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ABSTRACT

The study of α clustering is a well-established topic of research in nuclear physics. Recent

experimental evidence has revealed the first 2+ excitation of the Hoyle state in 12C, which is

known to have a strong α cluster structure. The idea of multi-particle α cluster structures

in light nuclear matter has received much attention from theoretical investigations of late.

This research has profound implications in the fields of both nuclear structure and nuclear

astrophysics.

The 20Ne nucleus is a good example for α clustering, since many of its states are known

to have α clustering structures. Few low spin states are known at high excitation energies

of this nucleus. It is predicted that this nucleus contains a 0+ 5-α cluster state, a so-called

‘Hoyle analogue state’, above its 5-α break-up threshold at Ex = 19.17 MeV.

This thesis presents a study of the 20Ne nucleus with the 22Ne(p,t)20Ne reaction at lab-

oratory angles θlab =(0◦, 7◦, 16◦, 27◦). The iThemba LABS K600 magnetic spectrometer

was employed with a beam of energy Elab = 60 MeV, incident upon a 22Ne gas target held

intact by Aramid foils. The aim was to search for low spin states in 20Ne at excitation

energies above Ex = 15 MeV, and, possibly, to find an indication of the 5-α cluster state.

Three narrow states were discovered at energies of Ex = 20.59 MeV, Ex = 21.16 MeV

and Ex = 21.80 MeV. Calculations performed with the isobaric multiplet mass equation

indicate that these states may be T = 2 isobaric analogue states of three known states

in 20O. However, shell-model calculations indicate that these states may also have T = 0

or T = 1 isospin values. There is also evidence of a new state at Ex = 17.67 MeV and,

possibly, of a collection of new states which could not be resolved at Ex = 18.84 MeV.

A tentative candidate for the desired 5-α cluster state was observed, but this will require

another measurement with cleaner background to be confirmed.
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ABSTRACT 5

OPSOMMING

Alfa bondelvorming is ’n gevestigde navorsingsonderwerp in kernfisika. Daar is onlangse

bewyse vir die ontdekking van die 2+ opwekking van die Hoyle toestand in 12C, wat ’n

erkende alfa bondelstruktuur het. Die idee van multi-alfa bondelstrukture in ligte kerne

het onlangs baie aandag geniet in teoretiese ondersoeke. Hierdie navorsing het besondere

implikasies vir kernstruktuur, sowel as vir kernastrofisika.

Die 20Ne kern bied ‘n ideale voorbeeld vir alfa bondelvorming aangesien dit bekend

is dat baie van die kern se toestande alfa bondelstrukture het. Min lae-spin toestande

is by hoë opwekenergieë bekend in hierdie kern. Daar word voorspel dat ’n 0+ 5-alfa

bondeltoestand, ’n sogenaamde ‘Hoyle analoogtoestand’, bo die drumpel vir 5-alfa verval

by Ex = 19.17 MeV bestaan.

Hierdie tesis beskryf ‘n studie van die 20Ne kern met die 22Ne(p,t)20Ne reaksie by lab-

oratorium hoeke van θlab =(0◦, 7◦, 16◦, 27◦). Die K600 magnetiese spektrometer van

iThemba LABS is gebruik met ‘n proton bundel, by ‘n energie van Elab = 60 MeV, wat op

‘n 22Ne gas teiken omhul met aramid foelies gerig is. Die doel was om lae-spin toestande

in 20Ne by opwekenergieë bo Ex = 15 MeV op te spoor, en om moontlik ook ‘n aanduiding

van die 5-alfa bondeltoestand te vind.

Drie smal toestande is by energieë van Ex = 20.59 MeV, Ex = 21.16 MeV en Ex =

21.80 MeV opgespoor. Berekeninge wat met die isobariese multiplet massa vergelyking

uitgevoer is, dui daarop dat hierdie toestande T = 2 isobariese analoogtoestande van drie

bekende toestande in 20O kan wees, hoewel skilmodel berekeninge ook T = 0 en T = 1

kandidate aandui. Daar is ook bewyse van ’n nuwe toestand by Ex = 17.67 MeV, en

moontlik van ’n versameling nuwe toestande rondom Ex = 18.84 MeV wat nie uitmekaar

geken kon word nie.

‘n Tentatiewe kandidaat vir die gesogte 5-alfa bondel toestand is waargeneem, maar

nog ‘n meting met ’n skoner agtergrond word vir bevestiging benodig.
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CHAPTER 1

Introduction

Ever since the nuclear model of the atom was established by Ernest Rutherford in 1911,

α particles have been known to be electron-free helium nuclei. Rutherford also coined the

terms α-decay and β-decay when he differentiated between these two modes of radioactive

decay [1]. The discovery of α-decay from heavy elements like Radium, Thorium and

Uranium led to speculation that α particles might be preformed in atomic nuclei. In

the 1930s, Hafstad and Teller proposed that self-conjugate α nuclei may be described

as systems composed of A = 4n-α cluster structures [2]. Thus was born the field of α

clustering in nuclear physics.

Nucleons may exist as protons or neutrons in either spin-up or spin-down states. It is

therefore not suprising that the α particle completely fills the first 0s nuclear shell with

its constituent two protons and two neutrons in spin-up and spin-down states. It has a

remarkably high binding energy, and its first decay level is found at an excitation energy

of beyond Ex = 20 MeV [3]. This makes the idea of the α cluster as a fundamental subunit

of nuclei, especially self-conjugate α nuclei, very plausible.

Recently, there has been a great deal of interest in n-α clusters in light self-conjugate

α nuclei. The most famous example of such a state exists in 12C at an excitation energy

of Ex = 7.65 MeV. This state is a necessary condition for the generation of carbon during

helium fusion in α-particle rich stellar matter. Fred Hoyle first predicted the existence of

this state early in the 1950s [4], and soon afterwards it was measured within a few keV of

the predicted energy value [5]. Today, the Hoyle state is known to have a dilute gas-like

α-particle cluster structure through a number of theoretical studies [6, 7, 8, 9, 10, 11, 12,

13, 14], and a measurement of its radius [15]. The first ab-initio calculation of this state

indicates an obtuse triangular configuration of α clusters [16, 17].

A state which is analogous to the Hoyle state is expected in 20Ne above the 5-α break-

up threshold at Ex = 19.17 MeV, as indicated on the Ikeda diagram in Fig. 1.1 [18]. This

follows from the so-called ‘threshold rule’ for α clustering in light α-nuclei, which predicts

an n-α state near to the n-α break-up threshold of any self-conjugate n-α nucleus. The

nature and characteristics of these states are of fundamental importance to nuclear struc-

1
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1. Introduction 2

ture and to the nucleosynthesis of the elements [19, 20, 21]. The 20Ne nucleus specifically

is an ideal nucleus for studying α clustering since a number of its most prominent bands

may be described in terms of an α particle existing outside of a core of 16O, which is a

closed shell nucleus.

This thesis describes an experimental investigation of 20Ne, populated by means of the

22Ne(p,t)20Ne reaction. The aim was to map out the low-spin states of this nucleus, which

may include the proposed 5-α cluster state and possibly isobaric analogue states, in a high

excitation energy region (Ex = 15 - 25 MeV). Chapter 2 describes the different theoretical

models which were employed to choose the experimental angles and interpret the data,

while Chapter 3 describes the experimental setup, and Chapter 4 expounds on the data

analysis. Chapter 5 provides a discussion of the analysed data in terms of different models

from Chapter 2 and Chapter 6 presents a conclusion to the work.

This chapter proceeds with Section 1.1, which gives a historical overview of the study of

α clustering for light α nuclei in general and for the 20Ne nucleus specifically. Section 1.2

concludes this chapter with an overview of the experimental problems and the solutions

which were put forth.

1.1 Background of study

It has been found that α clustering is a phenomenon that is observed at certain excita-

tion energies in nuclei, but normally not in their ground states. A notorious exception to

this rule would be 8Be, which is unique among known self-conjugate α nuclei because of the

2-α cluster structure of its ground state [22]. The cluster structure of the 8Be ground state

is vitally important to the nucleosynthesis of 12C in stars. The 8Be 2-α cluster may pick

up another α particle and, provided that the necessary energy is present in the system, it

may form the Hoyle state in 12C [4, 5].

The Hoyle state has a narrow width (i.e. a significant lifetime), of which a large contri-

bution is from α decay, maintained by a large Coulomb barrier. These properties, and its

excitation energy value, do not fit into the framework of the nuclear shell model picture

[23].

Recently, theoretical investigations have indicated that the Hoyle state may be a state

of α condensate nature [24]. This has triggered a series of theoretical investigations into

the occurrence of α condensate states in light self-conjugate α nuclei i.e. 16O, 20Ne, 24Mg,
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FIG. 1.1: The Ikeda diagram, which indicates the threshold energies in MeV
of the different α-decay modes in the six lightest self-conjugate α-nuclei. Ac-
cording to Ikeda’s theory, a corresponding α-cluster state may be expected
above each threshold. This figure was taken from Ref. [18].

etc. [25, 26, 27, 28, 29, 30, 31]. The idea of α condensation in light α nuclei is analogous

to Bose-Einstein condensation from atomic physics, which has been observed through

the magneto-optical trapping of Rb and Na atoms. It is a topic of much controversy in

nuclear physics, and it will require further theoretical investigation as well as experimental

evidence [32, 33].

No threshold energy is indicated for 8Be in Fig. 1.1, since it already α decays in its

ground state. The 12C nucleus has its 3-α threshold at Ex = 7.27 MeV, which is 0.38 MeV

below the Hoyle state. A candidate for the 4-α cluster with the anticipated 0+ spin-parity

has also been identified at Ex = 15.10 MeV in 16O [34], 0.66 MeV above the 4-α threshold.

Such a state, like the 5-α cluster state in 20Ne, would be analogous to the Hoyle state in

12C.

It is known that the 12C that is formed in the three-α process, which is allowed by the

Hoyle state, may continue the element synthesis during stellar helium-burning by forming
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16O through the α capture reaction 12C(α,γ)16O. This reaction proceeds mainly through

the bound 7.116 MeV state in 16O, which is not a Hoyle-analogue state. Likewise, the

20Ne nucleus may be formed by the 16O(α,γ)20Ne α-capture reaction through states with

an α + 16O cluster structure [35]. Nevertheless, Hoyle-analogue states would provide

additional gateways for the stellar nucleosynthesis of 16O and 20Ne through 4- or 5-α

capture reactions. The 20Ne nucleus plays a pivotal role in the production of the α-nuclei

24Mg, 28Si, 32S, 36Ar and 40Ca through the α process, for instance [35]. Elucidating its

nucleosynthesis is key to our understanding of nuclear abundances.

Since it is one of the most abundant nuclei in the universe, it is not surprising that 20Ne

has been studied extensively with shell models [36], Hartree Fock calculations [37], and

cluster models [38]. Alpha cluster models in particular have had much success in describing

this nucleus [39]. Prominent α clustering bands in 20Ne include the Kπ = 0− and Kπ = 0+
4

rotational bands which have experimentally verified α + 16O cluster structures [40, 41].

The Kπ = 0+ ground state band and the Kπ = 0− band with its band head at

Ex = 5.79 MeV were once proposed to be inversion doublet bands with a parity vio-

lating α + 16O cluster structure [42]. It was soon discovered, however, that the Kπ =

0+ band does not have as good a cluster structure as the Kπ = 0− band. It is also not

well described as having a mean-field-like structure. Today it is described as having a

‘transitional character between mean-field like structure and cluster structure’ [38]. The

α + 16O cluster model space is not large enough to reproduce the Kπ = 0+
2 , Kπ = 0+

3 and

Kπ = 2− bands. To reproduce these bands, Fujiwara et al. used a model which includes

8Be + 12C cluster states coupled to α + 16O cluster states [43].

Experimentally, 20Ne has been thoroughly investigated with a range of reactions and

to date 233 states in 20Ne are known at excitation energies between the ground state and

Ex = 28.2 MeV [3]. Yet there remains a gap in our knowledge in the excitation energy

region beyond the 2+ state at Ex = 18.43 MeV. Above this energy there are 49 known

states which mostly have relatively broad widths (generally between 100 keV and 500 keV,

but sometimes even wider).

The existence of narrow states in this region might signify the existence of isobaric

analogue states (IAS) of known states in 20Ne isobars [44]. The highest known isospin

T = 2 state in 20Ne is the 18.43 MeV 2+ state, which is related to the 1.673 MeV 2+

state in 20O [45]. Its γ-decay is known to proceed through the second 2+, T = 1 state at
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Ex = 12.221 MeV [46]. The ground state of 20O also has a 20Ne analogue, in the form

of the strong 16.73 MeV 0+ state [45]. These two lowest T = 2 states of 20Ne were both

measured with the (p,t) reaction on 22Ne. This is a reaction of the form

[(Z,N + 2)T = 1, Tz = 1] + p −→ [(Z,N)T = 2, Tz = 0] + t, (1.1)

which has been proven to be effective at populating T = 2 states in Tz = 0 residual nuclei

such as 20Ne [45, 47]. Coulomb shift calculations predict isospin T = 2 states with the

following energies and spin-parities: 20.17 MeV 4+, 20.522 MeV 2+ and 20.845 MeV 0+.

These states would respectively be related to the following known states in 20O: 3.570 MeV

4+, 4.072 MeV 2+ and 4.456 MeV 0+ [48].

The discovery of the 0+ 5-α cluster state in 20Ne would be an even more exciting find

than the discovery of heretofore unknown IAS states. This requires an effective reaction

for measuring 0+ states.

1.2 On experimental methods

The present experiment was performed mainly to search for the 0+ 5-α cluster state,

which is expected above the 5-α break-up threshold at Ex = 19.17 MeV, and to pinpoint

its position by performing high-resolution measurements of the (p,t) 2 neutron pick-up

reaction on 22Ne utilising the K600 magnetic spectrometer at small angles, which include

zero degrees as well as larger angles. The experiment was also performed to map out other

low-spin states in the same energy region.

Around the region of the 5-α break-up threshold in 20Ne, only high spin Jπ ≥ 4+ states

are known, most probably because of the types of reactions used to populate these states.

These broad, high spin states are very dense in the energy region Ex = 17 to Ex = 25 MeV

[3]. Hence, one might expect a fair amount of overlapping between the higher spin states

and the 0+ 5-α state of interest. The high density of states in this energy region, which

is partly displayed in Table 1.1, is the chief obstacle to measuring the 5-α cluster state.

This problem should be mitigated by the high selectivity of the (p,t) reaction to 0+ states

at forward angles.

The initial plan was to investigate this energy region with the 20Ne(α,α’)20Ne reaction

since this reaction would provide the optimal cross section values to populate the 0+ α
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cluster state of interest. This plan was abandoned, however, after energy loss calculations

indicated that the resolution might be insufficient with an α beam using the gas target

cell described in Section 3.5.

The (p,t) reaction around 0◦ and at finite angles can also provide a selective probe to

search for the 0+ states in 20Ne. Various publications from recent years claim to have

measured a number of new 0+ and 2+ (i.e. low-spin) states in nuclei by means of the (p,t)

reaction at various angles from θcm = 0◦ to θcm = 50◦ [49, 50, 51, 52, 53]. At forward

angles, the L = 0 transitions which populate 0+ states are enhanced most, relative to the

interfering higher spin states. This may not be the most selective reaction for populating

α cluster states, but it is suitable for mapping out the low-spin states in the energy region

above the 5-α break-up threshold in 20Ne.

The (p,t) reaction is also a selective probe to investigate T = Tz + 2 states [54]. Consider

the following reaction in terms of conservation of isospin: A(N ,Z)[a,b]B(N ′,Z ′), where A

represents the target nucleus, B is the residual nucleus, a is the incident particle and b is

the ejectile particle. States will be populated in nucleus B with the following isospins:

~T ′B = ~TA + ~T a + ~T b. (1.2)

For a (p,t) reaction with TA ≥ 1, levels in nucleus B with T ′B = TA + 1, TA, and TA - 1

may be populated [54]. It follows that T = 2, T = 1 and T = 0 states may be populated

in the residual nucleus when the (p,t) reaction is performed on a T = 1 target nucleus

such as 22Ne. The T = 2 states in Tz = 0 nuclei such as 20Ne are normally located at

energies where the level densities are highly dense, therefore a selective reaction is required

to enhance T = 2 states with respect to nearby T = 1 and T = 0 states. Shell model

calculations and experimental evidence indicate that this is the case with the (p,t) reaction

on Tz = 1 target nuclei [54].

As mentioned before, the two lowest T = 2 states in 20Ne were reportedly measured

with the 22Ne(p,t)20Ne reaction in Ref. [45]. These data were recorded with a beam energy

of Ep = 43.7 MeV and at an angle of θlab = 25◦ for the ejectile tritons. A resolution of

150 keV FWHM (full-width-at-half-maximum) was obtained. This was improved by a

factor of close to 3 in the present measurement by using a thin gas target and the high-

resolution drift-chamber detectors of the K600 magnetic spectrometer. Also, the 22Ne gas
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in Ref. [45] was merely 91.3% pure, which is much less than what was made available for

this measurement.

FIG. 1.2: The triton energy spectrum from the 22Ne(p,t)20Ne measurement
is shown at the top, and the 3He energy spectrum from the 22Ne(p,3He)20F
measurement at the bottom. Both were measured at an angle of θlab = 25◦

with Ep = 43.7 MeV [45].

The L = 0 transition to the first 0+, T = 2 state in 20Ne, as observed in Ref. [45],

was strongly populated with a width defined by the experimental resolution, as shown in

Fig. 1.2. The L = 2 transition to the first 2+, T = 2 state is also observed, though it is not

as prominent. Fig. 1.2 also shows 22Ne(p,3He)20F data from the same experiment where

all the T = 1 and T = 2 states in 20F are populated. These states are aligned with their

analogues in 20Ne in the figure.
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Ex [MeV] Reaction Jπ Γ [keV]

19.051 A 5− 90
19.150 A 6+ 200
19.284 A 6+ 140
19.298 A 7− 430
19.443 A 6+ 130
19.536 A 6+ 250
19.655 A 6+ 140
19.731 A 8+ 330
19.845 A 6+ 360
19.859 A 5− 170
19.884 AB 7− 120
19.991 A 4+ 130
20.027 A 6+ 80
20.106 A 7− 190
20.150 ?
20.168 A 6+ 290
20.296 A 7− 255
20.341 A 5− 190
20.344 A 7− 135
20.419 A 6+ 215
20.445 A 6+ 370
20.468 A 5− 280
20.686 CAD 9− 78
20.760 AB 7− 240
20.800 A 5− 170
20.950 CA 7− 300
21.062 CADE 9− 60
21.300 AB 7− 300
21.800 CAB 7− 300
22.300 CAB 7− 500

TABLE 1.1: Known states in the region of the 0+ state of interest. A de-
notes the reactions 16O(α,α′) and 16O(α,2α′), B denotes 16O(6Li,d), C denotes
12C(12C,α), D denotes 16O(7Li,t), and E denotes 16O(12C,8Be) [3].
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Fig. 1.3 represents the masses of the analogue states in the neutron-rich isobaric neigh-

bouring nuclei of 20Ne which are reported in Ref. [45]. Prior to the present measurement,

only two T = 2 states in 20Ne were known, although several more T = 1 states were

identified since Ref. [45]. These two states, and possibly also other T = 2 states at

higher excitation energies (Ex ≥ 20 MeV), should be strongly populated by the present

measurement.

FIG. 1.3: A schematic representation of the masses of the T = 1 and T = 2
analogue states of 20Ne in the isobaric neighbouring nuclei 20F and 20O, shown
relative to the position of the ground state of 20Ne, from Ref. [45].

Measurements for the present study were also performed at a set of larger angles

θlab = (7◦, 16◦, 27◦) in order to characterise the spins and parities of the states populated.

These angles were chosen after distorted-wave Born-approximation (DWBA) calculations

were performed with the DWUCK4 code, which is described in Chapter 2.
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1. Introduction 10

Fig. 1.4 shows cross section data from a (p,t) experiment which was recently conducted

at the Research Centre for Nuclear Physics (RCNP) with a 24Mg target [53]. The 0+

states are clearly enhanced at angles near to 0◦ for the 24Mg(p,t)22Mg reaction which was

investigated, and they drop off very quickly as the angle increases. A similar effect is

observed in other cases with the (p,t) reaction on nuclei with similar or much heavier

masses [49, 50, 52, 53].

FIG. 1.4: Measured angular distribution plots from RNCP for six different
states measured with the 24Mg(p,t)22Mg reaction. Note how the 0+ and 2+

states in 22Mg are enhanced close to θcm = 0◦, and drop off as the angle in-
creases. The dotted curves were generated by DWBA calculations. This figure
is from Ref. [53].

A 22Ne gas target, which is described in detail in Section 3.5, was used for this exper-

iment. For measurements at larger angles, the length of the gas target could adversely

affect the resolution. Calculations shown in Section 3.5.1 indicated that this would not

be a problem for the envisaged angles and reaction. Nevertheless, a cryogenic gas target

system, which is described in Section 3.6, was developed as a back-up, in case there were

problems during the measurement.

To determine the optimal beam energy, a calculation based on the following equation

for determining the most favoured orbital angular momentum L of a (p,t) reaction was
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1. Introduction 11

performed [55]:

L =

√

2 ·mp

~2
· R · [

√

3 · (Ep −EC +Q) −
√

Ep − EC ]. (1.3)

In Eq. 1.3, the variables mp, Ep, EC , Q and R represent proton mass, beam particle kinetic

energy, Coulomb energy, reaction Q-value and interaction radius respectively. It was found

that the optimum energy is Ep = 34.9 MeV for a state located at Ex = 20 MeV, which

is roughly in the middle of the region of interest. For the 22Ne(p,t)20Ne reaction, which

has a Q-value of Q = -8.6 MeV [56], this would imply an ejectile energy of Et = 6.3 MeV.

This is far too low for a particle to reach the plastic scintillation detectors. Therefore, the

beam energy of Ep = 60 MeV was eventually selected as a compromise to allow particles to

reach the first plastic scintillation detector with sufficient energy to form the event trigger

signal (see Section 3.2.2). Table 1.2 shows the beam energies which were recorded during

the measurement.

Weekend # Beam energy
[MeV]

1 60.0
2 60.5
3 60.32
4 60.01

TABLE 1.2: The beam energies which were recorded for each weekend
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CHAPTER 2

Theoretical formalisms

Direct transfer reactions may be loosely described as the class of nuclear transfer reactions

where the wave functions of the initial and the final states have a good overlap, and where

little rearrangement of the target nucleus occurs. Typically, a direct reaction may affect

only one or two nucleons in the target nucleus, thus making it sensitive to single- or two-

particle excitations in the nucleus. Unlike compound nuclear reactions, such reactions

do not involve an intermediate phase where a compound nucleus is formed, hence the

timescale of such a reaction is typically comparable to the time required for the incident

particle to transit the nucleus. In a direct reaction, the nature of the excitation of the

residual nucleus depends on how it was formed, whereas in a compound reaction all the

information about the initial wave function is lost in the intermediate phase, apart from

the total angular momentum and parity. This makes direct reactions a very powerful

spectroscopic tool. Direct reaction theory is useful in testing shell-model predictions since

it provides information about few-nucleon excitations, or transfers, across or from shell-

model nuclear orbitals [57].

The distorted-wave Born-approximation (DWBA) theory may be used to predict the

strength with which a specific state will be populated by a one- or two-step direct nuclear

reaction, for a particular angle and beam particle energy. DWUCK4 [58], which is a code

for DWBA calculations, was employed prior to the experiment to select the experimental

angles. The coupled reaction channels (CRC) method may be used to describe multi-step

direct reactions. FRESCO [59], which is a CRC code, may be used together with NuShellX

[60], which is a shell-model based code, to calculate the strengths with which possible new

states with specific characteristics (isospins, spins, parities etc.) should be populated at

certain beam particle energies and detection angles. These codes were used to understand

newly observed states after the experiment. The isobaric multiplet mass equation (IMME)

may be used to calculate the energy of any member of an isobaric multiplet of isobaric

analogue states (IAS states) [61]. This equation was employed after the experiment to

determine whether some of the newly observed states may be members of such an isobaric

multiplet. The purpose of this chapter is to describe the theoretical formalisms behind

12
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2. Theoretical formalisms 13

these techniques.

