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Summary 
 

 

This study aims to calibrate the 3PG (Physiological Processes Predicting Growth) model for 

Eucalyptus grandis x urophylla growing in the coastal Zululand region, South Africa. Parameter 

values developed for this hybrid across regions in Brazil were used as baseline parameters. To 

generate a set of reliable point estimates of weather data for growth modelling, we evaluated 

the performance of two spatial interpolation techniques (Random Forest and the R package 

“Meteoland”) using Mean Absolute Error, Root Mean Square Error, Coefficient of Determination,  

Index of Agreement and Nash Sutcliffe Model Efficiency Index. We collected observed long- 

term weather data from the South African Weather Services (SAWS) and the South African 

Sugarcane Research Institute (SASRI). Weather stations spread across the KwaZulu-Natal 

region were used for the performance analysis. Both models showed great potential. However, 

the Random Forest model was the best performing model used to generate weather data in this 

study for growth modelling. Parameter estimation of the model was based on 17 permanent 

sample plots (PSPs) managed by two forestry companies, Mondi Ltd and Sappi Ltd. Allometric 

parameters for stem mass as a function of stem diameter at breast height were calibrated using 

biomass harvest data from sampling undertaken in 2018. Eleven parameters were selected 

from the list of base parameters to be adjusted using a parsimonious optimization approach. A 

novel method for ranking the parameter set combinations, called extended Root Mean Square 

Error (eRMSE), was created and used to select the optimal parameter set. Using the new 

parameter set resulted in good predictions of three key output variables (Mean stand height (H, 

m), stand basal area (BA, m2/ha), and mean stem diameter at breast height (DBH, cm)) which 

were then used to calculate stand volume (V, m3/ha). Model performance at 15 independent 

validation sites allowed the comparison with three other Brazilian parameter sets. Overall, the 

3PG model gave a good but slightly overestimated stand volume prediction at the validation 

sites. We compared the 3PG model with three simpler models. The forest companies’ statistical 

growth and yield models outperformed all other models in terms of all metrics used, followed by 

a very simple model using the cumulative rainfall model. Although the 3PG gave similar growth 

predictions, it demonstrates its usefulness in simulating growth patterns in response to 

environmental changes. 
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Chapter 1 General overview 

 
1.1 Introduction 

 

Although it only represents a small land area in the country (0.97%) (DAFF, 2019), the South 

African commercial forestry sector is a modern and essential industry contributing about 1% 

to South Africa’s GDP (https://www.gov.za/about-sa/forestry). Plantations of exotic tree 

species, mainly pines and eucalypts, were established to meet domestic and international 

demands (Campion, 2005; Albaugh et al., 2013). Of the total commercial plantations in 

South Africa, hardwood species comprising mainly eucalypts occupy about 0.5 million ha 

(43.7% of the total commercial forestry plantation). Of the eucalypt resource, about 53.4% 

are clonal and are prominently managed for pulpwood production (DAFF, 2019). 

 
Most commercial plantations are in warm temperate areas (about 57%), followed by cool 

temperate areas (34%). A minority are in the subtropical areas (9%), which have been 

historically productive, thus a crucial forestry growing area (Figure 1.1). However, the 

afforestation of new plantation areas in these regions is restricted by the availability of 

suitable land and water legislation (Naidoo et al., 2013; DAFF, 2019). This, combined with 

rising demand for wood and fibre, has compelled the industry to seek new ways to increase 

the productivity of existing plantations while maintaining low-cost wood production (du Toit et 

al., 2010). 

 

Figure 1.1 Distribution of forestry areas across different climatic zones in South Africa 
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One of the forestry industry's strategies was the implementation of hybrid clonal forestry in 

the subtropical region of coastal Zululand, one of South Africa’s major plantation forestry 

areas and historically very productive (Gardner, 2012). Eucalyptus grandis, the popular tree 

species for commercial pulp production in South Africa, was replaced by a clonal hybrid, 

E.grandis x E.urophylla (Egxu), due to its susceptibility to fungal and pest diseases in this 

region (Retief & Stanger, 2009; Stanger et al., 2011; Van Den Berg, 2017). This hybrid, 

which is also commonly planted in other countries such as Brazil (Rezende et al., 2014), 

combines the fast-growing traits of E. grandis with the good survival, disease tolerance, and 

higher wood density characteristics of E. urophylla (Retief & Stanger, 2009). Furthermore, 

the coppicing ability, short rotation length (8–12 years), high productivity, and suitability for 

pulp and paper production makes the hybrid an essential raw industrial wood material 

among South African pulp growers (Melesse & Zewotir, 2017). Productivity gains due to 

superior genetics of this hybrid have been reported (Gardner, 2012; Melesse & Zewotir, 

2015; Melesse & Zewotir, 2017). As a result, the research presented in this thesis was 

conducted in collaboration with two forestry companies interested in quantifying the effect of  

climate variation x site, specifically drought, on survival, growth, and uniformity, thereby fibre 

yield of Egxu species planted in the coastal Zululand (see Figure 1.2). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Google map showing the extent of the plantations 

 
However, despite these gains, unpredictable climate change and shifts in productivity remain 

an issue in planning horizons for commercial forest managers. Climate is the only factor 

foresters cannot directly influence out of the three main factors (climate, genetics, and soil 

management) responsible for increased productivity levels in Eucalyptus plantations (Binkley 

et al., 2017; Elli, 2020). The impact of climate on forest plantation productivity is caused by 
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changes in atmospheric CO2 concentration, temperature, rainfall regimes, and extreme 

events such as pest and disease prevalence, wildfires, and drought (Alig et al., 2004; 

Warburton & Schulze, 2006). Although the physiological response of trees to the interplay of 

these changes is still uncertain (Warburton & Schulze, 2006), numerous studies have 

projected the impact to be site and species-specific (Warburton & Schulze, 2008; Almeida et 

al., 2009; Pinkard et al., 2010; Naumberg et al., 2001; Booth, 2013). Therefore, it is 

imperative to consider climatic risk assessment as a valuable tool for improving forestry 

planning and management (Elli, 2020). South Africa is naturally vulnerable to drought 

(Gibberd et al., 1996; Baudoin et al., 2017) and has long records of recurrent droughts (Xulu 

et al., 2018). The region suffered a particularly severe drought combined with an extreme El 

Niño event in 2015 – 2016 (AgriSA, 2016; Baudoin et al., 2017). 

 
Climate-related changes have been a particular issue in the coastal Zululand region. The 

impact of drought on plantation forests (Eucalyptus grandis and its hybrids) in Zululand was 

investigated by Xulu et al. (2018). According to Warburton & Schulze (2006), the impact of 

drought on commercial forestry can be long-term, cost-expensive, and irreversible. As a 

result, it is necessary to forecast short rotation forestry's long-term and large-scale response 

to a rapidly changing environment. 

 
1.2 Forest models for decision and planning support 

 

In this context, it is evident that forest scientists need support in managing and planning 

these forest resources. An important part of working towards a solution is to have access to 

reliable modelling systems. Forest simulation models are essential decision tools for forest 

managers; they are helpful in understanding and predicting the long-term impact (in terms of 

yield-related, financial, and ecological consequences) of management practices and global 

change on future forest productivity (Pretzsch, 2009). Models have been described and 

defined differently by ecologists and modellers in various contexts. However, Landsberg & 

Sands (2011) described them as “a practical tool designed to simulate the behavior of a 

system in response to change or stimuli, so that managers or decision-makers can assess 

the probable consequences of those changes or stimuli.”. This definition can be considered 

appropriate for the work presented in this thesis. 

 
For many decades, growth and yield models used in forest management in the South African 

Forestry industry have relied on statistical relationships derived from historical stand growth 

records measured on sample plots. The main strength of the statistical growth and yield 

model is in describing the best relationship between measured data and growth-determining 
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variables using a predefined mathematical function or curve (Peng, 2000). Their 

development is predicated on the notion that the future growth of a stand is determined by 

the same conditions under which the historical data were collected (Kimmins, 1990). 

Therefore, these models determine site productivity using the concept of a site index, which 

is influenced by the past growth condition variables such as climatic conditions, soil fertility, 

and management practices (Landsberg & Gower, 1997; Landsberg & Sands, 2011). Forest 

managers primarily use these models because they are considered practical and simple 

tools for forest management (Esprey, 2006), as the model predicts future yield averaged 

across stands in a region using readily available or easily measured variables such as stem 

diameter and height, tree age, stocking, and site quality. These models are primarily used to 

provide information about log sizes and size distribution, predict timber volumes and yield 

over short periods for which historical conditions are assumed not to change significantly 

(Landsberg, 2003b), for organizing harvest scheduling and optimizing timber supplies to 

mills, for management planning, and updating stand inventory (Almeida, 2003). 

 
Although these models achieved great simplicity from the site-index concept, it also limits the 

model (Johnsen et al., 2001). The concept implicitly assumes that these variables are 

constant over the entire rotation or that changes likely to occur will have no significant 

difference from the growth patterns described by the model (Landsberg & Coops, 1999). 

Under conditions of substantial change and increasing variability, they are less reliable 

(Johnsen et al., 2001). In South Africa, for example, where rainfall is a critical factor 

influencing forest growth, a single drought event is enough to render the application of this 

model useless (Chauke, 2018). Therefore, the model lacks flexibility in terms of predicting 

growth response to fluctuating weather conditions, the effect of environmental stresses, and 

changes in management practices (Landsberg, 2003b; Esprey, 2006). Additionally, these 

models are not generic across all sites, as site index varies between and within regions (e.g., 

Goulding, 1994 developed seven distinct growth models for P.radiata for different regions in 

New Zealand) (Landsberg & Sands, 2011). For this reason, the question of how accurate we 

can predict future yield and minimize risk on short rotation forestry is important for 

consideration. 

 
An approach that has attracted widespread interest from forest scientists is the mechanistic 

approach, in which process-based models (PBMs) are used in conjunction with weather or 

climate data (Elli, 2020). Process-based models are created by scaling up a mathematical 

representation of the physiological and ecological processes affected by changes in 

available resources for growth to the tree or stand growth level (Johnsen et al., 2001). The 

logical reason behind this is that a tree’s/stand’s growth rate and biomass accumulation is an 
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integral of the rates and activities of the physiological processes such as photosynthesis, 

respiration, carbon allocation, stomatal conductance, light interception, nutrient cycling, and 

water use (Johnsen et al., 2001; Landsberg & Sands, 2011). Therefore, this modelling 

approach aims to simulate the growth of stands in terms of the underlying physiological 

processes that determine growth and how stands are affected by the physical conditions 

they are subjected to (Landsberg & Gower, 1997). 

 
Apart from the significant advantage of the PBMs to increase our understanding of the 

cause-effect relationship of physiological factors determining forest growth, their structure 

presents great flexibility and generality (Kimmins, 1990; Battaglia & Sands, 1998). This 

means they have the greatest potential to predict forest growth under changing 

environmental conditions, predict the productivity of a site that has no previous field data, 

describe sensitivity to various changes, formulate a hypothesis to test new conditions as a 

result of climate change, new management practices, or when a practical experiment is not 

feasible (Korzukhin et al., 1996; Pretzsch, 2009). Several process-based models have been 

developed as forest management tools. However, some factors affecting the adoption and 

usage of PBM models as operational tools by the forestry industries include the conservative 

nature of the forestry sector, cost of generating required data (Almeida, 2018), model 

documentation, ease of calibration and evaluation, demonstration of utility and most 

importantly does not produce outputs of interest to forest managers (Mäkelä et al., 2000; 

Landsberg, 2003a). Almeida (2003) and Esprey (2006) conducted a PBM selection suitable 

for use as a practical and analytical tool, following a set of criteria laid out by Sands (1988). 

Out of all existing PBMs reviewed by both authors, the 3PG (Physiological Processes 

Predicting Growth) model emerges as the most suitable tool for forest management. 

 
1.3 3PG hybrid growth modelling system 

 

The 3PG model, sometimes described as process-based and sometimes as hybrid, is 

perhaps one of the most well-known in forest science. Recently its creators were awarded 

the prestigious 2020 Marcus Wallenberg Prize. 3PG is a simple, process-based, generic 

stand-level model, originally developed by (Landsberg & Waring, 1997), with a deliberate 

attempt to bridge the gap between conventional growth and yield models (empirical based) 

and carbon balance models (process-based). This model has been calibrated and tested for 

different species across a wide range of forest types in different regions/countries and 

applied widely as research and operational tools (Gupta & Sharma, 2019). There are 119 

published scientific articles (from 1997 – 2020, and still counting) on the application of the 

3PG model (see https://3pg.forestry.ubc.ca/3pg-studies and Gupta & Sharma, 2019 for a 
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detailed review). In Brazil, Aracruz Cellulose implements the 3PG model as an analytical and 

decision tool in their Eucalyptus grandis hybrid plantation at an operational scale (Almeida, 

2003). In Australia, CSIRO uses 3PG for contracts ranging across site selection, forest 

productivity, water use assessment, and land amelioration (Landsberg & Sands, 2011). In 

South Africa, the model was incorporated into a decision support system to assess water 

yield and productivity of eucalypt plantations (Dye et al., 2002). The wide adoption of the 

3PG model can be attributed to its simple structure, free source code, ability to incorporate 

remotely sensed data, and express objective to address questions of relevance to forest 

managers (Sands, 2004; Landsberg & Sands, 2011). 

 
Despite the 3PG model’s potential utility as a management decision support tool with 

scenario-based capability for predicting future growth and risk management in short rotation 

forestry, its application as an operational forest management tool in the South African 

forestry industry is still limited. The forestry industry's renewed interest in process-based 

models was sparked by the decrease in accuracy of traditional growth and yield models in 

predicting reliable stand productivity estimates, which may be attributed, at least in part, to 

more erratic weather patterns experienced in plantation growing areas. Furthermore, the 

development of 3PG into a spatially explicit model with scenario-based capability made it a 

very appealing option for investigating the potential impact of climate change on planted 

forests in support of adaptation strategies to ensure the industry’s long-term sustainability. 

 
However, in regions such as Southern Africa, where the network of weather stations is 

scarce and sparsely distributed (Lynch, 2004), process-based growth modelling will always 

be constrained by the availability of reliable meteorological data. Furthermore, due to the 

steep climatic gradient experienced at the coastal Zululand (du Plessis & Zwolinski, 2003; 

Louw et al., 2011), high-resolution meteorological data are needed to represent 

environmental variability in process-based modelling accurately. This is further discussed in 

Chapter 2. 

 
1.4 General Study Area 

 

Due to the availability of historical site data, a strong precipitation gradient, and similar 

genetics planted across sites, the important Zululand region was chosen for the study 

reported in this thesis. The data for this study were obtained from fast-growing Eucalyptus 

grandis x urophylla (Egxu) permanent sample plots (PSP) owned and managed by two 

forestry companies in South Africa: Mondi Forests (https://www.mondigroup.com) and Sappi 

(https://www.sappi.com). The PSPs are widely spread across the Zululand coastal plain, 
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situated along the eastern seaboard of the KwaZulu-Natal region, South Africa (Figure 1.1 

and 1.2). As well as 155 weather stations distributed across the province (Figure 1.3). 

KwaZulu-Natal province is in the southeastern part of South Africa, and it covers 94,360 km2 

or 7.7% of the country's total area. The province is bounded to the east by the Indian Ocean, 

and the topography ranges from sea level at the coast to over 3300 m along the 

Drakensberg escapement in the west. The slope is not gradual but rather features 

undulating terrain in steps. Because of these complex physiographic features, the province 

has a wide range of climatic conditions, ranging from a subtropical climate along the coast to 

a temperate climate inland (Ndlovu & Demlie, 2020). Precipitation increases from the inland 

to the coastal areas, also from North to South (du Plessis & Zwolinski, 2003). The province 

receives the most rainfall during the hot and humid summer months (November – February) 

(Ndlovu et al., 2021). 

 
 

 
 

Figure 1.3 Map of the province of KwaZulu-Natal (inset showing location within South Africa) showing 

weather stations used to estimate weather data for the Egxu plantations. 
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1.5 Aim and Objectives 
 

This study aimed to compare the performance of the 3PG model to other simpler growth 

modelling approaches in predicting the productivity of Eucalyptus grandis x urophylla across 

a range of sites in coastal Zululand, South Africa 

 
To achieve this, the following specific objectives were set: 

1. To select the best performing spatial interpolation technique for predicting weather 

data for the ungauged plantations using statistical error and indices. 

2. To test, calibrate and validate the 3PG model for Eucalyptus grandis x urophylla 

species under South African conditions. 

3. To run and validate three simpler models for the same region. 

4. To compare the performance of these modelling approaches using statistical error 

and indices. 

 
1.6 Key Research Questions 

 

1. To what extent do spatial interpolation techniques accurately predict weather data for 

ungauged sites? 

2. What parameter set gave the best prediction for Egxu species growing in South 

African conditions? 

3. What was the difference in the performance of the 3PG model and other simple 

modelling approaches in predicting yield? 
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Chapter 2 Spatial Interpolation of Weather Data for 

Forestry Plantations in KwaZulu-Natal, South Africa 

2.1 Introduction 
 

In South Africa, water availability has been identified as the most significant limiting factor to 

forest growth (Dye, 2000; Edwards & Roberts, 2006). On average, the country receives 

approximately 460 mm/year of mean annual precipitation (MAP), but with an evaporative 

demand of 1400-3000 mm/year (Scott & Gush, 2017). Most commercial forestry plantations, 

however, are in a small region of the country that generally receives more than 750 mm/year 

MAP (Van Der Zel, 1995). 

 
The Zululand region in KwaZulu-Natal is one of these regions, which has 66 885 ha planted 

to eucalypt species and has been a significant source of eucalypt fibre for many years 

(DAFF, 2019). This region has distinct precipitation and temperature gradient (as we move 

from North to South, and from the Coast to Inland) (du Plessis & Zwolinski, 2003; Louw et 

al., 2011). Due to this inherent spatiotemporal variability of precipitation, accurate 

information about the spatial distribution of precipitation is required to scientifically 

understand global or regional changes in water-related processes (Hu et al., 2019). They are 

an important input into process-based growth models such as 3PG for understanding the 

impact of climate change on forest growth, site classification, and monitoring the hydrological 

impacts of forest plantations (De Cáceres et al., 2018). As a result, real-time meteorological 

data corresponding to actual managed rotations rather than long-term mean climate data are 

critical for making practical and sound management decisions based on modelled estimates. 

 
The South African forestry industry recognizes the importance of improving the prediction of 

stand growth and tree water use by using process-based models that are sensitive to 

changes in weather conditions, especially rainfall (Dye et al., 2004). Rainfall has always 

been the most crucial meteorological element measured in the South African weather 

stations, with records dating back to 1850 (Lynch, 2004). The number of active rainfall 

stations peaked at 3841 in 1938, then declined steadily, this trend becoming more 

pronounced after 1980 (Lynch, 2004). The decline impacted the spatial coverage of the 

rainfall monitoring network (Lynch, 2004), resulting in fewer stations being available. The 

issue of incomplete observational records and the spatial distribution of recording stations 

will have a negative impact on the model's output or limit its use (Jeffrey et al., 2001). This is 

important because high-resolution climate data are required to capture environmental 
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variability, especially in areas with a steep climate gradient, such as South Africa (Hijmans & 

Parra, 2005). 

 
Unfortunately, no “off-the-shelf” products like Australia’s SILO resource 

(https://www.longpaddock.qld.gov.au/silo/) exist for South Africa. So, to be able to make use 

of interpolated weather (particularly rainfall) data across both space and time surfaces must 

be derived. 

 
Several spatial interpolation methods have been used to generate gridded climate surfaces 

with varying spatial resolution to estimate point data at ungauged sites. For example, Fick & 

Hijmans (2017) developed 1 km spatially interpolated monthly climate data for global land 

areas known as “WorldClim”, using thin-plate splines with covariates, The Climate Hazard 

Group (Funk et al., 2015) created CHIRPS (The Climate Hazard Group Infrared Precipitation 

with Stations), a 0.05 arc-degree daily precipitation dataset, using moving window regression 

and inverse distance weighting (IDW) techniques. In South Africa, Lynch (2004) interpolated 

annual, monthly, and daily rainfall data on a one-arc-minute gridded surface using 

geographically weighted regression (GWR). However, the limitation of these gridded 

datasets is that they are produced at a coarse spatial resolution and can hardly capture the 

high level of spatiotemporal variability of rainfall locally. Therefore, better point estimates of 

climate data are required. 

