
Combining reverse debugging and
live programming towards visual thinking

in computer programming

by

Abraham Liebrecht Coetzee

Thesis presented in partial fulfilment of the requirements
for the degree of Master of Science in Computer Science at

Stellenbosch University

Computer Science Division
Department of Mathematical Sciences

Stellenbosch University
Private Bag X1, 7602 Matieland, South Africa.

Supervisors:

Prof L. van Zijl
Dr M.R. Hoffmann

March 2015



Declaration

By submitting this thesis electronically, I declare that the entirety of the work
contained therein is my own, original work, that I am the sole author thereof
(save to the extent explicitly otherwise stated), that reproduction and pub-
lication thereof by Stellenbosch University will not infringe any third party
rights and that I have not previously in its entirety or in part submitted it for
obtaining any qualification.

20th February, 2015
Date: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Copyright © 2015 Stellenbosch University
All rights reserved.

i

Stellenbosch University  https://scholar.sun.ac.za



Abstract

Combining reverse debugging and
live programming towards visual thinking

in computer programming
A. L. Coetzee

Computer Science Division
Department of Mathematical Sciences

Stellenbosch University
Private Bag X1, 7602 Matieland, South Africa.

Thesis: MSc Computer Science

February 2015

Interaction plays a key role in the process of learning, and a learner’s abilities
are enhanced when multiple cognitive functions work in parallel, especially
those related to language and visuals. Time is the most fundamental vari-
able that governs the interaction between programmer and computer, and the
substantial temporal separation of cause and effect leads to poor mental mod-
els. Furthermore, programmers do not have means by which to express their
mental models.

The feasibility of combining reverse debugging and live programming was
therefore investigated. This combination was found to be feasible, and a re-
verse debugger with higher levels of liveness was created for the Python pro-
gramming language. It establishes a foundation for combining language and
visual models as aids in computer programming education.

ii

Stellenbosch University  https://scholar.sun.ac.za



Uittreksel

Kombinasie van terug-in-tyd ontfouting en
lewendige programmering tot bevordering van

visuele denke in rekenaarprogrammering
A. L. Coetzee

Afdeling Rekenaarwetenskap
Departement van Wiskundige Wetenskappe

Universiteit van Stellenbosch
Privaatsak X1, 7602 Matieland, Suid Afrika.

Tesis: MSc Rekenaarwetenskap

Februarie 2015

Interaksie speel ’n belangrike rol in die proses van leer, en ’n leerder se ver-
moëns verbeter wanneer verskeie kognitiewe funksies in parallel opereer, veral
dié wat verwant is aan taal en visuele denke. Tyd is die mees fundamentele
veranderlike wat die interaksie tussen programmeerder en rekenaar reguleer,
en die aansienlike temporele skeiding tussen oorsaak en gevolg lei tot swak
kognitiewe modelle. Programmeerders het boonop nie middelle om kognitiewe
modelle te artikuleer nie.

Die uitvoerbaarheid van ’n kombinasie van terug-in-tyd ontfouting en
lewendige programmering was daarom ondersoek. Daar was bevind dat so
’n kombinasie moontlik is, en ’n terug-in-tyd ontfouter met hoër vlakke van
lewendigheid was geskep vir die Python programmeringstaal. Dit vestig ’n
fondament om taal en visuele modelle te kombineer as hulpmiddels in reke-
naarprogrammering onderwys.
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Chapter 1

Introduction

Humans, not machines, should be central to man-machine interaction as ma-
chines are tools that serve us, not the other way around. To make interaction
as natural as possible, computers should utilise the entire range of faculties
employed by humans.

Programming should be natural Advances in computer programming
could have the greatest impact on Human–Computer Interaction (HCI) as
programming is the most general and powerful way of controlling computers.
Kay et al anticipate “one of the 21st century destinies for personal computing:
a real computer literacy that is analogous to the reading and writing fluencies
of print literacy, where all users will be able to understand and make ideas from
dynamic computer representations” [48]. However, programming is currently
a complex mathematical exercise as it requires the human to encode situations
in an unnatural, strictly logical fashion. Programming is also difficult because
the computation is not visible, only the result. Kay et al conclude that it “will
require a new approach to programming”. What should this approach be?

Visual ways of thinking are indispensable A number of theories in the
field of psychology [31, 43, 59] indicate that the optimal comprehension and
recall of information is obtained when multiple cognitive abilities work in par-
allel, especially language and visuals. Language, numbers and visuals are each
more suited to different ways of communication, and the importance of oracy,
literacy and numeracy have long been recognised. In our current age of big
data, the importance of graphicacy is being realised as well, “the intellectual
skill necessary for the communication of relationships which cannot be suc-
cessfully communicated by words or mathematical notation alone” [28]. An
extensive survey by the mathematician Jacques Hadamard in the early 1900s,

1
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CHAPTER 1. INTRODUCTION 2

found that many of the greatest thinkers, such as Albert Einstein, “avoid not
only the use of mental words, but also, just as I do, the mental use of algebraic
or any other precise signs . . . they use vague images” [44]. Richard Feynman
also, having once thought that “thinking is nothing but talking to yourself in-
side”, came to see that “thoughts can be visual as well as verbal” [39]. Visual
ways of thinking are indispensable.

Language and visuals must be combined Apart from their impact on
productivity, tools play an important role in thought. “The power of the
unaided mind is highly overrated. . . . The real powers come from devising
external aids that enhance cognitive abilities. How have we increased memory,
thought, and reasoning? By the inventions of external aids” [57]. Dijkstra
supports this, saying that “Nearly all computing scientists I know well will
agree without hesitation . . . The tools we use have a profound (and devious!)
influence on our thinking habits, and, therefore, on our thinking abilities” [34].
The tool programmers generally use to make computation visible, is to instru-
ment their code to print out the values of variables. Textual output is however
not ideal when the programmer is looking for patterns in trying to under-
stand how an algorithm causes data to change over time – text and visuals are
more suited to different programming situations [69], and our visual system
is superior at pre-attentive pattern recognition, as can be seen in Figure 1.1.
Therefore, bringing visuals into computer programming, alongside numbers
and words, holds much promise. Existing textual programming languages
generally ignore the programmer’s visual faculties, and Visual Programming
Languages (VPLs) make too little use of the programmer’s language faculties.
A satisfactory combination of language- and visual-based interaction does not
exist.

Interactive, customisable tools are required Trying to use visuals along-
side language gives rise to the well-established but growing fields of information
and algorithm visualisation. However, visuals by themselves, even dynamic vi-
suals which unfold with the computation, are not sufficient. The amount of
control and feedback that a programmer has while programming should be
maximised, as greater comprehension is attained when a person can interact
with the visuals with which they are presented, and when the person has con-

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 3

Figure 1.1: “Reading the left-hand image requires the viewer to search the image
for the lowest and highest values, and the short-term memorization of the general
layout of the numbers. On the right, a qualitative understanding of the image is
immediately conveyed” [41, p. 34]

trol over the data on which a visual is based [46]. Programmers should be
able to express their own mental model to aid their thinking, and so make the
code habitable for them in the Christopher Alexander sense1 [42]. It suggests
the need for a visualisation framework, as part of the Integrated Development
Environment (IDE), to allow for the personalisation of any visual represen-
tations which the programmer would like to employ. “Ways of supporting
a programmer’s own system of imagery, integrated with the text of source
code” [54], should be pursued. People who are learning to program would find
it most valuable, as interaction plays a key role in the process of learning,
especially the learning of language [31, 68].

Interaction is governed by time As a program executes, any visuals that
are connected to the code should change with the program. This inherently dy-
namic nature of an executing program highlights time as the most fundamental
variable, yet programmers do not have much control of time – a programmer
can step forward during program execution by making use of the debugger
found in most IDEs, but is not able to step backwards, which a reverse debug-

1Alexander sought to understand how buildings might best enhance life for their in-
habitants. He found the solution in the Quality Without A Name (QWAN), the objective
essence of beauty. The buildings that possessed it had characteristics in common, which
could be described by patterns. A generative grammar, called a pattern language, could be
used by the inhabitants themselves, to reproduce the QWAN. The QWAN should similarly
be pursued for and by programmers, the inhabitants of code.
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CHAPTER 1. INTRODUCTION 4

ger would allow them to do. Without a reverse debugger, the programmer has
to manually go through the entire stop-rerun-navigate cycle to simulate a single
backwards step, which introduces a substantial temporal gap. Furthermore,
the code is not connected to the running program so the programmer also
has to manually go through the stop-rerun-navigate cycle before code changes
have any effect. As programming consists of changing code, this is done regu-
larly. This “cause/effect chasm seriously undermines the programmer’s efforts
to construct a robust mental model” [36]. Incorporating visuals would not
furnish the programmer with more control of time, nor remove the temporal
chasm or reduce its negative impact, and would therefore not be of much value.
Programmers should consequently first be given control of time – from being
able to change the speed at which a program executes (and consequently the
speed at which connected visuals animate), to being able to reverse program
execution to go ‘back in time’, which a reverse debugger would allow. The
conversation between programmer and computer would become more lively,
which is also what ‘live programming’ aims to achieve by reducing the delay
between changing the code of an executing program and seeing the effects of
those changes. However “existing live programming experiences are still not
very useful” [53] and no system exists which allows for both reverse debugging
and live programming in a general programming language, indicating the need
for continued research in this area.

The objective The aim of this study is therefore to investigate the feasibility
of combining reverse debugging with live programming, to maximise control
of time and minimise the temporal separation of cause and effect. Such a
combination will establish a foundation for pursuing visual ways of thinking
in computer programming. If a reverse debugger with higher levels of liveness
should prove feasible, the goal will be to develop such a system. If, however,
such a system proves infeasible, the fundamental obstacles will be investigated
and explained, to aid future research.

Thesis outline Back-in-time debugging and live programming are each ex-
plained in more detail in chapter 2, with reference to other work that has been
done. The need for each, and the reasons for attempting to combine them,
is also discussed. The design and implementation of a reverse debugger is
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CHAPTER 1. INTRODUCTION 5

detailed in chapter 3. The enhancement of the reverse debugger with higher
levels of liveness, is considered in chapter 4. The conclusions and suggestions
for future work are discussed in chapter 5.
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Chapter 2

Background

Imagine how counter-productive it would be if, each time someone was asked to
repeat their last sentence, the entire conversation had to be repeated. Or worse,
if the entire conversation had to be repeated each time a different person was
about to speak. Unfortunately that is exactly what happens in most current
computer programming environments.

There is a difference between the manufacturing of an appliance in a fac-
tory, and the use thereof in a home. Similarly, it is important to differentiate
between the process of creating a computer program, and simply running a
completed program. A programmer, like an engineer or artist, has to work in
an environment which supports their needs while ‘manufacturing’ a program.
Programming is a type of conversation between the programmer and the com-
puter; a constant interaction with, and reaction to, each other [61, p. 1]. A
computer program executes forwards in time, but when a cause of an effect is
investigated in a running program, such as when tracing a bug, a programmer
has to search backwards in time. However, computers do not allow backwards
movement in execution time, which means that reversing has to be simulated
by the programmer, who has to restart the program and navigate to the point
just before – in other words, the entire conversation needs to be repeated each
time a backwards step is taken.

Furthermore, when a programmer ‘talks’ to the computer by changing the
code which produced a running program, the computer does not ‘talk’ back to
provide feedback about whether the change has had any effect – the running
program is separate from the code. In this situation too, the programmer
first has to repeat the conversation by manually going through the process of
stopping the running program, recompiling, restarting the program and recre-
ating the previous state, to see the results of the changes, if any. As this
entire process is regularly repeated, it is one of the most time-consuming parts

6

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 2. BACKGROUND 7

of programming, and drives research in two directions looking for ways that
it might be alleviated. The first is for the programmer to be able to step
backwards in time while the program that they are currently working on exe-
cutes. The second is into higher levels of liveness during programming, where
the delay between changing code and seeing the result thereof, is minimised.
Although reverse debugging and live programming may at first appear to be
mutually exclusive, they are not – whereas reverse debugging is concerned with
issues before a possible code change, live programming is concerned with what
happens after that change. Both are concerned with reducing the temporal
separation between code and its effects.

Reducing the amount of time spent on programming would not be the
only or even greatest benefit of having a live system that can also reverse.
Interaction plays a key role in the process of language acquisition [31, 68].
Studies in the field of computer algorithm visualisation have found that greater
comprehension is attained when one has control over the data on which a
visual is based, and when one can interact with the visuals [46]. This suggests
the need for a customisable system in the IDE whereby a programmer can
construct their own visualisations that are connected to the instructions or
data of a program, to be able to ‘see’ program state and come to understand
an algorithm or piece of code. The output should change or animate as the
program executes. However, computer programs execute at tremendous speed.
Consequently the output would change too quickly for the programmer to grasp
the behaviour of the program. “What the programmer actually wants is to
watch the computation unfolding smoothly over time, changing slowly, gently,
predictably and meaningfully, and being presented in an appropriate visual
representation.” [64, p. 17]. The programmer should therefore be able to slow
down the output or connected visuals, and even pause or repeatedly reverse
and ‘replay’ it, to consume it at their own pace.

Using customisable visuals to observe the program state while manipulat-
ing it in this way, would result in a powerful environment in which to learn to
program. Two of Bruner’s [31] modes of representation – language-based sym-
bolic and image-based iconic – would be working in parallel. Interacting with
the visuals should also result in changes to code, covering Bruner’s final mode
as well, namely the interactive enactive mode. The programmer would be able
to create a custom VPL alongside the text. However, the visuals should not
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merely be a different representation of the structural elements of code such
as loops or conditionals, as in most VPLs. Instead, they should also be able
to connect to the data on which the program operates. A customisable, in-
teractive, textual and visual system would allow the computer to ‘share its
thoughts’ with the programmer in the way they best understand.1

Furthermore, being able to change the code of the running program and
immediately see the result of that change, would mean that writing, executing
and debugging code are no longer separate activities. One could “construct
an entire program during its own execution” [64, p. 24]. This will facilitate
understanding by solidifying the connection between code and its execution,
as the substantial temporal separation of cause and effect hinders the forma-
tion of robust mental models [36]. Additionally, seeing a customised visual
representation of program state means no brain power has to be spent on
maintaining it in the mind, freeing the programmer to focus on more impor-
tant issues, such as internalising programming concepts, and program design.
McLean et al [55, p. 5] conclude that there is a need for research in this area:
“Visualisation is central to live coding . . . Visualisation of live code however
remains under-investigated in terms of the psychology of programming”.

Although a live, interactive, customisable, visual system is the direction I
have had in mind, I have not focused on visualisation. Eisenstadt’s analysis
of debugging experiences “pinpoints a winning niche for future tools: data-
gathering or traversal methods to resolve large cause/effect chasms” [36]. Bur-
ckhardt et al [32, p. 9] also recently suggested that “future work may look at
how live programming and step-wise debugging can work together”. This is
what I have explored instead, through the combination of reverse debugging
and higher levels of liveness, each of which is discussed below. The control of
time that the programmer has may serve as a foundation on which to build a
visual system in future.

2.1 Reverse debugging

A programmer has a mental idea or written specification on which he bases
his code, and when the code is run, it becomes clear whether the program

1Victor [20] provides a brilliant proof of concept to demonstrate one way that such a
system could be realised.
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operates correctly according to that idea. It often does not, and the reason for
it has to be found. This is called debugging, which makes up a large part of
programming.

2.1.1 Motivation

When a program is executed forwards in time, the data on which the program
state is based, and the process by which it changes, usually cannot be seen.
Some types of programs, such as virtual worlds or physical simulations, do
inherently display more of the state of the program. For these types of pro-
grams, changing code and re-executing, interacting with the program or even
just letting the program run, results in feedback which gives some degree of
insight into the code. However, not all parts of these programs are tied to some
form of output, and not all programs inherently visualise their state in that
way. Therefore, a programmer generally cannot tell when a program deviates
from its intended behaviour, and usually only detects that it has deviated at
some later point in time. The computer or programming environment does
not allow stepping backwards or viewing program state history, hence the pro-
grammer has to reason backwards from effect to cause. The process takes time
and is complicated, especially in larger programs and when the programmer is
inexperienced. Programmers often try to make computation visible by instru-
menting code with statements which print out or log the values of variables.
This form of debugging is called ‘print and peruse’ or ‘dump and diff’ [36]. If
the instrumentation code has been placed correctly, the programmer hopes to
be able to use the output the next time the program is run, to observe where
it deviates from the intended behaviour. The code usually has to be changed
and the program rerun for each step backwards in the causal chain anyway, as
it is rare to go from an incorrect effect to its cause in a single step. The cyclic
nature of this form of debugging is evident in that it requires the program
to be stopped and re-executed after each instrumentation. This is not ideal,
due to the extra time it takes to reproduce state, and because state cannot
always be reproduced, which results in “large temporal or spatial chasms be-
tween the root cause and the symptom” [36]. Furthermore, the programmer
has to remember to remove the instrumentation code as it is not actually part
of the program, but merely exists to serve the programmer while developing
the application.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 2. BACKGROUND 10

Computer programming is embedded in time, and consequently requires
the control of time [15]. It would be better if the environment in which the
program is being ‘manufactured’, allowed the programmer to slow down the
program, and even pause or repeatedly reverse and ‘replay’ it. The closest
a programmer gets to being able to pause the execution of a program, is by
setting a breakpoint when debugging, then stepping forward from there. If,
however, the last couple of lines of code were not completely understood, as
is often the case especially when learning to program, there is no way to have
them execute again, other than by going through the stop-rerun-navigate cycle.
The programmer needs to be able to reverse to the correct point, to repeatedly
observe what that section of code is doing.