2.1 DWBA calculation

DWBA theory treats the projectile and ejectile ions in a transfer reaction as moving un-

der the influence of long-range Coulomb and short-range nuclear forces. It assumes elastic

scattering to be the predominant component of a transfer reaction, and treats the inelastic

component as a perturbation. The elastic scattering is described by the phenomenological

optical model potential U . DWBA has traditionally been used to describe one-step re-

action processes between one nucleus and another [62]. Calculations with the DWUCK4

code for DWBA are performed using a zero-range interaction, which is an approximation,

especially for particle transfer reactions such as the (p,t) reaction [58]. In DWBA, the

cross section of any reaction with the form A(a,b)B may be written as

dσ

dΩ
=

µ

2π~2

vb

va

1

(2JA + 1)(2sa − 1)
ΣMAMBmamb

| TMAMBmamb |2 , (2.1)

where µ is the reduced mass of the whole system, va and vb are the projectile and ejectile

speeds, JA is the orbital angular momentum of the target nucleus, sa is the spin of the

projectile, and MA, MB, ma and mb are the masses of the target nucleus, residual nucleus,

projectile and ejectile respectively. The DWUCK4 code computes a transition amplitude

T for a reaction of the form A(a,b)B with the formula:

T = ϑ

∫

d3rb

∫

d3raχ
−(~kf , ~rb)

∗〈bB | U | aA〉χ+(~ki, ~ra), (2.2)

where χ− and χ+ represent the distorted waves, and ~ra and ~rb are the relative coordinates

for the respective systems (a,A) and (b,B). The variables ~ki and ~kf represent the momenta

of the incoming and outgoing spherical plane waves. The variable ϑ is the Jacobian for the

transformation of coordinates from the lab to the centre-of-mass frame for the (a,A) and

(b,B) systems, while 〈bB | U | aA〉 is the form factor for the reaction and must contain

a δ function between the coordinates ~ra and ~rb [58], in order to satisfy the zero-range

approximation. The optical model potential represents scattering in terms of a complex

potential U(r) [63]:

U(r) = V (r) + iW (r). (2.3)
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2. Theoretical formalisms 14

The real part of the potential V (r) is related to elastic scattering, while the imaginary part

W (r) accounts for absorption, and r represents the radius. The optical model potential

which was used for the present case is a combination of a Woods-Saxon volume and surface

derivative, with the real part [64]:

V (r) = Vc(r) + Vs(r) + VrC(r) + VRC(r) , (2.4)

where

• Vc = −VRf(r, RR, aR) is the central real part with radius RR and diffuseness aR,

• Vs = Vsoσ · lλ̄2
π(1/r)(d/dr)[f(r, Rso, aso)] accounts for the spin-orbit contribution,

• VrC = (Zze2/2Rc)[3−(r2)/R2
c ] is the Coulomb contribution at r ≤ RC (RC is the

Coulomb radius), and

• VRC = Zze2/r is the Coulomb contribution at r ≥ RC .

The imaginary part of the potential may be written as:

W (r) = WV (r) +WS(r) , (2.5)

where

• WV = −Wvf(r, R′
W ,a′W ) is from the imaginary volume, and

• WS = WSF4aW (d/dr)[f(r, RW , aW )] is the imaginary surface term.

The function f(r, R, a) in V (r) and W (r) has the Woods-Saxon form:

f(r, R, a) = [1 + e(r−A/a)]−1 . (2.6)

The remaining variables mentioned above are defined as follows:

• σ · l is the scalar product of the intrinsic and orbital angular momentum operators.

• j and l are the total and orbital angular momentum quantum numbers of the pro-

jectile.
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2. Theoretical formalisms 15

• λ̄π is the pion Compton wavelength.

• Z and z are the charges of the target and projectile respectively.

All radii in these equations were calculated with R = rA1/3. The accuracy of the present

DWBA calculations depend on the values chosen for the optical model parameters VR, rR,

aR, WV , WSF , rW , aW and rc.

Calculations were performed with this code for the first three states from the

22Ne(p,t)20Ne reaction, with a proton beam energy of Ep = 60 MeV. These calculations

used the zero-range force constant from Ref. [65] (D2
0 = 26.2×104 MeV2fm3) to generate

the absolute cross section values which are shown in the angular distribution plot in Fig.

2.1. The results indicate an absolute maximum for 0+ states at θcm = 0◦, a minimum

at θcm = 20◦, and a second maximum at θcm = 29◦. This is in good agreement with the

measurement, coupled-channels Born approximation (CCBA) and DWBA calculations for

22Ne(p,t)20Ne at a proton beam energy of Ep = 40 MeV from Ref. [66] shown in Fig.

2.2. The angles which were chosen for the current experiment are indicated on Fig. 2.1.

The centre-of-mass angle of θcm = 17.5◦ was selected since the spectrometer scattering

chamber experienced vacuum problems related to its sliding seal at θcm = 20◦.

 [degrees]cmθ
0 10 20 30 40 50 60 70 80 90

]
-1

 [m
b.

sr
σ

-110

1

10

+0

+2

+4

 = 60 MeV
p

Ne(p,t) at E22DWBA for 

FIG. 2.1: Angular distribution predictions for states from the 22Ne(p,t)20Ne
reaction with Ep = 60 MeV from DWUCK4 calculation. The green lines
indicate the centre-of-mass angles which were selected for the experiment.
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2. Theoretical formalisms 16

FIG. 2.2: Data measured at Ep = 40 MeV (round circles) from Ref. [65] are
compared to CCBA (solid lines) and DWBA (dashed lines) calculations for
the 0+, 2+ and 4+ ground band states of 20Ne [66].
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A list of the optical model parameters which were used are shown here in Table 2.1.

The centre-of-mass angles chosen for the non-zero angle measurements translate into the

laboratory angles for the 22Ne(p,t)20Ne reaction that are indicated in Table 2.2.

Channel VR rR aR WV WSF rW aW rc

[MeV] [fm] [fm] [MeV] [MeV] [fm] [fm] [fm]

p+22Ne 52.2 1.11 0.57 6.2 1.11 1.11 0.50 1.11
t+20Ne 160.4 1.20 0.72 25.0 1.40 1.40 0.84 1.30

TABLE 2.1: The optical model parameters for the DWUCK4 calculation.
These values were taken from the calculations in Ref. [65].

θcm θlab

[degrees] [degrees]

7.7 7.0
17.5 16.0
29.0 27.0

TABLE 2.2: The centre-of-mass angles corresponding to the non-zero labo-
ratory angles which were investigated

2.2 Coupled reaction channels

DWBA theory is most successful in describing reactions where the interactions between

particles are comparitively weak i.e. for low beam energies or light ions. For reactions

which involve a larger inelastic component, related to phenomena such as nucleon transfer,

nuclear deformations and single particle excitations [62, 67], DWBA becomes inadequate.

In such cases it is reasonable to use coupled-channels (CC) calculations. In these cal-

culations, a finite number of reaction channels are considered, and the interactions are

described to any or all orders for these channels [67]. The effects of couplings to channels

outside of this chosen finite number are described by a complex optical potential. With

CC calculations, the effects of multi-step processes may be described, where with DWBA

this is possible only for one- or two-step processes. When rearrangement processes are

considered, this method becomes known as the coupled reaction channels (CRC) method

[57].

With the CRC method, a two-step process such as (p,d;d,t) may contribute to the (p,t)

transfer reaction [57]. The FRESCO code for CRC calculations can simulate finite-range
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transfer interactions for a number of mass partitions and any number of nuclear excitations

in each partition [59]. A mass partition in this context may refer to the two nuclei a + A

before, or to b + B after, a transfer reaction of the form A(a,b)B [57]. FRESCO is based

on the CRC model for direct reactions, in which a model is constructed for the system

wave function, and Schrödinger’s equation is then solved as accurately as possible within

this model space. The model used for FRESCO projects the complete wave function Ψ̄

onto a state which is a product φi = φip×φit of projectile and target states with a wave

function ψi(Ri) which describes their relative motion [62]:

P Ψ̄ = Ψ = ΣN
i φiψi(Ri). (2.7)

The symbol P represents the projection operator in Eq. 2.7. The basis states may be

either bound states of their respective nuclei, or discrete representations of continuum

levels. The states φi may be in different mass partitions, or they may be excited states

of the projectile or target in any one of the mass partitions. By projecting Schrödinger’s

equation separately on each basis state φi, one may derive the set of equations:

[Ei −Hi]ψi(Ri) = Σj 6=i < φi | H − E | φj > ψj(Rj), (2.8)

where Ei is the asymptotic kinetic energy in the ith channel, and H is the model Hamilto-

nian for the CRC system. Eq. 2.8 couples together all the unknown wave functions Ψi(Ri)

[62].

2.3 Shell-model calculations

Nuclear physicists developed the nuclear shell model after witnessing the success of

the atomic shell model in describing atomic structure. The discovery of the so-called

‘magic number’ nuclei, which are nuclei with remarkably high binding energies at certain

numbers for Z and N , supported the idea of shell closures in nuclei. The nuclear shell

model assumes that the motion of each individual nucleon is determined by a potential

which is created by all the other nucleons in a nucleus. This treatment allows individual

nucleons to occupy the energy levels of a series of subshells [63].

The time-dependent Schrödinger equation HΨ = EΨ cannot be solved exactly for

most nuclear systems due to the many-body nature of such calculations. To mitigate
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this problem, the Configuration Interaction (CI) Method, which includes the nuclear shell

model [68], was developed. In the CI method, the nuclear Hamiltonian is written as:

H = T + V = [T + Vmf ] + [V − Vmf ] , (2.9)

where T is the kinetic energy operator and V is the potential energy operator. The mean

field potential Vmf is chosen as a single particle interaction (i.e. n-nucleus interaction)

such that

Vmf = ΣA
i=1v(ri), (2.10)

where v(ri) is the potential related to the ith individual nucleon in the mean field at

position ri in the nucleus. The mean field Hamiltonian H0 = T + Vmf is selected to be a

reasonable approximation to the exact solution to the many-body Schrödinger equation,

making H1 = V - Vmf relatively small and solvable by perturbation theory. The CI method

is used to solve nuclear problems by selecting an inert core of mass Ac occupied by single

particle levels in a nucleus of mass A, thus reducing the problem to one with Aval valence

nucleons, with mass Aval = A - Ac, which may be configured in any possible way in the

valence orbital space. This space is usually chosen according to Harmonic Oscillator (HO)

shells, i.e. the N = 0, 1, 2, 3 shells corresponding to the s, p, sd and pf model spaces

[68]. For the present case, an inert core consisting of doubly magic 16O was chosen, which

implies calculations involving 2 valence protons and 2 valence neutrons in the sd model

space from A = 17 to A = 40. To solve the eigenvalue problem, the NuShellX code for

nuclear shell-model calculations was employed. The calculations were carried out in the sd

model space with the USDB Hamiltonian [69] using the code NuShellX@MSU [70]. These

calculations involved two-body matrix elements for the valence protons and neutrons. A

total of 63 matrix elements and 3 single-particle energies were used [60, 69].

Only states with positive parity values π could be calculated, since π = (-1)l for states

in HO shells (l = 0 for s-orbital or l = 2 for d-orbitals in sd-shell). Intruder states,

resulting from particle-hole p-h excitations across the p-sd shell gap for example, were

not calculated since they were not included in the model space. The shell-model diagram

in Fig. 2.3 represents the 16O nucleus for either protons or neutrons, with an empty

sd-shell. The states in 20Ne generated by NuShellX were used to perform the coupled

reaction channels calculations for the 22Ne(p,t)20Ne reaction with the FRESCO code. All
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calculations using FRESCO and NuShellX were performed by Alex Brown [71].

FIG. 2.3: The first three nuclear shells (left) and their nuclear orbitals (right)
filled up to N = Z = 8, which corresponds to 16O. The red balls may represent
either protons or neutrons. This diagram is taken from Ref. [72].

2.4 Isobaric multiplet mass equation

2.4.1 On isospin

The charge-independence of nucleon-nucleon interactions, which is embodied in the

concept of isospin, is the reason for remarkable symmetries in nuclei which are most

apparent near the N = Z line [73]. The isospin quantum number T , which was first

applied to nuclei by Werner Heisenberg in 1932 [74], describes protons and neutrons,

which have the same spins (S = 1
2
) and nearly the same masses, as two different states of

the same particle. In the isospin approach, all nucleons are assigned the same isospin of

t = 1
2
, but different isospin projections of tz = +1

2
and tz = -1

2
for neutrons and protons,

respectively. Therefore, the isospin projection Tz of a nucleus with N neutrons and Z

protons is calculated with Tz=(N -Z)/2. The minimum allowed isospin in a nucleus is

T = |Tz|.
A nucleus in an isobaric multiplet is characterised by its Tz. In even nuclei (i.e. nuclei

with an equal number of protons and neutrons), such as 20Ne, Tz = 0 and most states

in such a nucleus will have T = 0. This means that a nuclear state with an identical

configuration of nucleons cannot be constructed in the isobaric neighbour of this nucleus. If

it were possible to construct a corresponding state with the same configuration of nucleons
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in an isobaric neighbour nucleus with Z+1 protons and N -1 neutrons, but not in the

nucleus with Z+2 and N -2, then these two states would constitute isobaric analogue

states (IAS states) of each other with isospin T = 1. A corresponding state, which would

be another IAS state of the two aforementioned states, could then also be constructed in

the nucleus with Z-1 and N -1. In the same way T = 2 states could be constructed in five

isobaric nuclei, T = 3 states in seven isobaric nuclei and so forth [73].

The decay of high isospin states is governed by the following isospin selection rules [75]:

A transition from an initial state with isospin Ti to a final state with isospin Tf , through

an isospin tensor operator of degree l, is allowed if

| Ti − l |≤ Tf ≤ (Ti + l) . (2.11)

For a single-particle process, such as β- or γ-decay, l can only be 0 or 1, thus simplifying

the rule to Tf = Ti, Ti±1. Therefore, a nuclear state with T > Tz may undergo γ-decay to

states with T = T , T±1 in the same nucleus, or β-decay to states in neighbouring nuclei

with T = T , T±1. There are small energy differences between IAS states which may be

attributed to a charge-dependence in the forces between nucleons. Charge symmetry of

the attractive nucleon-nucleon force V requires that

Vnn = Vpp , (2.12)

while charge-independence requires the former condition as well as

Vnp = Vnn = Vpp (2.13)

to be met. These two conditions are generally broken in nuclei, but with only slight

deviations in both cases [73]. This is observed by investigating the energy levels of mirror

nuclei i.e. pairs of nuclei with identical A-numbers, but with Z-numbers Z1 = A + x and

Z2 = A - x where x is an integer. The energy levels of such nuclei are nearly identical

proving that the nucleon-nucleon force is nearly, but not entirely, charge-independent. The

charge-dependence originates not only from the Coulomb interaction between protons, but

also from charge-dependent forces of nuclear origin. Today, the latter are understood to

result from the mass difference between u and d quarks and the electromagnetic forces
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between these fundamental particles [76]. This isospin symmetry breaking is the reason

that isospin is considered to be an approximate, but not an exact quantum number [77].

Fig. 2.4 illustrates this phenomenon for the case of A = 20 isobars. The pairs of mirror

nuclei, (20Mg, 20O) and (20Na, 20F), have almost identical energy levels, but with a small

shift in energy which raises the proton-rich nuclei to higher energies.

FIG. 2.4: An isobar diagram of A = 20 nuclei, showing the nuclear energies
of states in the first T = 1, Jπ = 2+ triplet, in 20Na, 20Ne and 20F, and the first
T = 2, Jπ = 0+ quintet which appears in all five nuclei on the diagram. The
ground state energies of the isobars of 20Ne are indicated with respect to the
ground state energy of 20Ne, in square brackets [78].

2.4.2 The IMME calculations

2.4.2.1 Basic equations

It has been found that, assuming that the wave functions of the 2T + 1 members of an

isobaric multiplet are considered identical apart from Tz, and that only two-body forces

are responsible for the perturbing charge-dependent effects, the masses of the members

of such a multiplet may be calculated with the isobaric multiplet mass equation (IMME)
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[79]. The IMME

M(A, T, Tz) = a(A, T ) + b(A, T )Tz + c(A, T )T 2
z (2.14)

may also be used to calculate the mass energy M of any state with isospin T in a nucleus

with isospin projection Tz and mass number A [61, 80, 81]. The first term a, the isoscalar

term, is related to the strong interaction and is responsible for most of the nuclear binding

energy [77]. The coefficient b is related to the Coulomb interaction [77], and in the case

of 20Ne it may be calculated as

b =
B(20F) − B(20Ne)

2
, (2.15)

where B denotes the binding energies of these isobaric neighbours of 20Ne. The coefficient

c is related to the charge asymmetric parts of the nucleon-nucleon interaction [77], and for

this case is

c =
B(20F) +B(20Na)

2
− B(20Ne) . (2.16)

After these coefficients were determined, the following relationship between the binding

energy of a nucleus with two extra neutrons B2n and that of its isobaric partner nucleus

with no extra neutrons B0 was invoked:

B2n = B0 + 2b+ 4c . (2.17)

For the present case, where states observed in 20Ne are compared to possible analogues in

20O, Eq. 2.17 becomes

B2n(20O) = B0(
20Ne) + 2b+ 4c . (2.18)

The IMME methodology described here was employed by Werner Richter [82], using the

experimental energy values which were extracted for the new states in Chapter 4.

2.4.2.2 With IMME code

Calculations were also attempted with the code IMME.C [81], which is a mass prediction

code written with C++ programming language in ROOT version 5 [83]. This code, which

is displayed in Appendix A, uses the formalism of Ref. [84], which is briefly described here.
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The Coulomb energy expectation value is:

Ec(A, T, Tz) = E(0)
c (A, T ) − TzE

(1)
c (A, T ) + [3T 2

z − T (T + 1)]E(2)
c (A, T ) , (2.19)

where E
(0)
c , E

(1)
c and E

(2)
c represent the scalar, vector and tensor Coulomb energies. The

mass of any member of an isobaric multiplet may be written as:

M(A, T, Tz) = M0(A, T ) + Ec(A, T, Tz) + ∆nhTz , (2.20)

where M0 represents the charge-free nuclear mass and ∆nh = 782.354 keV is the neutron-

hydrogen mass difference. The Coulomb energy term from Eq. 2.19 is substituted into

Eq. 2.20, to obtain the coefficients of the IMME equation:

a = M0 + E(0)
c − T (T + 1)E(2)

c , (2.21)

b = ∆nh −E(1)
c , (2.22)

c = 3E(2)
c . (2.23)

If the nucleus is considered as a homogeneously charged sphere with radius R = r0A
1/3,

one may write [61]:

E(1)
c =

3e2A2/3

5r0
, (2.24)

E(2)
c =

e2

5r0A1/3
, (2.25)

for the vector and tensor Coulomb energies. The values of b and c may be calculated by

solving Eqs. 2.22 and 2.23. The a coefficient depends upon the scalar Coulomb energy

E
(0)
c , which cannot be separated from the charge-free nuclear mass M0.

The IMME.C code proceeds by calculating E
(0)
c for members of an isobaric multiplet

with Eq. 2.14 (the IMME equation) and Eq. 2.21. The known masses of experimentally

observed nuclei are used for M and M0 where M is the proton-rich nucleus of interest

and M0 is the nucleus such that M0 = M(N + 1, Z − 1). This calculation is performed

successively, from the neutron-rich to the neutron-deficient side of a series of isobars, until

the nucleus of interest is reached. The values of E
(0)
c , obtained from these calculations,
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are plotted against Z, and the value of E
(0)
c is extrapolated for the nucleus of interest.

This way, the Coulomb effect is incorporated by the E
(0)
c term in the a-coefficient of the

IMME, by the change in mass energy which was induced every time a proton was added

and a neutron was removed. After calculating the a-coefficient, the IMME may be solved

for the final nucleus of interest [81].

In the calculations for IAS states of 20Ne, this code was employed to find the mass

excess of the 20Ne nucleus, by using the masses of all known nuclei with Z < 10 and

A = 20. It was also used to calculate the masses of all (N − 2, Z + 2) nuclei of the near-

lying self-conjugate α nuclei 8Be, 12C and 16O. These calculated values are consistently

higher than the known experimental values, as was also observed with the calculations

in Ref. [81]. The opposite was observed for odd-odd nuclei, as shown in Fig. 2.5 from

Ref. [81], with the calculations consistently predicting lower-than-measured values. It was

presumed that this may be attributed to the pairing energy, which lowers the energy of

an even-even nucleus, and increases the energy of an odd-odd nucleus.

Hence, it was necessary to obtain an estimate of the pairing energy correction for A = 20

nuclei to produce reliable mass predictions in this isobaric region. To do this, a linear fit

through the calculated mass excess values (from the IMME.C code) of 8C, 12O and 16Ne

was used to obtain a mass excess value for 20Mg. The difference between this value and the

known experimental mass excess of 20Mg was used as an estimate of the pairing energy.

The following equation was employed to calculate the energies of IAS states in the final

nucleus of interest:

E ′
x(N,Z) =ME(N + 2, Z − 2) + Ex(N + 2, Z − 2) −ME(N,Z)

− ∆Epair(N − 2, Z + 2) − I(N,Z) ,
(2.26)

where ME(N,Z) refers to the known experimental mass excess of the self-conjugate α

nucleus of interest, 20Ne in the present case, ∆Epair(N − 2, Z + 2) refers to the pairing

energy as calculated for the nucleus with two more protons in the same isobaric multiplet,

which would be 20Mg in the present case, and I(N,Z) is the calculation, with the IMME.C

code, of the mass excess of the nucleus of interest. This whole procedure is illustrated in

terms of the chart of nuclides in Fig. 2.6. The first three terms of Eq. 2.26 may be reduced

to the mass excess of the state chosen in the nucleus with (N + 2, Z− 2), 20O in this case,

with respect to the mass excess of the nucleus of interest with (N,Z). The fourth term
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provides an estimate of the pairing energy present in A = 20 nuclei, estimated with the

IMME.C code for the case of proton-rich nuclei calculated from the known values of their

neutron-rich isobars, and the fifth term gives a value of the ground state mass excess of the

20Ne nucleus, calculated with neutron-rich isobars. The results shown in Table 2.3 were

obtained by applying this procedure to known T = 2 states in light self-conjugate α nuclei.

The calculations are mostly within 1 MeV of the known experimental values. The lowest

two T = 2 states in 20Ne are predicted at about 600 keV below the known experimental

values, therefore this method may be trusted to give some indication of where IAS states

may be expected in the 20Ne excitation energy spectrum, based on known energy levels

in 20O. This method has some level of success specifically for light self-conjugate α nuclei.

The discrepancies between predicted and experimental values may possibly be attributed

to the uncertainty related to the calculation of the pairing energy.
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FIG. 2.5: Deviations from experimentally known values for calculations of the
mass excesses of even nuclei with the IMME.C code, taken from Ref. [81]. In
even-even nuclei, the mass excess is always over-predicted by the code, owing
to a higher binding energy which results from the pairing effect. In odd-odd
nuclei, the opposite occurs.
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FIG. 2.6: Illustration of the procedure used to calculate IAS states with the
IMME.C code, in terms of the chart of nuclides (for the case of 20Ne). The
nuclide chart is taken from Ref. [3].

Nucleus Experimental Ex(N + 2, Z − 2) [3] Calculated Ex(N,Z) Experimental Ex(N,Z) [3]
[MeV] [MeV] [MeV]

12C 0 28.54 27.595
16O 0 23.323 22.721

1.77 25.089 24.522
20Ne 0 16.133 16.73

1.674 17.807 18.43

TABLE 2.3: Calculated values from IMME.C code for excitation energies
of known T = 2 IAS states in self-conjugate α-nuclei, compared to known
experimental values
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CHAPTER 3

Experimental setup and method

For this work, a proton beam with an energy close to Ep = 60 MeV (see Table 1.2) was

provided for four weekends by the Separated Sector Cyclotron (SSC) facility at iThemba

LABS Western Cape [85]. This facility is shown diagrammatically in Fig. 3.1.

Protons were delivered to the SSC from the Solid Pole Injector Cyclotron 1 (SPC1),

which has an internal Penning Ion Gauge (PIG) ion source. From here, they were steered

through the X, P1, P2 and S lines before being delivered to the K600 magnetic spectrom-

eter vault, which is where the measurement of the (p,t) reaction on a 22Ne gas target took

place.

FIG. 3.1: Floor plan of the iThemba LABS cyclotron facility

28
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3.1 The K600 magnetic spectrometer

The iThemba LABS K600 magnetic spectrometer [86] is based on the K600 spectrometer

of the Indiana University Cyclotron Facility (IUCF), which was decommissioned in 1999.

Today, the IUCF K600 forms part of the beamline of the Grand Raiden magnetic spec-

trometer [87] at the Research Centre for Nuclear Physics (RCNP) in Osaka, Japan. The

Grand Raiden spectrometer is the only other magnetic spectrometer in the world which

can perform high energy resolution measurements (FWHM ≤ 50 keV) at θlab = 0◦ with

medium energy beams in the range of Ebeam = 50 - 400 MeV.

