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Genetic enhancement of pearl millet

The a im 0 f this study was toe stablish a reliable protocol for the production 0 f transgenic

pearl millet as this will open new avenues for augmenting the gene pool of this crop. This

was achieved by identifying a highly regenerabie genotype and optimisation of a tissue

culture system, and biolistic protocol f or stable integration of selected transgenes. Both a

negative, herbicide resistance selectable marker gene, bar, and a positive selectable marker

gene, manA, were individually introduced in order to identify and establish a reliable

transformation protocol. The optimised transformation protocol was then used to introduce an

antifungal gene in the genome of pearl millet to enhance resistance to the biotrophic fungus

Sclerospora graminicola. S. graminicola, an obligate oomycetous fungal phytopathogen, is

the causal agent of downy mildew in pearl millet plants and a major constraint in the

production of pearl millet. A single component of antifungal resistance was introduced into

the genome of pearl millet, as preliminary work towards determining its role in the total plant

defence system. The approach chosen was to introduce a hydrolytic enzyme, 13-1,3-

glucanase, from Trichoderma atroviride (formerly T. harzianum), a soil-borne filamentous

fungus, capable of parasitizing several plant pathogenic fungi. It was anticipated that

introducing this glucanase gene from T. atroviride which degrades glucan in the fungal cell

walls, would significantly contribute to the improvement of resistance against downy mildew.

Constructs were prepared containing the gene (gluc78) encoding a 78 kDa beta-1,3-

glucanase. The constructs were prepared containing the gluc78 gene driven either by a

strong constitutive promoter (ubiquitin promoter, exon and intron) or a wound inducible

promoter, the potato proteinase inhibitor ilK gene promoter. The wound inducible promoter

includes either an AMV leader' sequence or the rice Act1 intron to obtain higher expression

levels in the monocotyledonous plant. The transformation efficiency using the particle inflow

gun and the herbicide resistance gene, bar, was improved from 0.02% on a MS based

medium, to 0.19 or 0.72% with manA as selectable marker gene on MS or L3 based

medium, respectively. However, individual experiments, introducing manA as selectable

marker gene, resulted in frequencies of 1.2 and 3%. This translated to one transformation

event per plate, which contains on average 31-35 pre-cultured immature zygotic embryos.

This is the first report of t he successful introduction and expression of a 13-1,3-glucanase

encoding gene from a biocontrol fungus not only under constitutive expression but also under

wound inducible expression in a plant. Optimisation of genetic engineering of pearl millet, a

cereal crop recalcitrant to transformation, and the introduction of an antifungal transgene,

was accomplished in this study. Initial results hint that expression of this transgene enhances

resistance to S. graminicola.
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Genetiese verbetering van pêrel manna

Die doel van die studie was om 'n betroubare genetiese transformeringsprotokol vir pêrel

manna te ontwikkel. Hiervoor moes eerstens 'n regenereerbare genotipe geidentifiseer

word. Twedens moes 'n betroubare weefselkultuur en biolistiese transformeringssisteem

ontwikkel word. Beide die onkruiddoder bestandheidsgeen, bar, en 'n positiewe selektiewe

geen, manA, is vir die doel van die projek onafhanklik in die genoom van pêrel manna in

gekloneer. Die optimale sisteem is vervolgens aangewend om 'n geen wat potensieël

verbeterde bestandheid teen die biotrofiese swam Sclerospora graminicola wat donsige

meeldou by plante veroorsaak, in pêrel manna in te kloneer. 'n Enkele komponent van

bestandheid is in die genetiese material van pêrel manna in gekloneer as inleidende werk

om die rol van hierdie geen in die totale verdedigingsisteem te bepaal. Die benadering wat

gekies was, behels die klonering van 'n hidrolitiese ensiem 13-1,3-glukanase, van

Trichoderma atroviride (voorheen T. harzianum), 'n grondgedraagde swam, wat op 'n aantal

ander plantpatogene fungus kan parasiteer. Die verwagting is dat klonering van hierdie 13-

1,3-glukanase geen van T. atroviride wat die glukaan verteer in die selwande van swamme,

'n groot verbetering tot die bestandheid teen donsige meeldou sal meebring. Konstrukte is

voorberei wat die gluc78 geen bevat wat kodeer vir die 78 kDa beta-1,3-glukanase protein.

Die konstrukte wat voorberei is bevat die gluc78 geen geinduseer deur of 'n sterk konstituwe

promoter (ubiquitin promoter, exon en intron) of deur 'n wond geinduseerde promoter, die

aartappel proteinase inhibeerder ilK geen promoter. Hierdie promoter word gevolg deur of 'n

AMV leier volgorde of die rys Act1 intron om verhoogde uitdruk vlakke in monokotiele plante

te verseker. As die partikel invloei geweer in kombinasie met die

onkruiddoderbestandheidsgeen gebruik word, was die doeltreffendheid van transformasie

0.02% op 'n MS gebasseerde groeimedium. 'n Transformasie doeltreffendheid van

onderskeidelik 0.19 en 0.72% is verkry wanneer die manA as selektiewe geen gebruik is op

MS of L3 gebasseerde medium. Twee individual eksperimente, waar die manA geen as

selektiewe geen gebruik is, het gelei tot 'n transformasie doeltreffendheid van 1.2 of 3%. Dit

gee 'n gemiddelde van een transformasie per plaat wat 31 tot 35 voorafgekweekte

onvolwasse embrios bevat. H ierdie is d ie eerste verslag van d ie suksesvolle klonering en

uitdrukking van 'n 13-1,3-glukanasekoderende geen van 'n swam wat as 'n biologiese

beheeragent gebruik word. Hierdie is nie alleenlik onder konstitutiewe uitdrukking nie, maar

ook 0 nder wond geinduseerde u itdruk in' n p lant. In hierdie studie is die 0 ptimisering van

genetiese verbetering van pêrel manna, 'n graan gewas wat gehard is teen transformasie,

deur die klonering van 'n bestandheidsgeen in die genoom van hierdie gewas gedoen.

Aanvanklike resultate dui daarop dat die uitdruk van hierdie geen lei tot verbeterde

bestandheid teen S. graminicola.

ii
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Worthy are You, our Lord and our God,
to receive glory and honor and power;

for You created all things,
and because of Your will they existed,

and were created"

Revelation 4:11
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PREFACE

This dissertation is presented as a compilation of 7 chapters. with each chapter being

introduced separately.

Chapter 1:

Chapter 2:

Chapter 3:

Chapter 4:

Chapter 5:

Chapter 6:

Chapter 7:

Introduction

Literature review

Improved regeneration efficiency of a pearl millet (Pennisetum glaucum [L.]
R.Br.) breeding line

A protocol to produce transgenic fertile pearl millet (Pennisetum glaucum [L.]
R.Br.) plants using the particle inflow gun

Pearl millet (Pennisetum glaucum [L.] R.Br.) transformation system using the

positive selectable marker gene phosphomannose isomerase

Genetic enhancement of pearl millet (Pennisetum glaucum [L.] R.Br.) for

downy mildew resistance

Concluding remarks and future prospects
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Chapter 1

INTRODUCTION

Genetic engineeringof pearl millet - a jewel of Africa

"We are talking about a crop that is virtually unimprovable - a crop that grows where

not even weeds can survive. A crop that has been improved by farmers and through

natural selection for thousands of years. A crop that produces nourishment from the

poorest soils in the driest regions in the hottest climates. A crop that grows straight

out of sand dunes. A crop that survives sand storms and flash floods"

..http://www.africancrops.net ..

The semi-arid tropics are characterised by unpredictable weather, limited and erratic rainfall

and nutrient-poor soils and suffer from a host agricultural constraints (Sharma and Ortiz,

2000). Pearl millet (Pennisetum glaucum [L.] R. Br.) is very important for food security in

some of the world's hottest, driest cultivated areas and has been a staple food in Africa and

India for millennia (http://www.casz.bangor.ac.uk). Pearl millet is hardy, drought-tolerant and

more suitable for semi-arid environments than maize or wheat. Nevertheless, downy mildew

(Sclerospora graminicola), an obligate biotrophic oomycetous fungal phytopathogen, is a

widespread and destructive disease of pearl millet in India and in African countries (Singh

and Talukdar, 1998) and losses up to 30% amounting to 260 million US dollars are reported

(Singh et aI., 1993; Shetty and Kumar, 2000). The most important applications of

biotechnology for plant protection amongst the International Crops Research Institute for the

Semi-Arid Tropies (ICRISAT) mandate crops, especially in Africa, include downy mildew in

pearl millet (Sharma and Ortiz, 2000).

The available gene pool of pearl millet with traditional breeding methods is restricted by the

sexual incompatibility of many interspecific and intergeneric crosses. Genetic manipulation

and in vitro culture provide a means for the gene pool to be broadened by allowing transfer of

specific genes controlling well-defined traits from one organism to another. Furthermore, as

chemical reagents for pathogen resistance control are removed from the market due to their

toxicity, genetically engineered crops resistant to various fungal pathogens represent an

environmental friendly alternative.

In spite of the vast amount of knowledge, the complexity of plant defence response

mechanisms against fungal invasion (McDowell and Woffenden, 2003; Somssich and

Hahlbrock, 1998), the rapid development of new virulent forms of phytopathogens (Johnson,

1
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2000; Kamoun et aI., 1999) and the failure to produce the desired gene product at the

expected level in the transgenic plant hindered the release of fungal resistant crops reaching

the market to date.

AIM

The a im oft his study was toe stablish a reliable p rotocol for the production oft ransgenic

pearl millet as this will open new avenues for augmenting the gene pool of this crop regarded

as a jewel of Africa. Secondary, it was anticipated that a beta-1,3-glucanase gene from a

biocontrol fungus, Trichoderma atroviride (formerly T.harzianum) would confer enhanced

resistance against the oomycetous fungal phytopathogen Sclerospara graminicola, the

causal agent of downy mildew in pearl millet.

The development of a reliable transformation protocol for pearl millet would form the basis for

future genetic enhancement of this crop by complimenting classical breeding programmes for

the benefit of India and sub-Saharan Africa. As a first step towards a routine transformation

system, it was essential to establish a reliable and highly efficient regeneration system for

selected pearl millet breeding lines. It was anticipated that improved regeneration capacity

for selected African pearl millet breeding line(s) would underpin the development of a reliable

transformation system. In vitro culture of cereals shows strong genotype dependence and

production of the appropriate culture is generally limited to selected genotypes. Therefore,

eight pearl millet genotypes were assessed for their tissue culture amenability. Genotype

purity and cultivation in Africa, or potential use in African breeding programmes, were

considered in the initial selection of the genotypes. Both immature zygotic embryos and leaf

base segments were screened to identify the most suitable explant source to initiate

embryogenic tissue from which fertile plants could be regenerated. One of the highly

regenerabie genotypes, 842B, was assessed further 0 n various tissue culture media. The

MS (Murashige and Skoog, 1962) and L3 (Jáhne et aI., 1991) based media were chosen in

this study, for the following reasons. The MS based medium as described by Pinard and

Chandrapalaiah (1991) was successfully used before in our laboratory to induce regenerabie

calli from pearl millet immature zygotic embryos. The L3 based medium was previously

shown to be suitable for callus induction and regeneration of recalcitrant cultures such as

microspores of cereals (Mordhorst and l.ërz, 1993) and was successfully used to establish a

highly efficient regeneration system for oat plants (Gless et aI., 1998). This study reports on

the efficient induction of a highly embryogenic culture, derived from cultured immature

zygotic embryos, as a direct effect of the addition of L-proline and subsequent production of

numerous somatic embryos that regenerated to form fertile pearl millet plants. Previous

papers reporting on pearl millet tissue culture regenerability rarely quantified the regeneration

ability of their systems, which defeats comparison. In this study, the regenerability of pearl

2
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millet was expressed as the number of regenerants per explant and the highest number

obtained were 80 regenerants per immature zygotic embryo explant.

A transformation protocol was established using the herbicide resistance selectable marker

gene, bar, and the particle inflow gun (PIG). However, the transformation efficiency obtained

was very low (0.02%). Subsequently, the mannose selection system (POSITECH,

Syngenta), using the manA as selectable marker gene, was used as an alternative. The

system employs the phosphomannose isomerase (PMI) expressing gene (manA) as

selectable marker gene and mannose, converted to mannose-6-phosphate by endogenous

hexokinase, as selective agent. The mannose positive selection system favours regeneration

and growth of the transgenic cells while the non-transgenic cells are starved but not killed.

Therefore, untransformed tissue is separated from transgenic tissue by carbohydrate

starvation of the untransformed cells. In this study, the positive mannose selectable marker

gene technology 1) limited the number of escapes obtained with the bar as selectable marker

gene using the PIG, 2) improved the transformation efficiency and 3) avoided usage of

antibiotic or herbicide resistant genes as selectable marker genes in pearl millet

transformation.

A single antifungal gene was introduced into the genome of pearl millet in order to elucidate

the potential resistance conferred by a single antifungal component to the oomycete

phytopathogen Sc/erospora graminicola, causal agent of downy mildew in pearl millet. Stable

introduction and expression of the gene, gluc78, encoding the 78 kDa 13-1,3-glucanase

enzyme from T. atroviride is potentially the Bt solution for oomycetous fungal pathogens for

the following reasons: 1) T. atroviride is the best studied biocontrol fungus, which developed

specifically to attack other fungi but not plants and is therefore a potential source of powerful

antifungal genes, 2) fungal cell wall degrading enzymes from T. atroviride is 100 times more

active than the corresponding plant enzymes, 3) a previous study showed that a 78 kDa 13-

1,3-glucanase enzyme from T. atroviride exhibited potent antifungal activity to the

oomycetous fungal pathogen Phytophthora (Fogliano et al., 2002), 4) a soybean 13-1,3-

endoglucanase in transgenic tobacco increased resistance to Phytophthora infestans and 5)

a 13-1,3-endoglucanase is constitutively expressed in pearl millet cultivars resistant to S.

graminicola. It is therefore anticipated that introducing this single glucanase gene from the

biocontrol fungus T. atroviride which degrades glucan in the fungal cell walls, would

significantly contribute to the improvement of resistance against downy mildew.

Since the fungal cell wall degrading enzymes of Trichoderma is non-toxic to plants even at

high concentrations, the gluc78 gene was placed not only down stream of the wound

inducible promoter, the potato proteinase inhibitor ilK gene promoter, but also down stream

3

Stellenbosch University http://scholar.sun.ac.za



of the maize ubiquitin constitutive promoter. Introduction of the gluc78 transgene under the

control of the strong constitutive promoter will provide immediate protection against pathogen

ingress, and thereby give the plant an advantage over the pathogen during the early stages

of infection, but it may also deplete valuable energy resources of the plant for continual

expression of the protein. In contrast, the wound inducible potato proteinase inhibitor II gene

(pin2) promoter is thought to decrease the investment of cellular metabolic energy and

building blocks in transgenic plants.

In this study, the gene from Trichoderma encoding a 13-1,3-glucanase was chosen as there is

no chitin in the cell walls of oomycete phytopathogens (Ait-Lahsen et al., 2001). It is not

excluded that the simultaneous introduction of the genes encoding chitinase and 13-

glucanase would synergistically improve the fungal resistance as the combinations can lead

to the onset of systemic acquired resistance (SAR).
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Chapter 2

LITERATURE REVIEW

Pearl millet - a jewel of Africa

The focus of this literature review is to highlight recombinant DNA technology as a potential

tool to enhance the gene pool of pearl millet, a crop regarded as a jewel of Africa. It is not my

intention in this literature review to summarise development of major cereal crop

transformation technology for barley, wheat, maize and rice as these crops are extensively

reviewed (Komari et al., 1998; Lemaux et al., 1999; Rakszegi et al., 2001; Repellin et al.,

2001; Wisniewski et al., 2002). Rather the focus will be on transformation technology

developed for previously neglected, high priority cereal crops for Africa such as sorghum and

pearl millet. It is also not my intention to review plant pathogen defence mechanisms, but to

focus on mechanisms with the potential to be of immediate relevance to pearl millet

resistance against oomycete pathogens and in particular Sclerospora graminicola.

2.1 The origin, production and nutritional value of pearl millet

Pearl millet (Pennisetum glaucum [L.] R. Br.) is descended from wild grasses native to the

central Saharan plateau region of Niger, from where it spread to east Africa and India, and

currently ranks as the fourth most important cereal (after rice, wheat and sorghum)

(http://www.africancrops.net).Developingcountries.mainly in Asia and Africa, account for

about 94 percent of global output in millet production. However, pearl millet is also

extensively used as a summer annual grazing crop in the southernUnlted States and tropical

and subtropical regions of the world (Goldman et al., 2003). In 1998, millet was sixth in

production amongst all cereals worldwide with 29 million metric tons harvested on 25 million

ha, an area bigger than that used for wheat production in the USA (FAOSTAT

http://apps.fao.org/ 1998). Five countries in West Africa (Nigeria, Niger, Mali, Burkina Faso

and Senegal) produce 85% of the continent's total pearl millet crop. Almost all millet is

produced by small-scale farmers for household consumption and localized trade.

In West Africa, pearl millet is consumed primarily as a thick porridge, or toh, but it is also

milled into flour to prepare breads and cakes (http://www.africancrops.net). Pearl millet is the

most-preferred cereal grain grown in Sahelian countries, Senegal, Mali, Niger and Burkina

Faso, and is consumed in preference to sorghum. In northern Nigeria, pearl millet is used in

making a popular fried cake known as "masa". Roasted young ears are a popular food for

children.

Feeding trials conducted in India have shown that millet is nutritionally superior for human

growth to maize and rice (http://www.africancrops.net). It has slightly higher protein content

6
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(average of 16%) than maize and roughly twice the fat content (5-7%) of most maize

varieties, and is particularly high in calcium and iron. It has lower levels of fibre and most

vitamins, although its vitamin A content is relatively high.

2.2 Disease susceptibility of pearl millet

S. graminicola an obligate, oomycetous fungus causal agent of downy mildew in pearl millet

is a major constraint in the production of pearl millet. S. graminicola was first reported in

India by Butler (1907). However, it became an important disease in 1971 when Tift 23A, a

male sterile line from Georgia, USA, became susceptible (Chahal et aI., 1994). In 1973, the

disease devastated the most popular hybrid, HB-3 that was grown on more than one million

ha in India and caused an estimated loss of 10-45% (Safeeulla, 1977).

Pearl millet is the natural host plant of S. graminicola, but it has been reported on different

graminaceous hosts such as maize, sorghum

(http://cygnus.tamu.edu/PLPAlProjects/1/sclerosporagraminicola.html).

and sugarcane

The members of

the class oomycetes produce, with few exceptions, bi-flagellated zoospores with one tinsel

flagellum directed forward and one whiplash flagellum directed backward. Characteristic

features, which distinguish these fungi from other fungi, include a cell wall, which contains

cellulose rather than chitin and a gametic (rather than zygotic) lifecycle

(http://cygnus.tamu.edu/PLPAlProjects/1/00mycetes.html).

The life cycle of S. graminicola comprises both sexual and asexual phases. The sexual stage

produces oospores that become soil- or seed borne, thus providing the primary source of

inocula each season. Seedlings growing in soil infested with oospores, become systemically

infected and show chlorosis. Sporangia require water to germinate and maximum

germination occurs at 22-25'C (Chahal et aI., 1994). Typical symptoms of infection with S.

graminicola are stunted growth, chlorosis, downy growth of asexual spores on the adaxial

surface of the leaves and malformed ear heads (Chahal et aI., 1994).

Management of pearl millet downy mildew by chemicals is neither economical nor eco-

friendly and hence use of more tolerant cultivars is being practised routinely. Furthermore,

induction of systemic acquired resistance (SAR) by exposing the plants to suboptimal levels

of S. graminicola inoculum (Kumar et aI., 1993 and 1998) and biocontrol by combinations of

antagonistic fungi and bacterial species (Trichoderma, Chaetomium, Bacillus subtilis and

Pseudomonas fluorescence) (Shetty and Kumar, 2000) are currently practised to protect

pearl millet from invading S. graminicola.
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A clear understanding of the biochemical basis of pearl millet resistance to downy mildew is

essential to obtain a complete picture of pearl millet-downy mildew interactions. Earlier

studies identified the involvement of lytic activity, 13-1,3-glucanase, arachidonic acid,

ribonucleases, manganese, superoxide dismutase and peroxidases in pearl millet-downy

mildew interaction as increased activity in highly resistant (constitutive or inducible resistant

cultivars) seedlings and a decrease in enzyme activity in highly susceptible seedlings

(Babitha et a/., 2002; Kini et a/., 2000 a, b; Shetty et a/., 2001; Shivakumar et a/., 2000, 2003;

Umesha et a/., 2000). Singh and Talukdar (1998) reported on a pearl millet parental line with

complete resistance to downy mildew, but only the years to come will confirm the long-term

resistance. Even though many cultivars a re resistant to the disease, the resistance is not

durable and often there is breakdown of resistance in the cultivars. The exact reasons for the

breakdown of resistance are not clearly known, as there is a lack of complete understanding

of the biochemical basis of resistance of pearl millet to downy mildew.

2.3 Cereal transformation technology

Recombinant DNA technology has significantly augmented the conventional crop

improvement and offers great promise to assist plant breeders to meet the increased food

demand predicted for the 21st century (Sharma et a/., 2002). Monocotyledonous plants,

especially the grasses, playa crucial role in the agricultural economy of all nations, and their

biotechnological manipulation offers great potential for both developed and developing

countries (lyer et a/., 2000). Genes of agronomic importance such as those that confer

resistance to insects, soil salinity, aluminium toxicity and environmental stress and as well as

nutritional quality and yield improvement have been identified, isolated, inserted and

expressed effectively in various dicotyledonous crops (DunweIl, 2000; Hilder and Boulter,

1999; Sharma eta /., 2000 and 2002). Efficient transformation systems, both b iolistic- and

Agrobacterium-mediated transformation, for important cereal crops such as maize

(Armstrong and Songstad, 1993; Ishida et a/., 1996), wheat (Weeks et a/., 1993; Cheng et

a/., 1997), rice (Christou et a/., 1991; Chan et a/., 1992; Hiei et a/., 1994), and barley (Wan

and Lemaux, 1994; Tingay et a/., 1997), respectively, have more recently been established.

Unfortunately, most cereal agricultural crops that have been genetically improved with genes

of relevance are temperate crops with high commercial value. The first Bt maize trial was

already published in 1993 (Koziel et a/., 1993) and subsequently various GM maize products

have penetrated the commercial market (Brandt, 2003; DunweIl, 2000). It is interesting to

note that most of the groundwork for cereal transformation was done in sorghum (Sorghum

bicotor L. Moench) and pearl millet. The first cereal embryogenic in vitro culture systems

were established for sorghum (Gamborg et a/., 1977) and pearl millet (Vasil and Vasil, 1981).

Furthermore, the first report on optimisation of transient expression of the reporter gene uidA

(GUS) in scutellum cells of cultured immature zygotic embryos, following microprojectile
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bombardment, was published for pearl millet (Taylor and Vasil, 1991). Nevertheless, no

commercial transgenic sorghum or pearl millet product has reached the market. It is clear

that the pearl millet transformation technology lags behind that of the major cereal crops

probably because of the low market value, which did not attract company investments for

research support. Private sector research is LJ nlikely tot ake 0 n research focussed 0 n the

problems of small farmers in developing countries, given the uncertainty of future profits in

these areas (Sharma et aI., 2002). It is rarely the case that large foundations or institutes

such as the Rockefeller foundation and the Swiss Federal Institute of Technology support the

development of a project such as the "golden rice" project for humanitarian purposes.

Another example would be that during 2001, the CGIAR investment in millet research was

approximately US $5.9 million (http://www.cgiar.org).This represents about 2.0 percent of

the total CGIAR commodity investment.

It is critically important to focus on crops relevant to the small farm holders and poor

consumers in the developing countries of the humid and semi-arid tropics as 73 million

people are added annually, of which 97% live in developing countries (Sharma et aI., 2002).

Furthermore, grain sorghum and pearl millet, indigenous to Africa, are favoured above maize

in many parts of Africa and, are becoming increasingly important staple foods in Africa in the

face of growing food scarcity and several prolonged droughts. Increasing economical

importance of sorghum and pearl millet necessitates the development of transformation

technology to genetically enhance these crops especially against fungal diseases.

