidae). 1. Life-history and influence of temperature and moisture on development. *Bulletin of Entomological Research* 56, 685-698.

- Rechav, Y. and Orion, T. (1975). The development of the immature stages of Chelonus inanitus. Annals of the Entomological Society of America 68, 457-462.
- Régnière, J. (1984). A method of describing and using variability in development rates for the simulation of insect phenology. *The Canadian Entomologist* **116**, 1367-1376.
- Régnière, J. and Turgeon, J. J. (1989). Temperature-dependent development of Zeiraphera canadensis and simulation of its phenology. Entomologia Experimentalis et Applicata 50, 185-193.
- Reichenbach, N. G. and Stairs, G. R. (1984). Response of the western spruce budworm, *Choristoneura occidentalis* (Lepidoptera: Tortricidae), to temperature: the stochastic nature of developmental rates and diapause termination. *Environmental Entomology* 13, 1549-1556.
- Reisen, W. K. (1995). Effect of temperature on *Culex tarsalis* (Diptera: Culicidae) from the Coachella and San Joaquin valleys of California. *Journal of Medical Entomology* 32, 636-645.
- Richardson, M. S. and Goff, M. L. (2001). Effects of temperature and intraspecific interaction on the development of *Dermestes maculatus* (Coleoptera: Dermestidae). *Journal of Medical Entomology* 38, 347-351.
- Rodríguez-del-Bosque, L. A., Smith, J. W. and Browning, H. W. (1989). Development and life-fertility tables for *Diatraea lineolata* (Lepidoptera: Pyralidae) at constant temperatures. *Annals of the Entomological Society of America* 82, 450-459.
- Röhne, O. (2002). Effect of temperature and host stage on performance of Aphelinus varipes
 Förster (Hym., Aphelinidae) parasitizing the cotton aphid, Aphis gossypii Glover (Hom., Aphididae). Journal of Applied Entomology 126, 572-576.
- Roltsch, W. J., Mayse, M. A. and Clausen, K. (1990). Temperature-dependent development under constant and fluctuating temperatures: comparison of linear versus nonlinear methods for modeling development of western grapeleaf skeletonizer (Lepidoptera: Zygaenidae). *Environmental Entomology* 19, 1689-1697.
- Rose, D. J. W. (1973). Laboratory observations on the biology of *Cicadulina* spp. (Hom., Cicadellidae), with particular reference to the effects of temperature. *Bulletin of Entomological Research* 62, 471-476.
- Roy, M., Brodeur, J. and Cloutier, C. (2002). Relationship between temperature and developmental rate of Stethorus punctillum (Coleoptera: Coccinellidae) and its prey *Tetranychus mcdanieli* (Acarina: Tetranychidae). Environmental Entomology 31, 177-187.
- Royer, T. A., Giles, K. L., Kindler, S. D. and Elliott, N. C. (2001). Developmental response of three geographic isolates of *Lysiphlebus testaceipes* (Hymenoptera: Aphididae) to temperature. *Environmental Entomology* **30**, 637-641.
- Ruberson, J. R., Tauber, C. A. and Tauber, M. J. (1995). Developmental effects of host and temperature on *Telenomus* spp. (Hymenoptera: Scelionidae) parasitizing chrysopid eggs. *Biological Control* 5, 245-250.
- Rueda, L. M. and Axtell, R. C. (1996). Temperature-dependent development and survival of the lesser mealworm, *Alphitobius diaperinus*. *Medical and Veterinary Entomology* 10, 80-86.

- Russo, A., Cocuzza, G. E., Vasta, M. C., Simola, M. and Virone, G. (2006). Life fertility tables of *Piophila casei* L. (Diptera: Piophilidae) reared at five different temperatures. *Environmental Entomology* **35**, 194-200.
- Ryoo, M. I. and Cho, K.-J. (1988). A model for the temperature-dependent developmental rate of *Sitophilus oryzae* L. (Coleoptera: Curculionidae) on rice. *Journal of Stored Products Research* 24, 79-82.
- Salom, S. M., Stephen, F. M. and Thompson, L. C. (1987). Development rates and a temperature-dependent model of pales weevil, *Hylobius pales* (Herbst), development. *Environmental Entomology* 16, 956-962.
- Sands, D. P. A., Schotz, M. and Bourne, A. S. (1991). Effects of temperature on development and seasonality of *Eudocima salaminia* (Lepidoptera: Noctuidae) in eastern Australia. *Bulletin of Entomological Research* 81, 291-296.
- Santolamazza-Carbone, S., Rodríguez-Illamola, A. and Cordero Rivera, A. (2006). Thermal requirements and phenology of the *Eucalyptus* snout beetle *Gonipterus* scutellatus Gyllenhal. Journal of Applied Entomology 130, 368-376.
- Saska, P. and Honěk, A. (2003). Temperature and development of central European species of *Amara* (Coleoptera: Carabidae). *European Journal of Entomology* 100, 509-515.
- Satar, S., Kersting, U. and Ulusoy, M. R. (2005). Temperature dependent life history traits of *Brevicoryne brassicae* (L.) (Hom., Aphididae) on white cabbage. *Turkish Journal* of Agriculture and Forestry 29, 341-346.
- Shanower, T. G., Gutierrez, A. P. and Wightman, J. A. (1993a). Effect of temperature on development rates, fecundity and longevity of the groundnut leaf miner, *Aproaerema modicella* (Lepidoptera: Gelechiidae), in India. *Bulletin of Entomological Research* 83, 413-419.
- Shanower, T. G., Schulthess, F. and Bosque-Perez, N. (1993b). Development and fecundity of Sesamia calamistis (Lepidoptera: Noctuidae) and Eldana saccharina (Lepidoptera: Pyralidae). Bulletin of Entomological Research 83, 237-243.
- Sharpe, P. J. H., Schoolfield, R. M. and Butler, G. D. (1981). Distribution model of Heliothis zea (Lepidoptera: Noctuidae) development times. The Canadian Entomologist 113, 845-856.
- Sherrod, D. W., White, C. E. and Eastman, C. E. (1982). Temperature-related development of the imported crucifer weevil, *Baris lepidii* (Coleoptera: Curculionidae), in the laboratory and field. *Environmental Entomology* 11, 897-900.
- Shields, E. J. (1983). Development rate of variegated cutworm (Lepidoptera: Noctuidae). Annals of the Entomological Society of America 76, 171-172.
- Siddiqui, W. H. and Barlow, C. A. (1973). Population growth of Anagasta kuehniella (Lepidoptera: Pyralidae) at constant and alternating temperatures. Annals of the Entomological Society of America 66, 579-585.
- Silverman, J., Rust, M. K. and Reierson, D. A. (1981). Influence of temperature and humidity on survival and development of the cat flea, *Ctenocephalides felis* (Siphonaptera: Pulicidae). *Journal of Medical Entomology* 18, 78-83.

- Simmons, A. M. and Yeargan, K. V. (1988). Development and survivorship of the green stink bug, *Acrosternum hilare* (Hemiptera: Pentatomidae) on soybean. *Environmental Entomology* 17, 527-532.
- Simonet, D. E. and Davenport, B. L. (1981). Temperature requirements for development and oviposition of the carrot weevil. Annals of the Entomological Society of America 74, 312-315.
- Simonet, D. E. and Pienkowski, R. L. (1980). Temperature effect on development and morphometrics of the potato leafhopper. *Environmental Entomology* 9, 798-800.
- Simpson, G. B. (1993). Effects of temperature on the development, longevity and fecundity of *Nala lividipes* (Dufour) (Dermaptera: Labiduridae). *Journal of the Australian Entomological Society* **32**, 265-272.
- Smith, A. M. (1984). Larval instar determination and temperature-development studies of immature stages of the common armyworm, *Mythimna convecta* (Walker) (Lepidoptera: Noctuidae). Journal of the Australian Entomological Society 23, 91-97.
- Smith, L. (1992). Effect of temperature on life history characteristics of Anisopteromalus calandrae (Hymenoptera: Pteromalidae) parasitizing maize weevil larvae in corn kernels. Environmental Entomology 21, 877-887.
- Smith, L. and Rutz, D. A. (1986). Development rate and survivorship of immature Urolepis rufipes (Hymenoptera: Pteromalidae), a parasitoid of pupal house flies. Environmental Entomology 15, 1301-1306.
- Snyder, K. D. (1954). The effect of temperature and food on the development of the variegated cutworm *Peridroma margaritosa* Haw. (Order Lepidoptera, Family Noctuidae). Annals of the Entomological Society of America 47, 603-613.
- Sourakov, A. and Mitchell, E. R. (2001). Effects of cool temperatures on oviposition and development of *Cotesia marginiventris* (Hymenoptera: Braconidae). *Florida Entomologist* 84, 308-309.
- Spence, J. R., Spence, D. H. and Scudder, G. G. E. (1980). The effects of temperature on growth and development of water strider species (Heteroptera: Gerridae) of central British Columbia and implications for species packing. *Canadian Journal of Zoology* 58, 1813-1820.
- Stacey, D. A. and Fellowes, M. D. E. (2002). Temperature and the development rates of thrips: evidence for a constraint on local adaptation? *European Journal of Entomology* 99, 399-404.
- Stathas, G. J. (2000). The effect of temperature on the development of the predator *Rhyzobius lophanthae* and its phenology in Greece. *BioControl* 45, 439-451.
- Stenseth, C. (1979). Effects of temperature on development of Otiorrhynchus sulcatus (Coleoptera: Curculionidae). Annals of Applied Biology 91, 179-185.
- Stevens, M. M. (1998). Development and survival of *Chironomus tepperi* Skuse (Diptera: Chironomidae) at a range of constant temperatures. *Aquatic Insects* 20, 181-188.
- Stevenson, A. B. (1981). Development of the carrot rust fly, *Psila rosae* (Diptera: Psilidae), relative to temperature in the laboratory. *The Canadian Entomologist* 113, 569-574.

- Stone, J. D. and Watterson, G. P. (1985). Effects of temperature on the survival and development of the morril lace bug (Heteroptera: Tingidae) on Guayule. *Environmental Entomology* 14, 329-331.
- Stoner, A., Metcalfe, A., M. and Weeks, R. E. (1974). Development of Podisus acutissimus in relation to constant temperature. Annals of the Entomological Society of America 67, 718-719.
- Summers, C. G., Coviello, R. L. and Gutierrez, A. P. (1984). Influence of constant temperatures on the development and reproduction of *Acyrthosiphon kondoi* (Homoptera: Aphididae). *Environmental Entomology* 13, 236-242.
- Syme, P. D. (1972). The influence of constant temperatures on the non-diapause development of *Hyssopus thymus* (Hymenoptera: Eulophidae). *The Canadian Entomologist* 104, 113-120.
- Talekar, N. S. and Lee, Y. H. (1988). Biology of Ophiomyia centrosematis (Diptera: Agromyzidae), a pest of soybean. Annals of the Entomological Society of America 81, 938-942.
- Tang, Y. Q. and Yokomi, R. K. (1995). Temperature-dependent development of three hymenopterous parasitoids of aphids (Homoptera: Aphididae) attacking citrus. *Environmental Entomology* 24, 1736-1740.
- Tauber, C. A., Johnson, J. B. and Tauber, M. J. (1992). Larval and developmental characteristics of the endemic Hawaiian lacewing, *Anomalochrysa frater* (Neuroptera: Chrysopidae). *Annals of the Entomological Society of America* 85, 200-206.
- Tauber, C. A., Tauber, M. J. and Nechols, J. R. (1987). Thermal requirements for development in *Chrysopa oculata*: a geographically stable trait. *Ecology* 68, 1479-1487.
- Tauber, M. J. and Tauber, C. A. (1974). Thermal accumulations, diapause, and oviposition in a conifer-inhabiting predator, *Chrysopa harrisii* (Neuroptera). *The Canadian Entomologist* 106, 969-978.
- Tauber, M. J., Tauber, C. A., Hoy, R. R. and Tauber, P. J. (1990). Life history, mating behavior, and courtship songs of the endemic Hawaiian Anomalochrysa maclachlani (Neuroptera: Chrysopidae). Canadian Journal of Zoology 68, 1020-1026.
- Tauthong, P. and Brust, T. A. (1976). The effect of temperature on the development and survival of two populations of *Aedes campestris* Dyar and Knab (Diptera: Culicidae). *Canadian Journal of Zoology* 55, 135-137.
- Taylor, R. G. and Harcourt, D. G. (1978). Effects of temperature on developmental rate of the immature stages of *Crioceris asparagi* (Coleoptera: Chrysomelidae). *The Canadian Entomologist* 110, 57-62.
- Teulon, D. A. J. and Penman, D. R. (1991). Effects of temperature and diet on oviposition rate and development time of the New Zealand flower thrips, *Thrips obscuratus*. *Entomologia Experimentalis et Applicata* 60, 143-155.
- Throne, J. E. and Eckenrode, C. J. (1986). Development rates for the seed maggots *Delia* platura and *D. florilega* (Diptera: Anthomyiidae). *Environmental Entomology* 15, 1022-1027.

