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Abstract

Introduction: Acute liver failure is a rare disease with high mortality and liver transplantation is the only life saving therapy.
Accurate prognosis of ALF is crucial for proper intervention.

Aim: To identify and characterize newly developed prognostic models of mortality for ALF patients, assess study quality,
identify important variables and provide recommendations for the development of improved models in the future.

Methods: The online databases MEDLINEH (1950–2012) and EMBASEH (1980–2012) were searched for English-language
articles that reported original data from clinical trials or observational studies on prognostic models in ALF patients. Studies
were included if they developed a new model or modified existing prognostic models. The studies were evaluated based on
an existing framework for scoring the methodological and reporting quality of prognostic models.

Results: Twenty studies were included, of which 18 reported on newly developed models, 1 on modification of the Kings
College Criteria (KCC) and 1 on the Model for End-Stage Liver Disease (MELD). Ten studies compared the newly developed
models to previously existing models (e.g. KCC); they all reported that the new models were superior. In the 12-point
methodological quality score, only one study scored full points. On the 38-point reporting score, no study scored full points.
There was a general lack of reporting on missing values. In addition, none of the studies used performance measures for
calibration and accuracy (e.g. Hosmer-Lemeshow statistics, Brier score), and only 5 studies used the AUC as a measure of
discrimination.

Conclusions: There are many studies on prognostic models for ALF but they show methodological and reporting
limitations. Future studies could be improved by better reporting and handling of missing data, the inclusion of model
calibration aspects, use of absolute risk measures, explicit considerations for variable selection, the use of a more extensive
set of reference models and more thorough validation.
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Introduction

Acute liver failure (ALF), also known as fulminant hepatic

failure (FHF), is a rare disease associated with a very high mortality

ranging from 60 to 90% depending on the etiology and the clinical

experience of the reference center [1]. An early and exact

assessment of the severity of ALF together with a prediction of its

further development is critical in order to determine the further

management of the patient. Spontaneous recovery occurs in a

minority of patients. Although liver support devices can be

considered as a temporary treatment, in most cases liver

transplantation (LT) remains the only life saving treatment of

irreversible ALF [2]. LT has been shown to improve outcome,

achieving survival rates up to 80% [3]. The timely prediction of

spontaneous recovery helps prevent LT and also the need for

lifelong immunosuppressive therapy. Timely assessing the likeli-

hood of mortality is important for decisions on emergency liver

transplantation. Due to severe shortage of liver donors it is of

utmost importance to distinguish patients requiring transplanta-

tion from those who will survive by receiving only intensive

medical care. Predicting whether the patient with ALF will require

transplantation or will recover with medical management alone is

difficult.

A number of prognostic models have been used for outcome

prediction in ALF patients to select patients in need of LT. The

most widely applied ones are the King’s College criteria (KCC),

Clichy criteria, and the Model for End-Stage Liver Disease

(MELD), which was originally developed to estimate post-
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procedural mortality in cirrhotic patients undergoing transjugular

intrahepatic porto-systemic shunts (TIPS) [1], [4], [5]. The models

have shown inconsistent reproducibility, prognostic accuracy and

therefore cannot be taken to reliably predict mortality in ALF and

the need for a better prognostic model remains [6], [7], [1]. Other

prognostic models originally developed to measure the severity of

illness for patients admitted to intensive care units, like the Acute

Physiology and Chronic Health Evaluation II (APACHE II),

Sequential Organ Failure Assessment (SOFA) and Simplified

Acute Physiology Score III (SAPS III) also have been applied in

ALF patients. Cholongitas et al. [8] showed that scores used to

quantify severity of illness such as APACHE II or to monitor organ

dysfunction like SOFA can be also used as early prognostic

markers in ALF patients. A recent comparison among KCC,

MELD, SOFA and APACHE II scores in patients with

acetaminophen-induced acute liver failure concluded that KCC

had the highest specificity (0.83) but lowest sensitivity (0.47) and

SOFA had the best discriminative ability (Area Under the

Receiver Operating Characteristic curve, AUC = 0.79) [9].

