Evolutionary responses of discontinuous gas exchange in insects
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Abstract

The discontinuous gas-exchange cycles (DGCs) observed in many quiescent insects have been a cause of
debate for decades, but no consensus on their evolutionary origin or adaptive significance has been
achieved. Nevertheless, three main adaptive hypotheses have emerged: (i) the hygric hypothesis suggests
that DGCs reduce respiratory water loss; (ii) the chthonic hypothesis suggests that DGCs facilitate gas
exchange during environmental hypoxia, hypercapnia, or both; and (iii) the oxidative-damage hypothesis
suggests that DGCs minimize oxidative tissue damage. However, most work conducted to date has been
based on single-species investigations or nonphylogenetic comparative analyses of few species, despite
calls for a strong-inference, phylogenetic approach. Here, we adopt such an approach by using 76
measurements of 40 wild-caught species to examine macrophysiological variation in DGC duration in
insects. Potential patterns of trait variation are first identified on the basis of the explicit a priori predictions
of each hypothesis, and the best phylogenetic generalized least-squares fit of the candidate models to the
data is selected on the basis of Akaike's information criterion. We find a significant positive relationship
between DGC duration and habitat temperature and an important interaction between habitat
temperature and precipitation. This result supports the hygric hypothesis. We conclude that the DGCs of
insects reduce respiratory water loss while ensuring adequate gas exchange.
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Introduction

At rest, many species of tracheated arthropod exchange respiratory gases with the atmosphere
discontinuously. These discontinuous gas-exchange cycles (DGCs) are observed in a phylogenetically and
ecologically diverse suite of species, having arisen independently within the Chelicerata and Myriapoda,
and at least five times within Insecta (1, 2). DGCs are observed in species with subterranean and
nonsubterranean lifestyles, winged and wingless species, and species from mesic and xeric environments
(2). Generally, DGCs comprise three periods: closed (C), flutter (F), and open (O). During the C period, the
spiracles are tightly closed and the partial pressure of oxygen (pO,) within the tracheae declines as oxygen
is consumed by respiration. Carbon dioxide, on the other hand, is buffered in the hemolymph and
endotracheal pressure declines with pO, (3). At a pO, set point of =2—4 kPa, the spiracles begin to partially
open and close in quick succession, and the F period is initiated. Inward convection during the early stages
of the F period is thought to be an important means of restricting outward water movement in some, but
not all, species showing DGCs (4—8). CO, continues to accumulate throughout the F period, which ends
when endotracheal partial pressure of carbon dioxide reaches =3—6 kPa and the spiracles open widely (9).
During the O period, O,, CO,, and H,0 are exchanged with the atmosphere by either diffusion or forced
convection arising from active ventilatory movements.

Although early work stressed the importance of the C and F periods in restricting water loss, the debate
over the evolutionary origin and adaptive significance of discontinuous gas exchange is far from resolved
(10-12). Three main adaptive hypotheses have emerged and were reviewed recently by Chown et al. (8).
The hygric hypothesis can be stated simply as, “DGCs are an adaptation to reduce respiratory water loss”
(8; see also ref. 9). It is the most venerable of the hypotheses** and continues to attract empirical support
(14). However, the hypothesis has been criticized on several grounds, and a variety of empirical studies
have failed to find support for it (reviewed in ref. 15). Most recently, Lighton et al. (16) found that in the
ant,Pogonomyrmex californicus, the presence or absence of a DGC does not alter respiratory water loss. In
a related species, Pogonomyrmex barbatus, the ratio of respiratory water loss to CO, release does not
differ between queens using DGC or cyclic or continuous gas exchange (17).

The second adaptive hypothesis, proposed by Lighton and Berrigan (10, 18), is that DGCs are an adaptation
to effect gas exchange in hypoxic or hypercapnic environments in such a way that a water-loss penalty is
not paid (see also ref. 17). This idea is now known as the chthonic-hygric hypothesis to distinguish it from
Lighton's (10) later modification thereof, which simply emphasized the need for gas exchange in hypoxic or
hypercapnic environments irrespective of water loss [the chthonic hypothesis (8)]. Both of these chthonic
hypotheses remain controversial (10, 17, 19-21). The third, oxidative-damage, hypothesis proposes that
DGCs “are an adaptation to provide adequate gas exchange while reducing oxidative damage to tissues at
rest that would otherwise result from a tracheal system that has evolved to maximise oxygen availability
during activity” (8). Bradley " postulated that the DGC may serve to reduce the supply of oxygen to the
tissues during periods when the metabolic rate is low, and this idea was supported by Hetz and Bradley
(12), who showed that pupae of the moth Attacus atlas maintained an endotracheal pO, of 4-5 kPa
throughout the F period at ambient pO, values ranging from 6.4 to 50.2 kPa.