2.4 Disease resistance - Transgenic plants an alternative?

One of the major challenges facing modern agriculture is to achieve a satisfactory, but

environmentally friendly, control of plant diseases. The extensive use of chemicals remains

the main strategy of disease control, but a variety of alternative approaches have been

considered which include the use of biocontrol agents and organisms and pathogen resistant

crop cultivars. Classical breeding has been very useful in producing some resistant varieties

(for review see Johnson, 2000), but has no access to resistance available in sexually

incompatible species. Although no single resistance genotype and no single genetic basis for

durable resistance exist (Johnson, 2000), a combination of genetic engineering and classical

breeding complimenting one another, are anticipated to be the future for a holistic horizontal

crop improvement strategy.

Disease resistance in plants is associated with the activation of a wide variety of defence

responses that serve to prevent pathogen infection. Plants can activate a very effective

arsenal of inducible defence responses, comprised of genetically programmed suicide of

infected cells (the hypersensitive response, HR), tissue reinforcement (lignin, callose), the
c "r-
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production of fungal cell wall degrading enzymes and antimicrobial metabolites

(phytoalexins) at the site of infection. These local responses can trigger a long lasting

systemic response (systemic acquired resistance, SAR) that primes the plant for resistance

against a broad spectrum of pathogens. This multicomponent complimentary response

requires a substantial commitment of cellular resources, including extensive genetic

reprogramming and metabolic re-allocation (Somssich and Hahlbrock, 1998).

Various approaches can be followed to confer enhanced resistance to pathogens in crops

but long term durable broadspectrum resistance must be t he ultimate goal. Plant disease

resistance genes (R genes), such as the RPP8 (Cooley et aI., 2000) and the RPP13 (Bittner-

Eddy et aI., 2000) genes, offer several attractive features for disease control (McDowell and

Woffenden, 2003; Rommens and Kishore, 2000) _even against oomycete pathogens.

Unfortunately, only a limited number of pathogens are recognised by the R genes, it does not

provide broad-spectrum resistance and are often overcome by novel developing pathogens.

Overproduction of salicylic acid (SA) by bacterial transgenes (Verberne et aI., 2000) or the

expression of NPR1 from Arabidopsis thaliana (Cao et aI., 1998) were also shown to have

enhanced pathogen resistance in plants, but trigger only those defence responses that are

SA or NPR-1 dependent (Shah et aI., 2001). Another approach would be constitutive or

fungal induced expression of genes encoding naturally occurring antimicrobial peptides, plant

defensins (Gao et aI., 2000; Lai et aI., 2002; for review see Thomma et aI., 2002) in pearl

millet. Although evidence of broad host-range antifungal activity was reported for pea

defensins, greenhouse and especially field trials need to be conducted to fully test the

potential usefulness of these genes in broad-spectrum durable resistance. Plant defence

mechanisms are however not functioning in isolation with its environment. Lorito and co-

workers have shown synergistic interaction between a number of cell wall degrading

enzymes and cell membrane affecting compounds (from various microbial organisms) that

alter cell membrane structure or permeability of phytopathogenic fungi (Botrytis cinerea and

Fusarium oxysporum) and bacteria (mainly Gram-positive) (Lorito et aI., 1996; Schirmbëck et

aI., 1994).

One of the prominent mechanisms of disease resistance in plants, and one that we will focus

on in this study, entails inducible defence responses in the form of induction of defence-

related enzymes that become activated upon pathogen infection (for review see Datta et al.,

1999). Tightly correlated with the appearance of HR and SAR is the accumulation of salicylic

acid (SA) and the expression of a subset of these pathogenesis-related (PR) genes, some of

which encode proteins with antimicrobial activities.
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2.4.1 Fungal cell wall degrading enzymes as defence mechanism

The production of enzymes capable of degrading the cell walls of invading phytopathogenic

fungi is an important component of the defence response of plants. Glucans and chitin are

the major constituents of the cell walls of various phytopathogenic fungi (Datta et aI, 1999).

However, ~-1 ,3-glucans are the major components of the cells walls of oomycetes, such as

S. graminicola, a group of fungi that do not contain chitin (Yoshikawa et aI., 1993). ~-

Glucanases were proposed to be involved in plant defense as early as 1970 (Abeles et aI.,

1970). Chitinase and ~-glucanase are thought to kill the fungus by thinning the cell wall at the

hyphal tip by degrading chitin and ~-glucan, which subsequently causes swelling and

ultimate bursting and death of the hyphal tip (Simmons, 1994) or by promoting the release of

fungal cell-wall derived oligosaccharides that can act as elicitors of defense reactions

(Leubner-Metzger and Meins, 1999). In addition, ~-1 ,3-glucanase appears to be a key

enzyme involved in the generation of phytoalexin elicitor-releasing signals leading to active

disease resistance (Yoshikawa et aI., 1993).

There are many reports of the induction of ~-1 ,3-glucanase expression during fungal

pathogen attack and the positive correlation to the level of pathogen resistance (see

Simmons, 1994 for a summary of data older than 1994). It is however important to notice that

they are mainly acidic and secreted (extracellular). The basic pi 1,3-~-glucanases and

monocot 1,3;1 ,4-glucanases (Nishizawa et aI., 2003) , located in the vacuole (intracellular),

are involved in many other important aspects of plant physiology and development, such as

endosperm degradation during kernel germination, vegetative cell wall elongation, growth,

flowering, cellular and tissue development and differentiation (Leubner-Metzger and Meins,

1999; Noronha et aI., 2000; Simmons, 1994; Tsabary et aI., 2003).

2.4.2 Evidence of p-glucanases in plants elicited by fungal pathogens: A defence

response?

The presence of acidic and basic ~-1 ,3-glucanases associated with fungal infection and

defence is well documented for plants. Gheong et al. (2000) isolated and characterised a

soybean gene (SGN 1) encoding a basic beta-1 ,3-glucanase that is a plant class III isoform of

~-1 ,3-glucanase. Expression of the SGN1 was strongly induced by a variety of defense-

related signals, such as treatment with H202, wounding, or treatment with fungal elicitor

prepared Phytophthora spp as well as inoculation with Pseudomonas syringae. However, the

expression level of SGN1 was hardly induced with jasmonate, ethephon and salicylate. Yi

and Hwang (1997) purified a basic beta-1 ,3-endoglucanse (34 kDa) from soybean hypocotyls

infected by an incompatible race of Phytophthora sojae. The beta-1,3-endoglucanase

inhibited spore germination and hypha I growth of the chitin-negative fungus Phytophthora

sojae, but did not show any antifungal activity against the chitin-containing fungi Alternaria

11

Stellenbosch University http://scholar.sun.ac.za



mali, Colletotrichum gloeosporioides and Magnaporthe grisea. Ji et al. (2000) found a 33 kDa

isoform of 13-1,3-glucanases in maturing maize kernels associated with Aspergillus flavus

fungal infection. A basic J3-1,3-glucanase cDNA c lone was isolated from the cDNA library

constructed from hypersensitive response lesions of pepper leaves infected with avirulent

strain of Xanthomonas campestris (Jung and Hwang, 2000).

It is, however, invalid to conclude that increased J3-glucanase expression necessarily causes

increased fungal resistance. It is, however, likely that J3-1,3-endoglucanases offer protection

against pathogens through their capacity to hydrolyse the branched (1--3, 1--6) J3-glucans

that are commonly found in fungal cell walls (Kini et al., 2000a, b). In vitro studies showing

that chitinase and J3-1,3-glucanase leads to enhanced mycelial cell wall disruption leading to

efficient cellular lysis of zoospores and hyphae (Kim and Hwang, 1997; Lorito et al., 1993).

2.4.3 l3-glucanase elicited by oomycete fungal infection

The level and onset of J3-glucanase expression often is positively correlated to the level of

pathogen resistance. The work of Kini and co-workers (Kini et al., 2000 a, b) is particularly of

interest as it specifically report on the accumulation of J3-1,3-glucanase in resistant cultivars

of pearl millet seedlings upon inoculation with the downy mildew causing pathogen S.

graminicola. Not all the isoforms of J3-1,3-glucanases identified in the study of Kini and co-

workers were associated with resistance of pearl millet to S. graminicola infection, which

coincide with previous studies. The basic isoform of pi 9.6 has probably a developmental role

as it was present in both resistant and susceptible cultivars of pearl millet before and after

inoculation. In contrast, the acidic isoform of 13-1,3-glucanase (pi 6.2) was unique to resistant

cultivars and strongly induced after inoculation with S. graminicola. A 30 kDa isoform, which

appears to be related to the isoform pi 6.2, was prominently detected by an 20.5 kDa isoform

antiserum, in the resistant cultivars but absent in the control and inoculated seedlings of

susceptible cultivars (Kini et al., 2000b). The data clearly indicate that particular 13-1,3-

glucanases are involved in the resistance of pearl millet against the downy mildew pathogen.

2.4.4 Constitutive expression of l3-glucanases from various sources in plants

In the past twenty years, the avalanche of knowledge generated and the tremendous

advancement in technologies for identification, isolation and transfer of genes amongst

species have enabled the expression of traits for disease resistance in plants with minimal

effect on their intrinsic properties. Genes with antifungal properties were and are currently

identified and isolated from various sources such as plants, viruses, bacteria, yeast and fungi

that have potential use for plants. These genes were, introduced into the genome of the plant

and successfully expressed in selected crops. Recent studies have shown that ectopic
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expression of chitinase and 13-1,3-glucanase in transgenic plants can mediate increased

protection against phytopathogenic fungi.

Combinatorial expression of transgenes encoding proteins with antifungal properties has

been reported to enhance and provide synergistic in planta protection (Anand et al., 2003;

Jach et aI., 1995; Lan et aI., 2000; Nishizawa et aI., 2003; Zhu et aI., 1994). A combination of

class-II chitinase, a class-II beta-1 ,3-glucanase a nd a Type-I ribosome-inactivating protein

(RIP) were expressed in tobacco plants under the control of the constitutive CaMV 35S-

promoter (Jach et aI., 1995), resulting in 20-60% reduction in disease index against the

soilborn fungal pathogen Rhizoctonia solani, w hen compared to wild type or empty vector

transgenic plants. In another study, constitutive co-expression of a basic chitinase (rice

RCH10) and acidic 13-1,3-glucanase (alfalfa AGLU1), severely suppressed the reduction of

frog eye lesion size and the number of leaves infected by Cercospora nicotienee in T2

progeny heterozygous for both transgenes, and even more so for the T3 double homozygous

combination, relative to the plants homozygous for either transgene alone (Zhu et aI., 1994).

Similarly, fungal challenge of transgenic oilseed rape plants constitutively expressing the

beta-1,3-glucanase and chitinase genes, showed decreased susceptibility to Sclerotinia

sclerotiorium compared to untransformed control plants (Lan et aI., 2000). Unfortunately, the

paper is published in Chinese and the origin of the beta-1 ,3-glucanase gene and percentage

inhibition is not known. These data suggests that the battery of chitinases and glucanases

are not redundant defence systems but represent complimentary, interacting protective

mechanisms.

No single plant gene encoding 13-1,3-glucanase confer sufficient or full protection against

oomycete pathogens (Yoshikawa et aI., 1993; Masoud et aI., 1996; Borowska et aI., 1998),

but these studies indicate that constitutive expression of high levels of glucanase is an

effective strategy for engineering protection against oomycete pathogens. Transgenic potato

plants expressing soybean 13-1,3-endoglucanase, with up to eight fold higher activity to

control plants, resulted in a reduction in sporangia production of the oomycetous pathogen

Phytophthora intestens (Borkowska et aI., 1998). Masoud and co-workers (1996) found that

constitutive overexpression of the alfalfa 13-1,3-glucanase protein encoded by the chimaeric

Aglu1 gene, in transgenic alfalfa, did not lead to co-suppression of the endogenous gene,

but resulted in improved disease severity where the transgene was expressed up to ten fold

higher than control plants. No reduction in disease severity was obtained with the lower level

of expression of the Aglu1 gene in transgenic plants harbouring the tandem

glucanase/chitinase transgenes. However, this may be a result of low levels of expression of

both transgenes and not combinatorial expression itself. Furthermore, Yoshikawa et al.

(1993) showed that transgenic tobacco plants, expressing a soybean 13-1,3-glucanase,
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showed almost no disease symptom in comparison to the untransformed control plants

when challenged with a diverse group of fungi including the oomycete fungus Phytophthora

parasitica var nicotianae.

Nishizawa and co-workers (2003) constitutively over-expressed the 1,3;1 ,4-glucanase

encoding Gns 1 gene of rice which resulted in a stunted lesion-mimic phenotype which

simultaneously express the pathogen related genes PR-1 an PBZ1. This is the first report on

a 1,3; 1,4-glucanase, which hyrolyzes 1,3; 1,4-glucosidic linkages on 1,3; 1,4-glucan, an

important component of cell walls in the Poaceae plant family, playing a significant role in

defence resistance as the enzyme degrades glucan in the plant cell wall and not the virulent

blast fungus (Magnaporthe grisea) fungal cell walls.

Lorito and Scala (1999) published an extensive review of microbial genes expressed in

plants to enhance defence response to pathogens or to activate plant defence responses or

protect from pathogen toxins. However, this review publication identified only Ruminococcus

flavefaciens, Bacillus amy/oliquefaciens and Bacillus macerans bacterial J3-1,3-glucanases

which are expressed in plants for purposes other than fungal resistance e.g. the engineered

thermotolerant (1,3-1 ,4)-J3-glucanase which was introduced to improve malting qualities of

transgenic barley (Jensen et a/., 1996) and transgenic plants as bioreactors for the

production of industrial enzymes (Herbers et a/., 1996).

It is clear then that in the past only plant J3-glucanases were introduced into the genome of

plants to confer resistance to fungal phytopathogens. A novel and attractive approach would

therefore be to introduce a gene encoding J3-1,3-glucanase from a biocontrol fungi, such as

T. atroviride (=T. harzianum P1), to confer broadspectrum resistance to oomycete

pathogens.

2.4.5 J,J-glucanasesand chitinases from T. atroviride

T. atroviride is a well-known biological control agent, which is regularly used in combination

with Bacillus spp. to combat S. graminico/a, causal agent of downy mildew in pearl millet

(Shetty and Kumar, 2000). T. atroviride, a soil-borne filamentous fungus, is capable of

parasitising several plant pathogenic fungi and therefore a potential source of powerful

antifungal genes (for review see Markovich and Kononova, 2003). Secretion of lytic

enzymes, mainly glucanases and chitinases, is considered the most crucial step of the

mycoparasitic process (Cohen-Kupiec et a/., 1999). The lytic enzymes degrade the cell walls

of the pathogenic fungi, enabling Trichoderma to utilize both their cell walls and cellular

contents for nutrition. Purified enzymes from T. atroviride which have an antagonistic and a

nutritional role, are strong inhibitors of many important plant pathogens and are able to lyse
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not only the "soft" structure of the hyphal tip but also the "hard" chitin wall of mature hyphae,

conidia, chlamydospores and sclerotia (Lorito et a/., 1998). These enzymes are substantially

more antifungal than chitinolytic and glucanolytic enzymes purified thus far from any other

source when assayed under the same conditions and up to one hundred times more active

than the corresponding plant enzymes and effective on a much wider range of pathogens

(Lorito et a/., 1998). These enzymes are also non-toxic to plants even at high

concentrations. Finally, the antifungal activity is synergistically enhanced when different

Trichoderma cell wall degrading enzymes are used in combination with pant pathogenesis-

related proteins, commercial fungicides, c ell-membrane-affecting toxins, peptide antibiotics

(including peptaibols) or biocontrol bacteria (Lorito et a/., 1993, 1994 and 1998; Markovich

and Kononova, 2003).

Chitinolytic enzymes produced by T. atroviride, especially combining endochitinase and the

chitobiosidase, was shown to be potent in vitro against phytopathogens such as Botrytis

cinerea and Fusarium so/ani (E05o values of 10 and 30 I..Igmr', respectively), but it did not

inhibit the sporangia germination nor mycelial growth of the Oomycete Pythium ultimum

(Lorito et a/., 1993). In addition, adding a glucan 1,3- l3-glucosidase (EC 3.2.1.58) and an N-

acetyl- l3-glucosaminidase (EC 3.2.1.30) tot he two above mentioned chitinolytic enzymes

gave E050 (50% effective dose) values as low as 1.6 I..Igml" for inhibition of conidial

germination and 1.7 I..Igml" for inhibition of germ tube elongation of the surviving spores of B.

cinerea (Lorito et a/., 1994). Although chitinolytic enzymes produced by T. atroviride was

potent against phytopathogens such as Botrytis cinerea and Fusarium so/ani, it did not inhibit

the Oomycete Pythium u/timum (Lorito et a/., 1993). Neither sporangia germination nor

mycelial growth was affected, even when the fungus was exposed to 1000 I..Igml". Another

example of the powerful enzymes originating from Trichoderma was reported by Reyand co-

workers (2001). The authors identified a T. atroviride mutant that has two to four times more

chitinase, beta-1,3-glucanase and beta-1,6-glucanase activities than the wild type which

provide improved protection on grapes against Botrytis cinerea and in vitro against

Rhizoctonia so/ani.

Various 13-1,3-glucanases were isolated from the fungi T. atroviride such as the acidic 13-1,3-

glucanases of 29 kOa (Noronha and Ulhoa, 2000), 78 kOa (Lorito et a/., 1994) and a 110 kOa

novel extracellular beta-1,3- exoglucanase containing a unique C-termincal embodying

cysteine motifs (Cohen-Kupiec et a/., 1999). It was shown, that the glucan 13-1,3-glucosidase

(GLUC78) [78 kOa 13-1,3-glucanase (EC 3.2.1.58)] purified from T.harzianum, exhibits

antifungal activity (E05o of 35-75 I..Ig ml") against the oomycetous fungal pathogen

Phytophthora spp., also when applied in combination with microbial toxins and chemical

fungicides (Fogliano et a/., 2002).
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2.4.6 T. harzianum genes expressed in plants

A full scale application of fungal biocontrol agents in commercial agriculture has been

delayed because of: 1) the inconsistent results obtained by introducing these complex

microorganism into the ever changing environment (Lorito et aI., 1998) and 2) due to the lack

of understanding the factors responsible for disease control, the interaction of Trichoderma

with the agricultural environment (Zeilinger et aI., 1999) and even the different regulatory

signals which triggers expression of two major chitinase genes of Trichoderma (Mach et aI.,

1999). I t would therefore be feasible tot ransfer and constitutively express these powerful

fungal cell wall degrading enzymes directly in the plant.

Since extensive testing in vitro, has shown that there are virtually no chitinous pathogens

resistant to Trichoderma chitinases (Lorito et aI., 1993, 1994 and 1996), it was expected that

expression of a single chitinase gene from this organism in transgenic plants, should confer

broad-spectrum resistance. During 1998, disease resistance in transgenic plants has been

improved, for the first time, by the insertion of a gene from a biocontrol fungus. The high

level and broad spectrum of resistance obtained against soil-borne and foliar pathogens with

a single constitutively expressed endochitinase gene from T. atroviride (chit42) overcome the

limited efficacy of transgenic expression in plants of chitinase genes from plants and bacteria

(Lorito et aI., 1998). Selected transgenic tobacco and potato plants expressing the chit 42

gene, had no visible effect on plant growth and development, yet tolerance or complete

resistance was obtained to the foliar pathogens Alternaria alternata, A. solani, B. cinerea and

the soilborne pathogen Rhizoctonia solani (Lorito et aI., 1998). Reduced plant vigor is

however in some cases reported when a chitinase gene from T. atroviride was expressed in

a plant e.g. increased constitutive expression of Trichoderma derived fungal endochitinase in

apple increased resistance to Venturia inaequalis, but also reduced plant growth (Bolar et aI.,

2000). Emani and co-workers (2003) also obtained significant resistance to both the soil-

borne pathogen, Rhizoctonia solani and the foliar pathogen Alternaria alternata of T2

transgenic cotton plants with high endochitinase expression of the transgene from T. virens.

2.5 Sorghum and pearl millet transformation technology

An efficient transformation system has to be in place in order to enhance the genetic pool of

pearl millet a nd to a pply recombinant D NA technology. Furthermore, high frequency plant

regeneration from cultured explant material is a prerequisite for the successful transformation

of this crop, as the limiting step in the development of genetic engineering technology for the

improvement of selected cereal genotypes is the in vitro culture step (Lambé et aI., 1999).

Development and establishment of the in vitro culture systems for pearl millet will be

discussed, as it is fundamental that the explant of choice produces consecutive induction of
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embryogenic calli, which further develop and mature to form somatic embryos from which

fertile plantlets can be regenerated.

During the last decade, slow progress was made in the establishing protocol for the genetic

engineering of both sorghum and pearl millet, both under-exploited cereal crops of Africa.

2.5.1 History and progress of transformation technology for sorghum

The production of transgenic sorghum plants via particle bombardment of immature zygotic

embryos has been reported for the first time by Casas et aI., (1993), and subsequently

reported by Tadesse (2000) and Emani et al. (2002). In addition, transgenic sorghum plants

were produced via Agrobacterium-mediated transformation using immature zygotic embryos

as explant by Zhao et al. (2000). Furthermore, transgenic sorghum plants were obtained by

particle bombardment of immature inflorescences (Casas et aI., 1997) and shoot tips

(Tadesse, 2000) introducing mainly reporter and selectable marker genes. Only recently, a

trait which codes for a feedback insensitive dihydropicolinate synthase, the first enzyme of

the lysine-specific pathway, was introduced into the genome of sorghum with the goal of

producing transgenic sorghum plants with increased lysine content (Tadesse, 2000).

Currently, a consortium of scientists funded by the European Commission (Contract number:

ICA4-CT-2000-30034) is in the process of genetically enhancing the nutritional quality of

grain sorghum. The goal is to produce transgenic sorghum plants with elevated lysine and

methionine contents by introducing genes encoding the methionine-rich maize beta-zein and

engineered lysine-rich barley chymotrypsin inhibitor CI-2 proteins (O'Kennedy et aI., 2003).

2.5.2 History and progress of pearl millet transformation technology

2.5.2.1 Pearl millet tissue culture

In vitro culture of cereals show a strong genotype dependence and production of the

appropriate culture is generally limited to selected genotypes (Lambé et al., 1999). Similar to

other cereal cultures, pearl millet lose their morphogenic capacity after several sub-cultures

(Lambé et aI., 1999; Pius et aI, 1993). Mature and immature zygotic embryos, immature

inflorescences and shoot apices are commonly used as explant for obtaining embryogenic

tissue cultures from various graminaceous species. Similarly, procedures for pearl millet

plant regeneration via somatic embryogenesis have been described for immature zygotic

embryos (IZEs) (Goldman et aI., 2003; Lambé et aI., 1999, Oldach et aI., 2001; Vasil and

Vasil, 1981), mature embryos (Botti and Vasil, 1983), immature inflorescences (Goldman et

aI., 2003; Vasil and Vasil, 1981), shoot apices (Devi et aI., 2000, Lambé et aI., 1999) or

apical meristem (Goldman et aI., 2003).

Morphological and histological studies of cultured immature zygotic embryos of pearl millet

have shown that single subepidermal cells at the periphery of the scutellum in the coleorhizal
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end undergo internal segmenting divisions, resulting in discrete groups of richly cytoplasmic

cells (Vasil and Vasil, 1981 & 1982). These cells, which were differentiated, and attained

embryogenic and transformation competence during the early stages of culture, could be

perpetuated by subculture, and gave rise to embryoids and plants. Furthermore, there is

sufficient evidence in the literature (Lu and Vasil, 1985, Woodward, 1989) to show that either

cereal somatic embryos in tissue culture arise directly from single cells, or indirectly from a

proembryonal complex, which itself arises from a single cell. Somatic embryos of pearl millet

fit the same pattern (Vasil and Vasil, 1982). The single cell origin of cereal somatic embryos

is essential if after targeting these cells for transformation, uniformly transgenic plants are to

be regenerated and subsequently transgenic progeny.

Various components of cereal tissue culture medium were previously optimised in an attempt

to improve overall tissue culture responsiveness of selected explants. In this study, only the

potential advantage of L-proline and silver nitrate will be discussed.

The addition of L-proline is commonly used in maize tissue culture media (Armstrong and

Green, 1985; Pareddy and Petolino, 1990) and recently for pearl millet cultures (Chapter 3).