McPhail et al. in a recent meta-analysis [10] considered aspects

of methodological quality of studies reporting the performance of

only the KCC model and restricted the analysis to only

acetaminophen-induced ALF. Other validation studies of the

most widely applied models (such as KCC, Clichy criteria, MELD)

can be found in the literature [1], [4], [11], [12]. However, to date

there is no systematic review on the newly developed prognostic

models for ALF patients.

The objective of this review was to identify and characterize

prognostic models developed to predict mortality of ALF patients,

and assess the quality of their respective studies. In addition, we

identify the variables used for development of the models. Our

review provides recommendations for future research on predic-

tion models for ALF patients.

Methods

Search strategy and data sources
We re-used the search strategy employed in our prior published

systematic review on ALF definitions [13]. Briefly, Ovid

Embase(R) (1980 to 2012), Ovid MEDLINE(R) (1950 to 2012)

and Ovid MEDLINE(R) In-Process & Other Non-Indexed

Citations (1950 to 2012) for journal articles were searched based

on keywords in title, abstract and MeSH terms. The following

query was used: (prognosis OR prognostic OR predict*) AND

(acute liver failure OR fulminant hepatic failure OR acute liver

injury OR acute hepatic failure OR (acute on chronic AND liver

failure)). ‘‘Liver failure’’ and ‘‘prognosis’’ were used as MeSh

terms. The final search considered studies published up to 01

January 2012.

Inclusion and exclusion criteria
We included articles only when they reported original data from

a clinical trial or observational study on patients with ALF and if

one of their main objectives was either developing one or more

new prognostic models or modifying existing ones for predicting

outcome (mortality/survival or LT) for ALF patients. Validation

studies (defined as studies that validated the performance of earlier

published models, without modification, on new data sets)

assessing the performance of the established prediction models

KCC, MELD, and Clichy criteria were excluded.

All duplicate articles resulting from the query above were

removed and only English articles were considered. In the first step

we excluded conference abstracts, paper reviews, comments and

case studies. In the next step irrelevant studies were excluded

based on titles and abstracts, followed by exclusion of the

remaining studies based on their full text.

Two reviewers independently screened the titles and abstracts.

Discrepancies between the 2 reviewers were resolved by consensus

involving a 3rd reviewer. Figure S1 displays the search flowchart.

Data collection and analysis
The studies that were included were classified as either

developing a new model or modifying an existing model. A study

developing a new model was termed a development study, in that it

described and assessed the performance of a prediction model that

had not previously been published. Development studies had to

include at least one newly developed model, but may also have

included other established existing models, such as the KCC,

MELD, Clichy criteria, or any other more recently developed

model for comparison. A study was classified as modifying an

existing model if it described and assessed a modified version of a

previously published model by, for example, adding or removing

variables.

For each of the included studies, the general study character-

istics (e.g. setting, study year, inclusion criteria, outcome and

patients’ characteristics) and model characteristics (e.g. the

reported intended use of the prognostic model, technique(s) used

for development and performance and validation of the model)

were extracted. The quality of the study was reported using a

structured data collection form as proposed by Medlock et al. [14].

As before, two reviewers extracted and summarized data and

scored the methodological and reporting quality. Discrepancies

between the reviewers were resolved by involving a 3rd reviewer.

Prediction models
We distinguished two types of prediction models: regression

models (e.g. survival Cox model, linear or logistic model); or

decision models (e.g. a decision tree, discriminant analysis, or a

decision rule based on a score variable). For the description of the

models we recorded: the timing of variable measurement (e.g. at

admission or peak value during some interval), type of prediction

model, strategy of model development and the final model itself in

the form of a prognostic formula or a decision rule.

Variables
All input variables (potential predictors or confounders that

were considered during model development), also known as

covariates, were listed for each prediction model. We also report

on the final input variables that remained in the final model after

employing a variable elimination strategy.