 
Many spatial interpolation methods are available, and numerous studies have been 

conducted to determine the "best" of these (Goovaerts, 1999; Apaydin et al., 2004; Li & 

Heap, 2014; Chen & Guo, 2017). They conclude, however, that there is no optimal method 

for all circumstances and that each method has its strengths and weakness (Chen & Liu, 

2012; Hu et al., 2019). Some factors that may influence the performance of any chosen 

spatial interpolation method include sampling design and spatial distribution of samples, data 

nature and quality, a correlation between primary and secondary variables, and factor 

interaction (Li & Heap, 2014). It is thus strongly advised to choose the appropriate 

interpolation methods based on the application objective, the geographic and gauge 

conditions of the study area, as well as the spatiotemporal scales (Hu et al., 2019). 

 
The main objective of this chapter is to describe the approach to generate a set of reliable 

point estimates for growth modelling. This was done specifically to address the difficulties in 

obtaining high-resolution climate data for ungauged plantations by evaluating and comparing 

the accuracy of two interpolation methods, Random Forest (RF) and an R package 

“Meteoland”, in predicting rainfall data from 2008 to 2018. The techniques chosen were 
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based on the findings of a similar study conducted in KwaZulu-Natal, South Africa, by 

Burengengwa (2020). 

 
2.2 Materials and Method 

 
2.2.1 Data Sources 

 

Observed long-term daily weather data such as maximum temperature, minimum 

temperature, precipitation, and solar radiation were obtained from the South African 

Sugarcane Research Institute (SASRI) and the South African Weather Services (SAWS) 

from January 2008 to September 2018. One hundred fifty-five (155) weather stations were 

obtained from these two databases: one hundred and eight (108) from SASRI and forty- 

seven (47) from SAWS. The spatial coordinates, longitude, and latitude of the weather 

stations were available from the datasets. In this study, the covariables used for modelling 

were aspect, elevation, slope, and distance from the ocean. Aspect and slope were derived 

from the GISCOE 20 m Digital Elevation Model (GISCOE, 2001) raster data, using the 

ArcGIS tools ‘Aspect’ and ‘Slope’ in the Spatial Analysis toolbox. The distance from the 

ocean was calculated from the polyline of the African continent using the Nearest Neighbor 

Join (NNjoin) plugin tool in QGIS. 

 

2.2.2 Preparing Input File 
 

Given the differences in the file format of the weather data retrieved from each weather 

station database, as well as the input file format required by the two models, it was 

necessary to create a pipeline in R software for efficient and effective data handling, 

processing, and preparation of input files used for modelling. The pipeline was designed to 

handle and report missing dates, missing values, duplicate data, name mismatches, and 

generate input files for both models as output. The complete R scripts and template file for 

cleaning and preparing input files are available on GitHub 

(https://github.com/EucXylo/Random_Forest_weather_prep). 

 

2.3 Spatial Interpolation Models 
 

Spatial interpolation is defined as predicting the values of a primary variable at points within 

the same region of sampled location (Li & Heap, 2014). A variety of approaches to spatial 

interpolation have been developed. They are broadly classified as 1) geostatistical methods, 

this includes Kriging and its derivatives such as Simple kriging (SK), Ordinary kriging (OK), 

Indicator kriging (IK), 2) non-geostatistical methods, e.g., Nearest Neighbors (NN), Inverse 

Distance Weighting (IDW), Thin-Plate Splines (TPS), Thiessen polygons, and 3) combined 
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methods, e.g., Regression kriging, Trend surface analysis combined with kriging, Gradient 

plus inverse distance square (see Li & Heap, (2014) for a list and description of methods). 

Furthermore, some machine learning methods, such as random forest (RF), neural network, 

boosted decision tree (BDT), and so on, have been recently introduced (Li & Heap, 2014). 

 
2.3.1 Random Forest 

 

The application of machine learning (ML) techniques such as the Random Forest (RF) 

algorithm is becoming more common in spatial interpolation. They are used in many fields, 

including climatology, geology, land use mapping, spatial planning, and soil science (Sekulić 

et al., 2020). For example, Youssef et al. (2015) and Chen et al. (2017) reported RF to be 

the best performing spatial interpolation technique for landslide susceptibility mapping. The 

RF technique was also used by Sekulić et al. (2021) to create MeteoSerbia1km (the first 

daily gridded meteorological dataset with a 1 km spatial resolution in Serbia). Leirvik & Yuan 

(2021) discovered that RF outperforms conventional interpolation techniques for 

interpolating solar radiation observations. 

 
Random Forest is an effective ensemble-learning method developed by (Breiman, 2001). Its 

approach is based on the general principle of creating multiple random decision trees from a 

training dataset (via bootstrapping) and then aggregating the output generated by each 

decision tree (known as bagging, an acronym for Bootstrap aggregating) (Genuer et al., 

2010; Genuer & Poggi, 2020). Bagging has proven beneficial for decision trees by reducing 

the high variance of individual trees and combining them into a single process (James et al., 

2013; Sekulić et al., 2020). The bagged trees must be as diverse as possible to achieve  

good predictive performance because ensembling a set of very similar predictors would 

result in a similar predictor (Genuer & Poggi, 2020). 

 
Therefore, RF reduces correlation in bagged trees by selecting random samples of m 

explanatory variables from the entire set of p predictors each time a split is considered in 

decision tree construction (see James et al. (2013) for detailed explanation). The number of 

trees (ntree) used in the forest and the number of explanatory variables (mtry) used in each 

tree are two important parameters in RF that can be tuned to improve the final model 

accuracy (Breiman, 2001; Youssef et al., 2015). The randomForest package (Liaw & Wiener, 

2002) in R software (R Core Team, 2021) was used for RF modeling. 
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2.3.1.1 Input 

 
Monthly averages for precipitation, minimum temperature, maximum temperature, and solar 

radiation for each year (2008 – 2018), temporal stamps (month of observation), spatial 

coordinates (latitude and longitude), and co-variables (slope, elevation, aspect, distance 

from coast) are all input variables. The spatial coordinates, co-variables, and temporal 

stamps were used as the explanatory variables. The original dataset was randomly divided 

into two parts for the development of the random forest model: training set (70%) and testing 

set (30%). In the pipeline (section 2.2.2), rainfall months with missing values were returned 

as NA, therefore stations with NA values for a specific month were excluded when 

developing the RF model. 

 
2.3.1.2 Parameter Calibration 

 
The Random Search method was used to tune mtry (the number of explanatory variables 

randomly sampled as candidates at each split) using 10-fold cross-validation. The Grid 

Search method was used to tune the number of trees (ntree) to obtain the optimized mtry 

and ntree values for each year data. The tuning of these parameters was repeated for each 

year because of the number of station observations. 

 

2.3.2 Meteoland 
 

Thornton et al. (1997) proposed a method that is both an inverse-distance algorithm and a 

smoothing filter. The method aims to overcome the limitation of the inverse-distance method, 

which produces surfaces with the spatially anomalous distribution. As a result, the Gaussian 

filter was developed to reduce the number of observations used in predictions at a given 

point. However, Meteoland, an R package (De Cáceres et al., 2018) to implement the daily 

weather interpolation and estimation algorithms introduced by Thornton et al. (1997), will be 

used for this study. 

 
The Meteoland package estimates the following daily surface weather variables: mean, 

maximum, and minimum temperature, precipitation, mean, maximum and minimum relative 

humidity, incident solar radiation, wind speed, and wind direction. This approach defines 

spatial weights W(r) at radial distance r from a target point using: 

 

W(r) = 

Equation 2. 1 
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If r < Rp and W(r) = 0 otherwise. Where r is the radial distance from p, Rp is the truncation 

distance, and α is the shape parameter. This filters spatial convolution with a set of weather 

station locations produces a vector of weights associated with observations for each target 

point (De Cáceres et al., 2018). Rp is automatically adjusted to be smaller in data-rich areas 

and larger in data-poor areas. The estimation of Rp is based on N, the average number of 

observations to be included for each target point (see De Cáceres et al. (2018) for detailed 

calculations). Additionally, well-detailed documentation of Meteoland calculation routines, 

the meteoland reference book, is available online via the GitHub repository 

(www.https://emf-creaf.github.io/meteolandbook/index.html). 

 

2.3.2.1 Input 

 
For the interpolation of daily weather in the Meteoland package, the following text files (.txt) 

were generated from the pipeline in section 2.2.2. For each weather variable (precipitation, 

minimum temperature, maximum temperature, solar radiation), a text file containing stations 

in rows and dates in columns, station info file containing latitude and longitude for each 

station, station topography file containing elevation, slope and aspect, and the ungauged 

site’s spatial coordinate and topography. 

 
2.3.2.2 Parameter Calibration 

 
In this study, the initial_Rp (default = 140 km), which specifies the initial radius for the 

truncated spatial Gaussian kernel, was reduced to ~11 km using the trace 

(defaultInterpolationParams, edit = TRUE) function in the package. The interpolation 

parameters α (shape parameter) and N (average number of stations to be used) vary for 

each variable to be interpolated. Therefore, calibration was performed using the 

interpolation.calibration() function by specifying a sequence of N = seq(3, 5, by = 1) and α 

= seq(0.5, 10, by = 0.5) for minimum and maximum temperature, precipitation amount and 

precipitation event. The f_max parameter used in the estimation of precipitation was also 

calibrated using the same function with fmax_seq = seq(0.05, 0.95, by = 0.05). The 

calibration function returns a set of results. The most important are the minimum mean 

absolute error value, N, and alpha values corresponding to the minimum MAE. This 

calibration exercise was performed for each year following the recommendation that it 

should be performed more than once if the number of stations available differed temporally. 

 
2.4 Performance Assessment 

 

The RF algorithm performs model assessment checks using an unbiased estimation of 

generalization error known as out-of-bag (OOB) error (Breiman, 2001). The Meteoland 
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package assesses its performance using the leave-one-out cross-validation method (De 

Cáceres et al., 2018). However, this study used a pairwise comparison of model-predicted 

and observed monthly rainfall data from six weather stations (validation stations) (Figure 1.3) 

between 2008 and 2018 for the performance analysis. Due to the inherent spatiotemporal 

variability of rainfall, which makes interpolation difficult, only rainfall data was used to 

evaluate the performance of both models. To observe the general precipitation pattern of the 

ungauged plantations along the Zululand coastal plain, the total cumulative rainfall from 

January 2008 to September 2018 was divided into three categories: dry (8101 mm – 9795 

mm), medium (9795 mm – 10232 mm), and wet (10232 mm – 11774 mm) as shown in 

Figure 6. 

 
The following statistical errors and indices from the Agricultural and Meteorological software 

(AgriMetSoft, 2019) were used to compare the predicted and observed precipitation data: 

mean absolute error (MAE), root mean square error (RMSE), mean bias error (MBE), 

Willmott index of agreement (d), coefficient of determination (R2), and Nash Sutcliffe model 

efficiency index (E). 

2.4.1 Statistics 
 

Mean Absolute Error (MAE): This is the average absolute error between estimated and 

observed values without considering their direction. 

 
 

MAE = 

Equation 2. 2 
 

Root Mean Square Error (RMSE): This is the standard deviation of the residuals. It is a 

measure of how spread out these residuals are. Therefore, it tells how concentrated the data 

is around the line of best fit. 

 

 

RMSE = 

Equation 2. 3 
 

Mean Bias Error (MBE): It captures the average bias in the prediction. Bias is the tendency 

of a statistic to overestimate or underestimate a parameter. 

 

 

MBE = 

Equation 2. 4 
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Willmott Index of Agreement (d): Willmott (1981) developed this index to compensate for 

the insensitivity of the R2 to additive and proportional differences between observed and 

predicted means and variance (Legates & McCabe, 1999; Dawson et al., 2007; Moriasi et 

al., 2008). This index is a standardized measure of the degree of model prediction, which 

varies between 0 and 1. It represents the ratio of the mean square error and the potential 

error. One indicates a perfect match, and zero indicates no agreement at all. 

 

 

d = 1 - 

Equation 2. 5 
 

Coefficient of Determination (R2): This describes the degree of collinearity between 

predicted and observed data (Moriasi et al., 2008). This metric describes the proportion of 

the total variance in the observed data that the model can explain. It ranges from 0 (poor 

agreement) to 1 (perfect agreement). It is calculated as the square of the Pearson 

correlation coefficient (r), given as 

 
 

r = 

Equation 2. 6 
 

Model Efficiency Index (E): Also known as Nash-Sutcliffe Efficiency, was developed by 

Nash & Sutcliffe (1970). It is a normalized statistic that determines the relative magnitude of 

the residual variance compared to the observed data variance (Moriasi et al., 2008). This 

index is widely used to evaluate the performance of hydrological models. It also presents an 

improvement over the coefficient of determination (Legates & McCabe, 1999). It ranges from 

-∞ to 1, where E = 1 indicates perfect model, 0 > E < 1 are generally acceptable 

performance, and E ≤ 0 indicates unacceptable performance, which means the mean 

observed value is a better predictor than the simulated value. 

 

 

E = 1 - 

Equation 2. 7 
 

Where, oi = observation values 

pi = predicted values 

o = average observation value 

n = number of observations 
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2.5 Results and Discussion 

 
2.5.1 Performance analysis 

 

There was a good agreement between the observed and predicted precipitation trends, 

indicating adequate calibration of both models over the range of measured precipitation 

(Figure 2.1 and 2.2) (Singh et al., 2004). When rainfall was totalled over the time studied, 

Random Forest predicted-rainfall data was found within the range of the observed 

cumulative rainfall (and standard deviation) compared with the Meteoland model (Table 2.1). 

 
Overall, the RF model exhibited lower error when compared to Meteoland (Figure 2.3). 

Generally, the RMSE and MAE values are considered low if they are less than the observed 

values' standard deviation (Singh et al., 2004). Therefore, predictions by both had a low level 

of errors (Table 2.1 and 2.2). There were some tendencies towards bias. The MBE statistic 

measures the average tendency of the models to overestimate (MBE > 0) or underestimate 

(MBE < 0) the observed data. Based on MBE and evident visually, the RF-based model 

performed better in this regard than Meteoland (Table 2.2; Figure 2.2). In general, both 

models overestimated annual rainfall data for the Oribi – flat weather station. For the 

Wartburg station, Meteoland underestimated rainfall data from 2009 – 2016, while RF 

underestimated from 2015 – 2017 (Figure 2.2). The relative stability of RF's performance 

can be explained by its use of the bagging (bootstrap aggregation) scheme, which reduces 

prediction error variance and improves accuracy (Biau & Scornet, 2016; Sekulić et al., 2020). 

 
The dimensionless statistical indexes used to evaluate the performance of both models 

(Coefficient of Determination (R2), Willmott Index of Agreement (d), and Model Efficiency 

Index (E)) confirmed that both models could be used to generate good predictions. However, 

RF slightly outperformed Meteoland (Figure 2.3). RF and Meteoland produced high levels of 

correlation R2 (>0.80). According to Moriasi et al. (2008), values greater than 0.5 are 

considered as acceptable. However, this statistic has been reported to be limited for two 

reasons (1) R2 is overly sensitive to outliers, which can mask the true overall relationship (2) 

R2 is insensitive to additive and proportional differences between the observed and predicted 

values, allowing for high scores even when the predicted values are significantly different 

from the observed values in terms of magnitude and variability (see Legates & McCabe 

(1999) and Dawson et al. (2007)). These limitations can be seen in the graphical results 

(Figure 2.4 and 2.5), where RF was penalized for one extreme value in the Oribi Flats – 

Minnehaha Farm weather station (R2 = 0.756) and Meteoland has good R2 values for 

stations where they overestimated and underestimated but followed the observed data. 
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The index of agreement (d) values for both models were high (>0.90). Also, both models had 

very good (E) values, but the RF model (E = 0.84) outperforms the Meteoland model (E = 

0.79). This demonstrates that, despite the inherent spatiotemporal variability of rainfall, both 

models were satisfactorily calibrated to simulate rainfall data for the period under 

consideration in this region. 

 
 

2.5.2 Interpolated rainfall data 
 

For growth simulation, it was important to understand the spatiotemporal variability of rainfall 

along the Zululand coastal plain, where the ungauged plantations are located. Two models 

were tested for this purpose, using different techniques of achieving optimal spatial 

interpolation. An important outcome of the work was to ensure that the coastal areas where 

subsequent growth modelling was to be done would be objectively accurately estimated at a 

broad scale. Both models capture a distinct pattern of wetness from north to south (Figure 

2.6). However, the pattern that also exists from coast to inland was better captured by RF 

and is consistent with previous research (du Plessis & Zwolinski, 2003; Louw et al., 2011; 

Ndlovu & Demlie, 2020; Ndlovu et al., 2021). This can be explained by the negative 

correlation between distance to the coast and weather patterns (du Plessis & Zwolinski, 

2003; Burengengwa, 2020). 

 
Overall, the results show that both models can predict long-term rainfall in the study area 

reasonably well. In this study, the RF model performed best, which is consistent with 

previous research that compared the performance of RF with other interpolation methods (Li 

et al., 2011; Chen et al., 2017; Burengengwa, 2020; Leirvik & Yuan, 2021). Nevertheless, 

the Meteoland package in R does provide a novel spatial interpolation technique that has 

shown potentials in predicting daily weather data (Germishuizen, 2018; Karavani et al., 

2018; Sánchez-Pinillos et al., 2018). Aside from the preliminary work of Burengengwa 

(2020), no other research to the author’s knowledge has evaluated and compared the 

performance of this technique using real-date weather data. Furthermore, both RF and 

Meteoland meet our requirements of employing a simple model that uses readily available 

data, is available in R software, and is easily integrated into the forest simulation model used 

in this study, which is also available in R software. 
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Table 2.1 Cumulative observed and predicted rainfall from January 2008 to September 2018 

 

Station Observed sum (SD), mm RF sum (SD), mm ML sum (SD), mm 

Amatikulu -Sugar Mill 8761.9 (63.27) 10181.3 (62.44) 10828.5 (74.55) 

Maidstone - Sugar Mill 10999.4 (71.18) 10025.3 (61.62) 9993.7 (65.59) 

Mtubatuba -Dangu 8987.6 (56.11) 8803.7 (53.32) 8484.4 (58.88) 

Oribi Flats - Minnehaha Farm 8292.3 (61.60) 10501.1 (60.40) 11194.7 (81.91) 

Ukulu Properties - Crystal Holdings 8312.1 (55.16) 8540.3 (51.50) 10093.0 (61.90) 

Wartburg - Bruyns Hill 9715.2 (55.40) 8783.5 (49.73) 8479.6 (50.69) 

RF – Random Forest; ML – Meteoland; SD – Standard deviation 
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Figure 2.1 Monthly time-series of the observed and model-predicted rainfall from 2008 -2018. A= 

Amatikulu – Sugar Mill, B= Maidstone – Sugar Mill, C= Mtubatuba – Dangu, D = Oribi Flats, E= Ukulu 

Properties, F= Wartburg- Bruyns Hill. Prefix RF = Random Forest, ML = Meteoland. 
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Figure 2.2 Annual time-series of the observed and model-predicted rainfall from 2008 – 2018 for each 

validation stations. Prefix ML = Meteoland, RF = Random Forest. 
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Figure 2.3 Comparison of observed and model-predicted monthly rainfall for all six validation stations 

by (A) Meteoland and (B) Random Forest. Colors represent different weather stations. d = Index of 

Agreement, R2 = Coefficient of Determination, E = Model Efficiency Index, MAE = Mean Absolute 

Error (mm), RMSE = Root Mean Square Error (mm), MBE = Mean Bias Error (mm). 
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Table 2.2 Statistical evaluation of models for each station’s rainfall prediction 

 

Station Statistics Random Forest Meteoland 
 MAE 17.24 19.46 

 RMSE 23.81 30.10 

Amatikulu – Sugar Mill 
MBE 11.00 16.02 

d 0.96 0.95 

 R2 0.89 0.89 

 E 0.86 0.77 
 MAE 15.98 14.31 

 RMSE 23.08 22.05 

Maidstone – Sugar Mill 
MBE -7.55 -7.80 

d 0.97 0.97 

 R2 0.91 0.92 

 E 0.89 0.90 
 MAE 13.48 14.67 

 RMSE 18.87 23.72 

Mtubatuba - Dangu 
MBE -1.43 -3.90 

d 0.97 0.96 

 R2 0.89 0.84 

 E 0.89 0.82 
 MAE 25.13 25.36 

 RMSE 35.47 38.91 

Oribi Flats – Minnehaha Farm 
MBE 17.12 22.50 

d 0.91 0.93 

 R2 0.76 0.88 

 E 0.67 0.60 
 MAE 14.20 20.42 

 RMSE 20.03 26.81 

Ukulu Properties – Crystal Holdings 
MBE 1.77 13.81 

d 0.96 0.95 

 R2 0.87 0.86 

 E 0.87 0.76 
 MAE 15.48 14.97 

 RMSE 22.10 21.29 

Wartburg – Bruyns Hill 
MBE -7.22 -9.58 

d 0.95 0.96 

 R2 0.86 0.88 

 E 0.84 0.85 

MAE – mean absolute error; RMSE – root mean square error; MBE – mean bias error; d – Willmott 

index of agreement; R2 – coefficient of determination; E – Model Efficiency Index. 
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Figure 2.4 Comparison of observed and model-predicted monthly rainfall for all six validation stations. 

