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Summary
The possible use of the bacterially produced antimicrobial peptides, and in particular class IIa

bacteriocins as food preservatives is a motivating factor in studies on resistance to them by

food-borne pathogens like Listeria monocytogenes. The high frequencies of resistance to class

Ha bacteriocins have however sparked concern regarding their adequacy as potential bio-

preservatives. Activity of these cationic peptides was reported to occur by membrane

permeabilisation due to pore formation, which results in the leakage of the intracellular

contents followed by cell death. The cell envelope (cell wall and cell membrane) is therefore

envisaged as a key site of modification in suscepti bility of bacteria to class Ha bacteriocins.

Mutants of the L. monocytogenes 873 isolate, resistant to the class IIa bacteriocin, leucocin A,

were generated at the start of the study to complement the existing array of L. monocytagenes

wild-type and resistant isolates obtained from other sources. The fifty percent inhibitory

concentrations using a highly sensitive and reproducible bioassay were determined. This

allowed categorisation of the mutants into intermediate and highly resistant phenotypes.

Analysis of the growth patterns of all these strains showed decreased growth rates and higher

growth yields for all the resistant strains in general. This provided evidence for possible

effects of membrane adaptation and metabolic changes in the resistant strains and prompted

further investigation. The major focus of the study on the class Ha resistant mutants were: (1)

analysis of membrane compositional changes and factors influencing cell surface charge; (2)

assessment of physical changes in the membrane and bacteriocin itself using circular

dichroism and fourier transform infrared spectroscopy; (3) and, determination of changes in

glucose metabolism.

Electrospray mass spectrometry analysis of the major listerial phospholipid,

phosphatidylglycerol, revealed that membranes of resistant strains had increased levels of

unsaturated and short-acyl-chain phosphatidylglycerol molecular species, indicating more

fluid membranes. In addition, treatment with a desaturase inhibitor resulted in increased

sensitivity of only the intermediate resistant strains to the class na bacteriocin, leucocin A.

This indicated the influence of membrane adaptation in only lower levels of resistance. It is

conceivable that more fluid membranes could also impact on decreased stability of pore

formation by the bacteriocin.

Complementary biophysical studies using fourier transform infrared spectroscopy indicated

the possible occurrence of greater membrane fluidity of resistant cells, by the notable shift in

Stellenbosch University http://scholar.sun.ac.za



iv

the anti symmetric CH2 stretching vibration from 2921 cm-I to 2922 cm-I. Additionally,

circular dichroism revealed a decreased a-helical and increased random structure of leucocin

A in the presence of listerial liposomes derived from highly resistant cell membrane extracts.

It is possible that this may result in reduced activity of the bacteriocin in resistant cell

membranes as a-helical stucture is a critical feature for membrane insertion of cationic

antimicrobial peptides.

Cell surface charge was determined by quantification of alanine and lysine esterification of

the anionic cell surface polymer, teichoic acid, and membrane phospholipids respectively.

Increased D-alanine, which causes neutralisation of the cell surface, was observed in all

resistant cells. A tendency for greater lysine content in membrane phospholipids, which also

impacts on neutralisation of the anionic phospholipid of listerial membranes, was observed in

highly resistant strains only. This neutralisation of the negative charge of the cell surface may

interfere with initial electrostatic interaction of bacteriocin with the cell, and subsequent

interactions required for permeabilisation of the cell membrane. These differences in alanine

and lysine esterification were not the result of increased expression of certain associated genes

(d/tA and /mo1695) and may be the result of post-transcriptional regulation. It was, however,

found that all resistant L. monocytogenes strains, including the intermediate resistant strains,

exhibited decreased expression of a putative docking molecule, the mannose-specific

phosphotransferase system EIIAB subunit (EIlABMan).A clear correlation existed between the

levels of resistance and EIIABMandown-regulation.

Finally, analysis of the glucose metabolism in highly resistant and wild-type strains, indicated

a more efficient metabolism with regards to higher growth yields and ATP yield, in contrast to

a lower specific growth rate in a spontaneous and genetically defined (EIlABMan inactivated)

highly resistant mutant. The switch in metabolic end-product observed, was attributed to the

loss of the glucose transporter, EIlABMan,and may cast doubts on the feasibility of the use of

class Ha bacteriocins as food preservatives in light of a stable and efficient resistant

phenotype.
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Opsomming
Die moontlike gebruik van antimikrobiese peptiede van bakteriële oorsprong, veral klas IIa

bacteriocins, in voedsel preservering noodsaak die ondersoek van bakteriële weerstandigheid

van organismes soos Listeria monocytogenes teen die peptiede. Hoë frekwensie van bateriële

weerstandigheid teen die klas antimikrobiese peptied het gelei tot groot kommer aangande die

effektiewieteit van die molekules as moontlike bio-voedsel preserveerders. Verslae dui daarop

dat die kationies peptiede se meganisme van aksie berus op membraan permilisasie deur

middle van porie vorming wat lei tot die lekasie van sellulêre inhoud en sel dood. Beide die

selwand en -rnembraan is om die rede geïdentifiseer as teiken areas vir modifikasie in

vatbaarheid vir bakterieë teen klas Ha bacteriocins

Mutante variëteite van L. monocytogenes B73 isolaat wat weerstandig is teen die klass Ila

bacteriocin, leucocin A, is aan die begin van die studie gegenereer om die bestaande

versameling van L. monocytogenes wildetipe en weerstandige isolate van ander bronne aan te

vul. Deur gebruik te maak van 'n hoogs sensitiewe en herhaalbare biologiese toets stelsel is

50% inhibisie waardes vasgestel wat dit moontlik gemaak het om mutante varieteite te

klasifiseer in intermidiêre en hoogs weerstandige fenotiepes. Analise van groei patrone en van

al die variëteite het aan getoon dat laer groei tempo's en hoer groei oprengs in die algemeen

aangeteken is vir al die weerstandige variëteite. Die waarnemings het voldoende bewys

gelewer van membraan aanpassings en metabolise veranderings in die weerstandige variëteite

om verdere navorsing te ondersteun. Die focus van die studie aangaande die klas Ha

bacteriocin weerstandige bakterië het geval op (l) analise van verandering selmembraan

samestelling asook faktore wat membraan oppervlak lading beïnvloed; (2) evalueering van

fisiese membraan en bacteriocin verandering deur gebruik te maak van sirkulêre dichroïsme

en Fourier transformasie infrarooi spektroskopie; en (3) die verandering in glucose

metabolisme.

Elektrosproei massa spetrometrie analise van die hoof fosfolipied van listeria sp.,

fosfatidielgliserol, het aangetoon dat selmembrane van weerstandige variëteite verhooged

vlakke van onversadigte en kort ketting alkiel fosfatidielgliserol molekulêre spesies wat op 'n

meer vloeïede membraan dui. Verder, het behandeling met 'n desaturase inhibitor slegs in

intermediêre weerstandige variëteite 'n verhoging in sensitiwiteit ten op sigte van die
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bacteriocin klass IIa, leucocin A tot gevolg gehad. Dit dui daarop dat membraan verandering

'n invloed het op laer vlakke van weerstandigheid. Dit is denkbaar dat verhoogde membraan

vloeïditeit 'n negatiewe impak kan hê op die stabilliteit van porie forming deur die

bacteriocin.

Komplimentêre studies met Fourier transformasie infrarooi spektroskopie het die

moontlikheid verhoogde membraan vloeïditeit aangetoon deur 'n merkbare skuif in die

asimetriese CH2 strek vibrasie van 2921 cm-I na 2922 cm-I. Aanvulende sirkulêre dichroïsme

het aangetoon dat leucicon A 'n verminderde a-heliks stuktuur en 'n verhoogde ongeordende

struktuur aaneem in die teenwoordigheid van liposome afkomstig van hoog weerstandige

selmembraan ekstrakte. Dit is moontlik dat die verandering in struktuur lei tot verminderede

aktiewiteit van die bacteriocin in weerstandige membrane aangesien die a-heliks struktuur

van kationies antimikribiese noodsaaklik is vir membraan interaksie.

Seloppervlak lading is vasgestel deur die kwantifisering van alanien en lisien esterifisering

van die anioniese cell oppervlak polimeer, teigoënsuur en membraan fosfolipiede

onderskeidelik. Verhoogde D-alanien vlakke, wat neutraliserign van die buite seloppervlak

veroorsak, is waargeneem in alle weerstandige sell waargeneem. 'n Neiging tot verhoogde

lisien inhoud in membraan fosfolipiede, wat ook 'n invloed het op die neutralisering van

listeria anioniese fosfolipiede is waargeneem slegs in hoogs weerstandige selle. Die

neutralisering van die negatiewe seloppervlak lading kan imeng met aanvanklike

elektrostaties interaksie tussen bacteriocin en selmembraan en daarop volgende interaksies

wat benodig word vir membraan permialisasie. Die verskil in alanien en lisien esterifikasie is

nie die gevolg van was nie die resultaat van verhoogde geen ekspressie van sekere

geasosieerde gene (dit en imo1695) maar mag wel die resultaat wees van post-translasionele

regulasie. Daar is egter gevind dat alle weerstandige L. monocytogenes variëteite, insluitend

die intermidiêre weerstandige variëteite, 'n afname in die ekspressie van vermeende reseptor-

tipe molekuul, die manose spesifieke fosfotransferase stelsel EIIAB subeenheid (ElIABMall).'n

Duidelike korrelasie is gevind tussen weerstandigheidsvlakke en EIIABManaf-reguleering.

Laastens, analise van die glukose metabolisme van hoog weerstandig en wildetipe het

aangetoon dat 'n meer effektiewe metabolisme met betrekking tot hoër groei en ATP

opbrengs in teenstelling met 'n laer spesifieke groeikoers in 'n geneties gedefiniëerde

(EllABMan geïnaktiveerde) hoog weerstandige mutant. Die waargenome verandering in
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metabolies eind produk, was toegeskryf aan die verlies van die glukose transporter EIlABMan.

Dit mag twyfel laat onstaan aangande die geskiktheid van klass Ha bacteriocin as voedsel

preserveerder in die lig van 'n stabiele, weerstandige fenotiepe
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Chapter 1

Introduction to class Ila bacteriocins and resistance to

these antimicrobial peptides

General introduction

Food safety and preservation has become an increasing concern globally, due to

frequent occurrences of food poisoning by food pathogens. One of the major food

pathogens is Listeria monocytogenes, and it causes the major food-borne illness,

listeriosis [ohio.osu.edulhyg-fact/5000/5562.html]. L. monocytogenes generally

affects pregnant women and immuno-compromised individuals, including people

being treated for AIDS, cancer, and diabetes. Listeriosis is characterised by flu-like

symptoms such as fever, headache, nausea, vomiting and diarrhoea, and may spread

to the nervous system, resulting in more serious illnesses like meningitis and

septicaemia.

L. monocytogenes is associated with foods such as milk, soft-cheeses, raw vegetables,

all types of raw meats, cooked poultry and smoked fish. The public is now becoming

increasingly aware of the advantages of natural preservation methods and minimally

processed foods for maintenance of a healthy lifestyle. There is thus a demand for

more natural bio-preservative value food additives, rather than the use of chemical

preservation. This has led to great interest in the antimicrobial peptides or bacteriocins

produced by bacterial flora that are normally found in foods.

1.A general classification of bacteriocins

Bacteriocins are formally defined as ribosomally synthesized antibacterial proteins

produced by bacteria that kill or inhibit the growth of closely related species of

bacteria [40]. They are divided as follows into 3 or 4 groups [40, 49]: (1) Class I, also

known as the lantibiotics because of their unusual amino acids, e.g. lanthionine,

dehydrobutyrine, and dehydroalanine; (2) Class II are divided into 2 sub-classes, class

1-1

Stellenbosch University http://scholar.sun.ac.za



Ila and Class Ilb and consists of small heat stable peptides; and (3) Class III consists

of large heat labile proteins [49].

2. Significance and nature of class IIa bacteriocins

The class Ha bacteriocins have been extensively studied because of their ability to

strongly inhibit L. monocytogenes. This antilisterial nature of the class Ha bacteriocins

has also gained them much attention as potential food bio-preservatives, since they

are mostly produced by food-related strains of lactic acid bacteria, and are non-toxic

[19, 12, 40, 1]. These peptides are also generally cationic in nature. Besides their high

homology to each other, another important feature of class Ila bacteriocins is the

presence of an N-terminal YGNGV motif [19, 12, 1]. A list of some class Ha

bacteriocins and their amino acid sequences appear in Fig. 1.

pediocin PA-I:
Coagulin:
Sakacin Ps
Pi1lcico11n:
MUndticin:
Sakacin 5XI
Leucocin Cl
Bacteriocin31:
curvacin Af
Carnobact.riocin
btarocin Ps
Entarocin A:
Divergicin V41:
Carnobacteriocin 82:
Laucocin A:
Meaentericin YI05:
Plantar:i.cin C19:

Fig. 1. Amino acid sequences of 17 class Ha bacteriocins (after Kazazic et al. 2002
[39]).

2.1 Predicted structures of class IIa bacteriocins

Class Ha bacteriocins show great similarity in their primary structures (Fig. I),

containing from 37 residues (e.g. leucocin A and mesentericin YI05 [30, 24, 32]) to

48 residues (e.g. carnobacteriocin B2 [51]). A consensus YGNGV sequence is present

at the extreme N-terminus of the structural motif and this motif is being extended to

include more common residues as even more bacteriocins are being found. The C-

terminus shows more variability [21] but with the emergence of numerous

bacteriocins, it is now being recognised in delineating the class Ha bacteriocins into

1-2
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subgroups based on their C-terminal sequence similarity [19]. The percentage

similarity at the C-terminus varies between 34 and 80.5 % [19] except between

leucocin A and mesentericin Yl 05, which have only two amino acid differences in

their overlapping sequences [32].

Another characteristic of the primary structure of class Ha bacteriocins is the

occurrence of two cysteines at positions 9 and 14, which are known to form a

disulphide bridge, which stabilizes a ~-hairpin loop in the YGNGV motif [2]. This N-

terminal disulphide has also been shown to be essential for antilisterial activity [24].

Pediocin PA-l was the first class Ha bacteriocin to be identified, which contained

another 2 cysteines forming a disulphide bridge at positions 24 and 44 on the C-

terminus, that is important for high levels of activity [18, 20]. The C-terminal

disulphide bridge folds the peptide into a conformation that allows exposure of the

hydrophobic residues which is crucial for antilisterial activity [2, 25], antimicrobial

specificity and decreases temperature dependency of bacteriocin activity [20].

Tryptophan residues at positions 18,33 and 41 in class Ha bacteriocins are also highly

conserved within the peptide [23], and are also crucial for activity [2, 23, 24].

Tryptophan at positions 18 and 41 have been suggested to interact with the

membrane-water interface and tryptophan at position 33 was suggested to insert into

hydrophobic core of the target membrane along with the C-terminal a-helix [23].

2.2 Mode of action of class IIa bacteriocins

Most studies on understanding the mechanistic action of class Ha bacteriocins,

suggest dissipation of the proton motive force (PMF) via dissipation of either or both

the pH gradient (~pH) and transmembrane potential (~\fI) [38, 7, 34, 35, 31, 11], as

being the common mechanism causing death of target cells. Depletion of intracellular

ATP and amino acid and potassium ion efflux has also been observed for some class

IIa bacteriocins [48, 31]. The mechanisms are thought to occur as a result of pore

formation and permeabilisation resulting in the leakage of the intracellular contents of

the target cell. Unlike the class I bacteriocin, nisin, there is no leakage of inorganic

phosphate or ATP associated with the class Ha bacteriocin mechanism of action [19,

7], indicating a smaller pore or permeabilising complex for class Ha bacteriocins in

comparison to class I members.
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The underlying molecular mechanism of bacteriocin action is hypothesized to occur

via binding, insertion and pore formation and is currently the focus of bacteriocin

investigators. This mechanism, which was proposed to adhere to the 'barrel-stave'

model proposed for cationic antimicrobial peptide activity [50, 19, 48], excludes the

possibility of receptor involvement in class Ha bacteriocin mode of action. Evidence

for bacteriocin insertion and pore formation, studied by monitoring

carboxyfluorescein leakage in liposomes also supports a 'no-receptor' scenario for

bacteriocin activity [9, 38]. However, the bacteriocin preparations in these studies

were not shown to be purified to chemical homogeneity with analytical methods such

as high performance liquid chromatography and electro spray mass spectrometry and

thus may have contained contaminants that influenced the bacteriocin's activity on

liposomes.

Alternatively, it was suggested that for pore formation to occur a protein receptor was

required in Pediococcus acidilactici PAC 1.0 [Il]. More recent studies on leakage of

radioactive Rb+ in wild-type and resistant Enterococcus faecium cells, and synthetic

liposomes, after enterocin P addition, showed leakage only in wild-type cells. This

indicating the possibility of a receptor-type factor present in class Ila bacteriocin

activity [35]. Furthermore, the enantiomeric form of leucocin A has been shown to

lack bioactivity suggestive of a chiral recognition feature required for activity of class

Ha bacteriocins [58]. This stereospecific requirement is complemented by new

findings suggesting involvement of a mannose PTS permease as the putative receptor-

type molecule in class Ha bacteriocin activity [14, 28]. Moreover, evidence regarding

a recognition feature for activity of class Ha bacteriocins, include suggestions of

functional binding of class Ha bacteriocins to anionic phospholipid headgroups, which

could be mediated by the positively charged and polar residues of the bacteriocin [10,

9, 38, 8]. There has also been speculation that the cell outer surface polymers like

teichoic acids and lipo-teichoic acids may also function as receptors [24].

Therefore, it would be interesting to ascertain the exact role of a receptor-type

molecule in the molecular mechanism underlying class Ha bacteriocin resistance, in

order to understand what role it may play in pore complex formation.
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2.3 Tertiary structure and its impact on bacteriocin activity

Biophysical studies on a few class Ha bacteriocins, using nuclear magnetic resonance

and circular dichroism in membrane-mimicking environments, have allowed

predictions of basic structure conformations for class Ha bacteriocins [56,25, 57, 33].

A functional structure of class Ha bacteriocins, is suggested to occur with an N-

terminal YGNGV motif forming a p-tum structure as part of the hydrophilic N-

terminal anti parallel p-sheet structure, followed by a central more amphiphilic a-

helical region and then a hydrophobic a-helical C-terminus (see Fig. 2).

The YGNGV motif forms a p-tum structure [2, 25, 10]. The p-tum folding of the

YGNGV consensus sequence is thought to be involved in recognition of a receptor

molecule [2, 24]. Mutations of positively charged residues in this N-terminal region

beyond the YGNGV motif show a larger binding of pediocin PA-l to phospholipid

vesicles than the YGNGV motif itself [10], indicating a more important role for

electrostatic interaction in binding to target membranes [10]. Several other studies of

substitution mutations [45, 51] and deletions [51,24] of specific residues in the N-

terminus, show reduced or abolished activity of the bacteriocin, indicating the

significance of this sequence for bacteriocin activity.

The N-terminus, including residues 1 to 17 or 18, form an amphiphilic triple-stranded

p-sheet containing a positively charged patch at the tip of the p-hairpin loop was

suggested to be involved in bacteriocin-membrane electrostatic interactions [10, 25].

A hydrophobic region is also found in the N-terminus and is probably significant for

membrane insertion of the peptide [9, 19]. Mutational analysis of various residues in

this region conveys the importance of the cationic nature of the N-terminus in

influencing the target cell specificity through initial electrostatic binding of the

bacteriocin to target cells [39].

Residues 15 or 16 to 27 or 28 are responsible for forming an a-helix, characterized as

being oblique oriented and thus efficient at causing membrane destabilization and

effective peptide insertion [19, 4]. Fleury et al. [24] showed that in a peptide variant

of mesentericin Yl 05, with a deletion in the central residues 15 to 27, there was a

subsequent loss of activity. This loss of activity was speculated to occur due to the
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entire length of the peptide not being intact, but this may also be due to inability of the

peptide to cause destabilization of the membrane.

Fig. 2. N-terminal 19 residue predicted tertiary structure of pediocin PA-I. No

structure is shown for the C-terminus, except for the C24-C44 disulphide

bridge that is required for activity (after Chen et aI., 1997 [10]).

Residues spanning the C-terminal end of class Ila bacteriocins forms a hydrophobic

a-helical conformation [25, 57, 33] in membrane-mimicking environments,

facilitating bacteriocin insertion into the membrane and formation of pores. While

there have been indications of the C-terminus being involved in target cell specificity

[21] via recognition of a key membrane target region [22], other studies suggest a

non-critical role for the C-terminus, consisting only of modulation of the activity

potency [24, 2]. Miller et al. [45] also suggested, from studies done on pediocin

substitution mutants that the C-terminal hydrophobicity is important for activity and

speculate that the arnphipathicity of the region may also be essential for activity if

proper helix folding occurs.
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3. Factors modulating class IIa bacteriocin sensitivity.

It makes sense to consider factors modulating bacteriocin sensitivity and factors

associated with resistance to class Ha bacteriocins together since they influence each

other. Therefore, one will notice some repetition of perspectives on factors

modulating bacteriocin activity in the following section on resistance.