Prognostic performance measures
The performance measures were divided into the following 4

categories:

1) Statistical measures of performance based on a given cut-off

point that result in a binary prediction (0 or 1): sensitivity,

specificity, positive predictive value (PPV), negative predic-

tive value (NPV), predictive accuracy (PA), positive likeli-

hood ratio (PLR) and negative likelihood ratio (NLR).

2) Discrimination measures assessing the ability of the model to

assign higher predicted probabilities of the outcome (e.g.

death or LT) in patients actually having the outcome than

those not having it. The most common measure is the AUC

(Area Under the Receiver Operating Characteristic (ROC)

curve).

Systematic Review of ALF Prediction Models
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3) Calibration measures assessing the proximity between the

predicted probabilities and the actual risk of a group of

similar patients. For example, the model was considered to

be well calibrated when 25% of patients with a predicted

mortality of 25% did indeed have the event. Common

measures of (mis)calibration are the Hosmer-Lemeshow

statistics.

4) Accuracy measures assessing the average proximity of a

predicted probability for an individual patient to his/her

actual outcome. These include elements of both discrimi-

nation and calibration [15] and are typically measured by

the Brier score or Brier skill score (which is the proportion of

explained variance).

We required that a study report on at least 2 of the above-

mentioned performance categories in order to score positively in

the quality assessment framework on model performance.

Validation pertains to assessing the statistical performance of a

model. In order for prognostic models to be used in clinical

practice they need to be credible, and validation is an important

component for reinforcing model credibility. Apparent validation

(estimating performance on the same sample from which the

model was developed) may be biased due to leveraging on

coincidental correlations in the development sample. For studies

developing new models it is imperative to at least internally

validate them. Internal validation means estimating the perfor-

mance that would be obtained from a different sample but from

the same population of the developmental dataset. This can be

obtained by either estimating performance on a separate reserved

subsample from the developmental sample or by resampling

techniques from the developmental set using bootstrap or cross-

validation techniques. Validation performed on a separate

prospective dataset from the same setting is called temporal

validation, and validation on a dataset in a different setting is

called external validation [16].

Quality assessment
The framework proposed by Medlock et al. [14] which was in

part based on Minne et al. [17] and Hayden et al. [18] was used for

assessment of the quality of content of the studies and the

assessment of the performance of the models.

The framework has two sections: a reporting quality section for

assessing the quality of reporting in the study, and a methodolog-

ical section consisting of a number of questions assessing the rigor

of model development and validation.

The reporting score consisted of 19 items (38 possible points)

including description of study population, choice of predictors/

variables to test, missing data, outcome measure and model

description including its intended use and performance measures.

The methodological score consisted of 6 items (12 possible

points) including a sufficient number of cases to support the

number of variables, a representative population and validation.

Each item in the framework was rated as no (N, with 0 points),

partly (P, with 1 point), or yes (Y, with 2 points). For example, the

setting and study period should be reported to score 2 points and

when only one is reported it scores 1 point.

The higher the score in each part of the framework was

considered as higher quality of the study in that part.

Results

Study characteristics
Searching the online databases resulted in 1233 articles. Initial

screening of titles and abstracts resulted in 125 articles for full text

review, of which 20 articles met our inclusion criteria and were

included in this review.

Detailed characteristics of these studies are presented in Table

S1. The smallest and largest study included 23 and 588 patients,

respectively. Mean (SD) and median [IQR] of sample size was 159

(164) and 99 [60–171], respectively.

In one study, gender was not reported (17% of patients), and

59% of patients were female among the remaining studies.

Five studies were conducted prospectively, 6 studies retrospec-

tively and in 9 studies the data collection method was not reported.

Model characteristics
Models. The included studies reported on 46 models.

Eighteen studies proposed 26 new models and were considered

as development studies. In one study the modification of an

existing model, the KCC and in one other study the MELD were

proposed. These models are described in Table S1. Models were

developed to predict mortality (11 studies), survival (3 studies),

need for transplantation (2 studies), and the combined outcome of

death or transplantation (in 4 studies).

