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Chapter 1

Introduction

The Medical Radiation department at iThemba LABS1 provides proton beam ther-

apy facilities for irradiation of intracranial, head and neck lesions. Proton radiation

treatment offers a number of advantages over alternative radiation therapy modal-

ities. The most significant advantage is the ability to localize the dose to the lesion

or target volume [16]. Lesions are located by means of medical imaging processes,

such as Computer Tomography (CT) or Magnetic Resonance Imaging (MRI) scans.

Patient treatment commences at the existing treatment facility of iThemba LABS.

The patient positioning system that is currently in use at this facility was designed

for only one horizontal beam delivery system and a limited number of treatment

positions. The possibility of acquiring an additional beam delivery system and im-

proving the utilization of the system resulted in plans to expand the current proton

therapy capabilities. These plans resulted in the development of a new treatment

vault, complete with a new patient positioning system. The new vault will cater

for two beam delivery systems and expand current treatment positions. For a de-

scription of the current proton treatment facilities, refer to [2] and [24].

The patient positioning system (PPS) consists of a patient positioner, a patient

alignment system and a digital radiograph system. The patient positioner is a

1iThemba LABS, P.O.Box 722, Somerset West 7129, South Africa.
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2 CHAPTER 1. INTRODUCTION

commercial robot manipulator, fitted with either a chair or a couch as a patient

support system. This robot will be responsible for mechanically moving the pa-

tient to the required treatment positions. The patient alignment system will be

used to derive the movement path required by the patient positioner. The digital

radiograph system will be used to determine the small corrections that might be

needed to compensate for possible misalignment of the patient. In the first stage of

patient treatment, the computer tomography (CT) scanner produces slices of x-ray

images through a region of the patient. These x-ray images are combined to cre-

ate a three-dimensional (3D) model of the patient’s anatomy in that region. This

model is used to construct a treatment plan for the treatment of the patient. In the

second stage of patient treatment, this information is passed on to a computerized

treatment planning system. This system uses this treatment plan to compute the

optimal arrangement of the proton beam through the patient. Such an optimal

arrangement corresponds to a high and homogeneous dose distribution in the tar-

get volume, while sparing normal tissue as much as possible. The optimal beam

configuration is passed to the patient positioner which positions the patient relative

to the beam delivery system according to these specifications. The content of this

thesis relates to the patient alignment system which will be discussed further. A

detailed discussion of the components of the PPS is provided in The conceptual

design of a robot-based patient positioning system by Evan de Kock [7].

The patient alignment system (PAS) is a vital component of the PPS because it

determines the movements of the patient positioner required to position the patient

correctly. The two main components of the PAS are the CT scanner stereopho-

togrammetric (SPG) system and the Treatment SPG system. Both these SPG sys-

tems are multi-camera computer systems that capture sets of video images of mark-

ers positioned on the patient’s mask. They use SPG techniques to determine the

3D coordinates of the center of the markers from the video images. The CT scan-

ner SPG system calculates the position of the markers while the patient is located

in the reference position used in the CT study. Since the relationship between
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the SPG system and the CT scanner is known, this establishes the position of the

lesion relative to the markers. The 3D coordinates of the markers are transfered

to the Treatment SPG system. This system uses this data to determine the rela-

tionship that describes the position of the patient in the treatment vault relative

to the reference position in the CT scanner room. This relationship, or coordinate

transformation, is used to determine the movement of the patient that is required

to position the patient in the prescribed treatment position as issued by the treat-

ment planning system.

The CT scanner SPG system and the Treatment SPG system are also responsible

for monitoring patient motion during a CT study and treatment sessions respec-

tively. The monitoring process involves determining the position of the patient’s

mask from video images captured at small time intervals. The position of the pa-

tient’s mask relative to the respective reference positions describe the movement of

the patient. The CT scanner SPG system uses this information to detect patient

motion and this information can be used to correct small errors in the CT study

which may result from the patient’s movement. The Treatment SPG system uses

the information to inform the safety system in the treatment room of large2 patient

movements.

The relation between the position of the cameras and the position of the markers

on the patient’s mask is critical to the success of both SPG systems. The mini-

mum requirement (also referred to as the marker placement criteria) of these two

systems requires that at least three markers whose position on the mask is known,

are visible on images captured by at least two different cameras, as this is needed

to reconstruct the unique 3D position of the patient’s mask. A minimum of three

markers are needed because, one marker are required to determine the position of

the mask, but two additional markers are needed to determine the unique orien-

tation of the mask with respect to the treatment vault coordinate system. The

position of the cameras in both SPG systems should therefore ensure that a suffi-

2A large movement indicates that the patient moved out of the allowed treatment region for

time period that is longer than a specified cutoff time (see [7]).
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ciently large area of the patient’s mask is visible to at least one camera pair. This

thesis investigates this relationship between the camera positions and the marker

positions on the patient’s mask for the CT scanner SPG system and the Treatment

SPG system.

Two individual simulation routines were developed. These simulations were im-

plemented in the C++ programming language and used the OpenGL graphics

library [34] to produce a graphical representation of the setup in each of the two

vaults. The OpenGL library was selected not just because it is one of the most

familiar and widely used software interfaces, but because it also provides various

commands well suited for interactive 3D applications. These simulation routines

provided an ideal environment in which to test and compare the many possible

combinations of camera positions and marker positions. Although neither simu-

lations nor computer graphics are exact sciences, errors in simulations are largely

due to inadequate modeling rather than graphics problems. A brief overview of

some of the main concepts involved in these computer graphics representations are

provided in Chapter 2.

The possible position of the cameras in the CT scanner SPG room were fixed be-

fore the simulation routines. Their positions were determined by the geometry of

the CT scanner and manufacturing constraints. The success of the CT scanner

SPG system depends on whether or not enough markers on the patient’s mask are

visible to the cameras in these fixed positions. A sufficient number of markers are

required to successfully reconstruct the position of the patient’s mask. The posi-

tion of the patient’s mask is used to establish the relationship between the position

of the treatment lesion and the mask, needed by the Treatment SPG system to

position the patient in the treatment position and to monitor patient movement

during the study. It is therefore critical to investigate the effect of the fixed camera

positions on the position of the markers on the patient’s mask. This investigation

is the topic of Chapter 3.

The position of the markers of the patient’s mask are determined in the CT scanner
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room because of the constraints imposed on the position of those cameras. The

success of the Treatment SPG system also depends on the number of markers visi-

ble to the cameras in the treatment vault. The two most commonly used treatment

masks, a face mask and a body mask, were used in the Treatment vault simulations.

This simulation routine aims to determine the camera positions in the treatment

vault that will maximize the number of visible markers on the patient’s masks.

Since neither mask has completely specified marker positions, the simulation rou-

tine maximizes the total visible area of each mask. This is a reasonable assumption

because a greater number of markers can be placed in a larger visible area of the

mask and remain visible to the cameras. In other words, we assume that the num-

ber of visible markers increase with an increase in the size of the visible mask areas.

Maximizing the number of visible markers minimizes the error in reconstructing

the position of the masks. An accurate patient position is necessary for positioning

the patient in the required treatment position and determining whether or not the

patient moves in or out of position during this treatment. The optimal position of

the cameras in the treatment vault is determined in Chapter 4.

Both simulation routines were implemented on the Red Hat Linux 7.3 operating

system with a i686-optimized kernel. Three different computers were used. Two

were equipped with Pentium III, 1GHz dual processors with 512Mb of available

RAM. The third computer was equipped with Pentium IV 2GHz dual processors

with 512Mb of available RAM. The Pentium IV processors also support hyper

threading.

A compact disc accompanies this thesis. This disc contains a digital copy of this

document (./thesis), the complete set of results from both the marker and camera

position simulations (./SimResults), source code of both simulations (./CTScannerRoomSimulations

and ./TreatmentRoomSimulations) and digital copies of some of the reference ma-

terial (./Articles).

We discuss our conclusion in Chapter 5.
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Chapter 2

Computer Graphics Concepts

2.1 Introduction

“The point of computer graphics is to convert a mathematical or geometrical de-

scription of an object – a computer graphics model – into a visualization – a two-

dimensional (2D) projection – that simulates the appearance of a real object ”– Alan

Watt, 3D Computer Graphics [28]. Computer graphics models are created in appli-

cation software which provides information to the graphics hardware. In turn, the

graphics hardware is responsible for displaying the created objects on a computer

screen. The OpenGL graphics library is an interface between hardware and soft-

ware applications. Its libraries provide a set of commands which allows a user to

create complex objects from primitives like points, lines and polygons. In addition,

these commands also provide facilities to manipulate the objects and the way they

are displayed on a computer screen. This kind of functionality provides an ideal

environment in which the behavior of objects can be simulated.

This chapter discuss some of the main concepts used in the implementation of the

marker placement and the camera placement simulations. The marker placement

simulations in Chapter 3 use computer graphics primitives to model the setup in

the CT scanner room while the camera placement simulations in Chapter 4 use

7
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the primitives to model the setup in the new treatment vault. Some of the more

basic OpenGL operations are covered in Section 2.2. These operations include the

various phases or steps involved in the rendering process, different techniques used

to represent a graphical object, blending and texture mapping. Some more com-

plicated operations like projecting objects to a plane and collision detection are

discussed in Section 2.3.

2.2 Basic operation in OpenGL

2.2.1 The graphics pipeline

The graphics pipeline refers to the series of steps that are followed when displaying a

created object on the computer screen. Figure 2.1 shows a graphical representation

of a typical graphics pipeline. Not all graphic engines follow the exact same order

of steps, but most include the steps shown in Figure 2.1. At each step an unique

coordinate system provides a framework for a set of distinct and relevant operations.

Operations include: modeling transformations, view transformations and rendering

processes like hidden surface removal and rasterization. A definition of the different

coordinate systems and transformations between them follow.

Definition

Object Compose scene

Define lighting

Define view reference

Clip to 3D 

view volume

Hidden surface 

removal

Rasterization

Local coordinate World coordinate View Screen 

Modelling View 

space space space space
Display
space

transformationtransformation

Figure 2.1: The graphics pipeline. The image was taken from 3D Computer Graph-

ics [28] (page 142).
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Basic transformations

The most basic and elementary unit in computer graphics is a vertex point (v).

Three transformations, translation (T), rotation (R) and scaling (S) transform such

a vertex point in R3as:

v = v + T

v = Rv

v = Sv (2.1)

Equation 2.1 expresses these transformations in matrix notation. Only translation

is not specified as a matrix multiplication, but as a matrix addition. Specifying

these transformations in homogeneous coordinates allow translation to be repre-

sented as a matrix multiplication rather than an addition. The result is an unified

scheme for linear transformation, all represented by a single matrix multiplication.

The homogeneous representation of a vertex point is:

v =




















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y

z
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
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
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

(2.2)

The corresponding single matrix multiplication that represents each transformation

is:

v′ = Tv (2.3)





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=





















1 0 0 Tx

0 1 0 Ty

0 0 1 Tz

0 0 0 1






































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(2.5)

v′ = Rv (2.6)
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
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(2.7)

(2.8)

v′ = Sv (2.9)
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(2.10)

with Rot the 3 × 3 rotation matrix around a particular axis. The OpenGL com-

mands, glTranslate(Tx,Ty,Tz), glRotate(angle,Rx,Ry,Rz) and glScale(Sx,Sy,Sz) are

responsible for translation, rotation and scaling respectively. The rotation angle (in

degrees) is specified with the angle parameter in glRotate(angle,Rx,Ry,Rz) while

the axis of rotation is specified with Rx, Ry and Rz.

Coordinate systems in the graphics pipeline

A different coordinate system is associated with each step in the graphics pipeline

shown in 2.1. These coordinate systems provide frameworks for sets of related

operations. For example, the view coordinate system provides the framework

in which the 3D scene is clipped to the view volume. The view volume represents

that part of the 3D scene that projects onto the computer screen, while clipping is

the process of eliminating those objects, or parts there of, that fall outside this view

volume. This step of the graphics pipeline involves transformations and operations

related to the way in which an object is viewed. The coordinate systems associated

with the steps shown in 2.1 are:

Local coordinate system

The local coordinate system (L) is located at a point in or close to the created
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object. The quadruplet (xl, yl, zl, 1) specifies the coordinates of a vertex point

in this coordinate system.

World coordinate system

The homogeneous world coordinate system (W) is the global coordinate sys-

tem of the 3D scene. This coordinate system consists of modeled objects

and their respective local coordinate systems. The quadruplet (xw, yw, zw, 1)

specifies the coordinates of a vertex point in this coordinate system. All the

objects are transformed into this common space to define their relative spatial

relationships.

View coordinate system

The homogeneous view coordinate system (V) is fixed to the observer (or

camera). This coordinate system defines the viewing parameters (viewpoint,

view direction) and the view volume. The origin of this coordinate system is

the viewpoint while the quadruplet (xv, yv, zv, 1) indicates the coordinates of

a vertex point.

Screen coordinate system

The screen coordinate system (D) represents the 2D screen. A vertex point

in this coordinate system is specified by (xs, ys). The origin of this coordinate

system is taken to be the lower left corner of the computer screen.

Light coordinate system

The homogeneous light coordinate system (G) is fixed to the light source.

The origin of this coordinate system is the light source while the quadruplet

(xg, yg, zg, 1) specifies the coordinates of a vertex point in this coordinate

system.

Texture coordinate system

The texture coordinates system (K) is a 2D coordinate system that provides

an index into a texture image. A vertex point in this coordinate system is

specified by (xt, yt).
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A graphical representation of these coordinate systems is shown in Figure 2.2.

The transformation matrices that are responsible for transforming a vertex point

between these coordinate systems are:

S

T

W

L

Texture

Screen

Object

Light source

Viewpoint
V

G

Figure 2.2: A graphical representation of the various coordinate systems present

in the graphics pipeline.

Transformation matrices

The matrix representation of the homogeneous coordinates of the vertex point v

in W is:

v =





















xw

yw

zw

1





















(2.11)

The position and orientation of each object is specified relative to its local co-

ordinate system. The modeling transformation matrix Mm is a combination of

matrices Tm, Rm and Sm and transforms a vertex point in W to a vertex point
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in L. This transformation is described by:

Mm = TmRmSm (2.12)

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






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






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






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




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zw

1





















(2.13)

The viewing transformation matrix Mv is a combination of Tv and Rv (assuming

unit scaling) and specifies from where and in what direction the objects will be

viewed. The transformation of a vertex point v from W to V is described by:

Mv = TvRv (2.14)




















xv

yv

zv

1





















= Mv





















xw

yw

zw

1





















(2.15)

OpenGL’s default viewing parameters are: view point= (0, 0, 0), view direction=

(0, 0,−1) and up= (0, 1, 0). These parameters translate to a view point at the ori-

gin, the view direction along the negative z-axis and the positive y-axis as straight

up. OpenGL command glLookat(x1,y1,z1,x2,y2,z2,x3,y3,z3) is responsible for chang-

ing the default viewing parameters. x1, y1 and z1 specify the x, y and z coordinates

of the view point which are transformed by the Tx, Tz and Tz components of the Tv.

x2, y2 and z2 specify the view direction and x3, y3 and z3 specifies up. The rotation

axis of Rv is given by the cross product 1 of the normalized vectors (0, 0,−1) and

(x2, y2, z2) which are the default and new view directions respectively. The cosine

of the angle of rotation is given by the dot product of the same normalized vectors.

The matrix Mg is similar to Mv and transforms a vertex v from W to G. The mod-

eling matrix and the viewing matrix are combined to produce the modelview matrix

Mmv. The OpenGL command glMatrixMode(GL MODELVIEW) initializes Mmv

1vector product
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to the identity matrix I. Any calls to the OpenGL commands glTranslate(Tx,Ty,Tz),

glRotate(angle,Rx,Ry,Rz) or glScale(Sz,Sy,Sz) after this initialization result in a

transformation of Mmv.

