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SUMMARY 

 

Research in concrete has advanced to such an extent that it is now possible to add steel fibres to 

concrete in order to improve its durability and ductility. This led to a research group in Europe, FIB, 

who has provided guidelines to designing Steel Fibre Reinforced Concrete (SFRC) structures. They 

have found that it is possible for SFRC beams in flexure to be in static equilibrium. However, the 

time-dependent behaviour of SFRC has not been researched fully and it requires further 

investigation. 

When looking at a concrete beam in flexure there are two main stress zones, the compression zone 

and the tension zone, of which the tensile zone will be of great interest. This study will report on the 

investigation of the tensile time-dependent behaviour of SFRC in order to determine how it differs 

from conventional concrete. The concrete has been designed specifically to exhibit strain-softening 

behaviour so that the material properties of SFRC could be investigated fully. Factors such as 

shrinkage and tensile creep of SFRC were of the greatest importance and an experimental test setup 

was designed in order to test the tensile creep of concrete in a simple and effective manner. 

Comparisons were be made between the tensile creep behaviour of conventional concrete and SFRC 

where emphasis was placed on the difference between SFRC specimens before and after cracking 

occurred in order to determine the influence of steel fibre pull-out. The addition of steel fibres 

significantly reduced the shrinkage and tensile creep of concrete when un-cracked. It was however 

found that the displacement of fibre pull-out completely overshadowed the tensile creep 

displacements of SFRC. It was necessary to investigate what effect this would have on the deflection 

of SFRC beams in flexure once cracked. 

Viscoelastic behaviour using Maxwell chains were used to model the behaviour of the tensile creep 

as found during the tests and the parameters of these models were used for further analyses. Finite 

Element Analyses were done on SFRC beams in flexure in order simulate creep behaviour of up to 30 

years in order to determine the difference in deflections at mid-span between un-cracked and pre-

cracked beams. 

The analyses done showed that the deflections of the pre-cracked SFRC beams surpassed the 

requirements of the Serviceability Limit States, which should be taken into account when designing 

SFRC beams. 
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OPSOMMING 

 

Die navorsing in beton het gevorder tot so ‘n mate dat dit nou al moontlik is om staal vesels by die 

beton te voeg sodat dit beton se duursaamheid en duktiliteit te verbeter. Dit het gelei tot ‘n groep in 

Europa, FIB, wat dit moontlik gemaak het om Staal Vesel Beton (SVB) strukture te ontwerp. Hulle het 

gevind dat dit moontlik is vir SVB balke om in statiese ewewig te wees tydens buiging. Die tyd 

afhanklike gedrag van SVB is egter nog nie deeglik ondersoek nie en benodig dus verdure ondersoek. 

Wanneer ‘n balk in buiging aanskou word kan twee hoof spanningzones identifiseer word, ‘n druk 

zone en ‘n trek zone, waarvan die trek zone van die grootste belang is. Hierdie studie gaan verslag 

lewer oor die ondersoek van tyd-afhanklike trekgedrag van SVB om te bepaal hoe dit verskil van 

konvensionele beton. Die beton was spesifiek ontwerp om vervormingsversagtende gedrag te wat 

maak dat die materiaal eienskappe van SVB ten volle ondersoek kan word. Faktore soos krimp en die 

trekkruip van SVB was van die grootste belang en ‘n eksperimentele toets opstelling was ontwerp 

om die trekkruip van beton op ‘n eenvoudige en effektiewe manier te toets. 

Daar was vergelykings getref tussen die trekkruip gedrag van konvensionele beton en SVP en groot 

klem was geplaas op die verskil tussen SVB monsters voor en na die monsters gekraak het om te 

bepaal wat die invloed was van staalvesels wat uittrek. Die byvoeging van staalvesels het beduidend 

die kruip en trekkruip van beton verminder. Daar was alhoewel gevind dat die verplasing van die 

uittrek van staalvesels heeltemal die trekkruip verplasings van SVB oorskadu het. Dit was nodig om 

te sien watse effek dit op die verplasing van SVB balke in buiging sal hê. 

Viskoelastiese gedrag deur Maxwell kettings was gebruik om die gedrag van trekkruip, soos gevind 

deur die toetse,  te modelleer en die parameters van hierdie modelle was verder gebruik vir analises. 

Eindige Element Analises was gedoen op SVB balke in buiging om die trekkruip gedrag tot op 30 jaar 

te simuleer op die verskil tussen die defleksies by midspan tussen ongekraakte en vooraf gekraakte 

balke te vind. 

Die analises het gewys dat die defleksies van die vooraf gekraakte balke nie voldoen het aan die 

vereistes van die Diensbaarheid limiete nie, wat in ag geneem moet word wanneer SVB balke 

ontwerp word. 
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Chapter 1 

1. Introduction 

Research in concrete has advanced over the years to such an extent that it is widely used as a 

building material internationally (Shi and Mo, 2008). Research in concrete has allowed contractors 

and engineers to design structures knowing what to expect. The material properties of concrete 

such as the compressive strength, the elastic behaviour and even time-dependent behaviour are all 

factors required to design structures made from concrete. After years of research it is now possible 

to obtain these parameters and to use them in the design procedure. Coupled with the advantages 

of concrete, mainly its strong compressive strength and versatility during construction, it is easy to 

see why concrete is such a popular building material. 

The biggest disadvantages of concrete are its low tensile strength and brittleness. The low tensile 

strength of the concrete is remedied by the high tensile strength of reinforcing steel bars cast into 

the concrete. Conventional reinforcing design has allowed the use of concrete and reinforcing steel 

bars in the same structure, however the detailing and fixing of the reinforcing steel bars can prove to 

be cumbersome. The brittleness of concrete also results in surface cracks appearing in the concrete 

during the service of the structure. The cracks have proven to be detrimental to the concrete 

because of moisture seeping into the cracks and causing the oxidation of the steel reinforcing bars 

which leads to corrosion of the steel. 

These disadvantages have inspired researchers to combine fibre technology and concrete to make 

the concrete more ductile and to lessen the effect of cracking (You et al., 2011; ACI Committee 224, 

2001). One advantage of incorporating fibres in reinforced concrete is that it is possible to mix the 

fibres with the concrete and casting it in situ. There are several different types of fibres that are 

available for commercial and experimental use. The basic categories are steel, glass, synthetic and 

natural fibre materials (ACI Committee 544, 2001). The main areas of concern of using fibres are 

fibre pull-out and fibre breakage. Fibre pull-out occurs after the composite has cracked with the load 

still applied, which will cause the fibres to debond from the concrete and pull out of the composite if 

the stress is high enough. The fibre pull-out is mainly influenced by the interfacial bond strength 
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between the concrete and the fibres. However, with steel fibres it is possible to change the 

geometry of the fibres in such a manner as to aid in the resistance of fibre pull-out. Hooked fibres 

would resist fibre pull-out more effectively because of the mechanical anchorage provided by the 

hooked ends (Lim et al., 1987; Li and Stang, 1997). Fibre breakage can most likely be avoided by 

using stronger fibres or lowering the applied forces. 

Recently a design committee in Europe, FIB (Fédération Internationale du Béton), developed a new 

model code, FIB Model Code 2010, to be used for the design of fibre reinforced concrete with 

conventional reinforcement. Research in SFRC has advanced to such an extent that it was possible to 

incorporate the design of SFRC structures in the new model code. This design method made it 

possible to design SFRC beams in flexure that are in static equilibrium, but the time dependant 

effects have not been taken into account. 

When a beam is loaded in flexure two stress zones will develop in the beam, namely a compressive 

stress zone and a tensile stress zone. The compressive stress can be managed by the compressive 

resistance of the concrete, but the tensile stress has to be managed by the reinforcing bar once the 

concrete has cracked. This situation led to the conventional concrete design method. However, with 

SFRC the tensile stress has to be withstood by the fibres bridging the crack, which makes it possible 

for the concrete to be structurally stable if it has been designed to exhibit strain-hardening 

behaviour. Little research has been done to determine what the time-dependent effects are of SFRC 

structures and/or designs. 

During this study the time-dependent behaviour of Steel Fibre Reinforced Concrete (SFRC) was 

investigated in order to determine whether the use of SFRC is a viable option for designing 

structures. The type of fibres used was the hooked steel fibres and the type of concrete was Self 

Compacting Concrete (SCC). It has been found that there is little difference between the 

compressive creep of SCC and SFRC; however, the difference between the tensile creep of SCC and 

SFRC is unknown (Chern and Young, 1988). It was therefore necessary to determine whether the 

tensile creep of SFRC was more than the tensile creep of SCC and to see whether fibre pull-out had a 

significant effect on the tensile creep phenomenon. This would assist with the designs of SFRC 

structures. 

A new testing procedure had to be designed in order to perform direct tensile creep tests on the 

concrete specimens. The most positive aspects of the few designs from the past were combined to 

create a simple and effective design (Kovler, 1994; Bisonette and Pigeon, 1995). The design used in 

this study consisted of steel frames that were loaded through a pivot arm with weights in order to 
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create a tensile stress in the concrete test samples. This design proved to be efficient in testing the 

tensile creep of the SCC and SFRC specimens and useful data was obtained from these tensile creep 

tests. 

In Chapter 2 theoretical background information is given regarding the advances in concrete and 

Fibre Reinforced Concrete (FRC), typical time-dependent behaviour of cement-based materials and 

approaches to modelling these behaviours. 

In Chapter 3 the test setup is explained, along with the manufacturing of the test samples. Important 

information, for example the casting procedure, the tensile tests of the specimens and the 

calibration methods are discussed as well. 

In Chapter 4 the test results are presented and discussed. These results are processed so that they 

can be used for analysis procedures and it will be compared in order to understand the different 

mechanisms affecting the tensile behaviour of the test specimens. 

The different analysis and modelling procedures used are explained in Chapter 5 and the tensile 

creep modelling of SFRC is done in Chapter 6, with the main focus on the effects of cracks on tensile 

creep. 

The results and conclusions will be summarised in Chapter 7 along with future research prospects. In 

this chapter the possible shortcomings of the testing methods used are also discussed briefly to 

improve future research. 

In the appendixes the design of the concrete specimens and steel frames are discussed in detail. The 

mechanisms acting in beams in flexure are also discussed to explain why certain assumptions were 

made. 
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Chapter 2 

2. Background Information on SFRC, 

Creep and Shrinkage 

2.1 The Advances in Concrete 

Concrete is a common building material that has been used for the past 7000 years. In ancient times 

the Egyptians used concrete for the construction of the pyramids and the Romans used concrete as a 

building material for their structures for example the Colosseum, the Pantheon and the aqueducts. 

Research in concrete has advanced since Roman times to a point that concrete is now used for wider 

applications as a building material in modern society. These applications range from roads to exotic 

high rise buildings (Hunt, 2000). 

SCC and SFRC have been some of the more recent additions to the advances in concrete technology 

and they can make a significant difference in concrete structures. SCC removes the need to compact 

concrete through external vibration (Collepardi et al., 2007) and SFRC the ductility of concrete (Li 

and Stang, 2004). When combining the two different concretes to form Steel Fibre Reinforced Self 

Compacting Concrete (SFRSCC), it is possible to reduce the amount of labour and time of the casting 

process. This can be achieved by the elimination of the need to fix the reinforcing steel and vibrating 

the concrete. As seen in Appendix C it is theoretically possible to design SFRC structures with no 

conventional reinforcing, however the method found in FIB Model Code 2010 combines fibres with 

conventional concrete. 

SCC is a type of concrete that can fill formwork and encapsulate reinforcing bars through the action 

of gravity while remaining homogenous. The general characteristics of SCC are that it has excellent 

flow properties and it has a high resistance to segregation. The mix constituents are similar to 

conventional concrete with the biggest difference being that SCC has a higher cement matrix-

aggregate ratio with respect to conventional concrete (Collepardi et al., 2007). In order to improve 

the mobility and to reduce the segregation of the concrete, superplasticiser and viscosity-modifying 
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admixtures are added. In addition, the aggregate used is reduced in volume and size and higher fines 

content is used, which aids in reducing segregation. It is usually necessary to make a few trial mixes 

in order to find a concrete mix that adheres to the requirements specified by the EFNARC 2002 

Manual (EFNARC Specification and Guidelines for Self-Compacting Concrete, 2002). 

Various tests were performed on concrete with different fibres added to investigate how these 

fibres changed the properties of conventional concrete (Soroushian and Bayasi, 1991). The most 

commonly used types of fibres are glass fibres, steel fibres, synthetic fibres and natural fibres, each 

with their own advantages. The biggest advantage of fibres is that they span the gaps formed by the 

cracks in the concrete, thereby improving the ductility of concrete (Brown et al., 2002). The two 

main types of fibres being used in concrete can be classified as follows: Low-modulus, High-

elongations Fibres1 and High-strength, High-modulus Fibres2 (Swamy et al., 1974). 

The main focus of this study was to use steel fibres to form SFRC and to investigate the time-

dependent effects of SFRC in tension. In general steel fibres allow for the production of composites 

with ductile tensile mechanical behaviour. Steel fibres have a higher modulus of elasticity than 

concrete and by spanning the gap formed by cracking they can improve the ductility and tensile 

strength concrete. If the fibre content is high enough it is possible to improve the tensile strength of 

concrete after failure has taken place (Lim et al., 1987). If the tensile resistance of the composite 

increases after initial failure takes place it is called strain-hardening. However, this ductile tensile 

response comes to an end when the fibres break or fibre pull-out takes place. 

Certain uncertainties, for example the shrinkage, tensile creep and fibre pull-out have to be 

investigated in order to make sure that SFRSCC is a viable building material. It was mentioned in the 

previous paragraph that SFRC can have a higher tensile strength than normal concrete mainly after 

cracking occurred, especially when it is designed in such a manner that strain-hardening takes place. 

The biggest area of concern is whether fibre pull-out occurs and if time will have an effect on fibre 

pull-out. The other uncertainty is if there is a difference between the tensile creep of SCC and SFRC. 

Experiments and investigations will give more clarity on these two areas of concern to further the 

development of concrete technology. 

2.2 Beam Section Theory 

This section will provide some insight to assumptions made in the designing methods and the 

stresses that occur in conventional concrete and SFRC beams that are subjected to flexural loading. 

                                                           
1
 Generally does not lead to strength improvement, but helps control cracking. 

2
 Imparts strength and stiffness to the composite. 
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Short explanations will be given on how to determine the resisting moment in each case. These 

explanations will not go into detail because this would move away from the scope of the study. The 

mechanisms of beams in flexure can be found in Appendix C – Basic Kinematic Assumption. 

2.2.1 Conventional Reinforcing 

In order to understand the basic principles of conventional reinforcing design it is necessary to look 

at a section of a reinforced concrete beam in flexure, with the resisting stresses displayed. From this 

section certain basic assumptions are made: 

 The tensile concrete resistance is ignored, which is logical seeing that the reinforcing steel 

will withstand the tensile stresses in the section. 

 The strain distribution across the section is assumed to be linear. This means that the 

sections that were plane before bending occurred remain plane after bending. 

 The ULS is reached if the compression strain at the extreme compressive fibre reaches a 

specified value. This is usually 0.0035 unless specified otherwise. 

 The strains in the concrete and reinforcing steel are directly proportional to the distances 

from the Neutral Axis, at which the strains are zero. 

From Figure 1 it can be seen that the section is divided into two main sections: the compression 

zone and the tension zone. The compression zone is above the Neutral Axis (NA) and represents 

the compressive stress         that is resisted by the concrete, also known as the compression 

block. The tension zone contains the tensile stresses          which are withstood by the 

reinforcing steel. The tensile resistance of the concrete is neglected because of the high tensile 

resistance provided by the reinforcing steel. By taking these stress resistances and converting 

them to forces it is possible to determine the internal moment of the section through 

equilibrium. 
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Figure 1 Section at mid-span of a conventionally reinforced concrete beam in flexure. 

Considering the stresses and the forces in equilibrium: 

 

Figure 2 Beam section demonstrating stresses and forces being in equilibrium. 

From Figure 2 the factor   is the distance from the extreme fibre of the compression zone to the 

centre of the reinforcing bars,   is the lever arm between forces           and   is the location of 

the NA, to be determined through equilibrium, demonstrated by the following calculations: 

                       (2.1) 

                   (2.2) 

Where     is the compressive strength of concrete,     is the tensile strength of the reinforcing 

steel,   is the width of the beam and    is the cross-sectional area of steel. When designing a 

conventional reinforced concrete beam to withstand a certain bending moment capacity it is 
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necessary to provide the abovementioned parameters. The compressive strength     is usually 

specified at the beginning of the design process along with the width   of the beam. The tensile 

strength     of the reinforcing steel is also specified by the engineer, which leaves the cross-

sectional area    to be provided by the designer. The designer has to choose a certain diameter for 

the reinforcing steel in order to obtain    and then it is necessary to determine whether the 

diameter of the reinforcing steel is sufficient in withstanding the stresses and forces in the beam. 

This is done by taking the forces in equilibrium: 

         (2.3) 

Which means 

                    (2.4) 

From Equation 2.4 the following can be obtained: 

  
     

       
    (2.5) 

All the factors except   are known parameters, which makes it possible to determine a value for  . 

With   representing the location of the NA, where the stresses and strains in the section are zero, it 

is apparent that the process is a function of the reinforcing steel. All the other parameters are 

prerequisites for the design, but the designer can choose the amount of steel reinforcing as 

mentioned before. This means that the location of the NA relies on the amount of steel used in the 

design. From Figure 2 it is also apparent that 

             (2.6) 

By substituting Equation 2.5 into Equation 2.6 it is now possible to calculate a value for  , which is 

necessary to determine the resisting moment. This is done by taking forces          resisted by the 

different materials and multiplying them with the distance   between these forces in order to find 

the resisting moment    as demonstrated by Equation 2.7. 

                    (2.7) 

By substituting the different factors into Equation 2.7 the resisting moment    is as follows: 

                   (2.8) 

Or                (      (
     

       
))  (2.9) 

From Equations 2.8 and 2.9 the factor   is dependent on  , which in turn is dependent on   . This 

means that both expressions for determining the moment resistance of a conventionally reinforced 
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concrete beam are dependent on the diameter of steel chosen by the designer. Seeing that the 

amount of steel affects the position of the NA and the equilibrium of the section great care has to be 

taken to ensure that the compressive strength of the concrete is not exceeded. A certain point is 

reached when increasing the percentage of steel reinforcing leads to no advantage because the 

compressive strength of concrete will not be able to provide enough resistance, which leads to 

optimisation of the design. 

The design can be optimised by prescribing a stronger concrete, by deepening the beam or by 

incorporating compression steel in the compression zone to aid in resisting the compressive forces. 

The design method explained above is a simplified method that is used throughout the majority of 

engineering communities with slight modifications made to incorporate safety factors according to 

the different design manuals of different countries. 

2.2.2 Steel Fibre Reinforcing 

The stress vs. strain       Design Method has been designed by a Reunion Internationale des 

Laboratoires d'Essais et de Recherches sur les Materiaux et les Constructions (RILEM) committee in 

order to acquire design methods for SFRC (    Design Method, 2003). The design is based on the 

same fundamentals as the design of conventionally reinforced concrete. The Eurocode has been 

been used as a framework for the development of this design method. The design method was 

originally developed without size-dependent safety factors, however after a comparison of the 

predictions of the design method and of experimental results of structural elements consisting of 

various sizes revealed an overestimation of the carrying capacity by the design method. Size 

dependent safety factors were therefore introduced. Figure 3 represents the stresses in a SFRC 

beam section: 

 

Figure 3 Tensile Stress vs Strain graphs of a) plain concrete and b) SFRC specimens. 

Upon inspection it is noted that the figures in Figure 3 are similar to Figure 2 depicting the stresses in 

a conventional concrete section, with the biggest difference being that the concrete in the tensile 
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section has to withstand tensile stresses as well. The NA changes position in order to retain 

equilibrium as the stresses in the section change with the flexure. Figure 3 represents the 

combination of SFRC and reinforcing steel. It is possible to design a beam consisting purely of steel 

fibres and concrete, but it is more complex. The basic method of determining the bending capacity 

of a pure SFRC beam will be discussed in Appendix C – Basic Kinetic Assumption where Popov (1990) 

explains the mechanisms of bending. 

After assessing the ultimate resistance of a cross-section of a SFRC beam certain assumptions had to 

be made: 

 The plane sections remained plane and perpendicular. 

 The stresses in the SFRC in compression and tension are obtained from the combined stress-

strain diagram from Figure 3. 

 The limiting compressive strain is taken as 0.0035 for cross sections not fully in compression, 

which is applicable for applications in flexure. This strain limit is the same as the strain limit 

for conventional reinforced concrete. The strain limit for cross-sections subjected to pure 

axial compression, as with columns, is taken as 0.002. 

 For SFRC additionally reinforced with reinforcing steel bars, the strain is limited to 0.025. 

 To ensure a sufficient anchorage capacity for the  steel fibres, maximum deformation in the 

ULS is restricted to a crack width of 3.5 mm. If the crack width exceeds this limit special 

measures have to be taken. 

 For certain exposure classes the contribution of the steel fibres near the surface should be 

reduced. In these cases the steel fibres in a layer close to the surface should not be taken 

into account. 