The majority of the studies used logistic regression analysis (14/

20), 3 used Cox regression ([19], [20], [21]), 1 used both logistic

and Cox regression [22], 2 used linear regression ([23], [24]), and

1 discriminant analysis [25]. Most of the newly developed models

used variables measured at admission; some studies ([3], [26], [27])

used both the admission and peak values of variables during

admission. One study used variables measured at the time of onset

of grade 3–4 HE [28], 1 study [29] at the time of diagnosis

(defined as the time when the patient fulfilled the diagnostic

criteria of ALF, in Japan), 1 study [24] at days 1, 4, 8 and 15

following diagnosis, and 1 study [20] at the time of testing the

serum sample for IgM anti-HBc.

Three studies performed temporal validation of the model’s

predictive performance using a second cohort of patients from the

same hospital admitted after those in the development set. One

study performed internal validation of the model using the

resampling technique of leave-one-out where for each patient P

a model is developed based on all other patients and tested on P

[25]. The remaining studies did not perform any internal,

temporal or external validation of the predictive performance of

their models.

The most common performance measures reported in the

studies were: sensitivity, specificity, PPV or NPV (16 studies). The

thresholds in these performance measures depended on specific

covariate patterns, instead of absolute probabilities. For example,

in a model with three risk factors, 3 PPVs were calculated

corresponding to patients having any one, or any two, or all risk

factors. The next most commonly used performance measure was

the AUC (5 studies). None of the studies used Hosmer-Lemeshow

statistics, the Brier score or the Brier skill score.

Variables. Table S2 in the supplement lists 103 prognostic

indicators (input variables) that were considered as potential

predictors in the developed models. The table also includes the

cut-off values for obtaining categorical indicators from continuous

ones, which varied among studies; otherwise, the indicator was

used as a continuous variable. Table 1 lists the indicators

considered in more than ten studies in addition to the number

of studies in which the indicator was categorized. The most

commonly used indicator was bilirubin (16 times), which was

selected in 8 final models. Twenty-three of 103 variables were use

as categorical variables. The most commonly categorized variable

was prothrombin time (PT, 10 times).

Quality assessment framework. Table S3 in the supple-

ment shows the scores of each study in terms of reporting and
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methodological quality. Reporting scores ranged from 17 to

30 points (median 24 out of a maximum of 38). Items scoring

lower on reporting quality pertain to lack of reporting on missing

values, on performance measures, and on reporting predicted

probabilities or mortality percentages for covariate patterns for at

least two specific groups of patients. Only 6 studies reported

missing values, four of which reported on the way they were

handled, and only one quantified the number of missing values.

Other items scoring lower include giving the reason for the choice

of the initial variables in the model and reporting on the spread of

the primary outcome measure (confidence intervals). The best

scoring items of the reporting score include reporting on patients’

characteristic, defining and including important variables, and

reporting on the intended use and a type of the model.

Methodological scores ranged from 7 to 12 points (median 10)

out of a maximum of 12. Validation was performed in only 4

studies (3 studies used temporal validation and 1 used internal

validation relying on the leave-one-out method). The best scoring

items of the methodological part of the framework was reporting

on the number of patients, number of events and number of

variables.

For example, for the first item of the methodological score study

by Hadem et al. [23] a score of 2 points ( = Y, Yes) was assigned

since the number of events per variable in the final model was

sufficient (.10). Study [30] received 1 point ( = P, Partially) since

the number of events per variable was between 5 and 10 and study

[19] received 0 points ( = N, No) because this ratio was below 5.

The number of events is defined as the minimum of the number of

ALF cases and non-cases. The study by Hadem et al. [23] scored

on almost all items of the methodological score the maximum

2 points, except for the validation of the model, for which it

received 0 points. Points scored for each item were summed up

and the maximum attainable methodological score was 12 and for

the reporting score 38.