- Tingle, C. C. D. and Copland, M. J. W. (1988). Predicting development of the mealybug parasitoids Anagyrus pseudococci, Leptomastix dactylopii and Leptomastidea abnormis under glasshouse conditions. Entomologia Experimentalis et Applicata 46, 19-28.
- Toapanta, M. A., Schuster, D. J. and Stansly, P. A. (2005). Development and life history of Anthonomus eugenii (Coleoptera: Curculionidae) at constant temperatures. Environmental Entomology 34, 999-1008.
- Toba, H. H., Kishaba, A. N., Pangaldan, R. and Vail, P. V. (1973). Temperature and development of the cabbage looper. Annals of the Entomological Society of America 66, 965-974.
- Tolley, M. P. and Niemczyk, H. D. (1988). Upper and lower threshold temperatures and degree-day estimates for development of the frit fly (Diptera: Chloropidae) at eight constant temperatures. *Journal of Economic Entomology* 81, 1346-1351.
- Torres, J. B., Musolin, D. L. and Zanuncio, J. C. (2002). Thermal requirements and parasitism capacity of *Trissolcus brochymenae* (Ashmead) (Hymenoptera: Scelionidae) under constant and fluctuating temperatures, and assessment of development in field conditions. *Biocontrol Science and Technology* 12, 583-593.
- Toscano, N. C. and Stern, V. M. (1976). Development and reproduction of *Euschistus* conspersus at different temperatures. Annals of the Entomological Society of America 69, 839-840.
- Tracy, J. L. and Nechols, J. R. (1987). Comparisons between the squash bug egg parasitoids *Ooencyrtus anasae* and *O. sp.* (Hymenoptera: Encyrtidae): development, survival, and sex ratio in relation to temperature. *Environmental Entomology* 16, 1324-1329.
- Trimble, R. M. (1994). Role of photoperiod and temperature in the induction of overwintering pupal diapause in the spotted tentiform leafminer, *Phyllonorycter blancardella*. *Entomologia Experimentalis et Applicata* **72**, 25-31.
- Trimble, R. M. and Lund, C. T. (1983). Intra- and interpopulation variation in the thermal characteristics of preadult development of two latitudinally diverse populations of *Toxorhynchites rutilus septentrionalis* (Diptera: Culicidae). *The Canadian Entomologist* 115, 659-662.
- Trpis, M. (1972). Development and predatory behaviour of *Toxorhynchites brevipalpis* (Diptera: Culicidae) in relation to temperature. *Environmental Entomology* 1, 537-546.
- Tullett, A. G., Hart, A. J., Worland, M. R. and Bale, J. S. (2004). Assessing the effects of low temperature on the establishment potential in Britain of the non-native biological control agent *Eretmocerus eremicus*. *Physiological Entomology* **29**, 363-371.
- Tyron, E. H. and Poe, S. L. (1981). Developmental rates and emergence of vegetable leafminer pupae and their parasites reared from celery foliage. *Florida Entomologist* 64, 477-483.
- Ulmer, B. J., Jacas, J. A., Peña, J. E., Duncan, R. E. and Castillo, J. (2006). Effect of temperature on life history of *Aprostocetus vaquitarum* (Hymenoptera: Eulophidae), an egg parasitoid of *Diaprepes abbreviatus* (Coleoptera: Curculionidae). *Biological Control* 36, 19-25.

- Urbaneja, A., Hinarejos, R., Llácer, E., Garrido, A. and Jacas, J.-A. (2002). Effect of temperature on life history of *Cirrospilus vittatus* (Hymenoptera: Eulophidae), an ectoparasitoid of *Phyllocnistis citrella* (Lepidoptera: Gracillariidae). *Journal of Economic Entomology* **95**, 250-255.
- Urbaneja, A., Llácer, E., Tomás, O., Garrido, A. and Jacas, J.-A. (1999). Effect of temperature on development and survival of *Cirrospilus* sp. near *lyncus* (Hymenoptera: Eulophidae), parasitoid of *Phyllocnistis citrella* (Lepidoptera: Gracillariidae). *Environmental Entomology* 28, 339-344.
- Urbaneja, A., Morales, C., de Mendoza, A. H., Garrido, A. and Jacas, J. A. (2003). Effect of temperature on development and survival of *Citrostichus phyllocnistoides* (Hymenoptera: Eulophidae), a parasitoid of *Phyllocnistis citrella* (Lepidoptera: Gracillariidae). *Biocontrol Science and Technology* **13**, 127-130.
- Uygun, N. and Atlihan, R. (2000). The effect of temperature on development and fecundity of *Scymnus levaillanti*. *BioControl* 45, 453-462.
- Van der Linde, T. C. K., Hewitt, P. H., Van Pletzen, R., Nel, A. and Van der Westhuizen, M. C. (1987). Oogenesis and oviposition in *Culex theileri* Theobald (Diptera: Culicidae) at various constant temperatures. *Journal of the Entomological Society of Southern Africa* 50, 323-329.
- Van der Linde, T. C. K. and Mitchell, J. (1991). The influence of constant temperature on the development and survival of the immature stages of Culex (Culex) theileri Theobald (Diptera: Culicidae). Journal of the Entomological Society of Southern Africa 54, 141-153.
- Vargas, R. I., Walsh, W. A., Jang, E. B., Armstrong, J. W. and Kanehisa, D. T. (1996). Survival and development of immature stages of four Hawaiian fruit flies (Diptera: Tephritidae) reared at five constant temperatures. Annals of the Entomological Society of America 89, 64-69.
- Virla, E. G., Logarzo, G. A., Jones, W. A. and Triapitsyn, S. (2005). Biology of Gonatocerus tuberculifemur (Hymenoptera: Mymaridae), an egg parasitoid of the sharpshooter, Tapajosa rubromarginata (Hemiptera: Cicadellidae). Florida Entomologist 88, 67-71.
- Vogt, W. G., Walker, J. M. and Runko, S. (1990). Estimation of development times for immature stages of the bush fly, *Musca vetustissima* Walker (Diptera: Muscidae), and their simulation from air temperature and solar radiation records. *Bulletin of Entomological Research* 80, 73-78.
- Wagner, T. L., Flamm, R. O., Wu, H., Fargo, W. S. and Coulson, R. N. (1987). Temperature-dependent model of life cycle development of *Ips calligraphus* (Coleoptera: Scolytidae). *Environmental Entomology* 16, 497-502.
- Wagner, T. L., Hennier, P. B., Flamm, R. O. and Coulson, R. N. (1988). Development and mortality of *Ips avulsus* (Coleoptera: Scolytidae) at constant temperatures. *Environmental Entomology* 17, 181-191.
- Walters, R. J. and Hassal, M. (2006). The temperature-size rule in ectotherms: may a general explanation exist after all? *The American Naturalist* 167, 510-523.

- Wang, B., Ferro, D. N., Wu, J. and Wang, S. (2004). Temperature-dependent development and oviposition behaviour of *Trichogramma ostriniae* (Hymenoptera: Trichogrammatidae), a potential biological control agent for the European corn borer (Lepidoptera: Crambidae). *Environmental Entomology* 33, 787-793.
- Wang, J.-J., Tsai, J. H., Zhao, Z.-M. and Li, L.-S. (2000). Development and reproduction of the psocid *Liposcelis bostrychophila* (Psocoptera: Liposcelididae) as a function of temperature. *Annals of the Entomological Society of America* 93, 261-270.
- Ward, R. H. and Pienkowski, R. L. (1978). Biology of Cassida rubiginosae a thistlefeeding shield beetle. Annals of the Entomological Society of America 71, 585-591.
- Wellings, P. W. (1981). The effect of temperature on the growth and reproduction of two closely related aphid species on sycamore. *Ecological Entomology* 6, 209-214.
- Wermelinger, B. and Seifert, M. (1998). Analysis of the temperature dependent development of the spruce bark beetle *Ips typographus* (L.) (Col., Scolytidae). *Journal of Applied Entomology* 122, 185-191.
- White, N. D. G. and Bell, R. J. (1994). Effect of temperature, food density and sub-lethal exposure to malathion on aging in *Cryptolestes ferrugineus* (Stephens) (Coleoptera: Cucujidae). *Journal of Stored Products Research* **30**, 187-199.
- Whitfield, G. H. and Richards, K. W. (1985). Influence of temperature on survival and rate of development of *Pteromalus venustus* (Hymenoptera: Pteromalidae), a parasite of the alfalfa leafcutter bee (Hymenoptera: Megachilidae). *The Canadian Entomologist* 117, 811-818.
- Whitworth, R. J. and Poston, F. L. (1979). A thermal-unit accumulation system for the southwestern corn borer. Annals of the Entomological Society of America 72, 253-255.
- Wilkinson, J. D. and Daugherty, D. M. (1970). Comparative development of *Bradysia impatiens* (Diptera: Sciaridae) under constant and variable temperatures. *Annals of the Entomological Society of America* 63, 1079-1083.
- Woodson, W. D. and Edelson, J. V. (1988). Developmental rate as a function of temperature in a carrot weevil, *Listronotus texanus* (Coleoptera: Curculionidae). *Annals of the Entomological Society of America* 81, 252-254.
- Wright, E. J. and Laing, J. E. (1978). The effects of temperature on development, adult longevity and fecundity of *Coleomegilla maculata lengi* and its parasite, *Perilitus* coccinellae. Proceedings of the Entomological Society of Ontario 109, 33-47.
- Yang, P., Carey, J. R. and Dowell, R. V. (1994). Temperature influences on the development and demography of *Bactrocera dorsalis* (Diptera: Tephritidae) in China. *Environmental Entomology* 23, 971-974.
- Yang, T.-C. and Chi, H. (2006). Life tables and development of *Bemisia argentifolii* (Homoptera: Aleyrodidae) at different temperatures. *Journal of Economic Entomology* 99, 691-698.
- Yeargan, K. V. (1983). Effects of temperature on developmental rate of Trissolcus euschisti (Hymenoptera: Scelionidae), a parasite of stink bug eggs. Annals of the Entomological Society of America 76, 757-760.

- Zalucki, M. P. (1982). Temperature and rate of development in *Danaus plexippus* L. and *D. chrysippus* L. (Lepidoptera: Nymphalidae). *Journal of the Australian Entomological Society* 21, 241-246.
- Zilahi-Balogh, G. M. G., Salom, S. M. and Kok, L. T. (2003). Temperature-dependent development of the specialist predator *Laricobius nigrinus* (Coleoptera: Derodontidae). *Environmental Entomology* **32**, 1322-1328.

.

ġ

ŗ.

APPENDIX 2b

Slopes of the relationships between development rate $(\ln {}^{1}/_{D})$ and experimental temperature of the insects used in this study, together with the temperature range (in °C) used. Given are all the species for which development rate-temperature relationships were obtained for incomplete egg to adult development. For each species the developmental stage is indicated as follows: e = egg, l = larvae, n = nymph, p = pupae; numbers indicate the larval or nymphal instars.

