
i 

A Comparative Analysis of Within-host Models of 

Malaria Infection with Immune Response 

by 

Shadé Horn 

Thesis presented in partial fulfilment of the requirements for

the degree of Master of Science (Biochemistry) in the Faculty

of Science at Stellenbosch University 

Department of Biochemistry, 

University of Stellenbosch, 

Private Bag X1, Matieland 7602, South Africa. 

Supervisor: Dr. D.D. van Niekerk 

Co-supervisor: Prof. J.L. Snoep 

April 2019



i 

Declaration

By submitting this thesis electronically, I declare that the entirety of the work contained therein is my 

own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that 

reproduction and publication thereof by Stellenbosch University will not infringe any third party rights 

and that I have not previously in its entirety or in part submitted it for obtaining any qualification. 

Date: April 2019

Copyright © 2019 Stellenbosch University 

All rights reserved. 

Stellenbosch University  https://scholar.sun.ac.za



ii 
 

Abstract 
 

With growing resistance of malaria parasites to different antimalarial treatments, there is an ever present 

need for new investigative approaches into disease eradication. The symptoms of the disease commonly 

include fever, nausea and dizziness, and can be attributed to the response of the immune system to 

disease. This thus emphasizes the imperativeness of the inclusion of the immune response in 

investigations. Within-host models are used to describe the disease dynamics within the human host 

during infection. Models commonly describe the change in populations of disease-associated cells within 

an individual, over time. Model parameters are usually incorporated as mean values from clinical data or 

estimated from literature. Apart from experimental error, in reality parameters can vary greatly between 

individuals. Consequently, it is unclear how much trust should be placed in these mathematical models 

to describe disease dynamics realistically. 

 

In this project, local sensitivity, uncertainty, robustness and global sensitivity analysis was performed on 

within-host malaria infection models that incorporate the immune system’s response. These analyses 

were used to determine which processes play an important role in the disease dynamics and can therefore 

possibly be of interest for drug targeting. The results also indicated whether the description of the disease 

processes can accommodate heterogeneity and uncertainty while still giving reliable and realistic model 

predictions. Comparison of the model analysis results in this project allowed for identifying which 

models would be more relevant in describing biologically realistic disease dynamics under the influence 

of the human immune response, and would be more suited to further studies to identify possible drug 

targets. 
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Opsomming 

Met groeiende weerstandigheid van malaria parasiete teen verskillende anti-malariese behandeling, is 

daar 'n groeiende behoefte aan ondersoeke na siekte-uitwissing. Die simptome van die siekte sluit  

gewoonlik koors, naarheid en duiseligheid in, en kan toegeskryf word aan die respons van die 

immuunsisteem op die siekte. Dit beklemtoon die noodsaak vir die insluiting van die immuunsisteem in 

hierdie ondersoeke. Binne-gasheer modelle word gebruik om die siekte-dinamiek binne 'n mens tydens 

infeksie te beskryf. Modelle beskryf gewoonlik die tyd-afhanklike veranderinge in siekte-verwante 

selpopulasies binne 'n individu. Model parameters word gewoonlik geïnkorporeer as die gemiddelde 

waardes van kliniese data of geskat vanaf literatuur. Buiten eksperimentele foute, kan parameters in 

werklikheid dramaties varieer tussen individue. Dit is dus onduidelik hoeveel vertroue geplaas kan word 

in die vermoëns van hierdie wiskundige modelle om die dinamiek van die siekte realisties te kan beskryf. 

In hierdie projek word sensitiwiteit-, onsekerheid-, robuustheid- en globale sensitiwiteitsanalise toegepas 

op binne-gasheer modelle van malaria infeksie waarin die immuunsisteem se respons ingesluit is. Hierdie 

analises word gebruik om te bepaal watter prosesse belangrik is vir die dinamiek van die siekte en as 

moontlik teikens vir farmaseutiese intervensie kan dien. Die resultate dui ook aan of beskrywings van 

die prosesse heterogeniteit en onsekerheid kan akkommodeer en steeds realistiese en betroubare 

modelvoorspellings kan lewer. Vergelyking van die model analise resultate kan gebruik word vir die 

identifisering van modelle wat meer relevant is vir  die beskrywing van siekte-dinamiek onder die invloed 

van die menslike immuunsisteem en wat gebruik kan word vir verdere soeke na teikens vir  farmaseutiese 

intervensie. 
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Chapter 1 
 

Introduction 
 

Malaria is a well-known parasitic disease commonly found in the African and sub-Saharan regions. 

Currently, 91 countries are affected by the disease with a total of 216 million cases of infection and a 

mortality rate of 445 000 as reported in the malaria report of 2017 by the World Health Organization [1]. 

The report furthermore shows that with the increased investigations into malaria in the past few decades 

the overall incidence of malaria has decreased as from 2010. However, this rate of decrease has plateaued, 

and the reported cases are again increasing due to the development of malarial resistance to current 

treatments [1, 2]. This is indicative of the great need to investigate this disease with the objective of 

eradicating either its spread or itself. 

 

Various different methods are currently used to investigate the malaria parasite and its life cycle, the 

interactions of the parasite with both the human and mosquito host, as well as the immune system’s 

response to infection. The immune response to disease is an important area of investigation as it is 

associated with the clinical manifestations observed with malaria infection. One method that can 

integrate quantitative knowledge on all fronts, is the mathematical modelling of disease aspects. Many 

within-host mathematical models [3-26] of the disease dynamics of malaria infection exist. Most models 

focus on the time evolution of populations of different cell types, since the life cycle of the parasite in 

the host affects, inter alia, red blood cells and hepatocytes directly through physical infection, in addition 

to stimulating immune cell production indirectly (tissue-sequestered parasites and transmissible parasites 

that develop in the bone marrow are not yet included but could possibly have an effect on the disease 

dynamics). Simple models of the blood stage of infection (the most well characterized stage of infection) 

therefore usually describe populations of uninfected red blood cells (RBC), infected red blood cells 

(iRBC) and free parasites [18-21], while most models have been extended to include immune system 

components [3-17, 22-26]. The time evolution of these cells is mathematically described by ordinary 

differential equations (ODEs). In principle all processes that affect cell populations should be included 

in the ODEs as parametrized rates (once quantified). Not all processes are, however, equally important 

in the context of the disease feature of interest. The mathematical parametrization of a biological process 

also introduces some approximation to the dynamics that might only be realistic close to the reference 
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state. Consequently, there are some uncertainties around the outputs of mathematical models, and thus 

the trust that can be placed on model interpretations. 

Sensitivity and uncertainty analyses are useful tools to alleviate some of the uncertainty around model 

outputs and determine important processes for model structure. Local sensitivity analysis is commonly 

used to determine the influence a small change in a process would elicit on the wild type model outputs, 

and can be used to investigate possible drug targets. This is possible due to a large sensitivity results 

indicating that the process has a large influence on the dynamics of the disease. Uncertainty analysis can 

be used to quantify the effect of variance in parameter values on uncertainty in model outputs that could 

limit trust in some interpretations made from the model. This analysis can therefore indicate which 

parameters should be investigated experimentally to determine actual ranges for the parameter values. 

Robustness analysis indicates how well model outputs for these parameter ranges correlate to the 

reference (wild type) model output. Lastly, global sensitivity analysis can indicate how well the local 

sensitivity analysis results are conserved over a larger parameter space as would be seen in a population. 

In combination, these analyses can assist in interpreting how well a model can account for realistic 

disease dynamics and where possible drug targets lie given not only the fixed mean values of parameters 

used for the wild type model, but taking into consideration parameter uncertainty and variance. 

 

This project therefore focuses on reproducing published models of malaria infection, where the immune 

system’s response is incorporated. The aim of this project is to employ uncertainty and sensitivity 

analysis on these within-host models, to determine which processes are important for disease dynamics 

(and can possibly be of interest for drug targeting) and whether the description of the disease processes 

can be extrapolated to account for heterogeneity and uncertainty while still giving reliable and realistic 

model predictions. This led to the following objectives: 

 

 Find comparable published ODE models which include the immune response to infection. 

 Reproduce the published model results to establish trust in the model descriptions, as well as 

the given parameter values. 

 Perform local sensitivity, uncertainty, robustness and global sensitivity analyses on all 

models.  

 Compare and interpret analysis results. 
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The following chapter will focus on background information on the malaria parasite, malaria infection, 

and the immune response to the disease. Chapter 3 will indicate the methodologies used in this study and 

elucidate on their implementation and utility. Thereafter, relevant model descriptions will be presented 

in Chapter 4. Chapters 5-8 will encompass the results of all the sensitivity analyses, followed by a 

discussion of all findings and comparison of results between models, presented in Chapter 9. 
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Chapter 2 
 

Background information 
 

2.1. The life cycle of the malaria parasite 

 

Malaria is caused by five different Plasmodium species with P. falciparum being the most common as 

well as deadliest species [27]. The life cycle of the malaria parasite can be divided into three stages; the 

exo-erythrocytic, the erythrocytic and the sporogonic stage (Figure 2.1).  

 

P. falciparum is inoculated into a human host by the female Anopheles mosquito during a blood feeding, 

where sporozoites contained within the salivary glands of the mosquito are injected into the bloodstream 

by their stylets [28]. Once the sporozoites enter the bloodstream, they rapidly travel to the liver where 

they invade the hepatocytes [29]. Here the sporozoites multiply asexually for up to 15 days to form 

schizonts which rupture to release merozoites in the bloodstream, marking the end of the exo-erythrocytic 

cycle [15].  

 

For the erythrocytic cycle, the released merozoites roam free within the blood to infect healthy RBCs. 

During the replication cycle after RBC infection, a merozoite develops from an immature trophozoite to 

a mature trophozoite, that will form a schizont which can rupture to release the new merozoites. This 

process takes approximately 48 hours and leads to the release of 8 to 32 new merozoites [30]. 

 

Immature trophozoites can also undergo gametocytogenesis, developing into male and female 

gametocytes [29]. When an uninfected mosquito feeds, these gametocytes can be ingested with the blood, 

starting the sporogonic cycle. Inside the mosquito, male and female gametes combine to form zygotes, 

which eventually develop into oocytes. A ruptured oocyte releases sporozoites that move to the 

mosquito’s salivary gland, completing the life cycle of the malaria parasite [15, 30].  
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The erythrocytic stage of the malaria parasite is the stage that relates to the clinically observed malaria 

state. This is due to the released merozoites and the iRBCs that activate the immune response, leading to 

symptoms including fever, nausea, vomiting, malaise, abdominal discomfort as well as mild anemia [31]. 

Severe anemia can also exist with infection and can be attributed to the decrease in healthy RBCs due to 

infection as well as bursting of iRBCs [31]. Other factors that can contribute to the severe anemia are the 

combined death of iRBCs and possibly some uninfected RBCs due to the immune response, as well as 

the prohibition of the normal erythrocytic process for new healthy RBCs. [32]. In worse cases of infection 

symptoms can lead to a coma or even death. Since many of the clinically observed symptoms are 

attributed to the response of the immune system, and anti-malarial inoculation would function via the 

immune system, the inclusion of the immune response in studies is imperative for furthering the 

investigation of malaria [29].  

Figure 2.1. The life cycle of the malaria parasite. The life cycle is split into three stages. A – Sporogonic stage 

where ingested gametocytes develop into sporozoites in the Anopheles mosquito. B – Exo-erythrocytic stage cycle 

where sporozoites that have entered the blood stream during a blood meal develop into schizonts in the liver of 

the human host to release merozoites into the blood. C- Erythrocytic stage where merozoite infected RBCs can 

either lead to more merozoites being released within the blood or the development of male and female gametocytes 

for the continuation to the sporogonic stage. This scheme was constructed based on the general description of the 

malarial life cycle [15, 29, 30]. 
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2.2. Immune response to Malaria infection 

 

The general immune response to an infection or a disease is composed of various cells and chemicals 

that interact both with each other and with infectious microbes to fight an infection. When protecting the 

body from an infection, the immune system will secrete many proteins and molecules to defend the body 

[33]. These secretions can then either play a role in the attack on the infectious microbes or they can 

protect the body by, for example, activating an inflammatory response [33]. Even though this is natural, 

the response can lead to clinically observed symptoms and sometimes do more harm than good. This is 

witnessed with auto-immune diseases where the over activation of the immune response can lead to 

detrimental clinical manifestations [33, 34].  

 

Upon infection, the body has two immune responses (Figure 2.2). The first immune response is an ever-

present function that rapidly attempts to protect the human at the start of an invading pathogen [35], 

known as the innate immune response. The innate immune response is a general response and mostly 

comprises of the same activity for almost all pathogens as it is not specified to any individual harmful 

element [35]. This response has three general purposes [36]. The first purpose is to ensure that no harmful 

elements enter the body through epithelial layers like the skin. The second purpose of the innate immune 

system is to start fighting against the microbes that passed the first defense. The body does this by 

secreting various proteins and cytokines as well as directly attacking the infectious agent with phagocytes 

or natural killer cells. This, together with the first step of defense is, however, not always sufficient to 

exterminate the disease and with persistent disease the adaptive immune system will be activated. The 

innate immune response therefore also assists the adaptive immune response and enhances its 

effectiveness [36].  
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The adaptive immune response takes longer to develop for a pathogen, as it is highly specific [35], and 

consists of T- and B-lymphocytes [37]. These two groups of cells are also indicators of the adaptive 

immune system’s division into two types of responses, classified as the humoral and the cell-mediated 

immune response (Figure 2.3) [36]. The humoral immune response is specialized to act against microbes 

that are present outside of the host cells and consists of B-lymphocytes which produce and secrete 

antibodies specific to the infectious agents present within the blood and lumens of mucosal organs [36]. 

These antibodies from the B-lymphocytes neutralize and eliminate infectious microbes that roam free 

within the blood. However, as soon as the microbes infect a cell, or become phagocytized by cells such 

as macrophages, these defense mechanisms become redundant. The cell-mediated immune response is, 

therefore, composed of the T-lymphoid cells which provide defense against microbes that have entered 

a cell like the RBC [35]. The T-lymphocytes can differentiate into different types of T-cells, including 

T-helper cells and cytotoxic T-cells. Cytotoxic T-cells can directly kill infected cells by inducing 

apoptosis of these cells, as well as help induce B-lymphocytes to produce antibodies. T-helper cells help 

Figure 2.2. The division of the immune response into the innate and adaptive immune response. This figure shows 

the different cells that can be present for both the innate and adaptive immune response as well as the time after 

infection that each of these responses are most present. Upon entry of an infectious microbe, the innate immune 

system defends the body until the adaptive immune response has been specialized to the specific infection [36]. 

Image from [36]. 
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to prime cytotoxic T cells by stimulating them to differentiate and eliminate phagocytosed microbes by 

producing cytokines that activate them [36].  

 

Considering the immune response to malaria, the collective response containing all these components 

can now be easily inspected. Upon first infection, the innate immune response will be present to start the 

fight against the infection. Dendritic cells start by capturing merozoites that roam free in the blood 

plasma. Dendritic cells are known as antigen presenting cells, which is a class of cells that prepare 

antigens to be presented to T-lymphocytes to activate the adaptive immune response [37]. Dendritic cells 

have a cell structure that allows them to have receptors expressed on their outer membrane known as 

Figure 2.3. The division of the adaptive immune response. The humoral and cell-mediated immune responses 

differ in their lymphocytes used as well as in the mechanisms used to fight infection as explained in text [36]. 

Image from [36]. 
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toll-like receptors (TLR) [16]. These receptors recognize infectious microbes that have entered the body, 

capture them and prepare them for presentation [38, 39].  

 

Upon presentation of the antigen to the T-lymphocytes, the T-lymphocytes are activated to differentiate 

into T helper 1, T helper 2 and regulatory T cells (Th1, Th2 and Treg respectively) [16, 35]. Each of 

these T-cells plays a specific role in the immune response. Th2 cells help B-lymphocytes to produce 

antibodies against the microbes, Th1 cells produce compounds which can help to fight the infection and 

Treg cells produce compounds that ensure the immune response is stabilized [16, 40]. All these cells thus 

work together to fight and eradicate an infection.  

 

An example of a compound produced by Th1 cells is interferon-gamma (IFN-gamma) which can activate 

cytotoxic T cells to kill pathogens directly. IFN-gamma also activate macrophages to produce 

inflammatory cytokines, adding to the overall inflammatory response to protect the body against 

infection [16, 41]. As macrophages and dendritic cells are both examples of phagocytes, these cells can 

phagocytose iRBCs and digest them [41]. A problem in the case of malaria is that the parasite’s 

consumption of haem in the iRBC leads to the formation of haemozoin. Haemozoin is indigestible by 

the macrophages and therefore persists in activating the immune cells, leading to a continued release of 

pro-inflammatory cytokines that correlates to clinically observed symptoms such as the periodic fevers 

associated with Plasmodium infection [4]. Consequently, Treg cells help to regulate the immune response 

and can secrete anti-inflammatory compounds to counter the inflammatory response [40]. This shows 

the importance of a balance between fighting the disease to protect the body and regulating the response 

to the infectious elements to prevent severe pathology [4]. A quantitative understanding of the immune 

response and its components is therefore imperative for studies on infection and disease dynamics.    

 

2.3. Mathematical modelling 

 

Mathematical modeling is a way to simplify a complex biological system into a mathematical description, 

which can then be used to analyze the effect of processes in the system and to make quantitative 

predictions of how a system is influenced by various parameters, often through employing computational 

tools. 
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As stated in the introduction various mathematical models exist that represent the within-host dynamics 

of malaria infection, with most including the immune response and some extended to also include 

treatment parameters [3-26]. There are also models that only focus on certain parts of the parasite life 

cycle or infection, such as gametocytogenesis or antigenic variation from the parasites [11, 21-26]. 

Lastly, some studies investigate the within-host model components in combination with epidemiological 

models [42, 43]. 

 

Models of malaria can be classified according to different criteria. One such would be to classify them 

according to the types of processes in the system: stochastic or deterministic models [44]. Deterministic 

models are models where all parameters used in the model system are fixed to their experimentally 

determined or theoretically derived values, and a model prediction is a unique outcome of the effects of 

system processes and parameter values. In contrast, a stochastic model allows for variance of some 

parameters and as such these parameters are modeled with a probability distribution instead of a fixed 

value [44]. Another classification considers the organizational level at which the disease is described, 

e.g. epidemiological or within-host models [45]. Epidemiological models describe the disease 

transmission within a population focusing on different classes of people, including susceptible, infectious 

and recovered (SIR-models). Within-host models focus on variables within an individual and will 

typically include at least healthy or infected RBCs. This study focuses on deterministic within-host 

models on malaria infection where the immune response to infection is included. 

   

These deterministic within-host models commonly consist of a few ODEs describing how variables (cell 

populations) change over time due to processes and associated parameter effects on each variable. ODEs 

for different variables are usually also coupled to one another through mass transfer processes which 

decrease one variable and concomitantly increase another at the same rate, or through stimulation or 

inhibition of a process proportional to the magnitude of another variable. When the ODEs are solved 

(typically using numerical integrators in software such as Wolfram Mathematica or MatLab) one obtains 

time course solutions of variable values which usually either depict continuous dynamical behavior or 

an equilibrium state. In the context of living systems, this equilibrium (if present), is dynamic in nature 

where variable and rate values remain constant and non-zero in time. This is referred to as the steady 

state of the system, and the rates are called fluxes [46, 47].  
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As different modelers have different preferences regarding points of interest and associated model 

formulations, major differences can exist in model ODEs and processes used, as well as parameter values 

and units. The questions thus exist: Which model describes disease dynamics and the immune response 

realistically and under which circumstances? How does one compare these models? Are model 

predictions reliable and realistic when taking heterogeneity and uncertainty of the disease processes into 

account? Furthermore, being able to pinpoint parameters with the largest effects on e.g. merozoites 

surviving in the blood, or the amount of iRBCs, can represent an important process for drug targeting 

[23]. To thus distinguish the important parameters from the rest and to quantify the effect of parameter 

variance, sensitivity analysis is performed to indicate the sensitivity of a variable population (e.g. the 

number of healthy RBCs) to a parameter (e.g. the number of merozoites released per bursting iRBCs). 

 

2.4. Sensitivity analyses 

 

Sensitivity analyses are useful tools to quantify parameter effects within a model. Thereby they can assist 

in elucidating biologically relevant components for disease eradication, determining the contribution of 

parameter uncertainty to variance in model prediction and test model robustness against parameter 

changes. As discussed below, these outcomes are accomplished through local sensitivity analysis, 

uncertainty analysis, robustness analysis and global sensitivity analysis.  

 

2.4.1. Local Sensitivity analysis  

Local sensitivity analysis entails the determination of the change in model outputs when the model inputs 

are allowed to change one at a time in a localized parameter space around the reference state. When 

parameters are changed one at a time it is designated as a one-factor-at-a-time (OAT) method [48]. An 

example of this would be investigating the change in variable steady states when one parameter in a 

model is allowed to change with a certain percentage, while all other parameters are kept constant. The 

same method is then applied to all parameters individually and the results, shown as sensitivity indices, 

can then be indicative of the importance or influence that each parameter has on the model outputs. The 

sensitivity indices are calculated by computing first-order derivatives of the variables regarding the 

parameters. Methods that exist for these computations include Finite Difference Approximation (FDAP), 

the Direct Differential Method (DDM), Adjoint Sensitivity Analysis (ASA) and Metabolic Control 

Analysis (MCA) [49]. These analyses differ in their methodologies as well as when they can be applied. 
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The FDAP method is mostly used when there is no analytical solution for a model and the model was 

therefore solved by numerical approximations where model outputs are approximated using different 

model input values. As such, for the calculations of the sensitivity coefficients, parameters are varied one 

by one, firstly with a small perturbation. This perturbation is then increased or decreased until there is a 

small or insignificant change in the sensitivity coefficients from one perturbation to another. At this 

perturbation the model will be indicated as robust and the sensitivity indices will be accepted [49]. The 

method therefore includes infinitesimal amounts of perturbations to obtain a sensitivity index and can 

become very time-consuming as the analysis will have to be repeated for each parameter [50, 51]. The 

DDM differs from the FDAP by calculating all the sensitivities of each variable to a parameter at the 

same time, thereby excluding the need for the infinitesimal amounts of parameter perturbations. This 

method does however require the construction of a Jacobian matrix (which contains the first-order partial 

derivatives of the sensitivity coefficient as a function of the variable) which would become 

computationally expensive as parameter set sizes increase [52, 53, 54]. To alleviate the time consumption 

of these methods, the ASA method uses a Green’s function matrix where the sensitivities included within 

the matrix are expressed in integral instead of differential form. This method delivers the same results as 

obtained by DDM, while being less computationally expensive due to dependency of the method shifting 

to the number of variables, and not the number of parameters [55, 56]. Lastly, MCA is generally used 

for biological mathematical models, especially with numerous parameters, and entails calculating 

normalized derivatives of the sensitivity coefficients of the model variables on the parameters. Various 

sensitivity coefficients can be obtained by MCA, such as elasticity, concentration control, flux control, 

sensitivity flux control, response and time-dependent response coefficients [50], depending on the model 

inputs and outputs of interest, e.g. the flux control coefficient considers the rate of a reaction as the input, 

and the flux of the reaction in the system as a whole as an output [54]. In the systems of this project, 

steady states are the observables of interest and the associated sensitivity analysis therefore considers 

parameters as input and a steady state for each variable as an output [50] leading to so-called response 

coefficients. The response coefficients are indicators of the change in a steady state brought upon by a 

change in a parameter value [55, 56].  Response coefficients can then be used to indicate parameters 

important or redundant for the model predictions, as well as which parameters have a large influence on 

the model outputs. It thus offers information regarding potential areas for further investigation of targets 

in drug development. 
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2.4.2 Uncertainty analysis 

Uncertainty analysis is closely related to local sensitivity analysis as it describes the contribution of 

uncertainty of each parameter in a model to the uncertainty in model predictions [57]. Where local 

sensitivity analysis gives insight on how variables are affected by small changes in parameters, it does 

not show how the overall uncertainty of a parameter can affect the uncertainty in the model outputs at 

the reference state. This method is commonly used when parameters are not set at a certain value or have 

been estimated from literature. Uncertainty analysis can therefore be useful to indicate which parameters 

should not have a large influence on the model outputs as it would contribute to the uncertainty in the 

model predictions. Uncertainty analysis will thus be included in this project, in conjunction with local 

sensitivity analysis [50, 57-59].  