Prefix RF = Random Forest. 
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Figure 2.5 Comparison of observed and model-predicted monthly rainfall for all six validation stations. 

Prefix ML = Meteoland. 
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Figure 2.6 Precipitation gradient of interpolated rainfall for the 18 PSP located along Zululand Coastal 

plain by (A) Random Forest (B) Meteoland. 

A 

B 
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Chapter 3 Calibration of the 3PG model for Eucalyptus 

grandis x urophylla growing under South African 

conditions. 

3.1 Introduction 
 

The structure of the 3PG model is based on well-established principles underlying plant 

growth and development, including expressions of physiological concepts as light 

absorption, photosynthesis, water balance, and carbon allocation (Landsberg, 2003; 

Weiskittel et al., 2011; Forrester et al., 2021). The approach to estimation in 3PG, while 

process-based, is simple (Landsberg & Waring, 1997). Although the model structure is 

generic, it must be parameterized for individual species (Sands & Landsberg, 2002), 

distinguishing in simulation runs between the physiological responses of different species 

(Landsberg & Sands, 2011). The physiological measurements required to calculate all these 

parameters can be difficult to obtain or even unavailable (Forrester et al., 2021). This may 

result from lack of data, problems of scaling up, or poor understanding due to the process 

being inaccessible for measurement (deep water/nutrient uptake), or too complex to 

measure (Mäkelä et al., 2000b). Therefore, apart from calibrating the model using parameter 

values from physiological measurements, they can also be parameterized to address 

uncertainty in the model’s behavior (Forrester et al., 2021). 

 
According to Landsberg & Sands (2011), “calibration is the process of assigning parameter 

values by direct measurements in an independent experiment, whereas parameterization is 

the process of estimating parameter values by adjusting their values to minimize the sum of 

squares of the residual between the observed and predicted data”. Both processes are 

greatly aided by a sound understanding of the model, its parameter space, and knowledge of 

the sensitivity of its outputs to species-specific parameters (Sands, 2004). Guidelines and 

procedures for assigning and estimating parameter values are described in detail by Sands 

& Landsberg (2002), Landsberg et al. (2003), and Sands (2004). 

 
Several studies have published parameter values calibrated and parameterized for various 

species in different regions (see Gupta & Sharma, (2019)). In many of these studies, 

parameter estimation was optimized either manually (stepwise adjustment) (Sands & 

Landsberg, 2002; Landsberg et al., 2003; Almeida et al., 2004) or automatically using 

estimation software such as PESTXL (Esprey, 2006), statistical fitting using the SAS software 

(Gonzalez-Benecke et al., 2016), or Bayesian calibration using the BayesianTools R 

package (Forrester et al., 2021). 
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Although the 3PG model has been parameterized for Eucalyptus grandis x urophylla in 

Brazil (Stape et al., 2004; Almeida et al., 2004; Borges et al., 2012), concerns have been 

raised about the generality of these parameters and the accuracy of model predictions in 

other regions (like South Africa). Therefore, the objective of this chapter was to parameterize 

the 3PG model for Eucalyptus grandis x urophylla in South Africa using published parameter 

values from the Brazilian sites and validate it using independent growth data. We also 

explore a new goodness-of-fit approach called “extended RMSE” (eRMSE) to optimize 

parameter values. 

 
3.2 Description of the 3PG model 

 

The 3PG model (an acronym for Physiological Processes Predicting Growth) is a simple, 

process-based, stand-level model, initially designed for monospecific, even-aged, and 

evergreen forest (Landsberg & Waring, 1997), but which has since been further developed 

for deciduous, uneven-aged and mixed-species forests (Forrester & Tang, 2016). The model 

runs on a monthly time-step, and data required to run the 3PG model can be divided into 

four classes. 

 
 Weather data: Inputs are monthly averages of mean minimum and maximum air 

temperature (°C), monthly averages of solar radiation (MJ m-2 d-1), monthly total 

rainfall (mm/month), monthly averages of atmospheric vapor pressure deficit (mbar), 

and the number of frost days in a month (days per month). 

 Site Information: site-specific information describing the physical properties of the 

site includes latitude, soil texture, atmospheric CO2 (ppm), available soil water 

(minimum and maximum) (mm/m), and a simple fertility rating. 

 Stand initialization data: In 3PG, stands can be initialized at a selected age, and 

data required include initial stocking (t/ha), initial stem, root, and foliage biomass 

(tDM/ha), and the initial available soil water (mm) at the initial age (years). Suppose a 

stand is initialized at planting age (age = 0): in this case, it is appropriate to use 

typical seedling weight, where the biomass of the seedling is divided among the 

biomass pools, or to use default values provided by Sands & Landsberg (2002). 

 Species-specific parameters: The main 3PG parameters consist of 6 major 

parameter classes: biomass partitioning and turnover, Net Primary Productivity 

(NPP) & conductance modifiers, stem mortality, and stand characteristics. However, 

new parameters were added by Forrester & Tang (2016) to enable the model to 

work for mixed-species forests, deciduous species, and forests where the stand 

density is reduced. This is beyond the scope of this study and will not be considered. 
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The model is divided into five sub-models: biomass production, biomass allocation, soil 

water balance, stem mortality and stand characteristics. Several authors have described the 

processes, mathematical equations, and structural representation of the sub-models (Sands 

& Landsberg, 2002; Almeida, 2003; Sands, 2004; Landsberg & Sands, 2011). Therefore, 

only key points in the processes will be highlighted in this section. Figure 3.1 shows the 3PG 

framework. 

 
The biomass production sub-model calculates light absorbed by the canopy using Beer’s 

law. Gross primary production (GPP) is calculated based on a species-specific canopy 

quantum efficiency (αc), which accounts for the effect of site and environmental factors on 

stand-level GPP through a series of growth modifiers (see Almeida (2003) and Landsberg & 

Sands (2011) for the detailed description of the growth modifiers). GPP is then converted to 

Net Primary Productivity (NPP) by multiplying GPP by a constant carbon use efficiency 

factor (Y = 0.47 ± 0.04) (Waring et al., 1998), derived from an empirically determined ratio of 

NPP to GPP. The biomass allocation sub-model partitions NPP to the roots first followed by 

stems and then foliage, and partitioning is influenced by site fertility, water availability, vapor 

pressure deficit, and tree size. Water balance is performed using a simple single-layer soil 

water balance. Monthly precipitation is balanced against monthly evapotranspiration 

calculated using the Penman-Monteith equation (Monteith, 1965) such that if 

evapotranspiration is greater than precipitation, then water balance is negative. 

Furthermore, suppose precipitation is greater than the maximum available soil water (ASW). 

In that case, water is assumed lost as runoff or drainage. The mortality sub-model calculates 

tree mortality as either density-independent (environmental or stress-induced) or density- 

dependent (using the -3/2 self-thinning law) (Drew & Flewelling, 1977). The stand 

characteristics sub-model converts biomass into output variables of interest to forest 

managers, such as basal area, mean tree diameter, height, and stand volume. 
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Figure 3.1 Schematic representation of 3PG inputs (blue), processes (green), and outputs 

 
 
 

3.3 Materials and Method 

 
3.3.1 Simulation software 

 

Preliminary 3PG runs were done using 3PGpjs vsn. 2.7 (Sands, 2010), the Excel version of 

the model (available at http://3pg.forestry.ubc.ca/software/) to develop familiarity with the 

tool. However, the simulation runs and optimization were ultimately undertaken using a 

package (R3PG) developed by Trotsiuk et al. (2020) in R (R Core Team, 2018). The 

package offers users a flexible switch between various options and submodules to use the 

original 3PGpjs (Landsberg & Waring, 1997) and 3PGmix (Forrester & Tang, 2016). To run 

the original 3PGpjs, we used settings = list(light_model = 1, transp_model = 1, phys_model 

= 1, height_model = 1, correct_bias = 0, calculate_d13c = 0). The function run_3PG was 

designed for SingleSite run type. Therefore, we developed a loop function to run R3PG for 

MultiSite run type. Figure 3.2 shows the flow chart for this loop function created using the 

flow R package (Antoine, 2021). 

Weather 
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conversion Height, 
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Site data CO NPP 
2 

Stem 
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Figure 3.2 Representation of R3PG loop function to perform MultiSite run type 

Stellenbosch University  https://scholar.sun.ac.za



(44) 
 

 

3.3.2 Site and stand information 
 

Forest stands data were obtained from two companies that manage eucalypt resources for 

pulp in the Zululand area (see maps in section 1.1). All sites used the hybrid Egxu, but not all 

stands were of the same parent trees. Plots ranged from 0.043 to 0.066 ha but were all 

established as square or rectangular plots within the stands. Summary of the site and stand 

information is presented in Table 3.1. 

 
3.3.3 Stand growth data 

 

Tree-level diameter at breast height (DBH) and height data for the study plots were obtained 

from various sources. First, from routine PSP re-measurements undertaken by the two forest 

companies involved in the study (Table 3.2). This was based on annual measurements from 

the second year after establishment. Second, data for five plots were available in greater 

detail from a set of band dendrometers installed in December 2013 (see description in Table 

3.3). Measurement of DBH and stem number were carried out biweekly from 2013 when the 

dendrometers were installed, while height measurements were done annually. For each plot, 

age was calculated based on planting date, and height measurements were carried out on a 

subset of trees. Dominant height was calculated as the average height of the 20 largest 

trees (based on DBH). Mean height was derived from the dominant height by multiplying it 

by a factor (the ratio of the mean height to dominant height from a complete measurement) 

(Equation 3.1). Third, in August 2018, Stellenbosch University students involved in the 

project took the final set of measurements. During this inventory, DBH and height of all trees 

were measured in the sample plots (see Table 3.3 and 3.4 for information on measurement 

dates for each stand). 

 

Equation 3. 1 

Where Factor = 0.95 in this study, which corresponds to the value derived for Eucalyptus 

grandis (Tesfamichael et al., 2010) 

Measurements of DBH, tree height, and stem numbers from the three sources were used to 

estimate quadratic mean diameter (Dq, cm) (Equation 3.2), Basal area (BA, m2/ha) 

(Equation 3.3), and stand volume (V, m3/ha) using a stand volume estimator by Burkhart & 

Tomé (2012) (Equation 3.4). 

 

Equation 3. 2 

 

Equation 3. 3 
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V = BA x Hmean x f  
Equation 3. 4 

 

Where V is utilizable volume/ha (m3/ha), BA is the basal area (m2/ha), Dq is the quadratic 

mean diameter (cm), DBH is the stem diameter at breast height (cm), n is the number of 

observed trees per plot, TPHi is the number of stems (t/ha), Hmean the mean stand height (m), 

and f the species-specific form factor (for E. grandis x urophylla by Kassier (2005)). 

This stand volume equation was used throughout the study, including the derivation of 

volume from simulated BA and height. 
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Table 3.1 Summary of sites information used for model calibration 

 

Company 
Compartment 

name 
Latitude Longitude Site index 

Elevation 
(m) 

Spacing 
(m x m) 

Plot area 
(ha) 

Soil form 

Sappi E6a -28.39 32.22 16.7 53 3.0 x 2.2 0.0514 Fw 
Sappi B3a -28.54 32.20 18.3 39 3.0 x 2.2 0.0508 Fw 

Mondi Forest B003 -28.42 32.21 17.1 45 2.5 x 3.0 0.0479 Fw1210 
Mondi Forest J006 -28.68 32.04 22.8 43 2.5 x 3.0 0.0433 Hu2200 
Mondi Forest B032 -28.21 32.33 16.1 29 2.5 x 3.0 0.0483 Cv21 

Sappi C15a -28.34 32.24 16.8 59 3.0 x 2.2 0.0515 Fw 
Sappi F7 -28.56 32.21 21.2 54 3.0 x 2.2 0.0535 Fw 
Sappi G22b -28.54 32.23 15.8 20 2.7 x 2.2 0.0594 Fw 
Sappi G33b -28.54 32.23 19.2 20 3.0 x 2.2 0.0660 Fw 

Mondi Forest A017 -28.68 32.14 27.8 32 2.5 x 3.0 0.0491 Vf2110 
Mondi Forest B044 -28.97 31.64 25.9 55 2.5 x 3.0 0.0500 Hu2100 
Mondi Forest F011A -28.62 32.18 28.8 63 2.5 x 3.0 0.0488 Ct2100 

Sappi B35b -28.68 32.09 20.2 60 3.0 x 2.2 0.0535 Fw 
Sappi B38 -28.67 32.10 20.0 62 3.0 x 2.2 0.0535 Fw 
Sappi C55 -28.70 32.08 22.9 41 3.0 x 2.2 0.0535 Fw 
Sappi D13b -28.51 32.12 15.1 63 3.0 x 2.2 0.0660 Fw 
Sappi E23f -28.52 32.15 14.0 44 3.0 x 2.2 0.0660 Fw 
Sappi E24g -28.53 32.15 14.4 44 2.7 x 2.4 0.0648 Fw 
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Table 3.1 Stand information for the KwaMbonambi compartment 

 
Company Compartment name Planted 

date 
Measurement 
date 

Age 
(yrs.) 

Clone 
TPH 
(t/ha) 

Initial trees 
per plot 

Sappi E6a 2010/08/15 2018/08/22 8.02 GU W1830 1515 81 

Sappi B3a 2010/04/16 2018/08/21 8.35 GU W1700 1515 81 

Mondi Forest B003 2011/07/04 2018/08/22 7.13 GGRAURO 1336 64 

Mondi Forest J006 2010/07/01 2018/08/21 8.14 GGRAURO 1479 64 

Mondi Forest B032 2012/08/01 2018/08/22 6.06 GGRAURO 1347 64 

Sappi C15a 2010/06/16 2018/08/17 8.17 GU W1700 1515 81 

Sappi F7 2010/11/16 2018/08/14 7.74 GU W1830 1515 81 

Mondi Forest A017 2011/07/01 2018/08/11 7.11 GGRAURO 1366 64 

Mondi Forest B044 2011/06/01 2018/08/21 7.22 GGRAURO 1280 64 

Mondi Forest F011A 2012/08/02 2018/08/11 6.03 GGRAURO 1312 64 

Sappi B35b 2012/04/16 2018/08/17 6.34 GU 
SGU1932 

1515 81 

Sappi B38 2011/03/16 2018/08/17 7.42 GU W1830 1515 81 

Sappi C55 2010/06/16 2018/08/20 8.18 GU 
SGU1932 

1515 81 

 
 
 
 

Table 3.2 Stand information for the Marie Curie sites 

 
Company Compartment 

name 
Planted 
date 

Measurement 
date 

Age 
(yrs) 

Clone TPH 
(t/ha) 

Initial 
trees 
per plot 

MAP range 
(mm) 

Sappi G22b 2008/04/15 2018/08/10 10.32 GU 
W1022 

1684 100 <1000 

Sappi G33b 2011/03/16 2018/08/10 7.40 GU 
W1022 

1515 100 1000-1100 

Sappi D13b 2011/05/16 2018/08/07 7.23 GU 
W1830 

1515 100 1000-1100 

Sappi E23f 2012/06/16 2018/08/07 6.14 GU 
W1700 

1515 100 >1100 

Sappi E24g 2008/03/15 2018/08/07 10.39 MIXED 1543 100 >1100 
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3.3.4 Soil data 
 

Soil information, including physical and chemical properties, was made available from 

previous experimental sampling conducted on the study site during fieldwork in 2018. The 

center of each PSP was determined, and pits were cored, as shown in Figure 3.3. For soil 

textural analysis, soil samples were cored at the middle pit (grey pit in Figure 3.3) using a 1.2 

m manual steel auger at 10 cm intervals until a soil depth of 1.2 m was reached. For soil 

chemical analysis, soil samples were cored at three different points (shown in orange in 

Figure 3.3), and samples were collected at three depths (0-10 cm, 10-20 cm, and 20-50 cm 

soil depth) from each point, using an auger. Undisturbed soil samples used to determine 

bulk density were collected 1 m away from the first soil pit (the yellow pit in Figure 3.3). 

Samples were taken at 0-10 cm, 10-20 cm, and 20-50 cm soil depths by pressing a steel 

ring with a diameter of 7.5 cm and a height of 6.5 cm into undisturbed soil. Soil textural and 

chemical analysis was performed at the Institute for Commercial Forest Research (ICFR) 

(https://www.icfr.ukzn.ac.za). Soil textural information and chemical properties from the 

experiment are presented in Table 3.4 and 3.5. The soil class was then determined from the 

South African texture triangle chart (Schulze, 2007). There was very little heterogeneity in 

soil class, as expected in this region. 

 

 

 

Figure 3.3 Diagram showing the soil pits for soil sampling. The Grey circle represent the soil pit for 

textural analysis, the tree orange circles represent soil pits for chemical analysis, and the yellow circle 

represent soil pit for bulk density 
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Table 3.3 Average soil textural properties averaged across the soil depths (0 – 50 cm) 

 
Compartment name Silt (%) Clay (%) Sand (%) Soil class 

Futululu E6a 0.03 0.04 0.93 Sandy 

Mavuya B3a 0.06 0.05 0.89 Sandy 

Mtubatuba B003 0.06 0.08 0.85 Sandy 

Nseleni J006 0.04 0.08 0.87 Sandy 

Nyalazi B032 0.10 0.12 0.78 Loamy Sand 

PalmRidge C15a 0.04 0.04 0.92 Sandy 

Salpine F7 0.04 0.06 0.91 Sandy 

Salpine G22b 0.04 0.04 0.92 Sandy 

Salpine G33b 0.09 0.06 0.85 Sandy 

Siyaqhubeka A017 0.04 0.07 0.89 Sandy 

Siyaqhubeka B044 0.04 0.06 0.89 Sandy 

Siyaqhubeka F011A 0.03 0.06 0.92 Sandy 

SouthAreas B35b 0.02 0.03 0.95 Sandy 

Terranera B38 0.04 0.04 0.92 Sandy 

Terranera C55 0.03 0.07 0.91 Sandy 

Trust D13b 0.02 0.04 0.94 Sandy 

Trust E23f 0.03 0.04 0.93 Sandy 

Trust E24g 0.05 0.10 0.84 Sandy 
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Table 3.4 Chemical properties of the soil (0 – 50 cm) for the 18 sites 

 
Site SOC (%) N (%) S (%) P (%) pH (%) C:N (%) 

 
Futululu E6a 

 
1.82 

 
0.10 

 
0.02 

 
10.47 

 
6.35 

 
54.59 

Mavuya B3a 3.07 0.13 0.03 3.26 4.91 71.25 

Mtubatuba B003 1.19 0.08 0.02 15.40 5.85 44.67 

Nseleni J006 1.39 0.09 0.02 33.87 6.69 43.60 

Nyalazi B032 0.79 0.05 0.02 10.61 5.72 44.86 

PalmRidge C15a 1.41 0.07 0.02 3.79 4.86 61.52 

Salpine F7 0.72 0.04 0.01 2.88 5.38 56.94 

Salpine G22b 0.58 0.03 0.01 3.72 4.86 63.93 

Salpine G33b 1.01 0.07 0.02 3.08 5.31 42.04 

Siyaqhubeka A017 1.54 0.09 0.03 4.20 5.34 52.36 

Siyaqhubeka B044 1.22 0.10 0.03 4.48 4.94 33.67 

Siyaqhubeka F011A 1.27 0.07 0.02 4.17 4.67 53.11 

SouthAreas B35b 0.73 0.05 0.02 3.99 5.46 46.56 

Terranera B38 0.89 0.05 0.02 4.97 5.67 54.41 

Terranera C55 1.28 0.09 0.03 4.98 5.16 41.98 

Trust D13b 1.08 0.07 0.02 21.42 5.85 39.00 

Trust E23f 1.12 0.07 0.02 6.23 6.25 47.18 

Trust E24g 1.16 0.07 0.02 24.62 5.81 48.87 

SOC – Soil organic carbon, N – Nitrogen, S – Sulphur, P – Phosphorus, C:N- carbon to Nitrogen ratio 
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3.3.4.1 Available Soil Water (ASW) 

 
Available soil water was estimated from the soil texture and soil organic matter described in 

section 3.3.4, using the soil water characteristics equation by Saxton & Rawls (2006). 