L-proline was essential for routine initiation of Type-II maize calli (Armstrong and Green,

1985) and immature zygotic embryo derived pearl millet calli (Chapter 3) from which large

numbers of fertile plants were regenerated. They also found a significant linear relationship

between L-proline concentration, up to 25 mM, and embryoid formation in maize cultures.

However, the physiological role of L-proline is not clear. Many organisms, including higher

plants, accumulate free L-proline in response to osmotic stress (Nanjo et aI., 1999a). Nanjo

and co-workers (1999a) showed by generating antisense transgenic Arabidopsis plants

inhibiting the production of L-proline, that the transgenic leaves were hypersensitive to

osmotic stress, morphological alterations in the leaves occurred, a defect in elongation of

inflorescences occurred, and the structural proteins of cell walls were negatively affected. In

another set of experiments, Nanjo and co-workers (1999b), introduced an antisense gene for

the suppression of L-proline degradation into the genome of Arabidopsis, and found that the

antisense transgenic plants were more tolerant to freezing and high salinity stress than the

wild type, showing a positive correlation between L-proline accumulation and stress

tolerance. Thus, the addition of L-proline in tissue culture media might benefit cultured plant

tissue and plants since it has a unique function in osmotolerance and morphogenesis as a

major constituent of cell wall structural proteins. Furthermore, L-proline may lead to an

enhanced tolerance to stress caused by the tissue culturing process. T his can potentially

lead to higher numbers of shoots being regenerated and improved overall health and fertility

of tissue cultured plants.
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It is known that accumulation of ethylene released during the growth of the tissue in the

gaseous atmosphere of the culture vessel takes place and that it might contribute to the poor

regeneration response. Silver ion is a potent inhibitor of ethylene action (Beyer, 1976) and

Ag+ inhibits the physiological action of ethylene, without interfering with ethylene biosynthesis

(Lieberman, 1979). A number of reports have shown that AgN03 can promote in vitro

embryogenic callus and shoot production in various crops (Carvalho et al., 1997; Chi and

Pau, 1989; Cruz de Carvalho et al., 2000; Oldach et al., 2001; Pius et al., 1993; Purnhauser

et al., 1987; Songstad, 1991; Vain et al., 1989). DeBlock and co-workers (1989) reported that

2-10 mg 1"1 AgN03 was a prerequisite for efficient shoot regeneration of Brassica under

selective conditions using Agrobacterium-mediated transformation. Pius et al. (1993)

reported a three-fold increase in regeneration rates of pearl millet cultures when

supplementing regeneration medium with 10 mg 1"1 AgN03• Pius and co-workers (1993)

concluded that inhibitors of ethylene, such as AgN03, made it possible to sustain

regeneration in cultures that lose their ability to regenerate. In addition, Oldach et al. (2001)

reported a significant increase in the regeneration rates of pearl millet cultures when

supplementing induction medium with 5 mg 1"1 AgN03•

2.5.2.2 Biolistic-mediated transformation

Despite the recent developments to establish a transformation protocol for pearl millet (Girgi

et al., 2002; Goldman et al., 2003; Lambé et al., 2000), production of transgenic plants is not

yet routine. Stable transformation of pearl millet callus was achieved for the first time during

1995 by microprojectile bombardment. Two plasmids carrying the hygromycin

phosphotransferase (hph) selectable marker and the [3-glucuronidase (uidA) reporter genes

were stably integrated into the genome of pearl millet (Lambe et al., 1995). The transgenic

callus of pearl millet (Lambe et al., 1995) could not be regenerated due to the long period of

culture needed for the selection of transgenic callus (Lambe et al., 1999) and no evidence of

transgenic fertile regenerants from the transgenic callus was reported.

Recently, procedures for transformation based on the use of the helium-driven PDS-1000/He

or the particle inflow gun (PIG) using the bar herbicide resistance gene, or hygromycin

phosphotransferase (hph) as selectable marker genes and/or uidA (GUS) as reporter gene in

transgenic pearl millet have been published (Girgi et al., 2002; Goldman et al., 2003; Lambé

et al., 2000). Girgi and co-workers (2002) demonstrated a transformation system using 2-5

days precultured immature zygotic embryos as explant, whereas Lambé and co-workers

(2000) reported on the transformation of shoot tip derived embryogenic units obtained 7-8

weeks after isolation. Differerent particle bombardment devices, tissue culture procedures

and pearl millet genotypes were used to produce these transgenic lines. Common in both

systems is the multiple copy integration of transgenes, an undesirable feature that can lead
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to gene silencing in progeny (lyer et aI., 2000; Anand et aI., 2003) and especially post

transcriptional gene silencing in plants transformed with a class I ~-1,3-Glucanase (Kunz et

aI., 2001).

Pearl millet transformation is still limited by relatively low and erratic stable transformation

efficiencies. Pearl millet transformation efficiencies targeting scutellum cells of proliferating

immature zygotic embryos (Biolistic transformation, 0.02-0.28%; Girgi et aI., 2002) are very

low in comparison to other cereal crops such as maize, wheat, rice and barley, which are

routinely transformed (transformation efficiencies exceeding 10%) with agricultural valuable

genes of interest. Goldman and co-workers (2003) reported on a transformation efficiency of

5.5 herbicide-resistant plants per plate for 60% of their experiments targeting inflorescence

derived embryogenic pearl millet tissue. However, the authors did not screen all the

transgenic plants with southern blot analysis to determine unique integration events, and

some of these transgenic plants might have been clones. Finally, published work to date

report only on selectable marker genes stably integrated into the genome of pearl millet.

Inadequate knowledge of antibiotic or herbicide resistance genes' impact on the environment

and on human health, especially in food crops, has caused widespread public concern

(Wang et a/., 2000). The POSITECH system is a novel and attractive alternative.

POSITECH, the mannose positive selection system employs the manA gene encoding

phosphomannose isomerase gene as selectable marker gene and mannose, converted to

mannose-6-phosphate by endogenous hexokinase, as selective agent (Joersbo et aI., 1999).

The transgenic PMI-expressing cells have acquired the ability to convert mannose-6-

phosphate to fructose-6-phosphate, while the non-transgenic cells accumulate mannose-6-

phosphate with a concomitant consumption of the intracellular pools of inorganic phosphate

and ATP. The structural gene (manA) from Escherichia coli were previously used to

successfully produce transgenic maize (Negrotto et aI., 2000; Wang et aI., 2000), cassava

(Zhang and Puonti-Kaerlas, 2000) and sugarbeet (Joersbo et aI., 1998 and 1999) via biolistic

or Agrobacterium-mediated transformation, crops which generally are recalcitrant to

transformation. In addition, manA was shown to be a superior selectable marker gene for

plant transformation; improving transformation efficiencies in crops such as maize, wheat

and sugar beet (Joersbo et aI., 1998; Reed et aI., 2001; Wright et aI., 2001) when compared

to antibiotic or herbicide (pat or bar) selectable marker genes. Furthermore, a preliminary risk

assessment done by Reed and co-workers (2001) indicated that the PMI protein in

transgenic maize was 1) readily digested in simulated mammalian gastric and intestinal

fluids, 2) there was no detectable changes in glycoprotein profiles and 3) no statistically

significant differences were obtained in yield and nutritional composition compared to
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untransformed maize. Furthermore, a database search revealed no significant homology of

the E. coli manA gene product to any known toxin or allergen (Reed et al., 2001).

There is no published work reporting on the successful production of transgenic pearl millet

via Agrobacterium-mediated transformation to date.

In conclusion then, it would be of great benefit to establish a routine transformation system

for pearl millet in order to enhance the genetic make up of this valuable crop, indigenous to

Africa and to subsequently introduce a gene to confer resistance to S. graminicola, in order

to combat downy mildew.
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Chapter 3

Improved regeneration efficiency of a pearl millet

(Pennisetum glaucum [L.] R.Br.) breeding line

Paper accepted for publication in the South African Journal of Botany, 2004

3.1 ABSTRACT

This study reports the establishment of an efficient, reliable in vitro tissue culture system for the

regeneration of fertile plants from immature zygotic embryo explants of pearl millet. Eight pearl

millet genotypes were assessed for their amenability to tissue culture. The tissue culture

responses obtained were strongly genotype-dependent. One of the most regenerabie

genotypes, 842B, was selected for further screening. The influence of the addition of different

compounds such as silver nitrate, an ethylene inhibitor, L-proline and high carbohydrate pulses

were examined with respect to callus induction, production of embryogenic tissue and somatic

embryo regeneration to form shoots and roots. Supplementation of the callus induction medium

with L-proline in combination with maltose, produced t he most significant i mprovement i n the

regeneration capacity of genotype 842B resulting in, on average, eighty regenerants per

cultured immature zygotic embryo.

3.2 INTRODUCTION

High frequency plant regeneration from cultured explant material is a prerequisite for the

successful transformation of crops. The limiting step in the development of genetic engineering

technology for the improvement of cereal crops by biolistic transformation is the in vitro culture

step. In vitro culture of cereals show a strong genotype dependence and production of the

appropriate culture is generally limited to selected genotypes (Lambé et al., 1999). Furthermore,

the majority of cereal cultures lose their morphogenic capacity after several sub-cultures, as was

also reported for pearl millet (Lambé et al., 1999; Pius et al, 1993).

Procedures for pearl millet plant regeneration via somatic embryogenesis have been described

for a range of tissues such as immature zygotic embryos (IZE) (Lambé et al., 1999, Oldach et

al., 2001; Vasil and Vasil, 1981), mature embryos (Botti and Vasil, 1983), immature

inflorescences (Vasil and Vasil, 1981) and shoot apices (Devi et al., 2000, Lambé et al., 1999).

In this study, eight pearl millet genotypes were screened i n vitro, using IZE as explants, for

consecutive induction of embryogenic calli, somatic embryogenesis and regeneration. Genotype
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purity and cultivation in Africa, or potential use in African breeding programmes, were

considered in the initial selection of the genotypes. One of the highly regenerabie genotypes,

842B, was assessed further on various media. In particular, the effect of the addition of L-proline

and AgN03 to the tissue culture medium was investigated.

A highly efficient regeneration system has led to a highly efficient transformation system for oat

plants ( Gless eta I., 1998a&b). Therefore, the aim 0 f this study was toi mprove regeneration

capacity of pearl millet in order to establish a routine transformation system.

3.3 MATERIALS AND METHODS

3.3.1 Seed material

Seed material was kindly provided by International Crops Research Institute for the Semi-Arid

Tropics (ICRISAT), Zimbabwe (pearl millet genotypes 841B, 842B, 843B), ICRISAT, India (pearl

millet genotypes ICMB88006 and ICMB87001) and Savanna Agricultural Research Institute

(SARI), G hana (pearl millet genotypes 7042, Bongo N ara a nd Manga Nara). S eedlings were

planted in a soil mix consisting of red soil, rough sand and compost (1:1:1), and were watered

three times per week with a soluble fertiliser (Hortichem N:P:K at 3:1 :5, Ocean Agriculture) until

flowering. Cross-pollination was prevented by covering the flowers with brown paper bags.

3.3.2 Excision of IZE

Greenhouse-grown florets of pearl millet containing IZE (10-14 days post-pollination) were rinsed

in 70% (v/v) ethanol for one minute and sterilised for 15 minutes in a 2.5% (m/v) sodium

hypochlorite solution containing 0.1% (v/v) of the surfactant Tween 20, before being thoroughly

rinsed with sterile distilled water. IZE (0.8 -1 mm in size) were aseptically excised from the florets

using a dissecting microscope and placed with their axes in contact with the callus induction

medium and their scutella positioned upwards. All tissue culture was performed under aseptic

conditions.

3.3.3 Tissue culture of IZEs

IZE were cultured on either MS (Murashige and Skoog, 1962) based medium as described by

Pinard and Chandrapalaiah (1991) and designated PM1 medium, or on L3-based medium as

previously described (Gless et ai., 1998a; Jëhne et ai., 1991) and designated PM2 medium

(Table 1). All PM1 medium (regime A - E) contained 88 mM sucrose as a carbon source, 9 !JM in

the induction medium and were solidified by 8 g 1"1 agar. All PM2 media (regimes F - M) were

solidified by 4 g 1"1 Gelrite, contained 11 !JM 2,4-0 in the callus induction medium and 83 !JM

maltose (regimes F- L) or 88 !JM sucrose (regime M). Embryo derived calli were transferred to
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fresh callus induction medium after two weeks. Some one-month-old callus initiated on L-

proline containing media D-E and J-M was transferred to maturation medium for a period of two

weeks (Table 1). Maturation medium contained 6% of the carbohydrate and no L-proline (0, E,

J, K and M) or a combination of AgN03 and hormones (medium L; Table 1). Thereafter,

embryogenic tissue was transferred to regeneration medium, containing only 3% of the

carbohydrate, and subcultured every three weeks until the development of plantlets (> 1 cm).

Calli induced 0 n media regimes A -C and F -I h ad no maturation phase, but were transferred

directly to regeneration medium as indicated in Table 1. Developing plantlets on regeneration

media A-C, E, G, Hand K were transferred to rooting medium without AgN03 and hormones,

and subcultured every three weeks. Rooted plantlets of >1cm were recorded as regenerants. A

small selection of regenerants was hardened-off in the greenhouse as described by O'Kennedy

et al. (1998). Cultures on callus induction, maturation and regeneration medium were incubated

at 24-25°C, under low-light conditions (1.8 urnol m-2s-\ whereas regenerating shoots (;~1 cm)

were incubated under dim light (18IJmoi m-2s-1)at 24-25°C.

3.3.4 Tissue culture of shoot apices

Seed material was rinsed with 70% ethanol for one minute and incubated in sterility broth

(autoclaved solution of half-strength MS salts, MS vitamins, 10 g 1'1yeast extract, 3 g 1-1 beef

extract and 5 g 1'1glucose) for four hours. Subsequently, the seeds were rinsed with sterile

distilled water and sterilised for 30 min in a 3.5% sodium hypochlorite solution containing 0.1%

(v/v) of the surfactant Tween 20, before being thoroughly rinsed with sterile distilled water.

Sterilised seeds were plated on half-strength MS medium without any hormones at 24-25°C

under a light intensity of 80 urnolm'ês". Uncontaminated germinating seedlings with a leaf length

of 0.5 cm - 7 cm were cut into 0.25 - 1 mm sections and placed with the cut surface on the

culture medium. Shoot apex cultures were initiated and cultured on callus induction medium as

described by Gless et al. (1998a) for oat plants. White compact callus produced on callus

induction was transferred to maturation medium, as described by Gless et al. (1998a), and then

transferred to regeneration medium for the development of plantlets. Regenerated plantlets were

transferred to regeneration medium in Magenta boxes.

3.4 RESULTS AND DISCUSSION

Pearl millet IZE were cultured on PM1 or PM2 tissue culture media to induce embryogenic calli

from which fertile plantlets were regenerated via somatic embryogenesis. The two media differ in

their carbohydrate source, solidifying agent and basal salts, vitamins, ammonium nitrate, and

amino acid contents. PM1 is a MS (Murashige and Skoog, 1962) basal medium containing

sucrose and solidified by agar, whereas PM2 is a L3 (Jahne et aI., 1991) basal medium

36

Stellenbosch University http://scholar.sun.ac.za



containing maltose and solidified by Gelrite. PM1 includes media A-E tested in this study

and PM2 includes media F-M tested in this study (Table 1).

IZEs at a critical stage of development were used as the most appropriate explant source. In this

study, the frequency of embryogenic calli initiation was significantly higher in cultured IZE (95%,

induction medium A) of pearl millet genotype 8428 than in cultured shoot apices of this genotype

(no more than 54%), whereas Lambé et al. (1999) found the opposite. In our laboratory, shoot

apices of genotype 8428 produced an average of only 6.1 regenerated plantlets per explant in

16 months. IZEs of 0.6-1 mm in length excised approximately 8-12 days post pollination,

produced embryogenic calli that regenerated to form plantlets. The epidermal and subepidermal

cells of the scutellum of the IZE at the coleorhizal end either formed somatic embryos (PM1

medium) or gave rise to embryogenic calli, which subsequently matured to form somatic

embryos (PM2 callus induction and maturation medium; Fig. 1A-D). PM2 induction medium

supplemented with 20mM L-proline (I-L induction media) gave rise to friable embryogenic calli

(type II) within one month of culture (Fig. 1C). Numerous white cup-shaped somatic embryos

developed on the surface of friable watery calli (Fig. 1D) within two weeks after transfer of the

cultures to PM2 maturation medium (J-M maturation media). After two weeks of culture on the

maturation medium, cultures were transferred to hormone-free PM2 regeneration medium and

within 1.5 - 6.5 months, somatic embryos developed to form independent rooted plants ready for

hardening-off under greenhouse conditions (Fig. 1E). Small selections of PM1-derived and PM2-

derived plantlets were hardened-off under greenhouse conditions a nd matured t 0 form fertile

plants, which set seed (Fig. 1F).

Eight pearl millet genotypes were screened on the PM1 medium regime A (induction,

regeneration and rooting media). White, compact callus, constituting mainly somatic embryos,

developed within one month from the scutellum cells of cultured IZE. Almost 100% of the

explants produced white compact callus, which regenerated tof arm c lusters of plantlets that

were difficult to separate. Plantlets that were obtained during regeneration rooted successfully.

Results of the eight genotypes screened on medium regime A clearly show genotype

dependence of regeneration of pearl millet (Fig. 2). The one-way ANOVA test shows significant

difference (P = <0.001) between 1) genotypes 8428 and Manga nara (MN) which produced the

highest number of regenerants per ten cultured embryos (110 ± 43.7 and 146 ± 27.5,

respectively) and 2) genotypes 7042 and ICM8 88006 (2 ± 2.2 and 1 ± 1.5, respectively) which

produced the lowest number of regenerants per ten embryos. Therefore, 8428A = MNA > 70428

= ICM8880068; where the means followed by the same uppercase letters are not
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Table 1: Composition of pearl millet tissue culture media regimes tested. Regime Band F are media as described by Pinard
and Chandrapalaiah (1991) and Gless et al. (1998), respectively. Media regimes A, C-E are modified Pinard and
Chandrapalaiah (1991) media with modifications as indicated. Media regimes G-M are modified Gless et al. (1998a)
media, with modifications as indicated.

Media regime Carbohydrate Callus Maturation medium Regeneration medium
source for induction
regime medium

L-proline % AgN03 IAA Kinetin AgN03 IAA Kinetin
20mM carbohydrate 60 !JM 1 !JM 2.3!JM 60 !JM 1 !JM 2.3 !JM

PM1 A sucrose na na Na na + + +
B sucrose na na Na na + +
C sucrose + na na Na na + + +
D sucrose + 6
E sucrose + 6 + + +

PM2 F maltose na na Na na
G maltose na na Na na +
H maltose na na Na na + + +
I maltose + na na Na na
J maltose + 6
K maltose + 6 +
L maltose + 3 + + +
M sucrose + 6

na = not applicable; media regimes A-C and F-I had no maturation phase
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Figure 1: Tissue culture cycle of pearl millet genotype 842B. A, callus tissue after one month of

culture of IZEs on C induction medium. B, callus tissue producing shoots after one month

of culture of IZEs on C induction medium followed by two months of culture on C

regeneration medium. C, callus tissue after one month of culture of IZEs on J induction

medium. D, callus tissue after one month of culture of immature zygotic embryos on J

induction medium followed by two weeks of culture on J maturation medium. E, rooted

shoots via somatic embryogenesis on medium regime J, and ready for hardening-off in

the greenhouse. F, a fertile regenerant produced on medium regime L and growing in the

greenhouse after successful hardening-off.
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significantly different at P =<0.005. There is no significant difference between the other

treatments (P = <0.005). Bhaskaran and Smith (1990) hypothesised that the genetic basis of

variability in tissue culture response and morphogenesis is most likely due to differences in

hormone metabolism within the explant, which is established by the level of gene expression for

individual hormones of the particular genotype. The authors stated that all genotypes are

capable of producing embryogenic cultures, if the correct meristematic explant and initial

exposure to the appropriate plant growth regulators are used. Hopefully, future advances will

clarify the underlying source(s) of variavility in regeneration responses between genotypes.

Subsequently, genotype 842B, which produced a high number of regenerants on tissue culture

medium regime A, was screened on thirteen different tissue culture media regimes designated

A-M (Table 1, Fig. 3). The highest number of regenerants was obtained on medium regime J,

where the induction medium was supplemented with L-proline and maltose was increased to 6%

during the maturation phase. The one-way ANOVA test shows significant difference (P =

<0.001) between the number of regenerants per ten cultured embryos cultured on tissue culture

fil
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~ 140 +--t---
.....; 120 T--t---
c.. 100.1!l
f 80
ê 60
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g' 40...
'0 20
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ICM8
88006
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Figure 2: The number of regenerants obtained per ten embryos when eight pearl millet

genotypes were screened on tissue culture medium regime A (see table 1). The

standard deviation is indicated by the bars. One-way ANOVA test indicated no

statistically significant difference (P = <0.001) between genotypes 842B and

Manga nara (MN). Genotype Bongo nara was abbreviated as BN. Four

independent replications were done per treatment.
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medium regime J (807 ± 222.1) and A, Band G (110 ± 43.7, 146 ± 52.3 and 73 ± 43.2,

respectively). Indicating that JA > AB = BB = GB; where the means followed by the same

uppercase letters are not significantly different at P =<0.005.

There is no significant difference between the other treatments (P = <0.005). The highest

number of regenerants produced per individual explant cultured on PM1 medium was produced

on medium regime E where the regenerants produced ranged from 0 to 60 per individual

explant. PM2 medium regime J produced the highest number of regenerants overall, ranging

from a minimum of 31 per explant to a maximum of 282 per explant.

The addition of L-proline to the induction medium or AgN03 to the regeneration of PM1 media

regimes did not give a statistically significant increase in the number of regenerants per cultured

IZE. T he addition 0 f A gN03 and the hormones kinetin and IAA tot he regeneration medium

rather severely inhibited rooting of the shoots produced (previous study, data not shown).

Therefore, both the hormones and AgN03 were omitted from rooting medium. In contrast, the

addition of L-proline to the PM2 induction medium and the inclusion of a maturation medium step

(culture for 2 weeks on auxin-free medium containing double the quantity of maltose, 6% instead

of 3%) in medium regime J, resulted in a two-fold increase compared to the medium described

by Gless et al., (1998a) for oats (medium regime F). Once more, there was no significant effect

of AgN03 on regeneration efficiency (Table 1, Fig. 3). Media regimes J and L had the identical

induction medium (containing L-proline). However, maturation medium J was auxin-free and

contained 6% maltose, whereas L maturation medium contained kinetin, IAA and AgN03, and

the standard 3% maltose (Table 1). The doubling of the carbohydrate source (medium regime J)

resulted in higher numbers of regeneration per ten explants when compared to medium regime

L where maturation was induced by hormones and AgN03 (Fig. 3). The difference was however

not statistically significant. It is however significant that medium regime J produced only 0.8%

albino regenerants whereas regime L produced 3% albino regenerants. The production of albino

plants might be the result of the addition of L-proline and/or the hormones to the tissue culture

medium. Nevertheless, the final numbers of regenerants presented in the figures text reflects

only green plantlets. In addition, medium regimes F and I (with or without the addition of L-

proline in the induction medium, respectively) resulted in almost an identical number of

regenerants per ten explants (408 ± 146.0 and 416 ± 58.0, respectively). This clearly indicates

that the two weeks maturation phase is essential to increase (medium regime L, 552 ± 200) or

even double (medium regime J, 807 ± 222.1) the number of regenerants per ten explants.
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Figure 3: The influence of 13 independent callus induction and regeneration media A to M

(see table 1) on regeneration rates from cultured immature pearl millet embryos

of genotype 842B. The addition of AgN03 (*) and/or L-proline (bars underneath)

are indicated on the graph. PM1 or PM2 based media regimes are also indicated.

Four independent replications were done per treatment. The standard deviation is

indicated by the bars.

Finally, selected genotypes 842B, Manga nara (MN) and Bongo nara (BN) were tested on tissue

culture media regimes A, J and K (Fig. 4) expecting an improved regeneration efficiency for

Manga nara and Bonga nara cultured on especially medium regime J. However, significant

differences were only obtained amongst genotypes, but no significant difference was obtained in

the same genotype cultured on media regimes A, J or K.