 

2.4.3. Robustness Analysis and Sampling methods 

The response coefficients that will be obtained through local sensitivity analysis could be used as a model 

robustness indicator for small changes in parameters round their reference values. A robust model is a 

model that is resilient to changes in model inputs [60]. Therefore, if a parameter perturbation shows no 

or insignificant change to the different variables, the model will show a degree of robustness to a specific 

parameter. The question could however be asked how robust a model is to changes in all parameters at 

the same time? A typical outcome of such an analysis would thus show the different outcomes, if 

outcomes do differ, with variations in parameter values of a model. The different outcomes that will be 

obtained can then be visualized as a distribution showing the density and the lowest and highest possible 

variable outputs. This requires obtaining numerous parameters sets in a distribution around the reference 

state. Various sampling techniques exist to obtain these sets and will be discussed briefly. 

 

Numerous factors should be kept in mind when deciding on a sampling method as the different methods 

rely on different mathematical and coding techniques, and inputs which can be computationally 

expensive for some methods. Methods reviewed included the Morris method, stratified sampling, Latin 

Hypercube Sampling (LHS) and Monte Carlo (MC) random sampling [50, 61-64]. The Morris method 

of sampling encompasses an OAT design, as each parameter is varied over a range in a step-wise manner, 

meaning that if a parameter range is defined as lying between 90% and 110 % of the reference parameter 

value, subdivided into 5 intervals, the parameters are chosen on the interval boundaries, in other words 

where the parameter is at 90%p, 95%p etc. [65]. Trajectories are then determined in parameter space 

whereby every parameter is changed in a coordinated way, thereby constructing various parameter sets, 
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and an elementary effect can be calculated for each parameter as the change in the variable outputs 

achieved. The mean and standard deviations of a given parameter’s elementary effects from different 

trajectories is then used as a measure of global sensitivity [66, 67]. Stratified sampling and LHS both 

encompass a choice of interval amount and the range of every parameter’s values is then divided into 

this number of equally sized intervals. A random value is chosen in each interval. If a range was divided 

into five intervals, there would therefore be five parameter values for each individual parameter, each 

falling in one of the intervals [68, 69]. The difference in these two sampling techniques lie within their 

constructing of parameter sets for model evaluation. Consider a scenario where there are 5 intervals for 

7 parameters, (i.e. 5 values for every parameter). For LHS the construction of a parameter set uses one 

parameter value from any interval for each parameter. However, if a parameter from one interval has 

been used, it will be excluded in the construction of the next parameter set, therefore ensuring that there 

would only be 5 (unique) parameter sets. Stratified sampling differs in that it does not exclude a 

previously used parameter and ensures that all parameter combinations are used [69]. Therefore, for the 

same number of parameters and intervals, stratified sampling will produce 57, consequently 78 125, 

unique strata (or parameter sets). As this will increase exponentially with increase in the number of 

parameters incorporated in a model, or with an increase in intervals analyzed, this could become a very 

computationally expensive method. Lastly, MC random sampling needs a range for each parameter, in 

which a random value is chosen, thus creating one parameter set [70]. A value may be used more than 

once ensuring more parameter sets and combinations can be obtained. As the process is entirely random, 

the more iterations that can be run, the more likely it becomes that the parameter space is covered 

satisfactorily. Note that the coverage of parameters space is assumed to be more thorough for fewer sets 

in the case of LHS and stratified sampling by design. 

 

As some model parameter sets included more than 30 parameters in this project, parameter space size 

was a necessary factor to keep in mind. MC random sampling (with a high number of parameter sets) 

and LHS (with a lower number of sets) was used to obtain and compare robustness results for model 

variables between the two methods and between models. As each method can generate unique parameter 

sets, with each parameter set leading to new steady states for model variables, a total range could be 

determined for the steady state results. This range would therefore be an indicator of model robustness 

to combined parameter changes. 
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2.4.4. Global Sensitivity Analysis 

Local sensitivity only shows the sensitivity of a model to small perturbations or changes in one parameter 

at a time, and lacks the ability to show the model sensitivity in the range of model outputs arising from 

combined non-infinitesimal parameter changes. Global sensitivity analysis offers a different approach as 

it allows for large perturbations in all parameters. Intense variations in the biology of individuals and 

populations exist, therefore indicating that more than one steady state is achievable for each variable. 

Global sensitivity analysis can therefore assist in indicating unexpected sensitivities and thereby 

determining which of the parameters can contribute to the variation of the observed model outputs. 

Additionally, it can indicate if the local sensitivities is conserved over a larger parameter space as seen 

in individuals [50].  

 

Global sensitivity analysis is a widely used term, with no consensus on the methods employed, that 

implies perturbations in all parameters simultaneously [49, 50, 71-72]. Parameter ranges used vary 

greatly between authors, as some would vary parameter values by 50% and others by 10%, depending 

on the model investigated as well as uncertainty in parameters. Nevertheless, a method that can be used 

for sensitivity analysis of a biological model at every point in parameter space would be MCA if every 

such point is treated as a reference state for a local analysis. Other general global sensitivity analysis 

methods used on biological models include Multi-Parametric Sensitivity Analysis (MPSA), Partial Rank 

Correlation Coefficient (PRCC), Morris sensitivity analysis method, Weighted Average of Local 

Sensitivities (WALS), Sobol method, Fourier Amplitude Sensitivity Test (FAST), extended FAST 

(eFAST) and Random Sampling High-Dimensional Model Representation (RS HDMR) [50]. Each of 

these methods have their advantages and disadvantages with various levels of computational and 

mathematical complexity and approximation. The MPSA method has the disadvantage of requiring a 

threshold value in model outputs to determine if new parameter sets are acceptable. This borders on being 

impossible with biological models with a large amount of parameters, as model outputs can differ vastly. 

The PRCC method builds on the assumption that model input and outputs share a monotonic relationship 

and WALS uses a combination of weighing factors and the averages of local sensitivity results for each 

parameter in a local parameter space in order to obtain the global sensitivity result. The Sobol method, 

FAST, eFAST and RS HDMR are all variance-based methods that become more computationally 

expensive with increase in parameter sets [50, 53, 61, 69]. 
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The difference between local and global MCA analysis is that global analysis is done when all parameters 

are varied. As the sampling methods discussed in the previous section would create numerous parameter 

sets, MCA analysis is performed on each set and results are obtained in the form of response coefficients 

(68). For a sampling method of say a 1000 parameter sets, there would therefore be 1000 response 

coefficients for each parameter, thus showing a distribution of possible response coefficients for a 

parameter. A normal distribution with the mean and median lying on the wild type response coefficient 

would consequently show global robustness of the model’s sensitivity for a parameter. In principle there 

could exist different response coefficients for these parameters within a biologically plausible parameter 

space.  

 

In summary, all sensitivity analysis methods would therefore give insight into the reliability of model 

constructions and parameter values used. Results for global sensitivity analysis can additionally be 

compared between different models where if more than one model shows the same global analysis results 

for a parameter, this parameter might be cause for further investigation. 
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Chapter 3 

 

Methodologies  
 

All modeling and sensitivity analysis methods were implemented in Wolfram Mathematica v.11.3. Prior 

to sensitivity analysis, each model used was reproduced and simulated with standard numerical 

differential equation solver and root finding functions in Mathematica. This was performed to verify that 

the same model outputs as published could be obtained, i.e. faithful model reproduction was achieved. 

The reproduced results are shown in Appendix A. Functions were then coded to perform local sensitivity, 

uncertainty, robustness and global sensitivity analyses on all models.  

 

3.1. Local Sensitivity Analysis 

 

For the local sensitivity analysis of model parameters, standard methods of MCA were utilized. This 

method entailed the perturbation of parameters one at a time to see the effect of the perturbation on model 

variable outputs, indicated as the response coefficient. A response coefficient describes the percentage 

change of a model output – in this case the steady states of different variables V – upon a 1% change in 

model inputs or parameters p. The general formula of a response coefficient follows: 

 

𝑅𝑝
𝑉 =  

𝜕𝑉

𝜕𝑝
×

𝑝

𝑉
 

 

Numerically, the derivative is approximated by a finite difference formula symmetrically using 

symmetric perturbations of size pertSize (e.g. 0.001 for a 0.1% perturbation) up and down from the 

reference parameter value: 

 

𝑅𝑝
𝑉 =  

1

2
(

𝑛𝑒𝑤𝑆𝑆𝑈𝑝 − 𝑤𝑡𝑆𝑆

𝑝𝑎𝑟𝑎𝑚𝑈𝑝 − 𝑝𝑎𝑟𝑎𝑚𝑊𝑇
+

𝑛𝑒𝑤𝑆𝑆𝐷𝑜𝑤𝑛 − 𝑤𝑡𝑆𝑆

𝑝𝑎𝑟𝑎𝑚𝐷𝑜𝑤𝑛 − 𝑝𝑎𝑟𝑎𝑚𝑊𝑇
) ×

𝑝𝑎𝑟𝑎𝑚𝑊𝑇

𝑤𝑡𝑆𝑆
 

=
𝑛𝑒𝑤𝑆𝑆𝑈𝑝 − 𝑛𝑒𝑤𝑆𝑆𝐷𝑜𝑤𝑛

2 × 𝑝𝑒𝑟𝑡𝑆𝑖𝑧𝑒 × 𝑤𝑡𝑆𝑆
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The up and down perturbation of a parameter yields two new steady states, denoted as newSSUp and 

newSSDown. The difference in these two steady states is divided by the difference in parameter values 

(paramUp and paramDown) and then normalized to the reference state.  

 

3.2. Uncertainty analysis 

 

Uncertainty analysis was performed on all models to show which parameter’s uncertainty would 

contribute the most to total uncertainty in the model outputs. The method therefore incorporates the 

individual variance of each parameter to attain individual uncertainties. The variance is calculated as the 

variance of the natural logarithm of each parameter: 

 

𝜎2(ln 𝑝𝑗) 

 

However, as the variance of parameters in the biological models of this thesis are not known, all 

parameters were modelled to have a 10% random variance in parameter value. It is therefore assumed 

that all parameters vary with the same percentage and the uncertainty results would thus indicate which 

variance has the largest effect on the model outputs. The individual contribution of each parameter 

variance 𝜎2(𝑙𝑛 𝑝𝑗) on the total variance of each variable 𝜎𝑗
2 (𝑉𝑖)  is then calculated using: 

 

𝜎𝑗
2 (𝑉𝑖) = 𝜎2(ln 𝑝𝑗)(

𝜕𝑉𝑖

𝜕 ln 𝑝𝑗
)2 

 

where 𝜎2(ln 𝑝𝑗)  =  
1

12
[ln(1.1𝑝𝑗) − ln(0.9𝑝𝑗)]2 i.e. we considered a uniform distribution with 

maximum and minimum determined by a 10% change in the wild type parameter value (i.e. min = 0.9p 

and max = 1.1p) for each parameter [73]. The total variance of each variable can be determined by 

summation of all of the individual contributions to uncertainty of each parameter on a variable, 

 

𝜎2(𝑉𝑖) = ∑ 𝜎𝑗
2 (𝑉𝑖)

𝑗
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If the total variance of a variable has been calculated, it would therefore be possible to determine the 

contribution of each parameter to model output uncertainty as a percentage: 

 

%𝑢𝑐𝑖𝑗 =
𝜎𝑗

2 (𝑉𝑖)

𝜎2(𝑉𝑖)
× 100 

 

3.3. Sampling methods and Robustness analysis 

 

Two different sampling methods were used to achieve parameter sets in preparation for robustness and 

global sensitivity analysis. The first sampling method utilized is a MC random sampling based method. 

All parameters were therefore allowed to vary at the same time within a 10% range and parameters sets 

were generated choosing values within the range at random. For this analysis, 10 000 parameter sets were 

generated per model for further analysis. 

 

The second sampling method used was LHS, which also allowed parameters to vary with a 10% range, 

with the addition of the use of user defined intervals. For this analysis 1 000 evenly distributed intervals 

were chosen, indicating that each parameter would have 1 000 values, each value taken randomly from 

every interval. The parameter sets were then constructed by randomly choosing one parameter value 

from each parameter. Once a parameter value from a set is used, this parameter value is excluded from 

further parameter set constructions. As such, a 1 000 unique parameter sets could be constructed per 

model for this sampling method.  

 

Once all parameter sets were generated for both sampling methods, each parameter set was used to solve 

for the steady state solutions of all variables. As such, 10 000 steady states were obtained for each variable 

in each model for the MC sampling method. This was then used to determine a distribution of steady 

states achieved by all parameter sets, and results are visualized with box-and-whisker plots in Chapter 7, 

to be used as an indicator of model robustness. The same method was applied to the parameter sets 

obtained by LHS.  
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3.4. Global Sensitivity Analysis 

 

The global sensitivity analysis method employed in this thesis is the MCA analysis. The parameter sets 

achieved in MC and LHS provided the parameter space and at every point, MCA was used to determine 

the response coefficients of each variable for each parameter. The same method employed for local 

sensitivity analysis was therefore used on each parameter set. The obtained response coefficients for each 

parameter was used to construct a histogram to show the distribution of possible responses. The 

histograms were compared with the local sensitivity analysis response coefficients denoted as the wild 

type responses. The results are presented in Chapter 8. 
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Chapter 4 



Model Descriptions 
 

The comparable models that could be reproduced are described in this chapter. The reproduced model 

outputs obtained using Wolfram Mathematica v.11.3 are presented in Appendix A, following parameter 

descriptions and values used in their simulations. Many models on the within-host dynamics of malaria 

infection are built on the original model from Anderson et al. [10]. Four publications are included in this 

study. As some of the publications includes multiple sub-models, only the most relevant sub-models are 

shown and described to stipulate the differences between the individual sub-models of each publication. 

However, for this study our interest lies in analyzing the dynamics of models where the immune response 

is included, and will thus be the focus of subsequent chapters. 

 

4.1. Anderson et al. [10] 

 

The first model that is included in the investigation can be seen as the starting point of most within-host 

models of malaria infection, as it is one of the first of such models proposed, upon which many others 

were based. Anderson et al. [10] constructed a within-host model focusing on the erythrocytic cycle of 

malaria infection, including the immunological response to free roaming merozoites and iRBCs. In the 

absence of an immune response the model ODEs are as follows: 

 

𝑑𝑥

𝑑𝑡
= 𝜆 − 𝜇𝑥 − 𝛽𝑥𝑠                                                             4.1.1 

𝑑𝑦

𝑑𝑡
= 𝛽𝑥𝑠 − 𝛼𝑦                                                                        4.1.2 

𝑑𝑠

𝑑𝑡
= 𝛼𝑟𝑦 − 𝑑𝑠 − 𝛽𝑥𝑠                                                              4.1.3 

 

Stellenbosch University  https://scholar.sun.ac.za



22 
 

For this model, the variables 𝑥, 𝑦 and 𝑠 represent the densities of healthy RBCs, iRBCs and free roaming 

merozoites within the blood plasma, respectively. The ODEs above show how the different parameters 

and terms incorporated in each equation can influence each variable. For variable 𝑥 (eq. 4.1.1),  the rate 

of RBC recruitment from bone marrow (𝜆), increases the number of uninfected RBCs. The parameter 𝜇 

describes the natural death rate of RBCs, and is dependent on the population of current RBCs (𝜇𝑥). 𝛽𝑥𝑠 

is a transfer term present for all three variables, where 𝛽 denotes the probability of a merozoite infecting 

a healthy RBC. Thus, this term is dependent on, and influences, the population densities of merozoites 

(𝑠), as well as available RBCs (𝑥). As the term depicts the decrease of healthy RBC and free roaming 

merozoites as the healthy erythrocytes are infected, iRBC will be increased. This can be seen in the ODEs 

presented above as the term 𝛽𝑥𝑠 is only positive in equation 4.1.2 representing the iRBC population. The 

death rate of iRBCs is represented by the term 𝛼𝑦, which leads to a decrease in the density of iRBCs. 

However, as a bursting iRBC releases a number of merozoites 𝑟, a positive term appears for variable 𝑠 

as the free roaming merozoites will increase within the blood. Lastly, merozoites need to infect RBCs to 

survive and failure to do so will result in their death, represented by 𝑑𝑠 [10]. 

This model shows a simplistic form of three different cell densities important for studying malaria 

infection, but does not yet include the immune response to infection. It should be noted that this model 

was the first to be constructed on the within-host dynamics of malarial infection and was constricted at 

the time (1989) with a lack of information regarding the actual dynamics and involvement of the immune 

system [10]. The inclusion of the immune system response, as well as the parameter values used, has 

therefore served as a basis for further development of models. Upon inclusion of the immune system 

response, the authors first derived an ODE describing the immune attack on only the free roaming 

merozoites. Thereafter, another variable 𝑇 was added, denoting the density of the antigen-specific T-

lymphocytes directed at the free merozoites. This is indicative of a humoral immune response. This 

variable consequently also affects the variable 𝑠 for merozoite density in the blood: 

 

𝑑𝑠

𝑑𝑡
= 𝛼𝑟𝑦 − 𝑑𝑠 − 𝛽𝑠𝑥 − ℎ𝑠𝑇                                     4.1.4 

𝑑𝑇

𝑑𝑡
= 𝛾𝑠𝑇 − 𝑎𝑇                                                         4.1.5 
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A new term ℎ𝑠𝑇 is inserted for the variable 𝑠, representing the net rate of T-lymphocytes induced death 

of merozoites, dependent on the antigen-specific T cell population and the merozoite density itself. The 

T-lymphocytes proliferate at a rate 𝛾𝑠𝑇 proportional to the densities of both variables representing the 

stimulation of the immune system. To conclude the addition of the T lymphocyte equation, another term 

is added for the natural decay rate of T-lymphocyte, 𝑎𝑇.  

Further development of the system of ODEs to include immune response to the infection sees the 

alteration of the model to include cell-mediated immune response to infection. This indicates that the T-

lymphocytes would then affect the number of iRBCs, 𝑦, as presented in eq. 4.1.6, showing immune attack 

on both disease variables, 𝑠 and 𝑦. As such, another term (𝑘𝑦𝑇) needs to be added to the ODE depicting 

T-lymphocyte density, as the differentiation of T-lymphocytes will additionally be dependent on the 

density of iRBCs present in the blood. As with 𝛾, 𝑘 indicates the proliferation rate of T-lymphocytes due 

to iRBC presence.  

 

𝑑𝑦

𝑑𝑡
=  𝛽𝑥𝑠 − 𝛼𝑦 − 𝑔𝑦𝑇                                              4.1.6 

𝑑𝑇

𝑑𝑡
= 𝛾𝑠𝑇 + 𝑘𝑦𝑇 − 𝑎𝑇                                      4.1.7 

 

From theory, the adaptive immune response is split into two groups based on the cells used to fight the 

disease. The humoral component of the immune response consists of B-lymphocytes that secrete 

antibodies to attack free-roaming pathogens within the blood, whereas the cell-mediated component 

attacks infected cells within a host. The immune response incorporated in this model description therefore 

includes both components of the adaptive immune response, while excluding the innate immune 

response. As the humoral immune response is the adaptive response to free roaming merozoites within 

the blood, antibodies should technically be incorporated instead of T-lymphocytes to indicate the attack 

against merozoites. However, the model describes both types of adaptive immunity as T-lymphocytes, 

which could consequently rather be seen as a group of immune effectors that include both antibodies and 

T-lymphocytes. Although there is then only one variable to describe these T-lymphocytes, the attack is 

split between the ODEs themselves. 

From these equations the authors constructed four different models that will be denoted as sub-models 

1A-1D. Every model presented depicts different dynamics of the malaria infection and the immune 
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response thereto, by including different components or combination of components of the model. The 

first sub-model (1A) shows the dynamics of the different variables without an immune response and 

incorporates eq. 4.1.1 to 4.1.3. The second sub-model (1B) includes an antibody attack by the humoral 

part of the adaptive immune system, thus affecting the free roaming merozoites while excluding an attack 

on the iRBCs, and is represented by eq. 4.1.1, 4.1.2, 4.1.4 and 4.1.5. The third sub-model (1C) includes 

a cell-mediated attack on iRBC, therefore encompassing eq. 4.1.1, 4.1.2, 4.1.6 and 4.1.7; however, it 

excludes the attack on merozoites. As eq. 4.1.6 and 4.1.7 include parameters for antibody attack, these 

parameters were set to zero to incorporate this exclusion in analysis. The last sub-model (1D) includes 

both forms of attack and uses the same equations as the third model, but with all parameters larger than 

zero. The parameters used and model outcomes are indicated in Appendix A. 

 

4.2. Li et al. [13] 

 

Li et al. [13] showcases a same form of model as Anderson et al. [10] with four different ODEs for 

variables 𝐻 (RBCs), 𝐼 (iRBCs), 𝑀 (Merozoites) and 𝐸 (Immunity effectors). Here “immune effectors” 

denotes all biological immune effectors as one class and does not distinguish between innate and adaptive 

immunity.  

𝑑𝐻

𝑑𝑡
= λ − 𝑑1𝐻 − 𝛼𝐻𝑀                                              4.2.1 

𝑑𝐼

𝑑𝑡
= 𝛼𝐻𝑀 − 𝛿𝐼 −

𝑝1𝐼𝐸

1+𝛽𝐼
                                                    4.2.2 

𝑑𝑀

𝑑𝑡
= rI − 𝜇𝑀 −

𝑝2𝑀𝐸

1+𝛾𝑀
                                                      4.2.3 

𝑑𝐸

𝑑𝑡
= −𝑑2𝐸 +

𝑘1𝐼𝐸

1+𝛽𝐼
+

𝑘2𝑀𝐸

1+𝛾𝑀
                                               4.2.4 

 

As there is significant overlap of the processes encapsulated in this model with those in the model of 

Anderson et al. [10], only new aspects will be discussed. This model is extended from the Anderson et 

al. [10] model, as the authors included non-linear bounded Michaelis-Menten-Monod functions within 

their ODEs. These functions are visible as fractions in the different equations above and are included to 

account for saturation of the processes, as the number of infections (iRBCs and merozoites) that can be 
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eliminated by the immune effectors will plateau at some point, since this process is dependent on the 

efficiency of e.g. immune effectors and binding to merozoites. The first process of this kind is the removal 

of the iRBCs (𝐼) by immune effectors 𝐸, represented by 𝑝1𝐼𝐸/(1 + 𝛽𝐼) in equation 4.2.2. In this term 𝑝1 

is a rate constant for the rate at which immune effectors can remove iRBCs, and 1/𝛽 is viewed as a half-

saturation constant for iRBCs, as immune cells can only eliminate iRBCs if these two cell groups “bind”. 

The same explanation can be given for the term 𝑝2𝑀𝐸/(1 − 𝛾𝑀), where 𝑝2 is the rate at which the 

immune effectors can remove the merozoites in the blood plasma, while 1/𝛾 depicts a half-saturation 

constant. 𝑘1 and 𝑘2 are both parameters describing the proliferation rate of lymphocytes due to activation 

by iRBCs and merozoites, respectively, shown in the last ODE (eq. 4.2.4) of this model. Even though 

this publication views the immune effectors as a single variable 𝐸, the immune response is split into two 

components within the relevant equation 4.2.4. In equation 4.2.4, the second term (first component) 

shows the proliferation of the immune cells due to the activation by iRBCs and the third term (second 

component) shows activation by merozoites. The merozoites and iRBCs thus activate and are removed 

by the humoral immune effectors (rate constants 𝑝2 and 𝑘2) and cell-mediated immune effectors (rate 

constants 𝑝1 and  𝑘1), respectively. These processes of activation of immune effectors are saturable, 

meaning activation will not continue indefinitely as it is dependent on the population of the disease 

variables and immune effector concentration, their binding and efficiency of the process.  

The authors created six different outputs from this model by changing the relevant parameter values to 

describe different disease responses. Four of these will be included here for analyses. The first sub-model 

(2A) is one with a malaria free equilibrium. The second sub-model (2B) represents malaria infection 

without a specific immune response, where a host lacks the defense against infection. Sub-model 2C 

includes a specific immune response against infection, and sub-model 2D is for an endemic state of 

malaria infection. These scenarios were simulated by changing parameter values as explained in 

Appendix A. 