2.1.2 Omniscience

The computer, having forward-executed the program up to some point, should
really be able to provide us with information about it. Such an improvement
is possible, and is found in what are called omniscient debuggers [62]. They
are usually classified as reverse debuggers, although they might more accu-
rately be described as “history logging” debuggers [30, p. 299], as they merely
record information during execution to view or query later, rather than allow
the programmer to actually step backwards in time in an executing program.
“Omniscient” comes from the fact that the entire state history of the program,
having been recorded, is available to the debugger after execution. There is
then no need to rerun the program, and no need for manual code instrumen-
tation.

Software-based omniscient debugging started with the 1969 EXDAMS sys-
tem where it was called “debug-time history-playback” [29]. The GNU debug-
ger, GDB, has supported omniscient debugging since 2009, with its ‘process
record and replay’ feature [7]. TotalView [5], UndoDB [18] and Chronon [9] ap-
pear to be the best omniscient debuggers currently available, but are commer-
cial systems. TOD, for Java, appears to be the best open-source alternative,
which makes use of partial deterministic replay, as well as partial trace cap-
turing and a distributed database to enable the recording of the large volumes
of information involved [62].

According to a 2013 study by the Judge Business School at Cambridge
University, programmers spend 26% less time on debugging when using omni-

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 2. BACKGROUND 11

scient debugging tools, which would translate into global savings of $41 billion
annually, should all programmers use them [24]. However, as the overhead of
recording and querying the entire state history of a program is usually pro-
hibitively high, omniscient debuggers are still not commonly found in modern
IDEs [62, p. 15].

2.1.3 Reverse execution

Debuggers that do not merely allow navigation of a recording, but are actually
able to step backwards in execution time, also exist. They can more accurately
be described as back-in-time, time-travel, bidirectional or reverse debuggers.

The first such system was the 1981 COPE prototype [27], that stored all
program state in its file system. It could periodically save all changes to files,
which it called a partial checkpointing strategy, to use when reversing. As
only the changes were saved, an undo command allowed reversal only in the
increments recorded during forward-execution. It did not undo any changes
to the external environment when reversing.

The 1988 IGOR prototype [38] also allowed for reverse execution through
what were called both checkpoints and snapshots. It focused on the C pro-
gramming language, executing on the DUNE distributed operating system.
Changes to the compiler, operating system kernel, linker and loader were re-
quired, and even then, reversing was not always possible. The snapshot mech-
anism consisted of saving the program counter, memory pages, registers and
file pointer data, to a file. To reverse a step, the closest previous snapshot
was used to reconstruct the program at an earlier point in time, and the user
then had to manually forward-navigate to the intended destination, using an
extremely slow interpreter. The environment state also had to be manually
recovered when reversing, though it could be automated to some degree.

The 1988 Recap system [60] was the first to use the fork() system call
available on Unix-like operating systems, to create snapshots by duplicating
the calling process. The snapshot would then block, waiting for instructions.
Forking is efficient due to the copy-on-write mechanism. During forward-
execution, Recap recorded the behaviour of nondeterministic events. Reversing
was achieved by continuing from an earlier snapshot process, and forward-
executing behind-the-scenes. The recorded events were used, if necessary,
to ensure deterministic replay, but it did not undo changes to the external
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environment. It could not precisely define a specific point in the program
execution [56, p. 84], so reversed in intervals defined by time. The use of a
software-based instruction counter, to reference a specific point in the program
execution, was first proposed in 1989 [56]. An instruction counter is a form of
program counter, but instead of referring to the memory address of an instruc-
tion, it is simply an integer that is used to count the number of instructions
that are executed, so is called the Instruction Count (IC).

A 1993 debugger [67] for specifically the standard ML functional program-
ming language and SML/NJ compiler, also used a snapshot and replay mech-
anism. Snapshots were provided by the compiler through its first class contin-
uations, which also allowed for program execution to be redirected. It could
not undo changes to the environment when reversing.

Bdb [30], released in 2000, was the first practical reverse execution proto-
type that did not require expensive support, according to a 2012 review [37,
p. 2] of the history of reverse debugging. It focused on the C and C++ pro-
gramming languages, and used fork() for snapshots, as well as logging to
ensure deterministic replay. However, it did not address reversing changes to
the environment, and it sometimes made use of multiple re-execution passes.
It should not be confused with the Python debugger framework with the same
name, so is referred to as the Boothe bdb debugger in this study.

In 2012, GDB appeared to be “the only open-source and free solution for
reverse debugging” [37, p. 3], having supported reverse execution since 2009 [8].
It also uses fork() to create snapshots that can be returned to directly, but
when reversing, it undoes the effects of a single machine instruction at a time,
making it extremely slow. It does not undo changes to the environment ei-
ther [6].

UndoDB [18], one of the commercial omniscient debuggers, also makes
use of fork() for snapshots, but only does so for querying the past, not for
re-execution from an earlier point in time.

The 2011 epdb prototype [63] is the most recent, open-source, reverse de-
bugger, and is written in the Python programming language. It is built on
the Python Standard Library (PSL) bdb and pdb classes, and implements the
Boothe bdb debugger methodology, but contains additional side effect man-
agement functionality. In this study it is used as a starting point for a reverse
debugger, although a number of changes have to be made to allow for higher
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levels of liveness and future visualisation functionality, which chapter 3 de-
scribes in detail.

2.1.4 Benefits

There are a number of benefits in using a reverse debugger rather than an om-
niscient debugger, specifically for beginner programmers. The first is that a
reverse debugger is less costly in terms of both hardware and runtime overhead,
as only nondeterministic events need to be managed, not the entire trace his-
tory. Although more expensive hardware might be a suitable requirement for
professional programmers, an inexpensive workstation should be sufficient for
a student who wants to learn to program. The second benefit of working with
a step-wise rather than omniscient debugger is that one sees the computation
unfolding when navigating either forwards or backwards in time, which gives
a student a better grasp on exactly how the computer executes code. Some
omniscient debuggers are more capable of directly revealing causes [62, p. 7],
which, though a useful tool for a professional programmer, does not provide the
learning programmer with a solid foundation in procedural thinking. Another
benefit to reverse debugging is that the program continues to execute, which
means that it is able to continue reacting to different inputs. This is useful to
both professional programmers testing their code, and to those learning how
to write programs that are stable in a wide variety of situations.

The ability to move backwards in a live program is also where live pro-
gramming comes into play – when reverse execution is used to trace a bug, the
ideal system would allow the programmer to change the code of the executing
program and have the program immediately reflect that change, so that the
program may continue executing as before.

2.2 Live programming

Live programming is specifically about the liveness or immediacy of feedback
provided to a programmer when a computer program is being created. The
hope is that it would allow “programmers to edit the code of a running program
and immediately see the effect of the code changes” [32, p. 1].
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2.2.1 Levels of liveness

Tanimoto defined four degrees or levels of liveness, that describe the immediacy
of feedback provided by visual programming systems [66]. These levels can be
broadened to apply to all software development environments [69]:

• Level 1 liveness means that no feedback is provided by a running program
when its code is changed.

• Level 2 liveness means that feedback is provided on demand.
• Level 3 liveness means automatic feedback when program code is changed.
• Level 4 liveness builds on level 3 by automatically responding to other

events as well, not just code changes.
Current development environments mostly have level 2 liveness – when code

is changed, the programmer has to request feedback from the computer by
going through the stop-compile-run-navigate cycle. Level 3+ liveness creates a
more fluent conversation between programmer and computer. It is exemplified
by what is found in a typical spreadsheet where, when a value of a cell changes,
any dependent cells automatically update. Being able to change code and
have the executing program reflect that change immediately in the way a
spreadsheet does, drastically reduces the programming time, as nothing has to
be requested. Getting immediate feedback means it is also a good way to gain
understanding on, or tweak, elements of the program code such as the value
of a specific variable. It cuts down on the amount of speculation involved as
changes can then be explored and seen, rather than imagined. Good examples
of exploring what programming would be like if it were like a spreadsheet,
include Subtext [35], LambdaCalc [61] and Euclase [58].

Though the liveness seen in a spreadsheet is what we are after, spreadsheets
fall under the declarative programming paradigm. As computers need to be
instructed in an imperative way at the base level, all declarative languages
(sets of declarative instructions) eventually have to be mapped to imperative
instructions by their developers. This explains why students are generally
taught about the imperative paradigm first, to learn about the procedural
way that computers ‘think’. It would therefore be better to have higher levels
of liveness in a language which makes use of the imperative paradigm, but a
multi-paradigm language would be ideal.

An important question to ask is, how can a change to code be propagated
in a running program so as to minimise the amount of time spent waiting for
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the program to reflect it?

2.2.2 Non-transient code

To clarify the type of programming that I have in mind, as well as to explain
the difference between live programming and live coding, a distinction needs
to be drawn between what has been called transient or ephemeral code [23],
and non-transient or long-lived code.

Programming consists of writing computer code, and the purpose of code
is to create artefacts or effects, when it is run. Most code is written as
non-transient code so that it can be run many times over, always creating
predictably-similar effects. The code is stored in some form, which is called a
computer program, and run whenever the effects that it produces are desired,
ranging from simple calculations to websites to computer operating systems.

Code is not always stored as a program for repeated use, as there are situ-
ations in which code is written to produce an effect only once; in other words,
situations where repeatability is not important, and the code is linked to a
specific point in time. One example of this is when a small piece of code is run
to see what it does, often by making use of a Read-Eval-Print Loop (REPL)
prompt. When the line of code is run and understood, it has served its purpose
in giving insight to the programmer, and the code is then discarded. Another
example of throw-away, time-dependent code is when a programmer-performer
writes code to create the audiovisuals during a live performance, which is called
live coding [33]. The “live” here refers to the performance, rather than to how
responsive the code of a program continues to be during its execution. The
performer appears on stage with a computer, which he uses as his instrument
to create the music (for example), by writing computer code instead of simply
playing a musical instrument as is traditionally done. It is a musical perfor-
mance, so the code is constantly changed to change the music. The desired
effect is that enjoyable music is produced for the audience to listen to, or even
dance to at an ‘algorave’ [22]. As the music starts, progresses and again winds
down to silence, the corresponding code which produces the music gets writ-
ten, changed and again discarded. Instead of performing a pre-written score
of music, the musician creates the music by improvising. The desired effect is
only the music at that specific moment in time, and the code merely serves as
the means, so that the code itself is of little importance. A future performance
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will again be differently improvised, so there is no desire or need to keep the
code. Instead, the music might be recorded to listen to again. Examples of
performances can be found on the website of the Terrestrial Organisation for
the Promotion of Live Audiovisual Programming (TOPLAP) [3]. This form of
code, which gets discarded after it has produced the desired, time-dependent
effect, is called transient or ephemeral code [23].

Transient code is not the type of code I have had in mind. Instead, my
focus has been on the production of non-transient code, which is stored, and
which always produces the same or predictably-similar effects when run – in
other words, time-independent code. The reason for it is the repeatability of
non-transient code. I see the combination of live programming and reverse
debugging being used in the learning of programming, where it is important
for students to learn to connect code to the effects it produces, and this is
done through repetition, as when learning any complex skill. As non-transient
code is also much more widespread in the form of software applications, it is
important to focus on it when educating new programmers.

2.2.3 Hot swapping

Another distinction that needs to be drawn is between live programming and
‘hot swapping’ of code, also called ‘edit and continue’. Changing some code
while a program is running, so that identical, subsequent interaction with
the program results in a different response, is called hot swapping as code is
‘swapped’ or modified while the program is ‘hot’ or running.

Hot swapping of code only affects the future of an executing program. It
can be useful, and is especially suited to applications that operate in a cyclic
way, such as animations or games where new values are calculated on every
iteration of a loop. A change then simply results in different behaviour on
the next iteration of the loop. Hot swapping is often used during live cod-
ing to change the audiovisuals, perhaps on the next beat. As an example of
how hot swapping might be used when developing a game, consider a simple
side-scrolling game where a character is moved through a virtual world. For
a programmer who is developing such a game, it might be possible to change
code while the game is running, so that the next time an action like jumping is
performed, a different effect is observed – the character might now be able to
jump only half as high as before. There would have been no need to go through
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the stop-compile-run-navigate cycle, so reducing development time and facil-
itating quick and easy tweaking of game elements or mechanics – Victor [15]
provides an excellent demonstration of hot swapping when developing a basic
game. Epic Games’ latest game development engine, Unreal Engine 4, also
incorporates some hot swapping [19, 21]. Consider what the senior technical
artist and level designer has to say about it: “With this kind of direct editing,
we get a massive productivity bonus because it lets [designers] figure out how
they want something to work exactly. We’re not going to have this iterative
process where I spend all night writing the code, you get to see it the next
time there’s a build and go ‘No, that’s not right at all,’ so it really cuts down
on that kind of loop. By making our tools as intuitive and user-friendly as
possible, we cut down on a lot of the development iteration loss” [14].

However, as with transient code, there is a time-dependence factor to hot
swapping. A program in which a hot swap has been performed, responds
differently before and after a certain point in time – performing an action
before the code was changed, and performing the same action afterwards,
does not produce the same result. There might then still exist side effects in
the running program or its environment, from the earlier code and interaction
with the program, for which the current code cannot account. For instance,
a game character might have been able to access an area of the game only as
a result of his previous ability to jump twice as high. Now that the code has
been changed, he can no longer access this area of the game should the game
be played from the start. Yet, because a hot swap of code was performed, the
character is currently still in that area as a hot swap only affects the future,
not the past. A simple example of a remaining effect in the environment
after a hot swap, rather than in the program itself, might be a file on the file
system – if at the earlier point in time there had been code which created
a file, and this code was removed in the change, the file would still exist as
an effect for which the later code does not account. Although hot swapping
can be useful, effects that remain after a code change is unacceptable when
focusing on programming education. When learning to program, the code
should instead always reflect and be linked to the effects, so that a student
might internalise that connection over time, learning to effectively write code
which would produce a desired outcome. That is the aim of live programming:
for the running program, its code, and the produced effects, to be connected
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at all times.

2.2.4 Approach

Having clarified that change should be propagated in such a way that the
program state always reflects the state of the code, the question should again
be asked, how can a change to code be propagated in a running program
so as to minimise the amount of time spent waiting for the program to re-
flect it? It is a difficult problem to solve in a general programming language.
There are a number of ways to approach it, such as simply re-executing the
program and deterministically replaying previous inputs, designing the pro-
gramming language to manage state as a first-class entity, or some form of
dependency analysis for change propagation. The exploration of these ideas
has generally focused on design at the language level, rather than only on
the environment [52, 53]. Edwards states that “The fundamental reason IDEs
have dead-ended is that they are constrained by the syntax and semantics of
our programming languages” [10]. Alan Kay, the man behind concepts like the
Dynabook, Smalltalk, OOP and more [47], thinks “that a large part of pro-
gramming language design . . . is treating the language and how it is worked
with as user interface design” (emphasis in original) [48, p. 3]. Though I
believe that much progress will be made through the design of new program-
ming language models, as the “design of the language is just as critical to the
programmer’s way of thinking as the design of the environment” [16], design-
ing new models is no mean task, especially models that focus on time-travel
and change propagation. However, as live programming is “emerging as the
next big step in programming environments” [53, p. 9] and “is an idea whose
time has come” [32, p. 10], there have been a number of experiments. No-
table attempts, most of which have focused on design at the language level,
include ALVIS LIVE! [45], SuperGlue [52], LPX [53], Acar’s Self-Adjusting
Computation [25] and more recently Circa [40], Moon [50] and some of Vic-
tor’s ideas [15, 16]. However, McDirmid [53, p. 9] recently concluded that
“existing live programming experiences are still not very useful”, indicating
the continuing need for research in this area. Instead of focusing on the design
of new programming languages, I chose to investigate how live programming
might be brought to an existing programming language.
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2.3 Conclusion

The only combination of reverse-step debugging and live programming, ap-
pears to be the 2006 ALVIS LIVE! development environment, which has seen
promising results with novice programmers [45]. It brings together direct ma-
nipulation of visuals, immediate feedback, and reverse execution with control
of speed. Unfortunately, it uses a simple, pseudocode-like language, as in-
dividual commmands are undone behind-the-scenes through the execution of
another command, similar to how a pop might be used to undo a previous
push to a stack. The language has been further restricted to support only
single-procedure algorithms that involve array iteration.

