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Abstract 

Maize kernels consists of two types of endosperm, a harder vitreous endosperm and a softer floury 

endosperm, and the ratio of the vitreous and floury endosperm present mainly determines the 

hardness of the kernel.  Maize (Zea mays L.) is a staple food in many countries, including South 

Africa, and is industrially processed into maize meal using dry-milling. For optimal yield and higher 

quality products, hard kernels are favoured by the milling industry. Despite many maize hardness 

methods available, a standardised method is still lacking, furthermore, no dedicated maize milling 

quality method exists. 

Using an industrial guideline (chop percentage), a sample set of different maize hybrids was 

ranked based on milling performance.  Unsupervised inspection (using principal component 

analysis (PCA) and Spearman’s rank correlation coefficients) identified seven conventional 

methods (hectoliter mass (HLM), hundred kernel mass (HKM), protein content, particle size index 

(PSI c/f), percentage vitreous endosperm (%VE) as determined using near infrared (NIR) 

hyperspectral imaging (HSI) and NIR absorbance at 2230 nm (NIR @ 2230 nm)) as being 

important descriptors of maize milling quality. Additionally, Rapid Visco Analyser (RVA) viscograms 

were used for building prediction models, using locally weighted partial least squares (LW-PLS).  

Hardness properties were predicted in the same order or better than the laboratory error of the 

reference method, irrespective of RVA profile being used.   

Classification of hard and soft maize hybrids was achieved, based on density measurements 

as determined using an X-ray micro-computed tomography (µCT) density calibration constructed 

from polymers with known densities. Receiver operating classification (ROC) curve threshold 

values of 1.48 g.cm-3, 1.67 g.cm-3 and 1.30 g.cm-3 were determined for the entire kernel (EKD), 

vitreous (VED) and floury endosperm densities (FED), respectively at a maximum of 100% 

sensitivity and specificity.  

Classification based on milling quality of maize hybrids, using X-ray µCT derived density and 

volume measurements obtained from low resolution (80 µm) µCT scans, were achieved with good 

classification accuracies.  For EKD and vitreous-to-floury endosperm ratio (V:F) measurements, 

93% and 92% accurate classifications were respectively obtained, using ROC curve.  Furthermore, 

it was established that milling quality could not be described without the inclusion of density 

measurements (using PCA and Spearman’s rank correlation coefficients).  

X-ray µCT derived density measurements (EKD) were used as reference values to build NIR 

spectroscopy prediction models. NIR spectra were acquired using a miniature NIR 

spectrophotometer, i.e. a microNIR with a wavelength range of 908 – 1680 nm. Prediction statistics 

for EKD for the larger sample set (where each kernel was scanned both germ-up and germ-down) 

was: R2
V = 0.60, RMSEP = 0.03 g.cm-3, RPD = 1.67 and for the smaller sample set (where each 

kernel was scanned only germ-down): R2
V = 0.32, RMSEP = 0.03 g.cm-3, RPD = 1.67. The results 
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from the larger sample set indicated that reasonable predictions can be made at the fast NIR scan 

rate that would be suitable for breeders as a rough screening method.  
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Uittreksel 

Mieliepitte bestaan uit twee tipes endosperm, ‘n harder glasagtige endosperm en ‘n sagter 

melerige endosperm, en die verhouding waarin die twee tipes endosperm aangetref word, bepaal 

hoofsaaklik die hardheid van die pit.  Mielies (Zea mays L.) is ‘n stapelvoedsel in baie lande, 

insluitende Suid-Afrika, en word industrieël geprosesseer na mieliemeel deur van droë-vermaling 

gebruik te maak. Vir optimale produksie en beter kwaliteit produkte, word harde pitte deur die 

meule verkies. Ongeag die beskikbaarheid van verskeie mielie hardheid metodes, ontbreek ‘n 

gestandardiseerde metode nog, en verder bestaan ‘n metode om mielies se maalprestasie te 

bepaal ook nie. 

‘n Monsterstel, bestaande uit verskillende mieliebasters, is op grond van maalprestasie 

ingedeel deur van ‘n industriële riglyn (chop persentasie) gebruik te maak. Inspeksie sonder toesig 

(deur gebruik te maak van hoofkomponentanalise (HKA) en Spearman’s 

rangkorrelasiekoëffisiënte) het sewe onkonvensionele metodes (hektoliter massa, honderd pit 

massa, protein inhoud, partikel grootte indeks, persentasie glasagtige endosperm soos bepaal 

deur gebruik te maak van naby-infrarooi (NIR) hiperspektrale beelding en NIR absorbansie by 

2230 nm) identifiseer as belangrike beskrywers van maalprestasie.  Daarbenewens, is Rapid Visco 

Analyser (RVA) viskogramme gebruik om voorspellingsmodelle te bou deur gebruik te maak van 

plaaslik geweegte gedeeltelike kleinstekwadrate (PG-GKK) wat hardheidseienskappe kon voorspel 

met laer, of in dieselfde orde, laboratorium foute van die verwysingsmetodes, ongeag die gebruik 

van verskillende RVA profiele. 

Klassifikasie tussen harde en sagte mieliebasters was moontlik, gebasseer op 

digtheidsmetings soos bepaal met ‘n X-staal mikro-berekende tomografie (µBT) digtheids 

kalibrasie gebou vanaf polimere met bekende digthede.  Ontvanger bedryf kenmerkende (OBK) 

kurwe drempelwaardes van 1.48 g.cm-3, 1.67 g.cm-3 en 1.30 g.cm-3 is bepaal vir hele pit, glasagtige 

en melerige endosperm digthede, onderskeidelik, teen ‘n maksimum van 100% sensitiwiteit en 

spesifisiteit. 

  Klassifikasie van die mieliebasters, gebasseer op maalprestasie en deur gebruik te maak van 

X-straal µBT afgeleide digtheid en volume metings soos verkry teen lae resolusie (80 µm) 

skanderings, was moontlik met goeie klassifikasie akkuraatheid.  Vir heel pit digtheid en glasagtig-

tot-melerige endosperm verhouding metings is 93% en 92% akkurate klassifikasies verkry 

wanneer OBK kurwes gebruik is. Verder is dit vasgestel (deur gebruik te maak van HKA en 

Spearman’s rangkorrelasiekoëffisiënte) dat digtheidsmetings ingesluit moet word vir ‘n volledige 

beskrywing van maalprestasie. 

X-straal µBT afgeleide digtheid metings is gebruik as verwysings waardes om NIR 

spektroskopie voorspellings modelle te bou.  NIR spektra is verkry deur van ‘n miniatuur NIR 

spektrofotometer, naamlik ‘n microNIR, bebruik te maak vanaf 908 – 1680 nm.  Voorspellings 

statestiek vir die groter monsterstel (waar elke pit beide kiem-bo en kiem-onder geskandeer is) 
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was vir HPD: R2
V = 0.60, RMSEP = 0.03 g.cm-3, RPD = 1.67 en vir die kleiner monsterstel (waar 

elke pit was slegs kiem-onder geskandeer is) vir HPD: R2
V = 0.32, RMSEP = 0.03 g.cm-3, RPD = 

1.67.  Die resultate van die groter monsterstel het aangedui dat redelike voorspellings moontlik is, 

teen die vinnige NIR skaderings tempo wat as rowwe vertoningsmetode geskik sal wees vir telers. 
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Chapter 1 

Introduction 

Kernel hardness is the main physical parameter that determines the end-use of maize (Zea mays 

L.) (Gaytán-Martínez et al., 2006).  Eighty percent of a maize kernel consists of two types of 

endosperm, i.e. a harder vitreous endosperm, and a softer floury endosperm (Watson, 1987).  The 

ratio of the vitreous to floury endosperm present determines the hardness of the kernel (Robutti et 

al., 1974).  Hardness is mainly a genetic trait (Johnson & Russell, 1982), although environmental 

influences (Hamilton et al., 1951) and external factors such as postharvest handling (Peplinski et 

al., 1989) will also affect this property. Maize processors, i.e. the dry-milling industry, favour hard 

maize as hard kernels produce greater yield, as well as higher quality meals and grits, than soft 

maize (Lee et al., 2007).  

Numerous methods have been used for the last 60 years to determine maize hardness 

(Fox & Manley, 2009).  These methods include measuring resistance to grinding and abrasion (Lee 

et al., 2007); yield of grits (Wu, 1992); starch gelatinisation properties (Almeida-Dominguez et al., 

1997); as well as the determination of particle size index (PSI) (Pomeranz et al., 1984; Wu, 1992). 

The use of near infrared (NIR) spectroscopy has also been widely investigated (Pomeranz et al., 

1984; Robutti, 1995; Eyherabide et al., 1996).  Other methods include hand dissection, which 

determines the ratio of vitreous to floury endosperm, and machine vision technology for non-

destructive classification of maize kernels (Erasmus, 2003).  Quality properties such  as protein, 

starch, fat and fiber contents (Blandino et al., 2010) and protein (zein) composition (Dombrink-

Kurtzman & Bietz, 1993; Robutti et al., 1997) have also been used to characterise kernel hardness.  

Density measurements were performed by means of a floating test (Blandino et al., 2010; Blandino 

et al., 2012) or gas pycnometry (Siska & Hurburgh, 1995).  

Regardless of all the hardness methods that are available, no standardised method exists 

(Fox & Manley, 2009; Blandino et al., 2010). Although maize hardness and milling quality are 

correlated, the mechanism or relationship between these two properties is not clearly defined. 

Currently, the most appropriate method for testing maize milling quality seems to be the actual 

milling process, simulated on pilot plant scale. 

 The Rapid Visco Analyser (RVA) is a viscometric tool that has been shown to quantify maize 

hardness differences between maize hybrids (Yamin et al., 1999; Seetharaman et al., 2001; Ji et 

al., 2003; Sandhu & Singh, 2007). This is based on hard maize producing mainly coarse particles 

when being milled, whereas soft maize produces smaller particles (Almeida-Dominguez et al., 

1997), therefore resulting in different rates of hydration and gelatinisation.  For each of the 

measurements, viscosity (cP), temperature (°C), speed (rpm) and the heat-cool ratio are recorded. 

The resulting curve, a viscogram, can be subjected to multivariate data analysis techniques to 

simultaneously predict multiple measurements (Visser, 2011). 

Stellenbosch University  https://scholar.sun.ac.za



2 
 

NIR spectroscopy is one of a few non-destructive methods and is prominent among major 

analytical technologies, as it is a fast and low-cost method with broad application possibilities 

(McClure, 2004; Manley, 2014). NIR analysis has been successfully used for bulk maize 

characterisation for a number of measurements, i.e. oil, protein, starch and moisture contents 

(Osborne et al., 1993). As reviewed by Fox and Manley (2009), NIR spectroscopy has been used 

to predict bulk kernel hardness traits for more than 20 years.  However, the prediction of single-

kernel traits are not as widely studied due to the difficulty of collecting reliable and representative 

spectra from a heterogeneous sample.  Spectral changes are observed as a kernel’s orientation 

towards the spectrometer and optics changes (Janni et al., 2008; Fox & Manley, 2014).  Different 

approaches have been studied to overcome these limitations (Armstrong, 2006; Spielbauer et al., 

2009). 

In addition to NIR spectroscopy that only conveys average chemical (or physical) information of 

a sample, NIR hyperspectral imaging (HSI) facilitates the visualisation of the distribution of the 

chemical components in a sample (Manley, 2014).  Predictions of heterogeneous samples will thus 

benefit from this technology. Successful maize hardness predictions, using NIR HSI, were 

achieved recently (Manley et al., 2009; Williams et al., 2009; McGoverin & Manley, 2012).   

Micro-computed tomography (µCT) uses the differences in X-ray attenuation arising principally 

from differences in density and atomic composition within the material (Chawanji et al., 2012; Zhu 

et al., 2012; Cnudde & Boone, 2013).  For a particular material (at a specific energy) the X-ray 

attenuation is approximately proportional to the material’s density (Sinka et al., 2004). The main 

advantage of the X-ray µCT technique is the ability to perform non-destructive and non-invasive 

capturing of high resolution three dimensional (3-D) detail, as recently illustrated on maize kernels 

(Gustin et al., 2013). 

The aim of this study was to estimate maize hardness and maize milling quality and 

consequently characterise maize endosperm texture, using RVA, X-ray µCT and MicroNIR 

spectroscopy, combined with statistical and multivariate data analysis.  Specific objectives were to: 

 determine the usefulness of RVA viscograms as milling quality descriptors; 

 construct an X-ray μCT density calibration to non-destructively estimate kernel hardness 

from calculated density, percentage porosity and percentage cavity measurements of the 

entire maize kernel as well as that of selected ROIs (vitreous and floury endosperm); 

 perform milling quality classification of maize kernels, based on X-ray µCT derived densities 

and volumes (entire kernel, vitreous and floury endosperm); and 

 investigate the possibility of predicting whole kernel density, fast and non-destructively, 

using single-kernel MicroNIR reflectance spectroscopy. 
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Chapter 2 

 Literature Review 

Introduction 

Kernel hardness is an important quality feature of maize (Zea mays L.) and has been thoroughly 

studied in the pursuit of understanding this characteristic better. An attempt of providing a snap 

shot of the existing body of knowledge on the topic of maize hardness is presented in the literature 

review chapter in a format where factors that influence maize hardness are discussed, followed by 

the factors that are affected by maize hardness. The proportion in which the different endosperm 

types are present in maize, as well as environmental and postharvest influences, are seen as the 

factors that determine maize hardness. On the other hand, maize hardness affects storage and 

handling, as well as the milling process. A comparison of the different hardness methods are given, 

with discussion based on the different approaches, i.e. resistance to breakage, chemical analysis, 

physical analysis, indirect tests, less common methods, direct and time consuming methods, as 

well as micro-milling and a multivariate approach.  X-ray micro-computed tomography is discussed 

as a relatively new analytical tool in cereal science.  Lastly, statistical methods, both univariate and 

more advanced multivariate data analysis techniques, are addressed.    

 

Factors that affect maize hardness 

Maize hardness is determined and/or influenced by the compositional, morphological and 

environmental factors associated with the respective kernels.  The effects these factors have on 

maize kernel hardness are addressed in this section.   

 

Endosperm types 

Maize kernels consist of, amongst others, two types of endosperm: i.e. vitreous and floury 

endosperm.  It is the ratio in which these endosperm types are present that determines whether a 

kernel is hard or soft (Watson, 1987; Paiva et al., 1991; Delcour & Hoseney, 2010).  The biggest 

part of a maize kernel (80 – 84%) comprises of these endosperm cells, which can either be of the 

harder vitreous type or the softer floury type.  The harder and more translucent endosperm is 

situated to the outside of the kernel and the softer and mealy textured endosperm is found in the 

center of the kernel (Fig. 2.1) (Wolf et al., 1952; Watson, 1987; Lee et al., 2006; Delcour & 

Hoseney, 2010). 

The vitreous endosperm is tightly compacted and kept together with a thick continuous protein 

matrix (Fig. 2.2a).  The vitreous endosperm cells are also polygonal shaped and there are few or 

no air spaces present (Fig. 2.2a), therefore appearing translucent when emitted with light (Gaytán-

Martínez et al., 2006; Lee et al., 2006).  In the soft endosperm (Fig. 2.2b) starch granules are 

spherical and covered with a protein matrix that is thinner than that of the vitreous endosperm and 
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that shrinks easily, consequently no longer completely covering the starch granules (Gaytán-

Martínez et al., 2006; Delcour & Hoseney, 2010).  The floury endosperm is thus not as tightly 

packed as the vitreous endosperm (Delcour & Hoseney, 2010).  Due to the small air pockets 

around the starch granules, the light is reflected and the endosperm appears opaque.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1.  A longitudinal digital image (Canon EOS 300D digital camera, fitted with a Canon 30 – 80 mm 

lens) of a maize kernel, depicting the internal structure of the maize kernel, i.e. floury and vitreous 

endosperm, germ and pedicle. 

 

Watson (1987) proposed that the ratio of the endosperm types present, were genetically 

inherited with that of the vitreous endosperm linked to the zein composition and the floury 

endosperm in turn produced by recessive genes.  The zein composition refer to protein bodies that 

function as the storage protein (prolamin proteins) (Fig. 2.2c) (Delcour & Hoseney, 2010).  Four 

classes of zein bodies have been identified:  alpha (α), beta (β), gamma (γ), and delta (δ) (Lending 

& Larkins, 1989).  It is generally agreed that there is a relationship between vitreous and floury 

endosperm and the proportion of zein types present in each (Paiva et al., 1991; Dombrink-

Kurtzman & Bietz, 1993; Eyherabide et al., 1996; Mestres & Matencio, 1996; Robutti et al., 1997; 

Chandrashekar & Mazhar, 1999; Lee et al., 2006). It is thus apparent that maize kernels will 

develop with a specific ratio of vitreous and floury endosperm depending on the genetic code of 

that hybrid of maize (Erasmus, 2003).   

Recently, it has been reported by Manley et al. (2009) that a third type of endosperm exists that 

differs from the vitreous and floury endosperm in terms of chemical composition and physical 

properties.  O’Kennedy referred to this endosperm as the transition phase (O'Kennedy, 2011) and 

it might be similar to the region referred to as “the junction” by Dombrink-Kurtzman (1994).   

 

Floury endosperm 

Vitreous endosperm 

Germ 

Pedicle 

Stellenbosch University  https://scholar.sun.ac.za



8 
 

                                (a) 

 

                                (b) 

 

                                (c)  

 

Figure 2.2. Scanning electron microscopy (SEM) micrographs (LEO1430 VP, Zeiss, Germany) (4500X) of 

(a) tightly packed polygonal shaped starch granules from vitreous endosperm covered in a thick protein 

matrix, (b) loosely packed irregularly shaped starch granules from floury endosperm covered with a thin 

protein matrix and (c) protein (zein) bodies (inside dashed oval) visible.  
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Kernel morphology 

Apart from the endosperm, a maize kernel also consists of a hull and a germ (Wolf et al., 1952). 

The hull (or bran) includes the pericarp and the seed coat (testa) and is roughly equivalent to 5 - 

6% of the weight of the kernel  (Wolf et al., 1952; Delcour & Hoseney, 2010).  The seed coat lies 

inside the pericarp and covers the entire kernel except the base (or tip cap or pedicle), which is 

covered by the hilar layer (Wolf et al., 1952).  The germ (embryo) is embedded in the lower portion 

of the endosperm and comprises about 10 – 14% of the weight of the kernel (Wolf et al., 1952; 

Watson, 1987).  The scutellum functions as a nutritive organ for the embryo (Watson, 1987) and 

the plumule will form the vegetative part of the plant.   

Where the endosperm is comprised mainly of starch and protein, the germ does not have 

starch; it is high in oil, protein, soluble sugars and hormones (Serna-Saldivar, 2010).   All cells of 

the germ and scutellum are potentially metabolically active upon hydration (Watson, 1987).  Refer 

to Figure 2.3 for a schematic representation of the morphology of a maize kernel.  Note that the 

vitreous endosperm is presented as horny endosperm in this figure. 

 

 

Figure 2.3. Schematic representation (Anon., 1996) of the layers and structures of a maize kernel. 

 

The classes of maize (flint, flour, dent, sweet and pop) differ according to the physical shape of 

the kernels, as well as the structures of the individual components, and thus have an effect on 

maize hardness (Fox & Manley, 2009).  Although flint and dent maize kernels are both 

intermediate with respect to their vitreous to floury endosperm ratio of about 2:1 (Wolf et al., 1952), 

dent maize is generally softer than flint maize (flint kernels are long and flat, whereas dent kernels, 

are short and flat) (Fig. 2.4) (Fox & Manley, 2009).  Pop maize kernels are round and short with a 

large portion of vitreous endosperm, and flour maize has predominantly floury endosperm. South 

African white maize falls within the dent maize class (dent maize is a derivative of flint-flour 

crosses) (Watson, 1987).     
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Figure 2.4. Front white cob is that of flint maize with the characteristic long and flat kernels, whereas the two 

maize cobs at the back of the picture are dent maize with short and flat kernels. 

 

Environmental and postharvest factors 

Even though maize hardness is mainly a genetic trait, another factor that has an effect on maize 

hardness, is the environment in which the crop is grown (Fox & Manley, 2009).  This takes the soil 

nutrient profile into account, as well as the available moisture and environmental conditions prior to 

and during grain filling (Fox & Manley, 2009).  It has been proven that nitrogen fertilisers greatly 

impact the final protein content of maize, and thus increase the vitreousness and hardness (Duarte 

et al., 2005).  Lee et al. (2012) conducted a genotype by environment interaction (G x E) study 

where they included environmental effects, correlations among quality parameters and genetic 

effects at the same time as they examined maize breeding crosses.  They concluded that the 

correlations among the kernel quality traits were influenced both by hybrid type and environment. 

Another G x E study has been done by Robutti et al. (2000) on Argentinian hybrids.  They had 

access to the Pergamino Maize Germplasm Bank where samples of more than 2500 localities 

were stored, as collected since the 1960’s throughout Argentina. Correlating the kernel hardness to 

starch content was of great importance to their study and an inverse association between hardness 

and starch was indicated. They recognised other, more subtle, factors than the obvious factors 

such as thermal and storage history, and moisture content, to also affect kernel hardness (Robutti 

et al., 2000). 

Along with environmental factors, the manner in which the maize has been handled after 

harvesting can also influence the hardness thereof.  Factors such as storage conditions, microbial 

infestation and germination are of importance (Peplinski et al., 1989).  A study by Peplinski et al. 
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(1989) reflected that the temperature used to dry (air temperatures from 25 to 60°C) maize kernels, 

greatly influenced the hardness thereof (seen by the increase in stress-cracked kernels and 

breakage susceptibility).   

 

Factors affected by maize hardness  

Currently, the factors that influence maize hardness have been discussed.  It is just as important to 

understand how parameters, such as storage, handling and transport, as well as milling, can be 

affected by maize hardness.  It should be clear from this section that the dry-milling industry would 

benefit from the inclusion of hardness parameters into the grading regulations. This would ensure 

the segregation (separate storage) of maize differing in hardness and would potentially assist the 

milling industry with respect to end product quality and milling performance.   

 

Storage, handling and transportation 

When looking at storage performance of maize, the harder kernels tend to store better than the 

softer kernels.  This is also the case for handling and transportation, probably due to the limited 

breakage susceptibility as little or no stress cracks are present in hard maize compared to soft 

maize (Dorsey-Redding & Johnson, 1991; Lee et al., 2007). Often maize is handled many times 

from harvest to end user, especially when exported, and the preferred maize is those resistant to 

breakage during handling as it results in better quality upon arrival at the destination (Mestres et 

al., 1991; Wu, 1992; Lee et al., 2006).  Storage time is reduced with increased cracked kernels as 

these are more prone to increased moisture uptake and insect and mold infestation, and therefore 

reduced quality (Fox & Manley, 2009).  The loss of economic value due to lower grading and less 

compensation is also a very important factor to consider as maize is not only a food and feed 

commodity, but also an export commodity (Peplinski et al., 1989). 

 

Wet-milling 

The United States of America’s main use of maize is for the production of ethanol and it entails the 

fermentation of the maize that is extracted during the wet-milling process (Hespell, 1998; Voca et 

al., 2009).  The hybrids planted for this purpose differ greatly from the South African hybrids as 

maize used for bio-fuel production contains large portions of floury endosperm and not significant 

amounts of vitreous endosperm.  By-products from this process include protein (gluten meal), oil, 

germ meal, maize fiber (hulls or bran) and steep liquor (Hespell, 1998).  Softer kernels perform 

better (Lee et al., 2007) as they require less steeping and gives better starch-protein separation 

(Wu, 1992). The production of bio-fuel from maize is not yet widely practiced in South Africa. 

 

Dry-milling 

Maize meal is the main product of the dry-milling process. This process entails the removal of the 

germ and pericarp from the maize kernels during a de-germing process (Serna-Saldivar, 2010).  
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With the addition of water (conditioning step) the germ and pericarp is softened and easily 

removed (Serna-Saldivar, 2010).  The endosperm that is obtained, is subjected to grinding and 

sieving (Watson, 1987).  A series of mills with different roller gaps results in fractions with different 

particle sizes (Serna-Saldivar, 2010).  Based on particle size, the isolated endosperm is reduced 

by sifting into predetermined classes (Watson, 1987).  In dry-milling, a high yield of pure 

endosperm grits are desirable (Chiremba et al., 2011). 

There are 18 grades of maize products for sale in South Africa (Anon., 2008): i.e. fine maize 

bran, fine crushed maize, sifted maize meal, sifted crushed maize, coarse maize bran, mixed 

maize meal, maize rice, maize grits, maize flour, maize germ meal, No. 1 straightrun maize, No. 2 

straightrun maize, unsifted crushed maize, unsifted maize meal, unspecified maize product, special 

maize meal, super maize meal and maize samp.  To be graded special or super maize meal, the 

fineness by mass must fall within the following parameters:  for super at least 90% shall pass 

through a 1.4 mm sieve and less than 90% shall pass through a 300 µm sieve; for special at least 

90% shall pass through a 1.4 mm sieve (Anon., 2008).  This results in super maize meal having a 

particle size distribution of 0.3 – 0.65 mm and for special maize meal 0.17 – 0.3 mm (Erasmus, 

2003).  The grit size of maize meal influences the porridge stickiness and texture (Bello et al., 

1995). 