3.1 Possible roles for membrane phospholipids and/or membrane

proteins in activity of bacteriocins

The predicted mode of action of class Ha bacteriocins involves electrostatic and

hydrophobic interactions, because of the cationic nature of the molecules [19,48]. As

described in the previous section on mode of action of class Ha bacteriocin, it is

possible for the anionic phospholipid head groups to behave as a docking or receptor

site [10, 38], thus modulating bacteriocin activity. Alternative evidence also points to

the requirement of a receptor-type molecule [35, 11] and this is complemented by

reports of a mannose phosphotransferase system permease as the putative receptor-

type molecule for class Ila bacteriocin activity [14, 28]. Evidence for both these

factors provide uncertainty regarding what factors actually influence the activity of

bacteriocins. It is likely that all these factors are requirements for efficient bacteriocin

activity and should all be taken into consideration in determining the exact

mechanism of action of class Ha bacteriocins. The contribution of other factors

impacting on bacteriocin binding may also be important here, for example, Fleury et

al. [24] suggested a role for teichoic acids as potential binding sites for bacteriocin

since they pose as a net negatively charged structure. Our study, outlined in Chapter

5, observing the charge influences afforded by D-alanylation of the teichoic acid, and

lysinylation of membrane phospholipid on class Ha bacteriocin activity, serves as an

investigation into other potential factors directly modulating the electrostatic

interaction of bacteriocin with the target cell membrane.

3.2 Effects of pH on activity of class IIa bacteriocins

Bacteriocin binding to liposomes, derived from target listerial membranes, was

increased at lower pHs [38, 9]. Pediocin PA-I showed increased carboxyfluorescein

efflux from lipid vesicles as pH decreased from 7.5 to 5.5 [9] Also, bavaricin MN
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induced carboxyfluorescein efflux from listerial liposomes was found to occur

maximally at a pH optimum of 6.0 [38]. Additionally, leucocin A was shown to be

unstable at pHs above 5.0 [30]. The pI values for bavaricin MN, pediocin PA-l and

leucocin A are 9.3, 8.8 and 8.6, and the net charge of these bacteriocins is therefore

pH dependent. [19]. The ionisation of the positively charged amino acids of class Ha

bacteriocins occurs at lower pH values and may improve their electrostatic interaction

with anionic phospholipid head groups, in support of an electrostatic-type binding in

class Ha bacteriocin activity.

3.3 Effects of lipid composition

Another potential determining factor in modulating class Ha bacteriocin activity is the

lipid composition of target organisms. There are only a limited number of studies

published that have investigated the effect of the lipid composition on bioactivity of

class Ha bacteriocins. Chen et al. [8] reported increased binding of pediocin PA-l to

anionic phospholipid vesicles compared to zwitterionic lipid vesicles. They also

suggested a minor effect of saturated or less fluid dimyristoyl-phosphatidylglycerol

vesicles showing greater pediocin PA-l insertion, compared to insertion into the more

fluid oleoyl fatty acid chain environment of dioleoyl-phosphatidylglycerol. The first

report on alterations in phospholipid composition of class Ha bacteriocin resistant

strains were in Pediococcus and Lactobacillus sake strains [3]. This study indicated

that there was increased fluidity due to increased saturated fatty acids in sensitive

Pediococcus strains and contrasting greater saturated fatty acid content in the

insensitive strains, which was the opposite in L. sake strains [3]. However, this may

be as a result of inherent differences in lipid composition as observed from the higher

percentage of short-acyl-chains and saturated fatty acids in L. sake compared to the

Pediococcus strains. Another study on member strains of the Leuconostoc and

Weisella genera, showed significant increases in saturated fatty acids and decreases in

unsaturated fatty acid content in response to class Ha bacteriocin mes52A treatment

[41]. The Leuconostoc citreum strain with the lowest unsaturated and highest

saturated fatty acid content, was suggested to be insensitive to mes52A because of its

rigid membrane [41]. Previously, a more rigid membrane was suggested to affect easy

insertion and/or association of nisin in the membrane [47]. One of the major studies in
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this thesis is on phospholipid compositional changes modulating activity of

bacteriocin from the perspective of class Ila bacteriocin resistance.

4. Resistance to class IIa bacteriocins

Resistance development of food-borne pathogens to class Ha bacteriocins provides an

impediment to the potential use of these bacteriocins as bio-preservatives. Resistance

may develop naturally or through exposure to a bacteriocin [19, 53, 27]. Strains

within a particular species may also exhibit differences in their relative susceptibilities

to a particular bacteriocin [37], but this may be accounted for by strain specific

differences. It does not however, explain the existence of different level sensitivities

of members of one particular strain. Therefore, it may be important to compare factors

affecting different levels of resistance within a specific strain for possible clues on

development of resistance populations. In addition, high frequencies (about 10-6) and

stability of class Ha resistance have been reported [27; 53, 17], and this heightens

concern about resistance in food-borne pathogens. Furthermore, there is also only

limited information available on class Ha bacteriocin resistance.

The class I bacteriocin nisin, currently being used as a bio-preservative worldwide, is

however a subject of ongoing research on understanding resistance to this molecule.

This has resulted in the generation of massive amounts of information with regards to

its bioactivity and mechanism of resistance. With the vast amount of information

regarding resistance to nisin, and the almost similar pore formation mode of action

described for nisin and class Ila bacteriocins, it would be valuable to consider

approaches and findings used in characterisation of resistance to nisin, in studies

related to class Ila bacteriocin resistance in L. monocytogenes.

4.1 The role of the cell envelope in resistance to nisin

It seems logical to investigate the first barriers of permeability of the cell in search of

protective mechanisms against activity of antimicrobial agents. Moreover, with

general consensus in pore formation as part of mode of membrane action of nisin and

class Ha bacteriocins, it makes sense to investigate changes in the cell envelope. The

passage of the bacteriocin through the cell would be to first encounter the cell wall

and then the cell membrane.
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Evaluation of the cell wall in nisin resistance, implicated factors such as decreased

cell surface hydrophobicity that would affect hydrophobic interaction between the

polar residues of nisin and the cell surface [15,47,42]. Modifications of components

of the cell surface, like teichoic acids, lipo-teichoic acids, membrane proteins and

anionic phospholipids that influence cell surface hydrophobicity properties have been

shown in nisin-resistant variants [43, 47]. Differing response in wild-type and

resistant cells to cell wall acting antibiotics (e.g. D-cycloserine, ampicillin) and lytic

enzymes (e.g. lysozyme), were also suggested to be due to changes in cell wall

structure and function [13, 41, 15]. It is likely that cell wall structural changes may

prevent accessibility of nisin into the target cell. The above findings implicated the

cell wall, in acquisition of nisin resistance. This is significant considering the recent

observation that the first monomeric cell wall precursor, the lipid II molecule, serves

as the docking molecule for nisin activity and pore formation [5, 6]. It is also evident

that electrostatic interactions playa central role in lipid II and nisin interaction [36].

Charged molecules on the cell surface like teichoic acids, lipo-teichoic acids and

anionic phospholipids may affect these interactions.

Changes in the composition of the cell membrane of nisin resistant L. monocytogenes

strains, were first observed by Ming and Daeschel [46, 47]. A nisin resistant variant

showed a higher phase transition temperature, higher percentage of straight-chain

fatty acids, and a lower percentage of branched chain fatty acids [44], than the wild-

type. Similar alterations of membrane fatty acid composition indicated by lower

C 151C 17 fatty acid ratios, increases in straight long-chain and fewer short-chain fatty

acids in another nisin resistant strain of L. monocytogenes have also been shown [44].

These membrane changes are consistent with decreased membrane fluidity, indicating

a rigid membrane affecting insertion of nisin. Other studies have also shown that L.

monocytogenes nisin resistant strains have significantly less anionic phospholipid [47,

13]. The interactions of nisin with membranes is influenced by anionic phospholipids

[16, 26], since a decrease in net negative charge of the lipid bilayer would hinder

ability of nisin to bind and insert into the membrane. Additionally, Verheul et al. [55]

observed increased diphosphatidylglycerol in sensitive L. monocytogenes membranes,

which may interact more strongly with cationic nisin than phosphatidylglycerol

because of its high charge density and specific charge distribution. It is interesting that

changes in the cell wall and phospholipid of resistant strains can be related to
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hindrance of binding and insertion of the nisin molecule. Given this, it seems likely

that similar changes may occur in membranes of class Ha bacteriocin resistant L.

monocytogenes strains, as is described in Chapter 3.

4.2 Resistance phenomena observed in class IIa resistant listerial

strains

4.2.1 The mannose-phosphotransferase system enzyme IIAB

The first study, using a genetic approach to gain insight into resistance to class Ha

bacteriocins, demonstrated the association of a 0-
54 transcriptional factor to resistance

in L. monocytogenes [54]. Another report using a proteomic approach showed the

absence of a mannose-specific phosphotransferase (PTS) system Enzyme HAB

component (EHABMan) in a spontaneous leucocin resistant variant of L.

monocytogenes B73 [52]. Subsequent genetic studies described genes of the mannose-

specific PTS to be controlled by the 0-
54 transcriptional factor, and that when

insertionally inactivated resulted in resistance to the class Ha bacteriocin mesentericin

YI05 in L. monocytogenes and E. faecalis [14, 31]. The mannose PTS was observed

to consist of a tricistronie operon, mptACD coding for a complex permease, which

showed resistance to mesentericin following inactivation of each gene in the operon.

Additionally, deletion of a putative extracellular domain of the MptD membrane

component of the permease also resulted in resistance [14]. This permease was

speculated to be the docking molecule for class Ha bacteriocin activity [14].

Moreover, shut-down of mptA (EIlABMan) was demonstrated to be the one general

mechanism associated with high levels of class Ha resistance in L. monocytogenes

strains isolated form various sources [28]. The most recent findings indicate reversion

of an insensitive Lactococcus laetis strain to a sensitive phenotype following

heterologous expression of the L. monocytogenes mannose PTS operon (unpublished

results, M. Ramnath). This supports a role for the mannose PTS permease as a

docking molecule facilitating activity of class Ua bacteriocins.

4.2.2 Non-receptor type phenomena in class IIa bacteriocin resistance

An analysis of expressed protein of a divercin V41 resistant L. monocytogenes

mutant, suggested that transcriptional sigma factor regulators controlled the

expression of genes in bacteriocin resistance [17]. This supported the findings on the

involvement of a 0-
54 transcriptional factor in mesenteric in resistance [54]. Increased
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expression of two P-glucoside-specific phosphotransferase enzymes, P-glucoside

enzyme II and a phospho-Bsglucosidase homologue has been observed in eight

different class Ha cross resistant mutants [28, 29]. The up-regulation of these enzymes

were suggested to be a regulatory consequence of the absence of the mannose PTS

EHAB component, since inactivation of either enzyme did not result in resistance to

pediocin [28, 29].

Besides studies investigating class Ha bacteriocin resistance from the genetic and

proteomic perspectives, another study analysed the membrane composition of class

Ha resistant strains of the Leuconostoc and Weisella genera of lactic acid bacteria.

Insensitive wild-type and spontaneous resistant strains showed increased saturated

and decreased unsaturated fatty acid contents, in response to bacteriocin addition,

resul ting in a more rigid membrane [41]. The implication of these findings is that the

cell wall does not prevent diffusion of the bacteriocin to the membrane, but that the

membrane becomes less sensitive to bacteriocin action. It is also clear here that

inherent strain differences influenced findings given the atypical decrease in saturated

fatty acid content of the resistant Weisella paramesenteroides DSM 20288T strain in

the presence of the class Ha bacteriocin mes 52A [41]. It would be more significant to

analyse the membrane composition of resistant L. monocytogenes strains since they

are food-spoilage organisms, compared to the food-enhancing character of lactic acid

bacteria. Chapter 3 describes the membrane compositional differences, in wild-type

and resistant L. monocytogenes strains, and outlines its potential role in modulating

activity of class Ha bacteriocins.

5. Objectives of the study on class IIa bacteriocin resistance

in Listeria monocytogenes

This study was undertaken to gain more insight into the resistant mechanisms and

phenomena displayed by the pathogenic food spoilage organism L. monocytogenes to

class Ha bacteriocins. Studies focussing on changes in the outer permeability barriers

that have provided valuable information on nisin resistance in L. monocytogenes have

been lacking with respect to class Ha bacteriocin resistance. We have therefore sought

to determine the role of potential resistance factors such as membrane phospholipid

compositional changes and their effect on bacteriocin activity; alterations in cell
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surface charge (teichoic acids, phospholipids); and responses to a cell wall acting

antibiotic in class Ha bacteriocin resistant and wild-type cells. A final study looking at

the impact of resistance on glucose metabolism brings a novel perspective to

understanding class Ha resistance, and provides a 'reality check' to the feasibility of

the use of class IIa bacteriocins as food preservatives.
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Chapter 2

Introduction to class IIa bacteriocin resistant Listeria

monocytogenes strains and their response to leucocin A

Abstract

Listeria monocytogenes strains were treated with leucocin A to determine inhibitory

concentrations (ICs) using a quantitative and reproducible bioassay. Various levels of

resistance were detected. The two resistant strains generated in this study, namely, L.

monocytogenes B73-Vl and B73-V2 were found to be 2 and 4 times more resistant

than their parental strain L. monocytogenes B73, and were referred to as intermediate

resistant strains. In comparison, the L. monocytogenes B73-MRl and L.

monocytogenes 4l2P were greater than 500 times more resistant to their

corresponding wild-type strains, L. monocytogenes B73 and 412 respectively, and

were referred to as highly resistant mutants. The evaluation of the growth patterns of

all of the above strains, at 37 DC,30 DCand 10 DCshowed some common trends: the

highly resistant strain B73-MRI had a decreased growth rate but increased growth

yield at all temperatures compared to the rest of the strains in the B73 family; the

412P strain showed the same growth pattern as B73-MRI at 37 DC; and the

intermediate resistant strains also showed a decreased growth rate and increased

biomass at 37 DCand 30 DC,but a similar growth rate to the wild-type B73 and the

lowest growth yield at 10 DC. These preliminary results provided evidence for

possible effects of membrane adaptation and metabolic changes in the resistant

organisms and prompted further investigation.

Introduction

Possibly, the most disconcerting factor regarding class na bacteriocin resistance is the

frequency at which it occurs and its stability over successive generations [17, 9].

Additionally, it has been shown that resistance to the class na bacteriocin, pediocin

develops to higher concentrations required for killing, in comparison to nisin

resistance [8]. It has also been suggested that the high level resistance may occur by

2-1

Stellenbosch University http://scholar.sun.ac.za



an 'on-off type mechanism [8]. The observation of one prevalent mechanism

involving shut-down of the mannose PTS permease in high level resistant L.

monocytogenes strains, could playa role in this hypothesized 'on-off mechanism

[11]. If the mannose PTS permease is the docking molecule of class Ha bacteriocins

[2], this hypothesis would make sense. However, mechanisms of resistance in L.

monocytogenes strains with lower level susceptibilities to class Ha bacteriocins have

not been investigated, although it may be envisaged to provide clues about the

development of high levels of resistance.

The advantages of standard and sensitive methods for class Ha bacteriocin IC

determinations would be the following: determination of accurate IC values;

characterisation of mutants according to these IC values indicating resistance levels;

conservation of limited test material (e.g. synthetic bacteriocin); and possible accurate

assessment of cross-resistance to other bacteriocins. A standard and sensitive

micro-gel diffusion assay enabling precise inhibitory concentration determination of

antimicrobial activity and high reproducibility has recently been developed by Du

Toit and Rautenbach [3], and may provide adequate assessment of class Ha

bacteriocin ICs.

For further characterisation of mutants a simple growth study at various temperatures

may provide immediate clues to possible differences existing in mutant strains. Many

organisms are known to respond to changes in environmental temperature by

changing their membrane phospholipid compositions, and this has been reported as a

primary mechanism of the regulation of membrane fluidity [12, 15, 18]. Changes in

membrane phospholipid affecting membrane fluidity can occur at lower temperatures

and this affects growth patterns [10, 14, 15].

In addition, growth patterns may provide information about specific growth rate as a

measure of the relative fitness of the strains [4, 9], and growth yields indicating

metabolic changes [19, 6]. This would then enable observation of the physiological

changes associated with resistance and possibly its stability and frequency.

The strains used in this study were obtained from various sources. The wild-type L.

monocytogenes B73 strains and spontaneous mutant B73-MRI have been described in

leucocin A resistance studies previously [4, 16] in our laboratory. The wild-type L.
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monocytogenes 412 and the 412P mutant have also been previously studied in

pediocin resistance [10]. The B73-MRI and 412P mutants have shown, high levels of

resistance to leucocin A using spot-on-lawn assays, absence of the mannose PTS

EIIAB subunit, and increased expression of two enzymes of the P-glucoside PTS [9].

Furthermore, a clinical wild-type isolate L. monocytogenes EGDe whose genome has

been sequenced [7] was used in this study since it displays sensitivity to mesenteric in

VlOS. A defined mutant of L. monocytogenes EGDe, named EGKS4 contained an

insertional inactivation of the mannose PTS EIIAB component, and showed resistance

to mesentericin Yl 05 [2]. These previously described mutants and the mutants

generated in this study were chosen to understand resistance-associated phenomena

associated with different class Ha bacteriocins and different levels of resistance.

This chapter serves as a preliminary data chapter that focuses on highlighting: 1)

generation of class Ha resistant strains; 2) simple characterisation of the strains using

growth studies; 3) and dose response determinations of the class Ha bacteriocin,

leucocin A (leuA) against these strains. The purity of leuA was also assessed to

ensure that extraneous contaminants did not influence the activity of the peptide.

Comparisons of solvent conditions that influence bioactivity of leuA was outlined,

and reasons for the choice of analytical grade water as the most favourable solvent

discussed. Data presented in this chapter was generated to gain initial insight into the

growth changes associated with, and response of target cells, to bacteriocin. This

insight assisted in determining approaches to the investigation of class Ha bacteriocin

resistance. The determination of dose response of the Listeria monocytogenes

resistant variants helped in characterisation of the level of resistance prior to further

investigation of factors influencing resistance. Since this data warranted further

investigations into particular phenomena associated to class H resistance, it will be

reproduced in other chapters, which it complemented.

MATERlALS AND METHODS

Purity analysis of leuA

LeuA was synthesized by a solid phase Fmoc-based peptide methodology and

purified as described by Ramnath et al. [16]. The purified synthetic leuA was donated

by K. Tamura and S. Aimoto. The peptide purity was verified by high performance

liquid chromatography (HPLC) and electrospray mass spectrometry (ESMS).
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The HPLC analysis was performed on a Waters HPLC system using a Novapak CI8

HPLC column (3.9xlS0 mm). The solvent system was 0.1 % trifluoroacetic acid

(TFA) in analytical water (solvent A) and 90 % acetonitrile plus 10 % solvent A

(solvent B). In order to accomplish chromatography, a linear gradient was developed

over 13 minutes from 10 % to 100 % solvent B at a flow rate of 1.0 ml min-I. The

elution of the peptide was monitored at 254 nm.

ESMS of the synthetic leuA preparation was performed on a Micromass triple-

quadrupole mass spectrometer fitted with an electro spray ionisation source. The

preparation was resuspended in 50 % acetonitrile at a concentration of approximately,

1 mg mri and 5 III was injected via a Rheodyne valve per analysis. The carrier solvent

was 50 % acetonitrile/O.S % TFA and was delivered at a flow rate of 20 III min-I

during the analysis. A capillary voltage of 3.5 kV was applied, with the source

temperature at 120°C and the cone voltage at 50 V. Data acquisition was in the

positive mode, scanning the first analyser (MSI) through m/z = 200-2000 at a scan

rate of 100 atomic mass units per minute. Combining the scans across the elution peak

and subtracting the background produced representative scans.

Bacterial strains and culture conditions

The strains used in most of the studies are listed in Table 1. L. monocytogenes B73

(leuA sensitive) and L. monocytogenes B73-MRI (leuA resistant) have been

previously described [16]. L. monocytogenes B73-V2 and L. monocytogenes B73-Vl

are leuA intermediate resistant strains of the parental L. monocytogenes B73 strain

that have been generated by leuA exposure (see hereafter). The pediocin sensitive, L.

monocytogenes 412 strain and the pediocin resistant L. monocytogenes 412P strain

have been previously described by Gravesen et al. [10]. All L. monocytogenes strains

were grown on BHI (Biolab, Midrand, South Africa) agar or broth and at 37°C,

unless otherwise stated
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Table 1. Listeria monocytogenes strains

Listeria Description Reference of strain
monocytogenes

Wild-type isolates

Sensitive; isolated from Gravesen et al. [10]
raw salted pork

Sensitive; isolated from Dykes and Hastings [4]
meat

412

B73

EGDe Sensitive; clinical Glaser et al. [7]
Spontaneous mutants

412P Highly resistant mutant
of 412 isolated on
pediocin PA-l

Highly resistant mutant
ofB73 isolated on

leucocin A

Intermediate resistant
mutant of B73 isolated

on leucocin A

Intermediate resistant
mutant ofB73 isolated

of leucocin A

B73-MRI

B73-VI

B73-V2

Gravesen et al. [10]

Ramnath et al. [16]

Defined mutant

EGK54 (EGDe-mptA) Highly resistant;
insertional inactivation

of mptA in EGDe

Dalet et al. [2]

Isolation of leucocin resistant strains L. monocytogenes B73- VI and L.
monocytogenes B73- V2

A 1 % inoculum of L. monocytogenes B73 was added to BHI broth containing leuA

at a concentration of 100 ug mrl. After 36 hours, the broth culture was serially diluted

and plated on BHI agar plates free of leuA. Following incubation for 24 hours,

colonies were selected randomly, and their inhibitory concentrations determined by

agar well diffusion assay, to assess resistance development. The stability of the

resistant mutant phenotype of the selected mutants L. monocytogenes B73- V 1 and L.
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monocytogenes B73-V2, was monitored over ten successive subcultures in BHI broth,

free of leuA.