The combination of reverse debugging and live programming, to form a
foundation on which to pursue the integration of language-based and image-
based ways of thinking for computer programming education, appears to be
promising. There exists a need for such a combination in a general program-
ming language, and its feasibility will be investigated in this study.
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Chapter 3

Reverse debugging

In this chapter, I document the design of my reverse debugging system, and
give details of its implementation. I have called my live debugger ldb in a
similar vein to the naming of the PSL base debugging framework bdb, the PSL
debugger pdb, the Boothe bdb debugger [30] and a prototype reverse debugger
epdb, all of which I have used as a starting point. Sabin [63] covers a number
of aspects of reverse debugging, some of which I will revisit, to explain reverse
debugging as it pertains to ldb, which differs from these other systems in a
number of ways. As ldb is an experimental combination of reverse debugging
and live programming, it is important to document in detail the way it works,
so that subsequent systems can easily expand upon it. The general principles
which have guided its design are covered by section 3.1 through section 3.8,
and section 3.9 details how ldb differs from previous systems.

3.1 Programming language

Instead of focusing on the design of new programming languages and paradigms
as is currently done in most live programming research, I chose to investigate
to what degree reverse debugging and live programming might be brought to
an existing programming language, and one which is already used both for
professional work and in education. It would result in earlier and wider adop-
tion of a live, back-in-time system, should it be possible and prove to be useful.
I consequently decided on Python1.

Python is already used in many undergraduate computer science degree
programs internationally, and there appears to be a growing trend away from
languages like C towards languages like Python and VPLs like Alice and

1Available at http://www.python.org
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Scratch [26, p. 42]. In 2011, inspired by Khan Academy, Sebastian Thrun
and Peter Norvig presented the Stanford University course, Introduction to
Artificial Intelligence, online. As the first really Massive Open Online Course
(MOOC) with over 160 000 students, it started an online education revolu-
tion [17]. Thrun, who founded Google X and led the development of the Google
self-driving car [2], then formed the Udacity organisation [17], which has used
Python as instructional programming language from the start [11, 12, 13].
Norvig, who has been a Director of Research at Google Inc. since 2005 [1],
also recommends Python as a first programming language [4]. Its dynamic
typing, use of whitespace, expressiveness and other features results in it being
more intuitive to new programmers. This results in greater productivity and
higher quality work when using it rather than another high-level language such
as Java or C++ [51, 65]. Python is also a powerful, multi-paradigm language
used professionally in many domains, making it a good choice.

When referring to Python, I am either speaking about the Python program-
ming language, or its reference implementation, which is CPython. I focused
on the latest version of Python available when this project was started, Python
3.2, as well as the then-latest Long Term Support (LTS) version of the Ubuntu
operating system, 12.04.

3.2 Reverse mechanism

How can a reverse execution debugger that is interactive, not merely omni-
scient, be implemented in and for Python? As the computational resources
that are available to novice programmers are limited, and as the live program-
ming features will require the greater share of that computational power due to
regular re-execution of parts of the program, the reverse debugger needs to use
a mechanism which is sufficiently lightweight. It also needs to be fast, so that
the system continues to reduce the temporal gap once the live programming
features are integrated.

Reversing by undoing the results of single instructions, as in GDB [6],
leads to much overhead. As most instructions are not reversible, the ability
to reverse requires that data be recorded before each instruction executes.
Depending on the number of instructions to reverse, it could be faster to
merely simulate reversing, by restarting the program and forward-executing
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to the correct position. This would need to happen behind-the-scenes, so that
it would appear to the user as if the program simply reversed. To complete
the effect, the program would also need to re-execute deterministically – that
is, as if it is merely replaying a recording of the previous execution.

This restart-and-replay mechanism could be improved by making use of
checkpoints [27, p. 9] or snapshots [38, p. 113]. A snapshot can be thought
of as a position in time where the state of the program has been captured,
much like automatic saving when playing a computer game. Reversing is
then similar to reloading, taking the program back to that earlier snapshot.
A simplistic snapshot model for reversing might make a snapshot for every
instruction, so that reversing is directly activating a specific snapshot, but this
would result in too much overhead. A better balance of resources while still
placing an upper bound on the amount of time it takes to reverse, is to only
create a snapshot periodically. When the user reverses to a specific point, the
program continues from the preceding snapshot, and the instructions which
lie between the snapshot and the point where the user intended to reverse to,
are automatically replayed behind-the-scenes. This is called ‘checkpoint and
replay’ [60, 67] or snapshot-and-replay [18].

Snapshots cannot be made in the middle of the execution of an atomic
instruction, so have to be made between instructions. This is the reason why
snapshots appear between instructions in illustrations in this study, as in Fig-
ure 3.1. However, the snapshots are usually referred to as ‘at’ an IC, or even
metonymously referred to by the IC, as in “activate IC 7”. The number could
refer to either the previous or next instruction. In this study and in ldb, as
in epdb, it refers to the next instruction, meaning that “snapshot at IC 1”
refers to a snapshot before the first instruction, not after [49, p. 27], and that
stepping forward from that snapshot would result in the first instruction being
executed again. In other words, it is set to one less than the number of in-
structions that have already been executed, as it refers to the next instruction
that would execute should the program continue.

3.3 Snapshots

There are different ways in which snapshots could possibly be made and acti-
vated, to facilitate reversing.
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Figure 3.1: The snapshot-and-replay mechanism, for simulating reversal

3.3.1 Using Python

Python itself does not allow the creation of snapshots due to a number of
limitations. It is not possible to save the call stack, or to replace it with an
earlier copy to continue the user program at an earlier point in the execution. It
is also not possible to adequately manipulate the current stack, as most of the
attributes of a stack frame are read-only, as indicated under section 3.2 of the
Python language reference2. Much of CPython is written in the C programming
language, and the C source code file3 for a frame object, frameobject.c, shows
that only f_trace and f_lineno can be set. The f_trace attribute can be
used to specify a trace hook or callback function for certain trace events, which
enables the creation of applications such as memory profilers, code coverage
tools, and call graph loggers such as Pycallgraph4, shown in Figure 3.2. It is
also used for implementing debuggers, as explained in section 3.8, but does not
help with the creation of snapshots. The value of f_lineno can be changed,
as is done in the pdb jump command, to redirected the interpreter to next
execute a different line. This might seem like a possible way to reverse if the
program state could also be restored, but there are a number of situations
in which even this redirect cannot be done without problems, or at all. For
example, jumping into a try suite, for or while loop, or to a different code
block such as into or out of a function, is not allowed at all.

Even if a different mechanism could be used to manipulate the stack, the
management of state would still be problematic. If all the necessary state
information could be saved periodically, by copying the entire locals and
globals dictionaries, the overhead would be extremely high. It would also
be difficult and costly to save only changes to the dictionaries, as there will
be many changes, and restoring them would require applying each in turn,

2Available at http://docs.python.org/3.2/
3Available at http://github.com/python
4Available at http://pycallgraph.slowchop.com
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from the start. However, the interpreter does not provide access to all the
necessary state information in these dictionaries anyway. This is due to the
fact that some of the built-in functions, as well as a number of modules in
the PSL, make use of the underlying operating system. One such case is
Input/Output (I/O) functionality, where Python makes use of the buffering
mechanism of the operating system, which means that the interpreter does
not have access to the file buffers, which it needs to be able to save their state
when making a snapshot. Trying to implement snapshots in the Python virtual
machine of the CPython implementation, or by writing an extension to the
Python interpreter, does not circumvent these problems. Complete snapshots
can therefore only be made at the level of the operating system.

Figure 3.2: Pycallgraph uses the f_trace attribute of a stack frame for call graph
visualisations

3.3.2 Using fork

The fork() operation available on Unix-like operating systems allows for the
creation of complete snapshots. While a user program is being directly exe-
cuted by the debugger, snapshots of the entire system can be made by forking,
which allows a process to make a copy of itself. It is a fast and efficient way to
create snapshots as it uses a copy-on-write mechanism, where memory pages
are not copied until they differ between the processes. If fork() is used to
create snapshots, a snapshot can be more accurately defined as a copy process
to capture the user program state at a specific point in time, and which blocks
at that point for the system to continue from there if needed. Every process
therefore consists of the debugger as well as the user program at a specific
point in time.
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As any number of copy processes can then exist, it is necessary to distin-
guish between waiting snapshot processes and the active process with which the
user interacts at any point in time, which is called the ‘debuggee’ in epdb [63,
p. 39], but will be called the main process hereafter. All snapshots, although
copy processes, act slightly differently to the main debugger process in that, in-
stead of waiting for commands from the user, they wait for commands from the
main process. The user therefore does not know about these other processes;
they merely exist behind-the-scenes to provide the ability to reverse. When
a backwards step is taken, the main debugger process activates the closest
snapshot process before the intended destination, and provides it with replay
information, before shutting itself down. When a snapshot is activated, it does
not take over as the main debugger process. The snapshot was made at that
point in the program execution for a reason, so the snapshot should continue
to exist there. For this to be achieved, the snapshot forks again when it is told
to activate [60]. One of these two processes takes over as the main debugger
process, and the other continues to block at that point as the snapshot. In
this way, a snapshot is retained at that position for later use, and a new main
process is also created for user interaction.

The many different processes and their relations to each other, have to
be carefully managed, to prevent the formation of both orphan and defunct
or zombie processes. A process, called a parent process, should manage the
processes which it creates, called its children processes. A zombie is a process
that has terminated, but whose exit status has not been read by its parent.
Some resources continue to be used by the process, until its parent performs a
wait to read its exit status, which is referred to as ‘reaping’ the process. An
orphan is an active process whose parent process has terminated, which means
that the parent process will never reap it. It is adopted by the first process
created when the computer boots – the init process with identifier 1. Orphans
are sometimes intentionally created to continue execution in the background,
and are then referred to as daemon processes. The incorrect management
of processes leads to zombies and unintentional orphans, which waste system
resources and unnecessarily limit the number of processes allowed. In epdb,
both orphan and zombie processes are formed, which continue to exist when
the program is interrupted, as shown in Figure 3.3.

Ldb carefully manages the creation and termination of processes by using
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Figure 3.3: Orphan and zombie processes in epdb

a single-child process model, which is explained in section 3.9.4.

3.4 Replay

Snapshot-and-replay serves to simulate reversing by making use of an earlier
snapshot, combined with automatic, behind-the-scenes, replay-like forward-
execution to reach the intended destination. To have it appear to the user
as if a simple backwards step was taken when reversing, the intermediate
instructions have to be replayed in such a way that the program reaches the
same state as before.

Instructions that depend only on the internal state of the program, are
called deterministic instructions. An example is an instruction that adds two
numbers. Given the same program state as before, deterministic instructions
automatically execute in exactly the same way each time, so they do not pose
a problem during replay. A nondeterministic instruction, however, depends on
the state of the environment, so usually results in different behaviour when
re-executed.

For example, consider the nondeterministic seed() function in the random
pseudo-random number generator module of the PSL. A call to random.seed(),
as in Listing 3.1, sets the seed of the generator by using a randomness source
provided by the operating system – usually the current system time. The seed
determines the sequence of numbers that the generator then deterministically
generates.

1 random.seed()
2 x = random.random()
3 print(x) # 0.912413526333249

Listing 3.1: Generating pseudo-random numbers, based on a seed

When the user reverses at a later point in the program, but the pro-
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gram continues from a snapshot before these instructions, they are re-executed
behind-the-scenes. The seed is consequently set to a different value because
the system time has changed, and the generator then returns different values
than it did before. The user would consequently notice that the program had
done more than simply reverse a step, as instructed.

A mechanism is therefore required to manage nondeterministic instructions,
so that returning to a previous point in time would also return the user program
to the same state as before.

There are a number of different ways in which nondeterministic functions
can be managed. When the debugger compiles the user program to an Abstract
Syntax Tree (AST) or code object, it could make changes to that object before
executing it. Parts of the user program could then be replaced with code
that behaves differently, so that behaviour can be reproduced on subsequent
executions. As everything in Python is a first-class object, Python also allows
for the runtime replacement of objects, and allows for the module loading
mechanism to be customised as well. Objects could thereby be replaced only
if and as necessary, which would be faster.

3.4.1 Through recording

One way to allow for the deterministic replay of nondeterministic instructions,
would be to record the behaviour of their first execution and merely replay
it in future. That is exactly how omniscient debuggers work, as explained in
section 2.1.2.

Such a replay strategy can be demonstrated through an example similar
to one in epdb [63, p. 52]. To enable deterministic replay of the code shown
in Listing 3.1, the random.seed() function could be replaced with a custom
one that records the state of the generator during normal execution. When
it is called again during replay, the call is intercepted, and the state of the
generator is simply set to its recorded value, as in Listing 3.2. The subsequent
instructions in Listing 3.1 would then have the same behaviour as before.
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1 def seed () :
2 if mode == 'normal':
3 original_random.seed()
4 store['random.seed'][IC] = original_random.getstate()
5 elif mode == 'replay' :
6 original_random.setstate(store['random.seed'][IC])

Listing 3.2: Replacement of random.seed() to record behaviour for replay

The downside of this way of handling nondeterminism, is that all nonde-
terministic functions will need to be replaced individually – it is not possible
to automate the process for the entire PSL simply by storing and restoring
the return values of all nondeterministic functions. This can be seen by the
fact that the nondeterministic function in Listing 3.2, random.seed(), is not
the function being manipulated to save and restore state. Furthermore, the
earlier snapshot that gets activated for replay, has no knowledge of the data
that was recorded in its future. Therefore, this method requires some type of
storage mechanism, for both the recorded data and the information related to
its replay.

Epdb contains much code for proxy objects to save such nondeterministic
side effect data in its server process, but the code does not actually get used.
Instead, epdb makes use of snapshots, as explained next.

3.4.2 Through snapshots

Using snapshots to implicitly save the program state, is a much simpler way
to implement a replay mechanism. All nondeterministic instructions can be
intercepted, for a snapshot to be made directly after their first execution, as
in Listing 3.3.

1 def seed () :
2 original_random.seed()
3 debugger.make_snapshot = True

Listing 3.3: Replacement of random.seed() to make a subsequent snapshot

When the user chooses to reverse, the snapshot from which to replay would
then be directly after the closest previous nondeterministic instruction, as can
be seen in Figure 3.4. The snapshot to activate might even appear at a later
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point (though still before the intended destination), if snapshots are also made
to place an upper bound on replay time. As all instructions to be replayed
are purely deterministic, the problem of recording and correctly replaying the
behaviour of nondeterministic instructions then falls away.

Figure 3.4: Snapshots after all nondeterministic instructions, facilitates determin-
istic replay

More snapshots are made when using this technique. This is generally not
a problem, as forking is a lightweight operation, and large programs need not
be catered for in the educational assistance scenario. It does become a problem
when a great number of snapshots are made, leading to a type of fork bomb. To
manage the number of snapshots, different strategies could be combined with
the snapshot strategy, such as exponential checkpoint thinning [30, p. 306],
or the recording strategy explained in section 3.4.1. Recording could also
prove to be useful when program state needs to be serialized, or when visually
animating the execution of a section of code which includes a nondeterministic
instruction. Future work might look at the best ways for these two techniques
to work in parallel.

3.4.3 Intercept mechanism

A consequence of any replacement mechanism, is that the replacement objects
would be different to the originals. This is demonstrated in Listing 3.4 by
using the replaced random.seed() function in epdb as an example. The user
program might access the attributes of the replacement objects, as well as
manipulate them in any number of unforeseen ways. The replacement objects
therefore have to be carefully designed to be similar to the originals, as far as is
possible in both appearance and functionality, while providing the augmented
behaviour.
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1 import random
2 print(random.seed.__doc__) # None

Listing 3.4: Replacement functions in epdb do not mimic the originals

In epdb, contrary to the explanation given by its author, “if a patch module
provides a symbol, which does not exist in the original module” [63, p. 37], it
will not be ignored, and is accessible by the program at <module>.<symbol>.
The reason is that the replacement mechanism works by executing the replace-
ment module in the namespace of the original module. This overwrites any
symbols already found in the symbol table of the original module, which is
how the replacement is made possible, but it also enters any symbols not yet
found there. Although generally not a serious issue, care has to be taken in
the replacement modules, so that none of the symbols of the original mod-
ule are unintentionally replaced, leading to unexpected behaviour in the user
program.