The K600 light ion spectrometer is illustrated in Fig. 3.2. It derives its name from

its K-value of K = 600, which is the maximum magnetic rigidity of charged particles for

which it is designed. K is calculated with the equation

K =
mE

q2
, (3.1)

where m is the atomic mass number of the particle, q is its charge state, and E is its

kinetic energy in MeV [81]. The spectrometer can therefore measure scattered protons or

α particles with energies up to Ep = 600 MeV, and tritons up to Et = 200 MeV.

The spectrometer may be operated in the zero degree mode or at a range of larger

angles. It can measure triton spectra from the (p,t) reaction with typical resolutions of 32

keV at Ep = 100 MeV and 48 keV at Ep = 200 MeV [86]. When its magnetic fields are set

to the appropriate values to measure the (p,t) reaction in its focal plane, most contaminant

particles (such as protons, deuterons and α-particles) will not have sufficient rigidity to

also reach the focal plane. Contaminant particles that do reach the focal plane may be

separated from the triton particles using the energy loss and time-of-flight information.

(see Section 3.2.2).

Hence, theK600 spectrometer can measure high resolution (p,t) spectra devoid of major

particle background. It was also found that, at Ep = 60 MeV, its energy resolution would

not be excessively hampered by the use of the gas targets described in Sections 3.5 and

3.6. This makes the K600 an ideal experimental tool for investigating 20Ne with the (p,t)

reaction on a 22Ne gas target.

After passing through the last S-line magnets in the K600 vault, the proton particles

reach the scattering chamber, which is located at the turning axis of the spectrometer (see
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FIG. 3.2: Schematic layout of the K600 magnetic spectrometer for zero degree
and finite angle measurements with detectors in the medium dispersion focal
plane

Fig. 3.2). This chamber has a diameter of 524 mm and houses the target ladder. The

different ladders that were employed are described in Sections 3.5.5 and 3.6.2.

A round brass collimator with a diameter of 49 mm and a thickness of 51 mm at a

distance of 735 mm from the target centre was used during data taking. This implies an

angular acceptance of ∆θlab = ±1.91◦ from the central laboratory angle.

The K600 spectrometer consists of five active elements, namely the two dipoles (D1

and D2), a quadrupole Q in front of D1, and two trim coils (K and H). The K-coil is used

to correct for first-order aberrations, while the H-coil is used to correct for the effect of

second-order aberrations on the excited state line shapes and to optimise the resolution.
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Different beam stops are required for zero degree and finite angle measurements with the

K600 spectrometer. These are described in Section 3.3. This experiment employed the

medium dispersion focal plane of the spectrometer, mainly at θlab = 0◦ during Weekends

2 and 3, and at finite angles during Weekends 1 and 4.

3.2 The focal plane detector package

The focal plane detector package for any K600 experiment consists of vertical drift cham-

bers (VDCs) and plastic scintillation detectors (plastic scintillators/paddles) situated

downstream from the VDCs. The paddles provide the event trigger for the VDCs to

begin collecting drift time information. The detectors are placed on steel support rails as

shown in Fig. 3.3. The present experiment employed two VDCs and one plastic scintilla-

tion detector during data taking.

FIG. 3.3: The focal plane detector package: two plastic scintillation detectors,
which have photomultiplier tubes at both ends, are positioned to the left on
the steel support rails. Two VDCs are positioned to their right on the same
rails. The pre-amp cards of the VDCs are connected to the VDC PC board
at the top of the two drift chambers. The ribbon cables connect the pre-amp
cards to the electronics. High voltage cables are connected to the sides of the
VDCs.
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3.2.1 The VDCs

A VDC is a type of multi-wire drift chamber (MWDC). It relies on the ionization of

gas molecules to cause electron drift towards the signal wires under a uniform electric

field, where electron avalanching takes place to induce the electrical signal [88]. It has the

capability of measuring the arrival times of the pulses precisely from its wires. Therefore,

with the drift velocity of electrons within the chamber known, the path of an incident

particle through the chamber may be determined [81, 88]. This is required to have the

position sensitivity to achieve the necessary resolution through track reconstruction.

A cross-sectional drawing illustrating the main components of the drift chambers used

in this study is shown in Fig. 3.4 [89]. It was filled with a mixture of 90% Ar and 10%

CO2 gas. This gas fills the distance of 8 mm between the wires and the aluminium HV

(high voltage) planes to either side of the signal wire plane. The HV planes induce the

uniform electric field when high voltage is applied to them. They are stretched equally in

all directions to become almost perfectly flat [81]. Two 25-µm-thick mylar planes isolate

the interior of the drift chamber from the atmosphere [90].

FIG. 3.4: A cross-section through a VDC illustrating the main components
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The wire plane consists of 50-µm-diameter gold-plated tungsten guard wires and 20-

µm-diameter gold-plated tungsten signal wires interspersed between them [90]. The signal

wires record the data, while the guard wires define drift cells to each individual signal wire

with a width of 4 mm and a length of 8 mm to the HV planes on both sides of the wire

plane.

Two different models of VDC were used during this experiment:

1. An X-only VDC, which consists of 199 guard wires and 198 signal wires, all vertical

[90]. This model has 2 HV planes on either side of the wire plane.

2. A newer X-U VDC, which may be rotated to be used as a U-X chamber as well. It

contains an X plane with 201 guard wires and 198 signal wires, all vertical, followed

by a U plane with 146 guard wires and 143 signal wires slanted at 50◦ with respect

to the horizontal. This chamber provides the additional ability of measuring vertical

position information. The X- and U-wire planes are interspersed between 3 HV

planes [81].

For the first two weekends of data taking, one X-only VDC was employed, followed by

an X-U VDC. After the second weekend, it was found during offline analysis that not much

is gained from the vertical position information, in terms of eliminating background data.

Hence, for the third and fourth weekends, two X-only VDCs were employed, in order to give

triton ejectile particles less material to penetrate en route to the first plastic scintillation

detector. The X-wire planes provide horizontal position information almost over the entire

length of the 800 mm × 100 mm medium dispersion focal plane. Incident scattered and

reaction particles traverse the wire planes at angles from 28◦ to 42◦, which means crossing

5 or 6 X-wires and 3 or 4 U-wires while in the chamber. With accurate particle track

reconstruction, followed by a correct focal plane position-to-energy calibration, the VDC

becomes a powerful tool to generate excitation energy spectra in atomic nuclei.

3.2.2 The Scintillation detectors

The plastic scintillators provide the trigger signals for data collection in the focal plane,

and also generate particle identificaton (PID) spectra through the energy loss (∆E) and

time-of-flight (TOF) information it provides. The scintillators are made of BC-408 plastic
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scintillator material [91] and they are wrapped in aluminised mylar to make them light-

tight. The area dimensions of the paddles are 122 cm × 10.2 cm on the side facing

towards the beam. They are connected by adiabatic light guides to photomultiplier tubes

at both ends, from which the signals go to the electronics [90]. The paddles and their

photomultiplier tubes are covered by a thin layer of paper to shield the photomultiplier

tubes and light guides from light within the vault. This experiment employed one 1/4”-

thick paddle P1, followed by a 1/2”-thick paddle P2.

Energy loss calculations were performed, based on the specifications of materials, shown

in Table 3.1, that the tritons would traverse. For the case of tritons with an energy of

Et = 32 MeV, which is very close to the region of interest, the ejectile particles enter

P1 with very little energy (see the first row of Table 3.2). Therefore, the particles are

stopped within a short distance and produce a weak signal in the photomultiplier tubes

of P1. To strengthen this signal, and to ensure that triton particles with energies down

to Et = 30 MeV reach this paddle, the paper layer of P1 was cut open on the upstream

side of the detector as in Fig. 3.5. With this layer of paper removed, a triton which

started at Et = 32 MeV before exiting the K600 vacuum could now reach P1 with an

energy of E ′
t = 13.7 MeV, as shown in Table 3.2. Since these particles would not have the

energy to pass through P1 and reach P2, the paddles were operated in P1 only logic mode

during (p,t) data taking. Certain lights within the vault cannot be switched off during

experiments, e.g. the magnet safety lights. To prevent such light from causing unnecessary

scintillations within the opened paddle, the interior of the paddle was screened off. Fig.

3.6 shows the paddle in position for the experiment, next to the second VDC.

Magnetic rigidity calculations indicate that, for tritons in the main energy region of

interest for this experiment, i.e. from Et = 28 MeV to Et = 34 MeV, deuterons are the

only other particle species which will also reach the focal plane in significant numbers.

The anticipated energy loss of deuterons in the paddles is shown in the third row of Table

3.2, since this would be one method of separating the tritons from the deuterons.

Early in each weekend, the (p,p′) mode was utilised for beam tuning at a field setting

suitable for Ep = 55 - 60 MeV protons. In this case, it was calculated that the ejectile

particles should deposit a large amount of energy in both paddles, as shown in the fourth

row of Table 3.2. Therefore, P1 and P2 were used in coincidence during (p,p′) beam tuning.
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Material Thickness Effective thickness
[mm] [mm]

Kapton 0.075 0.128
Air 620.0 1054

Mylar 0.050 0.085
Ar-CO2 gas 48.0 81.6

Al 0.12 0.20
W 0.10 0.17

Paper 0.40 0.68
Paddle 1 6.35 10.80

Air 100.0 170.0
Paper 0.40 0.68

Al 0.058 0.10
Paddle 2 12.70 21.6

TABLE 3.1: A summary of the materials seen in the focal plane by the
particles after exiting the K600 vacuum chamber, for the case of one X-U
VDC, followed by a 1/4”-thick scintillator and a 1/2”-thick scintillator. The 2nd

column lists the real material thickness, and the 3rd column lists the effective
thickness traversed by particles at an incident angle of 35◦.

Particle E into P1 ∆EP1 Range in P1 ∆EP2 Range in P2
[MeV] [MeV] [mm] [MeV] [mm]

t - (paper included) 1.87 1.87 0.0032 0 0
t - (paper removed) 13.7 13.7 0.87 0 0
d - (paper removed) 35.1 35.1 6.43 0 0
p - (paper included) 49.5 16.2 10.80 31.1 9.03

TABLE 3.2: A summary of the calculated energy loss values of ejectile parti-
cles through the paddles. The calculations were performed for an initial triton
energy of Et = 32 MeV, a deuteron energy of Ed = 48 MeV, and a proton
energy of Ep = 55 MeV.
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FIG. 3.5: The 1/4”-thick paddle scintillator cut open to present less material
to low energy tritons

FIG. 3.6: The paddle in position for the experiment, next to the second VDC

TOF information is generated by the time difference between paddle signals and the

beam RF signal. Therefore, calculations were performed to obtain approximate values of

the TOF regions which the tritons and deuterons might inhabit for the highest and lowest

triton energy ranges to be investigated. The TOF is calculated relativistically with

TOF =
d

v
, (3.2)
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where the velocity v is calculated by

v = c ·

√

1 −
(

M

Etotal

)2

. (3.3)

The distance d is varied between minimum and maximum flight path values of d = 7.78 m

and d = 8.87 m for a particle travelling from the target to the medium dispersion focal

plane. The mass and total energy of the particle is represented byM and Etotal respectively,

and c denotes the speed of light in Eq. 3.3. The results of these calculations, shown in

Table 3.3, indicate that it is possible to differentiate the tritons from the deuterons using

TOF selection.

Particle Triton E-range TOF-range
[MeV] [ns]

d 52.9 - 43.8 n/a
t 52.9 - 43.8 142 - 156
d 34.2 - 28.5 118 - 129
t 34.2 - 28.5 176 - 192

TABLE 3.3: The TOF ranges of deuterons and tritons at two different triton
energy settings. It is kinematically impossible to observe deuterons in the
52.9 - 43.8 MeV triton range since their energies would then be 65.7 MeV and
higher.

At a beam energy of Ebeam = 60 MeV, a time interval between beam packets from the

cyclotron is merely 41 ns, which is more than a factor of 4 smaller than some of the values

in Table 3.3. This means that there will be wrap-around of TOF regions, which could

result in two particles from two consecutive beam pulses with different real TOFs being

measured in the same 41 ns region. The TOF information in Fig. 3.7 was generated by a

code which takes this wrap-around into account. The result of Fig. 3.7 indicates that the

TOF ranges of the tritons and the deuterons should not overlap.

As a safeguard against possible time overlap from deuterons, pulse selection of one in

every five beam packets was employed. By this means, the full TOF information of both

particles is exploited as a beam packet arrives once every 205 ns. Hence, different particles

can be separated more easily. Thus any possible interference with the triton locus from

deuterons which deposit little energy to P1 is eliminated.

As soon as the triton locus from the (p,t) reaction was identified, its signal strength in
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the Pad1 vs TOF spectrum was adjusted by optimising the paddle voltages, in order to

keep the tritons out of the low-energy background.
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FIG. 3.7: The anticipated energy loss values in Paddle 1, plotted against
the TOF ranges expected to be measured in the 41 ns TOF window (without
pulse selection) for the tritons and the deuterons at the triton energy range
Et = 34.2 - 28.5 MeV.

The measured TOF spectra were compared to these predicted values and the energy

loss spectra were interpreted according to the relationship:

−dE
dx

∝ (Ze)2

v2
, (3.4)

which holds as a corollary of the Bethe-Bloch equation [92]. Particles which reach the

paddles with different velocities (and therefore energies) will, for that reason, have different

energy loss characteristics. These were used to set software gates on the regions of interest

in PID spectra.

3.3 The beam stops

3.3.1 The finite angle beam stop

The scattering chamber beam stop shown in Fig. 3.8 was used for the non-zero or finite

angle measurements. This beam stop makes it possible to collect data at spectrometer an-

gles between θlab = 5◦ and θlab = 21◦ degrees, which implies a minimum central K600 angle

of θlab = 7◦ and a ±1.91◦ angular range. At smaller spectrometer angles, the background

from this beam stop becomes unacceptable for effective data taking [90].
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FIG. 3.8: The scattering chamber beam stop seen from the target ladder

3.3.2 The zero degree beam stop

The alternative L-shaped beam stop shown in Fig. 3.9 was inserted between D1 and D2

during the θlab = 0◦ measurements. This is a composite beam stop made of three separate

brass blocks which each have their own connection to the current integrator box in the

K600 vault [90]. The position of the beam in the spectrometer can therefore be traced

during an experiment by looking at the beam current measured on each component. The

same model beam stop was used successfully in the past for (p,t) measurements at θlab = 0◦

[93].
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FIG. 3.9: The L-shaped zero degree (p,t) beam stop

3.4 Dispersion Matching

With a non-dispersion matched or achromatic beam, the positions and angles of particles

which reach the target are independent of their kinematics. This means that the spatial

and angular resolution in the spectrometer focal plane is limited by the momentum and

angle spread of the beam particles [90]. The K600 spectrometer provides lateral, but not

angular, dispersion matching. In lateral dispersion matching, the beamline magnets are

adjusted so that the particles with higher momenta have to travel a longer distance to

the focal plane than the particles with lower momenta. The beam is adjusted in this way

until the effect of the initial momentum spread of the beam on the resolution is mini-

mized. Eventually, resolution values down to the limit of the spectrometer’s measurement

capability may in principle be achieved by employing this technique [90]. This experiment

utilised a dispersion matched beam from the SSC, which means that, at the target, the

dispersion of the beamline was matched to the dispersion of the spectrometer so that a

resolution that is superior to the energy variation in the beam could be achieved at the

focal plane [94, 95]. For a detailed description of dispersion matching, refer to Ref. [96].

Stellenbosch University  http://scholar.sun.ac.za



3. Experimental setup and method 41

3.5 The 22Ne uncooled gas cell target

Most of the data for this experiment were obtained using an uncooled gas cell target with

a thickness of 10 mm. There were initial concerns about this target for measurements

at angles of θlab = 20◦ and beyond, where the length of the target poses a potential

problem. Particles scattered from the front of such targets have different scattering angles

to particles scattered from the back. This is detrimental to the resolution and accuracy

of both the focal plane position and the scattering angle determination. The calculations

based on Ref. [97], in Section 3.5.1, indicate that the 10-mm-thick target could still be

sufficiently thin up to an angle as large as θlab = 30◦. Nevertheless, the gas cell development

work in Section 3.6 was performed to address potential resolution issues associated with

using such a thick gas cell. The gas cell described in Section 3.6 could also provide the

advantage of a higher areal density of material for the same absolute thickness of the gas

cell.

3.5.1 Resolution

This section describes calculations and a previous measurement, which were used to esti-

mate the resolution of the uncooled gas target cell.

3.5.1.1 Energy resolution

These calculations were performed for a gas cell thickness of T = 10 mm and an ejec-

tile triton energy of E0 = 33.0 MeV: The relativistic relationship between energy and

momentum is as follows:

∆pT

p0
= α

∆ET

E0
(3.5)

where ∆pT is the momentum uncertainty due to the cell thickness, ∆ET is the energy

uncertainty due to the cell thickness, p0 is the averaged momentum and E0 the averaged

kinetic energy of the scattered particles. The factor

α =
(E0 +M)

(E0 + 2M)
, (3.6)
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where M is the mass of the ejectile particles, therefore

α =
(33.0 + 2809.0) MeV

(33.0 + 2 × 2809.0) MeV
= 0.503 . (3.7)

In terms of the ion optics of the spectrometer, it is also known that

∆pT

p0
=

∆xT

D
, (3.8)

where ∆xT is the distance at the focal plane between particles scattered at the front and at

the back of the gas cell, and D = (x|∆p
p

) is the momentum dispersion of the spectrometer.

For the K600 magnetic spectrometer:

D = 0.084 m/% (3.9)

and

(x|x) = 0.52 , (3.10)

where (x|x) is the horizontal magnification of the spectrometer [90]. The distance ∆xT in

the focal plane between particles can therefore be written as

∆xT = (x|x) × T.sinθlab = 0.0052 × sinθlab m, (3.11)

where θlab is the scattering angle. Inserting Eq. 3.8 into Eq. 3.5 yields:

∆xT

D
= α

∆ET

E0

. (3.12)

Inserting the known values from above, this becomes:

∆ET =
E0.∆xT

D.α
= 21 keV (3.13)

for a scattering angle of θlab = 30◦. The total energy resolution ETOT is a quadratic sum

of the resolution when the cell thickness equals zero ∆ET=0, and the energy uncertainty

owing to the cell thickness ∆ET .

∆ETOT =
√

∆E2
T=0 + ∆E2

T . (3.14)
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=⇒ ∆ETOT =
√

(50 keV)2 + (21 keV)2 = 54 keV. (3.15)

From these calculations it is clear that energy resolution values below 60 keV could be

achieved with the 10-mm-thick gas cell target even at an angle of θlab = 30◦. This is

acceptable for the present measurement, since it provides the means to measure the widths

of states that are much narrower than what has previously been observed in the energy

region of interest in the 20Ne nucleus. Furthermore, the 5-α cluster state may be expected

to have a width of at least a few hundred keV, therefore its width could be accurately

determined with an energy resolution below 60 keV.

3.5.1.2 Angular resolution

The uncertainty of the scattering angle (θ = θlab) on account of the gas cell target thickness

is expressed as θT,tgt. It may be calculated with the following equation:

θT,tgt =
(θ|x)
(θ|θ) × T sinθ (3.16)

where (θ|x) and (θ|θ) are matrix elements of the K600 with the following known values

[90]:

(θ|θ) = −1.90 (3.17)

(θ|x) = −8 mtan.cm−1 = −0.8 rad.m−1. (3.18)

Therefore:

θT,tgt(θ) = 0.0042.sinθ rad (3.19)

=⇒ θT,tgt(30◦) = 0.0021 rad = 0.12◦ . (3.20)

This additional spread in angular range is also acceptable. According to the calculations

for both energy and angular resolution, a thinner target is not indispensable for performing

the measurement, even at the largest considered angle of θcm = 30◦.

3.5.1.3 Resolution of previous gas cell measurements

The 10-mm-thick gas cell target was successfully used previously for the experiment “Res-

onance States in 30S, 34Ar and 38Ca Nuclei using the (p,t) Reaction and Reaction Rates in

the Rp-Process”, hereafter referred to as experiment PR137b [98, 99]. During that exper-
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iment, 20Ne gas was used to investigate the 20Ne(p,t)18Ne reaction. Fig. 3.10 illustrates

the setup which was used for experiment PR137b. It basically consists of a cell with two

aramid windows of 6 µm thickness which contains the gaseous material.

FIG. 3.10: The gas target frame with aramid windows from experiment
PR137b [100]

Fig. 3.11 shows data that were acquired with the 20Ne gas target at θlab = -1.2◦ during

experiment PR137b [98]. The K600 magnets were set to measure states in the excitation

energy range of Ex = 0 to Ex = 9.5 MeV in 18Ne. At a beam energy of Ep = 100 MeV,

resolution values as low as FWHM = 30 keV could be obtained with a 20Ne gas pressure

of P = Patm. This proves that sufficient resolution values may be achieved, despite the

energy loss through the aramid windows and target material. Similar resolution values

could be expected with the 22Ne gas target at forward angles. The desired beam energy

of Ep = 60 MeV provides a smaller spread in incident beam energy, although straggling

and multiple scattering will introduce a larger energy spread at lower beam and ejectile

energies.

Based on the experience gained during experiment PR137b, as well as the calculations

in Sections 3.5.1.1 and 3.5.1.2, it was decided that the uncooled gas cell could be used

for the θlab = 0◦ and larger angle measurements of this experiment. Resolution values
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achieved during the current experiment are displayed in Figs. 4.36 to 4.39 in Chapter 4.
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FIG. 3.11: This 20Ne(p,t)18Ne spectrum at θlab = -1.2◦ and Ep = 100 MeV
was obtained by S. O’Brien et al . in experiment PR137b. Peaks from the
20Ne(p,t)18Ne reaction have blue labels, while peaks from the aramid foil have
black labels. A resolution of 30 keV was obtained on the ground state with a
gas pressure of P = Patm and the peak positions could be determined to within
10 keV [98].

Stellenbosch University  http://scholar.sun.ac.za



3. Experimental setup and method 46

3.5.2 The gas cell

The gas cell consists of a body of aluminium with two foils on either side clamped down

onto the body by two aluminium end plates. Fig. 3.12 presents a drawing of the 10-mm-

thick body of the gas cell. The dimensions of its stadium-shaped entrance area are 1×3

cm2. The edges of this entrance area and the end plates are smoothened to prevent foil-

damage upon application of differential gas pressure to the foils. The single hole on the one

side of the cell is an opening for a gas pipe fitting. This hole contains a groove for a rubber

O-ring which provides sealing. The top face of the cell body contains a stadium-shaped

groove which runs around the central opening of the cell. This groove is for another rubber

O-ring. There are also two parallel rows of six holes each, and one more hole on the side

opposite the gas pipe opening.

The tapped holes (excluding those on the four corners), are for screws to fasten a plate

to the top of the gas cell. The four smaller holes that remain, which are situated at each

of the corners, are for thinner screws to secure the entire gas cell system (body and two

plates) to the target ladder. Holes are punched through the two 6 µm thick aramid foils,

one for each side, for fitting screws. The foil is inserted between the plate on one side

and the cell and O-ring on the other. By fastening the screws, the plate is clamped tight

against the cell, so that the O-ring is compressed and thus provides good sealing.

FIG. 3.12: The body of the 10 mm thick gas target cell
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3.5.3 The aramid foils

The aramid material was obtained from RCNP in Japan, who purchased it from the Toray

company [101]. Its chemical composition is C14O2N2Cl2H8 and the weight ratios are (C,

O, N, Cl, H) = 54.74, 10.42, 9.12, 23.09, 2.63. Its density is reported as 1.5 mg.cm−3 and

its thickness has been calculated at t = 5.5 µm, assuming the aforementioned density. Its

areal density was measured to be ρ = 0.8273 mg.cm−2 [101, 102].

After the fourth weekend of data taking, a dark brown and a light brown spot were

visible on each of the aramid foils. These spots were presumed to correspond to regions

irradiated with the beam with target angles of θtgt = 0◦ and θtgt = 27◦ respectively. An

ion beam analysis test was performed at the Materials Research Department of iThemba

LABS to verify the purity of this foil and to investigate the change in its composition due

to the beam after the experiment, using the foils which were employed during Weekend 4.

A microfocused proton beam with energy Ep = 3 MeV and intensity Ip = 100 pA was

delivered from the Van de Graaff accelerator to the nuclear microprobe that was used to

investigate this foil with Rutherford backscattering spectrometry (RBS) and a microPIXE

(Proton Induced X-ray emission) analysis [103]. For the microPIXE measurement, a

proton beam induces characteristic X-ray emission from the heavier elements in the foil,

which may be used to interpret the composition of trace elements on the foil with relative

accuracy of 10% to 20% [104].