Maximum available soil water was calculated as the product of soil depth and derived 

available water capacity (Table 3.6). In 3PG, the minimum available soil water is usually set 

as a default value of zero. However, it is used to account for access to water table (Sands, 

2004). Additionally, according to a comment by David Forrester (pers. Comm) (Soil Water 

Availability · Issue #51 · Trotsiuk/R3PG, n.d.), “…Occasionally, it can also be reasonable to 

set MinASW > 0, e.g., when the user knows that the plants have access to a deep 

permanent water source, or when there is irrigation. In these situations, it needs to be 

calculated based on information about how much water is being applied (irrigation) or how 

much the plants can potentially access from a deep-water table after precipitation has been 

used”. For this reason, the sites were visually inspected using Google Earth Pro. Sites 

planted adjacent to the indigenous forest conservation area, which almost invariably grow 

along perennial watercourses, were set to half the initial ASW. This is because, it seem very 

likely that these plots had higher-than-normal access to ground water. This might not be a 

pragmatic approach in a much broader application of 3PG, but for the calibration work in this 

case study it was deemed appropriate to avoid any major bias due to major omission of key 

information. 

3.3.4.2 Fertility Rating (FR) 
 

Soil fertility varies over time and space, and determining it requires complex and time- 

consuming procedures (Binkley & Fisher, 2013; McGrath et al., 2014). According to 

Landsberg et al. (2001), “many years of research effort to describe site fertility in terms 

usable in quantitative models of plant growth has been extremely limited”. Therefore, the 

3PG model relies on a fertility rating index (FR) to relate soil fertility to stand productivity. 

The fertility rating is an important species-specific variable in 3PG. It affects canopy quantum 

efficiency and biomass allocation to the root (Landsberg et al., 2001). It ranks soil fertility 

from 0 (extreme nutritional limitation) to 1 (No nutritional limitation). The empirical nature of 

the fertility rating has been criticized; however, assigning fertility rating to a site is still 

problematic (Landsberg & Sands, 2011). 

Several studies have presented different approaches to estimate this variable. Some authors 

depend on arbitrary fixed FR values (Almeida et al., 2004; Campion et al., 2005; Esprey, 

2006; Coops et al., 2010), or values derived from soil properties (Xenakis et al., 2008; Vega- 

Nieva et al., 2013), fertilization trials (Stape et al., 2004), or direct/indirect correlation with 

site index (Dye et al., 2004; Gonzalez-Benecke et al., 2014; Subedi et al., 2015). 
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In this study, to explore the likely variability in FR, FR was varied iteratively to obtain the 

optimized values for each site. Stepwise regression was performed using the optimized FR 

values as the independent variable. Soil physical and chemical properties described in 

section 3.3.4, the total amount of rainfall received, ASW, and site index values, as the 

explanatory variable. None of the explanatory variables appeared to correlate clearly with FR 

(data not shown). Consequently, and given that the region is characterized by relatively 

homogenous soils, FR was set to a constant value of 0.5. Under these circumstances, this is 

a practical solution, but it may not be the case in more heterogeneous soils. 

 
3.3.5 Weather data 

 

Weather data were obtained using the interpolation methods described in Chapter 2. VPD 

was not input but rather calculated using the formula embedded in the 3PG model from 

minimum and maximum temperature. Figure 3.4 shows the mean annual total rainfall 

variation compared to the long-term (1959-1999) mean rainfall. Note the very dry years 2014 

and 2015, which were the region’s driest on record. 

 

Table 3.5 Total soil depth and available soil water for the 18 sites 

 

Compartment name 
Available soil water 

(mm) 
Soil depth (m) 

Maximum available water 
(mm) 

Futululu E6a 39.1 1.2 47 

Mavuya B3a 48 1.2 58 

Mtubatuba B003 49.2 1.5 74 

Nseleni J006 46.4 1.5 70 

Nyalazi B032 60.7 1.2 73 

PalmRidge C15a 40.5 1.2 49 

Salpine F7 40.5 1.2 49 

Salpine G22b 39.0 1.2 47 

Salpine G33b 51.4 1.2 62 

Siyaqhubeka A017 44.2 1.5 67 

Siyaqhubeka B044 43.1 1.5 65 

Siyaqhubeka F011A 39.3 1.5 59 

SouthAreas B35b 34.7 1.2 42 

Terranera B38 39.9 1.2 48 

Terranera C55 40.4 1.2 49 

Trust D13b 36.7 1.2 44 

Trust E23f 38.6 1.2 46 

Trust E24g 50.4 1.2 61 
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Figure 3.4 Mean annual total rainfall for all 18 study sites from 2008 – 2018. The red dotted line 

indicates the long-term mean rainfall, as estimated by Schulze (2007), and serves as a point of 

reference. 
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3.4 Calibration of 3PG model 
 

In general, the data needed to parameterize and test 3PG can be divided into biomass 

harvest, field data, literature, mensuration, and physiological data (Esprey, 2006). Direct 

measurement, analogy with other species, and parameter estimation are three methods for 

assigning values to parameters in a model (Landsberg & Sands, 2011). Calibration should 

be done through direct measurement of parameter values whenever possible, which can be 

done from some experimental measurements or indirectly through fitting a simple model or 

calculation using another model (Landsberg & Sands, 2011). However, many parameters 

are essentially generic and can be assigned values based on analogy with other species, 

such as the conversion of solar radiation to PAR (molPAR_MJ = 2.3 mol/MJ) (Landsberg & 

Sands, 2011). Failing both options, parameter values can be adjusted through parameter 

estimation. 

Following the parameterization guidelines presented by several authors (Sands, 2004; 

Esprey, 2006; Landsberg & Sands, 2011), where parameters could not be calibrated 

because of lack of suitable data, or parameterized due to low sensitivity ratings, default 

parameter values were chosen from Sands & Landsberg (2002) and Borges et al. (2012). 

 
3.4.1 Allometric parameters for stem mass as a function of DBH 

 

Biomass harvest data used were measured from a subset of sites in destructive samples 

taken in 2018. The five sites utilized for obtaining these data were the same as those with 

installed dendrometer bands described in section 3.4.2. The sites were established to 

investigate short-term growth variability in young and old stands at various levels of drought. 

These compartments were designed to represent three rainfall classes based on their mean 

annual precipitation, namely wet (>1100mm), moderate (1000 – 1100 mm), and dry (<1000 

mm). Trees received 60 kg/ha LAN fertilizer at planting, with no weeding, pruning, or thinning 

performed throughout the growth period. 

Three trees representing the first quartile (Q1), third quartile (Q2), and maximum in the 

diameter distribution were destructively harvested in each compartment. Measurements 

collected were total height, diameter at breast height (DBH), aboveground biomass 

(stemwood, branch, and foliage). Parameters for the allometric relationship between tree- 

level biomass (ws, kg tree-1) and DBH were then estimated for Equation 3.5 as specified by 

Sands & Landsberg (2002). 

 

Equation 3. 5 

where B is stem diameter at breast height, aS is the coefficient, and ns is the power in the 

allometric relationship 
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The allometric parameter derived using the fifteen harvested trees from the five sites was 

used to calculate the individual tree mass as a function of DBH for each of the trees 

measured at the 18 sites during the fieldwork in 2018. The average ws and Dq (quadratic 

mean diameter) of the trees at each of the 18 sites were calculated. These 18 pairs of ws 

and Dq were combined to develop a single stand-based allometric relationship representing 

all sites. This was done to upscale the parameter values to stand level to be consistent with 

the 3PG calculation (Esprey, 2006). 

 
3.4.2 Density-independent mortality coefficients 

 

Some of the sites experienced mortality at post-planting. Therefore we fitted the parameter 

values for density-independent mortality. One of the sites (B044) which experienced high 

mortality was used. The Clutter and Jones mortality function (Clutter & Jones, 1980) was 

used to estimate tree survival per year, then data modelled was fitted using a gaussian 

function with a non-zero asymptote (Sands and Landsberg, 2002) (Equation 3.6). 

 

 

 
Where, ɣNx = 0.60, ɣN0 = 1.01, tɣN = 3.39 

Equation 3. 6 

 

3.4.3 Parameter estimation for Zululand Egxu 
 

Eleven parameters (test parameters) (Table 3.7) were selected from the list of 3PG standard 

parameters, and parameter values published by Borges et al. (2012) were used as the base 

parameters. These test parameters were selected because they could not be calibrated from 

the data available in this study, and 3PG outputs have shown sensitivity to them (Almeida et 

al., 2004; Esprey et al., 2004; Forrester & Tang, 2016). Published parameter values for Egxu 

by Almeida et al. (2004) and Borges et al. (2012) were set as biologically plausible bounds 

(to give three test values: low, medium, high) in the estimation process. An algorithm was 

developed as part of an R3PG_Parameter_Testing pipeline using R (R Core Team, 2021) to 

generate all the possible combinations of the test parameter values (number of combinations 

= number of test values ^ number of test parameters). The different combinations of test 

parameter values were then combined with the rest of the base parameters. The routine 

produces an output as a *.csv file with each row representing a full 3PG parameter set 

(pset), with the column names corresponding to parameter names. Another script in this 

pipeline was created to run the different combinations of 3PG parameters (psets) for multiple 

sites (i.e., each site had R3PG run n times, where n is the number of psets, and the process 

was repeated for each site using a loop construction). The R3PG calibration simulations 

used 17 sites out of the 18 sites presented in Table 3.2. There was tree theft in one of the 
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sites (Salpine G22) at an early age, and inventory data provided were from the adjacent 

compartment. As a result, this site was dropped in the parameter estimation process. Site 

information and weather data required for 3PG simulations were the same as described in 

sections 3.3.2 to 3.3.5. 

According to Sands (2004), parameter estimation should be based on observed values of all 

state variables (WF, WS, WR, N, and θS). However, surrogates for stem biomass such as 

DBH, stem height, or volume can be used. Dq, mean stem height, and basal area were used 

in this study. Basal area was selected as it is also a function of stocking. For foliage 

biomass, Leaf area index (LAI) is a surrogate. Although we did not have access to observed 

ground-based time-series LAI data for this study, we performed a qualitative comparison by 

comparing the 3PG LAI values with the Landsat 8 Collection 1 Tier 1 Normalized Difference 

Vegetation Index (NDVI) product. We used the 8-Day NDVI composite dataset retrieved 

from Google Earth Engine (GEE) environment. Also, in the R3PG_Parameter_Testing 

pipeline, output other than Dq, mean stem height, and basal area were discarded. The 

complete R scripts and the template file for this algorithm are available on GitHub at 

https://github.com/EucXylo/R3PG_parameter_testing. 

 

3.4.4 Selecting the optimized parameter set 
 

All candidate psets generated in section 3.5.2 were evaluated by matching their predicted 

stem diameter, height, and basal area values to corresponding observed data (for all 

observed values where stand age > 3). The following statistics were considered to select the 

best performing pset: R-squared, sum of squared error (SSE), intercept, and slope. In 

addition, another measure was developed, here named the extended Root Mean Square 

Error (eRMSE), for each pset across all sites to generate a single metric for ranking psets. 

The eRMSE is derived from the sum of square errors of predictions against observed values 

(SSE) and the sum of square errors of predictions from the line of best fit against observed 

values (SSF). The SSE is the squared difference between the observed values and the 

R3PG predictions (which corresponds to residuals from the identity line (slope = 1, intercept 

= 0) (Equation 3.7). The SSF is the squared difference between the observed values and the 

line of best fit of observed values vs. predictions (Equation 3.8). The values from the line of 

best fit are calculated by inserting the observed values into the (observed-vs-R3PG 

prediction) regression equation (Equation 3.9). 

 

Equation 3. 7 

 

Equation 3. 8 
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Equation 3. 9 

Where, a is the slope from the regression equation, b is the intercept from the regression 

equation, Xobs is the observed value (including all the variables included in the evaluation – 

Dq, basal area, and mean stem height), yR3PG is the corresponding 3PG-predicted value, yʹfit 

is the corresponding fitted value on the line of best fit between observed and predicted 

values. 

Then eRMSE was calculated as 

Equation 3. 10 

Where, SSE is the sum of square error, SSF is the sum of square fit, and n is the number of 

observed values. 

The sum of square fit in the evaluation metric helps to avoid choosing psets that might have 

a low sum of square error while at the same time having a bias (with systematic over/under 

prediction at low vs. high values). Overall, the eRMSE aims to aggregate the prediction and 

fit errors into a single measure of predictive power, thereby enabling the selection of psets 

with minimized residuals, low bias, and line of best fit close to the identity line (slope = 1, 

intercept = 0). The graphical representation of this concept is shown in Figure 3.5. The 

complete R scripts and template file for this algorithm are available on GitHub at 

https://github.com/EucXylo/R3PG_pset_refining 
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Figure 3.5 A hypothetical graph explaining the eRMSE concept, where SSE is the sum of square 

error (R3PG-predicted vs. observed values), SSF is the sum of square error fit (predictions from the 

line of best fit vs. observed values), the solid red line is the identity line (predicted = observed), and 

the black dashed line is the line of best fit for R3PG-predictions vs. observed values. The blue 

squares show the original model-predicted and observed value data, black circles show the 

regression fit values, and the red circle represents a perfect model. 

 
3.4.5 Validation of the 3PG model 

 

The predictive accuracy of the 3PG model was further tested by validating the model against 

data from 15 independent sites in the same region managed by the two forest companies. 

Stand growth data at a specific age were made available. Summary of the site and stand 

information used is presented in (Table 3.8). Weather data were obtained using the 

interpolation technique described in Chapter 2. Plant available soil water was estimated from 

the South African soil classification map (Soil Classification Working Group, 1991). However, 

ASW obtained from this map were overestimated for sandy soil (99 – 105mm) compared to 

the typical value (±80mm) for the region’s soil form (Fernwood) specified by (Olivier, 2017) 

and those derived from soil texture (34.7 – 60.7mm) used in model calibration (section 

3.4.3.1). 

For this reason, the initial ASW was set as the mean ASW of the calibration sites. A constant 

FR value of 0.5 was also used during validation. Parameter values obtained from section 

3.4.3 and three Brazilian parameter sets by Borges et al. (2012) and Almeida et al. (2004) 

were used to run the 3PG model. Similar to the calibration sites, there was mortality at post- 

(x, yʹ) 

 
(y = x) 

(x, y) 

Identity line 

Line of best fit 
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planting, which became stable afterward. Therefore, we set the initial stem number for these 

sites at the stable value. Using these parameter sets, four sets of model predictions (stand 

basal area and height) were used to estimate stand volume using Equation 3.2, and this was 

compared with observed stand volume. The following statistical error and indices from the 

Agricultural and Meteorological software (AgriMetSoft, 2019) were used to evaluate the 

performance of 3PG model: root mean square error (RMSE), coefficient of determination 

(R2), and Nash Sutcliffe efficiency index (E) as described in section 2.4. 

 
Table 3.6 Test parameters and their values considered as bound during parameter estimation 

 
 

Parameter 
 

Egxu 
(Borges et al., 2012) 

 

Clone 15 
(Almeida et al., 2004) 

 

Clone 22 
(Almeida et al., 2004) 

E.grandis 
(Esprey, 

2006) 

pFS2 1.64 0.7 0.7 - 

pFS20 0.15 0.1 0.11 - 

pRx 0.5 0.6 0.6 - 

pRn 0.1 0.07 0.12 - 

gammaF1 0.07 0.13 0.13 - 

Tmin 8 8 8 3 

Topt 25 25 25 23 

Tmax 40 36 36 25 

alphaCx 0.08 0.068 0.068 - 

wSx1000 300 180 180 - 

CoeffCond 0.0324 0.045 0.05 - 
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Table 3.7 Summary of the site and stand information of the sites used for validation 

 
Company Compartment name Longitude Latitude Plant Date Enumeration Date Altitude Age Spacing SI TPH0 TPH1 Soil depth 

Sappi FutululuE4b 32.20881 -28.38448 2010/07/19 2017/07/19 58.2 7.70 3.0 x 2.2 13.7 1515 1449 1.2 

Sappi FutululuE4c 32.2138 -28.38134 2010/07/19 2017/07/19 54.5 7.70 3.0 x 2.2 12.9 1515 1480 1.2 

Sappi FutululuE4i 32.20957 -28.38366 2010/07/19 2017/07/19 56.2 7.70 3.0 x 2.2 12.7 1515 1512 1.2 

Mondi Forest Kwambonambi_F011A 32.07278 -28.58583 2010/05/10 2018/04/12 84.1 7.92 2.5 x 3.0 21.0 1390 1368 1.5 

Mondi Forest Nseleni_C002 31.97126 -28.72292 2013/05/09 2018/04/18 55.1 4.92 2.5 x 3.0 17.8 1450 1428 1.5 

Mondi Forest Nyalazi_D006 32.26713 -28.27855 2011/04/21 2018/03/10 40.0 6.92 2.5 x 3.0 19.6 1330 1206 1.5 

Sappi Palm RidgeA18 32.26028 -28.30064 2008/08/15 2017/09/25 37.8 9.70 2.7 x 2.4 14.8 1515 1441 1.2 

Sappi Palm RidgeA21a 32.26401 -28.30437 2010/07/21 2017/07/25 39.1 7.70 3.0 x 2.2 14.4 1515 1401 1.2 

Sappi Palm RidgeA21b 32.26339 -28.30393 2010/07/21 2017/07/25 41.2 7.70 3.0 x 2.2 13.4 1515 1361 1.2 

Sappi Palm RidgeA21i 32.26377 -28.30591 2010/07/21 2017/07/25 41.0 7.70 3.0 x 2.2 13.7 1515 1393 1.2 

Mondi Forest Siyaqhubeka_B060 32.28511 -28.32640 2012/04/10 2018/03/15 60.3 5.92 2.5 x 3.0 19.7 1833 1833 1.5 

Mondi Forest Siyaqhubeka_C001 32.30249 -28.30861 2012/05/09 2018/03/15 57.7 5.83 2.5 x 3.0 16.5 1700 1593 1.5 

Sappi TrustL11b 32.0878 -28.55849 2010/07/20 2017/07/21 89.1 7.70 3.0 x 2.2 15.0 1515 1369 1.2 

Sappi TrustL11e 32.08544 -28.55538 2010/07/20 2017/07/21 92.7 7.70 3.0 x 2.2 12.6 1515 1348 1.2 

Sappi TrustL11j 32.08386 -28.55765 2010/07/20 2017/07/21 93.5 7.70 3.0 x 2.2 13.1 1515 1433 1.2 
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3.5 Results and Discussion 

 
3.5.1 Allometric parameters as and ns 

 

The relationship between ws and Dq measured at the “Marie Curie” sites used in fitting the 

allometric parameters (aS and nS) is presented in Figure 3.6. The allometric parameters, 

where, aS = 0.099 and nS = 2.51, gave an excellent fit (R2 = 0.99; p < 0.001). The standard 

errors for this parameter calibration are aS = 0.477, nS = 0.005. Notably, the value of aS 

(0.099) is higher than that obtained by Almeida et al. (2004) and Borges et al. (2012). 