Each of these hypotheses makes firm predictions concerning the relationship between the duration of
DGCs and ambient temperature, saturation deficit, pO,, or some combination thereof (Table 1). In the case
of the hygric hypothesis, if it is assumed that the respiratory surfaces are saturated with water vapor, then
rates of water loss will be proportional to saturation deficit, which is influenced by the temperature and
water vapor pressure of ambient air. Because saturation deficit is highest at high temperatures and low
ambient water vapor pressures, a positive relationship is predicted between DGC duration and ambient
temperature, and a negative correlation is predicted between DGC duration and precipitation (which is
assumed to be related to ambient water vapor pressure; see refs. 21 and 23-25). In addition, a significant
interaction between precipitation and temperature is predicted because high temperatures will produce a
low saturation deficit when precipitation is high but a high saturation deficit when precipitation is low. The
chthonic hypothesis predicts that DGC duration in species that occupy hypoxic microhabitats will be longer
than that of species that inhabit less hypoxic microhabitats (presuming that effects on C-period duration
predominate; see refs. 3and 6). An extended DGC will act to increase pO, gradients in hypoxia, and a
negative association between microenvironment pO, and DGC duration is predicted. Predictions for the
chthonic-hygric hypothesis essentially include a combination of those found for the chthonic and hygric



hypotheses (Table 1). In the case of the oxidative-damage hypothesis, low endotracheal pO, values,
resulting from low ambient pO,values, are predicted to relax the need for an extended DGC, which arises
from a prolonged C period to reduce endotracheal pO, (12). A positive association, therefore, is predicted
between pO, and DGC duration.

Table 1.

Predicted correlations between DGC duration and a range of environmental factors for each of the three
hypotheses compared

Factor
Hypothesis T.P T. x P O,
Hygric + - % o)
Chthonic o o ¢) -
Chthonic-hygric + - y -
Oxidative-damage o o o +/0

Factors are ambient (habitat) temperature (T ,, °C), precipitation (P, mm-yr_l), and ambient oxygen (O,); responses are positive
correlation (+), negative correlation (-), no correlation/effect (o), and significant effect (y).

However, the signs of the relationships for the chthonic and oxidative-damage hypotheses might be
different if species show phenotypic plasticity of a magnitude sufficient to obscure the adaptive signal. For
example, if the oxidative-damage hypothesis is correct, a species from a low-oxygen environment might, in
response to normoxic experimental conditions, increase duration of the C period to reduce endotracheal
pO, (12). It could also increase the length of the O period to release CO, that accumulated during the
prolonged C period (19) or that might have accumulated as a result of reduced rate of oxygen consumption
per unit time during the F period (12). In such cases, the DGC duration would increase under normoxic
experimental conditions. What the magnitude of this increase is likely to be relative to a species from a less
hypoxic environment is difficult to determine given that no experiments of this kind have been undertaken,
and those that have show substantial variation in species' responses (26). However, it seems plausible that
the magnitude of such plasticity would decline as a species' typical environmental circumstances
increasingly approach normoxia. Therefore, if complete plasticity is assumed and in the direction
suggested, the sign of the relationship between DGC duration and environmental pO, is likely to be zero
(i.e., no relationship). In consequence, the prediction for the oxidative-damage hypothesis is shown as +/0
(Table 1). The opposite argument could be made for the chthonic hypothesis, and so the sign is shown as
-/0.