Another consequence of the epdb mechanism is a name conflict problem,
which the Boothe bdb debugger also suffered from [30, p. 300]. The epdb
mechanism replaces the module for the entire system, so that there is no longer
a distinction between the module which the debugger uses, and the module
which the user program uses. This leads to problems, as the augmented be-
haviour of the module is only meant for the user program, not the debugger.
The debugger has to make use of many of the functions that need to be re-
placed, such as some built-in functions like open, and modules like time, from
the PSL. When the the user program calls the functions of the time module,
for instance, it has to trigger the creation of a snapshot by the debugger to
manage the nondeterministic behaviour, as explained in section 3.4.2. How-
ever, when the debugger uses the time functions, which it does to keep track
of how much time has elapsed since the previous snapshot was made, it should
not trigger the creation of more snapshots. Epdb tries to circumvent the prob-
lem by checking the name of the file from which a call originates, and avoids
making the snapshot if the call appears to come from an epdb file. This black-
list approach results in unexpected behaviour when a user file has the same
name as an epdb file, and when extending the epdb system with more files.
As epdb was meant to be extensible, especially the replacement mechanism,
this approach is not ideal.
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The ldb replacement mechanism does not suffer from the name conflict
problem. It also addresses the similarity of replacement objects to the originals,
which is discussed in more detail in section 3.9.2.

3.5 External state

A program runs in its environment and interacts with it, changing it and being
changed by it as it executes over a certain period of time, which means that
the environment can be a part of a program in an indirect way. As control of
time is required during programming, the environment has to be managed as
well, if it affects or is affected by a program’s execution.

The environment has an effect on a program through nondeterministic
instructions. These have been dealt with in section 3.4, through the recording
and snapshot strategies.

A program can also have an effect on its environment. For example, a
file might be created when a program is run. The intentional, non-transient
effects that a software application produces, should remain when it is closed.
However, while a program is being manufactured, its effects should usually
not remain. For example, if a file is created when a program runs, and the file
was not removed when the program ends, a new file will be created each time.
That is not ideal, as the programmer typically runs the program many times
during development, which would result in the creation of many unnecessary
files. Although such automatic management of side effects is not provided by
IDEs in general, it would be useful. In a reverse debugging environment where
time is explicitly controlled, it is a requirement. When stepping backwards, the
environment should be as it was before. For example, a user program might
read from a file before finally deleting it. Should the file not be restored when
the user reverses, the program will break when moving forward the second
time, when it attempts to read from the file which no longer exists. Reverse
debugging therefore requires that a program is always connected to its side
effects, which is also one of the aims of live programming, as explained in
section 2.2.3. A single mechanism might therefore serve both.

There are many different types of resources that may be affected by a run-
ning program, such as files, databases, displays, or the standard output stream.
Epdb defines a resource management system where each type of resource has
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a corresponding manager [63, p. 6]. For example, each file is managed by a
FileResourceManager instance. Each manager has a save and restore func-
tion, which can be called each time the state of the resource changes during
the execution of a program, to have the manager save and restore the dif-
ferent states. The manager identifies each state with a Universally Unique
Identifier (UUID). Replacement objects, similar to those discussed in sec-
tion 3.4.1, are used to intercept instructions that would have an effect on the
environment. When the user program changes a resource during normal exe-
cution, the replacement object calls the save function of the manager directly
thereafter, for the manager to save the new state of the resource. The manager
returns the UUID that it has associated with the new state. The debugger
then connects the UUID to the current IC for that specific resource, so that
the state can be restored according to the position in the program.

When a user navigates through time, the resources only have to be restored
once. The speed of restoration depends only on the number and size of re-
sources to restore, so is generally fast. The debugger uses the IC to check for
corresponding resource states that should be restored. It passes the UUIDs
which identify those states, to the manager instances, for the resources to be
restored to those states.

In epdb, the actual resource states are saved in files by using the shelve
module. When the user moves either forwards or backwards in time, a new
main process is created when a snapshot is activated. During the redo and
replay modes, instructions that affect the environment are intercepted so that
they are not executed, and the new main process restores the resources right
before stopping at the destination IC. It therefore needs to know what the
resource states were at the destination IC, which was only determined in its
future. The IC to UUID mappings are therefore stored on the server. Each
timeline has its own mapping dictionary, so that resource states may differ
between timelines. As epdb is a prototype system, it provides resource man-
agement only for the print, input and open built-in functions. The open
function replacement returns a FileProxy instance, to replace the file-like ob-
ject that the built-in open function normally returns. The epdb FileProxy
class manages only the read, write and close functions of a file, and the
creation of files are not undone.

Ldb uses the same framework for resource management as epdb, but to
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minimise the overhead of the system, ldb does not store resource data on
the server, and restores resources at a different time, which is discussed in
section 3.9.3.

3.6 Inter-process communication

An Inter-Process Communication (IPC) method is needed between processes,
for sending data such as messages. Two-way communication of data might be
required, so signals are not an adequate solution. Sockets and pipes (queues
are implemented using pipes) are better candidates.

Sockets work with binary data, so messages have to be converted to bytes
before being sent over a socket connection. They have to be converted using
a specific serialization format or encoding scheme, so that the receiving end
knows how to decode them again. In epdb, messages are only basic instruc-
tions, so can be constructed with alphanumeric characters and spaces. For ex-
ample, the message “runic 33” might tell a snapshot to activate and have the
new main process execute up to instruction number 33. The American Stan-
dard Code for Information Interchange (ASCII) character-encoding scheme is
therefore used by epdb, which results in each encoded character using one
byte.

As the data that is received over the socket connection is merely a stream
of bytes that might represent multiple messages, a mechanism also has to be
chosen to indicate the boundaries of single messages, in much the same way
that words in written English are separated with a space. As epdb employs
stream-oriented sockets, a 30-byte fixed-length message scheme is used to de-
marcate messages. As each character takes up one byte, it only allows for
messages up to 30 characters long, which is an unnecessary limitation. It also
results in overhead as messages are padded so that they are always 30 char-
acters long. If stream-oriented sockets are required, variable length messages
would be better.

The sending of variable length messages can be done by prefixing each mes-
sage with its length, using a much smaller fixed number of bytes for the length
data. The length data is not encoded using ASCII, but is merely the decimal
number in binary format, otherwise a number such as 13 would require two
bytes – one for each character – instead of one. If the length of the subsequent

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. REVERSE DEBUGGING 34

message is always communicated using x bytes, variable-length messages up
to 28x-1 bytes long can be sent this way, with much less overhead. As an ex-
ample, consider two messages being sent, “hi” and “exit”, and 1 byte being
used for message lengths, which translates into a 28x-1 or 255-character limit
for messages. Each message is converted to bytes using the encode() function
of Python string objects, with ASCII as the encoding scheme. The respective
message lengths of 2 and 4 are then prepended to each message in binary for-
mat, and everything is sent over the socket connection. It arrives at the receiv-
ing end as: “00000010011010000110100100000100011001010111100001101001
01110100” (colour used only for readability). The receiving end reads 1 byte,
as that is the agreed-upon size of the field which contains the length of the
subsequent message. The byte has the value 00000010, which is the number 2.
It then reads the next 2 bytes and decodes it using ASCII to get the message
“hi”. Again it reads 1 byte and 00000100 is the number 4. It then reads and
decodes 4 bytes to get the message “exit”.

Ldb initially made use of anonymous, duplex pipes for IPC, with the vari-
able message length scheme described above, but now uses lightweight Unix
Domain Sockets (UDS) instead, as described in section 3.9.4.

3.7 Back to the future

In epdb, timelines are possible execution paths through the program [63, p. 6].
The potential need for timelines is introduced when a user reverses past a
nondeterministic instruction. When the user moves forward again, there is
ambiguity about whether they would like to reproduce the behaviour of the
previous execution of the nondeterministic instruction, or would prefer to have
the command re-execute. The way epdb resolves this is by allowing for both of
these options through timelines. After reversing, when moving forward again,
the previous execution is reproduced in what is called ‘redo mode’ [63, p. 9].
A new timeline can be created for all commands after the current point to
actually re-execute instead.

Note that this is different to replay of deterministic instructions, which
happens behind-the-scenes, without the knowledge of the user. The starting
point for replay is always the closest previous snapshot to the intended des-
tination. If snapshots have been made after every nondeterministic instruc-
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tion, there will be only deterministic instructions to replay, as the snapshot
to activate will appear later than the previous nondeterministic instruction,
as discussed in section 3.4.2. Redo mode in epdb is when the user has delib-
erately reversed. Timelines are used to manage how the user moves forward
again past previously-executed nondeterministic instructions. In other words,
it deals with selecting between going back to the same future, or with creating
a possibly-different future.

Snapshots are created when a program is first executed up to a certain
point. If the user has reversed past a specific snapshot to a previous IC, and
chosen to move forward again to an IC ahead of it, epdb will not re-execute
the in-between instructions, but will activate this ‘future’ snapshot instead, as
illustrated in Figure 3.5. This is called forward activation [63, p. 30]. If there
were nondeterministic instructions between the two ICs, they appear to have
executed the same way as before, but in reality, they did not re-execute at all;
a future snapshot has merely been activated.

Figure 3.5: Forward activation. If the user performs an rnext() at IC 6 to go to
IC 2, then performs a next(), the snapshot after IC 4 will be forward-activated for
replay, and the nondeterministic instruction at IC 4 is not executed again

Although a clever mechanism for returning to the future, it means that
earlier snapshots need to know about later snapshots, to be able to tell them
to activate. However, as the earlier snapshots were created when first execut-
ing the program, by forking at those earlier points in time, snapshots have
no knowledge of future snapshots. To work around this, an independent cen-
tral process, called the ‘controller’ in epdb [63, p. 39], is required to manage
communication between all snapshots, which in epdb is called the global snap-
shot strategy [63, p. 25]. All snapshot-related commands are then rerouted
through the controller, and all timeline-related data is stored separately by a
server process, which slows down the debugger. Although it might be useful
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in a limited set of circumstances, multiple execution paths that simultaneously
exist is not an indispensable feature in a reverse debugger that allows for easy
time-travel; increasing the speed of the debugger is more important, so that the
system remains usable when the live programming features are implemented,
to reduce the temporal separation of cause and effect as much as possible.
Furthermore, using forward activation to go back to the future has a negative
effect on visualisation, as intermediate instructions can be skipped [63, p. 31],
and generally are skipped when using the next or continue commands when
epdb is in redo mode. Ldb therefore has no redo mode or timelines, and the
implications and workarounds are discussed in section 3.9.5.

3.8 Control of execution

As the mechanisms involved in reverse debugging have been dealt with, a way
to allow for the controlled execution of a user program in Python, is considered
next.

3.8.1 bdb

Bdb is the base debugger framework class in the PSL. The way it provides
a debugging framework is by registering itself with the interpreter as a trace
hook, so that control passes to it before certain tracing events during the
execution of the program. Bdb contains a number of abstract functions for
implementation by derived classes. Based on the trace event, the derived class
can then manage what should happen at that point, using its implementation
of the abstract functions. If it returns control to the interpreter, the instruction
is executed. The next trace event then takes place and the cycle is repeated.

The way in which bdb registers itself as a trace hook, is through the
settrace() function of the PSL sys module. This sets the f_trace attribute
of the stack frame so that a bdb function is called before every trace event in
that frame, as mentioned in section 3.3. The explanation given for each trace
event type in the documentation for the sys module5, is as follows:

line The interpreter is about to execute a new line of code
or re-execute the condition of a loop.

5Available at http://docs.python.org/3.2/library/sys.html
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call A function is called (or some other code block en-
tered).

return A function (or other code block) is about to return.
exception An exception has occurred.
c_call A C function is about to be called.
c_return A C function has returned.
c_exception A C function has raised an exception.

More accurately, a call event is triggered whenever a new namespace is en-
tered, and a return event when that namespace is again exited. This not
only happens for function and nested function calls, but also when a module is
imported, for class definitions, lambda expressions, list comprehensions, gen-
erators, generator expressions, and in exec and eval statements. More than
one line event can also be triggered for a single line in the source code, such
as when two function calls appear on the same line.

The events to which the bdb function responds, are line, call, return
and exception. It checks whether it needs to stop for user interaction, based
on certain stop conditions, then calls the four abstract user_<event> methods
if it should, where <event> is one of the four trace event types. The c_call,
c_exception and c_return events are ignored, as bdb serves to debug Python
code, not C code.

Bdb stops for user interaction when certain conditions are met, such as
when an exception is raised, or when the end of the program is reached. The
following conditions also cause the program to stop, depending on the com-
mand that is has received from the derived class:

step reaching the next instruction.
next reaching the next instruction at the same (else a

lesser) call stack height.
continue reaching the next line which has a breakpoint set.

The next instruction could appear in a different scope, if the statement was
the last one in that scope, or if an exception was thrown.

3.8.2 pdb

Pdb, another PSL class, extends the bdb class and implements the abstract
functions. By also extending the cmd module of the PSL, which is a frame-
work for line-oriented command interpreters, pdb enables user interaction by

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. REVERSE DEBUGGING 38

providing a prompt when a stop condition is met, in the terminal wherein the
debugger was started. It makes the standard debugging commands, like step,
next and continue, available to the user. By providing a mechanism for the
evaluation of arbitrary Python code in the context of the top stack frame at
any point, it allows for the exploration of specific program behaviour without
changing program code, which is discussed in more detail in section 3.9.5.

3.8.3 epdb

Epdb is built on pdb and therefore bdb, but implements extra functionality
for reverse debugging. It provides a number of other commands, some of which
have the form r<command>, as they are the reverse counterparts of forward-
execution commands. For example, rstep is the counterpart of step.

Bookkeeping

For normal forward-execution, epdb uses the bdb stop conditions. However, a
number of changes have to be made to implement reverse debugging.

To allow for reversing to a specific position in the program, a debugger has
to count instructions, so that the position can be identified [56]. However, bdb
only moves forward during execution, so does not have to keep track of the IC.
Consequently, bdb is optimised to defer to the user_<event> functions only if
it has to stop. To implement reverse functionality, the bdb method therefore
has to be adapted. In epdb, the trace hook function of bdb is changed so
that it does not check for stop conditions, but instead passes control to the
extended debugger via the user_<event> functions, which manages the stop
condition checks instead [63, pp. 18–19].

As a result of the change to the bdb method, the call stack height has to
be recorded for use by the next command. The height is measured in frames,
so the value of the counter that keeps track of it, is called the frame count,
whereas it was called the call depth counter in the Boothe bdb debugger [30,
p. 300]. The counter is incremented on call events and decremented on return
events. During normal forward-execution, the frame count is noted when the
next command is given, and the debugger stops again on the next line event,
after an instruction is reached with either the same or a lesser frame count.

For reversing, there are other conditions that cause epdb to stop for user
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interaction as well, such as when the start of the program is reached. The stop
conditions for the rnext and rcontinue commands warrant special consider-
ation.

For the stop condition of the rnext command, a stack is used in the form
of a python list. The current IC is pushed to the list on every call event. On
every return event, the corresponding IC is again popped from the list, and is
entered into an rnext_dict dictionary with the current IC + 1 used as the key.
In this way, corresponding IC pairs are recorded, which describe a call and
the IC that the call returns to, as illustrated in Figure 3.6. This information
is used when an rnext command has been given, to determine the destination
IC, which is consequently used to determine the closest previous snapshot to
activate for replay.

Figure 3.6: The mechanics of the rnext dictionary

The stop condition of the rcontinue command works in a similar way.
Execution of source code is not concerned with line numbers. Earlier lines of
code are often executed later, such as when a function is defined near the top of
a file, but the code which calls it appears lower down. A line of code, such as a
line in a loop structure, may also be visited many times during execution. ICs,
not lines, are used to identify positions in a program for a reverse debugger
too, so snapshots are connected to ICs, and the replay mechanism stops at
specific ICs as well. However, the user works with line numbers in the IDE,
not ICs. When the user sets a breakpoint, they specify the line on which that
breakpoint should reside.

A mapping of lines to ICs is therefore required, so that breakpoints can
be connected to ICs. Epdb stores this data in its continue_dict dictionary,
which is populated during forward-execution. When the rcontinue command
is given, the closest previous IC with a breakpoint is found, and its closest
previous snapshot is activated for replay.
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For long-running programs, the overhead of recording such mapping data,
with respect to memory or storage space, is high. The cost with respect to
execution time also becomes prohibitively high in a long-running program,
as the mapping data is recorded at every instruction. The speed of forward
execution is usually more important than the speed of reverse execution. The
Boothe bdb debugger, which focused on long-running programs, therefore used
a different strategy for rcontinue, which involved multiple re-executions of
some of the intervals between snapshots [30, p. 306].

As epdb records the required information during normal execution, as de-
scribed above, the stop conditions for the standard epdb reverse commands
are relatively straight-forward:

rstep reaching a specific IC, namely the current IC - 1.
rnext reaching a specific IC, namely the previous one with

the same frame count. If it is not found in the rnext_dict
dictionary when using the current IC as key, it is the
current IC - 1.

rcontinue reaching a specific IC, namely the closest previous
IC where a breakpoint is found, as recorded in the
continue_dict dictionary. If there are no previous
breakpoints, IC 1 is activated.