However, nS falls within the range of values obtained by both authors (see Table 3.9). These 

parameters determine the prediction of stem diameter and basal area by the 3PG model. 

 
 
 

 

Figure 3.6 Allometric relationship between mean single-tree stem biomass (wS) and Dq obtained from 

five “Marie Curie” plots. The line ( ) is the fitted relationship used in 3PG (aS = 0.099, nS = 2.51). 

 
3.5.2 Parameter Estimation 

 

For this study, the parameter set with the lowest eRMSE was selected as the optimized 

parameter values for Eucalyptus grandis x urophylla in the Zululand region of South Africa. 

Using this parameter set resulted in the best predictions of the three variables (Mean height, 

basal area, and stem diameter at breast height) and stand volume calculated from basal 

area and height (Figure 3.7). For the 17 calibration sites, the 3PG predictions accounted for 

more than 80% of the variance in the observed values for all output variables considered 

(Table 3.9). For all output variables, the linear regression slopes between observed and 

predicted values were significantly different from zero (p < 0.001 in all cases). All the output 
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variables used in the parameter estimation process resulted in a negative bias (Table 3.9). 

As illustrated in Figures 3.8, 3.9, and 3.10, 3PG underestimated growth in the early stages. 

The possible cause of this systematic error is discussed in the next section. The Nash 

Sutcliffe model efficiency index (E), which indicates how well the line of best fit from 

observed vs. predicted data fits the identity line, shows that 3PG prediction produced a very 

good match to the observed data (E > 0.7, where E = 1 indicates a perfect match). Overall, 

the good agreement between the observed and predicted output variables indicates 

adequate calibration of the 3PG parameters to predict forest growth in the study area. The 

list of parameter values from this study, by Almeida et al. (2004) and Borges et al. (2012) are 

presented in Table 3.10. 

 
Table 3.8 Statistics describing the relationship between observed and predicted variables. Statistics 

include mean bias error (MBE), Nash Sutcliffe efficiency index (E), intercept, slope, p-value, and R2
 

 
Output MBE E Intercept Slope p-value R2 N 

Basal Area -1.65 0.78 -3.00 1.07 <0.001 0.87 105 
Dq -0.80 0.73 -1.625 1.06 <0.001 0.85 105 

Mean Height -0.16 0.78 -0.934 1.05 <0.001 0.84 105 
Volume -5.83 0.85 -18.624 1.10 <0.001 0.90 105 

 

 
3.5.3 Model behavior at calibration sites 

 

During the drought period, there was a decrease in Dq and mean height growth rate at most 

sites, but not at A017, B044, F011A, B35b, and C55 (Figures 3.8 and 3.9). All of these sites 

showed continuous growth during the dry period (Figure 3.8 and 3.9). Xulu et al. (2018) 

reported on the major effect of this drought in the region. However, it is an important insight 

that not all sites were affected to the same extent. Another factor to consider is genotype. 

Crous et al. (2018) highlighted significant intra-hybrid variation in the hydraulic traits of the 

Eucalyptus clones planted in this region. Nevertheless, in this region, broad-scale 

differences can be seen. Visually inspecting the sites for the drought year from satellite 

Imagery shows distinct differences between northern and southern plantations (See figure 

3.10). 

Another interesting finding from this visual analysis is that the five sites mentioned above, all 

southern sites, were established adjacent to indigenous forest conservation zones, which 

almost invariably grow along perennial watercourses. Accordingly, it would seem very likely 

that these managed blocks had higher-than-normal access to groundwater. However, clones 

planted at B032, which is also close to a natural forest located further North, appeared to 

have reduced growth during the drought and may have experienced die-back (See figure 

3.10). This observed pattern is consistent with previous research, which predicted that tree 
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response to this environmental fluctuation would be site and species-specific (Warburton & 

Schulze, 2008; Almeida et al., 2009; Pinkard et al., 2010; Naumberg et al., 2001; Booth, 

2013). 

In 3PG, radiation interception is mainly driven by the leaf area index (LAI), which determines 

the amount of dry mass production (Landsberg & Waring, 1997). We observed realistic LAI 

at some sites, particularly sites at the drier region, which are consistent with LAI values 

(Peak LAI at between 2.5 and 3 years and to vary between 4.0 and 5.3 m2/m2) shown by 

Campion et al. (2005). However, the higher peak LAI values at four (A017, B044, C55, B35) 

of the five sites previously mentioned in the KwaMbonambi region are the most striking 

(Figure 3.11). Higher LAI values were also discovered by Dye et al. (2004) for Eucalyptus 

plantations in the KwaMbonambi region. A qualitative comparison of the predicted LAI with 

the Landsat 8 NDVI values showed that there was a general decline in the NDVI values 

during the drought period, and the 3PG predicted LAI also showed the same pattern. 

Generally, the decline rate and recovery rate differ per region (Figure 3.11). The fact that the 

3PG model showed response to the drought events demonstrates its usefulness in 

simulating growth patterns in response to the environment. 

As illustrated in Figure 3.8 and 3.9, 3PG under-predicted early growth (Dq and mean stem 

height) from age zero to about five years at some, but not all, sites. According to Landsberg 

& Waring (1997), some systematic errors are expected due to the limitation of using Beer’s 

law to calculate absorbed photosynthetically active radiation. The model assumes a closed 

canopy which is not necessarily true for young trees, coupled with the fact that some of the 

sites experienced mortality at post-planting. This explains the biasness observed in Table 

3.9. However, as the stand age, 3PG prediction tends to match with observed values (Table 

3.8 and 3.9). This pattern was also reported by Esprey (2006) and Miehle et al. (2009). 
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Figure 3.7 Comparison of observed and 3PG predicted values for (A) quadratic mean diameter (Dq, cm), (B) mean stem height (H, m), (C) basal area (BA, 

m2ha-1), and (D) volume (V, m3ha-1). Red dashed lines are identity lines (1:1), solid black lines are fitted lines from the regression. 
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Figure 3. 8 Comparison of observed (red lines) and predicted (dark blue lines) time series quadratic mean diameter (cm) for the calibration plots. The two 

black vertical lines represent drought years (2014 – 2015) 
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Figure 3. 9 Comparison of observed (red line) and predicted (dark blue line) time series mean stem height (m) for the calibration plots. The two black vertical 

lines represent drought years (2014 – 2015) 
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Figure 3. 10 Images of PSP and site condition during the drought year retrieved from Google Earth ©. Image A shows PSP in the Southern region compared 

to image B in the Northern region. Both are of the same clone type and near-natural forest. Image C in the Southern region compared to image D, planted in 

the Northern region. 

D C 

B 
A 
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Figure 3.11 Comparison of 3PG predicted LAI values (green lines) with Landsat 8 NDVI values (orange lines) across the 17 calibration sites. The two black 

vertical lines represent drought years (2014 – 2015) 
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0Figure 3.12 Comparison of observed (red lines) and predicted (dark blue lines) time series basal area (m2/ha) for the calibration plots. The two black vertical 

lines represent drought years (2014 – 2015) 
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Table 3.9 List and source of parameters used in the calibration of 3PG, and the result of 3PG calibration in this study 

 
Meaning/comments Symbol Units Egxu 

(Borges et al., 
2012) 

Clone_15 
(Almeida et al., 
2004) 

Clone_22 
(Almeida et al., 
2004) 

This 
study 

Source 

Foliage:stem partitioning ratio @ D= 2cm pFS2 - 1.64 0.7 0.7 1 E 

Foliage:stem partitioning ratio @ D= 20cm pFS20 - 0.15 0.1 0.11 0.15 E 

Constant in the stem mass vs diam. relationship aS - 0.02 0.049 0.033 0.099 F 

Power in the stem mass vs diam. relationship nS - 3.11 2.822 2.912 2.506 F 

Maximum fraction of NPP to roots pRx - 0.5 0.6 0.6 0.6 E 

Minimum fraction of NPP to roots pRn - 0.1 0.07 0.12 0.1 E 

Maximum litterfall rate gammaF1 1/month 0.07 0.13 0.13 0.07 B 

Litterfall rate at t = 0 gammaF0 1/month 0.001 0.00169 0.00169 0.001 B 

Age at which litterfall rate has median value tgammaF Months 4 13 13 4 B 

Average monthly root turnover rate gammaR 1/month 0.025 0.025 0.025 0.025 B 

Minimum temperature for growth Tmin °C 8 8 8 5 E 

Optimum temperature for growth Topt °C 25 25 25 23 E 

Maximum temperature for growth Tmax °C 40 36 36 40 E 

Moisture ratio deficit for fθ = 0.5 SWconst - 0.5 0.5 0.5 0.7 D 

Power of moisture ratio deficit SWpower - 5 5 5 9 D 

Value of ‘m’ when FR = 0 m0 - 0 0 0 0 D 

Value of ‘fNutr’ when FR = 0 fN0 - 0.5 0.6 0.6 0.6 D 

Power of (1-FR) in ‘fNutr’ fNn - 1 1 1 1 D 

Maximum stand age used in age modifier MaxAge Years 9 9 9 9 B 

Power of relative age in function for fAge nAge - 4 4 4 4 D 

Relative age to give fAge = 0.5 rAge - 0.95 0.95 0.95 0.95 D 

Mortality rate for large t gammaNx %/year 0 0 0 0.6 F 

Seedling mortality rate (t = 0) gammaN0 %/year 0 0 0 1.01 F 

Age at which mortality rate has median value tgammaN years 0 0 0 3.36 F 

Shape of mortality response ngammaN - 1 1 1 1 F 

Values source: B - Base parameter (Borges et al., 2012), D – Default (Sands & Landsberg, 2002), E - Estimated, F- fitted 
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List and source of parameters used in the calibration of 3PG, and the result of 3PG calibration in this study (Continues) 

 
Meaning/comments Symbol Units Egxu 

(Borges et 

al., 2012) 

Clone_15 
(Almeida et 

al., 2004) 

Clone_22 
(Almeida et 

al., 2004) 

This 

study 

Source 

Max. stem mass per tree @ 1000 trees/ha wSx1000 Kg/tree 300 180 180 300 E 

Specific leaf area at age 0 SLA0 m2/kg 13.74 11 9 13.74 B 

Specific leave area for mature leaves SLA1 m2/kg 7.56 8 7.3 7.56 B 

Age at which specific leaf area = (SLA0+SLA1/2) tSLA years 1.23 2.5 2.5 1.23 B 

Extinction coefficient for absorption of PAR by canopy k - 0.5 0.5 0.5 0.5 D 

Age at canopy cover fullCanAge Years 2 2 2 2 D 

Maximum proportion of rainfall evaporated from canopy MaxIntcptn - 0.15 0.15 0.15 0.15 D 

LAI for maximum canopy conductance LAImaxIntcptn - 3.33 3 3 3 D 

Alpha alphaCx molC/molPAR 0.08 0.068 0.068 0.08 E 

Ratio NPP/GPP Y - 0.5 0.47 0.47 0.5 B 

Maximum canopy conductance MaxCond m/s 0.02 0.02 0.022 0.02 D 

LAI for maximum canopy conductance LAIgcx - 3.33 3 3 3.33 D 

Defines stomatal response to VPD CoeffCond 1/mBar 0.0324 0.045 0.05 0.0324 B 

Canopy boundary layer conductance BLcond m/s 0.2 0.2 0.2 0.2 D 

Branch and bark fraction at age 0 fracBB0 - 0.59 0.3 0.3 0.59 B 

Branch and bark fraction for mature stands fracBB1 - 0.19 0.12 0.12 0.19 B 

Age at which fracBB = (fracBB0+fracBB1)/2 tBB years 2.17 2 2 2.17 B 

Minimum basic density for young trees rhoMin t/m3
 0.382 0.48 0.4 0.382 B 

Maximum basic density for older trees rhoMax t/m3
 0.505 0.52 0.48 0.505 B 

Age at which rho = (rhoMin+rhoMax)/2 tRho years 2.264 3 3 2.264 B 

Constant in stem height relationship aH  0.67 0 0 0.67 B 

Power of DBH in stem height relationship nHB  1.27 0 0 1.27 B 

 
Values source: B - Base parameter (Borges et al., 2012), D – Default (Sands & Landsberg, 2002), E - Estimated, F- fitted 
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3.5.4 Model performance at independent validation sites 

 

Basal area, DBH, and height predicted from running the 3PG model using the four 

parameter sets (Table 3.10) were used to estimate stand volume (Equation 3.4) at the fifteen 

validation sites described in section 3.4.4. All four parameter sets accounted for more than 

60% of the variance in the observed data (Table 3.11), but the two parameter sets from 

Almeida et al. (2004) severely under-predicted fast-growing sites. The parameter set 

developed by Borges et al. (2012) had slightly greater precision (R2 = 0.68) compared to this 

study (R2 = 0.65) but performed poorly in terms of slope. (Figure 3.13, Table 3.11). Although 

predictions from the new parameter set simulated the observed volume reasonably well, 

there was notable variability (Figure 3.13; Table 3.11). Stand volume at one site, L11b, was 

severely underestimated by the model. However, the Brazilian “clone-level” parameter sets 

showed strong trend bias (Figure 3.13). The poor modelling efficiency index was because of 

the distance between the observed vs. 3PG prediction regression line and the identity line 

(1:1) (Figure 3.11). The overprediction by the 3PG model may be attributed to the available 

soil water values used during validation. Another possibility might be from the observational 

data. Esprey (2006) also observed poor agreement between observed and 3PG predictions 

using final observation data and recommends that the biological reasonableness of the 

model should be evaluated by testing model prediction against time-series data. 

 
Table 3.10 Statistics describing the relationship between observed and predicted volumes. Statistics 

include root mean square error (RMSE), Nash Sutcliffe efficiency index (E), intercept, slope, p-value, 

and R2. 

 
Parameter Source RMSE E Intercept Slope p-value R2 N 

Egxu (Borges et al., 2012) 23.91 0.31 59.121 0.621 <0.001 0.68 15 

Clone 15 (Almeida et al., 
2004) 

26.26 0.16 61.99 0.297 <0.001 0.64 15 

Clone 22 (Almeida et al., 
2004) 

34.16 -0.41 65.34 0.185 <0.001 0.68 15 

This study 33.02 -0.32 43.26 0.856 <0.001 0.65 15 
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Figure 3.13 Comparison of observed and 3PG predicted volume (V, m3ha-1). Red dashed lines are identity lines (1:1), solid black lines are fitted lines from the 

regression equation 
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Chapter 4 Performance of four modelling approaches in 

predicting the productivity of Eucalyptus grandis x urophylla 

in coastal Zululand, South Africa 

 
4.1 Introduction 

 

The focus of the statistical growth and yield models in forest management has been the 

development of prediction tools to aid in decision making (Burkhart & Tomé, 2012). Forestry 

managers are practical people (Landsberg, 2003b). These models' relative simplicity and 

practicability have made them a default operational tool (Burkhart & Tomé, 2012). Relatively, 

simple models have proven useful in providing quantitative information for management and 

planning, predicting growth and yield, and providing product profile information (Landsberg, 

2003a). 

 
Forests are dynamic ecosystems that are constantly changing (Peng & Wen, 2006). As a result 

of the steady gains in the understanding of forest biology and ecology (Johnsen et al., 2001), 

there has been a growing awareness of the forest ecosystem complexity, which involves 

interactions between environmental variables, growth, and the developmental processes in 

trees (Gupta & Sharma, 2019). Therefore, the assumption of the traditional growth and yield 

model that the environment is “static” and forecasting growth and yield from historical data is no  

longer reliable. Consequently, these issues present forest managers with difficult questions 

concerning forest ecosystem management (Peng & Wen, 2006). Among others, droughts, the 

impact of pests and diseases, and the physiological diversity among hybrid clones are major 

challenges limiting the application of the conventional growth and yield model in South African 

short-rotation forestry (Dye, 2001; Kotze, 2018). 

 
Additionally, social and political pressure demands that forest management take environmental 

and social aspects of sustainable development more explicitly (Peng & Wen, 2006; Dyer, 2007). 

This has created debate on the utility of simple growth and yield models versus more complex 

ecophysiological models. Several authors have discussed the benefits and limitations of both 

modelling approaches; however, the value of both modelling approaches and how they can be 

applied in forest ecosystem management is well captured in detail by Korzukhin et al. (1996). 

 
In that context, the 3PG model is an interesting case. It has managed to find a niche in this 

continuum so that it is more considered a “hybrid model” (incorporating elements of both 

process-based and empirical models) (Landsberg & Sands, 2011; Weiskittel et al., 2011). 

Nevertheless, the question arises as to whether this leaves the model unable to provide the 
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level of accuracy required for robust decision-making at a scale relevant to forest managers. 

Given that it is still more complex and data-hungry than some other approaches, a second 

question is if the parameterization and data acquisition requirements lead to sufficient gains in 

model skill? Therefore, the main objective of this chapter is to parameterize and validate three 

simple models for the same region. The result will be used to compare the performance of the 

3PG model. 
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4.2 Materials and Methods 

 
4.2.1 Site index-based model for Egxu 

 

For decades, most commercial forestry companies in South Africa have used the empirical, 

stand-level growth and yield modelling system to forecast the growth and yield of Eucalyptus 

grandis x urophylla (which is mainly used as gum pulpwood without thinning) (Kotze & Fletcher, 

2013). This model served as the conventional growth and yield model for planning, volume 

estimation, and forecast supply and was developed using different statistical regression models 

and functions (Kotze, 2018). Stand growth and yield are projected by calibrating the model with 

inventory data (when available) or with site index-based defaults (when no inventory is 

available) (Kotze, 2018). For the study reported in this thesis, the site index-based model was 

used. The model requires the default site index (SI) value, SI reference age (SIRefAge), initial 

stem number, the survival rate at SIRefAge, and stem number at SIRefAge. Survival percentage 

at SIRefAge was set at ninety-five percentage (95%) for all stands. Basal area and mean height 

predicted by the model were used to estimate stand volume using Equation (3.4). The model 

has been previously calibrated for Egxu by Kotze (2018). Therefore, functions, equations, and 

derived parameters (coefficients are presented in Table 4.1) for modelling Egxu growth are 

summarized. 

 
 The Hossfeld function to model dominant height (Palahí et al., 2004) 

 

 
Equation 4. 1 

Where HD1 = Dominant height in m at AGE1; HD2 = projected dominant height at AGE2; AGEi = 

stand age in years 

 

 The Clutter-Jones function to model tree survival (Clutter & Jones, 1980) 
 

 
Equation 4. 2 

Where TPH1 = stems per hectare at AGE1; TPH2 = projected stems per hectare at AGE2. 

  The Schumacher-type stand-level basal area function for untinned stands 

to model basal area (Pienaar & Harrison, 1989) 
 

 

 
Equation 4. 3 
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Where BA1 = basal area per hectare at AGE1; BA2 = basal area per hectare at AGE2; b1, b2, b3, 

b4, and b5 are estimated parameters. 

 

  Multiple linear regression models to model standard deviation of DBH and 

minimum DBH (Kassier, 1993) 
 

Equation 4. 4 

 
Where Dsdev = standard deviation of Dmean; BA = basal area per hectare; AGE = stand age in 

years 

 

 
Equation 4. 5 

Where Dmin = minimum DBH; TPH = number of trees per ha; PSPH = Stems Per Hectare; 

Dmean = arithmetic mean dbh. 

 

  Linear model to estimate mean height from dominant height (Kassier, 

1993) 
 

 
Equation 4. 6 

Where HM = mean height in m; HD = dominant height in m; Dmean = arithmetic mean dbh; 

Dsdev = standard deviation of Dmean. 