In an additional sub-analysis (not shown, available from the

corresponding author) we investigated the association between the

quality scores and each of year of publication, number of article

citations, and (current) impact factor of the journal where the

study was published. There was a positive significant association

between the year of publication and the reporting (but not the

methodological) quality score. This was most pronounced after

2005 (mean reporting score till 2005 was 21.7 and after 2005 was

26.9). There were no relevant associations between journal impact

factor or citations with the (methodological and reporting) quality

scores.

Comparison to other models. Ten studies, next to devel-

oping at least one new model, simultaneously compared the new

models to other existing historical models such as the KCC,

MELD, SAPS III and SOFA, but never to another recently

developed model. The most often reported reference model was

KCC (10 studies), followed by MELD (5 studies), SAPS III and

SOFA (each 1 study). Performance superiority was based simply

on showing that one or more of the following measures was larger

than those of the reference model: sensitivity, specificity, PPV,

NPV, PA, PLR, NLR (9 studies; reference model was KCC in 9

studies, MELD in 5 studies, SOFA in 1 study); or on AUC (3

studies; reference model was KCC in 3 studies, MELD in 3

studies, SAPS III in 1 study). All those studies declared that their

models were better than the established models. One study [29]

showed that the reference model (KCC), when used as a covariate

together with CTLV/SLV (ratio computed tomography-derived

liver volume/standard liver volume) was not statistically signifi-

cantly (p,0.05) associated with the outcome. This study suggested

also that the model based on CTLV/SLV was not inferior to

MELD and KCC in terms of sensitivity, specificity, PPV, NPV,

PA as reported in the literature.

Discussion

Principal findings
In this review we identified, summarized and assessed the

quality of available models in the literature for prediction of poor

outcome in adult patients with ALF. There is a marked

heterogeneity in the included studies and models (shown in Table

S2 in the supplement) in terms of: variability of the characteristics

of included populations, inclusion criteria, mortality rates,

outcome (inclusion or exclusion of transplanted patients), consid-

ered predictors, and choice of reference models for comparison.

Of note, 45% of the studies did not report whether data were

collected prospectively or retrospectively. Although all studies

aimed at including ALF patients, the definition of this disease

differs among studies [13]. Despite this heterogeneity some general

remarks can be made.

Model development usually relied on regression analysis,

including logistic, linear or Cox regression (survival analysis).

The models were usually constructed from clinical and/or

demographic data to predict mortality or survival, only four

studies used the combined outcome of death and transplantation.

Generally the intended use of the developed models was clear,

namely supporting decisions on whether to perform transplanta-

tion. However, half of the studies included small samples (,100

patients) and performed no internal, temporal or external

validation. None of the studies reported on how well the model

was calibrated. This is notable, as decision makers need to know

how well a predicted probability corresponds to the true risk in the

population. All studies comparing newly developed models with

Table 1. Summary of the most often studied indicators (n = number of studies).

Indicator Considered for developing the model (n) Selected in the final model (n)* Represented as categorical (n)

Bilirubin total 16 8 9

Age 15 8 8

HE 15 9 9

PT 14 9 10

Creatinine 13 5 5

Sex 13 1 -

ALT 11 1 2

*if a study reported more than 1 model, a variable selected in at least 1 model was counted one time.
doi:10.1371/journal.pone.0050952.t001
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the ‘‘standard’’ models like MELD and/or KCC, SOFA and

SAPS reported improved performance on these established models

based on sensitivity, specificity, PPV, NPV, PA, PLR, and NLR.

However, only 3 studies used additionally the AUC, and there are

no calibration-related comparisons. Surprisingly the commonly

used Clichy criteria were not used as a reference standard in the

included studies. In general the apparent arbitrariness of selecting

the reference models raises concerns about reporting bias. It will

be useful when future studies attempt to compare the developed

models to a standard set of other published reference models,

including newly developed ones, for the same population.