The transformation from V to D is via the 3D screen space. This transformation

determines how the objects are projected onto the 2D screen. Objects can be pro-

jected either perspectively or orthographically onto the 2D screen. A perspective

transformation makes objects that are farther away appear smaller, which matches

how we see things in daily life. An orthographic projection maps objects directly

onto the screen without affecting their relative size. The matrix responsible for the

perspective transformation, Mp, will be discussed further. The OpenGL command

glFrustum(left,right,bottom,top,near,far) controls this projection. The frustum’s

view volume is defined by the parameters (left,bottom,-near) and (right,top,-near)

which specify the (x, y, z) coordinates of the lower-left and upper-right corners of

the near clipping plane. Parameters near and far give the distances from the

viewpoint to the near and the far clipping planes. The parameters defining the

view frustum are shown in Figure 2.3. The glFrustum(left,right,bottom,top,near,far)

command generates the matrix Mp which perspectively transforms the coordinates

of v in V to a coordinate in the 3D screen space.

v′ = Mpv (2.16)












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




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




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




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
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






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



















(2.17)

(2.18)

The matrix Mp is defined as long as left 6= right, top 6= bottom and far 6= near.

The viewport transformation matrix Mvp transforms the coordinates of a vertex

v′ in 3D screen space to a vertex in D. The viewport is the rectangular re-
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near

far

left

top

bottom

right
viewpoint

Figure 2.3: The frustum’s viewing volume

gion of the window where the image is drawn and reflects the relative position of

pixels on the screen relative to the lower-left corner of the window. The glView-

port(x,y,width,height) command controls this transformation. The x and y pa-

rameters specify the position of a vertex on the screen while the width and height

parameters specify the width and height of the screen. The transformation between

G and K will be described in Section 2.2.4.
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2.2.2 Representation of 3D objects

A number of techniques exist in which to create objects in computer graphics.

These techniques involve polygonal representations, constructive solid geometry (CSG)

and implicit representations. An implicit representation describes an object in

terms of an implicit function. For example, a sphere can be described in terms of

the function

x2 + y2 + z2 = r2

where r is the radius of the sphere. CSG is the technique of representing objects

with ‘combinations’of elementary shapes or geometric primitives. Representing

a block with a hole in it as the result of a 3D subtraction of a cylinder from

a rectangular solid, is an example of CSG. In another example, the treatment

beam nozzle, used in the computer simulations of Chapter 4, is represented as a

combination of a cylinder and a cone. This representation of the beam nozzle is

shown in Figure 2.4.

Polygonal representation is the technique that is most commonly used to represent

Figure 2.4: CSG representation of the treatment beam nozzle.

objects in computer graphics. With this technique, objects are approximated with

a mesh of polygon facets. Each polygon facet is defined by three or more vertices.

The position of these vertices can be obtained from scanning the object with either a

laser ranger or a 3D-digitizer. Scans like these produce sets of 3D-coordinates which

provide the position of the vertices. A common strategy for ensuring an adequate

representation is to draw a net over the surface of the object. The position of the

vertices are then defined to be the intersection of the curved net lines. A number



2.2. BASIC OPERATION IN OPENGL 17

of algorithms exist that take these vertex coordinates and produce polygon facets.

H. Hoppe et al developed an algorithm that creates a surface (consisting of polygon

facets) from unorganized data points [13] [14] [15]. Their method uses triangulation

and mesh optimization routines to reconstruct the surface of the object from the

set of vertex coordinates. In addition, a smoothing function is used to smooth

sharp edges by increasing the number of polygons in the final representation of the

object.

The simulation routine implemented in Chapter 4 uses a polygonal representation

of a face mask to determine the optimal position of the cameras in the treatment

vault. In this application a patient mask was scanned to produce a set of equally

spaced vertices, 0.5mm apart. This particular face mask produced 2542 vertices

at an accuracy of approximately 0.1mm. The algorithm developed by H. Hoppe

was used to construct smooth polygon facets from the vertices in the data set.

The different stages in the polygonal representation of the face mask are shown

in Figure 2.5. This technique allowed for a fairly accurately representations of a

complicated object such as a face mask.
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Figure 2.5: Three stages in the polygon representation of a face mask.
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2.2.3 Blending

The computer hardware causes each pixel on the computer screen to emit differ-

ent amounts of red (R), green (G) and blue (B) light [28]. For each object drawn

on the screen, one of these RGB (combination of colours red (R), green (G) and

blue (B)) values is stored for each pixel. These values are assigned using the gl-

Color4f(R,G,B,A) command in OpenGL. One additional value is stored with each

RGB value. This value is the alpha value (A ∈ [0, 1]) which controls the amount

of blending between the colours of different objects. For example, when one object

is drawn in front of another, the alpha value controls how much the colour of the

object that was drawn first (object furthest from the observer) should be combined

with the colour of the object that is drawn second (closest to the observer). Blend-

ing and alpha values enables us to recreate objects that are transparent, opaque

or semi-transparent. A lower alpha value normally results in a more transparent

object.

Blending is performed in a two-stage process. First, you specify how to com-

pute the blending factors for the source (object drawn second and closest to the

observer) and destination (object drawn first and furthest from the observer) ob-

jects. These blending factors are RGBA quadruplets that are multiplied by the

colour quadruplets of the source and destination objects, respectively. Finally, the

corresponding components in the two sets of RGBA quadruplets are added. For

example, if the colour components of the source and destination objects are spec-

ified by the quadruplets (Rs,Gs,Bs,As) and (Rd,Gd,Bd,Ad) respectively and their

blending factors are specified with (Sr,Sg,Sb,Sa) and (Dr,Dg,Db,Da) respectively,

the final blended RGBA values are:

R = RsSr +RdDr

G = GsSg +GdDg

B = BsSb +BdDb

A = AsSa + AdDA (2.19)
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The colour quadruplets of the source and the destination objects are specified

with the OpenGL commands glColor4f(Rs,Gs,Bs,As) and glColor4f(Rd,Gd,Bd,Ad)

respectively. The blending factors of both the objects are specified with the

OpenGL command glBlendFunc(source factor,destination factor). The values of

the source factor and destination factor parameters specify how to compute the

source and destination blending factors with (Rs,Gs,Bs,As) and (Rd,Gd,Bd,Ad).

For example, substituting the values of source factor = (0, 0, 0, 0) (black) and des-

tination factor = (1, 1, 1, 1) (white) in Equation 2.19 results in a final colour of

(Rd,Gd,Bd,Ad). These blending factors result in replacing the colour of the source

object with the colour of the destination object. Blending is enabled and disabled

with the OpenGL commands, glEnable(GL BLEND) and glDisable(GL BLEND).

A blending example

This blending example involves mapping two individual texture images onto the

same object. Texture mapping is the topic of Section 2.2.4 and will not be dis-

cussed here. Without blending, the second texture will be mapped over the first

texture thereby completely obscuring it. One way of preventing the second tex-

ture from obscuring the first is to specify a transparent background for the second

texture image. This way, the images in both the first and the second texture

will be visible. In the first step, the first texture image is mapped onto the ob-

ject (oval model in this case). Secondly, the blending function is set to glBlend-

Func(GL ONE MINUS SRC COLOR,GL SRC COLOR). This blending function

specifies that the colour of the source object (object drawn second) should be one

minus the colour of the destination object; and the destination object’s colour

should remain unchanged. In the following example, both the source and the des-

tination objects are texture images featuring images of a black marker on a white

background. A black colour for the source object and a white colour for the desti-

nation object results in a black colour for the current screen pixel. This result is
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obtained from substituting values

(Rs, Gs, Bs, As) = (0, 0, 0, 0)

(Rd, Gd, Bd, Ad) = (1, 1, 1, 1)

(Sr, Sg, Sb, Sa) = (1, 1, 1, 1)

(Dr, Dg, Db, Da) = (0, 0, 0, 0) (2.20)

in Equation 2.19. Similarly, if the destinations object’s colour is also black, the

values

(Rs, Gs, Bs, As) = (0, 0, 0, 0)

(Rd, Gd, Bd, Ad) = (0, 0, 0, 0)

(Sr, Sg, Sb, Sa) = (1, 1, 1, 1)

(Dr, Dg, Db, Da) = (0, 0, 0, 0) (2.21)

result in a black colour for the current screen pixel. The only situation whereby the

resulting colour will be white is when both the source and the destination object’s

colours are white. This resulting colour is obtained from the following values:

(Rs, Gs, Bs, As) = (1, 1, 1, 1)

(Rd, Gd, Bd, Ad) = (1, 1, 1, 1)

(Sr, Sg, Sb, Sa) = (0, 0, 0, 0)

(Dr, Dg, Db, Da) = (1, 1, 1, 1) (2.22)

This result is illustrated in Figure 2.6. The image on the left shows the position

of the oval model with respect to the texture images. This effect was obtained by

enabling lighting in the scene. In the second image this lighting is disabled again.

The image on the right is an example of the images used in the simulations in

Chapter 3.



22 CHAPTER 2. COMPUTER GRAPHICS CONCEPTS

Figure 2.6: A blending example that shows the effects of blending when specifying

transparent objects.
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2.2.4 Texture Mapping

Textures are rectangular arrays of data - for example - colour data. Texture map-

ping is the process of applying these textures to an object in a 3D scene. The

simplest form of texture mapping involves applying a 2D texture image to a rect-

angular polygon facet which is specified by four vertex points. The polygon facet

is interpolated to produce texture coordinates which are used as an index into the

texture image. The colour values of the texture image either replace the object’s

colour value or blend with it as described in Section 2.2.3. The OpenGL command

glTexImage2D(‘Texture name’) specifies the name of the texture while glTexCo-

ord(x,y,z) specifies its coordinates. In the case of applying a texture image to the

rectangular polygon facet, the texture coordinates and coordinates of the polygon

facet are specified by:

glTexCoord(−1, 1, 0); glV ertex(−1, 1, 0);

glTexCoord(1, 1, 0); glV ertex(1, 1, 0);

glTexCoord(1,−1, 0); glV ertex(1,−1, 0);

glTexCoord(−1,−1, 0); glV ertex(−1,−1, 0);

Texture mapping becomes a bit more tricky when applying a rectangular texture

image to more general shaped objects. The problem lies with the non-linear in-

terpolation of the objects. Standard techniques, such as environment mapping,

have been developed for mapping a texture on quadratic objects like spheres or

cylinders. Mapping textures on non-quadratics object, like an oval model, requires

a technique called projective texture mapping.

Projective texture mapping

Projective texture mapping is the method of texture mapping that allows the tex-

ture image to be projected onto a object as if by a slide projector [23] [3] [6]. It

refers both to the way texture coordinates are assigned to the vertices, and the way
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they are computed during rasterization2 of the objects. The key to projective tex-

ture mapping is the contents of the texture transform matrix (Mtg). This matrix

is a concatenation of the modelview matrix, the projective matrix and a scaling

matrix. The modelview matrix orientates the projection in the scene using the

OpenGL command glLookat() (see Section 2.2.1). The projective matrix is respon-

sible for a perspective correct mapping using the OpenGL command glFrustum()

and the scaling matrix maps the texture coordinates to the near clipping plane.

The texture transformation matrix is given by:

Mtg =




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
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
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



MpMvMm (2.23)

where Mm is the modeling matrix, Mv is the viewing matrix, Mp is the projective

matrix and the final matrix renormalizes the texture coordinates to the range [0, 1].

We describe the process of projective texture mapping in the framework shown in

Figure 2.2. The modelview matrix transforms the coordinates of the light source

to the origin (default view point) and the texture coordinates to the projection

centered along the negative z-axis. In this case the viewer can be thought of as

a light source and the near clipping plane of the projection as the location of the

texture image, which can be thought of as printed on a transparent film. The

projective matrix converts these coordinates from WC to normalized device coor-

dinate (NDC) space. In the NDC space the coordinates x, y and z range from

-1 to 1. The scaling matrix then renormalizes these coordinates to texture coor-

dinates ranging from 0 to 1. This transformation to NDC space ensures that the

desired portion of the image is centered and covers the entire near plane defined by

the projection. It also ensures a correct projection on various different hardware

platforms and graphics devices.

2Rasterization or scan conversion is the process of determining the actual pixels of an object

and assigning it an intensity value.
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All that remains is to specify the coordinates of the primitives on which the texture

will mapped. This can be done by enabling OpenGL’s texture generation facility

glTexGen(GL EYE LINEAR). This facility simply generates texture coordinates

from the vertex attributes in WC. These texture coordinates are transformed by

the texture transform matrix. This matrix performs both a modelview and pro-

jection transformation which orientates and projects the primitive’s texture coor-

dinates to NDC space. Lastly, these coordinates are normalized to [0, 1]. Any

additional filtering operations are performed and each pixel on the primitive is as-

signed the intensity value of the corresponding pixel in the texture image.

Projecting a non-repeating texture onto an untextured surface can be done by

setting the GL MODULATE environment variable and the texture repeat mode

to GL CLAMP. If the texture border is white, the surface outside the projected

texture will be modulated with white. A texture repeat mode set to GL REPEAT

will have the opposite effect and repeat the image over the primitive. The effect

of using these different texture repeat modes is illustrated in Figure 2.7. Note how

the texture images of the marker look as if they have been painted on the oval

model.

Figure 2.7: An example that shows the effects of GL REPEAT and GL CLAMP

parameters when projecting a texture onto an object.
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2.3 Ray Based Algorithms

Algorithms related to computer graphics include: radiosity, rendering, rasteriza-

tion, global illumination, mapping and collision detection, to name but a few.

Many of these algorithms are based on the concept of rays. Rays are mathematical

representations of directed line segments. One common use of rays is ray tracing

algorithms where the path of light through the environment is simulated by rays.

At each step, these rays are tested against intersections between the objects in the

environment. This technique is used to determine the intensity of the light at each

particular point on an object.

The definition of a ray is given in Section 2.3.1. This section also describes one way

of computing the intersection between a ray and one of three standard primitives

namely a cylinder, a plane and a cone [11]. In Chapter 4 we use this concept to

determine which part of the face mask gets projected onto the CCD of the cameras

in the treatment vault. In the same chapter, a ray is also used to detect whether a

collision occurred between the beam nozzle and the treatment couch. Both these

applications are discussed in Sections 2.3.2 and 2.3.3 respectively.

2.3.1 The ray

The 3D coordinates of a vertex is defined as the vector:

P =
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(2.24)

A ray is defined by an origin (or eye point), E = (xE , yE, yE), and an offset vector

D = (xD, yD, zD). The equation of a ray is:

P (t) = E + tD, t ≥ 0 (2.25)

Finding the intersection point between a ray and an object requires finding the
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lowest non-negative value of t in Equation 2.25. If D is a unit vector, the value of

t indicates the distance to the point of collision.

Intersection between a ray and a plane

A plane can be defined by a normal vector, N , and a point on the plane, Q. A

point, P , is on the plane if:

N · (P −Q) = 0 (2.26)

To find the ray/plane intersection, we substitute the equation of a ray (2.25) in the

equation of the plane (2.26), which gives

N · (E + tD −Q) = 0

thus

t =
N · (Q− E)

N ·D (2.27)

If t ≤ 0 then the plane is behind the eye point and there is no intersection. If t ≥ 0

then the intersection point is E+ tD. If N ·D = 0 then the plane is parallel to the

plane, and there is no intersection point.

Intersection between a ray and a cylinder

The finite cylinder aligned along the z-axis is defined as:

x2 + y2 = 1, zmin < z < zmax (2.28)

To intersect a ray with a cylinder, substitute the ray equation in the equation of

the cylinder (Equation 2.28).

(xE + txD)2 + (yE + tyD)2 = 1

t2(x2
D + y2

D) + t(2xExD + 2yEyD) + (x2
E + y2

E − 1) = 0

at2 + bt+ c = 0

t =
−b±

√
b2 − 4ac

2a
(2.29)
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where

a = x2
D + y2

D

b = 2xExD + 2yEyD

c = x2
E + y2

E − 1 (2.30)

Equation 2.29 produces at most two values for t. The value of t that satisfies

zmin < z < zmax, or the smallest t value if both satisfy this condition, represents

the closest intersection point between the ray and the cylinder. A further test

determines the intersection point between the ray and the end cap of the cylinder.

This test is similar to the intersection test between a ray and a plane with two

additional criteria. The end caps have the formulas:

z = zmin, x2 + y2 ≤ 1

z = zmax, x2 + y2 ≤ 1 (2.31)

Intersection between a ray and a cone

The finite cone, aligned along the z-axis, is defined as:

x2 + y2 = z2, zmin < z < zmax (2.32)

To intersect a ray with a cone, substitute the ray equation in the equation of the

cone (Equation 2.32).