The RBS technique is used to determine the thickness of the foil by looking at the yield

and energy distribution of backscattered ions. This information is used to correct the

microPIXE data for the self-absorption of X-rays in the foil, hence, by using RBS in con-

junction with microPIXE, the relative compositions of trace elements could be determined

very accurately [104].

The elemental map of chlorine within and around the region irradiated by the 60 MeV

protons was obtained with the technique of Dynamic Analysis using the software package

GeoPIXE [105, 106]. These maps, shown in Fig. 3.13, display a dramatic change in the

chlorine composition of the foil in the pair of regions, corresponding to the front and back

foils, that were irradiated at θtgt = 0◦ during Weekend 4. These regions were irradiated

with beam currents of about Ip = 15 nA on average for a period of roughly 40 hours during

Weekend 4. On the front foil, the average chlorine composition of the foil decreases from

15.16% outside of the irradiated regions to 6.55% within the region that was irradiated at
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θtgt = 0◦. Chlorine atoms appear to have been sputtered off the aramid foil in this region.

For the last 16 hours of Weekend 4, the target angle was changed to θtgt = 27◦ for the

measurements at θlab = 27◦, thus causing the foils to be irradiated at different regions

of both foils. A similar beam current was applied and the effect seen in Fig. 3.13 was

observed again, but to a lesser extent corresponding to the difference in beam time spent

on the two target angles.

The sputtering of chlorine that is observed in Fig. 3.13 raises the question whether the

same occurred with the carbon, oxygen and nitrogen atoms. In the RBS spectrum in

Fig. 3.14, the carbon peak is clearly seen to be thinner in the spectrum measured inside

the irradiated region. However, Table 3.4 indicates no significant change in the relative

stoichiometries of carbon, oxygen or nitrogen inside and outside this spot. Since carbon,

oxygen and nitrogen constitute more than 80% of the total mass of the foil, it must be

assumed that all 3 these elements were sputtered off the foil to some degree to bring

about the observed difference in thickness inside and outside of the irradiated region. The

dramatic change in the thickness of the chlorine peak in Fig. 3.14 serves as further evidence

that this element was sputtered off the foil.

This result makes the normalisation of the foil-related background with the gas-filled

target data problematic for Weekend 4. This normalisation is necessary to perform accu-

rate background subtraction at θlab = 16◦ and θlab = 27◦. The same problem was presumed

not to occur at θlab = 0◦ and θlab = 7◦, since the normalisation of the background measured

at these angles did not require any compensation for a change in the foil thickness during

beam time. This is probably because these angles experienced either far smaller beam

currents (Ip = 1 nA) or shorter counting times.

Foil Thickness C O N Cl
[µm]

Front (outside spot) 6.0 ± 0.30 830 90 70 10
Front (inside spot) 5.0 ± 0.25 823 100 70 7
Back (outside spot) 6.0 ± 0.30 821 90 80 9
Back (inside spot) 5.7 ± 0.29 823 90 80 7

TABLE 3.4: The stoichiometries of elements on the foils inside and outside
of the regions that were irradiated at θtgt = 0◦, deduced from RBS data. The
numbers should add up to 1000 in each row.
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FIG. 3.13: MicroPIXE maps of the chlorine composition (in %) of the aramid
foils are shown for the front and back foils at left and right respectively. The
darker regions are where the foils were irradiated at θtgt = 0◦.
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FIG. 3.14: The RBS spectra measured outside (black spectrum) and inside
(red spectrum) the irradiated region
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Fig. 3.15 shows X-ray spectra from trace contaminants on the foil generated by a

microPIXE analysis. The largest trace contamination was from Si on the front foil, outside

the irradiated region, at a relative composition of 0.0035%. It is noticeable that traces of

potassium, calcium, iron, copper and zinc were found in the irradiated region on the back

foil, but not on the front (see Table 3.5). The reasons for this are unclear, but it does not

affect the 22Ne(p,t)20Ne data.
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FIG. 3.15: MicroPIXE spectra displaying chlorine and all the trace contam-
inants inside the region irradiated at θtgt = 0◦ on the front foil are shown by
the red spectrum and those on the back foil are shown by the blue spectrum.

Element Front foil (inside spot) Back foil (inside spot)

Cl 65487 ± 569 (24) 111619 ± 122 (6.9)
Si 3297 ± 135 (74) 3108 ± 122 (21)
P 418 ± 116 (39) 645 ± 186 (12)
S 1189 ± 145 (32) 1344 ± 209 (9.4)
K 47 ± 2 (3.1)
Ca 99 ± 3 (2.5)
Fe 56 ± 5 (1.2)
Cu 6.3 ± 0.8 (1.9)
Zn 7 ± 2 (1.8)

TABLE 3.5: Compositions of trace contaminant elements on the foils in ppm
(parts-per-million), inside the region irradiated at θtgt = 0◦. The detection
limits are shown in brackets.
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3.5.4 Gas contaminants

Peaks from gas contaminants in the energy region of interest pose potential problems,

therefore measurements were performed with an Extorr residual gas analyser (RGA) to

estimate the positions and strengths which could be expected from such peaks in the

22Ne(p,t)20Ne energy spectra. The RGA is a quadrupole mass spectrometer with a built-

in Pirani gauge and an ion gauge which constantly monitor the total pressure. With these

gauges, the RGA can measure the total gas pressure from atmospheric pressure P = Patm

to high vacuum P = 10−9 mbar, and partial pressures at below P = 10−12 mbar. At these

low pressures the RGA uses a filament composed of thoria coated iridium to perform mass

measurements [107].

The 22Ne gas was obtained from Chemgas in Boulogne, France, who reported it to be

99.97% isotopically pure [108]. The RGA spectrum in Fig. 3.16 a) indicates the singly-

charged 22Ne+ gas ions at a partial pressure close to P = 2×10−4 mbar, about 30 times

higher than singly-charged 1H+, which is the next most prominent ion in the spectrum.

Doubly charged 22Ne is also noticeable at a pressure of P = 1×10−6 mbar. The majority of

contaminants in the 22Ne spectrum (e.g. N2, O2, H2O, CO2, the hydrocarbon chains, etc.)

correspond to ions that are also visible in the vacuum spectrum in Fig. 3.16 (bottom).

Most of these ions, excepting 20Ne and the argon isotopes, for instance, are also present

in the aramid foils, which means that they must make minor contributions to the aramid

peaks in the (p,t) spectra measured with the spectrometer. Seven isotopes of xenon are

observed at masses from A = 128 to A = 136. The isotopes 129Xe, 131Xe and 132Xe have the

highest partial pressure values, all of which are close to P = 3×10−9 mbar. This is 5 orders

of magnitude lower than the 22Ne gas. Furthermore, the 129Xe(p,t)127Xe reaction has the

largest combination of Q-value for the (p,t) reaction (Q = -8.0 MeV) and highest known

excitation energy value in the residual nucleus (Ex = 9.52 MeV), giving it an effective

Q-value Qf :

Qf =| Q | +Ex = 17.52 MeV . (3.21)

The 22Ne(p,t)20Ne reaction has aQ-value ofQ= -8.64 MeV. The most important excitation

energy region for this experiment lies beyond Ex = 15 MeV, which requires a minimum

effective Q-value Qf = 23.64 MeV. Hence, these xenon isotopes do not present a problem

for the measurement [56].
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FIG. 3.16: The RGA data in a) were obtained with 22Ne gas at
P = 1×10−5 mbar, and in b) the vacuum data were measured at
P = 1.3×10−7 mbar.
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3.5.5 The target ladder

The target ladder used in this experiment is shown in Fig. 3.17. It contains, from the top:

• a gas cell filled with 22Ne gas at the beginning of the weekend,

• a spare gas cell kept empty until required,

• a ZnS scintillating viewer for focusing the beamspot,

• a single aramid foil for background measurements (thickness = 12.5 µm for Weekends

1 to 3, thickness = 6 µm for Weekend 4),

• a 2 mg.cm−2 12C target for calibration, and

• an empty background target for halo measurements.

FIG. 3.17: The target ladder used during the second weekend of data taking.
Apart from minor adjustments, the target ladders used for the other weekends
were the same as this one.
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Both of the top two slots contain a target cell with 6-µm-thick aramid foils spaced

1 cm apart. The fourth and fifth slots from the top contain round frames of diameter

D = 25 mm. The gas pipes from the two gas cells both lead through a valve to a mutual

gas pipe which leads through another valve to the gas bottle, as shown in Fig. 3.18. There

is also a mutual venting valve, indicated in Fig. 3.18. Thus, by opening the valve to one

cell and closing the valve to the other, one could vent a gas cell, or fill it from the bottle,

without affecting the other cell. Pipes with a diameter of 1/8” were used throughout to

minimise gas loss.

FIG. 3.18: The gas handling system operating between the gas bottle and
the gas cells. Each valve is indicated by a blue circle with a ‘V’ written inside
it.
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3.6 Cryogenic gas target development

A target was designed to operate at temperatures of around T = 100 K, compressing the

material by a factor of 3, according to the ideal gas law PV =nRT. This makes it possible

for a target with a thickness of 3 mm to have the same effective thickness of material as

an uncooled target with a thickness of 9 mm. It was designed as a safety measure, in case

the desired resolution values were not achieved with the 10-mm-thick target discussed in

Section 3.5, and it was used for the first weekend of data taking.

3.6.1 Choice of foils

Tests were performed on aramid foils thinner than 6 µm and on mylar, which would have

been particularly useful since it contains carbon and oxygen, but not nitrogen or chlorine.

These foils were found to be too unstable for experiments with the beam. Another option

that was considered was to use aluminised mylar, which would have been far more durable

than pure mylar. However, calculations showed that the 27Al(p,t)25Al reaction would

produce an intrusive continuum of 25Al states in the 20Ne excitation energy region around

Ex = 20 MeV. Hence it was decided to resume using the 6-µm-thick aramid foils described

in Section 3.5.3.

3.6.2 The new gas target ladder

At T = 100 K, rubber O-rings become rigid and shrink, and thus they can no longer

provide effective sealing of the gas cell against a leak into vacuum. A mixture of Araldite

Standard slow-setting epoxy adhesive was therefore considered as an alternative to seal

the gas inside the target.

The aramid foils were glued directly to the body of the gas cell. To accommodate the

glue, the groove for the O-ring was removed and all the holes for screws were removed,

apart from the four in the corners required for attaching the cell to the target frame. The

edges of the inner ring of the cells and cover plates, which were still used for sealing to some

degree, were rounded to protect the aramid foil. The gas cell surfaces were sand-blasted

to provide some grip for the glue.

The gas target ladder was redesigned as shown in Fig. 3.19. This design provides ther-

mal conductivity (see Section 3.6.3) and makes the glueing process effective by providing

ample space and few holes to avoid when applying glue. The bottom two gas target po-
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sitions in this design have steel gas pipes connected to them. The middle one, which has

no gas pipe fitting, was used for background measurements with two 6-µm-thick aramid

windows. The top two slots were left open for the viewer and a calibration target (in this

case a 12.5-µm-thick aramid foil was used).

The Araldite mixture was homogeneously applied to the top of the gas cell before the

aramid foil was applied to the gas cell. Then a kapton foil, followed by several sheets of

paper and a lead block were put on top of this. The kapton was used to prevent glue from

sticking to the paper. The paper was used to prevent any of the surface irregularities of

the lead block from harming the foil. The weight of the lead block was used to ‘seal’ the

area where the aramid foil came into contact with the gas cell, while the glue was left to

set for at least 90 minutes.

At the end of the 90 minutes, the lead block, paper and kapton were removed and any

paper sticking to the gas cell was removed with a blade. At this stage, the gas target frame

was turned around and the same procedure was repeated on its other side. Aluminium

side plates were then fastened on both sides of the gas cells and clamped tight for extra

sealing. The plates that were used in this last step were identical to the ones used with the

original gas target, except for the fact that they had only four holes, one in each corner

as shown in Fig. 3.20.

Initially, the gas cells were glued up to the edges of their inner rings. This method was

not very successful since gas leaks usually occurred somewhere along the edge of the inner

ring. It is possible that the Araldite glue, upon drying, may form sharp edges on the foil

inside the gas cell opening, which could, with the application of differential pressure to

the gas foil, create regions of increased tension in the foil, which could cause the foil to

tear. To prevent this, the areas immediately around the outer edges were kept clean of

any glue in the tests that followed, as well as in the final product. This is illustrated in

Fig. 3.21. Some glue could still run to the inner edge of the cell, but the distance around

the edge where foil damage could occur due to the glue would be smaller, leading to a

smaller probability of damage.

The next step was to cut a glue groove with a depth of about 1 mm into the inner

ring of the gas cell target. Any glue which could accidentally run off to the inner edge

would then drop into this groove where it could not touch the aramid foil and form sharp

edges on the foil inside the gas cell opening. This would make the glueing process more
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FIG. 3.19: The cryogenic gas target ladder. The bottom two target positions
are for gas targets and hence are connected to two steel gas pipes. The middle
target position is for aramid background measurements and the empty top two
positions are for the viewer and a calibration target. The three copper blocks
form a copper frame for thermal conductivity. The gas pipes are connected to
the gas handling system.

reproducible. It would also increase the area of contact between foil, glue and cell, which

would make it less probable for air to tunnel through this area. The prototype shown

in Fig. 3.22 was built, but this plan unfortunately was abandoned due to lack of time
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FIG. 3.20: Aluminium side plates used for clamping on both sides of the gas
cells

FIG. 3.21: The target gas cells with aramid foils. The Araldite glue was not
applied around the edges of the openings in these cells.

for proper testing. In the future, this technique may be explored for similar gas target

experiments.

FIG. 3.22: A test gas target cell with glue grooves cut around its inner ring

3.6.3 Gas flow and thermal conductivity

This gas target needed to make thermal contact with the liquid nitrogen in the Dewar

flask on top of the spectrometer scattering chamber shown in Fig. 3.23. At the same time,

it was a requirement that the target ladder was able to move between all five target ladder
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positions. The usual plastic gas pipes supplying gas to the gas cells cannot operate at

the liquid nitrogen temperatures, therefore an alternative system with metal pipes which

could fit into the chamber at any of the five ladder positions had to be found.

FIG. 3.23: The Dewar flask on top of the spectrometer scattering chamber,
being filled with liquid nitrogen. The 22Ne gas bottle can be seen below and
to the right of the Dewar flask.

To solve the first problem, the following was done: A copper frame consisting of three

copper blocks shown in Figs. 3.19 and 3.24 was built to fit around the edges of the target

ladder. A heat-conducting compound was applied inside the grooves of these blocks to

provide a thermal bond with the stainless steel body of the target ladder. Two braids

of copper were used to join this to the body of copper shown in Fig. 3.25. This body of

copper was connected to the body of the Dewar flask that was filled with liquid nitrogen.

With the flexibility of the braided wires, the target ladder could be driven up and down

while maintaining thermal contact between itself and the Dewar flask.
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FIG. 3.24: The cryogenic gas target ladder with copper frame and aluminium
plates attached

To solve the second problem, the steel pipes shown in Figs. 3.19 and 3.24 were built

to form part of the gas cell targets. These steel pipes were connected, via plastic pipes

to maintain the mobility of the ladder, to the pipes in Fig. 3.26 which lead to the gas

handling system illustrated in Fig. 3.18. Copper braids were wrapped around all these

pipes for thermal conduction.

A PT100 probe was attached to a corner of the bottom gas cell, to measure the tem-

perature at the bottom of the gas target ladder. The first test was performed in the target

chamber under vacuum and with nitrogen gas at P = 1 bar in one of the gas cells. This

test was performed with no thermal shielding, and yielded temperatures of only T = 220

K. For the second test, an aluminised mylar foil was wrapped around the body of the

target ladder and the copper in Fig. 3.25 to act as an infrared shield. The lowest temper-

ature recorded during this test was T = 123 K, therefore it was presumed that infrared

radiation kept the temperature from dropping further in the first test. This temperature

would already be enough to increase the gas density by a factor of almost three.

This target leaked at a rate of ∆ P/∆t = 0.1 bar / hour with its total pressure above

P = 1 bar, and then at ∆ P/∆t = 0.1 bar / 24 hours after its total pressure had dropped

below P = 1 bar. This kind of leakage was typical for half of the newest versions of the
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FIG. 3.25: The copper braids at the bottom of this picture are connected by
a continuous body of copper, mostly hidden underneath the aluminised mylar
foil, to the piece of copper at the top of the picture. This piece of copper was
connected to the Dewar flask that was filled with liquid nitrogen during the
experiment.

gas cell. The others would leak much faster and drop down from P = 1 bar to P = 0.5 bar

in less than 5 hours.

3.6.4 Conclusion

At the end of these tests, a cryogenic gas cell target ladder was prepared for which

the thermal conductivity was close to the level envisaged, but which was still had rela-

tively large leak rates in the vacuum of the scattering chamber. However, by the start

of the experiment, this cryogenic target was already at a stage where it could be used if

sufficiently low resolution values could not be attained for the large angle measurements

(θlab = 16◦, θlab = 27◦) with the 10-mm-thick uncooled gas target. With a few more tests

and fine tuning of the target assembly technique, a cryogenic gas target with lower leak

rates could soon be available for future spectrometer experiments. This would be very

useful in improving the positional and angular resolution of gas target experiments.
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FIG. 3.26: The steel gas pipes, covered by copper meshes, were used to
connect the plastic pipes from the gas cells to the gas handling system.

3.7 Electronics

The events detected by the focal plane detectors were transmitted to electronic modules

adhering to Nuclear Instrumentation Module (NIM) and Versa Modula Europe (VME)

standards which converted these events into digital data that could be interpreted by the

Maximum Integration Data Acquisition System (MIDAS) software [109].

A block diagram representing the trigger electronic modules which were employed is

shown in Fig. 3.27. This section describes the operation of these modules during the

measurement, starting with the paddles. Data measured by each of the paddles is sent to

a linear fan-out (Lin Fan), where a delay of 150 ns was applied before it was sent through

to the QDC to produce the pulse height information. The timing signal was sent from

the Lin Fan to the constant fraction discriminator (CFD), from where it was sent to the
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TDCs (time digitizer channels) and a mean timer between the signals from both sides of

the paddle. The mean timer makes the signal to the discriminator independent of the

position where the ejectile particle traversed the paddle. In this experiment, the second

paddle was used only during beam optimisation in the (p,p′) mode, though the delay of

20.5 ns on its mean timer controlled the timing of the paddle signals.

For the (p,t) mode which was used for data taking, the cable from the Paddle 2 mean

timer was disconnected, thereby taking Paddle 2 out of the circuit. It was then recon-

nected to the discriminator of Paddle 1 as indicated by the red arrow in Fig. 3.27, thus

maintaining the same timing for a measurement with only Paddle 1.

From the discriminator, the signal was fed through to the four-fold logic unit (4FLU)

where paddle coincidence events were selected with the logic requirements:

• (P1·P2) for beam optimisation in the (p,p′) mode, and

• P1 only for recording data in the (p,t) mode.

This 4FLU unit sent an output via a discriminator to another 4FLU unit, which re-

ceived the RF signal via a discriminator. Whenever this second 4FLU unit registered a

paddle coincidence along with the RF signal, it would send an output signal to the TDCs

associated with TOF information. The first 4FLU also sends the trigger signal for TDC

counting, which opens a time gate of width t = 1.9 µs during which the TDCs may reg-

ister TOF and wire chamber events. Its last output goes via two discriminators and a

gate-and-delay generator (GDG), which applies a delay of 515 ns to this signal, to the

TDCs associated with VDC counting.

The system dead time was measured with a pulser and two scaler modules, namely

the inhibited and the uninhibited. The pulser signal was sent to one scaler module to

generate the uninhibited signal. The same pulser signal was inhibited by the system busy

signal from the QDC to generate the inhibited signal which was sent to an identical scaler

module. The system dead time D could be calculated by comparing the number of pulses

measured by these two modules. The current measured at the beam stop was fed to a

current integrator (CI), which generates output pulses at a frequency of 1 kHz at full-scale

current setting. Hence, a current of I nA at a CI range setting of R nA generates an event

rate of I/R kHz. The total charge collected during data taking may be used to infer the

number of protons incident at the beam stop.
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FIG. 3.27: Diagram of the trigger electronics
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3.8 Experimental procedure

Prior to the arrival of the beam from the SSC, the scattering chamber and spectrometer

vacuum was pumped down to below P = 1 × 10−5 mbar with the target ladder in the

chamber. The magnets were switched on and set to the appropriate field setting for the

beginning of the weekend ((p,p′) at Ep = 55 MeV). The (p,p′) reaction delivers a far higher

count rate than the (p,t) reaction, making it more suitable for beam optimisation.

The viewer and another ZnS mesh-shaped scintillator situated upstream from the target,

just after the last quadrupole in the S-line, were used for focusing the beam. Thereafter

the resolution of the already dispersion matched beam was further optimised using the

last three beamline quadrupoles within the K600 vault and the two trim coils in the

spectrometer. The best resolutions obtained with the (p,p′) reaction are shown in Table 3.6.

Weekend FWHM Nucleus and state Target
[keV]

1 22 12C 4.439 MeV 12.5 µm aramid
2 22 12C g.s. Natural carbon foil
3 23 12C g.s. 12.5 µm aramid
4 27 12C g.s. Natural carbon foil

TABLE 3.6: The best resolutions obtained with the (p,p′) reaction for the
different weekends

Next, the pepperpot collimator, shown in Fig. 3.28, was used together with an aramid

target. From the positions of the slots on this collimator, one may deduce the exact

scattering angles of the particles which travelled through them. This makes the pepperpot

collimator a very powerful tool for making angular calibrations during off-line analysis.

FIG. 3.28: Front view of the pepperpot collimator [90]

Stellenbosch University  http://scholar.sun.ac.za



3. Experimental setup and method 66

With these tasks completed, the spectrometer could be set to the (p,t) mode. When

changing from the (p,p′) to the (p,t) setting, the magnets were adjusted according to the

difference in magnetic rigidity between a proton and a triton. After being magnetised once,

and having the magnetic field brought back down to zero, the ferromagnetic material of

the spectrometer magnets will still retain considerable residual magnetisation. In order

to get rid of this hysteresis, the spectrometer magnets are cycled to their minimum and

maximum values every time the magnetic fields are changed. Through this procedure,

considerable magnetisation is induced in the direction opposite to where the magnets

were magnetised, so that at the end of this procedure, zero residual magnetisation will be

left in the magnets [90].

The 22Ne gas was inserted into the target cell up to a pressure of P = 1.5 bar for data

collection, and was refilled whenever the pressure dropped below P = 1.2 bar. Background

measurements were performed, typically for an hour for each three hours of 22Ne data.

However, at angles of θlab = -1◦ and θlab = 7◦, with the 33.5 MeV (p,t) field setting, the

background and 22Ne counting times were kept approximately equal to aid background

subtraction during offline data analysis.
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CHAPTER 4

Analysis of 22Ne(p,t)20Ne data

Measurements were made at a selected range of laboratory angles (0◦, 7◦, 16◦, 27◦) and

magnetic field settings with the following corresponding triton ejectile energies: 31 MeV,

33.5 MeV, 36/37 MeV, 41/42 MeV, 46/48 MeV and 52 MeV. The excitation energy of the

5-α break-up threshold in 20Ne (Ex = 19.2 MeV) corresponds to a triton ejectile energy of

Et = 32.0 MeV for a proton beam energy of Elab = 60.0 MeV at θlab = 0◦. Therefore the

field settings for ejectile energies of 33.5 MeV would be appropriate for exploring the region

above the 5-α break-up threshold in 20Ne, and also for investigating the high excitation

energy region in this nucleus at Ex = 17 - 25 MeV. The other field settings were necessary

for energy calibration and to understand the 20Ne excitation energy spectra. The ground

state of 20Ne was found in the 52 MeV field setting.

This chapter begins with Section 4.1 which explains how the raw data from the scin-

tillators and VDCs are converted into meaningful spectra. The calibration data sets are

discussed thereafter in Sections 4.2 to 4.5, followed by the 33.5 MeV (p,t) setting, where

new 20Ne states were observed, in Section 4.6. Section 4.7 provides a summary of all the

data sets which were obtained, while Section 4.8 describes the extraction of the exper-

imental cross sections and Section 4.9 the experimental resolution values. Section 4.10

concludes this chapter by displaying and discussing the final angular distribution plots.