Strengths and limitations
To our knowledge this is the first systematic review exclusively

dedicated to the assessment of the performance of newly

developed prognostic models for adult patients with ALF. In our

former review [13] we reported that there is a wide diversity in

ALF definitions used in the literature, which hinders comparability

and quantitative analysis among studies. In this review we

identified and characterized newly developed prognostic models

of mortality for ALF patients and assessed the quality of their

respective studies. Our search has been extensive and we used an

earlier published framework for quality assessment [14].

In the systematic review by Craig et al. [31] 14 studies were

included which test the association of variables with poor outcome

in paracetamol-induced ALF patients. The quality of these studies

were assessed semi-quantitatively using a coarse grading system

(poor, moderate, good or excellent) along six potential sources of

bias in prognostic studies [18]. Another recent meta-analysis by

McPhail et al. [10] assessed the quality of studies validating KCC

and restricted to acetaminophen-induced ALF. These studies are

excluded in our review. Our review included studies pertaining to

ALF patients independently of aetiology; it extends the quality

assessment framework in [12] and distinguishes between reporting

and methodological quality; it includes only prognostic models,

not merely tests of pre-selected variables; and it considers newly

developed models rather than validation of existing ones.

We intentionally excluded external validation studies like [1]

and [4] since these would correspond to the already established

models (MELD, KCC, Clichy Criteria) and there are already

existing reviews on those models such as [10], [11], [12], [32]. In

our review we did include the studies on the development of KCC

[27] and Clichy Criteria [20] for ALF patients. There is no journal

paper describing the development of the MELD for ALF patients.

MELD has been primary designed to estimate short-term post-

procedural mortality of cirrhotic patients undergoing transjugular

intrahepatic portosystemic shunt [33], and later in patients with

end-stage chronic liver disease of diverse aetiology and severity

[34]. In 2002 MELD was implemented in the USA by the United

Network for Organ Sharing for organ allocation in patients with

chronic liver disease awaiting LT [21]. In 2003 in a conference

abstract Aydin et al. [35] suggested that MELD can be used as a

complementary tool to predict prognosis in ALF patients. MELD

received increasingly more attention and was applied as predictor

for ALF patients [21]. We hence consider this latter paper as the

first one officially dedicated to ALF patients and included in our

review.

Implications and recommendations
In order to be clinically useful, predictive models need to be

credible. This credibility is largely dependent on the model

validity. As reported by Cook [15] evaluation of models for

medical use should take the purpose of the model into account.

Evaluation of prognostic models should not be confined to only

ROC curve analysis, but should assess various relevant perfor-

mance measure covering at least both discrimination and

calibration.

Validation of a model is necessary to provide evidence of its

potential to accurately predict outcomes especially at the

individual patient level. As reported by Altman et al. [36] un-

validated models should not be used in clinical practice. However,

our review revealed that the great majority of models have not

even been internally validated nor has their calibration been

assessed. Surprisingly, only four studies [37], [24], [27], [25]

performed some form of validation of their models. Future studies

should provide calibration performance assessment (using e.g. the

Hosmer-Lemeshow goodness-of-fit statistics or, even better, the

Brier score) and should undergo adequate internal validation, a

good choice would be the use of bootstrap techniques to this end.

Moreover, in an additional search we found than none of these

models has been externally validated elsewhere.

Many studies (e.g. [29], [24]) have considered the transplanted

patient group and non-survivors in one group. Patients who

receive transplantation may consist of the most severe cases and

would have died without transplantation. Those transplanted

patients are probably similar to those who do not survive. A

separate analysis should be performed to compare the transplan-

tation patient characteristics to the non-survivor group, like in the

study of Dabos et al. [38]. When the groups are similar one can

consider forming the group with the combined outcome ‘‘trans-

planted or died,’’ at least for sensitivity analysis.