For now it is necessary to see how steel fibres affect the design of conventional design parameters. A 

few parameters that are not included in the figures above have to be introduced in order to simplify 

the process. The parameter     is introduced,     is equal to the cover of the concrete with half the 

diameter of the reinforcing steel added. Another parameter     is introduced, which is the depth of 

the beam with   subtracted. It is also noticeable that the stress in the reinforcing steel     ⁄  has 

been neglected. The parameters               are all coefficients and safety factors to be chosen 

by the designer and do not affect the design process directly. 

Now that the parameters have been introduced the next step is to determine the moment 

resistance    . 

From equilibrium: 
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     : 

                             (
  

  
)              (

    

  
)              (2.10) 

But         

That leads to Equation 2.11: 
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After simplification: 
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)      (         )  (
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 (2.12) 

From the expression above it is apparent that the design process for SFRC beams is complex and that 

several variables are needed in order to determine the moment resistance of the section. The whole 

method is explained fully in the FIB Model Code 2010 with all the methods to obtain these absent 

variables made available. 

2.3 SFRC 

The use of SFRC has been introduced commercially into the European market since the late 1970’s. 

The early types of steel fibres were straight fibres produced by normal wire-drawing techniques. The 

use of these fibres was phased out because of the fibre pull-out being more significant with straight 

fibres than with hooked fibres (Li and Stang, 1997). It is relatively expensive to produce these 

straight fibres from the method mentioned above and the once the fibres debonded with the 

concrete, the straight smooth fibres produced little frictional resistance. This geometrical 

shortcoming led to the design of hooked and crimped fibres which provide some resistance once 

debondment took place. In this study hooked fibres were used.  

Fibre reinforcement creates the possibility to improve the tensile strength and ductility of concrete 

after cracking has occurred. High strength, high modulus fibres like steel fibres produce strong 

composites, primarily imparting characteristics of strength and ductility to the composite. The 

reinforcing action by fibres occurs through the fibre-matrix interfacial bond stress when cracks form 

after the composite has exceeded the cracking strain of the matrix. Since the fibres are stiffer than 

the matrix, they experience less deformation and exert a pinching force at the crack tips, in this way 

acting as crack arrestors. In this manner the cracks are prevented from propagating until the 

composite ultimate stress is reached when failure occurs. This failure can happen either by the 

simultaneous yielding of the fibres and matrix or by the fibre-matrix interfacial bond failure. 
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Studies have shown SFRC with hooked steel fibres had higher ultimate strengths under flexural 

loading than straight or crimped fibres (Soroushian and Bayasi, 1991). Even though the descending 

branch of flexural load-deformation characteristics was steeper for the hooked fibres, it still had 

superior flexural strength. This led to a desirable post-peak energy absorption capacity when 

compared to the straight fibres. 

The inclusion of steel fibres reduces the workability of concrete in its fresh state and it was found 

that the workability depends on the volume and type of steel fibres (Shah and Modhere, 2009). The 

workability improves when superplasticiser is used in such a manner that it is possible to pump SFRC 

successfully (ACI Committee 544, 1984). A study found that SFRC with hooked steel fibres have a 

lower slump value than SFRC with crimped fibres, which is desirable when SFRSCC is used 

(Soroushian and Bayasi, 1991). It is also possible to produce the hooked steel fibres into bundles 

using water-soluble glue, which makes them significantly easier to use. This method can effectively 

overcome the balling of fibres when mixing fresh concrete and improves the workability as a whole, 

even when higher volumes of fibres are used. 

Steel fibres usually produced from slit sheet steel have the advantage of being cost effective when 

supplies of scrap metal are readily available. It is also possible to produce fibres from corrosion-

resistant alloys when corrosion is considered. Another characteristic of SFRC is that the elastic 

modulus in compression and modulus of rigidity in torsion are the same than with plain concrete 

before cracking takes place. It has also been reported that steel fibres increase the fatigue resistance 

of concrete (Johnston and Zemp, 1991), which can be an advantage when the cyclic behaviour of 

structures is considered. 

The biggest advantage of SFRC is that it is possible for structures to have a higher strength after 

failure because of an effect called strain-hardening. When looking at typical stress-strain graphs of 

tensile tests the effect can be explained more clearly in Figure 4. 
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Figure 4 Tensile Stress vs Strain graphs of a) plain concrete and b) SFRC specimens. (Lim et al., 1987) 

Figure 4 a) presents the tensile behaviour of plain concrete. It can be seen that a peak in the 

concrete strength is reached, which would be the ultimate strength of the concrete, but after the 

peak the concrete fails and offers little to no resistance. Figure 4 b) illustrates the behaviour SFRC 

under a tensile load. Like plain concrete a peak is reached and then failure occurs, but the steel 

fibres offer some resistance to increase the post-peak energy absorption capacity of the concrete. 

In Figure 4 b) it can be seen that SFRC reacts differently according to the different volumes of 

concrete. The two main cases presented here are strain-softening     
   and strain-hardening 

    
  . If the volume of fibres    is less than the critical volume    , strain-softening occurs and for 

strain-hardening to occur, the opposite needs to happen. In this case the critical volume of fibres will 

cause the peak to be reached and the strength of the cracked composite will not be exceeding the 

ultimate tensile strength. From these results it can be seen that SFRC absorbs more energy than 

plain concrete, which is one of its advantages. Designers can use this information design structures 

that will be more ductile. 

The SFRC used in this investigative report was designed to exhibit strain-softening behaviour. The 

reason for this is that the concrete structure has to crack in order to see whether the tensile creep 

and fibre pull-out effects are detrimental. Strain-hardening may hamper these events from occurring 

because of the high resistance a high volume of steel fibres will present. To make sure that strain-

hardening does not occur, it is necessary to use low volumes of steel fibres. Having a fibre volume of 

0.5% will allow strain-softening to occur and will cause the concrete to have a decent post-peak 

absorption capacity to allow for the case of cracked concrete. 

2.4 Creep 

Creep is defined as the time-dependent deformation in a body under constant stress or loading. 

When a constant stress is applied to a concrete specimen, the specimen will show an immediate 
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strain, where deformation will progress at a diminishing rate so that it may become several times 

more than the original strain. The immediate strain is referred to as the elastic strain and the time-

dependent strain is referred to as the creep strain (Kong and Evans, 1987). This explains the 

viscoelastic behaviour concrete exhibits during time-dependent investigations. This becomes more 

apparent when the load is removed and the part of the strain which recovers immediately 

(instantaneous recovery) is less than the elastic strain. The delayed recovery of creep is called the 

creep recovery, which is much less than the creep (Kong & Evans, 1987). Figure 5 illustrates these 

phenomena. 

 

Figure 5 Strain vs. Time graph presenting the viscoelastic properties of concrete. 

Figure 5 illustrates the concept of creep. It can be seen that instantaneous recovery took place 

immediately after the load had been released. The creep recovery happens with time after the load 

had been removed, but will never reach the zero point leaving residual deformation indicating 

permanent deformation. 

Seeing that creep is affected by a constant load it can be assumed that creep will occur in concrete 

at all stress levels. Depending on the boundary conditions, stress relaxation also takes place, which is 

desirable unless the concrete structures surpass the serviceability state by deforming too much. 

These increased deflections can result in cracking when the strains exceed the strain capacity if 

concrete, which can lead to a loss in strength in the structure and corrosion of the reinforcing steel. 

Creep in slender structures could lead to large deflections, which can cause the structure to become 

unstable and fail. 

The type of cement used only affects creep if it affects the different hardening rates of concrete. 

Other factors that do not affect creep significantly are factors whose effects are mainly due to their 

influence on the w/c ratio and cement-paste content. It has been found that concrete consisting out 
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of aggregates with high elasticity moduli and which are hard and dense have lower creep strains. The 

size, shape, surface texture and grading of the aggregates affects creep mainly due to their effects 

on the amount of water in the mix (Kong & Evans, 1987). 

It is assumed in the FIB Model Code 2010 that there is a linear relationship between the creep of 

concrete and the applied stress for applied stresses up to 40% of the ultimate strength, which makes 

it possible to model creep. After that the behaviour of creep can be described as non-linear and it 

becomes more complex to model its behaviour. This study will have a phenomenological approach 

to creep modelling, seeing that many of the theories surrounding the mechanisms of creep are too 

complex. The one mechanism scholars agree upon that is essential to creep is the presence of 

evaporable water. The two time-dependent behaviours that are most significant in concrete are 

based on the diffusion of pore water, mainly creep and shrinkage. 

Powers’ (1965) opinion on creep is that it is caused by a diffusion of a load bearing water, because 

and external load changes the free energy of the adsorbed water. He describes creep and shrinkage 

as two different names for the same phenomenon with the only main differences being that 

shrinkage occurs whether loading occurs or not, but creep is dependent on an external load (Powers, 

1965). 

Wittmann (1982) argues that shrinkage and creep are based not only on a diffusion of water but on 

several other mechanisms in the ultramicroscopic scale namely: Expansion of single cell particles, 

expansion of pores and displacement of gel particles to name a few. When in the region of 

nanometres it becomes more difficult to research a material like concrete which is non-homogenous 

on a microscopic level seeing that the effects will differ greatly within the same material and the 

research will be too specific (Wittman, 1982). 

To fully investigate the effects of creep one has to look at the macro-scale and investigate 

phenomenon itself. It can be conceived that macroscopic deformation of concrete caused by various 

stress, temperature and humidity regimes is a result of the cement/paste system at the micro level. 

That is why it is necessary to look at concrete as a homogenous material in the macro-scale and to 

find models through mathematical expressions which represent its time-dependent behaviour. 

These models can be used to predict what is most likely to happen with regard to deformation over 

time. 

When looking at the creep of SFRC it has to be considered that the steel fibres mainly take effect 

when micro-cracking appears. The fibres will not affect the compressive creep significantly seeing 

that the fibres will mainly be in compression and the cracks that appear will be minimal and mostly 
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parallel to the load applied. However, with tensile creep the cracks will appear perpendicular to the 

load applied and it can therefore be deduced that the fibres will have a greater effect. These 

deductions will be discussed further in the next sub-sections of this chapter. Seeing that this study 

focuses mainly on the tensile creep of SFRC, the compressive creep will be discussed briefly and the 

tensile creep will be discussed in more detail. 

2.4.1 Compressive Creep 

The compressive strength of concrete is influenced by its degree of hydration, w/c ratio, cement 

type, aggregate strength and cement content to name a few factors. This means that important 

factors such as curing, age, temperature and humidity, all of which influence cement hydration, will 

have an effect on the strength development of concrete. The main influence of fibres on the 

material behaviour of concrete depends on the interfacial bond strength between the fibres and the 

matrix. Therefore the factors influencing the concrete strength will also affect the bond strength. 

Previous experiments were done by Chern and Young (1988) to investigate the compressive creep of 

SFRC. The steel fibre content ranged between 0 and 2% by volume of mix. It was found that concrete 

with a higher percentage of fibre volume has a higher compressive strength and elastic modulus 

than plain concrete. The results also indicate that steel fibre reinforcement led to significant 

reductions in the creep of concrete with the creep decreasing progressively as the volume of fibres 

increase. They have also found that the creep reduction was higher when the fibre volume increased 

from 0% to 1% than from 1% to 2%. The results also showed that the fibres became more effective 

in restraining creep of the cement matrices as the time under load increased. 

Their main finding was that the age of loading has a significant effect on the magnitude of creep, 

meaning that creep depends on the degree of hydration. They also found that concrete specimens 

with a higher volume of fibres yielded less shrinkage, less basic creep and less total deformation in a 

drying condition (Chern and Young, 1988). 

Another study done by Mangat and Azari (1985) explained that compressive creep consists primarily 

of two components: delayed elastic strain and flowing creep. The delayed elastic component of 

creep forms a high portion of creep immediately after the load is applied and it rapidly reaches a 

limiting value. However, the flowing creep is small immediately after loading and is a function of 

time, meaning it increases with time. Steel fibres do not directly influence the delayed elastic 

component of creep since this deformation is of the same nature as the elastic deformation of 

concrete. Fibres provide restraint to the sliding action of the matrix relative to the fibre due to the 

flow component of creep, which is due to the fibre-matrix interfacial bond. 
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Their study showed that steel fibres restrain the creep of concrete at a 0.3 stress-strength ratio, 

owing to smaller lateral deformation caused by the axial stress (Mangat and Azari, 1985). It can 

therefore be concluded that steel fibres will reduce creep when loaded in the linear range. The main 

reason for this behaviour is because the fibre-matrix interfacial bond   is primarily a function of the 

shrinkage of the matrix and the radial deformation caused by the axial stress (Mangat and Azari, 

1985). As time passes the shrinkage becomes more prominent which leads to higher   values, which 

gives a higher bond strength leading to less creep. The other factor that has to be taken into account 

is that at a 30% loading stress, the shrinkage might be more prominent than the creep itself. 

2.4.2 Tensile Creep 

Limited research has been found concerning the tensile creep of SFRC. Steel fibres might not be the 

strongest of all the fibres, but their geometrical properties make them useful in concrete especially 

when cracks form. The fibres can span the crack widths quite successfully, even when randomly 

orientated, and they can improve the tensile strength of concrete when strain-hardening behaviour 

is designed for. Even though many tests have been performed on fibre pull-out to such an extent 

that it was possible to develop a theoretical model to calculate interface properties (Li et al., 1991), 

it is uncertain what will happen when the time-dependent behaviour is taken into account. 

According to another study done by Altoubat and Lange (2003) steel fibres were found to have 

enhanced the basic creep mechanisms and to reduce the drying shrinkage mechanisms. To be 

consistent with material behaviour the creep mechanisms were divided into beneficial aspects 

associated with real creep mechanisms and detrimental aspects associated with apparent creep 

mechanisms like micro-cracking. The real creep mechanisms are associated with deformation of 

hydration products like basic creep and stress-induced shrinkage, whereas micro-cracking is 

considered to be detrimental because of the associated microstructural damage. Steel fibres usually 

tend to enhance the beneficial mechanisms and reduce the detrimental ones. (Altoubat and Lange, 

2003) 

Total tensile creep composes of two components namely: basic creep and drying creep. The basic 

creep of concrete is a material property and is defined as the creep of concrete when moisture 

content remains constant. Drying creep, also known as the Pickett-effect (Pickett, 1942), is the 

increase of creep observed in specimens undergoing drying. Research has found that there are two 

major mechanisms that cause the Pickett-effect namely: micro-cracking and stress-induced 

shrinkage (Altoubat and Lange, 2001a; Altoubat and Lange, 2002). Micro-cracking results from non-

uniform drying of a concrete specimen, which is to be expected due the non-homogenous nature of 

concrete. Stress-induced shrinkage results from local diffusion of pore water under stress between 
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capillary and gel pores, which promotes debonding and rebonding processes that are the main 

sources of creep. 

It has been found that steel fibres tend to reduce the initial rate of basic creep, but increase the 

creep at later stages (Altoubat and Lange, 2001b). That means that relaxation by creep mechanisms 

in fibre reinforced concrete continues for a longer time than in conventional concrete. This is mainly 

due to the fibres that have the ability to arrest micro-cracks and to engage a larger volume of the 

matrix in stress transfer. This leads to a lower and more uniform internal stress intensity, which 

affects the creep rate. The increase in total basic creep is due to a larger volume of material being 

subjected to creep mechanisms. 

Tensile creep tests under drying conditions provide data on the total tensile creep, which includes all 

components like basic creep, stress-induced shrinkage and micro-cracking. The results of the study 

done by Altoubat and Lange (2003) revealed that stress-induced shrinkage was a major component 

of the Pickett-effect for plain concrete and SFRC, with less stress-induced shrinkage exhibited from 

fibre reinforced concrete. The surface micro-cracking component was only significant in plain 

concrete and was significantly reduced when fibres were introduced. This led to the conclusion that 

fibre reinforcement suppresses surface micro-cracking associated with drying. 

These results led to the following insights in the tensile creep of concrete. The stress relaxation by 

creep mechanisms of fibre reinforced concrete needs to be approached differently than the 

conventional method of looking at total tensile creep. It is suggested that stress relaxation by creep 

mechanisms are divided into two categories: beneficial and detrimental. Beneficial mechanisms 

relax stresses without damaging the material integrity, while the detrimental mechanisms relax 

stresses through deformation associated with microstructural damage. 

The types of creep associated with stress-induced shrinkage mechanisms are assumed to be 

beneficial primarily because of the sliding/densification of cement hydration products, which are 

real mechanisms related to the concrete material. Creep associated with micro-cracking is 

considered to be detrimental because this type of deformation causes damage to the 

microstructure, which leads to cracking of the concrete causing the relaxation of stresses on the 

expense of material integrity. 

They came to the conclusion that fibre reinforcement enhances stress relaxation by real creep 

mechanisms and it reduces the micro-cracking creep component. The suppression of micro-cracking 

reduces the drying creep of fibre reinforced concrete with the added advantage that it also aids the 
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material in sustaining stresses longer before failure. In practical applications drying creep is a more 

realistic phenomenon when considering structures exposed to the outside environment. 

Usually creep calculations are based on the assumption that free shrinkage can be subtracted from 

the total strain experienced by the specimen to get the creep of the specimen (Bazant, 1988). This 

method is especially useful when considering tensile creep because the shrinkage strains will be in 

the opposite direction than the tensile creep strains, which will affect the curves obtained from the 

experimental curves. This method of superposition will be used when analysing the data after the 

creep experiments have been completed. 

2.4.3 Fibre Pull-out 

Generally cement-based materials such as mortars and concrete are known for being weak in 

resisting tensile stresses. Incorporating fibres usually makes up for this deficiency by resisting tensile 

forces through a composite action where the matrix resists part of the tensile force and the fibres 

takes up the balance (Shannag et al., 1997). The improvement in composite properties is largely 

attributed to the bond known as the shearing stress at the interface between the fibre and the 

surrounding matrix. When this bond is broken fibre pull-out occurs, usually when cracks occur in the 

matrix.  

The biggest area of interest when investigating the tensile creep of SFRC is when the specimens 

crack. When this occurs the fibres will be bridging the crack and they will be the main mechanism in 

keeping the structural integrity of a concrete specimen. Studies have found that fibre pull-out can 

lead to global failure of concrete structures and that it has a significant effect in the equilibrium of 

stresses (Shannag et al., 1997). Taking this into account one has to determine what effect the fibre 

pull-out has on the deformation of the specimen when taken into account with the tensile creep. 

The pull-out characteristics of steel fibres have been studied as a function of several variables, 

namely the rate of load application, temperature of the environment, matrix quality, fibre geometry 

and fibre orientation (Morton and Groves, 1974) among others. However, the time-dependent 

behaviour of the pull-out of steel fibres has not been researched extensively. 

In order to explain the basic mechanism of the bond strength between fibres and the concrete it is 

necessary to make certain assumptions. It has to be assumed that the fibres are uniform in length, 

strength and radius and that the fibres are randomly distributed throughout the matrix. It also has to 

be assumed that the stress is transferred uniformly between the fibre and the matrix depending on 

the maximum shear stress     which can be sustained by the interface so that   can be determined 

by the frictional forces at the fibre-matrix interface. 
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The two most prominent approaches used to interpret the material properties for the fibre 

debonding and pull-out problem are a shear lag model and alternatively a formulation based on 

fracture mechanics principles using the energy release rate criteria (Li et al., 1991; Stang et al., 

1990). The shear lag model is based on the maximum shear strength criterion where debonding 

takes place when the maximum shear stress at interface reaches a critical value. The fracture 

mechanics approach is based on the assumption that the propagation of the debonding zone 

requires a certain energy and that debonding will only occur when the energy flowing into the 

interface exceeds the value of the specific resistance energy (Li et al., 1991). These two approaches 

differ substantially and provide different ways of calculating the interfacial properties; however the 

mathematical equations that are required for the calculations will not be discussed in this study. 

Experts in fibre pull-out problems have refined these approaches and have made it possible to 

determine the interfacial properties from models they have developed (Stang et al., 1990). 

Li et al. (1991) have found that fibre pull-out has three stages: 

First stage: The system deforms elastically as long as debonding does not occur. 

Second stage: This stage is called the partial debonding stage. It is when debonding initiates and a 

region of debonding is generated farther into the interface until the fibre has 

debonded. 

Third stage: The pull-out stage where complete debonding of the fibre has taken place and 

displacement occurs. This displacement can be expressed in various mathematical 

ways. 

Even though the matter of debonding can be quantified and determined, it is often complicated and 

complex. Figure 6 will aid in understanding the basic mechanics of fibre pull-out. 

 

Figure 6 Figure presenting a single fibre embedded into concrete (Gray, 1984). 
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From Figure 6 it can be seen that    is the embedded length of the fibre,    is the load applied to the 

fibre and    is a section in the fibre. Looking at section    more closely in Figure 7 to examine the 

stresses affecting the fibre. 

 

Figure 7 Figure presenting the stresses acting on the fibre. 

The force    generates a stress    in the fibre which is resisted by the shear stress   . This simple 

model is generally used when considering the shear lag model in order to determine the material 

properties of the bond strength between the fibres and the matrix. From using the same principles 

as this model many researchers have developed different theories (Stang and Shah, 1986; Zhou et 

al., 1992; Naaman et al., 1991). These theories start off simple, but become more complicated as the 

calculations produce complex mathematical expressions. 

However, the purpose of this study is not to look at the interfacial properties between steel fibres 

and concrete. The main focus of this study is to examine the phenomenological effects of fibre pull-

out and tensile creep on the tensile deformation of concrete after cracking has occurred. It is 

important to investigate whether the fibre pull-out will overshadow the deformation caused by the 

tensile creep, causing the effect tensile creep to be considered negligible. 