 

4.3. Niger et al. [15] 

 

Niger et al. [15] extended on some basic existing models such as Anderson et al. [10] and Li et al. [13] 

to contain age compartments of the intracellular parasite stage (iRBCs), showing how the parasite 

matures within the infected erythrocyte. The stage of parasite maturation is indicated as compartments, 

where the parasites “move” from one age compartment to the next (𝑌𝑛). The term moving is used 
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artificially to model the aging of the iRBCs. Different compartments can thus designate the merozoite 

development as it matures from an immature trophozoites to a schizont that can release new merozoites. 

The compartments following the first compartment obey the same form of the differential equation; 

however, as noted in Appendix A differences between the growth and death rates of the parasites in each 

compartment are used. Niger et al. [15] also proposed a more biologically realistic model, as this model 

splits the immune effector cells into two groups, immune cells 𝐵 and antibodies 𝐴. The model with 

healthy RBCs (𝑋) and merozoites (𝑀) follows: 

 

𝑑𝑋

𝑑𝑡
=  𝜆𝑋 −  𝛽𝑋𝑀 − 𝜇𝑋𝑋                                                       4.3.1 

𝑑𝑌1

𝑑𝑡
=  𝛽𝑋𝑀 − 𝜇1𝑌1 − 𝛾1𝑌1 − 𝑘1𝐵𝑌1                                           4.3.2 

𝑑𝑌2

𝑑𝑡
=  𝛾1𝑌1 − 𝜇2𝑌2 − 𝛾2𝑌2 − 𝑘2𝐵𝑌2                                         4.3.3 

………………………………………… 

𝑑𝑌𝑛

𝑑𝑡
=  𝛾𝑛−1𝑌𝑛−1 − 𝜇𝑛𝑌𝑛 − 𝛾𝑛𝑌𝑛 − 𝑘𝑛𝐵𝑌𝑛                              4.3.3 

𝑑𝑀

𝑑𝑡
= 𝑟(𝜇𝑛 + 𝛾𝑛)𝑌𝑛 − 𝜇𝑀𝑀 − 𝑘𝑀𝐵𝑀 − 𝜇𝛽𝑋𝑀                      4.3.4 

𝑑𝐵

𝑑𝑡
= 𝜆𝐵 + 𝐵(𝜌1𝑌1 + 𝜌2𝑌2 + ⋯ + 𝜌𝑛𝑌𝑛 + 𝜌𝑛+1𝑀) − 𝜇𝐵𝐵      4.3.5 

𝑑𝐴

𝑑𝑡
= 𝜂𝐵𝑀 − 𝜇𝐴𝐴                                                                      4.3.6 

 

This model corresponds with the Anderson et al. [10] and Li et al. [16] models in various ways when it 

comes to healthy RBCs and different birth and death rates of the variables, and as such only the immune 

system components, as well as the iRBCs and its age-related compartments, will be discussed. In the first 

stage 𝑌1, eq. 4.3.2 shows infection of healthy RBCs dependent on the infection rate constant 𝛽 and the 

populations of both the merozoites (𝑀), and healthy RBCs (𝑋). The natural death rate 𝜇𝑌1 of iRBCs and 

the progression to the next age compartment of iRBC, are both responsible for a decrease in variable 𝑌 

in each respective compartment. The immune system now additionally kills iRBCs, where 𝑘𝑖 is the 

immuno-sensitivity of the stage 𝑖 parasite iRBCs to immune effectors 𝐵. For the next compartment 𝑌2 

the term 𝛽𝑋𝑀 no longer appears (which is the rate of infection of healthy RBC). The first term is hence 
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replaced with  𝛾1𝑌1 to show an increase in 𝑌2 as cells “enter” the next stage of aging. In this publication 

𝑌𝑛 encompass five stages with differences in parameters shown in Appendix A. The immune effectors 

are denoted by variable 𝐵 as immune cells including the innate immune effectors, T- and B-lymphoctes, 

and variable 𝐴 denoting antibodies specific to free merozoites. This is an important distinction in the 

immune effectors as innate immune cells are naturally always present, whereas antibodies are formed 

during the acquired immunity response. For the immune cells 𝐵 we thus have a natural production of 

cells, 𝜆𝐵, as well as a stimulation of production rate due to the presence of an infection (at rate 𝜌𝑖𝑌𝑖) in 

all infected compartments including free merozoites. For antibodies in the human body, there is no 

natural production but rather an increase of antibodies at a rate 𝜂𝐵𝑀, dependent on populations of 

immune cells and merozoites. 

Using these equations (eq. 4.3.1 to 4.3.6), two sub-models were published, by varying the parameter 

values to achieve different disease states. One sub-model (3A) shows a disease-free state, and the other 

(3B) shows a stable parasite-present steady state. 

 

4.4. Okrinya [16] 

 

The last model is a model contained within the doctoral thesis of Okrinya [16] and is added for analysis 

due to the incorporation of an extra variable 𝐺, denoting the population of Plasmodium gametocytes 

within the blood. This model can thus be viewed as another extension of the previous models. The model 

itself was published as both a dimensionalised and non-dimensionalised form. The model outputs were 

achieved using the non-dimensionalised form to overcome the various different time scales for the 

parameters used in the model system. For numerical comparison to other models, the dimensionalised 

form of this model is presented here. The model with healthy RBCs (𝑋), iRBCs (𝑌), merozoites (𝑀), 

innate immune cells (𝑃) and antibodies (𝐴), follows.  
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𝑑𝑋

𝑑𝑡
=  𝜆𝑋 − 

𝛽𝑥𝑋𝑀

1+𝑐0𝐴
− 𝜇𝑋𝑋                                                                       4.4.1  

 
𝑑𝑌

𝑑𝑡
=  

𝛽𝑥𝑋𝑀

1+𝑐0𝐴
 − (𝜇𝑦 + 𝜇𝑛)𝑌 − 𝑘𝑦𝑃𝑌(1 + 𝑘𝑎𝐴)                                      4.4.2 

𝑑𝑀

𝑑𝑡
=  

𝑟𝜇𝑦(1−𝜃)𝑌

1+𝑐1𝐴
 − 

𝛽𝑥𝑋𝑀

1+𝑐0𝐴
 − 𝜇𝑚𝑀 − 𝑘𝑚𝑃𝑀(1 + 𝑘𝑏𝐴)                          4.4.3 

𝑑𝐺

𝑑𝑡
=  

𝑟𝜇𝑦𝜃𝑌

1+𝑐1𝐴
 − 𝜇𝑔𝐺 − 𝑘𝑔𝑃𝐺(1 + 𝑘𝑐𝐴)                                                      4.4.4 

𝑑𝑃

𝑑𝑡
=  𝑏𝑚 + 𝜂1(𝑌 + 𝜙𝑀) − 𝜇𝑝𝑃 − 𝑃(𝑘𝑑𝑌 + 𝑘𝑛𝑀)                                  4.4.5 

𝑑𝐴

𝑑𝑡
= 𝜂2{𝑌(𝑡 − 𝑑1) + 𝑔2𝑀(𝑡 − 𝑑1)} − 𝜇𝑎(𝐴0 − 𝐴) − 𝐴(𝜂3𝑌 + 𝜂4𝑀)      4.4.6 

 

To verify the model outputs from our reproduction of the model, the non-dimensionalised and 

dimensionalised outputs are presented in Appendix A to illustrate the differences. The sensitivity analysis 

will only be shown for the dimensionalised model. 

This model differs from previous models not only due to its added variable 𝐺, but also due to having split 

the immune effectors differently. The first immune effector variable 𝑃 reflects the innate immune cells 

and represents cells such as dendritic cells and macrophages. The second effector variable 𝐴 depicts the 

population of adaptive immune cells and include cells like B and T cells, as well as antibodies. This 

shows that the immune effectors are split differently in this model compared to the Niger et al. [15] 

model, and will thus lead to different outputs in the following analyses. Comparison to the ODEs of the 

Niger et al. [15] model, also shows the difference in processes. For example, terms that include 1/(1 +

𝑐1𝐴) indicate the efficiency of antibodies blocking the infection. The term 𝑘𝑚𝑃𝑀(1 + 𝑘3𝐴) depicts the 

successful removal of merozoites by the immune system, dependent on the innate immune cell as well 

as the merozoite concentration. Similar terms can be explained in the same manner when looking at 

parameter definitions as shown in Appendix A. An additional parameter 𝛳 in the ODEs for 𝑀 and 𝐺 (eq. 

4.4.3 and 4.4.4) represents the fraction of merozoites that will not enter the erythrocytic cycle again, as 

they will develop into gametocytes. For the innate immune cell concentration, a natural birth rate as well 

as a stimulation rate is observed due to the presence of infection (𝜂1), whereas antibodies and other 

adaptive immune effectors are only produced due to the presence of iRBCs and merozoites. Note, 

however, that a time lag (𝑡 − 𝑑1) is incorporated in the equation, as there is a delay between when 

infection starts and when adaptive immune cells are produced. 
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Only one model output has been published for this specific model (4A) showing pathogenesis in the 

human host when the immune system fights the infection. 

All of the publications included for analysis therefore differ in their model structure as well as their 

incorporations of the immune system. The Anderson et al. [10] and Li et al. [13] models use one variable 

to designate the immune effectors, with the Anderson et al. [10] model denoting this variable as T-

lymphocytes while Li et al. [13] denotes them as an immune effector group. Both of these models do not 

include the innate immune response, but have split the adaptive immune response into humoral and cell-

mediated immunity. The Niger et al. [15] and Okrinya [16] models both split the immune effectors into 

two variables and include the innate and adaptive immune response towards the infection. However, 

whereas the Niger et al. [15] model has split it into two variables describing all immune cells and 

antibodies, the Okrinya [16] model has split them into innate immune cells and all adaptive immune 

cells. The different divisions of the immune system would thus lead to different analysis results.  

 

4.5. R0 equations for models 

 

The reproductive number (𝑅0) equation in a model is an indication of whether the disease will persist 

and is composed of a number of parameters related to the progression and death of an infection. The 

reproductive number can be derived using the next generation method as described by Diekman et al. 

[74]. The method involves the formation of a transmission (𝐹) and transition (𝑉) matrix, with the first 

matrix describing the production of new infections, while the second describes changes in model state. 

The product of the negative transmission matrix (−𝐹) with the inverted transition matrix (𝑉−1) yields 

the next generation matrix (NGM). 𝑅0 is equal to the dominant eigenvalue of the NGM. 

The 𝑅0 equations normally consists of parameters that would increase the infection as the numerator and 

parameters that would decrease the infection as the denominator. An 𝑅0 value ≥ 1 reflects an endemic 

disease state, while a 𝑅0 < 1 reflects a disease-free state. This would thus show that a value of 1 or above 

would mean disease activating parameters are greater than disease clearing parameters, whereas a lower 

than 1 value would show the opposite. Note that 𝑅0 is defined relative to the disease-free system and is 

therefore not a direct indication of disease progression with subsequent rounds of parasite replication and 

the effect of immune activation. Li et al. [13], Niger et al. [15], and Okrinya [16] published their own 𝑅0 

equations (presented below), derived using the NGM. However, the 𝑅0 equation for the Okrinya [16] 
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model was derived for the non-dimensionalised model, and we therefore converted it for the 

dimensionalised model as used in this project. Anderson et al. [10] does not incorporate a 𝑅0 equation, 

but rather a ratio describing whether the disease will persist. This ratio was transformed to a 𝑅0 equation 

for this project. As the ratio included disease increasing variables to decreasing variables as seen with 

the 𝑅0 equation, the disease increasing variables were used as a numerator and the others as the 

denominator.  The 𝑅0 equations for all analyzed models are: 

 

𝑅0 =  
(𝑟−1)𝛽𝜆

𝑑[𝜇+(
𝛽𝑎

𝛾
)]

         4.5.1 

 𝑅0 =
𝑟𝛼𝜆

𝑑1𝜇𝛿
         4.5.2 

 𝑅0 =
𝛽𝑟𝛾1∙∙∙𝛾𝑛−1(𝛾𝑛+𝜇𝑛)(

𝜆𝑥
𝜇𝑥

)

[𝜇𝑀+𝑘𝑀(
𝜆𝐵
μ𝐵

)+uβ(
𝜆𝑥
𝜇𝑥

)][(μ1+γ1+𝑘1(
𝜆𝐵
μ𝐵

))∙∙∙(μ𝑛+γ𝑛+𝑘𝑛(
𝜆𝐵
μ𝐵

))]

   4.5.3 

𝑅0 =

𝛽𝑥𝜆𝑥
𝜇𝑥𝜇𝑦

𝑟(1−𝛳)

(1+
𝜇𝑛
𝜇𝑦

+
𝑘𝑦𝑏𝑚

𝜇𝑝𝜇𝑦
)(

𝛽𝑥𝜆𝑥
𝜇𝑥𝜇𝑦

+
𝜇𝑚
𝜇𝑦

+
𝑘𝑚𝑏𝑚
𝜇𝑝𝜇𝑦

)
       4.5.4 

 

From these equations it can be inferred which parameters have a large influence on the persistence or 

disease state. The 𝑅0 value is an indicator of whether the disease will evolve or clear at the start of 

infection. It is noticeable that some equations include parameters of the immune system e.g. eq. 4.5.3 

includes the natural birth rate of innate immune cells (𝜆𝐵), whereas other do not). This is due to the fact 

that parameters of the immune response can only be added if they exist at the start of infection, like the 

innate immune cells that have a natural birth rate and are always present, and thus not dependent on 

activation due to infection.  

All of the models that were analyzed in this thesis and the differences between them have now been 

described. The Anderson et al. [10] model is the most primitive model whereon most within-host models 

have been built. The Li et al. [13] model is akin to that of the Anderson et al. [10] model with more 

reliably estimated parameter values. The Niger et al. [15] model incorporates compartmentalization of 

the iRBC population and has split the immune effectors into two groups as immune cells and antibodies. 

The Okrinya thesis model is the most extended model which further incorporates a variable for the 

gametocyte population in an infected individual. Models described in this chapter will be analyzed in 

chapters to follow.  
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Chapter 5 

 

Local Sensitivity analyses 
 

Local sensitivity analysis was performed on all the models described in Chapter 4 by attaining response 

coefficients of the variables of each model for each of its parameters, using Metabolic Control Analysis 

(MCA). This analysis involves the perturbation of each parameter, one-at-a-time (OAT), to quantify the 

possible effects it would elicit on all of the model variables. This method was used for all parameters in 

each sub-model described in Chapter 4. The response coefficient values thus indicate the percentage 

change that a 1% change in a parameter value has on the steady state of a variable and is an indication 

of the importance of each parameter to the stability of the whole model system at its wild type steady 

state. For this analysis, the absolute steady state value of each variable is not of importance, but only the 

effect that changes in the parameters elicit on these steady states. The results are shown in the following 

tables and will be followed by a comparative conclusion at the end of this chapter. Take note that response 

coefficient values within sub-models of a model are comparable to each other. However, care should be 

taken when comparing response coefficient values obtained from different sources, such as Anderson et 

al. [10] and Li et al. [13], as differences exist in model structure and parameter definitions. It might be 

more instructive to compare such models when inspecting the theory of each model, and rather focusing 

on comparing which parameters showed the largest response coefficients, than focusing on the absolute 

values of these coefficients. 

Furthermore, parameters with a high response coefficient for variables such as the disease variables 

describing merozoite and iRBC concentration or the immune effectors, can be viewed as plausible drug 

targets for disease treatment or eradication. For example, a large negative response of one of the disease 

variables (variables indicative of disease, such as iRBCs and merozoites) on a parameter indicates that 

an increase in this parameter will lead to a decrease in the disease. 

Local sensitivity analysis was additionally performed on the 𝑅0 equations of all the sub-models to 

determine which parameters are important for the threshold of the reproductive number, as these 

parameters may offer targets that can lead to parasite clearance. 
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5.1. Anderson et al. [10] 

 

For the Anderson et al. [10] sub-models, the four variables represent the populations of healthy RBC (𝑥), 

iRBC (𝑦), free roaming merozoites (𝑠) and T-lymphocytes (𝑇). The local sensitivity analysis of the first 

sub-model (1A - malaria infection and no immune response) is shown in Table 5.1A. Parameter 

descriptions and values of this model can be found in Appendix A. All response coefficients for this 

model will be discussed in detail to demonstrate the methods of interpretation, after which the other 

model discussions will only include significant findings. 

 

Table 5.1A: The response coefficients for the first sub-model (1A) in the Anderson et al. [10] publication 

describing infection without immune response.  

1A-𝑹𝒑
𝑽 𝒙[𝒕] 𝒚[𝒕] 𝒔[𝒕] 𝑻[𝒕] 

𝝀  0∗ 1.666 1.666 - 

𝝁  0 −0.666 −0.666 - 

𝜷  −1 0.666 0.666 - 

𝜶  0 −1 0 - 

𝒓  −1.067 0.711 1.777 - 

𝒅  1 −0.666 −1.666 - 

𝒙[𝒕]- healthy RBCs; 𝒚[𝒕]– iRBCs; 𝒔[𝒕]- free roaming merozoites; 𝑻[𝒕]- T-lymphocytes; 𝝀- recruitment of healthy RBCs;                

𝝁- natural death rate of RBCs; 𝜷- probability of infection of RBCs with free roaming merozoites; 𝜶- death rate of iRBCs;         

𝒓- merozoites released per bursting iRBC; 𝒅- natural death rate of free roaming merozoites; 𝟎∗=0 due to rounding. 

 

Table 5.1A shows that the largest response coefficients are observed for the disease variables, 𝑦 and 𝑠. 

Disease variables are variables indicative of disease, such as merozoite population and iRBCs. These 

responses are seen where there is a change in parameters 𝜆 and 𝜇, where 𝜆 indicates an increased birthrate 

of healthy RBC, therefore increasing the concentration of cells that can be infected 𝑦. The increase in 

iRBCs can then indirectly increase the number of merozoites 𝑠 produced by the infected cells. 𝜇 

represents the opposite as it depicts the natural death rate of the healthy RBC and therefore decreases the 

cells as well as the possible infections that can exist. One would expect to see the larger response 

coefficient on these two parameters lying directly at the healthy RBCs population (𝑥), as the parameters 

are incorporated into the ODE for healthy RBCs (eq. 4.1.1); however, analysis indicates that, in fact, a 

chain reaction occurs, where the steady states of 𝑦 and 𝑠 are affected. This indicates that with an increase 
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in a variable, such as 𝑥, that is directly influenced by a given parameter, akin to 𝜆, the increase of the 

healthy RBC population would lead to an increase in a linked variable similar to 𝑦 if there is a density-

dependent transfer term such as 𝛽𝑥𝑠. As more cells are then infected and transferred from the uninfected 

cells 𝑥 to the iRBC state 𝑦, a decrease would be seen in 𝑥. The increase in x due to its natural birthrate 

𝜆, is therefore countered by a decrease due to infection. It is therefore possible that the response 

coefficient could be almost zero, as the steady state of the healthy RBC concentration will change 

minimally. 

𝛽 is present in all variable ODEs and will directly affect all variables. As this parameter is defined as the 

probability of a merozoite infecting a healthy erythrocyte, and its associated rate is thus dependent on 

the number of healthy RBCs and free roaming merozoites, an increase in this parameter will lead to a 

direct decrease of the healthy RBC concentration. As RBCs become infected, the iRBC population 

increases in turn. The merozoite population should decrease as the parameter is incorporated in the ODE 

of the merozoite population (eq. 4.1.4)). However, an increase is observed attributed to the increased 

iRBCs releasing more merozoites as the erythrocytic stage comes to an end and the iRBCs burst. 𝛼 

denotes the death of iRBCs and will influence this population. 𝑟 represents the amount of merozoites 

released per bursting iRBC and will consequently influence all three variables of this model. As the 

amount of merozoites increases, the iRBC will increase as well, leading to a decrease in healthy RBCs. 

𝑑 shows the death rate of merozoites and an increase in 𝑑 would therefore lead to less merozoites and 

consequently less iRBC, thus increasing the concentration of healthy RBCs. 

For a disease model without immune response it is easy to observe and plausibly deduce some of the 

possible responses that changes in parameters will elicit in the steady states of the different variables. 

This is due to the small number of parameters incorporated in the model, as well as the simplicity of the 

structure and component interactions of the model. A remarkable finding is, however, the small response 

of 𝑥 on 𝜆 as the response in the absence of infection would clearly be 1 (the steady state of the healthy 

RBCs would only be dependent on the birth and death rate of these cells). This analysis thus indicates 

that an increase in the RBC birth and death rates in the presence of an infection without an immune 

response, have negligible effect on the steady state of the RBC population while dramatically influencing 

disease variables. 

For the second sub-model (1B) from the Anderson et al. [10] publication, an immune response directed 

at free roaming merozoites is included. With an increase in parameters and variable interactions, the 

biological mechanisms leading to the response coefficients becomes more intricate. 
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Table 5.1B: The response coefficients for the second sub-model (1B) in the Anderson et al. [10] publication 

describing infection with antibody-mediated immunity towards free roaming merozoites.  

1B-𝑹𝒑
𝑽 𝒙[𝒕] 𝒚[𝒕] 𝒔[𝒕] 𝑻[𝒕] 

𝝀  1 1 0∗ 2.777 

𝝁  −0.625 −0.625 0∗ −1.735 

𝜷  −0.375 −0.625 −0∗ 1.735 

𝜶  0 −1 0 −0∗ 

𝒓  0 −0∗ −0∗ 2.962 

𝒅  0 0 0 −1.777 

𝒉  0 0∗ 0 −1 

𝜸  0.375 −0.625 −1 1.042 

𝒂  −0.375 0.625 1 −1.042 

𝒙[𝒕]- healthy RBCs; 𝒚[𝒕]- iRBCs; 𝒔[𝒕]- free roaming merozoites; 𝑻[𝒕]- T-lymphocytes; 𝝀- recruitment of healthy RBCs;                  

𝝁- natural death rate of RBCs; 𝜷- probability of infection of RBCs with free roaming merozoites; 𝜶- death rate of iRBCs;        

𝒓- merozoites released per bursting iRBC; 𝒅- natural death rate of free roaming merozoites; 𝒉- rate of antibody-mediated 

killing of free merozoites; 𝜸- proliferation rate of T-lymphocytes due to merozoites; 𝒂- natural death rate of T-lymphocytes; 

𝟎∗= 0 due to rounding. 

 

In Table 5.1B there is little to no response from the parameter changes on the free roaming merozoites 

𝑠, with responses only from parameters 𝛾, the proliferation rate of T-lymphocytes due to merozoites, and 

𝑎, the natural death rate of T-lymphocytes. Note that the responses for these parameters with values of 

−0.625 and 0.625 are slightly smaller for the iRBC population 𝑦 when compared to the merozoite 

population 𝑠. These parameters are both included in the ODE for the density of T-lymphocytes (eq. 

4.1.5), with 𝛾 leading to an increase in T-lymphocytes and 𝑎 leading to a decrease, corresponding 

respectively to a decrease and increase in merozoites. It is, however, surprising to see no response 

coefficient for ℎ, the rate of antibody-mediated killing of free merozoites, affecting the merozoite 

population 𝑠, as it is included in a term leading to a direct decrease in the amount of free roaming 

merozoites ℎ𝑠𝑇 (eq. 4.1.5). Instead, we see a response of 𝑇 with a value of −1, showing that an increase 

in antibody-mediated killing of the free merozoites would lower the originally obtained steady state of 

the T-lymphocyte population. This can be ascribed to the fact that the term incorporates both ℎ and 𝑇. A 

1% increase in the killing rate constant of merozoites (ℎ) leads to an instantaneous decrease in the 

merozoites. This leads to a decrease in the merozoite-stimulated T-lymphocyte proliferation rate (𝛾𝑠𝑇). 