<u></u>	Family	Ordor	Life	Slope	Temp range		Reference
Species	гашпу	Order	Stage	Slope	Min	Max	
Blattella germanica	Blattellidae	Blattodea	n 1	0.1244	21.0	30.0	Stejskal et al., 2003
Acanthoscelides obtectus	Bruchidae	Coleoptera	e	0.0947	17.5	30.0	Howe and Currie, 1964
Amara chaudoiri incognita	Carabidae	Coleoptera	e	0.0835	17.0	28.0	Saska and Honěk, 2003
Amara equestris	Carabidae	Coleoptera	e	0.1119	17.0	28.0	Saska and Honěk, 2003
Amara eurynota	Carabidae	Coleoptera	e	0.1263	17.0	28.0	Saska and Honěk, 2003
Phoracantha semipunctata	Cerambycidae	Coleoptera	e	0.1402	15.0	25.0	Bybee et al., 2004
Aphthona abdominalis	Chrysomelidae	Coleoptera	e	0.1037	15.0	35.0	Fornasari, 1995
Aphthona lacertosa	Chrysomelidae	Coleoptera	l 3-last, p	0.0928	12.0	26.0	Skinner et al., 2004
Aphthona nigriscutis	Chrysomelidae	Coleoptera	l 3-last, p	0.1046	12.0	26.0	Skinner et al., 2004
Bruchus obtectus	Chrysomelidae	Coleoptera	l, p	0.0910	17.3	31.1	Menusan, 1936

	TF *1	Order	Life	Slope	Temp	range	Reference
Species	Family	Order	Stage	Slope	Min	Max	
Bruchus pisorum	Chrysomelidae	Coleoptera	l, p	0.1404	16.2	29.6	Smith and Ward, 1995
Diabrotica barberi	Chrysomelidae	Coleoptera	l, p	0.1021	15.0	27.0	Woodson and Jackson, 1996
Diabrotica longicornis	Chrysomelidae	Coleoptera	e	0.0680	17.5	30.0	Chiang and Sisson, 1968
Diabrotica undecimpunctata							
howardi	Chrysomelidae	Coleoptera	р	0.0775	16.0	33.0	Fisher, 1986
Diabrotica virgifera zeae	Chrysomelidae	Coleoptera	l, p	0.1147	15.0	27.0	Woodson and Chandler, 2000
Entomoscelis americana	Chrysomelidae	Coleoptera	e	0.1238	5.0	30.0	Lamb et al., 1984
Pyrrhalta viburni	Chrysomelidae	Coleoptera	l, p	0.0752	17.0	27.0	Weston and Diaz, 2005
Adalia decempunctata	Coccinellidae	Coleoptera	p	0.1068	15.0	21.0	Honěk and Kocourek, 1988
Adonia variegata	Coccinellidae	Coleoptera	e	0.0939	15.0	24.0	Honěk and Kocourek, 1988
Coccinella californica	Coccinellidae	Coleoptera	e	0.1877	12.0	20.0	Frazer and McGregor, 1992
Coccinella quinquepunctata	Coccinellidae	Coleoptera	e, p	0.1262	15.0	24.0	Honěk and Kocourek, 1988
Coccinella undecimpunctata	Coccinellidae	Coleoptera	e	0.1965	12.0	20.0	Frazer and McGregor, 1992
Cycloneda polita	Coccinellidae	Coleoptera	e	0.1649	12.0	20.0	Frazer and McGregor, 1992
Hippodamia septemmaculata	Coccinellidae	Coleoptera	e	0.1071	15.0	24.0	Honěk and Kocourek, 1988
Propylea							
quatuordecimpunctata	Coccinellidae	Coleoptera	e, p	0.1334	15.0	24.0	Honěk and Kocourek, 1988
Semiadalia undecimnotata	Coccinellidae	Coleoptera	e, p	0.1243	15.0	24.0	Honěk and Kocourek, 1988
Artipus floridanus	Curculionidae	Coleoptera	l, p	0.0679	15.0	35.0	Tarrant and McCoy, 1989

Species	Family	Order	Life Stage	Slope	Temp Min	range Max	Reference
Baris coerulescens	Curculionidae	Coleoptera	1	0.1286	10.0	30.0	Lerin and Koubaiti, 1998
Ceuthorhynchidius horridus	Curculionidae	Coleoptera	1	0.0677	10.0	21.0	Kok et al., 1975
Diaprepes abbreviatus	Curculionidae	Coleoptera	e, p	0.1080	22.0	30.0	Lapointe 2000, 2001
Hylobius transversovittatus	Curculionidae	Coleoptera	e	0.1149	15.0	27.5	McAvoy and Kok, 1999
Neochetina bruchi	Curculionidae	Coleoptera	e	0.0738	20.0	30.0	DeLoach and Cordo, 1976
Neochetina eichhorniae	Curculionidae	Coleoptera	e	0.0546	20.0	35.0	DeLoach and Cordo, 1976
Otiorhynchus ovatus	Curculionidae	Coleoptera	р	0.0816	12.0	30.0	Umble and Fisher, 2000
Pachnaeus opalus	Curculionidae	Coleoptera	e	0.0894	15.0	35.0	Tarrant and McCoy, 1989
Pantomorus cervinus	Curculionidae	Coleoptera	e	0.0860	15.0	35.0	Tarrant and McCoy, 1989
Pissodes yunnanensis	Curculionidae	Coleoptera	e, p	0.0807	15.0	25.0	Zhang et al., 2004
Rhinocyllus conicus	Curculionidae	Coleoptera	l, p	0.1194	22.0	26.0	Smith and Kok, 1985
Sophrorhinus gbanjaensis	Curculionidae	Coleoptera	e	0.0836	25.0	30.0	Daramola, 1978
Trichosirocalus horridus	Curculionidae	Coleoptera	e	0.1254	7.0	25.0	McAvoy and Kok, 1985
Anthrenocerus australis	Dermestidae	Coleoptera	e, l	0.0727	15.0	25.0	Gerard and Ruf, 1997
Anthrenus verbasci	Dermestidae	Coleoptera	e, p	0.1385	15.0	25.0	Blake, 1958
Dermestes lardarius	Dermestidae	Coleoptera	l, p	0.0763	15.0	30.0	Coombs, 1978
Dermestes peruvianus	Dermestidae	Coleoptera	l, p	0.1524	15.0	25.0	Coombs, 1979
Trogoderma granarium	Dermestidae	Coleoptera	l, p	0.0624	25.0	35.0	Hadaway, 1955
Trogoderma inclusum	Dermestidae	Coleoptera	l, p	0.0638	23.9	32.2	Strong, 1975

163

Appendix	2b	continued
----------	----	-----------

_

		Ordor	Life	Slope	Temp range		Peference
Species	Family	Order	Stage	Slope	Min	Max	
Trogoderma simplex	Dermestidae	Coleoptera	l, p	0.0928	21.1	32.2	Strong and Mead, 1975
Aphodius tasmaniae	Scarabaeidae	Coleoptera	e	0.0997	16.0	25.0	Maelzer, 1961
Bubas bison	Scarabaeidae	Coleoptera	e	0.0861	15.0	25.0	Kirk and Kirk, 1990
Copris hispanus	Scarabaeidae	Coleoptera	e	0.0998	15.0	30.0	Kirk and Kirk, 1990
Liriomyza sativae	Agromyzidae	Diptera	р	0.0767	15.6	32.2	Tyron and Poe, 1981
Coenosia tigrina	Anthomyiidae	Diptera	l, p	0.0783	15.0	25.0	Morris and Cloutier, 1987
Delia coarctata	Anthomyiidae	Diptera	1	0.1013	5.0	20.0	Jones, 1978
Hylemya brassicae	Anthomyiidae	Diptera	e, p	0:0724	15.2	21.1	Eckenrode and Chapman, 1971
Hylemya platura	Anthomyiidae	Diptera	e, p	0.1222	7.6	19.0	Sanborn et al., 1982
Cochliomyia macellaria	Calliphoridae	Diptera	e	0.0815	17.8	37.2	Melvin, 1934
Lucilia australis	Calliphoridae	Diptera	e	0.0496	23.3	31.7	Melvin, 1934
Lucilia cuprina	Calliphoridae	Diptera	р	0.0983	15.0	30.0	Dallwitz, 1984
Lucilia unicolor	Calliphoridae	Diptera	e	0.0540	13.3	34.4	Melvin, 1934
Sitodiplosis mosellana	Cecidomyiidae	Diptera	l, p	0.0762	15.7	27.5	Wise and Lamb, 2004
Cricotopus bicinctus	Chironomidae	Diptera	1	0.0959	10.0	20.0	Mackey, 1977
Cricotopus sylvestris	Chironomidae	Diptera	1	0.0964	10.0	20.0	Mackey, 1977
Phaenopsectra flavipes	Chironomidae	Diptera	1	0.0838	10.0	20.0	Mackey, 1977
Polypedilum convictum	Chironomidae	Diptera	1	0.1006	10.0	20.0	Mackey, 1977
Rheotanytarsus photophilus	Chironomidae	Diptera	1	0.1054	10.0	20.0	Mackey, 1977

• ••••

			Life		Temp range		Deference
Species	Family	Order	Stage	Slope	Min _	Max	Kelerence
Synorthocladius semivirens	Chironomidae	Diptera	1	0.0934	10.0	20.0	Mackey, 1977
Aedes aegypti	Culicidae	Diptera	l, p	0.0415	20.0	35.0	Tun-Lin, 2000
Aedes dorsalis	Culicidae	Diptera	l, p	0.0688	21.0	30.0	Parker, 1979
Aedes sollicitans	Culicidae	Diptera	l, p	0.0884	12.0	32.0	Shelton, 1973
Aedes triseriatus	Culicidae	Diptera	l, p	0.0857	15.0	23.0	Shelton, 1973
Aedes vexans	Culicidae	Diptera	l, p	0.1225	15.0	25.0	Slater and Pritchard, 1979
Anopheles albimanus	Culicidae	Diptera	l, p	0.0825	20.0	29.0	Shelton, 1973
Culex pipiens pallens	Culicidae	Diptera	l, p	0.0988	15.0	28.0	Mogi, 1992
Culex quinquefasciatus	Culicidae	Diptera	l, p	0.1005	15.0	28.0	Mogi, 1992
Culex restuans	Culicidae	Diptera	l, p	0.0522	15.0	29.0	Shelton, 1973
Culex salinarius	Culicidae	Diptera	l, p	0.1112	12.0	23.0	Shelton, 1973
Culiseta inornata	Culicidae	Diptera	l, p	0.0457	15.0	26.0	Shelton, 1973
Psorophora columbiae	Culicidae	Diptera	l, p	0.0887	16.0	34.0	McHugh and Olson, 1982
Psorophora confinnis	Culicidae	Diptera	l, p	0.0963	18.3	32.2	Gunstream and Chew, 1967
Glossina morsitans orientalis	Glossinidae	Diptera	р	0.1187	16.0	29.0	Phelps and Burrows, 1969
Siphona irritans	Muscidae	Diptera	e, l	0.0887	18.3	30.0	Depner, 1961
Cephenemyia trompe	Oestridae	Diptera	р	0.0982	12.0	26.5	Nilssen, 1997
Hypoderma bovis	Oestridae	Diptera	р	0.1023	16.0	28.0	Pfadt et al., 1975
Hypoderma lineatum	Oestridae	Diptera	р	0.1229	18.0	26.0	Pfadt et al., 1975

Species	Family	Ordor	Life	Slone	Temp	range	Reference
Species	гашпу	Order	Stage	Slope	Min	Max	Kelerence
Hypoderma tarandi	Oestridae	Diptera	p	0.0991	12.0	26.5	Nilssen, 1997
Tetanops myopaeformis	Otitidae	Diptera	1	0.1566	10.0	25.0	Whitfield, 1984
							Prawirodisastro and Benjamin,
Megaselia scalaris	Phoridae	Diptera	e, l	0.1000	15.0	25.0	1979
Liopygia (Sarcophaga)							
argyrostoma	Sarcophagidae	Diptera	l, p	0.0652	15.0	35.0	Grassberger and Reiter, 2002
Parasarcophaga knabi	Sarcophagidae	Diptera	l, p	0.0717	18.0	32.0	Woolcock, 1975
Sarcophaga (Liosarcophaga)							
tibialis	Sarcophagidae	Diptera	1	0.0630	10.0	35.0	Villet et al., 2006
Sarcophaga crassipalpis	Sarcophagidae	Diptera	l, p	0.0928	15.0	30.0	Chen et al., 1987
Wohlfahrtia pachytyli	Sarcophagidae	Diptera	l, p	0.0666	20.0	35.0	Price and Brown, 2006
Scathophaga stercoraria	Scathophagidae	Diptera	l, p	0.0898	10.0	25.0	Blanckenhorn, 1997
Ilione albiseta	Sciomyzidae	Diptera	l, p	0.1372	17.0	23.0	Gormally, 1987
Pherbellia cinerella	Sciomyzidae	Diptera	l, p	0.0743	14.0	26.0	Gormally, 1987
Boophthora erythrocephala	Simuliidae	Diptera	p	0.0956	11.0	21.0	Prügel, 1988
Odagmia ornata	Simuliidae	Diptera	р	0.1097	6.0	21.0	Prügel, 1988
Simulium arcticum	Simuliidae	Diptera	e	0.1369	3.0	18.0	Shipp and Whitfield, 1987
Melanostoma mellium	Syrphidae	Diptera	р	0.0691	18.0	24.0	Honěk and Kocourek, 1988
Sphaerophoria scripta	Syrphidae	Diptera	p	0.1061	15.0	21.0	Honěk and Kocourek, 1988