In the literature different kinds of models are applied, like

logistic regression or Cox regression. One should consider the aim

of the study when developing a model. Logistic regression is

appropriate when the aim of the study is prediction of an event

(mortality or survival) without regard to how long it took for the

event to occur. When the aim of the study is to predict the time

until event occurrence then the Cox regression is an appropriate

choice.

Most of the studies did not report on missing data. Only five

studies [3], [27], [37], [38], [39] reported how they handled the

missing values. Excluding cases with missing values reduces the

sample size and can bias the results. One should compare cases

with missing and non-missing values on other known variables to

check for bias. In addition (multiple) imputation of the missing

variables should be considered [40].

There was marked heterogeneity in the included variables. The

majority of the evaluated variables where used only once (65/99).

The reason for choosing the initial variables was often not clear.

Only four studies [3], [20], [28], [29] stated this reason. Selection

of the variables entered into the multivariate analysis was mostly

based on the significant results from univariate analysis. When the

number of variables is not excessive one should consider whether

variable selection is required, and if so, consider using an

information criterion (such as the Akaike Information Criterion)

in the (e.g. stepwise) selection process instead of relying on p-values

#0.05 in univariate analysis.

Many studies did not report why and how the continuous

variables were categorized. Categorization causes information loss

and has consequently less precise coefficient estimation and

reduced statistical power to detect an association between the

variable and patient outcome. For example, in the study of Tylor et

al. [19] when creatinine was considered as a continuous variable it

was significantly associated with mortality in univariate analysis,

but not when it was used as a categorical variable. Categorization

of continuous variables without compelling reasons should hence

be avoided. If categorization is unavoidable then the choice for the

cut-off points should be motivated.

Systematic Review of ALF Prediction Models
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Because many variables indicate categories, or are represented

as such, most models will have only a small set of different

predicted probabilities. For example when using 2 binary variables

in the model there are at most 4 discrete different predicted

probabilities and no continuous range. Continuity in the predicted

probability would allow models to exhibit smooth behaviour in

which small changes in the covariate values are reflected by small

changes in the outcome. This leads to better distinctions among

patients.

In our systematic review we extracted variables which were used

for constructing the models (Table S2). These variables comprise a

huge number of possible predictors. Based on clinical experience

and from a theoretical point of view we would suggest to include

variables involved in the pathophysiology of ALF as well as age

and grade of HE. Specifically the following variables may be

considered: plasma ammonia, which rises as a consequence of

impaired hepatic urea synthesis and contributes to the develop-

ment of HE; plasma bilirubine, which increases as a consequence

of impaired biliary excretion and coagulopathy as a consequence

of decreased protein synthesis, especially of clotting factors,

expressed by INR. We also think that some aspect of impaired

capacity of the ALF patient to maintain metabolic homeostasis

should be considered. In this respect plasma lactate might be

relevant. In addition the biomarkers of the inflammatory response

of ALF might be considered: e.g. plasma ratio of IL6/IL10.

Due to the methodological and reporting quality limitations

generally encountered in the included studies we would recom-

mend to develop new models that consider most important

relevant variables and follow the methodological and reporting

recommendations presented in this study. The predictive perfor-

mance (and hopefully clinical value) of such models will need to be

tested in prospective large cohorts of ALF patients with different

etiologies.

In our sub-analysis we concluded that there was no relevant

association between any of impact factor and citations with any of

the quality of methodological and reporting score but that there

was a clear positive association between year of publication and

reporting score.

Conclusion
This systematic review provides an overview of models for

prediction of poor outcome in patients with acute liver failure.

These prognostic models were developed to support clinicians’

decisions, but they should be improved before being clinically

useful. Future studies could be improved by paying more attention

to (internal) validation, the inclusion of model calibration aspects,

better consideration of the transplantation patient group, better

reporting and handling of missing data, use of absolute risk

measures, explicit considerations for considering and selecting

predictors, the use of a more extensive set of reference models, and

the inclusion of continuous variables without categorizing them, as

well as clear reporting on the study design. It is hoped that the

results of this review can be useful for developers of future

prognostic models for ALF patients.
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