In previous studies, accumulation of ethylene released during the growth of the tissue in the

gaseous atmosphere of the culture vessel has been identified as one of the factors responsible

for poor regeneration response. Silver ion is a potent inhibitor of ethylene action (Beyer, 1976)

and Ag+ inhibits the physiological action of ethylene, without interfering with ethylene

biosynthesis (Lieberman, 1979). A number of reports have shown that AgN03 can promote in
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Figure 4: The influence of callus induction and regeneration media AI, JD and K I (see

table 1) on regeneration rates from cultured immature pearl millet embryos of

genotype 842B, Manga nara (MN) and Bongo nara (BN). The standard deviation

is indicated by the bars. Four independent replications were done per treatment.

vitro embryogenic tissue and shoot production in various crops (Carvalho et ai., 1997; Chi and

Pau, 1989; Cruz de Carvalho et ai., 2000; Oldach et ai., 2001; Pius et ai., 1993; Purnhauser et

ai., 1987; Songstad, 1991; Vain et ai., 1989). DeBlock and co-workers (1989) reported that 2-10

mg 1'1 AgN03 was a prerequisite for efficient shoot regeneration of Brassica under selective

conditions using Agrobacterium-mediated transformation. Pius et al. (1993) reported a three-fold

increase in regeneration rates of pearl millet cultures when supplementing regeneration medium

with 60 !-1MAgN03. Pius and co-workers (1993) concluded that inhibitors of ethylene, such as

AgN03, made it possible to sustain regeneration in cultures that lose their ability to regenerate.

Oldach et al. (2001) reported a significant increase in the regeneration rates of pearl millet

cultures when supplementing induction medium with 30 !-1MAgN03. In this study, however the

effect of supplementing regeneration medium with 60 !-1MAgN03 to improve the regeneration

rate of pearl millet was insignificant.

The addition of L-proline is commonly used in maize tissue culture media (Armstrong and Green,

1985; Pareddy and Petolino, 1990). Armstrong and Green (1985) found that L-proline was
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essential for routine initiation of Type-II maize callus, from which large numbers of fertile plants

were regenerated. They also found a significant linear relationship between L-proline

concentration, up to 25 mM, and embryoid formation in maize cultures. However, the

physiological role of L-proline is not clear. Many organisms, including higher plants, accumulate

free L-proline in response to osmotic stress (Nanjo et aI., 1999a). Nanjo and co-workers (1999a)

showed by generating antisense transgenic Arabidopsis plants i nhibiting the production of L-

proline, that the transgenic leaves were hypersensitive to osmotic stress, morphological

alterations in the leaves 0 ccurred, a defect in elongation of inflorescences 0 ccurred, and the

structural proteins of cell walls were negatively affected. In another set of experiments, Nanjo

and co-workers (1999b), introduced an antisense gene for the suppression of L-proline

degradation into the genome of Arabidopsis, and found that the antisense transgenic plants

were more tolerant to freezing and high salinity stress than the wild type, showing a positive

correlation between L-proline accumulation and stress tolerance. Thus, the addition of L-proline

in tissue culture media might benefit cultured plant tissue and plants since it has a unique

function in osmotolerance and morphogenesis as a major constituent of cell wall structural

proteins. Furthermore, L-proline may lead to an enhanced tolerance to stress caused by the

tissue culturing process. This can potentially lead to higher numbers of shoots being

regenerated, which is the case in this study, and improved overall health and fertility of tissue

cultured plants.

In conclusion, we report on a highly efficient regeneration system for pearl millet genotype 8428

via somatic embryogenesis. IZE of genotype 8428 cultured on medium J proved to be the most

efficient regeneration system in this study. The significantly high regeneration rate obtained for

genotype 8428 on medium regime J can be attributed to the responsiveness of this genotype,

as well as the nutrient composition of the J medium regime. An average of 80 regenerants per

individualiZE were obtained, and roots appeared simultaneously with shoot production or

shortly after shoot production. This coincides with the theory that somatic embryos are defined

as bipolar structures that shoot and root simultaneously. The total period in tissue culture was 3

to 10 months. Similarly, Oevi et al., (2000) obtained 80 green vegetative shoots from each

originally cultured shoot apex, and roots formed two weeks after culture initiation. However, the

total period in tissue culture and regenerant fertility is not reported. It is possible that secondary

somatic embryo formation resulted in the high number of regenerants in our study and the study

of Oevi et aI., (2000), as Oldach et al. (2001) reported a total tissue culture period of no more

than 5 months. Nevertheless, the regenerants hardened-off in this study were fertile which is an

essential factor for the future production of transgenic plants.
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The establishment of a highly efficient regeneration system for pearl millet genotype 842B will

greatly benefit pearl millet breeding programmes as it is widely used in breeding programmes in

Africa and India by ICRISAT. Genotype 8428 has been of economic importance to the pearl

millet hybrid seed industry in India over the past 15 years. It is one of the elite inbred lines, which

are maintainer lines of seed parents of hybrid cultivars. This line has the potential to contribute

to the production of early maturing grain-type hybrids for parts of southern and eastern Africa (Dr

T. Hash, ICRISAT, India, personal communication, 1999). The authors are currently working on

establishing an efficient routine transformation protocol for pearl millet genotype 842B. This

would form the technological basis for the genetic enhancement of pearl millet and would

provide the means to introduce agronomical significant genes into a cereal crop grown widely in

both India and parts of Africa.
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Chapter 4

A protocol to produce transgenic fertile pearl millet

(Pennisetum glaucum [L.] R.BR.) plants using the particle inflow gun

A shortened version of this work was incorporated with the work done at the University of

Hamburg and published in collaboration with Dr Maram Girgi who obtained transformation using

the POS 1000/He gun. The title of the published paper is: "Transgenic and herbicide resistant

pearl millet (P. glaucum [L.J R.Br.) via microprojectile bombardment of scutellar tissue': 2002,

Molecular Breeding 10: 243-252. The work presented in this chapter however contains the full

details and is work done solely by the authors. Furthermore, it only reports on the transformation

of pearl millet using the particle inflow gun (PIG).

4.1 ABSTRACT

A pearl millet hybrid parental line, 842B, was transformed with a selectable marker gene (bar)

and a reporter gene (uidA) both driven by the constitutive promoter ubiquitin. Pre-cultured

immature zygotic embryos were bombarded using a simple and inexpensive particle inflow gun.

The selectable marker gene bar from Streptomyces hygroscopicus, conferring herbicide

resistance, was used to establish pearl millet transformation. Two fertile transgenic pearl millet

plants were 0 btained as confirmed by resistance t 0 a pplication oft he herbicide B asta", uidA

expression, peR and southern blot analysis. Both transformation events, clones, had a

multicopy integration pattern of the bar transgene.

4.2 INTRODUCTION

Pearl millet (P. glaucum formerly P. americanum) is a c rop of vital importance tom illions of

African families living in semi-arid regions of the continent. Pearl millet is one of the world's most

resilient crops. In many areas where millet is the staple food, nothing else will grow.

Nevertheless, S. graminicola, an obligate oomycetous fungal phytopathogen, and the causal

agent 0 f downy mildew in pearl millet plants, i sam ajar constraint i n the production of pearl

millet. The development of a reliable transformation protocol for pearl millet will form the basis

for future genetic enhancement of this crop by complimenting classical breeding programmes for

the benefit of India and sub-Saharan Africa.

Despite the recent development of a transformation protocol for pearl millet, production of

transgenic plants is not yet routine. Stable transformation of pearl millet callus was achieved by

microprojectile bombardment with two plasmids carrying the hygromycin phosphotransferase
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(hph) selectable marker and the ~-glucuronidase (uidA) reporter genes (Lambe et al., 1995). The

transgenic callus of pearl millet (Lambe et al., 1995) could not be regenerated due to the long

period of culture needed for the selection of transgenic callus (Lambe et al., 1999), however no

evidence of transgenic fertile r egenerants f rom the transgenic callus was reported. Recently,

Lambé and co-workers (2000) reported in a review paper on the production of transgenic pearl

millet plants.

The aim of this study was to develop a reliable transformation system for pearl millet by

optimising biolistic protocols using selected highly regenerabie genotypes. We demonstrate

stable transformation of a pearl millet breeding line by biolistic-mediated transformation using a

simple and inexpensive device the particle inflow gun (PIG).

4.3 MATERIALS AND METHODS

4.3.1 Seed material

Seed material was kindly provided by ICRISAT, Zimbabwe (pearl millet genotype 842B), and

Savanna Aricultural Research Institute, Ghana (pearl millet genotypes Bonga Nara and Manga

Nara). Seedlings were planted in a soil mix consisting of red soil, rough sand and compost

(1:1:1), and were watered three times per week with a soluble fertiliser (Hortichem N :P:K at

3:1:5, Ocean Chemicals) until flowering. Cross pollination was prevented by covering the flowers

with brown paper bags.

4.3.2 Excision of IZEs

Florets from greenhouse-grown pearl millet containing IZEs (10-14 days post-pollination) were

soaked in 70% (v/v) ethanol for one minute and sterilised for 15 min in a 2.5% sodium hypochlorite

solution containing 0 .1% (v/v) 0 f the surfactant Tween 20, before being thoroughly rinsed with

sterile distilled water. IZEs (0.5 - 1 mm in size) were aseptically excised from the florets using a

dissecting microscope and placed with their axes in contact with the callus induction medium. All

tissue culture was performed under aseptic conditions.

4.3.3 Tissue culturing of IZEs

Callus induction medium A is described by Pinard and Chandrapalaiah (1991), and contains MS

salts (Murashige and Skoog, 1962), 9 J.lM2,4 0, 88 mM sucrose as carbon source and 8 g r'
agar as solidifier. Cultures initiated on induction medium A were further cultured on regeneration

medium as described by Pinard and Chandrapalaiah (1991), containing the hormones IAA (1

J.lM)and kinetin (2.3 J.lMAgN03), but the medium was modified by the addition 60 J.lMAgN03
(for genotype 842B) or 120 J.lM A gN03 (for genotypes Manga n ara and Bongo n ara). These

cultures were subsequently transferred to rooting medium, which was identical to the
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regeneration medium, except that both hormones and silver nitrate were omitted. Cultures

initiated on callus induction medium A containing 20 mM L-proline, were transferred to the

regeneration and rooting media described above.

Callus induction medium J is described by Gless and co-workers (1998) and contains L3 salts

and vitamins as described by Jáhne et al. (1991), 11 !JM 2,4-0, 83 mM maltose as a carbon

source, 4 g r' Gelrite as solidifier and was modified by supplementing the medium with 20 mM L-

proline. Cultures initiated on callus induction medium J were regenerated and rooted on

induction medium J from which the 2,4-0 was omitted and containing 166 mM maltose instead

of 83 mM maltose. The matured cultures were then regenerated and rooted on regeneration

medium without 2,4-0 and 83 mM maltose.

Cultures on callus induction and regeneration media were incubated at 24-25°C, under light (1.8

urnol m-2s-1),whereas regenerating shoots (~1 cm) were incubated under light (18 prnol m-2s-\

4.3.4 Transfer regime

Immature zygotic embryo derived calli were transferred to fresh medium every two weeks. White

compact calli were produced within 4 weeks on callus induction medium A, but only after 6 weeks

on medium J: callus induction (4 weeks) and maturation (2 weeks). After 4 or 6 weeks on A or J

based medium, respectively, calli were transferred to the appropriate regeneration media as

described above, and subcultured every three weeks to fresh media. Rooted plantlets of >1 cm,

produced on regeneration medium A, were transferred to rooting medium. Plantlets grown to 8-10

cm, were hardened-off to a mist bed for approximately two weeks and then transferred to pots in

the greenhouse. Addition of the bialaphos selection agent to tissue culture medium is described

below (4.3.8)

4.3.5 Plasmids

Plasmid pAHC25 is a dual expression vector which contains the uidA reporter gene that

encodes the j3-glucuronidase (GUS) enzyme, and for selection, the bar gene, that encodes the

enzyme phosphinothricin acetyl transferase (PAT), which confers herbicide resistance. PAT

inactivates the herbicidal compound phosphinothricin (PPT) by acetylation. L-PPT is the active

ingredient in several herbicide formulations, such as Basta®(Hoechst AG, Germany), containing

glufosinate ammonium, the salt of a chemically synthesized racemic mixture D,L-PPT, and

Herbiace" (Meiji Seika Kaisha Ltd., Japan) which contains bialaphos, a tripeptide consisting of L-

PPT and two alanine residues. Both the uidA and bar genes are under the control of the maize

Ubi1 promoter, first exon and first intron, and the nopaline synthase terminator (Christensen and

Quail, 1996). Plasmids pAHC25 DNA was extracted from overnight E. coli cultures using a
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Qiagen (Southern Cross Biotechnologies) maxi prep kit according to the supplier's

recommendation.

4.3.6 Microprojectile bombardment

Pre-cultured IZEs were placed in the middle (0 - 1 cm diameter) of a 9 cm petri dish, containing

callus induction media supplemented with approximately 25% increased solidifier, plus 0.2 M D-

Sorbitol and 0.2 MD-Mannitol described by Vain and co-workers (1993). A bombardment

mixture was prepared by precipitating plasmid DNA on tungsten particles using CaCb and

spermidine free base as described by Q'Kennedy et al (1998). All experiments were conducted

with the particle inflow gun ( PIG). Sixteen hours after bombardment, bombarded tissue was

transferred to the respective media omitting D-Sorbitol and D-Mannitol. DNA delivery

parameters were as follows: 900-1200 kPa, 0.16 !JgDNA per shot, 17 cm from the target tissue

and a 500 prn nylon mesh screen placed 8 cm above the target. A vacuum of approximately -87

kPa was applied and the bombardment mix particles on the filter syringe were discharged when

the helium was released following activation of the solenoid. The timer duration was 50

milliseconds.

4.3.7 Transient expression

Bombarded tissue was assayed for ~-glucuronidase (GUS) activity 48h to 28 days, after

bombardment by staining the tissue according to Jefferson et al. (1987). Blue foci showing GUS

activity were counted using a dissecting microscope, each distinct spot was taken as one

expression event and the results were recorded as the number of blue foci per explant. Small

leaf pieces of putative transgenic pearl millet plants were subjected to GUS assaying to

determine whether the uidA gene was expressed in this tissue.

4.3.8 Selection and regeneration of transformants

Selection for phosphinothricin (PPT)-resistant pearl millet tissue was initiated 1-7 days after

bombardment by placing the cultured immature embryos on callus induction medium containing

1.5-6 !JM of bialaphos (phosphinothricin based selective agent) (Tables 1-3). The bialaphos

content in the medium was sometimes increased in increments ranging from 3-6 !JMwith 2 weekly

transfers to fresh selection medium. After 4-6 weeks on selection medium, cultured embryos that

produced white compact calli, presumably somatic embryos, were transferred to regeneration

selection medium containing 0.3-1.5 !JM bialaphos. Regenerating putative transgenic plants were

subcultured at 2-3 weeks intervals until they reached 8-10 cm in height. These were then

hardened-off as described by Q'Kennedy et al. (1998).
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4.3.9 Herbicide application

A 2% (v/v) Basta (200 g 1'1 of the active ingredient, glufosinate ammonium), 0.01% (v/v) Tween

20 solution was applied to both surfaces of selected leaves of transgenic pearl millet plants as

described previously (Q'Kennedy et al., 1998). Glufosinate and its commercial formulation,

Basta" and the tripeptide, bialaphos, or its commercial formulation Herbiace® are both

phosphinothricin (PPT)-based selective agents.

4.3.10 Germination of progeny on bialaphos containing medium

Progeny of transgenic plants were germinated on 0.5 MS medium containing half strength MS

salts, 44 mM sucrose, 8 g 1'1 agar and 3!JM bialaphos.

4.3.11 DNA extraction

Genomic DNA was extracted from putative transgenic pearl millet leaf material using a mini

extraction procedure (Dellaparta et al. 1983).

4.3.12 PCR analysis

Bar specific primers (BARL: 5'-CATCGAGACAAGCACGGTCAACTTC-3' and BARR: 5'-

CTCTTGAAGC CCTGTGCCTCCAG-3') were used to amplify a 0.28 kb fragment, from genomic

DNA preparations of putative transgenic pearl millet plantlets.

4.3.13 Southern blot analysis

Five microgrammes of pearl millet genomic DNA either undigested or digested with restriction

enzymes (Sac I, Hind III, Pst I or Eco RI) were separated on an agarase gel and analysed by

Southern blotting as described by Q'Kennedy et al. (1998). The uidA and bar genes of pAHC25

were labeled with digoxigenin (DIG) by the PCR DIG probe synthesis kit as described by the

supplier (Roche Biochemicals).

4.4 RESULTS

4.4.1 Culture medium and genotypes

Pearl millet lines 842B, Bongo nara or Manga nara were used in this study. The pearl millet

parental line 842B is used extensively in breeding programmes in Africa and India by ICRISAT,

whereas Bongo nara and Manga nara are both breeder lines in the Sudan Savanna of Ghana.

Callus media A and J were tested to identify the media and pearl millet genotype combination

most suitable for pearl millet transformation (Tables 1-3).
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4.4.2 Optimisation of selected bombardment conditions by transient and stable

expression of the uidA gene

High levels of transient uidA expression were obtained following bombardment of cultured IZEs

with pAHC25 (Fig. 1). On average, the number of blue foci obtained 48 hours after

bombardment for genotype 842B ranged from 89-231 per embryo, pre-cultured for 4-11 days on

induction medium A and bombarded at helium pressures ranging from 900-1200 k Pa. When

embryos of genotype 842B were pre-cultured for 6 or 8 days on medium J and bombarded at

700-1100 kPa, the number of blue foci obtained was in the range of 155-179 or 343-355,

respectively (Data not shown).

In a similar way, embryos of genotype Manga nara pre-cultured for 4-7 days on induction

medium A resulted on average in 14-61 blue foci per embryo, 48 hours after bombardment at

900-1000 kPa. Embryos of Manga nara pre-cultured for 7-8 days on medium J, resulted in an

average number of blue foci per embryo of 81-141 at a helium pressure of 900 kPa. The number

of blue foci obtained for genotype Bongo nara pre-cultured for 4-8 days on medium A ranged

from 51-157 per embryo, bombarded at 800-1100 kPa. When IZEs of genotype Bongo nara

were pre-cultured for 4-10 days prior to bombardment at 800-900 kPa on medium A, the number

of blue foci ranged from 28-54 per embryo.

The transient expression results for all three genotypes, 842B, Manga nara and Bongo nara,

indicate that the number of days of embryo pre-culture, as well as the different callus induction

media, influence the number of blue foci per embryo. However, to avoid targeting multiple cell

pre-embryoids in the scutellum of the pre-cultured IZEs (8-14 days), which could result in

chimeric transgenic plants, we focused our transformation efforts mainly on embryos pre-

cultured for 2-8 days prior to bombardment (Tables 1-3).

Evidence of stably transformed callus was obtained when uidA expression was followed over a

period of one month on bialaphos free medium with expression determined 48h, as well as 7,

14, 21 and 28 days, post bombardment. As expected, the number of blue foci per embryo

dropped dramatically from 48 hours to 28 days after bombardment. However, an immature

zygotic embryo of line 842B pre-cultured on medium J for six days before bombardment at 1100

kPa gave rise to a single transgenic somatic embryo 28 days after bombardment (Fig. 2).
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Table 1:

Callus
induction
medium

=

Conditions for bombardment of pearl millet IZEs of genotype 842B on Medium A and J.

#embryos Preculture Helium Selection Bialaphos Putative transgenics
bombarded (days)" pressure initiated selection"

(kPa) . (dayst negative positive
534 2-8 900 1-5 BO.5 -+ B1 148 0
449 2-8 1000 1-5 46 0
122 4-8 1100 1-5 38 0
58 2-4 1200 5 2 0

1163 234 0
209 5-6 900 1-4 B1 -+ B2 38 2
272 5-6 1000 1-4 8 0
77 5-6 1100 1-4 19 0
7 5 1200 2 0 0

538 57 2
28 6 1000 4 B2 -+ B2 0 0
30 6 1100 4 0 0
58 0 0
51 8 900 B1 -+ B1 0 0
58 8 1100 0 0
109 0 0
157 6 900 BO.5 -+ B1 13 0
129 6 1000 7 0
32 6 1100 5 0
65 6 1200 12 0
383 37 0
127 6-7 900 2-4 B1 -+ B2 4 0
94 6-7 1000 2-4 3 0
61 6-7 1100 2-4 0 0
282 7 0
48 8 900 1 B1 -+ B1 0 0
83 5 1000 2 1 0
52 8 1100 1 0 0
22 5 1200 2 0 0
205 1 0
pre-culture period of IZEs before bombardment
bialaphos selection initiated after bombardment, indicated by the number of days
bialaphos (B n mg 1'1) selection during the first 4-6 weeks of culture
number of regenerants screened by application of Basta to sections of leaves, PCR
analysis and southern blot analysis for selected plants
addition of L-proline

A

Total
A

Total
A

A·

J

Total
J

Total
J

Total

Table 2:

=
=
=

=

Callus
induction
media

Conditions for bombardment of pearl millet IZEs of genotypes Manga nara bombarded on various tissue
culture medium.

=

#embryos Preculture Helium Selection Bialaphos Putative
bombarded (days)" pressure initiated (days)" selecton" transqenics''

(kPa) neg pos
119 4-6 900 2 BO.5 -+ B1 44 0
97 4-6 1000 2 16 0
216 60 0
233 6-7 900 1-7 B1 -+ B2 1 0
166 6-7 1000 1-7 4 0
35 7 1100 4 0 0
50 6-7 1200 1 1 0
484 6 0
55 7 900 B1 -+ B2 0 0
20 7 1000 0 0
75 0 0
150 6-7 900 1-4 B1 -+ B2 14 0
194 6-7 1000 1-4 3 0
114 6-7 1100 1-4 0 0
99 6-7 1200 1 8 0
557 25 0

pre-culture period of IZEs before bombardment
bialaphos selection initiated after bombardment, indicated by the number of days
bialaphos (B n mg 1'1) selection during the first 4-6 weeks of culture
number of regenerants screened by application of Basta to sections of leaves or PCR
analysis of selected plants
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Table 3: Conditions for bombardment of pearl millet IZEs of genotypes Bongo nara bombarded on various tissue
culture medium.

Callus #embryos Preculture Helium Selection Bialaphos Putative
induction bombarded (days)" pressure initiated (days)" selection" transqenlcs''
media (kPa) neg pos

A 94 6 900 2 BO.5 -+ B1 4 0
66 6 1000 2 6 0

Total 160 10 0
A 311 4-8 900 2-7 B1 -+ B2 9 0

296 4-8 1000 2-7 3 0
170 5-8 1100 2-6 1 0

Total 777 13 0
A 31 5 900 2 B2 -+ B2 1 0

29 5 1000 2 0 0
Total 60 1 0
J 57 5 900 2-6 B1 -+ B2 0 0

70 5 1000 2-6 2 0
26 5 1100 6 0 0

Total 153 2 0
pre-culture period of IZEs before bombardment
bialaphos selection initiated after bombardment, indicated by the number of days
bialaphos (B n mg rl) selection during the first 4-6 weeks of culture
number of regenerants screened by application of Basta to sections of leaves or PCR
analysis of selected plants

1200
Helium pressure (kPa)

1100 1000 900 800

Figure 1: Transient GUS activity in scutellum eells of IZEs of line 8428, pre-cultured

for 11 days on callus induction medium A prior to bombardment. The embryos were

stained for GUS activity 48h after bombardment.
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Figure 2: A transgenic somatic embryo expressing the uidA (GUS) gene (dark blue embryo,

indicated by arrow) amongst non-transgenic white compact somatic embryos.

4.4.3 Selection of transgenic tissues and regeneration of To plants

A range of pre-culture periods on various tissue culture media, bialaphos selection conditions

and bombardment pressures were applied in attempts to obtain stable transformation for three

different genotypes 8428, Bongo nara and Manga nara (Tables 1-3). A total number of 2738

IZEs of genotype 8428 were bombarded as well as 1332 and 1150 of the Ghanaian genotypes

Manga nara and 80ngo nara, respectively. Putatively transformed callus tissue was identified by

its vigorous growth on bialaphos-containing medium, an indication of the stable integration and

functionality of the bar gene in the pearl millet genome. Non-transformed tissue turned brown

and watery on selection media. 8ialaphos-resistant cells or cell clumps developed embryogenic

calli which matured to form somatic embryos on medium containing 1.5-6 ~M (0.5-2.0 mg r1)
bialaphos and a subsequent step-wise increase to 3-9 ~M (1-3 mg r1) bialaphos (Tables 1-3).