The present study provides a test of the adaptive explanations for DGCs by examining the predictions
discussed above within a phylogenetic generalized least-squares (PGLS), strong-inference framework. The
approach taken is to compile from the literature data for species that occupy a wide range of microhabitats
and to evaluate the relationship between DGC duration and environmental data in light of the explicit
predictions of the hygric, chthonic, chthonic-hygric, and oxidative-damage hypotheses. Other components
of the DGC are not examined specifically, because Wobschall and Hetz (7) have demonstrated that, by using
rate of carbon dioxide production (VCO,) or oxygen-consumption-per-unit-time traces alone (i.e., in the
absence of tracheal pressure measurements), the C and F periods cannot always be clearly distinguished.
To date, no studies have undertaken a broad-scale comparative assessment of this nature within a
phylogenetic framework. Indeed, most previous examinations of the adaptive hypotheses proposed to
account for DGCs have usually examined a single hypothesis, typically adopted a binary approach to
environmental conditions (e.g., mesic/xeric) (e.g., ref. 20), and/or have compared only a few species
without explicit consideration of phylogenetic effects (e.g., refs. 27 and 28). Therefore, it has long been
argued that the field is in substantial need of a strong-inference approach within an explicit phylogenetic
context (15), the benefits of which have been realized in many other areas of physiology (29-31).



Results

Of the six models tested (Table 2), the best fit, given the data, was that which described DGC duration in
terms of M +VCO,+ T+ T,+P+T,*Pandincorporated information on the phylogenetic relationships
among species, with branch lengths in the phylogeny set equal. This model was 1.5 times more likely to
provide the best fit than the next best model, which was the model that also included the nonsignificant
positive effect of ambient oxygen (a combination of the oxidative-damage and hygric models; Table 2). A
was close to 1 for all three models that incorporated explicit phylogenetic information and a punctuational
model of evolution (equal branch lengths), indicating the need to account for phylogenetic correlation in
these models (32). The probability that a conventional nonphylogenetic model provides the best fit to the
data for DGC duration was negligible (Table 2; Zw ; << 0.0001 for the three models without phylogenetic
information).

Table 2.

Summary of the models examined to explain variation in discontinuous gas-exchange patterns of insects

Branch
Model Analysis lengths A AIC Wi
1. M + Conventional 25.83 <0.0001
VCOoO+Tan+ T+ P +T,-P
Phylogenetic Equal 0.83 -17.82 0.49
Phylogenetic Proportional 0.83 -7.40 0.003
2. M+ V'Co +Tn+ O Conventional 31.15 <0.0001
Phylogenetic Equal 0.84 -15.87 0.19
Phylogenetic Proportional 0.83 -5.43 0.001
3. M + Conventional 27.40 <0.0001
VCO, +Tau+T.+P+T,.P +

02

Phylogenetic Equal 0.83 -16.95 0.32

Phylogenetic Proportional 0.82 -6.71 0.002
Model 1, pure hygric; model 2, oxidative damage and hygric; model 3, either oxidative and hygric or chthonic-hygric depending on
the signs of the parameters (see Table 3). Each model was tested with an explicit model of phylogenetic relationships among
species either incorporated or ignored (the latter actually assumes a star-shaped phylogeny with all species equally closely related
and is equivalent to a conventional nonphylogenetic analysis), whereas the phylogenetic models either had equal or proportiona
branch lengths (see Methods). Models were constructed with the following factors: mass (M, mg), rate of CO,production (VCO,,
mI-h'l), measurement temperature (T ,,, °C), ambient (habitat) temperature (T ,, °C), precipitation (P, mm-yr_l), and ambient
oxygen (0,). A is a measure of phylogenetic correlation (32); w ; is the Akaike weight, the probability that the model is the correct
one of those tested.

The best model included significant positive relationships between DGC duration and M and T, and
significant negative relationships between DGC duration and VCO, and T ., (Table 3 and Fig. 1). Although
this model includes nonsignificant effects of P and its interaction with T ,, removing these variables, and
notably the interaction term, increases model Akaike's information criterion (AIC); hence, the best-fit
model includes these terms (Table 3). Removing M, VCO,, T ., and T , * P also raises AIC, dramatically in the
first two cases (>25), which justifies their inclusion in the analysis.



Table 3.

Parameter estimates for the hygric model

Estimate SE P AAIC
Intercept -1.216 0.821 >0.05
M 0.795 0.117 <0.01 36.74
V' CO, -0.714 0.130 <0.01 25.42
Tn -0.012 0.006 <0.05 1.60
T . 0.066 0.029 <0.05 <0.001
P 0.712 0.368 >0.05 <0.001
T.+P -0.035 0.018 >0.05 2.01

Factors are log mass (M, mg), log rate of CO, production (VCO,, ml-hfl), measurement temperature (T ,,, °C), ambient (habitat)
temperature (T ,, °C), log precipitation (P, mm-yrfl), and ambient oxygen (O,). T , *P is the interaction between ambient
temperature and log precipitation, and AAIC is the change in model AIC (64) when the parameter is removed from the model.