2.5 Shrinkage 

As mentioned before, concrete experiences volume changes in both the fresh and hardened states 

whereas many of these changes are as a result of moisture movement into and out of concrete. The 

loss of moisture leads to the phenomenon of shrinkage and usually the biggest aspect of shrinkage is 

drying shrinkage because sealed concrete usually experiences less shrinkage than unsealed concrete 

(Bisonette and Pigeon, 1995). Drying shrinkage applies to this study seeing that all the concrete 

specimens were exposed to 60% ambient relative humidity and an ambient temperature of 23 . 

It should be noted that measured shrinkage of concrete in drying unsealed conditions will include 

two components, namely an autogenous component and a drying component (Holt, 2001). 

Autogenous shrinkage develops immediately after setting due to internal consumption of water in 
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hydration reactions and it reduces with time. Drying shrinkage is the shrinkage caused additionally 

by moisture loss from the concrete. 

The type of volume change that is of the most concern is that which is associated with an 

interchange of moisture between hardened concrete and the environment. If the net flow of 

moisture is from the environment to concrete it results in an increase in volume called swelling, 

whereas the net flow of moisture from the concrete to the environment leads to a decrease in 

volume, which is termed drying shrinkage. Drying shrinkage can become detrimental, leading to the 

appearance of surface cracking. 

Drying shrinkage can have two main effects, cracking (Benboudjema et al., 2004) and deflection 

(Gilbert and Wu, 2010), on structural performance. Short summaries about these two effects follow: 

Cracking Effects: Unrestrained concrete will not crack due to shrinkage, but it is difficult to 

achieve a condition of zero restraint in a practical application. Usually the 

free shrinkage strain of concrete exceeds it tensile strain capacity and 

concrete that is restrained will crack. Cracking due to shrinkage may result in 

cracks of significant size, which may be aesthetically unacceptable and 

undesirable from a durability point of view. When it comes to liquid-

retaining structures, cracks allowing leakage are unacceptable. Cracking 

commonly happens when the inner core dries more slowly than the outer 

zones, leading to surface cracking. 

Deflection Effects: Shrinkage may affect deflections of flexural members in two distinct ways:  

 In unsymmetrically-reinforced members the concrete experiences a 

greater degree of free shrinkage in the compression zone than the 

tension zone where the reinforcement provides a restraint. 

 Time-dependent shrinkage may lead to additional tensile stress over  

and above the load-induced stresses in the tension zone. This leads to 

the existing cracks to increase in size, which can be detrimental to the 

structural integrity of the concrete as explained above. 

Extensive studies have been done on the subject of shrinkage which led to various approaches in 

modelling shrinkage, all of them accurate to a certain degree. Some of the approaches to predict 

shrinkage in the design codes such as the SANS 10100-1:2000 and BS 8110 make use of tables and 

graphs to gain the relevant data concerning the shrinkage strain, making the process simple. Other 
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design manuals like the CEB-FIP model is more complicated and relies on a number of initial data 

that leads to higher degrees of estimation. The BS EN 1992:2004 distinguishes between drying and 

autogenous shrinkage and the total shrinkage strain is calculated by adding the two components 

together. The RILEM Model B3 is a sophisticated shrinkage model that was derived from the well-

known researcher Bažant and his co-workers. This model incorporates the w/c ratio, cement type, 

cement content and aggregate:cement ratio along with the other factors, making this model too 

complicated to use at the preliminary mix design stage. 

The modelling methods of shrinkage will be discussed briefly in the next chapter in order to obtain a 

modelling curve of the shrinkage experimental results, which is necessary to analyse the results of 

the creep experiments. As mentioned before the creep and shrinkage of concrete occurs 

simultaneously and superposition was used to find the creep strains. 

2.6 Approaches to Creep and Shrinkage Modelling 

Research in creep and shrinkage has advanced to such an extent that scientists were able to develop 

mathematical expressions that could model the behaviour of these two phenomena in an accurate 

manner. These expressions can incorporate many different factors that will influence the shape and 

magnitude of the curves these expressions produce. 

2.6.1 Creep Modelling 

The different design codes that are used in practice have different ways of modelling creep and even 

though they differ in method, there are a significant number of similarities. The most prominent 

similarities are that all the mathematical expressions produce an exponential curve, the expressions 

are dependent on the material properties and that the expressions incorporate the environmental 

effects on the concrete. This study focuses on the FIB Model Code 2010, therefore the creep model 

of this particular code will be discussed in more detail. Other models that are generally used to 

model a material’s response under different loading conditions for creep are the Maxwell model 

(Aklonis, 1981) , Kelvin-Voigt model (Bazant and Ashgari, 1974) and the Standard Linear Solid model 

(Bower, 2002). These models simulate viscoelastic behaviour by modelling the elastic and viscous 

components as linear combinations of springs and dashpots, respectively. Each model differs in the 

arrangement of these elements; however the Maxwell model proved to be quite simple and 

effective to use. The Maxwell chain will be discussed in more detail shortly. 

2.6.1.1 FIB Model Code 

The FIB Model Code 2010 models creep much in the same way as the Eurocode (BS EN 1992-1-

1:2004) in the way that it uses the theory of Hooke’s Law (Craig, 2000) in conjunction with a Creep 
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Factor. The Creep Factor can be calculated or estimated in different design codes, in order to find 

the strain as a function of time. Hooke’s Law is a familiar theory that defines a linear elastic 

relationship between stress and strain and it is used extensively during theoretical and practical 

design processes. Hooke’s Law is presented by Equation 2.13: 

         (2.13) 

In this case   is the applied stress,   is the modulus of elasticity of the material and   is the resulting 

strain caused by the stress applied to the material. The FIB Model Code 2010 adopts this same 

equation and rewrites it as a function of time to describe creep strain:  

          
      

   
          (2.14) 

Equation 2.14 is applicable for a constant stress        applied at   , where         is the creep 

coefficient and     is the modulus of elasticity at the age of 28 days. Upon inspection it can be seen 

that the creep coefficient is the only parameter that is a function of time, seeing that    is a 

constant. In order for an exponential curve to exist, the creep coefficient has to contain a non-linear 

expression. The creep coefficient may be calculated from: 

                      (2.15) 

where: 

   is the notional creep coefficient which can be estimated from an equation that will 

follow. 

         is the coefficient to describe the development of creep with time after loading. This 

equation will have some form of a non-linear expression in order to plot an 

exponential curve that will describe creep. 

   is the age of concrete in days at the moment considered. 

    is the age of concrete at loading in days, this is typically 28 days. 

The notional creep coefficient may be estimated from: 

                      (2.16) 

with 

    *  
       ⁄

    √ 
    +            (2.17) 

Stellenbosch University http://scholar.sun.ac.za



35 
 

       
    

√   
          (2.18) 

      
 

        
            (2.19) 

where: 

     is the mean compressive cylinder strength at the age of 28 days in     

    is the relative humidity of the environment in   

  is the notional size of the member in    described as     ⁄  where    is the cross-

section in     and   is the perimeter of the member in contact with the 

atmosphere in   . 

   *
  

   
+
   

    *
  

   
+
   

        (2.20) 

The development of creep with time is described by a non-linear expression: 

         *
      

         
+
   

   (2.21) 

with 

         [            ⁄    ]                  (2.22) 

where: 

    is the relative humidity of the environment in   

   is the notional size of the member in    as described above 

   *
  

   
+
   

          (2.23) 

     is the mean compressive cylinder strength as described above 

In order to understand which factors affect the shape of the exponential curve the expression is 

written as follows: 

          
      

   
  *

      

         
+
   

   (2.24) 

Upon inspection it can be seen that the creep strain is dependent on the time   in      and that the 

part of the expression in brackets is the only part that cannot be condensed into one factor seeing 
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that it is also dependent on  , making it the function to the shape of the exponential curve. This 

information is extremely important, because it can be used to develop a prediction curve for creep 

behaviour. 

2.6.1.2 Maxwell Chains 

As mentioned before the Maxwell model simulates viscoelastic behaviour by modelling the elastic 

and viscous components as linear combinations of springs and dashpots (Aklonis, 1981; Bower, 

2002). The elastic component is obtained from Hooke’s Law and the viscous component can be 

modelled as dashpot so that the stress-strain rate relationship can be given as: 

   
  

  
    (2.25) 

where   is the stress,   is the viscosity of the material and 
  

  
 is the time derivative of strain. The 

spring immediately responds if a fixed strain is suddenly applied by extension. As stress is produced 

in the spring, which is applied to the dashpot, the dashpot begins to be displaced at a rate 

proportional to the stress seeing that the dashpot cannot be displaced instantaneously. As time 

progresses the dashpot is displaced at a decreasing rate until the stress is zero, which makes this 

model applicable for stress relaxation. However, if a constant load is applied to this system, the 

initial strain will be the elastic strains of the springs. This strain will increase with time as the 

dashpots start to displace until they are fully extended and the springs are relaxed. The spring-

dashpot system is depicted by Figure 8 the following way. 

 

Figure 8 Graphical presentation of a spring-dashpot system. (Aklonis, 1981; Bower, 2002) 

The spring and dashpot is connected in series whereas other models are arranged in other ways 

(Bower, 2002) . The model can be represented by Equation 2.26: 

       

  
 

   

  
 

   

  
 

 

 
 

 

 

  

  
   (2.26) 

With this model the stresses will gradually relax if the material is put under constant strain. When a 

material is put under constant stress, as is the case with creep, the strain has two components: an 

elastic component and a viscous component. As explained earlier the elastic component occurs 

instantaneously, corresponding to the spring, and relaxes immediately upon the release of the 

stress. The viscous component grows with time as long as the stress is applied. With these 
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components working together it will be possible to model the stress relaxation that happens when 

creep occurs. This model can combine many of these chains in parallel to model the material 

behaviour more accurately. Figure 9 represents a Maxwell model with the chains connected in 

parallel, with   representing an infinite number of chains. 

 

Figure 9 Maxwell model with multiple chains. (Aklonis, 1981) 

The model depicted in Figure 9 can be used to do curve-fitting of existing data curves in order to give 

an idea to what time-dependent behaviour to expect in the future. When more than one Maxwell 

chains are incorporated into the model, Equation 2.27 is proposed: (Switek et al., 2010; Bažant and 

Wu, 1974) 

                  ∑
      

        
  

 
 

   
       

where: 

         ∑       
 
       (2.28) 

with    being the retardation time of the dashpots,   the time in      and    the time of loading in 

    . Equation 2.29 is proposed to describe the Maxwell model in a simpler manner: 

   [      
 

 

        
 

 

  ]     (2.29) 

In Equation 2.29   represents the amount of chains in the Maxwell model and the negative sign is to 

describe the tensile creep behaviour. Equation 2.29 describes the behaviour of the Maxwell model 

accurately as can be seen in full simulations of this Maxwell model presented in Chapter 5. 
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2.6.2 Shrinkage Modelling 

The FIB Model Code 2010 also adopted the same technique for modelling shrinkage as the Eurocode 

in the way that the total shrinkage is separated into autogenous shrinkage and drying shrinkage. 

According to the model code the drying shrinkage decreases with decreasing w/c ratio and 

decreasing cement content and the autogenous shrinkage increases with decreasing w/c ratio and 

decreases with decreasing cement content. The FIB Model Code 2010 expresses the total shrinkage 

or swelling strains as: 

                              (2.30) 

In Equation FIB 5.1-75 it can be seen that the total shrinkage strains are divided into the autogenous 

shrinkage         and the drying shrinkage           , which, in turn, is depicted by the following 

equations: 

                                 (2.31) 

                                            (2.32) 

where: 

   is the concrete age in      

    is the concrete age at the beginning of drying in      

        is the duration of drying in      

     is the mean compressive cylinder strength at the age of 28 days in     

The notional autogenous shrinkage coefficient            needed to calculate the autogenous 

shrinkage component         may be calculated by: 

               (
     ⁄

       ⁄
)
   

            (2.33) 

Whereas the time function        also needed to calculate         may be calculated by: 

                   √          (2.34) 

The coefficient     depends on the type of cement and can be found in Table 5.1-13 of the FIB 

Model Code 2010. Coefficients like the notional drying shrinkage coefficient           , the 

coefficient taking the relative humidity into account         and the function describing the time-
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development for calculating the drying shrinkage           will be necessary to calculate the 

drying shrinkage. These coefficients are expressed the following way: 

           [                             ]          (2.35) 

          [  (
  

   
)
 
]                                            (2.36) 

    (
  

   
)
   

             (2.37) 

          (
      

               
)
   

       (2.38) 

The coefficients           depend on the type of cement and can also be found in Table 5.1-13.The 

other coefficients have been defined in the previous section when the creep model of the FIB Model 

Code 2010 was discussed. 

The expression that is most important in determining the shape of the exponential curve that is 

characteristic to shrinkage behaviour is the time-development function          . By substituting 

other factors in front of the function it is possible to do curve-fitting to data curves obtained from 

experimental results. Examples of curve fitting done by these expressions can be seen in Chapter 5. 

2.7 Concluding Summary 

The advances in concrete technology have led to the possibility of designing SFRC structures in order 

to produce concrete structures that are more ductile. The design methods for fibre reinforced 

concrete found in the FIB Model Code 2010 and     Design Method do not take the time-

dependent behaviour of fibre reinforced concrete into account. It is well-known that concrete 

experiences time-dependent behaviour such as creep and shrinkage. From the section of a SFRC 

beam it can be seen that the tensile stress capacities of the concrete are taken into account. It is 

therefore necessary to understand the time-dependent behaviour of concrete in tension as it could 

possibly be detrimental to the structural integrity of a concrete structure, especially after cracking 

occurred. 

The fibre pull-out behaviour of fibres in cracked fibre reinforced concrete can have a significant 

effect on the stability of the structure as it is a mechanism that cause large deformations as the 

fibres pull out of the composite. Numerical models are therefore implemented to model and 

extrapolate the time-dependent behaviour of un-cracked and cracked SFRC in order to understand 

and investigate the implications it could have on the stability of SFRC structures.  
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Chapter 3 

3. Testing and Sample Production 

Procedures 

In order to investigate the time-dependent behaviour of SCC and SFRSCC in tension it was necessary 

to develop different concrete mixtures in such a manner so that they would have approximately the 

same compressive strength. The concrete specimens were designed especially in order to be fitted 

to large steel frames that have been manufactured to perform tensile time-dependent tests.  

3.1 Mix Design 

3.1.1 SCC 

When developing self-compacting concrete (SCC) it is important to have a concrete that exhibits 

sufficient flowing behaviour without segregation taking place. There are certain aspects and rules 

that have to be adhered to in order for a concrete to be classified as SCC, which are stipulated in the 

EFNARC 2002 Manual (EFNARC Specification and Guidelines for Self-Compacting Concrete, 2002). 

The mix design for SCC differs from conventional concrete mixes in the way that the aggregate used 

is reduced in volume and size, higher fines content is used and superplasticiser is usually added 

(Collepardi et al., 2007). In general other extenders like condensed silica-fume and other viscosity-

modifying admixtures are added to achieve sufficient segregation resistance and stability. The mix 

design procedures rely heavily on experimental testing of trial mixes.  

There are certain tests specified by the EFNARC 2002 Manual that can be performed in order to 

classify concrete as SCC. The simplest test to perform is the slump flow test (Department of Public 

Works, 1993), which is well known to concrete mix designers. There are some minor differences 

between the slump flow tests of conventional concrete and SCC. With SCC the slump cone is placed 

on a flat plate and filled with concrete, but it will not be compacted with a tamping rod as with 

conventional concrete. The cone is then lifted vertically in a smooth motion so that the concrete can 

Stellenbosch University http://scholar.sun.ac.za



41 
 

flow out at the bottom to create a circular pool of concrete on the flat plate. The concrete should 

reach a spread diameter of        within             in order to be classified as SCC. The 

concrete is then examined visually to detect whether segregation takes place. Segregation is 

indicated by an accumulation of coarse aggregates in the centre of the pool. The coarse aggregates 

should be distributed evenly across the pool of concrete and should be present at the pool’s 

periphery. This should also be checked for bleeding at the edges, which also indicates segregation of 

the mix. Figure 10 provides a good graphical presentation of the slump flow test. 

 

Figure 10 Graphical presentation of the Slump Flow Test. 

Other testing methods include the slump flow and blocking resistance test, the V-funnel test, the U-

box test, L-box test and segregation resistance (sieve) test. Further information about these testing 

procedures can be found in the EFNARC 2002. The mixes used in this study were only subjected to 

the slump flow test. It was deemed unnecessary to perform other tests seeing that the mixes 

exhibited a flow spread of more than        and showed no signs of segregation. Some of the 

cubes cast were cut in half after the concrete has set in order to verify the latter. The mix used 

consisted of the following: 
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Table 3.1 Proportions of SCC mix for 1 m
3
 

SCC Mix    

Material 
Amount 

(kg/m3) 

Relative 

Density 

Volume 

[litre] 

Cement (CEM ll 32.5) 376 3.1 121 

Fly Ash (95% passing 45μm) 238 2.8 85 

Stone 6 mm (Greywacke) 645 2.7 239 

Sand (Malmesbury) 950 2.65 359 

Water 193 1 193 

Superplasticiser (0.5%) 3.07 1.2 2.56 

  Total Volume 1000 

 

The superplasticiser used was the Fluid Premia 310 supplied by Chryso. The mixing procedure will be 

explained in Chapter 3.2.3 in order to compare the difference in procedures of SCC and SFRSCC. The 

testing procedure was to test four batches of concrete specimens with each batch consisting of four 

identical concrete types: 

Table 3.2 Batches of Tensile Creep specimens. 

Batch Quantity Concrete Type Description 

1 4 SCC Un-Notched 

2 4 SFRSCC Un-Notched 

3 4 SFRSCC Notched 

4 4 SFRSCC Notched and Pre-Cracked 

 

3.1.2 SFRSCC 

The SFRSCC mix was similar to the SCC mix with the only differences being that steel fibres were 

added and the superplasticiser amount was increased. The mix consisted out of the following: 
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Table 3.3 Proportions for SFRSCC mix for 1 m
3
 

SFRSCC Mix    

Material 
Amount 

(kg/m3) 

Relative 

Density 

Volume 

[litre] 

Cement (CEM ll 32.5) 374 3.1 121 

Fly Ash (95% passing 45μm) 237 2.8 85 

Stone 6 mm (Greywacke) 642 2.7 238 

Sand (Malmesbury) 946 2.65 357 

Water 192 1 192 

Superplasticiser (0.5%) 3.05 1.2 2.54 

Steel Fibres (0.5%) 39.75 7.85 5.06 

  Total Volume 1000 

 

The steel fibres used were Bekaert Dramix ZP 305 fibres and are shown in Figure 11 where 

         represents the fibre length and the diameter of the fibre was          . The elastic 

modulus and minimum tensile strength of these fibres are         and         , respectively.  

 

Figure 11 Graphical presentation of a hooked steel fibre. 

 

The workability concern was overcome through using slightly higher         doses of 

superplasticiser. The mix proved to be sensitive to adding superplasticiser, which led to volumes 

changes of        being added at a time. Even though the mix was sensitive to extra addition of 

superplasticiser, it was possible to acquire a SFRSCC mix that exhibited minimal segregation as 

shown in Figure 12. 

 

Figure 12 Section of a SFRSCC cube demonstrating the lack of segregation 
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Figure 12 presents two halves of a                SFRSCC cube which displays minimal 

segregation after the concrete has set. It is apparent that the aggregate and steel fibre distribution is 

constant throughout the concrete, which indicates that gravity did not affect the mix in its fresh 

state and that all the different components were in suspension, which is ideal for any concrete mix 

design. 

The amount of superplasticiser used fluctuated slightly with every batch of SCC and SFRSCC mixed 

during the testing procedure. The tables depicting the mix proportions for SCC and SFRSCC given in 

this section and the previous section represented the mix proportions of the stable mixes found in 

the laboratory. While the mixes in the tables indicated that       superplasticiser was used it was 

necessary to add between       and        superplasticiser during the mixing of the creep 

specimens in order to improve the flowing ability of the concrete. This was done with great care in 

order to avoid segregation of the concrete. 

3.2 Sample Productions 

3.2.1 Mould Design 

The tensile test specimens were based on the specimen designs of Swaddiwudhipong et al. (2003) 

who cast steel hooks at the ends of concrete prisms to act as connections between the concrete and 

the testing equipment. In order to cast the manufactured hooks into the concrete specimens, the 

moulds had to be modified slightly. The moulds had the dimensions                and were 

ideal to manufacture the concrete specimens with. A typical un-modified mould can be seen in 

Figure 13. 
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Figure 13 Schematic presentation of a typical beam mould. 

The pieces of the mould were fixed together with bolts and winged nuts and could be disassembled 

completely. In order to incorporate the hooks in the mould the end plates had to be removed and 

replaced with two wooden blocks with semicircles cut into them. 

These wooden blocks consisted out of two           plywood blocks,       thick with 

semicircles of       in diameter at one side of each block. These holes served in holding the steel 

hooks into position which allowed the hooks to be cast into the concrete. The practicality of these 

wooden blocks was that they could be removed easily after the concrete has set. 

A schematic presentation of one of the wooden blocks can be seen in Figure 14. 
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Figure 14 Schematic presentation of the wooden blocks used in the beam moulds. 