Subsequently, putative transgenic calli were transferred to regeneration and rooting medium

containing 0.3-1.5 ~M (0.1-0.5 mg r1) bialaphos. Regenerated putative transgenic plantlets were

hardened-off in the greenhouse as described in materials and methods and screened for the

presence or the absence of the transgenes.

The successful transformation events of pearl millet genotype 8428 were obtained by the

following protocol: IZEs were pre-cultured for five days on callus induction medium A,

bombarded at 900 kPa, and transferred to selection medium 24 hours after bombardment.

Transgenic tissue was selected on induction medium containing 3 ~M (1 mg r1) bialaphos

(weeks 1-4), followed by 6 ~M (2 mg 1-1) (weeks 5-6). Thereafter, remaining tissue was

transferred to regeneration medium supplemented with 0.5 mg r' (weeks 7-9) followed by 0.1

mg r' bialaphos (weeks 10-15). Subsequently, putative transgenic regenerants were transferred
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to rooting medium supplemented with 0.3!JM (0.1 mg r1) bialaphos for an additional 8-10

weeks. Thereafter the plant was hardened-off to the greenhouse. The total duration in tissue

culture after bombardment on bialaphos selection was therefore approximately five and a half

months.

It is clear from the data presented that a high number of escapees were obtained for genotype

8428 even at bialaphos concentrations of 3-6 !JM (1-2 mg r1). However, the transgenic events

88206.10A and 88206.101 were obtained when a short pre-culture period, five days, proceeded

bombardment and bombarded IZEs were transferred to 3 !JM (1 mg r1) bialaphos 24h after

bombardment. Furthermore, within two weeks the calli were transferred to callus induction

medium containing 6 !JM (2 mg 1-1)bialaphos. Subsequently, the bombardment experiments with

genotypes Bonqo nara and Manga nara were conducted with short pre-culture periods of four to

eight days and bombarded IZEs were transferred to bialaphos containing medium within 1-7

days after bombardment (Tables 2-3).

4.4.4 Analysis of transgenic plants

To date, bombarded IZEs of genotype 8428 cultured on callus induction medium A (1868) or J

(870) gave rise to numerous putative transgenic pearl millet plants. However, only two,

designated as transformation events 88206.10A and 88206.101, of the 455 plants screened

were positive for the bar transgene. UidA gene expression was also present in leaves of these

plants (Fig. 3).

Figure 3: GUS negative, untransformed (left) and GUS positive (stable integration and

expression of the uidA gene) leaf segments of transgenic plant 88206.10A (right).
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Digests of both transformation events BB206.10A and BB206.101 with Sac I, Hind III and Pst I

appear identical in integration pattern of the bar transgene (Fig. 4), which hints that these two

plants represent clones of the same transformation event. However, digestion with restriction

enzyme Eco RI, a restriction enzyme that releases the bar gene, indicates that BB206.10A and

BB206.101 were distinct transformation events. This might be due to a different methylation

status in these transgenic plants. The transformation efficiency is then 0.04% if calculated only

for genotype 842B, and 0.02% if results of Manga nara and Bongo nara are included.

MW 1 2 345 6 7 8 9 10 11 12 13

947

21226

~
5145

3530

2027

1375

564

Figure 4: Southern blot analysis of two transgenic To plants of pearl millet line 842B,

transformation events BB206.10A and BB206.101. Genomic DNA was purified from

plant leaf material, restricted with Sac I, Hind III, Pst I or Eco RI and resolved in a

0.8% agarose gel, transferred to a nylon membrane, then probed with an internal bar

fragment. MW, DIG labelled molecular weight marker III (Roche Biochemicals); lane

1, untransformed pearl millet DNA, line 842B; lanes 2 & 13, represent untransformed

pearl millet spiked with 2 and 10 transgene copies respectively; lanes 3, 1 I-Ig

undigested DNA from event BB206.10A; lanes 4-7, BB206.10A DNA digested with

Sac I, Hind III, Pst I and Eco RI; lane 8,5 I-Igundigested DNA from event BB206.101;

lanes 9-12, BB206.101 DNA digested with Sac I, Hind III, Pst I and Eco RI. The arrow

indicate the size of pAHC25 restricted once with Sac I, which is 9.7 kb.
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4.4.5 Progeny of transformation events

The transgenic plants designated BB206.10A and BB206.1 Olwere used as pollen recipients and

pollinated with untransformed pearl millet line 842B. Transformation event BB206.1 OA produced

only non-trangenic progeny (110 seeds). None of the progeny contained the transgenes of the

primary transformant BB206.10A as determined by application of Basta to leaves, uidA staining

of leaf material and selected plants screened by PCR and southern blot analysis. Transformation

event BB206.101 produced in total 40 seeds. Once more both the uidA (GUS) and bar gene

were absent in the progeny. This indicates that both pearl millet transgenic plants BB206.10A

and BB206.1 Olwere chimeric.

4.5 DISCUSSION

In this study, IZEs were used as explant material for stable integration of marker genes into the

genome of pearl millet. Morphological and histological studies of cultured IZEs of pearl millet

have shown that single subepidermal cells at the periphery of the scutellum in the coleorhizal

end undergo internal segmenting divisions, resulting in discrete groups of richly cytoplasmic cells

(Vasil and Vasil, 1981 & 1982). These cells, which were differentiated, and attained

embryogenic and transformation competence during the early stages of culture, could be

perpetuated by subculture, and gave rise to embryoids and plants. Furthermore, there is

sufficient evidence in the literature (Lu and Vasil, 1985, Woodward, 1989) to show that grass

and cereal somatic embryos in tissue culture either arise directly from single cells, or indirectly

from a proembryonal complex which itself arises from a single cell. Somatic embryos of pearl

millet fit the same pattern (Vasil and Vasil, 1982). The single cell origin of cereal somatic

embryos is essential, since regenerated plants of multicellular origin or tissue culture complex

may result in chimerism.

In the development 0 fat ransformation protocol for p earl millet, genotypes were selected 0 n

their regeneration potential and used in the following order of importance: 842B, Manga nara

and Bongo nara. Scutellum cells of pre-cultured IZEs were bombarded with DNA coated

tungsten particles, accelerated by the PIG. The pre-cultured IZEs were used in all biolistic

experiments, as limited success was achieved with the culture of pearl millet leaf base explants

in our laboratory (Chapter 3). However, the growth of mature donor plants for a regular supply of

IZEs is labor intensive, time and space consuming.

High levels of transient expression were obtained following bombardment of pre-cultured IZEs

using the expression levels of the uidA gene as reporter. In this study, transient expression

studies were only done as a guide in the development of systems for stable pearl millet
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transformation. In order to establish a protocol for stable integration of the transgenes into the

genome of pearl millet, the following parameters were varied 1) tissue culture medium 2) pre-

culture period 3) helium pressures for bombardment 4) number of days post bombardment

before commencement of selection and 5) selection pressures (Tables 1-3).

The low selection pressures are most probably the reason for the numerous escapees obtained

in this study. However, high selection pressures might result in the selection of transgenic plants

with multicopy transgene inserts. This is undesirable, as multicopy complex inserts, abundant

specifically during direct DNA transformation processes such as biolistics, is often a major cause

of gene silencing (lyer et ai., 2000).

Two pearl millet transformation events were obtained for genotype 842B when IZEs were

cultured on medium A and bombarded with 160 ng plasmid DNA per shot. Southern blot

analysis confirmed that the two transgenic plants were clones. Furthermore, a single transgenic

somatic embryo was obtained when IZEs of genotype 842B were cultured and bombarded on

the medium J. However, the uidA assay is lethal and therefore it was not possible to regenerate

a transgenic plant from the single transgenic somatic embryo obtained.

Genetic engineering of pearl millet for the control of diseases such as S. graminicola, causal

agent of downy mildew, will have a major impact on pearl millet production in the developing

world. Therefore, the next goal will be to introduce antifungal genes conferring resistance to S.

graminicola into the genome of the transformable parental pearl millet line 842B.
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Chapter 5

Pearl millet (Pennisetum glaucum [L.] R.Br.) transformation system using the

positive selectable marker gene phosphomannose isomerase

Paper accepted for publication in Plant Cell Reports, 2004

5.1 ABSTRACT

Fertile transgenic pearl millet plants expressing a phosphomannose isomerase (PMI)

transgene under control 0 f the maize u biquitin constitutive promoter were 0 btained int his

study. Proliferating immature zygotic embryos were used as target tissue for bombardment

using a particle inflow gun. Different culture and selection strategies were assessed to

optimise the mannose selection protocol. Stable integration of the manA gene into the

genome of pearl millet was confirmed by peR and southern blot analysis. Stable integration

of the manA transgene into the genome of pearl millet was demonstrated in T1 and T2

progeny of two independent transformation events with no more than 4-10 copies of the

transgene. Similar to previous studies with maize and wheat, the manA was shown to be a

superior selectable marker gene for improving transformation efficiencies when compared to

antibiotic or herbicide selectable marker genes.

5.2 INTRODUCTION

Pearl millet (P. glaucum formerly P. americanum) is a staple food for the world's poorest and

most food-insecure people in Africa and India. It is grown largely for its ability to produce

grain under hot, dry conditions on infertile soils of low water-holding capacity, where other

crops generally fail. Thus, it is produced mainly in outlying areas peripheral to the major

production and population centres of the developing world and accounts for approximately 15

million tons. The development of a reliable transformation protocol for pearl millet will form

the basis for future genetic enhancement of this crop by complimenting classical breeding

programmes for the benefit of India and sub-Saharan Africa.

Procedures for pearl millet transformation based on the use of the helium-driven PDS-

1000/He or the particle inflow gun (PIG) using the bar herbicide resistant gene, or

hygromycin phosphotransferase (hph) as selectable marker genes and/or uidA (GUS) as

reporter gene in transgenic pearl millet have been published (Girgi et al. 2002; Goldman et

al. 2003; Lambé et al. 1995 and 1999). Apart from the work presented by Goldman and co-

workers (2003), targeting inflorescence derived embryogenic tissue, pearl millet

transformation is still limited by relatively low and erratic stable transformation efficiencies.
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Furthermore, inadequate knowledge of antibiotic or herbicide resistant genes' impact on the

environment (gene transfer to the wild relatives especially for pearl millet) and on human

health, especially in food crops, has caused widespread public concern (Wang et al., 2000).

It is well known, for genetic engineering of plants, that only a minor fraction of the treated

cells become transgenic while the majority of the cells remain untransformed and need to be

eliminated by selection (Joersbo and Okkels 1996). During negative selection, the majority of

the cells in the cultured tissue die. These dying cells may release toxic substances (such as

phenolics), which in turn may impair regeneration of the transformed cells. In addition, dying

cells may form a barrier between the medium and the transgenic cells preventing or slowing

uptake of essential nutrients (Joersbo and Okkels 1996). The selection system based on

herbicide (Girgi et al. 2002) or antibiotics resistance (Zhang and Puonti-Kaerlas 2000) either

allows regeneration of escapes, even at high selection pressure, or are deleterious to the

regeneration process. In contrast, the mannose positive selection system favours

regeneration and growth of the transgenic cells while the non-transgenic cells are starved but

not killed. Therefore, untransformed tissue is separated from transgenic tissue by

carbohydrate starvation of the untransformed cells.

The mannose selection system employs the phosphomannose isomerase (PMI) expressing

gene (manA) as selectable marker gene and mannose, converted to mannose-6-phosphate

by endogenous hexokinase, as selective agent (Joersbo et al. 1999). Transgenic PMI-

expressing cells acquire the ability to convert mannose-6-phosphate to fructose-6-

phosphate, while the non-transgenic cells accumulate mannose-6-phosphate.

Phosphorylation of mannose triggers a signalling cascade resulting in the repression of

genes needed for germination (Pego et al. 1999) and energy depletion during seed

germination (Wang et al., 2000). Mannose, readily taken up by the roots, inhibits the

germination of seeds as a consequence of mannose's phosphorylation and not by the toxicity

of the compound per se (Joersbo et al. 1998; Negrotto et al. 2000). Subsequently, the

accumulation of mannose-6-phosphate inhibits phosphoglucose isomerase, causing a block

in glycolysis, and inhibits respiration by competitive inhibition of phosphoglucose isomerase

(Goldsworthy and Street 1 965). P ego and co-workers (1999) showed that t he absence 0 f

germination of Arabidopsis seed in the presence of mannose was not due to ATP or

phosphate depletion. These authors reported that mannoheptulose, a hexokinase specific

inhibitor, restores germination of these seeds and therefore concluded that mannose-

mediated repression of germination is the result of a hexokinase mediated carbohydrate-

induced gene regulation.
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The structural gene (manA) from Escherichia coli was previously used to successfully

produce transgenic maize (Negrotto et al. 2000; Wang et al. 2000), cassava (Zhang and

Puonti-Kaerlas 2000) and sugarbeet (Joersbo et al. 1998 and 1999). The manA gene was

superior to antibiotic or herbicide (pat or bar) selectable marker genes for plant

transformation in maize, wheat and sugar beet (Joersbo et al. 1998; Reed et al. 2001; Wright

et al. 2001). Furthermore, a preliminary risk assessment done by Reed and co-workers

(2001) indicated that the PMI protein in transgenic maize was 1) readily digested in simulated

mammalian gastric and intestinal fluids, 2) there was no detectable changes in glycoprotein

profiles and 3) no statistically significant differences were obtained in yield and nutritional

composition compared to untransformed maize. Furthermore, the database search revealed

no significant homology 0 ft he E. coli manA gene product toa ny known toxin 0 r a lIergen

(Reed et al. 2001).

The aim of this study was to use the positive mannose selectable marker gene technology to

1) limit the number of escapes, 2) improve the transformation efficiency and 3) avoid using

antibiotic or herbicide resistant genes as selectable marker genes in pearl millet

transformation.

5.3 MATERIALS AND METHODS

5.3.1 Seed material

Pearl millet seed, genotype 8428, was kindly provided by ICRISAT, Zimbabwe. Seedlings

were planted in a soil mix consisting of red soil, rough sand and compost (1: 1:1), and were

watered three times per week with a soluble fertiliser (Hortichem N:P:K at 3:1:5, Ocean

Agriculture South Africa) until flowering. Covering the flowers with brown paper bags

prevented cross-poll! nation.

5.3.2 Excision of IZEs

Greenhouse-grown florets of pearl millet containing IZEs (10-14 days post-pollination) were

soaked in 70% (v/v) ethanol for one minute and sterilised for 15 minutes in a 2.5% (v/v)

sodium hypochlorite solution containing 0.1% (v/v) of the surfactant Tween 20, before being

thoroughly rinsed with sterile distilled water. IZEs (0.5 - 1 mm in size) were aseptically

excised from the florets using a dissecting microscope and placed with their axes in contact

with the callus induction medium. All tissue culture was performed under aseptic conditions.

5.3.3 Tissue culturing of IZEs

Callus induction medium A is described by Pinard and Chandrapalaiah (1991), and contains

MS salts (Murashige and Skoog 1962),9 !JM 2,4 D, 88 mM sucrose as carbon source and 8g

r' agar as solidifier. Cultures initiated on medium A induction medium were further cultured
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on regeneration medium as described by Pinard and Chandrapalaiah (1991), containing the

hormones IAA (1 !JM) and kinetin (2 !JM), but the medium was modified by the addition 60

!JM AgN03. These cultures were subsequently transferred to rooting medium, which was

identical to the regeneration medium, except that both hormones and silver nitrate were

omitted.

Callus induction medium, designated medium J in this study, is described by Gless and co-

workers (1998) and contains L3 salts and vitamins as described by Jahne et al. (1991), 11

!JM 2,4-0, 83 mM maltose as a carbon source, 4 g r1 Gelrite as solidifier and modified by

supplementing the medium with 2.3 g r' (20 mM) L-Proline. L-Proline and 2,4-0 were omitted

from regeneration and rooting medium. Cultures initiated on medium J, were matured on

regeneration medium containing double the amount of carbohydrates for a period of two

weeks. The matured cultures were then regenerated and rooted on regeneration and rooting

medium as described above.

Cultures on callus induction and regeneration media were incubated at 24-25°C, under low-

light conditions (1.8 urnolm? s"), whereas regenerating shoots (~1 cm) were incubated under

dim light (18!Jmol m-2s-1).

5.3.4 Transfer regime

Immature zygotic embryo derived calli were transferred to fresh medium every two weeks.

White compact calli were produced within 4 weeks on callus induction medium A, but only

after 6 weeks on medium J: callus induction (4 weeks) and maturation (2 weeks) medium.

After 4 or 6 weeks on A or J based medium, respectively, calli were transferred to the

appropriate regeneration media as described above, and subcultured every three weeks to

fresh media. Plantlets of >1 cm, produced on medium A, was transferred to rooting medium.

Rooted plantlets grown to 8-10 cm were hardened-off to a mist bed for approximately two

weeks and then transferred to pots in the greenhouse. Rooted plantlets of >1 cm, produced

on medium J, remained on the regeneration medium described for this regime until they were

hardened-off.

5.3.5 Plasmids

The construct pNOV3604 was obtained from Syngenta, and the ubiquitin promoter inserted

upstream of the manA gene as a Hind III/Bam HI i nsert (Fig. 1A). Plasmid pNOV3604ubi

DNA was extracted from overnight E. coli cultures using a Qiagen (Southern Cross

Biotechnologies) maxiprep kit according to the supplier's recommendation.
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5.3.6 Microprojectile bombardment

Pre-cultured IZEs were placed in the middle (0 - 1 cm diameter) of a 9 cm petri dish, containing

A or J induction media supplemented with approximately 25% (mIv) increased solidifier, plus 0.2

MD-Sorbitol and 0.2 MD-Mannitol described by Vain and co-workers (1993). A bombardment

mixture was prepared by precipitating plasmid DNA on tungsten particles with CaCI2 and

spermidine free base as described by Q'Kennedy and co-workers (1998). All experiments were

conducted with the particle inflow gun (PIG). Sixteen hours after bombardment, unless otherwise

stated, bombarded tissue was transferred to the respective media omitting D-Sorbitol and D-

Mannitol. DNA delivery parameters were as follows: 900-1000 kPa, 0.16 !Jg DNA per shot, 17

cm from the target tissue and a 500 urn nylon mesh screen placed 8 cm above the target. A

vacuum of approximately -87 kPa was applied and the bombardment mix particles on the filter

syringe were discharged when the helium was released following activation of the solenoid. The

timer duration was 50 milliseconds.

5.3.7 Selection and regeneration of transformants

Selection for manA containing and expressing pearl millet tissue was initiated 2-7 days after

bombardment by placing the cultured IZE on selection medium. Selection medium containing

maltose (medium J) or sucrose (medium A) supplemented with mannose is described under

results and discussion and indicated in tables 1-2 for each individual experiment. The

mannose content in the medium was kept constant throughout the selection period or stepwise

increased ranging from 30-83 !JM (5-15 g 1-1) whilst lowering the content of sucrose or maltose.

After 4-6 weeks on selection medium, cultured embryos that produced white compact calli,

presumably somatic embryos, were transferred to regeneration selection medium.

Regenerating putative transgenic plants were subcultured at 2-3 weeks intervals until they

reached 8-10 cm in height. These were then hardened-off as described by Q'Kennedy and co-

workers (1998).

5.3.8 Germination of progeny on mannose containing medium

Progeny of transgenic plants were germinated on 0.5MS medium containing half strength MS

salts, 4.5 mM (1 g r1) sucrose, 83 mM (15 g r') mannose and solidified by 8 g l'aqar.

5.3.9 DNA extraction

Genomic DNA was extracted from putative transgenic pearl millet leaf material using the mini

extraction procedure of Dellaporta and co-workers (1983).
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5.3.10 PCR analysis

Primers manA (PMI fwd: 5'-CGT TGA CTG AAC TIT ATG GTA TGG-3' and PMI as: CAC

TCT GCT GGC TAA TGG TG-3') specific primers were used to amplify a 965 Kb fragment,

from genomic DNA preparations of putative transgenic pearl millet plantlets.

5.3.11 Southern blot analysis

Five micrograms of pearl millet genomic DNA digested with Sac I was separated on an

agarose gel and analysed by Southern blotting as described by O'Kennedy et al. (1998). The

manA gene of pNOV3604ubi was labeled with digoxigenin (DIG) by the peR DIG probe

synthesis kit as described by the supplier (Roche Diagnostics South Africa).

5.4 RESULTS AND DISCUSSION

In this study, the mannose containing medium was supplemented with sucrose, glucose or

maltose, in order to alleviate the toxic effect of mannose-6-phosphate. A dose-response

curve was designed for pearl millet, testing increasing mannose content and decreasing

maltose content (Table 1). The results showed that mannose inhibited callus production in a

dose-dependent manner up to 110 mM (20 g r1) where growth was 95% suppressed, even

when supplemented with 6 mM (2 g r') maltose (Table 1). In previous studies, it was shown

that the indirect toxic effect of mannose caused by the conversion to mannose-6-phosphate

by endogenous hexokinase increases with decreasing sucrose concentration in the medium

indicating an interaction between mannose and sucrose (Joersbo et aI., 1998). The addition

of sucrose, therefore, can alleviate the effect of mannose on growth and germination. Pego

and co-workers (1999) reported that the addition of metabolisabie sugars reversed the

mannose-6-phosphate mediated inhibition of germination of Arabidopsis seed. Joersbo and

co-workers (1999) reported that the phytotoxic effect of mannose-6-phosphate was strongly

dependent on the nature and concentration of the added saccharides. In particular, glucose

interacts strongly with the mannose-6-phosphate caused phytotoxic effect (Goldsworthy and

Street 1965; Joersbo et al. 1999). Glucose was found to be 4-7 fold more potent than the

other saccharides (sucrose, maltose and fructose) tested and was able to eliminate the

mannose-6-phosphate toxicity at concentrations 15-25 fold higher than mannose (Joersbo et

al. 1999).

In this study, various parameters were applied to optimise pearl millet transformation using

the manA transgene: 1) tissue culture media A or 'J, 2) preculture of IZEs of 4-10 days, 3)

bombardment at a helium pressure of 900 or 1000 kPa, 4) selection initiated 2-7 days after

bombardment, 5) single (160 ng per s hot) or double bombardment (320 ng plasmid D NA

introduced in total) and 6) selection pressure ranging from 44 mM (15 g r1) sucrose or

maltose supplemented with 30 mM (5 g r1) mannose to 110 !JM (20 mg r1) glucose or

68

Stellenbosch University http://scholar.sun.ac.za



maltose supplemented with 83 mM (15 g r1) mannose, for media regimes A or J, respectively

(Table 2). However, the selection pressure was subsequently set for both media A and J on

83!JM (15 g r') mannose, the osmotic equivalent of 88 !JM (30 g r1) sucrose, supplemented

with 2 g r1 sucrose/maltose (60/6 mM) or 20 mg 1-1 glucose/maltose (110/56 !JM), for medium

A/J respectively.

Table 1: Response of IZEs cultured on mannose-containing medium J, supplemented with

maltose. Twelve embryos per plate were cultured, three replicates per treatment.

