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Abstract

The high sickle cell gene frequency has been hypothesised to be related to the protective
advantage against malaria disease among heterozygous individuals. In this thesis, we
study the interaction between the dynamics of malaria and sickle cell gene. The main aim
is to investigate the impact of malaria treatment on the frequency of sickle cell gene. For
this, we develop a mathematical model that describes the interactions between malaria
and sickle cell gene under malaria treatment. The model includes both homozygous for
the normal gene (AA) and heterozygous for sickle cell gene (AS) and assumes that AS
individuals are not treated since they do not show clinical symptoms. We first analyse
the model without malaria treatment, using singular perturbation techniques, basing on
the fact that epidemiological and demographical dynamics occur on two different time
scales (fast and slow dynamics). Our analysis on the fast time scale shows that high
sickle cell gene frequency leads to high endemic levels for longer duration of parasitemia
among heterozygous individuals. However, if the duration of parasitemia is reduced then
high sickle cell gene frequency is associated with low endemic levels. We also note that
on the slow time scale, the invasion ability of sickle cell gene is dependent on the malaria
epidemiological parameters. The invasion coefficient given as the difference in the weighted
death rates of AA and AS individuals is used as a measure to determine the establishment
of sickle cell gene in the population. Results show that, the gene may establish itself if the
weighted death rate of AA individuals is greater than that of AS individuals otherwise it
fails. We note that, high mortality of AA individuals leads to establishment of sickle cell
gene in the population. Then we analysed the model with treatment, our results indicate
that the frequency of sickle cell gene decreases with an increase in the recovery rate of AA
individuals. We thus conclude that eradication of malaria disease will lead to a reduction
in sickle cell gene frequency.

Stellenbosch University  http://scholar.sun.ac.za



Opsomming

Daar word veronderstel dat die hoë sekelsel geenfrekwensie onder heterosigotiese individue
verwant is aan die beskermende voordeel teen malaria siekte. In hierdie verhandeling
ondersoek ons die wisselwerking tussen die dinamika van malaria en die sekelsel geen. Die
hoofdoel is om die invloed van malaria behandeling op die frekwensie van die sekelsel geen
te ondersoek. Hiervoor het ons ‘n wiskundige model ontwikkel, wat die wisselwerking
tussen die dinamika van malaria en die sekelsel geen met malaria behandeling, beskryf.
Die model sluit beide homosigotiese vir die normale geen (AA) en heterosigotiese vir die
sekelsel geen (AS) in, en neem aan dat AS individue nie behandel is nie omdat hulle nie
die eerste kliniese simptome getoon het nie. Ons ontleed eers die model sonder malaria
behandeling, deur gebruik te maak van enkelvoudige pertubasie tegnieke, wat gegrond is
op die feit dat epidemiologiese en demografiese dinamika plaasvind op twee verskillende
tydskale (vinnige en stadige dinamika). Ons ontleding op die vinnige tydskaal dui dat
hoë sekelsel geenfrekwensie onder heterosigotiese individue lei tot hoë endemiese vlakke
vir ‘n langer duur van parasitemie. Nietemin, as die duur van parasitemie afneem, dan
word hoë sekelsel geenfrekwensie verbind met lae endemiese vlakke. Ons neem ook waar
dat op die stadige skaal die indringingsvermoë van die sekelsel afhanklik is van malaria
se epidemiologiese parameters. Die indringingskoëffisiënt wat bereken word as die verskil
van die geweegde sterftekoerse van AA en AS individue, word gebruik as ‘n maatstaf om
die vestiging van die sekelsel geen in die bevolking te bepaal. Resultate toon dat die geen
homself kan vestig as die geweegde sterftekoers van AA individue groter is as dié van die AS
individue, andersins misluk dit. Ons let op dat hoë mortaliteit van AA individue lei tot die
vestiging van die sekelsel geen in die bevolking. Daarna het ons die model wat behandeling
insluit ge-analiseer en ons resultate toon dat die frekwensie van die sekelsel geen afneem
met ‘n toename in die herstelkoers van AA individue. Ons kom dus tot die gevolgtrekking
dat die uitwissing van malaria siekte sal lei tot die afname in sekelsel geenfrekwensie.
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Chapter 1