These wooden blocks were symmetrically fitted to the end of the moulds with the semicircles facing 

each other. This allowed the       reinforcing steel bar to pass through the       holes, 

effectively prohibiting concrete from leaking out of the moulds. The mould design with the wooden 

blocks fitted is seen in Figure 15. 

 

Figure 15 The wooden blocks fitted to the beam moulds. 

Wooden Blocks 
Wooden Spacers 
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In Figure 15 the wooden blocks were fitted to the ends of the mould. It has to be noted that this 

mould was modified in order to manufacture                prisms. The prisms were later 

modified to be        in length, which meant that the wooden spacers were discarded. The 

change in specimen length was necessary to make the experimental procedure more practical. The 

full mould assembly with the hooks included can be seen in Figure 21 from Chapter 3.2.3. 

The       hole in the wooden blocks would aid in orientating the steel hooks so that load 

eccentricities and internal moments could be minimalized. The wooden blocks also sealed the 

bottom end of the mould effectively, thereby not allowing concrete to seep through the bottom as 

seen in Figure 16. 

 

Figure 16 The 18 mm hole drilled into the wooden blocks. 

Only six beam moulds were available so it was only possible to manufacture one batch of four 

specimens a day. The manufacturing of the steel hooks will be explained in detail in the following 

section. 

3.2.2 Manufacturing of Steel Hooks 

It was mentioned in the previous section that it was necessary to cast steel hooks into the ends of 

concrete specimens in order to perform direct tensile tests. These hooks would serve as a 

connection between the specimens and the testing apparatuses and were manufactured out of 

18 mm hole 
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reinforcing steel bars to improve the bond interface between the steel hooks and concrete. These 

steel bars ranged in different sizes, namely                bars, in order to be practical.  

The first area of concern was whether the reinforcing bars would be able to withstand the tensile 

stresses generated within the tensile test setup. In Appendix A it can be seen that the maximum 

allowable force is         before the welds start to fail in shear. The critical tensile force would be 

transferred through the       steel bars. The force would halve when transferring through the 

      bars connected to the       bars and would be four times less when being transferred 

through the      bars connected to the       bars. The yield strength of the reinforcing steel is 

typically        . 

The capacity of the       steel bars iss as follows: 

             
   

 
           

                                  

The most critical aspect of the steel hooks had been addressed and it allowed the design to 

continue. The capacities of the       and      steel bars were calculated below: 

             
   

 
            

    

 
             

            
  

 
            

    

 
              

With these capacities known it was possible to proceed with the design of these steel hooks. In total 

there were four bent      bars that would act as hooks welded to a straight       bar in the 

centre. These hooks were arranged in with     angles radially around the centre bar. The       

bars were bent      in order to connect to the frictionless connections described in Appendix B and 

were welded to the ends of the centre       bars. In order to gain a better understanding about 

the geometry of the manufactured steel hooks, Figure 17 is provided. 
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Figure 17 Steel hook specially modified for tensile strength tests. 

The steel hook shown in the Figure 17 has been designed especially in order to be tested in the 

Zwick Z250 Universal Materials Testing Machine.  The reinforcing steel bar has been smoothed in 

order to fit through the notched grips of the machine. It was found that the smoothed steel bar 

slipped gradually when tensile strength test were performed on the concrete specimens. Figure 18 

demonstrates how the hooks’ ends fitted into the machine’s grips when tensile strength tests were 

performed. 

 

Figure 18 Concrete specimen being tested in tension in the Zwick machine. 

As mentioned before the hooks were later modified with bent       steel bars welded to the ends, 

causing it to loop, enabling the concrete specimens to be tested in a more accurate manner by 

fitting chain links. Special chain links were designed to fit into the flat grips of the Zwick machine, 

which provided better grip during the tensile testing procedure. These links could fit through the 

      loops of the hooks which proved to be effective in removing any internal moments that 

could arise during the testing method. 

16 mm centre 

bar 

Zwick grips 

16 mm bar 
8 mm bar 
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Figure 19 demonstrates how the bent       bars were welded to the centre       bars in order 

to connect to the frictionless connection by manner of       bolts. 

 

Figure 19 Figure demonstrating the interaction between the cables, connection and concrete specimen. 

3.2.3 Casting Procedure 

This section will explain the manufacturing procedures of the SCC and SFRSCC specimens. Great care 

was taken to ensure that the procedures were done in an accurate manner. All the specimens were 

cast in a concrete laboratory with precise measuring equipment. 

The first step was to assemble and prepare the moulds for casting. The wooden blocks were fitted 

around the steel hooks and then fitted to the ends of the moulds. The bolts around the moulds were 

tightened and the inside of the mould was coated with mould oil. Special wire loops were looped 

around the centre       bar and a steel rod resting on the mould edges to act as spacers. This 

would ensure that the hooks were orientated as accurately as possible. An example of the wire loops 

used as spacers can be seen in Figure 20. 

Bent    𝑚𝑚 bar 

Cables 

Frictionless 

Connection 
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Figure 20 Steel Hooks incorporated into the beam moulds with wire loops used as spacers. 

The moulds for the compression cubes were also prepared and coated with mould oil in order to 

cast the compression cubes needed to test the concrete strength. 

The next step was to prepare the ingredients of the concrete mix and to ensure that the mixing 

drums were clean and dry. The coarse aggregate was added first, and the binder and sand were 

added subsequently. While the concrete mixer mixed the dry components, most of the water was 

added, with a little water left to rinse out the container with the measured amount of 

superplasticiser. The superplasticiser was added last. 

The next step was to add the steel fibres when the mix required it. The mixer would then mix the 

concrete for       in order to improve the homogeneity of the concrete and to allow the 

superplasticiser to fully activate. A slump flow test was performed in order to determine whether 

the concrete flowed enough. If required, superplasticiser was added in increments of       until 

the concrete complied with the requirements of the EFNARC 2002 Manual. In total the SCC mix used 

     superplasticiser and the SFRSCC mixes used       superplasticiser. Great care was taken 

during all the mixing processes to ensure that no segregation took place. 

The concrete was cast into the centre of the moulds to ensure that it would fill all the voids in the 

mould and so that it would not misalign the steel hooks. A typical mould ready for casting can be 

seen in Figure 21. 

Steel hook 

Wire loop 
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Figure 21 Beam mould ready for casting. 

After all four specimen moulds were filled the surplus of concrete was cast into the four cube 

moulds. The specimens and cubes were then left to set for 2 days before the moulds were removed 

and the concrete specimens were placed into the water baths for curing. The temperature of the 

water in the water baths ranged between     and     and the concrete was allowed to cure for 28 

days. It was found that the average compressive strength of the SCC mix was          and 

         for the SFRSCC mix. 

3.3 Tensile Tests 

In order to perform tensile creep tests on the concrete specimens, it was necessary to know the 

average tensile capacity of the specimens. The reason for this is so that these specimens could be 

loaded to a certain percentage of the average maximum capacity in order to avoid creep fracture. If 

the specimens are subjected to forces that are too high i.e. too high loading percentage, creep 

fracture could occur, which is undesirable. The phenomenon of creep fracture is explained well by 

Boshoff (2007). Creep fracture is explained as the failure of the concrete if a sustained load higher 

than the peak of the creep limit is applied. The creep limit can be obtained by applying a sustained 

load at different load levels on a concrete beam. The deflection of the beam would increase until it 

reaches the creep limit as shown by Figure 22. 
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Figure 22 Presenting the concept of creep fracture (Boshoff, 2007). 

The tensile tests were performed in the Zwick machine mentioned earlier, which had a capacity of 

      . The machine was calibrated regularly in order to insure its accuracy. It consists of an 

electro-mechanical loading mechanism that can move up and down at different rates and a top part 

which contains the load cell for measuring the resisting load of the materials tested. The machine 

was fitted with specialised grips that could increase their grip in a wedge-like fashion as the applied 

force increased. 

As mentioned before, special chain links were manufactured in order to fit through the       

bends welded to the steel hooks. These chain links were gripped by the Zwick machine and minimal 

slipping occurred during the tests. As the force applied increased, the slipping decreased to zero, 

which was confirmed by the Linear Variable Differential Transducers (LVDTs). A LVDT is an apparatus 

which measures displacement. The LVDTs were fitted by means of aluminium frames to the centres 

of the concrete specimens as seen in Figure 23 to obtain the true deformation. 
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Figure 23 Concrete specimen being tested in tension. 

The aluminium frames had a gauge length of       and were fitted to the concrete specimens by 

means of small screws. The LVDTs were fitted to the aluminium frames in such a manner to measure 

the longitudinal change in length of the concrete. From Figure 23 it can be seen that the concrete 

specimen had been notched horizontally around the centreline in order to ensure that the cracking 

would be localised. Even though this would cause stress concentrations, it was more important to 

ensure that the concrete specimens failed in an identical fashion. The       deep notches were cut 

around the specimen with a diamond cutter with a blade width of     . 

The function of the LVDTs was to record the true deformation of the concrete specimens during the 

testing procedure. However, the main objective of these tests was to find the tensile strength of the 

specimens, so it was acceptable to use the crosshead displacement. The displacements from the 

LVDTs would be used in case anomalies appeared. A pre-load of 5     was applied on the 

specimens in order ensure the grips functioned effectively. After a visual inspection was made the 

testing procedure was allowed to continue by applying displacement at a measured rate until failure 

of the concrete specimens occurred. 

The data for every specimen was saved and exported to a data processor for further analysis. The 

results were then used to plot the load resistance against the deformation of the concrete. Typical 

results for tensile strength tests performed on SCC and SFRSCC concrete specimens can be seen in 

Figures 24. 

Concrete specimen 

LVDT 

Aluminium frame 
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Figure 24 Typical behaviour of SCC and SFRSCC prisms in tension. 

At first glance it can be seen that there was little difference between the maximum resistances of 

the two different concretes. This meant that they were similar in strength, which was expected. The 

biggest difference between these two materials concerning tensile behaviour was that the SFRSCC 

specimens offered significant resistance after failure. The fibres provided resistance to tensile 

stresses after failure, which is the biggest advantage of SFRSCC. The SFRSCC specimen presented a 

classic example of strain-softening behaviour, which occurs when the volume of fibres is below the 

critical volume (Lim et al., 1987). 

Results of the tensile tests for SCC can be seen in Table 3.4. 

Table 3.3 Tensile Strengths of SCC Specimens 

Name Specimen 1 Specimen 2 Specimen 3 Specimen 4 Std Dev COV Average  

σmaxnotch 3.812 4.153 4.557 3.634 0.407 0.101 4.039 MPa 

 

Results of the tensile tests for SFRSCC can be seen in Table 3.5. 

Table 3.5 Tensile Strengths of SFRSCC Specimens 

Name Specimen 1 Specimen 2 Specimen 3 Specimen 4 Std Dev COV Average  

σmaxnotch 3.773 3.793 4.251 4.086 0.233 0.059 3.976 MPa 

σbreak 1.292 1.041 1.122 0.907 0.161 0.148 1.090 MPa 

σbreak70% 0.904 0.729 0.786 0.635 0.113 0.148 0.763 MPa 
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The maximum stress           was calculated the same way as with SCC. The stress        was the 

average force resisted by the specimens after cracking, which was essential to the loading of the 

tensile creep tests performed on the pre-cracked specimens. The stress           was a fraction of 

       and was the total stress that needed to be applied to the pre-cracked concrete specimens 

during the tensile creep tests. Figure 25 explains these terms more effectively. 

 

Figure 25 Typical behaviour of SFRSCC prisms in tension with parameters defined 

3.4 Steel Frames 

Steel frames were designed in order to perform the tensile creep tests. A detailed description of the 

frames can be found in Appendix B. The frames used weights attached to the pivot beams at 

different ratios as a loading mechanism as seen in Figure 26 and it was necessary to calibrate the 

frames in order to load the concrete specimens correctly. Certain factors could affect the difference 

between the load applied and the load acting on the specimens for example the own weight of the 

pivot beams and the cables, the slight inaccuracies of the ratios and the distribution of the forces 

through the frictionless pinned connection. In order to understand the calibration procedures, it was 

necessary to be familiar with the loading frames and their function. 

𝜎𝑚𝑎𝑥𝑛𝑜𝑡𝑐  

𝜎𝑏𝑟𝑒𝑎𝑘 
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Figure 26 Graphical presentation of the steel frames used in the tensile creep tests. 

It was mentioned before that four batches consisting of four concrete specimens had to be tested. 

Each steel frame could fit two specimens at a time, meaning eight steel frames were designed to 

perform the tensile creep tests. These frames were named Frames A – H in order to avoid confusion. 

Figure 27 presents the steel frames used in the tensile creep tests. 

 

Figure 27 Figure of steel frames to be used in tensile creep tests. 
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From Figure 27 it can be seen that the pivot beams through which the applied load will be 

transferred to the specimens are resisted by the stopper, which acts as a loading mechanism and 

safety measure. The wire rope connections will ensure that minimal internal moments will occur 

during the testing procedure. The wire ropes used were       Maxipact high performance wire 

ropes with a minimum nominal capacity of          supplied by Fastlift Rigging Products (PTY) Ltd. 

The room used for the creep tests was fully climate controlled with the ability to generate different 

ambient temperatures and humidity. 

Additionally,       threaded rods with chain links welded to it were used to connect the concrete 

specimens to the bottom of the frames. These rods had hex nuts fixed to them so that they could be 

adjustable as can be seen in Appendix B. The threaded rods acted in accordance with the stopper to 

ensure that the frames could be adjusted to accommodate the concrete specimens. Figure 28 

represents the stoppers. 

 

Figure 28 Figure of the stopper acting as a safety mechanism. 

The stopper shown in Figure 28 was designed to act as a loading3 and a safety4 mechanism. The 

stoppers were designed in such a manner so that they were fully adjustable and were able to lock in 

                                                           
3
 When the frames were loaded. 

4
 If the concrete specimens failed. 

Top Connecting 

Beam 

Stopper 

Frictionless 

Pinned 

Connection 
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position. The steel disc was capable to withstand all forces generated by the frames and it was able 

to accommodate a wide range of rotations of the pivot beams. During the creep tests the stopper 

had been adjusted so that there was a gap of        between the stopper and the pivot beams, 

enabling it to act as a safety mechanism if the concrete specimens fail. This ensured that the 

equipment would not damage if failure occurs. 

The frictionless pinned connection described in Appendix B can also be seen in Figure 28. Steel bars 

were held in position by the round cir-clip fixed at both ends. This ensured that the bars stayed in 

position during testing. The bars went through the needle roller bearings fitted in the pivot beams 

and were capable of withstanding up to         of applied force. The pivot beams were designed in 

such a manner for the loading ratios to be fully adjustable. The ratios ranged between     to     , 

making it possible to lessen the forces applied if so desired. 

The aim of the frame design was to be as compact, simple and practical as possible. As mentioned 

before loading weights were used to generate the loads needed in order to test the specimens. In 

order to use a large amount of weight while keeping the design compact        lead weights were 

used. Smaller weights added the extra loads when they were needed. 

It was necessary to calibrate the steel frames in order to make sure that the correct loads were 

applied to the specimens. In theory it is possible to determine the actual load applied by using the 

ratios after the weights were loaded. The theoretical equation for determining the actual load after 

the weights are applied is explained below: 

                    (3. 1) 

This ratio is expressed as         and the weight is converted from    to  . In Appendix B the ratio 

used in the calculations was      in order to create the worst case scenario. This ratio could to be 

adjusted in order to accommodate the        lead weights. 

3.5 Calibration 

The calibration process was performed by connecting a tensile load cell with the capacity of       

to the centre of the frames by using chains and the specially designed connections described in 

Appendix B. The load cell was connected to a Spider8 data logger which was connected to the 

computer and it could record the actual load applied by the loading weights. The data acquisition 

was performed by the Catman v.3.2 software program developed by HBM. This program allows the 

user to choose many different logging styles of which the real-time graph was chosen, which plotted 

the force against the time. 
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Before the loading started the load cell was zeroed to indicate a zero load. The stopper was released 

in order to load the self-weight of the pivot beams. The force generated by the self-weight of the 

pivot beams was added to the force applied by the loading weights.       weights were used in the 

calibration process and were added in increments of       at each side of the frame until the loads 

obtained from the tensile strength tests were reached. With every increment the load was given 

time to stabilise and the force was recorded from the computer. Ideally the increments of loading 

would behave in a linear manner. That would make it possible to foresee what amount of weight 

would generate the correct amount of force needed for the tensile creep tests. The expression for 

linear behaviour is well known and can be applied in the following manner: 

              (3.2) 

Equation 3.2 was used for determining the applied load after the loading of the weights, with the 

self-weight taken into account. In this case,      was the load recorded by the load cell after the 

weights have been loaded,   was the load applied in  ,   was the own weight in   of the pivot 

beams and the load cell and   was the loading ratio. With all these factors taken into account it can 

be seen that when no load is applied    . With every increment of load added it was found that 

the ratio   decreased. The calibration process of Frame B can be seen in Table 3.6 as a 

demonstration. 

Table 3.6 Calibration figures for Frame B 

x (kg) x (N) y(x) (N) m ycalc 

0 0 0    

20 196.2 7520 17.84106 y(20) = 7218.611 

40 392.4 10670 16.94805 y(40) = 10417.64 

60 588.6 13620 16.31059 y(60) = 13616.66 

80 784.8 16510 15.91541 y(80) = 16815.69 

100 981 19230 15.50501 y(100) = 20014.72 

110 1079.1 20540 15.30944 y(110) = 21614.23 

  mavg 16.30493   

 

The data obtained through the load cell during the calibration process can be seen in Table 3.6 

where       is the mass of the weights applied at each side of the frame and                . 

The factor      is the load recorded through the load cell and the own weight   was found to be 

      . The ratio   was calculated the following way: 
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    (3. 3) 

It can be seen that    decreases as the weight applied increases. This can be explained as the elastic 

deformation of the steel frames as the load increased. It was therefore necessary to determine the 

average   needed to calculate      , which was used to calculate the load needed for the creep 

tests. 

The load percentage for Frames B – D were lowered from      to      after the specimens 

experienced creep fracture during the first tensile creep tests. From Table 3.4 in Section 3.3 the 

ultimate load was found to be           , so     of this load would be approximately          . 

Through back-substitution the weight needed to generate this load was calculated and found to be 

         , which was round down to       , which in turn was equal to        of the ultimate 

load as can be observed in Table 3.7. 

Table 3.7 Calculated loads from calibration results for Frame B 

Freq 20194.88  

Weightreq 992.05 N 

 101.13 kg 

Weightapp 100 kg 

Fapp 20014.7 N 

 49.6 % 

 

All the frames were calibrated in the manner explained above in order to find the loads that should 

be applied to the concrete specimens. Table 3.8 presents the loading of all the frames with the 

loading percentages included. 

Table 3.8 Summary of calibration and loading for the steel frames 

Frame Load/side Newton m c Fultimate Fapp % Avg % Avg Load (N) 

A 105 1030.05 15.851 4119.6 40390 20447 50.6 
50 20015 

B 100 981 16.305 4019.6 40390 20015 49.6 

C 115 1128.15 14.689 3299.6 39756 19871 50.0 
50 19732 

D 110 1079.1 14.942 3469.6 39756 19593 49.3 

E 15 147.15 23.082 3908.4 10905 7305 67.0 
65 7132 

F 15 147.15 22.093 3708.4 10905 6959 63.8 

G 5 49.05 22.116 3828.4 10905 4913 45.1 
48 5282 

H 5 49.05 24.499 4448.4 10905 5650 51.8 
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From Table 3.8 it is observed that the   factors differed substantially between Frames A – D and 

Frames E – F because the loading magnitudes differed significantly and the        lead weights had 

to be used in the first three frames, which influenced the loading ratios. The loading ratios for 

Frames A – D were 1:7 and 1:10 for Frames E – H. 

What is also apparent is that all the specimens except the specimens from Frames E and F were 

loaded to      of their respective average ultimate strengths obtained from the tensile tests. This 

was because the specimens from Frames A – D experienced creep fracture when they were loaded 

to      in the first tensile creep tests performed as mentioned before. The specimens tested in 

Frames G and H were loaded to      of the average maximum resistance of the concrete after 

failure, because one of the specimens failed during the      loading. When this occurred, quick 

action had to be taken to ensure that valuable data could still be obtained from the remaining 

notched, pre-cracked SFRSCC specimens. 

The specimens from Frames E and F were loaded to      of the average maximum resistance of the 

specimens after failure so that it can be compared to the notched, pre-cracked SFRSCC specimens. 

However Frames E and F were loaded to approximately      of the average ultimate load at which 

the SFRSCC tensile specimens failed. With this taken into account it can be foreseen that the tensile 

creep of the notched SFRSCC specimens would not be high and would need to be factored in order 

to compare it directly with the other results. The next section will explain the tensile creep test 

setup. 

3.6 Tensile Creep Test Setup 

After the frames were calibrated it was possible to load the frames with the weights. As seen in 

Table 3.8 the frames were loaded to different percentages of the average ultimate strengths. It 

would have been ideal if the frames could all be loaded to      in order for non-linear behaviour to 

occur, but experiences with the first tensile creep tests showed that the loading percentage should 

be lowered as to avoid creep fracture. 

The first step of setting up the tensile creep tests was load the weights on the frames, with the 

stopper making sure that the pivot beams stayed in one place. Figure 29 presents the weights used 

in loading. 

Stellenbosch University http://scholar.sun.ac.za



63 
 

 

Figure 29 The loading was executed by weight plates. 