 

Maize hardness determinations:  a comparison of different test methods 

In an attempt to measure maize hardness, many diverse test methods have been established. 

Some of the methods test resistance to breakage, others test the chemical or physical composition 

of the kernels. Different hardness methods are mentioned and compared in this section. 

 

Resistance to breakage 

There are two types of mechanical breakage tests:  the type that uses the impact of a moving 

blade (Stein breakage tester); and the other type that uses centrifugal impaction of individual 

kernels against a stationary surface (Wisconsin breakage tester (Paulsen & Hill, 1985; Mestres 

et al., 1991).  Hard kernels have lower breakage susceptibility than soft kernels (Paulsen & Hill, 

1985). Not surprising, breakage susceptibility has been found to be strongly correlated (R2 = 0.99) 

to stress crack percentage (Paulsen & Hill, 1985).  This is in accordance to the study of Peplinski 

et al. (1989) where elevated drying temperatures resulted in an increase in stress-cracked kernels 

and subsequent breakage susceptibility.  

   

Chemical analysis 

Chemical analyses that are associated with maize hardness, are the determination of dry matter 

(residue weight after heating), ash content (residue weight after incineration) and lipid and 

nitrogen content (Mestres et al., 1991).  The analysis of protein (as the variation in zein-classes 

cause variation in hardness (Robutti et al., 1997) starch, moisture and fiber are also associated 
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with maize hardness (Blandino et al., 2010). Correlations that seem to be agreed upon between 

Blandino et al. (2010) and Mestres et al. (1991) are those between vitreousness and ash content, 

as well as density.  Contradictory results are regularly found between kernel hardness and protein 

content.  Mestres et al. (1991) found these factors to correlate, whereas Delcour & Hoseney (2010) 

agreed with Paulsen and Hill (1985) that hardness and protein content did not correlate.  Robutti et 

al. (2000) found no significant correlation between protein content and kernel hardness. The 

inconsistency of results with respect to the association between hardness and protein, suggests 

that protein methods differ greatly and that specific types of proteins should be tested, individually. 

Phenolic acids were quantified in maize bran, using high performance liquid chromatographic 

and mass spectrometric techniques, and it was shown that harder maize hybrids had more 

phenolic acids than softer maize hybrids (Chiremba et al., 2012).  The process of chemical 

bonding, through cross linking of compounds within plant cell walls, can be explained as the 

mechanism by which phenolic acids may influence maize hardness (Chiremba et al., 2012).  

Furthermore, this study suggested that a correlation existed between phenolic acid content and the 

TADD method, which expressed kernel physical properties (Chiremba et al., 2012).  Due to the 

negative correlation, it was implied that hybrids with low phenolic acid content would break more 

easily than hybrids with a higher phenolic acid content (Chiremba et al., 2012).   

 

Physical analysis 

Test weight, thousand kernel weight and sphericity calculated from measurements of three 

dimensions (length, width and depth) and kernel density are examples of physical traits of maize 

kernels, influencing maize hardness (Lee et al., 2006; Blandino et al., 2010).  Abrasiveness is 

another similar method, measured using the tangential abrasive dehulling device (TADD) 

(Wehling et al., 1996) where the remaining material is weighed after a set time of abrasion.  This 

method results in a TADD index % that reveals kernel hardness.  Lee et al. (2006) also used the 

TADD method when they assessed biochemical properties of maize and found it to have strong 

association with amylose content (r = 0.89, P < 0.01). Chiremba et al. (2012) did not only indicate 

phenolic acid content as an indicator of maize hardness, but also showed that the ferulic acid 

content was strongly correlated with TADD hardness (r = -0.78, P < 0.001). 

Paulsen and Hill (1985) differentiated between incoming maize quality factors and dry-milling 

quality factors.  For the incoming maize quality factors they made use of physical tests i.e. test 

weight and percentage floaters (density measurements).  As both these factors are indicators of 

density, the results showed, not surprisingly, significant (P < 0.05) correlation (r = 0.99) between 

floating test results and test weight. This is in agreement with the conclusion drawn by Kirleis and 

Stroshine (1990) that a combination of test weight and kernel density are the best predictors of 

milling quality. Most density related studies used pycnometry as a measure of density (Wu, 1992; 

Lee et al., 2006), but the floating test is also well used (Paulsen & Hill, 1985; Gaytán-Martínez et 

al., 2006; Blandino et al., 2010), as well as displacing a volume of water (Gaytán-Martínez et al., 
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2006).  The study by Gaytán-Martínez et al. (2006) indicated that both density measurements 

significantly (P < 0.05) correlated with hardness (r = -0.74 for the floating test and r = 0.69 for water 

displacement ).  Blandino et al. (2010) modified the floating test to obtain density results in the form 

of an area beneath a precipitation curve. This research group found the floating test to be 

significantly (P < 0.05) related to physical kernel characteristics observed by methods such as test 

weight (r = -0.89), the coarse over fine ratio (r = -0.93) and the Stenvert test (r = -0.70). But 

according to them, the test weight method is the simplest estimator of maize hardness and should 

be the first parameter to consider when determining maize hardness (Blandino et al., 2010). 

When interpreting density results, it should be noted that cracks and fissures can be present in 

kernels, mainly due to dehydration, which in turn lowers kernel density.  Wu (1992) cautions that 

density results must be reported in combination with breakage susceptibility results. 

Gaytán-Martínez et al. (2006) strongly expressed their viewpoint that physical traits, such as 

density, starch granules size and crystallinity are as important descriptors of maize hardness as 

that of the chemical composition of the maize.  In their study, granule size and crystallinity were 

measured with scanning electron microscopy and an X-ray diffractometer, respectively. They found 

a positive correlation (r = 0.69) between hardness and density, as well as starch granule size and 

endosperm (r = 0.44), which contributed towards the description of the microstructure of the 

endosperm (Gaytán-Martínez et al., 2006) 

The particle size index (PSI) is a method that involves milling and sieving and although it is 

often used as a hardness method, Wu (1992) warns that the relatively high oil content present in 

maize may cause agglomeration which will conceal differences in particle size.  For Blandino et al. 

(2010) the coarse-over-fine ratio (c/f), derived from the respective fractions obtained using this 

method, was the best descriptor of maize milling ability when using a sieve size of 2 mm.  This c/f 

correlated better with milling quality than the floating test, test weight, the Stenvert test, sphericity 

and texture analysis, probably due to the clear evaluation of the vitreous (hard) and floury (soft) 

fractions (Blandino et al., 2010). 

  

Indirect tests 

Near infrared spectroscopy 

Near infrared (NIR) reflectance and transmittance spectroscopy are examples of indirect testing 

methods of maize hardness. These spectroscopic methods are non-destructive and can be 

calibrated against an unlimited choice of reference methods. The use of Fourier transform near 

infrared (FTNIR) spectroscopy has shown increased spectral reproducibility and wavelength 

precision and is thus a preferred technology in many types of analyses (Rotar et al., 2009). In 

combination with chemometric techniques the analysis of materials can be achieved, without time-

consuming practices such as sample preparation. 

In past studies, NIR transmittance spectra were obtained from whole maize kernels 

(wavelengths between 850 and 1050 nm) and after data analysis only the absorbance values at 
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860 nm were used to measure kernel hardness, as this wavelength depicted particle size 

differences (Robutti et al., 2000; Lee et al., 2006). In other studies, a wider wavelength range was 

used (1000 to 2500 nm) to obtain reflectance spectra of whole kernels. A study by Orman & 

Schumann (1991) predicted protein, oil and starch content, whereas a study by Berardo et al. 

(2005) predicted kernel rot and mycotoxin infected kernels. With respect to milled samples, two 

wavelengths are of interest (1680 and 2230 nm) as they do not carry any chemical information and 

reflectance varies only with regards to particle size difference Downey et al. (1986).  

Besides spectral absorbance differences found when scanning intact (whole) kernels versus 

ground samples, the scanning of bulk (multiple) maize samples are found to be less complicated 

compared to that of single maize kernels.  Single kernel applications are far less common than 

that of bulk calibrations.  This is due to the non-uniformity found within maize kernels as a result of 

the relatively large portion of germ present (Spielbauer et al., 2009). Some researchers collect 

spectra from only the germ-down side of a kernel (Baye et al., 2006), while others overcome the 

obstacle by developing sampling systems, such as that by Janni et al. (2008) that uses an 

airstream to tumble the individual kernels during spectral acquisition.  In doing so, an average 

reflectance spectrum is obtained over the whole kernel surface.  Armstrong (2006) and Baye et al. 

(2006) developed systems that collected the spectra as the kernels fell through glass tubes.  Other 

single kernel applications include that of Pearson et al. (2001) and Dowell et al. (2006) where a 

probe was attached to the respective spectrophotometers.  In the study by Pearson et al. (2001), 

aflatoxin concentration was predicted for single kernels with a 95% classification accuracy as 

containing either high (> 100 ppb) or low (< 10 ppb) levels of aflatoxin.  Whereas, in the study by 

Dowell et al. (2006), fumonisin was detected on single maize kernels showing spectroscopy to be a 

useful tool for screening samples for online detection. 

A new portable instrument, namely the microNIR (JDSU Corporation, Santa Rosa, CA, USA) 

has recently been introduced as a qualitative and quantitative analytical tool when applied to 

pharmaceuticals by Alcala et al. (2014).  This device differs from conventional NIR 

spectrophotometers in that it is small (weight of only 60 g), hand-held and fitted with a linear 

variable filter (LVF) technology as monochromator (O'Brien et al., 2012; Alcalà et al., 2014).  This 

instrument can be used in reflectance as well as transmission mode and can be applied for single 

kernel applications. 

 

Near infrared hyperspectral imaging 

A hyperspectral imaging system integrates conventional imaging and spectroscopy to produce a 

three-dimensional (spatial and spectral) hypercube from an object (Schweizer & Moura, 2001; 

Grahn & Geladi, 2007). Hyperspectral imaging is also called chemical or spectroscopic imaging or 

mapping, and is thus a technique that generates a spatial map of spectral variation (Sun, 2010). As 

explained by Burger (2006), spectral prediction or processing results can be mapped back to a 
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spatial location thereby demonstrating a major advantage (spatial information) of this 

spectroscopic technique.  

As a single hyperspectral image with 256 x 320 pixels and 128 wavelength channels contains 

over ten million data values, simple multivariate statistical analysis are inadequate and need to be 

enhanced and adapted for these large data sets. These chemometric techniques will be discussed 

in a later section of this chapter. 

Near infrared hyperspectral imaging (NIR-HSI) has been used to distinguish between individual 

maize kernels differing in hardness (Manley et al., 2009; Williams et al., 2009). It was also shown 

that NIR HSI could be used to classify maize kernels into hardness classes without the need for 

hardness reference data (McGoverin & Manley, 2012).   

 

Other indirect tests 

As studied by Pomeranz et al. (1985), reporting the grinding time of maize could also be a good 

method to estimate maize hardness.  Another method described by Pomeranz et al. (1985) is that 

of the Stenvert test.  This method is based on the measurement of the power consumption utilised 

during the milling process and the results are expressed as total milling energy and milling time 

(Blandino et al., 2010). Li et al. (1996) also used the Stenvert test to derive hardness properties 

and found sound correlations with the vitreous to floury endosperm ratio.  Principal component 

analysis revealed that milling energy and resistance time were the most effective parameters to 

asses grain hardness, and both these variables also correlated strongly with the vitreous to floury 

endosperm ratio (Li et al., 1996). 

 

Less common methods 

Compression and pearling (Tran et al., 1981) are two less common methods used to determine 

maize hardness.  The first method involves textural properties and will be discussed shortly with 

reference to a study by Gaytan-Martinez et al. (2006) whereas the latter refers to a study where a 

barley pearler and a disk grinding mill was modified to record torque and energy during pearling 

and grinding (Tran et al., 1981).  Pearling resistance (torque) measures the resistance of a train to 

pearl and hard kernels ultimately result in higher resistance than soft kernels (Tran et al., 1981). 

The relevance of this study was shown by the changes observed in hardness along with moisture 

content in maize kernels (Tran et al., 1981). In the study by Gaytan-Martinez et al. (2006) they 

established a relationship between microstructural properties of maize kernels and physical 

variables (i.e. density), because they interpreted maize hardness more as a textural property.  

These researchers used a texture analyser to puncture maize kernels at their vitreous endosperm 

region to a depth of 2 mm.  Blandino et al. (2010) also recognised the use of a puncture test as a 

method that has the potential for measuring single maize kernels’ hardness.   
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Almeida-Dominguez et al. (1997) estimated maize hardness based on the viscosity of ground 

maize samples, using the Rapid Visco Analyser (RVA).  Using this viscometric procedure the 

thermal and rheological properties of a milled grain sample are provided, which in turn provide 

valuable information about the functionality thereof (Narváez-González et al., 2006). RVA detects 

the changes in viscosity (pasting properties) of starches i.e. the viscosity developed during 

hydration and subsequent gelatinisation of starch granules during heating and stirring in excess 

water (Almeida-Dominguez et al., 1997).  Other researchers (Yamin et al., 1999; Seetharaman et 

al., 2001; Ji et al., 2003; Sandhu & Singh, 2007) also observed differences in pasting properties 

between different maize hybrids, although they did not specifically link the results to maize 

hardness, but rather to starch and functional properties.  The rationale behind hardness 

discrimination, using RVA, is as follows:   

 hard maize has mainly coarse particles when milled, and soft maize smaller particles 

(Almeida-Dominguez et al., 1997); 

 coarse particles have slower water diffusion, limited swelling of the starch granules and 

slow viscosity development (Sahai et al., 2001; Narváez-González et al., 2006);  

 smaller particles have bigger surface areas that result in better and more rapid 

hydration, thus better gelatinisation and higher viscosity (Almeida-Dominguez et al., 

1997); 

 hard kernels show a more prominent protein-to-starch adhesion effect compared to soft 

kernels and require more time to gelatinise (Almeida-Dominguez et al., 1997); and 

 the protein matrix of vitreous (hard) endosperm is thicker than that of floury (soft) 

endosperm (Wang & Eckhoff, 2000) and forms a barrier that slows hydration and 

gelatinisation (Narváez-González et al., 2006).   

 

For each RVA test the viscosity (cP), temperature (°C), speed (rpm) and the heat-cool ratio are 

recorded every four seconds. The resulting curve, reporting the viscosity as a function of time 

(sometimes together with the temperature ramp, to improve interpretation), is called a viscogram 

as shown in Figure 2.5. Hard kernels thus reached peak viscosities sooner than soft kernels, but 

have lower peak viscosity times (Almeida-Dominguez et al., 1997; Seetharaman et al., 2001; 

Narváez-González et al., 2006). 

 

Direct and time consuming methods 

A few researchers (Dombrink-Kurtzman & Knutson, 1997; Gaytán-Martínez et al., 2006) separated 

parts of the maize kernel, in order to weigh and calculate respective percentages (usually of the 

pericarp, endosperm and germ). Mestres et al. (1991) also acknowledged that the cross-secional 

areas of the endosperm types, vitreous and floury, could be measured, but Blandino et al. (2010) 

did not agree with the practicality of this method, although they also went through this tedious 

process of hand dissection.   
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Figure 2.5.  A Rapid Visco Analyser (RVA) viscogram (Agu et al., 2006). 

 

Mestres et al. (1991) found that vitreousness (as determined through hand-dissection) is not 

relevant for the prediction of dry-milling performance. It should have been significantly correlated 

with semolina recovery, a procedure similar to chop recovery, but it was not.  In their study, ash 

content and sphericity explained most of the variation in semolina yield (Mestres et al., 1991).  In a 

prior study Paulsen and Hill (1985) found that tests for density and floaters usually correlate highly 

with the ratio of vitreous-to-floury endosperm.   

Similar methods include the calculation of the percentage vitreousness by measuring the area 

from an enhanced photograph (Mestres et al., 1991), or digital image analysis as in the study by 

Erasmus and Taylor (2004) who also used a light box to visually assess the endosperm types. 

 

Micro-milling 

To acquire an index of dry-milling performance, micro-milling can be considered as the total grit 

yield corresponding to the main products obtained in the conventional dry-milling industry 

(Blandino et al., 2010).  A micro-milling method novel to South Africa is the Roff Milling method, 

with the results known as the Milling Index (MI).  The Southern African Grain Laboratory (SAGL) 

applies this method, along with kernel whiteness and size tests, to assess milling performance. A 

roller mill system brakes the maize up into meal and bran fractions which are used to calculate the 

MI (Erasmus & Taylor, 2004).   Van Loggerenberg and Pretorius (2004) used this method to 

develop a NIR transmittance calibration for whole grain predictions.  These calibrations have in 

turn been used by Chiremba et al. (2011) for their characterisation of maize hardness. 
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Multivariate approach 

A sensible summary to this section on different hardness methods, is to make reference to the 

conclusion of Blandino et al. (2010) where they described kernel hardness as a combination of 

physical and chemical characteristics and also state that there is no single method that describes 

dry-milling behaviour.  They propose the use of a multivariate approach to take various properties 

into consideration.  A multivariate approach was also followed by Chiremba et al. (2011) where 

principal component analysis revealed that a combination of TADD hardness and NIR Milling 

Index, or TADD hardness and test weight could be used to describe maize hardness. 

A very useful summary (Table 2.1) of maize hardness testing methods used in Southern 

Africa, and their relevance to end-use quality, was published by Chiremba (2011).  In this study it 

was found that TADD and test weight correlated (r = -0.64), as well as TADD and NIR 

transmittance (r = -0.66), and that the other hardness methods did not show any useful correlation.  

Two methods that are not depicted in Table 2.1 for maize hardness determination, are RVA and X-

ray micro-computed tomography.  Both these methods were used in the current study.  Literature 

on the latter method will be reviewed in the following section. 

 

Table 2.1.  Simple methods used in Southern Africa for maize grain quality evaluation, their advantages, 

disadvantages and applicability (Chiremba et al., 2011) 

Method  Parameter/quality 
indicator 
measured  

Advantages  Disadvantages  Applicability  

Test weight  
 
Test weight per 
bushel or kg.hL-1  

Grain density  Inexpensive 
device,  
low maintenance 
cost, 
rapid,  
high repeatability 
and 
reproducibility, 
non-destructive 
method  

Affected by grain 
packing in 
measuring 
apparatus, 
moisture content, 
kernel shape, 
broken kernels 
and foreign 
material,  
not suitable for 
early generation 
breeding  

Applicable to 
breeding 
programs and 
cultivar evaluation 
with limited grain 
sample size,  
rapid test on 
dockage for 
commercial large 
and small- scale 
milling plants and 
grading for grain 
marketing  
 

Thousand kernel 
weight (g) 
 
 

Grain size and 
grain density  

High repeatability 
and 
reproducibility, 
non-destructive 
indirect measure 
of grain density  

Time consuming if 
done manually 
(without a seed 
counter)  

Suitable for 
breeding 
programs with 
limited grain 
sample size. Also 
applicable in 
commercial grain 
quality control and 
processing, both 
large and small-
scale  
 

Abrasive 
Decortication  
Tangential 
Abrasive 

Ease of grain to be 
abraded- indirect 
measure of grain 
hardness and 

TADD is robust, 
high repeatability 
and 
reproducibility, 

The abrasive disk 
may be worn out 
with the time and 
vary milling yields 

Potential use at 
commercial level 
(both small and 
large scale), 
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Dehulling Device 
(TADD)  

milling quality  low maintenance 
cost,  
equipment can be 
manufactured 
locally  

although this can 
be monitored with 
the use of a 
standard sample 
of known yield 

the multi-cup 
sample holder 
allows several 
samples to be 
decorticated 
simultaneously 
within a short time 
(5 to 10 min)  

Stress cracks  
Light box  

Proportion of grain 
with cracks and 
number of cracks  

Apparatus cheap 
to set up,  
stress cracks may 
be quantified 
using the Stress 
Crack Index  
 

Stress crack 
counting tedious 
and time 
consuming and to 
a degree 
subjective 

Time consuming 
for routine 
analysis, but 
suitable for small 
sample size  

Stein breakage 
susceptibility  
 

Susceptibility of 
grain to break 
under stress  

Allows 
quantification of 
the potential of 
grain to break, 
rapid analysis (4 
min)  

Apparatus is no 
longer 
manufactured, 
although other 
mills may be used  

Suitable for 
commercial grain 
evaluation, 
destructive, could 
have limited use 
in breeding 
programs where 
grain sample size 
is limiting  

Milling Index  
 
Near Infrared 
(NIR)Transmittan
ce spectrometry  

Grain milling 
quality  

Automated and 
rapid analysis 
once a calibration 
is developed, 
calibration can be 
used by other 
users, 
non-destructive 
method 

Requires 
calibration against 
physical or 
chemical data 
which could be 
time consuming 
and costly,  
very sensitive to 
sample 
preparation 
affecting precision 
and accuracy,  
high initial cost to 
purchase the 
instrument and 
operating 
software, 
regular software 
and service 
upgrade required, 
requires a 
relatively large 
grain sample size 
(approx. 500 g), 
limited use in 
breeding 
programs where 
grain sample size 
is limiting 

Rapid for online 
processing at 
commercial milling 
plants and routine 
analysis in 
breeding 
programs and 
cultivar 
evaluation,  
skilled technical 
maintenance 
required, 
use could be 
limited to well 
established 
institutions; not 
economically 
appropriate for 
small-scale grain 
quality control and 
processing. 

Kernel size:  
Set of sieves 
and sieve 
shaker  

Kernel size  Analysis is 
relatively cheap, 
non-destructive, 
direct measure of 
kernel size, 
does not require a 
large grain sample 
size 

Can be time-
consuming 
especially if 
batches are very 
heterogeneous in 
terms of kernel 
size 

Due to lengthy 
analysis time, it is 
not applicable in 
commercial grain 
quality analysis, 
applicable in 
research 
laboratories 
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X-ray micro-computed tomography scanning 

The first use of X-rays was not for a medical application, but to produce a radiograph of a set of 

weights in a box.  In later years (1907) John Radon generated the mathematical transformation 

algorithms that was later utilised to produce 3D reconstructed images from the X-ray scans (De 

Beer, 2005).  A South African born American physicist, Alan M. Cormack, developed the diagnostic 

technique of computerised axial tomography (CAT) scanning in the 1970s (and received the Nobel 

Prize for Physiology in Medicine in 1979) (De Beer, 2005).   This work of Cormack was further 

developed into X-ray computed tomography (CT), utilising the basic principles of CAT scanning 

(De Beer, 2005).   

X-rays have a wavelength in the range of 0.01 to 10 nm, corresponding to frequencies from 30 

to 30 000 Pentahertz and energies ranging from 120 eV to 120 keV (Kotwaliwale et al., 2011).  

These are short electromagnetic waves and when they interact with matter, they behave like both 

particles (energy bundles, i.e. photons) and waves (Kotwaliwale et al., 2011). 

X-ray micro-computed tomography (µCT), or high-resolution CT, is a recent method that found 

use for the inspection of materials in many applications and settings (Singhal et al., 2013).   

Information is gained of the micro-architecture or micro-structure of these materials, which leads to 

a better understanding of their performance or functionality (Singhal et al., 2013).  The high 

resolution (up to 300 nm) obtained, allows for the visualisation of fine-scale features (Singhal et al., 

2013).  The data from the µCT results in a virtual rendering of the object under investigation, which 

allows one to travel through the volume in any direction and angle, revealing complex hidden and 

inaccessible structures within the object (Brunke, 2010; Singhal et al., 2013).        

 

The instrument 

The fundamental components of any CT instrument, as seen in Figure 2.6 are (1) penetrating 

ionising radiation (X-ray radiation when using X-ray µCT), (2) a sample manipulator and (3) a 

detector (Duliu, 1999).  The sample manipulator (or translation table) positions the sample in the 

path of the radiation beam and rotates it through a specific angle (usually 360°).  The detector 

converts the attenuated radiation, which passes through the sample along a straight line, into a 2-D 

digital image, called a radiograph.   

 

A radiograph 

An X-ray radiograph image is essentially a map of the linear attenuation coefficient of every point in 

the sample (Singhal et al., 2013).  The radiograph consists of different scales of grey, depending 

on the different magnitudes of attenuation by the sample and components within the sample 

(Schena et al., 2007).  For 2-D visualisation, X-ray densities are mapped from black (low X-ray 

density = background) to white (high X-ray density = material).  Therefore, a higher density phase 

appears brighter and is distinguishable from a lower density material.   
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Figure 2.6.  The fundamental components of any computed tomography instrument. 

 

X-ray attenuation (µ) follows an exponential relationship with the incoming and outgoing X-rays 

from the sample.  Differentiation of features within the sample is possible because of this linear 

attenuation coefficient that depends directly on the electron density (effective atomic number (Z) of 

the material comprising the sample) and the energy of the X-ray beam (E) (Lin & Miller, 2002).   