(xE + txD)2 + (yE + tyD)2 = (zE + zD)2

t2(x2
D + y2

D − z2
D) + t(2xExD + 2yEyD − zEzD) + (x2

E + y2
E − z2

E) = 0

at2 + bt+ c = 0

t =
−b±

√
b2 − 4ac

2a
(2.33)

where

a = x2
D + y2

D − z2
D

b = 2xExD + 2yEyD − 2zEzD

c = x2
E + y2

E − z2
E (2.34)
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If zmin and zmax are both positive or both negative you get a single cone with its

top truncated.

Transforming the primitives

The ray/primitive intersections described above detect the point of intersection

between a ray and primitives that are centered at the origin. In order to ray

trace these primitives in an arbitrary location, we use geometric transformations

to scale (S), rotate (R) and translate (T) them to the desired locations. These

transform the primitive from the standard position (centered at the origin) to the

desired location. To perform the intersection, we take the inverse transform of the

ray, intersect this with the primitive on the standard position, and then transform

the resulting intersection point to its correct location. For example, to intersect

ray, E+ tD, with B we transform the point, E and the displacement, D as follows:

Ê = S−1R−1T−1E

D̂ = S−1R−1D (2.35)

Note, the displacement is not translated, because it is not affected by translation.

Now we intersect this new ray, Ê + tD̂, with the object in its standard position,

B̂. The value of t can then be substituted in Equation 2.25 to give the correct

intersection point, if it exists.

2.3.2 Projecting a face model onto the CCD of the camera

Rays can be used to determine which part of the face model projects onto the

CCD of the camera. In this example, each vertex point of each triangle of the

face mask model has to be tested to determine whether it projects onto the CCD

of the camera or not. The start of the rays are defined by the coordinates of the

vertex points of the triangles and their directions are determined by subtracting

each ray’s start from the position of the camera’s lens. Each of these rays are then
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tested for an intersection between itself and the CCD of the camera (a plane). If

all the triangle points fall within the boundaries of camera’s CCD, that triangle

projects successfully onto the camera’s CCD and is therefore visible to that camera.

Conversely, if any triangle point fall outside the camera’s CCD, that triangle does

not project onto the camera’s CCD and it is not visible to that camera. The triangle

fractions that are not considered as a result of this last criteria, are assumed to be

negligibly small. The effect of projecting a triangle and a complete face mask to

a plane are shown in Figures 2.8 and 2.9 respectively. Note how in each case the

projected images are upside down on both the plane and the CCD of the camera.

Camera CCD

Triangle

Camera 

Figure 2.8: Projecting a triangle onto the CCD of a pinhole camera.

There is an additional complication that must be considered. The problem is that

some triangles might project to the same area of the camera’s CCD. It these cases,

both rays had the the same direction, but different starting points. This problem

is easily dealt with by comparing the t values of each ray. These t values are an

indication of the distance between this triangle and the CCD of the camera and

thus the smaller of the two values will be associated with the visible triangle.

To determine if two triangles project onto the same area, we test each projected

triangle against every vertex of every other projected triangle using Algorithm 2.3.1

[18]. If a vertex point lies within the tested triangle, the two triangles project to the

same space on the CCD of the camera. The algorithm proceeds by imagining an

observer “walking”from one point of the triangle to the next, each time determining
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Figure 2.9: The projection of the face model onto the CCD of the camera.

whether the vertex from another triangle lies to his/her left or right. After the third

“walk”between two triangle points, the algorithm stops. If the vertex point from

the other triangle stayed on the same side of the observer (either left or right), the

point lies within the triangle. If not, the point does not lie in the triangle. We do

not need to consider partially obscured triangles as we assume a solid object and

where this is not true, the errors are small. We use A, B and C to indicate the

triangle points with coordinates xj and yj with j = 1, 2, 3. The coordinates of the

point being tested are given by x and y.

Algorithm 2.3.1

1 if (fAB() × fBC > 0) & (fBC() × fCA > 0)

2 then return Inside

3 else return Outside

4 endif

5 fAB() : return (y − y1)(x2 − x1) − (x− x1)(y2 − y1)

6 fCA() : return (y − y3)(x1 − x3) − (x− x3)(y1 − y3)
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7 fBC() : return (y − y2)(x3 − x2) − (x− x2)(y3 − y2)
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2.3.3 A collision detection algorithm

A number of different collision detection algorithms exist. The one discussed here

is based on the intersection between a ray and either a cylinder or a cone. The

treatment beam nozzles are represented by the combination of a cylinder and a

cone (see Figure 2.4). In the treatment room simulation, a face model is positioned

in close proximity to the cone end of one of these beam nozzles. Certain orientations

of this face model will result in a collision with the beam nozzles. A collision

detection test is required. If a collision occurs, the front end (cone) of the relevant

beam nozzle is contracted approximately 100mm from the point of the face model

that is closest to the beam nozzle. The algorithm is listed in Algorithm 2.3.2.

Algorithm 2.3.2

1 for each triangle in face model do

3 ray start = point on triangle

4 ray direction = movement direction

5 test intersection between ray and cylinder

6 text intersection between ray and cone

7 if (intersection occured)

8 then t = the distance to intersection

9 endif

11 endfor

13 tmin = min{t}
14 if (tmin < 100mm)

15 then contract the beam nozzle

16 endif
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Chapter 3

Marker Simulations

3.1 Introduction

The CT scanner SPG system is implemented in the CT scanner room and con-

sists of six CCD cameras and a computer with stereophotogrammetric software.

The aim of this system is to determine the 3D coordinates of the center of the

retro-reflective markers placed on the patient’s mask. This is achieved by analyz-

ing images of the markers, which were captured by the cameras in the CT scanner

room, and using stereo techniques to determine their positions. The CT scanner

SPG system requires a minimum of three markers to be visible to at least one cam-

era pair in the CT scanner room. These markers need to be known in the sense that

we should know their position on the mask. The minimum requirement of the CT

scanner SPG system regarding the markers is referred to as the marker placement

criteria. If the marker positions on the patient’s mask satisfy this criteria, then the

CT scanner SPG system will be able to extract enough information to determine

the unique 3D position of the mask.

The retro-reflective markers on the patient’s mask are classified as either identifiable

or standard markers. Identifiable markers are unique and thus can be identified

purely from their appearance. From the set of identifiable markers, only one of

35
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each will be allowed on the mask. Standard markers are all identical and can only

be identified based on their position relative to other markers. Their purpose is to

increase the accuracy of determining the position of the patient’s mask by increas-

ing the number of usable features in a set of stereo images. The marker placement

criteria applies to the identifiable markers.

The position of the six cameras in the CT scanner room is fixed. Their posi-

tions were determined by the geometry of the CT scanner and manufacturing con-

straints [19]. These fixed camera positions affect the visibility of the patient’s mask

and therefore also the usable positions of the markers on it. A simulation routine

was developed to simulate different marker positions on the patient’s mask. This

routine resulted in a set of images that represent the different camera views of

the patient’s mask. These images were fed to a preliminary marker identification

algorithm [27] which attempted to identify the different markers in each image.

The algorithm resulted in either a hit or a miss, depending on whether the marker

was successfully identified or not. These hits and misses determine a grid on the

patient’s mask which indicate marker positions that are sufficiently visible (visible

enough to be identified) to at least one camera pair.

The marker placement criteria should at least be satisfied for the mask positioned

at the start and end of the scan. Favorable marker positions at these mask po-

sitions require a less dense distribution of markers on the mask. Reducing the

number of markers on the mask simplifies the marker detection process. It also

enhances patient comfort because less of the mask is covered with markers.

The setup of the CT scanner room is described in Section 3.2 while a description

of the simulation routine is given in Section 3.3. Note that this simulation routine

only considers an approximation to the face mask. The body mask imposes no sig-

nificant additional criteria and can therefore be ignored for this simulation. This

routine also uses a preliminary marker identification algorithm, briefly described

in Section 3.4, because the final marker identification algorithm is still being devel-

oped. The proposed marker positions that resulted from the simulation are shown
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in Section 3.5. Section 3.6 concludes this chapter.
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3.2 The CT scanner setup

CT scanners are designed to perform studies of a patient [7]. A study results in

a set of CT images where each image represents a thin slice through a section

of the patient. The pixels in these images represent some physical property of

the patient’s anatomy. Consecutive images are normally (with conventional step-

by-step CT scanners) small distances, typically 5mm, apart and parallel to each

other. These consecutive images from a CT study are used to build a 3D model of

the patient’s anatomy in a region of interest. Such models are used to determine

the exact size and position of a lesion within the patient’s body 1.

The CT scanner room consists of a conventional step-by-step CT scanner and the

six cameras used by the CT scanner SPG system. The dimensions of the CT

scanner, as provided by iThemba labs, are shown in Figure 3.1. The CT scanner

room coordinate system is defined relative to the CT scanner, and described in

Section 3.2.1. Any movement of the patient is described in terms of this coordinate

system. Since the relationship between the SPG coordinate system and the CT

scanner coordinate system is known, any movement of the patient can also be

described in terms of the SPG coordiante system. The particular movement of a

patient required when conducting a CT study is specified relative to three reference

patient positions described in Section 3.2.2.

1CT scanner data is often used with MRI data to improve accuracy, etc.
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Figure 3.1: The specification of the CT-scanner at iThemba labs.
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3.2.1 CT scanner model

CT images are taken at the scan plane indicated in Figure 3.1. The scan point is,

by definition, the point in the middle of this scan plane. This point also represents

the origin of the CT scanner room coordinate system. In this coordinate system,

the positive z-axis points to the front of the CT scanner, the positive x-axis points

to the top of the CT scanner and the positive y-axis points to the right of the CT

scanner when facing the front of the CT scanner. This coordinate system is shown

in Figure 3.2. The CT scanner coordinate system portrays reflection symmetry of

the CT scanner with respect to the z-direction.

z−axis

x−axis

y−axis

Front

Back

Figure 3.2: The CT scanner room coordinate system relative to the CT scanner.
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3.2.2 CT study

The CT study of a patient is conducted in three stages. These three stages are

characterized by the direction a patient is translated along the z-axis and two

reference patient positions that bounds this translation. The reference positions

are:

CT-study reference position

This position is also referred to as the default or initial patient position.

Before starting the CT study, the patient is positioned in such a manner that

the center of the study volume (region of interest) coincides with the scan

point. The position of the study volume relative to the scan plane is shown

in Figure 3.3.

Start of scan

At this position, the study volume is positioned completely in front (positive

z-direction) of the scan plane and has one endpoint positioned close to the

scan point. This position bounds the translation of the patient in the positive

z-direction. The position of the study volume relative to the scan plane is

also shown in Figure 3.3.

End of scan

At this position, the study volume is positioned completely behind the scan

plane and has one endpoint positioned more or less at the scan point. This

position bounds the translation of the patient in the negative z-direction.

The position of the study volume relative to the scan plane for each position

is also shown in Figure 3.3.

The three stages in the CT study are:

Stage 1

This stage starts with the study volume positioned at the CT-study reference
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x−axis

scan plane

z−axis

CT−study reference position End of scanStart of scan

z−axis

x−axis

scan plane

x−axis

scan plane

z−axis
top halve top halvetop halve

Figure 3.3: The patient reference positions relative to the scan plane. The top

halves of the spheres indicate the regions in which the markers are placed.

position and ends with the study volume positioned at the start of scan. The

patient is translated in small incremental steps (5mm) from the start to the

end of this stage. No CT images are taken during this stage in the scan.

Stage 2

This stage starts with the study volume positioned at the start of scan and

ends with the study volume positioned at the end of scan. Again the patient

is translated in small incremental steps (5mm) from the start to the end of

this stage, but in the opposite direction to that in stage 1. A CT image of

the patient gets taken at each translation step during this stage.

The initial position of the study volume at the CT-study reference position allows

alignment of the mask coordinate system (a coordinate system that is rigidly at-

tached to the mask of the patient) with the CT scanner coordinate system. The

purpose of stage 1 in the CT study is to position the study volume at the start of

scan. The extent of movement of the study volume through the latter two stages

in the CT study is enough to cover the entire region of interest.
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3.2.3 Cameras positions in the CT scanner room

Six charged-coupled device (CCD) cameras are mounted in the CT scanner room.

Their positions are symmetrical with respect to the z-axis. Three of these cameras

are mounted to the roof in front of the CT scanner while the remaining three are

mounted to a frame on the floor behind the CT scanner. All six of these cameras

are focused on the scan point. Their fields of view are large enough to allow a

clear view of that section of a patient that has to be included in the CT study. A

horizontal view angle of νh = 12.18◦, a vertical view angle of νv = 9.15◦ and a focal

length of f = 30mm ensures this, at least for when the study volume is positioned

at the CT-study reference position [26]. The coordinates of the camera positions

are summarized in Table 3.1. A top view of these positions is shown in Figure 3.4.

camera x-coordinate y-coordinate z-coordinate

Front middle 1265mm 0mm 1109mm

Front offset 1265mm ±600mm 1109mm

Back middle 680mm 0mm −1441mm

Back offset 680mm ±300mm −1441mm

Table 3.1: The coordinates of the camera positions in the CT scanner room
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z−axis

scanpoint
x−axis

Front middle camera

Back middle camera
Back left camera Back right camera

Front left camera Front right camera

Figure 3.4: A top view of the camera positions in the CT scanner room.
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3.3 Simulation procedure

The simulation procedure determines which areas on the mask are suitable for

marker placement. Suitable mask areas are visible from at least two cameras si-

multaneously. Altough these areas satisfy the minimum requirements of the CT

scanner SPG system, they do not always result in a correct reconstruction of the

marker position. For example, although a marker is visible from two cameras simul-

taneously, the marker might be at such an acute angle that a correct identification

of that marker is impossible. An incorrect identification of a marker will undoubt-

edly lead to an incorrect reconstruction of the marker position. The simulation uses

a preliminary marker identification algorithm when determining positions on the

mask that is suitable for marker placement. The final system will have a number

of consistency checks in place to handle misidentification robustly, but these are

not included in the simulations.

Dirk Wagener developed a pattern registration algorithm (simply referred to as the

preliminary marker identification algorithm) used to identify the markers at dif-

ferent positions on the patient’s mask [27]. This algorithm identifies candidate

patterns (or markers in this case) by detecting the corners in these patterns and is

described in more detail in Section 3.3.1. This identification technique is sensitive

due to line identification problems like corners and will therefore underestimate the

areas on the mask that are suitable for marker placement. The results from this

algorithm provides information regarding the robustness of the marker positions

under a worst case scenario. The final marker identification algorithm should be

able to identify markers positioned in at least these mask areas.

The marker identification algorithm takes as input a stream of video images of

the different marker positions on the oval model. These images are created by the

simulation procedure described in Section 3.4. Three different sets of images are

created. Each one represents the different marker positions with the mask in one

of the three reference mask positions.
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3.3.1 Marker identification algorithm

The feature based pattern classifier uses corner detection algorithms to identify

different markers, invariant to scale and rotation (both in and out of plane rotation).

This algorithm uses the set of six distinct markers (marker set) shown in Figure 3.5.

The size of each marker is approximately 15mm×15mm. The algorithm takes as

input a stream of video images and identifies the detected markers in each image.

The algorithm uses a so-called model-based approach where each detected marker

is compared to the markers in the marker set and then assigned a marker number

based on the number of straight edges present in each marker. A hit indicates a

correct identification of a marker and a miss indicates an incorrect identification

of a marker. The marker tracking algorithm tracks features in correctly identified

(1)

(4)

(2)

(5)

(3)

(6)

Figure 3.5: The six identifiable markers in the marker set.

markers. The success of the tracking algorithm is therefore directly dependent on

the robustness of the marker identification algorithm. In this simulation procedure,

we will only simulate the marker identification and not marker tracking.

3.4 Simulation routine

The simulation routine is implemented as a C++ program that uses OpenGL li-

braries and primitives for modeling and viewing. This routine results in a computer

graphics representation of the setup in the CT scanner room. Several simplifica-
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tions were made. For example, the patient’s mask was approximated using an

oval shaped model. This approximation was necessary because of the complica-

tions involved in mapping textures (2D images of the markers) on a non-quadratic

object (see Section 2.2.4). The size of this oval model is 280mm in the oblong

direction (z direction) and 200mm in the flat direction (x and y directions). This

model is considered a good representation of an average sized head mask. Also,

only the top or “face” half of the oval model will be considered for marker place-

ment. The face half of the oval model corresponds to the part of the oval that is

above the zy-plane when the oval is positioned at the CT-study reference position.