4.1 VDC operation

The operation of the VDC is explained in more detail in Ref. [81], but a brief account

follows here: Fig. 4.1 shows the drift times which were recorded at each individual wire

channel from the first X-only drift chamber for a period of approximately one hour. The

time axis should be read from right to left, because the detector is operated in common

stop mode. The ionization of the Ar-CO2 gas in the drift chamber, due to ejectile particles

passing through the chamber, occurs from a maximum distance of 8 mm from the wire

plane, which generates the maximum drift times approximately corresponding to the left-

edges of the V-shapes in Fig. 4.1. The rest of the V-shapes are generated by gas ionization

from particles passing over the the wire plane and eventually out of the chamber on the

67
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opposite side of the wire plane. In each drift cell, which is associated with a specific signal

wire, the number of events per time bin dN/dt is described by [110]:

dN

dt
=
dN

ds
· ds
dt
, (4.1)

where ds represents an element of distance along an electric field line, dN/ds is the linear

density of time tracks along ds, and ds/dt is the drift velocity in the chamber. In the region

radially near to the signal wire, dN/ds reaches a maximum due to geometrical effects and

ds/dt rises dramatically, especially in the region very near to the signal wire, due to a

much higher electric field. Hence, there appears a locus in drift times at time = 800

ns, which represents the minimum possible drift times of charged particles in the drift

chamber. This is a relative time caused by delays in the electronics. The fact that this

locus for minimum drift times is lined up as it is in Fig. 4.1 shows that the offset times

due to different cable lengths etc. for the different TDC channels of this chamber have

been corrected for, and the drift times recorded are therefore valid. This locus is related

to the peak around the same time in the spectrum for all drift times in Fig. 4.2.

Drift time [ns]
650 700 750 800 850

W
ire

 n
um

be
r

20

40

60

80

100

120

140

160

180

1

10

210

310

FIG. 4.1: The drift times on the x-axis were recorded for each individual
signal wire of the first drift chamber on the y-axis in the θlab = 0◦ and 33.5
MeV triton field setting, after a correction for the cable length offset times
was implemented.

The drift times in Fig. 4.2 are converted to the drift distances in Fig. 4.3 with the aid
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FIG. 4.2: The spectrum of all drift times which were measured in the first
X-wire chamber
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FIG. 4.3: The spectrum of drift distances corresponding to the drift time
spectrum in Fig. 4.2

of the lookup table (LUT) in Fig. 4.4. The raw wire hits per channel, or ‘hit pattern’,

spectrum is shown in Fig. 4.5. ‘Good’ VDC events are chosen from all these wire hits.

The spectrum for signal wire hits per event in Fig. 4.6 shows a clear maximum around 5

to 6 wires per event. This may be anticipated for particles crossing the signal wire plane

at angles between θ = 28◦ and θ = 42◦, with a mean value close to θ = 35◦ [81]. Events

corresponding to particles entering the signal wire plane from outside of this angular range

should be rejected since they are not valid events. Therefore, ‘good’ events, which consist

of sets of successive signal wire hits conforming to the following requirements are selected:
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FIG. 4.4: This lookup table is used to convert the drift times (x-axis) in
spectra such as in Fig. 4.2 to drift distances (y-axis) in spectra such as in
Fig. 4.3.

• A minimum of three and a maximum of nine signal wire hits;

• The signal wire hits must be adjoining, unless a maximum of one signal wire is

missing in a set of adjoining signal wire hits;

• The drift times should fall within a range corresponding to approximately 650 ns to

800 ns in Fig. 4.2.
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FIG. 4.5: A wire hits per channel spectrum for VDC X1
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FIG. 4.6: Signal wire hits per event for VDC X1

The efficiency of data collection of a wire chamber is found by calculating the ratio

between the good events and all PID selected events recorded by the chamber. Following

this, the efficiency, ǫ, of the measurement may be calculated with the formulas: ǫX1X2 =

X1eff ·X2eff for the measurements made with two drift chambers with only X-wire planes,

and ǫX1X2U2 = X1eff ·X2eff ·U2eff for the measurements which included a U-wire plane,

where Xieff and Uieff denote the efficiencies of individual wire planes (i = 1, 2). The

efficiency is always calculated for events which fall within a certain subset of events (e.g.

all triton events) selected with a particle identification (PID) spectrum such as in Fig. 4.8.

At this stage, with the correct drift distances found for valid drift chamber events,

focal plane position spectra such as the one in Fig. 4.7 may be generated. The full range

of scattering angles, from θK600 = -1.91◦ to θK600 = 1.91◦ with respect to the central

spectrometer angle, is covered for most of the 800-mm range of focal plane position which

is represented by this spectrum.

The focal plane position spectrum may be converted to excitation energy, and the

conversion is approximately linear, although a small quadratic term is necessary to obtain

an accurate energy calibration. This procedure is discussed in Section 4.2.4. Triton energy

increases from left to right and excitation energy from right to left in Fig. 4.7.
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FIG. 4.7: A focal plane position spectrum measured at θlab = 0◦ and the
magnetic field setting for tritons at Et = 33.5 MeV

4.2 Analysis of the 52 MeV (p,t) data set

The method of analysis for data acquired at the various field settings described in Sections

4.2 to 4.6 are very similar. Therefore, a detailed description of the analysis methods, which

were also employed for the succeeding data sets, is given in this section.

The 52 MeV (p,t) field setting data were taken with the paddle trigger logic of P1 only,

as was the case for all (p,t) data during this experiment. Currents were applied to the

K600 magnets to induce the appropriate magnetic fields to measure tritons with energies

close to 52 MeV in the focal plane of the spectrometer. Data at θlab = 0◦ and θlab = 7◦

were taken during Weekend 2, while data at θlab = 16◦ and θlab = 27◦ were taken during

Weekend 4 with respective beam energies of Ep = 60.5 MeV and Ep = 60.01 MeV as

shown in Table 1.2 in Chapter 1. The 22Ne(p,t)20Ne reaction has a Q-value of Q = -8.64

MeV [56], so with a 60.0 MeV beam one could expect to measure the ground state of 20Ne

at a triton energy of Et = 51.36 MeV. This makes the 52 MeV field setting appropriate

for investigating the lowest excitation energy states of 20Ne.

4.2.1 Background clean-up with particle identification gates

By performing magnetic rigidity calculations, considering that Q = -8.14 MeV for the

22Ne(p,d)21Ne reaction [56], it was found that no other particles with significant cross

sections could be expected to reach the focal plane of the spectrometer at this field setting.
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In Fig. 4.8, the triton locus is in the black rectangle within which the PID gates were set.

The strong locus at TOF = 220 ns to TOF = 265 ns is from beam-related background,

which is prevalent with the (p,t) reaction close to θlab = 0◦ and predominantly related

to the L-shaped beam stop. The line at 3300 in Paddle 1 light output is related to the

pulser, and the background below 500 in light output is related to radiation from within

the vault. These data were acquired with a beam current of Ip = 5 nA for a duration

of 62 minutes on a 22Ne gas cell target with a pressure of P = 1.45 bar. The central

angle of the spectrometer was set at θlab = 0.5◦. This shift from the θlab = 0◦ setting

was chosen because the L-shaped beam stop obstructed the triton ejectiles from θlab = -2◦

to θlab = -1.5◦ in this energy region. The same problem was experienced with some of

the θlab = 7◦ data, resulting in smaller angular ranges and different central angles for the

measurements of certain experimental peaks. Any shifts from central angles of θlab = 0◦

or θlab = 7◦ in data sets which were intended for these angles were necessitated by particle

obstruction by the beam stop.
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FIG. 4.8: The measured Paddle 1 vs TOF spectrum for the 52 MeV (p,t) field
setting at θlab = 0.5◦. The PID gates were set as indicated by the black rectangle
which contains the locus that represents the tritons from the 22Ne(p,t)20Ne
reaction.
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For the measurement at the Et = 52 MeV and θlab = 0.5◦ setting, the X-U wire chamber

configuration was used for the second drift chamber, which means that Y- (vertical) po-

sition information was gathered in addition to X- (horizontal) position information. The

Y-position information was used as an additional tool to remove background data because

it may be used to identify events from particles which do not have proper vertical focusing,

e.g. particles scattered off the beam stop, cosmic particles, etc. Fig. 4.9 illustrates the

software gates for Y which were used for this setting.
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FIG. 4.9: The measured Y2 position vs X1 position spectrum for the 52 MeV
(p,t) field setting at θlab = 0.5◦. The gates for data with acceptable vertical
focusing were set within the two black lines.
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4.2.2 Kinematic corrections

Particles were measured at the focal plane over a range of scattering angles of

∆θlab = ±1.91◦. The spectra in Fig. 4.10 a) and b), which were measured at θlab = 7◦,

illustrate this by showing the angular spread of events captured over a 100 mm range in

the focal plane position. In Fig. 4.10 a) the positions of the states display an angular

dependency which will have a detrimental effect on the position resolution. This was

reduced during offline analysis by straightening the 20Ne locii and thereby generating the

spectrum in Fig. 4.10 b). Fig. 4.10 c) is a projection onto the x-axis of Fig. 4.10 b).

Due to the difference in kinematics, tritons produced in the 22Ne(p,t)20Ne reaction

will produce loci in the scattering angle vs position spectrum which have slopes that are

different from tritons produced from other target nuclei. This can be seen in Fig. 4.10 b)

where the peak to the right of the 2+ 1.633 MeV peak in 20Ne has a slightly different slope

from the peaks related to the 22Ne(p,t)20Ne reaction. Kinematic calculations indicate that

the ground state of 35Cl may be expected at about 270 keV above the first 2+ state of 20Ne

in triton energy. It was presumed that the peak to the right of the 1.633 MeV peak may be

associated with the aforementioned state, which would be populated by the 37Cl(p,t)35Cl

reaction from chlorine in the aramid foil. This was later confirmed by a calibration in

triton energy.
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FIG. 4.10: A section of the measured spectrum of θlab vs X focal plane position
for the 52 MeV (p,t) field setting centred at θlab = 7◦ is shown without any shape
correction in a), and with a correction in b). A projection of the spectrum in
b) on the focal plane position is shown in c).
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4.2.3 Background targets

Two different targets were used to investigate the aramid-related background in the

22Ne(p,t)20Ne data spectra:

1. The first consisted of an empty gas cell target, therefore one 6-µm layer of aramid

material followed by another 6 µm of aramid 1 cm apart (see Section 3.5.2). Data

were taken with this target for about 20 minutes, with a beam current of Ip = 5.3 nA

and a count rate of about 600 Hz.

2. The second consisted of a single strip of aramid with a thickness of 12.5 µm (6 µm

in Weekend 4). This target was placed in a beam current of Ip = 5.3 nA for about

30 minutes, during which time data were collected at a rate of 680 Hz.

Essentially, the two targets should have given approximately the same results since there

should not have been any gas between the two layers of aramid in the first background

target, and the second target had nearly the same thickness as the first. In practice,

however, there was a gas leakage from the 22Ne gas cell into the empty background cell.

In Fig. 4.11 one observes that there are some weak states in b), with the empty gas cell

target, which do not appear in a) when the single aramid foil is the target. These weak

states in b) correspond to strong states in c), which is the 22Ne gas-filled target spectrum,

thus indicating that the weak states in b) could be associated with neon.

If the gas cell is kept below atmospheric pressure, in-gassing might occur through a

valve outside of the scattering chamber in the gas line to the 22Ne bottle. This puts the

purity of the 22Ne gas target at risk.

With out-gassing one risks the reliability of the empty gas cell target, but this may be

substituted for the single layer of aramid. Hence, it was decided to keep the pressure high

above standard atmospheric pressure at P = 1.5 bar. This provides the advantage that

the areal density of material, and hence the statistics, is increased. This is advantageous

up to some limit where the resolution is adversely affected by the density of material.

According to kinematic calculations, the positions of the neon peaks in Fig. 4.11 c) are

consistent with the lowest excitation energy states of 20Ne with the strong peak furthest

to the right being the ground state.
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FIG. 4.11: Background data measured with the single 12.5-µm aramid layer
and the empty gas cell at θlab = 0.5◦ are shown in a) and b) respectively,
while c) shows data which were taken at the same angle with a gas cell filled
with 22Ne gas. The energy values of the known states were obtained from the
EXFOR database [3].
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As mentioned before, the 52 MeV field setting was investigated at four different angles.

This was done with the approximate parameter-values indicated in Table 4.1.

θlab Beam energy Ip Count rate Time Pressure
[degrees] [MeV] [nA] [Hz] [minutes] [bar]

0.5 60.50 5 600 62 1.45
7 60.50 9 100 11 1.4
16 60.01 21 1060 32 1.4
27 60.01 14 700 27 1.5

TABLE 4.1: Parameter-values with which the 52 MeV (p,t) field setting was
investigated

4.2.4 The calibration procedure

The first three states of 20Ne could be quickly identified in spectra such as in Fig. 4.11

c), by looking at the distances between these peaks and the line shapes of these peaks in θlab

vs X focal plane position spectra such as is shown in Fig. 4.10 b). A preliminary quadratic

calibration with these three peaks revealed the two weak peaks at around Xpos = 100 mm

in Fig. 4.11 c) to be the excited states of 20Ne at Ex = 5.621 MeV and Ex = 5.788 MeV.

Hence, five peaks in the 22Ne(p,t)20Ne spectrum in Fig. 4.11 c) were assigned to the known

states mentioned in Table 4.2. Based on these assumptions and the measured focal plane

positions of these states, quadratic calibrations of both triton energy and excitation energy

to focal plane position were obtained.

Known experimental Jπ Position Position w.r.t. Triton momentum
value [keV] [mm] ground state [mm] [MeV/c]

0 0+ 577.4 0 536.8
1634 2+ 439.5 137.9 528.5
4248 4+ 221.0 356.4 514.9
5621 3− 107.3 470.1 507.6
5788 1− 94.3 483.1 506.7

TABLE 4.2: The measured excitation energy values of the 20Ne energy levels,
adopted in the literature, in the 1st column [3] are matched to the positions of
the discrete experimental peaks in the 3rd and 4th columns, for the case of the
52 MeV field setting at θlab = 0.5◦.

The calibration procedure is as follows:
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FIG. 4.12: Fit on the calibration points from Table 4.2 to illustrate the
approximately linear relationship between particle momentum and focal plane
position

1. Using the states already identified, a quadratic fit of momentum to focal plane

position is obtained.

2. This fit is used with the relationship between triton energy Et, momentum P and

particle mass m, working in natural units

Et =
√
m2 + P 2 −m (4.2)

to provide values for the triton energy at any position in the focal plane.

3. Triton energy is converted to 20Ne excitation energy Ex using the equation for the

two-body reaction:

Ex = Ep +mT − Et − Er (4.3)

where Ep represents the total energy of the projectile, mT is the mass of the target

nucleus, Et is the total energy of the ejectile and Er is the total energy of the residual

target nucleus. The residual target nucleus energy is calculated to be [111]

Er =
√

((P0)2 + (P2)2 − 2.P0.P2.cos(θ) + (m3)2). (4.4)
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Eventually the following quadratic relationship between excitation energy Ex and hor-

izontal focal plane position Xpos was obtained:

Ex = (3.15464 × 10−7)Xpos2 + (−0.0121708)Xpos+ 6.9218. (4.5)

Calibrations were obtained by employing the same procedure for all the different sets of

field setting and angle which were investigated, in each case using a minimum of three

states which could be identified with certainty. Thus an energy spectrum such as the

one shown in Fig. 4.13, which was plotted with Eq. 4.5, was generated for every set of

conditions. Fig. 4.14 shows the differences ∆ between the mean values of the states in Fig.

4.13 and the known values of these states from EXFOR [3], thus proving the calibration

to be accurate to within 30 keV.
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FIG. 4.13: An excitation energy spectrum for the 52 MeV 22Ne(p,t)20Ne field
setting at θlab = 0.5◦
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FIG. 4.14: The differences between the known values and the measured
mean values from the energy calibration in the present experiment for the
states observed with the 52 MeV 22Ne(p,t)20Ne field setting at θlab = 0.5◦
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4.3 Analysis of the 46 MeV and 48 MeV (p,t) data sets

The data at θlab = 0◦ and θlab = 7◦ were obtained with the 46 MeV field setting, while the

data at θlab = 16◦ were obtained with the 48 MeV field setting, yielding adequate results

to link the data of this field setting to the 52 MeV setting from Section 4.2, as well as

to the 42 and 41 MeV settings which are described in Section 4.4. Table 4.3 shows the

recorded values of parameters for this step in 20Ne excitation energy. The background

data were collected with the parameter-values indicated in Table 4.4. The 22Ne(p,t)20Ne

and background spectra which were measured at this field setting are shown in Fig. 4.15.

The excitation energies of the known states in Fig. 4.15 were taken from the EXFOR

database, as they were for all spectra or tables to come in this chapter.

θlab Field setting Weekend Ip Count rate Time Pressure
[degrees] [MeV] [nA] [Hz] [minutes] [bar]

-0.5 46 2 5 650 331 1.5
7 46 2 20 200 114 1.3
16 48 1 20 40 52 0.5

TABLE 4.3: The various parameter-values with which the 46/48 MeV (p,t)
field setting was investigated.

θlab Field setting Weekend Ip Count rate Time Target
[degrees] [MeV] [nA] [Hz] [minutes]

-0.5 46 2 7.5 410 60 Empty cell
7 46 2 13 120 16 Empty cell
16 48 1 20 40 52 Aramid foil

TABLE 4.4: The parameter-values with which the 46 - 48 MeV (p,t) field
setting background data were obtained
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FIG. 4.15: The calibrated excitation energy spectra from the 46 MeV and
48 MeV (p,t) field settings
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4.4 Analysis of the 41 MeV and 42 MeV (p,t) data sets

The data at θlab = -0.5◦ were obtained with the 41 MeV field setting over the second

weekend, while the data at θlab = 7◦ and θlab = 16◦ were obtained with the 42 MeV

field setting during the fourth weekend. Table 4.5 shows the approximate values of the

parameters which were employed with the 22Ne gas in the gas cell target at this field

setting, while Table 4.6 shows the parameter-values which were employed to measure the

background. The 22Ne(p,t)20Ne and background spectra which were measured at this field

setting are shown in Fig. 4.16. These spectra could be linked to the excitation energy

spectra in Section 4.3, and were also used to understand the data at the next field setting,

which are discussed in Section 4.5.

θlab Field setting Weekend Ip Count rate Time Pressure
[degrees] [MeV] [nA] [Hz] [minutes] [bar]

-0.5 41 2 8 500 394 1.5
7 42 4 22 1200 59 1.35
16 42 4 22 1100 63 1.35

TABLE 4.5: Parameter-values with which the 41/42 MeV (p,t) field setting
was investigated

θlab Field setting Weekend Ip Count rate Time Target
[degrees] [MeV] [nA] [Hz] [minutes]

-0.5 41 2 7.5 410 166 Empty cell
7 42 4 19 960 31 Aramid foil
16 42 4 20 1000 30 Aramid foil

TABLE 4.6: Values of parameters for the background data of the 41/42 MeV
(p,t) field setting
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4.5 Analysis of the 36 MeV and 37 MeV (p,t) data sets

The data at θlab = -1◦ were obtained with the 36 MeV field setting during the second

weekend, while the data at θlab = 7◦ and θlab = 16◦ were obtained with the 37 MeV

field setting over the fourth weekend. Table 4.7 shows the approximate values of the

parameters which were employed with the 22Ne gas in the target cell, while Table 4.8

shows the parameter-values for the background measurements. The deuterons are very

prominent in Fig. 4.17, as could be expected from rigidity calculations. Nevertheless,

the tritons could be separated from any contaminant particles by setting a software gate

within the black rectangle in Fig. 4.17.

θlab Field setting Weekend Ip Count rate Time Pressure
[degrees] [MeV] [nA] [Hz] [minutes] [bar]

-1 36 2 1.5 380 361 1.5
7 37 4 17 1400 60 1.35
16 37 4 17 1100 62 1.35

TABLE 4.7: Parameter-values with which the 36/37 MeV (p,t) field setting
was investigated

θlab Field setting Weekend Ip Count rate Time Target
[degrees] [MeV] [nA] [Hz] [minutes]

-1 36 2 1.4 350 127 Empty cell
7 37 4 15 850 37 Aramid foil
16 37 4 20 1100 31 Aramid foil

TABLE 4.8: Values of parameters for the background measurement with the
36/37 MeV (p,t) field setting
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FIG. 4.17: The measured Paddle 1 vs TOF spectrum for the 36 MeV (p,t)
field setting at θlab = -1◦. The tritons are indicated by the black rectangle.

The 22Ne(p,t)20Ne and background spectra which were measured at this field setting are

shown in Fig. 4.18. This is the first magnetic field setting which crosses into the excitation

energy region beyond the 5-α break-up threshold at Ex = 19.17 MeV in 20Ne. This

threshold value is indicated by a green line in Fig. 4.18 a). The state at Ex = 16.73 MeV,

which is seen very clearly in all three spectra in Fig. 4.18, is the highest known state in

20Ne with a confirmed 0+ character. It is also the second highest known isospin T = 2

state in 20Ne. The highest known T = 2 state is seen clearly at Ex = 18.43 MeV in c).

This state coincides with the Ex = 6.59 MeV state from 14O in a), and in b) it is obscured

by the second peak of the Ex = 3.3537 MeV state from 10C. These data were sufficient to

provide the link to the next field setting, described in Section 4.6, which reveals the most

important energy region of this experiment.
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This experiment experienced the occurence of contaminant ‘double-peaking’ i.e. two peaks

spaced roughly 40 keV apart observed for each state measured in the aramid foils. Fig. 4.19

illustrates this effect for the case of the ground state of 10C, which also displays a visible

double-peaked structure in Fig. 4.18 a). This resulted from energy loss by the particles

traversing the 1 cm of Ne-gas at pressures close to P = 1.5 bar, as illustrated in Fig. 4.20.

Tritons from the first foil reach the focal plane with lower triton momenta due to the

greater energy loss of tritons compared to protons in the 22Ne gas. Hence, the peak to

the right in the blue spectrum in Fig. 4.19 represents events from the (p,t) reaction in the

second carbon foil, while the peak to the left represents events from the first. The peak

in the black spectrum occurs at a slightly higher triton momentum than both in the blue

spectrum, since the tritons traverse one less foil and no 22Ne gas.

This effect had to be taken into account for background subtraction and calibrations

based on the aramid data.
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FIG. 4.19: The ground state of 10C, as observed with a single 6-µm-thick
aramid foil (black spectrum) and two aramid foils separated by 10 mm of 22Ne
gas (blue spectrum). The triton energy increases from left to right.
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FIG. 4.20: Ejectile triton particles may come from either the 2nd or back
aramid foil as in scenario 1, or from the 1st or front foil, as in scenario 2.
Tritons from the 2nd foil will lose less energy to the 22Ne gas and therefore have
higher triton momenta at the focal plane than tritons from the 1st. Hence, in
the blue spectrum in Fig. 4.19, tritons from the 1st foil generate the peak to
the left, and tritons from the 2nd foil generate the peak to the right.

4.6 Analysis of the 33.5 MeV (p,t) data set

Investigating the data acquired at this field setting for low-spin states was the main ob-

jective of this study, hence it is also the setting with the longest counting times. The data

at θlab = -1◦ were obtained during the third weekend, while the data at θlab = 7◦ were

obtained during the third and fourth, and the data at θlab = 16◦ and θlab = 27◦ during

the fourth weekend. The approximate parameter-values are shown in Table 4.9. Rigidity

calculations indicated that tritons and deuterons were both likely to be found in the focal

plane. Tritons could be expected to lose far less energy in Paddle 1, hence they were

identified with the locus which is lower in energy loss, or paddle light output, shown in

Fig. 4.21.
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θlab Target material Weekend(s) Ip Count rate Time Pressure
[degrees] [nA] [Hz] [minutes] [bar]

-1 22Ne + aramid 3 2.2 900 798 1.4
-1 Empty cell 3 2.3 800 862
7 22Ne + aramid 3,4 16 1200 307 1.5
7 Empty cell 3,4 15 1000 239
16 22Ne + aramid 4 13 980 895 1.4
16 Aramid foil 4 14 700 192
27 22Ne + aramid 4 14 700 579 1.5
27 Aramid foil 4 13 730 230

TABLE 4.9: Parameter-values with which the target material (22Ne + aramid)
and background material were investigated with the 33.5 MeV (p,t) field set-
ting.
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FIG. 4.21: The measured Paddle 1 vs TOF spectrum for the 33.5 MeV (p,t)
field setting at θlab = -1◦. The tritons are indicated by the black rectangle.
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4.6.1 Mapping of background

Kinematic calculations indicated that carbon, oxygen and nitrogen, along with some of

their less abundant isotopes, would interfere in the region of interest. Therefore it was

imperative to know where the states from these elements could be expected in the focal

plane energy spectra, and also to obtain sufficient data with plain aramid, without any

neon gas, to make a sensible background subtraction during the analysis.