A linear relationship exists between the sample-to-focal spot distance as a function of the voxel 

size achieved (Singhal et al., 2013).  Depending on the specific instrument used, the largest 

diameter and height of the object that can be imaged is 300 mm x 400 mm.  The tube power 

(accelerating voltage x filament current) for any image acquisition is limited by the voxels size, 

because the tube has a focal spot size that dynamically increases with power.  A focal spot size 

larger than the voxel size results in blurring of the pixels in the CT image (Singhal et al., 2013).  

Therefore, for higher density objects, a lower resolution may be seen if a greater power penetration 

is required. 

 

Reconstruction into a 3-D volume 

Filtered back-projection algorithms are used to reconstruct the 3-D image volumes from the 

acquired 2-D data sets.  Through this process a 3-D digital virtual volume of the sample is created 

from the series of radiographs through tomographic reconstruction (Schena et al., 2007), as 

illustrated in Figure 2.7.   

     For a cone beam back-projection geometry, the reconstruction process requires that a whole 3-

D data set is acquired within only one rotation of the sample (Lin & Miller, 2002).  The projections 

displayed by the detector are proportional to the amount of radiation reaching the detector (Lin & 

Miller, 2002).  Imaging is accomplished with a cone beam, providing a geometric magnification at 

the detector.  For 3-D visualisation, the background will be rendered transparent, showing the 

material opaque white. 
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Figure 2.7.  Schematic representation of tomographic reconstruction from 2-D to 3-D. 

 

Analysis of the 3-D volume 

Techniques to analyse µCT data sets are available in dedicated software packages such as 

VGStudio MAX software (Volume Graphics GmbH, Heidelberg, Germany). The measurement of 

specific areas or regions-of-interest (ROIs) can be accomplished by using a region grower tool that 

identifies voxels belonging to a selected grey value interval. In an example where the contact area 

of a thread from a capped bottle had to be measured, a ROI was created for the bottle (seen as the 

grey coloured area in Fig. 2.8).  Another ROI was created for the bottle cap (coloured blue in Fig. 

2.8), using the ROI of the bottle as the border. The result was the points of contact between the 

two ROIs and by using the option to extend the ROI of the cap with one voxel, this region extended 

into the bottle surface and points of contact could be displayed (seen as the red coloured area in 

Fig. 2.8) and quantified, using the Volume Analyser function.  Using these analytical tools the exact 

contact area between bottle and cap of the closed bottle could be presented (Anon., 2014).   

     Other techniques available for µCT analysis are:  defect detection (detection and analysis of 

pores/voids/cracks); nominal/actual comparison (compare geometries of two voxel data sets); wall 

thickness analysis and orientation analysis (orientation of fibers in 3-D and projected into a 2-D 

plane) (Singhal et al., 2013).  

 

Applications to maize 

When considering X-ray µCT studies on maize, only few have been done, including Takhar et al. 

(2011) that focussed on moisture transport within maize kernels and De Carvalho et al. (1999) that 

studied stress cracks formation.  The study of Gustin et al. (2013) recognised the potential of X-ray 

µCT as a method to determine kernel density and volume.  Other cereal related studies are those 
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of Van Dalen et al. (2007) on pore structures of cereal products and that of Chaunier et al. (2007) 

that investigated the porosity of maize flakes.   

 

 

Figure 2.8.  X-ray µCT segmentation of a bottle neck with screwed on bottle cap, creating regions-of-interest 

(ROIs):  grey = bottle neck; blue = bottle cap and red = contact areas. 

 

Statistical interpretation 

When capturing data, a process is started with the aim to retrieve useful information and to draw a 

meaningful and significant conclusion.  Statistics is crucial to complete the process, as it is through 

statistical analysis that the data can be interpreted and evaluated. Choosing the appropriate 

statistical method to fit a respective model, requires a lot of thought and consideration, a skill that is 

acquired through experience.  When making use of single variables, the analysis is referred to as 

univariate statistical analysis, but when more than one variable is used simultaneously, multivariate 

data analyses are performed. 

 

Univariate statistical analysis 

Spearman’s rank correlation coefficients  

The correlation of ranks, as introduced by Spearman in the early 1900’s, is a very appropriate 

procedure to use when non-parametric (values are replaced by ranks) results are expected (Zar, 

1972). The Spearman correlation can be interpreted by its sign:  the correlation will be positive 

(plus sign in front of the value) if the independent variable (Y) increases when the dependent 

variable (X) increases.  If Y tends to decrease when X increase, the correlation will be indicated 

with a minus sign, and is thus negatively correlated.   A Spearman correlation of zero indicates that 

there is no tendency for Y to either increase or decrease when X increases.  
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Intraclass correlation coefficients 

When quantitative measurements of units within groups are made, the intraclass correlation 

coefficients (ICC) can be used to describe how strongly the units in the same groups resemble 

each other (Koch, 2004). The ICC assesses two factors: (a) the agreement that correlates the 

measurements with each other, while taking into account the differences in absolute values of the 

respective measurements, and (b) the consistency that only correlates the measurements (Bartko, 

1976).  If an ICC has a high agreement, very similar results are obtained from the comparing 

methods; a low agreement indicates a large bias amongst the methods (Bartko, 1976).  ICC is thus 

a descriptive statistic and a useful tool to indicate the relationship among groups.  

 

Analysis of variance 

Analysis of variance (ANOVA) is a statistical model used to analyse variation among and between 

groups and to compare statistical significance thereof (Olson, 1976; Scheffe, 1999).  ANOVA tests 

hypotheses from which decisions regarding the significance of a result can be made. Testing 

the null hypothesis, the result is seen as being statistically significant and the hypothesis will not be 

rejected, if it is deemed unlikely to have occurred by chance (Scheffe, 1999).  For such a test, the 

probability (p-value) must be more than a threshold (significance level).  To reject the null 

hypothesis, the p-value has to be less than the likely threshold value of 0.05, and is then seen as 

not significant (Olson, 1976).  

 

Receiver operating characteristic curve 

A receiver operating characteristic curve, or simply ROC curve, is a plot of the true positive rate or 

sensitivity against the false positive rate or 1 – specificity, at various threshold settings (DeLong et 

al., 1988). The sensitivity defines how many correct positive results occur among all positive 

samples available during the test; 1 - specificity, on the other hand, defines how many incorrect 

positive results occur among all negative samples available during the test (Hanley & McNeil, 

1983; DeLong et al., 1988). The optimal threshold is determined by maximising the sum of 

sensitivity (no false negatives) and specificity (no false positives) and a tool is thus provided to 

select optimal models. The area under the ROC curve is also used to assess the fit of the logistic 

regression model and the closer the area value is to 1, the better the fit (Hanley & McNeil, 1983). 

 

Multivariate statistical analysis 

A multivariate statistical approach is followed when the simultaneous effect of many variables and 

the relationship amongst the samples are evaluated (Li Vigni et al., 2013).  In many instances, 

such as grain science, where instrumental analysis can provide many variables for each sample, 

the complexity of the data increases rapidly and requires multivariate data analysis techniques.  

Examples of multivariate statistical analysis are principal component analysis (PCA), used as an 
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instrument of descriptive statistics, and partial least squares (PLS) regression models, allowing 

predictions and classification accuracies.  Multivariate image analysis (MIA), a technique 

developed to analyse hyperspectral imaging data incorporates both PCA and PLS, will also be 

explained. 

 

Principal component analysis (PCA) 

PCA was first introduced by Karl Pearson (1901) as “(a way of finding) lines and planes of closest 

fit to systems of points in the data space.” PCA is a bi-linear decomposition technique which is 

responsible for reducing large amounts of data by creating principal components (PCs) (Massart, 

1998). Also known as latent variables, these PCs capture the differences and similarities among 

the samples and variables of the modelled data (Li Vigni et al., 2013).   The decomposition of the 

data, using PCA, is as follows:   

     X = TAVA
T+ E 

where A is the number of PCs, T are the score vectors, V are the loading vectors and E represents 

the residual or noise.  Another way to interpret the number of PCs, or A, is that they are the 

underlying structures or chemical rank of the matrix.  In addition, the score vectors (T) give the 

coordinates of the samples in the PC space and allow the inspection of sample 

similarity/dissimilarity.  Furthermore, the loadings vectors (V) represent the weight with which each 

original variable contributes to the PCs, enabling the inspection of the correlation structure among 

the variables through the loading scatter plots. The residual (E) is the part of the data that is not 

explained by the model and is used as an indicator of outlying samples and/or variables (Li Vigni et 

al., 2013).   

 

Partial least squares regression (PLS) 

Regression is an approach where two or more sets of variables are associated with each other 

(Martens & Naes, 1991).  When defining the variables to be modelled in a regression context, the 

Y-variable is seen as the dependent variable and the X-variables as the predictor or independent 

variables (Westad et al., 2013).  A regression technique such as partial least squares (PLS) is 

often used to build models that can be used to classify data or to make predictions. When using 

PLS, PCs are created which are associated with the maximum variance of X, as in PCA, but also 

incorporating the covariance associated with Y (Burger, 2006). These components are determined 

on the basis of decreasing significance, and with caution, as the incorrect number of PCs included 

in the calibration model will lead to unrealistic predictions (Burger, 2006).  

 When non-linearities in the relation between dependent and predictor variables occur (due to, 

e.g. clustering of the samples or different sub-populations), the global linear calibration models do 

not fit data correctly, leading to biased predictions.  One way of dealing with this problem is to use 

a locally weighted (LW) regression approach (Martens & Næs, 1985)  where, for each new sample 

to be predicted, a local model is developed based on its nearest neighbours, i.e. the calibration 
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objects nearest to it.  LW regression based on PLS (Wold et al., 1983) makes use of Euclidean 

distances on the original space variables and a uniform weighted scheme for the sample, as 

suggested by Centner and Massart (1998).  In order to perform such a regression (LW-PLS2) for 

every new object (test), a different local calibration model must be built using only a defined 

number of closest samples, called nearest neighbours (nlocal). To estimate the optimal number of 

neighbours to be considered in local modeling, together with the appropriate number of latent 

variables, a cross-validation procedure is normally used. 

  

Multivariate image analysis 

Simple multivariate statistical tools are not sufficient for hyperspectral imaging data analysis and 

these techniques need to be adapted for the large data sets produced by imaging (Burger & 

Geladi, 2006).  A technique was developed to “unfold” the three dimensional image to create a two 

dimensional data set where second order analysis procedures (i.e. PCA) can be used (Geladi & 

Grahn, 1996).  This technique involves the removal of spectra from a hyperspectral image, one 

row of pixels at a time, to create a long matrix of spectra.  PLS is also often applied to spectral data 

to build models useful for making chemical classification or quantification predictions. However, 

when such models are applied to a single hyperspectral image as described above, over eighty 

thousand predictions will be produced (Burger, 2006).  Again, the unfolding technique is used to 

simplify the data to achieve a successful calibration. 

 

Conclusion 

As maize hardness is an important quality trait for breeders, producers and processors, it is 

necessary to have access to reliable hardness methods.  Up to date, no standardised hardness 

method exists, and therefore a wide range of methods, differing in methodologies and approaches, 

exist.   

Hardness methods measure different properties, such as particle size subsequent to grinding 

and sieving, resistance to grinding and abrasion and the yield of grits.  Other methods measure 

starch gelatinisation properties or polyphenol content to describe hardness.  One of the older 

methods makes use of hand-dissection to determine the ratio of vitreous-to-floury endosperm.  A 

similar method is machine vision technology that also quantifies the endosperm types in order to 

describe hardness.   

NIR hyperspectral imaging can also be used to quantify endosperm types, whereas traditional 

NIR spectroscopy can predict maize hardness properties. Quality properties, such as protein, 

starch, fat and fiber contents are also seen as hardness descriptors, as well as kernel density. 

What is apparent from literature, is that many of these hardness methods do not correlate with 

each other, and that contradictory results are found between different studies.   

X-ray µCT is an analytical technique that has found many applications in grain science and is 

increasingly used as a research tool.  The 3-D visualisation of the imaged object permits functions 
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such as quantification and defect detection.  Along with appropriate data analysis techniques and 

statistical methods, maize hardness can adequately be expressed. 
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Chapter 3 

Application of Rapid Visco Analyser (RVA) viscograms and chemometrics for 

maize hardness characterisation* 

Abstract 

It has been established in this study that the Rapid Visco Analyser (RVA) can describe maize 

hardness, irrespective of the RVA profile, when used in association with appropriate multivariate 

data analysis techniques. Therefore, the RVA can complement or replace current and/or 

conventional methods as a hardness descriptor.  Hardness modelling based on RVA viscograms 

was carried out using seven conventional hardness methods (hectoliter mass (HLM), hundred kernel 

mass (HKM), particle size index (PSI), percentage vitreous endosperm (%VE), protein content, 

percentage chop (%chop) and near infrared (NIR) spectroscopy) as references and three different 

RVA profiles (hard, soft and standard) as predictors. An approach using locally weighted partial least 

squares (LW-PLS) was followed to build the regression models.  The resulted prediction errors (root 

mean square error of cross-validation (RMSECV) and root mean square error of prediction 

(RMSEP)) for the quantification of hardness values were always lower or in the same order of the 

laboratory error of the reference method.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Published as: Guelpa A, Bevilacqua M, Marini F, O’Kennedy K, Geladi P & Manley M (2014). Application of Rapid Visco 

Analyser (RVA) viscograms and chemometrics for maize hardness characterisation.  Food Chemistry, 173, 1220–1227. 
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Introduction 

Maize hardness is an important quality characteristic for the dry-milling industry.  In South Africa, the 

dry-milling industry is significant as maize is the largest crop produced, of which two-thirds (ca. 4 

million tons per annum) are processed into maize meal used to make porridge (SAGIS, 2013).  For 

its definition, numerous aspects have to be considered.  Even with careful consideration, the 

interpretation and measurement of maize hardness can still be confusing and needs further 

investigation.  Nonetheless, the hardness of maize is important when determining the processing 

settings, such as for dry-milling.  Similar to other grains, maize kernel hardness is principally a 

genetic characteristic (Johnson & Russell, 1982), although environmental influences (Hamilton et 

al., 1951) and external factors such as postharvest handling (Peplinski et al., 1989) will also affect 

the hardness.  Maize (Zea mays L.) is anatomically made up of two types of endosperm, i.e. a harder 

(vitreous) endosperm situated to the outside of the kernel, and a softer (floury) endosperm found in 

the center of the kernel (Watson, 1987; Paiva et al., 1991). It is known that hard kernels are favoured 

by industry as hard maize produces greater yield and a higher quality meals and grits than soft maize 

(Lee et al., 2007). 

There are many methods available to determine maize hardness, as extensively reviewed by 

Fox and Manley (2009).  Yet, it is not clear which method best describes hardness.  It is even more 

difficult to decide on a method that best describes milling quality.  In this study, the samples were 

ranked according to their milling performance as measured during the actual milling process, 

although on pilot plant-scale.  The outcome of good milling is indicated by a small percentage of 

hominy chop. Hominy chop (comprising the pericarp, tip cap, germ and some endosperm) is of lesser 

value than maize meal and grits and predominantly used as animal feed. Maize that mill poorly 

delivers a larger percentage chop (%chop) as soft endosperm is also included into the chop.   

Percentage chop is therefore used as an indication of the milling quality of maize, although it is not 

a recognised hardness measurement method as such.  In this study, the relationship of %chop to 

other conventional hardness methods was investigated.  These conventional methods were chosen 

to include many different descriptors, i.e. density, size and soundness (hectoliter mass and hundred 

kernel mass), particle size or breakage susceptibility (particle size index and near infrared 

absorbance) and quality properties (protein content and near infrared hyperspectral imaging). 

Great financial losses experienced in the Australian wheat industry in the 1980’s lead to the 

development of the Rapid Visco Analyser (RVA) (Ross et al., 1987).  This viscometric method has 

since found meaningful applications in a vast range of applications, especially in grain science due 

to the large amount of starch present in cereals (Doublier et al., 1987; Agu et al., 2006).  The RVA 

measures the viscosity developed with hydration and subsequent gelatinisation of starch granules 

during heating and stirring in excess water (Almeida-Dominguez et al., 1997).  It has been reported 

that the RVA can be used to quantify maize hardness differences between maize hybrids (Yamin et 

al., 1999; Seetharaman et al., 2001; Ji et al., 2003; Sandhu & Singh, 2007).  This was due to hard 
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maize producing mainly coarse particles when milled, and soft maize smaller particles (Almeida-

Dominguez et al., 1997).  Coarse particles have slower water diffusion, limited swelling of the starch 

granules and slow viscosity development (Sahai et al., 2001; Narváez-González et al., 2006).  

Smaller particles have bigger surface areas that result in better and more rapid hydration, thus better 

gelatinisation and higher viscosity (Almeida-Dominguez et al., 1997).  Furthermore, hard kernels 

show a more prominent protein-to-starch adhesion effect compared to soft kernels (Almeida-

Dominguez et al., 1997).   The protein matrix of vitreous endosperm is thicker than that of floury 

endosperm (Wang & Eckhoff, 2000), and forms a barrier that slows hydration and gelatinisation 

(Almeida-Dominguez et al., 1997; Narváez-González et al., 2006).   

Based on these considerations, determination of the usefulness of the RVA as a hardness 

descriptor was a key concern in the current study.  With this aim, RVA viscograms were recorded on 

different maize samples which were also quantified and characterized for hardness by the seven 

conventional (reference) methods. The objective was to define whether it was possible to obtain 

information about properties (such as density, breakage susceptibility and protein content), that are 

commonly associated with hardness, from RVA curves obtained through single measurements.  In 

order to analyse such a complex data set, the use of appropriate chemometrics techniques was 

required.  At first, principal component analysis (PCA) was used to achieve a better understanding 

of the relations among the seven reference methods. Subsequently, the use of a non-linear 

regression technique, i.e. locally weighted partial least squares (LW-PLS) regression (Centner & 

Massart, 1998; Bevilacqua et al., 2012) was used to build a regression model to predict  maize 

hardness from the RVA curves. This was done for all seven reference methods individually.  

 

Materials and methods 

Maize samples 

Nineteen pure hybrids of South African white maize, originating from maize breeding trials, were 

used.  These hybrids, kindly supplied by PANNAR Seeds (Greytown, South Africa) came from three 

localities (Greytown, Delmas and Klerksdorp, South Africa) and two plantings in 2012 (early and 

late).  A local farmer from Schweizer-Reneke also supplied some of the samples, resulting in a total 

of 49 samples.  Before being milled, the samples were stored at ambient temperature in sealed 

plastic containers.   
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Methods 

Pasting properties (acquisition of RVA data) 

Maize samples were milled using a hammer type cyclone Laboratory Mill 3100 (Perten, Hägersten, 

Sweden) fitted with a 1 mm sieve.  Milling was conducted on the same day as moisture content 

determination and RVA measurement.  The moisture content of the milled maize samples was 

determined prior to RVA analysis according to a method used by Emvula (2012) which is an adapted 

method of the AACC modified vacuum oven method (AACC, 1999a). 

     Pasting properties of maize were determined using a Rapid Visco Analyser (RVA) model 4500 

(Perten Instruments, Australia).   Distilled water (25 ± 0.01 g) was added to the milled maize (3 ± 

0.01 g, db) in an aluminium RVA canister to obtain a total constant sample weight of 28 ± 0.01 g.   

The masses of the dH2O and maize were adjusted (± 0.01 g) to compensate for the differences in 

moisture content of each sample.   In all the tests a moisture level of 15% was maintained, resulting 

in a relative high solid percentage.   Clumping was prevented by stirring with a plastic paddle after 

which pre-programmed profiles were initiated.   

The three profiles used to capture rheological information (RVA curves) were:  a soft maize profile 

(Almeida-Dominguez et al., 1997), a standard profile (AACC, 1999c) and a hard maize profile 

(Almeida-Dominguez et al., 1997). The respective holding times, heating rates and final 

temperatures used are summarised in Table 3.1. 

 

Table 3.1 Details of the RVA soft, standard and hard maize profiles (temperature and time) 

Stage Soft maize profile Standard profile Hard maize profile 

Initial temperature (°C) 50 50 50 

Initial holding time (min) 2:00 1:00 2:00 

Heating time (min) 4:30 3:42 19:00 

Max temperature (°C) 95 95 95 

Hold at max temperature 

(min) 

4:30 2:30 4:00 

Cooling time (min) 4:00 3:48 - 

Final temperature (°C) 50 50 95 

Final holding time (min) 10:00 2:00 2:00 

Total test time (min) 25:00 13:00 27:00 

 

For each of the tests, viscosity (cP), temperature (°C), speed (rpm) and the heat-cool ratio were 

recorded every four seconds, therefore generating for each sample three measurement vectors of 

376 (soft profile), 196 (standard profile), and 406 (hard profile) data points, respectively. The resulting 
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curve, reporting the viscosity (sometimes together with the temperature ramp, for the sake of better 

clarity) as a function of time, is called a viscogram. All the RVA tests were done in triplicate.       

  

Determination of maize hardness by conventional reference methods  

Seven conventional methods were used to explain the differences in kernel hardness:  hectoliter 

mass (HLM), hundred kernel mass (HKM), protein content, %chop, particle size index (PSI), NIR 

hyperspectral imaging (percentage vitreous endosperm, %VE) and NIR absorbance value at 2230 

nm.   

 

Hectoliter mass 

The HLM of the samples was determined using a German Kern 220/222 Grain Sampler (KERN & 

SOHN GmbH, Balingen-Frommern, Germany).  The sampler was placed on a firm, non-flexible, 

vibration-free horizontal base.  The scraper blade was inserted in the empty 1 L measuring container.  

The pre-filling measure was filled to the marked level with the maize.  It was then emptied within 3 

or 4 cm from the upper edge of the filling hopper in such a way that the maize could flow evenly into 

the middle of the filling hopper in 11 to 13 s.  After filling, the straight edge was quickly pulled out, 

but without shaking the equipment.  When the piston and the maize have fallen into the measuring 

container, the straight edge was placed back in the slit and pushed through the maize in a single 

stroke. If a kernel became jammed between the slit edges, the pouring was repeated.  The excess 

maize lying on the straight edge was thrown out.  The filling hopper and straight edge was removed.  

The maize was weighed (in g) and the HLM was read from the conversion chart supplied with the 

device in kg.hL-1.  This test was done in duplicate at the research and development facility of Sasko 

(Essential Foods, Division of Pioneer Foods (Pty.) Ltd., Paarl, South Africa).  

 

Hundred kernel mass 

The HKM of the samples was determined using an industry accepted method that provides a 

measure of grain size and density.  One hundred whole maize kernels were obtained using a 

Numigral Seed Counter (Chopin Technologies, France) and weighed in grams.  These 

determinations were done in triplicate at the research and development facility of Sasko (Essential 

Foods, Division of Pioneer Foods (Pty.) Ltd., Paarl, South Africa). 

 

Protein content      

The protein content was determined using the official method for crude protein (Dumas method) 

(AACC, 1999b).  A LECO TruMac N (LECO Corporation, Saint Joseph, Michigan, USA) was used, 

which is a macro combustion nitrogen determinator that utilises a pure oxygen environment in a 

ceramic horizontal furnace operating at a high temperature (1200 ºC).  Protein content was 

determined at 12 % moisture base (mb), and the results were expressed as nitrogen multiplied by 

the protein factor of 6.25.  Duplicate determinations were done and the averaged results were used. 
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Protein content results were kindly supplied by Sasko (Essential Foods, Division of Pioneer Foods 

(Pty.) Ltd., Paarl, South Africa). 

 

Percentage chop 

The %chop was determined using a pilot plant scale de-germer and maize mill.  De-germed maize 

was subjected to the milling process and the chop (combination of pericarp, germ and to a lesser 

extent endosperm) was calculated as a percentage of the total mass of the maize.   The observed 

trend, when using this method, indicated that maize with a %chop below 22% was good milling 

maize, between 22% and 25% was good intermediate, between 26% and 30% was poor 

intermediate and above 30% was poor milling maize. Only single determinations were done. Results 

were kindly supplied by Sasko (Essential Foods, Division of Pioneer Foods (Pty.) Ltd., Paarl, South 

Africa). Due to the sensitivity of the data, the method cannot be described in detail. 

 

Particle size index 

The PSI method was used to differentiate between hard and soft maize samples. The samples were 

milled using a hammer type cyclone Laboratory Mill 3100 (Perten, Hägersten, Sweden) fitted with a 

1 mm sieve.  A two sieve method was used, where a 150 µm sieve was placed on a 75 µm sieve, 

fitted with a receiving pan (O'Kennedy, 2011). The pans and sieves (Retsch, Haan, Germany) were 

stacked on top of each other and placed in a Retsch AS 200 Tap Sieve Shaker for 10 min (Retsch, 

Haan, Germany).  Three fractions, PSI1 (particles > 150 µm), PSI2 (particles < 150 µm, but > 75 µm) 

and PSI3 (particles < 75 µm) were determined.   The higher PSI1 the harder the kernels; high PSI2 

and PSI3 values indicate soft kernels.  In addition, the ratio between larger (PSI1) and smaller particle 

sizes (PSI2 + PSI3) was calculated to give a course over fine (c/f) ratio, where a higher number 

indicated harder samples (more dense) and vice versa.  The PSI measurements were done in 

duplicate. 