 
Table 4.1 Coefficients derived for the site index-based model by Kotze (2018) 

 

Function  Coefficients   

   b1  b2  b3  b4  b5  

Hossfeld function 

(Equation 4.1) 
0.074177 0.023642 

   

Clutter Jones function 

(Equation 4.2) 
-0.0477040 0.0206090 0.8280200 

  

Schumacher-type stand-level 

basal area function (Equation 4.3) 
6.75324 0.33312 0.85559 0.75451 0.072155 

Standard deviation of DBH 

(Equation 4.4) 
0.87858 0.17123 0.042825 

  

Minimum DBH (Equation 4.5) 0.80906 1.97080 0.011475   

Linear model to estimate mean 

height from dominant height 

  (Equation 4.6)  

 
1.91604 

 
0.89072 

 
6.83548 
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4.2.2 Cumulative Aridity Index 
 

Aridity indices are quantitative indicators of the degree of water deficiency (in relation to 

evaporative demand vs. supply) at a given location (Stadler, 2005). Numerous aridity indexes 

have been proposed. However, the aridity index widely used considers rainfall, temperature, 

and evaporation in their formulation (see Stadler (2005) for a list of selected aridity indices). The 

majority of approaches to quantitatively calculate aridity are either constrained by the data 

requirements of the parameters defined or ineffective representation of the concept (Stadler, 

2005). Therefore, Thornthwaite (1948) approach, moisture index (Im), was widely accepted due 

to the simplicity of the data requirements and general agreement with world vegetation patterns 

(Stadler, 2005). This approach classified a location’s climate (moist or dry) based on the 

balance of water supply and demand and was considered in this study. The equation is given as 

 

Equation 4. 7 

 

Where P = Precipitation (mm), PE = Potential Evapotranspiration (mm). 

 
For analyses undertaken in this thesis, the R package ClimClass 2.1.0 (Eccel et al., 2016), 

freely available at R CRAN repository (https://CRAN.R-project.org/package=ClimClass), was 

used to calculate the aridity index for each site. Monthly weather variables (precipitation, 

minimum and maximum temperature) from 2008 – 2018 generated from the Random Forest 

model (See Chapter 2) were used. The R package calculates the climate normals (mean 

monthly values from the monthly series of temperature and precipitation) using the function 

climate. The mean monthly extra-atmospheric radiation is calculated using latitude and day of 

the year (this contains a vector with middle days for every month in a year) by employing the 

ExAtRa function. The Hargreaves’ formula was used to calculate Potential evapotranspiration 

(PE), and a vector of twelve (12) coefficients was used to adjust the Hargreaves’ estimation of  

PE by including coeff_Hargr in the code. 

 
Furthermore, variable monthly was set to FALSE to focus on cumulative aridity of the site for the 

period specified (2008 – 2018). The output contains a single line data frame with the desired 

aridity index (the package calculates six aridity indices according to different authors, see Eccel 

et al. (2016) for full list). The calibration sites were used to parameterize the model. Aridity index 

from planting date to enumeration date was calculated for each calibration and validation site. 

The values obtained from the calibration sites were correlated with the measured volume in 

2018 using simple linear regression analysis. The linear regression equation and coefficients 

derived were used to estimate volume for the validation site (Equation 4.8). 

Stellenbosch University  https://scholar.sun.ac.za

https://cran.r-project.org/package%3DClimClass


79 
 

 
 

Table 4.2 Aridity classification according to Thornthwaite (1948) 

 
Classification Value 

Arid (E) -60 to -40 

Semiarid (D) -40 to -20 

Dry sub-humid (C1) -20 to 0 

Moist sub-humid (C2) 0 to 20 

Humid (B1) 20 to 40 

Humid (B2) 40 to 60 

Humid (B3) 60 to 80 

Humid (B4) 80 to 100 

Perhumid (A) > 100 

 

4.2.3 Cumulative Rainfall 
 

Water availability has been identified as the critical limiting factor to forest growth in South Africa 

(Dye, 2000; Edwards & Roberts, 2006). Anecdotal evidence for the Zululand region (where our 

study is focused) suggests that a very simple cumulative model based on rainfall alone may be 

quite adequate for predicting volume variability in eucalypt plantations. To that end, we also 

evaluated the performance of a simple cumulative rainfall received over the stand age and for 

each PSP in predicting the volume of Eucalyptus hybrid. 

For the simple cumulative rainfall model, the sum of rainfall received for each stand age in the 

calibration site was calculated from the weather data obtained in chapter two. A simple linear 

regression analysis was used to correlate these values with observed volume data measured in 

2018. Weather data were generated for the validation sites using the same spatial interpolation 

method described in chapter two. The coefficients derived from the calibration sites were used 

to estimate volume for the validation sites (Equation 4.8) 

 

Equation 4. 8 

 
Where Y is the predicted volume (m3ha-1), X is the explanatory variable, a is the intercept, and b 

is the slope of the line. See Table 4.3 for values of a and b. 
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4.3 Results and Discussion 

 
4.3.1 Parameterization of cumulative rainfall and aridity index 

 

The simple linear regression calculated to predict stand volume based on cumulative rainfall 

received over the stand age at the calibration sites resulted in a significant regression equation 

(F(1, 15) = 23.44, p < 0.001) (Table 4.3), accounting for 61% of the variance in the actual 

volume (Figure 4.1). The simple linear regression calculated to predict stand volume based on 

cumulative aridity over the stand age also results in a significant regression equation (F(1, 15) = 

35.21, p <0.001) (Table 4.3), explaining 70% of the variance in actual volume (Figure 4.1). Both 

models produced good site ranking, but more clearly with the aridity index model (Figure 4.1). 

However, this ranking is more of a “site condition type” (wet, medium, and dry), not necessarily 

yield. Classification of the PSPs aridity, according to Thornthwaite (1948), is presented in Table 

4.4. From the classification, all sites in the Northern region were classified as “Semiarid”, three 

sites at the southern region, which are also close to the coast, were classified as “moist sub- 

humid”, and sites around the center of the study area were classified as “dry sub-humid” (Table 

4.4). 

 

Table 4.3 Regression analysis of the cumulative rainfall and aridity index model at the calibration sites 

 

Model  Coefficients Standard error p- 

value 

R2 N 

 

Cumulative rainfall 
Intercept -227.443 90.44 <0.05  

0.61 
 

17 
Slope 0.0619 0.013 <0.001 

Cumulative aridity 

index 

Intercept 296.613 20.16 <0.001 
0.70 17 

Slope 6.59 1.111 <0.001 
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Table 4.4 Classification of the calibration sites’ aridity according to Thornthwaite (1948) 

 
Compartment name Age Im Classification 

Futululu_E6a 8.0 -26.65 Semiarid 

Mavuya_B3a 8.3 -18.06 Dry sub-humid 

Mtubatuba_B003 7.1 -26.95 Semiarid 

Nseleni_J006 8.1 -10.18 Dry sub-humid 

Nyalazi_B032 6.1 -30.86 Semiarid 

Palm_Ridge_C15a 8.2 -23.16 Semiarid 

Salpine_F7 7.7 -15.5 Dry sub-humid 

Salpine_G33b 7.4 -10.48 Dry sub-humid 

Siyaqhubeka_A017 7.1 2.87 Moist sub-humid 

Siyaqhubeka_B044 7.2 5.34 Moist sub-humid 

Siyaqhubeka_F011A 6.0 -5.78 Dry sub-humid 

South_Areas_B35b 6.3 -3.84 Dry sub-humid 

Terranera_B38 7.4 -0.6 Dry sub-humid 

Terranera_C55 8.2 0.11 Moist sub-humid 

Trust_D13 7.2 -26.39 Semiarid 

Trust_E23 6.1 -23.18 Semiarid 

Trust_E24 10.4 -23.98 semiarid 

 
 
 

4.3.2 Performance of the simple models at the independent validation sites 
 

The stand volume predicted by the three simple models (Cumulative rainfall, Cumulative aridity 

index, and the site index-based model) was compared to the actual volume estimated at the 

validation sites. The site index-based model had the highest precision (R2 =0.85), followed by 

the cumulative rainfall (R2 =0.80), while the cumulative aridity performed poorly (R2 =0.003). Out 

of all four models (including 3PG), the site index-based model was the best performing model in 

terms of all metrics used (Table 4.5). Overall, all the models showed good site ranking except 

for the cumulative aridity index model (Figure 4.2). Although the site index-based simulated the 

observed volume reasonably well, the fast-growing sites were under-predicted. In contrast, 

these sites were severely over-predicted by the cumulative rainfall model and 3PG (Figure 4.2). 

This is surprising given that the trees were growing during a drought cycle. In principle, the site 

index-based model is based on SI values derived from historical data; as a result, we would 

have expected the model to overestimate because we assume they were developed for typical 

conditions. 
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Table 4.5 Statistics describing the relationship between observed and predicted stand volumes by the 

different modelling approaches. Statistics include root mean square error (RMSE), Nash Sutcliffe 

efficiency index (E), intercept, slope, p-value, R2
 

 

Model RMSE E Intercept Slope p- 

value 

R2 N 

Cumulative rainfall 30.89 -0.152 -24.19 1.405 <0.001 0.80 15 

Cumulative aridity index 50.06 -2.02 147.26 -0.049 >0.05 0.003 15 

Site index-based model 14.44 0.75 -8.40 1.005 <0.001 0.85 15 

3PG model 33.02 -0.32 43.26 0.856 <0.001 0.65 15 

 
The simple cumulative rainfall model and the site index-based model performed well in site 

ranking, making them valuable tools for forest management in the Zululand region. As a result, 

the question of why we need complex process-based models when simple models work well 

arises. One answer to this question is that process-based models such as the 3PG model can 

be used to formulate hypotheses and exploration of these scenarios, quantify the influence of 

external factors on forest productivity, and also estimate the potential productivity of a site that 

has no previous field data (Almeida et al., 2004). It is important to reiterate that models are 

nothing more than abstract representations of the system being modelled (Landsberg & Sands, 

2011). Therefore, if the system to be managed or the question to be addressed is simple, 

simple statistical models can be applied. If the system deals with processes, structures, and 

cause-effect questions, complex models such as 3PG can be applied (Pretzsch, 2009). No 

single model is “omnipotent”. The strength and weakness of both empirical and process-based 

models have been argued by Korzukhin et al. (1996). 

However, several authors have asserted that the future of forest modelling lies in models that 

combine the strength of both modelling approaches (hybrid models) (Battaglia & Sands, 1998; 

Mäkelä et al., 2000; Landsberg, 2003b). A hybrid approach based on the 3PG model and an 

empirical model was developed by Almeida et al. (2003) to manage fast-growing Eucalyptus 

grandis hybrid plantations in Brazil. Additionally, 3PG has also been hybridized with other 

models such as 3PGH – combining 3PG with TOPMODEL to improve water balance sub-model 

(Almeida & Sands, 2016; Almeida et al., 2016), 3PGN – combining 3PG with a carbon balance 

model, ICBM/2N to predict FR (Xenakis et al., 2008), 3PG+/CAT – integrating 3PG+ into the 

Catchment Analysis Tool (CAT) framework to predict impacts of plantation on water balances of 

catchments, (Nolè et al., 2009) coupled 3PGS with a modified soil respiration model to estimate 

net ecosystem fluxes. 
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Figure 4.1 Relationship between observed volume in 2018 and (A) cumulative rainfall over the stand age (B) cumulative aridity index over the stand age 
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Figure 4.2 Comparison of observed and predicted stand volume (V, m3ha-1) using (A) Cumulative rainfall model (B) Cumulative aridity index model C) the 

3PG model (D) Site index-based model. Red dashed lines are identity lines (1:1), solid black lines are fitted lines from the regression. 
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Chapter 5 General Conclusions and Comments 

The primary aim of the research reported in this thesis was to calibrate and test the 3PG model 

for stands of Eucalyptus grandis x urophylla hybrid trees growing under South African 

conditions and to compare its performance with other models, including a statistical growth and 

yield model used by the two forestry companies who were partners in the research. To achieve 

this, some key research questions were raised (section 1.6), and specific objectives were set 

(section 1.5) to address these questions. 

 
 
Spatial Interpolation of weather data for the ungauged plantations (Objective 1) 

 
Based on this objective, we conclude that both of the tested spatial interpolation techniques can 

be calibrated to predict long-term weather data in the study area. Depending on the temporal 

scale desired, Meteoland can be used to predict daily weather data. However, in terms of 

reduced errors and higher precision, the RF algorithm outperformed the Meteoland approach, 

which underscores the significance of machine learning in spatial interpolation. Additionally, the 

RF captured the pattern of rainfall variation previously reported for this region (du Plessis & 

Zwonlinski, 2003). One possible explanation could be the inclusion of the ‘distance to coast’ 

variable in the RF model, which was not part of the input variable for Meteoland. This variable 

has been reported to correlate with weather patterns (van Niekerk & Joubert, 2011). Therefore 

the Meteoland package can be improved by including this variable in its routine. 

 
We acknowledged the possibility of human error when handling large datasets such as those 

used in this study. This led to the development of algorithms in R to handle, process, and 

prepare the input files for both models. These algorithms are a significant outcome of this study 

and can further be developed as an R package. Apart from the dataset generated in this study, 

another valuable outcome of this study was adopting a simple modelling technique that uses 

readily available data, is available in R software, and is easily integrated into the forest 

simulation model used in this study. This makes it reproducible for future research work. 

 
This study generated monthly weather data for the Zulualnd region for ten years (2008 – 2018), 

and we acknowledge that it was time-consuming. To generate weather data for a longer time, 

we propose that future research consider merging these spatial interpolation techniques with 

the GIS software to create a weather surface map for this region. This will facilitate the 

extraction of point weather data across the entire region. 

 
 
Calibration and validation of the 3PG model (Objective 2) 

The R3PG package, a Fortran implementation of the 3PG model, embedded into an R package 

developed by Trotsiuk et al. (2020), was used to perform simulation runs and parameter 

optimization. The package was designed to run simulations on a single site; as a result, we 

created a loop function (Figure 3.2) to run the R3PG for multiple sites. The integration of 

algorithms developed (section 3.4.3) into R3PG facilitated model parameterization compared to 

the previous implementation of 3PG in visual basic. Another innovation in this study is the 

simple goodness-of-fit approach (eRMSE), developed to select the parameter set with 

minimized residuals, low bias, and line of best fit close to the identity line (slope = 1, intercept = 

1). 
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The PSPs used for calibration represents a broad range of site and climatic conditions; 

therefore, the parameter set developed in this study is expected to be applicable for E. gxu 

hybrids grown in South Africa. The simple parameter calibration from a base parameter 

(previously published for the same species but in a different region) and fitting allometric 

parameters produced a parameter set that characterized E. gxu hybrids’ growth in an 

unthinned, short rotation stands. While there were apparent performance gains at the calibration 

stage (Table 3.9), there were also some drawbacks. 

 Lack of time-series stem, foliage, and root biomass data to test 3PG performance during 

parameter estimation. This may result in a good fit of outputs to observed data for the 

wrong reason (Sands, 2004). 

 There was inadequate information regarding the effective rooting depth of the soil. 

 Limited information on available soil water in this region. This was estimated using soil 

physical properties. However, soil physical properties data were not available for the 

validation sites; hence the average ASW for the calibration sites was used. 

 Lack of time-series litterfall and ground-truthed SLA or LAI data. 

 
The lack of this information made it difficult to check if the parameter values were biologically 

reasonable. Additionally, we acknowledge the limitation of assigning values to soil fertility 

indices in the 3PG model. A fixed value of 0.5 was used for all sites because there was no 

beneficial empirical relationship between variables (soil physical and chemical properties, site 

index, and ASW) and optimized fertility rating. This variable affects the canopy quantum 

efficiency and root biomass allocation. As a result, other parameters related to biomass 

production and allocation will be forced to account for variability in biomass during parameter 

estimation (Forrester et al., 2021). 

 
Parameters values that differ from the base parameter during parameter estimation were 

majorly parameters related to the allocation of biomass produced - foliage:stem partitioning ratio 

(D = 2cm) (pFS2), maximum fraction of NPP to root (pRx), minimum and optimum temperature 

for growth (Tmin and Topt). Almeida et al. (2004) also reported these intra-specific parameter 

differences between clones (Clone 15 and Clone 22). We found that 3PG captured the decline 

in growth rate during the dry years. Although no tree death was recorded due to the drought, 

mortality occurred at post-planting in most sites, and this was accounted for by fitting the 

density-independent mortality parameters. We conclude that the 3PG model provides a useful 

tool for modelling the growth pattern in trees in response to environmental changes. 

 
Performance of four modelling approaches in predicting the productivity of Egxu in 

coastal Zululand (Objective 3&4) 

 

The performance of the site index-based model can be attributed to the use of improved SI 

values calculated after inventory. This modelling approach can still be regarded as a valuable 

tool for forest management in the Zululand region. At the calibration stage, the cumulative 

rainfall and cumulative aridity index model produced a good site ranking. However, it was more 

related to “site condition” (wet, medium, and arid dry) not necessary yield. At the validation  

stage, the cumulative aridity index had a poor performance. The cumulative rainfall model’s 

performance underscores the importance of water availability as a critical determinant in forest 

growth in the coastal Zululand region. This study showed that a simple cumulative rainfall might 

be adequate for forecasting volume variability in eucalypt plantations in coastal Zululand. 

However, we suggest that the age of the stand should be included in the simple model. This is 
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due to the spatiotemporal variability of rainfall in this region; it is possible to have the same 

cumulative rainfall in two different sites, one over four years and the other over eight years. This 

will result in the same estimated volume even though the growth rate over time might be 

completely different. 

 
The 3PG model also performed well in site ranking and gave a realistic prediction of tree growth 

in response to environmental changes. However, the over-predictions observed can be 

attributed to the fact that key input variables (such ASW, FR, weather data, soil depth) were 

estimated rather than directly observed or measured in this study. The 3PG model 

demonstrated its potential in exploring scenarios (“what if” questions), such as the case of the 

five sites suspected to have higher-than-normal access to groundwater. The model provided 

additional estimates of productivity such as net primary production (NPP) and leaf area index 

(LAI) and was able to identify site factors limiting growth. These findings revealed that the 3PG 

model resulted in significant improvements to simulate forest growth. 

 
The following can be considered for future research: 

 A measurement routine to collect time-series biomass and litterfall data from the PSPs is 

recommended. These variables are strongly tied to the internal dynamics of the 3PG 

model. They can be used to re-calibrate the 3PG model using the experience gained in 

this study. This will help us better understand the hybrid’s growth pattern and boost our 

confidence in the 3PG modelling capability. 

 The Depth-to-water (DTW) index has been shown to correlate with soil water availability 

and tree height (Oltean et al. 2016). We recommend that this index be tested and 

validated across many forestry regions. It has the potential of estimating minimum and 

maximum available soil water. 

 There is still a need to objectively characterize the fertility of a site. It will be beneficial to 

couple the 3PG model with soil nutrition models that explain the dynamics of nutrient 

fluxes such as ICBM/2N (Xenakis et al., 2008) or SNAP (Paul et al., 2002). Although this 

will add to the complexity of the model, it will improve our understanding of soil fertility 

dynamics throughout a stand rotation. 

 The developers of the R3PG package added a spatial simulation feature to the model, 

which they used to simulate stand biomass on a 1 x 1 grid. This enables the prediction of 

forest productivity on a large scale or for sites that have no previous data, and explores 

scenarios such as the impact of climate change, pest and disease infestation using 

remotely-sensed data. 

 Consider developing a linkage between the 3PG model and the statistical growth and 

yield model. 

Stellenbosch University  https://scholar.sun.ac.za



88 
 

References 

AgriMetSoft. (2019). Agricultural and Meteorological Software. Online Calculator. Available at 
https://www.agrimetsoft.com/calculators/. 

AgriSA. (2016). A Raindrop in the Drought. Report to the Multi-Stakeholder Task Team on the 
Drought - Agri SA’s status report on the current drought crisis. http://www.nstf.org.za/wp- 

content/uploads/2016/06/Agri-SA-Drought-Report_CS4.pdf 
Albaugh, J. M., Dye, P. J., & King, J. S. (2013). Eucalyptus and Water Use in South Africa. 

International Journal of Forestry Research, 2013, 11. https://doi.org/10.1155/2013/852540 

Alig, R., Adams, D., Joyce, L., & Sohngen, B. (2004). Climate Change Impacts and Adaptation 
in Forestry: Responses by Trees and Markets. Choices. The Magazine of Food,Farm, and 
Resources Issues, 19(3), 1–6. www.choicesmaeazine.ore/scriPts/~rintVersion.h?ID=OO4- 
3-07 

Almeida, A. C., Sands, P. J., Bruce, J., Siggins, A. W., Leriche, A., Battaglia, M., & Batista, T. R. 
(2009). Use of a spatial process-based model to quantify forest plantation productivity and 
water use efficiency under climate change scenarios. 18th World IMACS Congress and 
MODSIM09 International Congress on Modelling and Simulation: Interfacing Modelling and 
Simulation with Mathematical and Computational Sciences, Proceedings, January 2014, 
1816–1822. 