Breakpoints can be set at any point during the execution of a program.
Ideally, the breakpoints should still exist when an earlier snapshot is acti-
vated, even if they were set at a later time. To facilitate this, breakpoints
are stored on the server in epdb. The bdb breakpoint system is also adapted,
so that interaction with breakpoints results in interaction with the server in-
stead, through a number of proxy objects. As the debugger has to check for
breakpoints at every IC as part of the stop condition tests, it slows down
the debugger. Although multiple execution paths can exist simultaneously in
epdb, the breakpoint mechanism does not currently give each timeline its own
set of breakpoints [63, p. 47].

Snapshot activation

There are three ways in which a snapshot can be activated in epdb, described
by three activation types, namely counting activation, frame count activation
and continue activation [63, p. 42].
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For the reverse commands, a specific IC is the intended destination, as
described in the stop condition list above. The closest previous snapshot before
(or at) that IC is found and activated, with directions to forward-execute up
to the given IC if not already there. This is called counting activation, as the
stop condition depends on the instruction count.

Epdb also allows the programmer to go back to the future after reversing,
in its redo mode. If no snapshots exist between the current IC and the later
destination IC, the program simply forward-executes using the normal stop
conditions, as before. However, if one or more snapshots do exist between the
current IC and the destination IC, epdb uses forward-activation with one of
the activation types. The closest previous snapshot to the destination IC is
found, and activated with directions that depend on the command.

For the step command, it simply activates the snapshot, which will be at
the current IC + 1, so this is also counting activation.

Frame count activation is used when a next command is given. The IC
to stop at is the next one with the same frame count (or lower), which is not
necessarily the current IC + 1. Neither the snapshot to activate nor the current
main process has knowledge about what IC to stop at, as that information is
only available in their futures. The snapshot might also have a higher frame
count then the destination IC. The snapshot is therefore activated and directed
to execute up to the same frame count as that of the current main process.
This is called frame count activation, illustrated in Figure 3.7.

Figure 3.7: Frame count activation

Continue activation works in the same way, except that the destination IC
depends on the next breakpoint. The closest previous snapshot to the desti-
nation IC, or the latest snapshot in the timeline if there is none, is activated,
and directed to continue.
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3.9 The bidirectional ldb system

Like epdb, ldb uses the bdb and pdb methodologies for implementing a de-
bugger in Python. Ldb uses the Boothe bdb debugger approach for reverse
functionality, and epdb partly served as the template for implementing it in
Python. Ldb also uses the epdb approach to resource management and break-
points, with some adjustments.

Some of the reasons why ldb is a complete rewrite and not simply an
extension of epdb, have already been mentioned. Another reason is that, due
to the complicated use of the proxy pattern, the multiprocess nature of the
debugger, and the presence of much code that is never used, epdb results in
unexpected behaviour that is difficult to resolve when trying to extend the
system.

To resolve the difficulties that were discussed in section 3.7, ldb was created
without a redo mode, and without the concept of timelines. This facilitates
future visualisation features, and results in a less complex overall design as
well as an increase in speed through the removal of the controller process.
Without a redo mode as in epdb, ldb does not require forward activation,
so only counting activation is needed. Whenever a snapshot is activated, it
consequently does not have a future to go back to, so the next and continue
commands, which in the redo mode of epdb require frame count activation
and continue activation respectively, still work in the same way. However,
without a redo mode, nondeterministic instructions cannot be deterministically
re-executed when a program returns to its previously executed future, which is
discussed in section 3.9.5. Without timelines, multiple execution paths that
simultaneously exist are also not possible.

Some more reasons why ldb is not simply an extension of epdb, as well as
the other ways in which ldb differs from bdb, pdb, the Boothe bdb debugger
and epdb, are discussed in further detail below.

3.9.1 Breakpoint management

The breakpoint management of ldb differs from that in bdb and epdb. Bdb
does have local (to the process) breakpoint management, but as epdb and ldb
provide reverse functionality, breakpoints set in the future would be lost when
the main process ends when reversing, if a breakpoint manager is used that is
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only local to the process. In ldb, breakpoints would also be lost when the main
debugger process is ended and a new one started, which might need to happen
as part of the live programming mechanism. This means that a server for
breakpoints is required, but is not sufficient unless it is persistent. Interaction
with breakpoints also has to be fast, as breakpoints are used at every IC as part
of the stop condition checks. The breakpoint management of epdb is therefore
improved in ldb, to increase the speed of the system, by keeping both a local
and server copy of the breakpoint dictionaries. When a breakpoint is created or
changed, both the local and server copies are affected, but only the local copy
is otherwise referred to. When a snapshot is activated, the local breakpoint
manager receives an update from the server, before execution continues. This
allows for both speed and persistent breakpoints even when reversing to an
earlier point in time. The breakpoint management found in bdb has therefore
been changed and moved to the BreakpointManager class, which manages
Breakpoint instances. The breakpoint functions of bdb have been adapted
to interact with the new breakpoint management class. The server in ldb is
simply a separate process, created not through forking of the main debugger
process as in epdb as none of the debugger functionality is required by the
server, but as an independent process by using the multiprocessing package
of the PSL. Communication between the server process and the main debugger
process uses the same socket communication class as the rest of the ldb system,
as detailed in section 3.9.4.

Ldb requires a Graphical User Interface (GUI) for implementing higher
levels of liveness, which is discussed in section 4.1.2. It might appear possible
to treat the GUI process as the server, as it is already persistent, and break-
points will be manipulated through the GUI. However, when a snapshot is
activated and it creates a new main process, the process has to request the
most recent breakpoint dictionaries from the server before it continues, which
requires an immediate response. The GUI might send other commands to the
main debugger process in the interval between the activation of the snapshot
by the current main process, and the new main process continuing to consume
the commands from the GUI. This means that a race condition is introduced
– when the new main process requests the breakpoint data from the server,
other commands might have already been sent by the GUI, so that the data
that the main process receives is not the breakpoint data, but a command.
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This could be circumvented by using an extra socket only for breakpoint com-
munication, but to allow for persistent breakpoints even on the command line
when the GUI is not used, a dedicated process for the server is a better design.

3.9.2 Intercept mechanism

As described in section 3.4.3, the system-wide modification of objects has to
be avoided. The ldb object replacement mechanism for intercepting calls to
nondeterministic instructions, which does not suffer from the same problems,
is discussed below.

In Python, a distinction is made between an identifier and a name. An
object in memory has a single identifier, which is a unique integer during the
lifetime of the object, accessible via the builtin-in id() function. In CPython,
the identifier of an object is its memory address. However, a single object
might have many names that refer to it, as can be seen in Listing 3.5.

1 first = [1]
2 second = first
3 id (first) # 30464768
4 id (second) # 30464768
5 second.append(5)
6 print (first) # [1, 5]

Listing 3.5: Names are not identifiers

Having more than one name that is bound to the same object, has to be
avoided, to prevent modifications to the original objects by the replacement
mechanism. Fortunately, it is also possible for a single name to refer to different
objects, if that name appears in two different namespaces, as in Listing 3.6.

1 var = 1
2 def func () :
3 var = 5
4 print (var) # 5
5 func()
6 print (var) # 1

Listing 3.6: A name can refer to different objects, in different namespaces

To avoid the system-wide modification of objects and leave the originals
intact, only the namespace of the user program should be changed, so that
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a name in that namespace can refer to a different object than the original,
creating an isolated sandbox in which the user program is executed. This
is possible, as the exec function which is used by the debugger to execute
the user code, can be provided with global and local dictionaries which form
the namespace in which the user code is run. By using the same names,
but changing what those names refer to in the namespace of the user code,
different behaviour can be given to the user code without the original objects
being changed.

A naive approach would be to replace the references directly, with replace-
ment objects that are defined in the debugger. However, an object has access
to the surrounding scope of the place where it is defined, and the replacements
are defined in the debugger instead of the sandbox in which the user program
is executed. The __globals__ attribute of an object, which is a dictionary
that defines its global namespace, cannot simply be replaced, as it is read-
only. The items in the dictionary can be manipulated, but to remove all the
references to debugger objects in the surrounding scope, would again require
a blacklist approach. The references would have to be updated whenever the
debugger code is changed.

To resolve the scope problem, replacement objects that are based on the
original objects could be created, by using the standard types defined by the
interpreter, such as FunctionType for functions. A different dictionary can
then be provided, for the replacement objects to use as their global namespace.
A simpler method is to define each replacement object in a limited scope, such
as within a module containing no initialisation code. That module could then
return the replacement, which is possible, as everything in Python is a first-
class object.

The replacement objects would not automatically mimic the object they
are replacing – attributes like the docstring would be different. To fix this for
functions, a decorator can be used, such as the wraps decorator, provided by
the functools module of the PSL. The attributes of the function will then
be identical to those of the original function, as far as possible.

Modules that the user program imports, have to be replaced as well. For
the debugger to accurately reflect the way that the user program would execute
without the debugger, the replacement must only happen when a module is
imported, not when the debugger is initialising. This can be accomplished
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by assigning a custom importer to the __import__ attribute of the global
namespace of the user program. The importer will be called when any module
is imported. If a module should not be replaced, the importer reverts to the
built-in import mechanism. If a module should be replaced, like the time
and random modules, the importer returns a replacement object, which can be
either a class or a module.

Although a module cannot be extended like a class, a class can be used as a
replacement for a module, if it extends the standard interpreter ModuleType.
The wraps decorator of the functools module can again be used for each
replacement function in the class. The magic __getattr__ method of class
instances, can be used to refer all references to symbols that have not been
replaced, to the original module.

The other potential mechanism for providing a replacement object, is for
the importer to return a different module when an import is attempted. Un-
fortunately, even when a module is imported by the custom importer, from
the context of the user program, Python makes the module available to the
entire system by placing it in the sys.modules dictionary, which overwrites
the original module. This is prevented by first importing the replacement
module under a different name, then changing its reference in sys.modules to
the original name. When the replacement module is returned by the importer,
the user program uses it instead of the original. To prevent any missing at-
tributes, replacement modules should import into their own namespace the
entire namespace of the module to be replaced, and overwrite specific symbols
by defining new ones with the same name. The wraps decorator can again be
used for the functions to mimic the functions they replace. A replacement for
the time module of the PSL, is given in Listing 3.7.
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1 from time import *
2 import time as _originalModule
3 from functools import wraps as _wraps
4 from lib.storage import snapshotControl as _ssc
5
6 @_wraps(_originalModule.time)
7 def time () :
8 value = _originalModule.time()
9 _ssc.make_snapshot = True # make a snapshot at the next IC
10 return value

Listing 3.7: A module to replace the time module of the PSL

As most replacement modules will look almost identical if the snapshot
strategy is used for dealing with nondeterminism, the process could be auto-
mated. It would aid in preventing the unintentional replacement of symbols,
as discussed in section 3.4.3.

3.9.3 External state

Ldb uses the epdb resource management framework, but allows for the creation
of files to be undone as well. Although ldb does have a server for storing
persistent breakpoints, ldb does not use the server to keep track of resources,
to minimise overhead. Therefore, when a snapshot is activated and a new
main process is created, it has no knowledge of the states of resources at the
destination IC. The way ldb solves this problem without having to use the
server, is by having the previous main process restore the states of the resources
before activation of the snapshot. It restores the states as they were at the IC of
the snapshot, instead of the destination IC. As a result of the snapshot strategy
for handling nondeterministic effects, the instructions that will execute during
replay, which lie between the snapshot and the destination IC, are guaranteed
to be deterministic. It means that, if there are any instructions that change
resources, they will change the resources in the same way as before.

There is one behaviour that is important to point out for all reverse de-
bugging systems that make use of forked processes, as it results in bugs that
are difficult to trace. Forked processes share the file offset value of open file
descriptors. When one of the processes writes to a file, the file offset is changed
for the other process as well, which can lead to an incorrect state for file re-
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sources. When a snapshot is activated, such as when the user reverses, the file
offset will not necessarily be what it was when the snapshot was created, but
will be what it was after the other process had manipulated the file. When
the resource manager writes to the file to restore it to its previous state, the
content that has been written to the file since the creation of the snapshot, is
not necessarily overwritten. This has been fixed in ldb.

3.9.4 Inter-process communication

Ldb initially used pipes for IPC, by using the multiprocessing package of the
PSL. However, pipes appear to operate at about the same speed as UDS, and
UDS facilitates future expansion, so the switch to UDS was made. Ldb uses
the more lightweight AF_UNIX address family for faster local communication
using unnamed socket pairs. Ldb also first used the variable message length
scheme described in section 3.6, but now uses SOCK_SEQPACKET sockets instead,
which are similar to stream-oriented sockets but handle message boundaries
automatically. For serialization, ldb uses the PSL pickle module, so messages
can consist of more than the characters in the ASCII encoding scheme, and
even Python objects can be directly sent over the socket connection. Ldb
groups all of this socket communication functionality together in its higher-
level Socket_Communication wrapper class, which is used as the base class
for all communication in the ldb system.

Socket communication setup

Ldb does not use a controller process as in epdb, and so requires a different
mechanism for all the processes to be able to communicate, if necessary. The
way that the communication is set up, is by creating a pair of connected
sockets. After forking, the parent process is the snapshot and the child process
is the main process. Although it is a duplex connection, the snapshot blocks
while listening for messages using one of the sockets, so it will be called the
listening socket end. The child process, using the socket at the other end of the
connection, only initialises communication with the snapshot when it needs to,
so it will be called the sending socket end. As the connection has to be created
before forking, each process initially has both sides of the connection, but then
closes the side they do not use, which Figure 3.8 illustrates.
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Figure 3.8: Setting up socket communication. A socket pair is created before
forking. After forking, the redundant sockets are deleted so that only 1 socket
remains in each process

Each socket gets wrapped in a higher-level Snapshot class, which acts as the
communication contract between snapshots. The Snapshotting class manages
all snapshot-related functionality. It keeps track of Snapshot instances in its
snapshots dictionary, indexed by the IC that each snapshot is blocking at.
When a snapshot is about to be created, a new Snapshot instance which
contains the sending socket is placed in the snapshots dictionary at the current
IC. The child process can then message the snapshot process using that entry.
A later call to activate the snapshot made at instruction 4 might then look as
follows: snapshots[4].activate(). This calls the activate method of the
Snapshot instance at index 4 of the snapshots dictionary, which sends the
“activate” message, using the sending socket. The snapshot process which
was made earlier when the program was at instruction 4, is always listening
on the listening socket, so immediately receives the message.

Each time a process forks, the child is a copy of the process, so still has
the snapshots dictionary containing all the sending sockets connected to the
receiving sockets of previous snapshots. In this way, each process can commu-
nicate with every earlier process. This is illustrated in Figure 3.9.

Snapshot activation

Having no redo mode in ldb means that, when a past snapshot is activated
when a user reverses, there is no more need for the existing future snapshots,
and they should be instructed to shut down, to free up resources. However,
having no controller in ldb means that a past snapshot has no knowledge of
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Figure 3.9: IPC after multiple snapshots have been made

future snapshots, and therefore cannot tell them to shut down. This means
that as part of the process of activating an earlier snapshot, the main process
has to manage the shutting down of all processes which come after that earlier
snapshot, including itself. It sends a shut down message to all intermediate
snapshots, and after sending an activate message to the snapshot, it uses the
exit system call to shut itself down as well. When the earlier snapshot then
activates, it forks to create a new process to take over as the main process.
This procedure is illustrated in Figure 3.10.

Figure 3.10: The steps involved in activating a previous snapshot

As processes have specific ways of operating on Unix-like systems, it is
important that the child process is the one to continue as the main process,
not the parent process. In ldb it ensures that every process has a maximum of
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one direct child. It also guards against orphan processes that would be created
were the parent to continue as the main process, but later shut down when
an earlier child snapshot process is activated. Figure 3.11 is a more accurate
portrayal of snapshot creation in ldb.

Before any snapshot either shuts down or activates, it waits for its child
process to shut down first, by using the wait system call. In Figure 3.11, if
process p1 is activated, it waits for c1 to shut down before it reaps it and con-
tinues, but c1 in turn waits for c2 to exit before it will shut down. When c2
does exit, the exiting of processes cascades up, which ensures that no descen-
dant processes exist before p1 will continue, to guard against the formation of
defunct or zombie processes.

Figure 3.11: When forking, each parent process blocks as the snapshot, and its
child continues

Process p1 will then create a new child to take over as the main process,
and again start blocking, waiting for commands from any descendants. This
is illustrated in Figure 3.12.

Figure 3.12: The state of processes after the p1 process of Figure 3.11 has been
activated

3.9.5 Back to the future

As explained in section 3.7, ldb has no redo mode, as found in epdb. Reverse
debugging is usually used only to trace the cause of effects, so the programmer
is mostly interested in moving backwards up the causal chain. If the user does
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move forward again, having no redo mode simply means that the user, after
having reversed past a nondeterministic instruction, might not automatically
step forward in the exact same way. It will only be an issue if the user wants
exactly the same behaviour as before. This will not often be the case, so
should not be a problem in practice, especially in programming education.
Changing code is what programming consists of, and a program is regularly re-
executed as part of the development cycle anyway. So if deterministic replay of
nondeterministic instructions does become important to the learner for some
unforeseen reason, the behaviour of that specific instruction could be hard-
coded while the user explores it. The speed by which that can be done and
again undone, will also be much reduced by having a live system.