The CT scanner is modeled according to the CT scanner specifications given in

Section 3.2.1. The six cameras in the CT scanner room are modeled as perspective

pinhole camera models based on the specifications in Section 3.2.3. The view of the

oval model, in the CT-study reference position, from different cameras are shown

in Figures 3.6 and 3.7. Only two of the markers in Figure 3.5 are selected for the

Figure 3.6: The view of the oval model from the front offset (left) and the front

middle (right) cameras.

simulations. These are markers 2 and 3. Selecting two different markers ensures

some independence with regard to the markers used in the simulation routine. The

simulation routine captures a stream of images, where each image shows one of

these two markers at a different position on the oval model. Since this is not the

final marker identification routine, it is doubtful whether any significant informa-

tion can be gained by using more marker types. Running the marker identification
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Figure 3.7: The view of the oval model from the back offset (left) and the back

middle (right) cameras.

algorithm on such a set of images results in either a hit or a miss, depending on

whether the marker in each specific position was identified or not. This process is

repeated for the oval model in each of the reference mask positions.
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3.4.1 Markers positions on the oval model

The size of the oval model is 280mm and 200mm in the elongated and flat directions

respectively. A grid of dimensions approximately 10mm× 10mm (max) is defined

over the face (top) half of the oval model. One set of grid lines are parallel to the

y-axis (10mm apart) and the other set connects the two end points of the oval

with the largest displacement from the scan point. These grid lines are shown

in Figures 3.8 and 3.9. Only one half of the grid lines on the face half of the

oval model is shown in these figures. The symmetrical nature of the oval model

and camera positions allow us to consider only one half of the total number of

marker positions. The results from the markers in the other marker positions will

be symmetrical to the results from the considered positions. The specified grid

size results in 28 × 14 = 392 grid points, each one representing a different marker

position. The position of a marker with respect to one of these grid points is shown

in Figures 3.8 and 3.9.

1cm

Grid and marker sizes

28cm

1.5cm

1.
5c

m

1c
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ax

)

z−axis

10cm

y−axis

Figure 3.8: Side view of the grid on the oval model.
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y−axis

x−axis

Figure 3.9: Front view of the grid on the oval model.
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3.5 Simulation results

The results from the marker identification algorithm are represented on a grid of

28 × 14 squares. The results from the marker identification algorithm at each of

these marker positions are indicated as either a black (hit) or white (miss) square.

Images of these grids are produced for each of the two markers and each camera.

An additional image gives a crude representation of the area on the oval model

that corresponds to hits in these images. This process was repeated with the oval

model in all three reference positions. The full set of results is provided in the

./SimResults directory on the accompanied compact disc.

The marker placement criteria of the CT-scanner SPG system requires a marker

to be visible from at least two cameras simultaneously. These areas are obtained

by combining the marker position that resulted in hits. A marker position that

results in a hit from more than one camera satisfies the placement criteria.

The total areas of the mask that satisfy the marker placement criteria for an oval

model positioned at the CT-study reference position, at the start of scan and at

the end of scan are shown in Figure 3.10. These areas include areas on both sides

of the symmetrical axis defined in Section 3.4.1.
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Figure 3.10: The marker positions that satisfy the marker placement criteria when

the oval model is positioned at the CT-study reference position (top), the start of

scan (middle) and the end of scan (bottom). The images on the left represents the

results of using marker 2 and the images on the right represents the results of using

marker 3.
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3.6 Conclusion

The aim of this chapter was to determine if the marker placement criteria of the

CT scanner SPG system can be satisfied given the fixed camera positions in the

CT scanner room. This criteria requires at least three identifiable markers to be

visible to at least one camera pair in the CT scanner room. The results from the

simulations indicate the areas on the oval model that are visible to at least one

camera pair. The shaded regions in Figure 3.10 show the visible areas on the oval

model positioned when it is positioned in each of the three reference mask positions.

The regions on the left represent those areas that are visible to the front cameras

while the areas on the right represent those areas visible to the back cameras. The

overlap of these areas is shown in Figure 3.11. The marker placement criteria will

be satisfied when placing three identifiable markers in these areas of the mask.

This is true for the oval model in all three the reference mask positions.

Limiting the markers to the shaded regions in Figure 3.11 over constrains the

z−axis

28cm

10cm

z−axis

28cm

10cm

z−axis

28cm

10cm

z−axis

28cm

10cm

z−axis

28cm

10cm

28cm28cm

z−axis

28cm

10cm

Figure 3.11: The area visible to both the front and the back cameras for the oval

model positioned in each of the three reference mask positions. The left image

indicates the results for marker 2 and the right image indicates the results for

marker 3.

marker placement problem. Consider the following setup: The three cameras that

are positioned in front of the CT scanner monitor the patient when the patient’s
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mask is positioned between the start of scan and the CT study reference posi-

tion (first part of a scan). Similarly, the three cameras that are positioned behind

the CT scanner monitor the patient when the patient’s mask is positioned between

the CT study reference position and the end of scan (second part of a scan). In

such a setup, the usable areas are shown in the shaded regions in Figure 3.12.

Markers positioned in the areas indicated in Figures 3.11 and 3.12 satisfy the

z−axis

28cm

10cm

z−axis

28cm

10cm

z−axis

28cm

10cm

z−axis

28cm

10cm

z−axis

28cm
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28cm28cm
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28cm
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Figure 3.12: The expanded area visible to both the front and the back cameras in

a configuration where the front cameras observe the oval model in the first part

of the CT study and the back cameras observe the oval model in the latter part

of the CT study. The left image indicates the results for marker 2 and the right

image indicates the results for marker 3.

minimum requirements of the CT scanner SPG system. Replacing the preliminary

marker identification algorithm with a more robust marker identification algorithm

is expected to increase the usable area.
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Camera placement in the

Treatment vault

4.1 Introduction

The Treatment SPG system is implemented in the treatment room and consists

of nine CCD cameras and a computer with stereophotogrammetric software. This

system uses the relationship between the position of the patient’s mask and the

position of the target lesion (this relationship was established using the CT scanner

SPG system) to determine the position of the patient in the prescribed treatment

position. The Treatment SPG system also monitors patient motion during treat-

ment. It instructs the safety system to block the treatment beam when the patient

moves outside the allowed treatment area.

The Treatment SPG system also requires a minimum of three identifiable mark-

ers to be visible to at least one camera pair in order to determine the unique 3D

position of the patient. The position of the markers on the mask is such that it

satisfies the constraints of the CT scanner SPG system. On the other hand, the

cameras from the Treatment SPG system can be placed fairly freely. Ideally, they

will be placed to ensure maximum visibility of the patient’s mask and therefore also

55
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maximize the number of visible markers. Finding these optimal camera positions

is an optimization problem. Each different camera placement configuration should

be evaluated over the entire search space (all combinations of the variables that

define the problem) and then compared. The camera placement configuration with

the highest value will then give the optimal camera positions.

A simulation routine was developed to compare the different camera placement

configurations in the treatment vault. The merits of these camera positions were

evaluated using a suitable cost function, defined in Section 4.1.1. This cost function

considered both the visibility of the patient’s mask and the error in determining

the position of the markers as a result of the relative camera positions. The camera

positions were constrained by the two treatment beam nozzles, the movements of

the portal x-ray image acquisition system and resolution restrictions. The extent to

which these constraints affect the camera positions is discussed in Section 4.2. The

problem’s multidimensional search space is defined by the evaluation parameters

and the camera positions parameters. The evaluation parameters are used to cal-

culate the cost function and include: the type of patient mask (face or body mask)

and the camera combinations used. We optimize the camera position parameters.

They are: the distance between each camera and the patient’s mask, the height

of each individual camera rig and the position of each camera on the camera rigs.

These variables are discussed in Section 4.3.

The simulation routine does an exhaustive search when optimizing the position

of the cameras. This technique is preferred over standard optimization methods

such as the conjugate gradient method, because we want to ensure coverage of the

complete search space. Also, since this is a high dimensional problem, local min-

ima are likely to be a problem with conventional optimization techniques. Other

external factors are also important in the final decision, therefore we need to have

information not just of the optimal camera position but also of other possibly

“good enough” camera configurations, as well as information about the sensitivity

of these camera positions to errors due to manufacturing issues, etc. We discuss
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the simulation routine in Section 4.4. The implementation detail and correctness

testing of this routine are discussed in Sections 4.5 and 4.6 respectively.

The simulation resulted in a number of possible solutions to the camera positioning

problem. As the constraints used, differ between the simulations, these possible

solutions differ and need to be evaluated on criteria such as flexibility and ease of

manufacturing. Some results are given in Section 4.7 and the full set is provided

in the ./SimResults directory on the accompanied compact disc. We summarize

the results in Sections 4.8, discuss the other criteria in Sections 4.9 and conclude

in 4.10.

4.1.1 Cost function

There are two types of treatment mask, namely the face mask and the body mask.

Both masks are covered with a number of markers. For any given mask, each

camera can potentially view an area on the mask containing a subset of the markers.

Reconstruction of the 3D coordinates of a marker on the mask requires that the

marker be visible to a camera pair. When the coordinates of a sufficient number

of markers can be reconstructed, a grid of the markers can be defined. This grid

will then be used to represent the mask.

Maximizing the area of the mask that is visible to a camera combination that is

used in the reconstruction of the 3D coordinates, increases the accuracy of the grid

by enhancing the number of grid points. The relative position between the cameras

in such a camera combination also affects the accuracy of the reconstruction. The

weight function (ω) defined below is a measure of the reconstruction error from

different relative camera positions. A tradeoff exists between maximizing the visible

area of the mask and minimizing the error in the reconstruction process. The

cost function attempts to trade these contradictory goals off against each other.

Therefore, maximizing the cost function will attempt to maximize the visible area

of the mask while simultaneously minimizing the error in the reconstruction.

A minimum of three cameras will be used to monitor a patient during treatment in
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the new treatment vault. For each camera triplet, three different camera pairs can

be used to reconstruct the marker coordinates. Consider the three cameras i, j and

k, that belong to any camera triplet, i.e. where i, j, k = 1, ..., 9 and i 6= j 6= k. The

object area visible to each camera is denoted by Ax, with x = i, j, k. Therefore,

the overlap of the areas visible to pairs of these cameras is

Axy = Ax

⋂

Ay, x = i, j, k, y = i, j, k and i 6= j 6= k (4.1)

Likewise, the overlap of the areas visible to all three cameras is given by

Bijk = Ai

⋂

Aj

⋂

Ak (4.2)

For such a camera triplet, the cost function is defined as

Fijk = ωij (Aij − Bijk) + ωik (Aik − Bijk) + ωjk (Ajk −Bijk)

+
1

3
(ωij + ωik + ωjk)Bijk, (4.3)

where ω is a weight function for each camera pair. This weight function is discussed

below. The areas represented by each term in the cost function is illustrated in

Figure 4.1.

The appropriateness of this cost function can easily be illustrated by considering

the following two extreme cases. When all three cameras view the same area of the

mask, the first three terms will be zero and Fijk will reduce to 1
3
(ωij + ωik + ωjk)Bijk.

The factor 1
3
(ωij + ωik + ωjk) ensures that the area Bijk is never added more than

once in the cost function, even with all three weight function values at a maximum

of one. In the other extreme case there is no common area of the mask visible to

the camera triplet. In this case all the Bijk terms will be zero and only the Aij,

Ajk and Aik terms will contribute to the value of the cost function.

In some instances the use of a camera quadruplet will also be required. We can

define the cost function for a camera quadruplet in a similar way. For this formu-

lation consider the four cameras i, j, k and l where i, j, k, l = 1, ..., 9 respectively.
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Figure 4.1: Graphical illustration of overlapping areas of a camera triplet. The

overlapping areas are shaded and each region represents a term in the cost function.

Again the object area visible to each camera is denoted by Ax, with x = i, j, k, l.

The overlap of areas visible to camera pairs and triplets is given by equations 4.1

and 4.2, respectively. The overlap of the areas visible to all four cameras is

Cijkl = Ai

⋂

Aj

⋂

Ak

⋂

Al. (4.4)

The definition of the cost function for a camera quadruplet is

Cijkl = ωij (Aij − Bijk − Bijl + Cijkl)

+ ωik (Aik −Bikl − Bijk + Cijkl)

+ ωil (Ail − Bilk −Bijl + Cijkl)

+ ωjk (Ajk − Bijk − Bjkl + Cijkl)

+ ωkl (Akl − Bikl −Bjkl + Cijkl)

+ ωjl (Ajl − Bjkl −Bijl + Cijkl)

+
1

3
(ωij + ωik + ωjk)Bijk

+
1

3
(ωij + ωil + ωjl)Bijl

+
1

3
(ωik + ωil + ωkl)Bikl
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+
1

3
(ωjk + ωjl + ωkl)Bjkl

+
1

6
(ωij + ωik + ωil + ωjk + ωjl + ωkl)Cijkl. (4.5)

Figure 4.2 shows the areas of overlap for a specific configuration of four cameras.

Each area represents one of the terms in the cost function. The appropriateness

of this cost function can again be illustrated by considering the two extreme cases.

When all four cameras view the same area, only the last term will determine the

area. In this case all camera pairs, camera triplets and camera quadruplets will

view the same area (Cijkl). The multiplication factor in front of this area serves the

same purpose as the multiplication factor before the Bijk term of the cost function

for the camera triplet above. In the other extreme case there is no common area

of the mask visible to any camera triplet or camera quadruplet. In this case all

the Bxyz and Cijkl terms will be zero and only the Ax terms will contribute to the

value of the cost function.

The cost function defined here not only gives us information on the total area

of the mask that is visible to a particular combination of cameras, but also on

the areas of the mask that is visible to each pair of cameras that belong to this

combination.

A cost function defined in such a manner has a natural tendency to draw cameras

closer to each other. This is a result of trying to maximize the areas of overlap

between the different camera combinations. The cost function will be at a max-

imum when all the cameras are at the same position and view the same area of

the mask. This is clearly not a good camera configuration. We introduce a weight

function (ω) to rectify this behavior of the cost function.

Weight function

One of the biggest challenges in stereo reconstruction is determining an image-point

correspondence [17] [21]. This process requires both depth recovery and feature

matching. Depth recovery involves determining the distance between an object
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Figure 4.2: Graphical illustration of overlapping areas of a camera quadruplet. The

overlapping areas are shaded and each region represents a term in the cost function.

and the cameras by means of triangulation. Feature matching involves finding a

point-to-point correspondence in a pair of images captured from stereo cameras,

i.e., finding a correspondence between features from two images that corresponds

to the same physical point. Unfortunately, a trade-off exists between these two

processes. A short baseline (narrow separation angle φc) implies that the estimated

distance between the cameras and the object will be less precise due to narrow

triangulation. A wider baseline improves this distance estimation, but enlarges the

areas on both images that must be searched to find the same object point. As a

result, the matching of points (or features) is more difficult, thus the possibility of

a false match is greater.

Borghese and Ferrigno [4] used the relation between the accuracy of depth recov-

ery and the ease of feature matching to determine the optimal angle between two

cameras in a stereo rig. Such an optimal angle results in the best accuracy during
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Figure 4.3: Normalized error in reconstruction of 3D coordinates at different camera

separation angles (ψ).

3D reconstruction. A set of data points, similar to those obtained by Borghese and

Ferrigno, is plotted in Figure 4.3. This graph indicates the error (E) in reconstruct-

ing the 3D coordinates of a marker normalized by the quantization error (w) and

plotted as a function of the camera separation angle (ψj). Each data point therefore

indicates the maximum distance (in mm) between the reconstructed position of the

marker and its actual position after being normalized by w = 0.5 (equivalent to a

spatial resolution of two pixels per millimeter on a camera). These error values

indicate the maximum error for a given camera separation angle. This maximum

error is a minimum of 1.5238mm at a camera separation angle of 90◦ [4]. The corre-

sponding cubic spline interpolant (Γj) for the set of data points ψ0 < ψ1 < · · · < ψn

is defined in terms of the following cubic polynomial

Γj(ψ) = aj + bj(ψ − ψj) + cj(ψ − ψj)
2 + dj(ψ − ψj)

3 (4.6)

for each j = 0, 1, ..., n− 1

where aj , bj , cj and dj are the coefficients of the function evaluated at the data

points. The cubic spline resulted in a good fit to the data set and can easily be
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implemented with a lookup table. This interpolant is a minimum at the optimal

camera separation angle of ψ = 90◦. Any other camera separation angles result in

an exponential increase in the error of reconstructing 3D coordinates. The rapid

increase in reconstruction error motivates the need to include this error factor in

the cost function formulation.