 

Percentage vitreous endosperm (%VE) 

 NIR hyperspectral images were acquired using an Umbio Inspector SWIR (short wave infrared) 

(Umbio AB, Umeå, Sweden) pushbroom hyperspectral imaging system.  The Umbio pushbroom 

imager comprised an imaging spectrograph coupled to a 2-D array Mercury-Cadmium-Tellurium 

detector. Line illumination was obtained with two arrays of quartz-halogen lamps with regulated 

current. The samples were scanned on a moving belt. Individual images were acquired with a 

spectral range of 1151 – 2199 nm with 6 – 7 nm spacing. Images were made with a width of 320 

pixels and variable length in 239 wavelength bands.  

Six to ten maize kernels per sample were placed germ-down (endosperm rich) onto a plastic 

sample holder (75 mm x 110 mm) fitted with double sided tape.  For each scanned sample an internal 

dark reference was measured. The external white reference was a Spectralon (ACAL BFi Nordic, 
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Uppsala, Sweden) strip measured just before the sample. The sample holders were put on the 

moving belt with the longest dimension in the direction of the movement. 

The raw images were processed in Evince 2.5.5 (Umbio, Umeå, Sweden), converted to 

absorbance using the individual white and dark reference files and cleaned from unnecessary 

background. Absorbance images were subjected to PCA for further cleaning.  PCA score plots, as 

well as the PCA score images, were used to identify outliers, bad pixels, illumination and shading 

errors, edge effects and background. Due to the huge number of pixels in these images, criteria 

normally used for smaller data sets (such as residuals and Hotelling’s T2 values) were not used in 

this case.  Unwanted pixels were simply removed after visual inspection. PCA was recalculated using 

6 PCs and all pairwise combinations of PC 1 to PC 6 were examined for any further pixel outliers.  

Outliers are usually found in the first two components, but after removal of the most obvious outliers, 

more components may be needed for further analysis.  Six PCs were used for recalculating the 

models in order to obtain the best suited image for mosaic creation.  No data pre-treatment (except 

mean centering) was used as multiplicative scatter correction (MSC) as an example of a pre-

treatment method, would reduce information relating to scattering effects or differences which were 

necessary for this study.  

A mosaic of the images of the samples was constructed.  A mosaic is a number of images merged 

into a new single image.  No pre-treatment was used and PCA was applied after mean centering. 

PCA score plots and images were used interactively to assign pixels (i.e. individual spectra) to 

endosperm (floury and vitreous) and non-endosperm (germ and pedicle) regions. After exclusion of 

the non-endosperm regions, PCA was re-applied. Two distinct clusters were observed in PC 1 vs 

PC 3 and these regions were identified as representing the respective endosperm types, i.e. vitreous 

and floury endosperm.  The method of identification was based on selecting groups of points within 

the score plot and observing where the pixels were located within the score image. Two classes 

were subsequently created and the number of pixels within each class was determined for each 

individual kernel. The pixel counts were expressed as a percentage floury endosperm (%FE) and a 

percentage vitreous endosperm (%VE). Only the %VE results were used in this study as a measure 

of kernel hardness. 

 

NIR absorbance at 2230 nm  

This method, proposed  by Downey et al. (1986), makes use of a wavelength (2230 nm), where 

reflectance is effectively independent of the samples’ composition, but varies only with regards to 

the milled samples’ particle size.  Therefore, maize samples were ground using a hammer mill 

(Retsch, Haan, Germany) fitted with a 0.8 mm sieve.  A BÜCHI NIRFlex N-500 Fourier transform 

near-infrared (FTNIR) spectrophotometer (BÜCHI Labortechnik GmbH, Flawil, Switzerland) with 

NIRLabWare (version 3.0) (BÜCHI Labortechnik GmbH, Flawil, Switzerland) near infrared (NIR) 

measurement software was used to perform the measurements of the ground maize samples in 

diffuse reflectance mode.  The samples were presented to the instrument in rotating glass Petri 

Stellenbosch University  https://scholar.sun.ac.za



42 
 

dishes, and the NIR spectra were collected from 1100 to 2500 nm (9090-4000 cm-1) at an optical 

resolution of 32 cm-1.  The raw spectra (no pre-treatment) were used to measure the absorbance 

(log 1/R) at 2230 nm.  Hardness values were derived by the following equation:   

Hardness = a + b(log 1/R) 

Values for a = -40 and b = 100 were selected arbitrarily to produce a scale of hardness from 0 to 15.  

 

Chemometrics and statistical data analysis   

Statistical analysis 

Spearman’s rank correlation coefficients were used to test the strength of the relationships between 

pairs of conventional methods (HLM, HKM, PSI, %VE, protein content, %chop and NIR at 2230 nm) 

in a bivariate fashion.    

 

Principal component analysis 

PCA reduces large data sets into fewer principal components (PCs) which are then used in the 

model.  PC scores images and scores plots were used interactively to investigate samples for special 

features or irregularities and the observed explained variation studied by means of the 

accompanying PC loadings plots.  The seven conventional methods (HLM, HKM, PSI, %VE, protein 

content, %chop and NIR at 2230 nm), used to assess the maize hardness, were compared using 

PCA to gain a holistic view of the entire reference data set.   

 

Locally weighted partial least squares regression 

When non-linearities in the relation between responses and predictors occur (due to, e.g. clustering 

of the samples or different sub-populations), the global linear calibration models do not fit data 

correctly, leading to biased predictions.  One way of dealing with this problem is to use a locally 

weighted (LW) regression approach (Martens & Næs, 1985)  where, for each new sample to be 

predicted a local model is developed based on its nearest neighbours, i.e. the calibration objects 

nearest to it.  In this case, the use of LW regression based on partial least squares (PLS) (Wold et 

al., 1983) using Euclidean distances on the original space variables and a uniform weighted scheme 

for the sample, was employed, as suggested by Centner and Massart (1998).  In order to perform 

such a regression (LW-PLS2) for every new object (test), a different local calibration model must be 

built using only a defined number of closest samples, called nearest neighbours (nlocal). To estimate 

the optimal number of neighbours to be considered in local modeling, together with the appropriate 

number of latent variables, a cross-validation procedure is normally used. 

 The hardness results from HLM, HKM, PSI, %VE, protein content, %chop and NIR at 2230 nm 

where used as reference when RVA viscograms were used to predict the same hardness 

descriptors. To present the results, error measures have been used, i.e. root mean square error of 

cross-validation (RMSECV) and root mean square error of prediction (RMSEP).   
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Software 

Correlation analysis was performed using Microsoft Excel 2010 (Microsoft Corporation, Seattle, WA). 

Chemometric data processing was carried out by means of in-house functions and PLS Toolbox v 

7.02 (Eigenvector Research Inc., Wenatchee, WA) running under MATLAB 2012b environment (The 

MathWorks, Natick, MA, USA). 

  

Results and discussion 

Descriptive statistics of the seven hardness related reference methods are summarised in Table 

S3.1.   

 

PCA and correlations 

A PCA model was built on the Y-block (reference data) to check for correlations and any possible 

relations between these variables (hardness methods).  To account for the hardness indices being 

measured with different number of replicates (some in triplicate, some in duplicate and the remaining 

singular), the reference values for the respective hardness measurements (that was used for the 

PCA model) was taken as the averages of the respective number of replicates for each sample.  

 From the loadings plot (Fig. 3.1a) it can be seen that all the hardness measurement methods 

investigated were important in defining the characteristics of the samples, since no variables were 

lying in the center of the plot.  At the same time, the PCA models showed that most of the reference 

methods correlated with each other, with respect to maize hardness properties.  In particular, it can 

be observed how strongly correlated the variables in the rightmost part of plot (NIR, %VE, HLM and 

HKM) were and how they were negatively correlated with %chop. All these considerations were 

confirmed by the Spearman’s rank correlation coefficients (Table 3.2). 

     Since, among these variables %chop is the more related to the actual quality of the milling 

process it was considered in this study as the true measure for milling quality.  This assumption, and 

the practicality of %chop as reference method, was confirmed by the scores plot of the PCA model 

(Fig. 3.1b).  In Figure 1b the dots have been coloured according to increasing (from blue to red) 

values of %chop.  The progressive spread of the samples along the diagonal of the plot (thus both 

PCs 1 and 2 required to explain the direction of variation) can be seen as a further confirmation of 

how the samples differed in milling quality, and how all the variables shown in the PCA loadings plot 

(Fig.3.1a) contributed to describe this overall quality.  

It can be seen from the histograms of the distribution of the reference data (Fig.S3.1) that for 

most of the variables, the values do not follow a normal distribution around their mean values.  It is 

possible to clearly identify two different populations among the samples, in particular for %chop and 

PSI. These considerations led to the hypothesis of the presence of strong non-linearities in the data 

that could hinder the use of a linear method for building a regression model among the RVA curves 

and the reference values for maize kernel hardness. 
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Table 3.2. Spearman’s rank correlation coefficients for the conventional reference hardness methods results 

 
HKM 

 
Protein 

 
%chop 

 
PSI (c/f) 

 
%VE 

 

NIR @ 
2230 nm 

 

HLM 

 
0.58 

 
0.40 

 
-0.71 

 
0.38 

 
0.77 

 
0.75 

 
HKM 

  
0.27 

 
-0.43 

 
0.72 

 
0.81 

 
0.86 

 
Protein 
   

-0.51 
 

0.11 
 

0.44 
 

0.48 
 

%chop  
    

-0.33 
 

-0.55 
 

-0.61 
 

PSI (c/f) 

     
0.63 

 
0.69 

 
%VE 

      
0.84 

 
HLM: Hectoliter mass (g.hL-1) 

HKM: Hundred kernel mass (g) 

Protein: Protein content (Dumas method) % 

PSI (c/f):  Particle size index (coarse over fine ratio) 

%VE: % vitreous endosperm as determined using NIR HSI 

NIR @ 2230 nm: Near infrared spectroscopy (hardness index) 

 

Based on observations made during unsupervised inspection of the reference methods 

(variables) by means of PCA loading and scores plots and the Spearman’s rank correlation 

coefficients, the correlation structure of the Y-block (reference data) had to be taken into account. 

This indicated the need to use partial least squares – and, in particular the PLS2 algorithm – for 

building the regression models.  To be able to deal with non-linearities among the reference data, a 

regression approach based on local modeling was chosen for the analysis.  Therefore, the relation 

between the results of conventional hardness descriptors and RVA profile was expressed by means 

of a locally weighted-PLS2 approach.   

 

RVA curves as hardness descriptor 

In addition to the conventional methods, the RVA was investigated as another method to describe 

maize hardness.  When using the RVA, the profile (length, heating and cooling rates, holding time) 

will influence the results.  Therefore, three different profiles have been compared to determine an 

optimum profile for describing hardness.  As expected, all three profiles resulted in different 

viscograms (Fig. 3.2a). 

Hardness differences were evident for all three of the profiles. For example, from the standard 

profile variation in peak viscosity values (equilibrium point reached between viscosity increase or 

swelling and decrease or rupture) could easily be observed (Figs. 3.2b-2c).  The hydration and 

gelatinisation process of starch from hard maize is slower than that of soft maize due to the thicker 

protein network present within hard maize (Wang & Eckhoff, 2000; Narváez-González et al., 2006).   
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(a) 

 

(b) 

 

 

Figure 3.1. (a) Loading of the PCA on the Y block. (b) Score plot on the Y block.  The dots are coloured as a 

function of the increasing %chop value. (HLM = hectoliter mass, HKM = hundred kernel mass, Prot (Dumas) 

= protein content, PSI (c/f) = particle size index (coarse/fine), %VE = % vitreous endosperm, NIR @ 2230 nm 

= near infrared absorbance at 2230 nm). 
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 (a) 

 

                         (b) 

 

                           (c) 

 

Figure 3.2.  (a) RVA viscograms of a random maize sample, using the soft, standard and hard maize profile.  

(Green line = temperature; blue line = viscosity). (b) Viscograms using the standard profile for 3 hard (red 

curves) and 3 soft (blue curves) maize samples and (c) zoomed in to illustrate variability in peak viscosities. 
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The RVA curve data of all three the profiles showed promising results for RVA to be used for 

hardness characterisation and was subjected to further multivariate data analysis (chemometrics). 

 

Quantification of hardness properties in maize samples 

The collected RVA curves were pretreated with multiplicative scatter correction (Geladi et al., 1985).  

The pretreated RVA viscograms were then used to build calibration models to predict the same 

hardness properties as those determined by the conventional methods. The correlations among the 

reference methods and the presence of non-linearities in the RVA data suggested the use of a non-

linear method that can also take into account the correlation structure of the Y-block.  For this reason, 

a LW-PLS2 approach was used to compute the regression models. This entailed correlating each of 

the three different RVA profiles to each of the seven conventional reference methods used to 

characterise maize hardness. In particular, LW-PLS2 regression was implemented using Euclidean 

distance to identify the neighbouring samples and a uniform weighting scheme (Bevilacqua et al., 

2012).  

     The optimal number of nearest neighbours and the optimal complexity of the PLS2 models have 

been chosen during a cross-validation procedure, i.e. choosing the numbers of these parameters as 

the ones leading to the minimum averaged RMSECV for the seven reference methods considered. 

 Since, for each RVA profile, three different analytical replicates have been collected for each 

sample, each of those had been considered as an individual measurement in building and validating 

the regression models.  However, to be sure of not being prone to over-fitting when performing the 

cross-validation for model optimisation, the three measurements of each sample were always left 

out together. Leave-one-out cross-validation approach is normally used in LW-PLS2 regression to 

select the best number of nearest neighbours and latent variables, but in this case this would not 

represent the analytical replicates and thus the validation would not be performed at the correct level.  

Accordingly, in the present study, to deal with the presence of replicate measurements and to limit 

the risk of over-fitting, an alternative bootstrap-like scheme for cross-validation was adopted.  At 

each splitting iteration 20% of the samples were randomly selected and left out as the cross-

validation set (keeping together all the replicates corresponding to the same samples). For the 

training set, resampling with repetitions was adopted as occurs in the bootstrap procedure: a random 

subset of the samples not selected in the cross-validation set was chosen to constitute the training 

set, allowing the possibility of being selected multiple times.   This was done to have all the samples 

included in the calibration and for a proper estimation of the optimal number of nearest neighbours. 

In this study, the procedure had been repeated 500 times in order to compute the average prediction 

error based on which model parameters were optimised. 

Using the developed regression method, a different model for each RVA profile was computed, 

and each resulted in an error surface fit (Fig. S3.2), where the RMSECV is reported as a function of 

the latent variables and the number of nearest neighbours.  Based on the results in cross-validation, 

the optimal number of latent variables was set at 1 for all three the RVA profiles and the number of 
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nearest neighbours at 100 for the soft and standard profile, and 71 for the hard profile. The difference 

in milling quality could be considered as one of the factors that introduce a non-linear response.  

Therefore, once the PLS model became linear in the local space of the nearest neighbours, the 

impact of this source of variability was limited, if not absent. This was consistent with the observation 

that in LW-PLS only 1 LV was selected for the local models. The corresponding RMSECV for each 

of the models are summarised in Table 3.3. 

 Optimisation of the regression model required the selection of the number of nearest neighbours 

and latent variables on the basis of the minimum error in cross-validation. In spite of the limited 

number of samples available, the data set was split into a training and test set to account for an 

external validation of the results. For this purpose, and also to take into account that the same test 

samples should be used to validate the predictions for each of the three RVA profiles, an ad hoc 

procedure based on the duplex algorithm was used for representative splitting.  A duplex algorithm 

(Snee, 1977) was run on each of the data sets with a splitting ratio of 7:1. The relatively high splitting 

ratio was chosen, given the overall number of samples, to have enough training objects to build a 

reliable non-linear model. The need to adopt a non-linear approach required a higher number of 

training samples than what would have been necessary when using standard PLS regression. An 

intelligent criterion based on the duplex algorithm was adopted to choose the samples to be included 

in the test set. This included the same diversity as the training data, in order to limit the bias toward 

over-optimistic results. All the samples which were selected at least twice were included in the final 

test set. Accordingly, 41 samples constituted the training set and the remaining 6 were left out as 

external validation samples.  For the three RVA profiles and the seven conventional hardness 

methods the LW-PLS2 prediction statistics for cross- and external validation are summarised in 

Table 3.4. 

     The RMSECV and RMSEP obtained when the RVA regression models were used to predict the 

reference values were quite low. They were often lower than those of the respective analytical 

reference methods. Although the seven Y variables all express hardness, each of them is based on 

a particular instrumental determination, with different associated errors and produces a result which 

is defined on a different scale. The order of magnitude of the errors would thus be expected to differ. 

Similar results were obtained when estimating the RMSEP in double cross-validation. When the 

same accuracy could not be reached, the errors of the RVA regression methods were always 

comparable with the laboratory errors of the reference methods. In particular, the developed RVA 

regression models allowed higher accuracies than those associated with the reference data for HLM 

and HKM, for which an error of 2.0 g.hL-1 and 4.0 g can be expected (Voca et al., 2009).  The PSI 

method can be associated with a laboratory error of 2.24% (Manley et al., 2002) although this error 

was reported for mean PSI results and not the ratio between the PSI fractions as in this study.     

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



49 
 

Table 3.3. RMSECV results for the conventional hardness methods, using three different RVA profiles. 

 

 

HLM HKM Protein %chop PSI (c/f) %VE 

NIR @ 

2230 nm 

RVA Soft 

profile 

 

0.8 3.54 0.39 1.71 0.49 3.69 1.52 

RVA 

Standard 

profile 

 

 

0.82 3.37 0.38 1.7 0.47 3.53 1.45 

RVA 

Hard 

profile 

 

 

0.83 3.71 0.36 1.79 0.52 3.78 1.65 

HLM: Hectoliter mass (g.hL-1) 

HKM: Hundred kernel mass (g) 

Protein: Protein content (Dumas method) % 

PSI (c/f):  Particle size index (coarse over fine ratio) 

%VE: % vitreous endosperm as determined using NIR HSI 

NIR @ 2230 nm: Near infrared spectroscopy (hardness index) 

   

Table 3.4. LW-PLS2 prediction statistics for cross-validation (n = 41) and external (n = 6) validation for the 

conventional hardness methods, using the three RVA profiles 

 RVA soft profile RVA standard profile RVA hard profile 

 RMSECV RMSEP RMSECV RMSEP RMSECV RMSEP 

HLM 0.91 1.5 0.92 1.45 0.9 2.09 

HKM 3.74 3.78 3.81 3.92 4.09 4.94 

Protein 0.45 0.35 0.43 0.36 0.42 0.28 

%chop  1.87 1.9 1.91 2.1 1.91 2.75 

PSI (c/f) 0.54 0.62 0.58 0.64 0.58 0.82 

%VE 4.15 6.52 4.46 6.55 4.48 7.78 

NIR @ 

2230 nm 

1.64 1.99 1.74 1.89 1.84 2.84 

HLM: Hectoliter mass (g.hL-1) 

HKM: Hundred kernel mass (g) 

Protein: Protein content (Dumas method) % 

PSI (c/f):  Particle size index (coarse over fine ratio) 

%VE: % vitreous endosperm as determined using NIR HSI 

NIR @ 2230 nm: Near infrared spectroscopy (hardness index) 
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At the same time, the method under study enabled an objective measure of the %VE whose 

reference method is known to be very subjective to the operator and, consequently, affected by a 

high uncertainty of the results.  On the contrary, the Dumas protein method is known to be very 

accurate and reproducible with an expected error of 0.2%. The accuracy of the %chop reference 

method has been found to be 0.6%, by repeating the same measure 7 times. It should, however, be 

stressed that this method requires big and expensive equipment, large samples and is also time-

consuming.  The method proposed in this work allows an accurate estimation (with only a slightly 

higher error) of the same parameters without any further measure.  NIR absorbance values at 2230 

nm were only single measurements with no known errors. 

 These results confirm the assumption that the RVA viscograms used with chemometrics offer an 

easy and simple way to predict the hardness of maize samples which can be related to milling quality. 

The results obtained from the three respective profiles did not differ. Irrespective of the RVA profile 

prediction of hardness properties should be possible. 

 Finally, as a further validation, a hybrid double cross-validation procedure was followed to assess 

whether the model could also be applicable to the crops harvested in different locations. Four 

cancelation groups were considered, each corresponding to a different geographical location.  To 

take into account the relatively low number of samples available, each of the different locations was 

in turn selected to constitute the external validation set. The remaining samples were used to build 

the model, whose optimal complexity and dimension of the local neighbourhood were estimated 

according to a bootstrap procedure similar to that described earlier. 

 The prediction errors obtained by this procedure are summarised in Table S3.2.  These results 

are comparable to those obtained from the use of a single representative test set (Table 3.4) and 

also to the results of the internal validation only (Table 3.3). This suggests that the proposed 

approach could be in principle applicable also to samples coming from different locations.  

 

Conclusion 

This study attempted to provide a solution to the problem of selecting the most appropriate method 

that best describe maize hardness milling quality.  The different conventional methods were all 

shown to contribute towards describing hardness with %chop being the most appropriate to 

determine milling quality. The RVA was shown as being useful, not only for describing pasting 

properties of starch, but also to characterise maize hardness. Using LW-PLS2 regression, calibration 

models were developed that predicted the conventional hardness methods with accuracies lower or, 

at least, comparable to the laboratory error.  Using different RVA profiles did not influence the 

RMSECV and RMSEP results thus, any RVA profile could be used to predict the hardness of maize 

samples once a regression model has been developed and appropriately validated.   
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Supplementary material: 

 

 

Figure S3.1.  Histograms of the distribution of the values for each variable. (HLM = hectoliter mass, HKM = 

hundred kernel mass, Protein = protein content (Dumas method) %, PSI (c/f) = particle size index (coarse/fine), 

%VE = % vitreous endosperm, NIR @ 2230 nm = near infrared spectroscopy (hardness index). 
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Figure S3.2.  LW-PLS2 modeling: plot of the error surface, reporting the RMSECV of the model built with the 

RVA curves for the standard profile as a function of the number of nearest neighbours and the number of latent 

variables, used for the selection of optimal model parameters. 
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Table S3.1. Descriptive statistics of the conventional reference hardness methods results 

 Unit n Range Mean SD 

Hectoliter mass g.hL-1 48 71.9 – 81.7 77.05 2.18 

Hundred kernel mass g 49 20.7 – 46.7 36.13 0.58 

Protein content % 45 6.6 – 12.1 8.13 1.14 

Chop content % 49 19 – 34.33 22.55 4.19 

Particle size index 

(coarse/fine) 

 49 0.9 – 3.9 1.9 0.86 

Vitreous endosperm 

content 

% 49 5.59 – 46.49 23.17 9.78 

NIR absorbance at 2230 nm  49 0 – 13.68 6.97 3.84 

 

  

Stellenbosch University  https://scholar.sun.ac.za



57 
 

Table S3.2. LW-PLS2 prediction statistics for the conventional hardness methods, using the three RVA 

profiles, as estimated by double cross-validation across the four localities 

 Unit RVA soft profile RVA standard 

profile 

RVA hard 

profile 

  RMSEP RMSEP RMSEP 

Hectoliter mass g.hL-1 1.66 1.65 1.79 

Hundred kernel mass g 3.91 4.01 5.02 

Protein content % 0.37 0.36 0.32 

Chop content % 1.93 2.15 2.97 

Particle size index 

(coarse/fine) 

 0.63 0.70 0.81 

Vitreous endosperm content % 6.49 6.80 7.98 

NIR absorbance at 2230 nm  1.87 1.97 2.87 
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Chapter 4 

Non-destructive estimation of maize (Zea mays L.) kernel hardness by means 

of an X-ray micro-computed tomography (µCT) density calibration* 

 

Abstract 

An X-ray micro-computed tomography (µCT) density calibration was constructed for whole maize 

(Zea mays L.) kernels from polymers ranging in absolute densities from 0.9 to 2.2 g.cm-3. The 

resulting linear equation was used to estimate the densities of two regions-of-interest, i.e. vitreous 

and floury endosperm, as well as that of the entire maize kernel. The sample set comprised 16 maize 

kernels (8 hard and 8 soft).  Validation of entire kernel density was performed by comparing 

estimated and measured (actual) masses (r = 0.99; standard error of measurement = 0.01 g).  In 

addition percentage cavity (%cavity) and percentage porosity (%porosity) were quantified from the 

X-ray images. As determined with ANOVA, floury, vitreous and entire kernel endosperm densities 

as well as %cavity and %porosity significantly (P < 0.05) contributed to the variation within the 

hardness classes. Hardness classification was attempted using a receiver operating characteristic 

(ROC) curve. Threshold values of 1.48 g.cm-3, 1.67 g.cm-3 and 1.30 g.cm-3 were determined for the 

entire kernel, vitreous and floury endosperm densities, respectively at a maximum of 100% sensitivity 

and specificity. Classification was possible from % porosity values of the entire kernel, which are 

easier to determine, at 88% accuracy. Efficient maize kernel hardness classification is required by 

the dry-milling industry when maize is milled into a meal and used as a food source. Optimum quality 

and yield can only be obtained during the milling process if maize of appropriate hardness is used 

as raw material.  