Growth curves of L. monocytogenes strains

A 0.1 % inoculum from an overnight culture was added to fresh BHI broth and the

growth was monitored at OD6ooat 37°C, 30 °C and 10 "C for all the strains.

Antilisterial activity determinations

The 50 % inhibitory concentration, IC5o,was determined using the agar well diffusion

assay, as described by Du Toit and Rautenbach [3], with the following modifications:

The cells were not washed and resuspended in phosphate-buffered saline; and a 0.7 %

BHI agar, was used in the wells. All dose response data from the agar well diffusion

assays was analysed using Graphpad Prism version 3.0 for Windows (GraphPad

Software, San Diego, California, USA, www.graphpad.com) as described by Du Toit

and Rautenbach [3]. A sigmoidal curve with variable slope and constant top of 100

and variable bottom was fitted to each of the data sets using the following equation:

Y = Bottom+[l OO-Bottom]/[1+ lO[loglC,oxHili slope]]. For curve fitting only the mean

value of each data point, without weighting, was considered. The IC50was calculated

from the x-value of the response halfway between top and bottom plateau. The ICmin

value corresponded to the concentration of leuA at the onset of growth inhibition,

while the ICmax corresponded to the leuA concentration resulting in 0 % relative

growth.

RESULTS AND DISCUSSION

Purity of leuA

HPLC analysis (Fig. lA) showed that the leuA preparation used in this study

contained one major UV absorbing component (>95 %). ESMS analysis of this

synthetic preparation confirmed the chemical purity in terms of molecular mass, as

the expected molecular ions (3H+, 4H+ and 5H+), corresponding to Mr of 3930.3

(3930.3 expected) was found (Fig. 1B). From these analyses it could thus be deduced

that the purity of the synthetic leuA is very high (>95 %) and that the biological and

biophysical effects observed in this and subsequent chapters in this thesis are

predominantly due to the presence of leuA and not to unknown contaminants.
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Fig. 1. HPLC (A) and raw electro spray mass ionisation spectrum (B) of leucocin A.

Effect of solvent on the activity of leuA.

Three different solvents were tested to assess the influence of the solvent environment

on antilisterial activity of leuA against the wild-type L. monocytogenes B73 strain.

If leuA was dissolved beforehand in 50 % acetonitrile, a shift to the left in the dose

response curve, if compared to H20 as solvent, indicated an improved inhibition of

223 % (Fig. 2). The final acetonitrile concentration per cell was >5% and no
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inhibition of growth was observed in the control wells that received the solvent

without leuA. Proteins in hydrophobic solvents (e.g. acetonitrile) are thought to retain

their native structure due to strong hydrogen bonding between protein atoms and a

more rigid structure in the absence of water [13]. The increase in leuA's activity in the

presence of the less polar (&=37.5) acetonitrile may be the consequence of an increase

in the availability of monomeric leuA to bind to the target cell. The 50% acetonitrile

in the initial mixture would decrease the hydrophobic effect and thus the interaction

between leuA's hydrophobic C-terminal, but because acetonitrile is highly diluted in

the assay, the very important hydrophobic interactions with the target cell would not

be compromised. The importance of this type of interaction may support the findings

of Fimland et al. [5], who showed that the C-terminal hydrophobic a-helical region of

the class Ila bacteriocin, pediocin PA-1 is important for the recognition of a specific

hydrophobic interacting entity of the target membrane.

100
M

.~~ 80,sCI)

.la ~
60~&i~ 40o to)

a... 0O)c::
~o 20o e

0
-1.6 -1.2 -0.8 -0.4 -0.0 0.4

• leuA in 0.1%TFA

I. leuA in 50%ACN

~ leuA in MilliQ H20

0.8

log [LeuA]
Fig.2. Dose-response of L. monocytogenes B73 to leucocin A resuspended in
varying media. Data are a combination of results of duplicate experiments.
The error bars represent the standard error of the mean for each concentration
value.

When leuA was dissolved in H20 containing 0.1 % TFA, a shift of the dose-response

curve to the right, compared to that of H20 as solvent, indicated a less effective

inhibition of 0.92 % in the wild-type L. monocytogenes B73 strain (Fig. 2). However,

0.1 % TFA on its own did not influence the growth of L. monocytogenes B73.

Although TFA will promote protonation and the cationic nature of the peptide, it will

also tend to form ionic interactions with the positive groups of the peptide and thus

neutralise the peptide and limit the electrostatic interaction with the target cell. Also,
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it was recently found that TFA tends to promote self-association of amphipathic

cationic peptides [Naidoo et al., 2003, unpublished results]. Both these factors may

therefore explain the decrease in leuA's activity in the presence of 0.1 % TFA.

These results show that the solvent environment of the peptide seems to have a

significant influence on the activity of the peptide even though the solvent

components are highly diluted (>10 times) in the assay. Analytical grade water

provided the most neutral environment for leuA and target cell interaction by not

providing extraneous factors, like charge to influence activity, but rather promoting

hydrophobic interaction. We, therefore, used analytical grade water in our standard

procedure for determination of critical inhibitory concentrations of leuA against L.

monocytogenes strains.

Antilisterial activity determinations

The results of this study were discussed in detail in Chapter 3. In brief we found that

L. monocytogenes B73-MRI and 412P showed no decrease in growth with increasing

concentrations of leuA up to 120 ug mr' (maximum concentration in our assay),

while L. monocytogenes B73-VI and B73-V2 were found to be 2 to 3 times and 3.5 to

4 times more resistant to leuA respectively than L. monocytogenes B73 (Fig. 3A and

Table 2). In keeping with the nomenclature for vancomycin resistance Il1

Staphylococcus aureus [1], we referred to L. monocytogenes B73-VI and L.

monocytogenes B73-V2 as intermediate resistant strains.

With a limited availability of leuA, we did not determine the complete dose response

for the two highly resistant strains. It could, however, be calculated from their

insensitivity at 120 ug mr' leuA that L. monocytogenes B73-MRI is > 1000 times

more resistant than L. monocytogenes B73, while L. monocytogenes 412P is >500

times more resistant than L. monocytogenes 412P. L. monocytogenes B73-MRI and L.

monocytogenes 412P have subsequently been referred to as highly leucocin resistant.

One noteworthy aspect of the dose-response of L. monocytogenes 412P towards

increasing concentrations of leuA is an unexpected ±30% increase in growth (Fig.

3B). This improved growth may be an indication of a strain specific resistance

response, as this strain was selected under pediocin- PAl pressure and showed cross-

resistance to leuA.
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Fig.3. Dose-response of leucocin A sensitive L. monocytogenes B73 [0],
intermediate leucocin resistant mutants L. monocytogenes B73-VI ["'] and L.
monocytogenes B73-V2 [T], and highly leucocin resistant L. monocytogenes
B73-MRI [.]. B. Dose-response of pediocin PA-I and leucocin A sensitive
L. monocytogenes 412 [0] and the highly pediocin PA-l and leucocin A
resistant L. monocytogenes 412P [a]. The 100 % growth was taken, as growth
of each strain in the absence of leucocin A. Data on the graphs is a
combination of duplicate experiments. The error bars represent the standard
error for the mean for each concentration value (eight determinations).

The L. monocytogenes EGDe family did not grow well in the microtitre plate assays,

and their inhibitory concentrations could therefore not be determined. Spot-on-lawn

assays with leuA were used in another study to determine minimal inhibitory

concentration of this family [8].

Growth patterns of L. monocytogenes strains

In Fig. 4 and Table 3 the growth patterns, growth rates and growth yields of all the

wild-type and resistant strains of the L. monocytogenes B73 family and L.

monocytogenes 412 families are shown respectively. It is clear that the growth

patterns for the strains differ, with the wild-type showing the fastest growth rate at all

temperatures, and the highly resistant strains showing the slowest growth rate. The

intermediate resistant strains show a corresponding intermediate growth rate

compared to their wild-type and highly resistant corresponding strains at 30°C and

37°C. At 10°C the wild-type and intermediate variants show similar growth rates

however the intermediates strains have a much lower biomass at the beginning of log

phase. The highly resistant strains and wild-type strains showed the highest biomass
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at all temperatures. At 10°C, however, the intermediate strains accomplish the lowest

growth yield and the highly resistant strain, still accomplishes the largest growth

yield.

Table 2. Critical inhibitory concentrations of leucocin A against the SIX L.
monocytogenes strains in this study as deduced from the dose response curves.
L. monocytogenes ICso ICmin ICmax

strains [flg mr!] [J.lg mr!] [J.lg ml"]

B73 0.14±0.007 0.06 ±0.001 0.28±0.015

B73-V1 0.30±0.023 0.12±0.006 0.78±0.090

B73-V2 0.49±0.066 0.18±0.015 1.10 ±0.115

B73-MR1 >120

412 0.24±0.020 0.16±0.011 0.48±0.050

412P >120

Mazzotta and Montville [14, 15] observed changes in resistant L. monocytogenes

strain lipids in the presence of nisin, which was consistent with homeoviscous

adaptation, which causes decreased growth rates but does not prevent growth at low

temperatures. We therefore hypothesized that the growth patterns at different

temperatures could result in the membrane phospholipid composition being different

in our various resistant strains. It would be interesting therefore to determine whether

alteration of the lipid composition has an effect on the resistance to the class Ha

bacteriocin. Studies on the changes in phospholipid and their impact on resistance of

L. monocytogenes strains to class Ha bacteriocins have not previously been

characterised. It has however been shown that membrane fluidity and membrane

composition may influence activity of nisin, and is implicated in nisin resistance in L.

monocytogenes [14, 15]. Therefore growth pattern differences exhibited by the

various resistant strains, at different temperatures (Fig. 4) warranted further

investigation of phospholipid changes in the membrane, and this is discussed in detail

in Chapters 3 and 4.
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Fig. 3. Growth curves of Listeria monocytogenes strains. Curves [A], [B] and
[CJ represent the growth pattern of the L. monocytogenes B73 family of
strains at 37°C, 30 "C and 10°C, respectively. Curve [D] represents the
growth pattern of the L. monocytogenes 412 family of strains at 37°C. All
curves represent a combination of two separate experiments.

Additionally, previous studies have related a lower growth rate to a decrease in

relative fitness in class Ila resistant strains of L. monocytogenes B73 [4]. It was also

suggested that this could be attributed to the use of energy-expensive metabolic

pathways in resistant strains, thus decreasing the likelihood of stable resistant

populations [4]. It is apparent, however, that this fitness cost determined by lower

growth rate was accompanied by a gain in growth yield in the resistant strains. This

contrasting evidence for fitness costs related to class Ila bacteriocin resistance is

further investigated by analysis of the glucose metabolism in the highly resistant and
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wild-type strains. This study is outlined in Chapter 6 and attempts to clarify what the

potential losses and gains are as a result of resistance in the target organism.

Table 3. Specific growth rates and stationary-phase biomass of L. monocytogenes
strains at different temperatures.

Listeria
monocytogenes Specific growth rates Jl [h-I] and biomass [A600]

strains

37°C 30°C 10°C

B73 0.294 h- 0.270 h- 0.042 h-

0.669 0.685 0.743
0.254 h-I 0.260 h-I 0.042 h-I

B73-V1
0.726 0.740 0.730

0.255 h-I 0.251 h-I 0.042 h-I
B73-V2

0.733 0.736 0.701
0.206 h-I 0.228 h-I 0.039 h-I

B73-MR1
0.747 0.743 0.795

0.417h-1
412 Nd* Nd*

0.737
0.315 h-I

412P Nd* Nd*
0.832

*Nd,notdetermined

REFERENCES
1. Bierbaum, G., K. Fuchs, W. Lenz, C. Szekat, and H. -G. Sahl. 1999.

Presence of Staphylococcus aureus with reduced susceptibility to vancomycin

in Germany. Eur. J. Microbiol. Infect. Dis. 18:691-696.

2. Dalet, K., Y. Cenatiempo, P. Cossart, and Y. Héchard. 2001. A sigma54_

dependent PTS permease of the mannose family is responsible for sensitivity

of Listeria monocytogenes to mesenteric in YI05. Microbiology 147:3263-

3269.

2-13

Stellenbosch University http://scholar.sun.ac.za



3. Du Toit, E. A., and M. Rautenbach. 2000. A sensitive standardised micro-

gel well diffusion assay for the determination of antimicrobial activity. 1.

Microbiol. Methods. 42: 159-165.

4. Dykes, G. A., and J. W. Hastings. 1998. Fitness costs associated with class

Ha bacteriocin resistance in Listeria monocytogenes B73. Lett. Appl.

Microbiol. 26:5-8.

5. Fimland, G., O. R. Blingsmo, K. Sletten, G. Jung, I.F. Nes, and J. Nissen-

Meyer. 1996. New biologically active hybrid bacteriocins constructed by

combining regions from various pediocin-Iike bacteriocins: the C-terminal

region is important for determining specificity. Appl. Environ. Microbiol.

62:3313-3318.

6. Garrigues, C., P. Loubiere, N. Lindley, and M. Cocaign-Bousquet. 1997.

Control of the shift from homolaetic to mixed-acid fermentation in

Lactococcus lactis: Predominant role of the NADHINAD ratio. J. Bacteriol.

179:5282-5287.

7. Glaser, P., L. Frangeul, C. Buchrieser, C. Rusniok, A. Amend, F.

Baquero, et al. 2001. Comparative genomies of Listeria species. Science

294:849-852.

8. Gravesen, A., K. Sorensen, F. Aarestrup, and S. Knochel. 2001.

Spontaneous nisin-resistant Listeria monocytogenes mutants with increased

expression of a putative penicillin-binding protein and their sensitivity to

various antibiotics. Microb. Drug Res. 7:127-135.

9. Gravesen, A., A. -M. Jydegaard Axelsen, J. Mendes da Silva, T. B.

Hansen, and S. Knochel. 2002. Frequency of bacteriocin resistance

development and associated fitness costs in Listeria monocytogenes. Appl.

Environ. Microbiol. 68:756-764.

10. Gravesen, A., P. Warthoe, S. Knochel, and K. Thirstrup. 2000. Restriction

fragment differential display of pediocin-resistant Listeria monocytogenes 412

2-14

Stellenbosch University http://scholar.sun.ac.za



mutants shows consistent overexpression of a putative B-glucoside-specific

PTS system. Microbiology. 146:1381-1389.

Il.Gravesen, A., M. Ramnath, B. Rechinger, N. Andersen, L. Jansch, Y.

Héchard, J. Hastings, and S. Knochel. 2002. High-level resistance to class

Ha bacteriocins is associated with one general mechanism in Listeria

monocytogenes. Microbiology 148: 2361-2369

12. Martin, C. E., D. Siegel, and L. R. Aaronson. 1981. Effects of temperature

acclimation on Neurospora phospholipids. Fatty acid desaturation appears to

be a key element in modifying phospholipid fluid properties. Biochim.

Biophys. Acta. 665:399-407.

13. Mattos, C, and D. Ringe. 2001. Proteins in organic solvents. Curr. Opin.

Struct. BioI. 11:761-764

14. Mazzotta, A. S., and T. J. Montville. 1997. Nisin induces changes in

membrane fatty acid composition of Listeria monocytogenes nisin-resistant

strains at 10°C and 30°C. 1. Appl. Microbiol. 82:32-38.

15. Mazzotta, A. S., and T. J. Montville. 1999. Characterization of fatty acid

composition, spore germination, and thermal resistance in a nisin-resistant

mutant of Clostridium botulium 169B and in the wildtype strain. Appl.

Environ. Microbiol. 65:659-664.

16. Ramnath, M., M. Beukes, K. Tamura, and J. W. Hastings. 2000. Absence

of a putative mannose-specific phosphotransferase system enzyme HAB

component In a leucocin A-resistant strain of Listeria monocytogenes, as

shown by two-dimensional sodium dodecyl sulfate-polyacrylamide gel

electrophoresis. Appl. Environ. Microbiol. 66:3098-3101.

17. Rekhif, N., A. Atrih, and G. Lefebvre. 1994. Selection and properties of

spontaneous mutants of Listeria monocytogenes ATCC 15313 resistant to

different bacteriocins produced by lactic acid bacteria strains. Curr. Microbiol.

28:237-241.

2-15

Stellenbosch University http://scholar.sun.ac.za



18. Sinensky, M. 1974. Homeoviscous adaptation- a homeostatic process that

regulates the viscosity of membrane lipids in Escherichia coli. Proc. Natl.

Acad. Sci. U S A. 71:522-525.

19. Ward, D., C. van der Weijden, M. van der Merwe, H. Westerhoff, A.

Claiborne, and J. Snoep. 2000. Branched-chain a-keto acid catabolism via

the gene products of the bkd operon in Enterococcus faecalis: a new, secreted

metabolite serving as a temporary redox sink. 1. Bacteriol. 182:3239-3246.

2-16

Stellenbosch University http://scholar.sun.ac.za



Chapter 3

Membranes of class Ila bacteriocin-resistant Listeria

monocytogenes cells contain increased levels of

desaturated and short-acyl-chain phosphatidylglycerols

This chapter has been published in the journal, Applied and Environmental
Microbiology, Volume 68, Number 11, November 2002, pages 5223-5230. The
article as published is included as Chapter 30fthis thesis.
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A major concern in the use of class Ha bacteriocins as food preservatives is the well-documented resistance
development in target Listeria strains. We studied the relationship between leucocin A, a class Ha bacteriocin,
and the composition of the major phospholipid, phosphatidylglycerol (PG), in membranes of both sensitive and
resistant L. monocytogenes strains. Two wild-type strains, L. monocytogenes 873 and 412, two spontaneous
mutants of L. monocytogenes 873 with intermediate resistance to leucocin A (±2.4 and ±4 times the 50%
inhibitory concentrations [ICsoJ for sensitive strains), and two highly resistant mutants of each of the wild-type
strains (>500 times the ICso for sensitive strains) were analyzed. Electrospray mass spectrometry analysis
showed an inerease in the ratios of unsaturated to saturated and short- to long-acyl-chain species of PG in all
the resistant L. monocytogenes strains in our study, although their sensitivities to leucocin A were significantly
different. This alteration in membrane phospholipids toward PGs containing shorter, unsaturated acyl chains
suggests that resistant strains have cells with a more Huid membrane. The presence of this phenomenon in a
strain (L. monocytogenes 412P) which is resistant to both leucocin A and pediocin PA-1 may indicate a link
between membrane composition and class Ha bacteriocin resistance in some L. monocytogenes strains. Treat-
ment of strains with sterculic acid methyl ester (SME), a desaturase inhibitor, resulted in significant changes
in the leucocin A sensitivity of the intermediate-resistance strains but no changes in the sensitivity of highly
resistant strains. There was, however, a decrease in the amount of unsaturated and short-acyl-chain PGs after
treatment with SME in one of the intermediate and both of the highly resistant strains, but the opposite effect
was observed for the sensitive strains. It appears, therefore, that membrane adaptation may be part of a
resistance mechanism but that several resistance mechanisms may contribute to a resistance phenotype and
that levels of resistance vary according to the type of mechanisms present.

Bacteriocins of lactic acid bacteria are ribosomally synthe-
sized peptides that show antimicrobial activity in their mature
form, usually against a narrow spectrum of closely related
species. Several classes have been described, including lantibi-
otics (class I), small heat-stable non-lanthionine peptides (class
II), and large heat-labile bacteriocins (class III). The class Ha
hacteriocins are known as "pediocin-like" and show strong
antilisterial activity (23, 25). Due to the recurrence of serious
listeriosis outbreaks caused by the food-borne pathogen Liste-
ria monocytogenes, these class Ha bacteriocins have become a
major focus in the search for novel naturally occurring biopre-
servatives. It is estimated that between 1,100 and 2,500 people
in the United States develop listeriosis each year and that 20 to
25% of these Listeria infections are fatal (http://www.fsis.usda
.gov; http://www.cdc.gov).