Introduction

1.1 Background: About malaria

Malaria comes from an Italian word mal’aria meaning “ bad air ”. It is an infectious disease
that is caused by a parasite of the genus plasmodium from the protozoa group. It is trans-
mitted from one person to another through bites of infected female anopheles mosquitoes
(malaria-vectors). There are four different species of parasite leading to malaria disease
among humans. These include; plasmodium falciparum, plasmodium vivax, plasmodium
malarie and plasmodium ovale. The fact that the parasite constantly changes its immune
make up, the four species remain a threat to mankind even with the current advances in
medicine. With this looming, it is no wonder that no malaria vaccine has been discovered
so far. Of the four species, plasmodium falciparum is the most common and widely spread
fatal species especially in Africa. Its ability to attack all red blood cells both old and young
causing them to clamp together thereby blocking vessels in vital organs and enlargement
of the spleen makes it a common species [14]. Plasmodium vivax causes clinical malaria
but it is not as fatal as plasmodium falciparum. Plasmodium malarie and plasmodium
ovale also cause clinical malaria but not as frequently as the other two and can stay in the
body for a long period of time.

The high spread of malaria has been attributed to;

• Mosquito resistance to the usual insecticide sprays.

1
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Chapter 1. Introduction 2

• The economic status and control operations of a particular setting.

• The resistance of some parasite strains to commonly used anti-malaria drugs like
chloroquine, quinine e.t.c.

• The population’s low awareness of the disease and preventative measures.

However, eradication programmes that are based on vector control and anti-malaria drugs
have successfully eradicated malaria from Europe, Asia and North America [46]. In the
tropics and sub-tropic regions, malaria has remained prevelent. This is because the tropics
and sub-tropic regions have favourable climatic conditions allowing continuous breeding
and survival of the mosquitoes. Temperatures between 220C and 320C are suitable for
vector survival hence high transmission while temperatures below 180C hinder mosquito
survival [35].

About 40% of the world’s population live in malaria endemic areas [13]. In 2009, WHO1

reported that, about 250 million malaria cases and one million deaths are experienced
annually [2]. These were noted to occur mainly among pregnant women and children
below five years. It is estimated that every 45 seconds, a child dies of malaria which
accounts for about 20% of all childhood deaths [3].

1.1.1 The plasmodium life cycle

The plasmodium parasite has part of its life cycle in the mosquito (vector) and the other
part in the human (host). It starts its life cycle in the mosquito where it inhabits the
salivary gland of the female anopheles mosquito as sporozoites. When a healthy individual
is bitten by such a mosquito, the sporozoites are transmitted into the human body through
the blood stream. They are then carried by the circulatory system to the liver in about 30
minutes. In the liver cells, the parasite transforms into feeding trophozoites that undergo
asexual reproduction (schizogony) giving rise to thousands of merozoites in about two
weeks.

The merozoites then infect the red blood cells within 48 hours. The merozoites differentiate
further in the cytoplasm to form enlarged round shaped trophozites. These also undergo

1World Health Organisation
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Chapter 1. Introduction 3

asexual reproduction producing thousands of merozoites just as in the liver. When the
infected red blood cells burst, they release these merozoites thereby infecting the remaining
healthy red blood cells. Infected red blood cells circulate to other body organs such as the
brain, heart and liver hence causing damage.
The cycle of the plasmodium parasite continues as some merozoites differentiate into male
and female gametocytes that are later taken up by the mosquito on the next meal bite.
The gametocytes undergo gametonosis in the body of the mosquito to form male and
female gametes. The male gametes divide giving rise to flagellated microgametes that
later fertilize the female gametes to form a zygote. The zygote develops into ookinete2

that passes through the epithelium of the midgut and develops into oocyst on the exterior
wall of the midgut. The oocyst matures to form an enlarged structure and after several
divisions raptures and releases hundreds of sporozoites that are then taken to the salivary
gland of the mosquito [18] ( Figure 1.1). The cycle is repeated as the sporozoites are
injected into the human body on the next meal bite.

The incubation period of the malaria parasite is about 7–30 days before symptoms such as
fever, shivering, severe pain in the joints, vomiting, headaches among others can manifest.
Symptoms like very high body temperature, drowsiness, convulsions and coma indicate
severe cases and can lead to death if not attended to and treated in time.

2the fertilized form of the malarial parasite in a mosquito’s body
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Chapter 1. Introduction 4

Figure. 1.1. Malaria parasite life cycle [1].