 

 

 

 

 

 

 

 

 

 

*Submitted for publication as: Guelpa A, Du Plessis A, Kidd M & Manley M (2014). Non-destructive estimation of maize 

(Zea mays L.) kernel hardness by means of an X-ray micro-computed tomography (µCT) density calibration.  Food and 

Bioprocess Technology. 
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Introduction 

Maize (Zea mays L.) is a vital source of energy and one of the most important dietary staple foods 

globally.  It is used for human consumption in different forms, from specialised foods in developed 

countries to staple food in undeveloped countries (Malvar et al., 2008).  Maize is predominantly 

processed into maize meal using dry-milling, comprising milling into different particle sizes, after de-

germing (removal of germ and pericarp).   

Two types of endosperm, vitreous and floury, are present in maize kernels (Watson, 1987; Paiva 

et al., 1991).  The vitreous endosperm is harder, of higher density, more translucent and situated to 

the outside of the kernel, whereas the floury endosperm is softer, of lower density, mealy textured 

and found in the center of the kernel (Watson, 1987; Paiva et al., 1991).  Due to the starch granules 

of the floury endosperm being less compacted, many intergranular air spaces are present. These 

are absent in vitreous endosperm (Robutti et al., 1974; Dombrink-Kurtzman & Knutson, 1997).  

Furthermore, cavities (or cracks) exist within maize kernels (Chang, 1988; Huber & BeMiller, 1997; 

De Carvalho et al., 1999; Huber & BeMiller, 2000; Gustin et al., 2013), predominantly due to 

dehydration when the endosperm collapses to leave relative large air spaces. It is thus apparent that 

the microstructure of the endosperm types present in maize kernels differs.   

Hard maize kernels have better milling quality (resulting in a higher milling yield) compared to 

softer maize.  Many methods have been used since the 1950’s to determine the hardness of maize.  

These methods have been extensively reviewed by Fox and Manley (2009) and include measuring 

resistance to grinding and abrasion (Lee et al., 2007); yield of grits (Wu, 1992); starch gelatinisation 

properties (Almeida-Dominguez et al., 1997); as well as determination of particle size index (PSI) 

subsequent to grinding and sieving (Pomeranz et al., 1984; Wu, 1992). The use of near infrared 

(NIR) reflectance and NIR transmittance spectroscopy have also been widely investigated 

(Pomeranz et al., 1984; Robutti, 1995; Eyherabide et al., 1996).  Other methods include hand 

dissection which determines the ratio of vitreous and floury endosperm and machine vision 

technology for non-destructive classification of maize kernels (Erasmus, 2003).  Near infrared 

hyperspectral imaging (NIR HSI) has been used to distinguish between individual maize kernels 

differing in hardness (Manley et al., 2009; Williams et al., 2009). It was also shown that NIR HSI 

could be used to classify maize kernels without the need for hardness reference data (McGoverin & 

Manley, 2012).  This was possible due to the spatial dimension, in addition to the spectral dimension, 

offered by NIR HSI.  Quality properties such  as protein, starch, fat and fiber contents (Blandino et 

al., 2010); kernel density (Blandino et al., 2010) and protein (zein) composition (Dombrink-Kurtzman 

& Bietz, 1993; Robutti et al., 1997) have also been used to characterise kernel hardness and thus 

dry-milling performance.  Density measurements were performed by means of a floating test where 

a variable density solution separated the kernels based on density differences (Blandino et al., 2010; 

Blandino et al., 2012).  A similar method, i.e. gas pycnometry was used to characterise genotypic 

and phenotypic diversity in maize (Siska & Hurburgh, 1995). 
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Micro-computed tomography uses the differences in X-ray attenuation arising principally from 

differences in density and atomic composition within the material (Chawanji et al., 2012; Zhu et al., 

2012; Cnudde & Boone, 2013).  For a particular material (at a specific energy) the X-ray attenuation 

is approximately proportional to the material’s density (Sinka et al., 2004). The main advantage of 

the X-ray µCT technique is the ability to perform non-destructive and non-invasive capturing of high-

resolution three dimensional (3-D) detail, thus visualising and characterising microstructural 

features.   

Measurement of density variation in pharmaceutical tablets (Sinka et al., 2004; Busignies et al., 

2006), wood test pieces (Lindgren et al., 1992), commercial plastics (Du Plessis et al., 2013) and 

compacted parts, i.e. ceramics (Burch, 2002) has been investigated using X-ray µCT.  In the case 

of pharmaceutical tablets compaction of the tablets may impact on efficient packaging and storage.  

This was effectively measured in terms of density variation using X-ray µCT (Sinka et al., 2004).  

Similarly, Meincken and Du Plessis (2013) observed the impact of forest fires on the decomposition 

of major chemical components in wood by determining the density and dimension of the wood 

samples. 

X-ray µCT has been successfully applied in food studies, i.e. Italian salami (Frisullo et al., 2009), 

mayonnaise (Laverse et al., 2012), cream cheese (Laverse et al., 2011b) and yoghurt (Laverse et 

al., 2011a). The microstructure of loose-packed and compacted milk powders has also been studied 

(Chawanji et al., 2012). The increasing number of X-ray imaging applications for food and agricultural 

produce have been illustrated recently in reviews by Donis-González et al. (2014) and  Kotwaliwale 

et al. (2011). X-ray µCT has been applied to whole grain rice specifically to study kernel structure of 

high-amylose and wild-type rice (Zhu et al., 2012).  The structure of porous cereal products (Van 

Dalen et al., 2007) and maize flakes (Chaunier et al., 2007) has also been evaluated.  The study of 

porous products is possible since X-ray µCT enables imaging of cavities and thus real density 

variations within a kernel; this is not possible with other imaging methods.  The development of a 

density calibration and subsequent measurement of densities have not been considered in these 

food studies, although a recent study by Gustin et al. (2013) demonstrated that individual kernel 

density and volume could be accurately measured using X-ray µCT. It is not clear how the latter 

measurements were made. It is assumed that the pycnometer was used as reference method. 

Gustin et al. (2013) showed that the embryo (germ) had little impact on overall kernel density and 

that grain fill showed a strong correlation with density.  The usefulness of single kernel near infrared 

(NIR) predictions of density and volume was also illustrated.  

X-ray µCT poses to be very useful when a region within a sample under investigation needs to 

be excluded (i.e. germ and cavities) non-destructively. X-ray µCT therefore allows for true 

determination of volumes and densities of desired regions-of-interest (ROIs). The most prominent 

maize kernel characteristics, along with size, that determines kernel quality are density which are 

closely related with kernel hardness (Lee et al., 2006).  Mestres et al. (1991) showed that maize 

hardness could be evaluated through density measurements with almost 90% accuracy. Similarly, 
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Wu and Bergquist (1991) reported that grit yield (an indicator of maize hardness) correlated with 

density (r = 0.89). 

This paper presents the application of an X-ray μCT density calibration to non-destructively 

estimate kernel hardness from calculated density, percentage porosity (%porosity) and percentage 

cavity (%cavity) of the entire maize kernel as well as that of the selected ROIs (vitreous and floury 

endosperm).  

 

Material and methods  

Maize samples 

Sixteen whole maize kernels (eight kernels from each hybrid) were randomly selected from two white 

maize hybrids, PAN6Q445B and H2D1 (not released as commercial hybrid as yet), differing in kernel 

hardness.  These two hybrids were chosen, as extremes based on hardness determinations, from a 

sample set of 49.  The hybrids originated from the 2012 harvest maize breeding trials and were 

kindly supplied by PANNAR Seeds (Greytown, South Africa). 

 

Polymers used for density calibration 

The polymers, used as calibration standards, were acquired from Maizey Plastics (Cape Town, 

South Africa) and each was cut into a cylinder of 10 mm thickness and 25 mm diameter.  These 

polymers included:  polytetrafluoroethylene (PTFE) (2.15 g.cm-3); sustanat polycarbonate (PC) (1.2 

g.cm-3); ultra-high molecular weight polyethylene (UHMW PE) (0.92 g.cm-3); polypropylene (PP) 

(0.91 g.cm-3); high density polyethylene (HDPE) (0.91 g.cm-3); polyethylene terephthalate (PET) 

(1.38 g.cm-3); and sustarin C acetal / nylon (1.15 g.cm-3) (Du Plessis et al., 2013). The polymers used 

to construct the linear density calibration were selected as such that their densities (0.9 to 2.2 g.cm-

3) overlapped with typical densities of whole maize kernels (ca. 1.18 to 1.36 g.mL-1) as determined 

with the floating test.  

 

Hardness determination of maize kernels 

Particle size index  

The particle size index (PSI) method, using milling followed by sieving, was used to differentiate 

between hard and soft maize hybrids.  The samples were milled using a cyclone Laboratory Mill 

3100 (Perten, Hägersten, Sweden) fitted with a 1 mm sieve.  A two sieve method (O'Kennedy, 2011) 

was used, where a 150 µm sieve was placed on a 75 µm sieve, fitted with a receiving pan and lid. 

Two sets of pans and sieves (Retsch, Haan, Germany) were stacked on top of each other and placed 

in a Retsch AS 200 Tap Sieve Shaker (Retsch, Haan, Germany) for 10 minutes.  Three fractions, 

PSI1, PSI2 and PSI3 were determined.  For the determination of the first fraction (PSI1), the 150 µm 

sieve was weighed (W150 µm sieve) to the nearest 0.001 g.  Thereafter, 10 ± 0.01 g of ground maize 

was weighed (Wmaize)  into the 150 µm sieve together with 10 ± 0.01 g whole wheat (Wwheat on 150 µm 
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sieve). Whole wheat was added to facilitate efficient sieving.  After the sieving and tapping process, 

the fine maize meal adhering to the bottom of the 150 µm sieve was gently brushed off into the 75 

µm sieve and the 150 µm sieve was weighed (W1).  Equation 1 was used to determine PSI1: 

 

PSI1 = (W1 – (W150 µm sieve + Wwheat on the 150 µm sieve)) / Wmaize                                 […eq. 1] 

 

Thereafter, the fine maize meal adhering to the bottom of the 75 µm sieve was gently brushed off 

into the receiving pan and the 75 µm sieve was weighed (W2).  The weight of the 75 µm sieve was 

recorded (to the nearest 0.001g) when it was still empty (W75 µm sieve) as well as that of the whole 

wheat 10 ± 0.01 g placed on the 75 µm sieve (Wwheat on 75 µm sieve).  The second PSI fraction (PSI2) was 

determined according to equation 2: 

 

 PSI2 = (W2 - (W75 µm sieve + Wwheat on the 75 µm sieve)) / Wmaize                                           […eq. 2] 

 

For the determination of PSI3 (eq. 3), the empty receiving pan weight (Wpan) (to the nearest 0.001g) 

was deducted from that of the pan, weighed after the sieving and shaking step (W3).  

 

 PSI3 = (W3 – Wpan) / Wmaize                                                    […eq. 3] 

 

 The higher the value of PSI1 the harder the kernels; high PSI2 and PSI3 values indicated soft kernels.  

In addition, the ratio between larger (PSI1) and smaller particle sizes (PSI2 + PSI3) was calculated to 

give a course over fine (c/f) ratio, where a higher value indicated harder (more dense) samples and 

vice versa (eq. 4): 

 

c/f = PSI1 / (PSI2 + PSI3)                      […eq. 4] 

 

The PSI measurements were done in duplicate for each sample. 

 

Floating test 

A floating test (Blandino et al., 2010; Blandino et al., 2012) was used to determine the densities 

(g.mL-1) of the whole maize kernel samples (n = 16).  Each individual kernel was placed in a 120 mL 

tetrachloroethylene (Kimix, Epping Industrial, South Africa; density 1.62 g.mL-1) and 40 mL petroleum 

ether (Kimix, Epping Industrial, South Africa; density 0.653 g.mL-1) solution in individual Erlenmeyer 

flasks (250 mL).  Petroleum ether was added, after a twenty second waiting period, in 5 mL 

increments to each flask in order to gradually decrease the solution’s density.  The moment a kernel 

sank to the bottom of the flask, the density of that solution was calculated which equated the density 

of the kernel.  After sufficient drying of the kernel with a paper towel the test was repeated with the 
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same kernel (duplicate measurements).  After completion of the floating test, the same 16 kernels 

were subjected to X-ray µCT scanning. 

 

Scanning electron microscopy  

A thin slice (ca. 1 mm) of a maize kernel (sliced with a Solingen blade) was mounted onto double 

sided carbon tape.  The slice was coated with gold dust, using a 5150A sputter coater (HHV, 

Crawley, United Kingdom).  The scanning electron microscopy (SEM) micrographs were taken 

with a LEO1430 VP Scanning electron microscope (Zeiss, Germany) at a voltage of 7 kV and 

4500 times magnification. 

 

X-ray micro computed tomography scanning  

X-ray scans were acquired using a commercial micro-focus X-ray computed tomography system, 

i.e. the Phoenix V|Tome|X L240 (General Electric Sensing and Inspection Technologies / Phoenix 

X-ray, Wunstorff, Germany), equipped with a nano-focus tube at the Stellenbosch University CT 

Scanner facility (www.sun.ac.za/ctscanner). The system was integrated with Phoenix Datos 

acquisition and reconstruction software (General Electric Sensing and Inspection Technologies / 

Phoenix X-ray, Wunstorff, Germany).  Image acquisition was set at 1 s per image with 1300 images 

recorded in one rotation at 13.4 µm voxel size.  A scan took approximately 30 minutes to complete.  

In this work 60 kV was used for X-ray generation after it was determined that the grey value 

differences at each of two different energies (60 and 230 kV) resulted in normalised values close to 

one for both the polymers and maize kernels as explained earlier by (Du Plessis et al., 2013). This 

also enabled the use of polymers for the calibration construction.  

The polymer discs were stacked on top of each other and placed on florist oasis, along with 8 

single maize kernels, also mounted in florist oasis as illustrated in Figure 4.1.  The low density of 

florist oasis makes it a suitable mounting material due to it being easily distinguishable from the 

subjects of interest.  The mounted samples were placed on the specimen stage and rotated along 

the axis, perpendicular to the beam direction.  Two such scans were required to collect the images 

of all 16 kernels (8 kernels per scan), according to the method of Du Plessis (2013).  The aim of 

scanning 8 kernels in one scan volume at lower resolution was to demonstrate the possibility of 

having high throughput µCT scans.   

A further high resolution scan was acquired from one of the 16 maize kernels, using a Phoenix 

Nanotom S system (General Electric Sensing and Inspection Technologies / Phoenix X-ray, 

Wunstorff, Germany) with Molybdenum target. Energies of 50 kV accelerating voltage was needed 

to obtain a 6 µm resolution for the entire kernel. Averaging and skipping of images were included to 

improve image quality resulting in scan time of 2 h. In addition a 3 µm resolution scan of a sub-

volume of the kernel was also done. 
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       (a) 

 

                   (b) 

 

Figure 4.1.  Stack of 7 polymer discs, used for the density calibration, along with 8 maize kernels with (a) 

showing the florist oasis, used for mounting and (b) with the mounting material removed. 

 

Data processing 

A series of two-dimensional (2-D) X-ray projection images were obtained from a sample rotating 

through 360 degrees. The projections images are reconstructed into a volume data set using General 

Electric Datos software. The process of reconstruction comprises filtered back-projection algorithms 

and the grey values in a rendered CT image then represent the attenuation in each pixel (Singhal et 

al., 2013).  This relates to a higher density phase that appears brighter compared to the darker 

representation of the lower density material.  This 3-D data set was rendered and analyzed using 

VGStudio MAX 2.2 (Volume Graphics, Heidelberg, Germany). 

During the image processing step, the maize kernels were scanned simultaneously with the 

polymer discs to facilitate calibration and direct comparison of different scans.  In µCT the resulting 

grey values depend on the densest object in the scan volume (in this case the PTFE disc with a 

density of 2.15 g.cm-3).  This is because the filtered back projection reconstruction algorithm 

normalises the grey values within the range, from minimum to maximum (Kak & Slaney, 1988).   By 

using the same densest object in subsequent scans, and using that object for normalisation, the grey 

values between scans could be directly compared. 

The grey values of the polymer discs were acquired by selecting a representative volume from 

each disk.  Each voxel had an associated grey value depending on the material’s density and atomic 

number.  The average grey value of each homogeneous polymer disk was therefore a measure of 

its density.  To generate the calibration function, a linear function (eq. 5) was used: 
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Actual density (g.cm-3) = m x grey value + c                                                    […eq. 5]  

 

where, m = the slope and c = intercept. 

 

The average grey values for the entire kernels and ROIs were obtained from VGStudio MAX 2.2 

after excluding the germ (Fig. 4.2).  The densities of the germ and vitreous endosperm regions were 

very similar and prevented accurate separation between the vitreous and floury endosperm regions.  

Therefore, the germ region was manually removed for each of the maize kernels, using the VGStudio 

Max 2.2 Drawing tool.    

 

Figure 4.2.  3-D µCT image of a maize kernel with its germ removed. 

 

Large air spaces (cavities) present in whole maize kernels were selected using the Region 

growing tool (VGStudio MAX 2.2). These areas were selected manually and the volumes were 

acquired on the 13.4 µm scans, using the Volume analyser function (VGStudio MAX 2.2).  For each 

kernel the cavities were calculated as a percentage of the total volume of the entire kernel 

(%cavaties). 

To indicate the arrangement and quantity of pores (intergranular air pockets) present in the 

endosperm, the Thresholding function (VGStudio MAX 2.2) was used in combination with the Defect 

detection module (VGStudio MAX 2.2).  These functions were also applied to the 13.4 µm scans 
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after the cavities were excluded.  Air pore volumes comprising more than 8 adjacent dark voxels 

were seen as pores. Hence, minimum detectable pore size is dependent on scan resolution, making 

typical spherical pores of approximately 27 µm in diameter detectable in the 13.4 µm scan.  For each 

kernel the porosity was calculated as a percentage of the total volume of the entire kernel (%porosity) 

(Gondek et al., 2013).  

 

Statistical procedures 

Analysis of variance 

One-way analysis of variance (ANOVA) was performed to compare average measurements for the 

respective measures (%cavity, %porosity, entire kernel density, vitreous endosperm density and 

floury endosperm density) with respect to hardness classes, i.e. hard and soft. ANOVA analyses 

were performed using STATISTICA version 11 (StatSoft, Inc., Tulsa, USA). 

 

Comparison of density measurements (μCT and floating test) 

The floating test and X-ray scans were performed on the same 16 kernels.  In spite of the results not 

recorded in the same units (g.mL-1 and g.cm-3, respectively), were they comparable and the 

intraclass correlation (ICC) coefficients could be determined. The ICC coefficients were determined 

as the ICC agreement that correlates measurements with each other, while taking into account the 

differences in absolute values of the respective measurements, and the ICC consistency that only 

correlates measurements. The ICC agreement was determined to express variation in density 

measured with the two respective density measurement methods (μCT and floating test). The ICC 

consistency, on the other hand, was determined to reflect the correlation between the two density 

measurement methods. All ICC calculations were done using the R statistical programming language 

(R Package Concord).  The correlation coefficient (r), which is a less strict correlation method than 

the ICC, and the standard error of measurement (SE) between the two measurement methods were 

determined using STATISTICA version 11 (StatSoft, Inc., Tulsa, USA). 

 

Validation of density calibration 

The density calibration was validated by measuring the mass of each of the 16 kernels, using a 

laboratory scale (Precisa, Instrulab, Johannesburg, South Africa) (accurate to 3 decimals) and 

comparing these to the estimated masses (Gustin et al., 2013).  The mass of each kernel was 

calculated from the volume (mm3) and density (g.cm-3) as determined from the µCT images.  The 

respective volumes were determined using the Volume analysis tool (VGStudio MAX 2.2) and the 

densities were acquired from the density calibration.  The mathematical relationship between mass, 

volume and density was used to calculate the predicted masses (eq. 6):   

 

Mass = volume x density                                                         […eq. 6] 
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Correlation coefficients 

Spearman’s rank correlation coefficients were used to test the strength of the relationships between 

pairs of microstructural traits: %cavity, %porosity, entire kernel density, vitreous endosperm density 

and floury endosperm density. Correlation analysis was performed using Microsoft Excel 2010 

(Microsoft Corporation, Seattle, WA). 

 

Classification models 

A receiver operating characteristic (ROC) curve was used to separate the maize kernels into hard 

and soft hybrid classes based on entire kernel density, vitreous and floury endosperm densities as 

well as %cavity and %porosity.  An ROC curve is a plot of sensitivity on the y-axis against 1-

specificity on the x-axis for varying values of the threshold. The optimal threshold is determined by 

maximising the sum of sensitivity and specificity. Sensitivity is the percentage hard kernels correctly 

classified and specificity is the percentage soft kernels correctly classified. ROC analyses were 

performed using STATISTICA version 11 (StatSoft, Inc., Tulsa, USA). 

 

Principal component analysis 

Principal component analysis (PCA) was performed on the X-ray µCT derived variables (entire kernel 

density, vitreous and floury endosperm densities as well as %cavities and %porosity). To determine 

the relationship amongst the variables, a PCA bi-plot, which combines the scores and loadings, were 

used.  PCA analyses was performed using STATISTICA version 11 (StatSoft, Inc., Tulsa, USA). 

 

Results and discussion 

Although originally used to determine wheat hardness, the PSI method (AACC, 1999) is also 

recognised as a suitable method for maize hardness measurements (Pomeranz et al., 1984; Wu, 

1992).  For maize hardness PSI determinations, a two sieve method is however more appropriate. 

Also, the c/f ratio correlated better with milling quality compared to other conventional tests such as 

the floating test, hectolitre mass and the Stenvert test, probably due to the efficient separation of the 

vitreous and floury fractions (Blandino et al., 2010). In the current study the c/f ratio (c/f = PSI1 / (PSI2 

+ PSI3)) was thus used to select two maize hybrids which differed maximally in hardness properties 

and thus kernel density, from a set of 49 samples. The c/f ratio for the 49 samples was 1.92±0.88 

(mean±SD) with that of the selected hard and soft hybrids determined as 3.90±0.37 and 1.56±0.31, 

respectively (Table 4.1).   
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Table 4.1. The results from PSI (n = 49) that was used to select two hybrids that differs maximally in hardness 

 Range Mean±SD 

PSI1 0.47 – 0.80 0.64±0.09 

PSI2 0.12 – 0.33 0.20±0.06 

PSI3 0.08 – 0.26 0.18±0.06 

c/f 0.85 – 3.92 1.92±0.88 

SD: Standard deviation  

 

Microstructure of maize kernels 

In the 2-D μCT slices, taken longitudinally from approximately the same plane and region (center of 

the kernel) of both the hard (Fig. 4.3a) and soft (Fig. 4.3b) hybrids, large cavities in the floury 

endosperm were evident. This was observed in all 16 scanned kernels, but much more prominent in 

the soft hybrid kernels (Table 4.2).  Proportionally, soft kernels have more floury endosperm that is 

prone to form cracks, than in the case of hard kernels.  When moisture loss is experienced the 

absence of a thick continues protein matrix covering the starch granules in the floury endosperm 

causes the formation of these cracks that later develop into cavities.  Such cavities have been 

reported to account for up to 13% of the volume of some hybrid kernels (Chang, 1988; Gustin et al., 

2013).  The %cavities quantified for all 16 kernels (1.79%), as determined in this study, are depicted 

in Table 4.2. The %cavities of the soft hybrid (2.68%) was significantly (P < 0.05) higher than that of 

the hard hybrid (0.89%) (Table 4.3). The %porosity for the 16 kernels was 0.0116% (Table 4.2). As 

expected %porosity of the soft hybrid (0.0164%) was significantly (P < 0.01) higher than that of the 

hard hybrid (0.0069%) (Table 4.3).  A good relationship existed between %cavity and %porosity (r = 

0.78). 

The digital image in Figure 4.4a of a longitudinal slice of a maize kernel depicts the vitreous 

(glassy) and the floury (powdery) endosperm as the translucent and white areas, respectively. In the 

2-D X-ray µCT image (Fig. 4.4b), the brighter grey region represents the denser vitreous endosperm 

and the darker region the less dense floury endosperm. In the SEM micrographs pores and air 

pockets could be observed in the soft endosperm on the surface and between the loosely packed, 

less structured starch granules (Fig. 4.5a). Due to the air pockets and the granules not as tightly 

packed, light is reflected and the endosperm appears opaque (Dombrink-Kurtzman & Knutson, 1997) 

as illustrated in the digital image (Fig. 4.4a). The protein matrix covering the starch granules is thin 

and shrinks easily, consequently not covering the granules completely (Fig. 4.5a) (Delcour & 

Hoseney, 2010; O'Kennedy, 2011).  The polygonal more structured starch granules of the vitreous 

endosperm were shown to be tightly packed with no or very little air pockets (Fig.4.5b). The vitreous 

endosperm thus appeared translucent (Fig. 4.4a) due to no light being reflected (Figueroa-Cárdenas 

et al., 2006; Lee et al., 2006; Delcour & Hoseney, 2010). A continuous protein matrix covered the 
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starch granules in the vitreous endosperm with the small, round protein (zein) bodies clearly visible 

(Fig. 4.5b). This microstructural difference between floury and vitreous endosperm could now be 

quantified by means of %porosity determinations from X-ray μCT scans.  