The weight function (ω) is defined in terms of Γj as

ω(ψ) = 1 − Γj(ψ)

max{Γj(ψ)} . (4.7)

for j = 0, 1, ..., n− 1 and is shown in Figure 4.4.

Incorporating this weight function in the cost function has two advantages. Firstly,
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Figure 4.4: Weight function (ω) vs angle (ψ).

such a cost function incorporates the error of reconstructing 3D coordinates for a

stereo camera rig. Secondly, without the weight function the optimal cost func-

tion value would be obtained from cameras that are positioned at the same point.

Maximizing both the cost function and the weight function simultaneously result

in an optimal camera separation angle of 0◦ < ψ < 90◦.
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4.2 Treatment vault setup

The layout of the treatment vault defines the boundaries to the search space of the

camera positioning problem. A well defined search space simplifies the problem.

The different structures that place boundaries on the search space will be discussed

in this section.

4.2.1 Treatment vault coordinate system

floor

isocenter

camera

x−axis

y−axis
r

beam nozzle

z−axis

60
o

θ=76.4
o

Figure 4.5: Lateral view of the treatment vault layout around the isocenter.

The layout of the treatment vault can conveniently be described in terms of the

spherical coordinate system displayed in Figure 4.5. The position of a point in

the treatment vault is identified by a triple (r, φ, θ), where r is the length of the

position vector, the polar angle (θ ∈ [0, π]) is the angle between r and the z-axis,

and the azimuth angle (φ ∈ [0, 2π]) is the angle between the projection of r onto the



4.2. TREATMENT VAULT SETUP 65

xy-plane and the x-axis. Only r and θ are indicated in Figure 4.5. Also indicated

is the origin of this coordinate system, the isocenter.

4.2.2 Beam nozzle setup
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Figure 4.6: The position of the beam nozzles relative to the isocenter.

The height of the isocenter in the treatment vault is approximately 1600mm. The

beam axis of the horizontal beam-line coincides with the x-axis. A second, skew

beam-line is positioned in the xz-plane at a 60◦ angle off the horizontal. Both

beam-lines share a common treatment isocenter, which is defined as the point

where the central axes of the two beam-lines intersect. The last section of each

nozzle ends in a telescopic snout which allows the distance between the collimator

and patient to be adjusted. The collimator is fitted at the end of the telescopic
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snout and determines the shape of the proton beam. When the telescopic snout

is fully extended, the gap between the treatment collimator and the isocenter is

approximately 100mm.

4.2.3 Portal x-ray

A portal x-ray image acquisition system will be used to take images of the patient

in the treatment position. These images are used to confirm that the patient is in

the correct position. This system is lowered down from the roof of the treatment

vault. The positioning of the cameras must allow for unrestricted movement of the

image acquisition system down to a point behind the patient. The portal x-ray

image acquisition system’s dimensions are shown in Figure 4.7.

A top view of the position of the image acquisition system relative to the beam

30
0m

m

50
0m

m

400mm

r = 640mm

Figure 4.7: The dimensions of the portal x-ray image acquisition system.

nozzles and the isocenter is shown in Figure 4.8. A limit of 838.2mm is placed on

the minimum radius allowed for the camera rigs. A camera rig radius larger than

this minimum radius will prevent collision between the camera rigs and the image

acquisition system.
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Figure 4.8: A top view of the position of the portal x-ray image acquisition system

relative to the beam nozzles and the isocenter.

4.2.4 The camera rigs setup

In theory, the cameras can be placed anywhere in the treatment vault. Practical

and manufacturing constraints limit this search space by restricting the camera

positions to, at most, two camera rigs. Both these camera rigs will be permanently

mounted in the treatment vault. Their respective sizes as well as the distances at

which they are mounted from the floor of the treatment vault might be different.

For the purpose of the simulation, we assume circularly shaped camera rigs. This

allow us to specify radii for both camera rigs which will be used to determine the

minimum and maximum heights allowed for each camera rig. The radius (R) for a

camera rig is given by

R = 1600 × sin(θ) (4.8)

where the height of the rig is indicated in terms of the polar angle θ. The portal

x-ray image acquisition system restricts the minimum radius of a camera rig to

838.2mm(see Section 4.2.3). This minimum radius results in a polar angle of 31.6◦
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which corresponds to a maximum height of 1362.78mm above the isocenter. The

minimum height allowed for a camera rig is 533.6mm above the isocenter. Cam-

eras positioned below this height will impose restrictions on the movement of the

personnel attending to the patient in the vault. This height value translates to a

polar angle of 70.5◦ and a maximum camera rig radius of 1508.4mm. The height

angles allowed for each camera rig are therefore: θ1 ∈ [31.59◦, 70.52◦] for camera

rig one and θ2 ∈ [31.59◦, 70.52◦] for camera rig two.

Two different camera rig setups will be considered in the simulations. In the

first setup, the cameras mounted on both camera rigs will be kept at a fixed dis-

tance (1600mm) from the isocenter. This forces the radii of the camera rigs to vary

when they are positioned at different heights above the isocenter. This camera rig

setup is illustrated in the top image of Figure 4.9 where θ1 and θ2 indicate the

height of camera rig one and two respectively. The second camera rig setup that

will be considered in the simulations requires the radii of both camera rigs to be

equal. This setup forces the cameras on the top rig to be further away from the

isocenter than 1600mm. This setup is illustrated in the bottom image of Figure

4.9. The outer half circle indicates the maximum distance of 1950mm allowed

between a camera and the isocenter (see Section 4.3.2).
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Figure 4.9: The two different camera rig setup that with be considered in the

simulations. The image at the top shows all the cameras at fixed distances from

the isocenter while the image at the bottom shows the camera rigs with equal radii.
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4.2.5 The camera setup

A total of eight or nine cameras, depending on whether one or two beam delivery

systems are considered, will be mounted on the two camera rigs. All these cameras

will be focused on the isocenter. The optical axis of each camera connects the

pinhole of the camera with the isocenter. The distance between the isocenter and

the camera pinhole is restricted to a minimum distance of 1600mm and a maximum

distance of 1950mm. Each camera has a focal length of f = 30mm which results

in a horizontal view angle of νh = 12.18◦ and a vertical view angle of νv = 9.15◦.

The area of an object that is projected onto the CCD of a camera is the area of

the object that is visible to that particular camera.

A diode ring is fitted on each camera. These diodes are responsible for emitting

directed light onto the retro-reflective markers on the mask. The nature of the

retro-reflective material is such that it reflects directed light along the same path

with very little scattering. The light reflected from the retro-reflective markers

enhances their visibility to the cameras. By using dichromatic filters and diodes

with the same frequency range as the filters, we can eliminate a significant portion

of the background noise in the images. This simplifies marker detection.

A symmetrical placement configuration is selected for both the eight and the nine

camera setups. These symmetrical setups result in equal separation angles between

consecutive cameras, the advantage of which becomes apparent when considering

any other camera configuration. For example, consider changing the position of

one camera from the symmetrical camera configuration. This move results in an

increase of one camera separation angle and a decrease of another. The camera

pair separated by the smaller of these two angles will result in a larger or smaller

cost function value, depending on whether large or small camera separation angles

result in the smallest reconstruction error. Conversely, the camera pair separated

by the larger angle will have the opposite effect on the value of the cost function.

As a result, it will always be possible to find a mask orientation that results in a

lower cost function value when the cameras are positioned asymmetrically.
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In both the eight and the nine camera setups, consecutive cameras are positioned

on different camera rigs to ensure a camera placement that is symmetrical with

respect to the x-axis. In the nine camera setup, the positions of cameras 1 and 9

are indicated by the azimuth angle φb while the positions of the remaining cameras

are indicated by the azimuth angle φc. The value of φc is derived from the value

of φb with Equation 4.9. In the eight camera setup, the first camera is positioned

directly above the horizontal beam nozzle on the x-axis. The positions of the

remaining cameras are specified by φc = 45◦. The camera positions in these two

setups are shown in Figure 4.10. A side view of the nine camera setup is shown in

Figure 4.11.

φc =
360 − 2φb

8
(4.9)
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Figure 4.10: A top view of the eight (left) and nine (right) cameras in a symmetrical

camera placement configuration on both camera rigs.



72 CHAPTER 4. CAMERA PLACEMENT IN THE TREATMENT VAULT

isocenter

z−axis

Beam nozzle

x−axis

C1
C3

C5

C7
C9

C2 C4

C6C8

Camera rig 2

Camera rig 1

Figure 4.11: A top view and a side view of the camera positions on the camera

rigs. C1 to C9 indicate camera positions 1 to 9.
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4.3 Restrictions and assumptions

The layout of the treatment vault defined the search space for the optimal camera

positions. We also defined a cost function which will be used to compare different

camera positions. The remainder of this section describes the conditions under

which the cost function will be evaluated. These conditions are governed by re-

strictions on the movement of the treatment chair and couch as well as restrictions

to the placement of cameras. These restrictions are described in Sections 4.3.1 and

4.3.2 respectively.

4.3.1 Restrictions to the patient’s pose

The patient’s mask is attached to either the treatment chair or the treatment

couch. Either the treatment chair or the treatment couch positions the patient in

the default treatment position which places the target volume (i.e. a brain tumor)

at the isocenter of the treatment vault. As a result, the patient mask is also

positioned in close proximity to this reference point. For this reason we can ignore

translation and consider only rotation of the mask during treatment. Movement

of a treatment mask is restricted by the movement capabilities of the chair or the

couch. In turn, while the patient is in the default treatment position, the chair and

couch are restricted to the range of rotations allowed around the three Cartesian

axes. These restrictions are described next.

Restrictions to the movements of the treatment chair

The restrictions to the movement of the treatment chair are described in terms of

the conventional right hand coordinate system shown in Figure 4.5. The directions

of rotations around each axis are shown in Figure 4.12. In the default treatment

position, the treatment chair is facing the treatment beams (in the direction of

the positive x-axis) with its top pointing in the direction of the positive z-axis.
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The movement restrictions of the treatment chair are described relative to this

default position. The rotation of the chair around the y-axis is restricted to θF
y ∈

[−10◦, 100◦]. These boundaries result from the movement capabilities of the chair

as well as the comfort of the patient during treatment. The same factors restrict its

rotation around the x-axis to θF
x ∈ [−15◦, 15◦]. Rotation around the z-axis depends

on the current value of θF
y . Small values of θF

y indicate that the backrest of the

chair is in an upright position. There is no restriction on its rotation around the

z-axis (θF
z ∈ [0◦, 360◦]) when the chair is in such a configuration. Large values of θF

y

indicate that the backrest of the chair is in a “flatter”position and therefore more

similar to the treatment couch. These chair configurations result in a collision

between the chair and treatment beam nozzles for some rotation angles around

the z-axis (see Figure 4.13). The restrictions to the treatment chair in such a

configuration is the same as the restrictions to the treatment couch in the next

section.

+

−

+ −

−

+

x

z

Y

θ

θ

θ x

z

y

Figure 4.12: The direction of rotation considered during specification of the rotation

boundaries.
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Restrictions to the movements of the treatment couch

The movements of the treatment couch are more restricted than the movement

of the treatment chair. In the default treatment position, the treatment couch is

in a horizontal position with the feet end of the couch pointing to the treatment

beams (in the direction of the positive x-axis). The movement restrictions of the

treatment couch are described relative to this default position. The movement

capabilities of the couch as well as the comfort of the patient during treatment

restrict its rotations around the x-axis to θB
x ∈ [−15◦, 15◦] and the rotations around

the y-axis to θB
y ∈ [−15◦, 15◦]. Z-axis rotations in the region θB

z ∈ [−36.56◦, 36.56◦]

will result in a collision between the couch and the beam nozzles. The rotation

around the z-axis is therefore restricted to θB
z ∈ [36.56◦, 323.44◦]. This is the same

range of rotations allowed around the z-axis for treatments using the treatment

chair with large values of θF
y (see Section 4.3.1). These boundaries are shown in

Figure 4.13.

4.3.2 Restrictions to camera positions

The position of the camera rigs and the cameras mounted on them were discussed

in Sections 4.2.4 and 4.2.5 respectively. The restriction imposed on the maximum

radius of these camera rigs is a direct consequence of the distance allowed between

a camera and the isocenter. These distances directly determine the quality of the

images captured by the cameras. Image quality depends on the optimal working

distance of the diode rings and the spatial resolution of the cameras. The optimal

working distance of a diode ring is obtained when the camera is place at a distance

of 1600mm from the isocenter [25] [26]. This distance also produces an acceptable

spatial resolution of two pixels per millimeter. Although this is the optimal work-

ing distance for the diode rings, distances up to 1950mm still yield usable results.

This distance is considered the maximum allowed distance between a camera and
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Figure 4.13: Top view of the treatment beam, showing the restrictions on the

rotation of the couch around the z-axis.

the isocenter.

Images captured by a camera pair with a camera separation angle of φc < 15◦

is also undesirable. The diode rings of cameras separated by such small angles

introduce hot spots in the illumination which affects the images captured by each

camera. To avoid this phenomena the camera separation angles are restricted to

angles greater than 15◦.

The size and position of the beam nozzles place a restriction on the position of the

two cameras closest to it. The closer these two cameras are positioned to the beam

nozzles, the greater the portion of their view that is obscured. We need to find the

best angle at with these two cameras have to be placed to either side of the beam

nozzles. For this reason, the simulations will consider a number of positions for

these two cameras in region close to the beam nozzles. The region selected for these
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Figure 4.14: A top view of the beam nozzles around the isocenter, showing the

restrictions on the camera placement.

camera positions is shown in Figure 4.14. The azimuth angle φb ∈ [10◦, 90◦] indi-

cates the position of these two cameras to either side of the beam nozzles. The view

of the cameras positioned at φb = 10◦ will have their views completely obscured by

beam nozzles. The opposite is true for the cameras positioned at φB = 90◦. This

ensures that the optimal positions of these two cameras are indeed included.
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4.4 Simulation procedure

The aim of the simulations is to determine the optimal position of the cameras

in the treatment vault. Such optimal camera positions depend on the number of

treatment beams considered during the simulations. One set of simulations will

consider both treatment beams while another set will consider only the horizontal

treatment beam. Both these simulations will determine the optimal position of the

cameras for both treatment masks. Throughout the rest of this document explicit

reference will be made to specify the difference between each set of simulations.

The camera combinations that results from the camera setups are discussed in

Section 4.4.1. Each camera setup allows the position of all the cameras to be

specified by a single angle (φb). This angle is then used to calculate the separation

angle between consecutive cameras in Section 4.4.2. The discrete values associated

with the interval of each variable will be specified in Section 4.4.3.

4.4.1 Camera combinations

The camera combinations that will be used in the simulations are specified with

respect to the camera positions in Figure 4.10. 8C3 = 56 different combinations

of camera triplets are possible from a set of eight cameras. The cost function will

be evaluated for each of these camera combinations in the simulations considering

only the horizontal treatment beam. From the nine cameras used in the second

set of simulations a total of 9C3 = 84 camera triplets as well as a single camera

quadruplet will be considered. The camera quadruplet consists of the cameras at

positions 1, 2, 8 and 9. This camera combination is included to deal with face mask

orientations in the default position (see Section 4.3.1). At this mask orientation the

beam nozzles affect the view of the mask the most.

Another advantage of considering symmetrical camera positions is that only half of

the rotations around the z-axis need to be considered. This reduces the rotations

around the z-axis of the face mask and body mask around to θF
z ∈ [0◦, 180◦] and
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θB
z ∈ [40◦, 180◦] respectively.