Almeida, A.C., Maestri, R., Landsberg, J. J., & Scolforo, J. R. S. (2003). Linking process-based 
and empirical forest models in Eucalyptus plantations in Brazil. In A. Amaro & M. Tome 
(Eds.), Modelling Forest Systems. (pp. 63–74). CAB International. 

Almeida, Auro C. (2003). Application of a process-based model for predicting and explaining 
growth in Eucalyptus Plantations. The Australian National University. 

Almeida, Auro C. (2018). Forest growth modelling for decision making: practical applications 
and perspectives. New Frontiers in Forecasting Forests, Stellenbosch South Africa, 25 - 
28/9/2018, 60–62. 

Almeida, Auro C., Landsberg, J. J., & Sands, P. J. (2004). Parameterisation of 3-PG model for 
fast-growing Eucalyptus grandis plantations. Forest Ecology and Management, 193(1–2), 
179–195. https://doi.org/10.1016/j.foreco.2004.01.029 

Almeida, Auro C., Landsberg, J. J., Sands, P. J., Ambrogi, M. S., Fonseca, S., Barddal, S. M., & 
Bertolucci, F. L. (2004). Needs and opportunities for using a process-based productivity 
model as a practical tool in Eucalyptus plantations. Forest Ecology and Management, 
193(1–2), 167–177. https://doi.org/10.1016/j.foreco.2004.01.044 

Almeida, Auro C., & Sands, P. J. (2016). Improving the ability of 3-PG to model the water 
balance of forest plantations in contrasting environments. Ecohydrology, 9(4), 610–630. 

https://doi.org/10.1002/eco.1661 
Almeida, Auro C., Smethurst, P. J., Siggins, A., Cavalcante, R. B. L., & Borges, N. (2016). 

Quantifying the effects of Eucalyptus plantations and management on water resources at 
plot and catchment scales. Hydrological Processes, 30(25), 4687–4703. 

https://doi.org/10.1002/hyp.10992 
Antoine, F. (2021). View and Browse Code Using Flow Diagrams. R package version 0.02. 

Https://CRAN.R-Project.Org/Package=flow. https://cran.r- 

project.org/web/packages/flow/index.html 
Apaydin, H., Kemal Sonmez, F., & Yildirim, Y. E. (2004). Spatial interpolation techniques for 

climate data in the GAP region in Turkey. Climate Research, 28(1), 31–40. 

https://doi.org/10.3354/CR028031 
Battaglia, M., & Sands, P. J. (1998). Process-based forest productivity models and their 

application in forest management. Forest Ecology and Management, 102(1), 13–32. 
https://doi.org/10.1016/S0378-1127(97)00112-6 

Baudoin, M. A., Vogel, C., Nortje, K., & Naik, M. (2017). Living with drought in South Africa: 
lessons learnt from the recent El Niño drought period. International Journal of Disaster Risk 
Reduction, 23, 128–137. https://doi.org/10.1016/j.ijdrr.2017.05.005 

Biau, G., & Scornet, E. (2016). A random forest guided tour. TEST 2016 25:2, 25(2), 197–227. 

https://doi.org/10.1007/S11749-016-0481-7 
Binkley, D., Campoe, O. C., Alvares, C., Carneiro, R. L., Cegatta, Í., & Stape, J. L. (2017). The 

interactions of climate, spacing and genetics on clonal Eucalyptus plantations across Brazil 

Stellenbosch University  https://scholar.sun.ac.za

http://www.agrimetsoft.com/calculators/
http://www.nstf.org.za/wp-
http://www.choicesmaeazine.ore/scriPts/~rintVersion.h?ID=OO4-


89 
 

and Uruguay. Forest Ecology and Management, 405, 271–283. 

https://doi.org/10.1016/j.foreco.2017.09.050 
Binkley, D., & Fisher, R. F. (2013). Ecology and Management of Forest Soils: Fourth Edition. In 

Ecology and Management of Forest Soils: Fourth Edition. 

https://doi.org/10.1002/9781118422342 
Booth, T. H. (2013). Eucalypt plantations and climate change. Forest Ecology and 

Management, 301, 28–34. https://doi.org/10.1016/j.foreco.2012.04.004 

Borges, J. S., Neves, J. C. L., Lourenço, H. M., de Barros, N. F., & Dias, S. C. M. (2012). 
Parameterization of the 3PG model for Eucalypt in the region of Cerrado in Minas Gerais 
State. Ciência Florestal, Santa Maria, 22(3), 567–578. 
https://doi.org/10.5902/198050986623 

Breiman, L. (2001). Random Forests. Machine Learning 2001 45:1, 45(1), 5–32. 

https://doi.org/10.1023/A:1010933404324 
Burengengwa, G. (2020). Comparison of approaches for spatial interpolation of weather data on 

a specific date by. April. 
Burkhart, H. E., & Tomé, M. (2012). Modeling forest trees and stands. In Springer (1st ed.). 

Springer Netherlands. https://doi.org/10.1007/978-90-481-3170-9 
Campion, J. M. (2005). Climatic and Nutritional Controls on the Growth of Eucalyptus Grandis in 

South Africa. University of the Witwatersrand, Johannesburg. 
Campion, J. M., Esprey, L. J., & Scholes, M. C. (2005). Application of the 3-pg model to a 

eucalyptus grandis stand subjected to varying levels of water and nutritional constraints in 
kwazulu-natal, south africa. Southern African Forestry Journal, 203(1), 3–13. 
https://doi.org/10.2989/10295920509505213 

Chauke, M. (2018). Stand Height Growth Model Conditioned to Changes in Rainfall for 
Eucalyptus Pulpwood in Mondi, South Africa. New Frontiers in Forecasting Forests, 
Stellenbosch South Africa, 25-28/9/2018, 18–20. 

Chen, F.-W., & Liu, C.-W. (2012). Estimation of the spatial rainfall distribution using inverse 
distance weighting (IDW) in the middle of Taiwan. Paddy and Water Environment, 10(3), 

209–222. https://doi.org/10.1007/s10333-012-0319-1 
Chen, S., & Guo, J. (2017). Spatial interpolation techniques: their applications in regionalizing 

climate-change series and associated accuracy evaluation in Northeast China. Geomatics, 
Natural Hazards and Risk, 8(2), 689–705. https://doi.org/10.1080/19475705.2016.1255669 

Chen, W., Xie, X., Wang, J., Pradhan, B., Hong, H., Bui, D. T., Duan, Z., & Ma, J. (2017). A 
comparative study of logistic model tree, random forest, and classification and regression 
tree models for spatial prediction of landslide susceptibility. CATENA, 151, 147–160. 
https://doi.org/10.1016/J.CATENA.2016.11.032 

Clutter, J. L., & Jones, E. P. (1980). Prediction of Growth After Thinning in Old-field Slash Pine 
Plantations. Department of Agriculture, Forest Service, Southeastern Forest Experiment 

Station. https://books.google.co.za/books?id=nqPcjuYOKQkC 
Coops, N. C., Hember, R. A., & Waring, R. H. (2010). Assessing the impact of current and 

projected climates on Douglas-Fir productivity in British Columbia, Canada, using a 
process-based model (3-PG). Canadian Journal of Forest Research, 40(3), 511–524. 
https://doi.org/10.1139/x09-201 

Crous, C. J., Greyling, I., & Wingfield, M. J. (2018). Dissimilar stem and leaf hydraulic traits 
suggest varying drought tolerance among co-occurring Eucalyptus grandis × E. urophylla 
clones. Https://Doi.Org/10.2989/20702620.2017.1315546, 80(2), 175–184. 

https://doi.org/10.2989/20702620.2017.1315546 
DAFF (DEPARTMENT OF AGRICULTURE, F. A. F. (2019). Report on commercial timber 

resources and primary roundwood processing in South Africa (Vol. 18th). 

https://doi.org/10.1163/9789004272224_029 
Dawson, C. W., Abrahart, R. J., & See, L. M. (2007). HydroTest: A web-based toolbox of 

evaluation metrics for the standardised assessment of hydrological forecasts. 
Environmental Modelling and Software, 22(7), 1034–1052. 

https://doi.org/10.1016/j.envsoft.2006.06.008 
De Cáceres, M., Martin-StPaul, N., Turco, M., Cabon, A., & Granda, V. (2018). Estimating daily 

meteorological data and downscaling climate models over landscapes. Environmental 
Modelling and Software, 108, 186–196. https://doi.org/10.1016/j.envsoft.2018.08.003 

Stellenbosch University  https://scholar.sun.ac.za



90 
 

Drew, T. J., & Flewelling, J. W. (1977). Some Recent Japanese Theories of Yield-Density 
Relationships and their Application to Monterey Pine Plantations. Forest Science, 23(4), 
517–534. https://doi.org/10.1093/FORESTSCIENCE/23.4.517 

du Plessis, M., & Zwolinski, J. (2003). Site and Stand analysis for growth prediction of 
Eucalyptus grandis on the Zululand Coastal plain. Southern African Forestry Journal, 198, 

23–33. 
du Toit, B., Smith, C. W., Little, K. M., Boreham, G., & Pallett, R. N. (2010). Intensive, site- 

specific silviculture: Manipulating resource availability at establishment for improved stand 
productivity. A review of South African research. Forest Ecology and Management, 259(9), 

1836–1845. https://doi.org/10.1016/j.foreco.2009.07.015 
Dye, P. J., Jacobs, S., & Drew, D. (2004). Verification of 3-PG growth and water-use predictions 

in twelve Eucalyptus plantation stands in Zululand, South Africa. Forest Ecology and 
Management, 193(1–2), 197–218. https://doi.org/10.1016/j.foreco.2004.01.030 

Dye, P., Megown, R., Jacobs, S., Drew, D., Megown, K., Dicks, M., Mthembu, S., & Pretorius, 
C. (2002). Determining the water use and growth of forest plantations through GIS-based 
integration of remote sensing and field data in the 3-PG model (Issue 1194/1/02). 

Dye, Peter J. (2001). Modelling growth and water use in four pinus patula stands with the 3-pg 
model. Southern African Forestry Journal, 191(1), 53–63. 

https://doi.org/10.1080/20702620.2001.10434151 
Dye, Peter J. (2000). Water use efficiency in South African Eucalyptus plantations: A review. 

Southern African Forestry Journal, 189(1), 17–26. 

https://doi.org/10.1080/10295925.2000.9631276 
Dyer, C. (2007). Forestry faces big issues to remain sustainable - A role for forestry research. 

Southern Hemisphere Forestry Journal, 69(1). 

https://doi.org/10.2989/19919310709505185 
Eccel, E., Cordano, E., & Toller, G. (2016). ClimClass: Climate Classification According to 

Several Indices. R package version 2.1.0. Https://CRAN.R- 

Project.Org/Package=ClimClass. http://www.globalbioclimatics.org/ 
Edwards, M. B. P., & Roberts, P. J. T. (2006). Managing forests for water: the South African 

experience. In Source: The International Forestry Review (Vol. 8, Issue 1). 

https://about.jstor.org/terms 
Elli, E. F. (2020). Eucalyptus simulation models : understanding and mitigating the impacts of 

climate variability and change on forest productivity across Brazil (Issue August) [University 
of Sao Paulo]. https://doi.org/10.11606/T.11.2020.tde-13082020-180005 

Esprey, L. J. (2006). Assessment of a Process-Based Model to Predict the Growth and Yield of 
Eucalyptus grandis Plantations in South Africa. ICFR Bulletin Series, 05/2006, 1–221. 

Esprey, L. J., Sands, P. J., & Smith, C. W. (2004). Understanding 3-PG using a sensitivity 
analysis. Forest Ecology and Management, 193(1–2), 235–250. 

https://doi.org/10.1016/j.foreco.2004.01.032 
Forestry | South African Government. (n.d.). Retrieved September 8, 2021, from 

https://www.gov.za/about-sa/forestry 
Forrester, D. I., Hobi, M. L., Mathys, A. S., Stadelmann, G., & Trotsiuk, V. (2021). Calibration of 

the process-based model 3-PG for major central European tree species. European Journal 
of Forest Research, 3, 1–22. https://doi.org/10.1007/S10342-021-01370-3 

Forrester, D. I., & Tang, X. (2016). Analysing the spatial and temporal dynamics of species 
interactions in mixed-species forests and the effects of stand density using the 3-PG 
model. Ecological Modelling, 319, 233–254. 

https://doi.org/10.1016/j.ecolmodel.2015.07.010 
Gardner, R. A. W. (2012). Alternative eucalypt species for Zululand: Seven year results of site: 

species interaction trials in the region. The Southern African Forestry Journal, 190(1), 79– 

88. https://doi.org/10.1080/20702620.2001.10434119 
Genuer, R., & Poggi, J.-M. (2020). Random Forests with R (R. Gentleman, K. Hornik, & G. 

Parmigiani (Eds.); 1st ed.). Springer. https://doi.org/10.1007/978-3-030-56485-8 
Genuer, R., Poggi, J. M., & Tuleau-Malot, C. (2010). Variable selection using random forests. 

Pattern Recognition Letters, 31(14), 2225–2236. 

https://doi.org/10.1016/j.patrec.2010.03.014 
Germishuizen, I. (2018). Mapping Risk at Different Spatial and Temporal Scales for Short-and- 

Stellenbosch University  https://scholar.sun.ac.za

http://www.globalbioclimatics.org/
http://www.gov.za/about-sa/forestry


91 
 

Long Term Risk Evaluation: The Case of the Eucalypt Gall Wasp Leptocybe Invasa. New 

Frontiers in Forecasting Forests, Stellenbosch South Africa, 25-28/9/2018, 74–76. 
Gibberd, V., Rook, J., Sear, C. B., & Williams, J. B. (1996). Drought Risk Management In 

Southern Africa: The Potential of Long Lead Climate Forecasts for Improved Drought 
Management. https://core.ac.uk/download/pdf/42390419.pdf 

GISCOE. (2001). GISCOE 20m GISCOE DTM Data. GISCOE Pty Ltd. 
Gonzalez-Benecke, C. A., Jokela, E. J., Cropper, W. P., Bracho, R., & Leduc, D. J. (2014). 

Parameterization of the 3-PG model for Pinus elliottii stands using alternative methods to 
estimate fertility rating, biomass partitioning and canopy closure. Forest Ecology and 
Management, 327, 55–75. https://doi.org/10.1016/j.foreco.2014.04.030 

Gonzalez-Benecke, C. A., Teskey, R. O., Martin, T. A., Jokela, E. J., Fox, T. R., Kane, M. B., & 
Noormets, A. (2016). Regional validation and improved parameterization of the 3-PG 
model for Pinus taeda stands. Forest Ecology and Management, 361, 237–256. 

https://doi.org/10.1016/j.foreco.2015.11.025 
Goovaerts, P. (1999). Performance comparison of geostatistical algorithms for incorporating 

elevation into the mapping of precipitation. IV International Conference on 
GeoComputation, Mary Washington College, Fredericksburg, 1–16. 

Goulding, C. J. (1994). Development of growth models for Pinus radiata in New Zealand - 
experience with management and process models. Forest Ecology and Management, 
69(1–3), 331–343. https://doi.org/10.1016/0378-1127(94)90239-9 

Gupta, R., & Sharma, L. K. (2019). The process-based forest growth model 3-PG for use in 
forest management: A review. Ecological Modelling, 397(December 2018), 55–73. 
https://doi.org/10.1016/j.ecolmodel.2019.01.007 

Hijmans, R., & Parra, J. L. (2005). Very high resolution interpolated climate surfaces of global 
land areas. International Journal of Climatology, 25, 1965–1978. 

https://doi.org/10.1002/joc.1276 
Home | Sappi Global. (n.d.). Retrieved September 8, 2021, from https://www.sappi.com/ 
Hu, Q., Li, Z., Wang, L., Huang, Y., Wang, Y., & Li, L. (2019). Rainfall spatial estimations: A 

review from spatial interpolation to multi-source data merging. Water (Switzerland), 11(3), 
1–30. https://doi.org/10.3390/w11030579 

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Leraning: 
with Applications in R (G. Casella, S. Fienberg, & I. Olkin (Eds.); 1st ed.). Springer. 

Jeffrey, S. J., Carter, J. O., Moodie, K. B., & Beswick, A. R. (2001). Using spatial interpolation to 
construct a comprehensive archive of Australian climate data. Environmental Modelling & 
Software, 16(4), 309–330. https://doi.org/10.1016/S1364-8152(01)00008-1 

Johnsen, K., Samuelson, L., Teskey, R., Mcnulty, S., & Fox, T. (2001). Process Models as 
Tools in Forestry Research and Management. Forest Science, 47(1), 2–8. 

Karavani, A., De Cáceres, M., Martínez de Aragón, J., Bonet, J. A., & de-Miguel, S. (2018). 
Effect of climatic and soil moisture conditions on mushroom productivity and related 
ecosystem services in Mediterranean pine stands facing climate change. Agricultural and 
Forest Meteorology, 248, 432–440. https://doi.org/10.1016/J.AGRFORMET.2017.10.024 

Kassier, H. W. (1993). Dynamics of Diameter and Height Distributions in Even-Aged Pine 
Plantations. Unpublished Ph.D. dissertation. Stellenbosch University. 

Kassier, H. W. (2005). Angle count sampling as an alternative inventory method. Unpublished 
document. (p. 41). 

Kimmins, J. P. (1990). Modelling the sustainability of forest production and yield for a changing 
and uncertain future. Forestry Chronicle, 66(3), 271–280. https://doi.org/10.5558/tfc66271- 

3 
Korzukhin, M. D., Ter-Mikaelian, M. T., & Wagner, R. G. (1996). Process versus empirical 

models: Which approach for forest ecosystem management? Canadian Journal of Forest 
Research, 26(5), 879–887. https://doi.org/10.1139/x26-096 

Kotze, H. (2018). Forecasting with empirical stand-level growth and yield models and drought 
modifiers for short rotation Eucalyptus Pulpwood in Mondi, South Africa. New Frontiers in 
Forecasting Forests, Stellenbosch South Africa, 25-28/9/2018, 165. 

Kotze, H., & Fletcher, Y. (2013). The 2013 Growth and Yield Model for Egxu. Unpublished 
Report. 

Landsberg, J. (2003a). Modelling forest ecosystems: State of the art, challenges, and future 

Stellenbosch University  https://scholar.sun.ac.za

http://www.sappi.com/
http://www.sappi.com/


92 
 

directions. Canadian Journal of Forest Research, 33(3), 385–397. 

https://doi.org/10.1139/x02-129 
Landsberg, J. (2003b). Physiology in forest models: history and the future. Fbmis, 1(January 

2003), 49–63. 
Landsberg, J. J., & Gower, S. T. (1997). Applications of Physiological Ecology to Forest 

Management. Academic Press, Elsevier. https://doi.org/10.2307/2405244 
Landsberg, J. J., & Waring, R. H. (1997). A generalised model of forest productivity using 

simplified concepts of radiation-use efficiency, carbon balance and partitioning. Forest 
Ecology and Management, 95(3), 209–228. https://doi.org/10.1016/S0378-1127(97)00026- 
1 

Landsberg, J. J., Waring, R. H., & Coops, N. C. (2003). Performance of the forest productivity 
model 3-PG applied to a wide range of forest types. Forest Ecology and Management, 
172(2–3), 199–214. https://doi.org/10.1016/S0378-1127(01)00804-0 

Landsberg, J. J, & Sands, P. (2011). Physiological Ecology of Forest Production: Principles, 
Processes and Models. In R. E. James, M. James, & G. T. Monica (Eds.), Terrestrial 
Ecology Series (First edit, Vol. 4, p. 352). Academic Press, Elsevier. 
https://doi.org/10.1016/B978-0-12-374460-9.00016-0 

Landsberg, Joe J., & Coops, N. C. (1999). MODELING FOREST PRODUCTIVITY ACROSS 

LARGE AREAS AND LONG PERIODS. Natural Resources Modelling, 12(4), 383–411. 
Landsberg, Joe J, Johnsen, K. H., Albaugh, T. J., & Allen, H Lee and Mckean, S. E. (2001). 