There is also a way to explore a specific behaviour of a nondeterministic
instruction without changing the program code, should the programmer want
to avoid the hard-coding of specific values as part of the development process.
Commands can be given to the interpreter at any point where the execution of
a program has been paused, through the prompt that the debugger provides.
This functionality comes from pdb, as mentioned in section 3.8.2. It allows the
programmer to change the program state after the nondeterministic instruction
has executed. The user could simply run a command which affects the program
state in such a way that it is as if the nondeterministic instruction displayed
a specific behaviour. For example, consider a program that uses the time()
function in the time module of the PSL, to return the operating system time,
before printing it:

1 x = time.time()
2 print(x)

Listing 3.8: Exploring nondeterministic behaviour without changing the code

The user might want to test the behaviour of the print() function when
the time() function specifically returns a value of 1234567890, without hard-
coding that value into the program code. To do this, the program can be
paused directly after the x = time.time() nondeterministic instruction has
executed, and the value of x can then be replaced in the running program
by typing !x = 1234567890 at the debugger prompt. When the user then
steps forward, the print instruction is executed with that specific value for x,
without a change to the program code.
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3.9.6 Conclusion

The reverse debugging functionality of ldb, whose design and implementation
has been discussed in this chapter, was informed by the PSL bdb and pdb
classes, the Boothe bdb debugger [30] and the epdb prototype [63]. Epdb
could not be extended directly, due to the state of the code base – parts
were no longer used, and the complex interactions between the proxy objects
in different processes, resulted in unexpected behaviour that could not be
resolved. Epdb also contained functionality which ldb did not require, namely
its redo mode and timelines, with accompanying activation modes. Therefore,
ldb was built from the ground up, using bdb, pdb, the Boothe bdb debugger
and especially epdb as reference. A number of changes were made, not only
to fix defects like orphan and zombie processes and the name conflict problem
of the intercept mechanism in epdb, but to reduce the complexity of the code
base, and to allow for future visualisation, which is where this project is headed.
The speed of the system was also improved in a number of ways, to facilitate
the integration of live programming features while still reducing the temporal
gap as much as possible.

An example of what interaction with ldb is like when using the command
line interface, is shown in Figure 3.13, where the program given in Listing 3.9
is being debugged.

1 def fibo_step (f) :
2 return f.append(f[-2] + f[-1])
3 fibo = [0, 1]
4 import time
5 print ("Time:", time.time())
6 for i in range(10) :
7 fibo_step(fibo)
8 print ("Fibo:", fibo)
9 error

Listing 3.9: A typical program that a novice programmer might create
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Figure 3.13: The command line interface of ldb when tracing Listing 3.9
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Chapter 4

Live programming

Higher levels of liveness are about changes to code, and minimising the amount
of time that passes before the user receives feedback about the effect of the
change, as explained in section 2.2. How might the reverse debugger bring
higher levels of liveness to a program that is under its control?

4.1 User interaction

Reverse debugging functionality only requires that a file be specified, for its
execution to be managed. In ldb, the user is then able to control the debugger
with commands at the interactive prompt. However, live programming begins
with a change to the source code, which implies the use of some mechanism
whereby the code can be changed. This mechanism can take many different
forms, such as the visual object-manipulation mechanisms found in VPLs,
or structured editors which limit the allowed changes to the grammar of the
programming language. It usually takes the form of an unstructured text
editor.

4.1.1 Awareness of change

Whatever editor is chosen, when the code is changed, the debugger has to be
made aware of it. A user might prefer to use a specific editor, which could be
allowed if the debugger is able to watch for changes to files on the file system.
This was the first strategy of ldb, by using the inotify monitoring service
provided by the linux operating system. However, such a strategy requires
that the files actually change on the file system, which only happens when
the user saves a file. Higher levels of liveness specify that the user should
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receive feedback about their changes as they edit the code, not only when they
perform some action to request feedback.

Higher levels of liveness further imply that the debugger should not even
wait until the user has finished editing a specific symbol, before calculating the
effects. For example, the intention of the user might be to change the name of
a variable from var to long_var, and the user does this by prepending each
character of the string long_ in turn. As the user is typing, it is impossible to
know what the intention of the user is – the user might have the name lovar
in mind instead. Only registering the change after a short interval of inactivity
might save computational overhead, by preventing many intermediate changes
from being propagated. However a fast typing speed of 240 characters per
minute would still mean that the interval has to be longer than 0.25 seconds to
prevent change propagation while the user is editing a single, multi-character
symbol. That could already be too long an interval for the user to wait at
the end of the edit, before the system even begins to propagate the change.
Novice programmers are also likely to have a slower typing speed, not only as
a result of having spent less time using a keyboard, but because they have to
deliberately reason about each change, more than an experienced programmer
would. Therefore, the better strategy seems to be to propagate all changes
immediately, which requires that the debugger be made aware of every single
change. Future usability studies are required to evaluate the best strategy
for balancing the speed of feedback with the computational overhead – each
user should perhaps be able to customise the behaviour of the system, in this
regard.

4.1.2 An IDE

For the editor, or the IDE in which the editor is found, to notify the debugger of
every change to code, it requires that the editor either saves the file on every
code change, or that it notifies the debugger directly. Generally, editors do
not save a file on every change, and do not have an event handler registration
mechanism whereby another program can be notified of events. It is also an
infeasible task to provide an extension for all editors or IDEs which users might
want to use, so it was decided to implement a basic IDE for ldb. The focus
of ldb is on education, and novice programmers have not spent much time in
any IDEs, so requiring the use of a different editor is not of great concern.
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It would provide a single interface to the novice programmer for controlling
the debugger, changing the code, and seeing feedback about the execution
of the program. The ldb GUI was created with the tkinter package of the
PSL, which is a lightweight layer on top of the open-source and cross-platform
Tcl/Tk GUI toolkit1. It is shown in Figure 4.1.

Figure 4.1: The GUI of ldb

Responsiveness

It is not possible to tell whether a statement in the user program is still be-
ing executed, or whether the program is hanging. For example, a blocking
receive call on a socket might be faulty, or might just be waiting for data.
The user interaction functionality should not become unresponsive as a result,
which would happen if the same process was providing the user interaction
functionality and executing the user program. This happens in pdb, as the
pdb class extends the bdb.Bdb class to provide debugging functionality, but
also extends the cmd.Cmd class to provide user interaction functionality. A
process to interact with the user, which is separate from the process in which
the user code is executed, is a better design for a system that allows for the
execution of user code written in a general programming language. In ldb, the
GUI is therefore run as a separate process.

Most interactive applications have a main loop which checks for user in-
teraction events, and Tcl/Tk is no different. Event handler functions can be

1Available at http://www.tcl.tk
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registered, which the main loop will dispatch to for specified events, so that
the GUI can react to those events. This allows for a GUI to be created that
sends specific commands to the debugger when certain actions, such as the
click of a button, are performed.

A communication mechanism is consequently required between the debug-
ger and the GUI. An unnamed socket pair is created in the GUI, and when
the GUI initialises the debugger as a completely separate process by using
the Process function of the multiprocessing package, the listening socket is
passed to the debugger. The socket wrapper class that is used for communica-
tion between the main debugger process and the snapshot processes is reused,
to manage the encoding and decoding of data. The debugger, instead of wait-
ing for the cmd module to provide commands, then waits for data from the
GUI. Further improvements to this architecture are discussed in section 5.4.1.

Execution of the user code by the debugger might take any amount of
time. The GUI therefore should not block for a response from the debugger
after giving it an execution command, as it would again result in an unre-
sponsive program, and so nullify any gain from separating the GUI from the
debugger process. In other words, an asynchronous communication mechanism
is required. The debugger needs to be able to initiate communication with the
GUI at the appropriate time, to provide information about the execution of
the user program, for the GUI to process and display when it is ready to do
so. To this end, a callback function is registered for the Tcl/Tk main loop to
call periodically. The main loop carries on processing user interaction events
until the specified amount of time has elapsed, which allows the user to stop
the debugger even if it becomes unresponsive. The callback function checks
the socket for any communication from the debugger, using a non-blocking
mechanism. If there is information from the debugger, such as the line that
the debugger has stopped at, it is processed before control returns to the main
program loop. As all processing of information from the debugger results in
little computational overhead, the GUI handles the processing itself. However,
if it does become more computationally expensive in future as the ldb system
is expanded, the GUI should create a new handler process and delegate the
processing to it, so as not to hold up the main program loop. If data needs
to be sent to the debugger in response, the socket could be passed to the new
process so that it can respond to the debugger directly. The callback function
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finally registers itself to be called again, after another interval of the specified
amount of time has elapsed.

4.2 Changes to consider

Non-transient code is what forms the final computer program, as explained
in section 2.2.2. However, on the way to it, while a computer program is in
the process of being created, the code is also transient – each change to the
code results in a ‘new’ program. Once a GUI is in place to send data to the
debugger, to notify the debugger of all changes to the code, and to receive
back information about the execution of the user program, the fundamental
question of live programming, asked in section 2.2, must be considered – how
can a change to code be propagated in a running program so as to minimise
the amount of time spent waiting for the program to reflect it? A hot-swap,
though useful, is not adequate when focusing on education, as explained in
section 2.2.3. Instead, the transformation has to be propagated in such a way
that the state of the program would be as if the new program had executed.

4.2.1 Meaningful changes

Whether a change to the source code even results in a different program, can
only be determined by parsing the source code text into a Concrete Syntax
Tree (CST), and comparing that to the CST of the previous text, to understand
the viewpoint of the compiler. However, as some elements that are found in a
CST, such as comments, have no impact on the program, the ASTs should be
compared instead. If the editor is not a structured editor that works with the
AST directly, it can simply parse the text into an AST whenever it is changed,
to determine whether a change to code results in a different program at all.
If it does not result in a different program, the parsing effort is not wasted,
as it prevents an attempt to unnecessarily propagate a change, which is an
operation with higher overhead. If it does result in a different program, the
effort is not wasted either, as it forms the first part of the compilation process
anyway – the AST object is subsequently compiled to bytecode.
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4.2.2 Effective changes

Each successive program that is structurally different, is a transformation of
the previous program, but not all new programs would necessarily result in
effects that are different to those of the running program. For example, chang-
ing the value of a variable which is never used, would still result in the same
effects when run. In Python, an edit to the code might lead to effects in
three different areas – the internal program state, the external environment,
and the call stack. All three areas could be affected by changing the external
environment or a symbol in the code, as can be seen in Listing 4.1.

1 if x == 3 or fp.read() == "external data" :
2 fp.write("external effect")
3 x = 9
4 func()

Listing 4.1: A change can affect the program both directly and indirectly

When the code is edited, all three these areas should be updated for their
state to be a reflection of the execution of the new program, and no longer
the execution of the previous program. A complete analysis on every edit, to
determine all the ways that a change could affect those areas, is not the way to
approach the problem for a general, dynamic programming language – some
information is available for static program analysis, but much information is
only available at runtime. For example, consider the user program in List-
ing 4.2. To what degree would the rest of the program be affected by a change
to the variable a, on line 1? It is impossible to tell, as it depends entirely on
the input that the user provides on line 2, at runtime.

1 a = 5
2 exec(input())
3 x = 2 * a

Listing 4.2: In a dynamic language, much information is only available at runtime

The only available approach is therefore to consider any change to the
code that does result in a new AST, as a change that should be propagated,
although it does mean that a change is processed even when the change does
not have an effect. From here on, when a change to code is referred to, it
means a change which results in a new AST.
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4.3 Change propagation strategies

Whether the effects of a change can be propagated in a running program,
depends on the programming language and its implementation. In Python,
some of the limitations that prevented the creation of snapshots for the re-
verse debugging functionality, discussed in section 3.3.1, also prevent the direct
manipulation of the running program – the call stack cannot be adequately
manipulated or completely replaced, so changes to the execution path cannot
be propagated. As an analysis of the effects of a change is also of limited use,
due to the information only being available at runtime, a new program will
have to be executed for the change to be propagated.

4.3.1 Execute the entire new program

The simplest approach is to get rid of the need for the programmer to ask
the computer to go through the stop-run-navigate cycle, by automatically
executing the new program from the start whenever the code is changed, and
executing until it ends. It can be seen in the live-py-plugin2, and in the binary
search example of Victor [15]. An earlier version of ldb did use this strategy, as
the focus of ldb is on education, and the overhead in terms of execution time
when small programs are continually executed from the start, is not necessarily
a major problem. When the code is changed, the initial bootstrapping need
not be redone; the debugger simply resets the bookkeeping info, and executes
the new code until it ends. Control then returns to the debugger, to allow
for reversing. Ldb also improved this strategy by automatically restoring the
resources to their initial states before the new program is executed, by using
the resource management functionality of the reverse debugger.

Although this strategy is straight-forward and relatively easy to implement,
its major disadvantage is that it limits the size of the programs. Even small
programs in terms of lines of code, can result in computation that takes a
relatively long time, so that executing all instructions from the beginning for
each cycle, results in much overhead in terms of time. However, this strategy
does save the cumulative time that it takes users to manually manage resources
and go through the stop-run-navigate cycle, so further ways that it might be

2Available at http://donkirkby.github.io/live-py-plugin/
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improved, are considered below.

4.3.2 Execute up to the same position

As a debugger allows the user to navigate through time, either only forwards in
a traditional debugger or both forwards and backwards in a reverse debugger,
the program will often be at a specific position in the execution which is not the
end of the program. This point will be called the Point Of Execution (POE).

When the user changes the code, the program could return to the point in
the execution where the code was changed. However, the line being changed
would not be the line that the user would like to return to, in most cases. For
example, one of the most common use cases would be when the user has written
a function and wants to observe its behaviour when given different inputs. The
user changes the inputs, and expects to see how the function handles it, which
means that the program should not return to the point where the code was
changed, as that point comes before the execution of the function. It would be
better if the user could specify that they want the execution to stop directly
after the function, as they want its feedback as fast as possible and are not yet
interested in the execution behaviour up to the end of the program. The user
should be able to do this by moving the POE to directly after the function,
for the program to execute up to that point whenever the code is changed.

This introduces a problem – how should the POE be defined for the de-
bugger to be able to return to it?

Line number, or IC?

A different execution run from the start, even for the same program, might
lead to a different execution path being followed as a result of nondetermin-
istic instructions. The point where the user was previously at, might there-
fore not be reached again. For example, in Listing 4.3, the program might
not return to line 2, 3 or 5 if that were the POE. If the POE were line 6,
the program would be able to return to it, with the value of x possibly be-
ing different than before. It can also be seen that the IC would be different
at line 6, depending on which branch of the conditional statement had exe-
cuted, which means that the POE cannot be defined in terms of the IC. For
now, it is instead defined by the line that the program was previously at.
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1 if 5 <= random.randrange(10) :
2 x = 3
3 y = 0
4 else :
5 x = 7
6 print(x)

Listing 4.3: The same point of execution cannot necessarily be reached

Nondeterminism

Deterministic replay of the nondeterministic instructions seems to be the solu-
tion, as the program will then constantly follow the same execution path, and
the program state is retained. The user might prefer this at times, but it still
does not solve the problem of returning to the same POE, as it only assists
in retaining the program state and execution path up to the point where the
old and new programs diverge. Instructions should not be re-executed deter-
ministically from that point on, as it is impossible to know what impact the
changes would have on the program, and the replay of previous behaviour is
an assumption that the changes have had no impact. For example, if line 1
in Listing 4.4 has just been entered, it would not make sense to replay the
previous behaviour of line 2, when returning to line 3.

1 del sock # just inserted
2 data = sock.recv()
3 print (data)

Listing 4.4: Nondeterministic instructions should not be replayed after the point
of change

Deterministic replay would also be a disadvantage, as only a single be-
haviour of every nondeterministic instruction would be observed throughout
the construction of the program. It would be better for new data from the
external environment to be used instead. Regular re-execution of the nondeter-
ministic instructions would lead to many scenarios and execution paths being
explored, which is similar to how the traditional development cycle works.
That would aid in preventing the “even a broken clock is right twice a day”
scenario, where the program appears to be correct, but it has only happened
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by chance. For example, consider the program in Listing 4.5. The square
function should return the square of a given number, but instead of returning
the result of the calculation, the function has a bug which causes it to always
return the number 4. The program uses the random module to nondetermin-
istically provide a number as input, which provides the number 2 during the
first execution, by chance. The assert on line 5 does not raise an error, even
though the square function is faulty. If, in this way, only the first behaviour
shown by each nondeterministic instruction is ever used, a program would
more often appear to be correct when it is not, as deterministic behaviour is
not the true nature of a nondeterministic instruction. However, if the program
were to be regularly ‘massaged’ through the re-execution of nondeterminis-
tic instructions, bugs would surface more often, leading to better programs.