The decrease in T-cells then abolishes the effect of the increased leading to no net effect on the free 

roaming merozoites (𝑠) at steady state. With the added variable 𝑇, most of the sensitivity of the model 
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lies with the immune response. This is due to infection activating and directly influencing the 

proliferation of the immune effectors to fight the disease. Even though response coefficients of other 

parameter-variable pairings are observed, the largest response coefficients are seen for parameters 𝜆 and 

𝑟 when regarding variable 𝑇. It can thus be inferred that, for a model including immune attack against 

merozoites only, the largest sensitivity of the model lies with the birth rate of healthy RBC as well as the 

release of merozoites by a bursting iRBC. As the T-lymphocytes attack only free roaming merozoites in 

this model, the response coefficient of 2.962 shows that the T-lymphocytes population size will increase 

with 2.962% if the merozoites released 𝑟 increases with 1%. For 𝜆, the high response coefficient can be 

attributed to an increase in healthy RBC, leading to an increase in the amount of iRBCs that will release 

more merozoites, subsequently increasing the activation of T-lymphocytes. It can consequently be 

deduced from the analyses that this model shows the availability of healthy RBCs and the amount of free 

roaming merozoites to be the largest influences on T-lymphocyte activation. Furthermore, the change in 

steady states of the T-lymphocytes, show to have an effect on the disease variables as well, as the 

proliferation rate of the T-lymphocytes due to merozoite presence 𝛾 and the natural death rate of T-

lymphocytes 𝑎 which directly affect the T-lymphocytes in the variable ODE (eq. 4.1.5), additionally 

affect the iRBC and the merozoite populations, 𝑦 and 𝑠. Lastly, this analysis indicates the response 

coefficient for the healthy RBC population 𝑥 on the birth rate of these cells. has increased to a value of 

1 versus a 0 seen with the infection model without an immune response. This can be attributed to the 

immune response inclusion, ensuring that the merozoite population does not dominate the model system. 

 

In the third sub-model (1C) of the Anderson et al. [10] publication the model describes infection with an 

immune response to only the iRBC, and the distribution of the response coefficients have now shifted in 

Table 5.1C from the iRBCs 𝑦 to the merozoites 𝑠. 
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Table 5.1C: The response coefficients for the third sub-model (1C) in the Anderson et al. [10] publication 

describing infection with cell-mediated immunity towards iRBC.  

1C-𝑹𝒑
𝑽 𝒙[𝒕] 𝒚[𝒕] 𝒔[𝒕] 𝑻[𝒕] 

𝝀  1.034 0 −0.105 2.427 

𝝁  −0.699 0 0.071 −1.640 

𝜷  −0.301 −0∗ −0.071 1.640 

𝜶  −0.335 0 1.034 0.213 

𝒓  −0.335 0 1.034 1.825 

𝒅  0.301 0 −0.929 −1.640 

𝒂  −0.335 1 1.034 −0.787 

𝒈  −0∗ 0∗ 0∗ −1 

𝒌  0.335 −1 −1.034 0.787 

𝒙[𝒕]- healthy RBCs; 𝒚[𝒕]- iRBCs; 𝒔[𝒕]- free roaming merozoites; 𝑻[𝒕]- T-lymphocytes; 𝝀- recruitment of healthy RBCs;                  

𝝁- natural death rate of RBCs; 𝜷- probability of infection of RBCs with free roaming merozoites; 𝜶- death rate of iRBCs;        

𝒓- merozoites released per bursting iRBC; 𝒅- natural death rate of free roaming merozoites; 𝒉- rate of antibody-mediated 

killing of free merozoites; γ- proliferation rate of T-lymphocytes due to merozoites; 𝒂- natural death rate of T-lymphocytes; 

𝒈- rate of cytotoxic killing of iRBC; 𝒌- proliferation rate of T-lymphocytes due to iRBCs; 𝟎∗= 0 due to rounding. 

 

In this model the values for ℎ and 𝛾 were set to zero, to ensure that the immune response is only directed 

at the iRBCs, and as such no responses regarding these parameters were retrieved. A shift in the response 

coefficients can be observed from parameters affecting the attack against merozoites, as shown in the 

previous model, to parameters describing an attack on iRBC (like 𝑔 and 𝑘). The same trend can be seen 

as with sub-model B for parameters incorporated in the ODE denoting the density of T-lymphocytes (eq. 

4.1.5), where the natural death rate of T-lymphocytes 𝑎 leads to a decrease in T-lymphocytes and the 

proliferation rate 𝛾 led to an increase due to activation by merozoites. In this sub-model the parameters 

𝑎 and 𝑘, with 𝑘 being an additional parameter responsible for the proliferation of T-lymphocytes due to 

the presence of iRBCs, is now respectively responsible for the decrease and increase in T-lymphocytes. 

𝜆, the natural birth rate of healthy RBCs, still elicits a large effect on 𝑇; however, the response of 𝑟, the 

number of merozoites release per bursting iRBC, has lowered due to the immune attack being directed 

towards the iRBC in this model and therefore not the merozoites. Additionally, as the iRBCs are the 

focus of this model, the healthy RBCs will also be affected by parameters that affect the iRBC population, 

as the iRBC population is highly dependent on the availability of healthy RBCs. 

From the analysis of sub-model 1B and 1C, we note that the response coefficients mostly lie with the 

disease variable that is not the target of the immune system, e.g. when the immune system targets iRBCs, 
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the most non-zero response coefficients are observed for the merozoite population. This could thus 

indicate that the immune response tends to keep its target under control, leading to low response 

coefficient values for that target. 

The last model from the Anderson et al. [10] publication (1D), is a model including immune response to 

both the free roaming merozoites as well as the iRBCs by the T-lymphocytes. In Table 5.1D, response 

coefficients for all parameter on all variables are observed, as the immune response is not directed at 

only one disease variable. 

 

Table 5.1D: The response coefficients for the fourth sub-model (1D) in the Anderson et al. [10] publication 

describing infection with both antibody and cell-mediated immunity towards merozoites and iRBC, respectively. 

𝒙[𝒕]- healthy RBCs; 𝒚[𝒕]- iRBCs; 𝒔[𝒕]- free roaming merozoites; 𝑻[𝒕]- T-lymphocytes; 𝝀- recruitment of healthy RBCs;                 

𝝁- natural death rate of RBCs; 𝜷- probability of infection of RBCs with free roaming merozoites; 𝜶- death rate of iRBC;            

𝒓- merozoites released per bursting iRBC; 𝒅- natural death rate of free roaming merozoites; 𝒉- rate of antibody-mediated 

killing of free merozoites; 𝜸-proliferation rate of T-lymphocytes due to merozoites; 𝒂- natural death rate of T-lymphocytes;  

𝒈- rate of cytotoxic killing of iRBC; 𝒌- proliferation rate of T-lymphocytes due to iRBCs; 𝟎∗= 0 due to rounding. 

 

For this model we see that the response coefficients are quite evenly distributed, complicating deductions 

as the results are a mixture of the results from sub-models 1B and 1C. There is still a relatively larger 

response for 𝜆 and 𝑟 on the population of T-lymphocytes, showing that the availability of healthy RBC 

and free roaming merozoites is still the leading factors for increases in the number of T-lymphocytes. It 

is also notable that the coefficients of ℎ, representing antibody-mediated death of merozoites due to T-

1D-𝑹𝒑
𝑽 𝒙[𝒕] 𝒚[𝒕] 𝒔[𝒕] 𝑻[𝒕] 

𝝀  1.015 0.055 −0.070 1.925 

𝝁  −0.803 −0.044 0.056 −1.524 

𝜷  −0.197 0.044 −0.056 1.524 

𝜶  −0.118 −0.443 0.567 0.767 

𝒓  −0.118 −0.441 0.564 1.923 

𝒅  0.104 0.388 −0.496 −1.692 

𝒉  0∗ 0.002 −0.002 −0.008 

𝜸  0.093 −0.434 −0.445 0.176 

𝒂  −0.212 0.988 1.015 −0.401 

𝒈  −0∗ −0.002 0.002 −0.992 

𝒌  0.119 −0.555 −0.569 0.225 

Stellenbosch University  https://scholar.sun.ac.za



38 
 

lymphocytes, is very small for all variables. This indicates that T-lymphocyte killing of merozoites is not 

ideal in this model, as an increase in the rate of merozoite killing does not greatly affect the model system. 

There is a larger coefficient of 𝑔 on 𝑇, where an increase in 𝑔 signifying an increase in the rate of iRBC 

killing, would decrease the amount of iRBC, therefore decreasing the need for T-lymphocytes (−0.992). 

These two effects of the parameters ℎ and 𝑔, also demonstrate that the immune system targeting the 

iRBCs is more ideal, as a decrease in the iRBCs decreases the immune effectors more, showing a more 

effective immune response. As for the parameters responsible for activating T-lymphocytes due to iRBC 

and merozoites (𝛾 and 𝑘), we see small coefficients, showing that the system is not so sensitive to 

activation due to infection. Finally, the parameter describing the natural death rate of T-lymphocytes 𝑎, 

is shown to increase the densities of disease variables, which showcases the importance of the presence 

of T-lymphocytes in controlling the disease.  

In all disease sub-models from Anderson et al. [10] where the immune system was incorporated, the 

birthrate of healthy RBCs for infection, the merozoite number released, as well as the death rate of the 

T-lymphocytes have the largest influence on the disease persistence, and can be possible areas for 

investigating disease eradication. 

 

5.2. Li et al. [13] 

 

The first sub-model (2A) from Li et al. [13] is a model with no infection and therefore no immune 

effectors. In Table 5.2A the only response coefficients present are the responses of 𝜆 and 𝑑1, showing 

that the response of the healthy RBC population is solely dependent on the production and death of 

healthy RBCs (𝐻). 

Table 5.2A:Response coefficients of the first sub-model (2A) of the Li et al. [13] publication for a disease-free 

model.  

2A-𝑹𝒑
𝑽 𝑯[𝒕] 𝑰[𝒕] 𝑴[𝒕] 𝑬[𝒕] 

𝝀  1 − − − 

𝒅𝟏   −1 − − − 

𝑯[𝒕]- healthy RBCs; 𝑰[𝒕]- iRBCs; 𝑴[𝒕]- merozoites; 𝑬[𝒕]- immune effectors; 𝝀- production rate of healthy RBCs: 𝒅𝟏- decay 

rate of RBCs;  
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For the second sub-model (2B) malaria infection is present without the immune response and there would 

therefore be no response coefficients for the immune effectors variable 𝐸. 

 

Table 5.2B: Response coefficients of the second sub-model (2B) of the Li et al. [13] publication for a disease 

infection model without specific immune response.  

𝑯[𝒕]- healthy RBCs; 𝑰[𝒕]- iRBCs; 𝑴[𝒕]- merozoites; 𝑬[𝒕]- immune effectors; 𝝀- production rate of healthy RBCs;                                       

𝒅𝟏- decay rate of RBCs; 𝝁- decay rate of malaria parasites; 𝒅𝟐- decay rate of immune effectors;                                                                            

𝜶- infection of RBCs by malaria parasites; 𝜹- decay rate of iRBCs; 𝒓- product rate of malaria parasites; 𝟎∗= 0 due to 

rounding. 

 

Sub-model 2B yielded significantly larger response coefficients than the previous results indicated in this 

chapter. An approach to explain these values can be to analyze these responses in terms of elasticity and 

control coefficients using the control matrix equation [77, 78]. However, this is beyond the scope of this 

thesis. The largest response coefficients (Table 5.2B) are for the iRBCs (𝐼) and merozoites (𝑀) in sub-

model 2B, which indicates that all parameters can significantly affect the disease variables when no 

immune response is present. It is also observed that the natural birth rate of healthy RBCs 𝜆 shows no 

effect on the healthy RBC population but rather a carried over effect by increasing the iRBC population, 

as seen with Anderson et al. sub-models [10]. This shows that the availability of healthy RBCs would 

thus ensure that more cells are available for infection by free roaming merozoites. The response 

coefficient values of the iRBC and merozoite populations are the same, showing a direct correlation 

between these two variables. This is attributed to the absence of the transfer term 𝛼𝐻𝑀 in the merozoite 

population ODE (eq. 4.2.3), where 𝛼𝐻𝑀 describes the infection of healthy RBCs by merozoites to 

become iRBCs. This term is dependent on the availability of healthy RBCs and merozoites. As such, it 

should decrease the free merozoite concentration when merozoites are transferred into a healthy RBC; 

however, this decrease is not perceived. Instead the iRBCs concentration is directly dependent on the 

merozoite concentration, which is not dependent on the loss of merozoites when they infect a RBC.  

2B-𝑹𝒑
𝑽 𝑯[𝒕] 𝑰[𝒕] 𝑴[𝒕] 𝑬[𝒕] 

𝝀  0 9 9 − 

𝒅𝟏   0 −8 −8 − 

𝝁  1 −9 −8 − 

𝒅𝟐  0 0 0 − 

𝜶  −1 8 8 − 

𝜹  1 −9 −9 − 

𝒓  −1 9 8 − 
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The third sub-model 2C includes specific immune response to infection, and thus response coefficients 

for the immune effectors 𝐸 is now obtained. 

Table 5.2C: Response coefficients of the third sub-model (2C) of the Li et al. [13] publication for an infection 

model with specific immune response.  

2C-𝑹𝒑
𝑽 𝑯[𝒕] 𝑰[𝒕] 𝑴[𝒕] 𝑬[𝒕] 

𝝀  1.002 0.017 −0.020 102.9 

𝒅𝟏   −0.899 −0.015 0.018 −92.37 

𝝁  0.053 0.448 −0.517 −96.93 

𝒅𝟐  −0.252 2.449 2.458 −24.20 

𝜶  −0.101 0.015 −0.018 92.37 

𝜹  −0.002 −0.017 0.020 −101.9 

𝒓  −0.053 −0.448 0.517 96.97 

𝒑𝟏  −0∗ −0∗ 0∗ −0.965 

𝒑𝟐  0∗ 0∗ −0∗ −0.035 

𝒌𝟏  0.171 −1.660 −1.666 16.41 

𝒌𝟐  0.081 −0.789 −0.792 7.796 

𝜷  −0.116 1.125 1.129 −10.47 

𝜸  −0.033 0.325 0.326 −3.200 

𝑯[𝒕]- healthy RBCs; 𝑰[𝒕]- iRBCs; 𝑴[𝒕]- merozoites; 𝑬[𝒕]- immune effectors; 𝝀- production rate of healthy RBCs;                                    

𝒅𝟏- decay rate of RBCs; 𝝁- decay rate of malaria parasites; 𝒅𝟐- decay rate of immune effectors;                                                                           

𝜶- infection of RBCs by malaria parasites; 𝜹- decay rate of iRBCs; 𝒓- product rate of malaria parasites;                                                         

𝒑𝟏- removal rate of iRBCs by immune effectors; 𝒑𝟐- removal rate of malaria parasites by immune effectors;                                                 

𝒌𝟏- proliferation rate of immune effectors by iRBCs; 𝒌𝟐- proliferation rate of immune effectors by parasites;                                     

𝜷- 1/ 𝛽 half saturation constant for iRBCs; 𝜸- 1/ 𝛾 half saturation constant for malaria parasites, 𝟎∗= 0 due to rounding. 

 

The largest response coefficients yielded for this model are observed for the immune effectors (Table 

5.2C). The coefficients for the iRBC and merozoite populations show great similarities for parameters 

as with the sub-model 2B, demonstrating that there is a large dependency of the iRBCs on the merozoites. 

It can thus be deduced that the merozoites, and therefore processes that affect the merozoite population 

in this model, directly infect RBCs, reflecting the chain reaction one would expect from the biological 

system. The parameters with the largest response coefficients on the immune effectors are 𝜇, 𝛼, 𝛿, 𝜆, 𝑑1 

and 𝑟. Excluding 𝜆 and 𝑑1, 𝜇, 𝛼, 𝛿 and 𝑟 are all parameters associated with infection, with 𝜇 and 𝛿 

depicting natural decay rates of merozoites and iRBC respectively, therefore decreasing the disease 

variables as well as the need for immune effectors E. The parameters 𝑑1 and 𝜆 are the natural decay and 
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birth rates of the healthy RBCs and would respectively decrease and increase the healthy RBC 

population. An increase in the density of healthy RBCs (𝜆) would mean an increase in cells that can be 

infected (𝐼) and consequently impart the necessity for immune effectors (𝐸).  An increase in 𝑟 and 𝛼 

leads to a large response in the immune effectors, implying that the production of merozoites and 

infection of healthy RBCs by merozoites both increase the immune effectors. From the analysis of this 

sub-model we can deduce that the most important parameters for immune effector stimulation would be 

𝑟 and 𝛼, indicating that the release of merozoites from bursting iRBCs and infection of RBCs by 

merozoites would be a good investigative focus for disease elimination. Additionally, the availability of 

healthy RBCs increases the disease as well and can be another target for investigation. 

The last sub-model (2D) for the Li et al. [13] publication is one showing an endemic state of disease. 

Table 5.2D: Response coefficients of the fourth sub-model (2D) of the Li et al. [13] publication for an endemic 

disease state.  

2D - 𝑹𝒑
𝑽 𝑯[𝒕] 𝑰[𝒕] 𝑴[𝒕] 𝑬[𝒕] 

𝝀  1.003 0.009 −0.028 87.02 

𝒅𝟏   −0.902 −0.008 0.025 −78.25 

𝝁  0.073 0.245 −0.721 −80.29 

𝒅𝟐  −0.275 2.716 2.725 −22.02 

𝜶  −0.098 0.008 −0.025 78.25 

𝜹  −0.003 −0.009 0.027 −86.05 

𝒓  −0.073 −0.245 0.721 80.32 

𝒑𝟏  −0∗ −0∗ 0∗ −0.966 

𝒑𝟐  0∗ 0∗ −0∗ −0.034 

𝒌𝟏  0.231 −2.288 −2.296 18.55 

𝒌𝟐  0.043 −0.428 −0.429 3.469 

𝜷  −0.156 1.542 1.547 −11.85 

𝜸  −0.018 0.174 0.175 −1.401 

𝑯[𝒕]- healthy RBCs; 𝑰[𝒕]- iRBCs; 𝑴[𝒕]- merozoites; 𝑬[𝒕]- immune effectors; 𝝀- production rate of healthy RBCs;                                      

𝒅𝟏- decay rate of RBCs; 𝝁- decay rate of malaria parasites; 𝒅𝟐- decay rate of immune effectors;                                                                                                     

𝜶- infection of RBCs by malaria parasites; 𝜹- decay rate of iRBCs; 𝒓- product rate of malaria parasites;                                                                   

𝒑𝟏- removal rate of iRBCs by immune effectors; 𝒑𝟐- removal rate of malaria parasites by immune effectors;                                                     

𝒌𝟏- proliferation rate of immune effectors by iRBCs; 𝒌𝟐- proliferation rate of immune effectors by parasites;                                                        

𝜷- 1/ 𝛽 half saturation constant for iRBCs; 𝜸- 1/ 𝛾 half saturation constant for malaria parasites; 𝟎∗= 0 due to rounding. 
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For this model the system is again shown to be most sensitive in variable 𝐸, the immune effectors. The 

parameters with the largest response coefficients are involved in the populations of merozoites, iRBCs 

and healthy RBCs, indicating that the availability of RBCs for infection and the number of merozoites 

and iRBCs all increase the immune effector population. This model therefore suggests, quite logically, 

that an effective approach to eradicate disease would be to prevent the infection of healthy RBCs and 

release of merozoites.  

 

5.3. Niger et al. [15] 

 

For the Niger et al. [15] model two different outputs were obtained, the first (3A) showing a disease-free 

state. In this publication the immune effectors were split into two groups: immune cells (𝐵) and 

antibodies (𝐴). Additionally, the iRBCs were split into five age-related compartments, which were 

unified to form a single variable (𝑌∗) within the response table.  

Table 5.3A: Response coefficients of the first sub-model (3A) of the Niger et al. [15] publication for a disease-free 

state.  

3A-𝑹𝒑
𝑽 𝑿[𝒕] 𝒀∗[𝒕]  𝑴[𝒕] 𝑩[𝒕] 𝑨[𝒕] 

𝝀𝑿  1 0 0 0∗ 0 

𝝀𝑩  0 0 0 1 0 

𝝁𝑿  −1 0 0 0∗ 0 

𝝁𝑩  0 0 0 −1 0 

𝑿[𝒕]- population of healthy RBCs; 𝒀[𝒕]- population of iRBCs; 𝒀∗[𝒕]- an added value for all the compartments Y1-5;                          

𝑴[𝒕]- population of merozoites; 𝑩[𝒕]- population of immune cells; 𝑨[𝒕]- population of antibodies;                                                                                  

𝝀𝑿-  production rate of RBCs from bone marrow; 𝝀𝑩- production rate of immune cells; 𝝁𝑿- natural death rate of RBCs; 𝝁𝑩- 

death rate of immune; 𝟎∗=0 due to rounding. 

 

For the results of the first sub-model (Table 5.3A) there is no response for the antibodies as no antibodies 

will be produced without the presence of a disease. All other response coefficients are zero or negligibly 

small except for the response of healthy RBC population to 𝜆𝑋 (birth rate of RBCs) and 𝜇𝑋 (death rate of 

RBCs) as these are the only parameters influencing the model at a disease-free state. Response 

coefficients are also observed for 𝜆𝐵  and 𝜇𝐵  which, respectively, indicate disease-independent production 

and death rate of innate immune cells.  

Stellenbosch University  https://scholar.sun.ac.za



43 
 

The second sub-model (3B) shows a disease state, and response coefficients for all parameters and 

variables were therefore obtained. 

Table 5.3B: Response coefficients of the second sub-model (3B) of the Niger et al. [15] publication for a disease 

present state.  

3B-𝑹𝒑
𝑽 𝑿[𝒕] 𝒀∗[𝒕] 𝑴[𝒕] 𝑩[𝒕] 𝑨[𝒕] 

𝝀𝑿   1.052 0.081 −0.854 0.262 −0.592 

𝝀𝑩   0.034 −0.522 −0.552 0.008 −0.544 

𝝁𝑿  −0.988 −0.076 0.802 −0.246 0.556 

𝝁𝒀𝒊 (𝒊 = 𝟏)  −0.006 −0.044 0.092 −0.144 −0.053 

𝝁𝒀𝒊 (𝒊 = 𝟐)  0.007 −0.148 −0.111 −0.141 −0.251 

𝝁𝒀𝒊 (𝒊 = 𝟑)  0.007 −0.098 −0.112 −0.141 −0.253 

𝝁𝒀𝒊 (𝒊 = 𝟒)  0.007 −0.069 −0.112 −0.141 −0.254 

𝝁𝒀𝒊 (𝒊 = 𝟓)  −0.003 0.003 0.043 0.054 0.097 

𝝁𝑴  0.002 −0.011 −0.029 −0.037 −0.066 

𝝁𝑩   −0.098 1.517 1.605 −0.024 1.580 

𝝁𝑨  0 0∗ 0∗ −0∗ −1 

𝝁  0.023 −0.147 −0.384 0.262 −0.864 

𝜷  −0.012 0.076 −0.802 0.246 −0.556 

𝜸𝒊 (𝒊 = 𝟏)  −0.051 0.627 0.843 0.293 1.136 

𝜸𝒊 (𝒊 = 𝟐 − 𝟒)  −0.015 0.059 0.243 0.302 0.545 

𝜸𝒊 (𝒊 = 𝟓)  −0.004 0.004 0.065 0.081 0.146 

𝒌𝒊 (𝒊 = 𝟏)  −0.006 −0.004 0.104 −0.164 −0.060 

𝒌𝒊 (𝒊 = 𝟐)  0.008 −0.169 −0.126 −0.161 −0.257 

𝒌𝒊 (𝒊 = 𝟑)  0.008 −0.112 −0.127 −0.161 −0.288 

𝒌𝒊 (𝒊 = 𝟒)  0.008 −0.078 −0.128 −0.161 −0.289 

𝒌𝒊 (𝒊 = 𝟓)  0.007 −0.049 −0.108 −0.135 −0.242 

𝒌𝑴  0.010 −0.064 −0.168 −0.201 −0.377 

𝝆𝟏  0.063 −0.982 −1.039 0.016 −1.023 

𝝆𝟐  0∗ −0.006 −0.006 0∗ −0.006 

𝝆𝟑  0∗ −0.003 −0.004 0∗ −0.003 

𝝆𝟒  0∗ −0.002 −0.002 0∗ −0.002 

𝝆𝟓  0∗ −0.001 −0.001 0∗ −0.001 

𝝆𝟔  0∗ −0.001 −0.001 0∗ −0.001 

𝜼  0 0 0 0 1 

𝒓  −0.035 0.223 0.581 0.726 1.307 

𝑿[𝒕]- population of healthy RBCs; 𝒀[𝒕]- population of iRBCs; 𝒀∗[𝒕]- an added value for all the compartments Y1-5;  𝑴[𝒕]- 
population of merozoites; 𝑩[𝒕]- population of immune cells; 𝑨[𝒕]- population of antibodies; 𝝀𝑿- production rate of RBCs 

from bone marrow; 𝝀𝑩- production rate of immune cells; 𝝁𝑿- natural death rate of RBCs; 𝝁𝒀𝒊 (𝑖 = 1 − 5)- natural death 

rate of infected cells within different compartments; 𝝁𝑴- natural death rate of merozoites; 𝝁𝑩- death rate of immune cells; 

𝝁𝑨- deterioration rate of antibodies; 𝝁- loss of merozoites due to infection of RBCs; 𝜷- rate of infection; 𝜸𝒊 (𝑖 = 1 − 5) − 
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progression rate of iRBCs from stage (i) to stage (i+1); 𝒌𝒊 (𝑖 = 1 − 5)- immunosensitivity of iRBCs in their various 

compartments; 𝒌𝑴- immunosensitivity of merozoites; 𝝆𝒊 (𝑖 = 1 − 6)- immunogenicity of iRBCs and merozoites; 𝜼- maximum 

rate of increase of antibodies; 𝒓- number of merozoites; 𝟎∗=0 due to rounding.  