4.4.2 Camera separation angles

Three angles describe the position of the cameras relative to each other. Angles

φb and φc were described in terms of the azimuth angle φ in Section 4.2.5. The

third angle, ψ, is the angle between the optical axes of a camera pair. This last

angle changes as a function of the height of each camera rig (θ1 and θ2) above the

isocenter. Although the relative position of the cameras is specified by φb and φc,

the weight function that is used in the cost function calculations uses ψ as input.

A formula is needed that expresses ψ as a function of the azimuth angle. The

relationship between φ, ψ, θ1 and θ2 follows from Figure 4.15.

Figure 4.15 indicates camera M on the first camera rig at a height θ1, camera P ′

P’

M

θ

z

O

θ1

2 ψ r

r

x

Q
P

φ

Figure 4.15: The relationship between angles φ, ψ, θ1 and θ2.

on the second camera rig at a height θ2, the azimuth angle φ and the separation
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angle ψ between cameras M and P ′. The coordinate system is chosen with QM

parallel to the x-axis. Lines OP and OP′ lie in the same plane. This setup ensures

that ψ = φ when θ1 = θ2. The following triplets define the position vector of

cameras M and P ′ as

M = (r sin θ1, 0, r cos θ1)

P′ = (r sin θ2 cos φ, r sin θ2 sin φ, r cos θ2) (4.10)

with

|M| = |P′| = r. (4.11)

The scalar product of these two vectors expresses ψ in terms of θ1, θ2 and φ as:

M · P′ = r2 sin θ1 sin θ2 cosφ+ r2 cos θ1 cos θ2

= |M||P′| cosψ

= r2 cosψ

cosψ = sin θ1 sin θ2 cos φ+ cos θ1 cos θ2 (4.12)

Equation 4.12 is used to calculate ψ in terms of the azimuth angle and vice versa.

Since this equation is independent of the radius of the camera rigs, r, it can be

used to calculate the camera separation angles for any of the specified simulation

setups.

4.4.3 Discrete values of the variables

The different variables as well as the boundary values that define their allowed

intervals were described in Sections 4.2, 4.3 and 4.4. It is impossible to consider

all possible values, so we define points in these respective intervals where the cost

function should be evaluated. The step size used in the discrete search space will

determine the accuracy of the simulation results. Naturally there exists a trade-

off between the accuracy of the results and the execution time of the simulation.
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Greater accuracy requires longer simulation execution times. We reduce the com-

putational cost of this simulation by adopting a two-phase iteration technique. In

the first phase of this technique, relatively large step sizes define the discrete search

space. As a result, this phase produces less accurate results but completes rela-

tively quickly. The second phase repeats the simulations using a finer step size in

a small region around the optimal values obtained in the first phase. This smaller

step size results in an improvement to the accuracy of the first phase. Note that

this approach can potentially exclude minima between the points chosen. However,

if initial step size is small enough, minima excluded are uninteresting as they are

overly sensitive to changes in the parameters.

The step sizes that define the discrete search space of the allowed mask orienta-

tions do not influence the accuracy of the camera positions. For this reason, these

step sizes are kept constant for these phases. These step sizes are assumed to be

sufficiently small to allow small enough changes between two consecutive mask ori-

entations. The step sizes of the respective orientation variables are summarized in

Table 4.1.

Variable Interval Step size

θF
z [0◦, 180◦] 20◦

θF
x [−10◦, 100◦] 20◦

θF
y [−15◦, 15◦] 15◦

θB
z [40◦, 180◦] 20◦

θB
x [−15◦, 15◦] 15◦

θB
y [−15◦, 15◦] 15◦

Table 4.1: Step sizes associated with the orientation variables of each mask during

the first iteration phase.

The camera positions are specified by the three variables φb, θ1 and θ2. The first

variable is used to derive the relative position of the cameras (specified by φc) on

the two camera rigs while the last two specify the height of each respective camera
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rig. Manufacturing constraints limit the practically attainable accuracy, which

limits the extent of realistic optimization. Also, a relatively small displacement in

the values of either of these variables should not affect the area of the mask that

is visible to a camera or the relative angle between two cameras in a major way.

If neither of the components of the cost function is greatly affected by relatively

small displacements, the cost function itself would also not be greatly affected. The

remainder of this section determines to what extent the variables φb, θ1 and θ2 are

affected by small displacements from the specified positions.

The accuracy of the values from each variable are dependent on the step size used

in their respective intervals of allowed values. The accuracy is normally step size
2

to either side of the measured value. The relation between the φc and φb is shown

in Equation 4.13. The following set of equations derive the accuracy of δφc which

depends on the value of φb ∈ [10◦, 90◦] using a step size δφb.

φc ± δφc =
360◦ − 2(φb ± δφb)

8

= 45◦ − 0.25φb ±
δφb

4

= φc ±
δφb

4

δφc = ±δφb

4
(4.13)

The accuracy with which the camera heights are specified depends on the actual

values of variables θ1 and θ2. The following equation shows the relation between

the accuracy of a particular camera’s height (δh) and the value of θ ∈ [θ1, θ2] using

a step size δθ.

δh = d cos(θ) ± d cos(δθ)

= d{cos(θ) ± cos(δθ)} (4.14)

where d is the shortest distance between the camera and the isocenter. Some

calculated δh values are shown in Table 4.2. The values in this table indicate the

accuracies at both the maximum and minimum allowed heights for the camera

placement configurations where all the cameras are kept at a constant distance
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from the isocenter.

Step size θ = 70.5◦ θ = 31.7◦

7.8◦ 199.0mm 126.1mm

3.9◦ 101.0mm 60.1mm

Table 4.2: The accuracy in the height of the camera positions as a result of two

different step size for variables θ1 or θ2.
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4.5 Implementation

The simulations are implemented and compiled as C++ programs that use OpenGL

libraries and associated primitives for modeling. Elements of the vault modeled in-

clude: two beam nozzles, two camera rigs, nine cameras and both the face mask

and the body mask. The beam nozzles are modeled using two standard primitives.

Their telescopic snouts are modeled with cones while their back ends are modeled

with cylinders (see Section 2.2.2). The circular shapes of the two camera rigs are

modeled with a circle while the nine cameras are modeled using OpenGL’s stan-

dard perspective camera models. This camera model provides features used to set

both the intrinsic and the extrinsic camera parameters, resulting in very realistic

camera views.

Both the face mask and the body mask are approximated using triangulated poly-

gon meshes [13] [14] [15]. The triangulation routine uses the data points obtained

from accurately scanning one face mask and one body mask currently used for

treatments. Such data sets ensure that the representation of the masks used in the

simulations are good approximations to real treatment masks. The information

associated with the triangles that define each mask include: the 3D coordinates of

each vertex point, the normal vector of the triangle and the area of each triangle.

There are three main algorithms involved in the calculation of the optimal camera

positions. These are:

• FaceMaskAlgorithm()

• BodyMaskAlgorithm()

• CombinationAlgorithm()

The FaceMaskAlgorithm() and the BodyMaskAlgorithm() calculate the optimal

camera positions for simulations involving the face mask and the body mask re-

spectively. The only difference between these two algorithms is the variables used
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to describe the orientation of each mask. The basic structure of these two algo-

rithms is described in Section 4.5.1.

The CombinationAlgorithm() combines the optimal camera positions from the

FaceMaskAlgorithm() and the BodyMaskAlgorithm() and calculates the optimal

camera positions associated with both masks. This algorithm is described in Sec-

tion 4.5.2.

The CostFunctionAlgorithm() forms an integral part of the calculations of both the

FaceMaskAlgorithm() and the FaceMaskAlgorithm(). This algorithm is responsible

for calculating the cost function value for a particular camera combination and is

described in Section 4.5.3.

4.5.1 The face mask and body mask algorithms

The FaceMaskAlgorithm() and the BodyMaskAlgorithm() iterate through every

combination of the variables φb, θ1, θ2, θx, θy and θz . The last three of these

variables specify the orientation of the relevant mask and are therefore different

in each of these algorithms. The different combinations of the variables are im-

plemented as nested loops where each loop iterates through all the values in the

interval of a particular variable.

At every combination of the variables φb, θ1, θ2, θx, θy and θz an additional loop

iterates through all the camera combinations while evaluating the cost function

values associated with each. The maximum of these cost function values is as-

signed to the current mask orientation. This reflects the ability of the system to

select the camera combination with the best view of the mask. The mask orien-

tation with the lowest cost function value represents the worst mask orientation

for the particular combination of φb, θ1 and θ2. This lowest cost function value is

then assigned to the current combination of these three variables. Maximizing the

resulting cost function values will therefore optimize the worst case scenario. The

final combination of φb, θ1 and θ2 with the highest of these cost function values,

will indicate the optimal camera positions for the particular mask.
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The basic structure of the FaceMaskAlgorithm() and the BodyMaskAlgorithm() is

shown in Algorithm 4.5.1. In each of these algorithms, the variables θx, θy and

θz are substituted with the appropriate mask orientation variables. A standard

collision detection algorithm detects collisions between the mask and the beam

nozzles. If a collision occurs, the snout of the relevant beam nozzle is contracted.

Conversely, the relevant beam nozzle’s snout is extended to ensure a maximum

distance of 100mm between the mask and the beam nozzles. F() represents the

function call to the CostFunctionAlgorithm(). The orientation[ ] variable holds the

cost function value for every mask orientation and the heightmap[ ] variable holds

the worst mask orientation associated with each camera position.

Algorithm 4.5.1

1 for all combinations of φb, θ1 and θ2 do

2 for all combinations of θy, θx and θz do

3 Test for collision between the mask and the beam nozzles.

4 if a collision occured

5 then Set length of relevant beam nozzle snout.

6 endif

7 for all camera combinations do

8 cost [camera combination] = F (camera combination)

9 endfor

10 orientation [θy, θx, θz]= max{cost [all camera combinations]}
11 endfor

12 heightmap [φb, θ1, θ2] = min{orientation[θy, θx, θz]}
13 endfor

4.5.2 The combination algorithm

The CombinationAlgorithm() determines the optimal camera positions for treat-

ments using both the face mask and the body mask. This algorithm achieves this
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by comparing the cost function values from the different face mask orientations

with the cost function values from the different body mask orientations at every

camera position. In the first step of this algorithm the maximum cost function

value from the two optimal camera positions, one associated with each mask, is

selected for the current value of φb. The second step determines the difference

between the values of heightmap[ ], from each mask, and the maximum cost func-

tion value at each different configuration of the camera rigs. The cost function

associated with a maximum difference is assigned to the current configuration of

the camera rigs. These two steps are repeated for every value of φb. As a result of

repeating these two steps, the minimum of the cost function values associated with

each mask is selected at every camera position. The optimal camera positions for

treatments using both mask correspond to the combination of φb, θ1 and θ2 with

the maximum value associated with it.

The basic structure of the CombinationAlgorithm() is shown in Algorithm 4.5.2.

Variable F max[ ], on line 4, holds the maximum cost function value of the opti-

mal camera positions for each φb. The resulting cost function values associated

with each camera position and each φb value are kept in heightmap[ ]. The optimal

camera positions are associated with the minimum value of optimal value[ ].

Algorithm 4.5.2

1 for every value of φb do

2 max face = max{heightmap from the face mask}
3 max body = max{heightmap from the body mask}
4 F max[φb] = max{max face, max body}
5 for all combinations of θ1 and θ2 do

6 diff face = F max − heightmap from face mask algorithm

7 diff body = F max − heightmap from body mask algorithm

8 heightmap [φb, θ1, θ2] = max{ diff face, diff body }
9 endfor

10 optimal values[φb] = min{heightmap [φb, θ1, θ2]}
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11 endfor

4.5.3 The cost function algorithm

The CostFunctionAlgorithm() takes as input a particular camera combination and

returns the associated cost function value. Since algorithms that evaluate the cost

function for the camera triplets and the camera quadruplet are similar only the

algorithm associated with the camera triplet will be discussed in this section.

The angles (ψ) between the optical axes of the different cameras in a specific com-

bination are calculated in the first step of this algorithm. These calculations are

based on Equation 4.12. The second step uses ψ and calculates the value of the

weight function for each camera pair. The third step calculates the area of the

mask visible by each camera combination. This step involves function calls to Cal-

cVisibleTriangles() and CalcCommonTriangles(). The last two steps provide both

the weight function values and the areas associated with each camera combination

which are needed to evaluate the cost function (Equation 4.3). The basic structure

of the CostFunctionAlgorithm() is shown in Algorithm 4.5.3.

Algorithm 4.5.3

1 Calculate separation angles between the cameras.

2 Calculate weight function values for each camera pair.

3 Calculate area of mask visible from each camera pair and the camera triplet.

4 Evaluate the cost function from Equation 4.3.

Calculating the visible areas of a mask

Two algorithms are responsible for calculating the area of the mask that is visible

to each camera combination. These algorithms are:

• CalcVisibleTriangles()
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• CalcCommonTriangles()

The CalcVisibleTriangles() algorithm is responsible for calculating the area of the

mask that is visible to an individual camera. Algorithm CalcCommonTriangles()

calculates the area of the mask that is visible to a camera pair, camera triplets and

the camera quadruplet from the results of the CalcVisibleTriangles() algorithm.

These two algorithms are described next. The principles involved in calculating

the area of the mask that is visible to a camera triplet and the camera quadruplet

follow naturally from the same calculations for a camera pair and will therefore be

omitted. The CalcVisibleTriangles() algorithm is described first.

Algorithm 4.5.4

1 for each triangle in the model of the mask do

2 if triangle is not obscured by the beam nozzles

3 then if triangle projects onto the CCD of the camera

4 then triangle is visible

5 endif

6 endif

7 endfor

8 return all the visible triangles.

The algorithm traverse through each triangle in the model (or mask) and determine

if that triangle is visible to the particular camera. Triangles are only visible to a

camera if the camera view of the triangle is not obscured by any beam nozzle

and the triangle projects onto the CCD of that camera. The first of these tests

involves testing for a collision between the beam nozzles and a ray (line) whose end

points are defined by a vertex point of the triangle and the pinhole of the camera.

The second test involves projecting each triangle onto the CCD of the camera

and determining which triangles project to within the boundaries of the camera’s

CCD. This test also makes provision for triangles that project to the same area
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on the CCD of the camera with the use of a PointInTriangle() (2.3.1) algorithm.

If two or more triangles project to the same area, only the triangle with original

position closest to the camera is considered. The CalcVisibleTriangles() algorithm

terminates by returning all the triangles visible by the camera.

Algorithm 4.5.5

1 Calculate triangles visible to each camera in a camera pair.

2 Flag triangles which are visible to both cameras.

3 return the sum of the areas from all the flaged triangles.

The first step in the CalcCommonTriangles() algorithm calculates the triangles vis-

ible to each individual camera by using the CalcVisibleTriangles() algorithm. The

triangles that are visible to both cameras are flagged. This algorithm terminates

by returning the sum of the areas from all the flagged triangles.
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4.6 Software testing

A number of tests were conducted to test the accuracy of the simulation routines.

Most of these tests involved analyzing the results from the simulation when using

a sphere in the place of a mask. Under such a condition the results from the sim-

ulation should reflect the symmetrical properties associated with the sphere. For

example, the area of the sphere that is visible from camera pairs with equal φc

angles should be the same. We used a sphere because it is analytically tractable.

The first set of tests compared the area of the sphere visible from camera pairs and

camera triplets that have similar φc angles. These tests also include a comparison

between the cost function values associated such camera triplets. The results from

these tests are described in Section 4.6.1.

The second test compares the areas of the sphere that are calculated by the sim-

ulation routines with a manual calculation of the area. The resulting areas for a

camera pair are compared with different φc angles between the cameras. These

results are covered in Section 4.6.2.

The third test determined the areas of the sphere visible from the camera pair that

is positioned closest to the beam nozzles. These areas are calculated for different

φb angles which shows the change in the areas visible from each individual camera

with the change in area visible from both cameras simultaneously. These results

are discussed in Section 4.6.3.

The last test determined what the optimal angle between the cameras in a camera

pair is for simulations using a sphere. This optimal angle was obtained by evaluat-

ing the cost function for a single camera pair at different φb angles. These results

are given in Section 4.6.4.