Mannose Maltose Average fresh weight % inhibition
r' r'
0 30 3.65 ± 0.74 0

2.5 20 2.41 ± 0.38 34

2.5 12 2.26 ± 0.49 38

5 10 1.75 ±0.26 52

5 5 1.10 ± 0.15 70

10 2 0.57 ± 0.20 84

20 2 0.17 ± 0.02 95

Transgenic selection was carried out on mannose for the full period as indicated in Table 2,

until regenerated plantlets were hardened-off to the greenhouse. Thirteen transformation

experiments using the full pNOV3604ubi construct containing the manA gene were

performed (Table 2). Several combinations of mannose and sucrose or mannose and

maltose in tissue culture media regime A and J, respectively, were assessed using

predominantly mannose. A constant high selection pressure of mannose was a pplied for

experiments 1 -2, 7 -8 and 13, whereas a stepwise increase 0 f the selection pressure was

applied for experiments 3-6 and 9-12 (Table 2), until pearl millet plantlets were hardened-off

to the greenhouse. Callus tissue, within the first two months, encompassing four transfers,

failed to proliferate further and became watery and browning when cultured on high selection

pressure of 2/15 (2 g 1-1 sucrose or maltose and 15 g 1-1 mannose) or 0.02/15 (20 mg 1-1

glucose or maltose and 15 g r1 mannose). Nevertheless, seven out of the eight independent

transformation events arise on the high selection pressure (Table 2). The total period in

tissue culture, from the excision of IZE until plantlets are hardened-off to the greenhouse,

was 12 weeks.
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Table 2: Conditions for particle bombardment of pearl millet IZEs (genotype 8429). A sorbitol/mannitol osmoticum treatment or 120 g 1'1 sucrose

(medium A) or maltose (medium J) osmotic treatment was used (sucrose or maltose osmotic treatment in italies) before bombardment with

plasmid DNA of pNOV3604ubi (160 ng per shot). Parameters thatlead to the production of stable transgenic plants are underlined.

Exp # Preculture Helium Osmoticum Selection" Mannose selection histoiY' #of Transgenic To
number" embryos (days)" pressure treatment (h) putative plants designated

{kPa) +osm/-osm regenerants
27 6 or 7 900 16/56 3 ind 15/5 -+ reg 15/5 0
34 ind 5/15 -+ reg 5/15 0

2 48 60rZ 1000 16/56 3 Ind 15/5 -+ reg 15/5 0
38 ind 5/15 -+ reg 5/15 0
36 ind 2/15 -+ reg 2/15 1 Man 2.24

3 80 40r5 900 16/56 3 Ind 15/5 -+ reg 1/15 0

4 25 10 900 16/32 2 Ind 15/5-+ reg 15/5 -+ reg 1/15 0
5 27 6 900 16/56 3 Ind 5/15 -+ reg 5/15 -+ reg 1/15 0

27 1000 0
6 40 7 1000 16/152 7 0

40 168/0 Init 0.02/15 -+ reg 0/15 0
40 168/0 0
20 5 16/152 0
20 168/0 0
20 168/0 0
522 1

7 19 60r Z 900 16/56 3 ind 15/5 -+ reg 40/10 -+ reg 15/5 0
58 ind 2-5/15 -+ reg 4/20 -+ reg 2-5/15 1 Man 1.31

8 44 60r7 1000 16/56 3 Ind 15/5 -+ reg 40/10 -+ reg 15/5 0
49 Ind 5/15 -+ reg 20/20 -+ reg 5/15 0
44 Ind 2/15 -+ reg 4/20 -+ reg 2/15 0

9 96 40r§ 900 16/56 3 Ind 15/5 -+ reg 40/10 -+ reg 1/15 1 Man 4.3

10 68 10 900 16/32 2 15/5 -+ 40/10 -+ 1/15 0
11 31 6 900 16/56 3 Ind 5/15 -+ reg 5/25 -+ reg 5/15 -+ 2 Man 7.1 J1 & J3

36 1000 reg 1/15 3 Man 7.1 KK1, 2, 4
6 Man 7.1 M1-4, 01

12 60 7 1000 16/152 7 0
40 168/0 Ind 0.02115 -+ reg 0.02130 -+ reg 1
40 168/0 0/15 0
20 5 16/152 0
20 168/0 0
20 168/0 0

13 58' 7 900 120/48 7 0
88 120/48 Ind 0.02/15 --+ reg 0.02/30 -+ reg 2 Man 11.6A& 9
57 16/152 0.02115 3 Man 11.7 A-C
57 168/0 0
45 120/48 1
26 5 16/152 1
976 22 17

= Experiment (Exp) number of cultures on medium A (experiments 1-6) or medium J (experiments 7-13).

= Pre-culture period of IZEs before bombardment

= Mannose selection initiated after bombardment, indicated by the number of days

= Sucrose/mannose (n mg 1'1) (medium A) or maltose/mannose (n mg 1'1) (medium J) selection during

callus

induction (ind, month 1) and regeneration (reg, months 2-6); glucose was used instead of sucrose for low

selection (0.02 mg 1'1) for medium A

= Double bombardment, 160 ng per shot, therefore 320 ng introduced in total
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Primary transgenic plantlets were identified by peR and subsequently Southern blot analysis

of primary transformants and their progeny (Figures 1 and 2). Genomic DNA was digested

with Sac I a unique restriction site in the construct. Eighteen of t he twenty-three putative

transgenic plants contained the transgene manA (Table 2). Escapees were therefore limited

to approximately twenty percent, which resulted in a major reduction in molecular analysis of

untransformed plants. Only eight of the eighteen transformation events had a unique

integration pattern of the transgene manA (Figures 1 and 2). Although occasionally high copy

number integration were obtained (Fig 1), the transgenic plants producing T1 and T2 progeny

had a low copy number integration of the manA transgene (utmost 4-10 copies in tandem,

Fig. 2). Furthermore, the integration pattern was maintained from one generation to the next.

The southern blot of transformation event clones Mann 7.1 KK1 and KK2 clearly showed an

intact band of 6.21 Kb, which corresponded to the linear pNOV3604ubi construct of an

identical size and indicate the intactness of the manA gene (Fig. 2).

The transformation efficiency usinq.the particle inflow gun and the herbicide resistance gene,

bar, was improved from 0.02% on medium regime A (Girgi et al., 2002), to 0.19 and 0.72%

with manA as selectable marker gene on media regime A and J, respectively. However, an

individual experiment gave a frequency of 3% (Table 2, experiment 11). The highest

percentage of transformation efficiency was obtained for experiment eleven, where a

stepwise increase of the selection pressure was applied. This translated to one

transformation event per plate, which contains on average 31-35 pre-cultured IZE per plate.

Eighteen of the 23 manA putative transgenic plants, surviving the mannose selection

pressure were transgenic, as confirmed by southern blot analysis (Table 2). Eight of the

eighteen transgenic plants obtained had a unique integration pattern, whereas the other ten

were clones. Although the transformation efficiency is still low, the mannose positive system

is effective in selecting almost only transgenic tissue and eventually transgenic plants. In

contrast, 455 putative transgenic plants were regenerated on the bialaphos (1-2 mg 1-1

bialaphos, active ingredient of the herbicide Basta") selection system of which only two

stable transgenic plants, clones, contained the bar transgene (Girgi et al. 2002). Therefore,

using the manA selectable marker gene for pearl millet transformation does not only increase

the transformation efficiency (highest ever recorded was 0.28% using the PDS 1000/He

particle gun; Girgi et al., 2002), but also provide an effective selection system, which

eliminates the labour intensive tissue culture selection and molecular analysis of putative

transgenics.
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A

Hind III Bam HI Sac I Asp 718

I I nos ~
Ubi-pro H intron manA pNOV3604

~ 2.02 kb .~1.2 kb .... 0.3kb ...

B
8 9 10 11MW 1 2 3 4 5 6 7

Figure 1: A. Diagram of construct pNOV3604ubi used for pearl millet transformation.

Plasmid pNOV3604ubi (6210 bp) contains the manA selectable marker gene,

under the control of the maize Ubi1 promoter, first exon (Ex) and first intron, and

the nopaline synthase terminator (nos). 8. Southern blot analysis of independent

To transformation events of pearl millet genotype 8428. Genomic DNA was

purified from plant leaf material, restricted with Sac I and resolved in a 0.8%

agarose gel, transferred to a nylon membrane, then probed with an internal

fragment of the manA transgene. MW, DIG labelled molecular weight marker III

(Roche Diagnostics South Africa); lane 1, untransformed pearl millet DNA, line

8428; lanes 2 and 11, represent untransformed pearl millet spiked with 2 and 10

transgene copies respectively; lane 3, Mann 1.31, lane 4, Mann 4.3; lanes 5-7,

clones of Mann 7.1 designated J1, M2 and M4; lane 8, Mann 11.6A; lane 9,

Mann 11.68; lane 10, Mann 11.7C. The arrow indicates the size (6.21 kb) of

pNOV3604ubi linearised with Sac I.
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Figure 2: Southern blot analysis of progeny of transgenic pearl millet genotype 842B: A)

two clones of transformation event designated Mann 7.1 KK1 and KK2 or B)

transformation event designated Mann 2.24. Genomic DNA was purified from

plant leaf material, restricted with Sac I and resolved in a 0.8% agarose gel,

transferred to a nylon membrane, then probed with an internal fragment of the

manA transgene. A) lane 1, Mann 7.1 KK1 To, lane 2-6, individual Mann 7.1 KK1

T1 progeny; lane 7, Mann 7.1 KK2 To ; lanes 8-11, individual Mann 7.1 KK2 T1

progeny. B) Lane 1, untransformed pearl millet DNA, genotype 842B; lane 2,

represents untransformed pearl millet spiked with 2 transgene copies; lane 3,

undigested genomic DNA of Mann 2.24 To, lane 4-6, individual Mann 2.24 T1

progeny; lanes 7-10, individual Mann 2.24 T2 progeny. The arrow indicates the

size (6.21 kb) of pNOV3604ubi linearised with Sac I.

The germination of progeny of transgenic pearl millet seeds on mannose containing medium

provided a rapid and easy screen for elimination of non-transgenic material since Toand T1

plants often produced numerous seeds (Table 3). Although Toplants were often stunted and

produced a limited number of T1 seeds (sometimes only 5 seeds), T1 plants were

phenotypically normal and produced numerous seeds (up to 453 seeds per spike).

Mendelian segregation was determined by germinating some seed from transgenic plants on

media containing 3 mM (1 g r') sucrose and 83 mM (15 g r1) mannose as described in

materials and methods (Table 3). Although stable integration up to the first or second

generation were obtained for transformation events Mann 7.1 KK1 and KK2 and Mann 2.24,

a Mendelian segregation was not obtained for any of the transformation events. The reason
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for the lack of a Mendelian segregation of seed produced by the transgenic pearl millet can

most possibly be contributed to the small population size germinated on mannose selection

medium, as genotype 842B produces on average 1000 seeds per inflorescence.

Table 3: Segregation of the manA gene activity in Tl and T2 progeny of transgenic pearl millet plants

germinating on medium containing 3 mM (1 g 1'1) sucrose and 83 mM (15 g 1'1) mannose as described

in materials and methods. The plants were self-pollinated.

Transformation event Tl germination

+: -

Man 2.24 29: 37

Man 7.1 J1 1 :132

Man 7.1 J3 0:5

Man7.1 M1 4: 54

Man 7.1 M3 0: 48

Man 7.1 M5 2: 91

Man 7.1 KK1 137: 146

Man 7.1 KK2 65: 173

Man 7.1 KK4 0: 707

Man 11.6 B 0: 579

Man 11.7 A 0: 140

Man 11.7 B 2: 105

Man 11.7 C 0: 147

T2germination

+: -

22: 47

50: 403

Finally, in order for manA to be a useful, selection system the protocol should be applicable

to a range of genotypes. It would be interesting to assess the transformability of other pearl

millet genotypes using the manA gene as selectable marker gene.

5.5 CONCLUSION

In this study, an effective transformation system has been established to routinely produce

transgenic pearl millet plants. The protocol provides an efficient transformation system to

introduce into the genome of pearl millet the genes of agricultural interest combined with the

manA selectable marker gene. In addition, particle bombardment of pearl millet gave rise to

transformation events with relatively low copy integration of the transgene manA. Finally, the

mannose selection system has no potential risk to animals, humans or environmental safety.
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Chapter 6

Genetic enhancement of pearl millet (Pennisetum gloucum [L.]

R.BR.) for downy mildew resistance

6.1 ABSTRACT

Sclerospora graminicola, an obligate oomycetous fungal phytopathogen, and the causal

agent of downy mildew in pearl millet plants, is a major constraint in the production of pearl

millet. In this study a hydrolytic enzyme, 13-1,3-glucanase, from the biocontrol fungus

Trichoderma atroviride was introduced into the genome of pearl millet by particle

bombardment. Constructs were prepared containing the gluc78 gene, encoding the 78 kDa

13-1,3-glucanase protein, driven either by a strong constitutive promoter (ubiquitin promoter,

exon and intron) or a wound inducible promoter, the potato proteinase inhibitor ilK gene

promoter (Pin II). The positive selectable marker gene, manA, encoding mannose-6-

phosphate isomerase (phosphomannose isomerase) driven by the ubiquitin promoter, was

used in co-transformation experiments. Transgenic plants were obtained harbouring the

manA selectable marker gene and the antifungal gene gluc78 driven either by the ubiquitin or

pin2 promoter. Progeny of stably transformed plants, harbouring the gluc78 transgene driven

by the pin2 promoter followed by the rice Act1 intron sequences, were subjected to

pathogenicity trials. Transgenic plants of one transformation event reduced fungal

occurrence by 58%. The transgenic plants conferring decreased susceptibility to S.

graminicola had high levels of the glucanase transcript and even higher in infected

transgenic plants.

6.2 INTRODUCTION

T. atroviride is a well-characterised biocontrol soil-borne filamentous fungus, capable of

parasitising several plant pathogenic fungi (Ait-Lahsen et aI., 2001; Emani et aI., 2003). T.

atroviride is therefore a potential source of powerful resistance genes against fungal induced

plant diseases. Secretion of lytic enzymes, mainly glucanases and chitinases, is considered

the most crucial step of the mycoparasitic process (Cohen-Kupiec et aI., 1999). The lytic

enzymes degrade the cell walls of the pathogenic fungi, enabling Trichoderma to utilize both

their cell walls and cellular contents for nutritional purposes.

It is well documented that acidic and basic plant 13-1,3-glucanases are associated with fungal

infection (Gheong et al. 2000; Ji et al. 2000; Jung and Hwang, 2000). According to Kini et al.

(2000a) there is an induction of 13-1,3-glucanase in seedlings of pearl millet in response to

infection by S. graminicola. High levels of a 30 kDa 13-1,3-glucanase i s present in downy

mildew resistant pearl millet cultivars and absent in susceptible cultivars (Kini et aI., 2000b).
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These studies indicate that r3-1,3-glucanases play an important role in the defence

mechanism of pearl millet plants against S. graminicola. Transgenic plants expressing r3-1,3-

glucanases show decreased susceptibility against oomycetes such as Phytophthora e.g.

transgenic potato plants expressing a soybean r3-1,3-endoglucanase gene, exhibited

increased resistance to Phytophthora iniesten« (Borkowska et aI., 1998).

Lorito and co-workers (Lorito et aI., 1998) introduced an antifungal endochitinase gene from

T. atroviride into the genome of tobacco and potato plants and this resulted in broad

spectrum resistance against soil-borne and foliar pathogens. The high level and broad

spectrum of resistance obtained against these pathogens with a single constitutively

expressed endochitinase gene from T. atroviride (chit42) overcome the limited efficacy of

transgenic expression in plants of chitinase genes from plants and bacteria (Lorito et aI.,

1998). Furthermore, a 78 kDa r3-1,3-glucanase (EC 3.2.1.58) from T. atroviride exhibits

antifungal activity (ED5o of 35-75 IJg ml") against the oomycetous pathogen Phytophthora,

also when applied in combination with microbial toxins and chemical fungicides (Fogliano et

al., 2002). Therefore, the aim of this study was to introduce the gene, designated gluc78,

encoding the 78 kDa r3-1,3-glucanase enzyme from T. atroviride into the genome of pearl

millet to improve resistance against the oomycetous phytopathogen S. graminicola. Since the

gene originates from T. atroviride and not from plant or bacteria, it is anticipated that stable

integration and expression of this single glucanse gene from T. atroviride in pearl millet,

could significantly contribute to the improvement of resistance against downy mildew.

The potato proteinase inhibitor II gene (pin2) family is probably the best-studied system of

systemic gene activation in plant defence response (Xu et aI., 1993). Xu and co-workers

(1993) showed that the expression of the potato proteinase inhibitor II gene (pin2) promoter,

fused with the uidA (Gus) gene, displays a systemic wound response in the

monocotyledonous plant rice, and even higher expression levels (6 fold) was obtained

incorporating the intron of the rice actin 1 gene (Act1) into the 5'-untranslated region of the

pin2-Gus construct. In addition, wound induced Gus mRNA levels in transgenic rice plants

transformed with the pin2-Gus construct was much lower than that in transgenic plants

transformed with the pin2-Act1-intron-Gus fusion construct. In directly wounded leaves, GUS

activity was detected in whole leaf tissues including blades and leaf sheaths with the highest

intensity of GUS staining in the leaf vascular tissue, mainly in the phloem and vascular

bundles. Roots that were directly wounded induced Gus gene expression in the whole root,

whereas roots from leaf-wounded plants displayed, like unwounded roots, activity in the root

tip only. The authors concluded that the wound-inducible pin2 promoter in combination with

the rice Act1 intron 1 might be used as an efficient regulator for foreign gene expression in

transgenic monocotyledonous plants. Furthermore, the expression of the pin2-Act1-intron-
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Gus fusion gene in transgenic rice plants can be systemically induced by both methyl

jasmonate (MJ) and the phytohormone abscisic acid (ABA), but not to the levels obtained

with direct wounding (Xu et al., 1993). Proteinase inhibitors are common components of

plant-derived food for humans and animals, and they are easily inactivated by cooking, and

therefore the introduction of the potato proteinase inhibitor gene (pin2) into new host crops

can be regarded as a safe strategy for insect and pathogen control from the food-safety

standpoint (Duan et al., 1996). In addition, transgenic rice plants harbouring an introduced

potato proteinase inhibitor II gene, driven by the pin2 promoter plus rice actin intron insert,

conferred resistance to the rice pink stem borer. It is therefore anticipated that the pin2

promoter would be safe in the food crop pearl millet and followed by the rice Act1 intron

sequence (pPAgluc78), be effective in driving selected genes for fungal resistance in

transgenic monocotyledonous pearl millet.

The use of heterologous leader sequences, to increase expression of engineered genes or

cDNAs without changing the antigenic or biological properties of the encoded protein, might

be an advantage. Eukaryotic messenger R NAs a re translated with unequal efficiencies in

vivo and in vitro and the molecular basis of this phenomenon is not understood (Jobling and

Gehrke, 1987). Jobling and Gehrke (1987) used the untranslated leader from the coat protein

RNA of alfalfa mosaic virus (AMV RNA4), a well-translated, highly competitive RNA, to

replace the leader sequence of barley alpha-amylase (B alpha A) and human interleukin 1

beta (IL-1 beta) cDNAs. They reported that the RNA 4 leader resulted in as much as a 35-

fold increase in mRNA translation efficiency. These results suggest that the chimaeric AMV-

RNA have either a higher relative affinity or a diminished requirement for a limiting

component(s) or the translational machinery. In addition, Cihlar and Cherrington (1997)

found that both the catalytic subunit and accessory protein of the Human Cytomegalovirus

polymerase, a truncated form of the alfalfa mosaic virus (AMV) RNA 4 leader sequence, was

superior over either the full-length AMV leader sequence or the original HCMV leader

sequence of different lengths. Therefore, in this study, a construct were also prepared

containing the gluc78 gene driven by the pin2 promoter followed by an AMV leader sequence

(pGEMgluc78) to potentially obtain higher expression levels in the monocotyledonous plant.

In this study, pearl millet were co-transformed by constructs containing the gluc78 gene and

the positive selectable marker gene, manA. Transgenic T2 pearl millet of selected

transformation events was tested for disease resistance against S. graminicola.

6.3 MATERIAL AND METHODS

6.3.1 Preparation of vectors containing gluc78 and manA

6.3.1.1 pUBIgluc78
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pAHC25 (Christensen and Quail, 1996) was subjected to restriction with Sma I, purified with

the QIAquick PCR purification kit and the DNA concentration determined. Subsequently, the

uidA (GUS) gene was removed from the restricted pAHC25, by an Eco RI partial digest.

Partial digests reaction mixes were prepared containing 500 ng of DNA per restriction

reaction with 2.5 units Eco RI. The DNA was digested at 37°C for 35 min. The fragments

were separated on an agarose gel and the expected 7559 bp pAHC25 fragment excised and

purified using the QIAquick gel extraction kit. The gluc78 gene/nos terminator fragment was

isolated from pBIN-GLUC as a Nco I klenow blunted (Roche Biochemicals) and Eco RI sticky

end fragment. This gluc78/nos terminator fragment was ligated with the pAHC25 fragment in

a 6:1 ratio. Aliquots of both the fragments were subjected to agarose gel electrophoresis in

order to estimate the amounts of DNA present before ligation. The ligation mix was incubated

at room temperature overnight using the Fast-link DNA ligation kit from Epicentre. The

product was designated pUBIgluc78 (Fig. 1; Appendix A, Fig. 1). The terminator of a gene for

nopaline synthase (nos) was used for all the constructs prepared in this study.

6.3.1.2 pGEMgluc78

The Hind III/Eco RI fragment from pBIN-GLUC containing the Pin II promoter, AMV leader

sequence, gluc78 gene and nos terminator was isolated in a double digest. This fragment

was inserted in the Hind Ili/Eco RI restriction sites of the multiple cloning region of pGEM-

7Zf(-) (Promega). The construct prepared was designated pGEMgluc78 and consisted of

only 6584 bp DNA instead of the 16 000 bp of pBIN-GLUC. This was done to simplify further

vector manipulations (Fig. 1; Appendix A, Fig. 2).

6.3.1.3 pNOV3604ubi

The Hind III/Bam HI ubiquitin promoter, exon and intron fragment from pAHC25 was isolated

in a double digest. This fragment was inserted as sticky ends in the Hind III/Bam HI

restriction sites of the multiple eloning region of pNOV3604 (Syngenta Seeds AG). The

prepared construct was designated pNOV3604ubi and consists of 6210 bp DNA (Fig. 1;

Appendix A, Fig. 3).

6.3.1.4 pPAgluc78

pDX109 (Xu et ai., 1993) contains the Pin II promoter, rice actin intron, uid A (GUS) gene

and pin II terminator region. A fragment containing the Pin II promoter and rice actin intron

was isolated from pDX109. This was done by a Hind III/Sma I double restriction digest,

followed by gel purification and determination of DNA concentration. pGEMgluc78 was

restricted with Nco I, QIAquick gel extraction kit purified, and Klenow treated to blunt.

Subsequently, the restricted plasmid was digested with Hind III to remove the Pin II promoter

and AMV leader sequence. The Pin II promoter and rice actin intron fragment from pDX109
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was then inserted in position by ligating the Hind IIIIHind III sticky ends and the Nco IISma I

blunt ends. The final construct, designated pPAgluc78, contains the Pin II promoter, rice

actin intron, gluc78 gene and nos terminator (Fig. 1; Appendix A, Fig. 4).

6.3.1.5 Confirmation of sequence integrity of expression vectors

The prepared DNA plasm ids were inserted into Escherichia coli (JM83 competent cells,

Promega). Two micro-litres of the ligation reaction and 501J1of competent cells were used in

the transformation reaction. The mix was electroporated at 1.8 kV, 2000 and 25IJF in a

glass cuvette. Luria broth was added to each transformation reaction and the cells were

incubated in a shaking incubator at 37°C for 1 hour. The cells were spread onto Luria agar

plates containing either kanamycin or ampicillin. The plates were incubated at 37°C

overnight. Single colonies were screened by mini-preparation of plasmid DNA from E.coli

transformants using a modification of the Nucleobond kit miniprep method. Plasmid DNA was

digested by selected restriction enzymes to confirm that the vectors and inserts ligated and

that the insert was in the desired orientation.

One to two colonies containing constructs with the expected digestion pattern were used to

prepare a maxi-preparation of plasmid DNA using the Qiagen maxiprep kit (Southern Cross

Biotechnology). This plasmid DNA was restricted with various restriction enzymes

individually and in combinations to verify that the expected fragment sizes were obtained for

the three constructs prepared.

Sequence integrity of the vectors and inserts across ligation regions were verified using

primers ubi S, gluc78 S, gluc78 AS, Pinll Sand Pinll AS to sequence recombinant plasm ids

designated pUBlgluc78, pGEMgluc78, pPAgluc78 and pNOV3604ubi as indicated in figure 1

(Appendix A, Figs 5 and 6). Sequence analysis was performed (ABI PRISM™ dye terminator

cycle sequencing) using the ready reaction kit with AmpliTaq® DNA polymerase (The Perkin

Elmer Corporation, Norwalk, USA), by the Core Sequencing Facility at the University of

Stellenbosch, South Africa.