1 def square (v) :
2 res = v * v
3 return 4
4 x = random.randrange(-5, 5)
5 assert square(x) == x * x

Listing 4.5: A program can display the correct behaviour by chance

Novice programmers would not yet make use of other means – such as unit tests
as part of a build process – of exposing their programs to multiple executions.
The re-execution of nondeterministic instructions is therefore to be preferred
over replay. Just as in the traditional development cycle, the user should ex-
plicitly hard-code specific behaviours if they want to retain them, otherwise
make use of the mechanism discussed in section 3.9.5, so that nondeterministic
instructions do not, by default, behave deterministically.

The question of how to return to the same POE has therefore not yet been
answered.

Execution history

A compromise might seem like a better solution, where the previous POE is
stopped at only if it is reached, but where the program continues to execute if
it is not reached. The POE might therefore be controlled by the user through a
breakpoint. However, as the user is able to freely navigate through the program
execution without setting breakpoints, and as breakpoints might already exist
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at earlier points in the program, it would be better to temporarily ignore
breakpoints and simply return the user to a preferred point that they can
specify. It would consequently be better for the POE to take the form of a
special breakpoint that is the only one not ignored.

However, breakpoints operate by stopping when a certain line is reached.
If the POE were to work in the same way, it could lead to confusion, as the
same line can be reached at entirely different times in the execution, such as
in a loop, and by following a different execution path, such as for function
calls. If the execution were to miss that line as a result of the code change,
but stop at the same line at a later point, it would incorrectly communicate to
the user that they are still at the same point in the execution of the program.
When navigating to a breakpoint, explicit navigation is required, and the user
therefore sees and understands that movement has taken place, which inher-
ently includes the possibility of different execution paths leading to the same
position in the source code. If, however, the user were to remain at the same
position in the source code, it would appear to them that they had remained
at the same point in the program execution as well. As that is not necessarily
the case, it could confuse them.

Consider the example in Listing 4.6. The first branch of the conditional
statement on line 4, causes the program to reach line 2. After a code change,
the program would again stop at line 2 on account of the POE being defined
only by the line number, but the other branch of the conditional statement
could have executed. The user would incorrectly believe that the execution
path and program state are still the same, as it would appear to the user that
they had not moved. However, a different execution path was followed in the
two executions, which has led to different internal and external effects.

1 def save(val) :
2 print('Same POE?')
3
4 if 0.5 < random.random() :
5 x = fp.write('data')
6 save(3)
7 else :
8 save(7)

Listing 4.6: The same line number can be reached in different ways
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Usability studies would be required to gauge the amount of confusion that
this would or would not cause, to determine whether this is an acceptable way
to define the point to return to. Until that can be done, this way of defining
the POE is not used in ldb, as I believe it would cause much confusion for
novice programmers. Consequently, the search continues for an acceptable
way to define the POE, so that it can be returned to after a code change.

The only way to uniquely identify a point in the program execution, is to
define it by its entire execution history. This can be captured through the
sequence of line numbers visited to reach that point, as well as the locations of
the files that those line numbers refer to, for enabling the use of multiple files
as part of a single program. The POE can be defined as that sequence, at the
point where the program has stopped. Returning to the same POE is therefore
only possible if the line number history up to that point is not changed by a
change to the code or by re-executing. It means that the same POE cannot be
returned to when lines are deleted or inserted, or when the execution path is
affected, either directly through the change itself, or indirectly if there are any
nondeterministic instructions as part of the execution history. This scenario
severely limits the times when the same POE can be returned to.

Managing user expectation

Instead of returning to the exact same point in terms of execution history,
the program could attempt to return to a point that the user would expect or
wish to be returned to. Extensive usability studies would have to be done to
determine what the most intuitive stopping point would be in each situation
for novice programmers, and how those points could be described to the system
by using line numbers or ICs, or by other means. Until then, the best that can
be done if the user is not to manually go through the stop-run-navigate cycle,
is either to execute the entire program again as before, or to return the user
to the point that has been edited, which is discussed next.

4.3.3 Execute up to the point of edit

Until the usability studies can be done, it would be better for the program to
return to where the code was edited, as that seems to be the point where the
old and new programs diverge. The point will be referred to as the change
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point. The user could then decide how to deliberately move forward from
there, by continuing to a breakpoint after a function call, for instance. As the
user works with lines of code in the editor, the change point could simply be
defined by the specific line number in the source code where the change has
taken place. However, even the change point proves difficult to capture and
return to.

It may be argued that the new program only has to be executed up to
the change point, if that line was reached in the previous execution of the old
program. If that were true, the line number to IC mapping that is recorded by
the debugger during forward-execution for use by the rcontinue command,
as discussed in section 3.8.3, could be used to determine whether or not a line
had been reached. If the line had not been reached, the new program would
not have to be executed yet. If the line had been reached, it might have been
reached multiple times, so the debugger would have to use the first time that
the line was reached, as the stopping point for the new execution. However,
the change point is not necessarily the first place where the two programs
diverge, depending on the presence of nondeterministic instructions, which are
likely to display different behaviours when the new program executes. It means
that the change point could trigger the execution of the new program, and yet
not be reached again. The point to stop at therefore becomes a subjective
matter again, unless all nondeterministic instructions up to the change point
are replayed. It is not as problematic to replay the behaviour of only these
nondeterministic instructions, as they have not been affected by the change in
the code, which only comes later. Although it does not avoid the broken clock
scenario described in section 4.3.2 for the nondeterministic instructions up to
the change point, constantly replaying their first behaviour would be the only
way of ensuring that the change point is definitely reached again.

4.3.4 Avoid unnecessary execution

As returning to the change point requires the deterministic replay of nonde-
terministic instructions, the behaviour of the two programs would be identical
up to that point, meaning that the external program state would be affected
in an identical manner as well. This leads to the idea that it might be possible
to retain the effects of the old program, instead of trying to recreate it, if the
debugger can be directed to use the new program for all subsequent execution.
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Future change point

First consider the simpler situation where the change point is the POE, or is
in the future relative to the POE. In Python, the debugger cannot simply be
directed to continue tracing different code. A workaround that seems like it
could work, without yet considering how to navigate back to the POE in the
new program, is to do an exec of the new program, so that it becomes the
program that is traced, but even this cannot be done directly. The debugger
functionality can be divided into two parts – an inside and an outside, so to
speak, which refer to their use, relative to the user program. The outside part
is used before and after the execution of the user program, and contains func-
tionality for setting up and tearing down both the debugger and the sandbox
in which the user program will execute. As part of setting up, the debugger
also puts a callback trace function in place, through sys.settrace. When
the debugger executes the user program by using exec, the trace function is
called for every trace event. The trace function calls a number of debugger
functions, which can be grouped with the other parts of the debugger that
they make use of, as the inside part, due to their use during the execution
of the user program. These are the functions that stop for user interaction,
which means that the only place for execution of the user program to stop,
is inside the trace function. The problem with executing the new program in
that situation, is that the new program does not trigger trace events, which
the debugger requires. A minimal example which demonstrates this, is given
in Listing 4.7. When this program is run, it can be seen that only the outside
exec triggers trace events.

1 def trace (frame, event, arg) :
2 if event == 'line' :
3 print ("--- line {} ---".format(frame.f_lineno))
4 exec("print(3)" + "\n" + "print(4)") # lines 3 and 4
5 return trace
6
7 import sys
8 sys.settrace(trace)
9 exec("print(1)" + "\n" + "print(2)") # lines 1 and 2

Listing 4.7: Code executed within a trace function, does not trigger trace events

The call_tracing function in the sys module is an indirect way of running
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the new exec call while inside the old, but as the old tracing state is saved to
be restored after the new exec returns, it continues to use resources. As a new
exec would be done each time the code was changed, it would quickly lead to
all available resources being consumed.

To exec a new program without unnecessarily holding on to resources, the
current exec first has to be broken out of. This can be done by raising and
catching a particular exception. The debugger then does an exec of the new
program in the old context, which was retained through a handle on the context
dictionaries provided to the initial exec. The new exec takes the debugger
back to the first line, but it can immediately return to the POE before any
instructions are executed, by writing to the f_lineno field of the stack frame,
as explained in section 3.3.1. In this way, the call stack and internal and
external states are retained, so the instructions before the POE do not have to
be re-executed, and nondeterministic behaviours do not have to be replayed.
It leads to a significant improvement in speed, proportional to the execution
time of the instructions before the POE. For example, the sleep call on line
1 of Listing 4.8, which could represent 10 seconds of computational overhead,
is not executed again when a change is made to line 3 when the POE is line
2, unlike when the new program is executed from the start.

1 time.sleep(10)
2 print('the POE')
3 print('this is changed')

Listing 4.8: Previous instructions do not have to be re-executed

Past change point

The situation where the change point is in the past, relative to the POE,
can now be considered. The debugger has to return to the earlier change
point, which the reverse capabilities of ldb allow it to do. The closest previous
snapshot to the change point is activated. It breaks out of the exec, and its own
position is jumped back to immediately after the exec of the new program.
The snapshot then has to forward-execute to reach the change point. The
reverse debugging strategy of making a snapshot after every nondeterministic
instruction, means that the instructions that remain to be executed between
the positions of the snapshot and the change point, are guaranteed to be
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deterministic, meaning that the change point will definitely be reached again,
as shown in Figure 4.2.

2. break out of old exec 1. activate snapshot

3. exec new program

5. deterministic execution up to change point4. jump back to snapshot position

Figure 4.2: Returning to a change point that is before the current POE

Complications

Although this strategy allows the debugger to quickly return to the change
point, without replay and without much re-execution, it cannot always do so.
Having to write to the f_lineno field, limits the snapshot positions that can be
directly jumped back to. Some compound statements such as for loops, while
loops, try suites and except clauses, require special initialisation and clean-up
of information on entry and/or exit, such as the value of an iterator or point to
return to when leaving the statement. This is already taken care of in ldb by
activating and retaining the state of a snapshot, which is a program that has
already done the required initialisation. For example, even though a finally
clause, after being directly jumped into it in pdb, causes a segmentation fault
when it is exited, it does not do so in ldb. Python, however, never allows most
blocks to be jumped into directly, and cannot be told of the ldb workaround
so that it would know that it is safe to allow the jump. The use of f_lineno
would therefore be only slightly less problematic here than in section 3.3.1, so
either only snapshots in the top-level namespace have to be activated, or the
snapshot positions are not the points that should be jumped back to. If only
top-level snapshots can be activated, the closest previous snapshot to a position
is not necessarily the one to activate, which would mean that nondeterministic
instructions are no longer taken care of automatically, and that re-execution
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of more instructions would be required. Until a way can be found to remove
the f_lineno jump restrictions, the best approach would be to try to use the
closest previous snapshot, but jump to positions in the top-level namespace.

A further complication is the fact that the true point of change is not
necessarily the line itself; even earlier lines can be affected. If a line appears
in an entity with its own namespace, such as a function or class, and the
entity is defined in another namespace at an earlier point, the earlier point
will need to be returned to, to register the change in the parent namespace.
If this is not done, the earlier version will continue to be used. Furthermore,
entity definitions are often registered long before they are used, such as when
a function is defined at the top of a file, but only called at a later point. In
Listing 4.9, line 1 will need to be returned to when line 2 is changed, even
though the function is only used on line 5.

1 def func() :
2 print('this is changed')
3 a = 1
4 b = 2
5 func()

Listing 4.9: The point where a code block is defined, has to be returned to

As the parent has undergone a change, its parent has to be updated in turn,
all the way back to the top-level namespace. It would have spared much
execution if only the lines where the entities are defined, could be re-executed
to register each change in turn, and the change point be jumped to immediately
thereafter, but it is not possible either due to the limitations of writing to
f_lineno – a code block cannot be jumped into. The point to return to
therefore has to be the closest previous point to where the outermost parent
entity is defined, in the top-level namespace.

How can the IDE tell to which entity a line belongs, so that the correct line
can be returned to? Having first tried, unsuccessfully, to record the information
during execution, ldb now makes use of the AST, which already has to be
constructed, as explained in section 4.2.1. For each entity, the lines on which
it is defined and ends, are captured before execution of the new program, by
using the AST. When a line is changed, this information is used to check
whether the line is part of an entity. If it is, the line where the outermost
parent entity is defined, is used as the line to return to instead. Listing 4.10
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shows an example of the line, given as a comment, that a change on that line
would return the debugger to.

1 a = 1 # 1
2 def func () : # 2
3 x = 1 # 2
4 class InnerClass : # 2
5 def innerClassFunc (self) : # 2
6 z = 1 # 2
7 func() # 7

Listing 4.10: The place to return to when lines are changed, is where the outermost
parent entity is defined in the top-level namespace

The debugger can use the same approach for the other compound state-
ments, such as for and try. The line where the statement is defined, becomes
the destination line for the debugger to return to, when a line is changed that
belongs to the statement. The snapshot to activate when reversing, would be
the closest previous snapshot to the first time that the destination line was ex-
ecuted. However, the forward jump is to the snapshot position, as was shown
in Figure 4.2. As the snapshot position cannot necessarily be jumped back to,
and as the destination line is guaranteed to be a point that can be jumped to
in the top-level namespace, the jump should only occur once the destination
has been reached, not when the snapshot is activated. This allows the closest
previous snapshot to be used, so that nondeterministic instructions are auto-
matically taken care of and the least amount of re-execution takes place, while
the debugger still traces the new program. Figure 4.3 illustrates this strategy.

3. break out of old exec

1. activate snapshot

4. exec new program

2. execute up to destination line

5. jump back to destination

Figure 4.3: An improved way of returning to an earlier change point
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As the point that the debugger returns to is different to both the POE
and the change point, it makes it even more important that the position in
the source code where the execution is at, at any moment, has to be clearly
indicated to the user, which is done by highlighting the relevant line in the
GUI, as was shown in Figure 4.1.
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Chapter 5

Conclusions and Future Work

5.1 Overview

5.1.1 Motivation

This study was motivated by the desire to place humans, instead of computers,
at the centre of HCI. As a human interacts most naturally when using lan-
guage and visual faculties in parallel, these should be utilised simultaneously
during programming. However, existing programming interfaces have a strong
bias towards either language-based or visual-based interaction – no satisfac-
tory combination exists. The need to maximise interaction and customisability
when combining visuals and text, suggests the need for a visualisation frame-
work to enable programmers to express their own mental models, as well as to
receive feedback from the computer by way of that same channel. Such a sys-
tem would be most valuable to novice programmers, as interaction and clear
communication are essential to the learning process. All interaction is how-
ever fundamentally governed by time. The considerable temporal separation
of cause and effect during programming, hinders the formation of robust men-
tal models. This separation would still exist when visuals are incorporated. A
solid foundation for integrating visuals consequently first requires the minimi-
sation of delays in time, as well as the maximisation of the control of time. To
this end, this study investigated the feasibility of combining reverse debugging
and live programming in a general programming language, which had not been
done before.

74
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5.1.2 Approach used

My approach was to create a reverse debugger which was sufficiently lightweight
to facilitate live programming features, and then to augment the debugger with
higher levels of liveness. Reverse debugging was introduced in section 2.1. The
strategies of previous reverse debugging systems were considered. The Boothe
bdb debugger approach was found to be the optimal strategy, with epdb the
most recent implementation thereof. Live programming was introduced in
section 2.2. Consideration of other live programming prototypes showed that
most approaches focus on design at the language level. It also showed that the
fundamental concern of live programming remains unanswered – how a change
to code can be propagated in a running program in a way that minimises the
amount of time spent waiting for the program to reflect it.

5.1.3 Reverse debugger

The motivation for choosing Python as the programming language was ex-
plained. A way to implement a fast reverse mechanism in Python was con-
sidered, and the snapshot-and-replay strategy was examined. It was shown
that nondeterministic instructions would need to be managed to ensure that
the program truly reverses to a previous state. The replacement of objects
at runtime with objects that behave differently, allowed for nondeterministic
behaviour to be managed through either a recording or snapshot strategy. It
was explained that the two strategies are also able to function in parallel, but
that the investigation of the optimal combination would be left as future work.

A reverse debugger was created, called ldb. Reasons for creating ldb from
the ground up were provided, and details were supplied about where the ldb
approach differed from that of bdb, pdb and epdb. The shortfalls of previous
approaches to the object replacement mechanism were covered, and an im-
proved mechanism was presented. Refinements to the resource and breakpoint
management systems were detailed. The requirements related to IPC were
discussed, and the suggested improvements were implemented.