Figure 1.
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The effect of environmental variables on discontinuous gas exchange in insects. Relationship between DGC duration and (A) habitat
ambient temperature (Ta) and (B) habitat precipitation (P). To remove the potential confounding effects of body mass,
measurement temperature, rate of CO2 production, and collinearity between environmental variables, residuals are presented.
Residuals are calculated as the difference between measured values and those predicted by the best-fit model from Table 2 (the
Tax*P interaction was excluded from residual calculations). In both A and B, the solid line is the phylogenetically correct correlation
between log(DGC) and the environmental variable plotted through the bivariate mean and shown as +1 SE of the appropriate
coefficient from Table 3 (dashed lines). To indicate the effect of the interaction term (Table 3), filled symbols in A are log(DGC)
values for species in which log(P) is lower than the median log(P) in the data set; unfilled symbols are log(DGC) values for species in
which log(P) is higher than the median log(P) in the data set. The relationship between log(DGC) and Ta is apparently stronger
when log(P) is low, which supports the hygric hypothesis. Similarly, in B, filled symbols are log(DGC) values for species in which Ta is



lower than the median Ta in the data set; unfilled symbols are log(DGC) values for species in which Ta is higher than the median Ta
in the data set.

Discussion

Our analysis supports the a priori predictions of the hygric hypothesis (Table 2). The best model
incorporates phylogeny and included the significant effect of habitat ambient temperature, a nonsignificant
effect of habitat precipitation, and an important interaction between temperature and precipitation (Table
3). Thus, species from warm habitats have long DGCs, especially when precipitation is low (Fig. 1). Similarly,
cyclic and continuous gas exchange at rest are more likely in mesic than in xeric environments than are
DGCs, but DGCs can evolve in both kinds of environments (2). However, the most likely model is only 1.5
times more likely than the second most likely, which adds a nonsignificant positive effect of oxygen
availability, in keeping with the oxidative-damage hypothesis (Table 2). Overall, the probability that one of
the pure hygric and chthonic/oxidative-hygric models is the best fit to the data is 0.81 (Table 2). Although
the approach taken here represents a strong comparative test of the competing hypotheses, it does not
provide information about the way in which selection might have led to the evolution of discontinuous gas
exchange. However, it does suggest that, if not the evolutionary origin, then at least the continued
maintenance of DGCs is associated with selection to reduce respiratory water loss while ensuring adequate
gas exchange.

The nonsignificant relationship between DGC duration and environmental pO, raises the possibility that, if
present, the signal of adaptive change in DGC duration in response to environmental pO, is obscured by
plastic responses to experimental pO,. Plastic responses to experimental pO, clearly do occur (19, 33);
however, the magnitude of these kinds of plastic responses relative to adaptive differences among species
has not been systematically explored. The strong phylogenetic signal in the data provides some support for
adaptive variation in DGC duration, especially because experimental responses to altered oxygen
concentrations and temperature vary considerably among species (3, 26). Nonetheless, the need for
studies that determine the proportional contributions of plasticity and adaptive change to variation in DGC
duration is clear.

In addition to the comparative approach adopted in the present study, several other avenues are available
for investigating the adaptive significance of physiological variation, including single-species mechanistic
laboratory studies and laboratory evolution, among others (34, 35). Perhaps unsurprisingly, the outcomes
of studies that make use of these different approaches are not always in agreement. Indeed, in the case of
the hypotheses proposed to account for DGCs, this tension has long been felt in the field, with comparative
studies tending to support the hygric hypothesis and single-species, experimental investigations favoring a
variety of explanations (9, 12, 14-16, 18, 19, 33, 36, 37). However, the present comparative study provides
clear evidence for one of the competing hypotheses from both broad-scale (Tables 2 and 3) and individual
assessments (e.g., ref. 14).