A carbon target was used as a first step towards mapping out the states from the aramid

foils, and at the beginning of the third weekend the gas cell was also filled with natural

oxygen, nitrogen, neon and argon gasses.

Table 4.10 shows the set of reactions that were expected to interfere with the anticipated

triton energies of their ground states. Carbon, oxygen and nitrogen were investigated, since

the aramid foils contained these elements. Natural 20Ne was tested because it is the most

abundant neon isotope and also present in the air, which always leaks into the scattering

chamber vacuum. Lastly, the 40Ar gas was also put in the gas cell, since 1% of the air

consists of this gas. The less abundant isotopes of all these elements are also included in

Table 4.10. The reactions from the chlorine isotopes are also listed, since this element is

known to be present in the foils.

Table 4.10 indicates that the most abundant isotope on the aramid foil, namely 12C,

will cause significant contamination with discrete states through the ground and first few

excited states of 10C in the region of interest (Et = 28 MeV to 35 MeV). This can also

be an advantage, since these peaks can aid energy calibration in this region. Peaks from

natural oxygen and nitrogen on the foil could also be expected to interfere.

The energy regions between these peaks could be expected to contain a continuum of

states originating from other contaminants indicated in Table 4.10 with ground states at

higher Et values, and also from the 22Ne gas. With sufficient background measurements,

the background resulting from the aramid foils could be subtracted. However, this still

leaves a continuum consisting of broad states of 20Ne. States which are either narrow

or strong should stand out from this continuum, especially if they are enhanced and the

broad, high spin states are suppressed by the reaction and angle.

The 12C(p,t)10C spectra from the natural carbon foil in Figs. 4.22 a) and b) were useful

as a tool to understand the 16O(p,t)14O spectra in Figs. 4.22 c) and d), since the 10C ground

and first excited states show up very clearly. These states would have triton kinetic energies
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Material Reaction Q-value Excitation energy Triton energy
[MeV] [MeV] [MeV]

Neon-22 22Ne(p,t)20Ne -8.64 0 50.4
22Ne(p,t)20Ne -8.64 19.2 32.0

Carbon 12C(p,t)10C -23.3 0 36.5
13C(p,t)11C -15.2 0 43.9

Oxygen 16O(p,t)14O -20.4 0 39.4
18O(p,t)16O -3.7 0 54.3
17O(p,t)15O -11.3 0 47.1

Nitrogen 14N(p,t)12N -22.1 0 37.7
15N(p,t)13N -12.9 0 45.4

Neon-20 20Ne(p,t)18Ne -20.0 0 39.5

Argon 40Ar(p,t)38Ar -7.99 0 51.5
36Ar(p,t)34Ar -19.5 0 40.2
38Ar(p,t)36Ar -12.1 0 47.4

Chlorine 37Cl(p,t)35Cl -10.4 0 49.6
35Cl(p,t)33Cl -15.7 0 44.3

TABLE 4.10: Calculated triton ejectile energies for the ground states in the
5th column, from different possible reactions in the 2nd column. The first two
rows show where the ground state and 5-α break-up threshold of 20Ne from
the 22Ne(p,t)20Ne reaction could be expected. All calculations were performed
for a beam energy of Elab = 60 MeV and a K600 angle of θlab = 0◦. All Q-values
are from Ref. [56].

of Et = 36.5 MeV and Et = 33.3 MeV respectively. After locating the ground and 1st

excited states in the 36 MeV (p,t) field setting in Fig. 4.22 b), one could identify the broad

peak in Fig. 4.22 a) and c) as the 2nd and 3rd excited states of 10C. This broad peak comes

from the carbon foil in a), and from the carbon in the aramid foil in c). These carbon

peaks provide triton energy reference points in Figs. 4.22 d) and c). After the oxygen peaks

in Fig. 4.22 d) were identified, the 14O states at Ex = 5.92 MeV, Ex = 6.59 MeV and

Ex = 7.768 MeV, and the 10C Ex = 3.3537 MeV state, were also identified in Fig. 4.22 c),

so the last mentioned spectrum could be understood and calibrated.
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FIG. 4.22: The 12C(p,t)10C spectra from the carbon foil and 16O(p,t)14O spectra
from the natural oxygen gas at θlab = -1◦ for the 33.5 MeV and 36 MeV (p,t)
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4.6.2 Calibration with oxygen peaks

Oxygen peaks, listed in Table 4.11 and indicated in Fig. 4.23, were used for the energy

calibration of the 33.5 MeV (p,t) field setting at θlab = -1◦, since, with the 16O(p,t)14O

reaction from the oxygen gas, the tritons must pass through the same average amount of

gas and foil to reach the focal plane, as is the case with the 22Ne(p,t)20Ne reaction from the

22Ne gas-filled target. Hence, this yields the most accurate calibration possible. According

to the EXFOR database [3], the 14O states at Ex = 10.89 MeV, Ex = 9.915 MeV and

Ex = 6.79 MeV had never been measured with the (p,t) reaction before this experiment.

14O Excitation energy Jπ Triton energy Position Triton momentum
[MeV] [MeV] [mm] [MeV/c]

7.768 0+ 33.65 437.2 436.1
6.59 2+ 33.01 591.6 431.9
5.92 2+ 31.88 682.0 424.4

TABLE 4.11: Known experimental excitation energy values of the energy
levels of 14O, taken from the literature [3], matched to the positions of the
discrete experimental peaks, for the case of the 33.5 MeV (p,t) field setting at
θlab = -1◦
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FIG. 4.23: Fit to illustrate the approximately linear relationship between the
particle momentum and focal plane position for the states mentioned in Table
4.11.
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4.6.3 Spectra from possible contaminants

The black spectrum in Fig. 4.24 a) and b) is from the measurement which was made

on the foils prior to any gas being injected into the the gas cells at the beginning of the

third weekend. In Fig. 4.24 a) it is evident that the strongest peaks from the aramid

correspond to peaks also seen in the carbon spectrum, in green. The weaker peaks in the

aramid spectrum seem to correspond to the oxygen spectrum (in red) and the nitrogen

spectrum (in purple) in Fig. 4.24 b). This may be expected from the chemical composition

of the aramid (C14O2N2Cl2H8). No discrete states from the chlorine isotopes are known

in this energy range.

Data measured with the 22Ne gas-filled target are shown by the blue spectrum in Fig.

4.24 c). Two strong and narrow peaks between X1pos = 100 mm and X1pos = 300 mm

which protrude from the background are seen in this spectrum. Two of the strong peaks

in the 18Ne spectrum in pink (at Xpos = 305 mm and Xpos = 540 mm) resulting from

the measurement with the natural neon gas seem to correspond to two of the peaks in the

blue spectrum. A comparison of the strengths of these peaks showed that the peaks in the

22Ne(p,t)20Ne spectrum were unlikely to originate from contaminant 20Ne(p,t)18Ne peaks.

The argon isotopes have reached their continuum region at this field setting, hence

only the carbon peaks and one state from 38Ar(p,t)36Ar are observed in the orange argon

spectrum in Fig. 4.24 c).
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A number of states in 20Ne which have not been experimentally observed prior to this

experiment are seen in the 20Ne excitation energy spectra in Fig. 4.25. Each such state

is indicated by an asterisk next to its energy label (in MeV). Most notable are the three

strong states at Ex = 18.84 MeV, Ex = 21.16 MeV and Ex = 21.80 MeV in Fig. 4.25,

which are also seen at slightly different energies at θlab = 7◦.This change in values probably

results from the fact that the θlab = -1◦ data were calibrated with the oxygen gas, while

the θlab = 7◦ data were calibrated with states from the aramid foil and the neon gas.

Therefore, the values recorded at θlab = -1◦ could be expected to be more accurate.

Upon closer inspection of the data at θlab = -1◦, the state at Ex = 18.84 MeV appeared

to be an amalgamation of states which could not be resolved in this experiment. Further

suggestions of states around Ex = 17.67 MeV, Ex = 20.59 MeV and Ex = 22.5 MeV are

discussed in forthcoming sections.

At θlab = 16◦, in Fig. 4.26 a), a strong new state is observed at Ex = 21.14 MeV, which

corresponds to the Ex = 21.16 MeV state measured at θlab = -1◦. Unfortunately, the broad

Ex = 6.58 MeV state from 10C is centred at a 20Ne energy of Ex = 21.71 MeV in this

spectrum, and with an effective width of FWHM = 406 keV. This is much broader than

the known width of this state (Γ = 190 keV), but a larger than natural effective width is

expected because of the kinematic effect that results in a tilt in the 12C(p,t)10C lineshape.

This broad peak blocks out the area at around Ex = 21.80 MeV where another 20Ne state

may be anticipated at θlab = 16◦.

At θlab = 27◦ in Fig. 4.26 b), the new state with Ex = 21.16 MeV is observed on the

high excitation energy shoulder of the 2nd and 3rd excited states of 10C. This may explain

the fact that its observed energy (Ex = 21.10 MeV) is lower than what was measured at

the other angles. The new state which may be expected at Ex = 21.80 MeV is not seen

because it lies beyond the region of excitation energy which was investigated at this angle.

The candidate new state at Ex = 17.67 MeV was seen at all four angles.
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4.7 Summary of all data sets

Fig. 4.27 shows the values of the different terms which were used for each energy cali-

bration at θlab
∼= 0◦. The constant and linear terms display an evident linear relationship to

particle momentum. The deviations from the fits in this figure, ∆a, ∆b and ∆c, were used

to provide an estimate of the uncertainty in the measured triton momenta ∆P through

Eq. 4.6:

∆P = ∆a · x2 + ∆b · x+ ∆c, (4.6)

where x represents the triton momentum of the observed state. The uncertainties in

momentum values were then translated to uncertainties in energy values for all the newly

observed states in 20Ne at this field setting. Figs. 4.28 and 4.29 show data measured

at θlab
∼= 0◦ from all the preceding field settings, joined together from Ex = 0 MeV to

beyond Ex = 20 MeV (see Appendix B for the same spectra for larger angles). The

data are normalised to the field setting which has the most statistics, which was the

Et = 33.5 MeV set in each case. This normalisation does not take into account the

different angular ranges which are subtended due to slightly different central angles in

Figs. 4.28 and 4.29. The continuity between adjacent field settings serves as further

evidence that the energy calibrations may be trusted.
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FIG. 4.27: The quadratic, linear and constant terms in the calibration equa-
tions are shown respectively from top to bottom for each energy setting at
θlab

∼= 0◦.
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4.8 Cross sections

4.8.1 Method of extraction

The double differential cross sections were extracted following:

d2σ

dΩdE
=

Ncts · cos(θtgt)

If · ρ ·D · ε · ∆Ω · ∆E . (4.7)

The variable Ncts in Eq. 4.7 represents the number of events per bin. The resolution of the

experiment was low enough to measure peaks which were sufficiently narrow for the Breit-

Wigner distribution to be dominated by the Gaussian distribution. Furthermore, these

peaks were usually generated by a large number of events. Therefore Ncts was determined

for each individual peak by performing a Gaussian fit over the peak and integrating the

equation for a continuous Gaussian distribution

∫

C · e−
(x−x̄)2

2σ2 dx = C · σ ·
√

2π , (4.8)

where FWHM = 2.35 × σ, C represents the amplitude of the function, and x̄ is the mean

value. Many peaks were situated on a significant background. In these cases it was mostly

adequate to perform a 5-parameter fit which included a linear fit to the background and

a Gaussian fit to the peak itself. In some cases, when two or more peaks sitting on the

background were in close proximity to one another, an 8-, 11- or more parameter fit which

included two or more Gaussian fits and a linear fit through the background was necessary.

The mean energy values and widths of the measured states were also deduced from these

fits. Regarding the other variables in Eq. 4.7,

• θtgt is the angle between the target and the beam,

• If is the incident flux,

• ρ is the number of target nuclei per unit area,

• D represents the electronic dead time correction factor,

• ε is the VDC efficiency,

• ∆Ω is the solid angle in msr, and

• ∆E is the energy bin size in MeV.
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The incident flux is calculated with the equation:

If =
CII · R

e
, (4.9)

where

• CII is the current integrator scaler reading,

• R represents the range which was set on the current integrator (in nA), and

• e is the charge of a single proton beam particle (in Coulomb).

The number of target nuclei per unit area is calculated as

ρ =
λ ·NA

A
, (4.10)

where

• NA represents the Avogadro constant,

• λ is the target thickness in mg.cm−2, and

• A is the mass number of the target nucleus.

For a gas target, λ is usually calculated with the following formula:

λ = ρg · d, (4.11)

where ρg is the gas density, which may be deduced from the gas pressure measurement,

and d is the thickness of gas target material that the particles must traverse. During

off-line data analysis, the target thickness was calculated more accurately by investigating

the double-peaked states from the aramid foils. The energy distance between two of these

peaks corresponds to the difference between the mean energy losses of tritons ∆Et and

protons ∆Ep through the gas. The target thickness

λ = ρg · d ∝ ∆Et − ∆Ep , (4.12)

Stellenbosch University  http://scholar.sun.ac.za



4. Analysis of 22Ne(p,t)20Ne data 108

therefore an appropriate combination of ρg and d could be found to reproduce the measured

value of ∆Et - ∆Ep, using the Lise++ code [112]. The target thickness was then calculated

with Eq. 4.11 using these values of ρg and d.

Eq. 4.7 was utilised to extract the integrated cross sections for each of the measured

20Ne peaks, which are shown in Tables C.2 and C.1 in Appendix C, and Table 4.14 in

Section 4.10.

4.8.2 Background subtraction

In order to make an accurate background subtraction, the effect of the energy loss of

particles moving through the 22Ne gas must be taken into account. The energy shift

between the foils observed by double-peaks from the aramid could be used for this purpose

since it already provides a simulation of this energy loss. The background spectrum may

be shifted by this energy difference and plotted again on the same graph, as was done to

produce the red spectrum in Fig. 4.30 a). The double-peak created by the 10C first 2+

state in the gas-filled spectrum in Fig. 4.30 a) illustrates the effect.

The sum of the black and the red background spectra of Fig. 4.30 a) were normalised

in total charge to the blue 22Ne gas target spectrum. The two background spectra were

then subtracted from the blue spectrum to produce what should be a purely 22Ne(p,t)20Ne

spectrum in Fig. 4.30 b).

The states at Ex = 18.84 MeV, Ex = 20.59 MeV, Ex = 21.16 MeV and Ex = 21.80 MeV

are all prominent above the background, which presumably consists of a continuum of

broad 20Ne states. It is seen that some strength remains in the peak around Ex = 22.5

MeV, indicating that this peak may be related to 20Ne. It is located just 0.32 MeV

above the value which T. Yamada and P. Schuck predicted for the 5-α cluster state [26].

Furthermore it has a large width of Γ = 266 keV, deduced from the fit displayed in

Fig. 4.31, indicating that it is short-lived. This 5-parameter fit takes into account an

approximately linear background, and its parameters are kept within the bounds of full

angular coverage in the spectrometer focal plane. This state was considered as a tentative

candidate for the 5-α cluster state of interest.

A heretofore unseen narrow state is also observed at Ex = 19.8 MeV, but with very

low statistics, making it difficult to discern whether this peak is a real state from 20Ne or

merely an artifact of the background subtraction procedure.
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As far as the data at θlab = 7◦ is concerned, consider the gas-filled target data represented

by the blue spectrum in Fig. 4.32 a). These data were generated during the third weekend,

with Ep = 60.32 MeV, and the background data, represented by the black and red spectra,

during the fourth, with Ep = 60.01 MeV. This implies a 0.31 MeV difference in the observed

triton energy. Hence the region between Ex = 22.25 MeV and Ex = 22.56 MeV still has

full focal plane coverage in the case of the gas-filled target data, but not in the case of the

background data. This region is indicated by the two black lines in Fig. 4.32. Therefore,

the background data in Fig. 4.32 are still valid for the region of all the candidate new

states, apart from the 5-α cluster candidate. This makes a valid background subtraction

impossible at θlab = 7◦ for the 5-α cluster state candidate, with the 33.5 MeV (p,t) data

set.

However, some data were collected at θlab = 7◦ with the 31 MeV (p,t) field setting,

which sheds light on an excitation energy region from Ex = 20.0 MeV to Ex = 25.2 MeV,

as shown in Fig. 4.33. These data were obtained with beam currents close to Ip = 20 nA

during Weekend 2, yielding count rates from 700 to 900 Hz during both the background

and the neon gas-filled runs. The gas pressure was about P = 1.3 bar throughout and

data were acquired for about 100 minutes both with and without the gas. The normalised

background data could be subtracted from the neon gas-filled data at this field setting.

Some strength is still present for 5-α cluster candidate in the subtracted spectrum in

Fig. 4.33 b).

However, close inspection of the θlab = 7◦ data in Fig. 4.33 b), and of the θlab = -1◦

data as shown in Fig. 4.31, indicates that this 5-α cluster candidate may possibly consist

of more than one states, though it is difficult to tell with the low statistics of the 31 MeV

(p,t) data set. This would make a 5-α cluster state unlikely, as the widths of these separate

states would be much narrower than what can be expected for an α-cluster state at an

energy of more than 15 MeV above the α-decay threshold, and more than 3 MeV above

the 5-α-decay threshold. In any case, the cross section of this state could not be reliably

extracted at either θlab = -1◦ or θlab = 7◦, and at θlab = 16◦ and θlab = 27◦ it was not

measured due to background and the limit of the excitation energy region respectively.

Therefore, the spin and parity of this state could not be established.
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FIG. 4.30: The excitation energy spectrum from the 22Ne gas-filled target for
the 33.5 MeV (p,t) field setting at θlab = -1◦ is shown by the blue spectrum in
a). The black spectrum in a) shows the spectrum from the single aramid foil,
while the red spectrum shows the same spectrum shifted to the right according
to the measured energy loss of the tritons through the gas. The spectrum in
b) was generated by subtracting the blue spectrum in a) from the red and
black background spectra.
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FIG. 4.31: A section of the excitation energy spectrum from the 22Ne gas-
filled target for the 33.5 MeV (p,t) field setting at θlab = -1◦, illustrating the fit
of the state at Ex = 22.5 MeV
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FIG. 4.32: The excitation energy spectrum from the 22Ne gas-filled target
for the 33.5 MeV (p,t) field setting at θlab = 7◦ is shown by the blue spectrum
in a). The black spectrum in a) shows the spectrum from the single aramid
foil, while the red spectrum shows the same spectrum shifted to the right
according to the measured energy loss of the tritons through the gas. The
background-subtracted spectrum is shown in b).
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FIG. 4.33: The excitation energy spectrum from the 22Ne gas-filled target
for the 31 MeV (p,t) field setting at θlab = 7◦ is shown by the blue spectrum
in a). The black spectrum in a) shows the spectrum from the single aramid
foil, while the red spectrum shows the same spectrum shifted to the right
according to the measured energy loss of the tritons through the gas. The
background-subtracted spectrum is shown in b).
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The background subtractions at θlab = 16◦ and θlab = 27◦ were complicated by the

fact that the thickness of the aramid foil changed significantly during these measurements

due to sputtering of the aramid material by the beam. Therefore, the change in carbon

composition of the foil, deduced from the RBS data from Section 3.5.3, was taken into

account in normalising the background data shown in Fig. 4.34.

It is not clear from Fig. 4.34 b) whether the peaks indicated as candidates for the

known Ex = 18.538 MeV 8+, Ex = 18.621 MeV 8+ and Ex = 19.731 MeV 8+ states in

20Ne are mainly composed of true 20Ne states or of remnants of the Ex = 3.3537 MeV 2+

state from 10C and the Ex = 7.768 MeV 2+ state from 14O. A width of FWHM = 129 keV

was measured for the candidate Ex = 18.538 MeV state, which is in good correspondence

to the known value of the natural width of this state (Γ = 138 keV [3]). However, for

the candidate Ex = 18.621 MeV state, a width of FWHM = 95 keV was measured. This

is almost a factor of 2 smaller than the known natural width of this state (Γ = 185 keV

[3]). The width of this peak may be influenced by the remnant of the 10C 3.3537 MeV

state. For the candidate Ex = 19.731 MeV state, a width of approximately FWHM = 185

keV was measured in the background-subtracted data. This is very close to the value of

FWHM = 183 keV which was measured for the Ex = 7.768 MeV state of 14O without

background subtraction. The Ex = 19.731 MeV state in 20Ne has a natural width of

Γ = 330 keV, which is almost a factor of 2 more than what was measured for this candidate

state.

These findings cast doubts on the validity of the background subtraction for θlab = 16◦

in the regions of prominent contaminant peaks, even though the RBS information from

Section 3.5.3 was taken into account. Factors contributing to the inaccuracy of this nor-

malisation may include variations in the original foil thicknesses and the uncertainty in

the energy loss calculation. Another factor which must be considered is that the different

elements in the aramid foil which contribute to the background (chlorine, oxygen, nitro-

gen, carbon) would not be sputtered in equal amounts by the beam. If the background

data were normalised to the data taken with the foil which held the gas, with regards to

any one of these elements, a systematic error would immediately be introduced since the

background can no longer be normalised with regards to any of the other 3 elements.

Nevertheless, a peak with FWHM = 245 keV is seen at Ex = 21.74 MeV in the

background-subtracted θlab = 16◦ spectrum (Fig. 4.34). This is much narrower than
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the value of FWHM = 410 keV measured for the Ex = 6.58 MeV state in 10C, which is

found in this excitation energy region. Therefore, it seems likely that a large part of the

strength in this peak comes from the new state in 20Ne, which is seen at Ex = 21.80 MeV

in the θlab = -1◦ data (Fig. 4.30), and at a similar energy in the θlab = 7◦ data (Fig. 4.32).

The same complications may be anticipated for the data obtained at θlab = 27◦, since

these data also experienced high beam currents (Ip ≥ 15 nA) for an extended period of

time (about 16 hours). The background data in Fig. 4.35 were normalised iteratively with

the data obtained with the gas-filled target. Some strength from carbon and oxygen peaks

seems to have remained in the spectrum. The region around Ex = 21 MeV seems to have

been cleaned up very well, and the state measured at Ex = 21.16 MeV in the θlab = -1◦

data is again seen prominently above the 20Ne continuum in Fig. 4.35 b). Unfortunately,

the Ex = 21.80 MeV state lies beyond the limit in excitation energy in this case. The state

at Ex = 17.67 MeV is seen more clearly in the background subtracted spectra, but with

some interference from the near-lying 5− state at Ex = 17.606 MeV with Γ = 140 keV [3].
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FIG. 4.34: The excitation energy spectrum from the 22Ne gas-filled target for
the 33.5 MeV (p,t) field setting at θlab = 16◦ is shown by the blue spectrum
in a). The black spectrum in a) shows the spectrum from the single aramid
foil, while the red spectrum shows the same spectrum shifted to the right
according to the measured energy loss of the tritons through the gas. The
background-subtracted spectrum is shown in b).
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FIG. 4.35: The excitation energy spectrum from the 22Ne gas-filled target for
the 33.5 MeV (p,t) field setting at θlab = 27◦ is shown by the blue spectrum
in a). The black spectrum in a) shows the spectrum from the single aramid
foil, while the red spectrum shows the same spectrum shifted to the right
according to the measured energy loss of the tritons through the gas. The
background-subtracted spectrum is shown in b).
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4.8.3 Errors

The error propagation formula was employed to determine the error of variables related

to more than one measured quantity in this experiment:

σ2
u =

(

δu

δx

2)

· δσ2
x +

(

δu

δy

)2

· δσ2
y +

(

δu

δz

)2

· δσ2
z + .. (4.13)

The variables x, y and z in Eq. 4.13 represent independent measured quantities for which

the standard deviations σx, σy and σz are known. The standard deviation of any quantity

u which is calculated from these variables is found by solving this equation for σu [113].

4.8.3.1 Angular uncertainty

The maximum angular uncertainty of this measurement, owing to the thickness of the

gas cell, was calculated to be ∆θt = 0.12◦ in Section 3.5.1.2. The factors which normally

contribute to the angular uncertainty of measurements with theK600 are the uncertainties

in the K600 angle and in the offsets of the two scintillating viewers which are used for

beam optimisation. Together, these factors normally generate an uncertainty of ∆θn =

0.06◦ [114]. This makes the total angular uncertainty of the present measurement ∆θ =
√

(∆θt)2 + (∆n)2 = 0.13◦.