	Family	Order	Life	Slone	Temp	range	Reference
Species	гашпу	Order	Stage	510pc	Min	Max	
Compsilura concinnata	Tachinidae	Diptera	l, p	0.0877	15.6	26.7	Fusco et al., 1978
Lixophaga diatraeae	Tachinidae	Diptera	l, p	0.0903	16.0	30.0	King and Martin, 1975
Myiopharus doryphorae	Tachinidae	Diptera	l, p	0.0844	20.0	30.0	López et al., 1997
Myiopharus sp	Tachinidae	Diptera	l, p	0.0301	24.0	34.0	López et al., 1997
Sturmiopsis inferens	Tachinidae	Diptera	l, p	0.0435	27.0	33.0	David et al., 1981
Winthemia fumiferanae	Tachinidae	Diptera	e, l	0.0802	12.0	27.5	Hébert and Cloutier, 1990
Dacus cucurbitae	Tephritidae	Diptera	e, l	0.0795	15.6	29.4	Keck, 1951
Dacus dorsalis	Tephritidae	Diptera	e	0.1212	13.9	29.4	Messenger and Flitters, 1958
Rhagoletis cerasi	Tephritidae	Diptera	р	0.1104	10.0	23.7	Baker and Miller, 1978
Rhagoletis pomonella	Tephritidae	Diptera	р	0.1090	15.0	27.0	Reissig et al., 1979
Baëtis rhodani	Baëtidae	Ephemeroptera	e	0.1243	4.0	22.0	Elliott, 1972
Coloburiscoides sp.	Coloburiscidae	Ephemeroptera	e	0.0915	10.0	25.0	Brittain and Campbell, 1991
Ecdyonurus dispar	Heptageniidae	Ephemeroptera	e	0.1637	5.0	20.0	Humpesch, 1980
Ecdyonurus insignis	Heptageniidae	Ephemeroptera	e	0.1569	10.0	20.0	Humpesch, 1980
Ecdyonurus picteti	Heptageniidae	Ephemeroptera	e	0.1609	5.0	15.0	Humpesch, 1980
Ecdyonurus torrentis	Heptageniidae	Ephemeroptera	e	0.1661	5.0	20.0	Humpesch, 1980
Ecdyonurus venosus	Heptageniidae	Ephemeroptera	e	0.1534	5.0	20.0	Humpesch, 1980
Rhithrogena cf. hybrida	Siphlonuridae	Ephemeroptera	e	0.1132	5.7	20.0	Humpesch, 1982
Rhithrogena semicolorata	Siphlonuridae	Ephemeroptera	e	0.1803	5.0	19.5	Humpesch and Elliott, 1980

Species	Family	Order	Life	Slone	Temp range		Reference
species	Гашпу	order	Stage	Stope	Min	Max	Kelerenee
Aphis fabae	Aphididae	Hemiptera	1	0.1050	11.5	22.5	Tsitsipis and Mittler, 1976
Aphis nasturtii	Aphididae	Hemiptera	n	0.0956	10.0	27.0	Wang et al., 1997
Aphis punicae	Aphididae	Hemiptera	n	0.0997	17.5	27.5	Bayhan et al., 2005
Aphis spiraecola	Aphididae	Hemiptera	n	0.0614	10.0	28.0	Wang and Tsai, 2000
Chromaphis juglandicola	Aphididae	Hemiptera	l, p	0.1680	15.0	20.0	Nowierski et al., 1983
Hyperomyzus lactucae	Aphididae	Hemiptera	n	0.0813	12.5	24.0	Liu and Hughes, 1987
Macrosiphum albifrons	Aphididae	Hemiptera	n	0.0847	9.8	24.2	Frazer and Gill, 1981
Macrosiphum euphorbiae	Aphididae	Hemiptera	n	0.0529	10.0	25.0	Barlow, 1962
Myzus persicae	Aphididae	Hemiptera	n	0.1136	6.2	24.7	Liu and Meng, 1999
Nasonovia ribisnigri	Aphididae	Hemiptera	n	0.0959	8.0	24.0	Diaz and Fereres, 2005
Pemphigus populitransversus	Aphididae	Hemiptera	n	0.0906	10.0	26.4	Royer et al., 1999
Rhopalosiphum maidis	Aphididae	Hemiptera	n	0.0800	11.0	26.0	Elliott et al., 1988
Rhopalosiphum nymphaeae	Aphididae	Hemiptera	n	0.0374	18.3	26.7	Ballou et al., 1986
Rhopalosiphum							
rufiabdominalis	Aphididae	Hemiptera	n	0.0623	15.0	30.0	Tsai and Liu, 1998
Schizaphis graminum	Aphididae	Hemiptera	n	0.1038	11.0	23.0	Walgenbach et al., 1988
Toxoptera citricida	Aphididae	Hemiptera	n	0.1336	8.0	25.0	Tsai and Wang, 1999
Toxoptera graminum	Aphididae	Hemiptera	l, p	0.0996	10.0	26.7	Headlee, 1914
Jalysus spinosus	Berytidae	Hemiptera	n	0.0973	15.9	29.5	Elsey and Lam, 1978

Spacios	Ecmily	Onden	Life	Sland	Temp	o range	Defenerae
Species	гашну	Order	Stage	Slope	Min	Max	Reference
Philaenus spumarius	Cercopidae	Hemiptera	e	0.1108	10.0	25.0	Chmiel and Wilson, 1979
Erythroneura elegantula	Cicadellidae	Hemiptera	n	0.0834	16.0	30.5	Olsen et al., 1998
Erythroneura ziczac	Cicadellidae	Hemiptera	n	0.0931	16.0	29.5	Olsen et al., 1998
Cimex lectularius	Cimicidae	Hemiptera	e	0.1385	13.0	20.0	Johnson, 1940
Cyrtomenus bergi	Cydnidae	Hemiptera	e, n 1,3,5	0.1445	18.0	25.0	Riis et al., 2005
Peregrinus maidis	Delphacidae	Hemiptera	n	0.0994	15.6	26.7	Tsai and Wilson, 1986
Hemiberlesia rapax	Diaspididae	Hemiptera	n	0.1155	13.7	24.6	Blank et al., 2000
Unaspis citri	Diaspididae	Hemiptera	n	0.0563	21.0	28.0	Arias-Reverón and Browning, 1995
Spissistilus festinus	Membracidae	Hemiptera	n	0.0861	18.3	29.4	Spurgeon and Mack, 1990
Calocoris norvegicus	Miridae	Hemiptera	n 1-4	0.1018	10.0	25.0	Purcell and Welter, 1990
Campylomma verbasci	Miridae	Hemiptera	e	0.1206	12.9	25.8	Judd and McBrien, 1994
Adelges piceae	Phylloxeridae	Hemiptera	e	0.1317	7.0	25.0	Amman, 1968
Planococcus citri	Pseudococcidae	Hemiptera	e	0.1098	13.0	29.4	Laflin and Parrella, 2004
Aphelinus mali	Aphelinidae	Hymenoptera	l, p	0.1295	12.0	24.0	Trimble et al., 1990
Meteorus gyrator	Braconidae	Hymenoptera	l, p	0.1299	10.0	25.0	Bell et al., 2003
Microctonus aethiopoides	Braconidae	Hymenoptera	l, p	0.1007	12.8	26.7	Morales and Hower, 1981
Neodiprion fulviceps	Diprionidae	Hymenoptera	e	0.0776	15.0	26.0	Tisdale and Wagner, 1990
Neodiprion sertifer	Diprionidae	Hymenoptera	e	0.1153	12.5	25.0	Régnière, 1984

2 · •

.

.

Species	Family	Ordor	Life	Slone	Temp	range	Reference
Species	гашпу	Uldel	Stage	Slope	Min	Max	
Habrobracon juglandis	Encyrtidae	Hymenoptera	e	0.1095	13.0	32.0	Davidson, 1942
Psyllaephagus bliteus	Encyrtidae	Hymenoptera	e, l	0.0730	22.0	30.0	Daane et al., 2005
Tetrastichus julis	Eulophidae	Hymenoptera	l, p	0.0982	12.8	26.7	Gage and Haynes, 1975
Anastatus semiflavidus	Eupelmidae	Hymenoptera	e	0.0870	20.0	35.0	Mendel et al., 1989
Eurytoma amygdali	Eurytomidae	Hymenoptera	e, p	0.1337	15.0	25.0	Plaut, 1972
Myrmica rubra	Formicidae	Hymenoptera	13	0.1211	16.0	25.0	Elmes and Wardlaw, 1983
Myrmica ruginodis	Formicidae	Hymenoptera	14	0.1330	16.0	25.0	Elmes and Wardlaw, 1983
Myrmica sabuleti	Formicidae	Hymenoptera	15	0.0862	16.0	25.0	Elmes and Wardlaw, 1983
Myrmica scabrinodis	Formicidae	Hymenoptera	16	0.1112	16.0	25.0	Elmes and Wardlaw, 1983
Nomia melanderi	Halictidae	Hymenoptera	l last, p	0.1281	21.0	29.0	Stephen, 1965
Bathyplectes curculionis	Ichneumonidae	Hymenoptera	e, l	0.0846	15.0	26.7	Butler and Ritchie, 1967
Glypta fumiferanae	Ichneumonidae	Hymenoptera	l, p	0.0982	14.9	23.4	Lysyk and Nealis, 1988
Pteromalus puparum	Pteromalidae	Hymenoptera	р	0.0970	17.0	30.0	Nealis et al., 1984
Tyria jacobaeae	Arctiidae	Lepidoptera	1	0.0710	18.3	26.7	Isaacson, 1973
Coleophora laricella	Coleophoridae	Lepidoptera	e	0.1214	12.8	22.2	Quednau, 1967
Chilo orichalcociliellus	Crambidae	Lepidoptera	1	0.0491	25.0	31.0	Ofomata et al., 2000
Chilo partellus	Crambidae	Lepidoptera	1	0.0344	25.0	31.0	Ofomata et al., 2000
Anarsia lineatella	Gelechiidae	Lepidoptera	e	0.0703	21.1	32.0	Brunner and Rice, 1984
Orgyia pseudotsugata	Lymantriidae	Lepidoptera	l, p	0.0679	15.0	30.0	Beckwith, 1982