After loading it was necessary to prepare an Enerpac hydraulic cylinder in order to load the 

specimens gradually through means of a hand pump. The reason for using a hydraulic cylinder was 

because the loads generated by the weights were too high to loosen the nuts of the stopper by 

hand. 

The concrete specimens were retrieved from the water baths where they had cured for 28 days. 

They were moved to the climate controlled laboratory room where the tensile creep tests would be 

performed. After the specimens were retrieved the aluminium frames to which the LVDTs would be 

fixed were fitted to the concrete prisms, which, in turn were connected to the steel frames through 

the connecting wire rope slings by means of the frictionless connections mentioned in Appendix B. 

The specimens were then fixed to the bottom connection beam by means of the threaded rod as 

explained in Appendix B and the hex nuts were tightened by hand. The LVDTs were fitted to the 

aluminium frames by means of small screws and connected to electrical cables leading to the 

Spider8 data loggers. An example of the data loggers can be seen in Figure 30. 

Lead Weight 

Plate 

Conventional 

Weight Plates 
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Figure 30 The Spider8 data loggers used in the experiments. 

The LVDTs were adjusted so that they could elongate and shorten in order to record creep and 

shrinkage effectively as can be seen in Figure 31. 

 

Figure 31 An example of the LVDTs and aluminium frames used. 

The final step was to load the specimens by using the Enerpac hydraulic cylinder that was connected 

to the hand-operated hydraulic pump mentioned earlier. Before the loading occurred the data 

logger was started so that it could start acquiring the data recorded by the LVDTs at one data point 

per second. The hydraulic cylinder was then inserted between the top connecting beam and the 

round disc of the stopper and it was extended until the cylinder pressed firmly against the top 

connecting beam and the stopper’s disc. The hex nuts of the stopper were then loosened until the 

stopper was free to move thus enabling the hydraulic cylinder to carry the full load. The release 

LVDT 
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Frame 
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valve of the hydraulic pump was opened steadily so that the hydraulic cylinder could retract, causing 

the specimens to be loaded in a gradual manner. The hydraulic cylinder was relaxed until the 

stopper offered zero resistance and then the stopper was fixed      above the ends of the pivot 

beams. 

To ensure that the equipment would not damage if the concrete specimens fail other safety 

mechanisms were added to the steel frames. These safety mechanisms consisted of two    

      angle iron lengths        long that were clamped to both sides of the frames through 

means of      threaded rods as seen in Figure 32 a). These mechanisms would halt the falling of 

the concrete specimens if they failed. This design was simple to manufacture and implement and 

proved to be effective in withstanding the weight of the specimens, should they fail and fall. These 

angle iron lengths were fitted below each specimen with a        gap between the angle iron 

and the specimen, demonstrated by Figure 32 b). Both safety measures used in the design could be 

adjusted to take the deformations of the concrete into account. 

 

Figure 32 The secondary safety mechanisms a) Fitted to the frames with a spacing of b) more of less 5 mm. 

The data was recorded at one data point per second for Day One of testing. It was then recorded at 

      intervals at Day Two and        intervals at Day Three. At Day 6 the data points were 

acquired every hour for seven days. At Day Thirteen the data points were recorded every two hours 

until the tensile creep and shrinkage tests were complete. This schedule was used for every batch of 

concrete specimens tested. The tests were performed in tandem and the data points were recorded 

to at least one hundred days of testing. 
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3.7 Shrinkage Test Setup 

As mentioned before, only six moulds were available at a time, which allowed the manufacturing of 

two shrinkage specimens and four tensile creep specimens at a time from each batch for the first 

two batches. The shrinkage specimens were set up during the same time as the setup of the tensile 

creep specimens for the SCC and SFRSCC batches. The reason for manufacturing the shrinkage 

specimens during the first two batches is so that the shrinkage tests could carry on for as long as 

possible in order to obtain a stable strain/time curve.  

In order to test shrinkage in a relevant manner it was important to test the specimens in the same 

environment as the creep tests were performed. Two specimens of each type of concrete were 

tested for shrinkage. The shrinkage specimens were identical to the creep specimens and were 

retrieved at the same time as the first two batches of creep specimens. They were taken to the 

climate controlled laboratory where the tensile creep tests were performed. The shrinkage strains 

were recorded by LVDTs attached to the specimens by means of Perspex blocks glued to the 

concrete specimens by means of an epoxy, with a gauge length of       (as seen in Figure 33 a). 

Seeing that numerous aluminium frames were required for the creep tests it was more cost effective 

to use the Perspex blocks. The blocks were fixed to opposite sides of the concrete specimens so that 

the deformations in both axes in the plane of the cross-sectional area can be measured. These 

deformations can then be linearly interpolated in order to find the deformation along the centre 

line. The Perspex blocks were fitted with small clamps and screws in order to fit the LVDTs. 

The concrete shrinkage specimens were placed on small PVC tubes acting as rollers as seen in Figure 

33 b). These rollers were placed at the ends and at mid-span so that deflections will not take place. 

They provided minimal frictional resistance and did not deform significantly under the own weight of 

the concrete specimens. With the concrete specimens ready for testing it was necessary to fix the 

LVDTs to the Perspex blocks in order to measure the deformations. The LVDTs were fixed in the 

same way as the creep specimens as to allow extension and contraction in order to measure 

shrinkage and swelling effectively. The data acquisition schedule of the shrinkage tests were the 

same as the creep tests seeing that both tests were performed in tandem. Figure 33 presents the 

setup used in the shrinkage tests: 
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Figure 33 The Shrinkage Beams were a) supported by PVC tubes and b) fitted with Perspex blocks. 

3.8 First Creep Tests 

The failure of the first round of tensile creep tests will be discussed shortly. The first round of creep 

tests were done on the SCC and SFRSCC specimens with a      loading percentage. This loading 

percentage proved to be too high as the specimens experienced creep fracture within the first few 

days after the testing started. The data turned out to be of no use as          worth of data was 

required in order to be comprehensive.  

A second round of tensile creep tests had to be performed using a lower loading percentage, which 

led to the lowering of the loading ratios from 1:10 to 1:  in order to reach a      loading 

percentage with the same amount of weights used in the first round of tests. From the experience of 

the first tests it was also decided to implement an extra safety measure as mentioned earlier in 

order to protect the equipment if failure occurs, which led to implementation of the          

angle iron lengths. The stopper safety mechanism proved to be effective and stable under the 

loading and failure conditions. 

  

a) b) 
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Chapter 4 

4. Experimental Results 

The experimental results of all tensile creep tests will be presented in this chapter. Compression 

tests were performed on the concrete cubes of the different batches and an average compressive 

strength of          was found for SCC and          was found for SFRSCC. These compressive 

strengths were similar to the compressive strengths of the trial mixes, which was          and 

         for the SCC mix and SFRSCC mix, respectively. 

4.1 Shrinkage 

The shrinkage results of the SCC and SFRSCC specimens are presented and discussed in this section. 

The graphs are presented as strain in     ⁄  over time in      where the strain was obtained by 

dividing the deformations by the       gauge length. The unaltered results of the displacement of 

the two SCC specimens (SCC1 and SCC2) caused by the shrinkage effect can be seen in Figure 34. 

 

Figure 34 Strain over time behaviour in SCC shrinkage specimens. 

From Figure 34 it is observed that the concrete behaved abnormally during the beginning stages of 

the shrinkage tests. It seemed that the concrete has swelled and shrunk during the first        of 
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the shrinkage test. Another explanation can be that the interfacial bond formed by the epoxy 

between the concrete and the Perspex blocks caused this phenomenon. In order to clarify whether 

this behaviour was caused by the concrete itself or the epoxy, further testing should be done with 

the LVDTs being fixed to aluminium frames; however, because of the limited time available to 

complete the study, this was not possible. 

With the shrinkage data exhibiting abnormal behaviour it was necessary to estimate the shrinkage 

behaviour of the concrete through curve fitting. This was done by using the mathematical expression 

used for predicting shrinkage of concrete provided by the FIB Model Code 2010 and the data 

obtained from the shrinkage tests. The shrinkage data obtained was still considered valid because it 

exhibited behaviour typical to the shrinkage of concrete, but it had to be adjusted in order to be 

more accurate and useful. With the help of curve fitting it was possible to obtain the curve shape for 

the first       . The curve fitting procedure will be explained in detail in Chapter 5. 

The altered SCC shrinkage strain curve is presented in Figure 35. 

 

Figure 35 Strain over time graph with predicted shrinkage behaviour for SCC specimens. 

In Figure 35 three curves have been plotted in order to find the shrinkage strain of the SCC 

specimens. The shrinkage strain obtained from the experimental results is represented by       

while      is the shrinkage predicted by the modified mathematical expression obtained from the 

FIB Model Code 2010 that was used for curve fitting. It can be seen that this curve does not start at 

zero, which is remedied by             . After these steps were taken it was assumed that 

             describes the typical shrinkage behaviour of SCC. 
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The unaltered results of the shrinkage strains of the two SFRSCC specimens (SFRCSCC 1 and SFRSCC 

2) are presented in Figure 36. 

 

Figure 36 Strain over time behaviour in SFRSCC shrinkage specimens. 

In Figure 36 it can be seen that the shrinkage strains of SFRSCC exhibited the same peculiar 

behaviour as with SCC. Even though the behaviour was not as prominent with SFRSCC it was 

uncertain whether the fibres caused the behaviour. The same assumptions as for SCC were made 

and the problem was remedied in the same way. The altered SFRSCC shrinkage strain curve is 

presented in Figure 37. 

 

Figure 37 Strain over time graph with predicted shrinkage behaviour for SFRSCC specimens. 

Stellenbosch University http://scholar.sun.ac.za



71 
 

As with SCC, curve fitting was done in order to estimate the true shrinkage behaviour with the 

parameters being the same as with SCC. It was also assumed that              represents the true 

shrinkage behaviour of SFRSCC. The tensile creep curves of SCC and SFRSCC are presented separately 

in the sections that follow. 

4.2 SCC Creep 

The experimental data obtained from the tensile creep tests performed on the SCC specimens will 

aid in understanding the time-dependent behaviour of SCC. Two specimens failed during the onset 

of the tensile creep tests. The curves seen Figure 38 are from the two remaining SCC specimens 

(SCC1 and 2) and represent the creep and shrinkage effects that occurred during the duration of the 

experiments. 

 

Figure 38 Strain over time behaviour in SCC creep specimens, measured. 

The curves from Figure 38 were the measured displacements obtained from the creep experiments 

divided by the cross-sectional area with the elastic strain included and shrinkage not yet subtracted. 

The elastic strain was subtracted to start the curves at zero. An average was taken from these curves 

and shrinkage was then subtracted in order to find the tensile creep of SCC, as seen in Figure 39. 
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Figure 39 Calculated creep strains for SCC specimens. 

With the shrinkage being the dominant factor it is still possible to obtain valid tensile creep curves as 

seen in Figure 39. The curve represented by        is the resulting creep curve after the shrinkage 

were subtracted from the measured creep and it represents the tensile creep behaviour of SCC. This 

curve was used to do curve fitting with Maxwell chains in order to predict long term tensile creep 

behaviour of SCC being loaded under the same conditions. The curve fitting will be explained in 

Chapter 5. 

4.3 SFRSCC Creep 

The experimental data obtained from the tensile creep tests presented tensile creep curves for the 

SFRSCC specimens will aid in understanding the behaviour of SFRSCC subjected to tensile stress over 

time. In total four specimens were tested but one of the specimens proved to be an outlier, which 

could be explained as the LVDTs from that specimen most likely being faulty. The curves seen in 

Figure 40 are from the three remaining SFRSCC specimens (SFRSCC 1 to 3) and represent the creep 

and shrinkage effects that occurred during the duration of the experiments: 
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Figure 40 Displacement over time behaviour in SFRSCC creep specimens, measured. 

The curves from Figure 40 are the measured displacements obtained from the creep experiments 

divided by the cross-sectional area with the elastic strain included and shrinkage not yet being 

subtracted. An average was taken from these curves and then shrinkage and the elastic strain were 

subtracted in order to find the tensile creep of SFRSCC, as seen in the Figure 41. 

 

Figure 41 Calculated creep strains for SFRSCC specimens. 

From Figure 41 it is noticeable that the shrinkage strain and the average measured creep strain are 

nearly similar, which leads to the conclusion that the shrinkage was the dominating factor during the 

tensile creep experiments of SFRSCC. As with SCC it was now possible to do curve fitting with 

Maxwell chains which would make it possible to predict future tensile behaviour of SFRSCC under 

the same conditions. 
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4.4 SFRSCC Notched Un-Cracked Creep 

The experimental results of the third batch of tensile creep tests are presented and discussed in this 

section. Only two notched SFRSCC specimens (SFRSCC 1 and 2) were tested and their measured 

creep strains are presented in Figure 42. 

 

Figure 42 Displacement over time behaviour in notched SFRSCC creep specimens, measured. 

What is noticeable from Figure 42 is that the two specimens behaved in similar manner under the 

same loading and conditions, which makes it possible to obtain an average creep strain. Figure 43 

will represent the average tensile creep strain of these specimens. 

 

Figure 43 Calculated creep strains for notched SFRSCC specimens. 
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From Figure 43 it can be seen that the tensile creep        is close to zero, which corresponds to 

the results of the tensile creep tests performed on the SFRSCC specimens. Even though only two 

specimens were tested, the specimens behaved in a similar manner. What is also apparent in Figure 

43 is that the measured creep strain was approximately the same as the shrinkage strain, which 

indicated that little or no tensile creep took place, leading to the low tensile creep values. The curve 

obtained from the notched SFRSCC specimens will be compared directly to the curves of the 

notched, pre-cracked SFRSCC specimens in order to determine the effect of fibre pull-out. 

The comparisons will be discussed in detail in Chapter 4.6. The tensile behaviour of the notched, pre-

cracked specimens will be discussed next. 

4.5 SFRSCC Notched Pre-Cracked Creep 

In order to test pre-cracked specimens it was important to crack the specimens beforehand without 

causing large crack widths. Large crack widths could cause the bond between the fibres and concrete 

to break, which could weaken the specimens significantly and therefore affect the results of the 

tensile creep tests. The specimens were cracked beforehand by the Zwick machine and the Zwick 

software made it possible to stop the tests immediately after initial failure occurred, thereby 

avoiding large crack widths. The average tensile strength of the notched, pre-cracked SFRSCC 

specimens was         . The measured tensile creep displacements of the three pre-cracked, 

notched SFRSCC specimens (SFRSCC N/P 1 to 3) are presented in Figure 44. 

 

Figure 44 Displacement over time behaviour in notched, pre-cracked SFRSCC creep specimens, measured. 

From Figure 44 it can be seen that large displacements occurred during the tensile creep tests. When 

looking at the results the initial crack widths are identified by the large displacements that occurred 

during the beginning of the tests. With the different crack widths making the concrete specimens 
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behave differently, it was difficult to find an average displacement of the three specimens. It is also 

noticeable that SFRSCC 2 exhibits large displacements. However, it behaved similarly to SFRSCC 1 

and 3 after the initial displacement, making it viable for analysis procedures. It was therefore 

necessary to look at the displacements of the three specimens individually. 

 

Figure 45 Time-dependent behaviour of notched, pre-cracked SFRSCC Specimen 1. 

Figure 45 represents the measured displacement of the first notched, pre-cracked SFRSCC specimen 

with the shrinkage displacement included. Displacements were used because the creep 

phenomenon was localised at the cracks, therefore not representing the material behaviour. When 

taking the tensile creep behaviour of SFRSCC in account it was concluded that the creep 

displacements were mainly caused by the fibre pull-out. It was however still important to look at the 

other curves as well to gain better perspective about fibre pull-out behaviour. The tensile creep 
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displacements of the other two specimens follow in Figures 46 and 47.

 

Figure 46  Time-dependent behaviour of notched, pre-cracked SFRSCC Specimen 2. 

 

Figure 47 Time-dependent behaviour of notched, pre-cracked SFRSCC Specimen 3. 
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A summary of the tensile tests performed on the notched, pre-cracked SFRSCC specimens is 

presented in Figure 48.  

 

Figure 48 Tensile creep displacements of notched, pre-cracked SFRSCC specimens. 

From Figures 45 to 47 it can be seen that the shrinkage had a significant effect on the measured 

displacements. This was expected seeing that the loading percentage was      of       , but it was 

only about      of          . Shrinkage was a dominating factor in the creep results of the un-

notched SFRSCC specimens loaded at     of          , therefore the effect of shrinkage on the 

pre-cracked specimens was expected. Another prominent factor that influenced the displacement of 

the specimens was the effect of fibre pull-out. From the two main factors listed above, it could be 

concluded that little to no tensile creep occurred in the concrete during the tensile creep tests 

performed on the notched, pre-cracked specimens. In Section 4.6 the results of the relevant tests 

are compared in order to be more conclusive. 

4.6 Comparison 

In this section, different comparisons are made in order to investigate the time-dependent 

behaviour of SCC and SFRSCC with and without tensile loading. In order to compare the results 

directly, the measurements at         from the start of the tests will be compared. The first 

comparison compares the shrinkage strains between the SCC and SFRSCC specimens. The predicted 

shrinkage strains of the two different concretes are seen in Figure 49. 
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Figure 49 Shrinkage strains of SCC and SFRSCC specimens. 

From Figure 49 it is clear that steel fibres reduced the shrinkage of concrete significantly by almost 

   . After         the shrinkage strain for SCC was            and            for 

SFRSCC. The next step would be to compare the tensile creep between SFRSCC and SCC in Figures 

50. 

 

Figure 50 Tensile creep strains of SCC and SFRSCC specimens. 

From Figure 50 the significant influence of steel fibres on the tensile creep of concrete is apparent. 

The maximum creep strain at         for SCC was found to be                  and for 
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SFRSCC it was              . It appears from this result that steel fibres reduce the tensile 

creep of concrete. So far it was seen that the advantages of steel fibres was that they reduced the 

shrinkage and creep strains of concrete. The only unknown factor was whether fibre pull-out played 

a significant role in the tensile behaviour of cracked SFRSCC. 

The next step was to compare the notched SFRSCC results with the notched, pre-cracked SFRSCC 

results. The creep behaviour was localised at the cracks, which was why the displacements of these 

batches were compared. The average displacement of the notched SFRSCC specimens was scaled so 

that it could be compared directly to the notched, pre-cracked specimens. 

As mentioned before, the notched SFRSCC specimens were loaded to      of             and 

     of       . The loading percentage of Frames G and H was      of       , therefore the 

results of the notched SFRSCC specimens had to be factored to a loading percentage of    . 

                          
   

   
 

This leads to Figure 51. 

 

Figure 51 The adjusted tensile creep strain of notched SFRSCC specimens. 

When comparing the displacements of the notched specimens to the displacements of the notched, 

pre-cracked specimens, it is apparent in Figure 52 that the latter was the most significant. Figure 52 

represents the average displacement of the notched SFRSCC specimens plotted against the 

displacements of the notched, pre-cracked SFRSCC specimens against time. 
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Figure 52  Comparison of the creep displacements of the notched SFRSCC specimens. 

From Figure 52 it is apparent that the fibre pull-out overshadowed any effects the tensile creep 

might have had on the concrete after cracking occurred. The comparisons of the un-notched 

specimens identified definite advantages to SFRSCC, which might be rendered insignificant when 

looking at the comparison of the notched specimens’ results. In order to determine whether the 

results of the notched, pre-cracked specimens are disadvantageous, further investigation is needed. 

From the results of the notched specimens it was difficult to see whether fibre pull-out would be a 

significant detrimental factor as time progresses, which made it necessary to perform analyses using 

the results of the un-cracked and pre-cracked notched specimens. These analyses would give a good 

indication of what tensile behaviour to expect after the concrete has cracked. The different analysis 

procedures used in the curve fitting and finite elements analyses are described in detail in the next 

chapter. 

  

Stellenbosch University http://scholar.sun.ac.za



82 
 

Chapter 5 

5. Analytical Procedures 

Curve fitting and the software analyses performed have been mentioned earlier without detailed 

explanations. Throughout the experimental procedures data were acquired and processed, but 

certain procedures were needed in order to make the data useful and applicable. The different data 

procedures are explained in the next few sections. 

5.1 FIB Model Code 2010 

The model provided in the FIB Model Code 2010 to predict the shrinkage strain of concrete was 

modified and adjusted so that it could be used to extrapolate the shrinkage results. The expressions 

for predicting the shrinkage of concrete were explained in Chapter 2.6.2. In order to simplify the 

curve fitting process the expressions that were obtained from the FIB Model Code 2010 were 

modified slightly in order to make them simpler. Another reason for modifying the expressions 

provided in the FIB Model Code 2010 was because they were more applicable to conventional 

concrete than for SCC or SFRSCC. These expressions have been condensed into one single 

expression: 

          √
    

           
     (5.1) 

Where   and   are functions relying on the humidity, concrete type, time of loading, concrete 

cylinder strength and the notional size  . The value of          was calculated by using the 

notional size of the member. The most important aspect of Equation 5.1 is that it is a function of 

time    seeing that this will play a part in the curve behaviour. The autogenous shrinkage was 

considered to be insignificant and was left out of Equation 5.1. 

The process of curve fitting was to plot the curve obtained by Equation 5.1 against the shrinkage 

results in order to model the shrinkage behaviour as accurately as possible. Certain points were 

chosen from the shrinkage results to which the curve obtained from the expression had to 

correspond with. Values were estimated for   and   and were adjusted until the curve from the 
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expression corresponded with the shrinkage curves of the SCC and SFRSCC. The factor   determined 

the shape of the curve and, which would normally be zero, had to have a certain value because of 

the faulty shrinkage data previously mentioned. The fitted curve produced a simple expression that 

was able to describe the shrinkage behaviour of concrete. 