4.8.3.2 Variables which influence cross section

The uncertainty related to the determination of the cross section in Eq. 4.7 is dominated

by the systematic error associated with the calculation of the effective thickness of material

∆λ. The error in this calculation comes from the error associated with the energy loss

calculation performed with the double-peaks from states related to the aramid material. A

systematic error of ± 23% was estimated for this calculation, by observing the maximum

discrepancy in density values which were extracted via the energy loss calculation on two

different aramid-related states in the same set of data. Note that this λ value is an average

value for a given run, since the real value of the gas pressure P upon which it is dependent

is constantly decreasing, and sometimes the gas cell had to be refilled during a run.

To accurately determine the systematic error associated with the calculation of the

cross section, σ, of any given peak, one must also consider the errors associated with the

K600 solid angle (∆Ω = 0.3 % [89]), the integrated current (∆If = 0.5% [89]) and the
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efficiency (∆ǫ = 1%). However, all these contributions are negligibly small compared to

the systematic error resulting from the calculation of the target thickness.

4.8.3.3 Uncertainty in excitation energy

The statistical error in the determination of excitation energy ∆Est for a given experi-

mental peak is given by the FWHM divided by the square root of the number of counts

N

∆Est =
FWHM√

N
, (4.14)

hence ∆Est can be almost negligible for a large number of counts. The aramid background

data introduce another statistical error, as well as a systematic error related to the sim-

ulation of energy loss, in the background-subtracted spectra. The systematic uncertainty

in the determination of the excitation energy is dominated by the inaccuracy of the energy

calibration. This uncertainty is discussed in Section 4.7.

4.9 Observed energy resolution values

Some of the observed energy resolution values are very close to the energy resolution of

the measurement, therefore the natural widths of these states were calculated by assuming

that:

σFWHM =
√

σ2
Γ + σ2

Res, (4.15)

where σRes is the energy resolution which was extrapolated from the values shown in

Table 4.12, σFWHM is the measured width of the new state shown in Table 4.13, and

σΓ is the natural width. The uncertainty in σRes was estimated for each state with the

maximum deviation from the fit to the energy resolution data points in Figs. 4.36 to 4.39,

for the specific angle which was used in each case. The statistical uncertainty was then

calculated for σFWHM and Eq. 4.15 could be solved for the uncertainty in σΓ, which is

also indicated in Table 4.13.

The measured widths and cross sections of the candidate new states indicated in

Fig. 4.30 are shown for all four angles in Tables 4.13 and 4.14. Fig. 4.36 shows the

linear deterioration of energy resolution with increase in excitation energy at angles near

to θlab = 0◦. By observing the rate of this deterioration in the figure, one may infer the res-

olution values above Ex = 16.73 MeV, which is the location of the highest known narrow
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(Γ ≤ 10 keV) state.

The observed energy resolution values from data at θlab = 7◦ are graphically represented

in Fig. 4.37. It is observed that the new state at Ex = 21.80 MeV has a smaller observed

width than some of the known narrow states at lower excitation energies. This may

be attributed to a lower gas pressure during the readings in the Ex = 18.2-22.6 MeV

excitation energy region, compared to the data obtained at lower Ex field settings. The

data at θlab = 7◦ were obtained at comparitively low gas pressures, and over shorter periods

of time than the data from the other other angles, which minimizes contributions to the

measured widths from factors such as movement of the beam over long periods. Hence,

the resolution values observed at θlab = 7◦ are on average the best out of all the angles.

From these data one may already assign maximum natural widths of Γ = 47 keV and Γ

= 41 keV to the states at Ex = 21.16 MeV and Ex = 21.80 MeV. The state at Ex = 20.59

MeV is closer to the 2nd and 3rd excited states of 10C at θlab = 7◦. This makes it difficult

to perform an accurate fit, hence a higher than expected width is observed. The value

recorded at θlab = -1◦ was provisionally taken as an upper bound in this case.

The upper bounds of the natural widths of the states at Ex = 21.16 MeV and Ex = 21.80

MeV were calculated by employing Eq. 4.15 to a fit on the known narrow states in Fig. 4.36.

Note that the energy values found at θlab = -1◦ are trusted most, since its method of

calibration, which uses peaks from the oxygen gas in the gas cell, can be expected to be

the most reliable.

The observed energy resolution values from θlab = 16◦ indicated in Fig. 4.38 remain

relatively flat between 40 keV and 50 keV for the known states (probably due to a slightly

higher gas pressure during measurements at lower Ex field setting), apart from the states

at Ex = 5.621 MeV and Ex = 5.787 MeV which have a noticeably lower energy resolution.

These states were measured with the Et = 48 MeV (p,t) field setting at θlab = 16◦ during

the first weekend. During this weekend, a 3 mm-thick target was used as discussed in

Section 3.6, instead of the 10-mm-thick target, discussed in Section 3.5, that was used

to measure all the other widths in Figs. 4.36 to 4.39. The new state at Ex = 21.16

MeV has an unexpectedly high measured width of FWHM = 58 keV. This may be due

to another 20Ne peak which is stronger at this larger angle and could not be resolved in

this experiment. The energy straggling could also play a role since the tritons must pass

through more 22Ne gas material at this larger angle.
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At θlab = 27◦ in Fig. 4.39, the energy resolution seems to worsen at a rate of 3.5

keV/MeV as one moves from Ex = 16.73 MeV to the new state at Ex = 21.16 MeV.

This state corresponds to a triton energy of Et = 29.3 MeV at a centre-of-mass angle of

θcm = 29◦. The value of FWHM = 59 keV which was measured for this state is in good

agreement with the value of FWHM = 54 keV which was calculated in Section 3.5.1 for

a state at Et = 33 MeV and θlab = 30◦. This rapid deterioration in energy resolution at

θlab = 27◦ may indicate some threshold where the triton energy becomes low enough that

the straggling of the tritons increases rapidly. It may also be that the higher excitation

energy states in Fig. 4.39, which are both far weaker than the Ex = 16.73 MeV state,

were more adversely affected by aramid contamination than the Ex = 16.73 MeV state.

In any case, the measured value is still within the range which was anticipated and which

is acceptable for this measurement, as is the case with all the resolution values shown in

Tables 4.12 and 4.13.
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FIG. 4.36: Observed energy resolution values of known narrow (Γ ≤ 2 keV)
states in 20Ne, measured close to θlab = 0◦, and candidate new states measured
at θlab = -1◦ (highest three in excitation energy)
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FIG. 4.37: Observed energy resolution values of known narrow (Γ ≤ 2 keV)
states in 20Ne and candidate new states measured at θlab = 7◦ (highest three
in excitation energy)
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FIG. 4.38: Observed energy resolution values of known narrow (Γ ≤ 2 keV)
states in 20Ne and a candidate new state measured at θlab = 16◦ (highest state
in excitation energy). The values at Ex = 5.621 MeV and Ex = 5.787 MeV
were measured with a 3-mm-thick target. All other values were measured with
a 10-mm-thick target.
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FIG. 4.39: Observed energy resolution values of known narrow (Γ ≤ 9 keV)
states in 20Ne and a candidate new state measured at θlab = 27◦ (highest state
in Ex)

4.10 Results

Six newly observed states were found at excitation energies of Ex = (17.67 MeV, 18.84

MeV, 20.59 MeV, 21.16 MeV, 21.80 MeV, 22.5 MeV). The cross sections of the newly

observed states are shown in Table 4.14, while those of all the known states which

were measured in 20Ne are shown in Tables C.1 and C.2 in Appendix C. The state at

Ex = 22.5 MeV was considered as a tentative candidate for the 5-α cluster state, owing to

its energy position and its broad width (Γ = 266 keV). The new states at Ex = 20.59 MeV,

Ex = 21.16 MeV and Ex = 21.80 MeV are narrow and high in 20Ne excitation energy.

It was presumed that they may be isobaric analogue states with isospin values of T = 2.

IMME (isobaric multiplet mass equation) and shell-model based calculations were per-

formed to test this hypothesis. These are discussed in Chapter 5. The peak at Ex = 18.84

MeV still appears to be a collection of states, with a collective width of Γ = 97 keV. Cross

section values for the Ex = 17.67 MeV state could be extracted only at θlab = 16◦ since

there was usually too much interference from near-lying states to perform a reliable fit

and background subtraction.
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The angular distribution plots in Figs. 4.40 and 4.41 were generated from the values

in Table 4.14, and Tables C.1 and C.2 in Appendix C. The angular distribution plots of

other known states measured in 20Ne are shown in Figs. C.1 to C.4 in Appendix C. The

ground and 1.634 MeV excited states of 20Ne do not display the exact trend expected from

the DWBA calculations between θcm = 0.5◦ and θcm = 7.7◦ in Fig. 4.40 . This could be

attributed to interference from the L-shaped beam stop over an angular range which is

difficult to establish for these states with the spectrometer settings of θlab = (0.5◦, 7◦) and

anticipated triton energy Et = 52 MeV. This makes the cross section values unreliable at

this angle for the aforementioned states. The same does not hold for the Ex = 4.247 MeV

state which received full angular coverage in the focal plane at the same angle and field

setting.

The Ex = 21.16 MeV state in Fig. 4.41 follows a very similar trend to the Ex = 16.73

MeV 0+ state, which is the nearest 0+ state for which a reliable angular distribution plot

could be generated. This is in good agreement with the DWBA calculation, which predicts

a maximum at θcm = 0◦, a minimum at θcm = 20◦, and a second maximum at θcm = 29◦

for these states, assuming that both have a 0+ character. The narrow width of this state,

listed in Table 4.13, is also in accordance with a 0+, T = 2 state. It is not easy to assign

spins and parities to the states observed at Ex = 20.59 MeV and Ex = 21.80 MeV since

their cross sections could only be measured at two angles, but the narrow widths indicate

a strong possibility of 0+ characters, especially for the Ex = 21.80 MeV state.

Excitation energy Width(0◦) Width (7◦) Width (16◦) Width (27◦)
[MeV] [keV] [keV] [keV] [keV]

gs 47
1.63 37
5.62 38 41
5.79 49 38
10.27 49 40 45
11.09 50 42 45
16.73 53 45 44 43
18.43 49

TABLE 4.12: The known energies of previously observed narrow states (Γ ≤ 10
keV) in 20Ne are shown in the 1st column [3], and the widths which were
measured for them at each angle for this experiment are shown in the other
four columns.
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Excitation energy Width(-1◦) Width (7◦) Width (16◦) Width (27◦) Γ [Natural width]
[MeV] [keV] [keV] [keV] [keV] [keV]

17.670(57) 126 114.2(48)
18.840(56) 111 116 97.2(41)
20.590(54) 55 85 ≤55
21.160(53) 70 47 58 59 ≤43
21.800(53) 67 41 ≤38
22.500(52) 266 260.2(52)

TABLE 4.13: The excitation energies measured at θlab = -1◦ and the measured
widths for the candidate new states in 20Ne. The 6th column shows the natural
width values which were extracted with Eq. 4.15.

State σ (θlab = 0◦) σ (θlab = 7◦) σ (θlab = 16◦) σ (θlab = 27◦)
[MeV] [µb.sr−1] [µb.sr−1] [µb.sr−1] [µb.sr−1]

17.67 1.4(3)
18.84 12(3) 6.7(15)
20.59 2.4(5) 6.7(15)
21.16 38(9) 22(5) 7.2(16) 7.7(17)
21.80 11.0(26) 7.3(16)

TABLE 4.14: The observed absolute cross sections of all newly observed
states in 20Ne
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FIG. 4.40: Angular distribution plots for states measured between Ex = 0
and Ex = 7 MeV. The excitation energy values of the states are indicated in
MeV, as they are for all forthcoming angular distribution plots.
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FIG. 4.41: Angular distribution plots for some of the states measured above
Ex = 16 MeV. Newly observed states are indicated by an asterisk.
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CHAPTER 5

Interpretation of the new states

It has long been known that isobaric analogue resonances may occur at high excitation

energies in nuclei yet still have relatively narrow widths (Γ close to or within 100 keV),

making them distinguishable from a continuous background of states by their isospin

quantum number [44]. Hence, it was presumed that the narrow (Γ < 60 keV) states

experimentally observed above Ex = 20 MeV in this measurement may be states of this

nature. Known states with similar binding energies were identified in the isobaric nucleus

20O, between Ex = 3 MeV and Ex = 6 MeV.

By implication, these states would have isospin values of T = 2, which would explain

how they can have such narrow widths despite being more than 3 MeV above the seper-

ation energies for both protons (Sp = 16.9 MeV) and neutrons (Sn = 12.8 MeV) in 20Ne.

Consider if one of these states were to undergo proton decay. After the decay, 20Ne be-

comes 19F with Tz = 1/2 and g.s. isospin T = 1/2 and a proton with Tz = -1/2 and

T = 1/2. The vector sum of two T = 1/2 states may equal only T = 0 or T = 1,

therefore proton decay to the g.s. or any other T = 1/2 state in 19F is not allowed. Pro-

ton decays are only possible to the T = 3/2 states which are located at Ex = 7.5 MeV

and above in 19F [3]. This makes the effective proton binding energy for T = 2 states

Sp = 16.9 MeV + 7.5 MeV = 24.4 MeV. By following a similar argument for neutron

decay to 19Ne, the effective neutron binding energy for T = 2 states is Sn = 20.4 MeV.

These states may also undergo β-decay to isobaric neighbour nuclei and γ-decay to states

in 20Ne, but following isospin selection rules.

Among self-conjugate α nuclei lighter than 20Ne, T = 2 states are observed with narrow

widths (Γ ≤ 50 keV) in 16O at Ex = 22.721 MeV and Ex = 24.522 MeV, in 12C (with

Γ ≤ 200 keV) at Ex = 27.595 MeV and Ex = 29.630 MeV, and even in 8Be at Ex = 27.494

MeV with Γ = 5.5 keV. This indicates that a pair of narrow T = 2 states is likely to be

found above Ex = 20 MeV in 20Ne. The highest known T = 2 states in 24Mg and 28Si

exist at Ex = 15.436 MeV and Ex = 15.227 MeV respectively [3].

Theoretical calculations were performed with the isobaric multiplet mass equation

(IMME) (Section 5.1) and with NuShellX and FRESCO (Section 5.2), to test whether

128
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these states in 20O are related to the observed states in 20Ne.

5.1 IMME calculations

The excitation energy values for states in 20O which were obtained from this calculation,

using the measured energy values of the candidate T = 2 states in 20Ne, are shown in Table

5.1 [82]. These values are compared to the energy values of known experimental states in

20O in the same table. From the IMME calculations, the 20Ne state at Ex = 21.16 MeV

seems very likely to be an isobaric analogue (IAS) state of the 4.456 MeV 0+ state of 20O

since the calculated energy value in 20O is within 20 keV of the known experimental value.

Furthermore, the angular distribution plots in Fig. 5.1 e) of the 16.73 MeV 0+ state and

Fig. 5.2 a) of the Ex = 21.16 MeV state follow a very similar trend, indicating that the Ex

= 21.16 MeV state must also have a 0+ spin and parity. The angular distribution plots in

Figs. 5.1 and 5.2 were generated from the experimental data, as well as from the coupled

reaction channels calculations with FRESCO, which are discussed in Section 5.2.

New 20Ne state Calculated 20O Ex Known 20O state Reference
[MeV] [MeV] [MeV]

20.590(54) 2+/4+? 3.86 3.570 4+ [3]
3.895 [115]

4.072 2+ [3]
4.353 [115]

21.160(53) 0+ 4.44 4.456 0+ [3]

21.800(53) 0+? 5.06 4.598 [115]
4.850 4+ [3]
4.99 (2+) [116]

5.115 [115]
5.23 3+ [116]
5.304 2+ [3]
5.387 0+ [3]

TABLE 5.1: The 20O excitation energy values in the 2nd column, which were
obtained from the IMME calculation employing the new 20Ne states in the 1st

column, are compared to the excitation energies of known states of 20O in the
3rd column.

The state at Ex = 20.59 MeV does not have a 0+ spin and parity since its cross section

increases as one moves from θcm = 0◦ to θcm = 7.7◦ in Fig. 5.2 a), and could possibly have

either a 2+ or a 4+ character. This means that it may be associated with either one of the

Stellenbosch University  http://scholar.sun.ac.za



5. Interpretation of the new states 130

states at Ex = 3.570 MeV 4+, Ex = 3.895 MeV (which has an unknown spin and parity)

and Ex = 4.072 MeV 4+ in 20O.
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FIG. 5.1: Measured angular distribution plots (fitted with blue lines to guide
the eye) are compared to angular distribution plots calculated with NuShellX
and FRESCO (fitted with red lines to guide the eye) for states in 20Ne.
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FIG. 5.2: Angular distribution plots of experimentally observed T = 2 can-
didate states are shown in a), and of T = 2 states calculated with NuShellX
and FRESCO in b) for states in 20Ne. The lines were added to these plots to
guide the eye.

Fig. 5.3 shows a comparison between the experimental levels and levels generated by a

p-sd shell-model calculation from Ref. [115], which is where the state at Ex = 3.895 MeV

was reported to be observed. It seems likely, in Fig. 5.3, that one may relate the observed

Ex = 3.568 MeV 4+ state to the calculated Ex = 3.771 MeV 4+ state, and the observed

Ex = 4.070 MeV 2+ state to the Ex = 4.174 MeV 2+. This leaves no obvious state in

Fig. 5.3 with which the Ex = 3.895 MeV may be related, hence no spin and parity can

be assigned to this state. The first three known 20O states in Table 5.1 must therefore

remain viable candidates for the IAS state of the Ex = 20.59 MeV state in 20Ne.

The angular distribution plot of the Ex = 21.8 MeV state in Fig. 5.2 a), which could

only be determined from θcm = 0◦ to θcm = 7.7◦, does not correspond to either a 2+ or a 4+

character, but is consistent with a 0+ character. This means that it may be related to any of

the states at Ex = 4.598 MeV, Ex = 5.115 MeV and Ex = 5.387 MeV. In Fig. 5.3, the state

at Ex = 4.598 MeV may well be related to one of the 1p-1h negative parity states predicted

by the p-sd calculation in Ref. [115]. The state at Ex = 5.115 MeV is within 80 keV of a

predicted pure sd-shell 0+ state at Ex = 5.038 MeV 0+. This state may be related to the

Ex = 5.059 MeV state deduced from an IMME calculation on the Ex = 21.8 MeV state

from the current measurement, and be reproduced by the Ex = 5.038 MeV state from the

p-sd shell-model in Ref. [115]. However, since an error of a few hundred keV may typically

be associated with both IMME and shell-model calculations, both the state with unknown

spin and parity at Ex = 4.598 MeV and the Ex = 5.387 MeV 0+ state remain candidates

for the IAS state in 20O of the newly observed Ex = 21.8 MeV state in 20Ne.
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FIG. 5.3: Calculated and experimental states in 20O. Positive parity states
have blue labels, negative parity states have red labels. All negative parity
states are from 1p-1h states, and positive parity states are 0p-0h states, apart
from 3.486 and 4.848 MeV which are 2p-2h states. The states with black labels,
as well as the figure itself, are from Ref. [115].

Table 5.2 lists the results obtained with the IMME.C code by following the methodology

described in Section 2.4.2.2, for the states in Table 5.1 which remain candidate T = 2

analogue states after the discussion thus far. These are compared to the results for the

two known T = 2 states of 20Ne at Ex = 16.73 MeV and Ex = 18.43 MeV on the same

table. The known T = 2 states are both underpredicted by approximately 600 keV. The

calculated values in 20Ne for the states of 20O at Ex = 3.895 MeV, Ex = 4.456 MeV

and Ex = 5.115 MeV are all within 50 keV of 600 keV below the states measured in this

experiment. Hence, from the predictions using the IMME.C code, these three states in 20O
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are the most likely candidates for T = 2 IAS states of the three newly measured narrow

states in 20Ne. From their excitation energy positions, these three states are also the most

likely T = 2 states from the predictions shown in Table 5.1.

Known 20O state Calculated 20Ne Ex (IMME code) Measured 20Ne state Exp. - theory
[MeV] [MeV] [MeV] [MeV]

g.s. 16.13 16.73 0.60

1.674 17.81 18.43 0.62

3.570 4+ 19.70 20.59 2+/4+? 0.89
3.895 20.03 0.56

4.072 2+ 20.21 0.38

4.456 0+ 20.59 21.16 0+ 0.57

4.598 20.73 21.80 0+? 1.07
5.115 21.25 0.55

5.387 0+ 21.52 0.28

TABLE 5.2: The values of 20Ne excitation energies which were calculated from
known states in 20O with the IMME.C code are compared to the excitation
energies of candidate T = 2 states from the current, and known T = 2 states
from previous experiments on 20Ne.
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5.2 NuShellX and FRESCO calculations

Fig. 5.4 shows the results of calculations for the 22Ne(p,t)20Ne reaction at θcm = 0◦

with an incoming proton beam energy of Ep = 65 MeV, performed by Alex Brown with

NuShellX and FRESCO [71]. All 4+, 2+ and 0+ states in 20Ne from Ex = 0 to 25 MeV were

included. The same calculations were also performed for θlab = (7◦, 16◦, 27◦), and these

are included in Appendix D. The results of these calculations may be compared to the

cross section values which were extracted for the same states at θlab
∼= 0◦ in Fig. 5.5. Cross

sections were extracted for states observed at θlab = (7◦, 16◦, 27◦), and are also shown

in Appendix D. The cross section values extracted for the observed isobaric analogue

candidates in 20Ne are shown in Fig. 5.2 a), and the values found from the calculations

for three T = 2 states above Ex = 20 MeV are shown in Fig. 5.2 b). Width values

could not be assigned to these states by the calculations, hence none were assigned to the

experimental spectra in Fig. 5.5 to aid comparisons with the calculations in Fig. 5.4.

Numerous T = 0 and T = 1 states are predicted by the calculations between Ex = 15

MeV and Ex = 25 MeV. Most of these states could not be identified in the data from this

measurement. It is presumed that they are much broader than the newly observed states

and will therefore form part of the continuous background of states from 20Ne. The lowest

known T = 2 state in 20Ne, the 16.73 MeV 0+ state, is seen to be narrow and strong at

each angle. The second T = 2 state, the 18.43 MeV 2+, is seen at only two angles, due to

contamination from the aramid gas-target foil.

The measured angular distribution plots of a few of the known states in 20Ne are

compared to the angular distribution plots from calculations in Fig. 5.1. The measured

and calculated spectra mostly follow similar trends, with the absolute cross section values

usually differing by factors between 2 and 10. In the case of the 2+ state at Ex = 12.2

MeV, the measurement and the calculation are almost perfectly matched. The 2+ state

calculated at around Ex = 10.5 MeV does not match the trend of the peak measured

nearest to this line, since this peak is composed of 4+, 2+ and 6− states which could not

be resolved.

The calculated spectra for θlab = 0◦ and θlab = 7◦ indicate a T = 2 state with 0+

character just above Ex = 22 MeV. This state may be related to either the observed 0+

state at Ex = 21.16 MeV, or to the observed state at Ex = 21.8 MeV, which may possibly

have a 0+ character. This calculated state is significantly weaker than the observed states
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at Ex = 21.16 MeV (by a factor of 100) and Ex = 21.8 MeV (by a factor of 30).

The calculations also indicate a 4+ state with T = 2 which occurs just above Ex = 22

MeV at all four angles, and a 2+ state at slightly below Ex = 22 MeV at θlab = (7◦, 16◦,

27◦), but not at θlab = 0◦. Neither of the strong experimentally evidenced states at Ex =

21.16 MeV and Ex = 21.8 MeV exhibit a 4+ character, and both are observed near θlab =

0◦, therefore these two calculated 4+ and 2+ states cannot be associated with them.

There is a 2+ state with T = 2 from the calculations which occurs at each angle at an

excitation energy of slightly below 21 MeV. This state may be related to the 20Ne state

which was measured at Ex = 20.59 MeV. This would imply that the 20.59 MeV 20Ne state

has a 2+ spin and parity and may therefore be an IAS state to the Ex = 4.072 MeV 2+

state in 20O, rather than to the Ex = 3.895 MeV state. The observed state at Ex = 20.59

MeV follows a very similar trend to the calculated 2+ state in its angular distribution plot

from θcm = 0◦ to θcm = 7.7◦ in Fig. 5.2, with measured absolute cross section values which

are larger than the calculated values by a factor of 5. This state is indicated as a 2+ state

in the experimental spectra in Figs. 5.5 and D.4 (in Appendix D). This leaves one with

no measured states which could be associated with the aforementioned 4+ and 2+ T = 2

states located above and below Ex = 22 MeV in the calculations.