 

(a) 

 

(b) 

 

Figure 4.3.  2-D X-ray µCT slice images of (a) a hard and (b) a soft maize kernel illustrating the presence of 

distinct, large cavities (marked with white circles) present in mostly the soft endosperm. Cavities are shown as 

black in X-ray images. 

 

Table 4.2. %Cavity, %porosity, entire kernels density, vitreous endosperm density and floury endosperm 

density results of 16 maize kernels as derived by X-ray µCT 

 Range Mean±SD 

Cavities (%) 0.17 – 6.1 1.79±1.55 

Porosity (%) 0.0014 – 0.0298 0.0116±0.0069 

Entire kernel density (g.cm-3) 1.28 – 1.62 1.49±0.12 

Vitreous endosperm density (g.cm-3) 1.60 – 1.75 1.67±0.07 

Floury endosperm density (g.cm-3) 1.21 – 1.53 1.34±0.11 

SD: Standard deviation 
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Table 4.3. Cavity and porosity percentages as well as entire kernel, vitreous endosperm and floury endosperm 

densities as derived by X-ray µCT for hard (n = 8) and soft (n = 8) maize hybrids 

 Hard maize hybrid Soft maize hybrid P-values 

 Mean±SD Mean± SD  

Cavity (%) 0.89±0.62 2.68±1.72 0.01 

Porosity (%) 0.0069±0.0039 0.0164±0.0060 < 0.01 

Entire kernel density (g.cm-3) 1.6±0.03 1.37±0.05 < 0.01 

Vitreous endosperm density (g.cm-3) 1.74±0.01 1.61±0.01 < 0.01 

Floury endosperm density (g.cm-3) 1.43±0.07 1.25±0.03 < 0.01 

SD: Standard deviation 

 

Figure 4.6a shows a CT image obtained at a resolution of 6 µm and Figure 4.6b an internal sub-

volume image of the same maize kernel at a resolution of 3 µm. Microstructural detail could be 

observed when the Nanotom S system was used that was not detectable with the µCT instrument 

(13.4 µm resolution). In particular, the endosperm “bridges” that cross the cavity areas were 

visible. The results of the Defect detection function applied on the high resolution image, also 

revealed in very clear manner the porosity within the kernel’s floury endosperm (Fig. 4.6c). The 

higher resolution made it possible to visualise pores as small as 6 µm in diameter (coloured blue 

in Fig. 4.6c).  At 13.4 µm resolution, the smallest detectable pore was 30 µm. The mean %porosity 

was calculated to be 0.0152% for this specific kernel.   

 

Density calculations using X-ray µCT 

For true estimation of maize kernel density, a density function was constructed where the average 

grey values (arbitrary units) produced by the scans of the 7 polymers at 60 kV were used.  Since the 

16 kernels were scanned in 2 batches of 8 kernels each, two equations (eq. 7 and eq. 8) were 

required: 

Density (g.cm-3) = 4.98909 x 10-5 x grey value – 0.28237                  […eq. 7] 

 

Density (g.cm-3) = 4.83039 x 10-5 x grey value – 0.40171                 […eq. 8] 

 

Mean kernel density of all 16 kernels was 1.49 (Table 4.2) with the entire kernel density for the hard 

hybrid (1.6 g.cm-3) significantly (P < 0.01) higher than that of the soft hybrid (1.37 g.cm-3) (Table 4.3).  

These densities were in the same range than those obtained by Gustin et al. (2013), i.e. 1.50 g.cm-

3 for entire kernel density estimations.   
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(a) 

 

(b) 

 

Figure 4.4. (a) A longitudinal digital image (Canon EOS 300D digital camera, fitted with a Canon 30 – 80 mm 

lens) and (b) 2-D X-ray µCT image slice of the same maize kernel, depicting the internal structure of the maize 

kernel, i.e. flour and vitreous endosperm, germ and pedicle. 

 

When attempting to select the two respective ROIs, it was observed that the density of the germ was 

similar to that of the vitreous endosperm. It was thus required to manually select the germ region 

and excluded it from each image, using the Drawing tool (VGStudio MAX 2.2).  Similar densities 

interfere with thresholding as the interface between the ROIs (germ and vitreous endosperm) is not 

well defined.   After the removal of the germ region, the automated Region growing tool was applied 

to separate the remaining ROIs (vitreous and floury endosperm) for density determination. Both the 

vitreous and floury endosperm regions of the hard hybrid were subsequently determined to be 

significantly (P < 0.01) higher in density than those of the soft hybrid (Table 4.3).  

  

Pedicle 

Germ 

Vitreous 

endosperm 

Floury 

endosperm 
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                       (a) 

 

                       (b) 

 

Figure 4.5. Scanning electron microscopy (SEM) micrographs (4500X) of (a) loosely packed irregularly shaped 

starch granules covered with a thin protein matrix (1) from floury endosperm with pores and air pockets (2) 

around and embedded into the granules and; (b) the tightly packed polygonal shaped starch granules from 

vitreous endosperm covered in a thick protein matrix (3) with protein (zein) bodies (4) visible. 
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 (a) 

 

(b) 

 

(c) 

 

Figure 4.6. 2-D X-ray µCT slice image illustrating the endosperm microstructure of (a) a whole maize kernel 

acquired at 6 µm resolution and (b) a sub-volume of the same kernel acquired at 3 µm resolution. (c) 3-D X-

ray µCT image of the sub-volume of the maize kernel (acquired at 3 µm resolution) with the larger cavities 

visualised in magenta and the smaller pores in blue.  The colour bar indicates the size (mm3) of the cavities 

(large; magenta) and pores (small; blue). 
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Validating the accuracy of X-ray µCT density calculations 

The accuracy of the µCT density measurements (validation of density calibration) was tested by 

comparing the estimated (µCT) kernel mass with the measured (weighed) mass (Gustin et al., 2013).  

The estimated masses ranged from 0.234 to 0.704 g (mean±SD; 0.396±0.114 g) with the actual 

masses ranging from 0.220 to 0.633 g (0.368±0.101 g).  The high ICC consistency (0.99) and 

agreement (0.96) and low SE of measurement (0.01) confirmed that the two methods resulted in 

very similar masses and indicated the accuracy of the X-ray µCT method. This confirms the use of 

X-ray µCT to predict whole maize kernel densities by means of a density calibration developed from 

polymers.   

 

Conventional density measurements 

Conventionally, the density of whole maize kernels is determined using pycnometry (Siska and 

Hurburgh 1995) or the floating test (Blandino et al. 2012).  The floating test and X-ray scans were 

performed on the same 16 kernels.  Maize kernel densities results obtained with the floating test 

were constantly lower than those obtained with µCT.  The average density of all 16 maize kernels 

were recorded as 1.29±0.05 (mean±SD) g.mL-1 with that of the hard and soft hybrids recorded as 

1.32±0.02 g.mL-1 and 1.26±0.05 g.mL-1, respectively. Although the results were not recorded in the 

same units (g.mL-1 and g.cm-3, respectively), were they comparable and the intraclass correlation 

(ICC) coefficients could be determined. While the two methods correlated (r = 0.78; ICC consistency 

= 0.74), the very low ICC agreement (0.035) indicated a large bias. This was expected due to the 

distinct cavities observed in the kernels (Fig. 4.3). These cavities were not included in the µCT 

density measurements.  The feasibility of using X-ray µCT is evident from the ability of this method 

to exclude cavities, that would negatively influence results (Gustin et al., 2013).  Because of the 

reasonable high r and ICC consistency results it appeared possible that the results from the 

respective density methods could be made comparable by means of correction factors.  The SE 

between the two measurement methods was 0.023 g.mL-1 (or g.cm-3).   

 

Principal component analysis for variable interpretation 

The interaction of the X-ray µCT derived variables is illustrated in the PCA bi-plot (Fig. 4.7). The first 

two principal components (PCs) described 91% of the variation within the model, with PC 1 

describing the major percentage (78%). The hard kernels are found on the left of PC 1, whereas the 

soft kernels are found on the right of PC 1.  The loadings indicated the relationship between the 

variables, and in particular, it can be observed that a stronger correlation existed between entire 

kernel density, vitreous endosperm density and floury endosperm density, whereas %porosity and 

%cavity were correlated. All these considerations were confirmed by the Spearman’s rank correlation 

coefficients (Table 4.4), with the strongest correlation (r = 0.92, P < 0.01) indicated to be that between 

the entire kernel density and vitreous endosperm density. This strong correlation was expected as 
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the vitreous endosperm is the denser endosperm present in a maize kernel. Hard kernels also 

consisted of a higher percentage vitreous endosperm than soft kernels.  

 A larger variance was found between the soft kernels than the hard kernels, predominantly due 

to a bigger range in %cavities for the soft kernels (2.68±1.72%) compared to that of the hard kernels 

(0.89±0.62%). The outlier, also a soft kernel, had an exceptionally high %cavities (6.1%). It was 

important to note that, although the variance between the density measurements were not as large 

as that of the %cavities and %porosity, there were still significant differences (P < 0.05) between all 

the variables.  The density variables, as well as the %cavity and %porosity variables, all contributed 

towards describing the hardness of individual maize kernels.  The variance between the hard kernels 

were more pronounced by the density variables, whereas the soft kernels were better described by 

%cavities and %porosity. 

 

 

 

Figure 4.7.  Principal component analysis bi-plot illustrating the interaction of the X-ray µCT derived variables. 
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Table 4.4. Spearman’s rank correlation coefficients for the X-ray µCT derived variables 

 Cavity (%) EKD VED FED 

Porosity (%) 0.78* -0.63* -0.71* -0.68* 

Cavity (%)  -0.62** -0.58** -0.55** 

EKD   0.92* 0.89* 

VED    0.85* 

*: P < 0.01 

**: P < 0.05 

EKD: Entire kernel density (g.cm-3) 

VED: Vitreous endosperm density (g.cm-3) 

FED: Floury endosperm density (g.cm-3) 

 

Hardness classification 

Based on the observations made during the inspection of the variables by means of the PCA bi-plot 

and the Spearman’s rank correlation coefficients, hardness classification was attempted. Threshold 

values could be obtained at classification accuracies of 100% sensitivity and 100% specificity for all 

density measurements (Table 4.5).  For %porosity and %cavities, threshold values could be obtained 

at classification accuracies of 88% and 75%, respectively. Although hardness classification based 

on %porosity was not as accurate as those based on entire kernel or endosperm densities, in 

practice it would be a feasible and faster alternative.  

 

Table 4.5 Receiver operating characteristic (ROC) curve results for hardness classification using X-ray µCT 

derived variables 

 Sensitivity (%) Specificity (%) Threshold value Area under 

curve (%) 

Porosity (%) 88 100 0.01 97 

Cavity (%) 75 100 2.02 88 

EKD 100 100 1.48 100 

VED 100 100 1.67 100 

FED 100 100 1.30 100 

EKD: Entire kernel density (g.cm-3) 

VED: Vitreous endosperm density (g.cm-3) 

FED: Floury endosperm density (g.cm-3) 
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Conclusion 

This study attempted to provide a potential solution to classify maize kernels based on hardness. 

Conventional density hardness methods, such as the floating test, unintentionally overlook the 

influence of the cavities present in kernels. In this study, µCT scanning allowed the estimation of the 

true densities of the two endosperm types, vitreous and floury, as well as the density of entire maize 

kernels, using an appropriate density calibration. Hardness classification was possible based on 

ROC curve threshold values. Entire kernel density, as well as both vitreous and floury endosperm 

densities contributed to the variation.  Additionally, X-ray µCT was shown to enable quantification of 

endosperm microstructural properties such as porosity and cavities. Hardness classification was 

also possible based on these variables with %porosity being more accurate and thus the preferred 

X-ray µCT measurement for this purpose.  
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Chapter 5 

Milling quality classification of maize (Zea mays L.) using X-ray micro-

computed tomography (µCT) 

Abstract 

This study has shown that good classification of maize hybrids, differing in milling quality, was 

possible when using X-ray µCT derived density and volume measurements.  These variables were 

obtained from low resolution (80 µm) µCT scans as 150 kernels were imaged at once, thereby 

reducing acquisition time and cost.  When using entire kernel density (EKD) and vitreous-to-floury 

endosperm ratio (V:F) measurements, good classification accuracies of 93% and 92% were obtained 

respectively.  Furthermore, it was established that milling quality could not be described without the 

inclusion of density measurements. Conventional hardness methods should therefore be used with 

caution when intended to describe milling quality, as they intrinsically contribute towards volume 

related properties. A conventional density hardness method, such as the floating test, is also not 

adequate for describing milling quality, as this method overlooks the influence of cavities present in 

maize kernels.  
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Introduction 

Kernel hardness is one of the most important factors in determining the functionality of grains.  

Hardness is a characteristic often used in the milling industry to identify the varieties or hybrids 

desirable for milling (Neethirajan et al., 2006).  Dry-milling is the industrial practise used to process 

maize (Zea mays L.) into maize flour, and is dependent on the hardness of the maize for optimal 

yield.  Due to the complexity of maize hardness, the interpretation and measurement thereof can be 

difficult. As yet, no standardised hardness method exists, resulting in an extensive range in 

approaches (Fox & Manley, 2009).  

In an earlier study, percentage chop (%chop) was used as milling quality descriptor where de-

germed maize was subjected to the milling process and the chop (combination of pericarp, germ and 

to a lesser extent endosperm) was calculated as a percentage of the total mass of maize (Guelpa et 

al., 2014a).  It had been established that hectoliter mass (HLM) correlated (r = -0.71) with %chop 

and that the coarse-over-fine ratio as derived from the particle size index (PSI) method, milling index 

(from near infrared (NIR) absorbance values), percentage vitreous endosperm (based on NIR 

hyperspectral imaging) and hundred kernel mass (HKM) all contributed to describing the overall 

milling quality of the respective hybrids (Guelpa et al., 2014a). 

Eighty percent of the volume of a typical maize kernel consists of two types of starch tissue, i.e. 

vitreous and floury endosperm (Paiva et al., 1991).  The vitreous endosperm is hard and translucent 

(glassy) and lies mainly at the sides and back of the kernel, whereas the floury endosperm is softer 

and mealy textured and found in the centre of the kernel (Watson, 1987; Paiva et al., 1991).  White 

maize is classed as dent maize, which is a cross between flint and flour types (Benson & Pearce, 

1987) and intermediate between flour (soft) and popcorn (hard) with respect to hardness (Wolf et al., 

1952).  The ratio of vitreous and floury endosperm volume averages about 2:1 in dent maize (Wolf 

et al., 1952), but variations occur due to genetic make-up (Johnson & Russell, 1982), environmental 

influences (Hamilton et al., 1951) and postharvest handling (Peplinski et al., 1989).   

With the discovery of X-rays by Prof Wilhelm Röntgen in 1895 (Cnudde & Boone, 2013), this 

type of radiation has become a prominent technique for medical diagnostics (Kotwaliwale et al., 

2011).  As  X-rays are capable of penetrating material in varying degrees as expressed by Beer’s 

law (Cnudde & Boone, 2013), this attenuated radiation can be converted by a detector into a two 

dimensional (2-D) digital image, called a radiograph.  Only with the development of modern computer 

technology in the 1960s, computed tomography became feasible (Kalender, 2006).  Computed 

tomography (CT) refers to the reconstruction of 2-D images mathematically, to display and archive 

them in digital three dimensional (3-D) format (Kalender, 2006). In the 1980’s a new research field 

emerged as high-resolution X-ray tomography, or commonly called micro-CT (µCT) was first 

discussed (Cnudde & Boone, 2013).  X-ray µCT has seen a period of rapid growth over the last 15 

years, mainly due to considerable improvements in spatial resolution and image reconstruction times 

(Maire & Withers, 2014).  
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In a study on a limited number of maize kernels, it was shown how X-ray µCT could estimate 

maize hardness when constructing a density calibration (Guelpa et al., 2014b). Threshold values 

were determined for entire kernel density, and vitreous and floury endosperm densities, respectively 

which allowed for hardness classification (Guelpa et al., 2014b). When considering other X-ray µCT 

studies on maize, Takhar et al. (2011) focussed on moisture transport within maize kernels and De 

Carvalho et al. (1999) studied stress cracks formation.  Both found the technique of X-ray µCT to be 

successful to be applied in food processing studies. The study of Gustin et al. (2013), recognised 

the potential of X-ray µCT as a method to determine kernel density and volume.  They also 

demonstrated that single kernel density correlated (r = 0.8) with test weight (Gustin et al., 2013), 

which in turn is seen as a conventional method of describing maize hardness (Lee et al., 2006).   

The aim of this study was to perform milling quality classification based on X-ray µCT densities 

and volumes (entire kernel, vitreous and floury endosperm).  

 

Material and methods 

Samples and preparation 

From a set of 49 samples, consisting of 19 hybrids, four localities and three plantings, 300 maize 

kernels were selected, as depicted in Table 5.1. The sample set (n = 49) originated from maize 

breeding trials of South African white maize, either supplied by PANNAR Seeds (Greytown, South 

Africa) or a farmer from Schweizer-Reneke.  The four localities represented in the sample set were 

Greytown, Delmas, Klerksdorp and Schweizer-Reneke and the three plantings refer to an early, 

normal and late planting of the 2012 harvest.  

The sample set was ranked according to the samples’ milling performance, using an industrial 

guideline known as percentage chop (%chop). To determine the %chop, a pilot plant scale de-

germer was used and the de-germed maize was subjected to the milling process, also on a pilot 

plant scale. The chop (combination of pericarp, germ and endosperm) was then calculated as a 

percentage of the total mass of the maize.  A %chop below 22% indicated good milling maize, 

between 22% and 25% was good intermediate, between 26% and 30% was poor intermediate and 

above 30% was poor milling maize.   

Consequently, 150 maize kernels were selected from the 10 samples that illustrated the best 

milling performance (15 kernels per sample), and another 150 kernels were selected from the 10 

samples that showed poorest milling performance (again 15 kernels per sample).   

Florist oasis discs (10 cm diameter; 2 cm height) were prepared in order to facilitate simultaneous 

X-ray µCT scanning of multiple kernels. The low density of the florist oasis provided for clear 

distinction from the subjects of interest and was therefore a suitable medium for mounting purposes. 

Thirty maize kernels were placed in a specific order in each of 10 florist oasis discs, without touching 

each other (Fig. 5.1). Polymer discs (25 mm in diameter and 10 mm in height) that were used for the 

density calibrations were also placed in the florist oasis discs. Five discs were stacked on top of each 
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other (150 kernels) and secured with a wooden stick to prevent any movement during X-ray 

acquisition.  

 

Table 5.1.  List of white maize hybrids, localities and plantings from the 2012 harvest 

 Kernels Hybrid Locality Planting 

Good milling 1 – 15 1 Greytown Early 

 16 – 30 2 Delmas Early 

 31 – 45 3 Greytown Early 

 46 – 60 3 Greytown Late 

 61 – 75 2 Greytown Early 

 76 – 90 2 Greytown Late 

 91 – 105 11 Schweizer-Reneke Normal 

 106 – 120 1 Delmas Early 

 121 – 135 16 Schweizer-Reneke Normal 

 135 – 150 3 Delmas Early 

Poor milling 1 – 15 8 Greytown Early 

 16 – 30 10 Greytown Early 

 31 – 45 19 Schweizer-Reneke Normal 

 46 – 60 17 Schweizer-Reneke Normal 

 61 – 75 18 Schweizer-Reneke Normal 

 76 – 90 8 Greytown Late 

 91 – 105 10 Delmas Late 

 106 – 120 5 Delmas Late 

 121 – 135 5 Delmas Early 

 135 – 150 12 Schweizer-Reneke Normal 

 

Conventional hardness methods 

The particle size index (PSI) coarse-over-fine (c/f) ratio, hundred kernel mass (HKM), hectoliter mass 

(HLM), protein content as determined with the Dumas method, a NIR spectroscopy hardness index 

and a vitreous endosperm percentage value derived from NIR hyperspectral imaging (HSI) were 

determined for each of the 20 samples as described in Guelpa et al. (2014a).   

 

X-ray micro-computed tomography scanning  

X-ray scans were acquired using a commercial micro-focus X-ray computed tomography system, 

i.e.  Phoenix V|Tome|X L240 (General Electric Sensing and Inspection Technologies / Phoenix X-

ray, Wunstorff, Germany).  The system depicted in Fig. 5.2 is located at the CT Scanner Facility of 

the Central Analytical Facility (CAF), Stellenbosch University, South Africa. It comprises of a lead-

lined cabinet that houses the X-ray direct tube and the sample manipulator, along with a cooling unit 
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and an external control module. Image acquisition was set at 500 ms per image with 2000 images 

recorded in one rotation at 80 µm voxel size or resolution.  A 0.1 mm copper filter was used to reduce 

beam hardening artefacts and a scan took 1 h to complete.   In this work a tungsten target, 60 kV 

and 240 µA was used for X-ray generation.  

The florist oasis stacks containing 150 maize kernels each were placed one at a time on the 

specimen stage and rotated along the axis, perpendicular to the beam direction.  Two scans were 

required to image all 300 kernels, illustrating a cost-effective and time-saving application of µCT.  

 

    (a) 

 

 (b) 

 

   

 

   (c) 

 

 

Figure 5.1. Digital images illustrating sample preparation: (a) five florist oasis discs used as mounting material 

for the 150 good milling maize kernels, (b) the stack of discs, held upright with a wooden stick and (c) a top 

view of the stack.  The polymer discs used for the density calibration are also visible in these images. 

 

Image processing and analysis  

The acquired 2-D X-ray images were rendered into 3-D volumes, using the integrated Phoenix Datos 

acquisition and reconstruction software (General Electric Sensing and Inspection Technologies / 

Phoenix X-ray, Wunstorff, Germany).  The process of reconstruction comprises of filtered back-

projection algorithms where the grey values in a rendered CT image represent the attenuation in 

each pixel (Singhal et al., 2013) (Fig. 5.3). The 3-D images were further analysed with VGStudio 

Max 2.2 (Volume Graphics, Heidelberg, Germany).   

Each maize kernel was analysed independently as sub volume extraction was possible.  

Therefore, density calculations, as well as volume analysis, were performed per kernel.  
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(a) 

 

(b) 

 

(c) 

 

Figure 5.2. The Phoenix V|Tome|X L240 micro-computed tomography scanner showcasing the (a) direct tube 

and the sample manipulator, (b) lead-line cabinet with cooling unit and (c) the control monitor. 

 

 

Figure 5.3.  The 3-D X-ray µCT image of a stack of five discs, containing 30 kernels each and with the mounting 

material removed.   

 

Density calculations 

Densities of entire maize kernels (EKD), as well as two regions of interest (ROIs) i.e. the vitreous 

endosperm (VED) and the floury endosperm (FED), were calculated using a density calibration 

method as described in Guelpa et al. (2014b).  EKD did not include cavities (large air spaces). This 
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method made use of a set of polymers with known densities that was included in each X-ray scan to 

facilitate the construction of a density calibration. To generate the calibration function (eq. 1), the 

average grey values of each polymer disk, as well as their actual density values, were used.   

 

Actual density (g.cm-3) = m x grey value + c                                                  …[eq. 1]  

 

Where:  

m: is the slope 

c: is the intercept 

 

It was found that the densities of the germ and vitreous endosperm regions were very similar and 

thus prevented accurate separation.  Therefore, the germ region was removed, slice by slice, for 

each kernel (Guelpa et al., 2014b) as illustrated in Figure 5.4.  After the manual removal of the germ, 

the remaining endosperm could be separated and mean grey values for the respective ROIs could 

be obtained.  Mean grey values for the entire kernel were acquired prior to the separation. The grey 

values were substituted into the calibration equations (one for each X-ray scan) and subsequent 

densities could be calculated, expressed as g.cm-3. 

 

      (a) 

 

           (b) 

 

Figure 5.4. X-ray µCT slice images of (a) maize kernel with germ intact, and (b) with germ removed, slice by 

slice. 

      

Volume analysis 

Entire kernel volume (EKV) and the volumes of the two endosperm types, i.e. vitreous (VEV) and 

floury endosperm (FEV), was determined using the automated Region growing tool, in combination 
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with the Volume analyser function of VGStudio Max 2.2. The endosperm type volumes (VEV and 

FEV) were expressed as a percentage of the total volume of endosperm per kernel. Additionally, a 

vitreous-to-floury endosperm ratio (V:F) was calculated from the VEV and FEV. Figure 5.5 illustrates 

the segmentation into respective regions, allowing quantification, non-destructively. 

 

(a) 

 

(b) 

 

Figure 5.5. 2-D X-ray µCT slice images of the (a) vitreous endosperm (blue) and (b) floury endosperm (yellow) 

present within a maize kernel. 