Figure 53 gives an example of curve fitting for SCC. 

 

Figure 53 Example of curve fitting done on the SCC experimental data. 

From Figure 53 the factor       was the shrinkage strains of SCC,      is the curve obtained from 

Equation 5.1 and              is the same as      with   removed in order to represent the 

predicted shrinkage. The factor   had the value of             in order for the curve shape to 

fit the shrinkage shape of SCC, whereas   had the value of           . Equation 5.1 managed to 

represent the shrinkage behaviour of SCC, which made it possible to use the expression to calculate 

the shrinkage strains of SCC. The expression was used to calculate the shrinkage behaviour for SCC 

for the design period of 30 years. It was mentioned in Chapter 4.6 that the shrinkage strain at 

       ,         was            and it had been calculated that the shrinkage strain at 

        ,         was           . The shrinkage expressions from the FIB Model Code 

estimated                      and                     . 

The same procedures as with SCC were followed when the curve fitting was done on the shrinkage 

behaviour of SFRSCC. The factors   and   had the values of            and            , 

respectively. After the prediction curve was obtained the values for shrinkage were calculated as 

                   and                   . 
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The FIB Model Code 2010 also provided mathematical expressions to predict the creep of 

conventional concrete. The expressions provided by the FIB model code have been modified and 

adjusted in a similar fashion to the shrinkage expressions in order to make the curve fitting process 

simpler. The expressions have been described in detail in Chapter 2 and it is apparent that the 

expressions relied on a number of functions. Taking in mind that many of these functions were 

parameters that were constant they could therefore be condensed into a single function, which led 

to Equation 5.2: 

          (
    

               
)
   

    (5. 2) 

The factor   represented all the different constants from the original expressions being condensed 

into one single function, which allowed it to change the shape of the curve.   was included in the 

expression in case the curve needed to be adjusted along the vertical axis. The curve fitting was 

done in a similar manner as with shrinkage. An example of the curve fitting performed on the creep 

of SCC is given in Figure 54. 

 

Figure 54 Predicted tensile creep for SCC. 

From Figure 54        represented the creep strains of SCC and        was the creep calculated 

by Equation 5.2. The factors   and   from Equation 5.2 had the values of      and     , 

respectively. Upon inspection it can be seen that the predicted creep does not start at zero, because 

the function provided by the FIB Model Code 2010 restricted the shape of the curve. If   had a zero 

value, the chosen points between the expression and the data would not have corresponded. With 

the value of   being prominent with regards to the creep strain of SCC it was necessary to use 
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another method of curve fitting. Another flexible method of curve fitting was to use Maxwell chains 

instead of the expression provided by the FIB Model Code 2010, which will be discussed in the next 

section. 

The creep predictions done above would be used to calculate a creep strain value at         , 

which was necessary in order to do curve fitting with Maxwell chains. For SCC         

           and                    and for SFRSCC                   and 

                 . 

5.2 Maxwell Chain Model 

The Maxwell chain model was more flexible than the expression derived from the FIB Model Code 

2010 when used for curve fitting, because it was possible to use as many chains as desired. This 

makes it possible to modify the curves as needed. The Maxwell chains model were explained in 

Chapter 2.6.1 and this section will demonstrate its application to the data obtained from the creep 

experiments. 

From Chapter 2 comes the simplified general equation for Maxwell chains presented by Equation 

5.3: 

   [      
 

 

        
 

 

  ]      (5.3) 

Equation 5.3 can be rewritten in order to find the strain as a function of time with a constant stress 

  applied: 

      
 

*      
 

 
        

 
 
  +

    (5.4) 

Equation 5.5 will be used to do curve fitting with the SCC, SFRSCC and pre-cracked SFRSCC 

experimental data. Upon inspection it can be seen that for          the dashpots will not be 

active yet and the system is in its full elastic state. This is confirmed by Equation 5.5: 

      
 

[                       ]
   (5.5) 

From Equation 5.5 the elastic strain      is required in order to know what the total elasticity of the 

system should be. The total elasticity of the system should represent the modulus of elasticity of the 

material, meaning: 

∑      
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Where     is the modulus of elasticity for the concrete at 28 days. 

So far all the predictions have been done for a time period of         . This was applied to the 

Maxwell chain method. It was therefore assumed that stress relaxation would be complete at 

          , which  meant that the dashpots would be fully extended and that all the springs 

would be relaxed except for the spring    that was not connected to a dashpot: 

             
 

  
    (5.6) 

It is seen from Equation 5.6 that the end strain value             is needed in order to calculate the 

elastic component   . The creep value calculated at          by the simplified expression (Equation 

5.2) describing the tensile creep behaviour in the previous section provided a good indication of 

what             should be. As soon as      and             were known it was possible to 

continue with the curve fitting. 

The next step was to estimate values for the springs and dashpots, which was done by hand, which 

required the values of the unknowns to be changed individually until the calculated curve points and 

the experimental data points corresponded. The factors      and             were represented by 

    and    respectively, where     was the elastic strains and    was the strain calculated at 30 years 

by Equation 5.2 with the elastic strain added. The curve fitting solutions will follow next. 

5.2.1 SCC 

The applied tensile stress                  was calculated by using the cross-sectional area. The 

elastic modulus     was estimated from SANS 10100-1 to be            (SANS 10100-1, 2000). 

The elastic modulus    of the spring element can be calculated by Equation 5.7: 

    
      

  
    (5.7) 

The factor    is calculated by adding the elastic strain to Equation 5.2: 

                    (5.8) 

Equation 5.8 can be rewritten as: 

        (
    

               
)
   

          (5.9) 

From Equation 5.9 the term        will have the value of            ,   and   will have the 

values         and           respectively and the factor     was calculated by     

                             ⁄ . These factors led to the calculation of    
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                   , which led to the calculation of            . Equation 5.9 was used 

to calculate all values for    for the SFRSCC specimens. With all the factors known it was possible to 

continue with the curve fitting. Table 5.1 presents all the different values for the springs and 

dashpots in the five-chain system after the curve fitting procedure was completed. 

Table 5.1 Maxwell chain parameters for SCC 

Tens. Strength σT-SCC 2.001 MPa Elastic Strain εel -5.939E-05 mm/mm 

Comp. Strength fc28 38.8 MPa End Strain εB -6.168E-04 mm/mm 

Elastic Mod. E28 33700 MPa     

E. Mod. Spring E0 4543 MPa     

E. Mod. Spring E1 12450.7 MPa Damp. Viscosity λ1 0.06 t-1 

E. Mod. Spring E2 7000 MPa Damp. Viscosity λ2 2 t-1 

E. Mod. Spring E3 8156 MPa Damp. Viscosity λ3 50 t-1 

E. Mod. Spring E4 1300 MPa Damp. Viscosity λ4 700 t-1 

E. Mod. Spring E5 250 MPa Damp. Viscosity λ5 5000 t-1 

 

From Table 5.1 it can be seen that  

∑      
   

           

The estimated factors from Table 5.1 were estimated by hand until the Maxwell curve and the SCC 

experimental curve corresponded. Figure 55 presents the two corresponding curves: 

Stellenbosch University http://scholar.sun.ac.za



88 
 

 

Figure 55 Maxwell curve fitted to SCC tensile creep curve. 

Observing Figure 55 it is noticeable that the SCC creep curve does not start at zero, which is because 

the elastic strain was added seeing that the Maxwell model already incorporates the elastic strain. 

Figure 56 presents the same Maxwell curve, but on a logarithmic horizontal axis, which further 

demonstrates the accuracy of the curve fitting done. 

 

Figure 56 Maxwell curve fitted to SCC tensile creep curve – logarithmic scale. 

5.2.2 SFRSCC 

The procedure for curve fitting was done exactly the same as was done with the SCC creep results; 

the only difference being that the SFRSCC test results were analysed with seven chains instead of 
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five. The applied tensile stress was obtained the same way with                  . The elastic 

modulus     was estimated to be            . 

The other factors had the values of         and     for   and  , respectively. The elastic strain 

                        was used to calculate   , with                       . 

The elastic modulus    of the spring was calculated and was found to be             . With all 

these factors calculated it was possible to continue with the curve fitting. After the curve fitting was 

completed the unknown factors were estimated as seen in Table 5.2. 

Table 5.2 Maxwell chain parameters for SFRSCC 

Tens. Strength σT-SCC 1.987 MPa Elastic Strain εel -5.823E-05 mm/mm 

Comp. Strength fc28 40.5 MPa End Strain εB -1.376E-04 mm/mm 

Elastic Mod. E28 34125 MPa     

E. Mod. Spring E0 14443.8 MPa     

E. Mod. Spring E1 5000 MPa Damp. Viscosity λ1 0.06 t-1 

E. Mod. Spring E2 3486 MPa Damp. Viscosity λ2 1 t-1 

E. Mod. Spring E3 3140 MPa Damp. Viscosity λ3 15 t-1 

E. Mod. Spring E4 2910 MPa Damp. Viscosity λ4 300 t-1 

E. Mod. Spring E5 2350 MPa Damp. Viscosity λ5 70 t-1 

E. Mod. Spring E6 1295 MPa Damp. Viscosity λ6 100 t-1 

E. Mod. Spring E7 1500.24 MPa Damp. Viscosity λ7 3100 t-1 

 

From Table 5.2 it is apparent that 

∑      
   

           

 which was the estimated modulus of elasticity of the SFRSCC. The corresponding curves are 

presented by Figure 57: 
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Figure 57 Maxwell curve fitted to SFRSCC tensile creep curve. 

Looking at Figure 57 it may be difficult to see whether the Maxwell curve and the SFRSCC 

experimental data curve correspond because of the “noise” produced by the LVDTs. With Figure 58 

displayed over a logarithmic horizontal axis it can be seen more clearly that it was possible to let the 

curves correspond closely. Figure 58 also displays an improved geometrical curve shape, which 

suggests that more Maxwell chains provide a smoother curve. 

 

Figure 58 Maxwell curve fitted to SFRSCC tensile creep curve – logarithmic scale. 

The curve fitting for the pre-cracked specimens was done in the same way as with the SFRSCC 

specimens. These curves are of the biggest importance seeing that they contain information about 
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the pull-out behaviour of SFRSCC in tension once cracking has occurred. The curve fitting of all three 

cracked specimens will be discussed next. 

Upon consideration of the material behaviour of cracked SFRSCC it was necessary to follow a slightly 

different procedure. The cracked concrete would have a different modulus of elasticity because of 

the behaviour of the crack. Previously it was possible to estimate/calculate the modulus of elasticity 

of the concrete through expressions, but no such expressions exist for cracked SFRSCC. The new 

modulus of elasticity      will be calculated by dividing the applied stress by the strain calculated 

from the experimental data. The strain was calculated by dividing the displacements by an element 

size of       and it was decided to use the strain at          because that is when the 

displacement curve has stabilized. The unknowns and curves of the three pre-cracked SFRSCC 

specimens will be presented next. 

5.2.3 SFRSCC – N/P 1 

Table 5.3 Maxwell chain parameters for pre-cracked SFRSCC specimen 1 

Tens. Strength σT-SCC 0.883 MPa Elastic Strain εel -2.729E-03 mm/mm 

E. Mod. New Enew 323.5 MPa End Strain εB -7.684E-03 mm/mm 

E. Mod. Spring E0 115.4 MPa Strain (14 min) ε14.4min -2.729E-04 mm/mm 

E. Mod. Spring E1 58.1 MPa Damp. Viscosity λ1 0.15 t-1 

E. Mod. Spring E2 30 MPa Damp. Viscosity λ2 2 t-1 

E. Mod. Spring E3 40 MPa Damp. Viscosity λ3 180 t-1 

E. Mod. Spring E4 20 MPa Damp. Viscosity λ4 100 t-1 

E. Mod. Spring E5 10 MPa Damp. Viscosity λ5 500 t-1 

E. Mod. Spring E6 20 MPa Damp. Viscosity λ6 4000 t-1 

E. Mod. Spring E7 30 MPa Damp. Viscosity λ7 1100 t-1 

 

The end strain value    was calculated to be                     with the factors   and   

having the values of         and        , respectively. The fitted Maxwell curve can be seen in 

Figure 59. 
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Figure 59 Maxwell curve fitted to notched, pre-cracked SFRSCC 1 tensile creep curve – logarithmic scale. 

From Figure 59 it can be seen that the predicted Maxwell curve corresponded closely with the 

tensile creep curve of the first notched, pre-cracked SFRSCC specimen. 

5.2.4 SFRSCC – N/P 2 

Table 5.4 Maxwell chain parameters for pre-cracked SFRSCC specimen 2 

Tens. Strength σT-SCC 0.883 MPa Elastic Strain εel -5.308E-02 mm/mm 

E. Mod. New Enew 16.636 MPa End Strain εB -1.428E-01 mm/mm 

E. Mod. Spring E0 6.2 MPa Strain (14 min) ε14.4min -5.308E-02 mm/mm 

E. Mod. Spring E1 3.436 MPa Damp. Viscosity λ1 0.12 t-1 

E. Mod. Spring E2 1 MPa Damp. Viscosity λ2 3 t-1 

E. Mod. Spring E3 2 MPa Damp. Viscosity λ3 150 t-1 

E. Mod. Spring E4 0.9 MPa Damp. Viscosity λ4 1000 t-1 

E. Mod. Spring E5 2 MPa Damp. Viscosity λ5 1000 t-1 

E. Mod. Spring E6 1 MPa Damp. Viscosity λ6 3500 t-1 

E. Mod. Spring E7 0.1 MPa Damp. Viscosity λ7 100 t-1 

 

The end strain value    was calculated to be                     with the factors   and   

having the values of         and      , respectively. The fitted Maxwell curve can be seen in Figure 

60. 
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Figure 60 Maxwell curve fitted to notched, pre-cracked SFRSCC 2 tensile creep curve – logarithmic scale 

From Figure 60 it can be seen that the predicted Maxwell curve corresponded closely with the 

tensile creep curve of the second notched, pre-cracked SFRSCC specimen. 

5.2.5 SFRSCC – N/P 3 

Table 5.5 Maxwell chain parameters for pre-cracked SFRSCC specimen 3 

Tens. Strength σT-SCC 0.883 MPa Elastic Strain εel -6.179E-03 mm/mm 

E. Mod. New Enew 142.9 MPa End Strain εB -1.400E-02 mm/mm 

E. Mod. Spring E0 63.1 MPa Strain (14 min) ε14.4min -6.18E-03 mm/mm 

E. Mod. Spring E1 7 MPa Damp. Viscosity λ1 1 t-1 

E. Mod. Spring E2 10 MPa Damp. Viscosity λ2 0.1 t-1 

E. Mod. Spring E3 4 MPa Damp. Viscosity λ3 1000 t-1 

E. Mod. Spring E4 5 MPa Damp. Viscosity λ4 1000 t-1 

E. Mod. Spring E5 15 MPa Damp. Viscosity λ5 1500 t-1 

E. Mod. Spring E6 35 MPa Damp. Viscosity λ6 3500 t-1 

E. Mod. Spring E7 3.8 MPa Damp. Viscosity λ7 100 t-1 

 

The end strain value    was calculated to be                     with the factors   and   

having the values of         and        , respectively. The fitted Maxwell curve can be seen in 

Figure 61: 
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Figure 61 Maxwell curve fitted to notched, pre-cracked SFRSCC 3 tensile creep curve – logarithmic scale 

From Figure 61 it can be seen that the predicted Maxwell curve corresponded closely with the 

tensile creep curve of the third notched, pre-cracked SFRSCC specimen. The specimens N/P 1 to 3 

cannot be compared directly because of the difference in magnitude of the element strains. 

The strains indicated on Figures 59 – 60 were not the displacements divided by the gauge length as 

with the previous specimens. The strains from the pre-cracked specimens were calculated as the 

displacements divided by the element size used in the finite element models explained in the next 

section. The strains from the pre-cracked models cannot be seen as the creep strains seeing that 

creep is a material property. If the gauge length would change to larger or smaller, it will not affect 

the creep strains of un-cracked concrete seeing that it depends on the material deformation. 

However, a changing gauge length will affect the strains obtained from the pre-cracked SFRSCC in 

the sense that if the gauge length becomes larger the strains will become smaller and vice versa 

because of the crack width. 

These Maxwell chains obtained from curve fitting now had the ability to describe the material 

behaviour of the different concrete specimens used in the experiments in an accurate manner 

through means of a mathematical expression. This would enable one to do a number of simulations 

with the appropriate Finite Element Method (FEM) programs and the different Maxwell chains 

incorporated.  
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Chapter 6 

6. Modelling Creep 

The most effective way to investigate the effects of steel fibres on the tensile creep of concrete was 

to incorporate the behaviour of the SFRSCC specimens into a practical application such as a beam in 

flexure and to examine how the tensile creep of SFRSCC affected the displacement of the beam. 

6.1 Modelling Flexural Creep 

The most effective way to model the flexural creep of a beam was to do a Finite Element Analyses 

(FEA). DIANA is a FEA program that enables the user to model different materials and geometries 

under different conditions to investigate what effect these conditions would have on the structures 

analysed. For the purpose of this study DIANA was used to analyse SFRSCC beams in flexure and to 

study their behaviour under different conditions. With the Maxwell curves available from the 

previous section it was possible to do time-dependent analyses on the concrete beams in flexure to 

determine how they would behave with the emphasis being on the deflections at the mid-spans. It 

should be noted that the analyses performed is based on the results of the experiments. Due to time 

constraints it was not possible to perform additional creep flexure tests to confirm the results of the 

different analyses performed. It was decided to do the analyses in 2D. 

The first step was to choose a beam of appropriate size and dimensions to be modelled and the 

loading conditions to be used in the model. The beam chosen was a rectangular prism with a cross-

sectional area of             and length of        as seen in Figure 62. A point load of       

was applied at mid-span and the beam was supported in the vertical and horizontal directions 

through means of translational supports. It has to be noted that flexural strength tests were not 

performed beforehand on any SFRSCC beams, therefore it was assumed that the       point load 

would not surpass the flexural capacity of the SFRSCC beams being modelled. 

Stellenbosch University http://scholar.sun.ac.za



96 
 

 

Figure 62 Beam model to be used in FEA. 

The next step was to mesh the beam into smaller elements in order to do a FEA. The element 

dimensions chosen were              with the        dimension being the depth or 

thickness of the element. The type of element chosen was a four-node quadrilateral isoparametric 

element. It was important to keep the model as simple as possible in order to reduce the 

computational time. 

With the mesh chosen as          elements it can be seen that there would be 700 elements in 

total. Figure 63 represents the complete mesh of the elements in the beam: 

 

Figure 63 Meshed beam, 10 x 10 mm elements. 
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Detail A is presented by Figure 64. 

 

Figure 64 Detail A – Left end of the modelled beam. 

Figure 64 presents the left support of the beam to be used in the FEA model. The supports were 

modelled to be at Node 356, which was situated at the centre of the beam, in order to eliminate any 

eccentricities that may have arisen during the FEA procedure. The beam could be viewed as being 

simply supported with no rotational resistance provided by the translational supports.  

Detail B is presented by Figure 65. 

 

Figure 65 Detail B – Elements in mid-span. 

Figure 65 represents the middle of the beam where the point load of       was applied and the 

maximum deflection would be take place.  
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Detail C is presented by Figure 66. 

 

Figure 66 Right end of the modelled beam. 

Figure 66 presents the right support of the beam which was situated at Node 426. The support was 

modelled as a single translational support in the vertical direction (y-axis).  

In order to include the own weight of the beam into the analyses it was necessary to define the 

density of the concrete. The density of concrete was assumed to be: 

                    ⁄  

The units for force and length were specified in DIANA as   and    respectively, so the concrete 

density had to be converted to     ⁄  in order to incorporate the own weight of the beam: 

                  
    

        
                 ⁄  

In DIANA it was possible to apply different time steps to the analyses and to specify the 

characteristics of these time steps. The time steps in this case were useful when it came to the creep 

analyses of specimens. The time step method was to take the total modelling time for the analyses 

of creep and to divide this time into different time steps. It was specified that a full time step will be 

equal to      . In order to understand this more clearly it is necessary to look at the method below: 

The total modelling time was         , which means: 

                

The unit for time was specified in DIANA as     , which means that an analyses modelling creep for 

         would use             with a step size of      , assuming that there are         in a 

month and            in a year. Instead of applying this number of time steps to the model, which 
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would make the compilation process more difficult, this modelling time was divided into a smaller 

number of time steps with the step size varying.  

It was decided that the time steps and step sizes chosen were initially small and that they would 

become larger until the time period of          was reached. The time steps chosen are presented 

in Table 6.1. 

Table 6.1 The time steps and sizes chosen for the FEA. 

Step size descriptions step size (d) time steps cumulative time (d) 

1 second 1.157E-05 10 1.157E-04 

10 seconds 1.157E-04 5 6.944E-04 

1 min 6.944E-04 59 4.167E-02 

1 hour 4.167E-02 23 1 

1 day 1 29 30 

2 days 2 35 100 

10 days 10 30 400 

100 days 100 16 2000 

200 days 200 44 10800 

Total time steps 251  

 

The model described above was the basic beam model used in the flexural creep analyses with 

minor modifications made to suit the specific behaviour of the different specimens. The analyses 

were only performed on beams with element sizes of             . Further analyses on 

different element sizes are necessary in order to determine its effect on the deflections of the 

concrete beams. 