Species	Family	Order	Life Stage	Slope	Temp	range	Reference
Autographa biloba	Noctuidae	Lepidoptera	l, p	0.0727	20.0	30.0	Beach and Todd, 1988
Autographa californica	Noctuidae	Lepidoptera	l, p	0.0868	18.0	30.0	Miller et al., 1984
Autographa gamma	Noctuidae	Lepidoptera	l, p	0.1015	13.0	25.0	Hill and Gatehouse, 1992
Heliothis armiger	Noctuidae	Lepidoptera	р	0.0935	20.0	32.0	Foley, 1981
Orthosia hibisci	Noctuidae	Lepidoptera	l, p	0.1118	7.7	20.4	Judd et al., 1994
Panolis flammea	Noctuidae	Lepidoptera	e	0.0942	5.0	25.0	Leather, 1994
Spodoptera littoralis	Noctuidae	Lepidoptera	р	0.0967	20.0	30.0	Rivnay and Meisner 1965
Heterocampa guttivitta	Notodontidae	Lepidoptera	e, l	0.0730	15.6	26.7	Martinat and Allen, 1987
Quadricalcarifera punctatella	Notodontidae	Lepidoptera	1	0.0770	15.0	24.0	Kamata and Igarashi, 1995
Aglais urticae	Nymphalidae	Lepidoptera	l, p	0.1072	15.0	25.7	Bryant et al., 1999
Hypolimnas bolina	Nymphalidae	Lepidoptera	l, p	0.0676	21.0	30.0	Kemp, 2000
Inachis io	Nymphalidae	Lepidoptera	l, p	0.0930	15.0	25.7	Bryant et al., 1999
Mycalesis perseus	Nymphalidae	Lepidoptera	e	0.0938	17.0	30.0	Braby and Jones, 1994
Mycalesis sirius	Nymphalidae	Lepidoptera	e	0.0930	17.0	30.0	Braby and Jones, 1994
Mycalesis terminus	Nymphalidae	Lepidoptera	e	0.1149	17.0	26.0	Braby and Jones, 1994
Polygonia c-album	Nymphalidae	Lepidoptera	l, p	0.0971	15.0	25.7	Bryant et al., 1999
Vanessa atalanta	Nymphalidae	Lepidoptera	l, p	0.0931	15.0	25.7	Bryant et al., 1999
Papilio glaucus	Papilionidae	Lepidoptera	1	0.0697	18.0	30.0	Scriber and Lederhouse, 1983
Elasmopalpus lignosellus	Phycitidae	Lepidoptera	l, p	0.1273	20.0	27.0	Holloway and Smith, 1976

Snecies	Family	Order	Life Stage	Slone	Temp range		Reference
					Min	Max	
Pieris rapae	Pieridae	Lepidoptera	l, p	0.0800	15.0	31.0	Jones et al., 1987
Amyelois transitella	Pyralidae	Lepidoptera	e, p	0.1102	16.7	32.2	Sanderson et al., 1989
Ephestia cautella	Pyralidae	Lepidoptera	e, p	0.0884	20.0	30.0	Bell, 1975
Ephestia elutella	Pyralidae	Lepidoptera	e, p	0.0976	15.0	30.0	Bell, 1975
Galleria mellonella	Pyralidae	Lepidoptera	l last, p	0.0552	24.0	34.0	Stairs, 1978
Ostrinia furnacalis	Pyralidae	Lepidoptera	l, p	0.1016	15.0	30.0	Goto et al., 2001
Callosamia promethea	Saturniidae	Lepidoptera	e	0.0906	15.0	30.0	Ludwig and Anderson, 1942
Platysamia cecropia	Saturniidae	Lepidoptera	e	0.0722	15.0	32.5	Ludwig and Anderson, 1942
Samia walkeri	Saturniidae	Lepidoptera	e	0.1082	15.0	25.0	Ludwig and Anderson, 1942
Telea polyphemus	Saturniidae	Lepidoptera	e	0.0828	15.0	32.5	Ludwig and Anderson, 1942
Archips argyrospillus	Tortricidae	Lepidoptera	e	0.0723	12.5	27.5	Judd et al., 1993
Choristoneura fumiferana	Tortricidae	Lepidoptera	e, l	0.0957	10.0	30.0	Régnière, 1987
Choristoneura pinus pinus	Tortricidae	Lepidoptera	l, p	0.1106	14.9	23.4	Lysyk and Nealis, 1988
Pandemis heparana	Tortricidae	Lepidoptera	l, p	0.1280	13.0	22.0	de Reede and de Wilde, 1986
Chrysopa commata	Chrysopidae	Neuroptera	e	0.0964	15.0	24.0	Honěk and Kocourek, 1988
Chrysopa perla	Chrysopidae	Neuroptera	e	0.1068	15.0	24.0	Honěk and Kocourek, 1988
Chrysopa prasina	Chrysopidae	Neuroptera	e	0.1101	15.0	24.0	Honěk and Kocourek, 1988
Chrysopa septempunctata	Chrysopidae	Neuroptera	e	0.1038	15.0	24.0	Honěk and Kocourek, 1988
Chrysopa ventralis	Chrysopidae	Neuroptera	e	0.1075	15.0	24.0	Honěk and Kocourek, 1988

Species	Family	Order	Life Stage	Slope	Temp range		Reference
					Min	Max	TT NI 177 1 1000
Micromus angulatus	Hemerobiidae	Neuroptera	e	0.0993	15.0	24.0	Honek and Kocourek, 1988
Micromus variegatus	Hemerobiidae	Neuroptera	e	0.0770	15.0	24.0	Honěk and Kocourek, 1988
Lestes eurinus	Lestidae	Odonata	1	0.0809	15.0	30.0	Lutz, 1968
Angaracris barabensis	Acrididae	Orthoptera	e	0.0988	15.0	35.0	Hao and Kang, 2004b
Aulocara elliotti	Acrididae	Orthoptera	n	0.0513	27.0	40.0	Kemp and Dennis, 1989
Austroicetes cruciata	Acrididae	Orthoptera	e	0.1338	16.1	30.3	Birch, 1942
Calliptamus abbreviatus	Acrididae	Orthoptera	e	0.1514	15.0	30.0	Hao and Kang, 2004a
Chorthippus dubius	Acrididae	Orthoptera	e	0.1114	15.0	35.0	Hao and Kang, 2004b
Chorthippus fallax	Acrididae	Orthoptera	e	0.0762	20.0	35.0	Hao and Kang, 2004a
							Quesada-Moraga and Santiago-
Dociostaurus maroccanus	Acrididae	Orthoptera	e	0.0682	20.0	30.0	Álvarez, 2000
Locusta migratoria							
migratorioides	Acrididae	Orthoptera	n	0.0356	23.9	43.3	Hamilton, 1950
Melanoplus bivittatus	Acrididae	Orthoptera	e	0.1064	12.0	33.0	Fisher, 1994
Melanoplus differentialis	Acrididae	Orthoptera	e	0.0944	12.0	33.0	Fisher, 1994
Nomadacris septemfasciata	Acrididae	Orthoptera	n	0.0270	26.7	37.8	Hamilton, 1936
Oedaleus asiaticus	Acrididae	Orthoptera	e	0.1176	15.0	35.0	Hao and Kang, 2004b
Omocestus haemorrhoidalis	Acrididae	Orthoptera	e	0.1328	15.0	30.0	Hao and Kang, 2004a
Omocestus viridulus	Acrididae	Orthoptera	n	0.1038	25.0	35.0	Willott and Hassall, 1998
Snecies	Family	Order	Life Stage	Slope	Temp range		Reference
---------------------------	------------------	--------------	---------------	--------	------------	------	----------------------------
					Min	Max	
Schistocerca gregaria	Acrididae	Orthoptera	e	0.0986	19.7	35.1	Hunter-Jones, 1986
Taeniopoda eques	Acrididae	Orthoptera	l, p	0.0803	25.0	35.0	Whitman, 1986
Acheta configuratus	Gryllidae	Orthoptera	n	0.0653	23.0	33.0	Ghouri and McFarlane, 1958
Acheta domesticus	Gryllidae	Orthoptera	n	0.0899	23.0	35.0	Ghouri and McFarlane, 1958
Acheta veletis	Gryllidae	Orthoptera	e	0.0561	22.8	32.8	Bigelow, 1960
Gryllodes sigillatus	Gryllidae	Orthoptera	n	0.1004	23.0	35.0	Ghouri and McFarlane, 1958
Gryllulus commodus	Gryllidae	Orthoptera	e	0.1215	19.4	31.5	Browning, 1951
Gryllus bimaculatus	Gryllidae	Orthoptera	e, l	0.1012	23.0	34.0	Behrens et al., 1983
Paulinia acuminata	Pauliniidae	Orthoptera	n	0.0845	25.0	32.0	Thomas, 1980
Monistria discrepans	Pygomorphidae	Orthoptera	n	0.0595	25.0	35.0	Allsopp, 1977
Metrioptera roeseli	Tettigoniidae	Orthoptera	e	0.1052	18.0	30.0	Ingrisch, 1986
Pholidoptera griseoaptera	Tettigoniidae	Orthoptera	e	0.0890	18.0	30.0	Ingrisch, 1986
Ruspolia differens	Tettigoniidae	Orthoptera	e	0.0947	18.0	33.0	Hartley and Ando, 1988
Ruspolia nitidula	Tettigoniidae	Orthoptera	e	0.0638	20.0	30.0	Hartley and Ando, 1988
Capnia atra	Capniidae	Plecoptera	e	0.0900	4.0	20.0	Brittain et al., 1984
Mesocapnia oenone	Capniidae	Plecoptera	e	0.0885	2.0	15.0	Brittain and Mutch, 1984
Taeniopteryx nebulosa	Taeniopterygidae	Plecoptera	e	0.1068	2.0	23.7	Brittain, 1977
Xenopsylla cheopis	Pulicidae	Siphonaptera	1	0.0624	18.0	29.0	Mellanby 1933

القريعتي سرت

REFERENCES

- Allsopp, P. G. (1977). Biology and capacity for increase of *Monistria discrepans* (Walker) (Orthoptera: Pyrgomorphidae) in the laboratory. *Journal of the Australian Entomological Society* 16, 207-213.
- Amman, G. D. (1968). Effects of temperature and humidity on development and hatching of eggs of Adelges piceae. Annals of the Entomological Society of America 61, 1606-1611.
- Arias-Reverón, J. M. and Browning, H. W. (1995). Development and mortality of the citrus snow scale (Homoptera: Diaspididae) under constant temperature and relative humidity. *Environmental Entomology* 24, 1189-1195.
- Baker, C. R. B. and Miller, G. W. (1978). The effect of temperature on the post-diapause development of four geographical populations of the European cherry fruit fly (*Rhagoletis cerasi*). Entomologia Experimentalis et Applicata 23, 1-13.
- Ballou, J. K., Tsai, J. H. and Center, T. D. (1986). Effects of temperature on the development, natality, and longevity of *Rhopalosiphum nymphaeae* (L.) (Homoptera: Aphididae). *Environmental Entomology* 15, 1096-1099.
- Barlow, C. A. (1962). The influence of temperature on the growth of experimental populations of *Myzus persicae* (Sulzer) and *Macrosiphum euphorbiae* (Thomas) (Aphididae). *Canadian Journal of Zoology* 40, 145-156.
- Bayhan, E., Ölmez-Bayhan, S., Ulusoy, M. R. and Brown, J. K. (2005). Effect of temperature on the biology of *Aphis punicae* (Passerini) (Homoptera: Aphididae) an pomegranate. *Environmental Entomology* 34, 22-26.
- Beach, R. M. and Todd, J. W. (1988). Development, reproduction, and longevity of *Autographa biloba* (Lepidoptera: Noctuidae), with observations on laboratory adaptation. *Annals of the Entomological Society of America* 81, 943-949.
- Beckwith, R. C. (1982). Effects of constant laboratory temperatures on the Douglas-fir tussock moth (Lepidoptera: Lymantriidae). *Environmental Entomology* 11, 1159-1163.
- Behrens, W., Hoffmann, K.-H., Kempa, S., Gäßler, S. and Merkel-Wallner, G. (1983). Effects of diurnal thermoperiods and quickly oscillating temperatures on the development and reproduction of crickets, *Gryllus bimaculatus*. Oecologia 59, 279-287.
- Bell, C. H. (1975). Effects of temperature and humidity on development of four Pyralid moth pests of stored products. *Journal of Stored Products Research* 11, 167-175.
- Bell, H. A., Marris, G. C., Smethurst, F. and Edwards, J. P. (2003). The effect of host stage and temperature on selected developmental parameters of the solitary endoparasitoid *Meteorus gyrator* (Thun.) (Hym., Braconidae). *Journal of Applied Entomology* 127, 332-339.
- Bigelow, R. S. (1960). Developmental rates and diapause in Acheta pennysylvanicus (Burmeister) and Acheta veletis Alexander and Bigelow (Orthoptera: Gryllidae). Canadian Journal of Zoology 38, 973-988.