 

Statistical procedures  

Univariate methods 

Mean differences for the X-ray µCT derived variables (densities: entire kernel, vitreous and floury 

endosperm and volumes: entire kernel, vitreous and floury endosperm, also vitreous-to-floury 

endosperm volume ratio) were evaluated by one-way analysis of variance (ANOVA) using 

STATISTICA version 11 (StatSoft, Inc., Tulsa, USA).   

Furthermore, a receiver operating characteristic (ROC) curve was used to classify the maize 

kernels into good milling and poor milling classes, based on the respective constituents, using 

STATISTICA version 11 (StatSoft, Inc., Tulsa, USA).  An ROC curve is a plot of sensitivity on the y-

axis against 1-specificity on the x-axis, for varying values of the threshold. The optimal threshold is 

determined by maximising the sum of sensitivity and specificity. Sensitivity is the percentage good 

milling kernels correctly classified and specificity is the percentage poor milling kernels correctly 

classified.  

Spearman’s rank correlation coefficients were used to test the strength of the relationships 

between pairs of X-ray µCT derived results (densities: entire kernel, vitreous and floury endosperm 
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and volumes: cavities, entire kernel, vitreous and floury endosperm, also vitreous-to-floury 

endosperm volume ration), using STATISTICA version 11 (StatSoft, Inc., Tulsa, USA).   

 

Multivariate method: principal component analysis 

Principal component analysis (PCA) was performed on X-ray µCT derived variables (densities: entire 

kernel, vitreous and floury endosperm and volumes: entire kernel, vitreous and floury endosperm, 

also vitreous-to-floury endosperm volume ration) and variables derived from 6 conventional 

hardness methods.  To inspect the relationship between the variables, PCA bi-plots were used as it 

combines the scores and the loadings.  STATISTICA version 11 (StatSoft, Inc., Tulsa, USA) was 

used to perform the PCA. 

 

Results and discussion  

X-ray µCT density calculations 

When considering the accuracy of conventional density measurements, it was reasoned that internal 

air spaces or cavities would greatly influence the result, possibly dominate the important density 

differences found between the endosperm types and in doing so, cause misleading results. This was 

seen when floating test densities of the same kernels were compared to densities calculated with X-

ray µCT data (Guelpa et al., 2014b). The floating test consistently produced lower densities than the 

latter method and a large bias was apparent. 

Based on an advantage of X-ray µCT, i.e. allowing the exclusion of undesired regions (such as 

cavities), this method was seen as more suited for accurate density measurements (Gustin et al., 

2013). Another advantage being each voxel having an associated grey value depending on the 

material’s density and atomic number.  Areas of low density cause less attenuation of the X-ray 

beams and are portrayed as darker regions.  Black areas represents air that do not attenuate at all.  

Areas of high density causes lots of attenuation and therefore fewer X-rays can reach the detector.  

It has been considered that the structural arrangement of the starch, of which endosperm 

predominantly consist of, affects maize hardness more than any other morphological features within 

maize kernels (Figueroa Cárdenas et al., 2006).  The different starch granule patterns of vitreous 

endosperm, tightly packed within the protein matrix, as opposed to the loosely packed floury 

endosperm with intergranular air spaces (or pores) were revealed by scanning electron microscopy 

(Figueroa Cárdenas et al., 2006).   A 2-D µCT slice image of a maize kernel, acquired at 13.4 µm 

resolution, revealed similar endosperm textural properties as the vitreous endosperm was portrayed 

as the denser endosperm with tightly packed starch granules, whereas the floury endosperm 

revealed loosely packed granules (Fig. 5.6).  
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Figure 5.6. A zoomed in 2-D X-ray µCT slice image acquired at a 13.4 µm resolution of the internal structures 

of a maize kernel. The light grey (more dense) region on the left is the vitreous endosperm, whereas a section 

of the germ is visible at the bottom (white) and the loosely packed floury endosperm is visible in darker grey 

(less dense) with intracellular airspaces (black). 

 

Figueroa-Cárdenas et al. (2006) saw a significant (P < 0.05) correlation (r = 0.69) between kernel 

density (determined using water replacement and a floating test) and hardness (as expressed by a 

puncture test).  Similarly, Guelpa et al. (2014b) showed a significant correlation (P < 0.05) between 

kernel density (determined using X-ray µCT) and hardness (using the PSI (c/f)). In the latter study, 

16 maize kernels scanned at a resolution of 13.4 µm, were used for density calculations.  The same 

was attempted, using 300 maize kernels acquired at 80 µm resolution.   

The respective densities were calculated in a similar fashion as explained in Guelpa et al. 

(2014b).  EKD, VED and FED were determined by obtaining grey values from each respective 

region-of-interest (ROI) and substituting these values into density equations (eq. 2 and 3). The mean 

grey values obtained for EKD did not include cavities, which was possible by setting an appropriate 

threshold to exclude air spaces.  After manual exclusion of the germ region, a higher grey value 

threshold was applied to select the vitreous endosperm region, while excluding the floury endosperm 

region.  Consequently, the mean grey value for the vitreous endosperm ROI was obtained. The 
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mean grey value for the floury endosperm ROI was obtained in a similar fashion, but by selecting 

the higher grey value interval in the histogram.  

     Two scans were required to image all 300 kernels (150 kernels per scan), therefore two linear 

equations had to be constructed, as shown in equations 2 and 3: 

 

Density (g.cm-3) = 3.58158 x 10-5 x grey value – 0.11004                                        …[eq. 2] 

 

Density (g.cm-3) = 3.52309 x 10-5 x grey value – 0.0659                             …[eq. 3] 

 

As a result of artifacts that were present in three of the imaged maize kernels, these respective 

kernels could not be used for image analysis.  Consequently, there were only 297 samples used 

throughout this study.   

The average EKD of all 297 maize kernels were 1.30 g.cm-3, while that of the VED and FED were 

1.36 g.cm-3 and 1.12 g.cm-3, respectively. Mean EKD of the good milling hybrids (1.31 g.cm-3) was 

significantly (P < 0.05) higher than that of the poor milling hybrids (1.23 g.cm-3) (Table 5.2) as 

expected with the higher proportion of vitreous endosperm present within good milling (or hard) 

hybrids (Watson, 1987), which would increase the density. The protein matrix within this endosperm 

type keeps the starch granules tightly packed, thus dense, as opposed to more intracellular air 

spaces found within the loosely packed floury endosperm (Robutti et al., 1997). The same trend was 

found for the mean VED and FED, as these values were also significantly higher for the good milling 

hybrids (1.38 g.cm-3 and 1.14 g.cm-3, respectively) compared to the poor milling hybrids (1.35 g.cm-

3 and 1.10 g.cm-3, respectively) (Table 5.2). It was expected that the VED would be significantly 

higher for the hybrids with the higher proportion of vitreous endosperm, i.e. the good milling hybrids.   

 

Table 5.2.  Entire kernel density, vitreous endosperm density and floury endosperm density results as derived 

by X-ray µCT for the two milling classes, good (n = 150) and poor (n = 147), also indicating ANOVA results  

 Good milling hybrids Poor milling hybrids P-value 

 Range Mean±SD Range Mean±SD  

EKD (g.cm-3) 1.22 – 1.36 1.31±0.03 0.97 – 1.32 1.23±0.05 < 0.01 

VED (g.cm-3) 1.26 – 1.42 1.38±0.03 1.23 – 1.40 1.35±0.03 < 0.01 

FED (g.cm-3) 1.04 – 1.26 1.14±0.04 0.89 – 1.27 1.10±0.04 < 0.01 

SD: Standard deviation 

EKD: Entire kernel density 

VED: Vitreous endosperm density 

FED: Floury endosperm density 
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Figure 5.7. ROC curves indicating milling quality classification, using (a) EKD, (b) VED and (c) FED. 

 

Using an appropriate statistical method, i.e. ROC curves, classification based on milling quality 

was possible (Table 5.3).  The highest classification accuracy was obtained for EKD (Fig. 5.7a) (area 

under curve = 93%) with a threshold value of 1.28 g.cm-3 classifying kernels with higher densities as 
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good milling hybrids (with 85% sensitivity) and with lower densities as the threshold value as poor 

milling hybrid (with 88% specificity) (Table 5.3). VED (Fig. 6.7b) and FED (Fig. 5.7c) were also 

responsible for good classifications (area under curve = 79% and 78%, respectively).  

Better classification accuracies (100% sensitivity and 100% specificity) were observed in an 

earlier study (Guelpa et al., 2014b), but it must be noted that a significantly higher resolution (13.4 

µm) was used for the image acquisition, resulting in more density variation being captured.  However, 

the classification accuracies obtained at the lower resolution (80 µm) were still good (78% - 93%), 

while simultaneously scanning 150 kernels.  Consequently, a more robust classification model was 

obtained, as well as a faster (as 300 vs. 16 kernels were scanned in the same time frame) and more 

cost effective method of estimating maize kernel densities, therefore making it more applicable for 

industry. 

 

Table 5.3.  ROC curve classification results when using X-ray µCT densities 

 Sensitivity 

(%) 

Specificity  

(%) 

Threshold  

(g.cm-3) 

Area under 

curve (%) 

EKD (g.cm-3) 85 88 1.28 93 

VED (g.cm-3) 68 77 1.37 79 

FED (g.cm-3) 71 74 1.12 78 

EKD: Entire kernel density 

VED: Vitreous endosperm density 

FED: Floury endosperm density 

 

X-ray µCT volume analysis  

X-ray µCT allowed the quantification of the following volumes: EKV, VEV and FEV, based on grey 

value thresholding of the respective ROIs.  EKV included all volume inside the contour lines drawn 

around the entire kernel, after removal of cavities. To segment the other 2 ROIs, the germ region 

had to be excluded manually.  Thereafter, a higher grey value threshold was applied to select the 

vitreous endosperm region, while excluding the floury endosperm region. A region growing tool 

identified voxels belonging to the selected grey value interval and respectively quantified the 

volumes, using a volume analyser tool. Floury endosperm was quantified using the same method, 

although a higher grey value interval had to be selected for segmentation. 

  Mean volumes for the entire sample set were: 251.64 mm3, 161.85 mm3 and 90.28 mm3 for 

EKV, VEV and FEV, respectively.  This is in accordance with an earlier finding of Wolf et al. (1952) 

that the vitreous endosperm is approximately double the volume of floury endosperm in dent maize. 

Wolf et al. (1952) made use of hand dissection to quantify the endosperm types. 

For the two milling classes, it was evident that the EKV of the good milling hybrids were 

significantly (P < 0.01) bigger (321.50 mm3) than that of the poor milling hybrids (255.56 mm3) (Table 
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5.4). The mean VEV (199.70 mm3) for the good milling hybrids were significantly (P < 0.01) bigger 

than that of the poor milling hybrids (123.23 mm3), whereas the mean FEV (78.88 mm3) for the good 

milling hybrids were significantly (P < 0.01) smaller than that of the poor milling hybrids (101.91 

mm3). The obtained results agree with the higher proportion of vitreous endosperm present in good 

milling kernels (Weber et al., 2014). 

Numerous studies inspected the ratio of vitreous-to-floury endosperm (V:F) (Pomeranz et al., 

1984; Watson, 1987; Robutti, 1995; Siska & Hurburgh, 1995) as this ratio expresses maize hardness 

(Delcour & Hoseney, 2010).  Only few of these studies make use of non-destructive techniques, as 

demonstrated by Erasmus and Taylor (2004) that developed a maize translucency detection 

instrument and Weber et al. (2014) that used biospeckle and fuzzy granularity to quantify vitreous 

and floury endosperm proportions. Near infrared (NIR) hyperspectral imaging (HSI) has also shown 

to quantify the respective endosperm types (McGoverin & Manley, 2012), non-destructively. The V:F 

was calculated for the X-ray µCT derived densities and the results obtained indicated a significantly 

(P < 0.01) higher V:F for the good milling kernels (2.77) compared to that of the poor milling kernels 

(1.27) (Table 5.4). 

 

Table 5.4.  Entire kernel volume, vitreous endosperm volume and floury endosperm volume results as derived 

by X-ray µCT for the two milling classes, good (n = 150) and poor (n = 147), also indicating ANOVA results  

 Good milling hybrids Poor milling hybrids P-value 

 Range Mean±SD Range Mean±SD  

EKV (mm3) 158.41 – 147.68 321.50±51.42 143.09 – 443.96 255.56±70.09 < 0.01 

VEV (mm3) 66.36 – 313.67 199.70±39.72 35.92 – 282.79 123.23±51.79 < 0.01 

FEV (mm3) 34.51 – 188.42 78.88±23.51 51.98 – 218.14 101.91±26.67 < 0.01 

V:F 0.69 – 7.18 2.77±1.04 0.2 – 3.71 1.27±0.58 < 0.01 

SD: Standard deviation 

EKD: Entire kernel density 

VED: Vitreous endosperm density 

FED: Floury endosperm density 

V:F: Vitreous-to-floury endosperm ratio 

 

As volume measurements were easier to obtain than density measurements, classification using 

ROC curves was attempted based on volumes and summarised in Table 5.5. Very good 

classification accuracies of 87% and 92% were obtained for VEV and V:F, respectively (Figs. 6.8a 

and b).  The fact that V:F was an excellent descriptor of maize hardness in many previous studies, 

it was also shown that this ratio was equally useful in describing maize milling quality.  The efficacy 

of X-ray µCT as a non-destructive quantitative method was also shown. Slightly poorer classification 

accuracies were obtained for EKV (75%) and FEV (77%) (Figs. 5.8c and d).  
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Table 5.5.  ROC curve classification results when using X-ray µCT volumes 

 Sensitivity 

(%) 

Specificity  

(%) 

Threshold  

(mm3) 

Area under 

curve (%) 

EKV (mm3) 79 68 251.60 75 

VEV (mm3) 81 82 176.14 87 

FEV (mm3) 78 67 84.3 77 

V:F 85 90 1.99 92 

EKD: Entire kernel density 

VED: Vitreous endosperm density 

FED: Floury endosperm density 

V:F: Vitreous-to-floury endosperm ratio 

 

The importance of the X-ray µCT derived variables, as interpreted by principal component 

analysis and correlation coefficients 

The interaction of all the variables (densities and volumes) of the entire sample set was illustrated in 

the PCA bi-plot (Fig. 5.9).  All these measurements were done on individual kernels (n = 297). The 

first two principal components (PCs) described 76% of the variation within the model, with PC 1 

describing the most (56%).  Milling quality was described in the direction of PC 1. This was in 

accordance with the hardness (hard and soft kernels) study of Guelpa et al. (2014b).   

The loadings indicated the relationship between the variables, and in particular, it could be 

observed that a stronger correlation existed between V:F, EKD, VEV, VED, FED and EKV. FEV 

showed no correlation. Considering the Spearman’s rank correlation coefficients, as listed in Table 

5.6, it was apparent that FEV was indeed poorly correlated with the other variables, except with V:F 

(r = -0.70, P < 0.01). Although FEV showed a poor relationship with the other variables in the PCA 

bi-plot, a good classification accuracy of 77% was obtained when classifying good and poor milling 

kernels based on this measurement. The PCA bi-plot, consequently illustrated that FEV described 

another milling quality feature that the other measurements did not describe. 

The strongest correlations were indicated to be that of VEV and EKV. (r = 0.89, P < 0.01) and 

VEV and V:F (r = 0.85, P < 0.01). When considering the ROC curve classification results, V:F and 

EKD had the best classification accuracies (92% and 93%, respectively) when predicting milling 

quality. From the PCA bi-plot it was also evident that V:F and EKD, as well as VEV, were more 

strongly correlated with the good milling hybrids (good milling kernels lying closer to the respective 

variables on the plot).   
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It was also important to note that there were significant differences (P < 0.05) between all the 

variables, except between FED and FEV (P > 0.1) and that the variables (except FEV) thus 

contributed towards describing the milling quality of the individual maize kernels.   
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Figure 5.8. ROC curves indicating milling quality classification, using (a) V:F, (b) VEV, (c) EKV and (d) FEV. 

 

The importance of the X-ray µCT derived variables, in relation to conventional hardness 

methods, as interpreted by principal component analysis and correlation coefficients 

Six conventional hardness methods were compared to the X-ray µCT method, in order to determine 

and interpret the functionality of X-ray µCT as hardness descriptor.  The first conventional method 

was particle size index (PSI), which involved milling and sieving and contributed breaking 
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susceptibility properties of maize kernels. Secondly, a hardness index (HI) was used where NIR 

absorption values at 2230 nm were used to calculate the HI. These measurements also conveyed 

particle size information, similar to PSI. Then, physical properties, such as volume and soundness, 

were expressed by hectoliter mass (HLM) and hundred kernel mass (HKM) measurements which 

were the fourth and fifth conventional methods. And lastly, protein content was determined as a 

descriptive quality parameter, along with NIR HSI that was used to quantify the proportion of vitreous 

endosperm.  In order to perform these correlations, the X-ray µCT variables were taken as the 

averages of the 15 kernels per samples, as summarised in Table 5.7. 
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Figure 5.9. A PCA bi-plot, illustrating the interaction between the X-ray µCT derived variables on 297 maize 

kernels. 

 

The interaction of the X-ray µCT derived variables, as well as variables derived from 6 

conventional hardness methods, was illustrated in another PCA bi-plot (Fig. 5.10).  The first two PCs 

describe 80% of the variation within the model, with PC 1 describing the major percentage (64%).  

Again, milling quality was described in the direction of the first PC.  As indicated by the loadings, 

V:F, VEV and EKV were the X-ray µCT derived variables that showed strong correlations, along with 

PSI, HLM, NIR, protein, HKM and HSI (all the conventional methods).  EKD, FED and VED did not 

correlate with the other variables, and FEV was not describe in either PC 1, nor in PC 2, therefore 

not indicated on the PCA bi-plot.   

As PCA does not consider the variability (range) within the measurements, Spearman’s rank 

correlation coefficients had to be interpreted along with the PCA bi-plot to better understand the 

relationship between the variables.  The poor milling samples included 2 obvious outliers, one very 
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high in density (1.36 g.cm-3), and the other with a very low density (1.11 g.cm-3).  For the X-ray µCT 

derived variables, the strongest correlations were that of V:F and VEV (r = 0.92, P < 0.01) and VED 

and FED (r = 0.90, P < 0.01). EKD, VED and FED were also strongly correlated, and was in 

agreement with the PCA bi-plot.   

 

Table 5.6.  Spearman’s rank correlation coefficient matrix for the X-ray µCT variables done on individual maize 

kernels (n = 297) 

 EKD VED FED EKV VEV FEV V:F 

EKD 1.00       

VED 0.80* 1.00      

FED 0.76* 0.64* 1.00     

EKV 0.27* 0.31* 0.17** 1.00    

VEV 0.76* 0.39* 0.39* 0.89* 1.00   

FEV -0.45* -0.16* -0.04**** 0.20* -0.26* 1.00  

V:F 0.77* 0.36* 0.30* 0.53* 0.85* -0.70* 1.00 

EKD: Entire kernel density (g.cm-3) 

VED: Vitreous endosperm density (g.cm-3) 

FED: Floury endosperm density (g.cm-3) 

EKV: Entire kernel volume (mm3) 

VEV: Vitreous endosperm volume (mm3) 

FEV: Floury endosperm volume (mm3) 

V:F: Vitreous-to-floury endosperm ratio 

*: P < 0.01 

**: P < 0.05 

***: P < 0.1 

****: non-significant 

 

When interpreting the relationship of the conventional methods with the X-ray µCT variables, it 

was evident that the density variables correlated poorly with the conventional methods. The 

conventional methods did not convey density information and it was thus expected that none of the 

conventional methods would correlate with the density variables.  When considering the good 

classification accuracies that were obtained from the density measurements, using the ROC curves, 

densities were still seen as milling quality descriptors, despite of not being presented as contributing 

variables in the PCA bi-plot.  Compared to all the other measurements, density measurements were 

also narrow in range, a factor that is not interpreted by a PCA bi-plot.  

The volume variables, on the other hand, were strongly correlated with all the conventional 

methods, except protein. It was interesting to observe that PSI, HKM, HLM, NIR and HSI were so 
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similar in their descriptive properties.  The strongest correlations were those between HSI and VEV 

(r = 0.95, P < 0.01), HKM and EKV (r = 0.90, P < 0.01), NIR and VEV (r = 0.88, P < 0.01), as well as 

NIR and V:F (r = 0.88, P < 0.01). The very strong correlation between HSI and VEV was expected, 

as the NIR HSI method also determined the percentage vitreous endosperm within individual maize 

kernels.  Due to the available spatial information, pixels belonging to vitreous endosperm could be 

quantified. These results confirmed the usability of NIR HSI to quantify maize endosperm types. 

 

PC 1(64%)

EKD FED VED

NIR HIS
HKM
EKV
Prot
NIR

HLM
PSI

VEV

V:FP
C

 2
(1

6
%

)

 good
 poor

0.50 apha elipses

 

Figure 5.10. A PCA bi-plot, illustrating the interaction between the X-ray µCT derived variables, as well as the 

variables from 6 conventional hardness methods, of 20 maize samples. 

 

Although PSI, HLM, HKM, NIR, NIR HSI and protein content had been shown to describe maize 

hardness, the PCA bi-plot indicated that density variables were lacking for the description of milling 

quality.   It was evident that dedicated density methods were needed to describe milling quality, and 

as conventional density methods overlook the influence of cavities, X-ray µCT measured densities 

were very useful.  
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Table 5.7.  Descriptive statistics of the averaged X-ray µCT variables, as well as the variables from the 6 

conventional hardness methods, for each of the milling groups  

 Good milling Poor milling P-value 

 Mean±SD Mean±SD  

EKD (g.cm-3) 1.30±0.03 1.22±0.07 < 0.01 

VED (g.cm-3) 1.37±0.04 1.35±0.06 < 0.05 

FED (g.cm-3) 1.14±0.04 1.10±0.06 N.S. 

EKV (mm3) 277.87±21.42 225.22±53.08 < 0.05 

VEV (mm3) 199.69±22.49 123.59±40.70 < 0.01 

FEV (mm3) 78.88±8.32 101.90±14.05 < 0.01 

V:F 2.76±0.48 1.27±0.29 < 0.01 

PSI (c/f) 2.74±0.97 1.57±0.62 < 0.05 

HKM (g) 40.72±5.45 31.45±9.64 N.S. 