Reduced sensitivity or resistance to these bacteriocins may
compromise the antimicrohial efficiency of these peptides. Re-
sistance has been found to be spontaneous or can be induced
by exposure to the bacteriocin. Of concern is the relatively high
frequency (10-3 to 10-4) at which L. monocytogenes develops

* Corresponding author. Mailing address: Department of Biochem-
istry, University of Stellenbosch, Private Bag Xl, Matieland 7602,
Repuhlic of South Africa. Phone: 27-21-8085872. Fax: 27-21-8085863.
E-mail: mra@sun.ac.za.

resistance to class Ha bacteriocins (33). Mechanisms contrib-
uting to class Ha bacteriocin resistance have included factors
under the influence of the (J54 factor (34) and (J54-dependent
genes, specifically the mannose phosphotransferase system
(PTS) permease for Enterococcus faeca/is (15, 22) and L.
monocytogenes (16) and the mannose PTS enzyme HAB com-
ponent of L. monocytagenes sensitivity to leucocin A (32). The
upregulation of a (3-glucoside-specific PTS has also been re-
ported in pediocin-resistant L. monocytogenes (21).

Class !Ia bacteriocins are currently thought to act primarily
by permeabilizing the target membrane by the formation of
pores. It has been hypothesized that these pores cause leak-
age of ions and inorganic phosphates and suhsequently dissi-
pate the proton motive force (4, 8,10,14,27). The requirement
of a receptor-type molecule (5, 37) and a general electrostatic
functional binding of these cationic peptides to the anionic
head groups of phospholipids in membranes (11, 12,24, 27)
are involved in the mediation of class !Ia bacteriocin activity.
Further, it has been shown that the lipid composition of the
target cell membrane plays an important role in modulating
the membrane interaction of the bacteriocin (13, 14). Hydro-
phobic interactions between the hydrophobic part of the bac-
teriocin and the lipid fatty acid chains, resulting in insertion,
follow the electrostatic binding of the peptide to the mem-
brane (17, 19). This interaction of the bacteriocins with phos-
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pholipids has been reported to largely influence membrane
permeability (14).
It is also possible that different levels of resistance are asso-

ciated with different resistance mechanisms. The aim of this
study was therefore to elucidate changes associated with bac-
teriocin resistance by looking at changes occurring in the phos-
pholipid composition, in particular the phosphatidylglycerol
(PG) composition of cells with different levels of resistance and
a bacteriocin-sensitive strain of the same listerial species. Elec-
trospray mass spectrometry (ESMS) was used as a tool to study
phospholipid composition. Sterculic acid methyl ester (SME),
a cyclopropene fatty acid previously reported to be a specific
inhibitor of the stearoyl coenzyme A desaturase system (36),
was used to determine the effect of inhibiting the monodesatu-
ration of fatty acids on the resistance levels to leucocin A.

MATERIALS AND METHODS

Bacterial strains and culture couditions. L. monocytogcncs B73 (Ieucocin A
sensitive) and L. monocytogcnes B73-MRI (Icucocin A resistant) have heen
described previously (32). L. monocytogenes B73- V2 and L. monocytogencs
B73- V I arc mutants of the parental L. monocytagenes B73 strain with interme-
diate resistance to Icucocin A and were generated hy lcucocin A exposure (sec
below). The pcdiocin-sensitivc L. monocytagenes 412 strain and the pcdiocin-
resistant L. monocytagenes 412P strain have been previously described hy
Gravesen ct al. (21). All L. monocytogenes strains were grown on brain heart
infusion (BHI) agar or broth (Biolab, Midrand, South Africa) at 37"C.

Generation of the leucocin-resistant strains L. monocytogenes B73-Vl and
B73-VZ. Lcucocin A was synthesized as described previously (32). A 1% inocu-
lum of L. monocytogcncs B73 was added to BHI broth containing lcucocin A at
I(JO~,g!ml. After 36 h, the broth culture was serially diluted and plated on BHI
agar plates free of lcucocin. Following incubation for 24 h, colonies were selected
randomly, and the 500/" inhibitory concentrations (IC",,) of lcucocin A for these
colonies were determined by agar well diffusion assay, to assess resistance de-
velopment. The stability of the phenotype of the selected mutants L. monocyte-
genes B73-VI and B73-V2 was monitored over 10 successive subcultures in BHI
broth, free of leucocin.

Antilisterial activity determinations. The ICsu was determined using the agar
well diffusion assay, as described by Du Toit and Rautenbach (18), with the
following modifications. The cells were not washed and resuspended in phos-
phatc-huffcrcd saline, and 0.7% BHI agar was used in the wells. All dose-
response data from the agar well diffusion assays was analyzed using Graphpad
Prism version 3.0 for Windows (GraphPad Software, San Diego, Calif.) as de-
scribed by Du Toit and Rautenbach (18). A sigmoidal curve with variable slope
and constant top of IOOand varia hie hottom was fitted to each of the data sets
hy using the equation Y = hottom + (100 - bottom)!(1 + 1O(I".,e,") X hill
slope J. For curve fitting only, the mean value of each data point, without weight-
ing, was considered. The ICsu was caleulated from the x value of the response
halfway belween the top and hottom plateau.

Extraction of L. monocytagenes phospholipids. L. monocytagenes strains were
grown in l-Iitcr broth cultures to early stationary phase (optical density at 600
nm, 0.7 to 0.75) and were then harvested for phospholipid extraction. Phospho-
lipid was extracted using the Bligh and Dyer method as described by Cabrera ct
al, (9). Cells were lysed in a sonicating water hath for 2 h, instead of by vertexing.
The phospholipid standards (Sigma Chemical Co., St. Louis, Mo.) used were
dimyristoyl-phosphatidylglyeerol (DMPG), dioleoyl-phosphatidylglyccrol
(DOPG), dipalmitoyl-phosphatidylglyeerol (DPPG), and distcaroyl-phosphati-
dylglycerol (DSPG).

Inhibition of PG desaturation by stereune acid methyl ester. SME, a desatu-
rase inhibitor obtained from Sigma Chemical Co., was prepared and stored in the
same way as previously described (36). It was added, to reach a final concentra-
tion of 0.025 mM, to a I% inoculum of the L. monocytogenes strains to be tested,
in a broth culture. For the agar diffusion assay, a final concentration of 0.05 mM
SME was used in the agar.

Electrospray mass spectrometry. Mass spectrometry was performed using a
Micrornass triple-quadrupole mass spectrometer with an cleetrospray ionization
source, Dried phospholipid was diluted with 100 ~I of methanol-chloroform (2:1,
vol/vol) and then diluted 1:10 with methanol-chloroform (1:1, vol/vol). A 5-~1
volume of the sample solution was introduced into the eieetrospray ionization
mass spectrometer via a Rheodyne injector valve. Methanol-chloroform (1:1,

Arrt, ENVIRON. MICROBlOL.

vol/vol) was the carrier solvent, delivered at a Ilow rate of 20 ul/rnin during each
analysis. A capillary voltage of 3.5 kV was applied, with the source temperature
at 120"C and the cone voltage at 100 V. Data acquisition was in the negative
mode, scanning the first analyzer (MS,) through mlz = 200 to 2,000 at a scan rate
of WO atomic mass units/so Combining the scans across the elution peak and
subtracting the background produced representative scans. For fragmentation
analysis, precursor ions were scleeted in MS, and product ions were detected in
MS 2 after decomposition at a collision energy of 40 cVand with the argon
pressure in the collision cell at 0.2 Pa.

Statistical evaluation. Tukey's comparative test, using Prism 3.0, was used to
statistically evaluate all results and to calculate significant differences in the ratios
of unsaturated and short-acyl-chain fatty acid species between the susceptible
and resistant strains. P values for the dose-response curves were also generated
using this method.

RESULTS

Antilisterial activity determinations. L. monocytogenes 873-
MRI showed no decrease in growth with increasing concen-
trations of leucocin A up to 120 ug/ml (the maximum conccn-
tration in our assay) (Fig. I). However, the other highly
leucocin-resistant strain, L. monocytogenes 412P, showed an
unexpected increased in growth (:=30%) with increasing con-
centrations of leucocin A (Fig. I). This increase in growth may
be an indication of a strain-specific resistance response. This
strain was selected under pediocin-PAI pressure and showed
cross-resistance to leucocin A.

The shifting of the dose-response curves (Fig, 1) of the two
spontaneous mutant strains, L. monocytogenes 873- VI and
873- V2, to the right indicated their increased resistance to
leucocin A. The ICsus (Table 1) of leucocin A for L. monocy-
togenes 873- VI and 873- V2 indicate that these strains are
:=2.4 times and :=4 times more resistant, respectively, to leu-
cocin A than is L. monocytogenes 873. According to Tukey's
comparison test, the strains with intermediate resistance to
leucocin A had a significantly different response from that of L.
monocytogenes 873 (Ieucocin susceptible) (P < 0.001). The
ICsus for L. monocytogenes 412 and 873 have also been deter-
mined to be significantly different (P < ().QOI). In keeping with
the nomenclature for vancomycin resistance in Staphylococcus
aureus (6), we have referred to L. monocytogenes 873-VI and
873- V2 as intermediate leucocin resistant strains.

Due to the limited amount of leucocin A available, we did
not determine its ICsus for the two highly resistant strains. It
has, however, been determined that L. monocytagenes 873-
MRI is more than 1,000 times as resistant as L. monocytogenes
873, while L. monocytogenes 412P is more than 500 times as
resistant as L. monocytogenes 412P, using the maximum con-
centration of 120 ug of leucocin A per ml. L. monocytagenes
873-MRI and L. monocytogenes 412P have subsequently been
referred to as highly leucocin resistant.

ESMS identification and profiles of phospholipids of L.
monocytogenes strains. Correlating the fragmentation mass
spectra of standard PGs with that of the L. monocytogenes PG
fragmentation patterns allowed the identification of the fatty
acyl moieties in the observed PG species (Table 2). Our data
correlated with the fragmentation data reported for PGs from
Bacillus (7). The identification of the fatty acyl moieties of the
PG species (Table 2) as mainly C14, CIS' Cl'" and CJ7 is also
corroborated by the findings of Mastronicolis et al. (28) in their
study of the diversity of the polar lipids of L. monocytogenes.

ESMS spectra of the phospholipids of all the L. monocyte-
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FIG. I. (A) Dose-response of leucocin A-sensitive L. monocytogcnes B73, intermediate-resistance mutants L. monocytogenes B73-VI and L

monocytagenes B73-V2, and highly leucocin-resistant L. monocytagenes B73-MR1. (B) Dose-response of pediocin PA-I- and leucocin A-sensitive
L. monocytagenes 412 and the highly pediocin PA-1- and leucocin A-resistant L. monocytogenes 412P. The 100% growth level was taken as the
growth of each strain in the absence of leucocin A. Data are a combination of the results of duplicate experiments. The error bars represent the
standard error of the mean for each concentration value (eight determinations).

genes strains (Fig. 2) showed the abundant presence of PG, the
major phospholipid of L. monocytogenes (20, 26). The ESMS
spectrum in Fig. 2A is representative of pediocin-sensitive L.
monocytogcnes strain and the spectrum in Fig. 2B represents
the general profile found for the leucocin intermediate resis-
tant and pediocin-resistant strains analyzed in this study. Ap-
proximately four major PG molecular species are observed in
the ESMS data (Fig. 2), and these are found in both the
saturated and unsaturated forms. In the sensitive L. monocy-
togenes B73 strain, the PG species with mlz 722, correlated with
PG containing CIS and CI7 fatty acid chains, was the most
abundant (Fig. 2A). The PG containing CIS and C16:1 (m/z 706)
was the most abundant in highly resistant and intermediate
resistant strains (Fig. 2B). Similar differences were found be-
tween the L. monocytogenes 412 and 412P strains. It is appar-
ent that the resistant strains seem to have an observable in-
crease in PGs containing an unsaturated fatty acyl chain.

Saturation differences of PGs. The ratios of the unsaturated
to saturated molecular species of PG for all the resistant

TABLE 1. IC50s of leucocin A for the L. monocytogenes
strains tested"

L. monocytagenes strain Lcucocin A IC ;(1 (ug/rnl)
(95% confidence range)

B73
B73-VI
B73-V2
B73-MRI
412
412P

0.14 (0.13-0.16)
0.30 (0.28-0.31)
0.49 (0.39-0.60)

>100
0.24 (0.22-0.27)

>100

,/ Two independent experiments were performed, and each concentration was
determined in quadruplicate per experiment.

strains (Fig. 3A) were higher than those in the sensitive strains.
Although the resistant strains have an increased level of the
unsaturated PG component, there is no clear correlation with
the resistance level. For example, the unsaturated/saturated
PG ratios were greater for the intermediate-resistance strains
(Fig. 3A) than for the highly resistant strains for both [m/z
678]/[m/z 680] and [m/z 706]/[m/z 708]. This change, however,
correlates with increasing levels of resistance in the interme-
diate-resistance strain group (Fig. 3A). There was also a sig-
nificant increase (P < 0.05) in the unsaturated PG species (m/z
706) in comparison to the major PG species (m/z 722), for the
intermediate-resistance strains, and this increase is more sig-
nificant than that for the highly resistant L. monocytagenes
B73-MRI strain.

Differences in fatty acyl chain length in PGs. More short-
acyl-chain PGs than the PG species with mlz 722 were observed
for the intermediate-resistance and highly resistant strains
(Fig. 3B). L. monocytogenes B73-MRI contained more of all
short-acyl-chain PGs, specifically the species with mlz 692, than

TABLE 2. Molecular species of PG and the corresponding fatty
acid species from L. monocytogenes strains, identified by ESMS in

negative-ion mode

1M - H]" mlz Fatty acyl
combinations

Calculated atomic
mass (Da)

678
680
692
694
706
708
722

CI5:I/C'4
CIS/C'4
ClhjC'4
ClljCl4

C,s/C'I'"
C'S/Clh

CIS/C17

678.88
680.89
692.91
694.92
706.93
708.95
722.97
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FIG. 2. ESMS spectrum of the PG region of L. monocytagenes B73 (leucocin sensitive) (A) and L. monocytagenes B73-MRI (highly resistant)
(B). The ESMS data for L. monocytogencs B73 are representative of L. monocytagenes 412 too. and the ESMS data of L. monocvtogencs B73-MR I
are representative of the intermediate-resistance strains and L. monocytagenes 412P.

did the intermediate-resistance strains (Fig. 3B). It is, however,
difficult to detect a clear correlation between the level of re-
sistance and amounts of short-acyl-chain PGs, considering that
the highly resistant strains are at least 200 times more resistant
than the intermediate-resistance strains.

ICso determinations for SME-treated cells. SME has been
used previously as a desaturase inhibitor in prokaryotes (36). A
final concentration of 0.025 mM in broth was determined to be
most favorable since it caused no significant growth inhibition
(data not shown). No signifieant growth inhibition was found
with 0.05 mM SME in agar, while inhibition was observed with

5.0 A

4.5

u.

#

4.0

3.5

3.0

2.5

2.0

1.5

1.0

678/680 692/694 706/708 706/722
m/z unsaturated PG I
m/z saturated PG

c:::::J Lm 873 ~Lm 873-V1 ~Lm B73-V2

0.05 mM SME in broth. The higher tolerance to the inhibitor
could probably be attributed to decreased diffusion in a solid
(agar) environment. The sensitivity of L. monocytogenes B73 to
leucocin A was not affected by the presence of SME (data not
shown). The inhibitor, however, affected the response of the
two intermediate-resistance strains to leucocin A (compare
Table 1 and Fig. 3). The 2-fold-resistant L. monocytagenes
B73-Vl displayed an unexpected 2.5-fold increase in resistance
at 0.33 !-Lgof leucocin A per ml (compare Table 1 and Fig. 4).
The fourfold-resistant L. monocytogenes B73-V2 displayed a
decrease of ~50% in resistance (compare Table I and Fig. 4)

•• ##

1.50 B

1.25

...

694/722
m/z short acyl chain PG I
m/z long acyl chain PG

_LmB73-MR1 c:::::JLm412 _Lm412P

1.00 ..
0.75
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692/722

FIG. 3. PG composition of L. monocytogenes sensitive, (strains 873 and 412), intermediate-resistance (strains B73-Vl and B73-V2), and highly
resistant (strains B73-MRI and Lm 412P) strains depicted as ratios of unsaturated PGs to saturated PGs (A) and short-acyl-chain PGs to the
long-acyl-chain PG (m/z = 722), (B). Statistical comparison between L. monocytogenes 873 and its resistant strains: *, P < 0.05, *", P < 0.01; ""oio.
P < (l.OOI; comparison between L. monocytogenes 412 and 412P: #, P < 0.05; ##, P < 0.01. Note that only one value for 678/680 was determined
for L. monocytogenes B73-Vl and so it could not be statistically compared.

678/722
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FIG. 4. Influence of SME on the leucocin A resistance of interme-
diate-resistance L. monocytogenes strains. L. monocytogenes B73-VI
and B73- Y2 were incubated for 17 h with 0.33 and 0.65 J.Lgof leucocin
A per ml, respectively, without (control) or with 0.05 mM SME added
to the growth media. The 100% growth level was taken as growth in the
absence of Icucocin A, without (control) or with 0.05 mM SME added
to the growth media. Data are a combination of results of duplicate
experiments. The error bars represent the standard error of the mean
for eight determinations. Means are significantly different (P < 0.0005)
between the SME-treated and nontreated cultures.

A Usterla monocytogenes 873
0.025mM sterculic acid methyl ester

100
722.0

708.0

705.9

693.9
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to leucocin A at 0.65 ug/rnl. No decrease in resistance was
observed for the highly resistant L. monocytogenes B73-MR 1 at
the maximum of 2.6 ug/ml leucocin A concentration. We did
not determine ICsns for the highly resistant strains in the pres-
ence of SME due to the limited availability of leucocin A.

Changes in PG composition of cells treated with SME. The
desaturase inhibitor affected the sensitive and the intermedi-
ate-resistance and highly resistant strains in different ways. The
PG profiles in Fig. 5A and B are representative of the pedi-
(Kin-sensitive L. monocytogenes 412 and the resistant L. /110110-

cytogenes 412P strains, respectively, after addition of desatu-
rase inhibitor. The major difference exhibited in phospholipid
profiles of SME-treated highly resistant strains was the re-
placement of the unsaturated PG (m/z 706) by a saturated PG
(m/z 722) as the major PG (Fig. 5B). This result indicated that
the precursor PG species might have been channeled into an
alternative reaction in which an extra methyl group was added,
because the desaturation reaction was inhibited.

ESMS profiles (Fig. 5C and D) and percent change (Fig. 6A)
of the intermediate-resistance strains show the significant de-

8 Usterla monocytogenes B73-MR1
O.025mM stercullc acid methyl ester

100
722.0

693.9

705.9

694.'
I

~~m~~~~m~mmmrnmrnrnmro~
mlz

C Usteria monocytogenes 873-V1
O.025mM stercullc acid methyl ester
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721.9

693.9

660 665 670675 660 685 6tO 6tS 700705 710 715 720 725 730735 740 745 750

mlz

o Usteria monoeytogenes 873-V2
O.025mM stereulic acid methyl ester

721.9

693.8

694.8 705.8707.9

660 665 670 675 610 ~ 690 "5 700 705 710 715 720 725 730 735 740 745 750 6611665 670 675 610 665 690 695 700 705 710 715 720 725 730 735 740 745 750
mlz mlz

FIG. 5. ESMS spectrum of the PG region of L. monocytogenes B73, B73-YI, B73-V2, and B73-MRI after treatment with SME. The spectral
data for L. monocytogenes B73 arc similar to those for L. monocytogenes 412, and the data for L. monocytagenes B73-MRI arc similar to those for
L. monocytogenes 412P.
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FIG. 6. Percent change in the ratio of unsaturated to saturated PGs (A) and in the ratio of short-acyl-chain to long-acyl-chain PGs (B) after

treatment with 0.025 mM SME in L. monocytagenes strains. The means and standard deviations from for independent experiments are given.
Comparison between L. monocytogenes B73 and its resistant strains: *, P < 0.05; **, P < ().(Jl; "'**, P < 0.001. Comparison between L.
rnonocytogencs 412 and the resistant L. monocytogenes 412P: #, P < 0.05; ##, P < 0.01.

creases in the levels of two unsaturated PGs species, namely,
the mlz 706 (P < 0.05) and m/z 692 (P < 0.001) species.
The percent decrease for all the L. monocytogenes B73 re-

sistant strains was greater than 50% for the unsaturated PG
species with mlz 692 and mlz 706. We found no significant
difference between the intermediate-resistance and highly re-
sistant strains in the percent change of unsaturated/saturated
PG ratios. L. monocytagenes B73 showed the opposite effect,
namely, an increase in the unsaturated PG/saturated PG ([m/z
706)/[m/z 708]) ratio and very small decreases in the rest of the
unsaturated/saturated PG ratios analyzed (Fig. 6A). The sen-
sitive L. monocytagenes 412 strain also showed the opposite
effect to that observed for L. monocytogencs 412P, namely,
significant (P < 0.05) increases in several unsaturated PG/
saturated PG ratios ([m/z 706]/[m/z 7(8), [m/z 678)/[m/z 680),
and [m/z 706)/[m/z 722)). After multiple assessments, inconclu-
sive data for the PG ratio [m/z 706)/[m/z 708) in L. monocyto-
genes B73-V1 were found (error bar in Fig. 6A).