4.6.1 Symmetrical tests

The camera setup configurations shown in Figure 4.10 have a number of similar

camera combinations. Similar camera pairs consist of two cameras separated by
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equal φc angles and similar camera triplets consist of three cameras with both φc

angles equal. The visible areas of a sphere calculated by the simulation routines

for these similar camera combinations should be equal when ignoring view occlu-

sion. The divergence of the areas visible to each similar camera combination from

their mean is indicated using a percentage residual error (δ(%)) and the standard

deviation of this residual error (σ(%)). These errors are defined as:

δ(%) =
Ai − A

A
× 100

σ(%) =

√

∑N
i=1 δ

(%)2

N − 1
(4.15)

were Ai represents either the area visible from a camera combination or the cost

function value associated with a camera triplet. A represents the average of all Ai’s

and N is the number of camera combinations.

The first test compared the area of the sphere that is visible from individual cam-

eras. Each of these cameras has an unoccluded view and should therefore view

equal sized areas of the sphere. The areas values obtained from the simulation

calculations are shown in Figure 4.16. The graph in this figure shows the residual

error (δ(%)) for each camera which results in a σ(%) = 0.027%.

The second test compared the area of the sphere that is visible from similar cam-

era pairs. The results of the simulation calculations for camera pairs with φc = 40◦

and φc = 80◦ are shown in the top and bottom graphs of Figure 4.17. Values of

σ(%) = 0.013% and σ(%) = 0.020% were obtained from the respective results. The

results for camera pairs with φc = 120◦ and φc = 160◦ are shown in the top and

bottom graphs of Figure 4.18. For this case, we obtained values of σ(%) = 0.066%

and σ(%) = 0.078% respectively.

The third test compared the cost function values calculated for a set of similar

camera triplets. The results from the simulation calculations are shown in Figure

4.19. The residual errors in the areas and the cost functions are shown in the top

and bottom graphs respectively. We observed σ(%) = 0.019% and σ(%) = 0.026%

values for the calculated areas and cost functions.
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Figure 4.16: The area of a sphere visible from individual cameras.
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Figure 4.17: The area of a sphere that is visible from similar camera pairs with

camera separation angles of 40◦ (top) and 80◦ (bottom).

All the tests resulted in σ < 0.1%. The source of this error is a direct result

from using different size triangles to approximate the treatment masks. In such

an approximation a triangle is either completely visible or not visible at all. The
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Figure 4.18: The area of a sphere visible from similar camera pairs with camera

separation angle of 120◦ (top) and 160◦ (bottom).
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Figure 4.19: The area of a sphere that is visible from similar camera triplets and

the cost function values for them. Both camera separation angles are 40◦.
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value of σ indicate the effect of ignoring the effect of partially occluded triangles.

Such a small error in the divergence of values obtained for similar camera combi-

nations is a good indication that the simulation routines involved in both the area

calculations and the cost function calculations are correct.

4.6.2 Linearity test

φ

φ

φ
min

φb

c

max

x

2

1

Figure 4.20: The integration area of sphere specified by φmin and φmax

The area of the sphere that is visible from a single camera pair was calculated

by integrating over the relevant area. The relevant area is bounded by the polar

angles φmin and φmax, as indicated in Figure 4.20, and the azimuth angles θ = 0◦

and θ = pi

2
. In this figure, the two dotted lines indicate which part of the sphere

is visible to cameras 1 and 2 respectively. The area of the sphere that is visible to

both cameras simultaneously depends on the value of φc. This last relation allow

us to express φmin and φmax as a function of φc as follow:

φmin = φb + φc −
π

2

φmax = φb +
π

2

φmax − φmin = π − φc (4.16)

The area of the sphere visible from a camera pair was calculated by integrating over

the area of the sphere defined by the boundaries in Equation 4.16. This integral
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was evaluated as follows:

dA = r2sin(θ)dθdφ

Aij(φc) =
∫ ∫

dA

= r2
∫ φmax

φmin

dφ

∫ π

0
sin(θ)dθ

= 2(φmax − φmin)

= 2π − 2φc (4.17)

where r = 1 is the radius of the unit sphere used in the simulations and i and j

are any two cameras separated by an angle φc. Equation 4.17 expresses the area of

the sphere visible from a camera pair as a linear decreasing function of φc with an

offset value of 2π and a gradient of −2. The properties of this linear function were

compared to results from the simulation routines which are shown in Figure 4.21.

The offset and gradient values from the simulations are 6.3 and −2.0 respectively.

The good correspondence between the respective offset and gradient values is a

good indication that the area calculations at different φc angles are correct.
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Figure 4.21: The area of a sphere visible by a camera pair at different φc angles.
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4.6.3 Beam occlusion test

The view from the cameras that are positioned closest to the beam nozzles is

occluded by these nozzles. This influence of the beam nozzles on the area of the

sphere that is visible from a camera pair is shown in Figure 4.22. The graph in

this figure shows that for φb < 20◦ the view of one camera is partially occluded

by the beam nozzles whereas the other camera’s view is completely occluded for

φb < 25◦. The last of these cameras should therefore be the camera positioned

closer to the beam nozzles. Also, the area of the sphere visible to both cameras

simultaneously is always less than or equal to the area of the camera that views

the smaller area. At φb > 60◦ neither the cameras’ views are occluded by the beam

nozzles and are therefore equal and constant. The results from the simulations for

cameras positioned close to the beam nozzles are as expected. This result is also

a good indication that the simulation calculations are correct for situations where

the beam nozzles effect the view of the cameras.

The results from this test were also tested against the results from the second
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Figure 4.22: The effect of beam occlusion to the view of cameras i and j.

test. This test involved testing the area calculations of the simulation routines as

a function of φb. A linear interpolation through the area values obtained from the
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third test at φb > 60◦ produced a linear function with offset and gradient values

of 4.7 and 0.5 respectively. These values were compared against the offset and

gradient values obtained from substituting Equation 4.13 in Equation 4.17. The

resulting function is,

Aij(φb) =
1

2
φb +

3π

2
(4.18)

which shows the offset and gradient values as 3π
2

and 1
2

respectively. The good

correspondence between these results is another good indication that the area cal-

culations of the simulations are correct for different φb values also.

4.6.4 Optimal camera separation angle

The sphere is also used to determine the optimal camera separation angle between

a camera pair. This optimal angle resulted from the cost function which includes

both area calculations and weight function calculations (see Section 4.1.1). The

weight function is at a maximum when φc = 90◦ whereas the area between a cam-

era pair is at a maximum when φc = 0◦. The expected result from combining these

two functions will be an optimal angle somewhere between these two extreme an-

gles. This optimal angle is also expected to be slightly larger than 45◦ because

the weight function is a cubic function, whereas the function that determines the

area is a linear function (see Equation 4.17). The result from this test is shown in

Figure 4.23. An optimal angle of 56◦ is a good indication that the calculations are

correct.

The graph in Figure 4.23 also shows that the cost function is more sensitive (changes

more rapidly) for angles smaller than 56◦. For example, the change in the cost func-

tion values between φc = 20◦ and φc = 40◦ is much larger than the change in cost

function values between φc = 80◦ and φc = 100◦. This result implies that angles

larger than 56◦ are preferred to angles that are smaller than the optimal angle.
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4.7 Simulation results

A number of different constraints on the placement of the cameras in the treat-

ment vault were considered. These constraints were incorporated in different sim-

ulations to determine the optimal placement of the cameras subject to these con-

straints. Together, these simulations were used to perform an exhaustive search of

the search space that defined the allowed camera positions in the treatment vault.

The different constraints involved the following: the number of treatment beams

considered (horizontal and/or skew treatment beam); the number of cameras con-

sidered (eight or nine); and whether cameras were kept at fixed distances from the

isocenter or not. These different setup configurations are described next.

Simulation 1

Simulation 1 considered both treatment beams and a total of nine cameras mounted

on two separate camera rigs. During this simulation, all nine cameras were kept at

the same distance (1600mm) from the isocenter. Simulation 1a and Simulation 1b

represented two different variations of this simulation. Simulation 1a considered

two independent camera rigs at variable heights and resulted in Solution 1a, the

optimal solution. Simulation 1b required both camera rigs to be kept at the same

height and resulted in Solution 1b. This solution represents the best solution from

a manufacturing point of view. The setup in Simulation 1b is equivalent to having

all nine cameras mounted on a single rig, with the height of the rig allowed to vary

in the simulation.

Simulation 2

Simulation 2 considered both treatment beams and a total of nine cameras mounted

on two separate camera rigs. This simulation required the radii of both camera rigs

to be equal while the distance between each camera and the isocenter was allowed to

vary between 1600mm and 1950mm. Solution 2a represents the optimal solution

of this simulation.
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Simulation 3

Simulation 3 considered only the horizontal treatment beam with the nine cameras

mounted on two separate camera rigs. Again, all the cameras are kept at equal

distances (1600mm) from the isocenter. Simulation 3a and Simulation 3b repre-

sented the two different variations of this simulation. Simulation 3a considered

two independent camera rigs at variable heights and resulted in Solution 3a, the

optimal solution. Simulation 3b required both camera rigs to be kept at the same

height and resulted in Solution 3b. This solution represents the best solution from

a manufacturing point of view.

Simulation 4

Simulation 4 considered only the horizontal treatment beam with nine cameras

mounted on two separate camera rigs. This simulation also required the radii of

both camera rigs to be equal while the distance between each camera and the

isocenter was allowed to vary between 1600mm and 1950mm. Solution 4a repre-

sented the optimal solution of this simulation.

Simulation 5

Simulation 5 considered only the horizontal treatment beam with eight cameras

mounted on the two separate camera rigs. In this simulation, all eight cameras

were kept at equal distances (1600mm) from the isocenter. This simulation con-

sidered only the optimal solution, Solution 5.

The results from these simulation are presented in the ./SimResults directory on

the accompanied compact disc. These results are presented as output tables and

2D surface plots (height map). An output table shows the cost function values, the

percentage area values or the minimum camera separation angles associated with

every combination of variables θ1 and θ2. The height maps provide a graphical

interpretation of the values in the output table. Each value of φb is associated with

an output table and a height map. The highest cost function value indicates the

values of φb, θ1 and θ2 that result in the optimal position of the cameras. The
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results from each of the above mentioned simulations are provided next.

4.7.1 Simulation 1
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Figure 4.24: A comparison between the cost function values obtained from the face

mask and the body mask at different φb angles.

This simulation used both the face mask and the body mask to determine the

optimal position of the nine cameras subjected to the constraints specified by Sim-

ulation 1 in the previous section. Each of these masks had a cost function value

associated with every combination of the variables φb, θ1 and θ2. The individual

results for both masks are shown in Figure 4.24. The line at the top of this graph

is the sorted cost function values for the body mask. The bottom line indicates the

corresponding cost function values for the face mask. The CombinationAlgorithm()

from Section 4.5.2 combined these resulting cost function values by selecting the

minimum cost function value for each combination of the variables φb, θ1 and θ2.

It is evident from the graph in Figure 4.24 that the cost function values for the

body mask are always greater than the corresponding cost function values for the
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face mask. Combining these results will therefore always produce the same results

as the simulation with only the face mask. This result shows that the smaller

and more detailed face mask is harder to observe and results in a worse worst

case performance than the body mask. Since this will always be the case, all the

other simulations considered only the face mask to determine the optimal camera

positions.
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Figure 4.25: The maximum cost function values for different φb angles in Simulation

1a (max at φb = 60◦).

The simulations were based on maximizing the cost function. The maximum cost

function value indicated the values of φb, θ1 and θ2 that resulted in the optimal

camera positions. The maximum cost function value for each φb value in simulation

1a is provided in Figure 4.25. The global maximum of this graph indicates a

maximum cost function value of 3.6308 at φb = 60◦. This value of φb, together

with Equation 4.9, specified the optimal position of the cameras on the camera

rigs. The maximum cost function value and the optimal value of φb were used as

an index into the associated output table to determine the optimal values of both θ1

and θ2. The corresponding optimal values were θ1 = 31.67◦ and θ2 = 70.52◦. These

values translate to a camera rig configuration where one camera rig is positioned

at the highest allowed height of 2962.78mm from the floor of the treatment vault,
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while the other rig is positioned at the lowest allowed height of 2133.6mm from

the floor of the treatment vault. Individually these distances resulted in camera

rig radii of 838.2mm and 1508.4mm respectively. θ2 indicates the camera rig for

the five cameras which include cameras one and nine. The values associated with

the optimal camera positions in solution 1a are listed in Table 4.3.
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Figure 4.26: The maximum cost function values for different φb angles in Simulation

1b (max at φb = 40◦).

The values of φb, θ1 and θ2 that resulted in the maximum cost function value indi-

cated the optimal camera positions. The maximum cost function value for each φb

value in simulation 1b is shown in Figure 4.26. The global maximum of this graph

indicates a maximum cost function value of 3.2611 at φb = 40◦. The camera rig con-

figuration that corresponds to these two values were described by θ1 = θ2 = 70.52◦.

These values of θ1 and θ2 translate to a distance of 2133.6mm from the floor of the

treatment vault and a rig radius of 1508.4mm for both camera rigs. A summary

of the values associated with the optimal camera positions in solution 1b is also

provided in Table 4.3.

Each cost function value is associated with a camera combination and consists of

both an area component and an angle component. The area component indicates
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the common area of the mask visible by that camera combination while the angle

component gives the minimum camera separation angle of the camera combina-

tion. The area component is expressed as both a percentage of the total mask

area (152917mm2) and the physical area that is measured in cm2. These values

were obtained by substituting ω = 1 in the cost function (Equation 4.3). The angle

component is used to calculate the error that is achieved when reconstructing the

3D position of a marker from a camera pair separated by such an angle (see Section

4.1.1). The accuracy in the reconstruction was obtained from substituting the min-

imum camera separation angle in Equation 4.6. The cost function values, the areas

value and the angles associated with solution 1a and solution 1b are summarized

in Table 4.3.

Solution 1a Solution 1b

φb 60◦ 40◦

θ1 31.7◦ 70.5◦

θ2 70.5◦ 70.5◦

Cost function 3.6308 3.2611

Area(%) 37.4% 44.4%

Area9cm2) 572.5 cm2 678.9 cm2

Angle 44.6◦ 32.9◦

Reconstruction error 2.658mm 3.559mm

Table 4.3: The camera positions associated with solution 1a and solution 1b.
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4.7.2 Simulation 2
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Figure 4.27: The maximum cost function values for different φb angles in Simulation

2 (max at φb = 50◦).

Simulation 2 considered a setup in which the radii of both camera rigs were kept

constant. This setup resulted in camera placement configurations where the dis-

tances between cameras and the isocenter varied between 1600mm and 1950mm.

The maximum cost function value for each φb value in solution 2a is provided in

Figure 4.27. The global maximum of this graph indicates a maximum cost function

value of 3.4609 at φb = 50◦. The camera rig configuration that corresponds to these

two values was described by θ1 = 47.21◦ and θ2 = 70.52◦. These values translate

to a camera rig configuration where one camera rig is positioned at 2686.90mm

from the floor of the treatment vault while the other rig is positioned at the lowest

allowed height of 2133.6mm from the floor of the treatment vault. Both these cam-

era rigs have radii of 1508.4mm. The values associated with the optimal camera

positions in solution 2a are listed in Table 4.4.
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Solution 2a

φb 50◦

θ1 47.2◦

θ2 70.5◦

Cost function 3.4609

Area(%) 40.03%

Area(cm2) 612.15 cm2

Angle 35.9◦

Reconstruction error 3.2758mm

Table 4.4: The camera positions associated with solution 2a.
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4.7.3 Simulation 3
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Figure 4.28: The maximum cost function values for different φb angles in Solution

3a.
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and φb = 63◦ (top) at every mask orientation.

The constraints in simulation 3a was the same as for simulation 1a, except that

only the horizontal beam delivery system was considered. The maximum cost func-
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tion value for each φb value in solution 3a is shown in Figure 4.28. However, the

resulting graph indicates two local maxima, one at φb = 63◦ and one at φb = 38◦.

One of these local maxima is also the global maxima. A comparison of the cost

function values associated with both these φb angles as well as for every mask ori-

entation is shown in Figure 4.29. This graph indicates that the cost function values

associated with φb = 63◦ are always greater that the cost function values associated

with φb = 38◦. This proved that the global maximum is indicated by φb = 63◦.