Although the present study provides evidence that the DGC of insects is maintained for adaptive reasons,
the question of the evolutionary origin thereof remains open. In addition to the hygric, chthonic, and
oxidative hypotheses considered here, two additional hypotheses have been advanced. The strolling-
arthropod hypothesis suggests that “[d]iscontinuous gas exchange cycles are an adaptation to increase the
frequency of spiracle closure to reduce the risk of parasitic infestation of the tracheae,” whereas the
emergent-property hypothesis suggests that “[d]iscontinuous gas exchange cycles are a non-adaptive
outcome of interactions between the O, and CO, setpoints that regulate spiracle opening and closure” (8).
Because periodic ventilation is widespread in animals, Klok et al. (1) suggested that modification of the
periodic component of the central pattern generator to produce the DGC pattern characteristic of
tracheated arthropods is likely to have arisen independently several times and that there has been
convergent evolution of DGCs in the Arthropoda. DGCs are typically not found among the basal insect
orders (3) and seem to be polyphyletic in origin, having arisen independently multiple times (1, 2).

The multiple independent origins of DGCs suggest that DGCs are not a basal characteristic of arthropods
and are likely to be (or have been) adaptive. However, an implication of the emergent-property hypothesis
is that cycle frequency increases with metabolic rate such that gas exchange becomes continuous at the



highest metabolic rates. Consistent with this implication, Gibbs and Johnson (17) found that ants showing
continuous gas exchange had the highest metabolic rates, those exhibiting rapid cycling had intermediate
metabolic rates, and those performing classical discontinuous gas exchange had the lowest metabolic rates.
In any event, the nonadaptive hypothesis does not preclude modification of discontinuous gas exchange for
other reasons. Moreover, global differences in the patterns of covariation of environmental conditions such
as water availability, temperature, and pO, might mean that under some circumstances DGCs can be
harnessed for one need, whereas under others they may be used for a rather different purpose.
Nonetheless, the present data suggest that reducing water loss while ensuring adequate gas exchange
under desiccating circumstances is certainly a predominant feature selecting for or maintaining DGCs in the
group of species that predominate in our database (92% beetles and ants).

Although our analysis does demonstrate that DGCs evolve to restrict respiratory water loss, a limitation of
the study concerns the coarse resolution at which habitat variables were obtained, which potentially limits
the reliability of our conclusions (see, e.g., ref. 38). For example, it seems unlikely that 30-year averages of
annual temperature and precipitation at 0.5° latitude/longitude resolution are fully representative of insect
microhabitat temperatures and water-vapor saturation deficits. However, in a broad-scale comparison such
as the present study, it is not necessary for habitat variables to be numerically precise estimates of insect
microhabitats. Instead, it is assumed that global trends are indicative of differences in microhabitat
between the geographically distant sites from which insects were collected (39).

Similarly, the ability to identify and discriminate between the chthonic genesis and oxidative-damage
hypotheses is potentially undermined by the extremely limited data on the extent of habitat hypoxia and
hypercapnia. In the absence of more comprehensive information about microhabitat conditions, we
accounted for as much nonhabitat variation as possible (e.g., mass, measurement temperature, phylogeny)
and classified microhabitat O, on a multipoint ordinal scale, which we assumed would reduce the likelihood
of confounding factors.

Overall, we are confident that our support for the hygric hypothesis is sound but suggest that the
relationships be reexamined in light of any new information on microhabitat characteristics that become
available. Given the technical difficulties involved in measuring the microenvironments of subterranean
insects (40), measurements of species that have traditionally not been investigated might represent one
way of dealing with this issue (2).

For example, members of the Araceae are visited or pollinated by representatives of at least 15 families of
beetle (41), and the accessibility of inflorescences would facilitate both the collection of beetles and the
characterization of the microhabitats to which they are exposed. Given that the Araceae and other
thermogenic flowers are widely distributed geographically and show a range of thermogenic strategies
(e.g., refs. 42—44), it is also likely that the beetle pollinators of these species will be subjected to a suitably
wide range of environmental conditions to allow for further investigation into environmental modulation of
DGCs.

Methods

DGC characteristics of insects were compiled from the literature and are available online [76 measurements
of 40 species; see supporting information (SI) Table 4]. DGCs were identified on the basis of the presence of
C and F periods (see discussion in refs. 2 and 8), and only species exhibiting a discontinuous pattern of gas
exchange were included. Species exhibiting cyclic gas exchange were excluded. Although many instances of
cyclic gas exchange are undoubtedly real (45), others may be a consequence of slow flow rates in
experimental work (46). DGC duration was calculated as either the sum of the durations of the C, F, and O
periods or the inverse of DGC frequency and was log-transformed for analysis. Environmental ambient
temperature (T ,, °C) and precipitation (P, mm-yr ™) were obtained for the capture locality of each species at
0.5° latitude/longitude resolution from the CLIMATE 2.1 database (W. Cramer, personal communication).
Precipitation was log-transformed for analysis.