SME also had an influence on the length of the esterified
fatty acids in the PG population. The intermediate-resistance
strain, L. monocytagenes B73-VI, showed a possible increase in
the short-acyl/long-acyl fatty acid PG ratio ([m/z 694)/[m/z
722]) after treatment with SME (Fig. 6B). Again, the highly
resistant L. monocytagenes B73-MRI displayed the largest de-
creases in the short-acyl/long-acyl chain PG ratios (Fig. 6B). L.
monocytogenes B73 showed less than a 25% decrease for all the
short-acyl/long-acyl chain PG ratios determined. The resistant
strains showed a greater than 50% decrease in the ratios of
[m/z 678)/[m/z 722) PG and [m/z 692)/[m/z 722] PG (Fig. 6B).
The sensitive L. monocytogenes 412 strain showed no change in
the [m/z 678)/[m/z 722] and [m/z 692]/[m/z 722) ratios and an
increase in the [m/z 694]/[m/z 722] ratio, with L. monocytogenes
412P showing decreases in the same ratios.

DISCUSSION

This study showed that there are significant differences in
the PG content of class Ha bacteriocin-resistant L. monocyte-
genes strains compared to the wild type. Differences in the PG
composition of the resistant L. monocytogenes cell membrane
include an increase in the concentration of unsaturated fatty
acyl chains of PG, as well as an increase in the concentration of
short acyl chains of PG, for all the leucocin-resistant strains.
Both of these phospholipid adaptations should result in an
increase in membrane fluidity. In contrast to our findings that
resistant strains have larger amounts of desaturated and
shorter PGs in their membranes (indicating more fluid mem-
branes), it has been shown that nisin-resistant L. monocyto-
genes has a more rigid membrane (29, 30, 31). Verheul et al.
(35), however, observed no differences in fatty acid content
between nisin-resistant and -sensitive Listeria strains. Chen et
al. (13) also reported that the saturation state of the PG acyl
chains in vesicles had little effect on the binding affinity of
pediocin PA-l for the vesicle. However, their fluorescence
results indicated that the penetration of the bacteriocin into a
bilayer of the saturated dimyristoyl-phosphatidylglycerol was
deeper than into a bilayer of unsaturated DOPG (13). The
DOPG is therefore thought to be less favorable for efficient
membrane permeabilization due to its higher fluidity. A
weaker insertion ability of class na bacteriocins into unsatur-
ated PG could point to the role of increased amounts of un-
saturated PGs in the membranes of resistant strains. In con-
trast, the larger amounts of longer and saturated PGs in the
sensitive L. monocytogenes B73 and 412 strains may enhance
membrane insertion by bacteriocin and thus increase sensitiv-
ity. A less fluid membrane has also been shown to be a factor
influencing the resistance of Staphylococcus aureus to the cat-
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ionic antimicrobial peptide thrombin-induced platelet micro-
bicidal protein (3). Similar to our findings, it has been observed
that Kluyveromyces laetis mutant cells with reduced amphoter-
icin B sensitivity have a higher unsaturated fatty acid/saturated
fatty acid ratio than do wild-type K. laetis cells (38). It is also
known that the increased levels of monounsaturated fatty acids
in the membrane phospholipid influence the overall decrease
in the membrane molecular order (38). These findings indicate
the significant roles played by unsaturated phospholipids and
membrane fluidity in antibiotic or antimicrobial peptide asso-
ciation with membranes and consequently in resistance mech-
anisms. Membrane fluidity could be an important contributing
factor to class IIa bacteriocin resistance by affecting the inser-
tion of these bacteriocins into the membrane and consequently
the formation and stability of pores. Any increase in membrane
fluidity could decrease class IIa bacteriocin insertion into the
phospholipid membrane and pore or permeability complex
stability and could therefore contribute to resistance.

By treating strains with SME, a putative inhibitor of Listeria
desaturase, we were able to determine a possible correlation
between unsaturated PGs and resistance of L. monocytagenes
to class Ila bacteriocins. Desaturase enzymes are responsible
for the production of unsaturated acyl chains in phospholipids.
SME has reportedly been used as a desaturase inhibitor in
prokaryotes (36). In our study we saw a marked influence of
the inhibitor on the PG phospholipid eomposition of L. mono-
cytogcncs. The levels of the major unsaturated PG molecular
species, mlz 692 and m/z 706, were decreased in the resistant
strains. The percent decrease of unsaturated/saturated PG ra-
tios in the highly resistant strains was greater than in the
intermediate-resistance strains and significantly different from
that in the sensitive strains. Sensitive strains showed small
decreases and even increases in unsaturated/saturated PG ra-
tios after addition of the desaturase inhibitor.

Our results indicated that the resistant L. monocytogenes
probably contains an SME-sensitive desaturase while the sen-
sitive strains probably contain a less responsive desaturase.
The only bacterial desaturase (except for those in cyanobacte-
ria) described to date has been the Bacillus subtilis ~5 desatu-
rase (I). No significant homologues to the Bacillus desaturase
were found after scanning the L. monocytagenes genome
(http://genolist.pasteur.fr/Listilist/index.html.). A two-compo-
nent signal transduction system for this single desaturase in B.
subtilis was also described recently (2). The environment finely
controls this two-component signal transduction system. Un-
saturated fatty acids reportedly act as negative signaling mol-
ecules of des (desaturase gene) transcription (2). A similar
system could exist for the control of the desaturase activity in
L. monocytogenes.

One of the strains, L. monocytogenes B73-VI, displaying
intermediate resistance, showed an anomalous response to
SME. Rather than the expected increase in leucocin A sensi-
tivity, it became 2.5 times more resistant after treatment. The
PG profile of this strain also showed some anomalies after
treatment; for example, we found both increases and decreases
in the levels of the major unsaturated PG (m/z 706) and a
possible increase in the level of the major short-acyl-chain PG
(m/z 694) in different culture batches of this strain. This could
mean that the mechanism involved in membrane adaptation of
this strain is highly sensitive to extremely small changes in its
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lipid metabolism and/or culture conditions. It is also possible
that some undetected membrane adaptation, occurring after
SME treatment, may be important in the increased resistance
of L. monocytogenes B73-VI. L. monocytagenes B73-V2, how-
ever, showed the expected increase (::+:50%) in leucocin A
sensitivity with SME treatment, which coincided with de-
creases in the levels of unsaturated and short-acyl-chain PGs.
This may indicate that both the levels of unsaturated PGs and
short-acyl-chain PGs and therefore the activity of a desaturase
and fatty acid elongation and branching may influence the
resistance of this particular strain.

We did not observe a decrease in resistance after addition of
the desaturase inhibitor to the highly resistant L. monocyto-
genes B73-MR1 strain. However, analysis of the PG profiles of
L. monocytogenes B73-MR! showed no significant differences
from those of the intermediate-resistance L. monocytogenes
B73-V2 strain after inhibitor addition. It is apparent from this
result that an additional factor( s), besides increases in the
levels of short-acyl-chain and unsaturated PGs, also contrib-
utes to resistance in the highly resistant cells.

In summary, our findings indicate that there is an association
between increased amounts of unsaturated and short-acyl-
chain PGs in cell membranes and resistance to class Ila bac-
teriocins. Moreover, the PG composition may be regulated
differently, as seen for the differing effects of the desaturase
inhibitor on the sensitive and resistant strains. The resistance
of the intermediate-resistance strains could be modulated by
changing the PG composition of their membranes by treatment
with SME. However, we observed no changes in the resistance
of highly resistant strains after the same treatment.

Membrane adaptation is probably only one of several mech-
anisms involved in resistance, and our present results show
clearly that other mechanisms are necessary for the develop-
ment of complete resistance. For example, the absence of a
putative mannose-specific PTS enzyme lIAB component under
a54 control has been noted in L. monocytogenes B73-MRI (32)
and L. monocytogenes 412P (M. Ramnath and A. Gravesen,
personal communication). The absence of this membrane-
bound enzyme may be associated with resistance, but it may
also influence membrane fluidity and lipid ordering. Further
consideration should also be given to the role of desaturase(s)
and the influence of membrane composition on bacteriocin
resistance.
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Chapter 4

The interaction of leucocin A with phospholipid

liposomesfrom wild-type and class IIa bacteriocin

resistant Listeria monocytogenes strains

Abstract

We have used Fourier transform infrared (FTIR) spectroscopy and circular dichroism

(CD) spectroscopy to characterise the functional structure of the class Ha bacteriocin,

leucocin A and to determine the role of lipid composition on leucocin A bioactivity.

Phospholipid was extracted from both Listeria monocytogenes wild-type and class Ha

bacteriocin resistant strains. FTIR of phospholipid extracts indicated a more

disordered hydrocarbon acyl chain conformation, and thus greater fluidity for all the

resistant strain phospholipids, as observed by the 1 cm-1 increase in the phase

transitional sensitive anti symmetric CH2 stretching vibrational frequency of class Ha

bacteriocin resistant lipids. A shift from 2921 cm-1 to 2922 cm-1 of the anti symmetric

CH2 stretching vibrational frequency, was also observed in wild-type lipids only, on

addition of leucocin A, indicating insertion of leucocin A into the phospholipid. With

CD it was observed that leucocin A has an unordered structure in aqueous buffer and

13 % a-helix, and 31 % [i-sheet in 50 % trifluoroethanol. A more defined structure of

leucocin A, indicated by 21 % a-helix and approximately 27 % p-sheet conformation,

was induced in liposomes from membrane lipids of sensitive L. monocytogenes B73

and liposomes from synthetic dioleoyl-phosphatidylglycerol. The leucocin A in

liposomes from membrane lipids of resistant L. monocytogenes B73-MRI showed a

lower 18 % a-helical and greater random coil content. From these results it is clear

that the increased a-helical content and more defined structure of leucocin A and the

higher hydrocarbon acyl chain ordering may be contributing factors in the greater

activity of leucocin A in sensitive cell membranes.
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Introduction

The 37 residue peptide, leucocin A (leuA), isolated from the lactic acid bacterium,

Leuconostoc gelidum, has been characterised as a class Ha bacteriocin, on the basis of

its N-terminal YGNGV motif and antilisterial bioactivity [10, 17].

The proposed active structure of leuA in membrane mimicking environments (Refer

to Fig. 1 for predicted tertiary structure) suggests that the class Ha bacteriocins have a

three-stranded antiparallel ~-sheet at the N-terminus, which is supported by a

disulphide bridge (residues 9 and 14), followed by a central amphipathic a-helix

(starting at residue 17 or 18 to 31), and an unordered C-terminal end [4, 14, 15]. CD

analysis of the structure of closely related class Ha bacteriocins, mesentericin YI05

and pediocin AcH, in lipophilic environments indicated 30 to 40 %, and 32 % a-

helicity, respectively [14, 29]. Features of bacteriocins include: presence of

amphiphilic segments, which may form putative transmembrane helices; and water

solubility plus membrane-binding ability suggestive of a potential to form pore

complexes [10].

The specific mode of action of class Ha bacteriocins has not been elucidated.

However, there are general features of the basic mechanism that have been described.

Research showing the need for a chiral receptor-type molecule [6, 30] and elucidation

of a possible receptor-type molecule [18, 8, 16, 25] in class Ha bacteriocin mechanism

of action is juxtaposed by evidence showing pore formation in liposomal

environments without a receptor requirement [4, 20]. The two cysteines in the N-

terminus are thought to stabilise the ~-sheets in a ~-hairpin conformation at the

YGNGV motif [4, 10]. This YGNGV sequence was thought to be involved in initial

electrostatic interaction with the anionic phospholipid head groups of the cell

membrane [4, 5, 10] or interaction with a receptor [14]. Following binding, the

hydrophobic C-terminal segment, which is thought to be the cell-specificity

determining region, interacts hydrophobic ally with the lipid acyl chains of the

membrane [12, 11]. Pore formation for class Ila bacteriocins has been suggested to

follow the 'barrel-stave' model [10, 22, 7] for action of cationic antimicrobial

peptides. This model describes production of an aqueous pore through the formation

of transmembrane channels from bundles of amphipathic a-helices, such that their
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hydrophobic regions interact with the lipid core of the membrane and their

hydrophilic surfaces are directed inwards [22, 7].

In light of our recent findings regarding differences in the phospholipid composition

of wild-type and class Ha resistant variant listerial cells ([28], refer to Chapter 3) and

its impact on alteration of sensitivity of class Ha resistant strains, we compared the

interaction of wild-type and class Ha resistant L. monocytogenes cell membranes with

leuA using CD and FTIR. This study was done in order to complement our study on

the membrane changes previously observed in class Ila bacteriocin resistant cells

([28], Chapter 3).

Fig. 1. N-terminal 19 residue predicted tertiary structure of pediocin PA-I. No

structure is shown for the C-terminus, except for the C24-C44 disulphide

bridge that is required for activity (after Chen et al. [4]).

MATERIALS AND METHODS

Strains and culture conditions

A list of strains used in this study appears in Table 1 of Chapter 2. All wild-type and

spontaneous mutant L. monocytogenes strains were grown in brain heart infusion

(BHI) broth (Biolab) at 37°C. The mptA insertional mutant of L. monocytogenes
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EGDe, called L. monocytogenes EGK54, was supplemented with erythromycin

(Sigma Chemical Co.; South Africa) at 5 ug mrl.

Phospholipid isolation and quantification of organic phosphorus

Phospholipid was isolated according to the method described by Bligh and Dyer [3]

as previously modified by Vadyvaloo et al. [28]. The chloroform fraction containing

the phospholipid was dried using vacuum rotary evaporation. Organic phosphate from

the lipids was quantified using the method described by Ames [1]. Phosphorus

contained in the phospholipid, forms a phosphomolybdate complex with ammonium

phosphomolybdate in 1N H2S04, after ashing under a direct flame. The

phosphomolybdate complex is reduced by ascorbic acid to yield a blue colour

complex with absorbance maximum at 820 nm.

Fourier Transform Infrared (FTIR) Spectroscopy

For the lipid isolations for each L. monocytogenes strain (B73, 412, and EGDe

families, see Table 1 in Chapter 2) 5 mg lipid was resuspended in approximately 120

III deuterium oxide (D20) (Aldrich Chemical Co., Milwaukee, Wi, USA), to give an

approximate final concentration of 5 mg mrl lipid/Djï). This mixture was vortexed

for 1 minute and divided equally with leuA being added to a final concentration of

0.1 mg mrl into one half of the preparation. Both samples were then incubated at

37°C for 1 hour. A volume of 40 III sample was placed on CaF2 windows separated

by a 25 11mteflon spacer, placed in the chamber and equilibrated for 2 minutes and

then subjected to 264 infrared (IR) scans. FTIR spectra were obtained on a Shimadzu

FTIR 8900 spectroscope (Shimadzu Laboratory Instruments, Japan). The FTIR

spectroscope Hyper-IR software (Shimadzu Laboratory Instruments, Japan) for IR

data analyses was used to calculate difference spectra and identify peaks.

Preparation of crude phospholipid liposomes

Liposomes were prepared by dissolving approximately 5 mg of phospholipid

(dioleoyl-phosphatidylglycerol (DOPG), L. monocytogenes B73 or L. monocytogenes

B73-MRI lipid extracts) in 2 ml chloroform in a detergent free glass test tube. The

chloroform was evaporated using a rotary evaporator to leave a thin film of lipid on

the glass. The lipid was resuspended in 2-5 ml 5 mM Na-MES buffer, pH 6.5, at room

temperature (25°C), and sonicated in a sonic water bath until a clear solution was

obtained. The lipid was quantified as described above and used for CD analysis.
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Circular Dichroism (CD) Spectroscopy

Synthetic leuA was added to a final concentration of 24 JlM to 50 % trifluoroethanol

(TFE), 5 mM Na-MES pH 6.5, and 240 JlM of DOPG, L. monocytogenes B73 or L.

monocytogenes B73-MRI liposomes. CD spectra were recorded between 180 nm to

260 nm for leuA in TFE, 5 mM Na-MES and DOPG liposomes; and from 200 nm to

260 nm for the listerial liposomes, in keeping with the requirement for a scanning

voltage of 600 V or below. This allowed more accurate peptide conformation

assessment. Analysis was done at room temperature (25°C) in a quartz cell (path

length of 1 mm), on a J-810 spectropolarimeter (Jasco, Tokyo, Japan). Data was

digitally collected every 0.2 nm at a scanning speed of 100 nm min-I. All spectra

presented here are the average of 10 scans. Results are expressed in molar ellipticity

(8) and the Na-MES buffer background was subtracted from the samples. Secondary

structure predictions of leuA were carried out using the web-based program (K2D) for

analysis of CD data (http://www.embl-heidelberg.de/-andrade/k2d/).

RESULTS AND DISCUSSION

FTIR of listeria I lipids in the presence and absence of leuA

We observed in all the lipid extracts the major bands associated with lipids, namely

the anti symmetric CH2 and symmetric CH2 stretching vibrations located at

frequencies of approximately 2921 cm-I and 2851 cm-I, respectively (Fig. 2). The C-

CH3 anti symmetric stretching vibration at 2962 cm-I was also observed for all the

listerial lipids. These vibrations are used to detect lipid hydrocarbon chain-melting

phase transitions, which are determined by increases in absorption maxima of the

vibrational mode and reflects increases in hydrocarbon chain conformational disorder

and mobility [26,23].

The lipids from wild-type strains of all three families had a lower anti symmetric CH2

stretching vibration frequency, indicating a more ordered conformation of the

hydrocarbon acyl chains, and a higher phase transition temperature. An increase in

wave number of 1 cm-I for the antisymmetric CH2 stretching vibration from 2921 cm-I

to 2922 cm-I was, however, consistently observed in the class Ha resistant listerial

phospholipids (Fig. 2). This is in contrast to the wild-type strains and indicates more

disordered hydrocarbon acyl chains for the class Ha resistant L. monocytogenes lipids,

and lower phase transition temperature. A more ordered conformation of the lipid
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hydrocarbon acyl chains is suggestive of a more rigid or less fluid membrane, and the

disordering of the lipid hydrocarbon acyl chains suggests increased fluidity and

mobility of the phospholipid membrane at the same temperature. Double bonds in the

acyl chains would result in lower melting temperatures, and higher fluidity than in

saturated analogues and thus more disorder. These results correlated well with our

previous findings that showed increases in unsaturated and short-acyl-chain lipids

suggesting greater fluidity, in resistant L. monocytogenes phospholipid membranes, in

a comparative study on wild-type and class Ha resistant L. monocytogenes

phospholipid membranes ([28], see Chapter 3).

A shift in the antisymmetric CH2 stretching vibration frequency from 2921 cm-] to

2922 ern", upon addition of leuA, indicated insertion of the bacteriocin into the

phospholipid core of wild-type L. monocytogenes lipids (Fig. 2). This suggested

disruption of the hydrocarbon acyl chain order by leuA, as a consequence of the

interaction of leuA with deeper layers of the phospholipid membrane. Similarly, a

0.5 cm-] vibrational frequency change of the anti symmetric acyl chain CH2 stretching

was observed in 1, 2 dipalmitoyl-phosphatidylserine monolayers upon interaction

with the cationic antimicrobial peptide, mellitin [13]. Resistant strains, however, did

not show any change of the anti symmetric CH2 stretching vibration after leuA

addition. It is not clear whether insertion of leuA occurred in the resistant cell

phospholipids since they already contained more disordered acyl chains.

Acyl chain order in membranes with decreased fluidity may be more sensitive to

insertion of leuA (as found with the liposomes of the wild-type strains) and the

formation of possible pores and consequent permeabilisation of the lipid membrane.

A fluorescence spectroscopy study investigating the binding of pediocin PA-I,

another, class Ha bacteriocin, to DOPG and dimyristoly-phosphatidylglycerol

(DMPG) liposomes, showed a larger blue-shift thus greater insertion of the peptide, as

measured by tryptophan fluorescence of the peptide, into less fluid DMPG vesicles. A

larger blue-shift of the tryptophan fluorescence in the membrane would indicate a

deeper translocation to a more hydrophobic, non-polar environment [5].
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Fig. 2. FTIR transmittance spectra showing the lipid stretching vibration region of L.
monocytogenes phospholipids. The spectrum of wild-type L. monocytogenes
B73 is representative of the spectra for wild-type EGDe and 412 strains;
while the spectrum of highly-resistant L. monocytogenes B73-MRI represents
412P and EGK54; and the spectrum of intermediate-resistant L.
monocytogenes B73-V2 is representative ofB73-Vl.

This therefore indicated a greater hydrophobic environment of the DMPG for

pediocin PA-I insertion although both lipid environments had comparable affinities
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for the bacteriocin [5]. Similarly, the less fluid wild-type membranes could be a more

suitable environment for interaction of leuA.

CD of leu A in Iiposomes from wild-type L. monocytogenes B73 and resistant L.
monocytogenes B73-MRl

CD was performed to obtain conformational data on leuA in the presence of the

secondary structure promoting solvent TFE, aqueous buffer, and phospholipid

liposomes derived from both L. monocytogenes sensitive (B73) and resistant

(B73-MRl) strains, and synthetic DOPG lipid.