- Birch, L. C. (1942). The influence of temperatures above the developmental zero on the development of the eggs of *Austroicetes cruciata* Sauss. (Orthoptera). *Australian Journal of Experimental Biology and Medicinal Science* 20, 17-25.
- Blake, G. M. (1958). Diapause and the regulation of development in Anthrenus verbasci (L.) (Col., Dermestidae). Bulletin of Entomological Research 49, 751-775.
- Blanckenhorn, W. U. (1997). Effects of temperature on growth, development and diapause in the yellow dung fly against all the rules? *Oecologia* 111, 318-324.
- Blank, R. H., Gill, G. S. C. and Kelly, J. M. (2000). Development and mortality of greedy scale (Homoptera: Diaspididae) at constant temperatures. *Environmental Entomology* 29, 932-942.
- Braby, M. F. and Jones, R. E. (1994). Effect of temperature and hostplants on survival, development and body size in three tropical satyrine butterflies from North-eastern Australia. *Australian Journal of Zoology* 42, 195-213.
- Brittain, J. E. (1977). The effect of temperature on the egg incubation period of *Taeniopteryx nebulosa* (Plecoptera). *Oikos* 29, 302-305.
- Brittain, J. E. and Campbell, I. C. (1991). The effect of temperature on egg development in the Australian mayfly genus *Coloburiscoides* (Ephemeroptera: Coloburiscidae) and its relationship to distribution and life history. *Journal of Biogeography* 18, 231-235.
- Brittain, J. E., Lillehammer, A. and Saltveit, S. J. (1984). The effect of temperature on intraspecific variation in egg biology and nymphal size in the stonefly, *Capnia atra* (Plecoptera). *Journal of Animal Ecology* 53, 161-169.
- Brittain, J. E. and Mutch, R. A. (1984). The effect of water temperature on the egg incubation period of *Mesocapnia oenone* (Plecoptera) from the Canadian Rocky Mountains. *The Canadian Entomologist* 116, 549-554.
- Browning, T. O. (1951). The influence of temperature on the rate of development of insects, with special reference to the eggs of *Gryllulus commodus* Walker. *Australian Journal of Science Research B* 5, 96-111.
- Brunner, J. F. and Rice, R. E. (1984). Peach twig borer, Anarsia lineatella Zeller (Lepidoptera: Gelechiidae), development in Washington and California. Environmental Entomology 13, 607-610.
- Bryant, S. R., Bale, J. S. and Thomas, C. D. (1999). Comparison of development and growth of nettle-feeding larvae of Nymphalidae (Lepidoptera) under constant and alternating temperature regimes. *European Journal of Entomology* **96**, 143-148.
- Butler, G. D. and Ritchie, P. L. (1967). The life cycle of Hypera brunneipennis and a parasite, Bathyplectes curculionis, in relation to temperature. Journal of Economic Entomology 60, 1239-1241.
- Bybee, L. F., Millar, J. G., Paine, T. D., Campbell, K. and Hanlon, C. C. (2004). Effects of temperature on fecundity and longevity of *Phoracantha recurva* and *P. semipunctata* (Coleoptera: Cerambycidae). *Environmental Entomology* **33**, 138-146.
- Chen, C.-P., Denlinger, D. L. and Lee, R. E. (1987). Responses of nondiapausing flesh flies (Diptera: Sarcophagidae) to low rearing temperatures: developmental rate, cold tolerance, and glycerol concentrations. *Annals of the Entomological Society of America* 80, 790-796.

- Chiang, H. C. and Sisson, V. (1968). Temperature relationships of the development of northern corn rootworm eggs. *Journal of Economic Entomology* **61**, 1406-1410.
- Chmiel, S. M. and Wilson, M. C. (1979). Estimating threshold temperature and heat unit accumulation required for meadow spittlebug egg hatch. *Environmental Entomology* 8, 612-614.
- Coombs, C. W. (1978). The effect of temperature and relative humidity upon the development and fecundity of *Dermestes lardarius* L. (Coleoptera, Dermestidae). *Journal of Stored Products Research* 14, 111-119.
- Coombs, C. W. (1979). The effect of temperature and humidity upon the development and fecundity of *Dermestes haemorrhoidalis* Küster and *Dermestes peruvianus* Laporte de Castelnau (Coleoptera: Dermestidae). *Journal of Stored Products Research* 15, 43-52.
- Daane, K. M., Sime, K. R., Dahlsten, D. L., Andrews, J. W. and Zuparko, R. L. (2005). The biology of *Psyllaephagus bliteus* Riek (Hymenoptera: Encyrtidae), a parasitoid of the red gum lerp psyllid (Hemiptera: Psylloidea). *Biological Control* 32, 228-235.
- **Dallwitz, R.** (1984). The influence of constant and fluctuating temperatures on development rate and survival of pupae of the Australian sheep blowfly *Lucilia cuprina*. *Entomologia Experimentalis et Applicata* **36**, 89-95.
- Daramola, A. M. (1978). The biology and ecology of the kola weevil, Sophrorhinus gbanjaensis D. and T. (Coleoptera: Curculionidae). Journal of Natural History 12, 661-680.
- David, H., Easwaramoorthy, S., Nandagopal, V., Kurup, N. K., Shanmugasundaram, M. and Santhalakshmi, G. (1981). Influence of different temperatures on the tachinid parasite, *Sturmiopsis inferens* (Dip.). *Entomophaga* 26, 333-338.
- **Davidson, J.** (1942). On the speed of development of insect eggs at constant temperatures. Australian Journal of Experimental Biology and Medical Science 20, 233-239.
- De Reede, R. H. and de Wilde, H. (1986). Phenological models of development in Pandemis heparana and Adoxophyes orana for timing the application of Insect Growth Regulators with juvenile-hormone activity. Entomology Experimentalis et Applicata 40, 151-159.
- **DeLoach, C. J. and Cordo, H. A.** (1976). Life cycle and biology of *Neochetina bruchi*, a weevil attacking waterhyacinth in Argentina, with notes on *N. eichhorniae. Annals of the Entomological Society of America* **69**, 643-652.
- Depner, K. R. (1961). The effect of temperature on development and diapause of the horn fly, Siphona irritans (L.) (Diptera: Muscidae). The Canadian Entomologist 93, 855-859.
- Diaz, B. M. and Fereres, A. (2005). Life table and population parameters of Nasonovia ribisnigri (Homoptera: Aphididae) at different constant temperatures. Environmental Entomology 34, 527-534.
- Eckenrode, C. J. and Chapman, R. K. (1971). Effect of various temperatures upon rate of development of the cabbage maggot under artificial conditions. *Annals of the Entomological Society of America* 64, 1079-1083.
- Elliot, J. M. (1972). Effect of temperature on the time of hatching in *Baëtis rhodani* (Ephemeroptera: Baëtidae). Oecologia 9, 47-51.

5. 75

- Elliott, N. C., Kieckhefer, R. W. and Walgenbach, D. D. (1988). Effects of constant and fluctuating temperatures on developmental rates and demographic statistics for the corn leaf aphid (Homoptera: Aphididae). *Journal of Economic Entomology* **81**, 1383-1389.
- Elmes, G. W. and Wardlaw, J. C. (1983). A comparison of the effect of temperature on the development of large hibernated larvae of four species of *Myrmica* (Hym. Formicidae). *Insectes Sociaux* 30, 106-118.
- Elsey, K. D. and Lam, J. J. (1978). *Jalysus spinosus:* instantaneous rate of population growth at different temperatures and factors influencing the success of storage. *Annals of the Entomological Society of America* 71, 322-324.
- Fisher, J. R. (1986). Development and survival of pupae of *Diabrotica virgifera virgifera* and *D. undecimpunctata howardi* (Coleoptera: Chrysomelidae) at constant temperatures and humidities. *Environmental Entomology* **15**, 626-630.
- Fisher, J. R. (1994). Temperature effect on postdiapause development and survival of embryos of three species of *Melanoplus* (Orthoptera: Acrididae). *Annals of the Entomological Society of America* 87, 604-608.
- Foley, D. H. (1981). Pupal development rate of *Heliothis armiger* (Hübner) (Lepidoptera: Noctuidae) under constant and alternating temperatures. *Journal of the Australian Entomological Society* 20, 13-20.
- Fornasari, L. (1995). Temperature effects on the embryonic development of *Aphthona* abdominalis (Coleoptera: Chrysomelidae), a natural enemy of *Euphorbia esula* (Euphorbiales: Euphorbiaceae). *Environmental Entomology* 24, 720-723.
- Frazer, B. D. and Gill, B. (1981). Age, fecundity, weight, and the intrinsic rate of increase of the lupine aphid *Macrosiphum albifrons* (Homoptera: Aphididae). *The Canadian Entomologist* 113, 739-745.
- Frazer, B. D. and McGregor, R. R. (1992). Temperature-dependent survival and hatching rate of eggs of seven species of Coccinellidae. *The Canadian Entomologist* 124, 305-312.
- Fusco, R. A., Rhoads, L. D. and Blumenthal, M. (1978). Compsilura concinnata: effect of temperature on laboratory propagation. Environmental Entomology 7, 15-18.
- Gage, S. H. and Haynes, D. L. (1975). Emergence under natural and manipulated conditions of *Tetrastichus julis*, an introduced larval parasite of the cereal leaf beetle, with reference to regional population management. *Environmental Entomology* **4**, 425-434.
- Gerard, P. J. and Ruf, L. D. (1997). Development and biology of the immature stages of Anthrenocerus australis Hope (Coleoptera: Dermestidae). Journal of Stored Products Research 33, 347-357.
- Ghouri, A. S. K. and McFarlane, J. E. (1958). Observations on the development of crickets. *The Canadian Entomologist* 90, 158-165.
- Gormally, M. J. (1987). Effect of temperature on the duration of larval and pupal stages of two species of sciomyzid flies, predators of the snail *Lymnaea truncatula*. *Entomologia Experimentalis et Applicata* **43**, 95-100.
- Goto, M., Sekine, Y., Outa, H., Hujikura, M. and Suzuki, K. (2001). Relationships between cold hardiness and diapause, and between glycerol and free amino acid

contents in overwintering larvae of the oriental corn borer, Ostrinia furnacalis. Journal of Insect Physiology 47, 157-165.

- Grassberger, M. and Reiter, C. (2002). Effect of temperature on development of *Liopygia* (= Sarcophaga) argyrostoma (Robineau-Desvoidy) (Diptera: Sarcophagidae) and its forensic implications. Journal of Forensic Sciences 47, 1332-1336.
- Gunstream, S. E. and Chew, R. M. (1967). The ecology of *Psorophora confinnis* (Diptera: Culicidae) in Southern California. II. Temperature and development. *Annals of the Entomological Society of America* 60, 434-439.
- Hadaway, A. B. (1955). The biology of the Dermestid beetles, *Trogoderma granarium* Everts and *Trogoderma versicolor* (Creutz.). *Bulletin of Entomological Research* 46, 781-796.
- Hamilton, A. G. (1936). The relation of humidity and temperature to the development of three species of African locusts - Locusta migratoria migratorioides (R. and F.), Schistocerca gregaria (Forsk.), Nomadacris septemfasciata (Serv.). Transactions of the Royal Entomological Society of London 85, 1-62.
- Hamilton, A. G. (1950). Further studies on the relation of humidity and temperature to the development of two species of African locusts Locusta migratoria migratorioides (R. and F.) and Schistocerca gregaria (Forsk.). Transactions of the Royal Entomological Society of London 101, 1-58.
- Hao, S.-G. and Kang, L. (2004a). Effects of temperature on the post-diapause embryonic development and the hatching time in three grasshopper species (Orth., Acrididae). *Journal of Applied Entomology* 128, 95-101.
- Hao, S.-G. and Kang, L. (2004b). Postdiapause development and hatching rate of three grasshopper species (Orthoptera: Acrididae) in Inner Mongolia. *Environmental Entomology* 33, 1528-1534.
- Hartley, J. C. and Ando, Y. (1988). Egg development patterns in diapausing and nondiapausing species of *Ruspolia*. Entomology Experimentalis et Applicata 49, 203-212.
- Headlee, T. J. (1914). Some data on the effect of temperature and moisture on the rate of insect metabolism. *Journal of Economic Entomology* 7, 413-417.
- Hébert, C. and Cloutier, C. (1990). Temperature-dependent development of eggs and larvae of Winthemia fumiferanae Toth. (Diptera: Tachinidae), a larval-pupal parasitoid of the spruce budworm (Lepidoptera: Tortricidae). The Canadian Entomologist 122, 329-341.
- Hill, J. K. and Gatehouse, A. G. (1992). Effects of temperature and photoperiod on development and pre-reproductive period of the silver Y moth Autographa gamma (Lepidoptera: Noctuidae). Bulletin of Entomological Research 82, 335-341.
- Holloway, R. L. and Smith, J. W. (1976). Lesser cornstalk borer response to photoperiod and temperature. *Environmental Entomology* 5, 996-1000.
- Honěk, A. and Kocourek, F. (1988). Thermal requirements for development of aphidophagous *Coccinellidae* (Coleoptera), *Chrysopidae*, *Hemerobiidae* (Neuroptera), and *Syrphidae* (Diptera): some general trends. *Oecologia* 76, 455-460.