The implications were discussed of navigating back to the future after hav-
ing reversed past a nondeterministic instruction. The epdb solution to the
problem was explained, and identified as an area that should be approached
differently, for a number of reasons. Most importantly, forward activation hin-
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dered future visualisation functionality. The complex program architecture
needed to be simplified, and gains in speed were also required to facilitate
the integration of live programming using the limited computational resources
typically available to novice programmers. The ldb approach solved these is-
sues. The implications were that nondeterministic instructions could not be
deterministically re-executed when deliberately returning to the future, and
that multiple execution paths could not simultaneously exist. These features
are however not indispensable in a reverse debugger, especially one with higher
levels of liveness which would allow fast exploration of execution paths. Ways
to accomplish the return to the same future in ldb, were covered.

5.1.4 Higher levels of liveness

Strategies were discussed for making the debugger aware of changes to the code
of an executing program, and it was suggested that future usability studies
be done to evaluate the optimal way for user expectation and computational
overhead to be balanced.

The necessity of an IDE was presented, and an IDE was created which
allows the programmer to load and execute programs, control the debugger,
change the program code, and receive feedback about the program execution.
User interaction problems were addressed, and the GUI was created so as to
remain responsive even when the execution of the user program is not. Possible
future improvements were considered.

The code changes to propagate in a live program were contemplated. It
was shown that all changes which result in a new AST would have to be
propagated, and the optimal way to do this was examined. It was determined
that the new program would have to be executed at least in part. A number
of approaches to automatic execution were considered.

The simplest approach of automatically executing the entire new program
was shown to be a feasible yet non-optimal solution. It removes the need for the
programmer to request feedback from the computer, resulting in a higher level
of liveness. It was found that reverse debugging and live programming work
well together, in that the resource management system which was required for
the reverse debugger could be used to restore resources before the new program
is executed.

An improvement was proposed where the new program would only exe-
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cute up to the point, called the POE, where the previous program execution
was stopped. The way to define the POE was considered. Nondeterministic
instructions which result in different execution paths when the program is ex-
ecuted from the start, were explained to be a major obstacle when trying to
return to that point. Deterministic replay of all nondeterministic instructions
up to the POE was contemplated, but it was demonstrated that nondetermin-
istic instructions could not be replayed after the point where the old and new
programs diverge. An explanation of why constant replay would be a disad-
vantage, and why re-execution is to be preferred, was also provided. Defining
the stopping point in a way similar to how breakpoints work, was consequently
examined. It was argued that it would likely lead to confusion, especially for
novice programmers. Usability studies were suggested to ascertain the amount
of confusion that this would cause, to determine whether the point to return
to should be defined in this way. Usability studies were also suggested to de-
termine whether novice programmers might expect the program to return to
specific positions, and if so, what those points would be in different situations.

Consideration was given to returning the program to the change point
instead. The deterministic replay of all nondeterministic behaviour up to the
change point was again found to be necessary to be able to reach the change
point. As the old and new program would therefore be identical up to that
point, a significant improvement could be considered – not re-executing that
part of the program at all. It was indicated that this strategy would depend on
being able to direct the debugger to trace the new program. As Python does
not allow this directly, workarounds were investigated. Simply doing an exec
of the new program was shown not to be possible, and it was explained that
the call_tracing workaround would quickly consume all available resources.
A strategy which broke out of the current exec but which retained the state
of the program, did an exec of the new program, and jumped back to the
previous position before any execution took place, was suggested. For future
change points, relative to the POE, it appeared to hold much promise, in that
it avoids re-execution of all instructions before the change point, so allows for
a direct return to the POE. For change points in the past, relative to the
POE, the reverse debugging functionality was ideal for allowing the program
to first return to the change point before continuing with the strategy, and
then to deterministically execute up to the change point. The use of f_lineno
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to jump back to the same position after the new exec, limits this strategy
however. Although ldb already takes care of the reasons for the interpreter
disallowing a jump at certain times, there is no way to inform the interpreter of
that, so a workaround has to be implemented. In the meantime, the strategy of
only jumping to allowed positions in the top-level namespace was investigated.
Lines which change object definitions were considered, and the consequent need
to return to the line where the outermost object definition was registered in
the top-level namespace. The restrictions on f_lineno again prevented only
the definition lines from being re-executed before jumping back to the previous
point. Different methods were investigated for identifying the definition lines
in the top-level namespace, and using the AST was found to be the optimal
approach. The break-exec-jump strategy was also slightly altered to allow
for the continued use of the previous snapshot, to automatically take care of
nondeterministic instructions.

5.1.5 Summary

A reverse debugger with higher levels of liveness was investigated and imple-
mented by using the general, multi-paradigm programming language Python,
which is widely used for computer programming education. Improvements
to previous reverse debugger approaches were discussed and implemented, es-
pecially to facilitate the integration of live programming. The need for a
reverse debugger to manage side effects was also explained and addressed.
The approach used for navigation through time allows for future visualisation
functionality.

The fundamental, language-independent concerns of live programming were
discussed and addressed. Change propagation was investigated, and the need
to consider its effects on the internal program state, the external environment
and the call stack was explained. The optimal way to propagate changes in
a way that covers these areas, by using the least amount of execution, was
pursued. The approach of executing the entire new program was shown to be
feasible, yet non-optimal. The concepts surrounding the POE were explained,
as well as the difficulties that would be encountered when returning the new
program to such a point. An optimal strategy was proposed of returning to
the change point by making use of the reverse debugging functionality, and
only executing from there to the POE. It avoids all unnecessary execution.
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5.2 Objectives achieved

The aim of this study was to investigate the feasibility of combining reverse
debugging with live programming. The goal was to develop such a system if
the combination should prove feasible, or to investigate and explain the fun-
damental obstacles should it prove infeasible. This was accomplished. The
combination proved to be feasible, and the ldb debugger was developed with
reverse capabilities and level 4 liveness. It supports a more natural, lively
conversation between programmer and computer. The mechanisms used for
implementing a reverse debugger also facilitated higher levels of liveness. Al-
though the combination proved feasible, the fundamental principles and diffi-
culties were nevertheless explained, to aid future research.

Ldb addresses the temporal gap present in the standard development cycle
by furnishing the programmer with more control of time and by reducing the
temporal separation between code changes and seeing its effects. Control of
time is provided by allowing the programmer to navigate both forwards and
backwards during execution, with the state of the program and environment
being updated accordingly. The user is able to explore different paths of ex-
ecution, and observe the corresponding interaction of the program with the
environment. Changes to the code of the user program that the debugger is
tracing also results in an immediate response. Parts of the program do not
have to be re-executed when the code change is propagated. This reduces the
temporal separation of cause and effect, which aids the formation of clear men-
tal models. Ldb should therefore be used by novice programmers especially.
Ldb also creates a platform which would enhance the usefulness of visuals,
and so establishes a solid foundation for pursuing visual ways of thinking in
computer programming.

5.3 Shortcomings

Although the ldb system was created and the fundamental difficulties ad-
dressed, there remains work to be done.
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5.3.1 Replacement objects

Replacement objects have not been provided for much nondeterministic be-
haviour. The suggestion was made in section 3.9.2 that the process could be
automated to some degree, but this has not yet been attempted.

5.3.2 Control of time

Ldb contains the mechanisms that would allow the user to control the speed of
execution, as well as to repeatedly loop over any section of the program, for the
programmer to exercise complete control of time and so gain the maximum
amount of insight, especially once visuals are incorporated. However, the
interface functionality has not yet been fleshed out to allow the user to do
this.

5.3.3 Resource management

Although the ldb approach to restoring the states of resources does not make
use of the server process, so as to increase the speed of the system to reduce
the temporal gap, it might not always result in an increase in speed. The ldb
approach means that when a snapshot is activated, the resources are restored
to their states at the IC of the snapshot. The remaining instructions that
are re-executed to reach the destination IC are all deterministic, and therefore
change the resources in the same way as before. If the server process were
utilised for storing resource data, as in epdb, the resources could be restored
to their states at the destination IC instead, and the remaining deterministic
instructions would be intercepted so that they do not change the resources
during replay. Although the chance of it happening is slight, it is possible for
re-execution to take much longer than communication with a server process,
when large resources are managed. Testing would have to be done to determine
which strategy is faster on average, given different situations, and whether the
gains in speed by switching to the other strategy would be significant. The
ldb approach was used, however, as novice programmers generally do not work
with large resources.
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5.3.4 Change propagation

While investigating change propagation strategies in section 4.3, for bringing
higher levels of liveness to the debugger, a number of difficulties were encoun-
tered. Although workarounds were provided for most of these, two issues have
not been overcome.

Stopping point after code change

The first issue that has not been overcome, is the determination of the optimal
stopping point for the execution of the new program. The presence of any
nondeterministic behaviour after the change point would mean that the point
to return to cannot be captured or described in a way that allows for use across
different runs. Capturing that point by its line number, as with breakpoints,
might lead to confusion – only a usability study would be able to determine if
it would. The optimal points to stop at in different situations could perhaps be
determined subjectively, which a usability study would again throw light on.
As usability studies have not been done as part of this study, the optimal point
at which to stop the execution of the new program, has not been determined.
Consequently, ldb currently returns the user to the change point instead, for
the user to manually navigate from there, which is not ideal.

Tracing a new program

The second issue that is not adequately addressed in the current state of the
ldb system, is the inability in Python to instruct the debugger to continue
tracing a different program from any specific point onwards. Although the
reverse debugging functionality proved ideal for returning to the change point,
the debugger cannot be instructed to continue executing the new program
from the change point on. The ldb workaround of breaking out of the current
exec but retaining the program state, doing an exec of the new program,
and immediately jumping back to the previous position, is limited by the
restrictions that the Python interpreter places on f_lineno. Ldb therefore
currently returns the program to an earlier point in the top-level namespace
that can be jumped to, which is not ideal.

There is another consequence to the interpreter’s f_lineno restrictions for
which no workaround has yet been implemented. Even though snapshots al-
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low navigation backwards in time, not necessarily being able to jump forwards
to their positions for live programming, also has an impact on their use by
the reverse debugger. Although the jump limitation could be circumvented in
section 4.3.4 by first executing to a position in the top-level namespace, which
becomes the position that is jumped to, the same cannot happen when a snap-
shot is activated when reversing. Once a new program is being traced by the
debugger, after following the procedure that is illustrated in Figure 4.3, new
snapshots that are created also trace the new program, but activating an ear-
lier snapshot reverts the debugger to the program that was being traced when
the snapshot was made. The snapshot would have to break out of the exec,
exec the new program, and jump back to its own position before continuing.
However, the same problem is encountered as earlier, where the snapshot posi-
tion cannot necessarily be jumped back to due to the limitations of f_lineno.
This is an unsolved problem. The only solution, so far, seems to be to activate
the closest previous snapshot that is at a position that can be jumped to, and
execute to the intended destination from there. This would have an impact
both on re-execution time, and on nondeterministic instructions, which are
automatically handled by the snapshot strategy, as explained in section 3.4.2.
The recording strategy, introduced in section 3.4.1, might prove useful here,
though not ideal. If a different way, that does not make use of a jump, cannot
be found of instructing the debugger to continue tracing a different program
from a specific point, it would be necessary to patch the Python interpreter.

As the Python programming language is already used widely in computer
programming education, I had hoped that patching the interpreter would not
be necessary, so that this system would be easier to roll out, and consequently
lead to faster adoption. However, patching of the interpreter appears to be
necessary, to minimise the amount of re-execution that needs to take place,
and so truly minimise the temporal separation between code changes and see-
ing its effects. The number of changes to make to the interpreter would be
minimal. The only change would be to remove the f_lineno jump restrictions
for registration of the new program with the debugger, as ldb already takes
care of the reasons for these restrictions, through forward execution from an
earlier snapshot. It would remove the issues with continuing execution of the
new program from a change point that is inside compound statements, and
the issues with not being able to jump to all snapshots that are still tracing
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the old program, so that they can also continue with execution of the new
program.

Once the best position to stop execution at can be determined through
a usability study, and once the debugger either allows tracing of a different
program from any point or no longer restricts jump positions for the optimal
ldb workaround to be implemented, the states of the program and the envi-
ronment will be able to fully reflect the new code with the minimal amount of
execution.

5.4 Future work

Some noteworthy future improvements are discussed in this section, while
smaller existing features and experiments, such as an undo command which
novice programmers would find useful, are documented by and in the ldb code
itself.

5.4.1 Architecture

As the main debugger process currently manages the execution of the user
program as well as the setting up and tearing down of the surrounding frame-
work and the breakpoint server, when the user program hangs and is stopped,
the framework and server are stopped as well. It would be better to divide
the parts of the debugger, so that the inside and outside parts, described in
section 4.3.4, are separate processes, which would communicate over UDS as
well. The outside part would do the setting up, tearing down, interaction with
the GUI and management of the different processes. The inside part would
manage only the execution of the user program, and would then be the main
process as defined in section 3.3.2, from which snapshots are made. It would
execute and report back to the outside part, then block, waiting for instruc-
tions. The outside part would block for interaction from the GUI, unless the
main process is busy executing, when it would not block but periodically check
for commands from the GUI as well as check on the status of the main process.
Should the user then reverse in the GUI when the user program seems to be
hanging, the command can be sent to the outside process, which would simply
terminate the main process and activate the previous snapshot. In this way,
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even when the user program is unresponsive, reversing would still be possible,
which is functionality that might often be required by novice programmers.

5.4.2 Platform independence

Ldb is currently limited to Unix-like operating systems, due to both the di-
rect use of the fork command, and the use of UDS. A greater degree of
platform independence could be gained by switching to the multiprocessing
package of the PSL for snapshot creation in general, and by using the slower
internet protocol suite for IPC when running on operating systems, such as
Windows, that do not support UDS, and to enable remote debugging. The
multiprocessing package is already used to start the debugger and break-
point server as separate processes. It requires that the process which starts a
new process, has to be the one to join it, but as this is already done in the
single-child model of ldb as detailed in section 3.9.4, it is not a problem. The
ldb GUI also already makes use of the cross-platform Tcl/Tk toolkit.

5.4.3 Minimising execution

As explained in section 4.3.4, in the current ldb implementation, the point to
return to after a change to the code of an entity, is the closest previous point
in the top-level namespace to where that entity is defined. It might be possible
to improve this in a number of ways. A promising strategy, which would allow
the debugger to return to a point closer to the first place where the entity is
used, instead of where it is defined, is to jump to the line where it is defined,
execute the line, then jump to the closest previous position in the top-level
namespace to where it is first used.

A further improvement could be to update its definition in the top-level
namespace directly, instead of by executing the line of its definition again, by
means of a hot-swap before the first time that it is used. The code of that
entity in the new program can be isolated, compiled and executed in a separate
namespace, from where the code object of the new entity can be extracted and
used to replace the code object of the old entity. An example of how this could
work is shown in Listing 5.1.

An entity has access to its surrounding namespaces when it is defined.
Testing showed that the access is affected when using this strategy, even though
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only the __code__ attribute and not the __closure__ attribute is changed.
As the __closure__ attribute is read-only, more work would need to be done
to determine whether the scope of the new entity can be made to be identical
to the previous scope. Tracing of the new entity also appears to be affected.

1 # EXTRACT NEW OBJECT CODE
2 objectName, endLine = CodeInfo.objectDefinedAt(line)
3 lines = newCode.splitlines(True)
4 newObjectCode = "".join(lines[(line-1):endLine])
5 # COMPILE AND EXEC IT
6 compiled = compile(newObjectCode, '<string>', 'exec')
7 namespace = {}
8 exec(compiled, namespace)
9 # REPLACE OLD OBJECT WITH NEW
10 user_context[objectName].__code__ = namespace[objectName].__code__

Listing 5.1: It might be possible to replace objects directly

5.4.4 Usability studies

Usability studies would answer a number of questions related to the live pro-
gramming part of ldb:

• Could computational overhead be reduced by only registering a code
change after a short interval of inactivity, or would that make the speed
of feedback too slow and lead to frustration?

• As it would need to be approximated, what would be the most intuitive
point, to novice programmers, for a program to return to after a code
change?

• To what degree, if any, would novice programmers be confused if that
point was defined only by a line number in a file?

5.5 Summary

This study was introduced in chapter 1, and the motivation behind it was
expanded in chapter 2, where reverse debugging and live programming were
introduced. The investigation of how they might be combined, was explained
to be the main goal of this study. Consideration was given to the approaches
of other reverse debugging and live programming systems, and some neces-
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sary clarifications were provided. It was found that, although they could work
well together, no combination of reverse debugging and live programming for
a general programming language had been attempted before. The design and
implementation of a robust reverse debugger, informed by the top reverse de-
bugging approaches so far, was detailed in chapter 3. It was constructed in
such a way that it allowed for higher levels of liveness and future visualisation.
The strategies for bringing higher levels of liveness to the reverse debugger
were discussed in chapter 4, and the implementation of the optimal strat-
egy resulted in the live reverse debugger, ldb. The results of the study were
discussed in chapter 5. It showed how the mechanisms used for the reverse de-
bugger also proved useful for implementing the live programming features, and
that the objectives were achieved. Improvements and future possibilities were
also explored. Although work remains to be done, ldb already forms a solid
foundation on which to combine visuals with language, for use in computer
programming education.
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