A strong negative Cotton effect at 200 nm characterised the structure of leuA in Na-

MES aqueous buffer, and indicated a significant, unordered structure of the peptide

(Table 1; Fig. 3). However, a high percentage (48%) of the peptide was in p-sheet

conformation characterised by 214 nm, and had a 203 nm minimum, which could also

indicate p-turn, while there was almost no a-helical conformation. In the hydrophobic

environments, such as the TFE and liposomes, there was an expected transition to an

a-helix conformation, probably from random structures, and the p-sheet conformation

was mostly retained (Table 1). The observation that leuA displayed mostly [i-sheet

conformation regardless of the environment (Table 1) correlated well with previous

observations [15, 24], on the predicted tertiary structure estimations of leuA, using

CD and NMR. This is an indication of p-sheet structure being the most stable

conformation of leuA in any medium. Our results also confirm a previous observation

that a combined o-helix/p-sheet conformation is a characteristic of class Ha

bacteriocins in a membrane-mimicking environment [29].

The antiparallel p-sheet minimum at 214 nm [27] and broader nummum of an

unknown structure between 217-218 nm is also a common signature displayed by

leuA in all environments (Table 1). The most significant difference between the CD

signature of leuA in B73 and B73-MR1 liposomes is the absence of the minimum for

an a-helix at 222 nm [19] for B73-MR1, which may be obscured by the higher P-
sheet and random coil content in the resistant liposomes. This is corroborated by the

K2D programs prediction of a 21 % a-helix and 25 % p-sheet in the structure of leuA

in wild-type lipids as compared to 18 % a-helix and 27 % p-sheet in the resistant

lipids (Table 1).
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It is also clear from the large minima at 203.2 nm, which may also be indicative of P-
turn [27], and 213.4 nm minima, indicative of an antiparallel p-sheet [27], that these

type of conformations are also present in the leuA structure induced by resistant B73-

MR! phospholipids. There is also slightly greater p-sheet conformation retention from

aqueous structure in resistant lipids as compared to sensitive lipids (Table l ), In

general the induced structures of leuA in TFE and B73-MR! liposomes, showed great

similarity, and this was observed by a common minimum at around 206 nm, lower Q-

helix, greater p-sheet, and greater random coil structures predicted for them (Table 1).

Table 1 Percentage estimations and minima of the secondary structure of
leucocin A in 50 % TFE, 5 mM Na-Mes aqueous buffer, and 5 mM Na-
Mes containing 240 f.lMliposomes, as determined by CD.

STRUCTURES SAMPLES

Na-Mes TFE DOPG Lm B73 Lm B73-
buffer MRI

% Il helix 0.8 13 21 21 18
nm min (9) 222 (-4.22); 221.8 (-5.83)

220.2 (-4.30) 208.4 (-9.31)
207 (0.26) 205.8 (-2.98) 207.6 (-5.84) 207.4 (-8.87) 206 (-9.96)

% p-sheet 48 31 28 25 27
nm min (9) 204 (-0.75)

216.4 (0.22) 214.4 (-l.l7) 214 (-4.50) 214.4 (-7.86) 213.4 (-8.04)

% Random coil 44 56 52 53 55
nm min (9) 200.6 (-0.63) 199.6 (-5.18) NO 203.6 (-5.49)* 203.2 (-8.66)*

201.8 (-4.5)*

unknown 218.8 (-0.61) 218 (-4.67) 217.8 (-6.26) 218(-7.11)
structures 217 (-0.68)
nm min (9) 212.4 (0.28)

N.B. The average of duplicate values for the determinations of secondary structure for the listerial
liposomes is shown.
The K20 tertiary structure prediction program only estimated percentages of II helix, ~-sheet and
random coil.
* could also indicate p-tum structure (Urry, 1985 [27])
NO, not determined

Alternately, DOPG and B73 liposomes induced a similar type of signature and

percentage defined structure of leuA.
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CONCLUSIONS

The CD results may indicate that the greater a-helical conformation of leuA in lipids

of sensitive strains allows better insertion of leuA, which correlates to the FTIR
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Fig. 3. CD spectra ofleucocin A in 50 % TFE, 5 mM Na-Mes aqueous buffer, and
5 mM Na-Mes containing 240 !-lMliposomes. The experiments have been
performed in duplicate for the CD of leucocin A in the presence of L.
monocytogenes lipid.

results showing disordering of the hydrocarbon acyl chains upon leuA addition. It has

been suggested that the central helix of piscicocins V 1a and VI b anchors the class Ha

bacteriocin to the membrane surface [2], and several reports have indicated

accountability of the helix in the mode of action by formation of pores for class Ha

bacteriocins [4, 15, 12]. The hydrophobic and amphipathic properties and correct

spatial arrangements of key amino acid side chains of the a-helix would be

determining factors in cell specificity and potency of the bacteriocin molecule [10]. It

is possible that the electrostatic interaction between leuA and the phospholipid

membrane is also affected considering the increased lysine positive charge content

observed for B73-MRI lipids (refer to Chapter 5). This would weaken association of

leuA and the resistant membrane and affect proper a-helix induction. The net negative

4-10

Stellenbosch University http://scholar.sun.ac.za



charge of the phospholipid bilayer was suggested to be important for the induction of

bioactive structure in class Ha bacteriocins [21].

It should also be made clear that the point of the K2D program analysis in this work is

not to obtain accurate values for secondary structure predications, but rather to

generate information on trends in the secondary structure in different environments. It

is also difficult to get accurate data especially since the secondary structure

predictions programs use model proteins (not peptides) to determine secondary

structure. The inherent problems in these types of analyses include blocking of the

solvent by bulky side chains, thus preventing interaction with the polypeptide

backbone responsible for absorption in the far-UV. In summary, our results indicate

that defined secondary structure of leuA is best induced in the sensitive target cell

phospholipid environment, and that a-helical conformation is an important tertiary

structure for activity in sensitive membranes. Factors like membrane fluidity and

phospholipid composition are important for induction of bioactive structure and for

mediation of bacteriocin insertion and pore formation. Our results suggest that the

sensitive cell membranes contain lipids that are more likely to enhance bacteriocin

bioactive structure and insertion into the membrane. Recently a permease molecule,

MptD that resides in the phospholipid membrane of L. monocytogenes was speculated

to be the target, docking molecule for class Ha bacteriocins [8, 16, 18]. How the

membrane phospholipid structure and lipid acyl chain ordering, which would affect

internal lateral packing forces and thus functionality of a protein receptor [9], in wild-

type and resistant L. monocytogenes strains would therefore also be significant in

affecting interaction of the bacteriocin with the receptor.
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Chapter 5

Cell surface changes and mannose PTS EIIAB are

associated with intermediate class IIa bacteriocin

resistance

A modified version of this chapter has been submitted to the journal, Applied and
Environmental Microbiology.

Abstract

Strains of Listeria monocytogenes showing either intermediate or high level resistance

to class Ha bacteriocins were investigated to determine characteristics that correlated

with their sensitivity levels. Characterising intermediate resistance was a primary

focus particularly to determine whether the 'one general mechanism' associated with

the mannose PTS mptA (EIIABMan component) gene (Gravesen et al. [15]) was

implicated in all levels of resistance and/or whether there were other contributing

factors, including changes in cell surface properties. This complemented a previous

study where cell membrane changes were investigated (Vadyvaloo et al. [30]). Two

intermediate and one highly resistant spontaneous mutant of L. monocytogenes B73, a

highly resistant mutant of L. monocytogenes 412, and a highly resistant, defined

(mptA) mutant of L. monocytogenes EGDe, were compared with their respective wild-

type strains. The alanine:phosphorus ratios of teichoic acid showed significant

increases (P<0.05) in alanine in all resistant strains, especially for the intermediate

resistant strains. There was a tendency towards slightly increased lysinylation of

membrane phospholipid in highly resistant strains only. D-cycloserine inhibition

effects were varied in the resistant strains with the most rapid inhibition seen in the

mptA mutant. Real time PCR of the dltA (D-alanine esterification), Imo1695 (putative

membrane phospholipid lysinylation), and dal and ddlA genes (peptidoglycan

biosynthesis) showed no change in transcriptional levels. Decreases in mptA

transcriptional levels correlated well with the levels of resistance, and provided

evidence for MptA down-regulation in intermediate class Ha resistance. The

contribution of several mechanisms to intermediate resistance is discussed.
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Introduction

Class Ha bacteriocins are a homologous subgroup of bacterial antimicrobial peptides

that display strong antilisterial activity [10, 18]. Most, class Ha bacteriocins known

are produced by food-associated lactic acid bacteria [10], and the compounds are seen

as potentially useful for food preservation because of their antilisterial activity.

Reports of resistance development by listerial strains against class Ha bacteriocins in

laboratory systems has implied that increased resistance may compromise the

potential role of these antimicrobial compounds in biopreservation. This has in turn

spurred interest into understanding resistance phenomenon displayed by the pathogen.

There is cross-resistance between different class Ha bacteriocins, indicating common

or similar resistance mechanisms in L. monocytogenes [15, 30]. A prevalent

mechanism involving the loss of the enzyme HAB subunit of a mannose-specific

phosphotransferase system (EIIABManPTS, encoded by mptA) was recently described

[27, 8, 15]. An up-regulation of two ~-glucoside specific PTS genes, possibly

associated with the absent EIlABMan,was also demonstrated [16, 15]

Studies on structure and activity of class Ha bacteriocins suggest that the cationic

nature of the peptides enables interactions with negatively charged cell surfaces, while

the hydrophobic region of the peptide induces membrane permeabilisation [6, 10].

Modification of the bacterial surface charge could, therefore, be expected to affect the

initial electrostatic interaction between peptide and the membrane that is required for

pore formation, with or without mediation by a membrane-bound receptor-type

molecule [10, 8]. Two important options for modulating the charge of the cell

envelope are D-alanylation of teichoic acid (TA) and lipo-teichoic acid (LTA) in the

cell wall and lysinylation of the cell membrane phospholipids. Previous reports have

indicated a role of D-alanine esterified TA and LTA in conferring sensitivity to

cationic peptides and other cationic antimicrobial compounds in various Gram-

positive pathogenic bacteria, including induced nisin sensitivity in D-alanine deficient

LTA of L. monocytogenes [23, 13, 21, 28, 1]. The description of lysine-deficient

phospholipid due to insertional inactivation of the mprF (multiple peptide resistance

factor) gene in S. aureus, was the first study indicating an influential role of charge

modification of membrane phospholipids in resistance to antimicrobial peptides [24].

The lysinylated phospholipids, L-Iysyl-phosphatidylglycerol and Lvlysyl-cardiolipin
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are among the four major phospholipids of the Listeria spp. [12], and it is conceivable

that these phospholipids could display differences in lysinylation in the different

strains. Changes of the cell surface charge by D-alanyl esterification of TA and

lysinylation of membrane phospholipid were determined.

The effect of the cell wall acting antibiotic D-cycloserine (DCS) was also analysed,

since the cell wall of nisin-resistant L. innocua has been shown to be thickened and

more resistant to cell wall acting antibiotics, like DCS [20]. In addition, alanine that is

incorporated in TA is also the substrate for DCS enzyme targets [31], dal [28] and

ddlA [26]. The dal gene product plays a role in converting L-alanine to D-alanine,

which is channelled into TA and cell wall biosynthesis [29]. The ddlA gene product

catalyses amide-bond formation between two D-alanines, for incorporation into

peptidoglycan [26]. Furthermore, the expression of genes that potentially influence

cell surface charge (dltA, Imo1695) and DCS inhibitory activity (dal, ddlA) were also

analysed by real-time PCR.

In a previous study, we investigated the compositional changes in the cell membrane

associated with intermediate resistant and highly resistant strains. We observed an

overall increase in short-acyl and unsaturated phosphatidylglycerol (PG) species for

all resistant strains. However, upon treatment with a desaturase inhibitor the

intermediate resistant strains responded differently from the highly resistant and wild-

type strains by showing changes in their resistance levels [30].

In this study we report the results of a parallel study, which focussed on the

intermediate resistant strains and investigating the general alteration in the cell surface

charge, gene expression changes associated with this alteration and whether or not the

'one general mechanism' associated with the mptA gene was also a critical factor

influencing intermediate resistance.

MATERlALS AND METHODS

Bacterial strains and growth conditions

A list of the strains used in this study appears III Table 1. All wild-type and

spontaneous mutant L. monocytogenes strains were grown in brain heart infusion

(BHI) broth (Biolab) at 37°C. The insertional mutant of L. monocytogenes EGDe was

supplemented with erythromycin (Sigma Chemical Co.) at 5 ug mrl.
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Table 1. Listeria monocytogenes strains

Listeria Description ICso
a Reference of strain

monocytogenes (!lg mrt) and IC a value

Wild type isolates

412 Sensitive; isolated from 0.24 Gravesen et al. [16]
raw salted pork Vadyvaloo et al. [30]

B73 Sensitive; isolated from 0.14 Dykes and Hastings [9]
meat Vadyvaloo et al. [30]

EGDe Sensitive; clinical 1.95 b Glaser et al. [14]
Gravesen et al. [IS]

Intermediate spontaneous mutants
B73-VI Intermediate resistant 0.30 Vadyvaloo et al. [30]

mutant" ofB73 isolated
on leucocin A

B73-V2 Intermediate resistant 0.49 Vadyvaloo et al. [30]
mutant" of B73 isolated of

leucocin A

Highly resistant spontaneous mutants
B73-MRI Highly resistant* mutant

of B73 isolated on
leucocin A

Highly resistant* mutant
of 412 isolated on
pediocin PA-I

> 100 Ramnath et al. [27]
Vadyvaloo et al. [30]

412P >100 Gravesen et al. [16]
Vadyvaloo et al.[30]

Defined mutant

EGK54 Highly resistant;
insertional inactivation of

mptA in EGDe

> 100b Dalet et al. [8]
Gravesen et al. [15]

t, 2-4 fold increase in 50 % inhibitory concentration of class Ha bacteriocin
*, > I000 fold increase in 50 % inhibitory concentration of class Ha bacteriocin
a, ic., stands for 50 % inhibitory concentration.
b The MIC for EGDe and EGK54 are shown.

Isolation of cell wall teichoic acid

The TA was isolated according to the procedure of Webster et al. [32] with

modification, as follows: cells in the mid-exponential phase of growth (00600 approx.

0.5) were harvested at 7500 x g; the bacterial pellets were washed twice in 0,1 M Na-

acetate, pH 5, and resuspended in the same buffer; DNase and RNase were added to

the bacterial cell suspension, which was then sonicated in a sonic water bath, cooled

with ice; a Gram stain was carried out to verify that the cells had been broken; the
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disrupted cell suspension was centrifuged at 1500 x g for 5 min to remove unbroken

cells and debris; the supernatant was next added drop-wise into a boiling

8 % SDS solution of the same volume and left to simmer for a further 30 min; once

the solution had cooled to room temperature, it was centrifuged at 20 000 x g for 15

min at 15°C; the pellet was washed five times in analytical grade water until SDS was

removed, and lyophilised.

Separation of TA from peptidoglycan cell wall was done according to the method

described by Kaya et al. [19]. The lyophilised material (0.2 ml mg" in 25 mM

glycine-HCl, pH 2.5) was heated to 100°C for 10 min. The suspension was cooled to

room temperature and centrifuged at 20 000 x g at 4 -c for 45 min. The TA extraction

from the cell wall was repeated once. The supernatant was ultrafiltrated using a

polyethersulfone membrane (Millipore Corporation) with a lO 000 MW limit. The

ultrafiltrate or TA suspension was lyophilised and resuspended in analytical grade

water.

Phospholipid isolation

Phospholipid was isolated according to the method described by Bligh and Dyer [5] as

previously modified by Vadyvaloo et al. [30]. The chloroform fraction containing the

phospholipid was dried using vacuum rotary evaporation.

Quantitation of phosphorus

Organic phosphate was quantified usmg the method described by Ames [2].

Phosphorus present in the ribitol-phosphate backbone of TA, and in the phospholipid,

forms a phosphomolybdate complex with ammonium phosphomolybdate in 1N

H2S04, after ashing under a direct flame. The phosphomolybdate complex is reduced

by ascorbic acid to yield a blue colour complex with absorbance maximum at A82o.

Quantitation of alanine and lysine

Alanine and lysine were quantified on a Waters® Breeze high performance liquid

chromatograph using the PicoTag® method [3]. Alanine was liberated from TA by

base hydrolysis in 4 N NaOH at 112°C for 24 hours. Lysine was liberated from

phospholipid by acid hydrolysis in 6 N HCI containing 0.5 % phenol at 112°C for 18

hours.
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Cationic cytochrome C binding to whole cells

This method was carried out as described by Peschel et al. [25] with some

modifications. Cells were harvested at mid exponential phase (OD600approx. 0.5) and

washed twice by centrifugation in 20 mM MOPS buffer, pH 7. The cells were

resuspended in the neutral pH MOPS buffer to a final 00600 of 0.150 before

interaction with the positively charged cytochrome c, to counteract pH influence on

charge. Cationic cytochrome c was added to the cells at a concentration of 0.5 mg mr'

and the mixture was incubated at room temperature for 10min. The solution was

centrifuged at 8000 r.p.m. in an Eppendorf benchtop centrifuge for 5 min and

unbound cationic cytochrome c in the supernatant was quantified photometrically at

AS30.

D-cycloserine inhibition assay

A 1 % inoculum of the bacterial culture was added to a tube containing 10 ml of

media and growth at 00600 was monitored. At mid-exponential phase (00600 approx.

0.5), DCS was added to the culture at approximately 100 ug mr'. After addition of

DCS the OD6oo was monitored over 10 h for the L. monocytogenes B73 and 412

families and 6 h for the L. monocytogenes EGDe family. Control cultures were made

without antibiotic addition. All data was analysed on Graphpad Prism version 3.0 for

Windows (Graphpad software, San Diego, CA). A sigmoidal plot (% relative survival

vs log time) was constructed to calculate the 50 % survival/inhibition time. The

sigmoidal curve of variable slope, and constant top of 100, and bottom of 0 was fitted

to each of the data sets. For curve fitting only, the mean value of each data point,

without weighting was considered. The time taken to achieve 50 % survival was

calculated from the 50 % inhibition value halfway between top and bottom. The

intersection between the tangent across the top of each curve and the tangent of the

plateau, of a log-log plot, was used to calculate the onset time of DCS inhibition.

Curve fitting was carried out as described above, with no top and bottom constants.

cDNA synthesis

Total RNA was isolated from a mid-exponential phase culture (10 ml) using the

RNAwiz kit (Ambion), according to the manufacturer's instructions. The extracted

RNA was treated with DNase-RNase free (Invitrogen) and its quality was assessed, by

running samples on a 1 % formaldehyde agarose gel. RNA was quantified

spectrophotometrically. cDNA was synthesised from 2 ug total RNA using random
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hexamers, and the Superscript II Kit (Gibco), according to the manufacturers

instructions. A reaction containing all the components but omitting reverse

transcriptase was included in order to assess DNA contamination.

Real-time peR

The primers used for the real-time Pf'R are listed in Table 2. They were designed

using Primer Express software version 1.0 (Applied Biosystems), from the gene

sequences of the L. monocytogenes EGDe genome (http//genolist.pasteur.fr/Listilist/).

The real-time peR was carried out using the SYBR Green Pf'R Core Reagent kit

(Applied Biosystems), as recommended. Pï.R reactions were run on the ABI Prism

7700 sequence detector (Applied Biosystems) under the following conditions: 50 oe

for 2 min, 95 oe for 10min, followed by 40 cycles at 95 oe for lOs and 60 oe for 1

min. Each assay included, in triplicate, either a serial two-fold dilution of L.

monocytogenes genomic DNA, a control without template, or the cDNA from the

same sample.

Table 2. List of genes and pnmers used lil the real-time quantitative Pï.R
experiments

Gene Gene Primer Primer sequence (5'-3') Product
product name size (bp)

D-alanine-D- DLTAFI CACAAGATCAGCTAATGGACGC 51
alanylcarrier
proteinligase DLTARI CTGGAACTTCTCCGAAATGTTTT
D-alanine DALFI GCCAGCACTTGCGCTCTATAC 51
racemase

DALRI GGTGCGAGTTCTTTCACATGA
D-alanine-D- DDLAFI CCCACTTTTACATGGTCCAAAC 51
alanineligase

DDLAR1 AACAATCCTTGAACAGTGCCATC
putative 1695FI GGGATTGACTATCCGTCGCTA 51

phospholipid
Iysinylation 1695Rl TTCCGGGCTTTGAGAAGTTAA
ElIASManof MPTAFI CAGGACTTAATTTGCCAATGTTG 110

mannose-specific
PTS MPTARI CGCGAACACCTTCTTGGAGCT

sigma70 subunit RPODI ACTGAAAAAGTTCGGGAAATCCT 92
ofRNA

polymerase RPOD2 TCGCCTAGATGTGAATCGTCTTC

dltA

dal

ddlA

Imo1695

mptA

rpoD
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Data analysis of real-time peR

Data acquisition and subsequent data analyses were done using the ABI Prism 7700

sequence detector. The analysis gave a threshold cycle (CT) value for each sample,

which is defined as the cycle at which a significant increase in amplification product

occurs, for each sample. The CT values are inversely related to the target cDNA copy

number. The mean CT value was calculated for each triplicate. A ~CT value was then

calculated, for each sample by subtracting the mean CT value of the sample in the

wild-type strain from the mean CT value in the mutant strain. Each ~Cr value was

then normalised by subtracting the ~CT value of a constitutively expressed reference

gene, (rpoD gene encoding the sigma 70 subunit of the RNA polymerase) to give the

~~CT value. The ~~CT value represents, for a given gene, the difference of its

expression in a mutant strain, compared to the wild-type. The difference could be

quantitatively expressed as 2MCT. The expression of each gene was monitored in two

independent experiments.