Applying 3-PG, a simple process-based model designed to produce practical results from 
Loblolly Pine experiments. Forest Science, 47(1), 43–51. 

Legates, D. R., & McCabe, G. J. (1999). Evaluating the use of “goodness-of-fit” Measures in 
hydrologic and hydroclimatic model validation. Water Resources Research, 35(1), 233– 

241. https://doi.org/10.1029/1998WR900018 
Leirvik, T., & Yuan, M. (2021). A Machine Learning Technique for Spatial Interpolation of Solar 

Radiation Observations. Earth and Space Science, 8(4), 1–22. 

https://doi.org/10.1029/2020EA001527 
Li, J., & Heap, A. D. (2014). Spatial interpolation methods applied in the environmental 

sciences: A review. Environmental Modelling & Software, 53, 173–189. 

https://doi.org/10.1016/j.envsoft.2013.12.008 
Li, J., Heap, A. D., Potter, A., & Daniell, J. J. (2011). Application of machine learning methods to 

spatial interpolation of environmental variables. Environmental Modelling & Software, 
26(12), 1647–1659. https://doi.org/10.1016/J.ENVSOFT.2011.07.004 

Louw, J. H., Germishuizen, I., & Smith, C. W. (2011). A stratification of the South African 
forestry landscape based on climatic parameters. Southern Forests, 73(1), 51–62. 
https://doi.org/10.2989/20702620.2011.574825 

Lynch, S. D. (2004). Development of a Raster Database of Annual, Monthly and Daily Rainfall 
for Southern Africa. 

Mäkelä, A., Landsberg, J., Ek, A. R., Burk, T. E., Ter-Mikaelian, M., Ågren, G. I., Oliver, C. D., & 
Puttonen, P. (2000a). Process-based models for forest ecosystem management: Current 
state of the art and challenges for practical implementation. Tree Physiology, 20(5–6), 

289–298. https://doi.org/10.1093/treephys/20.5-6.289 
Mäkelä, A., Landsberg, J., Ek, A. R., Burk, T. E., Ter-Mikaelian, M., Ågren, G. I., Oliver, C. D., & 

Puttonen, P. (2000b). Process-based models for forest ecosystem management: Current 
state of the art and challenges for practical implementation. Tree Physiology, 20(5–6), 
289–298. https://doi.org/10.1093/treephys/20.5-6.289 

McGrath, J. M., Spargo, J., & Penn, C. J. (2014). Soil Fertility and Plant Nutrition. Encyclopedia 
of Agriculture and Food Systems, 5, 166–184. https://doi.org/10.1016/B978-0-444-52512- 
3.00249-7 

Melesse, S. F., & Zewotir, T. (2015). Fitting three parameter growth curves using a nonlinear 
mixed effects modelling approach. South African Statistical Journal, 49(2), 233–240. 

Melesse, S. F., & Zewotir, T. (2017). Variation in growth potential between hybrid clones of 
Eucalyptus trees in eastern South Africa. Journal of Forestry Research, 28(6), 1157–1167. 

https://doi.org/10.1007/s11676-017-0400-0 
Miehle, P., Battaglia, M., Sands, P. J., Forrester, D. I., Feikema, P. M., Livesley, S. J., Morris, J. 

D., & Arndt, S. K. (2009). A comparison of four process-based models and a statistical 

Stellenbosch University  https://scholar.sun.ac.za



93 
 

regression model to predict growth of Eucalyptus globulus plantations. Ecological 
Modelling, 220(5), 734–746. https://doi.org/10.1016/j.ecolmodel.2008.12.010 

Mondi Group - Global leader in packaging and paper. (n.d.). Retrieved September 8, 2021, from 
https://www.mondigroup.com/en/home/ 

Monteith, J. L. (1965). Evaporation and environment. Symposia of the Society for Experimental 
Biology, 19, 205–234. 

Moriasi, D. N., Arnold, J. G., Van Liew, M. ., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2008). 
Model Evaluation Guildlines For Systematic Quantification of Accuracy in Watershed 
Simulations. Colombia Medica, 39(3), 227–234. https://doi.org/10.1234/590 

Naidoo, S., Davis, C., & Archer Van Garderen, E. (2013). Forests, Rangelands and Climate 
Change in Southern Africa (Forests and Climate Change Working Paper No. 12.). 

www.fao.org/publications 
Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I - A 

discussion of principles. Journal of Hydrology, 10(3), 282–290. 

https://doi.org/10.1016/0022-1694(70)90255-6 
Ndlovu, M., Clulow, A. D., Savage, M. J., Nhamo, L., Magidi, J., & Mabhaudhi, T. (2021). An 

assessment of the impacts of climate variability and change in Kwazulu-Natal province, 
South Africa. Atmosphere, 12(4). https://doi.org/10.3390/ATMOS12040427 

Ndlovu, M. S., & Demlie, M. (2020). Assessment of Meteorological Drought and Wet Conditions 
Using Two Drought Indices Across KwaZulu-Natal Province, South Africa. Atmosphere 
2020, Vol. 11, Page 623, 11(6), 623. https://doi.org/10.3390/ATMOS11060623 

Nolè, A., Law, B. E., Magnani, F., Matteucci, G., Ferrara, A., Ripullone, F., & Borghetti, M.  
(2009). Application of the 3-PGS model to assess carbon accumulation in forest 
ecosystems at a regional level. Canadian Journal of Forest Research, 39(9), 1647–1661. 

https://doi.org/10.1139/X09-077 
Olivier, F. (2017). Irrigation: Basics of Irrigation Scheduling (No. 5; Information Sheets). 

www.sugar.org.za/sasri 
Oltean, G. S., Comeau, P. G., & White, B. (2016). Carbon isotope discrimination by Picea 

glauca and Populus tremuloides is related to the topographic depth to water index and 
rainfall. Canadian Journal of Forest Research, 46(10), 1225–1233. 
https://doi.org/10.1139/cjfr-2015-0491 

Palahí, M., Tomé, M., Pukkala, T., Trasobares, A., & Montero, G. (2004). Site index model for 
Pinus sylvestris in north-east Spain. Forest Ecology and Management, 187(1), 35–47. 
https://doi.org/10.1016/S0378-1127(03)00312-8 

Paul, K. I., Polglase, P. J., O’Connell, A. M., Carlyle, J. C., Smethurst, P. J., & Khanna, P. K. 
(2002). Soil nitrogen availability predictor (SNAP): a simple model for predicting 
mineralisation of nitrogen in forest soils. Australian Journal of Soil Research, 40(6), 1011– 
1026. https://doi.org/10.1071/SR01114 

Peng, C. (2000). Growth and yield models for uneven-aged stands: Past, present and future. 
Forest Ecology and Management, 132(2–3), 259–279. https://doi.org/10.1016/S0378- 
1127(99)00229-7 

Peng, C., & Wen, X. (2006). Forest Simulation Models. In G. Shao & K. M. Reynolds (Eds.), 
Computer Applications in Sustainable Forest Managemnet: Including Perspectives on 
Collaboration and Integration (First Edit, pp. 101–125). Springer, Dordrecht. 

https://doi.org/https://doi.org/10.1007/978-1-4020-4387-1_6 
Pienaar, L. V, & Harrison, W. M. (1989). Simultaneous Growth and Yield Prediction Equations 

for Pinusï¿¿elliottii Plantations in Zululand. South African Forestry Journal, 149(1), 48–53. 
https://doi.org/10.1080/00382167.1989.9628992 

Pinkard, E. A., Battaglia, M., Bruce, J., Leriche, A., & Kriticos, D. J. (2010). Process-based 
modelling of the severity and impact of foliar pest attack on eucalypt plantation productivity 
under current and future climates. Forest Ecology and Management, 259(4), 839–847. 

https://doi.org/10.1016/j.foreco.2009.06.027 
Pretzsch, H. (2009). Forest Dynamics, Growth and Yield: From Measurement to Model. In 

Springer Nature (1st ed.). Springer-Verlag Berlin Heidelberg. 
Retief, E., & Stanger, T. (2009). Genetic parameters of pure and hybrid populations of 

Eucalyptus grandis and E. urophylla and implications for hybrid breeding strategy. 
Southern Forests: A Journal of Forest Science, 71(2), 133–140. 

Stellenbosch University  https://scholar.sun.ac.za

http://www.mondigroup.com/en/home/
http://www.fao.org/publications
http://www.sugar.org.za/sasri


94 
 

https://doi.org/10.2989/SF.2009.71.2.8.823 
Rezende, G. D. S. P., de Resende, M. D. V., & de Assis, T. F. (2014). Eucalyptus Breeding for 

Clonal Forestry. In F. T (Ed.), Challenges and Opportunities for the World’s Forests in the 
21st Century. Forest Sciences (Vol. 81). Springer, Dordrecht. https://doi.org/10.1007/978- 
94-007-7076-8_16 

Sánchez-Pinillos, M., Ameztegui, A., Kitzberger, T., & Coll, L. (2018). Relative size to 
resprouters determines post-fire recruitment of non-serotinous pines. Forest Ecology and 
Management, 429, 300–307. https://doi.org/10.1016/J.FORECO.2018.07.009 

Sands, P. (1988). RESOURCE MODELLING: ITS NATURE AND USE. The Memoirs of the 
Entomological Society of Canada, 120(S143), 5–10. 
https://doi.org/10.4039/ENTM120143005-1 

Sands, P. (2004). Adaptation of 3-PG to novel species : guidelines for data collection and 
parameter assignment (Issue Technical Report 141). 
https://3pg.sites.olt.ubc.ca/files/2014/04/3-PG-guidelines.TR141.pdf 

Sands, P. J., & Landsberg, J. J. (2002). Parameterisation of 3-PG for plantation grown 
Eucalyptus globulus. Forest Ecology and Management, 163(1–3), 273–292. 
https://doi.org/10.1016/S0378-1127(01)00586-2 

Sands, Peter J. (2010). 3PG PJS User Manual. September, 1–27. 
Saxton, K. E., & Rawls, W. J. (2006). Soil Water Characteristic Estimates by Texture and 

Organic Matter for Hydrologic Solutions. Soil Science Society of America Journal, 70(5), 

1569–1578. https://doi.org/10.2136/sssaj2005.0117 
Schulze, R. E. (2007). Soils: Agrohydrological Information Needs, Information Sources and 

Decision Support. In R. E. Schulze (Ed.), South African Atlas of Climatology and 
Agrohydrology (WRC Report, pp. 1–13). Water Research Commision. 

Scott, D. F., & Gush, M. B. (2017). Forest management and water in the Republic of South 
Africa. In P. A. Garcia-Chevesich, D. G. Neary, D. F. Scott, R. G. Benyon, & T. Reyna 
(Eds.), Forest Management and the impact on water resources: a review of 13 countries 

(p. 17). United Nations Educational, Scientific and Cultural Organization and UNESCO 
Regional Office for Sciences for Latin America and the Caribbean. http://www.unesco.org/ 

Sekulić, A., Kilibarda, M., Heuvelink, G. B. M., Nikolić, M., & Bajat, B. (2020). Random forest 
spatial interpolation. Remote Sensing, 12(10), 1–29. https://doi.org/10.3390/RS12101687 

Sekulić, A., Kilibarda, M., Protić, D., & Bajat, B. (2021). A high-resolution daily gridded 
meteorological dataset for Serbia made by Random Forest Spatial Interpolation. Scientific 
Data, 8(1), 1–12. https://doi.org/10.1038/s41597-021-00901-2 

Singh, J., Knapp, H. V., & Demissie, M. (2004). Hydrologic Modeling of the Iroquois River 
Watershed Using HSPF and SWAT. Illlinois State Water Survey Contract Report 2004-08. 

Soil Classification Working Group. (1991). Soil classification : a taxonomic system for South 
Africa. In Memoirs on the agricultural natural resources of South Africa ; no. 15 (2nd rev. e). 
Dept. of Agricultural Development. https://sun.on.worldcat.org/oclc/38349167 

Soil water availability · Issue #51 · trotsiuk/r3PG. (n.d.). Retrieved September 20, 2021, from 

https://github.com/trotsiuk/r3PG/issues/51 
Stadler, S. J. (2005). Aridity Indexes. In J. E. Oliver (Ed.), Encyclopedia of world climatology 

(pp. 89–94). Springer. https://doi.org/10.5860/choice.43-3766 
Stanger, T. K., Galloway, G. M., & Retief, E. C. L. (2011). Final results from a trial to test the 

effect of plot size on Eucalyptus hybrid clonal ranking in coastal Zululand, South Africa. 
Southern Forests, 73(3–4), 131–135. https://doi.org/10.2989/20702620.2011.639492 

Stape, J. L., Ryan, M. G., & Binkley, D. (2004). Testing the utility of the 3-PG model for growth 
of Eucalyptus grandis x urophylla with natural and manipulated supplies of water and 
nutrients. Forest Ecology and Management, 193(1–2), 219–234. 

https://doi.org/10.1016/j.foreco.2004.01.031 
Subedi, S., Fox, T. R., & Wynne, R. H. (2015). Determination of fertility rating (FR) in the 3-PG 

model for loblolly pine plantations in the southeastern United States based on site index. 
Forests, 6(9), 3002–3027. https://doi.org/10.3390/f6093002 

Tesfamichael, S. G., Ahmed, F. B., & Aardt, J. A. N. Van. (2010). Investigating the impact of  
discrete-return lidar point density on estimations of mean and dominant plot-level tree 
height in Eucalyptus grandis plantations. Http://Dx.Doi.Org/10.1080/01431160903144086, 
31(11), 2925–2940. https://doi.org/10.1080/01431160903144086 

Stellenbosch University  https://scholar.sun.ac.za

http://www.unesco.org/
http://dx.doi.org/10.1080/01431160903144086


95 
 

Thornthwaite, C. W. (1948). An Approach toward a Rational Classification of Climate. 
Geographical Review, 38(1), 55–94. https://doi.org/10.2307/210739 

Trotsiuk, V., Hartig, F., & Forrester, D. I. (2020). r3PG – An r package for simulating forest 
growth using the 3‐PG process‐based model . Methods in Ecology and Evolution, 
2020(August), 1–6. https://doi.org/10.1111/2041-210x.13474 

Van Den Berg, G. J. (2017). A Comparative Study of Two Eucalyptus Hybrid Breeding 
Strategies and the Genetic Gains of these Strategies (Issue August). University of Pretoria. 

van Niekerk, A., & Joubert, S. J. (2011). Input variable selection for interpolating high-resolution 
climate surfaces for the Western Cape. Water SA, 37(3), 271–279. http://www.wrc.org.za 

Vega-Nieva, D. J., Tomé, M., Tomé, J., Fontes, L., Soares, P., Ortiz, L., Basurco, F., & 
Rodrígez-Soalleiro, R. (2013). Developing a general method for the estimation of the 
fertility rating parameter of the 3-PG model: Application in Eucalyptus globulus plantations 
in northwestern Spain. Canadian Journal of Forest Research, 43(7), 627–636. 
https://doi.org/10.1139/cjfr-2012-0491 

Warburton, M. L., & Schulze, R. E. (2008). Potential impacts of climate change on the 
climatically suitable growth areas of Pinus and Eucalyptus: Results from a sensitivity study 
in South Africa. Southern Forests, 70(1), 27–36. 

https://doi.org/10.2989/SOUTH.FOR.2008.70.1.5.515 
Warburton, M., & Schulze, R. (2006). CLIMATE CHANGE AND THE SOUTH AFRICAN 

COMMERCIAL FORESTRY SECTOR: An Initial Study. ACRUcons Report 54. 
Waring, R. H., Landsberg, J. J., & Williams, M. (1998). Net primary production of forests: a 

constant fraction of gross primary production? Tree Physiology, 18(2), 129–134. 
https://doi.org/10.1093/TREEPHYS/18.2.129 

Weiskittel, A. R., Hann, D. W., Kershaw, J. A., & Vanclay, J. K. (2011). Forest Growth and Yield 
Modeling. In Forest Growth and Yield Modeling (1st ed.). John Wiley & Sons, Ltd. 
https://doi.org/10.1002/9781119998518 

Willmott, C. J. (1981). ON THE VALIDATION OF MODELS. Physical Geography, 2(2), 184– 

194. https://doi.org/10.1080/02723646.1981.10642213 
Xenakis, G., Ray, D., & Mencuccini, M. (2008). Sensitivity and uncertainty analysis from a 

coupled 3-PG and soil organic matter decomposition model. Ecological Modelling, 219(1– 

2), 1–16. https://doi.org/10.1016/j.ecolmodel.2008.07.020 
Xulu, S., Peerbhay, K., Gebreslasie, M., & Ismail, R. (2018). Drought influence on forest 

plantations in Zululand, South Africa, using MODIS time series and climate data. Forests, 
9(9). https://doi.org/10.3390/f9090528 

Youssef, A. M., Pourghasemi, H. R., Pourtaghi, Z. S., & Al-Katheeri, M. M. (2015). Landslide 
susceptibility mapping using random forest, boosted regression tree, classification and 
regression tree, and general linear models and comparison of their performance at Wadi 
Tayyah Basin, Asir Region, Saudi Arabia. Landslides 2015 13:5, 13(5), 839–856. 

https://doi.org/10.1007/S10346-015-0614-1 

Stellenbosch University  https://scholar.sun.ac.za

http://www.wrc.org.za/

	Table of Contents
	List of Figures
	List of acronyms
	Chapter 1 General overview
	1.1 Introduction
	1.2 Forest models for decision and planning support
	1.3 3PG hybrid growth modelling system
	1.4 General Study Area
	1.5 Aim and Objectives
	1.6 Key Research Questions

	Chapter 2 Spatial Interpolation of Weather Data for Forestry Plantations in KwaZulu-Natal, South Africa
	2.1 Introduction
	2.2 Materials and Method
	2.2.1 Data Sources
	2.2.2 Preparing Input File

	2.3 Spatial Interpolation Models
	2.3.1 Random Forest

	2.3.1.1 Input
	2.3.1.2 Parameter Calibration
	2.3.2 Meteoland

	2.3.2.1 Input
	2.3.2.2 Parameter Calibration
	2.4 Performance Assessment
	2.4.1 Statistics

	2.5 Results and Discussion
	2.5.1 Performance analysis
	2.5.2 Interpolated rainfall data

	3.1 Introduction
	3.2 Description of the 3PG model
	3.3 Materials and Method
	3.3.1 Simulation software
	3.3.2 Site and stand information
	3.3.3 Stand growth data
	3.3.4 Soil data

	3.3.4.1 Available Soil Water (ASW)
	3.3.4.2 Fertility Rating (FR)
	3.3.5 Weather data

	3.4 Calibration of 3PG model
	3.4.1 Allometric parameters for stem mass as a function of DBH
	3.4.2 Density-independent mortality coefficients
	3.4.3 Parameter estimation for Zululand Egxu
	3.4.4 Selecting the optimized parameter set
	SSF
	SS

	3.4.5 Validation of the 3PG model

	3.5 Results and Discussion
	3.5.1 Allometric parameters as and ns
	3.5.2 Parameter Estimation
	3.5.3 Model behavior at calibration sites
	3.5.4 Model performance at independent validation sites

	4.1 Introduction
	4.2 Materials and Methods
	4.2.1 Site index-based model for Egxu
	 The Hossfeld function to model dominant height (Palahí et al., 2004)
	 The Clutter-Jones function to model tree survival (Clutter & Jones, 1980)
	  The Schumacher-type stand-level basal area function for untinned stands to model basal area (Pienaar & Harrison, 1989)
	  Multiple linear regression models to model standard deviation of DBH and minimum DBH (Kassier, 1993)
	  Linear model to estimate mean height from dominant height (Kassier, 1993)

	4.2.2 Cumulative Aridity Index
	4.2.3 Cumulative Rainfall

	4.3 Results and Discussion
	4.3.1 Parameterization of cumulative rainfall and aridity index
	4.3.2 Performance of the simple models at the independent validation sites


	Chapter 5 General Conclusions and Comments
	Spatial Interpolation of weather data for the ungauged plantations (Objective 1)
	Calibration and validation of the 3PG model (Objective 2)
	Performance of four modelling approaches in predicting the productivity of Egxu in coastal Zululand (Objective 3&4)

	References