The following primer sequences were used to analyse the prepared constructs: Gluc78

sense (gluc78 S), 5'-CCGTCAAGCTCTTTGGTA-3'; Gluc78 antisense (gluc78 AS), 5'-

AATAGACGCAAGGCCAGG-3'; Ubiquitin sense (Ubi S), 5'-TATGCTCTAACCTTGAGTA

CCTATC-3'; Ubiquitin antisense (Ubi AS), 5' ACTTAGACATGCAATGCTCATTATC-3'; Pin II

sense (PinIl S), 5'-TGATCACTCGTTTGCTATAA-3'; Pin II antisense (PinIl AS), 5'-

CATTTCTGCTTCTAACACATCATAC-3', manA sense (manA S), 5'- GGGTGAATCAGCG

TTTATTG -3' and manA antisense (manA AS), 5'-CATTTCTGCTTCTAACACATCATAC-3'.
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pUBI-gluc78
0.3 kb

Ubi pro
+- Ubi AS

Ubi pro

2.02 kb 2.02 kb

0.04 kb

pGEMaluc78

Ubi pro pNOV3604ubi

2.02 kb

pPAaluc78

Figure 1: Constructs containing either the selectable marker genes manA or bar, or the antifungal gene gluc78. One and two direction sequence
analysis was done to confirm that sequence integrity was maintained across ligation sites in the constructs during the cloning process
using antisense (AS) primers and sense primers (S).
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6.3.2 Pearl millet plant transformation procedures

6.3.2.1 Tissue culturing of IZEs

Seed material supply and excision of IZEs was described before (Chapter 3). Callus

induction medium A is described by Pinard and Chandrapalaiah (1991), and contains MS

salts (Murashige and Skoog, 1962), 9 !JM 2,4 D, 88 mM sucrose as carbon source and 8g 1"1

agar as solidifier. Cultures, initiated on induction medium A for a period of one month, were

transferred to regeneration medium as described by Pinard and Chandrapalaiah (1991),

containing the hormones IAA (11 !JM) and kinetin (2.3 !JM), but the medium was modified by

the addition 60 mM AgN03. These cultures were subsequently transferred to rooting

medium, which was identical to the regeneration medium, except that both hormones and

AgN03 were omitted.

Callus induction medium J is described by Gless and co-workers (1998) and contains L3

salts and vitamins as described by Jahns et al. (1991), 1 !JM 2,4-D, 83 mM maltose, 4 g 1"1

Gelrite as solidltler and supplemented with 20 mM L-Proline as described (Chapter 3).

Cultures initiated on this medium were matured on callus induction medium, omitting the 2,4-

D, increasing the maltose concentration to 6% and designated maturation medium. The

matured cultures were then regenerated and rooted on the maturation medium with only 3%

maltose, and designated regeneration medium.

Cultures on callus induction and regeneration media were incubated at 24-25°C, under low-

light conditions (1.8 urnol rrr's"), whereas regenerating shoots (~1 cm) were incubated under

dim light (18 urnol m-2s-1).

6.3.2.2 Transfer regime

Immature zygotic embryo derived calli were transferred to fresh medium every two weeks.

White compact calli were produced within 4 weeks on callus induction medium A, but only after

6 weeks on medium J: callus induction (4 weeks) and maturation (2 weeks) medium. After 4 or

6 weeks on A or J based medium, respectively, calli were transferred to the appropriate

regeneration media as described above, and subcultured every three weeks to fresh media.

Rooted plantlets of >1 cm, produced on medium A, were transferred to rooting medium.

Plantlets grown to 8-10 cm, were hardened-off to a mist bed for approximately two weeks and

then transferred to pots in the greenhouse. Rooted plantlets of >1 cm, produced on medium J

remained on the regeneration medium described for this regime until they were hardened-off.

Addition of mannose to tissue culture medium as selection agent, and the corresponding

concentrations of sucrose or maltose or glucose in the medium, is described in 6.3.2.5.
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6.3.2.3 Plasmid maxipreparations

Plasmid DNA for particle bombardment of constructs pUBlgluc78, pGEMgluc78,

pNOV3604ubi and pPAgluc78 were isolated from overnight E. coli cultures using a Qiagen

(Southern Cross Biotechnologies) maxiprep kit according to the supplier's recommendation.

6.3.2.4 Microprojectile bombardment

Pre-cultured IZEs were placed in the middle (0 - 1 cm diameter) of a 9 cm petri dish containing

induction media A or J. The tissue culture medium was supplemented with approximately 25%

increased solidifier, plus 0.2 MD-Sorbitol and 0.2 MD-Mannitol as described by Vain and co-

workers (1993). A bombardment mixture was prepared by precipitating plasmid DNA on

tungsten particles with CaCI2 and spermidine free base as described by O'Kennedy et al (1998).

Experiments were conducted with the particle inflow gun (PIG) as previsouly described for maize

(O'Kennedy et al., 2001) and specifically for pearl millet (Girgi et al., 2001). Bombardment with

the PIG was done at 17 cm from the target tissue and a 500 urn nylon mesh screen placed 8 cm

above the target. A vacuum of approximately -87 kPa was applied and the bombardment mix

particles on the filter syringe were discharged when the helium was released following activation

of the solenoid. The timer duration was 50 milliseconds.

6.3.2.5 Selection and regeneration of transgenic pearl millet

Cells containing and expressing the manA transgene, encoding phosphomannose

isomerase, were selected for by various concentrations of mannose in combination with

maltose, sucrose or glucose (Table 1). Selection was initiated 3-4 days after bombardment

by placing the embryos on callus induction medium containing mainly 2/15 (2 g r' sucrose [6

!JM; medium A] or maltose [6 !JM; medium JJ, and 83 !JM [15 g r1] mannose) or 0.02/15 (20

mg r' glucose or maltose [110 or 56 !JM], respectively, and 15 g r' mannose).

Regenerating putative transgenic plants were subcultured at 2-3 weeks intervals until they

reached 8-10 cm in height. These were then hardened-off to a mist bed and eventually the

greenhouse as described by O'Kennedy et al. (1998).

6.3.3 Molecular analysis of putative transgenic plants

6.3.3.1 Wound inducible expression of the glucanase gene

Plants forty centimetres in height were wounded by making small 1 mm cuts along both

edges of the leaf blade without damaging the middle vein. RNA extractions were made at 0,

2, 6, 18, 24 and 48h after wounding using the Qiagen Rneasy Plant mini kit (Southern Cross
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Table 1: Conditions for bombardment of pearl millet IZE of genotype 842B, co-bombarded with pNOV3604ubi and one of the following full constructs,
pUBlg/uc78, pGEMg/uc78 or pPAg/uc78. Parameters which led to production of transgenic plants are printed in bold.

Exp. # Callus #
induction IZEs
media

Precult. Helium Selection Combinatorial Mannose selection history" DNA introduced Transgnenic Transgenic
(days)" pressure initiated expression (ng per shot) plants plants

(kPa) (+osm/-osmt designated
Init 2/15 -+ reg 2/15

Init 0.02/15 -+ reg 0.02/15
5 or 7 1000 4/0 manA:pGEMgluc Init 2/15 -+ reg 2/28 -+ reg 2/15 64:130

Init 0.02/15 -+ reg 0.02/30 -+ reg 0.02/15
4/0 Init 2/15 -+ reg 2/15 7.7.2 1

6 1000 manA:pPAgluc Init 0.02/15 -+ reg 0.02/15 64:104 7.9 1
Init 2/15 -+ reg 2/28 -+ reg 2/15 7.10 (1-3) 3

1200 Init 0.02/15 -+ reg 0.02/30 -+ reg 0.02/15 2X 64:104 7.10 (A-C) 3

A 164
1

J 147

A 108
2

J 146

3 A
J

120
90 o7

900
1000

Init 0,02/15 -+ reg 0.02/15
Init 0.02/15 -+ reg 0.02/30 -+ reg 0.02/153/0 manA: pGEMgluc 64:109

4 A 276

J 257

5
900
1000
1100
1200

9.1381
9.1382

1
1

7

Init 2/15 -+ reg 2/15
Init 0.02/15 -+ reg 0.02/15

Init 2/15 -+ reg 2/28 -+ reg 2/15
Init 0.02/15 -+ reg 0.02/30 -+ reg 0.02/15

3/0 manA:pU8lgluc 64:118

5 A
J

114
142 o7

900 to
1200

Init 0.02/15 -+ reg 0.02/15
Init 0.02/15 -+ reg 0.02/30 -+ reg 0.02/153/0 manA:pU8lgluc 64:118

A 90
o6

J 120

12.10A(1-3) 3
A 203

7
J 187

7
900
1000
1100
1200

Init 2/15 -+ reg 2/15
Init 0.02/15 -+ reg 0.02/15

Init 2/15 -+ reg 2/28 -+ reg 2/15
Init 0.02/15 -+ reg 0.02/30 -+ reg 0.02/15

manA:pU8lgluc3/0 64:118

6
7

900
1000
1100
1200

In it 2/15 -+ reg 2/15
Init 0.02/15 -+ reg 0.02/15

Init 2/15 -+ reg 2/28 -+ reg 2/15
Init 0.02/15 -+ reg 0.02/30 -+ reg 0.02/15 64:109

manA:pUBlgluc3/0 64:115

manA:pGEMgluc

A 68
o8

J 47

= pre-culture period of IZEs before bombardment
mannose selection initiated after bombardment, indicated by the number of days on mannitol and sorbitol containing osmoticum medium( +osm) and
without osmoticum (-osm)
initiation medium
regeneration medium
2 g r' sucrose for medium A or 2 g r1 maltose for medium J and 15 g r' mannose for both media
0.02 g r' glucose for medium A or 0.02 g r' maltose for medium J and 15 g r' mannose for both media
regeneration medium supplemented with 28 g r' mannose instead of 15 g r1
regeneration medium supplemented with 30 g r' mannose instead of 15 g r1
sucrose/mannose selection during callus induction (month 1) and regeneration (month 2- 6)
maltose/mannose selection during callus induction (month 1), maturation (2 weeks of month 2) and regeneration (month 2.5 - 6)
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Total # of embryos 2279
a
b

Init
reg
2/15
0.02/15
2/28
0.02/30
cA
cJ

6
7

900
1000
1100

Init 2/15 -+ reg 2/15
Init 0.02/15 -+ reg 0.02/15

Init 2/15 -+ reg 2/28 -+ reg 2/15
Init 0.02/15 -+ reg 0.02/30 -+ reg 0.02/15

64:1173/0 manA:pPAgluc

Total number of transgenic plants 13

=

=
=
=
=
=
=
=
=

Stellenbosch University http://scholar.sun.ac.za



Biotechnology). Plant material was harvested and immediately flash frozen in liquid nitrogen

and RNA was isolated directly or material was stored at -80°C until analysis.

6.3.3.2 PCR analysis

The manA specific primers (PMI fwd: 5'-CGT TGA CTG AAC TIT ATG GTA TGG-3' and PMI

as: CAC TCT GCT GGC TAA TGG TG-3') were used to amplify a 965 Kb fragment, from

genomic DNA preparations of putative transgenic pearl millet plantlets. The gluc78 specific

primers (gluc78 fwd: 5'-ATG ATG GGT CTC TCA ACC GTC-3' and gluc78 as: 5'-TAG CAC

CGC CAT TGA GAA TGG-3') were used to amplify a 1100 Kb fragment, from genomic DNA

preparations.

6.3.3.3 Southern blot analysis using the non-radioactive DIG system

Genomic DNA was extracted from putative transgenic pearl millet leaf material using the mini

extraction procedure of Dellaporta et al. (1983). Five micrograms of pearl millet genomic

DNA digested with Sac I was separated on an agarose gel and analysed by Southern

blotting as described by Q'Kennedy et al. (1998). An internal fragment of the manA gene of

pNOV3604ubi and the gluc78 gene of pPAgluc78 were labeled with digoxigenin (DIG) by the

PCR DIG probe synthesis kit as described by the supplier (Roche).

6.3.3.4 Southern and northern blot analysis using 32p radioactive labelling

Total RNA was extracted using the Qiagen RNeasy plant mini kit (Southern Cross

Biotechnology) according to the manufacturer's recommendation. The RNA was separated

on a formaldehyde gel as described in the booklet of the Qiagen RNeasy plant mini kit. The

RNA were transferred to a nylon membrane using 10 X SSC (Sambrook et aI., 1989)

overnight and fixed to the dried membrane for 30 min at 80°C and UV fixing face down for

three minutes.

An internal DNA fragment probe to detect the gluc78 DNA and mRNA was prepared using

redivue™ 32p_dCTP labelling and the mega prime™ labelling kit (RPN1605) (Amersham

Biosciences). Unincorporated nucleotides were removed by the Qiagen PCR clean up kit and

denatured before addition to the blots. Prehybridisation was done for 4 hours in

prehybridisation solution (100 mg r' denatured Salmon sperm DNA, 50 mM Tris pH 8.0, 10

mM EDTA, 5 X SSC, 20 mg each of BSA, Ficoll 400 and PVPP, 0.2% SOS [mIv]) and

hybridised overnight in hybridisation solution (100 mg r' denatured Salmon sperm DNA, 500

g r' [mIv] dextran sulfate, 50 mM Tris pH 8.0,10 mM EDTA, 5 X SSC, 20 mg r' each of BSA,

Ficoll400 and PVPP, 0.2% SOS [mIv]) both at 65°C in a Techne Hybridiser HB-1D. Washes

were done as follows: 5 min at room temperature (2 X SSC, 0.5% SDS [mIv]), another 5 min

at room temperature (0.1 X SSC, 0.1% SOS) and 10-15 min at 65°C (0.1 X SSC, 0.1% SOS).
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Blots were exposed to X-ray film (Hyperfilm™ MP, Amersham Pharmacia Biotech) in the

presence of intensifier screens at -80°C for 3-5 days.

6.3.3.5 Western blot analysis

Protein extractions were done according to Kini and co-workers (2000a) with the addition of

PVPP and the protease inhibitor cocktail (Sigma P9599) for protection against protease

activity. In short, leaf material were homogenised with a mortar and pestle in extraction buffer

(50 mM sodium acetate buffer pH 5.2, PVPP and protease inhibitor cocktail according to the

manufacturers recommendation. The extracts were centrifuged at 4DCfor 10 minutes at 12

000 rpm. The supernatant was frozen at -20°C until SOS-PAGE analysis. The protein

concentration in the resulting soluble protein extract of each sample was determined by the

BioRad protein dye reagent with bovine serum albumin as the standard. For each sample, 2

IJga liquots of protein were separated by polyacrylamide gel electrophoresis (PAGE) 0 na

12% separating and 6% stacking gel according to the method of laemmli (1970). Proteins

were transferred to MSI PVDF-plus transfer membranes (0.45 micron) by means of a Hoefer

TE22 blot system. Western blots were probed with antiserum (1:750) to the glucanase

protein using the ECl RPN2108 western blotting kit (Amersham BioSciences). For

biotinylated molecular marker detection (ECl RPN2107) streptavidin-horseradish peroxidase

conjugate (ECl RPN1231) was used.

6.3.4 Pathogenicity trials

Transgenic pearl millet seedlings containing the antifungal gene, gluc78, from the biocontrol

fungus T. atroviride (Donzelli et aI., 2001), and selectable marker gene, manA (Syngenta

Crop Protection AG), were identified by germination on mannose containing medium. The

transgenic germinating plantlets were transplanted to pots at the greenhouse facility at Pen-

y-Ffridd Experimental Station, Bangor, to be challenged by the pathogen S. graminicola.

S. graminicola isolates from Niger, Senegal and Mali were maintained in the greenhouse on

the highly susceptible pearl millet host-genotype 7042. The following numbers of plants were

screened: 24 seedlings (non-transgenic, non-infected control 842B plants), 41 (non-

transgenic, infected control 842B plants), 34 seedlings (transgenic BB gluc/mann 7.10.B,

infected), five seedlings (transgenic BB gluc/mann 7.10.1, infected) and 57 seedlings

(transgenic BB glue/mann 7.10. 2, infected). All the transgenic plants are from the parental

line 842B. The seedlings were planted in low-nutrient peat and sharp sand compost

(Chempak Seed Base, Chempak Products, UK: NPK 25-39-30 mg 1-1). Pots were placed on

flood benching in a controlled environment glasshouse providing a 16-h day length with light

intensity between 500 and 1200 IJmol Em-2 s' a nd a temperature 0 f 25-30°C from 06:00-

18:00 and 20°C from 18:00-06:00. The benches were flooded daily with Vitax Vitafeed 214
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(Owen Street, Coalville, Leicester LE67 3DE, UK) to an approximate depth of 1 cm for

30 min and then drained. When the seedlings were at the coleoptile to one-leaf stage the

inoculum was prepared. Leaves from 2-3 month old infected plants were wiped clean of old

sporangia using moist laboratory roll (Kimwipes Roll, Kimberly Clark, Kent, UK) and

incubated in sealed plastic boxes lined with moist laboratory roll for 6-8h at 20'C in the dark.

The resulting sporangia were collected into chilled distilled water (below 2'C) and adjusted to

an appropriate concentration after assessing the concentration using a haemocytometer.

Each pot of seedlings was sprayed with approximately 4 ml of inoculum using a compressed-

air cylinder-fed sprayer (Kestrel Eqpt. Ltd., London). The inoculum was maintained on ice

throughout inoculation to prevent zoospore release and so ensure a uniform sporangial

concentration over time (Jones et al., 2001). The pots were covered with a polythene sheet

to maintain a high level of humidity and incubated in the glasshouse at 20'C for 15h.

Protein and RNA extractions were prepared of selected non-transgenic control plants,

infected and uninfected transgenic plants to determine expression levels of the gluc78

transgene as described above.

6.4 RESULTS AND DISCUSSION

6.4.1 Preparation of constructs

Three constructs containing the r3-1,3-glucanase from T. atroviride (gluc78) and designated

pUBlgluc78, pGEMgluc78 and pPAgluc78, were prepared (Fig. 1; Appendix A, Figs 1-4) .

Constructs pGEMgluc78 and pPAgluc78 were ligated upstream of the wound inducible

promoter, the potato proteinase inhibitor ilK gene promoter. Theoretically, the protein,

encoded by the gluc78 gene in these constructs, should be expressed only in response to

pathogen attack and minimise interference with the functions important for maintaining the

agronomic qualities of the engineered crop. Furthermore, the ubiquitin constitutive promoter,

exon and intron f ragment was ligated i n f rant of the manA gene t 0 complete the minimal

transgene cassette that requires promoter, gene and terminator sequences. This construct

was designated pNOV3604ubi. Various restriction enzyme digestions confirmed the ligation

of inserts and the correct orientation of inserts in all the constructs. Furthermore, two

direction sequence analysis was done to confirm that sequence integrity was maintained

across ligation sites in the constructs during the cloning process (Fig. 1; Appendix A, Figs 5

and 6).

Sequence information for the ubiquitin intron terminal end and gluc78 start region of

construct pUBIgluc78 was obtained using the ubi sense (S) and the gluc78 antisense (AS)

primers (Fig. 1). The Sma I blunt end ligated with the Nco I Klenow blunted site was present

in construct pUBlgluc78. The Nco I site includes the ATG start codon of gluc78 (Appendix A,
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Fig. SA). The ATG indicated in the ubiquitin intron region would be spliced out and therefore

the gluc78 ATG start codon would act as the start codon during translation. Furthermore,

construct pU81gluc78 was sequenced with the gluc78 S primer, which provided sequence

information for the gluc78 terminal end, nos terminator and the start of the ubiquitin promoter

driving the bar gene in the construct (Appendix A, Fig. SC). The Eco RI sticky end nos

terminator/ubiquitin promoter ligation site is present as indicated in Fig SC.

The Eco RI sticky end nos terminator end/pGEM7Zf( -) vector ligation site for construct

pGEMgluc 78 was confirmed. Furthermore, the Hind III sticky end pGEM vector end/Pin II

promoter start region was confirmed by using the Pin II AS primer to sequence the junction

point (Fig. 1). pGEMgluc78 was sequenced with the Pinll Sand gluc78 AS to determine the

AMV sequence of 39 bp (Appendix A, Fig. 68).

Construct pPAgluc78 was sequenced with Pinll Sand gluc78 AS primers, which provided

'sequence information for the terminal end of the rice actin intron and gluc78 start regions

(Appendix A, Fig. 58). Although two ATG start codons were identified in the rice actin exon,

translation from the first ATG would place the gluc78 gene in the proper reading frame. It is

expected that 95% of the protein would be translated from this first start codon in the rice

actin exon.

Construct pNOV3604ubi was sequenced with ubi sense and manA antisense primers, which

provided sequence information for the terminal end 0 f t he u biquitin intron a nd manA start

regions (Appendix A, Fig. 6A). Although two ATG start codons were identified in the ubiquitin

intron, they will be spliced out as part of the intron, and translation from the first ATG, in the

manA sequence, would place the manA gene in the proper reading frame. The Hind III vector

end/ubiquitin start region ligation was also confirmed by using the Ubi AS primer to sequence

the junction site.

6.4.2 Production of transgenic pearl millet

Proliferating IZEs were co-bombarded with pNOV3604ubi and one of the constructs

containing the gluc78 gene (Table 1). The co-transformation ratio was approximately 1:2.

IZEs were precultured for 5-7 days, bombarded at a helium pressure of 900-1200 kPa and

then cultured for 3-4 days on osmoticum medium after bombardment, before being

transferred to the mannose containing selection medium of 2/15 or 0.02/15.

Thirteen transgenic plants containing the gluc78 transgene from T. atroviride gene were

obtained. Genomic Southern blot analysis of To and Tl transformation events of pearl millet
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genotype 842B was done (Figs 2 and 3). It appears that transgenic plants BB gluc/mann

7.10 1-3 and A-C are clones, whereas BB gluc/mann 7.7-2 and BB gluc/mann 7.9 are unique

transformation events. Identical integration patterns for specific transformation events were

obtained for two independent southern blot analysis hybrid ising with the DIG or

radioactive labelled probe (Figs 2 and 3). The first T2 seed available for pathogenicity trials

were events BB gluc/mann 7.1OB, 7.10.1 and 7.10.2. T2 progeny of transformation events BB

gluc/mann 7.7.2 and 7.9 will be assessed in the near future.

6.4.3 Pathogenicity trials

T2 transgenic pearl millet plants of transformation events BB gluc/mann 7.1O.B, BB

gluc/mann 7.10.1 and BB glue/mann 7.10.2 were challenged by S. graminicola to screen for

downy mildew resistance. Downy mildew disease was assessed 20 days a fter inoculation

based on the percentage of infected plants within each pot (Table 2). The disease score for

each genotype was the mean of infection percentage for individual pot replicates. This meant

that the disease score for each entry could range from 0-100% and was a continuous

variable. Symptoms were seen as distinct chlorosis of infected leaves, zoospore growth

underneath the leaf and stunted growth which always leads to green ears, where panicles

seed are replaced by leaf-like structures (phylloidy). Since most of the plants screened in this

experiment were transgenic, they were incinerated before flowering.

A disease score reduction of almost 58% was obtained for T2 progeny of transgenic plant BB

gluc/mann 7.10.2 when infected with S. graminicola when compared to infected control 842B

plants. Progeny of transgenic plants BB gluc/mann 7.1OB and 7.10.1 gave an even higher

disease incidence when compared to control plants. A small number of plants were screened

(Table 2) and therefore these results are regarded as preliminary results only. It is known,

that if heterologous glucanase is silenced (Sanders et aI., 2002), it may lead to diminishing

levels of the plant's endogenous glucanase activity, and increased disease susceptibility

which might explain the results obtained. A disease index were not determined as infected

plants, whether a 1 or 100% infection ratio were obtained, will lead to green ears and the lack

of production of any seed (Dr Wendy Breese, personal communication).