In Table 5.3B, 𝜇𝐵, 𝛾1 and 𝜌1 have the largest relative response coefficients on the antibody population. 

As the proliferation of antibodies are dependent on the disease variables concentrations, an increase in 

the death rate of immune cells (𝜇𝐵) will increase the concentration of disease variables merozoites (𝑀) 

and iRBCs (𝑌), thus indirectly increasing the proliferation of antibodies 𝐴 (with 1.58%). iRBC density 

in stage 1 decreases as the infected cells age, thus moving to stage 2 (𝛾1). The increase in this disease 

variable in stage 2 stimulates the immune response to increase. We also note that the immunogenicity of 

iRBCs and merozoites, 𝜌1, does not show great sensitivity to the system in compartments past the first 

compartment of infection, signifying that iRBCs in stage 1 activate the immune response the most. The 

same is shown for all parameters that are divided into compartments where the first compartment shows 

the largest response coefficients. For the disease parameters, the antibody population 𝐴 and the innate 

immune cell population 𝐵 have the largest response on 𝑟 and 𝛾1, demonstrating that the release of 

merozoites and the iRBCs elicits the strongest effect on the immunity variables. It should however be 

noted that the disease variables stimulate the proliferation of antibodies (eq. 4.3.6), but the antibodies are 

not included in any other ODEs to fight the disease, and as such have no effect on disease dynamics. 𝑟 

shows the largest effect, indicating that merozoite release should be the focus of investigation into this 

model as drug targets, as they activate the immune cells the most. 

 

5.4. Okrinya [16] 

 

The Okrinya [16] publication shows only one model output and has the added variable of gametocyte 

population 𝐺. The model shows a disease present state with immune effectors split into two groups; 

adaptive (including antibodies) 𝐴 and innate immune cells 𝑃.  
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Table 5.4A: Response coefficients of the model from the Okrinya [16] publication for a disease present state.  

4A-𝑹𝒑
𝑽 𝑿[𝒕] 𝒀[𝒕] 𝑴[𝒕] 𝑮[𝒕] 𝑷[𝒕] 𝑨[𝒕] 

𝝀𝒙  0.358 1.248 0.970 0.976 0.170 1.220 

𝜷𝒙  −0.887 0.394 0.306 0.308 0.054 0.385 

𝝁𝒙  −0.113 −0.394 −0.306 −0.308 −0.054 −0.385 

𝝁𝒏  0.058 −0.102 −0.082 −0.080 −0.014 −0.100 

𝝁𝒚  −0.424 −0.507 0.613 0.576 −0.047 −0.423 

𝒓  −0.951 0.417 1.403 1.297 0.081 0.486 

𝝁𝒎  0.556 −0.244 −0.820 −0.174 −0.047 −0.284 

𝜭  0.006 −0.003 −0.009 0.998 −0∗ −0.003 

𝝁𝒈  0 0 0 −0.084 0 0 

𝒄𝟎  0.023 −0.010 −0.008 −0.008 −0.001 −0.010 

𝒄𝟏  0.044 −0.019 −0.065 −0.061 −0.004 −0.023 

𝒌𝒂  0.008 −0.015 −0.013 −0.012 −0.002 −0.015 

𝒌𝒃  0.106 −0.046 −0.153 −0.033 −0.009 −0.054 

𝒌𝒄  0∗ 0 −0∗ −0.048 0 −0∗ 

𝒌𝒚  0.148 −0.260 −0.222 −0.203 −0.036 −0.256 

𝒌𝒎   0.308 −0.135 −0.454 −0.096 −0.026 −0.157 

𝒌𝒈  0 0 −0∗ −0.916 0 −0∗ 

𝒃𝒎   0.391 −0.339 −0.580 −1.043 0.805 −0.354 

𝜼𝟏  0.065 −0.056 −0.096 −0.172 0.133 −0.059 

𝜼𝟐  0.181 −0.091 −0.242 −0.161 −0.016 0.900 

𝜱  0.010 −0.009 −0.015 −0.027 0.021 −0.009 

𝒈𝟐   0.013 −0.006 −0.018 −0.012 −0.001 0.065 

𝒌𝒅  −0∗ 0∗ 0∗ 0∗ −0∗ 0∗ 

𝒌𝒏  −0∗ 0∗ 0∗ 0∗ −0∗ 0∗ 

𝜼𝟑  −0.001 0.001 0.001 0.001 0∗ −0.005 

𝜼𝟒  −0∗ 0∗ 0∗ 0∗ 0∗ −0∗ 

𝝁𝒑  −0.455 0.395 0.676 1.215 −0.937 0.413 

𝑨𝟎 - 0 0 0 0 0 0 

𝝁𝒂  −0.180 0.090 0.241 0.160 0.016 −0.893 

𝑿[𝒕]- population of healthy RBCs; 𝒀[𝒕]- population of iRBCs; 𝑴[𝒕]- population of merozoites;                                                             

𝑮[𝒕]- population of gametocytes; 𝑷[𝒕]- population of innate immune cells; 𝑨[𝒕]- population of antibodies; 𝝀𝒙- rate at which 

RBCs are recruited; 𝜷𝒙- rate constant for infection rate of RBCs; 𝝁𝒙- natural per capita death rate of RBCs; 𝝁𝒏 natural death 

rate of iRBCs; 𝝁𝒚- conversion rate of iRBCs to merozoites; 𝒓- number of merozoites released per bursting schizont; 𝝁𝒎- 

death rate of merozoites; 𝜭- fraction of merozoites converting to gametocytes; 𝝁𝒈- natural per capita death rate of 

gametocytes; 𝒄𝟎- efficiency of antibodies in blocking merozoite invasion; 𝒄𝟏- efficiency of antibodies in blocking merozoite 

release; 𝒌𝒂- antibody induced FC-dependent killing rate of iRBCs; 𝒌𝒃- antibody induced FC-dependent killing rate of 

merozoites; 𝒌𝒄- antibody induced FC-dependent killing rate of gametocytes; 𝒌𝒎- elimination rate of merozoites by innate 

immune cells; 𝒌𝒈- elimination rate of gametocytes by innate immune cells; 𝒃𝒎- supply rate of immune cells from stem cells; 

𝜼𝟏- parasite induced innate immune cell production rate; 𝜼𝟐- parasite induced specific immune cell production rate; 𝜱- 

phagocyte growth difference between merozoites and iRBCs; 𝒈𝟐- antibody production difference between merozoites and 

iRBCs; 𝒌𝒅- deterioration rate of innate immune cells due to iRBC killing; 𝒌𝒏- deterioration rate of innate immune cells due 

to interaction with merozoites; 𝜼𝟑- deterioration rate of antibodies due to interaction with iRBCs; 𝜼𝟒- deterioration rate of 

antibodies due to interaction with merozoites; 𝑨𝟎- starting density of antibodies; 𝝁𝒂- death rate of antibodies; 𝟎∗=0 due to 

rounding. 
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This model is most sensitive to the amount of merozoites being released 𝑟, as this leads to the highest 

relative response coefficient (Table 5.4A) of the disease variables, increasing the merozoites 𝑀 and 

gametocytes 𝐺. This is possible as merozoites released can either enter another erythrocytic cycle or 

follow gametocytogenesis. For the immune effectors, the largest coefficient is observed for the adaptive 

immune cells 𝐴 on the birth rate of healthy RBCs 𝜆𝑥. 𝜆𝑥 affects all variables and therefore increase the 

merozoite and iRBC population as well. This would subsequently lead to an increase in the 

concentrations of antibodies and other adaptive immune cells. From this table various chain reactions can 

be deduced for varying parameters on different variables; however, the number of merozoites released 

per bursting iRBC 𝑟 and the birth rate of healthy RBCs 𝜆𝑥  seem to be the most important parameters for 

this parasite present model with 𝜆𝑥  dominating.  

 

5.4. Local sensitivity analysis of 𝑅0 

 

We performed local sensitivity analysis on the respective 𝑅0 equations provided in chapter 4. As the 𝑅0 

equation is an indicator of whether a disease will persist, the response coefficient of the 𝑅0 value can 

demonstrate which parameters are most relevant in disease clearance. This would be observed for the 

parameters that have the largest negative response coefficients, as increases in these parameters largely 

decrease the 𝑅0 value the most. The same would hold true for large positive response coefficients, where 

a decrease in these parameters can lead to a decrease in the 𝑅0 value. 

For the Anderson et al. [10] sub-model 1D, the largest response coefficients were for parameters 

𝑟 (1.07), 𝜆 (1.00) and 𝛾 (0.71), whereas the lowest response coefficients were for 𝑑 (−1.00) and 

𝛼 (−0.71). These results demonstrate that an increase in the release of merozoites from iRBCs (𝑟), the 

natural birth rate of healthy RBCs (𝜆) and the proliferation rate of T-lymphocytes due to merozoites (𝛾) 

all increase the reproductive number and therefore the probability that the disease will exist and persist. 

An increase in the natural death rate of iRBCs (𝛼) and merozoites (𝑑) both decrease the disease. All of 

these parameters are seen with the local sensitivity results of this sub-model as well, indicating the 

importance of investigating these parameters when using within-host models. 

The Li et al. [13] sub-model 1D resulted in a linear correlation of all parameters included in the 𝑅0 

equation with response coefficients of parameters in the numerator as 1 and in the denominator as -1. 
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This is due to all parameters being multipliers within the equation, influencing the reproductive number 

equally. 

Niger et al. [15] sub-model 3B indicated the number of merozoites released per bursting iRBC (𝑟) and 

the natural death rate of immune cells (𝜇𝐵) as the parameters increasing disease, with values of 1 and 

0.55 respictively. The parameters that would have the largest effect on disease clearance are the death 

rate of healthy RBCs 𝜇 (-0.82) and the natural birth rate of immune cells (𝜆𝐵), indicating that less RBCs 

and more immune cells can clear the parasites within a host. 

The largest response coefficients for the Okrinya [16] model are for the release of merozoites from a 

bursting iRBC 𝑟 (1), the natural birth rate of healthy RBCs 𝜆𝑋 (0.72) and the infection rate of healthy 

RBCs with merozoites 𝛽𝑋, whilst the smallest coefficients were for the death rate of healthy RBCs 𝜇𝑋 (-

0.72) and the death rate of merozoites (𝜇𝑀). 

All of the results therefore share 𝑟 as a parameter that increase the infection the most, as well as the 

availability of healthy RBCs as an influencer of disease dynamics. These results correspond to the overall 

results obtained for the local sensitivity analysis on the whole model systems, as parameters that 

influence the availability of healthy RBCs and the release of merozoites, both influenced the model 

variables the most. 
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5.5. Comparative Discussion  

 

The models differ significantly in model content and parameter values used with each having their 

advantages and disadvantages. The first group of sub-models by Anderson et al. [10] are relatively 

simplistic models with parameter values estimated and constructed with limited information from 

literature on the immunological responses of the host to malaria infection. However, for this model we 

could see how immune responses directed at either iRBC or merozoites can affect the sensitivity of the 

system to certain parameters as well as how an immune response on both disease variables would shift 

the response coefficients from one disease variable to another. When the immune response was directed 

at both disease variables in sub-model 1D, the response coefficients were mostly evenly divided between 

the merozoite and iRBC populations. However, it was the release of merozoites during the bursting of 

an iRBC 𝑟, and the recruitment of healthy RBCs 𝜆, that elicited the largest response of the population of 

T-lymphocytes. The relevant parameters for the immune effectors in the Li et al. [13] models were shown 

to be 𝜆, 𝑟 and 𝛼, representing the birth rate of healthy RBCs, the number of merozoites released as well 

as the infection rate of healthy RBCs by free roaming merozoites, respectively. The Niger et al. [15] sub-

model 3B is an additional example of the effect changes in 𝑟 elicits on the model system where 𝑟 is 

indicated as the parameter with the largest effect on the immune effectors. In the analysis of the Okrinya 

model [16], where an extra variable for gametocytes was added, the largest obtained response coefficient 

was for the birth rate of healthy RBCs on the adaptive immune cell population, where the iRBC and 

merozoite populations were increased as well. Even though the response coefficient obtained by a change 

in 𝑟 was not large for the antibody population, it did show the largest coefficients for merozoite and 

gametocyte population, therefore increasing the severity of the disease. Both 𝑟 and 𝜆𝑥  can therefore be 

targeted in this model. All models thus have 𝑟 in common as a target, with some models additionally 

having 𝜆 or 𝛼. These observations can be supported when looking at the reproductive number expressions 

for all models, as 𝑟 and 𝜆 are common in all expressions. Furthermore, local sensitivity analysis results 

on the 𝑅0 equations additionally indicated the number of merozoites released per bursting iRBC as well 

as the availability of healthy RBCs to increase and decrease disease, respectively. From the local 

sensitivity analysis of these models it can thus be inferred that the release of merozoites from bursting 

iRBCs, the infection of RBCs and the birth of healthy RBCs that can get infected, are all possible targets 

for disease eradication and can be focused on to construct new models for the determination of thresholds 

values at which the disease can be eliminated. 
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Chapter 6 

 

Uncertainty analysis 
 

As biological model parameters are typically determined from experiments performed in technical and 

biological repeats, or from clinical data collected from a number of subjects, one could see a significant 

variance in biological parameter distributions. In the deterministic ODE models considered in this 

project, parameter values are chosen as the mean of these distributions. But variances could lead to 

significant changes in model outputs, such as RBC concentration and the population of the always-

present innate immune cells which could have important consequences for prediction of disease 

dynamics within a host. Local sensitivity analysis indicated the effect of a small change in a single 

parameter on a variable. Uncertainty analysis differs from local sensitivity analysis as it determines how 

variance in a parameter can affect the variables. Results yielded by performing uncertainty analysis will 

indicate which parameters have the most influence on the uncertainty of the model outputs. Uncertainty 

analysis is performed by calculating the individual contribution of the variance of each parameter on the 

total variance of each variable. The uncertainty result for each parameter is then determined as a 

percentage, using its contribution to the total variance of a variable. As experimentally determined 

variances were not available for all parameters, we considered a uniform distribution with maximum and 

minimum determined by a 10% change in the wild type parameter value (i.e. min = 0.9p and max = 1.1p) 

for each parameter as inputs. The results present the two parameters that have the largest contribution to 

uncertainty in each variable for every sub-model. 

 

6.1. Anderson et al. [10] 

 

The Anderson et al. [10] publication includes four sub-models describing, 1A: disease dynamics without 

an immune response, 1B: disease dynamics with cell-mediated attack on iRBC, 1C: disease dynamics 

with an antibody attack on merozoites, and 1D: disease dynamics where both immune system responses 

to infection are included. The two parameters with the largest contribution to output uncertainties 

regarding every sub-model are presented for each variable in Table 6.1. 
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Table 6.1. Uncertainty analysis results of the Anderson et al. [10] sub-models with the two parameters with the 

highest contribution to uncertainty in model variables. The uncertainty is shown as a percentage contribution of 

each parameter to total uncertainty in model outputs. 

Variables Sub-model 1A Sub-model 1B Sub-model 1C Sub-model 1D 

𝒙[𝒕] 𝑟 𝑑, 𝛽 𝜆 𝜇 𝜆 𝜇 𝜆 𝜇 

38.3 31.9 55.2 21.5 48.9 22.3 56.6 35.5 

𝒚[𝒕] 
 

𝜆 𝛼 𝜆, 𝛼 𝑎, 𝛽, 𝛾, 𝜇 𝑎 𝑘 𝑎 𝑘 

49.5 17.8 28.1 11.0 50 50 48.3 15.2 

𝒔[𝒕] 
 

𝑟 𝜆, 𝑑 𝑎 𝛾 𝑟, 𝑘, 𝛼, 𝑎 𝑑 𝑎 𝑘 

32.9 28.9 50.0 50.0 20.7 16.7 42.0 13.2 

𝑻[𝒕] - - 𝑟 𝜆 𝜆 𝑟 𝜆 𝑟 

- - 30.4 26.7 30.1 17.0 22.2 22.1 

𝒙[𝒕]- healthy RBCs; 𝒚[𝒕]- iRBCs; 𝒔[𝒕]- free roaming merozoites; 𝑻[𝒕]- T-lymphocytes; 𝝀- recruitment of healthy RBCs; 𝝁- 

natural death rate of RBCs; 𝜷- probability of infection of RBCs by free roaming merozoites; 𝜶- death rate of iRBC; 𝒓- 

merozoites released per bursting iRBC; 𝒅- natural death rate of free roaming merozoites; 𝜸-proliferation rate of T-

lymphocytes due to merozoites; 𝒂- natural death rate of T-lymphocytes; 𝒌- proliferation rate of T-lymphocytes due to iRBCs. 

 

Inspection of the results show that 𝜆, 𝜇, 𝛼 and 𝑟 are most often present as parameters contributing the 

highest percentage of uncertainty in model outputs. In the sub-model with no immune response, the 

highest uncertainty percentages are obtained for the parameter 𝑟 for both healthy RBC and merozoite 

concentrations, indicating that the amount of merozoites released from bursting RBCs in this model is a 

high contributing factor to the uncertainty of these variable outputs. 𝜆, the recruitment (birth) rate of 

healthy RBCs, is presented as the largest contributor to uncertainty in the density of iRBC, as uncertainty 

in this rate may lead to fluctuation in healthy RBC population, which affects the possible number of cells 

that can be infected to increase the number of iRBCs (variable 𝑦). Furthermore, 𝜆 and 𝜇 are both present 

in the results for sub-models 1B to 1D for variable 𝑥, with 𝜆 and 𝑟 present in all results for variable 𝑇. 

Therefore, variance in the rates that influence the natural birth and death of healthy RBC population are 

the highest contributing factors to the uncertainty in the healthy RBC population. The birth rate of healthy 

RBC and the number of merozoites released per bursting iRBC contribute the most to the uncertainty in 

T-lymphocyte population, since these parameters have been shown to influence the iRBC and merozoite 

concentration, which in turn activate the immune system. The natural death rate of T-lymphocytes 𝑎 is 

seen as an important contributor to uncertainty in variables 𝑦 and 𝑠 (iRBCs and merozoites), as 

uncertainty in this parameter could greatly influence the death rate of T cells and can thus lead to a 

significant increase (or decrease) in the survival of merozoites and iRBCs.  
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6.2. Li et al. [13] 

 

The sub-models from the Li et al. [13] publication incorporate 2A: a parasite free model, 2B: a parasite 

present model without an immune response, 2C: a parasite present model with an immune response and 

2D: an endemic parasite present model.  

Table 6.2. Uncertainty analysis results of the Li et al. [13] sub-models with the two parameters with the highest 

contribution to uncertainty in model variables. The uncertainty is shown as a percentage contribution of each 

parameter to total uncertainty in model outputs. 

Variables Sub-model 2A Sub-model 2B Sub-model 2C Sub-model 2D 

𝑯[𝒕] 𝜆 𝑑1 𝜇, 𝛿 𝛼, 𝑟 𝜆 𝑑1 𝜆 𝑑1 

50.0 50.0 25.0 25.0 51.7 41.6 50.4 40.8 

𝑰[𝒕] 
 

- - 𝜆, 𝛿 𝛼, 𝑑1, 𝜇, 𝑟 𝑑2 𝑘1 𝑑2 𝑘1 

- - 19.4 15.3 53.8 24.7 48.1 34.1 

𝑴[𝒕] 
 

- - 𝜆, 𝜇, 𝑟, 𝛿 𝛼, 𝑑1 𝑑2 𝑘1 𝑑2 𝑘1 

- - 17.9 14.3 53.1 24.4 45.4 32.2 

𝑬[𝒕] - - - - 𝜆 𝛿 𝜆 𝛿 

- - - - 18.3 18.0 18.4 18.0 

𝑯[𝒕]- healthy RBCs; 𝑰[𝒕]- iRBCs; 𝑴[𝒕]- merozoites; 𝑬[𝒕]- immune effectors; 𝝀- production rate of healthy RBCs; 𝒅𝟏- decay 

rate of RBCs; 𝝁- decay rate of malaria parasites; 𝒅𝟐- decay rate of immune effectors; 𝜶- infection of RBCs by malaria 

parasites; 𝜹- decay rate of iRBCs; 𝒓- product rate of malaria parasites; 𝒌𝟏- proliferation rate of immune effectors by iRBCs.  

 

The first sub-model excludes infection and as such will not have any model outputs for disease variables 

iRBCs (𝐼) and merozoites (𝑀), as well as for immune effectors variable (𝐸). As such only the birth rate 

(𝜆) and death rate (𝑑1) of RBCs would influence this model. As these are the only parameters that affect 

the steady state of the healthy RBC population, the uncertainty percentages are split evenly. It is therefore 

possible that these parameters do not actually have a high uncertainty, but due to the method of analysis 

that ensures all uncertainties are a fraction of the total uncertainty in the variable output, the fractions 

would be split 50/50. The second sub-model excluding the immune response upon infection will not have 

outputs for the immune effectors 𝐸. The results obtained for sub-model 2B indicate that uncertainty lies 

in parameters that directly influence the iRBC and merozoite densities, such as the decay rate of iRBCs 

𝛿. Uncertainty is also observed for parameters that influences the availability of healthy RBCs, like the 

decay rate of healthy RBCs 𝑑1. Sub-models 2C and 2D present the same parameters as uncertainty 

parameters when the immune response is included. The healthy RBCs and iRBCs are sensitive to 

uncertainty in the parameters that influence them directly (i.e. their birth and death rates), and the 

merozoite concentration shows the same uncertain parameters as indicated for the iRBCs. This indicates 
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that the two parameters, 𝑑2 and  𝑘1, respectively representing the decay rate of the immune effectors and 

the proliferation rate of immune effectors due to iRBC presence, contribute the most to uncertainty in 

iRBCs as well as merozoites. This demonstrates that the disease variables for this model may vary greatly 

between individuals due to the immune effector concentration, and the uncertainty around variables that 

directly affect the concentrations of immune effectors. The results presented for variable 𝐸 demonstrate 

that the uncertainty in the production rate of healthy RBCs and the decay rate of iRBC have the largest 

influence on the uncertainty of the output of variable 𝐸. This is due to these parameters presenting a high 

influence on the iRBC and merozoite concentration, as the increase in healthy RBCs will ensure that 

more cells can become infected, thereby increasing the amount of iRBC, and the death rate of iRBCs 

will directly decrease the amount of iRBCs. As sub-model 2C and 2D has been indicated to favor the 

immune response directed at the iRBCs, it makes sense that parameters influencing these cells will show 

the most uncertainty towards the output of the immune effectors. 

  

6.3. Niger et al. [15] 

 

Niger et al. [15] presents two sub-models; 3A: a disease-free model and 3B: a disease present model 

where the immune response is included. 