1.1.2 Malaria treatment and control

Malaria is treated using medications such as chloroquine, sulfadoxine-pyrimethamine (Fan-
sidar), mefloquine (Lariam) and quinine after a laboratory test confirming the existence of
the parasite. However, severe cases may require hospitalization where special treatments
like intravenous fluids, blood transfusion, kidney diagnosis and oxygen therapy may be ad-
ministered. Sometimes proper diagnosis is not done either due to ignorance or poverty and
people resort to self medication. This has led to the high spread of drug resistant malaria.
For example, chloroquine which was the most commonly used effective drug has been re-
placed by other drugs due the parasite’s resistance towards it. Depending on the parasite
species or severity of malaria diagnosed, many lives can be saved if proper treatment is
administered in time.

Besides treatment, other control strategies for malaria have been adopted. For instance,
the use of Dichloro-Diphenyl Trichloroethane (DDT) on mosquitoes which was invented
during World War II in the fight against malaria, administering of anti-malaria drugs to
people travelling to malaria endemic areas and the use of mosquito treated nets especially
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Chapter 1. Introduction 5

for children and pregnant women [29, 35].
In spite of all these control measures in place, malaria has remained prevalent in most
African countries. This has been attributed to the favourable temperature, parasite resis-
tance to anti-malaria drugs and mosquito resistance to insecticides such as DDT. However,
the presence of the recessive sickle cell gene in heterozygous form also plays a part.

1.2 The S-gene

S-gene stands for the sickle cell gene. It is an inherited genetic disorder that is characterized
by the red blood cell assuming an abnormal, rigid and sickle shape (Figure 1.2). Sickling
of the red blood cells occurs as a result of the non synonymous substitution of the sixth
amino acid glutamic acid with valine in the β− chain of the haemoglobin. This is due to
the mutation of a single nucleotide from GAG to GTG codon which causes the change in
the haemoglobin gene and function [17].

Sickled red blood cell have reduced oxygen carrying capacity and usually get stuck in
small blood vessels causing organ damage. They are continuously destroyed by the spleen
in about 10 – 20 days as compared to 120 days for normal red blood cells. The bone
marrow fails to produce new cells fast enough to replace the destroyed sickled cells which
causes more complications among people having it.
Every individual has two copies of haemoglobin inherited one from the father and the
other from the mother. If both copies are normal, then he/she is said to be homozygous
for HbAA (AA genotype). If a child inherits the two copies of mutated gene, he/she is
said to be homozygous for HbSS (SS genotype). Such individuals have sickle cell anaemia
and usually die before reaching adulthood. When a single mutated gene is inherited, the
individual is heterozygous for HbAS (AS genotype). Heterozygous for HbAS individuals
are characterized by the sickle cell trait and are referred to as sickle cell carriers. Sickle cell
carriers are less affected by sickle cell anaemia complications as the normal haemoglobin
can still supply oxygen to vital body organs [4].
There is a 50% chance that parents with the sickle cell trait will pass on the same trait (AS)
to their child, a 25% chance that their child will have both copies of normal haemoglobin
(AA) and a 25% chance that the child will have the two mutated genes (SS).
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Figure. 1.2. Normal and abnormal sickled red blood cells. [5]

Sickle cell anaemia symptoms vary from mild to severe cases that may require hospitali-
sation. It is always present at birth though many infants may not show symptoms until
after four months. Symptoms and signs relating to sickle cell anaemia include, tiredness,
irritability , dizziness, difficulty in breathing, fast heart rate, pale skin color, slow growth,
coldness in hands and feet among others. These also relate to other complications due to
blockage of blood vessels like stroke, eye problems, leg ulcers e.t.c. Sickle cell anaemia can
only be cured through bone marrow transplant. However, it is not easy to find a matching
donor, very risky, expensive and only a few experts can handle it. Management of the
sickle cell anaemia problem is by blood transfusion, malaria chemoprophylaxis and use of
hydroxyurea drug. Hydroxyurea drug has been shown to decrease the severity of attacks
but the long term use of it may be harmful.