- Howe, R. W. and Currie, J. E. (1964). Some laboratory observations on the rates of development, mortality and oviposition of several species of Bruchidae breeding in stored pulses. *Bulletin of Entomological Research* 55, 437-477.
- Humpesch, U. H. (1980). Effect of temperature on the hatching time of eggs of five *Ecdyonurus* spp. (Ephemeroptera) from Austrian streams and English streams, rivers and lakes. *Journal of Animal Ecology* 49, 317-333.
- Humpesch, U. H. (1982). Effect of fluctuating temperature on the duration of embryonic development in two *Ecdyonurus* spp. and *Rhithrogena cf. hybrida* (Ephemeroptera) from Austrian streams. *Oecologia* 55, 285-288.
- Humpesch, U. H. and Elliott, J. M. (1980). Effect of temperature on the hatching time of eggs of three *Rhithrogena* spp. (Ephemeroptera) from Austrian streams and an English stream and river. *Journal of Animal Ecology* **49**, 643-661.
- Hunter-Jones, P. (1968). The effect of constant temperature on egg development in the desert locust Schistocerca gregaria (Forsk.). Bulletin of Entomological Research 59, 707-718.
- Ingrisch, S. (1986). The plurennial life cycles of the European Tettigoniidae (Insecta: Orthoptera) 1. The effect of temperature on embryonic development and hatching. *Oecologia* 70, 606-616.
- Isaacson, D. L. (1973). A life table for the cinnabar moth, *Tyria jacobaeae*, in Oregon. Entomophaga 18, 291-303.
- Johnson, C. G. (1940). Development, hatching and mortality of the eggs of *Cimex lectularius* L. (Hemiptera) in relation to climate, with observations on the effects of preconditioning to temperature. *Parasitology* 32, 127-173.
- Jones, M. G. (1978). Development of wheat bulb fly (*Delia coarctata* Fall.) larvae and pupae at different temperatures. *Entomology Experimentalis et Applicata* 23, 288-300.
- Jones, R. E., Rienks, J., Wilson, L., Lokkers, C. and Churchill, T. (1987). Temperature, development and survival in monophagous and polyphagous tropical pierid butterflies. *Australian Journal of Zoology* **35**, 235-246.
- Judd, G. J. R., Cossentine, J. E., Gardiner, M. G. T. and Thomson, D. R. (1994). Temperature-dependent development of the speckled green fruitworm, Orthosia hibisci Guenée (Lepidoptera: Noctuidae). The Canadian Entomologist 126, 1263-1275.
- Judd, G. J. R., Gardiner, M. G. T. and Thomson, D. R. (1993). Temperature-dependent development and prediction of hatch of overwintered eggs of the fruittree leafroller, *Archips argyrospilus* (Walker) (Lepidoptera: Trotricidae). *The Canadian Entomologist* 125, 945-956.
- Judd, G. J. R. and McBrien, H. L. (1994). Modelling temperature-dependent development and hatch of overwintered eggs of *Campylomma verbasci* (Heteroptera: Miridae). *Environmental Entomology* 23, 1224-1234.
- Kamata, N. and Igarashi, M. (1995). Relationship between temperature, number of instars, larval growth, body size, and adult fecundity of *Quadricalcarifera punctatella* (Lepidoptera: Notodontidae): cost-benefit relationship. *Environmental Entomology* 24, 648-656.

- Keck, C. B. (1951). Effect of temperature on development and activity of the melon fly. Journal of Economic Entomology 44, 1001-1002.
- Kemp, D. J. (2000). The basis of life-history plasticity in the tropical butterfly Hypolimnas bolina (L.) (Lepidoptera: Nymphalidae). Australian Journal of Zoology 48, 67-78.
- Kemp, W. P. and Dennis, B. (1989). Development of two rangeland grasshoppers at constant temperatures: development thresholds revisited. *The Canadian Entomologist* 121, 363-371.
- King, E. G. and Martin, D. F. (1975). Lixophaga diatraeae: development at different constant temperatures. Environmental Entomology 4, 329-332.
- Kirk, A. A. and Kirk, G. (1990). Effect of temperature on egg development in Copris hispanus L. and Bubas bison (L.) (Coleoptera: Scarabaeidae). Journal of the Australian Entomological Society 29, 89-90.
- Kok, L. T., Ward, R. H. and Grills, C. C. (1975). Biological studies of Ceuthorhynchidius horridus (Panzer), an introduced weevil for thistle control. Annals of the Entomological Society of America 68, 503-505.
- Laflin, H. M. and Parrella, M. P. (2004). Developmental biology of citrus mealybug under conditions typical of California rose production. *Annals of the Entomological Society* of America 97, 982-988.
- Lamb, R. J., Gerber, G. H. and Atkinson, G. F. (1984). Comparison of developmental rate curves applied to egg hatching data of *Entomoscelis americana* Brown (Coleoptera: Chrysomelidae). *Environmental Entomology* 13, 868-872.
- Lapointe, S. L. (2000). Thermal requirements for development of *Diaprepes abbreviatus* (Coleoptera: Curculionidae). *Environmental Entomology* 29, 150-156.
- Lapointe, S. L. (2001). Effect of temperature on egg development of *Diaprepes abbreviatus* (Coleoptera: Curculionidae). *Florida Entomologist* 84, 298-299.
- Leather, S. R. (1994). The effect of temperature on oviposition, fecundity and egg hatch in the pine beauty moth, *Panolis flammea* (Lepidoptera: Noctuidae). *Bulletin of Entomological Research* 84, 515-520.
- Lerin, J. and Koubaiti, K. (1998). Temperature-dependent model for simulating development of the larval stages of *Baris coerulescens* (Coleoptera: Curculionidae) on winter oilseed rape. *Environmental Entomology* 27, 958-967.
- Liu, S. and Hughes, R. D. (1987). The influence of temperature and photoperiod on the development, survival and reproduction of the sowthistle aphid, *Hyperomyzus lactucae*. *Entomology Experimentalis et Applicata* **43**, 31-38.
- Liu, S. and Meng, X. (1999). Modelling development time of *Myzus persicae* (Hemiptera: Aphididae) at constant and natural temperatures. *Bulletin of Entomological Research* 89, 53-63.
- López, R., Ferro, D. N. and Elkinton, J. S. (1997). Temperature-dependent development rate of *Myiopharus doryphorae* (Diptera: Tachinidae) within its host, the Colorado potato beetle (Coleoptera: Chrysomelidae). *Environmental Entomology* 26, 655-660.
- Ludwig, D. and Anderson, J. W. (1942). Effects of different humidities, at various temperatures, on the early development of four saturniid moths (*Platysamia cecropia* Linnaeus, *Telea polyphemus* Cramer, *Samia walkeri* Felder and Felder, and

Callosamia promethea Drury), and on the weights and water contents of their larvae. *Ecology* 23, 259-274.

- Lutz, P. E. (1968). Effects of temperature and photoperiod on larval development in Lestes eurinus (Odonata: Lestidae). Ecology 49, 637-644.
- Lysyk, T. J. and Nealis, V. G. (1988). Temperature requirements for development of the jack pine budworm (Lepidoptera: Tortricidae) and two of its parasitoids (Hymenoptera). Journal of Economic Entomology 81, 1045-1051.
- Mackey, A. P. (1977). Growth and development of larval Chironomidae. Oikos 28, 270-275.
- Maelzer, D. A. (1961). The effect of temperature and moisture on the immature stages of *Aphodius tasmaniae* Hope (Scarabaeidae) in the lower south-east of South Australia. *Australian Journal of Zoology* 9, 173-202.
- Martinat, P. J. and Allen, D. C. (1987). Laboratory response of saddled prominent (Lepidoptera: Notodontidae) eggs and larvae to temperature and humidity: development and survivorship. Annals of the Entomological Society of America 80, 541-546.
- McAvoy, T. J. and Kok, L. T. (1985). Viability and developmental rate of overwintering eggs of *Trichosirocalus horridus* (Coleoptera: Curculionidae). *Environmental Entomology* 14, 284-288.
- McAvoy, T. J. and Kok, L. T. (1999). Effects of temperature on eggs, fecundity, and adult longevity of *Hylobius transversovittatus* Goeze (Coleoptera: Curculionidae), a biological control agent of purple loosestrife. *Biological Control* 15, 162-167.
- McHugh, C. P. and Olson, J. K. (1982). The effect of temperature on the development, growth and survival of *Psorophora columbiae*. *Mosquito News* 42, 608-613.
- Mellanby, K. (1933). The influence of temperature and humidity on the pupation of *Xenopsylla cheopis. Bulletin of Entomological Research* 24, 197-202.
- Melvin, R. (1934). Incubation period of eggs of certain muscoid flies at different constant temperatures. Annals of the Entomological Society of America 27, 406-410.
- Mendel, M. J., Shaw, P. B., Owens, J. C. and Richman, D. B. (1989). Developmental rates, thresholds and thermal constants of the egg parasitoid *Anastatus semiflavidus* (Hymenoptera: Eupelmidae) and its host *Hemileuca oliviae* (Lepidoptera: Saturniidae). *Journal of the Kansas Entomological Society* 62, 300-306.
- Menusan, H. (1936). The influence of constant temperatures and humidities on the rate of growth and relative size of the bean weevil, *Bruchus obtectus* Say. *Annals of the Entomological Society of America* 29, 279-288.
- Messenger, P. S. and Flitters, N. E. (1958). Effect of constant temperature environments on the egg stage of three species of Hawaiian fruit flies. *Annals of the Entomological Society of America* 51, 109-119.
- Miller, J. C., West, K. J. and Hanson, P. E. (1984). Temperature requirements for development of Autographa californica (Lepidoptera: Noctuidae). Environmental Entomology 13, 593-594.
- Mogi, M. (1992). Temperature and photoperiod effects on larval and ovarian development of New Zealand strains of *Culex quinquefasciatus* (Diptera: Culicidae). *Annals of the Entomological Society of America* **85**, 58-66.