6.4.4 Molecular analysis of the expression of the gluc78 transgene

RNA and protein analyses were conducted to determine if a correlation existed between the

expression levels of gluc78, and decreased disease susceptibility. Expression of the gluc78

transgene in leaves was analysed by RNA gel northern blotting and by protein gel western

blotting for selected control and transgenic plants (Fig. 4 and 5). Wound induced expression

of the glucanase transcript of transformation event BB glue/mann 7.10.2 were 2-4 times the
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Figure 2: Southern blot analysis of independent To transformation events of pearl millet
genotype 842B. Genomic DNA was purified from plant leaf material, restricted
with Hind III and resolved in a 0.8% agarose gel, transferred to a nylon
membrane, then probed with an internal DNA fragment of the manA (blot A) or
gluc78 (blot B and C) transgene, either DIG labelled (blots A and B) or
radioactive labelling (blot C). Blots A and B: MW, DIG labelled molecular weight
marker III (Roche Diagnostics South Africa); lane 1, untransformed pearl millet
leaf material of genotype 842B; lane 2 and 10, represent untransformed pearl
millet spiked with 2 and 10 transgene copies respectively; lane 3, BB glue/mann
7.10A plant; lane 4, BB glue/mann 7.1OB plant; lane 5, BB glue/mann 7.1OC
plant; lane 6, BB glue/mann 7.7.2 plant; lane 7, BB glue/mann 7.9 plant; lane 8,
BB glue/mann 7.10.1 plant; lane 9, BB glue/mann 7.10.3 plant. Blot C: lane 1,
untransformed control; lanes 2 and 11, represent untransformed pearl millet
spiked with 2 and 10 transgene copies respectively; lane 3, BB glue/mann 7.1OA
plant; lane 4, BB glue/mann 7.1OB plant; lane 5, BB glue/mann 7.1OC plant; lane
6, BB glue/mann 7.7.2 plant; lane 7, BB glue/mann 7.9 plant; lane 8, BB
glue/mann 7.10.1 plant; lane 9, BB glue/mann 7.10.2 plant; lane 10, BB
glue/mann 7.10.3 plant. The arrows indicate the size of pNOV3604ubi (6.21 kb)
or pPAgluc78 (7.15 kb) linearised with Hind III.
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Figure 3: Southern blot analysis of independent To and T1 transformation events of pearl

millet genotype 842B. Genomic DNA was purified from plant leaf material, restricted with

Hind III and resolved in a 0.8% agarose gel, transferred to a nylon membrane, then probed

with an internal fragment of the gluc78 transgene. Lane 1 and 13, represent untransformed

pearl millet spiked with 2 and 10 transgene copies respectively; lane 2, BB glue/mann 7.9 To

plant; lane 3, BB glue/mann 7.9 T 1 plant; lane 4, BB glue/mann 7.10.1 To plant; lane 5, BB

glue/mann 7.10.1 T1 plant, DNA only partially digested; lane 6, BB glue/mann 7.10.2 To plant;

lane 7, BB glue/mann 7.10.2-2 T1 plant; lane 8, BB glue/mann 7.10.2-3; lane 9, BB glue/mann

7.10.3 To plant; lane 10, BB glue/mann 7.10A To plant; lane 11, BB glue/mann 7.10A T1 plant;

lane 12, BB glue/mann 7.10C T1 plant. The arrow indicates the size (7.15 kb) of pPAgluc78

linearised with Hind III.

intensity of the unwounded control leaf material 2, 6, 18, 24 and 48h after wounding (Data

not shown). All the transgenic plants in this trial were challenged with S. graminicola. Under

the stated assay conditions, very faint signals of the glucanase transcript were detected in

non-transgenic plants for both challenged or non-challenged scenarios (Fig. 4A, Band C;

lanes 1 and 2). An estimated 100-fold higher level of expression, was obtained in infected

transgenic plants and 10 to 40-fold higher levels of expression in uninfected transgenic

plants, when compared to control plants (Fig. 4). In addition, the protein encoded by gluc78

is clearly expressed in transgenic plants challenged with S. graminicola (Fig. 5), whereas the

protein is absent in non-transgenic control plants whether the plants were challenged with

the pathogen or not. The reason for the increased occurrence of diseased plants in

comparison to the control plants for transformation events BB glue/mann 7.10.B and 7.10.1

are not clear. Further pathogenicity trials with larger numbers of transgenic plants may

explain this result.

This is the first report of an antifungal glucanase from T. atroviride stably expressed in a

transgenic cereal crop. Preliminary pathogenicity trials and molecular analysis indicated that
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the expression of this protein, encoded by the gluc78 transgene driven by a wound inducible

promoter, during wounding and pathogen infection, increased the glucanase transcript.

Table 2: Transgenic and non-transgenic control plants screened for downy mildew

susceptibility.

experimental plants # of plants # plants infected

per pot verses non infected

non-transgenic, non-infected 12 0:12

control 842B plants 12 0:12

12 0:12

non-transgenic, infected 22 10:22

control 842B plants 19 7:19

transgenic BB glue/mann 13 7:13

7.10.B, infected 8 6:8

13 11:13

transgenic BB glue/mann 2 1:2

7.10.1, infected 3 2:3

transgenic BB glue/mann 18 2:18

7.10.2, infected 9 2:9

17 6:17

13 0:13

# = number

Average (%)

0.0

41.5

70.5

60.0

17.5
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Figure 4: Detection of the gluc78 T. atroviride glucanase transcript in infected and non-infected selfed progeny T2 generation transgenic and

control untransformed pearl millet genotype 842B. Total RNA was extracted from leaf material and 8ug of RNA loaded per lane and

blotted to a nylon membrane. The RNA gel blot was hybridised with a gluc78 internal DNA fragment probe. Northern blot analysis was

performed on A: lane 1, non-infected non-challenged with S. graminicola control plant; lane 2, infected control plant; lanes 3 and 4, two

individual infected plants from transformation event BB glue/mann 7.10.1; lanes 5 and 7, non-infected BB glue/mann 7.1OB; lanes 6 and

8, infected BB glue/mann 7.1OB; B: lane 1, non-infected control plant; lane 2, infected control plant; lanes 3, 4, 7 and 8, non-infected

challenged transgenic plants of event BB glue/mann 7.10.2; lanes 5 and 6, infected challenged transgenic plants of event BB glue/mann

7.10.2; C: lane 1, non-infected non-challenged control plant; lane 2, non-infected challenged control plant; lanes 3-8, non-infected

challenged transgenic plants of event BB glue/mann 7.10.2. Ethidium bromide stained gels show that equal amounts of total RNA were

loaded in each lane, in each set A, Band C.
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Figure 5:

MW 6 7 981 2 3 4 5

MW 5 6 871 2 3 4

Western blot analysis of total soluble proteins from leaves of transgenic and

non-transgenic control plants. A two microgram aliquot of protein was

separated in each lane, the blot immunoprobed with polyclonal anti-gluc78

antibodies (dilution 1:750) and visualised with anti-rabbit secondary antibodies

(dilution 1:5000). Blot A and B: MW, Eel molecular weight marker; lane 1,

non-infected non-challenged with S. graminicola control plant; lane 2, non-

infected S. graminicola challenged plant; lane 3, infected control plant. Blot A:

lanes 4 and 5, two individual infected plants from transformation event BB

glue/mann 7.10.1; lanes 6 and 8, non-infected BB glue/mann 7.1OB; lanes 7

and 9, infected BB glue/mann 7.10B. Blot B: lanes 4, 5 and 8, non-infected

challenged transgenic plants of event BB glue/mann 7.10.2; lanes 6 and 7,

infected challenged transgenic plants of event BB glue/mann 7.10.2. The

arrows indicate the protein size of approximately 78 kDa.
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Chapter 7

Concluding remarks and future prospects

7.1 Concluding remarks

There is an urgent need for an increased focus on crops relevant to the small farm holders

and poor consumers in the developing countries of the humid and semi-arid tropies (Sharma

et aI, 2002). Pearl millet is the only major staple cereal that reliably produces both grain and

forage on poor, sandy soils under hot, dry conditions of Africa and Asia (Goldman et aI.,

2003) yet fungal phytopathogens such as Sclerospora graminicola, has a devastating effect

on grain production. Until very recently, plant breeding relied solely on sexual transfer of

genes between plant species, whereas developments in plant molecular biology and

genomies now give us access to the knowledge and understanding of plant genomes and

genetic engineering (Job, 2002). Establishing an efficient routine transformation protocol for

pearl millet would form the technological basis for the genetic enhancement of this crop and

would provide the means to introduce agronomical significant genes into a cereal crop grown

widely in both India and parts of Africa.

In order to establish an efficient transformation protocol for pearl millet to genetically enhance

this crop and to produce transgenic pearl millet conferring improved resistance to S.

graminicola the following parameters were optimised: 1) systematic screening of selected

genotypes and explant tissues to obtain efficient transformation and regeneration systems, 2)

identification of environmentally friendly selectable marker genes resulting in high

transformation efficiencies and low numbers of escapes, 3) selection of constitutive and

wound/fungal elicited promoter sequences, 4) optimisation of transcriptional signals suitable

for this monocotyledonous system and 5) stable expression of a transgene from a bio-control

fungi conferring improved resistance to the oomycete phytopathogen S. graminicola.

Since high frequency plant regeneration from cultured explant material is a prerequisite for

the successful transformation of crops, identifying highly regenerabie genotypes and

optimising tissue culture media was the first step in establishing a reliable transformation

protocol for pearl millet. In this study, a highly efficient L3 based tissue culture system, was

established for pearl millet by the addition of the osmoprotectant L-proline. On average 80

regenerants were obtained per immature zygotic embryo explant of 8428, a genotype widely

used in breeding programmes in Africa and India by the International Crops Research

Institute for the Semi-Arid Tropics (ICRISAT).
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Subsequently, pearl millet transformation protocols were established for a cereal crop

recalcitrant to transformation. Initially, the selectable marker bar gene from Streptomyces

hygroscopicus, conferring herbicide resistance, and a reporter gene (uidA) both driven by the

constitutive promoter ubiquitin were used to establish pearl millet transformation. Pre-

cultured immature zygotic embryos (455) of parental line 842B were bombarded using the

simple and inexpensive particle inflow gun and resulted in two fertile transgenic pearl millet

plants as confirmed by resistance to application of the herbicide Basta", uidA expression,

peR and southern blot analysis. Both transformation events, clones, had a multicopy

integration pattern of the bar transgene. The transformation efficiency of 0.02% using the bar

gene (Girgi et al. 2002) was improved to 0.19 and 0.72% on two independent tissue culture

media with manA as positive selectable marker gene. Although the L-proline containing

media often produced clones of transformation events, it resulted in a 10-36 percent

improvement on the transformation efficiency in combination with manA, had less than 20

percent escapes and utmost 3-4 copies of the transgene.

Constructs were prepared containing the gene, encoding 78 kDa 13-1,3-glucanase, driven

either by a strong constitutive promoter (ubiquitin promoter, exon and intron) or a wound

inducible promoter, the potato proteinase inhibitor ilK gene promoter. The wound inducible

promoter includes either the AMV leader sequence or the rice actin1 intron to obtain higher

expression Ievels in the monocotyledonous p earl millet. Transgenic p earl millet containing

the glucanase gene, driven by the wound inducible promoter, rice actin intron, was produced

in this study. This is the first report on wound inducible expression of a single 13-1,3-

glucanase f rom a biocontrol fungi in a cereal crop. Preliminary studies indicate a positive

correlation between reduced occurrence of fungal infection and expression of the transgene

gluc78. This genetically improved pearl millet breeding line might be a powerful tool in

improving resistance to S. graminicola, once thoroughly assessed under field conditions.

In conclusion, traditional breeding has been for many years the main avenue for crop

improvement in pearl millet, whereas genetic engineering offers direct access to a vast pool

of useful genes. This study opens the way to incorporate otherwise inaccessible traits, such

as the gene from the bio-control fungi Trichoderma atroviride (formerly T. harzianum), into

the genome of pearl millet to confer broad-spectrum resistance to the widespread and

destructive oomycete pathogen S. graminicola.
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7.2 Future prospects

Pearl millet lines developed by biotechnology will n eed to be tested a s stringently a s a ny

other cultivars. A thorough assessment to the allergenic potential and unintended alterations

of novel foods produced through biotechnology provides a solid basis for food safety

assessment. The majority of known plant food a lIergens belong t 0 seed storage proteins,

protease and amylase-inhibitors, profilins or pathogenesis-related (PR) proteins, but the

likelihood that the proteins derived from viruses, bacteria or non food plants will be allergens

is law, since most proteins inn ature a re n ot allergens (Halsberger, 2003). The Food and

Agricultural Organisation/World Health Organisation (WHO/FAO) have depicted decision

trees for a rigorous assessment and testing for GM foods (Halsberger, 2003) which would be

applicable to transgenic pearl millet expressing this fungall3-1 ,3-glucanase.

Furthermore, it is essential to eliminate gene flow from genetically modified (GM) pearl millet

to non-GM pearl millet, as pearl millet is indigenous to Africa. The pollen-mediated flow of

transgenes can be controlled by cytoplasmic-nuclear male sterility (Feil and Stamp, 2002;

Budar and Pelletier, 2001). This can minimise the possibility of gene flow to non-GM pearl

millet, which might represent a threat to contaminate the gene pool of pearl millet as

cytoplasmic male sterility, is a maternally inherited trait (Budar and Pelletier, 2001).

Furthermore, cytoplasmic-nuclear male-sterility (eMS) systems already contribute

significantly to increasing productivity of pearl millet (Thakur et aI., 2001). The transgenic

cytoplasmic-nuclear male sterile line can function as pollen recipient and 20% untransformed

plants as pollen donors as previously proposed by Feil and Stamp (2002) to control pollen-

mediated flow of transgenes in maize.

Finally, the gains in food production provided by the Green Revolution have reached their

ceiling while the world population continues to rise (Wisniewski et aI., 2002). A new Green

Revolution will necessitate application of recent advances in plant breeding, including new

tissue culture techniques, marker-aided selection and genetic modification (Wisniewski et aI.,

2002) to aid our staggering requirement for food, with cereal grains playing a pivotal role

(Hoisington et aI., 1999). The affluent nations can afford to adopt elitist positions and pay

more for food produced by the so-called natural methods; the one billion chronically poor and

hungry people of this world cannot (Wisniewski et aI., 2002). Therefore, despite the diverse

and widespread beneficial applications of biotechnology products, there remains a critical

need to present these benefits to the general public in a real and understandable way that

stimulates an unbiased and responsible public debate (Sharma et aI, 2002) and pro-GMO

government policies.

101

Stellenbosch University http://scholar.sun.ac.za



7.3 References

Budar F and Pelletier G, 2001. Male sterility in plants: occurrence, determinism, significance

and use. C.R Acad. Sci. Paris, Life Sciences 324: 543-550.

Feil B and Stamp P 2002. The pollen-mediated flow of transgenes in maize can already be

controlled by cytoplasmic male sterility. AgBiotechNet (ABN 099) 4: 1-4.

Girgi M, Q'Kennedy MM, Morgenstern A, Smith G, Lërz Hand Oldach KH 2002. Transgenic

and herbicide resistant pearl millet (Pennisetum glaucum L.) RBr. via microprojectile

bombardment of scutellar tissue, Molecular Breeding 10: 243-252.

Goldman JJ, Hanna WW, Fleming G and Ozias-Akins P 2003. Fertile transgenic pearl millet

[Pennisetum glaucum (L.) R Br.] plants recovered through microprojectile bombardment and

phosphinothricin selection of apical meristem-, inflorescence-, and immature embryo-derived

embryogenic tissues.Plant Cell Reports 21: 999-1009.

Halsberger AG 2003. GM Food: The risk assessment of immune hypersensitivity reactions

covers more than allergenicity. Food, Agriculture and Environment 1(1): 42-45.

http://www.biotech-info.net/hypersensitivity. html

Hoisington D, Khairallah M, Reeves T, Ribaut J-M, Skovmand B, Taba S and Warburton M

1999. Plant genetic resources: What can they contribute toward increased crop productivity?

Proc. Natl. Acad. Sci. USA 96: 5937-5943.

Job, D 2002. Plant biotechnology in agriculture. Biochimie 84: 1105-1110.

Thakur RP, Rai KN, Rao VP and Rao AS 2001. Genetic resistance of pearl millet male-sterile

lines to diverse Indian pathotypes of Sc/erospora graminicola. Plant Disease 85(6): 621-626.

Sharma HC, Crouch JH, Sharma KK, Seetharama N and Hash CT 2002. Applications of

biotechnology for crop improvement: prospects and constraints. Plant Science 163: 381-395.

Wisniewski J-P, Frangne N, Massonneau A and Dumas C 2002. Between myth and reality:

genetically modified maize, an example 0 f a sizeable scientific controversy. B iochimie 84:

1095-1103.

102

Stellenbosch University http://scholar.sun.ac.za

http://www.biotech-info.net/hypersensitivity.


Appendix A

Pstl (17)

Sphl (11)
HindIII (1)

Xbal (45)
Sail (608)

Bgill (954)

10131bp

Ncol (1054)
Xbal (1390)
EcoRI (1404)

Xbal (1618)
Pstl (2003)
Sail (2006)

.e:::.--- Xbal (2012)
BamHI (2018)

Ncol (2025)
Pstl (2275)

BamHI (2981)
Bgill (3408)
Pstl (3654)
Sail (4157)

Sac I (4202)~=====-=:~ Xbal (4337)
BamHI (4344)

EcoRI (4607)
HindIII (4613)

Sphl (4623)
Pstl (4629)

Xbal (4657)
Sail (5220)

EcoRI (7454)

Sphl (7075)

Sphl (7042)
Sail (6898)

pUBIgluc78

Pstl (6615)
Xbal (6230)
EcoRI (6016)

Xbal (6002)
Ncol (5666)

Xbal (5647)
Bgill (5566)

Figure 1: Construct pUBIgluc78 with selected restriction sites indicated. pUBIgluc78

contains the gluc78 and bar genes, both driven by the ubiquitin promoter, exon

and intron and terminated by nos.
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Pstl (4172)

BamHI (6241)
Xbal (6234)

EcoRI (6504)
Xhol (6510)

Xbal (6516)
Sphl (6529)

Aatll (6535)

f'~==------- Apal (6541)Sac I (6099)

Sail (6054)
f1 ori

Pstl (5551) ---------.,

Aatll (5512)

Bgill (5305)
pGEMgluc78

6584bp

BamHI (4878)

AMV

Ncol (3922)

Bgill (3884) HindIII (2984)

Figure 2: Construct pGEMgluc78 with selected restriction sites indicated. pGEMgluc78 contains

the gluc78 gene driven by the potato proteinase inhibitor ilK gene promoter (PinII) and

containing the AMV leader sequence.
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Pstl (17)
Sphl (11) Xbal (45)

HindiII (1) Sail (608)

Bgil (791)
Bgill (954)

EcoRI (3890)
Sacl (3632) ---:::;I

HindIII (3622)

Xmalll (3557)
Acll (3465)

Xbal (1618)

pNOV3604ubi
6730bp Pstl (2003)

Sail (2006)

Xbal (2012)

BamHI (2018)

Mstl (2681)

Acll (2948)
Bgil (3303)

Figure 3: Construct pNOV3604ubi with selected restriction sites indicated. Hind III was used

to digest genomic DNA for southern blot analysis. pNOV3604 contains the manA

gene driven by the ubiquitin promoter, exon and intron and terminated by nos.
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EcoRI (7068)

Sacl (6663)

Sail (6618)

PsU (6115)

Aat"(6076)

Nsil (6933)

BamHI (6805)

Xbal(6798) Aatll (7099)

rr------Apal (7105)

BamHI (5442)

gluc78 pPAgluc78
7148bpBgill (5869)

Nsil (2970)

BamHI (4479)

Bgill (4336)
BamHI (2978)

HindIII (2984)
Bgill (4194)

BamHI (4162)
Sacl (3974)

Figure 4: Construct pPAgluc78 with selected restriction sites indicated. Hind III is a unique

restriction site and was used to digest genomic DNA for southern blot analysis.

pPAgluc78 contains the gluc78 gene driven by the potato proteinase inhibitor ilK gene

promoter (Pin II) and containing the rice actin1 intron.
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CTTCA TACGCTATTTATTTGCTTGGTACTGTTICTITIGT
CGATGCTCACCCTGTTGTTTGGTGTTACTTCTGCAGCGT

Nco I including gluc78 start codon

CGACTCTAGAGGATCCCCCATGGGTCTCTCAACCGTCTTG
Sma I blunted Glue 78-

ubiquitin
intron

A

AGATCTITCTTTCTTCTTTTTGTGGGTAGAATITGAATCCTCTC
AGCATTGTTCATCGGTAGTITTTCTITICATGATTIGTGACAAA

exon -

TGCAGCCTCGTGCGGAGCTTTTTTGTAGGTAGAAGATGGCTG

Nco I including glue 78 start codon

ACGCCGAGGATGGGGGATCCCCCATGGGTCTCTCAACCGTC
Sma I blunted gluc78 -

TTGACGGCCTCTCTCCTGGCCTTGCGTCTATTCGCGGCGCCT

riceactinintron
and exon

B

ATGATTGACATCCAGAGCTCATCCGTCAAGCTCTTTGGTATCAGCAC
CAAGGCCAGTGTCAGCATGGTCAACCTTAACGGCCAGCAGGTTGTTT
TCGACAGGGACAACCGAACACTTTCTGCGGCACTGCCATTTCATATGA
GACGTCATAGTCTAGACGGATCCCCGATCGTTCAAACATTTGGCAA

Xba I Bam HI

TAAAGTTTCTTAAGATTGAATCCTGTTGCCGGTCTTGCGATGATTATCA
TATAATTTCTGTTGAATTACGTTAAGCATGTAATAATTAACATGTAATGC
ATGACGTTATTTATGAGATGGGTTTTTATGATTAGAGTCCCGCAATTATA
CATTTAATACGCGATAGAAAACAAAATATAGCGCGCAAACTAGGATAAA
TTATCGCGCGCGGTGTCATCTATGTTACTAGATCGGGAATTCAAGCTT
Sph I ECD RI Hind III

GCATGCCTGCAGTGCAGCGTGACCCGGTCGTGCCCCTCTCTAGAGATAA
TGAGCATTGCATGTCTAAGTTATAAAAAATTACCACATATTTTTTTTGTCA
CACTTGTTTGAAGTGCAGTTTATCTATCTTTATACATATATTTAAACTTTA

a/ue78

c

nos
terminator

ubiquitin
promoter

Figure5: Regions across ligationsites sequenced for constructs pUBIglue78 and
pPAglue78. A) pUBIglue78 sequenced withthe glue78 antisense(AS) and Ubi S
primersand B) pPAglue78 sequenced withthe glue78 AS and Pinllsense (S)
primersand C) pUBlg/ue78 sequenced withthe g/ue78 S and Ubi AS primers.
Underlinedsequence indicatesrestrictionenzyme sites.Sequence inbold italics
indicatesan ATG triplet.Vectorsequence isindicatedinblackprint,and thegene
sequence encoding for the T. harzianum 78 kD ~ 1,3- glucanase (glue78

sequence) isindicatedinred print.Other sequence isas shown below.
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A
TTTATAATTATTTTGATCTTGATATACTTGGATGATGGCATATGCAG
CAGCTATATGTGGATTTTTTTAGCCCTGCCTTCATACGCTATTTATTT
GCTTGGTACTGTTTCTTTTGTCGATGCTCACCCTGTTGTTTGGTGTTA
CTTCTGCAGGTCGACTCTAGAGGATCCCCGATCATGCAAAAACTCAT
TAACTCAGTGCAAAACTATGCCTGGGGCAGCAAAACGGCGTTGACTG
AACTTTATGGTATGGAAAATCCGTCCAGCCAGCCGATGGCCGAGCTG

Ubiquitin intron

Pst I, SaIl,
Xba I, Bam HI

manA aene

B

Pin II S---->
GGACAGACACTCTCAGATCTTTTTATTTTTAATTTTCTTTC

Bglli AMV leader sequence

AAATACTTCCACCATGGGTCTCTCAACCGTCTTGACGGCC
Nco I including gluc78 start codon +- gluc78 AS

Figure 6: Regions across ligation sites sequenced for construct pNOV3604ubi and

pGEMgluc78. A: pNOV3604ubi was sequenced with the manA antisense (AS)

and Ubi Sense (S) primers as indicated in Figure 1. Sequence in bold italics

indicates an ATG doublet in the ubiquitin intron. Vector sequence is indicated in

black print, and the gene sequence Escherichia coli manA gene encoding

phosphomannose isomerase, is indicated in green print. B: pGEMgluc78 was

sequenced with the Pinll Sand gluc78 AS. In both regions the underlined

sequences indicate restriction enzyme sites as indicated.
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