Sickle cell disease is common among people originating from sub -Saharan Africa, western
hemisphere and Mediterranean countries [4]. In United States, with an estimated pop-
ulation of 270 million people, about 1000 babies are born with sickle cell disease every
year. On the contrary, in Nigeria with an estimated population of 90 million, 45,000 –
90,000 babies are born with sickle cell disease every year [6]. The gene frequency ranges
between 10% to 40% across equatorial Africa, <1% in South Africa and 1-2% along the
North African coast [42]. The variation in the sickle cell gene frequency does not only
vary across countries but also among regions in the same country. For example, in the
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Chapter 1. Introduction 7

eastern part of Uganda, sickle cell trait prevalence in 2010 was 17.5% compared to 13.3%
and 3% in the western and south western part of the country respectively [38]. Figure
1.3 shows the percentage of sickle cell gene frequency among heterozygous individuals for
some African countries. [42]. We notice that sickle cell gene frequency is high in malaria

Figure. 1.3. Sickle cell frequency distribution for some African countries [42, 49]

endemic countries. This gets one wondering how the gene is maintained in the population
at such high frequency in spite of the constant elimination of the gene through death from
anaemia [8]. The next section explains why sickle cell gene has been maintained at such
high frequency in African countries.

1.3 Malaria and S-gene

The S-gene is believed to provide protection against the deadly malaria falciparum disease
[27]. Unlike AS genotype individuals, those without the gene are at risk of dying from
malaria during their early age. Death of AA genotype individuals results into removal
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of the A allele3 from the pool. Additionally, AS genotype individuals do not suffer from
anaemia and have less chances of developing clinical malaria. Therefore, they are able to
survive in malaria endemic regions thereby passing on their genetic make up to the next
generation. When these people with sickle cell trait procreate, both the gene for normal
haemoglobin and that for sickle haemoglobin are maintained in the population.

AS individuals are protected from malaria because;

• Sickled red blood cells have very low oxygen tension failing the parasite to survive.

• The sickled shape of the red blood cell leads to nutrients leakage like potassium
needed for the parasite’s survival.

• Sickled red blood cells are continuously destroyed by the spleen within 10 – 20 days
together with the parasites.

It should be noted that, individual response to malaria parasite is also influenced by
other heritable haematological and immunological traits like sickle-haemoglobin C dis-
ease (HbSC), sickle beta-zero-thalassaemia (HbS/β0) and sickle beta-plus-thalassaemia
(HbS/β+) [20]. Therefore the actual protection is likely to be polygenic but we consider it
to be due to the presence of sickle cell trait for this study.

1.4 Motivation

Malaria is one of the most deadliest diseases in Africa especially among young children
and pregnant women. Many advances have been made towards the fight against malaria
such as the use of treated mosquito nets, administering of anti-malaria drugs and the
use of insecticide spray on mosquitoes. Various studies including mathematical modelling
of malaria and its control have been conducted by many researchers, some of them are,
Ross-Macdonald [43], Ngwa and Shu [37], Dietz et al. [16], Chitnis [12, 13], Chiyaka
et al. [14] among others. Surveys on malaria and sickle cell gene have confirmed the
common hypothesis that sickle cell gene provides protection against malaria falciparum

3One of the given pair of genes
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Chapter 1. Introduction 9

if it exists in heterozygous form [7, 8]. They have shown that sickle cell carriers are less
likely to develop clinical malaria compared to their counterparts. However, they inhabit the
parasite leading to high endemic levels and high S-gene frequency. The high frequency leads
to high mortality as result of inheriting two copies of the gene. Bone marrow transplant
is the only cure but it is hard to get a matching donor, risky, expensive and few experts
can handle it. It is thus important that alternative strategies are sought one of them being
the use of mathematical models to give insights into what interventions could be used to
control the gene frequency in malaria endemic areas. With these facts, we are motivated
to study mathematical models to understand the dynamics of malaria and sickle cell gene
and the impact of malaria treatment as a control measure for malaria on the frequency of
the S-gene.

1.4.1 Aim and objectives.

The main aim of our study is to investigate the impact of malaria treatment among AA
genotype individuals on sickle cell gene frequency. Specific objectives include;

• Review the model developed by Feng et al. [20].

• Extend the model by Feng et al. to include malaria treatment among AA genotype
individuals.

• Investigate mathematically and numerically how the treatment rate affects the fre-
quency of sickle cell gene.

1.5 Thesis outline

Having given the biological background and the motivation for our study in Chapter 1, the
rest of the thesis is organised as follows:

In Chapter 2, we present some of the mathematical models on malaria and sickle cell gene
that we have identified from literature.
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In Chapter 3, we have the mathematical tools that are used to address our problem. These
tools include the mathematical model formulation and analysis of the local behaviour of
a system of ordinary differential equations. Furthermore, we consider the use of singular
perturbation techniques to analyse models with different time scales (perturbed systems).