- Morales, J. and Hower, A. A. (1981). Thermal requirements for development of the parasite *Microtonus aethiopoides. Environmental Entomology* **10**, 279-284.
- Morris, D. E. and Cloutier, C. (1987). Biology of the predatory fly *Coenosia tigrina* (Fab.) (Diptera: Anthomyiidae): reproduction, development, and larval feeding on earthworms in the laboratory. *The Canadian Entomologist* **119**, 381-393.
- Nealis, V. G., Jones, R. E. and Wellington, W. G. (1984). Temperature and development in host-parasite relationships. *Oecologia* 61, 224-229.
- Nilssen, A. C. (1997). Effect of temperature on pupal development and eclosion dates in the reindeer oestrids *Hypoderma tarandi* and *Cephenemyia trompe* (Diptera: Oestridae). *Environmental Entomology* 26, 296-306.
- Nowierski, R. M., Gutierrez, A. P. and Yaninek, J. S. (1983). Estimation of thermal thresholds and age-specific life table parameters for the walnut aphid (Homoptera: Aphididae) under field conditions. *Environmental Entomology* **12**, 680-686.
- Ofomata, V. C., Overholt, W. A., Lux, S. A., Van Huis, A. and Egwuatu, R. I. (2000). Comparative studies on the fecundity, egg survival, larval feeding, and development of *Chilo partellus* and *Chilo orichalcociliellus* (Lepidoptera: Crambidae) on five grasses. *Annals of the Entomological Society of America* **93**, 492-499.
- Olsen, K. N., Cone, W. W. and Wright, L. C. (1998). Influence of temperature on grape leafhoppers in Southcentral Washington. *Environmental Entomology* 27, 401-405.
- Parker, B. M. (1979). Development of the mosquito Aedes dorsalis (Diptera: Culicidae) in relation to temperature and salinity. Annals of the Entomological Society of America 72, 105-108.
- Pfadt, R. E., Lloyd, J. E. and Sharafi, G. (1975). Pupal development of cattle grubs at constant and alternating temperatures. *Journal of Economic Entomology* 68, 325-328.
- Phelps, R. J. and Burrows, P. M. (1969). Puparial duration in Glossina morsitans orientalis under conditions of constant temperature. Entomology Experimentalis et Applicata 12, 33-43.
- Plaut, H. N. (1972). On the biology of the immature stages of the almond wasp, Eurytoma amygdali End. (Hym. Eurytomidae) in Israel. Bulletin of Entomological Research 61, 681-687.
- Prawirodisastro, M. and Benjamin, D. M. (1979). Laboratory study on the biology and ecology of *Megaselia scalaris* (Diptera: Phoridae). *Journal of Medical Entomology* 16, 317-320.
- Price, R. E. and Brown, H. D. (2006). The status of the locust fly, Wohlfahrtia pachytyli (Diptera: Sarcophagidae), in the Karoo and the impact of locust control operations on its abundance. African Entomology 14, 35-43.
- **Prügel, M.** (1988). Temperatur-Abhängigkeit der Puppen-Entwicklung und -Mortalität bei zwei Kriebelmücken-Arten (Diptera-Simulidae). *Entomologia Generalis* **13**, 29-45.
- Purcell, M. and Welter, S. C. (1990). Degree-day model for development of Calocoris norvegicus (Hemiptera: Miridae) and timing of management strategies. Environmental Entomology 19, 848-853.

- Quednau, F. W. (1967). Notes on mating, oviposition, adult longevity, and incubation period of eggs of the larch casebearer, *Coleophora laricella* (Lepidoptera: Coleophoridae), in the laboratory. *The Canadian Entomologist* **99**, 397-401.
- Quesada-Moraga, E. and Santiago-Álvarez, C. (2000). Temperature related effects on embryonic development of the Mediterranean locust, *Dociostaurus maroccanus*. *Physiological Entomology* 25, 191-195.
- Régnière, J. (1984). A method of describing and using variability in development rates for the simulation of insect phenology. *The Canadian Entomologist* **116**, 1367-1376.
- Régnière, J. (1987). Temperature-dependent development of eggs and larvae of Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae) and simulation of its seasonal history. The Canadian Entomologist 119, 717-728.
- Reissig, W. H., Barnard, J., Weires, R. W., Glass, E. H. and Dean, R. W. (1979). Prediction of apple maggot fly emergence from thermal unit accumulation. *Environmental Entomology* 8, 51-54.
- Riis, L., Esbjerg, P. and Bellotti, A. C. (2005). Influence of temperature and soil moisture on some population growth parameters of *Cyrtomenus bergi* (Hemiptera: Cydnidae). *Florida Entomologist* 88, 11-22.
- Rivnay, E. and Meisner, J. (1965). The effects of rearing conditions on the immature stages and adults of *Spodoptera littoralis* (Boisd.). 623-634.
- Royer, T. A., Edelson, J. V. and Harris, M. K. (1999). Temperature related, stage-specific development and fecundity of colonizing and root-feeding morphs of *Pemphigus populitransversus* (Homoptera: Aphididae) on *Brassica. Environmental Entomology* 28, 572-576.
- Sanborn, S. M., Wyman, J. A. and Chapman, R. K. (1982). Threshold temperature and heat unit summations for seedcorn maggot development under controlled conditions. *Annals of the Entomological Society of America* 75, 103-106.
- Sanderson, J. P., Barnes, M. M., Youngman, R. R. and Engle, C. E. (1989). Developmental rates of the navel orangeworm (Lepidoptera: Pyralidae) at various constant temperatures. *Journal of Economic Entomology* 82, 1096-1100.
- Saska, P. and Honěk, A. (2003). Temperature and development of central European species of *Amara* (Coleoptera: Carabidae). *European Journal of Entomology* **100**, 509-515.
- Scriber, J. M. and Lederhouse, R. C. (1983). Temperature as a factor in the development and feeding ecology of tiger swallowtail caterpillars, *Papilia glaucus* (Lepidoptera). *Oikos* 40, 95-102.
- Shelton, R. M. (1973). The effect of temperatures on development of eight mosquito species. Mosquito News 33, 1-12.
- Shipp, J. L. and Whitfield, G. H. (1987). Influence of temperature on embryonic development and egg hatching of *Simulium arcticum* Malloch IIS-10.11 (Diptera: Simuliidae). *Environmental Entomology* 16, 683-686.
- Skinner, L. C., Ragsdale, D. W., Hansen, R. W., Chandler, M. A. and Moon, R. D. (2004). Temperature-dependent development of overwintering *Aphthona lacertosa* and *A. nigriscutis* (Coleoptera: Chrysomelidae): two flea beetles introduced for the

biological control of leafy spurge, Euphorbia esula. Environmental Entomology 33, 147-154.

- Slater, J. D. and Pritchard, G. (1979). A stepwise computer program for estimating development time and survival of *Aedes vexans* (Diptera: Culicidae) larvae and pupae in field populations in Southern Alberta. *The Canadian Entomologist* **111**, 1241-1253.
- Smith, A. M. and Ward, S. A. (1995). Temperature effects on larval and pupal development, adult emergence, and survival of the pea weevil (Coleoptera: Chrysomelidae). *Environmental Entomology* 24, 623-634.
- Smith, L. M. and Kok, L. T. (1985). Influence of temperature on the development and mortality of immature *Rhinocyllus conicus* (Coleoptera: Curculionidae). *Environmental Entomology* 14, 629-633.
- Spurgeon, D. W. and Mack, T. P. (1990). Development and survival of threecornered alfalfa hopper (Homoptera: Membracidae) nymphs at constant temperatures. *Environmental Entomology* **19**, 229-233.
- Stairs, G. R. (1978). Effects of a wide range of temperatures on the development of Galleria mellonella and its specific Baculovirus. Environmental Entomology 7, 297-299.
- Stejskal, V., Lukáš, J. and Aulický, R. (2003). Lower development threshold and thermal constant in the German cockroach, *Blattella germanica* (L.) (Blattodea: Blattellidae). *Plant Protection Science* **39**, 35-38.
- Stephen, W. P. (1965). Temperature effects on the development and multiple generations in the alkali bee, Nomia melanderi Cockerell. Entomology Experimentalis et Applicata 8, 228-240.
- Strong, R. G. (1975). Comparative studies on the biologies of six species of *Trogoderma: T. inclusum. Annals of the Entomological Society of America* 68, 91-104.
- Strong, R. G. and Mead, D. W. (1975). Comparative studies on the biologies of six species of Trogoderma: T. simplex. Annals of the Entomological Society of America 68, 565-573.
- Tarrant, C. A. and McCoy, C. W. (1989). Effect of temperature and relative humidity on the egg and larval stages of some citrus root weevils. *Florida Entomologist* 72, 117-123.
- Thomas, P. A. (1980). Life-cycle studies on *Paulinia acuminata* (DeGeer) (Orthoptera: Pauliniidae) with particular reference to the effects of constant temperature. *Bulletin of Entomological Research* 70, 381-389.
- **Tisdale, R. A. and Wagner, M. R.** (1990). Effects of photoperiod, temperature, and humidity on oviposition and egg development of *Neodiprion fulviceps* (Hymenoptera: Diprionidae) on cut branches of ponderosa pine. *Environmental Entomology* **19**, 456-458.
- Trimble, R. M., Blommers, L. H. M. and Helsen, H. H. M. (1990). Diapause termination and thermal requirements for postdiapause development in *Aphelinus mali* at constant and fluctuating temperatures. *Entomology Experimentalis et Applicata* 56, 61-69.
- Tsai, J. H. and Liu, Y. H. (1998). Effect of temperature on development, survivorship, and reproduction of rice root aphid (Homoptera: Aphididae). *Environmental Entomology* 27, 662-666.

- Tsai, J. H. and Wang, K. (1999). Life table study of brown citrus aphid (Homoptera: Aphididae) at different temperatures. *Environmental Entomology* 28, 412-419.
- Tsai, J. H. and Wilson, S. W. (1986). Biology of *Peregrinus maidis* with descriptions of immature stages (Homoptera: Delphacidae). Annals of the Entomological Society of America 79, 395-401.
- **Tsitsipis, J. A. and Mittler, T. E.** (1976). Development, growth, reproduction, and survival of apterous virginoparae of *Aphis fabae* at different temperatures. *Entomology Experimentalis et Applicata* **19**, 1-10.
- Tun-Lin, W., Burkot, T. R. and Kay, B. H. (2000). Effects of temperature and larval diet on development rates and survival of the dengue vector *Aedes aegypti* in north Queensland, Australia. *Medical and Veterinary Entomology* 14, 31-37.
- Tyron, E. H. and Poe, S. L. (1981). Developmental rates and emergence of vegetable leafminer pupae and their parasites reared from celery foliage. *Florida Entomologist* 64, 477-483.
- Umble, J. R. and Fisher, J. R. (2000). Temperature-dependent development of *Otiorhynchus* ovatus (Coleoptera: Curculionidae) pupae. *Environmental Entomology* 29, 758-765.
- Villet, M. H., MacKenzie, B. and Muller, W. J. (2006). Larval development of the carrionbreeding flesh fly, Sarcophaga (Liosarcophaga) tibialis Macquart (Diptera: Sarcophagidae), at constant temperatures. African Entomology 14, 357-366.
- Walgenbach, D. D., Elliott, N. C. and Kieckhefer, R. W. (1988). Constant and fluctuating temperature effects on developmental rates and life table statistics of the greenbug (Homoptera: Aphididae). *Journal of Economic Entomology* 81, 501-507.
- Wang, J. and Tsai, J. H. (2000). Effect of temperature on the biology of Aphis spiraecola (Homoptera: Aphididae). Annals of the Entomological Society of America 93, 874-883.
- Wang, K., Tsai, J. H. and Harrison, N. A. (1997). Influence of temperature on development, survivorship, and reproduction of buckthorn aphid (Homoptera: Aphididae). Annals of the Entomological Society of America 90, 62-68.
- Weston, P. A. and Diaz, M. D. (2005). Thermal requirements and development of immature stages of viburnum leaf beetle, *Pyrrhalta viburni* (Paykull) (Coleoptera: Chrysomelidae). *Environmental Entomology* **34**, 985-989.
- Whitfield, G. H. (1984). Temperature threshold and degree-day accumulation required for development of postdiapause sugarbeet root maggots (Diptera: Otitidae). *Environmental Entomology* 13, 1431-1435.
- Whitman, D. W. (1986). Developmental thermal requirements for the grasshopper Taeniopoda eques (Orthoptera: Acrididae). Annals of the Entomological Society of America 79, 711-714.
- Willott, S. J. and Hassall, M. (1998). Life-history responses of British grasshoppers (Orthoptera: Acrididae) to temperature change. *Functional Ecology* 12, 232-241.
- Wise, I. L. and Lamb, R. J. (2004). Diapause and emergence of Sitodiplosis mosellana (Diptera: Cecidomyiidae) and its parasitoid Macroglenes penetrans (Hymenoptera: Pteromalidae). The Canadian Entomologist 136, 77-90.

- Woodson, W. D. and Chandler, L. D. (2000). Effects on development of immature Mexican corn rootworm (Coleoptera: Chrysomelidae). Annals of the Entomological Society of America 93, 55-58.
- Woodson, W. D. and Jackson, J. J. (1996). Developmental rate as a function of temperature in northern corn rootworm (Coleoptera: Chrysomelidae). *Annals of the Entomological Society of America* 89, 226-230.
- Woolcock, L. T. (1975). Observations on the dung breeding fly, Parasarcophaga knabi Parker. Journal of the Australian Entomological Society 14, 71-75.
- Zhang, H. Y. H., Haack, R. A. and Langor, D. W. (2004). Biology of *Pissodes yunnanensis* (Coleoptera: Curculionidae), a pest of Yunnan pine in southwestern China. *The Canadian Entomologist* 136, 719-726.