Table 6.3. Uncertainty analysis results of the Niger et al. [15] sub-models with the two parameters with the highest 

contribution to uncertainty in model variables. The uncertainty is shown as a percentage contribution of each 

parameter to total uncertainty in model outputs. 

Variables Sub-model 3A Sub-model 3B 

𝑿[𝒕] 𝜆𝑋 𝜇𝑋 𝜆𝑋 𝜇𝑋 

50.0 50.0 52.6 46.4 

𝒀𝒕[𝒕] 
 

- - 𝜇𝐵 𝜌1 

- - 55.8 23.4 

𝑴[𝒕] 
 

- - 𝜇𝐵 𝜌1 

- - 34.3 14.4 

𝑩[𝒕] 𝜆𝐵 𝜇𝐵 𝑟 𝜇 

50.0 50.0 33.7 14.7 

𝑨[𝒕] - - 𝜇𝐵 𝑟 

- - 20.6 14.1 

𝑿[𝒕]- population of healthy RBCs; 𝒀𝒕[𝒕]- population of iRBCs as an added value for all Y[t] compartments; 𝑴[𝒕]- population 

of merozoites; 𝑩[𝒕]- population of immune cells; 𝑨[𝒕]- population of antibodies; 𝝀𝑿- production rate of RBCs from bone 

marrow; 𝝀𝑩- production rate of immune cells; 𝝁𝑿- natural death rate of RBCs; 𝝁𝑩- death rate of immune cells; 𝝁- loss of 

merozoites due to infection of RBCs; 𝝆𝒊 (𝑖 = 1 − 6)- immunogenicity of iRBCs and merozoites; 𝒓- number of merozoites;  
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The disease-free sub-model 3A shows large uncertainty effects only for parameters directly influencing 

the respective variables, and the values can again be attributed to the fact that the two parameters 

indicated in the table for each variable are the only parameters influencing these variables. For the 

parasite present sub-model 3B, the same results can be seen for healthy RBC population as with the 

parasite free model. The death rate of immune cells 𝜇𝐵 has the largest contribution to uncertainty in the 

total iRBC, merozoite and antibody populations. This is due to immune cells activating the proliferation 

of antibodies. Therefore, with a decrease in immune cells, the iRBC and merozoite populations will 

increase. As such, uncertainty in this parameter can elicit substantial effects on all of the variables. 

Uncertainty in 𝑟 has the largest effect on immune cell concentration, possibly due to merozoites 

activating the immune system. Lastly, 𝜌1  describing the immunogenicity of iRBCs and merozoites 

additionally contribute to uncertainty in iRBC and merozoite concentration to a lesser extent. The 

immunogenicity of these cell populations is an indicator of how well they activate the immune response. 

Uncertainty in this process can therefore affect the possible effectiveness of the immune response to 

disease presence. 

 

6.4. Okrinya [16] 

 

The Okrinya thesis [16] includes a model describing disease dynamics of malaria infection, where the 

immune response to infection as well as the gametocyte population as a variable is incorporated in the 

model. 

  

Stellenbosch University  https://scholar.sun.ac.za



54 
 

Table 6.4. Uncertainty analysis results of the Okrinya [16] model with the two parameters with the highest 

contribution to uncertainty in model variables. The uncertainty is shown as a percentage contribution of each 

parameter to total uncertainty in model outputs. 

Variables Model 

𝑿[𝒕] 𝑟 𝛽𝑋 

31.3 27.3 

𝒀[𝒕] 
 

𝜆𝑋 𝜇𝑌 

56.7 50.0 

𝑴[𝒕] 
 

𝑟 𝜆𝑋 

36.7 17.6 

𝑮[𝒕] 𝑟 𝜇𝑃 

21.7 19.1 

𝑷[𝒕] 𝜇𝑃 𝑏𝑀 

55.2 40.7 

𝑨[𝒕] 𝜆𝑋 𝜂2 

 34.7 18.8 

𝑿[𝒕]- population of healthy RBCs; 𝒀[𝒕]- population of iRBCs; 𝑴[𝒕]- population of merozoites; 𝑮[𝒕]- population of 

gametocytes; P[𝒕]- population of innate immune cells; 𝑨[𝒕]- population of antibodies; 𝝀𝒙- rate at which RBCs are recruited; 

𝜷𝒙- rate constant for infection rate of RBCs; 𝝁𝒚- conversion rate of iRBCs to merozoites; 𝒓- number of merozoites released 

per bursting schizont; 𝒃𝒎- supply rate of immune cells from stem cells; 𝜼𝟐- parasite induced specific immune cell production 

rate; 𝝁𝒑 – death rate of innate immune cells 

 

The number of merozoites released per bursting iRBC yields the highest contribution to the uncertainty 

in 𝑋, 𝑀 and 𝐺 (healthy RBCs, merozoites and gametocytes). 𝜆𝑋 (birthrate of new RBCs) affects the 

model uncertainty for iRBCs and antibodies populations, indicating that uncertainty in the populations 

of these variables can be attributed to the birthrate of healthy RBCs. 

 

6.5. Comparative Discussion 

 

While differences are observed for the respective parameters contributing the most to uncertainty in sub-

models of the same general model, specific parameters can be observed to be present as high contributing 

factors throughout the analyses of all models. This includes parameters that directly influence the amount 

(and therefore availability) of healthy RBCs, like the birthrate of healthy RBCs, as well as parameters 

incorporated into the ODEs of the different disease variables (e.g. merozoites, iRBCs and gametocytes), 

such as the number of merozoites released per bursting iRBC. With the more detailed models, e.g. Niger 

et al. [15] and Okrinya [16], some parameters of the immune system show uncertainty as well. 

Stellenbosch University  https://scholar.sun.ac.za



55 
 

Parameters were varied with 10% to obtain uncertainty analysis results. However, most parameters vary 

more in practice and can therefore have an even larger effect on the model system. The amount of 

merozoites released was used at a value of 𝑟 = 16 in most models to obtain model outputs. Assuming a 

10% variance of this value will hold true, the range of 𝑟 used for uncertainty estimation would be 14.4 

to 17.6. However, the actual range of 𝑟 can be 8 to 32 [30], showing a significantly larger variance than 

used in this chapter, indicating that the uncertainty in model outputs due to uncertainty in the parameter 

𝑟 can be even larger.  

Furthermore, as stated, most parameters can be hard to determine experimentally and additionally can 

vary due to various factors. The natural birth rate of healthy RBCs 𝜆 has been present over all model 

results, showing that the uncertainty in this parameter contributes to uncertainty in outputs. The value of 

𝜆 used differs between models, and can differ significantly experimentally as well as between humans, 

depending on age, diet, etc. [75]. This also indicates the high variability that the birthrate of healthy RBCs 

has, leading to more uncertainty in model outputs. 

For both parameters, the model outputs can therefore differ largely between individuals and within an 

individual, as different values for the parameters are possible. Additionally, both parameters play roles 

in all 𝑅0 equations for the persistence of the disease, substantiating the importance of these variables. 

Individuals can therefore, theoretically, have all other parameters exactly the same (which is highly 

unlikely) but differ in their amount of merozoites released per infected RBCs, and one would become 

disease free (according to the model reproductive number) while the other would have a persistent 

infection due to their variances in the value of 𝑟. It is therefore important to know the uncertainty 

contributions of different parameters on the variable outputs as these parameters should always be kept 

in mind when interpreting model outputs and sensitivity analysis results. 
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Chapter 7 

 

Robustness analysis 

 

Robustness analysis is a useful tool to investigate the outputs that can be achieved when all inputs of a 

model are varied simultaneously. With biological models, there is an expected range in which 

populations of cells can fall as the number of e.g. healthy RBCs differ between individuals as well as 

within an individual. It is, therefore, possible that all individuals will have varying parameter sets, and 

thus various steady states of cell populations within their bodies. Robustness analysis can indicate the 

possible outcomes achieved by a model for individuals or populations. This analysis differs from the 

previous analysis, as it does not indicate the effect or uncertainty of a single parameter on a variable, but 

rather demonstrates the achievable ranges of the model outputs if all parameters were allowed to change, 

thereby yielding various parameter sets. 

Two sampling methods were employed for the generation of parameter sets within a 10% up and down 

perturbation of the reference parameter set, and were used for robustness and global sensitivity analysis 

(Chapter 8). Monte Carlo (MC) random sampling was used to obtain 10 000 parameter sets and Latin 

Hypercube Sampling (LHS) was used to obtain 1 000 parameter sets. MC random sampling generates 

parameter sets by randomly using a parameter value from each parameter where they have been perturbed 

by 10%. LHS also allows for a perturbation of all parameters, where the parameter values fall in evenly 

distributed intervals in the 10% range. In every interval a random value of the parameter is chosen once, 

and parameter sets are generated by randomly combining the values of different parameters. LHS 

furthermore differs from MC random sampling as a previously used parameter value is excluded in 

following generation of parameter sets, therefore yielding unique and non-overlapping parameter sets. 

All respective models were solved using each parameter set generated in order to determine steady states 

for every variable. Upon initial analysis some models included negative variable ranges. The results 

therefore exclude parameter sets that achieve steady states of any variables that are below zero as a 

negative cell population does not exist and as such only valid steady states are included. The results are 

presented to show the range of steady states in box-and-whisker plots.
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Figure 7A presents the robustness analysis results for a single variable (healthy RBC population) using 

MC sampling (left) and LHS (right) techniques for sub-models of Anderson et al. [10]. Here the high 

degree of similarity between LHS and MC methods is evident and as such only the robustness analysis 

of the MC sampling will be discussed further.  

In terms of robustness of the model outputs, the different components of the box-and-whisker plot should 

be investigated. The “box” of the plot presents 50% of the yielded steady states that lie around the median 

and each “whisker” shows 25% of the steady states achieved above and below the 50% “box”. The 

whiskers include outliers and can therefore be much larger than the box parts as the outliers might stretch 

the whiskers. Furthermore, it is possible that the data is more distributed at the whiskers and therefore 

denser within the box of the box-and-whisker plot. This can be observed in Figure 7A, as each whisker 

is larger than the whole box of the box-and-whisker plots, indicating that 25 % (the whisker) of the data 

has a larger range and is therefore more distributed, than 50 % (the box) of the data. The robustness of 

the model outputs will be discussed in terms of the box parts only. The whiskers of the plots can be used 

as a reference of the extremes of the model outputs.  A good robustness result shows that the 50% of 

steady states achieved (boxes) lie closer to the median and each other within a sub-model. The robustness 

of each box can thus be described by the relation between the size of the box compared to the median 

value, where if the box is larger than one order of magnitude of the median, it would indicate poorer 

robustness results. In all cases we verified that the median correlates closely to the reference steady state. 

Figure 7.A: Box-and-whisker plots indicating the results obtained through robustness analysis. The results of MC 

random sampling are presented on the left and LHS results on the right. Four boxes can be seen in each graph, 

representing each of the sub-models (1A-1D) presented in the Anderson et al. publication [10]. The results present 

the range in possible steady states obtained for the healthy RBC population (variable 𝑥) between sub-models.The  

y-axis is in arbitrary units as units were not specified for this model. The whiskers of the box-and-whisker plots 

include outliers in data. 
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7.1. Anderson et al. [10] 

 

Robustness analysis results for the Anderson et al. [10] sub-models show how the distribution of the 

steady states obtained change between sub-models describing different malaria disease states and 

immunological response (Figure 7.1).  

 

All of the individual boxes presented in Figure 7.1 show good robustness in terms of the box size versus 

the median. The steady state distributions of variable 𝑥 denoting the healthy RBC population (Figure 7.1 

top left), indicates how the steady state distribution moves upwards with each sub-model. For the disease 

variables 𝑦 (Figure 7.1 top right) and 𝑠 (Figure 7.1 bottom left) a downward movement is seen with 

steady states reaching minimum values in sub-model D. The T-lymphocytes (Figure 7.1 bottom right) 

demonstrate a large distribution for sub-model B, with low steady states reached for sub-models C and 

D. The progression from A to D shows how each variable output changes from a model with no immune 

Figure 7.1. The robustness analysis results for the Anderson et al. sub-models A-D [10]. The sub-models are 

denoted as A: parasite present with no immune response, B: parasite present with antibody mediated attack of T-

lymphocytes on merozoites, C: parasite present with cell-mediated immune attack of T-lymphocytes on iRBCs and 

D: parasite present with both immune attacks incorporated. Four boxes can be seen in each graph, representing 

each of the sub-models (1A-1D) presented in the Anderson et al. publication [10]. The results present the range 

in possible steady states obtained. The y-axis is in arbitrary units as units were not specified for this model. The 

whiskers of the box-and-whisker plots include outliers in data. 
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response to one incorporating an immune response on the merozoites and the iRBCs. For no immune 

response, the healthy RBC population (Figure 7.1 top left) is the lowest. The presence of RBCs is 

observed to increase with every sub model following the first, as immune responses are added to the 

model.  The steady states yielded for this variable are also lower for an immune attack on iRBCs than 

for an attack on merozoites. This indicates that, for model D, cell-mediated immune response on the 

iRBCs is a better response to infection than an antibody-mediated response on merozoites. However, the 

T-lymphocytes analysis presents higher distributions for antibody-mediated response, dropping to a 

range of ±3 for sub-model 1C (Figure 7.1 bottom right). This makes sense if reasoned in terms of the 

effectiveness if the T-lymphocytes. From previous analysis it has been deduced that the immune response 

to iRBC proves more effective for disease eradication than when the immune response is directed at the 

merozoites in this model. It is therefore possible, with an immune response on the merozoites (sub-model 

B), that this less effective response to disease would lead to the continuous activation of the immune 

system, as merozoites are not efficiently removed. In contrast, when the immune system is directed at 

the iRBCs, it effectively fights the disease, therefore omitting the need for more T-lymphocytes. This 

reasoning is substantiated by the dependence of increase in the population of T-lymphocytes on the 

variables 𝑦 (iRBC) and 𝑠 (merozoites), incorporated in the ODE for T-lymphocyte population (eq. 4.1.7). 

The full model output thus indicates the combined response to be most effective. 

In terms of robustness outputs of these sub-models, the healthy RBC population’s boxes (Figure 7.1 top 

left) increase in size with each sub-model, as more RBCs are present with each addition of the immune 

system to fight the disease. For the iRBC populations (Figure 7.1 top right), the robustness results are the 

best where the immune response is directed at iRBCs in sub-model C, whereas for the merozoite 

population results (Figure 7.1 bottom left) are best at sub-model B where the immune response is directed 

at the free roaming merozoites. This indicates that the robustness results are dependent on the immune 

effectors and their targets. As for the T-lymphocyte population (Figure 7.1 bottom right), sub-models C 

and D show good robustness, whereas sub-model B presents a very larger box, indicating poor 

robustness.  
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7.2. Li et al. [13] 

 

The robustness analysis of the Li et al. [13] sub-models differs from the Anderson et al.[10] sub-models 

as it additionally presents a sub-model (2A) where there is no disease present, thus showcasing the 

possible cell concentrations in an uninfected individual. With initial analysis sub-models 2B to 2D 

obtained invalid steady states as the merozoite, iRBC and immune effector populations included negative 

results. The parameter sets that yielded theses results were therefore excluded in further analysis. The 

results for the four sub-models are visualised in Figure 7.2. 

 

The robustness of each box shown in Figure 7.2 presents good results as none of the box sizes are larger 

than one order of magnitude of the median. The highest distribution for the healthy RBCs (Figure 7.2 top 

left) was obtained where there is no infection (sub-model A). For malaria infection without an immune 

response in sub-model B, the highest distribution was obtained for the iRBCs I (Figure 7.2 top right) and 

merozoites M (Figure 7.2 bottom left) as there is no response to infection, therefore additionally yielding 

the lowest results for healthy RBC population (Figure 7.2 top left). In sub-model C an immune response 

Figure 7. 2. The robustness analysis results for the Li et al. sub-models [13]. The sub-models are denoted as A: 

parasite free, B: parasite present without an immune response, C: parasite present with an immune response and 

D: endemic parasite present state. The y-axis indicates the concentration of the different variables in cell/μl. The 

whiskers of the box-and-whisker plots include outliers in data. 
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is present, showing a decrease in the merozoite and iRBC concentrations, and an increase in immune 

effectors. Furthermore, the addition of an immune response increases the amount of healthy RBCs 

(Figure 7.2 top left), although not to the normal amount observed for the disease free sub-model. The 

same results are seen for sub-model 2D describing an endemic state of infection. Robustness again 

increases for disease vaiables (Figure 7.2 top right and bottom left) when the immune system is 

incorporated into the model, as presented in sub-models C and D. 

As previously mentioned, robustness analysis determines the steady states of the different parameter sets, 

and results exclude parameter sets that can lead to a negative steady state for any of the variables. Prior 

to this exclusion, the Li et al. [13] sub-models C and D, indicated the disease variable (iRBCs and 

merozoites) reaching steady states of zero, indicating that it would be possible to achieve a disease-free 

state. However, upon exclusion of immune effector and disease variable steady states below zero, this 

was not observed. This is a drawback in the model itself as it thus indicates that a negative concentration 

of immune cells could lead to disease eradication. 

 

7.3. Niger et al. [15] 

 

The Niger et al. [15] model is composed of two sub-models presenting a disease-free state and a parasite 

present state incorporating an immune response to infection. As such it is only the healthy RBC 

concentration and the immune cells concentration that are comparable between the sub-models. 
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Shown in Figure 7.3 (at the top left) as with the previous models, the healthy RBC distribution decreases 

with infection (sub-model 3A to 3B). What separates this model from the previous models is the 

differentiation of the immune effectors into immune cells 𝐵 and antibodies 𝐴. The model contains an 

always-present immune effector concetration with a natural birth and decay rate, 𝜆𝐵 and 𝜇𝐵 respectively. 

Therefore, we observe a small distribution at low values for immune cells in sub-model A (Figure 7.3 

middle right), due to no stimulation from infection, and no results for antibodies (Figure 7.3 bottom), 

where both species distributions increase with infection (eq. 4.3.4 and 4.3.5). Furthermore, even though 

the merozoites and immune cells stimulate the production of antibodies (eq. 4.3.5), the antibodies do not 

Figure 7.3. The robustness analysis results for the Niger et al. sub-models [15]. The sub-models are denoted as A: 

parasite free, B: parasite present with an immune response. The y-axis indicates the concentration of the different 

variables in cell/μl. The whiskers of the box-and-whisker plots include outliers in data. 
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affect the results yielded for the disease variables, and the fight against infection is solely due to the 

immune cells B.  This is due to the absence of antibodies in the ODEs of the disease variables. 

 

7.4. Okrinya [16] 

 

The Okrinya model describes dynamics of an active malaria infection [16]. Whilst splitting the immune 

effectors into innate immune cells and antibodies, another species is also added to track the dynamics of 

gametocytes in the human host during infection. 
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The boxes in the results for the Okrinya [16] model (Figure 7.4) are all smaller than one magnitude of 

the size of the median, therefore indicating good individual robustness. 

 

 7.5. Comparative Discussion 

 

The overall robustness of models analyzed is tricky to quantify as a 10% perturbation in all parameter 

values leads to some variables showing large ranges where others show smaller ranges. However, 

robustness can be reasoned when considering the inter-quartile-range (box). The box part of the box-and-

whisker diagram will include 50% of the steady states that were obtained on the parameter sets, whereas 

each whisker contains 25% of the data, whilst additionally including the outliers of the data. It was 

Figure 7.4. The robustness analysis results for the Okrinya model [16]. The y-axis indicates the concentration of 

the different variables in cell/μl. The whiskers of the box-and-whisker plots include outliers in data. 
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therefore noticeable between sub-models of the publications that the robustness increased when the 

immune system was incorporated which can be reasoned to be due to better inter-variable regulation. 

With the implementation of the immune response, the range sizes of the disease variables lower for the 

Anderson et al. sub-models B to D [10] and the Li et al. sub-models C and D [13], showing that the 

immune response’s incorporation increases the robustness of the disease variables, plausibly due to 

stabilization of the system by decreasing the merozoite and iRBC concentrations.  

The results can also be compared to known cell population variances. The healthy RBC populations in 

individuals without infection can range between 4.41 − 6.68 × 106 𝑐𝑒𝑙𝑙𝑠/𝜇𝑙 [75], which corresponds 

with the range observed in the infection free models of Li et al. [13] sub-model 2A, indicating good 

results for the robustness output. The RBC population when an individual is infected with malaria has in 

interquartile range (IQR that corresponds to the box of a box-and-whisker plot) from 3.78 − 4.80 ×

106 𝑐𝑒𝑙𝑙𝑠/𝜇𝑙 [76]. This corresponds with the Li et al. [13] sub-models. The infection models from 

Anderson et al. [10] and Okrinya [16] do not correspond with literature. The Niger et al. [15] models do 

not correspond with literature as some parameters are a few orders of magnitude off from the values used 

in the Li et al. [13] model. Lastly, a general range is given for white blood cell (WBC) count in infected 

individuals. WBCs include cells from the innate and adaptive immune system. As such this count should 

incorporate all immunity variables within a model and is therefore the added steady state ranges of the 

innate and adaptive immune effectors in each model. The IQR from literature is 4.52 − 7.99 × 103 

𝑐𝑒𝑙𝑙𝑠/𝜇𝑙 [76] which- corresponds with sub-model B of Niger et al. [15]. 

Model predictions therefore differ vastly between publications and is highly dependent on what the focus 

of each study was (i.e. the Anderson et al. [10] model was developed to investigate different immune 

responses to infection). From the robustness analysis, the models of Li et al. [13] and Niger et al. [15] 

show to be more realistic representations of the possible steady state outcomes of different cells during 

infection where the immune system is incorporated.       
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Chapter 8 

 

Global Sensitivity analysis 
 

Global sensitivity analysis is a helpful tool to determine how sensitive model outputs are to simultaneous 

changes in parameter values. The necessity of such an analysis when investigating biological models, is 

evident if one considers that variations of processes influencing the concentrations of biological 

components exist within and between hosts. Global sensitivity analysis can therefore assist in 

determining which parameters have large contributions to variations in model outputs, as well as 

determining if the local sensitivity analysis results are conserved over a parametric range. 

This chapter will focus on global sensitivity analysis of models including infection and immune response 

from the publications under review, to ensure that the most descriptive models are used for comparison. 

Consequently, Anderson et al. sub-model A [10], Li et al. sub-models A and B [13], as well as Niger et 

al. sub-model A [15] will be excluded from this chapter as they do not incorporate the required elements. 

Analysis was performed on the parameter sets obtained via MC random sampling and LHS as explained 

in the previous chapter. Metabolic control analysis (MCA) was conducted on the solution at every point 

in parameter space, yielding a response coefficient for the effect of every parameter perturbation on every 

variable. The response coefficient indicates the % change that a 1% change in a certain parameter would 

elicit on the steady state of a given variable. Note that the same parameter sets that achieved valid steady 

states for the robustness analysis were used in the global sensitivity analysis. The number of response 

coefficients explaining one parameter-variable interaction therefore matches the number of parameter 

sets generated by sampling methods, i.e. 10 000 response coefficients per parameter for MC random 

sampling and 1 000 for LHS. A probability distribution histogram was constructed for each parameter 

elicited response on each variable, showing the possible response coefficients on the x-axis and the 

probability that they will occur on the y-axis. Therefore, global sensitivity analysis of the model proposed 

by Okrinya [15], containing 29 parameters and 7 variables, would generate 29 × 7 = 203 histograms. 

To our knowledge, there is no definitive quantitative measure for global sensitivity analysis results, and 

as such histograms were included for discussion based on the self-defined criteria set out in Figure 8A. 
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The scheme represents the criteria by which results were sifted to present the most relevant results, 

depicting parameter-variable sets that did not yield good global sensitivity results. As the MCA is 

conducted on all parameter sets generated by sampling, response coefficients will vary for different 

parameter sets as new steady states with new sensitivities will be obtained. If the response coefficient 

values fall within a range smaller than 1 order, the expected response coefficients lie in close proximity 

to the reference response coefficient, therefore showing a level of conservation of the local sensitivity 

results over a range of parameter sets. This would thus be indicative of good global sensitivity results. 