RESULTS

Alanine content of teichoic acid

Incorporation of D-alanine esters into the ribitol-phosphate backbone of TA decreases

the anionic nature of TA. The D-alanine content was quantified as the

alanine:phosphorus ratio (Fig. I). All spontaneous resistant mutants had a

significantly (P<0.05) higher alanine:phosphorous ratio than the corresponding wild-

type strain. However, the intermediate resistant mutants showed a slightly greater

alanine:phosphorus ratio than the highly resistant mutant, in comparison to the

corresponding wild-type B73 strain.

Lysine content of phospholipid membranes

Lysine esters in PG species cause neutralisation of the negative charge of these

phospholipids. The results of the phospholipid lysine:phosphorus ratios are presented

in Fig. 2. The highly resistant strains had increased ratios of lysine:phosphorus

compared to the corresponding wild-type strain, while little or no change was

observed for the intermediate strains.
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Fig. 1. Alanine to phosphorus ratio in teichoic acid isolated from Listeria
monocytogenes strains. The data are the averages of duplicate experiments,
with error bars representing the standard error for each mean value.
Comparison between L. monocytogenes wild-type and its corresponding
resistant strains: * P<0.05; ** P<O.Ol.

Cationic cytochrome c binding to whole cells

To determine whether an alteration in the electrostatic nature of the cell surface

affects binding of a cationic compound, cationic cytochrome c was added to whole

cells. Because cytochrome c has a very characteristic absorption spectrum, the

determination of unbound cytochrome c can be done with relative ease and accuracy.

The data showing residual cytochrome c in the supernatant of the cells is presented in

Fig. 3. The spontaneous highly resistant mutants 412P and B73-MR1, had a

significantly greater (P<0.05) than 10 % quantity of unbound cytochrome c in their

supernatants, than their corresponding wild-type strains. The EGK54 defined mutant

had a significantly (P<0.05) greater than 5 % unbound cytochrome c than its

corresponding wild-type. The two intermediate mutants of strain B73 showed a slight

increase in unbound cytochrome c, but the differences were, however, not statistically

significant.

D-cycloserine inhibition assay

Table 3 and Fig. 4 show that the wild-type strains have different responses to DCS

activity. The longest lag time to initiate DCS inhibition was found with all the strains

in the B73 family, but followed with a rapid inhibition to 50 % relative survival. The
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highly resistant B73-MRl showed the greatest lag in DeS inhibition onset and

continued to take the longest to be reduced to 50 % relative survival. The two

intermediate resistant strains had the shortest DeS inhibition onset, but differing

response times to reach 50 % relative inhibition. Overall, the resistant strains of the

B73 family, took almost two times longer from inhibition onset to 50 % relative

inhibition. Although the 412 family showed a rapid inhibition onset, they displayed

the longest lag time to reach 50 % relative inhibition. Here the highly resistant 412P,

showed quickest onset of inhibition, and inhibition occurred faster than the wild-type,

even when 50 % relative inhibition was reached. The EGK54 mutant was inhibited to

50 % relative survival in a third of the time of the wild-type EGDe, and more rapidly

than all the other strains, and was thus the most sensitive to Dse of all the strains

tested.

0 0.4..
cur...
fn:::sr...
0 0.3..cc.
fn
0..cc.
0 0.2...
Cl)
s:::'i

0.1

Listeria monocytogenes strains

Fig. 2. Lysine to phosphorus ratio in membrane phospholipid isolated from Listeria
monocytogenes strains, The data are averages of duplicate experiments with
error bars representing the standard error for each mean value. Differences
between L. monocytogenes wild-type and its corresponding resistant strains
were not statistically significant (P>0.05).

5-10

Stellenbosch University http://scholar.sun.ac.za



40
*

.~c:
CJ 300

~
~CU

CJ 0- ...CU.s:::. 20
:::::s CJ
:E 0tIJ>.
~ CJ

Listeria monocytogenes strains
Fig. 3. Residual amount of cationic cytochrome c in the supernatant after binding to

whole Listeria cells. The data are the averages of duplicate experiments with
error bars representing the standard error for the mean for each ratio value.
Comparison between L. monocytogenes wild-type and its corresponding
resistant strains: * P<0.05.

Table 3. Inhibition responses to 100 ug mrl D-cycloserine

Listeria monocytogenes
strains

Response time
after D-cycloserine

addition (h)

Time from onset
to 50 % relative
inhibition (h)

B73 4.4 4.7

B73-VI 4.3 5.1

B73-V2 4.1 4.7

B73-MRI 5.4 6.1

412 0.9 16.8

412P 0.5 11.5

EGDe 0.5 7.0

EGK54 I.3 3.1

The values represent an average of duplicate experiments.
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Inhibitory effects on wild-type and class Ha bacteriocin resistant Listeria
monocytogenes strain growth after addition of 100 ug mrl D-cycloserine at
mid-log phase. The data are averages of duplicate experiments with error bars
representing the standard error for each mean value.

Real-time peR analysis

The expression of four genes that putatively influence cell surface charge (d/tA,

/mo1695) and are targets for DeS (dal, ddlA) was analysed by real-time peR. This

was done to determine whether cell surface modifications that were observed could be

related to the transcriptional level of these specific genes.

We considered a three-fold difference in expression (2MCT
) as a significant change

(i.e. LlLleT > 1.6 or <-1.6) in expression. There was thus no change in expression of

dl/A, dal, ddlA and Imo1695 in any of the resistant mutants (see fold expression

change results in Table 4). Results for the expression analysis of the mptA gene appear

in Fig.5for all the spontaneous resistant strains.
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Table 4. Calculated fold expression change of genes (relative to the wild-type)
analysed by real-time quantitative PCR

L. monocytogenes genes
strains

mptA dal ddlA dltA Imol695

B73-Vl -3.96 1.37 -1.03 -1.00 -1.08

B73-V2 -3.72 2.03 1.57 1.15 1.28

B73-MRl -3601084 1.03 -1.37 1.35 -1.28

4l2P -1070 -1.54 -1.22 -1.05 -1.30

EGK54 -1.29 -1.75 1.64 1.26

Values represent the average of duplicate experiments.
Negative values indicate a decrease in expression and positive values indicate increases in expression.
Expression was considered significant if expression values were -3:::;or ~3 (see values in bold font).
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Fig. 5. Quantitative real-time PCR, of the mptA gene, representing the enzyme lIAB
component of the mannose PTS. The results are a duplicate of two
experiments, with each individual experiment consisting of two pooled RNA
extractions and triplicate quantitative PCR reactions. Error values are
represented by the standard deviation between two experiments. The
corresponding wild-type strains have not been included since the resistant
strains L\L\CT value is calculated relative to the wild-type (see text for details).
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There was a large decrease in expression of mptA in the highly resistant strains. There

was also a decrease in expression of mptA in the intermediate resistant strains, B73-

VI and B73-V2. The average change in expression is represented as the calculated

fold change in expression in Table 4, and this shows an approximately four-fold

decrease in expression for the mptA gene in B73- VI and B73-V2, and a > IOOO-fold

and >3.6 million-fold decrease in expression ofmptA in 412P and MRl, respectively.

DISCUSSION

Cell surface changes in Class Ha bacteriocin resistant bacteria

The ribitol-phosphate backbone of the cell wall polymer, TA, can be substituted with

D-alanine forming a D-alanyl ester bond [Il]. In this form the D-alanine presents a

positive charge resulting in neutralisation of the anionic polymer. The cationic

lantibiotics, Pep5 and nisin, have been shown to adsorb to the bacterial surface in the

presence of the TA, and this is influenced by D-alanine incorporation [4]. Unlike

previous reports in which TA is deficient in D-alanine, because of insertional

inactivation [1] or deletion mutation [25] of dltA, this study shows small increases in

D-alanylation of the TA. These small increases are similar to increases seen in wild-

type and dltA insertional mutant S. aureus cells, which were complemented with a

plasmid encoding the dit operon [25, 22], and that displayed resistance to cationic

peptides.

The possibility that the outer cell surface charge could be influenced by L-Iysine in

the phospholipid membrane, also suggests possible involvement in susceptibility to

cationic antimicrobial compounds [13, 24], and has not been explored in L.

monocytogenes. Cardiolipin and PG in L. monocytogenes are normally negatively

charged, whereas the lysinylated forms of these two phospholipids bears a net positive

charge [25]. Our results indicate that in addition to the increase in D-alanine in TA,

there may also be a tendency for an increase in the lysine in the phospholipid, in

highly resistant strains. The increase in positive charge due to alanine and possibly

also lysine incorporation would decrease the anionic property of the cell permeability

barriers, which would interfere with the initial and subsequent electrostatic interaction

of the cationic bacteriocin with the cells. The combined increased charge from both

alanine and lysine (from cell wall and membrane), could explain why there was least

binding of the cytochrome c to the highly resistant cells. Additionally, other factors
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that could influence net surface charge, like the zwitterionic

phosphatidylethanolamine content of L. monocytogenes phospholipid [7] have not

been investigated. The genes involved in D-alanylation and lysinylation (dltA and

Im(1695), did not display increased expression in any of the resistant mutant strains

studied. This may suggest that the, regulation of the activity of these enzymes is not at

the transcriptional level.

Des effects on class Ha bacteriocin resistant L. monocytogenes strains

DeS affected the strains differently, but we were unable to show any clear

relationships between DeS sensitivity and resistance phenomena that we studied. The

onset of DeS inhibition was different for the intermediate resistant strains of the B73

family, compared to the highly resistant and wild-type strains. There could be a

relationship between MptA absence and Des activity since the mptA mutant shows

the most dramatic inhibition by DeS. The reason for this relationship is, however, not

clear.

There were no alterations in the levels of transcription of the dal and ddlA genes

between the resistant and sensitive strains indicated that the DeS targets were not

implicated In the variances in DeS sensitivity unless there is interference with

regulation at post transcriptional level. DeS sensitivity could be affected by

differences in abilities to transport DeS into the cells. DeS, is transported into the cell

by the same transporter as alanine [31].

Different mechanisms may contribute to intermediate class Ha bacteriocin
resistance

Present evidence suggests that prevention of the mptA CD expression conferring

resistance in L. monocytogenes strains, is due to a potential interaction or docking of

the class Ha bacteriocin on the Mptf.-Mptl) membrane complex of the mannose PTS

[8, 15]. Additionally, the requirement of stereospecificity for leucocin A activity

supports the presence of a docking molecule [33]. We found a clear correlation

between levels of transcription of the mptA gene and level of resistance to class Ha

bacteriocins in strains B73-Vl and B73-V2, which were observed to be 2 and 4 times

more resistant than the wild-type respectively [30], and showed a four-fold decrease

in transcription level of this gene. Furthermore, the highly resistant spontaneous

mutants, B73-MRl and 412P showed a decrease of greater than a thousand-fold in
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transcription levels of the mptA gene. Our study shows that MptA is also associated to

intermediate class Ha bacteriocin resistance.

In our previous study on the PG composition of the same L. monocytogenes strains

described in this study [30], we observed an overall increase in unsaturated and short-

acyl-chain PG species in all class Ila resistant strains of L. monocytogenes. The

increases of unsaturated acyl chain was however significantly greater in the

intermediate resistant strains, B73-VI and B73-V2, while the highly resistant showed

significantly greater increases in short-acyl-chain PG species [30]. In addition, the

decrease in desaturated PG after treatment with a desaturase inhibitor, resulted in a

2.5-fold increase in resistance ofB73-VI, a 50 % decrease in resistance ofB73-V2,

and no changes in sensitivity of the wild-type and highly resistant strains, to leucocin

A [30]. Additionally, a nisin resistant mutant, 412N [16], also had a two-fold increase

in resistance to pediocin [A. Gravesen, unpublished results], and may therefore be

regarded as an intermediate class Ha resistant strain. L. monocytogenes 412N became

as sensitive to pediocin as the wild-type, 412, upon inactivation of the penicillin-

binding protein associated with nisin resistance. These findings suggest various

mechanisms present in intermediate class Ha bacteriocin resistance.

In summary, our results show a clear correlation between MptA down-regulation and

resistance levels in the intermediate resistant strains we studied. Moreover these

intermediate resistant strains had larger increases in D-alanine esterification of TA

than the highly resistant strains. The fact that the O-alanine content was increased in

all the studied class Ha mutants compared to the wild-type strains indicates that cell

surface charge may play a complementary role in modulating class Ha resistance in

general. It is important to consider at this point, that electrostatic interactions have

been identified to play a central role in the interaction of nisin with its docking

molecule, lipid II [17]. Our results therefore indicate that several factors may

contribute to intermediate class Ila bacteriocin resistance, and that in at least some of

these mutants, an increased D-alanine content may be a relatively important factor.
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Chapter 6

Metabolic changes associated with class IIa bacteriocin

resistance in Listeria monocytogenes strains

Abstract

High-level resistance to class Ila bacteriocin has been directly associated with the

absent EUABMan (MptA) subunit of the mannose-specific PTS in Listeria

monocytogenes strains (Gravesen et al. [12]). Class Ila bacteriocin resistant strains

used in this study were a spontaneous resistant, L. monocytogenes B73-MR1, and a

defined mutant, L. monocytogenes EGDe-mptA. Both strains were previously reported

to have EIIABMan PTS components missing (Gravesen et al. [12]). In this study we

show that these class Ha bacteriocin resistant strains have a significantly (P<O.05)

decreased growth and glucose consumption rates, but they also have a significantly

(P<O.05) higher growth yield than their corresponding wild-type strains, L.

monocytogenes B73 and L. monocytogenes EGDe, respectively. In the presence of

glucose, the strains showed a shift from a predominantly lactic acid to a mixed acid

fermentation. This metabolic shift could be correlated to reduced glucose

consumption and growth rates as a consequence of the missing EIIABMan PTS. This is

in agreement with the observed growth yield increase observed in class Ha bacteriocin

resistant strains, with respect to their ATP yields. This study suggests that class IIa

resistance development in L. monocytogenes does not necessarily bring a cost

implication to the cell.

Introduction

Food-associated strains of lactic acid bacteria frequently produce antimicrobial

compounds referred to as class Ha bacteriocins [8]. Class IIa bacteriocins have been

grouped based on their high homology, conserved N-terminal YGNGV motif and

effective antilisterial activity [15, 7, 13]. The potential application of class Ha

bacteriocins as food preservatives has been extensively studied in the search for safe,

non-toxic antimicrobial food additives. However, the frequent occurrence of
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resistance has become an increasingly important concern, since it reduces the value of

adding class Ha bacteriocins to foods [Il, 7].

Research carried out on understanding the mechanism of class Ha bacteriocin

resistance shows strong evidence for one prevalent mechanism among various listerial

strains and Enterococcus faecalis [12, 14]. This mechanism involves the absence of

the EIIAB subunit of a mannose-specific PTS (known as EHABManor mptA) [12].

Phosphoenolpyruvate (PEP)-dependent PTSs are sugar transport systems, which

simultaneously phosphorylate the sugar with its translocation across the cell

membrane [16, 19]. The phosphorylated sugar derivative serves as the first metabolic

intermediate, thus coupling sugar uptake and catabolism.

Carbohydrates are required by L. monocytogenes as the primary energy source for

growth, with glucose being the preferred carbon source [18, 20]. There are evidence

for the presence of two glucose transport systems in L. monocytogenes, a high affinity

PTS and a low affinity proton-motive force (PMF) driven system [17]. Glucose

transport inhibition of the high affinity system by competing sugars, mannose and 2-

deoxyglucose was also observed [17]. Only two mannose-specific PTSs (PTSMan),

coded for by the mpo and mpt operons, have been described in detail for L.

monocytogenes [5]. However, three complete mannose-specific PTSs and an

incomplete glucose-specific PTS gene sequence have been identified in the L.

monocytogenes genome [10]. Glucose uptake in L. monocytogenes can be attributed to

the PTSMan[5], which is also known to transport mannose and 2-deoxyglucose [2, 23].

In many lactic acid bacteria and streptococci, transport and phosphorylation of

glucose occurs mainly via a PTSMan [2], which maybe be similar for L.

monocytogenes.

Studies related to class Ha bacteriocin resistance have involved the insertional

inactivation of the mptA gene that resides on the mpt operon coding for the EIIAB Man

subunit of the PTSMan in L. monocytogenes [5]. This insertional inactivation has

resulted in a high level of resistance to class Ha bacteriocins [12], and it has been

suggested that the EHt
ManPTS membrane component or permease could playa role as

a possible target for class Ha bacteriocins [5, 13, Il].
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The aim of this study was to investigate the effect of the missing MptA subunit of the

PTSManon glucose metabolism in class Ha bacteriocin resistant L. monocytogenes

strains. We focussed on glucose uptake and analysis of the end products of glucose

metabolism. The growth patterns of L. monocytogenes were also analysed in this

study in brain heart infusion (BHI) culture medium with or without added glucose as a

carbon source. All studies were done on two wild-type, sensitive L. monocylogenes

strains, and their corresponding class Ha resistant variant, of which one was a

spontaneous mutant and the other a genetically defined mutant.

MATERIALS AND METHODS

Bacterial strains and growth conditions

All strains were grown in BHI broth (Difco), supplemented, or not supplemented

with 10 mM glucose (Associated Chemical Enterprises, Glenvista, South Africa),

according to the requirements of the study. The strains were cultivated at 37°C

without shaking, in tightly capped Spectronic® tubes or in Schott® bottles. The L.

monocytogenes strains used were the following: wild-type food isolate L.

monocytogenes B73, and corresponding class Ha bacteriocin spontaneous mutant, L.

monocytogenes B73-MRl; wild-type clinical isolate L. monocytogenes EGDe, and

corresponding insertionally inactivated mptA mutant, L. monocytogenes EGK54 [14,

12], referred to as L. monocytogenes EGDe-mplA, which displays resistance to class

Ha bacteriocins. Media used to grow L. monocytogenes EGDe-mptA was

supplemented with 5 ug mllerythromycin.

Growth analysis

Bacterial growth was monitored using optical density (OD) at 600 nm. Dry weight

measurements were calibrated against OD600 measurements. An OD600 of 1

corresponds to 0.64 g [dry weight]. L-1• Specific growth rates were calculated from

the growth absorbance data collected from Spectronic® tube cultures, and the same

cultures were sampled for analysis of end-products of fermentation. In a separate

experiment, samples were taken from Schott® bottle cultures, at regular intervals

from early exponential phase through to stationary phase for monitoring of glucose

uptake.
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Quantification of glucose and fermentation end products by HPLC

Samples collected for analysis were prepared as described in Ward et al. [26].

Samples were analysed for lactate, pyruvate, acetate, formate, and ethanol. Product

analysis allowed the calculation of carbon recovery, glucose yields, ATP yields and

glucose uptake rates.

Calculations and statistical analysis

Calculations of specific growth rates and Student t-tests were done using Graphpad

Prism 3.0 (Graphpad software, San Diego, CA, USA).

RESULTS
Growth of strains in BHI containing or lacking glucose

The growth curves (Fig. l a) indicate a more rapid growth for the wild-type strains in

the presence of 10 mM glucose. This is corroborated by the specific growth rate

(Table I), which is significantly (P<O.OOl) higher, for B73, than for B73-MR!.

Similarly, the EGDe strain shows a significantly greater (P<0.05) specific growth rate

in comparison to that of the corresponding mutant strain, EGDe-mptA. Growth rates

correlated well with rates reported previously for L. monocytogenes strains in BHI

medium [24, 12]. Specific growth rates (Table I, Fig. lb) for the resistant strains,

however, were significantly (P<0.05) greater than that of their corresponding wild-

type strains when grown in BHI lacking glucose as a carbon source.

A significant (P<0.05) difference in growth yield between the wild-type and resistant

strains can also be noted in the growth curves. The absolute biomass values shown in

Table 1 indicate a higher growth yield for both the spontaneous, and the genetically

defined mutant, in comparison to their corresponding wild-type strains, in media

supplemented with glucose. In contrast, insignificant changes in the growth yields

between the wild-type and resistant variants strains were observed in BHI lacking

glucose (Fig Ib, Table 1). The final biomass achieved by all the strains was however

lower when glucose was not present.

In keeping with the higher biomass values for the resistant strains, a greater yield on

glucose (Yglucose) was also observed for these strains in the BHI medium

supplemented with glucose (Table 1).
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Fig. 1. Growth of Listeria monocytogenes strains in BHI supplemented with lOmM
glucose (a), and BHI without glucose, (b). Growth studies were carried out at
least in duplicate for all the strains. Symbols: _, wild-type B73; Á, class Ha
resistant mutant B73-MR1; T, wild-type EGDe; +, class Ha resistant,
insertionally inactivated mptA mutant, EGDe-mptA.