In summary, the calculated T = 2 state with 0+ character just above Ex = 22 MeV may

be associated with the states observed at either Ex = 21.16 MeV or Ex = 21.8 MeV, and

the state observed at Ex = 20.59 may correspond to the T = 2 state with 2+ character

at an excitation energy slightly below Ex = 21 MeV from the calculations. The fact that

the calculated 0+, T = 2 state close to Ex = 22 MeV is so much weaker than either of the

states measured at Ex = 21.16 MeV and Ex = 21.8 MeV, indicates that these two states

are not sd-shell states, if indeed they are T = 2 states. It is possible that they are 2p-2h,

or even 4p-4h, intruder states, coming from holes in the p-shell. This would explain how

they are not reproduced by the sd-shell calculation, while retaining their positive parities.
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FIG. 5.4: Calculated cross section values of 4+, 2+ and 0+ states at θlab = 0◦

in 20Ne. The black lines are T = 0, green lines are T = 1 and the red lines are
T = 2. This figure is from Ref. [71].
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FIG. 5.5: Cross section values extracted from the θlab = 0◦ data for states
of spins and parities 4+, 2+, 0+ from top to bottom. States with black labels
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candidate T = 2 states.
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Fig. 5.6 shows a comparison between the predicted states from Fig. 5.4, and states of

all spins and parities that have been observed near to θlab = 0◦ in the present experiment.

Good agreement is seen between experiment and theory from the ground states up to

Ex = 10 MeV, with most of the measured states which were not predicted being negative

parity states. Among the predicted excitation energies above Ex = 15 MeV, there are

several T = 0 and T = 1 states, as well as a few T = 2 states, which could possibly

be associated with the six newly observed states. However, the predicted energy levels

become too dense at these energies to associate the new states with specific predicted

states. Furthermore, in the case of the newly observed Ex = 18.84 MeV state, it is likely

that more than one state contributes to the observed peak.

5.3 The 5-α cluster candidate

If the state observed at Ex = 22.5 MeV is the 5-α cluster state, then it should not

be expected that it would be reproduced by this shell-model calculation. However, as

discussed in Chapter 4, this state could possibly be composed of more than one state,

which may all have no relation to the 5-α cluster state. If this is true, then these states

may be related to states which were generated in close vicinity in excitation energy by the

NuShellX calculation.

Comparing to known and candidate multi-α cluster states, the well-known 3-α Hoyle

state in 12C is situated 0.38 MeV above the 3-α break-up threshold and has a width of

merely Γ = 8.5 eV [3]. The candidate 4-α cluster state at Ex = 15.097 MeV in 16O has

a width of Γ = 166 keV at 0.66 MeV above the 4-α break-up threshold. This state is

also 7.9 MeV above the α-decay threhold, 2.97 MeV above the neutron-decay threshold

and 0.57 MeV below the proton-decay threshold in 16O. The newly observed state at

Ex = 22.5 MeV in 20Ne is situated 3.33 MeV above the 5-α break-up threshold, 17.8 MeV

above the α-decay threshold, 5.63 MeV above the neutron-decay threshold and 9.66 MeV

above the proton-decay threshold [3]. Based on this information, one might anticipate a

width of at least a few hundred keV, and possibly much larger than 1 MeV, for a T = 0,

5-α cluster state at Ex = 22.5 MeV. Hence, the value of Γ = 260 keV which was observed

for the state at Ex = 22.5 MeV may possibly be a bit small to signify a 5-α cluster state

in any case.
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FIG. 5.6: Comparison of calculated (with NuShellX and FRESCO, left) and
observed states (right) in 20Ne from the 22Ne(p,t)20Ne reaction. Calculations
were performed at θcm = 0◦, and measurements were performed at θlab = -1◦.
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CHAPTER 6

Conclusion and future prospects

6.1 Conclusion

A measurement was performed with the K600 magnetic spectrometer using the

22Ne(p,t)20Ne reaction to attempt to identify low-spin states, which would possibly include

the 5-α ‘Hoyle analogue’ cluster state, in a high excitation energy range of 20Ne at four

different spectrometer angles. A 10-mm-thick 22Ne gas target, which employed aramid foils

with a thickness close to 6 µm as target windows, was used for almost all the measurements,

with observed resolution values close to FWHM = 60 keV at θlab = 27◦ with a gas pressure

approaching P = 1.5 bar.

A tentative candidate for the 5-α cluster state was observed with a width of Γ = 260

keV at Ex = 22.5 MeV, but this could not be confirmed due to interference of carbon and

oxygen contaminants on the aramid foils at θlab = -1◦ and θlab = 7◦, and the limited energy

ranges at θlab = 16◦ and θlab = 27◦. Data obtained at θlab = 7◦ indicate that this peak

may be composed of more than one state in 20Ne. If it were to be two unresolved states

then the individual widths of these states would be too narrow to be associated with the

5-α cluster state, for which a width of at least a few hundred keV may be anticipated.

New narrow states (Γ < 60 keV) were observed at Ex = 20.590(54) MeV, Ex =

21.160(53) MeV and Ex = 21.800(53) MeV in 20Ne. The state at Ex = 21.16 MeV appears

to have a 0+ character and IMME calculations in Section 5.1 indicate that it may be an

IAS state of the Ex = 4.456 MeV 0+ state in 20O.

It is difficult to draw conclusions from the NuShellX and Fresco calculations in Sec-

tion 5.2, since the cross sections generated by these calculations differ by a factor of up to

almost 100 from the experimental values for the candidate T = 2 states. In addition, the

calculations indicate only one T = 2 state for which the absolute cross section decreases

from θcm = 0◦ to θcm = 7.7◦, while the measured data indicate two.

Nevertheless, these calculations indicate that the Ex = 20.59 MeV state is more likely

to be related to the Ex = 4.072 MeV 2+ in 20O, shown in Tables 5.1 and 5.2, if it is indeed a

T = 2 state. The Ex = 21.80 MeV state is probably related to either the Ex = 5.115 MeV

state with unknown spin and parity, or to the Ex = 5.387 MeV 0+ state in 20O, if it is a
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T = 2 state.

There is an indication of another state in 20Ne at Ex = 17.670(57) MeV, and of a

collection of states, with a total width of approximately Γ = 100 keV, which could not

be resolved at Ex = 18.840(56) MeV. Numerous T = 0 and T = 1 states, which may be

related to some of the newly observed states mentioned here, were generated within the

sd-shell of 20Ne by the NuShellX code [71].

6.2 Future prospects

A coincident measurement with cleaner background conditions will be necessary to identify

the 5-α cluster state and to ascertain the nature of some of the newly observed states from

this experiment. The 5-α cluster candidate at Ex = 22.5 MeV needs to be investigated

specifically to determine whether it is composed of one or more states, and whether it has

an α-cluster character.

The cryogenic target development described in Section 3.6 may be continued, either

to create a target with a better resolution by compressing the gas in a target with a

smaller absolute thickness, or to make a target which can contain a larger areal density of

material with a similar absolute thickness to improve the ratio of gas cell-related statistics

to target foil-related statistics. This can be done up to some limit, however, where the

effective thickness of material may excessively affect the resolution.

Another way to improve the resolution with the gas cell would be to increase the beam

energy. At high enough beam energies (Ebeam close to 200 MeV) the energy loss through

the foils would be low enough for no double-peaking to be observed from foil-related peaks,

even with an α-particle beam. The main disadvantage related to an increased beam energy

is that the cross section values decrease substantially.

Nevertheless, the 20Ne(α,α′)20Ne and 16O(α,α′)16O reactions, which would give the best

selectivity for the 0+ multi-α cluster states, may be employed. The 22Ne(α,α′)22Ne and

21Ne(α,α′)21Ne reactions may also be investigated. Some of the bands in these nuclei may

be interpreted as having 16O + α molecular structures with covalent valence neutrons

[38, 117].

In order to conclusively identify a state with the 5-α cluster character, it will be nec-

essary to measure its α-decay. One possibility is to use an array of silicon semi-conductor

detectors in the scattering chamber to observe the α-decay in coincidence with the spec-
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trometer focal plane measurement of tritons, α-particles or any other ejectile. This may

not be effective, however, since the α particles from the gas might fail to penetrate the

gas target foils.

To avoid this problem, the ‘Actar’ or ‘active target’, where the gas target is designed

to be a position-sensitive drift-chamber detector, is being designed. This target would

have an electric field applied over it so that the drift times of electrons towards its signal

wires may be used to track the particles which decay from the residual nucleus, in the

same way that the VDCs of the K600 track ejectile particles. A Si layer may also be

included to aid the measurement of α-decay. The Actar measurements may be recorded

in coincidence with the high energy resolution measurements recorded by theK600’s VDCs

to provide information about the decay modes of excited states in nuclei, using either solid

or gas targets [118]. A similar detector was designed and built for nuclear astrophysics by

TRIUMF (Tri-University Meson Facility) and the University of York [119].

The Hagar NaI γ-detector at iThemba LABS, shown in Fig. 6.1, would be ideal as

an ancillary detector to identify T = 2 states in Tz = 0 nuclei, because it provides fast

counting over a large volume and it can measure large γ-energies [120, 121], which may be

expected from γ-decays from the T = 2 states to the nearest T = 1 states in such nuclei.

FIG. 6.1: The Hagar NaI detector for large-volume γ-ray detection
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Another way to test whether the newly observed states at Ex = 20.59 MeV, Ex =

21.16 MeV and Ex = 21.80 MeV are isobaric analogue states would be to employ the

22Ne(p,3He)20F reaction in the manner of Ref. [45] in the appropriate energy range in

20F and to compare that with the 22Ne(p,t)20Ne data from this measurement. Peaks with

similar widths at similar energy positions (within a few hundred keV) and with the same

spins and parities in both nuclei would be indicative of IAS states.

There are several examples of (p,t) and (p,3He) reactions having been used to identify

IAS states in isobaric nuclei in the past [45, 54, 122], and there are a number of possibilities

for this to be done in the future. These reactions provide the advantage that the magnetic

fields of the spectrometer can be adjusted to each separate particle species of interest,

while maintaining the same beam and target.

The calculated cross section ratios in Table 6.1 were obtained by employing DWBA to

two-nucleon reactions, for which Tf = Ti + 1 where Tf denotes the isospin of the residual

nucleus and Ti is that of the target. The final results are valid for sd-shell states in the

final nucleus. In Fig. 6.2, the 16.73 MeV 0+, T = 2 state in 20Ne is populated, but not

nearly as strongly as in the present measurement, and its T = 2 analogue in 20F, at Ex

= 6.519 MeV, is populated with a strength which corresponds well to the prediction for

22Ne as the target nucleus in Table 6.1 [123].

Final states Allowed L-value(s) Target nucleus Cross section ratio Cross section ratio
Jπ, Tf - experimental - calculated

0+, 1 0 16O 2.19 ± 0.22 1.88
0+, 1 0 36Ar 1.92 ± 0.19 1.80
2+, 1 2 36Ar 1.54 ± 0.20 1.78

5/2+, 3/2 0, 2 21Ne 1.05 ± 0.10 0.93
5/2+, 3/2 0, 2, 4 25Mg 0.85 ± 0.09 0.92
5/2+, 3/2 0, 2, 4 27Al 0.89 ± 0.09 0.90
5/2+, 3/2 2 31P 0.71 ± 0.11 0.88

0+, 2 0 22Ne 0.70 ± 0.09 0.62
0+, 2 0 26Mg 0.61 ± 0.06 0.61
0+, 2 0 30Si 0.54 ± 0.10 0.60

TABLE 6.1: Calculated and experimental relative cross sections dσ(p,t)/dΩ
dσ(p,3He)/dΩ

for states with Tf = Ti + 1. Note that dσ(p,3He)/dΩ is stronger than dσ(p, t)/dΩ
when 22Ne is the target nucleus, according to both the calculated and experi-
mental values [123].
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FIG. 6.2: Energy spectra measured with the (p,t) and (p,3He) reactions using
the same 22Ne gas target, beam and angle
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The angle of the measurement in Ref. [123] (θlab = 36.2◦) was probably detrimental to

the measurement of 0+, T = 2 analogue states in 20Ne and 20F. At small angles with the

magnetic spectrometer, these states should be strongly populated, as was the case with

the Ex = 16.73 MeV state in the present measurement.

If the states measured at Ex = 20.59 MeV, Ex = 21.16 MeV and Ex = 21.80 MeV with

the 22Ne(p,t)20Ne reaction are of isospin T = 2, then their analogues should be populated

by the 22Ne(p,3He)20F reaction with relative strengths corresponding to the inverse of the

ratio in Table 6.1. The next T = 1 level in this nucleus is situated at Ex = 12.221 MeV,

which means that γ-decays with energies exceeding 8 MeV may be anticipated, following

isospin selection rules. A NaI detector would be ideal for identifying such decays.

If the lower two of these states are related to the Ex = 4.072 MeV and Ex = 4.456

MeV states in 20O, then Coulomb shift calculations predict T = 2 states at Ex = 10.470

MeV and Ex = 10.827 MeV in 20F [48]. Another T = 2 state, related to the Ex = 21.80

MeV state in 20Ne, could then be expected at about 600 keV above this hypothetical Ex

= 10.827 MeV state. Table 6.2 shows the states which are known in this region of 20F,

according to the EXFOR data base [3].

Ex [MeV] Reaction Jπ Γ [keV]

10.228 AB 0−,1 200
10.480 B 10
10.641 AB 1,2 70
10.807 AB 0−,1 310
10.990 A 190
11.045 A 30
11.130 A ≤25
11.244 A ≤25
11.287 A
11.490 B

TABLE 6.2: Known states in the region of 20F where T = 2 states may be
anticipated. A denotes the reactions 16O(α,α′) and 16O(α,2α′), and B denotes
16O(6Li,d) [3].

The isospins of the states in Table 6.2 are unknown, and little is known about their γ-decay

strength, spin and parities. A few of these states are potential candidates for T = 2 states

owing to their narrow widths, e.g. at Ex = 10.480 MeV, Ex = 10.641 MeV. Measurement

of relative strengths corresponding to the values in Table 6.1, along with the anticipated
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γ-decays in 20Ne and 20F, would serve as conclusive evidence of IAS states.

This type of measurement could be expanded to a number of other nuclei in the same

mass region (A = 8 - 50), as was done in Ref. [124], for instance. The iThemba LABS cy-

clotron and magnetic spectrometer provide higher beam energies and lower experimental

resolutions than the aforementioned examples of such investigations, which were mostly

performed during the 1960s or 70s. This makes the generation of more detailed data at

higher excitation energies a possibility. In addition, the zero degree mode of the spectrom-

eter provides the best selectivity for the T = 2, Jπ = 0+ states.

One interesting possibility would be the use of a 24Mg target to study 22Mg and 22Na.

This could be combined with a 22Ne(α,α′)22Ne experiment to study the isobaric analogues

in A = 22 nuclei. Other examples of possible targets include 11B, 12C, 16O, 28Si, etc.

Fig. 6.3 shows an example where the two lowest T = 2 states in 12C, and their analogues

in 12B, were measured with this technique [125].
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FIG. 6.3: Energy spectra measured with the (p,t) and (p,3He) reactions on a
14C target [125]
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APPENDIX A

The IMME.C code

The IMME.C code, described in Section 2.4.2.2, is displayed here. This code was written

with C++ programming language in ROOT version 5 [83]. It is based on the formalism of

Ref. [84], and the equations refer to Section 2.4.2.2. The first seven lines of this code have

been filled in for the calculation of the ground state mass of 20Ne.

// IMME calculation for mass of 20Ne

Int t n=5; // number of nuclei used

Float t ME[n] = 67.133,37.56,21.77,3.969,-0.0174; // mass excess values from EXFOR

database [3]

Float t Z[n] = 5,6,7,8,9; // Z

Float t Tz[n] = -5,-4,-3,-2,-1; // Tz = (Z-N)/2

double T = 5.0; //Max Tz value

double Tf = 0.0; //Final isospin - nucleus investigated

double A = 20.0; //Mass of nucleus

//Enter all fields above, and then let the code work.

//——————————————————————-//

Float t Mo[n];

for(int i = 0; i <= n ; i++)

Mo[i] = A∗931.494+ME[i];

double Ec1 = (1.1267e-15∗pow(A,2.0/3.0))/(5.0∗1.2e-15); // Eq. 2.24

double Ec2 = (1.1267e-15)/(5.0∗1.2e-15∗pow(A,2.0/3.0)); // Eq. 2.25

double b = 0.782354-Ec1; //Eq. 2.22

cout <<b<<endl;

double c = 3.0∗Ec2; //Eq. 2.23

cout <<c<<endl;

Float t Ec0[n];

for(int i = 0; i < n ; i++)
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Ec0[i] = Mo[i+1]-Mo[i]+T∗(T+1)∗Ec2-b∗Tz[i]-c∗pow(Tz[i],2); //Eq. 2.19

TCanvas ∗K1 = new TCanvas(”CobusC”,0); //draw canvas

K1− >Divide(1,1);

K1− >cd(1); //make pad 1 active:

TGraph ∗g2 = new TGraph(n-1,Z,Ec0);

TH2F ∗h02 = new TH2F(”h01”, ”Ec0 vs Z”,20,0,20,200,-100,100); //set range

h02− >Draw();

g2− >Draw(”∗same”);

cout <<Ec0[n-2]<<endl;

cout <<Ec0[0]<<endl;

cout <<Z[n-2]<<endl;

cout <<Z[0]<<endl;

double slope=(Ec0[n-2]-Ec0[0])/(Z[n-2]-Z[0]); //calculate slope

cout <<slope<<endl;

double Eczero=Ec0[n-2]+slope; //find Ec0 for nucleus being investigated

cout<<Eczero<<endl;

double a=ME[n-1]+Eczero-Tf∗(Tf+1)∗Ec2; //Eq. 2.21

cout <<a<<endl;

double M=a+b∗Tf+c∗pow(Tf,2.0); //Eq. 2.20 (IMME)

cout <<M<<endl;
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APPENDIX B

Data sets over full energy range

Excitation energy spectra measured at every magnetic field setting which was investigated

over an excitation energy range from Ex = 0 - 25 MeV are shown for θlab = (7◦, 16◦, 27◦)

in Figs. B.1, B.2 and B.3 respectively. The excitation energy spectrum measured at angles

near θlab = 0◦ is displayed in Fig. 4.29 in Chapter 4. Note that, for θlab = 27◦, data were

obtained only with the Et = 52 MeV and Et = 33.5 MeV settings due to experimental

time constraints. The data acquired with these settings represent the lowest and highest

excitation energy ranges which were investigated. This explains the gap in excitation

energies from Ex = 5 MeV to Ex = 15.7 MeV in Fig. B.3. The states are labelled by their

excitation energy values in MeV in all figures in this section.
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FIG. B.1: The excitation energy spectrum for all field settings on the 22Ne
gas-filled target at θlab = 7◦. States from 20Ne have blue labels and states from
the aramid foil have black labels, as with all figures to come in this section.
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FIG. B.2: The excitation energy spectrum for all field settings on the 22Ne
gas-filled target at θlab = 16◦
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APPENDIX C

Absolute cross sections of known states

The integrated cross sections which were measured for the known states in 20Ne are shown

in Tables C.1 and C.2. The angular distribution plots of all the known states in 20Ne

which were not shown in Chapter 4 are shown in Figs. C.1 to C.4.

State σ (θlab = 0◦) σ (θlab = 7◦) σ (θlab = 16◦) σ (θlab = 27◦)
[MeV] [µb.sr−1] [µb.sr−1] [µb.sr−1] [µb.sr−1]

5.621 3− 34(7) 104(23)
5.788 1− 50(11) 48(11)
9.873 3− 3.3(7)
10.406 5.8(13) 3.3(8)

10.84, 10.843, 10.884 16.0(35) 49(11) 45(10)
11.528, 11.555, 11.558 22(5) 21(5) 19(4)
12.401 3−, 12.436 0+ 7.6(17) 12.0(27) 12.0(26)

13.827, 13.866 3.2(7) 2.7(6)
14.370 23(5)

15.436, 15.500 16.0(36)
17.155 3.2(7)
17.284 4.6(10) 2.7(6)
18.286 4.1(9)

20.296 7− 5.0(11)

TABLE C.1: The observed absolute cross sections of all known negative parity
states, or of peaks consisting at least partly of negative parity states, in 20Ne
[3]
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State σ (θlab = 0◦) σ (θlab = 7◦) σ (θlab = 16◦) σ (θlab = 27◦)
[MeV] [µb.sr−1] [µb.sr−1] [µb.sr−1] [µb.sr−1]

g.s. 0+ 620(140) 670(150) 160(36) 160(35)
1.634 2+ 250(56) 250(57) 58(13) 40(9)
4.428 4+ 110(24) 150(33) 120(27) 120(26)
6.725 0+ 110(24) 12.0(25)
7.191 0+ 77(17) 27(6) 24(5)
7.421 2+ 93(21) 21(5)
7.833 2+ 7.7(17) 19(4) 18(4)
9.031 4+ 12.0(27) 9(2)
9.487 2+ 5.7(13) 17(4) 66(15)
9.9 4+ 2.3(5)

10.273 2+ 35(8) 160(36) 280(63)
10.553 4+, 10.584 2+ 3.1(7) 8(2) 26.0(58)

11.02 4+ 0.4(1) 1.2(3)
11.09 4+ 58(13) 77(17) 81(18)
11.32 0+ 5.8(13)
12.221 2+ 61(14) 120(26) 190(41)

12.743 (2+) 23(5) 15.0(34)
13.048 4+ 46(10) 61(14) 77(17)
13.642 0+ 57(13) 42(9)
13.744 0+ 28(6) 59(13)

14.063 2+, 14.115 2+ 18(4)
14.455 (0+,2+), 14.475 50(11) 52(11) 18(4)

14.653 0+ 24.0(69)
14.839 (4+), 14.888 2+ 11.0(25) 16.0(35) 39.0(87)

16.73 0+ 370(82) 186(42) 35(8) 65(15)
17.541, 17.55 (2+) 11(2)

17.91 (2+) 3.2(7) 14(3) 13(3)
18.43 2+ 29(7) 10(2) 14(3)
19.443 6+ 20(4)

TABLE C.2: The observed absolute cross sections of all known positive parity
states in 20Ne [3] which were observed in the present measurement

Stellenbosch University  http://scholar.sun.ac.za



C. Absolute cross sections of known states 156

 [degrees]cmθ
0 5 10 15 20 25 30

]
-1

 [m
b.

sr
Ω

/d
σd

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14 + + 7.191 0
-

7.156 3

 [degrees]cmθ
0 5 10 15 20 25 30

]
-1

 [m
b.

sr
Ω

/d
σd

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
+7.421 2

 [degrees]cmθ
0 5 10 15 20 25 30

]
-1

 [m
b.

sr
Ω

/d
σd

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

+7.833 2

 [degrees]cmθ
0 5 10 15 20 25 30

]
-1

 [m
b.

sr
Ω

/d
σd

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018
+9.031 4

 [degrees]cmθ
0 5 10 15 20 25 30

]
-1

 [m
b.

sr
Ω

/d
σd

0

0.02

0.04

0.06

0.08

0.1
+9.487 2

 [degrees]cmθ
0 5 10 15 20 25 30

]
-1

 [m
b.

sr
Ω

/d
σd

0

0.1

0.2

0.3

0.4

0.5 +10.27 2

FIG. C.1: Angular distribution plots for states measured between Ex = 7
and Ex = 10.3 MeV. The states are labelled by their known excitation energy
values in MeV, as with all figures to come in this section.
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FIG. C.2: Angular distribution plots for states measured between Ex = 10.3
and Ex = 12 MeV
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FIG. C.3: Angular distribution plots for states measured between Ex = 12
and Ex = 13.8 MeV
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FIG. C.4: Angular distribution plots for states measured between Ex = 13.8
and Ex = 18 MeV
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APPENDIX D

Results from NuShellX and FRESCO at non-zero angles

Figs. D.1, D.2 and D.3 show the results of calculations performed by Alex Brown for 4+,

2+ and 0+ states from the 22Ne(p,t)20Ne reaction using NuShellX [126] and FRESCO [59]

at θlab = (7◦, 16◦, 27◦), with Ep = 65 MeV.

The results of these calculations may be compared to the cross section values which

were extracted from the data obtained in the present measurement for the same states at

the same respective angles in Figs. D.4, D.5 and D.6.
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FIG. D.1: Calculated cross section values of 4+, 2+ and 0+ states at θlab = 7◦
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are T = 2 states, as they are in all figures to come in this section.
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FIG. D.2: Calculated cross section values of 4+, 2+ and 0+ states at θlab = 16◦

in 20Ne
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FIG. D.3: Calculated cross section values of 4+, 2+ and 0+ states at θlab = 27◦

in 20Ne
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