Microhabitat ambient oxygen was classified on an ordinal 0-to-3 scale: 0 indicates severely hypoxic or close
to anoxic (e.g., moist cow pats), 1 indicates moderately hypoxic (e.g., dry cow pats), 2 indicates mildly



hypoxic (e.g., sand and sandy loams), and 3 indicates close to ambient. The analysis did not account for
altitude (i.e., hypobaric hypoxia) because the binary diffusion coefficient of O, increases in hypobaric
mixtures, which offsets the decreased pO,gradient such that diffusive O, flux is maintained (47, 48). Three
statistical models were evaluated (Table 2). In addition to the main factors, body mass (M, mg),
measurement (experimental), temperature (T , °C), and rate of CO, production (VCO,, ml-h™") were also
included in the evaluated models because of their known effects on DGCs (reviewed in ref. 3). M and
VCO,were log-transformed for analysis. The method of PGLS was used to control for phylogenetic
nonindependence (49-51). The PGLS approach was implemented in R (52) by using the APE (Analysis of
Phylogenetics and Evolution) package (53), and code was written by R. P. Duncan. Full details of the PGLS
approach are provided elsewhere (54). Each statistical model was run by using each of two different
assumptions about phylogenetic relatedness (phylogeny incorporated or conventional nonphylogenetic). A
metric of the degree of phylogenetic correlation [A, derived by Pagel (55); see also ref. 32] was calculated
for each of the three models of trait evolution considered (Table 2). A is a multiplier of the off-diagonal
elements of the covariance matrix (i.e., those quantifying the degree of relatedness between species) and
normally varies between 0 and 1. If the covariance matrix is constructed assuming a Brownian-motion
model of evolution, then A = 1 retains that model, whereas A = 0 specifies phylogenetic independence.
Intermediate values of A specify models in which trait evolution is phylogenetically correlated but to a
lesser extent than expected under the Brownian-motion model.

The gross structure of the phylogeny used for PGLS analysis was the same as that used by Marais et al. (2).
High-level relationships within Coleoptera (i.e., the relationships between Carabidae, Scarabaeoidea, and
Tenebrionoidea) were resolved according to the Tree of Life Web Project
(seewww.tolweb.org/tree/phylogeny.html and references therein). Families within Scarabaeoidea were
assumed to be related according to Browne and Scholtz (56). Relationships among Aphodiinae,
Scarabaeinae, and Dynastinae were resolved according to Howden (57), Browne and Scholtz (58), and
Philips et al. (59); relationships within Scarabaeus (Scarabaeidae) according to Forgie et al. (60) and Sole et
al. (61); and within Onymacris (Tenebrionidae) according to Ward and Seely (62). Relationships

within Pogonomyrmexwere resolved according to Parker and Rissing (63). Other relationships were
assumed to follow taxonomic hierarchy. Because the branch lengths in the phylogeny are unknown, the
analysis was conducted with two different assumptions. First, we assumed that all branches in the
phylogeny were of equal length, which is equivalent to a punctuational model of evolution in which all
change occurs at speciation events. Second, we assumed that all branches in the phylogeny were
proportional in length to the number of taxa descended from the node to which the branch leads, which is
one model by which gradualistic evolutionary change may occur and produces an ultrametric phylogeny
with short recent branches and longer ancient branches. Because measurements at multiple temperatures
were available for many species, multiple measurements for a single species were included by placing them
in very short branches (0.001). Branch lengths were calculated by using TreeEdit 1.0a10. A copy of the
phylogeny is available on request.

Burnham and Anderson's (13) framework for model comparison was used to identify the most plausible
model(s) among the nine fitted (three statistical by three phylogenetic) on the basis of AIC as a measure of
model fit (see also ref. 22). The best of all of the statistical models tested was that with the lowest AIC. The
probability that any given model is actually the best fit of those tested was measured by its Akaike

weight, w(13).
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