6.1.1 Un-Cracked Flexural Creep 

One important assumption that had to be made is that the compressive creep and the tensile creep 

of SFRSCC would behave similarly. This had to be done in order to perform an FEA on the SFRSCC 

beams. In order to proceed with the modelling of the flexural creep of the SFRSCC beam it was 

necessary to incorporate the values from Table 5.2 obtained from the Maxwell chains used in the 

curve fitting.  

After the flexural analysis was performed on the SFRSCC beam the deflection for every time step up 

to          is displayed in Figure 67. 
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Figure 67 Mid-span deflection of SFRSCC beam. 

Figure 67 presents the displacement behaviour that occurred in un-cracked SFRSCC under a constant 

tensile stress over time. A displacement of          occurred at the onset while the displacement 

increased to         at         , which was the maximum vertical displacement. The 

displacement had increased with almost      . 

6.1.2 Pre-Cracked Flexural Creep 

The analyses performed on the pre-cracked SFRSCC beams have been done similar to the un-cracked 

SFRSCC beams with some minor modifications made to simulate the crack that has formed. It was 

assumed that the concrete beam had cracked in the middle and to simulate this crack it was decided 

to choose one row of elements located at mid-span and to change their material properties in order 

to simulate a crack that had occurred in the SFRSCC beam. 

When considering a beam in flexure there are two main stress zones: a compression zone and a 

tension zone. The crack would have occurred in the tension zone, which meant that it was necessary 

to find the NA to determine which elements experienced tensile stress.  From Figure 68 it was found 

that the bottom six rows of elements along the mid-span of the beam experienced tensile stress. 
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Figure 68 Stress distribution with compressive stress being at the top and tensile stress being at the bottom. 

The six elements chosen were Elements 36, 106, 176, 246, 316 and 386 situated just to the right of 

the centre of the beam as seen in Figure 68. These elements were modelled as a different material, 

seeing that they represented the crack in the concrete. The materials properties were obtained from 

the Maxwell models after curve-fitting was completed for each pre-cracked SFRSCC specimen. 

SFRSCC – N/P 1: 

In order to perform an analysis on the first pre-cracked SFRSCC beam it was necessary to incorporate 

the data from Table 5.2 to represent the un-cracked concrete and from Table 5.3 to represent the 

cracked concrete. After the analysis was performed on the first pre-cracked SFRSCC beam the 

deflection for every time step up to          is displayed in Figure 69. 

20 kN 
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Figure 69 Mid-span deflection of the first pre-cracked SFRSCC beam 

Figure 69 presents the displacement behaviour that occurred in the first pre-cracked SFRSCC beam 

under a constant tensile stress over time. A displacement of         occurred at the onset while 

the displacement increased to         at         , which was the maximum vertical 

displacement. The displacement increased with almost      . Figure 70 presents the deflection of 

the first pre-cracked SFRSCC beam. It is clear where the crack has widened by looking at the 

deformed lower elements at mid-span. 

 

Figure 70 Graphical presentation of the first pre-cracked SFRSCC beam in deflection with mesh on display. 
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A closer inspection of the mid-span in Figure 71 reveals the widening of the crack more clearly. 

 

Figure 71 Elements of the first pre-cracked SFRSCC beam at mid-span. 

The analyses on the second and third pre-cracked SFRSCC beams were performed in the same way 

and the deflections exhibited the same characteristics as the first specimen. 

With the analyses complete it is necessary to compare these results with each other in order to 

examine the difference between un-cracked and cracked SFRSCC beams. Table 6.1 presents the 

deflections of interest of the four analyses done: 

Table 6.1 Deflections at mid-span for the four different analyses. 

 Initial Deflection (mm) Final Deflection (mm) Allowable Deflection (mm) 

SFRSCC 0.501 1.18 2.8 

SFRSCC Cracked 1 1.06 2.62 2.8 

SFRSCC Cracked 2 1.81 4.29 2.8 

SFRSCC Cracked 3 1.34 3.09 2.8 

 

The deflections above are only applicable to beams with element sizes              and 

further analyses on varying element sizes is necessary in order to be more conclusive. Further creep 

flexure experiments are also necessary in order to confirm the deflections from Table 6.1. 
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6.1.3 Serviceability Limit State 

The FIB Model Code 2010 has definite requirements for deflections in Section 7.6.5 where it is 

considered that the appearance and the general utility of the structure could be impaired. These 

requirements are called the Serviceability Limit State (SLS) which are passed if: 

  
    

   
     (6.1) 

In Equation 6.1,   is the deflection of the beam and      is the length of the beam. This means that 

the maximum deflection      allowable is: 

     
   

   
        

None of the initial deflections of the SFRSCC beams exceeded these limitations, but after          

some of the SFRSCC beams’ deflections exceeded the maximum allowable deflection. The un-

cracked concrete beam is still well within the limits of deflection, whereas the cracked concrete 

beams are on the border or surpasses the limit. One might argue that the first cracked beam was still 

within limits, but if the span of the beam is taken into account this argument might become invalid. 

This is however a theory and further testing is needed to confirm the speculation. It has to be 

stressed that the deflections obtained from the analyses are only a presentation of the deflections 

expected and in no way presents the real creep deflections of concrete beams, which can only be 

obtained through further experiments and further analyses. The deflections of the analyses 

performed gives insight into the behaviour of cracked SFRSCC beams, which could be useful when 

further experiments are performed and the creep deflection behaviour is further investigated. 

From the results in this section it was found that the fibre pull-out is a significant problem after the 

concrete has cracked, not necessarily in the Ultimate Limit State (ULS) but definitely when 

considering the SLS. These results have to be taken into account when designing steel fibre 

reinforced beams. 
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Chapter 7 

7. Conclusions and Future Prospects 

7.1 Conclusions 

From the experiments and the analyses that were performed a number of conclusions could be 

made. The conclusions will be presented into two parts. The first part of the conclusions will focus 

on the experiments and the second part of the conclusions will focus on the analyses performed. 

Experimental Conclusions: 

The experiments performed on the different types of experiments yielded insight into the shrinkage 

and tensile creep behaviour of SFRSCC. From these insights the following conclusions could be made: 

1. It was found that the addition of steel fibres greatly influenced the shrinkage of concrete. 

From the results it were seen that the shrinkage strains of SFRSCC at         was 

significantly smaller than the shrinkage strains of SCC at        , by as much as     . From 

this result it can therefore be concluded that steel fibres decreases the shrinkage effect in 

concrete. 

2. Another effect found through the addition of steel fibres is that steel fibres affected the 

phenomenological effects of tensile creep in concrete. It was found that the tensile creep 

strains at         of SFRSCC is almost five times less than the tensile creep strains at 

        of SCC, which means that steel fibres decreased the tensile creep effect in 

concrete. 

3. The pre-cracked specimens produced large tensile deformations when they were tested. 

Their deformations completely overshadowed the deformations of the un-cracked SFRSCC 

specimens, the latter of which was insignificant. This leads to the conclusion that the fibre 

pull-out mechanism is the major contributing factor to the tensile deformations and that the 

tensile creep contributes insignificantly. 
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Analyses Conclusions: 

The analyses performed on the beam models provided a better understanding of the time-

dependent behaviour of SFRSCC beams in flexure. The negative effects of fibre pull-out could not be 

clearly comprehended from the experiments performed. After curve fitting was done by Maxwell 

chains on the curves acquired from the experimental results of the SFRSCC members the effects of 

fibre pull-out were more prominent. The following conclusions could be made from the different 

analyses performed: 

1. The flexural creep of SFRSCC beams will have increased the deflections by more than double 

over the course of 30 years, but the deflections still conformed to the requirements of the 

SLS. 

2. After the SFRSCC beams have cracked the fibre pull-out had a significant effect on the 

deflections of the flexural members over the course of 30 years. The deflections caused by 

the effects of fibre pull-out surpassed the SLS requirements.  

3. From the results it is not advisable to use SFRSCC members in practice because once 

cracking occurred and a loading percentage of approximately      is applied, the members 

will have large deflections and will not meet the SLS requirements. 

It has to be taken into account that all these conclusions were based on SFRSCC that was designed to 

exhibit strain-softening behaviour. Further experiments have to be performed on SFRSCC that has 

been designed for strain hardening in order to see whether the fibre pull-out would be as 

detrimental as with strain softening. 

7.2 Future Prospects 

As mentioned in the previous section, it is necessary to perform the same types of experiments as 

this study on SFRSCC specimens that have been designed to exhibit strain-hardening behaviour in 

order to see whether the same outcome will be reached as with SFRSCC that have been designed to 

exhibit strain-softening behaviour. It would also be advantageous to perform flexural creep 

experiments in order to investigate the tensile creep behaviour of SFRSCC more thoroughly.  

Seeing that the tensile creep experiments in this research paper were the first performed of their 

kind, some notes will be given to improve upon the manufacturing and experimental procedures: 

 As mentioned before, the shrinkage data exhibited strange behaviour and it was speculated 

that this might be because of the interfacial bond between the Perspex blocks and the 
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concrete. It is advised to find a more effective way of attaching the LVDTs to the concrete 

specimens in order to eliminate problems with interfacial bond strength. 

 Ensure that there are additional specimens available for when failure occurs. These 

specimens can be kept in the water baths for the first month after testing started to ensure 

that they can replace any of the specimens that fail. 

 If possible it would be advantageous to be able to test more specimens of each respective 

batch in order to be more statistically correct. 

 In order to ensure that the steel hooks are more identical, a more effective, streamlined 

manufacturing process needs to be developed.  
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Appendix A 

A. Specimen Design 

In order to test the tensile creep of concrete the specimens had to be adapted in order to be tested 

in tension. In this case it was efficient to choose concrete prisms with steel hooks cast in at both 

ends. The design was inspired by the tests performed by Swaddiwudhipong et al., (2003). 

There are several advantages to this type of design: 

 There will be no risk of debonding between the loading connection and the concrete 

specimen. 

 The hooks can be designed in a simple way. 

 The hooks can be customized in any manner to take geometry and applied forces into 

account. 

The most prominent disadvantages were: 

 The manufacturing of the hooks is labour intensive and accuracy to manufacture the hooks 

to be doubly symmetrical is difficult to achieve. 

 It is difficult to cast the hooks into the concrete in such a precise manner so that the hooks 

are purely centralised and do not sway either horizontally or vertically. 

 If the two points above are not taken into account, internal moments will exist within the 

concrete specimens, making a state of pure tension impossible. 

Even though the disadvantages listed are prominent, the method of casting the hooks would still be 

efficient enough to provide valuable data when these concrete specimens are tested in tension. The 

concrete specimens with the steel hooks cast incorporated is presented in Figure 72. 
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Figure 72 Typical tensile concrete specimen. 

It can be seen that the concrete prism itself would be        long with the steel hooks cast in at 

the ends. These hooks would have       reinforcing steel bars at the ends that were bent into 

loops that would be able to connect to frictionless connections linking these specimens to the rest of 

the rig. A hook would mainly consist of a single Y16 steel reinforcing bar,        long, with four 

     steel reinforcing bars,        long, bent and arranged radially, welded to it. These welds 

should be able to withstand all the internal forces generated during the experimental procedures. It 

can be seen in Table 7.6 from the South African Steel Construction Handbook (SASCH, 2008) that the 

shear resistance of      fillet welds was             with the direction of the force being in the 

same direction as the axis of the weld. With that taken into account it can be seen that for a       

weld the weld resistance would be: 

            ⁄                 

The shear resistance of the welds between the       and       steel reinforcing bars is as 

follows: 
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The shear resistance of the welds between the      steel reinforcing hooks and the       steel 

reinforcing bars is as follows: 

                      

The detailed design of the welded steel hooks is presented in Figure 73: 

 

Figure 73 Detailed design of steel hook 

Upon inspection it can be seen that the bent       steel reinforcing bars were manufactured in 

such a manner as to incorporate       galvanized bolts that would act as connections between the 

specimens and the rig. The lengths of the reinforcing bars were sufficient enough to ensure that 

debonding did not take place. With the weld resistances known it was possible to design the testing 

frames through which the tensile creep tests would be performed. From the calculations above the 

maximum forces the hooks would be able to withstand is        .  
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Appendix B 

B. Frame Design 

In order to perform tensile creep tests on concrete specimens it was necessary to determine which 

factors would be the most critical, so as to produce the purest experimental results. The main 

function of the testing apparatus should be to test concrete prisms in pure tension without causing 

any internal bending moments. The design of the testing apparatus had to be simple, effective and 

able to withstand all the forces and stresses it will be subjected to during the experimental 

procedure. In the next sub-sections the design procedure will be explained and discussed in full 

detail in order to ensure the safety and functionality of this design. 

B.1 Determining the Tensile Capacity 

Seeing that the frames are used to test the tensile creep of concrete prisms it can be assumed that 

the maximum force exerted on the frames is the force that is needed to test the specimens. Various 

different expressions from the South African National Standard (SANS 10162-1:2005 Edition 2) will 

be used during the design process. 

The average maximum tensile capacity          of the concrete specimens were assumed to be 

     . In order to test the tensile creep of the specimens a certain stress had to be applied. This 

stress should be less than the maximum tensile capacity; otherwise the specimens would fail shortly 

after being subjected to the tensile stresses. By assuming that the applied stress was     of 

         one can be assured that failure of the specimens would not likely occur. 

Therefore the applied stress 

                           

 The prisms had the dimensions                 in     with a cross sectional area of 

          in    . 
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Figure 74 Cross-section of tensile concrete specimen. 

To find the applied force one can use the formula for determining normal stress. 

                 ⁄    (9.1) 

Be rearranging Equation 9.1:       

                     (9.2) 

Therefore from Equation 9.2: 

                                      

In terms of mass 

              ⁄              

It was also necessary to determine the own weight of the concrete specimens. As mentioned above, 

the volume of the concrete specimens are 

                                       

By assuming a concrete density of          ⁄  the weights calculated were: 

                              ⁄  

                                              ⁄  
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Looking at Figure 75: 

 

Figure 75 Graphical presentation of tensile concrete specimens with forces applied. 

                                               with         
 

  
  

In terms of mass 

                              

When looking at the magnitude of forces needed to be generated in Figure 75 the next step would 

be to determine how these forces would be generated. The most effective way of generating large 

forces is to make use of levers and ratios. It was decided that the test setup would consist of a large 

vertical frame with two beams acting as levers with ratios of     . With weights applied to the ends 

of these beams it would be possible to generate forces of great magnitude. The reasons why weights 

were used instead of hydraulic cylinders were that weights were simpler and it would be more cost 

effective. It also eliminated the possibility of failure, should one of the hydraulic cylinders fail. 

The frame chosen was made out of structural steel and was designed in such a manner so that it 

could test two specimens at a time. The next section will give a graphical representation of the steel 

frames. 
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B.2 Frame Setup 

 

Figure 76 Graphical presentation of a typical steel frame 

B.3 Determining the Applied Force 

Figure 77 represents the Free Body Diagram (FBD) of the pivot beams to illustrate the ratios. 

 

Figure 77 FBD of pivot beam 
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                                    ⁄  

Determine the unknown parameters through equilibrium: 

      : 

                                   (9.3) 

      : 

                       

       
          

   
 

 

  
     

    

  
                           (9.4) 

Substituting Equation 9.4 into Equation 9.3: 

                                           

B.4 Determining Mmax 

It was necessary to choose a section for the material of the beams to determine whether the section 

had the capacity to withstand the generated bending moments in the beams. The chosen section 

was a 100 x 100 x 6 Square Hollow Section which had the following properties: 

          ⁄                                

                                          

                                         

                                        ⁄⁄  

With all the weights and forces taken into account the beam will look as in Figure 78.

 

Figure 78 Pivot beam with forces applied. 

Figure 78 could be modelled as Figure 79. 
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Figure 79 Modelled pivot beam with forces applied. 

This would lead to Figure 80. 

 

Figure 80 Pivot beam with forces applied and reaction forces included. 

Solving the unknown parameters through equilibrium: 

      : 

                                  ⁄                    ⁄  

                                  ⁄                  ⁄  

                              

             

      : 

                             

                                                 

Determine the maximum bending moment      in the beam: 
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Figure 81 Pivot beam with all forces known. 

Through equilibrium and basic algebraic methods it was possible to obtain expressions that would 

describe the situations of shear forces      and bending moments      in the beam. The following 

equations would be in shorthand to ease the reading of the calculations. For example:     

  ⁄      (  ⁄ )        

1.         : 

 

Figure 82 Section 0 < x < 0.03 of pivot beam. 

      : 

                 

              , which would give the following: 

 

          

                    

     : 

             (  ⁄ )    

               , which would give the following: 
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2.         : 

 

Figure 83 Section 0 < x < 0.15 of pivot beam. 

      : 

                        

                     

 

                   

                   

     : 

 

                            (  ⁄ )    

                                                    

                        

                   

3.         : 

 

Figure 84 Section 0 < x < 1.35 of pivot beam. 

      : 
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     : 

 

             (  ⁄ )                                  

                                             

                                               

                              

 

                       

                    

4.         : 

 

Figure 85 Section 0 < x < 1.35 of pivot beam. 

      : 

 

                                     

                    

 

                  

                   

     : 

 

                                                         (  ⁄ )    

                                                              ⁄   

                                                              

                              

 

                    

                      

From the above calculations the following was procured: 
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The maximum normal force that would be exerted on the columns was: 

               

To ensure that the calculations done above were correct, a FEA was made with a FEM program 

called Prokon. The beam was modelled the following way: 

1. Elements 

 

Figure 86 Elements used in Prokon analysis of the pivot beam. 

2. Supports 

 

Figure 87 Supports and point-load 

 

Figure 88 Supports and point load modelled on the pivot beam. (Prokon) 

 

Figure 89 Supports and distributed load modelled on the pivot beam. (Prokon) 

The model was analysed and the maximum shear forces and bending moments calculated were 

confirmed by the FEA as can be seen in Figure 90. 
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Figure 90 Maximum bending moments acting on pivot beam. (Prokon) 

Figure 90 confirms that  

                        

 

Figure 91 Maximum shear forces acting on pivot beam. (Prokon) 

Figure 91 confirms that  

                        

The Prokon analysis showed that the calculations were done correctly and that all assumptions 

made during the design were valid. 
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B.5 Detail A – Pivot Beam 

It was firstly necessary to find the classification of the hollow steel section in order to calculate 

whether the chosen steel section would be sufficient for the design. In order to find the classification 

of this section it is necessary to determine the width-to-thickness ratio or     ratio, with   being the 

effective width and   being the effective thickness.  (SANS 10162-1:2005 11.3.2 b)) 

The effective width     will be the nominal outside dimension less four times the wall thickness: 

               (9.5) 

Thus 

 
 ⁄  

        

 
 

        

 
        

To calculate the capacity of the section of with regard to the bending moments it was necessary to 

classify the web and the flange of the section. Because of symmetry: 

Web: 

  
  
⁄   

 ⁄         
    

√  
 

    

√   
                (SANS 10162-1:2005 Table 4) 

Flange: 

 
 ⁄         

   

√  
 

   

√   
                 (SANS 10162-1:2005 Table 4) 

The factored moment resistance      was calculated by: 

                 (SANS 10162-1:2005 13.5 a)) 

With             (SANS 10162-1:2005 13.1 a)) 

This would give 

                                                  ⁄  

                              

The next step would be to calculate the shear capacity of the section. The factored shear resistance 

     developed by the web of a flexural member is taken as 

                (SANS 10162-1:2005 14.1) 

Stellenbosch University http://scholar.sun.ac.za



130 
 

Where 

   is taken as the shear area, in this case        

          when 
  

  
⁄     √

  

  
 where         

Now 
  

  
  

 ⁄            √
    

   
        which gives           

Therefore 

                                                  

                         

B.6 Detail B – Compression Column 

By using the same type of square hollow section (100 x 100 x 6 mm) that was used for the pivot 

beams the design would remain simple. It was necessary to see whether the structural section would 

be capable of resisting the compressive forces generated by the weights. 

In order to determine the compressive capacity it was necessary to find the width-to-thickness    ⁄   

ratio of the section. From earlier calculations 

 
 ⁄         

   

√  
 

   

√   
                  (SANS 10162-1:2005 Table 3) 

The factored axial compressive resistance      of doubly symmetric sections is calculated by 

              
  

 ⁄      (SANS 10162-1:2005 13.3.1) 

Where        

                    
  

 
√

  

   
 

The effective length of the column is given by   . In this case the conservative approach would be to 

assume that the bottom-end of the column was fixed and the top-end of the column was free. This 

would make the K-value 2.0, which would make 

  
        

    
√
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Therefore 

              
  

 ⁄                  (              )
  

    ⁄
            

                                  

B.7 Detail C – Frictionless Pinned Connection 

Modelling one of the pivot beams and the forces working on it will look as follow: 

 

Figure 92 Graphical presentation of one of the pivot beams. 

Section A-A is presented by Figure 93. 

 

Figure 93 Section A-A clearly shows the steel bar passing through the needle roller bearing. 

                           

This force was transferred through the webs of the steel square hollow section, which divided the 

force into two as can be seen in Figure 94. 
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Figure 94 The relationship between Fmax and Fapp. 