However, if the range increases it would indicate that in a population, with variations in parameter sets 

in each individual, very different responses would be elicited and the global sensitivity results would be 

poor. A large difference between the local response coefficient (wild type response shown as black 

dashed line on histograms) and the most probable response coefficient (peaks of histograms), would also 

indicate poor results. As some of these responses could be detrimental to health, for example if the death 

rate of healthy RBCs as a parameter induces a change in the variable lowering the healthy RBC 

population to a state of anemia, these responses should be considered in model analysis. 

As MC random sampling constructed more parameter sets than LHS, the histograms displaying the MCA 

results show a smoother profile for the analysis on the MC random sampling parameter sets (Figure 8B). 

Both results, however, show the same general distribution of response coefficients, with differences 

Figure 8A. The inclusion criteria for global sensitivity analysis results in the discussion. Results omitted indicate 

good global sensitivity results (i.e. conservation of local sensitivity across parameter space). WT represents the 

wild type response coefficient obtained with local sensitivity analysis and peak represents the peak of histograms 

obtained that represents the most probable response coefficient in the histograms. The range is determined by a 1 

order decrease and increase in the wild type response coefficient. The cross indicates when results will be omitted 

and the ticks indicate when results will be included.  
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observed attributed to parameter set sizes (Figure 8B histograms A and B). Therefore, only MCA results 

obtained using the MC random sampling constructed parameter sets will be shown further on. 

8.1. Anderson et al. [10] 

 

For sub-models of Anderson et al. [10], the largest response coefficient distributions yielded by global 

sensitivity analysis are seen for parameters affecting variable 𝑇, denoting the T-lymphocyte population 

of the host. This corresponds well with results obtained from local sensitivity analysis, as the largest 

response coefficients were obtained for this variable. Sub-model B, representing infection with immune 

response directed at the free roaming merozoites, presented no significant results as good global 

sensitivity results were obtained with all wild types corresponding to the peaks of the respective 

histograms. Sub-model C presents infection with the immune response directed at the iRBCs only and 

results are presented in Figure 8.1A. 

Figure 8B. The results for the global sensitivity analysis of the Anderson et al. sub-model B [10]. A) MCA analysis 

for the 10 000 parameter set generated by MC random sampling and B) MCA analysis for the 1 000 parameter 

sets obtained with LHS are shown as a response coefficient distribution histogram to present the probability of 

different response coefficients for variable 𝑋 (RBC population) elicited by a perturbation in parameter 𝜇 (death 

rate of RBCs). The wild type response coefficient obtained with local sensitivity analysis is shown as a dashed 

black line. These results are included to present the similarities between the two sampling methods.  
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Figure 8.1A: Global sensitivity analysis results for Anderson et al. [10] sub-model C. The response coefficient 

distributions of the T-lymphocyte population on the parameters are presented for parameters A: “𝑟” the number 

of merozoites released per bursting iRBC, B: “𝑎” the natural death rate of T-lymphocytes, C: “𝛽” probability of 

infection of RBC with free roaming merozoites, D: “𝑑” natural death rate of free roaming merozoites, E: “𝜆” 

birth rate of healthy RBCs, F: “𝜇” natural death rate of healthy RBCs, and G: “𝛼” the death rate of iRBCs. The 

wild type response coefficients obtained with local sensitivity analysis are visualized as black dashed lines and the 

red dashed lines represent the upper and lower bounds expected for the results based on a 1 order increase and 

decrease in the wild type response coefficient. Bounds not shown lie outside of the range of the respective 

histogram.
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All results from sub-model C showed the global sensitivity results of the T-lymphocyte population that 

could not be excluded based on criteria set out in Figure 8A. Six of the seven plots presented (Figure 

8.1A, histograms A to F) are included for discussion due to the wild type response coefficients not 

corresponding to the most probable response coefficients. These histograms in Figure 8.1A are for the 

following parameters, A: the number of merozoites released per bursting iRBC 𝑟, B: the natural death 

rate of T-lymphocytes 𝑎, C: the probability of infection of healthy RBCs by merozoites 𝛽, D: the natural 

death rate of free roaming merozoites 𝑑, E: the birth rate of healthy RBCs 𝜆 and F: the natural death rate 

of healthy RBCs 𝜇. For all of these parameters the local sensitivity results are shown to be fairly well 

conserved in the parameter space as the probable responses lie close the reference response coefficients, 

whilst results also indicate that there is a more probable response coefficient than the wild type. This 

demonstrates that in a population with varying parameter sets, the most probable response coefficient 

would be slightly larger (peak on the right side of the wild type) or smaller (peak on the left side of the 

wild type) than the response coefficient yielded for the parameter set used in this sub-model. It should 

however be noted that the differences in most probable and wild type response coefficients are fractional, 

therefore still showing relatively good global sensitivity results. 

As for histogram G in Figure 8.1A the left tail of the histogram passes the lower bound of the acceptable 

range in which the response coefficients may fall and furthermore indicates that negative response 

coefficients can exist for the response of the T-lymphocyte population on the death rate of iRBCs (𝛼). 

The death rate of iRBCs lowers the amount of iRBCs and should accordingly lower the amount and need 

for T-lymphocytes within this model. However, most response coefficients including the wild type 

indicate an increase in T-lymphocytes. In the local sensitivity analysis chapter, results indicated that an 

increase in the death rate of iRBCs would increase the amount of merozoites and consequently the 

amount of T-lymphocytes. This deviates from what is expected, as the T-lymphocytes are directed at the 

iRBCs in sub-model 2C, though it should be noted that the response coefficients are very small. With 

varying parameter sets we see that a small number of response coefficients is indicated to be negative for 

this variable-parameter pair, indicating a possibility that for some individuals, an increase in the death 

rate of iRBCs will lead to a decrease in the number of T-lymphocytes at steady state. This is more 

reasonable as T-lymphocytes are stimulated by the presence of iRBCs.
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In Figure 8.1B the results are presented for the global sensitivity analysis of sub-model D, which includes 

infection with immune response directed at both the free roaming merozoites and the iRBCs.  

Figure 8.1B: Global sensitivity analysis results for Anderson et al. [10] sub-model D. The response coefficient 

distributions of the variable populations on the parameters are presented for A: “𝑇” the T-lymphocyte population 

on “𝛼” the death rate of iRBCs, B: “𝑇” the T-lymphocyte population on “𝛽” the probability of infection of RBC 

with free roaming merozoites, C: “T” the T-lymphocyte population on “𝑘” the proliferation rate of the T-

lymphocytes due to iRBCs, and D:“𝑌” the iRBC population on “𝑎” the natural death rate of T-lymphocytes. The 

wild type response coefficients obtained with local sensitivity analysis are visualized as black dashed lines and the 

red dashed lines represent the upper and lower bounds expected for the results based on a 1 order increase and 

decrease in the wild type response coefficient. Bounds not shown lie outside of the range of the respective 

histogram. 

 

All histograms are now shown to be in bounds, with almost negligible discrepancies only observed 

between the wild type response coefficient and the most probable coefficient. Parameters presented in 

Figure 8.1B histograms A to F are shown to follow the same trend as observed for sub-model C (Figure 

8.1A). Histogram A in sub-model D (Figure 8.1B) represents better global sensitivity results for the same 

parameter-variable pair as histogram G in sub-model C (Figure 8.1A). This is likely due to the immune 

response being directed at both disease variables where merozoites and iRBCs activate the immune 
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response. Histogram B represents the same results as histogram C in Figure 8.1A. A new parameter-

variable pairing is presented (histogram C) for the results of sub-model D, as the influence of the 

proliferation rate of T-lymphocytes due to iRBCs 𝑘 on the T-lymphocyte concentration, is presented, 

with differences between the wild type and most probable response coefficient again being fractional. 

The last histogram presented, D, shows a larger response coefficient than the wild type for the iRBC 

population on the death rate of T-lymphocytes 𝑎, indicating that in a population, the death in iRBCs 

increase the T-lymphocytes slightly more than expected for the parameter set published. 

Overall, the global sensitivity analysis showed good results for the Anderson et al. [10] sub-models as 

results were mostly presented due to differences in peaks and wild type response coefficients, and 

differences furthermore being marginally small. 

 

8.2. Li et al. [13]  

 

Two sub-models (C and D) were included from the Li et al. [13] publication for global sensitivity 

analysis. The first sub-model (C) indicates the disease dynamics of an infected individual with an 

immune response. The results are presented in two parts, Figure 8.2A(1) and 8.2A(2). 

Figure 8.2A(1): Global sensitivity analysis results for Li et al. [13] sub-model C (Part 1). The response coefficient 

distributions of the immune effectors’ population “𝐸” on “𝛼” the infection of RBCs with malaria parasites is 

presented. Histogram A presents the results as determined by analysis and Histogram B is an enlargement of 

histogram A where the response coefficients are concentrated. The wild type response coefficients obtained with 

local sensitivity analysis are visualized as black dashed lines and the red dashed lines represent the upper and 

lower bounds expected for the results based on a 1 order increase and decrease in the wild type response 

coefficient. Bounds not shown lie outside of the range of the respective histogram. 
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The results presented in Figure 8.2A(1) show the large difference between the wild type and most 

probable response coefficient. The wild type response coefficients determined with local sensitivity 

analysis were all determined to be quite large for the immune effectors E on perturbations in most 

parameters. Histogram A in Figure 8.2A(1), however, indicates that the most probable response 

coefficient is much lower and seems to be tending towards zero. With enlargement of the part of the 

histogram where the response coefficients are concentrated, it is possible to observe the most probable 

response coefficient (Figure 8.2A(1), histogram B). The most probable response coefficient lies closer 

to a value of 5 than to zero. The same observations were made for all of the parameters that had a large 

response coefficient for the immune effectors in the local sensitivity analysis chapter, and parameters 

include: the birth rate of healthy RBCs 𝜆, the product rate of merozoites 𝑟, the decay rate of merozoites 

𝜇, the decay rate of healthy RBCs 𝑑1, and the decay rate of iRBCs 𝛿. These results demonstrate that in a 

population, the immune response could, more possibly, not react as drastically to changes in biological 

processes (parameters), as indicated by the local sensitivity analysis at wild type. This large difference 

between the wild type response coefficient and the most probable response coefficient can be attributed 

to the 𝑅0 value used in the publication as 1.25. Due to this value lying close to the threshold, it would be 

possible that some parameter sets alter the value of the reproductive number to lower than 1, changing 

the model to a disease free state. However, this reasoning does not correlate with the robustness results 

(Figure 7.2), as there are no steady states for the disease variables close to zero, where the disease is 

eradicated and 𝑅0 is smaller than one.  

The more plausable explanation would follow on further revision of the Li et al. [13] publication. The 

authors investigated the stability of the models and determined bifurcation parameters that produced 

oscillatory effects on the model variables when certain values were used. An example of one of the 

parameters used is 𝑘1, where a value of 4.5001 × 10−5 𝜇𝑙/𝑐𝑒𝑙𝑙/𝑑𝑎𝑦 showed stable steady state 

analyses [13]. However, as this value increases to a value larger than 4.5045 ×  10−5 𝜇𝑙/𝑐𝑒𝑙𝑙/𝑑𝑎𝑦, a 

periodic solution occurs instead of steady states, indicating an unstable model solution [13]. These values 

indicate the extremely small variation in some parameters, can lead to a large alteration in the model 

outputs. Furthermore, the stability of their model outcomes were defined as ratios e.g. 
𝑘2

𝛾
< 𝑑2 <

𝑘1

𝛽
 with 

specific parameter values for other parameters, indicating that more than one parameter can influence the 

stability of the model outputs. It is therefore possible that different parameter sets would lead to greatly 

varying response coefficients.  
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Figure 8.2A(2): Global sensitivity analysis results for Li et al. [13] sub-model C (Part 2). The response coefficient 

distributions of the variable populations on the parameters are presented for C: “𝑀” merozoites on “𝑝2” the 

removal rate of merozoites by the immune effectors, D: “𝑀” merozoites on “𝑝1” the removal rate of iRBCs by the 

immune system, E: “𝐻” healthy RBCs on “𝑝2” the removal rate of merozoites by the immune effectors, F: “𝐻” 

healthy RBCs on “𝑝1” the removal rate of iRBCs by the immune system, and G: “𝐼” iRBCs on “𝑝1” the removal 

rate of iRBCs by the immune system. The wild type response coefficients obtained with local sensitivity analysis 

are visualized as black dashed lines and the red dashed lines represent the upper and lower bounds expected for 

the results based on a 1 order increase and decrease in the wild type response coefficient. Bounds not shown lie 

outside of the range of the respective histogram. 

 

Figure 8.2.A(2) presents the second set of results for sub-model C and indicates the removal of 

merozoites and iRBCs by the immune effector,  𝑝1 and 𝑝2 respectively, resulting in poor global sensitivity 
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results. Here the tails of the histograms pass the allowed bounds of the possible response coefficients 

according to the inclusion criteria set out at the start of this chapter. The removal of merozoites by the 

immune effectors 𝑝1, is indicated in histograms D, F and G, where it shows the response coefficients for 

the merozoite population 𝑀, the healthy RBCs 𝐻 and the iRBCs 𝐼, respectively. The removal of iRBCs 

by the immune effectors 𝑝2 is indicated in histograms C and E, where the variables shown are 𝑀 and 𝐻 

respectively. The wild type response coefficients for these parameter-variable pairings are extremely 

small. Additionally, as the bounds are determined as an order difference increase and decrease in the 

wild type response coefficient, the range of acceptable response coefficients would therefore also be 

quite small. As an example, in histogram C the wild type response coefficient is rounded to zero and the 

lower bound is ten times that value at ± 0.002. These ranges are extremely small and the response 

coefficients that lie outside of these ranges are minimal and can still be seen as insignificant. These results 

thus only indicate that the removal rate of the disease variables will in some individuals have a very small 

influence on their cell populations under investigation.  

The global sensitivity results of the Li et al. [13] sub-model D showed similar results to that of sub-model 

C, with three extra parameters included that had the same observations as within Figure 8.2A(1). These  

results were for the immune effector 𝐸  resoponse on 𝛽 - the 1 𝛽⁄  half saturation constant for iRBCs, 𝑑2 

- the decay rate of immune effectors, and 𝑘1 - the proliferation rate of immune effectors by iRBCs. The 

same type of results is observed as for sub-model C where the most probable response coefficient is much 

lower in absolute value than the wild type response coefficient. 

Taking into account all of the results for the global sensitivity analysis of the Li et al. [13] sub-models, 

the results indicate that there are more probable response coefficients closer to zero than the wild type 

response coefficient. This is more realistic as an increase of e.g. 5% in the immune effector concentration 

due to a 1% increase in a parameter is much more plausible than a 92% increase. 
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8.3. Niger et al. [15]  

 

The Niger et al. [15] publication included only one sub-model (B) that describes infection with immune 

response. The global sensitivity results are presented in Figure 8.3A(1) and 8.3A(2). All results are shown 

to be on the disease variable 𝑌𝑡 (i.e. Y total), which represents the total amount of iRBCs, as this model 

has split the iRBCs into compartments based on the stages in which the iRBC is. 
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Figure 8.3A(1): Global sensitivity analysis results for Niger et al. [15] sub-model B (Part 1). The response 

coefficient distributions of the total iRBC population “𝑌𝑡” on the parameters are presented for parameters A: 

“𝛾3” progression rate of iRBCs from stage 3 to 4, B: “𝜇1” natural death rate of iRBCs in stage 1, C: “r” number 

of merozoites released per bursting iRBC, D: “𝜇𝑋” natural death rate of healthy RBCs, E: “𝛾2” progression rate 

of iRBCs from stage 2 to 3, and F: “𝜇𝑀” natural death rate of merozoites. The wild type response coefficients 

obtained with local sensitivity analysis are visualized as black dashed lines and the red dashed lines represent the 

upper and lower bounds expected for the results based on a 1 order increase and decrease in the wild type response 

coefficient. Bounds not shown lie outside of the range of the respective histogram. 
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Figure 8.3A(2): Global sensitivity analysis results for Niger et al. [15] sub-model B (Part 2). The response 

coefficient distributions of the total iRBC population “𝑌𝑡” on the parameters are presented for parameters G: 

“𝜇5” natural death rate of iRBCs in stage 5, H: “𝜇4” natural death rate of iRBCs in stage 4, I: “𝛾5” progression 

rate of iRBCs from stage 5 to 6, J: “𝑘𝑀” immunosensitivity of merozoites, K: “𝛾4” progression rate of iRBCs 

from stage 4 to 5, and L: “𝛽” rate of infection. The wild type response coefficients obtained with local sensitivity 

analysis are visualized as black dashed lines and the red dashed lines represent the upper and lower bounds 

expected for the results based on a 1 order increase and decrease in the wild type response coefficient. Bounds 

not shown lie outside of the range of the respective histogram. 
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For the results presented in the first part of Figure 8.3A(1), most of the histograms present only a 

difference between the wild type response coefficient and the most probable response coefficient. The 

differences between these two are, however, minimal. Two histograms, A and E, present distribution 

tails that are over the lower bounds of the acceptable range in which the response coefficients may fall. 

These graphs represent the response coefficients of the iRBCs on γ3, the progression rate of iRBCs from 

stage 3 to 4, and γ2, the progression rate of iRBCs from stage 2 to 3. The total amount of iRBCs is 

determined by adding the iRBCs of all the stages. It can therefore be reasoned, as γ2 will increase the 

amount of iRBCs in stage 3, a positive response coefficient will be achieved here, however, it would 

decrease stage 2, therefore expecting a negative response coefficient here. This can thus explain the small 

distribution tail of possible response coefficients observed at these two parameters.  

The same reasoning is applied to γ4 and γ5 in Figure 8.3A(2), histogram K and I. It should be noted that 

γ1 is not included in the results, as this would increase all stages from stage 2 to 5. Even though it would 

decrease stage 1, this stage has various other influential factors incorporated into its ODE (eq. 4.3.3). 

The other histograms in Figure 8.3A(2) indicate differences between the peaks and the wild types and as 

such only indicate that the wild type response coefficient is not the most likely response coefficient in a 

population.  

For this model the changes in observed response coefficients are very small, consequently the model 

yielded good global sensitivity analysis results. 

 

8.4. Okrinya [16]  

 

The Okrinya publication includes only one model and the results of the global sensitivity analysis is 

presented in Figure 8.4A. 
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Figure 8.4A: Global sensitivity analysis results for Okrinya [16] model. The response coefficient distributions of 

the variable populations on the parameters are presented for A: “𝐺” gametocytes on “𝑘𝑀” the elimination rate 

of merozoites by innate immune cells, B: “𝐺” gametocytes on “𝜇𝑃” natural death rate of innate immune cells, C: 

“𝐴” adaptive immune cells on “𝑏𝑀” the supply rate of immune cells from stem cells, D: “𝑋” healthy RBCs on 

“𝜃” the fraction of merozoites converting to gametocytes, E: “𝑋” healthy RBCs on “𝑐0” the efficiency of 

antibodies blocking merozoite invasion, and F: “𝑋” healthy RBCs on “𝜇𝑃” natural death rate of innate immune 

cells. The wild type response coefficients obtained with local sensitivity analysis are visualized as black dashed 

lines and the red dashed lines represent the upper and lower bounds expected for the results based on a 1 order 

increase and decrease in the wild type response coefficient. Bounds not shown lie outside of the range of the 

respective histogram. 

 

Histograms A, C and E were included as the wild type response coefficient and the most probable 

coefficient did not correlate. Histograms B and F were included due the observance of an additional small 
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peak on each of these graphs. 𝜇𝑃, representing the natural death rate of innate immune cells, shows the 

possibility of having a slightly larger response coefficient for the healthy RBCs and a slightly lower 

response coefficient for the gametocyte population. The healthy RBC population presents a negative wild 

type response coefficient for the increase in the death of the innate immune cells, indicating that less 

innate immune cells will lead to more infected cells and consequently less healthy RBCs. The results 

indicate that it is possible that the influence of this rate on the RBCs might be smaller in some individuals 

in a population. The same reasoning is used for the gametocyte population. With an increase in the rate 

of the innate immune cell deaths, gametocytes can survive with better survival observed in some hosts 

(the second smaller peak). It should however be noted that the differences are yet again fractional 

between the two peaks. 

For histogram D, 𝜃, the conversion rate of merozoites to gametocytes shows no definite peak, indicating 

that the local sensitivity response coefficient is not the most possible response coefficient. There is, 

however, no response coefficient that is more probable than the other, but rather a very small range in 

which these responses can lie (0.005 to 0.007). This range is marginally small and would therefore not 

influence the overall global sensitivity analysis results of the whole model. 

Overall, the model shows good results, with only six histograms presented based on inclusion criteria set 

out at the start of this chapter. Additionally, the differences between wild type and most probable 

response coefficients are negligible, indicating that this model system shows stable model outputs and 

response coefficients are preserved over a widened parameter space. 

 

8.5. Comparative Discussion 

 

The results of the global sensitivity analysis on the models incorporated into this study has demonstrated 

how well response coefficients are conserved over a parameter space and also where models can possibly 

lack in accuracy of physiological description. The models are ranked according to their global sensitivity 

results when considering overall results of the model as well as the ratio of poor to good global sensitivity 

results within a sub-model. The Okrinya [16] model investigated showed the best global sensitivity 

analysis results with Anderson et al. [10] sub-model B to D and Niger et al. [15] sub-model B following 

closely. In the Anderson et al. [10] sub-models results are presented for the variable denoting T-

lymphocytes, representing the immune response. This model was built with limited information on the 
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immune system components and as such poor global sensitivity results could be observed for this 

variable. The Niger et al. [15] sub-model B showed results for the total number of iRBCs which was split 

into compartments, with most outlier results including parameters that influence these compartments 

directly. All of the models from these three publications consequently showed good global sensitivity 

results overall. The Li et al. [13] sub-models showed the poorest results as the immune effectors 𝐸 was 

susceptible to changes in all parameters. Additionally, for this variable, almost all of the wild type 

response coefficients did not correspond to the much lower, most probable response coefficient. Care 

should therefore be taken with conclusions drawn from this model as a population shows various possible 

response coefficients.  
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Chapter 9 

 

Conclusion 

 

Within-host models describing the immune response to malaria infection were analyzed to investigate 

the differences in model structure, outputs obtained, and parameters used. Sensitivity and uncertainty 

analyses were conducted on specific sub-models from the publications as tools for model comparisons 

to each other as well as to human host biology. As models differ significantly from each other regarding 

the focus of a modeler’s investigation as well as the parameters used, each model yielded different 

outputs. The tools used in this project can elucidate which models are more relevant in describing the 

disease dynamics within an individual as well as in a population, whilst additionally giving insight into 

parameter necessity for a model, as well as possible drug targets. 

The aim of this project was to use sensitivity and uncertainty analysis on within-host mathematical 

models of malaria infection where the immune response is included. These analyses were used to identify 

important parameters for the disease dynamics that could be possible drug targets. The results were 

additionally used to determine whether the description of the disease processes can accommodate 

heterogeneity and uncertainty, while still presenting realistic model predictions. These analyses include 

local sensitivity, uncertainty, robustness and global sensitivity analysis. As set out in the objectives of 

this project, models were reproduced using published model description and parameter values to establish 

trust in the publications, where after the models were subjected to analyses. 

 Local sensitivity analysis was used to determine important parameters for the disease dynamics of each 

sub-model and gave insight into which parameters have a large influence on the disease variables or the 

immune effectors of a model – and can therefore serve as possible focus points for treatment 

development. Uncertainty analysis differs from local sensitivity analysis as it does not show an important 

parameter-variable interaction, but rather how variance in parameters can influence the uncertainty of 

model predictions. Robustness analysis does not form part of sensitivity and uncertainty analysis as it 

does not show individual parameter effects, but rather how the model outputs are affected with 

simultaneous changes in all parameters. This analysis can therefore determine the range of different 

variables with numerous parameter sets. Here, good robustness results were interpreted as model outputs 

that do not deviate largely from the reference model outputs, while also correlating with experimentally 
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determined variable values. Lastly, global sensitivity analysis was used to determine if local sensitivity 

analysis results are conserved over a larger parameter space (as one would encounter in a population). 

Although the different analysis results are not comparable with each other, the models used in this project 

can be compared when inspecting all results in combination.      