HLM (kg.hL-1) 79.56±1.20 75.03±1.67 < 0.01 

Protein (%) 8.94±0.73 7.79±0.73 < 0.01 

NIR @ 2230 nm 10.89±3.03 3.10±3.15 < 0.01 

%VE 33.60±8.44 16.11±7.70 < 0.01 

SD: Standard deviation  

EKD: Entire kernel density  

VED: Vitreous endosperm density  

FED: Floury endosperm density  

EKV: Entire kernel volume  

VEV: Vitreous endosperm volume  

FEV: Floury endosperm volume  

V:F: Vitreous-to-floury endosperm ratio 

PSI (c/f):  Particle size index (coarse over fine ratio) 

HKM: Hundred kernel mass  

HLM: Hectoliter mass  

Protein: Protein content (Dumas method)  

NIR @ 2230 nm: Near infrared spectroscopy (hardness index) 

%VE: % vitreous endosperm as determined using NIR HSI 

N.S.: Non-significant (P > 0.05) 
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Table 5.8.  Spearman’s rank correlation coefficient matrix for the X-ray µCT derived variables (averaged per 

sample), as well as for the variables from the 6 conventional methods 

 EKD VED FED EKV VEV FEV V:F PSI HKM HLM Prot. NIR 

EKD 1.00            

VED 0.77* 1.00           

FED 0.81* 0.90* 1.00          

EKV 0.36*** 0.27*** 0.36*** 1.00         

VEV 0.60* 0.38*** 0.53** 0.88* 1.00        

FEV -0.51*** -0.26*** -0.39*** -0.07*** -0.48** 1.00       

V:F 0.68* 0.45*** 0.62* 0.69* 0.92* -0.65* 1.00      

PSI 0.40*** 0.32*** 0.48** 0.65* 0.78* -0.55** 0.76* 1.00     

HKM 0.34*** 0.35*** 0.40*** 0.90* 0.80* -0.06*** 0.68* 0.72* 1.00    

HLM 0.59* 0.29*** 0.47** 0.71* 0.88* -0.53** 0.87* 0.62* 0.57* 1.00   

Prot. 0.35*** 0.27*** 0.43*** 0.48** 0.67* -0.65* 0.71* 0.76* 0.57* 0.58* 1.00  

NIR 0.55* 0.40** 0.48** 0.74* 0.88* -0.55** 0.88* 0.83* 0.75* 0.83* 0.65* 1.00 

%VE 0.42** 0.40** 0.53** 0.85* 0.95* -0.41*** 0.89* 0.81* 0.85* 0.82* 0.71* 0.81* 

EKD: Entire kernel density (g.cm-3) 

VED: Vitreous endosperm density (g.cm-3) 

FED: Floury endosperm density (g.cm-3) 

EKV: Entire kernel volume (mm3) 

VEV: Vitreous endosperm volume (mm3) 

FEV: Floury endosperm volume (mm3) 

V:F: Vitreous-to-floury endosperm ratio 

PSI (c/f):  Particle size index (coarse over fine ratio) 

HKM: Hundred kernel mass  

HLM: Hectoliter mass  

Protein: Protein content (Dumas method) (%) 

NIR @ 2230 nm: Near infrared spectroscopy (hardness index) 

%VE: % vitreous endosperm as determined using NIR HSI 

*: P < 0.01 

**: P < 0.05 

***: Non-significant (P > 0.05) 

 

Conclusion 

An attempt was made to classify maize hybrids, based on X-ray µCT determined densities and 

volumes.  Density measurements, in particular EKD, obtained from low resolution (80 µm) scans, 

allowed for good classification accuracies (93%). The more easily obtained volume measurements 

ranged in classification accuracies of 77% to 92%, also indicating good classification, especially for 

V:F (sensitivity = 85% and selectivity = 90%).  The loadings of a PCA bi-plot indicated a relationship 
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between all the density and volume variables, except that of FEV, which were confirmed with 

Spearman’s rank correlation coefficients. But, when conventional hardness methods were added as 

supplementary properties to describe milling quality, the density measurements were not associating 

with the rest of the variables any more. Conventional hardness methods, i.e. PSI, HLM, HKM, NIR, 

NIR HSI and protein content contributed towards describing the same features that the volume 

measurements described.  To discriminate between milling quality, it seemed that density properties 

had to be present. 
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Chapter 6 

Prediction of kernel density of single maize (Zea mays L.) kernels using a 

miniature near infrared (NIR) spectrophotometer  

Abstract 

Single maize (Zea mays L.) kernels (n = 297) from a variety of breeding materials were scanned 

using a miniature near infrared (NIR) spectrophotometer, i.e. a microNIR. As maize kernel density 

affects milling performance, X-ray µCT determined entire kernel density (EKD) measurements were 

used as reference values for the NIR prediction model building. Spectra were acquired in the 

wavelength range from 908 - 1680 nm at a resolution of 30 x 250 µm / 50 µm. Maize kernels were 

positioned both germ facing towards the detector (germ-up) and facing away from the detector 

(germ-down). Mean centered and standard normal variate (SNV) pre-processed spectra were 

subjected to partial least squares (PLS) regression model building of EKD measurements.  The use 

of microNIR spectroscopy as a possible non-destructive and fast single-kernel analysis method for 

predicting EKD, was investigated.  Prediction statistics for the larger sample set (where each kernel 

was scanned both germ-up and germ-down) for EKD was: R2
V = 0.60, RMSEP = 0.03 g.cm-3, RPD 

= 1.67 and for the smaller sample set (where each kernel was scanned only germ-down) for EKD 

was: R2
V = 0.32, RMSEP = 0.03 g.cm-3, RPD = 1.67. There is a need to develop cost-effective 

technologies for fast sorting of small amounts of grain samples, such as those from breeding 

programmes.  These results indicated that reasonable predictions can be made at the fast NIR scan 

rate that would be suitable for breeders as a rough screening method.  
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Introduction 

The hardness of maize is a critical quality parameter that defines the suitability thereof for different 

processes and end-product quality (Armstrong & Tallada, 2012). Hard maize hybrids are favoured 

by the dry-milling industry for the production of high quality grits and optimal yields (Lee et al., 2007). 

Near infrared (NIR) reflectance spectroscopy is prominent among major analytical technologies and 

used routinely in the grain industries to predict quality attributes, as it is a non-destructive, fast and 

a low-cost method (McClure, 2004; Manley, 2014). NIR absorption bands occur due to C-H,N-H, O-

H and S-H functional groups that causes overtone and combination vibrations.  Therefore, any 

organic molecule, which is abundant in biological material, is suitable for NIR analysis, including 

maize kernels. NIR analysis has been successfully used for bulk maize characterisation for a number 

of measurements, i.e. oil, protein, starch and moisture (Jiang et al., 2007).  

Grain quality, linked to processing quality, has been identified by researchers as an area for 

further single-kernel calibration development (Fox & Manley, 2014). However, the prediction of 

single-kernel traits poses obstacles as it is difficult to collect reliable and representative spectra from 

a heterogeneous sample (such as a maize kernel).  To overcome the presented limitation, Armstrong 

(2006) developed a device where the kernels passed through a glass tube as the spectra were 

collected.  Spielbauer et al. (2009)  modified this approach by integrating kernel weight 

measurements along with the spectral acquisition.  Janni et al. (2008) managed to obtain averaged 

reflectance spectra from individual kernels as they tumbled within an airstream during acquisition.   

The microNIR is a new portable spectrophotometer designed for hand-held applications. This 

pocket-sized spectrophotometer makes use of linear variable filter (LVF) technology that is known 

for stable and reliable optics (Macleod, 2010). The LVF comprises of a thin film used as a dispersive 

element, and apart from reducing costs, the LVF technology results in a compact and rugged 

spectral engine with no moving parts (O'Brien et al., 2012; Alcalà et al., 2014).  Successful 

applications of the microNIR spectrophotometer was for predicting authentic or counterfeit medical 

tables (Alcalà et al., 2014) and for identifying similar species of fish fillets (Friedrich et al., 2014).   

As maize hardness is predominantly a genetic trait (Watson, 1987), plant breeding programmes 

have the opportunity to  improve some of these quality characteristics (Fox & Manley, 2014). The 

evaluation of the success of respective breeding efforts, is best performed on a single-kernel basis 

as single cobs with the value added trait are sometimes produced, resulting in a limited amount of 

kernels (Janni et al., 2008). There is thus still a need to develop cost-effective methods for fast 

sorting that can be used on limited samples, as those from breeding programmes (Fox & Manley, 

2014). 

Among the many methods that are available for hardness measurements, it had been 

established that milling quality requires density measurements to be adequately described (Chapter 

5).  As density measurements from conventional density methods are influenced by large cavities 

present in maize kernels, misleading results can be obtained.  Therefore, using an X-ray micro-

computed tomography (µCT) density calibration (Guelpa et al., 2014) true kernel densities could be 
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calculated.  The X-ray µCT method of determining kernel density is, however, not ideal for fast 

screening as an experienced technician is needed, along with tedious data analysis. 

The aim of this study was to investigate the use of microNIR spectroscopy as a possible non-

destructive and fast single-kernel analysis method for predicting EKD. 

 

Material and methods 

Samples used for model building 

Maize hybrids, ranging in milling quality, were kindly supplied by PANNAR Seeds (Greytown, South 

Africa). The sample set consisted of 10 good milling hybrids and 10 poor milling hybrids, as described 

in Chapter 5 and listed in Table 5.1. For the single-kernel prediction model, 15 kernels from each of 

the 20 hybrids were scanned, both germ-up and germ-down, resulting in a sample set of 600 spectra.  

X-ray µCT density measurements were done on the same 300 kernels that were scanned with the 

microNIR spectrometer. 

 

X-ray µCT derived measurements used for model building 

Entire kernel density (EKD) was determined using a commercial micro-focus X-ray computed 

tomography system, i.e. Phoenix V|Tome|X L240 (General Electric Sensing and Inspection 

Technologies / Phoenix X-ray, Wunstorff, Germany).  The acquisition of the images and the data 

analysis and processing is described in Chapter 5.  In order to facilitate the calculation of the maize 

kernel densities, a density calibration had to be constructed from a range of polymers, using their 

averaged grey values, as obtained by X-ray µCT, and their respective known densities. Successful 

density calculations, using the density calibration, required simultaneous scanning of the polymers 

and maize kernels.   

Data processing of 3 maize kernels were not possible due to artefacts, and the actual number of 

samples used for EKD measurements were 297. 

 

Spectral acquisition 

The absorbance of reflectance spectra was measured in the NIR region (908 - 1680 nm) of the 

electromagnetic spectrum at 6.2 nm intervals, resulting in 125 wavelength bands.  The scans of 297 

maize kernels were individually acquired, scanned germ-up as well as germ-down, using a microNIR 

1700. The microNIR is a miniature NIR spectrometer (Fig. 6.1a) developed and manufactured by 

JDSU Corporation (Santa Rosa, CA, USA). A 128-pixel InGaAs detector was used to achieve a 

resolution of 30 x 250 µm / 50 µm. Each spectrum was the average of 64 scans. The microNIR was 

fitted with a LVF filter which can be compared to a scanning Fabry-Perot interferometer that scans 

with position instead of time (Macleod, 2010; O'Brien et al., 2012). Two tungsten lamps allowed for 

illuminating a spot (3 mm in diameter) on the sample with the optimal focal distance being 3 mm 

from the sample.  
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The external white reference was a 99% diffuse reflectance standard (JDSU Corporation, Santa 

Rosa, CA, USA) measured once every 15 minutes during the sample acquisition period.  The maize 

kernels were placed, one at a time, in a hollowed-out Teflon (PFTE) disk (Maizey’s (Pty) Ltd, Kuils 

River, South Africa) (Fig. 6.1b) that completely covered the microNIR’s connectable collar upon 

scanning.  In order to keep the optimal focal distance of 3 mm constant, in spite of maize kernels 

differing in thickness, a range of hollowed-out disks were developed, varying in depth from 5 mm to 

10 mm.  MicroNIR software (JDSU Corporation, Santa Rosa, CA, USA) was used to perform the 

spectroscopic measurements and the data was saved in Microsoft Excel format for analysis in 

Evince 2.5.5 software (Umbio, Umeå, Sweden). 

      (a) 

 

    (b) 

 

Figure 6.1. (a) A microNIR spectrometer imaged next to a pen to illustrate the small size of the device, and 

(b) a hollowed-out Teflon disk with a maize kernel inside as it was used when scanning individual maize 

kernels.  

 

Principal component analysis and partial least squares regression models  

Data was explored, using principal component analyses (PCA), whereas partial least squares (PLS) 

regression models were built to perform predictions on single-kernel spectra. EKD measurements 

were used as reference values. Spectra were mean-centered and standard normal variate (SNV) 

and multiplicative scatter correction (MSC) spectral pre-treatment were explored during model 

development. To test prediction ability, the samples were divided into a calibration set to build the 

regression models and a test set to independently validate the regression models. This was done 

by sorting the reference density values into ascending order and selecting every third sample for 

validation with the remaining used to develop the calibration model.  This assured that both models 

had the same broad range of reference values. Full cross-validation (leave-one-out exclusion) 

regression modeling of the calibration set was used to establish a preliminary number of factors for 

the model. The calibration and validation models were evaluated individually, reporting the errors as 
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root mean square error of cross-validation (RMSECV) and root mean square error of prediction 

(RMSEP), as well as coefficients of determination for both the calibration and validation sets, R2
C 

and R2
V, respectively. RPD and standard error of laboratory (SEL) values were also reported.  

 

Results and discussion  

The performance of NIR prediction calibrations can be influenced by many factors, with the two most 

important ones being the representative nature of the samples and the accuracy of the 

measurements from the reference methods (Wang & Paliwal, 2007). In the current study, an attempt 

was made to optimise the presentation of the samples by making minor technical modifications.  

Custom designed Teflon sample holders were used to ensure that the kernels were maintained in 

the center of the sample area, when scanned.  Furthermore, the sample holders differed in depth 

and could thereby ensure a constant optical focal distance, irrespective of kernel thickness.  

Additionally, the accuracy of the measurements of the reference method (entire kernel density as 

calculated using X-ray µCT) was validated by comparing estimated and measured masses (r = 0.99) 

and a very low standard error of measurement of 0.01 g.cm-3 was obtained, confirming the 

measurements as very accurate (Guelpa et al., 2014). 

Reflectance measurements are surface-biased and the position of the germ, either showing 

towards or away from the detector, influences calibration accuracies (Jiang et al., 2007).  Therefore, 

the current study included both the orientations of the germ (germ-up and germ-down) into the 

prediction calibration, including more variation in the prediction model. 

Only the wavelength range of 1000 - 1680 nm was considered for performing PCA and PLS 

regression modelling because of the low signal-to-noise ratio at the edge of the spectra.   SNV was 

selected as a pre-treatment method as it resulted in the best calibration models. The mean-centered 

and SNV pre-treated spectral profile (n = 594) (Fig. 6.2) had the usual significant absorption peaks 

at 1450 nm for moisture and 1175 – 1225 nm for protein. 

As the sample set consisted of both good milling and poor milling hybrids, a PCA model was 

calculated with the samples coloured according to their respective class. It was observed that milling 

quality properties were distinguishable when both the second and third PCs were interpreted.  A 

degree of clustering was visible between the good milling samples (red dots) and the poor milling 

samples (blue dots) (Fig. 6.3). From the loading line plot of PC 2 (Fig. 6.4a) it was evident that this 

PC was important as it represented variation associated with protein (N-H stretch first overtone of 

CONH2 as indicated by 1430 nm), as well as starch (C-H stretch second overtone of CH, indicted by 

1225 nm). The three positively loaded peaks in PC 3 were associated with  starch, as 1170 nm was 

associated with C-H stretch second overtone (HC=CH), 1395 nm with 2 x C-H stretch + C-H (CH2) 

and 1660 nm was in turn associated with C-H stretch first overtone (cis-RCH+CHR1) (Osborne et 

al., 1993).   
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Figure 6.2.  Mean-centered and SNV pre-treated NIR reflectance spectra, as acquired using a microNIR 

spectrophotometer, of the sample set, scanned both germ-up and germ-down.  

 

 

 

Figure 6.3. A principal component score plot of PC 2 vs. PC 3 (27.9% and 10.7%), illustrating both PCs to be 

important with respect to the variation found between the good milling (red dots) and poor milling (blue dots) 

kernels. 
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(a) 

 

(b) 

 

 

Figure 6.4. A loading line plot for (a) PC 2 showing 2 prominent positive peaks: (1) 1225 nm and (2) 1430 nm, 

associated with starch and protein, and (b) PC 3 showing 3 prominent positive peaks: (1) 1170 nm, (2) 1395 

nm and (3) 1660 nm, all associated with starch.   

 

Ten latent variables (LVs) were selected for optimal model building as they resulted in the lowest 

RMSECV, following full-cross validation of the calibration set of the mean-centered and SNV pre-

processed germ-up and germ-down scanned spectra. The mean±SD for the calibration (130±0.05 

g.cm-3, n = 423) and external validation (1.27±0.05 g.cm-3, n = 171) sets were very similar, which 

ensured accurate error estimation by external validation.  An RMSECV of 0.02 g.cm-3 and RMSEP 

of 0.03 g.cm-3 was determined for EKD. Plotting predicted EKD versus actual EKD values for the 

external validation set, showed that the regression model predicted the variable reasonably good 

(R2
V = 0.60) (Fig. 6.5).  Although a SEL of 0.01 g.cm-3 was obtained with the X-ray µCT measurement 

method, it should, however, be stressed that large and expensive equipment was needed, and was 

also time-consuming.  

 Guidelines for interpretation of modeling results make use of RPD values, which is a ratio of the 

SD of the reference data to the SECV.  RPD values can also be determined for the validation data. 

As suggested by Williams (1991), RPD values of 2.5 to 3 were suitable for rough screening; a value 

of 5 to 8 could be used for quality control.   

 In an earlier study, a RPD value of 2.53 was obtained for a regression model of total kernel 

density, determined using X-ray µCT, and single-kernel NIR Grain Analyser spectra (Gustin et al., 

2013).  The latter study indicated the model as an effective screening tool, with a RMSEP of 0.03 

g.cm-3 and R2
V of 0.78. The prediction model of EKD for the current study obtained a RPD value of 

1 

2 

3 

 

1 

2 
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only 1.67 (RMSEP = 0.03 g.cm-3 and R2
V = 0.60) as a smaller SD (of 0.05 g.cm-3 compared to) was 

present. The current study included 20 hybrids, whereas the former study sampled from 64 hybrids, 

incorporating more variation in their sample set, therefore the larger SD of 0.07 g.cm-3 was found. 

 

 

Figure 6.5. Validation set predictions for EKD (g.cm-3) of the robust sample set (scanned germ-up and germ-

down). 

 A second calibration was built, considering only kernels that was scanned germ-down.  Milling 

quality properties were already distinguishable in the PCA score plot of PC1 vs. PC 2 (Fig. 6.6a), 

with the good milling kernels (red dots) separating from the poor milling kernels (blue dots) in the 

direction of PC 2. The loading line plot for PC 2 (Fig. 6.6b) revealed two positively loaded peaks, i.e. 

at 1195 nm and 1415 nm, both being associated with  starch (CH2) (Osborne et al., 1993), which is 

the main constituent of endosperm.  The spectra from the larger sample set (scanned both germ-up 

and germ-down) described variation in both protein and starch, with the germ contributing the protein 

constituents. 

 Three latent variables were selected, based on lowest RMSECV, after performing full-cross 

validation on the calibration set (n = 205), followed with mean-centering and SNV, for model building 

of spectra collected from germ-down kernels. EKD measurements were used as reference values. 

A better RMSECV, compared to that of the large sample set, was obtained (0.01 g.cm-3), but the 

RMSEP stayed the same (0.03 g.cm-3) and the R2
c was 0.40. For the validation set (n = 91) a R2

V of 

0.32 was obtained for the predicted EKD versus actual EKD values (Fig. 6.7), with a RPD value of 

1.67. 
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(a) 

 

(b) 

 

  

Figure 6.6. (a) Principal component score plot of PC 1 vs. PC 2 (72.6% and 20.6%) illustrating the good milling 

kernels (red dots) to cluster predominantly above PC 2 and the poor milling kernels (blue dots) to cluster below 

PC 2. (b) A loading line plot for PC 2 revealing 2 prominent positive peaks: (1) at 1195 nm and the other one 

at 1415 nm.   

 Four samples (encircled with red dotted line in Figure 6.7) were investigated as possible outliers.  

All four were poor milling samples, and although their measured densities were lower than the rest 

of the validation set, they were still presented as fitting into the corresponding PCA models, therefore 

they were not excluded as outliers.  

 The smaller model (using only spectra form germ-down scanned kernels) did not predict as well 

as the larger model (kernels were scanned both sides). Using NIR spectroscopy in industry, samples 

would be scanned from different orientations and a suitable prediction model would have to include 

this variability.  Therefore, the better prediction model for the larger sample set indicated industrial 

application possibilities. It was, however, evident that a prediction model based on density 

measurements, derived from X-ray µCT, had to incorporate as much variability as possible to 

increase predictability.  

  

1 2 
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Figure 6.7. Validation set predictions for EKD (g.cm-3) of the sample set scanned germ-down. Four samples 

encircled were investigate as possible outliers. 

 

Conclusion 

This study demonstrated that EKD, as derived from X-ray µCT, could be predicted to a fair extent, 

using the fast single-kernel microNIR spectrophotometer. As density measurements showed 

relatively small differences between kernels, the prediction models could be improved by extending 

the variability within the sample sets, thereby including the maximum number of hybrids and 

scanning the kernels positioned in different orientations.  X-ray µCT measured densities of individual 

maize kernels, as used in the prediction models, were related to maize milling quality and 

consequently expanded the functionality of the models. The predictive performance demonstrated 

the ability to be a rough screening tool for breeding programmes. 
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Chapter 7 

General discussion and conclusion 

Maize (Zea mays L.) is, amongst others, cultivated for human consumption and is a staple food in 

many countries. Dry-milling is used to process maize into maize meal and maize hardness 

methods are being used to measure maize milling quality, due to a lack of milling quality methods. 

This study intended to determine to what extent maize hardness and milling quality is related.  For 

this purpose, a sample set of maize from different hybrids, localities and plantings, was ranked 

based on milling performance.  An industrial guideline for assessing milling quality was used and 

was referred to as the estimation of the chop percentage. During an unsupervised inspection of 

seven conventional hardness methods by means of principal component analysis (PCA) score 

plots and loadings, as well as Spearman’s rank correlation coefficients, it could be seen that all the 

hardness methods were important with respect to describing maize milling quality.  The 

conventional methods that were used, were hectoliter mass (HLM), hundred kernel mass (HKM), 

protein content, particle size index (PSI c/f), percentage vitreous endosperm (%VE) as determined 

using near infrared (NIR) hyperspectral imaging (HSI) and NIR absorbance at 2230 nm (NIR @ 

2230 nm).  

As endosperm is the main constituent of a maize kernel (Watson, 1987), this study investigated 

the fundamental textural properties thereof. Digital images, scanning electron microscopy (SEM) 

micrographs and X-ray µCT images revealed that the morphology of the two endosperm types i.e. 

vitreous and floury, both present in a maize kernel, presented density and volume differences. The 

vitreous endosperm appeared much denser than the floury endosperm, due to a thicker protein 

network that compacts the starch granules, whereas the floury endosperm revealed loosely 

packed granules with intracellular air spaces present, as the protein network was mostly absent. It 

was also seen that the proportion in which the endosperm types was present, differed between 

individual kernels.  Cavities or relatively large air spaces were also observed and considered as a 

possible influence on milling quality.   

The choice of analytical methods, use for investigating maize endosperm texture, was based 

on the success of former studies to discriminate between hardness properties, and the availability 

of new technologies that seemed viable. The Rapid Visco Analyser (RVA) would not typically be 

used to describe hardness differences in maize, but as this grain consists of mainly starch, the 

functionality of the RVA to capture pasting properties seemed just as useful to capturing milling 

quality differences.  In this study, the RVA viscograms were subjected to partial least squares 

(PLS) regression model building and showed to be able to predict hardness properties, without 

being influenced by different profiles.  

Furthermore, it was apparent that X-ray µCT would be able to characterise the differences 

(density and volume) related to maize endosperm, due to the advanced technology associated 
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with this method.  Micro-computed tomography detects density differences as it identifies 

attenuation changes with X-rays passing through a material (Chawanji et al., 2012). Individual 

maize kernels could be segmented, non-destructively, into desired regions-of-interest (ROIs), i.e. 

vitreous endosperm, floury endosperm and cavities. Depending on the resolution of the images, 

textural properties such as porosity (intra-cellular air spaces) could also be detected.  Using X-ray 

µCT, a density calibration was constructed that facilitated density calculations of the respective 

ROIs, as well as that of the entire kernels.  Quantification of the ROIs and porosity (when imaged 

at high resolution) was also achieved. Formerly, quantification of the different endosperm types 

was only possible using hand-dissection (Erasmus, 2003), or more recently, using NIR HSI 

(McGoverin & Manley, 2012).  

This study demonstrated the versatility of X-ray µCT as it was possible to acquire very high 

resolution images (3 µm) containing detailed information of single kernels or sub sections thereof, 

or imaging multiple kernels (150) simultaneously, achieving a lower resolution (80 µm), but still 

adequate for density and volume analysis.  The usefulness of X-ray µCT was also illustrated by the 

ability to exclude ROIs that would ensure more accurate measurements.  This was demonstrated 

with the removal of the cavities when calculating entire kernel density.  Conventional hardness 

methods measuring density, such as the floating test, overlook the importance of this feature and 

misleading results are obtained.   

Discrimination between hard and soft maize hybrids were achieved based on all three X-ray 

µCT derived entire kernel densities (EKD), vitreous endosperm densities (VED), floury endosperm 

densities (FED), as well as the percentage porosity quantified within each kernel.  Receiver 

operator characteristic (ROC) curves contributed threshold values that were used to establish 

classification accuracies.   

Milling quality classification of maize hybrids was also accomplished, using X-ray CT derived 

densities (EKD, VED, FED) and volumes (entire kernel volume (EKV), vitreous endosperm volume 

(VEV), floury endosperm volume (FEV) and the vitreous-to-floury endosperm ratio (V:F)). The best 

classifications were possible when using EKD and V:F. 

In order to interpret the relationship of the X-ray µCT derived measurements with respect to 

conventional hardness methods (PSI, HLM, HKM, NIR HSI and protein content), PCA bi-plots and 

Spearman’s rank correlation coefficients were examined.  These statistical data analysis methods 

indicated that milling quality could not be described without including density measurements. This 

was a very important finding as it indicated that density properties were the discriminatory factor 

with respect to maize hardness and maize milling quality. 

Lastly, an attempt was made to combine the X-ray µCT derived EKD measurements with fast 

and simple NIR spectroscopy by building a prediction model, from spectra acquired using a 

miniature hand-held microNIR instrument. Due to not enough variation in the sample set, the PLS 

model was only good enough to be used as a rough screening method in industry.  It was, 

however, established that the prediction model was better when it included spectra from kernels 
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scanned both sides, i.e. germ-up and germ-down.  This confirmed that a model with maximum 

variability would improve the prediction capability. 

The findings from this study imply that milling quality can only be partially assessed using 

conventional hardness methods.  For a true reflection of maize kernel milling quality, a kernel’s 

density needs to be measured, after the exclusion of the cavities present.  X-ray µCT is a 

technology capable of such manipulations due to the 3-D nature of the captured data.  The 

applicability of the findings resolves around the ability to incorporate the milling quality 

measurements (as obtained by X-ray µCT) into functional NIR spectroscopy calibrations. The 

inclusion of maximum variability in the data sets, as well as using suitable chemometrical tools, will 

ensure optimal milling quality prediction models that can be purposefully applied in the industry.   
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