From Figure 94 it can be seen that      
    

 ⁄ . That gives             
 ⁄             

The bright mild steel round bar was supplied by MACSTEEL, which is a well-known steel supplier in 

South Africa. For the purpose of this design a certain diameter had to be chosen, in this case 20 mm. 

Then it was necessary to calculate whether the round bar had the capacity to resist the forces it 

would be subjected to. The following properties are available from MACSTEEL: 

MACSTEEL Classification: EN3A/B – COLD DRAWN (070.M.20/C.1018) 

           

           

              

The pinned connection could be considered as a bearing type connection seeing that the bending of 

the bar was negligible and the shear capacity was of the most interest. It could therefore be 

considered as a bar in shear. The factored shear resistance of bolts may calculated by: 

                    with          (SANS 10162-1:2005 13.12.1.2.b)) 

Seeing that the 20 mm bar served as a pinned connection, the total factored shear resistance of the 

nominal area of pins could also be calculated by 

                  (SANS 10162-1:2005 13.4.3) 

Upon inspection it can be seen that the two methods of calculating the shear resistance differed 

substantially: 
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To be conservative, the lesser of the two shear resistance values calculated by abovementioned 

expressions would be taken as the design value 

                                                       

                                               

From the calculations above it can be seen that the design value for shear resistance is 

                                 

The needle roller bearing considered for the frictionless pinned connection is an IKO Needle Roller 

Bearing with specifications           . The inside diameter is 20 mm, the width is 20 mm and the 

outside diameter is 28 mm. The bearing had a capacity      of 25.4 kN. The unfactored load (
  

 ⁄ ) 

exerted on the bearing is 16.3155 kN and the factored load        exerted on the bearing is 26.1048 

kN. To put everything into perspective 

           
  

 ⁄                 

However 

                                   

It can be seen that the capacity of the bearing was capable of handling the un-factored load. The 

factored load was marginally bigger that the bearing capacity, which would be a problem if the 

design approach were not conservative. However, with the design being overly conservative up to 

this point, the bearing’s inability to deal with the factored load only presented a minor problem. This 

problem would not affect the efficiency of the design. 

B.9 Detail D – Parallel Flat Bar Columns 

The parallel flat bar columns is be modelled as Figure 95. 
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Figure 95 Graphical presentation of the parallel flat bar columns. 

Section B – B is presented by Figure 96. 
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Figure 96 Section B-B presenting the pivot beam fitting through parallel flat bar columns. 

It was necessary to see what effect the shear force exerted combined with the 34 mm hole had on 

the web of the square hollow section. The bearing capacity of the web can be calculated by: 

                                                 

                                    (SANS 10162-1:2005 13.10.c)) 

It was also necessary to calculate the bearing resistance of the 10 mm flat bar: 

                                               

                                 

From the calculations above it can be seen that the frictionless pinned connection has the capacity 

to withstand the forces applied. 
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B.10 Detail E – Stopper and Top Connecting Beam 

B.10.1 Bending Capacity of Top Connecting Beam: 

 

 

Figure 97 Force acting on the top connecting beam. 

     is the force that would be exerted on the top beam by the stopper as can be seen in Figure 97. 

The stopper would act as a safety mechanism and a loading mechanism.      can be found the 

following way: 

 

Figure 98 Pivot beam modelled to find the forces acting on the top connecting beam. 
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Figure 98 can be modelled as Figure 99 

 

Figure 99 Pivot beam with reaction forces included. 

        

                          

                  

      : 

                  (
    

 
)                

                   

             

That gives 

                  

                        

               

                   

                                 

In order to find the maximum bending moment that will be generated in the top connecting beam 

by the stopper, the following model depicted by Figure 100 is applicable. 
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Figure 100  Model of top connecting beam. 

Figure 100 can be modelled as Figure 101. 

 

Figure 101 Model of top connecting beam with forces included. 

Analysed symmetrically 

 

Figure 102 Model of top connecting beam with forces included analysed symmetrically. 

        

    
    

 ⁄    

     
    

 ⁄            
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      : 

                    

             

               

                                 

                           

B.10.2 Axial Capacity of Stopper 

The stopper consisted of a round disc fixed to a threaded rod. The round disc would have a radius of 

      and is       thick. The most crucial aspect of the stopper was the axial capacity of the 

threaded rod, which was chosen as a galvanized       threaded rod. 

Figure 103 depicts the relationship between the threaded rod and the top connecting beam. 

 

Figure 103 Graphical presentation of the relationship between the top connecting beam and the stopper. 

The axial capacity      of the       threaded rod can be found in Table 7 of the SASCH. 
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The circular disc was fitted to the threaded rod through a welded       hex nut, which was welded 

to the circular disc and fitted to the       threaded rod. The top and bottom hex nuts were there 

to adjust the setup and to load the specimens. 

B.11 Detail F – Bottom Connecting Beam  

The bottom connecting beam is depicted by Figure 104. 

 

Figure 104 Graphical presentation of the bottom connecting beam. 

The Figure 104 can be modelled as Figure 105 
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Figure 105 Model of bottom connecting beam. 

Which can be simplified to: 

 

Figure 106 Model of bottom connecting beam with forces included. 

Analyzed symmetrically 

 

Figure 107 Model of bottom connecting beam with forces included analysed symmetrically. 

        

    
    

 ⁄    
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 ⁄            

Here,              . 

      : 

                   

             

                                                   

                            

                                        

B.12 Detail G – Base Plate 

The floor of the climate-controlled room had a grid of             holes of       diameter to 

which the base plate could be bolted. This led to the geometry of the base plate and the 

experimental setup. The experimental setup is presented by Figure 108. 
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Figure 108 Plan view of the steel frames used in the experimental setup. 

From Figure 108 it can be seen that there would be eight frames. These frames would be grouped 

into four pairs. The circles in Figure 108 represent the       holes in the floor to which the frames 

were bolted. The vertical lines represent the frames as seen in plan. The groups are explained below: 

Frames A and B: Creep of SCC un-notched 

Frames C and D: Creep of SFRSCC un-notched 

Frames E and F:  Creep of SFRSCC notched un-cracked 

Frames G and H: Creep of SFRSCC notched pre-cracked 

With the frames spaced 600 mm apart the width of the base plates will be affected. This leads to the 

following geometrical design of the base plate as seen with Figure 109. 
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Figure 109 Geometrical design of the base plate. 

It is necessary to determine the base plate thickness so that the base plate has the capacity to 

handle the bending moments. To create the worst case scenario it was assumed that the frames will 

be loaded on side at a time. This would lead to a lever arm and generate the highest internal 

bending moments. The scenario can be modelled by Figure 110. 

 

Figure 110 Worst case loading scenario 

Taking the reaction forces into account: 
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Figure 111 Worst case loading scenario with reaction forces included.  

Determining the reaction forces: 

        

               

              

      : 

                     

               

Which gives 
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Looking at the factored forces exerted on the base plate. 

                        

                        

These forces are relevant in the following way: 

 

Figure 112 Forces acting on the base plate. 

Their combined effect can be simulated by Figure 113. 

 

Figure 113 Combined effect of the forces acting on the base plate. 
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   and    will be substituting    and   , which will be needed to design the base plate. Calculating 

   through equilibrium: 

        

            

                                     

In this case    and    causes a coupled moment,     

                                       

For the design of the base plate, the abovementioned parameters will be used in the following way: 

 

Figure 114 Model of base prepared for design process. 

Here          and           with        and    to be calculated. Assuming that the 

compressive strength of the concrete floor              That would make 

                             

Using equilibrium to solve the parameters: 

      : 

         (   
  

 ⁄ )    
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                (   
  

 
⁄ )    

                            
  

                                                      
  

                                        
  

        
                

The only unknown now is   . Calculating   : 

   
        √                        

       
 

   
      √         

    
 

   
            

    
           

Or 

   
            

    
        

That leaves              , which is bigger than        (the base plate’s length) or    

       , which is more realistic. With    known it is possible to calculate     

                                                 

The only unknown left is    , which can be calculated though equilibrium. 

        

            

                              

The tensile force    will be the force handled by the M20 bolts bolted to the floor. 

                             

Now we have to determine the thickness required for the base plate. The geometry of the base plate 

can be seen in Figure 115. 
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Figure 115 Geometry of base plate viewed from the side 

From earlier calculations the forces exerted on the base plate has been found. To find out how thick 

the base plate should be, the maximum internal bending moment must be calculated. By examining 

the edge of the base plate it can be seen how the internal bending moment is generated. Looking at 

one of the columns attached to the base plate presented by Figure 116. 

 

Figure 116 Section of base plate presenting the forces acting on the edge. 

Which leads to Figure 117. 
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Figure 117 Simplified forces acting on the edge of the base plate. 

                                             

Now it is possible to find the thickness of the base plate by using the following method: 

 

Figure 118 Base plate viewed from the longitudinal side. 

The following properties              can be found from the effective cross section. The effective 

cross section was found from Figure 119. 
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Figure 119 Effective cross-section of the base plate. 

Where          and   is to be found. 

    
   

 ⁄       

 ⁄         

      

 ⁄       

 ⁄           

These properties can be used with the bending moment resistance equations to find the thickness    

Class 1:               (SANS 10162-1:2005 13.5 a)) 

And 

Class 3:              (SANS 10162-1:2005 13.5 b)) 

Where                        

Calculating    

Class 1:                            

             

Class 3:                              

             

Choose the base plate thickness as 20 mm and take care not to load frames one side at a time. 

The next step is to find out whether the weld connecting the column to the base plate is sufficient 

enough to handle the forces and stresses generated by the applied weights. To be conservative 

     welds will be used in the design. The resistance of welds depends on the weld length. The 

weld length around                 square hollow section columns is: 
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The force that the weld has to resist can be seen in Figure 120. 

 

Figure 120 Longitudinal side view of the welds of the base plate. 

Looking Figure 121, which represents Section A-A from Figure 120. 

 

Figure 121 Plan view of the base plate welds 
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The tensile resistance of the weld can be calculated by using the following method: 

                                   (SANS 10162-1:2005 13.13.3.2) 

Or 

                                   (SANS 10162-1:2005 13.13.3.3) 

In both cases       , meaning welds were sufficient enough to handle the tensile forces generated 

in the frame. 

The next step was to determine whether the welds were sufficient in resisting the bending moment 

between the column and the base plate. After a Prokon analysis was done on the frame, it could be 

seen that the maximum bending moment generated between one of the columns and the base plate 

was                . This moment was generated when the frames were loaded one side at a 

time, which would be the worst case scenario. The loading can be modelled by Figure 122. 

 

Figure 122 Side view of the forces resisted by the base plate welds. 
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According to Table 6.7 from the South African Steel Construction Handbook a      fillet weld can 

resist          ⁄  if the direction of the force applied      and with the weld length being 

       the force resistance of the weld       can be calculated as follows: 

                     

This would lead to the following moment resistance       of the weld: 

                               

                                 

In this case the welds are sufficient enough to withstand the bending moment created by the 

eccentric loading of the steel frames. 

B.13 Detail H – Frictionless Connection 

In order to connect the specimens to the top cable, to each other in series and to the bottom 

threaded rod a frictionless connection has to be designed. This connection should allow free 

rotational movement, meaning no internal moments should be generated. The most important 

reason for having no internal moments is so that the concrete specimens can be in the purest tensile 

state possible. These factors led to the following design: 

 

Figure 123 Graphical presentation of the frictionless connection. 
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From inspection of Figure 123 it can be seen that the only restriction the connection provides is in 

the longitudinal direction and that no internal moments will be generated during its use. The simple 

and practical design made the connection simple to manufacture and assemble. The       bolts 

would pass through the chain links and would provide the necessary resistance to act as a 

connection. The       round bar was pressed into a hole in the bottom plate to act as a spacer 

between the two plates. The only aspect that remained was to determine whether the connection 

would have the capacity to handle the forces exerted on it. This could be determined by looking at 

the most critical aspects: 

Section A: Bearing Capacity 

                                         (SANS 10162-1:2005 13.10 c)) 

Or 

                                                 

The bearing capacity is taken as the lesser of the two capacities as the design value. 

Section B: Tensile Capacity 

                                              

The critical section is the webs on either side of the         hole. 

Section C: Bending Capacity of Bolts 

                             

The bending moment resistance can be determined the following way: 

             
 

 ⁄           
 

 ⁄                      (SANS 10162-1:2005 13.5 a)) 

                           

Section D: Axial Capacity of Round Bar 

  
  

 
√

  

   
 

      

   
√

   

          
                              √

 

 
 √

    

      
        

               
 
 ⁄                                                                                  
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    ⁄  

                   

The       hex nuts used to tighten the bolts were tightened by hand. From the calculations above 

it can be seen that the frictionless connection had the capacity to withstand the tensile forces 

generated by the steel frames and loading weights. 

B.14 Detail I – Weld Designs 

The welds for the base plate were already designed at the end of Chapter B.12. These welds mostly 

experienced normal forces and bending moments. The rest of the welds used in the frame mostly 

experienced shear forces. The shear capacity of      fillet welds with the direction of the forces 

being in the same direction of the welds is: 

                  ⁄  

Because of the robust and simplistic design of the frames, all the welds subjected to shear forces 

were        of length. This means: 

                      ⁄          

The maximum shear force generated in the frames can be found in the bottom connecting beam.  

                                 all      fillet welds are sufficient. 
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Appendix C 

C. Basic Kinematic Assumption 

This section will discuss the basic kinematic assumption of beams in flexure. In the simplified 

engineering theory of bending it is needed to establish a relation among the applied bending 

moment, the cross – sectional properties of a member and the internal stresses and deformations. 

Consider a horizontal prismatic beam, consisting of any elastic material, having a cross section with a 

vertical axis of symmetry as presented by Figure 124. 

 

Figure 124 Horizontal prismatic beam with cross–section included. 

The horizontal line though the centroid of the cross section will be referred to as the axis of the 

beam. A typical element of the beam is considered, being identified as     . The beam is subjected 

to equal end moments    acting around the z-axis as shown in Figure 125. 
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Figure 125 Prismatic beam in flexure. 

Figure 125 shows that the beam bends in the plane of symmetry and that the planes previously 

perpendicular to the beam axis are now tilted with the lines           remaining straight. It is also 

noted that           become             . 

In pure bending of a prismatic beam the beam axis deforms into a part of a circle with the radius 

represented by  . For an element defined by an infinitesimal angle   , the fibre length    of the 

beam axis is given as 

       

Which means 

  

  
 

 

 
   

In pure bending of prismatic beams both         are constant. The fibre length    can be found 

similarly with the radius being    . The difference between the fibre lengths          , identified 

as    can be expressed the following way: 

                    

By dividing the equation above by     and the last term becomes  . With the deflection and 

rotations being miniscule, the cosines of the angles involved in making the projections of    and    

onto the horizontal axis are nearly unity. That means it is possible to replace    by   , which is the 
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axial fibre deformation, and to replace           Therefore by dividing    with    it can be 

approximated as 

  

  
        

Using Hooke’s Law 

            

with   being able to assume both positive and negative values. There are two non-trivial equations 

of equilibrium available to solve the beam flexure problem. One of these equations determines the 

origin for   and the other one completes the solution for the flexure formula. Using the first one of 

these equations, requiring that in pure bending, the sum of all forces at a section in the x – direction 

must vanish, one has 

        

∫       

Which can be rewritten as 

∫          ∫      

By definition ∫      , where   is the distance from the origin to the centroid of an area  . Since 

the integral equals zero and    , that means that    . That means that the z – axis must pass 

through the centroid of a section. This means that the normal stresses and strains are zero along the 

z-axis. Based on this result, linear variation in strain is shown below in Figure 126 along with the 

corresponding stress distribution in accordance with Hooke’s Law. 
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Figure 126 Stress distribution of prismatic beam in flexure. 

Note that both the absolute maximum strain      and the absolute maximum stress      occur at 

the largest value of  . To complete the derivation of the flexure formula, the second relevant 

equation of equilibrium must be brought in: the sum of the externally applied and internal resisting 

moment should be equal to zero, in other words be in equilibrium. Looking at the beam segment in 

Figure 127: 

 

Figure 127 Stress distribution of prismatic beam in flexure with parameters defined. 

      : 

 

This gives 

     ∫          
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This means that 

    
  

  
  

This is a well-known expression is used throughout the academic circles in order to determine the 

normal stress acting on a section given an applied moment. Conversely it can also be used to 

determine the moment applied if the normal stresses are known. It is this principle that will be used 

to determine the moment capacity of SFRSCC beams in flexure. Throughout this research paper it 

has been mentioned many times that the SFRSCC mix has been designed for strain softening. Figure 

128 will give a clear presentation of the stress-strain behaviour of a SFRSCC beam in flexure that has 

been designed to exhibit strain-softening behaviour. 

 

Figure 128 Graphical presentation of strain softening depicted linearly. 

Figure 128 shows a typical case of tensile strain-softening behaviour that occurs in a SRFC beam in 

flexure. It is assumed that the material will fail in tension long before it will fail in compression, so in 

this case it can be assumed that the concrete is infinitely strong in compression. Upon inspection of 

the tensile stresses it can be seen that a maximum stress    has been reached and that the steel 

fibres have provided some resistance, represented by the downward slope, until zero is reached. 

From the beam theory it was seen that 
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And that 

        

By looking at the strain equation above it can be assumed that strain is a function of curvature, 

which means that the strains will increase as the curvature increases. By taking this into account and 

combining it with the strain softening behaviour presented above it is possible to distinguish three 

different zones as the beam experiences different stages of flexure: 

1.         

2.          

3.       

In the expressions above    represents the tensile strain that is dependent on the curvature   , 

which increases. The first zone is in the elastic zone before failure takes place and the curvature 

hasn’t caused the material to fail yet. As the curvature increases failure takes place at strain    and 

the resisting tensile stress is at its highest, meaning it becomes the ultimate tensile strength   . The 

second zone is when initial failure already occurred and the resisting stresses decrease until it 

reaches zero at strain   . The third zone is when the curvature has increased to such an extent that 

the beam starts to fail. 

The next step is to determine the moment resistances provided by the resisting stresses in the beam 

through different stages of flexure.  

C.1 Zone 1: 

        

 

Figure 129 Strain - stress distribution in a section of a beam in flexure exhibiting purely elastic behaviour. 
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Note that the geometry depicting the stresses were numbered as 1 and 2. 

           
 

 
  

     

 
 

With   
 

 
 

  
   
 

 

Using Hooke’s Law: 

       

        (
  
 
)       

           

By using equilibrium it is possible to determine the moment resistance of the section in the same 

method as Section 2 – Beam Section Theory. Determining the forces and acting moments: 
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Through equilibrium: 

        

       
     

 
 
     

 
   

     : 
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C.2 Zone 2: 

         

Following the same process as Zone 1. 

 

Figure 130 Strain - stress distribution in a section of a beam in flexure before initial failure. 

It can be seen that: 

   
   
 

                               

       

      

The initial kappa    is the part in flexure where the elastic behaviour changes because of the initial 

failure of the beam. The position of the Neutral Axis will now change in order to retain equilibrium in 

the beam. 

It is known that 

    
 

 
 

It can therefore be derived 
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The end kappa    is the part in flexure just before the steel fibres offer no resistance. That means 

that it is the end of the zone where the strains range between    and   . 

                      (
  

   
)   

    
   

 

By using equilibrium it is possible to determine the moment resistance of the section in the same 

method as Section 2 – Beam Section Theory. Determining the forces and acting moments: 
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(  

  
  
) (

             

   
)  

         (  
  
  
)         

   
 

Through equilibrium: 

        

           

 
      

      
 
          

   
 
   

 
(      

       

  
)    

After simplification: 

           
          

  

Solving for c: 

  
        √       

               
  

         
 

After simplification 

  
     √    

    
         

 

Or 

  
     √    

    
         

 

     : 

                                               

   
      

      
 
    

        

   
 

 
         (  

  
  
)         

   
                         

Looking at the points of flexure between    and   : 
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Figure 131 Strain - stress distribution in a section of a beam in flexure after initial failure. 

 

     
  
  

 
  

    
      

        

  
 

               

By using equilibrium it is possible to determine the moment resistance of the section in the same 

method as Section 2 – Beam Section Theory. Determining the forces and acting moments: 
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)    

Through equilibrium: 

        

              

And 

     : 

                                                  

The expressions above can all be rewritten so that they become dependent on   . The solution of    

can be found through the data solving function of Microsoft Excel. From this solution the moment 

resistance can be determined for the    obtained. 
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C.3 Zone 3: 

      

 

Figure 132 Strain - stress distribution in a section of a beam in flexure after total failure occurred. 

In this case the flexure   has extended beyond   , which means that      . 

               

     
  
  

 
  
  

 

From Figure 132: 

  
 

 
  
  

      
   

  
                

    
   

     
  

  
   

 
  
   

          

By using equilibrium it is possible to determine the moment resistance of the section in the same 

method as Section 2 – Beam Section Theory. Determining the forces and acting moments: 
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Through equilibrium: 

        

           

And 

     : 

                                               

The expressions above can all be rewritten so that they become dependent on   . The solution of    

can be found through the data solving function of Microsoft Excel. From this solution the moment 

resistance can be determined for the    obtained. 

From the calculations made in this sections it can be seen that the moment resistance depends on 

the flexure of the beam. Even though the whole process was quite laborious, it was shown that it is 

possible to determine the moment resistance of a SFRC beam designed for strain – softening. This 

makes it possible to design for pure SFRC members in flexure if desired. The only step that is left is to 

determine the parameters                , which can be acquired from experimental testing. 
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