Local sensitivity analysis completed on all sub-models under investigation indicated the highest response 

coefficients for parameters and processes that influence the availability of healthy RBCs and the release 

of merozoites from a bursting iRBC. These response coefficients were for the T-lymphocyte population 

in the Anderson et al. [10] sub-models. The same parameters were indicated in results for the Niger et 

al. [15] sub-model B, the Okrinya [16] model and the Li et al. [13] sub-models. The parameters obtained 

from local sensitivity analysis are additionally indicated within the local sensitivity analysis of the 

reproductive number (𝑅0) equations of all the models, and therefore have a direct influence on disease 

persistence. Furthermore, the local sensitivity response coefficients were the largest for the immune 

effector variables throughout all of the models. This indicates the strong need for an immune response to 

infection. The large sensitivity of the immune system to parameters integrated within the 𝑅0 equations, 

show how the immune response can possibly decrease the 𝑅0 threshold to eradicate disease. 

When interpreting results for possible drug targets, care should be taken to note the model description 

and disease state, as difference states can indicate different drug targets. For example, in the Anderson 

et al. [10] and Li et al. [13] sub-models for an infected state with no immune response, the birth rate of 

new RBCs showed no effect on the steady state of the healthy RBC population, but increased the disease 

variables. This indicates that in an immune-deficient individual, an increased stimulation of healthy RBC 

production (to counter loss due to parasite lysis) would show no effect on the RBC population, but would 

increase the disease. In the sub-models where the immune response was incorporated this was not the 

case.   

Uncertainty analysis can be helpful to determine which parameters have a large influence on the 

uncertainty in model outputs and therefore the trust we can have in models to represent the actual biology 

and dynamics behind a disease given inevitable uncertainties in inputs. Parameter values were all varied 

with 10 % for analysis, however, the actual variance of parameters can be much larger as parameter 

values can be hard to determine experimentally and can vary within a human due to different diets, ages 

etc., whilst also varying in a population. Uncertainty analysis distinguished the same parameters (𝜆 and 

𝑟) as observed for local sensitivity analysis present in all models as the highest contributing factors to 

uncertainty in model outputs. These parameters directly influence the availability of healthy RBCs and 
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the release of merozoites from bursting iRBCs. Additionally, these parameters play a role in the 

determination of 𝑅0, and uncertainty in the parameters can be the difference between an infected 

individual and a disease-free individual with the exact same parameter values for all other parameters. 

The uncertainty analysis highlights the necessity for the precise determination of parameter values and 

their ranges as this would greatly improve model reliability as well as inter-model comparisons.  

Robustness analysis of the sub-models indicated that individual model robustness improved with model 

complexity and the inclusion of the immune response, probably due to better control of the model system 

when more processes influence the disease dynamics. This indicates that a better control of the model 

system by e.g. the inclusion of the immune response, would ensure that model outputs do not vary greatly 

when all parameters are altered, but stays close to the reference model steady states. Robustness can also 

be interpreted when comparing results to literature ranges of the different variables. For the disease-free 

state, the results of Li et al. [13] correlated well with experimental ranges. The RBC population range 

when an individual is infected with malaria corresponded with the Li et al. [13] sub-models where 

infection and the immune response was included. Lastly, it was only the Niger et al. [15] models that 

corresponded with literature on the range for immune effectors. The robustness results therefore indicate 

that the Li et al. [13] models are more likely to realistically describe physiologically relevant disease 

dynamics, with the Niger et al. [15] model realistically describing the dynamics of the immune cells. 

Global sensitivity analysis demonstrated how well response coefficients are conserved over a parameter 

space. The results showed good global sensitivity over all sub-models as the response coefficients were 

mostly preserved over a parameter space. It was only the results of the Li et al. sub-models that indicated 

poor global sensitivity results, where the large response coefficients observed in local sensitivity analysis 

did not correspond with the most probable response coefficient, which was significantly lower. The 

results for the Li et al. [13] models do, however, indicate the necessity of global sensitivity analysis, as 

it is a perfect example in where local sensitivity analysis may lack. 

From the collective analysis on all models the different models can be ranked from the most realistic 

model to the least. The Niger et al. [15] model showed the best results as the best sensitivity analysis 

results were obtained, however, the robustness results were a few orders of magnitude off from literature.  

The Li et al. [13] model comes second as the robustness analysis results correspond so closely to ranges 

observed experimentally and in literature. The parameter values should however be closely inspected for 

this model as alterations in the values can lead to unexpected results evident in the local sensitivity 

analysis, therefore showing model instability. The Okrinya [16] model would be third best as it showed 
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great conservation of the local sensitivity results during the global sensitivity analysis, however it did not 

meet the robustness analysis standards. The Anderson et al. [10] model has a good model construction 

as it showed good global sensitivity analysis results; however, as this model was the first of its kind to 

be constructed, and taking into account that parameter values used were mostly estimated with limited 

knowledge of the dynamics of the human immune systems, the robustness analysis showed poor results. 

The analysis of all of the models therefore emphasize the advantages of the immune response on the 

disease dynamics of malaria infection and indicate parameters that should be investigated for disease 

eradication. Future work would be to investigate the uncertainty of parameter values and the effects it 

can elicit on disease persistence, as this would establish more trust in within-host models. Furthermore, 

the amount of merozoites released as well as the availability of healthy RBCs can be investigated to 

determine threshold values for these parameters when integrated with other parameters presented in the 

equations of the reproductive numbers, to establish values at which the disease can be eradicated. The 

Niger et al. [15] model can be used as a basis for further model development, starting at the integration 

of the antibodies into the rest of the model system to inspect the influence on the disease variables. 

Additionally, parameters values can be changed for the Niger et al. [15] models to improve robustness 

results, and more components can be added to the model of Niger et al. [15], such as immune effector 

components important for inflammation, to investigate new approaches or parameters that may greatly 

influence the disease dynamics of malaria infection for possible drug targets. Lastly, the Okrinya [16] 

model showed great promise with local and global sensitivity results. As this model includes more 

descriptive immune system components, it should also be investigated to see if the desired robustness 

results can be achieved. 
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Appendix A 
 

A.1. Anderson et al. [10] 

  

Table A1. Parameter values and initial concentrations for Anderson et al. [10]. 

 

The parameters as shown in Table A1 were used to construct 4 different sub-models (1A to 1D), with 

some parameter shifts to display differences in models indicating unique biological events. Additionally, 

the published value for 𝛾 is 0.1 /𝑑𝑎𝑦 ; however, the model outputs could not be correlated to published 

outputs using this value. With a shift to a new value of 1.0 / 𝑑𝑎𝑦, the first sub-model output was obtained. 

To obtain the other sub-models the parameter shifts were used as published and shown below. 

Additionally, no initial values were provided by the published article, as such parameter values were 

input based on visual inspection of the published model outputs. The initial density of RBCs was taken 

from the published graphs, and 𝑠(0)  =  1 was used as at least 1 merozoite is needed to start infection. 

Parameter Parameter description Value Unit 

𝝀 Recruitment rate of healthy RBCs 1 /𝑑𝑎𝑦 

𝝁 Natural death rate of RBCs 0.00833 /𝑑𝑎𝑦 

𝜷 Probability of infection of RBC with free roaming merozoites 0.1 /𝑑𝑎𝑦 

𝜶 Death rate of iRBCs 0.2 /𝑑𝑎𝑦 

𝒓 Merozoites released per bursting iRBC 16 /𝑑𝑎𝑦 

𝒅 Natural death rate of merozoites roaming free 72 /𝑑𝑎𝑦 

𝒉 Rate of antibody-mediated killing of free merozoites  0.1 /𝑑𝑎𝑦 

𝜸 Proliferation rate of T-lymphocytes due to merozoites 1.0 /𝑑𝑎𝑦 

𝒂 Natural death rate of T-lymphocytes 0.05 /𝑑𝑎𝑦 

𝒈 Rate of cytotoxic killing of iRBCs 0.05 /𝑑𝑎𝑦 

𝒌 Proliferation rate of T-lymphocytes due to iRBCs 0.05 /𝑑𝑎𝑦 

𝒙(𝟎) Initial density of healthy RBCs 120 − 

𝒚(𝟎) Initial density of iRBCs 0 − 

𝒔(𝟎) Initial density of merozoites after infection 1 − 

𝑻(𝟎) Initial density of T-lymphocytes 0.01 − 
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The initial density of the T lymphocytes proved difficult to determine, and was tested using a vast range 

of initial estimated. A value of 0.01 was the only input that yielded desired outputs. This shows that the 

model is sensitive to initial conditions of the T-lymphocyte population, and that it could possibly 

influence the obtained results. The published and reproduced model outputs are presented in Figure A1. 
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Figure A1. The Anderson et al. [10] models as published are shown on the left hand side and the reproduced 

models are shown on the right. Discrepancies can be attributed to modelling challenges, such as estimation of 

initial parameter values, as well as altered values required for precise model outputs. The solid line represents 

sub-models without an immune system and eq. 1.1 – 1.3 was used with parameters as shown in table A1. The 
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A.2. Li et al. [13] 

 

Table A2. Parameter and initial values for Li et al. [13].  

 

The table shows parameter values used for the model of eq. 4.2.1 to 4.2.4. Four different sub-models (2A 

to 2D) were achieved by changing some parameter values to show different dynamical results explaining 

various possibilities to be discussed. The parameter values were used as is to obtain the first sub-model 

with a disease free equilibrium. To obtain the second sub-model where the disease persists with no 

specific immune response, 𝛼 was changed to a value of 9 × 10−7 𝜇𝑙/𝑐𝑒𝑙𝑙/𝑑𝑎𝑦 and 𝑑2 was changed to a 

value of 0.13 /𝑑𝑎𝑦, therefore implicating a higher infection rate of malaria parasites to healthy RBCs 

and a faster decay rate of immune effectors, respectively. For sub-model 2C, the same value was used 

Parameter Parameter Description Value Unit 

𝝀 Production rate of RBCs 4.15 𝑥 106 𝑐𝑒𝑙𝑙𝑠/𝜇𝑙/𝑑𝑎𝑦 

𝒅𝟏 Decay rate of RBCs 8.3 𝑥 103  /𝑑𝑎𝑦 

𝝁 Decay rate of malaria parasites 48 /𝑑𝑎𝑦 

𝒅𝟐 Decay rate of immune effectors 0.05 /𝑑𝑎𝑦 

𝜶 Infection of RBCs by malaria parasites 2 𝑥 10−9 𝜇𝑙/𝑐𝑒𝑙𝑙/𝑑𝑎𝑦 

𝜹 Decay rate of iRBCs  1.0 /𝑑𝑎𝑦 

𝒓 Product rate of malaria parasites  12 /𝑑𝑎𝑦 

𝒑𝟏 Removal rate of iRBCs by immune system 10−8 𝜇𝑙/𝑐𝑒𝑙𝑙/𝑑𝑎𝑦 

𝒑𝟐 Removal rate of malaria parasites by immune system 10−8 𝜇𝑙/𝑐𝑒𝑙𝑙/𝑑𝑎𝑦 

𝒌𝟏 Proliferation rate of immune effectors (E) by iRBCs (I) 2.5 𝑥 10−5 𝜇𝑙 /𝑐𝑒𝑙𝑙/𝑑𝑎𝑦 

𝒌𝟐 Proliferation rate of immune effectors (E) by merozoites 

(M) 

4.69 𝑥 10−5 𝜇𝑙/𝑐𝑒𝑙𝑙/𝑑𝑎𝑦 

𝜷 1/ β half saturation constant for iRBCs (I) 5 𝑥 10−4 𝜇𝑙/𝑐𝑒𝑙𝑙 

𝜸 1/γ half saturation constant for malaria parasites (M) 6.67 𝑥 10−4 𝜇𝑙/𝑐𝑒𝑙𝑙 

𝑯(𝟎) Initial population of RBCs 5 𝑥 106  𝑐𝑒𝑙𝑙𝑠/ 𝜇𝑙 

𝑰(𝟎) Initial population of iRBCs 0 𝑐𝑒𝑙𝑙𝑠/ 𝜇𝑙 

𝑴(𝟎) Initial population of malaria parasites 104  𝑐𝑒𝑙𝑙𝑠/ 𝜇𝑙 

𝑬(𝟎) Initial population of immune effectors 10−4 𝑐𝑒𝑙𝑙𝑠/ 𝜇𝑙 
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for 𝛼 as in the second model. However, here the value for 𝑑2 was changed to 0.09 /𝑑𝑎𝑦, showing a 

slightly lower decay rate as stated for model 2B. Additionally, the value for 𝑘1 was altered to 4.5001 ×

10−5 𝜇𝑙/𝑐𝑒𝑙𝑙/𝑑𝑎𝑦 showing an increase in the proliferation rate due to infection. Lastly, in the fourth 

sub-model (2D) an endemic equilibrium is obtained and 𝑑2 is now chosen as 0.04 /𝑑𝑎𝑦 and here 𝑘1, and 

not 𝑘2, was changed to 1.03 × 10−5 𝜇𝑙/𝑐𝑒𝑙𝑙/𝑑𝑎𝑦. The different model outputs are shown below in 

Figures A2.1- A2.4. 
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Figure A2.1: The results of the Li et al. [13] sub-model A showing a disease-free state. Parameter values were used 

as in Table A2. On the left hand side are all the published graphs and on the right hand side the graphs that were 

reproduced. 𝐻[𝑡] represents the population of healthy RBCs; 𝑀[𝑡] merozoites; 𝐼[𝑡] iRBCs and 𝐸[𝑡] immune effectors. 
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Figure A2.2: The results of the Li et al. [13] sub-model B showing an infection model without specific immune 

response. Parameter values were used as in Table A2 except for 𝛼 = 9 × 10−7 and 𝑑2 = 0.13. On the left hand 

side are all the published graphs and on the right hand side the graphs that were reproduced. 𝐻[𝑡] represents the 

population of healthy RBCs; 𝑀[𝑡] merozoites; 𝐼[𝑡] iRBCs and 𝐸[𝑡] immune effectors. 
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Figure A2.3: The results of the Li et al. [13] sub-model C showing an infection model with specific immune 

response. Parameter values were used as in Table A2 except for 𝛼 = 9 × 10−7, 𝑑2 = 0.09 and 𝑘1 = 4.5001 ×
10−5. On the left hand side are all the published graphs and on the right hand side the graphs that were reproduced. 

𝐻[𝑡] represents the population of healthy RBCs; 𝑀[𝑡] merozoites; 𝐼[𝑡] iRBCs and 𝐸[𝑡] immune effectors. 
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Figure A2.4: The results of the Li et al. [13] sub-model D showing an infection model at endemic equilibrium. 

Parameter values were used as in Table A2 except for 𝛼 = 9 × 10−7, 𝑑2 = 0.04 and 𝑘1 = 1.03 × 10−5. On 

the left hand side are all the published graphs and on the right hand side the graphs that were reproduced. 𝐻[𝑡] 
represents the population of healthy RBCs; 𝑀[𝑡] merozoites; 𝐼[𝑡] iRBCs and 𝐸[𝑡] immune effectors. 
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A.3. Niger et al. [15] 

 

Table A3. Parameter and initial values of the Niger et al. [15] model, showing values for sub-model A and B, a 

disease free model and parasite present model, respectively. 

Parameter Description SM-A SM-B 

𝝀𝑿 Production rate of RBCs from the bone marrow 41664 41664 

𝝀𝑩 Production rate of immune cells 30 30 

𝝁𝑿 Natural death rate of uninfected RBCs 0.8 0.8 

𝝁𝒀𝒊 (𝒊 = 𝟏 − 𝟒) Natural death rate of infected RBCs 0.5 0.5 

𝝁𝒀𝟓 Natural death rate of infected RBCs 1.0 1.0 

𝝁𝑴 Natural death rate of merozoites 3.0 3.0 

𝝁𝑩 Death rate of immune cells 1.53 1.53 

𝝁𝑨 Deterioration rate of antibodies  0.4 0.4 

𝝁 Loss of merozoites due to infection of RBCs 1 1 

𝜷 Rate of infection 8 × 10−4 8 × 10−4 

𝜸𝒊 (𝒊 = 𝟏 − 𝟓) Progression rate of iRBCs from Stage (i) to Stage (i+1) 0.3 1.5 

𝒌𝒊 (𝒊 = 𝟏 − 𝟓) Immunosensitivity of iRBCs 0 0.01 

𝒌𝑴 Immunosensitivity of merozoites 0 0.3 

𝝆𝟏 Immunogenecity of iRBCs and merozoites 0.001 0.001 

𝝆𝒊 Immunogenecity of iRBCs and merozoites 10−5 10−5 

𝜼 Maximum rate of increase of antibodies 0.6 0.6 

𝒓 Number of merozoites 16 16 

𝑿 (𝟎) Initial concentration of healthy RBCs 500 500 

𝒀𝟏 (𝟎) Initial concentration of iRBCs  − − 

𝑴 (𝟎) Initial concentration of merozoites 1 1 

𝑩 (𝟎) Initial concentration of immune cells − − 

𝑨 (𝟎) Initial concentration of antibodies − − 

 

Initial values are not given as the model shows that the initial values should not affect the steady states 

of the different variables that would be reached with the model. However, as stated previously, at least 

one merozoite is needed for the start of infection. Two different model outputs were achieved, with one 
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showing a parasite free steady state, where the 𝛾𝑖(𝑖 = 1 − 5) value denoting the progression rate of 

iRBCs from one stage to the next is lower, thus demonstrating a slower progression than that for the 

second model. The second model incorporates a stable parasite-present, or endemic, steady state. There 

is also no immunosensitivity of iRBC and merozoites in the parasite-free model. Model outputs are 

presented in Figures A3.1 and A3.2. 
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Figure A 3.1: The parasite-free equilibrium for the Niger et al. [15] model. Parameter values were used as 

in Table A3. On the left hand side are all the published graphs and on the right hand side the graphs that 

were reproduced. 𝑌[𝑡] represents the combined population of iRBCs; 𝑀[𝑡] merozoites and 𝐴[𝑡] antibodies. 
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Figure A3.2: The parasite present equilibrium for the Niger et al. [15] model. Parameter values were used 

as in Table A3. On the left hand side are all the published graphs and on the right hand side the graphs that 

were reproduced. 𝑌[𝑡] represents the combined population of iRBCs; 𝑀[𝑡] merozoites and 𝐴[𝑡] antibodies. 
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A.4. Okrinya [16] 

 

Table A4. Parameter and initial values for Okrinya [16]. 

Parameter Parameter Description Value Unit 

𝝀𝒙 Rate at which RBCs are recruited 4.15 𝑥 104 𝑐𝑒𝑙𝑙𝑠/𝜇𝑙/𝑑𝑎𝑦 

𝜷𝒙 Rate constant for infection rate of RBCs 4.9 𝑥 10−6 𝜇𝑙/𝑐𝑒𝑙𝑙/𝑑𝑎𝑦 

𝝁𝒙 Natural per capita death rate of RBCs 0.0083 /𝑑𝑎𝑦 

𝝁𝒏 Natural death rate of iRBCs 0.055 /𝑑𝑎𝑦 

𝝁𝒚 Conversion rate of iRBCs to merozoites 0.5 /𝑑𝑎𝑦 

𝒓 Number of merozoites released per bursting schizont 16 − 

𝝁𝒎 Death rate of merozoites 48 /𝑑𝑎𝑦 

𝜭 Fraction of merozoites converting to gametocytes 6.4 𝑥 10−3 − 

𝝁𝒈 Natural per capita death rate of gametocytes 0.02 /𝑑𝑎𝑦 

𝒄𝟎 Efficiency of antibodies in blocking merozoite invasion 0.6 𝑐𝑒𝑙𝑙/𝑚𝑜𝑙 

𝒄𝟏 Efficiency of antibodies in blocking merozoite release 1.12 𝑐𝑒𝑙𝑙/𝑚𝑜𝑙 

𝒌𝒂 Antibodies induced Fc-dependent killing rate of iRBCs 1.38 𝑐𝑒𝑙𝑙/𝑚𝑜𝑙 

𝒌𝒃 Antibody induced Fc-dependent killing rate of merozoites 12 𝑐𝑒𝑙𝑙/𝑚𝑜𝑙 

𝒌𝒄 Antibody induced Fc-dependent killing rate of gametocytes 1.26 𝑐𝑒𝑙𝑙/𝑚𝑜𝑙 

𝒌𝒚 Elimination rate of iRBCs by innate immune cells 0.9 𝜇𝑙/𝑐𝑒𝑙𝑙/𝑑𝑎𝑦 

𝒌𝒎 Elimination rate of merozoites by innate immune cells 1.18 𝑥 102 𝜇𝑙/𝑐𝑒𝑙𝑙/𝑑𝑎𝑦 

𝒌𝒈 Elimination rate of gametocytes by innate immune cells 1.4 𝜇𝑙/𝑐𝑒𝑙𝑙/𝑑𝑎𝑦 

𝒃𝒎 Supply rate of immune cells from stem cells 0.038 𝑐𝑒𝑙𝑙/ 𝜇𝑙/𝑑𝑎𝑦 

𝜼𝟏 Parasite induced innate immune cell production rate 1.3 𝑥 10−7 /𝑑𝑎𝑦 

𝜼𝟐 Parasite induced specific immune cell production rate 3 𝑥 10−7 𝑚𝑜𝑙 𝜇𝑙/𝑐𝑒𝑙𝑙2

/𝑑𝑎𝑦 

𝜱 Phagocyte growth difference between merozoites and iRBCs 2 − 

𝒈𝟐 Antibody production difference between merozoites and iRBCs 0.85 − 

𝒌𝒅 Deterioration rate of innate immune cells due to iRBC killing    2.8 𝑥 10−9 𝜇𝑙/𝑐𝑒𝑙𝑙/𝑑𝑎𝑦 

𝒌𝒏 Deterioration rate of innate immune cells due to interaction with 

merozoites 

3.1 𝑥 10−9 𝜇𝑙/𝑐𝑒𝑙𝑙/𝑑𝑎𝑦 

𝜼𝟑 Deterioration rate of antibodies due to interaction with iRBCs 4.5 𝑥 10−8 𝜇𝑙/𝑐𝑒𝑙𝑙/𝑑𝑎𝑦 
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The Okrinya model was published in the non-dimensionalised form and reproduced graphs are presented 

in Figure A4.1. The graphs for the dimensionalised form are shown in Figure A4.

𝜼𝟒 Deterioration rate of antibodies due to interaction with merozoites 3.4 𝑥 10−8 𝜇𝑙/𝑐𝑒𝑙𝑙/𝑑𝑎𝑦 

𝝁𝒑 Death rate of innate immune cells 0.3 /𝑑𝑎𝑦 

𝑨𝟎 Starting density of antibodies 0 𝑚𝑜𝑙/𝑐𝑒𝑙𝑙 

𝝁𝒂 Death rate of antibodies 0.3 /𝑑𝑎𝑦 

𝑿(𝟎) Initial concentration of RBCs 5 𝑥 106  𝑚𝑜𝑙/𝑐𝑒𝑙𝑙 

𝒀(𝟎) Initial concentration of iRBCs 0 𝑚𝑜𝑙/𝑐𝑒𝑙𝑙 

𝑴(𝟎) Initial concentration of merozoites 0.105 𝑚𝑜𝑙/𝑐𝑒𝑙𝑙 

𝑮(𝟎) Initial concentration of gametocytes 0 𝑚𝑜𝑙/𝑐𝑒𝑙𝑙 

𝑷(𝟎) Initial concentration of innate immune cells 0.127 𝑚𝑜𝑙/𝑐𝑒𝑙𝑙 

𝑨(𝟎) Initial concentration of antibodies 0 𝑚𝑜𝑙/𝑐𝑒𝑙𝑙 
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Figure A4.1: The parasite-present non-dimensionalised dynamics of malaria infection with immune response 

of the Okrinya [16] model. Graphs from the Okrinya [16] publication is shown on the left and reproduced 

graphs on the right. The red graphs show healthy RBCs; black shows iRBCs; pink/red- merozoites; dark blue- 

gametocytes, light blue- innate immune cells and green- adaptive immune cells. 
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Figure A4.2: The parasite-present dimensionalised dynamics of malaria infection with immune response. 

Parameter values were used as in Table A4. The graphs show steady states are reached for the different variables 

when using the dimensionalised model form. The red graphs show healthy RBCs; black shows iRBCs; pink/red- 

merozoites; dark blue- gametocytes, light blue- innate immune cells and green- adaptive immune cells. 
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