Metabolic end products produced in BHI with 10 mM glucose

Fermentation end-products were analysed to assist in understanding whether the

increase in biomass observed for the class Ha resistant L. monoctyogenes strains, was

due to an increase in ATP production. The wild-type strains, B73 and EGDe,

produced lactate as their major product and minor quantities of formate, acetate and

ethanol, thus displaying a more homo lactic fermentation pattern. In contrast, the class

IIa-resistant strains, B73-MRI and EGDe-mptA, were observed (Table 2) to produce

larger concentrations of formate, acetate and ethanol than their corresponding wild-

type strain, thus displaying a more mixed acid fermentation pattern. In addition, a

lower lactate production was observed in the class Ha resistant strains, B73-MRl

(43%) and EGDe-mptA (40%), while the calculated lactate production of the wild-

type strains was 80 % and 85 % for B73, and EGDe, respectively. It was also

interesting to note that EGDe-mptA only metabolised approximately half the glucose

in the medium. The carbon recovery (Table 2), however, was not in keeping with

expected values for glucose metabolism, in all the strains. The calculated average

growth yield per mole ATP (YATP) for the four strains were as follows: B73, 20.3 g

[dry weight]. mOrI ATP; B73-MR1, 16.5 g [dry weight]. mol" ATP; EGDe, 28.9 g

[dry weight]. mOrI ATP; EGDe-mptA, 31.3 g [dry weight]. mol" ATP.
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Table 1. Maximum specific growth rate, biomass and yield on glucose of wild-type

and class Ha bacteriocin-resistant Listeria monocytogenes strains in BHI broth

supplemented, or not supplemented, with glucose.

Specific growth rate
Biomass [OD6oo)

[h-I)

Listeria BHI BHI BHI BHI Yglucose (g [dw].

monocytogenes IOmM no IOmM no mOrI giet)

0.68 0.70 0.68 0.28
B73 25.7

[0.018] [0.014] [0.003] [0.006]

B73-MRI*
0.48 0.90 0.76 0.28

30.7
[0.023] [0.017] t [0.019] [0.003]

0.79 0.49 0.79 0.33
EGDe 29.4

[0.029] [0.018] [0.004] [0.023]

EGDe-mptA*
0.67 0.67 0.91 0.36

35.2
[0.017] [0.012] t [0.001] t [0.009]

Experimental values represent an average of at least two independent measurements, and standard
deviations are shown in parentheses
.* indicates the class IIa-resistant L. monocytogenes strains.
i' represents a significantly different (P<O.05) growth rate or growth yield (biomass) of the resistant
strain compared to the corresponding wild-type strain.
t represents the yield on glucose value given in the units gram dry weight [dw] per mol glucose (glc).

Metabolic end products produced in BHI lacking glucose

To determine whether a similar growth pattern and metabolism existed for the wild-

type and class Ha resistant strains in the absence of glucose, their metabolic end-

products were also analysed after growth in BHI lacking glucose. The end-products in

BHI without glucose were formate, ethanol and acetate and these were produced in

small quantities compared to BHI supplemented with glucose (Table 3). A very small

amount of lactate was formed in the B73, B73-MRl and EGDe strains. A peak co-

eluting with glucose, and also present in the BHI lacking glucose control, was

detected in all stationary phase samples, whether glucose was supplemented or not. It

is assumed that this peak is not glucose, and it was thus subtracted in the analysis.
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Table 2. Product formation and carbon recovery of Listeria monocytogenes strains
grown in BHI supplemented with 10 mM glucose. The concentration values
represent an average of at least three independent measurements and standard
deviations are shown in parentheses.

Listeria Glucose 0/0

monocytogenes
Concentration of products [mM]

concentration carbon
strains [mM] lactate formate acetate ethanol recovery

lOmM glucose
10.6 5.0 9.3t

BHI control *
1.8 20.9 6.4 2.9

B73 113.4
[0.07] [0.13] [0.57] [0.34]

1.8 13.6 11.5 6.6 7.9
B73-MRl 126.0

[0.09] [0.59] [1.72] [0.96] [0.77]

1.6 22.0 3.4 0.3
EGDe 104.2

[0.16] [1.30] [1.97] [0.48]

5.4 10.6 9.3 4.2 14.0
EGDe-mptA 140.7

[0.45] [0.38] [1.46] [0.36] [2.90]

* represents the media without bactenal Inoculum.
t indicates ethanol from the erythromycin stock used to supplement the growth of L. monocytogenes
EGDE-mptA.
N.B Media concentrations of lactate, glucose and ethanol (only for EGDe-mptA) have not been
subtracted from product concentrations values shown here.

Glucose consumption rates

Analysis of the glucose uptake rate was performed to determine the effect of the

missmg MptA subunit on glucose transport. The following were the calculated

glucose uptake rates as mmol glucose g [dry weightji.h" for the various L.

monocytogenes strains: B73, -15.51; B73-MRl, -6.7; EGDe, -10.73; EGDe-mptA,

-3.3. A significant reduction in the glucose uptake rate was observed for the class Ha

resistant strains in comparison to their corresponding wild-type strains.
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Table 3. Product formation of Listeria monocytogenes strains grown in BHI not
supplemented with glucose. The concentration values represent an average of
at least three independent measurements and standard deviations are shown in
parentheses.

Listeria
Concentration of products [mM]

Glucose

strains

monocytogenes concentration

acetate ethanol[mM) lactate formate

no glucose BHI

control*

B73

B73-MRI

EGDe

EGDe-mptA

4.8

1.6 [0.09] 5.7 [0.69] 3.3 [0.32] 1.7 [0.85]

1.7[0.13] 6.0 [0.28] 3.5 [0.86] 2.3 [0.49]

1.8 [0.15] 6.0 [0.18] 2.6 [0.97] 1.5 [0.65] 3.3 [0.41]

1.7 [0.88] 3.7 [0.60] 1.6 [0.15] 10.3 [0.93]4.9 [0.48]

* represents the media without bacterial inoculum
t indicates ethanol from the erythromycin stock used to supplement the growth of L. monocytogenes
EGDE-mptA.
~the value for glucose has been subtracted for calculation of carbon recoveries.
Note: Media concentrations of lactate, glucose and, ethanol (only for EGDe-mptA) have not been
subtracted from product concentrations shown in the table for the different strains.

DISCUSSION

The decreased growth rates shown by class Ha bacteriocin-resistant strains, B73-MR!

and EGDe-mptA, in glucose, is similar to growth rate decreases described for another

class Ha resistant 1. monocytogenes strain, 412P, also showing loss of MptA

expression [11, 12]. The decreased growth rate in 412P, and in other class Ha

bacteriocin resistant B73 strains [6] has been described as a fitness cost associated

with class Ha bacteriocin resistance, and this seems to be the same for the B73-MR!

and EGDe-mptA strains. This fitness cost was thought to be due to energy-expensive

metabolic pathways in resistant strains [6]. Considering the fitness cost implication

and the shut-down of the glucose transporter, it is surprising that the higher final

biomass for the class Ha resistant strains used for this study, display a more efficient

metabolism, in terms of ATP production, and glucose utilisation. This is particularly

clear in the spontaneous resistant mutant, B73-MRI, which showed a lower yield on

ATP [YATP] than the wild-type B73 strain, but> 10 % higher biomass. It is not clear,
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however, why both the clinical isolate, EGDe and its defined mutant EGDe-mptA,

seemed to show a larger YATP than the food isolate, B73 and its spontaneous resistant

variant. The large yields on ATP could also be explained by the production of ATP

from other substrates in the medium besides glucose, as observed by growth in BHI

medium without supplemented glucose. Reduced glucose consumption rates for the

class Ha resistant strains could be attributed to the loss of the glucose transporter,

MptA. Lower growth rates, glucose consumption rates, and glucose limitation are

directly implicated in the shift from homo lactic behaviour to mixed acid fermentation

[4, 9, 1] in Lactococcus lactis, which could explain the metabolic shift observed in the

class Ha resistant L. monocytogenes strains.

Growth observed for all the strains in BHI lacking glucose indicated that these strains

are also able to utilise other components of this rich medium for growth, in the

absence of glucose as a major carbon source. This could account for the increased

carbon recovery observed for all the strains in glucose supplemented BHI medium.

The higher growth rates observed for the resistant strains in the absence of glucose

supplementation, and the higher YATP may also suggest the ability of the resistant

strains to more readily utilise other nutrients present in the rich BHI, than the wild-

type strains, which may be a regulatory consequence of the missing glucose

transporter. Up-regulation of two ~-glucoside-specific PTS system enzymes have

been suggested to be a possible regulatory consequence of MptA absence in class IIa

resistant L. monocytogenes strains [12], similar to regulation of other PTSs by the

mannose PTS due to carbon catabolite repression in Lactobacillus pentosus and

Streptococcus salivarius [2, 23]

Up-regulation of the mpt operon In EGDe in the presence of increasing glucose

concentrations, and an increased inhibition by the class Ha bacteriocin mesentericin

YI05 [5], has been shown. If the missing MptD, is the docking molecule for class Ha

bacteriocins [5, 12], it would implicate a possible competition between glucose and

bacteriocin for uptake by the permease, which could provide a glucose limiting

environment that may consequently down-regulate mpt genes, and produce the shift in

fermentation we observed. This may result in the development of spontaneous

resistant populations. Inhibition of glucose uptake by the bacteriocin pediocin JD was

also suggested to be to the consequence of bacteriocin inhibition of a PTS component
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and may provide further evidence for bacteriocin down-regulation of the PTS [3, 25,

24].

Furthermore, MptA may represent a high-affinity PTS transporter for glucose as

indicated by the higher glucose uptake rate that was present for wild-type strains

expressing MptA. This supports previous studies showing a PTS as a high affinity

glucose transporter in L. monocytogenes Scott A [17]. PTSMancould also be the major

transporter of glucose into the cell, considering the existence of only the glucose-

specific enzyme HA component and no other functional components of the glucose-

specific PTS in L. monocytogenes [10], and the greater than 50 % decrease in glucose

uptake rate observed for the resistant strains lacking MptA.

The switch to mixed acid fermentation pattern usually occurs when homo lactic

fermentation is inadequate to yield the necessary ATP for biosynthetic processes and

growth [4]. Our study suggests that the shift to mixed acid metabolism in class IIa

resistant L. monocytogenes strains occurs as a result of reduced glucose uptake as a

consequence of the loss of MptA, involved in glucose transport. This results In

reduced growth rates but higher biomass of class Ha bacteriocin resistant strains.

L. monocytogenes has been shown to spontaneously develop resistance to class Ha

bacteriocins at high frequencies from 10-6 to 10-8 in food and laboratory media [21, 7].

Additionally, absence of MptA in class Ila bacteriocin resistant strains could further

compromise the potential use of class Ha bacteriocins as bio-preservatives, because it

is likely to result in more efficient strains with respect to glucose and other carbon

source utilisation and biomass yield. Therefore, the use of class Ha bacteriocins as

food-preservatives may have severe consequences. Moreover, in natural fermentation

conditions are set such that the desirable microorganisms grow preferentially and

produce metabolic by-products, which give the unique characteristics of the product.

Therefore, the possibility of lactic acid bacterial starter cultures developing this

mechanism of resistance in the presence of a class Ha bacteriocin additive could

comprise their ability to produce strictly lactic acid fermentation end-products, which

are useful in food preservation [http://dna2z.com/project/lacid.htm] and in production

of unique food textures and flavours.
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Chapter 7

General discussion

The motivating factor influencing studies on class na bacteriocins, and resistance to

them by food-borne pathogens, is the possible use of these peptides as food bio-

preservatives [7, 12]. With increasing resistance frequency [34, 16] and levels of

resistance to traditional antibiotics, there is a need to tap into other sources of

potential antimicrobial compounds. Class na bacteriocins display many favourable

characteristics such as, being produced by 'food grade' bacteria and being non-toxic,

as well as, displaying high potency, with low concentrations exacting complete

inhibition of pathogens [12, 26, 27]. Unlike, the traditional antibiotics, e.g. penicillin

and vancomycin, class na bacteriocins are relatively new antimicrobial compounds,

having been discovered just over a decade ago [12]. This is also the reason for the

limited availability of information regarding their structure-function properties, mode

of action and resistance mechanisms.

In an attempt to answer some questions regarding class na bacteriocin resistance, this

study focussed on factors influencing bacteriocin resistance. The bacteriocin would

have to traverse and interact with the cell envelope (cell wall and membrane)

permeability barriers to reach its target site. Itwould make sense that permeability and

physicochemical properties would play significant roles in class na bacteriocin

sensitivity. Accordingly, we studied the phosphatidylglycerol composition of the cell

membrane, some factors influencing charge of the cell surface (i.e. D-alanine content

of teichoic acids and lysine content of phospholipids) and the effect of a cell wall

antibiotic, D-cycloserine in resistant mutants (Chapters 3 and 5). Alteration in cell

surface properties could affect the bioactive structure induction of the class na

bacteriocins, considering that these peptides adopt an active structure only after

interaction with membranes or membrane-like environments [19]. FTIR and CD

spectroscopy allowed us to assess physical changes in the phospholipids and the

peptide structures themselves related to cell alterations in resistance (Chapter 4).

Finally, it is expected that class Ha bacteriocin resistance may have some metabolic

consequence on the L. monocytogenes cell, which may impact on the ecological

7-1

Stellenbosch University http://scholar.sun.ac.za



environment of these food-borne pathogens [11]. Here a novel approach of analysing

the glucose metabolism of resistant strains to give us clues about their physiology,

which may influence their role in food preservation, was used (Chapter 6).

Bacteriocins form part of an even larger family of cationic antimicrobial peptides

(CAMPs). Most eukaryotic CAMPs form part of the innate human defence system,

protecting the skin and endothelial cell linings and aiding phagocytotic defence cells

against pathogenic invasion of the human body [22, 20]. CAMPs are determined to

exhibit electrostatic and hydrophobic interaction with the target cell permeability

barrier to exert their pore-forming activity [20]. The likelihood of target cells

modifying themselves in a similar way to defend action from these peptides is very

probable. Our findings of increased D-alanylation of teichoic acid (TA) and other

evidence of increased lysinylation of phospholipids could be important. Various

reports implicate modification of the cell surface anionic constituents by D-

alanylation of TA [30, 29, 32], lysinylation of phospholipid [31], increase in

zwitterionic lipid content [8, 36] and aminoarabinose substitution oflipid A of the cell

wall [13, 17] in CAMP resistance to pathogenic bacteria like, Staphylococcus aureus

and Salmonella enterica [28]. These changes will result in altered charge properties of

the cell surface and therefore influence the initial electrostatic interaction of CAMPs

leading to the most basic form of resistance.

The role of the receptor-mediation in activity of CAMPs, has only been suggested for

bacteriocins so far [6, 10, 3, 4, 16, 33]. Therefore, although similar mechanisms may

exist in resistance for bacteriocins and other CAMPs, negative charge reduction may

be a contributing factor for bacteriocin resistance, albeit a minor one. In addition, this

type of electrostatic interference may be a more important factor contributing to lower

levels of resistance similar to the levels shown by the L. monocytogenes B73- VI and

B73-V2 strains of our study, which showed slightly greater D-alanylation of teichoic

acid than the highly resistant variant, L. monocytogenes B73-MRl. Moreover, most

reports on the roles of teichoic acid D-alanylation [29, 32, 1] and phospholipid

lysinylation [31] in other CAMPs involved genetic inactivation of genes responsible

for these effects, which subsequently brought large changes in sensitivity of these

target organisms to the CAMP. Determination of factors influencing permeability

barrier charge in the different L. monocytogenes spontaneous mutants with various
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levels of class IIa bacteriocin resistance pointed to charge modulation of the cell wall

without a detectable genetic regulation.

Besides the effects of charge modifications on the electrostatic and hydrophobic

interaction of CAMPs, changes in lipid composition can also affect permeability of

the cells [28]. One of the CAMP resistance mechanisms against the Gram negative

organism S. enterica. involves decreased outer membrane permeability and possible

increased stability of the membrane structure by inclusion of an additional fatty acid

into lipid A in response to CAMP addition [18, 17, 13]. Changes in membrane fluidity

of L. monocytogenes cells in nisin resistance [25, 24, 8], and S. aureus cells in

resistant to thrombin-induced microbicidal protein [2] has also been a factor

influencing CAMP activity. Our study confirmed the occurrence of variations in

phospholipid content of resistant cell membranes (Chapter 3), and a possible increase

in membrane fluidity (Chapter 4). These membrane changes may possibly influence

the activity of class IIa bacteriocins. These altered membrane properties were further

observed to affect the proper folding of leucocin A, as indicated by the decreased a-

helical structure induced in the presence of the L. monocytogenes resistant cell-

derived liposomes. a-Helicity is necessary for optimal insertion of the a-helical

peptide into the target cell membrane [35, 12]. Alterations of the membrane

composition could also impact on variations in the hydrophobic [5] and electrostatic

nature of the membrane [28, 31]. The tendency of increased lysinylation of highly

resistant L. monocytogenes membranes (Chapter 5) is an indication of this. The

quantification of all the phospholipids in the resistant L. monocytogenes membranes

including the zwitterionic phospholipids like phosphatidylethanolamine which are

known to also be present [8] would shed more light on the charge effect of the

membrane.

Various levels of resistance were assessed to determine whether the identified

resistance-associated phenomena are particular to a specific resistance level. In

general it seems that several phenomena did exist at different levels of resistance, e.g.

increased short-acyl-chain and unsaturated fatty acids of phosphatidylglycerol,

possible increased membrane fluidity, increased D-alanylation of TA, and decreased

mannose PTS enzyme IIAB expression, were shown in all class IIa resistant strains. It

is, however, clear that influence of these resistance-associated phenomena varies in

the different level resistant strains, e.g.: (1) addition of a desaturase inhibitor

7-3

Stellenbosch University http://scholar.sun.ac.za



decreased unsaturated phosphatidylglycerol acyl chain content of all resistant strains,

but this caused alteration of the sensitivity of the intermediate resistant mutants only;

(2) D-cycloserine caused early onset inhibition in intermediate resistant strains; (3)

and slightly increased levels of D-alanine was present in TA of intermediate resistant

strains compared to the highly resistant cells of the L. monocytogenes B73 family of

strains. The various resistance phenomena discussed here indicate that more than one

alteration contributes to intermediate resistance.

One of the most important factors to consider here though is the role of the mannose

PTS permease as a possible receptor-type molecule mediating class Ha bacteriocin

activity [9] Our mutants confirm presence of a mannose PTS (mptACD) phenomenon

by down-regulation of MptA observed in all the resistant mutants. Additionally, the

induction of sensitivity in an insensitive Lactococcus laetis strain due to heterologous

expression of the L. monocytogenes mannose PTS [personal communication, M.

Ramnath], suggests a direct interaction between the mannose PTS permease and

bacteriocin. Studies involving physical interaction between the permease and

bacteriocin may however help in showing an absolute interaction of a receptor-type

molecule and class Ha bacteriocin. It is interesting to note here that the lipid II

docking molecule's role in nisin sensitivity [3,4], gives the impression that a receptor

requirement can be of great significance to the activity of class Ha bacteriocins and

the alternate phenomena exhibited by intermediate resistance strains should not

detract from this. It is also interesting that in the interaction of the lantibiotic

mersacidin and lipid II, electrostatics playa central role [21], and this may suggest a

similar mechanism for the mannose PTS permease and class Ha bacteriocin, thus

explaining the charge modulation we observed in our resistant mutants.

Alternatively, microarray gene expression studies showing up-regulation of the mptA

gene in an intermediate pediocin resistant L. monocytogenes (412C) strain and another

pediocin intermediate resistant L. monocytogenes (412N) strain [15] showing

reversion to a sensitive phenotype after inactivation of the penicillin-binding protein

[personal communication, A. Gravesen], may support other mechanisms associated

with different levels of resistance.

Finally, assessment of the metabolic impact of resistance and its other downstream

effects on normal cellular phenomena would probably serve as an informative method

to determine the commercial application of class Ha bacteriocins as bio-preservatives.
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Few studies have researched fitness costs associated with class IIa bacteriocin

resistance [10, 11] as an indication of stability of resistance and its implication on

spreading of resistant populations of the L. monocytogenes pathogen. Previous reports

suggested energy expensive metabolic processes as an explanation for reduced growth

rates of resistant L. monocytogenes [11]. The stability of the resistance phenotype and

the efficiency of glucose metabolism we have shown (Chapter 6), provides

disconcerting evidence regarding capability of resistance in L. monocytogenes. These

factors may result in unfavourable perceptions on the use of class IIa bacteriocins as

food preservatives. Elucidation of factors influencing resistance could provide new

ideas on how these peptides can be manipulated for effective use. Perhaps, it would be

best to use these bacteriocins in combination with various antimicrobial agents

showing different modes of action. This may then decrease the likelihood of a target

organism developing defences against a multitude of target sites to prevent

antimicrobial action.

In conclusion, this study indicates that class Ha bacteriocin resistance is a multi-

faceted phenotype, and gives us the impression that the use of class Ha bacteriocins in

food preservation should be viewed with some caution.
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