The maximum cost function value was 3.7584 with θ1 = 31.67◦ and θ2 = 70.52◦

indicating the optimal camera rig configuration. These values translate to a cam-

era rig configuration where one camera rig is positioned at the maximum allowed

height of 2962.78mm from the floor of the treatment vault while the other rig is

positioned at the lowest allowed height of 2133.6mm from the floor of the treat-

ment vault. Individually, these distances resulted in camera rig radii of 838.2mm

and 1508.4mm respectively. A summary of the values associated with the optimal

camera positions in solution 3a is provided in Table 4.5.

The results from Simulation 3a are somewhat surprising, and so a closer exami-
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Figure 4.30: The maximum cost function values for different φb angles in Solution

3b (max at φb = 55◦).

nation is warranted. Intuitively, one would expect that the value of φb should be
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smaller for a simulation that considered only the horizontal beam delivery system.

A smaller value of φb would increase the minimum angle between the cameras and

therefore also the accuracy of reconstructing the position of the patient’s mask.

On the other hand, this will decrease the common area of the mask visible to the

cameras. Although the angle component is normally the dominant factor in the

cost function, its effect reduces with an increase in the minimum camera separation

angles. In circumstances like these, it is possible for the area component to become

the dominant factor in the cost function calculations. The nonlinearity between

changes in these two components of the cost function explains the result from this

simulation.

Simulation 3b required both camera rigs to be positioned at the same height. The

maximum cost function value for each φb value in simulation 3b is provided in Fig-

ure 4.30. The global maximum of this graph indicates a maximum cost function

value of 3.3543 at φb = 55◦. The camera rig configuration that corresponds to these

two values was described by θ1 = θ2 = 70.52◦. These values of θ1 and θ2 translate

to a distance of 2133.6mm from the floor of the treatment vault and a rig radius

of 1508.4mm for both camera rigs. The values associated with the optimal camera

positions in solution 3b are listed in Table 4.5.

Solution 3a Solution 3b

φb 63◦ 55◦

θ1 31.67◦ 70.5◦

θ2 70.5◦ 70.5◦

Cost function 3.7584 3.3543

Area(%) 38.53% 32.06%

Area(cm2) 589.18 cm2 490.20 cm2

Angle 44.3◦ 29.4◦

Reconstruction error 2.67098mm 3.91244mm

Table 4.5: The camera positions associated with solution 3a and solution 3b.
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4.7.4 Simulation 4
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Figure 4.31: The maximum cost function values for different φb angles in Simulation

4 (max at φb = 35◦).

Simulation 4 considered a setup in which the radii of both camera rigs were kept

constant. This setup resulted in camera placement configurations where the dis-

tances between cameras and the isocenter varied between 1600mm and 1950mm.

The maximum cost function value for each φb value in solution 4a is provided in

Figure 4.31. The global maximum of this graph indicates a maximum cost function

value of 3.6443 at φb = 35◦. The camera rig configuration that corresponds to these

two values was described by θ1 = 70.52◦ and θ2 = 51.10◦. These values translate

to a camera rig configuration where one camera rig is positioned at 2604.74mm

from the floor of the treatment vault while the other rig is positioned at the lowest

allowed height of 2133.6mm from the floor of the treatment vault. Both these cam-

era rigs have radii of 1508.4mm. The values associated with the optimal camera

positions in solution 4a are listed in Table 4.6.
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Solution 4a

φb 35◦

θ1 70.52◦

θ2 51.10◦

Cost function 3.6443

Area(%) 33.73%

Area(cm2) 515.84 cm2

Angle 36.8◦

Reconstruction error 3.195mm

Table 4.6: The camera positions associated with solution 4a.
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4.7.5 Simulation 5

Simulation 5 required only eight cameras to be mounted at fixed positions on the

camera rigs. This camera placement configuration was described in Section 4.7.

The maximum cost function value of this solution was 3.5152 which was associated

with φb = 45◦, θ1 = 70.5◦ and θ2 = 47, 2◦. The values associated with the optimal

camera positions in solution 5 are listed in Table 4.7.

Solution 5

φb 45◦

θ1 70.52◦

θ2 47.21◦

Cost function 3.5152

Area(%) 31.00%

Area(cm2) 474.07 cm2

Angle 36.7◦

Reconstruction error 3.201mm

Table 4.7: The camera positions associated with solution 5.
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4.7.6 Additional results

Since we are interested in solutions that satisfy both the single and the double beam

line configuration, we substituted the solution of simulation 2 into simulation 4 ’s

setup to generate solution 2b and vice-versa to generate solution 4b. The setup of

the cameras in solution 2a and solution 4a are very similar. In both these solutions

one of the camera rigs is positioned at the minimum allowed hight of 70.52◦ while

the other camera rig is positioned at either 47.2◦ or 51.10◦. A relatively small

change in the camera positions in each of these solutions will result in an identical

camera configuration to the other solution. It is worth knowing the effect on the

resulting cost function value as a result of such changes. An identical camera

configuration for both solutions is highly favorable from a manufacturing point of

view. Solution 2b and solutions 4b are provided in Table 4.8.

Solution 2b Solution 4b

φb 50◦ 35◦

θ1 70.52◦ 47.2◦

θ2 51.10◦ 70.52◦

Cost function 3.1711 3.4817

Area(%) 39.64% 32.21%

Area(cm2) 606.16 cm2 492.53 cm2

Angle 34.09◦ 38.33◦

Reconstruction error 3.447mm 3.060mm

Table 4.8: The camera positions associated with solution 2b and solution 4b.
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4.8 Summary

The camera positions, cost function value, area value and angle value for the dif-

ferent solutions in the simulation are listed in Table 4.9. Each of these cost func-

tion values are associated with a single camera triplet (or quadruplet) and a single

mask orientation. The nature of the simulation procedure implies that this camera

combination and mask orientation resulted in the lowest cost function value for a

particular camera placement configuration (defined by φb, θ1 and θ2). A comparison

between only the worst case cost function values might be misleading. Consider

two solutions, A and B. Solution A might have higher cost function values associ-

ated with the majority of mask orientations than solution B, although the worst

case cost function value of solution B is slightly higher than the worst case cost

function value of solution A. In this case, solution A might be preferred to solution

B, although this is not reflected in Table 4.9.

It is therefore necessary to also compare the different cost function values at all the

mask orientations. These comparisons are shown in Figure 4.32. The graph at the

top compares the solutions associated with both beam delivery systems while the

graph at the bottom compares the solutions associated with only the horizontal

beam delivery system. Each graph line is associated with a solution. They repre-

sent the cost function values at every mask orientation. The cost function values of

each graph is sorted in ascending order to aid comparison of relationships between

minimum, average and maximum values. As a result, no information regarding the

cost function values at a particular mask orientation can be obtained from these

graphs. The minimum cost function value in graph represents the worst case value

for each solution. These values correspond to the values listed in Table 4.9. From

these graphs we can extract both the average and the maximum cost function value

for each solution, which are important indicators of how the solutions compare rel-

ative too each other. For example, consider the first graph in Figure 4.32. Here

the minimum cost function value of Solution 1b is higher than the cost function

value of Solution 2b. Solution 1b is therefore the better solution when comparing
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only these minimum cost function values like in Table 4.9. Comparing the rest of

the cost function values, however, reveals that Solution 2b in fact performs better

than Solution 1b on every mask orientation except four. Despite having a lower

minimum cost function value, Solution 2b might be preferred to Solution 1b.

Two Cost Area Area

Beams funct (%) (cm2) Angle error φb θ1 θ2

Sol 1a 3.631 37.44% 572.51 cm2 44.56◦ 2.66mm 60◦ 31.7◦ 70.5◦

Sol 1b 3.261 44.39% 678.92 cm2 32.94◦ 3.56mm 40◦ 70.5◦ 70.5◦

Sol 2a 3.461 40.03% 612.15 cm2 35.90◦ 3.28mm 50◦ 47.2◦ 70.5◦

Sol 2b 3.171 39.64% 606.16 cm2 34.09◦ 3.45mm 50◦ 70.5◦ 51.1◦

One

Beam

Sol 3a 3.758 38.53% 589.18 cm2 44.30◦ 2.67mm 63◦ 31.7◦ 70.5◦

Sol 3b 3.354 32.06% 490.20 cm2 29.42◦ 3.91mm 55◦ 70.5◦ 70.5◦

Sol 4a 3.644 33.73% 515.84 cm2 36.77◦ 3.20mm 35◦ 70.5◦ 51.1◦

Sol 4b 3.482 32.21% 492.53 cm2 38.33◦ 3.06mm 35◦ 47.2◦ 70.5◦

Sol 5 3.515 31.00% 474.07 cm2 36.70◦ 3.20mm 45◦ 70.5◦ 47.2◦

Table 4.9: A summary of the components of the cost functions at the optimal

solutions.
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Figure 4.32: Cost function values vs mask orientations for the different solutions

of the two (top) and single (bottom) treatment beams.
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4.9 Criteria for selecting the best camera config-

urations

Three factors determined which camera setup should be implemented in the treat-

ment vault. These factors are the optimization results from the simulations, the

flexibility of the camera setups regarding the one and two beam line configurations

and the complexity of manufacturing a support system for the selected camera

setup. The camera setup that provides the best compromise amongst these differ-

ent factors would be selected for implementation in the treatment vault. The next

three subsections give a brief description of each of these factors.

4.9.1 Simulation results

A camera combination is associated with each cost function value. These cost

function values provide a measure of both the visible area of a mask and the smallest

camera separation angle associated with the camera combination. The smallest

camera separation angle gives an indication of how accurately the position of a

marker on the mask can be determined from two cameras separated by this camera

separation angle. The highest cost function value from the solutions in Table 4.9

will therefore indicate the best camera position according to the simulations. The

optimization results in Table 4.9 played an important role in selecting the final

camera configurations.

4.9.2 Flexibility of camera configuration

In principle, separate optimal camera configurations can exist for both the one and

the two beam line setups. The degree of similarity between these camera configu-

ration also played an important role in selecting the final camera configuration. A

single camera configuration that can be used for both the one and the two beam
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lines setup is highly favoured because it eliminates the need to construct a separate

support system for each beam line configuration. Such a configuration is especially

valuable in this project as initially only the horizontal beam delivery system will

be implemented in the treatment vault and that the implementation of the second

beam delivery system will occur only after the single beam-line system has been

commissioned.

4.9.3 Manufacturing constraints

A structure is required to support the camera rigs from the roof of the treatment

vault. The complexity of this structure, as well as its ability to cater for additional

systems also influences the decision regarding the final camera position. Systems

like the portal x-ray image acquisition system will be lowered down from the roof

of the treatment vault to the height of the isocenter. Both the camera rigs and

their support structure should allow for these movements of the portal x-ray image

acquisition system. Although the simplest design for a support system is obviously

preferred from a manufacturing point of view, more complex designs were also

considered. We refer the reader back to Figure 4.8, which shows the relation

between the position of the horizontal beam line, the isocenter and the portal

x-ray image acquisition system.

4.10 Conclusion

A cost function was used to evaluate the merits of the different camera positions

in each simulation. Each cost function value was associated with a particular

camera combination and can be subdivided into an area component and an angle

component. The area component indicated the size of the common area on the

mask that was visible to that particular camera combination. The angle component

indicated the minimum camera separation angle between the cameras in the camera
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combination. The accuracy that is achieved when reconstructing the position of the

patient’s mask from the camera combination is derived from the minimum camera

separation angle.

Solution 1a and Solution 3a resulted in the highest cost function values for both the

one and the two beam line setups, respectively. The camera positions associated

with these solutions are: φb = 60◦, θ1 = 31.7◦ and θ2 = 70.5◦ for Solution 1a and

φb = 63◦, θ1 = 31.7◦ and θ2 = 70.5◦ for Solution 3a. The values of θ1 and θ2 in

these solutions indicate identical camera rig setups. In these setups, the one rig is

positioned a the highest allowed height (θ1 = 31.7◦ translates to 1362.78mm above

the isocenter) and the other one at the lowest allowed height (θ1 = 70.5◦ translates

to 533.6mm above the isocenter). The small difference between the values of φb in

each of these solutions also indicates a close correspondence between the camera

positions on each camera rig. The values of φb, θ1 and θ2 are not the easiest to

contend with from a manufacturing point of view, because they indicate a camera

placement configuration where the two camera rigs are positions at the extreme

high and extreme low positions. However, it is possible to manufacture a suitable

support system for this setup (see Figure 4.33 1). The advantages that were gained

from a single solution that is optimal for both beam line configurations overrules the

complexity associated with manufacturing the support system. The combination

of solution 1a and solution 3a were identified as the optimal solutions for the

single and the double beam line configuration respectively. Only one solution can

be implemented in the treatment vault, therefore, the camera positions associated

with solution 1a were selected for implementation. The optimal camera positions

are specified by φb = 60◦, θ1 = 31.7◦ and θ2 = 70.5◦ and will be implemented in

the treatment vault.

1Conceptual design of the support system for the cameras was done by Evan de Kock.
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Figure 4.33: A top view of the proposed support system for the optimal camera

positions in the treatment vault.
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Chapter 5

Conclusion

The aim of this thesis was to aid in the development of the CT scanner SPG system

and the Treatment SPG system currently being developed for the new patient posi-

tioning system at iThemba Labs. Two simulations were developed for this purpose.

The first simulated the setup in the CT scanner room while the second simulated

the setup in the treatment vault. These simulations allowed us to test different

aspects of the project. This resulted in a better understanding of the setup in both

SPG systems.

The simulation routine responsible for determining the guidelines for the marker

positions on the patient’s mask was described in Chapter 3. The aim was to clarify

the effect of the fixed camera positions on the visibility of of the patient’s mask

during a CT scan. The visible areas determine where to place the markers on the

patient’s mask. The simulation routine produced a set of images of different marker

positions on a oval model. These images were fed to a preliminary marker identi-

fication algorithm which resulted in either a hit or a miss depending on whether

the markers were correctly identified or not. The results from these simulations

indicated marker positions that satisfy the minimum requirement of the CT scan-

ner SPG system. Furthermore, from the simulation results, we can conclude that

enough of the mask is visible throughout the scan to obtain usable data from the

123



124 CHAPTER 5. CONCLUSION

CT scanner SPG system.

The simulation routine responsible for determining the optimal position of the cam-

eras in the treatment vault was described in Chapter 4. These are camera positions

that will maximize the visibility of the patient’s mask and minimize the error in

calculating the position of the mask. Finding the optimal camera positions was an

optimization problem in which a cost function was optimized over a high dimen-

sional search space. The simulations resulted in several possible camera positions

which were compared based on their respective cost function values, their flexibil-

ity toward future developments, such as the addition of a second beam delivery

system, and the manufacturing constraints involved in building a support system

for the cameras. An exhaustive search in the regions of these optimal solutions

gave information about the sensitivity of the camera positions to small deviations

from the optimal position. From the results of the treatment vault simulations, a

camera placement configuration was chosen and will be implemented in the treat-

ment vault.

From these results, we conclude that the goals stated in the introduction were

achieved.



Appendix A

Matrix notation in Computer

Graphics

L Local coordinate system

W World coordinate system

V View coordinate system

D Screen coordinate system

G Light coordinate system

K Texture coordinate system

T Translation matrix

R Rotation matrix

S Scaling matrix

Mm Modeling transformation matrix

Mv Viewing transformation matrix

Mmv Modelview transformation matrix
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Mp Perspective projection matrix

Mo Ortographic projection matrix

Mvp Viewport tranformation matrix

Mtg Texgen matrix



Appendix B

Variables used in camera

placement simulations

θ The azimuth angle.

φ The polar angle.

θ1 The azimuth angle specifying the height of the first camera rig.

θ2 The azimuth angle specifying the height of the second camera rig.

φb The polar angle specifying the separation angle between the first and

last cameras (nine camera setup).

φc The polar angle specifying the separation angle between two cameras

in a camera pair.

ψ The angle specifying the separation angle between the optical axes

of the cameras in a camera pair.
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θFz The rotation angle of the face mask around the z-axis.

θFx The rotation angle of the face mask around the x-axis.

θFy The rotation angle of the face mask around the y-axis.

θBz The rotation angle of the body mask around the z-axis.

θBx The rotation angle of the body mask around the x-axis.

θBy The rotation angle of the body mask around the y-axis.
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