Chapter 4 introduces the model without malaria treatment which we analyse on two time
scales, that is fast and slow dynamics. We carry out the analysis on the fast time scale
which involves malaria dynamics alone. We also investigate the impact of sickle cell gene
frequency on malaria prevalence. Analysis of the slow dynamics for sickle cell gene is carried
out and we investigate the impact of malaria parameters on sickle cell gene frequency.

In Chapter 5, we extend the model in Chapter 4 to include malaria treatment of AA geno-
type individuals. Mathematical analysis which includes determining equilibrium points and
their stability is done. We investigate how treatment affects the frequency of the sickle cell
gene. We also carry out numerical simulation to confirm the mathematical results.

In Chapter 6, we give the conclusions, recommendations drawn from our project, its limi-
tations and future work.
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Chapter 2

Literature Review

In this chapter, we review some of the work done on malaria and sickle cell disease. A
good number of researchers have invested their skills and resources in understanding the
dynamics of malaria transmission and control. However, little research has been conducted
for sickle cell gene and its impact on malaria prevalence. Nevertheless, we present some of
the work below.

2.1 Malaria models

Malaria modelling started as early as 1911 by Ross Ronald. Ross who demonstrated that
malaria is transmitted by female anopheles mosquitoes developed a mathematical model
for malaria transmission with emphasises that “ mathematical methods of treatment are
really nothing but the application of careful reasoning to the problems at issue ” [36, 43]. He
developed a simple SIS model ( susceptible - infected - susceptible ) with the assumption
that at any time, the total population can be divided into distinct compartments. His
model was extended by Ronald MacDonald hence the Ross-MacDonald model [13]. In the
Ross-MacDonald model, two populations, that is, host (human) and vector (mosquitoes)
were considered and modelled by a system of differential equations;

dx

dt
=

abM

N
y(1− x)− rx,

dy

dt
= ax(1− y)− µy,

11
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where x is the proportion of infected humans and y is the proportion of infected female
anopheles mosquitoes. The number of bites of humans by a single mosquito per day is a,
r is the recovery rate of humans, b is the probability of transmission of infection by an
infected mosquito to a susceptible person per bite and µ is the mosquito death rate. N is
the total size of human population and M is the total size of the mosquito population.

More work was done by Aron and May as cited by Chitnis [13] who described the properties
of the model including the determination of the basic reproductive number R0 as

R0 =
Ma2b

Nµr
.

The basic reproductive number was given as a product of the number of humans that one
infectious mosquito infects throughout its infectious period and the number of mosquitoes
that one infectious human infects throughout his infectious period [13]. This was used as
a measure of the transmission intensity and prevalence of the disease. With this work,
they came to a concrete conclusion that “. . . in order to counteract malaria anywhere, we
need to reduce the number of infections below a certain value (reproductive number). . . ”
[36, 44]. Furthermore, programmes that integrate vector eradication, drug treatment and
personal protection were more likely to succeed than the use of only one intervention [36].
They noted that temporary interventions can lead to temporary reduction in prevalence.
The model also predicts that when the basic reproductive number becomes very large, then
virtually everyone in the population would be infected and no one will be susceptible [29].

Ngwa [37] developed an SEIR mathematical model considering only a single immune class.
Chitnis [13] extended Ngwa’s model and included the immigration and emigration of the
susceptible population. He considered two base line parameters for endemic areas to carry
out mathematical analysis and numerical simulation of his model. Determination of the
important parameters for the spread of malaria was conducted using sensitivity analysis
[13, 12]. The baseline set of parameters were used to compute the sensitivity indices for the
reproduction number R0 and the endemic equilibrium. He noted that the most important
parameters to target for malaria control included the biting rate, transmission probabilities
and the mosquito birth rate.
For almost all parameters, the sign of the sensitivity indices of R0 agreed with the intuitive
expectation except for the case of mosquito birth rate where R0 decreases with an increase
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in the birth rate. This is due to the fact that mosquito death rate is density dependent.
As the birth rate increases, the number of mosquitoes increases and the death rate also
increases since the environment can only accommodate a given number. Hence few infec-
tions and a reduction in the reproduction number R0 [13]. Chitnis recommended the use of
insecticide treated nets and prompt diagnosis and treatment as the most effective methods
for malaria control.

Dietz [16], Yang [51], Aron [10] Koella and Anita [30] looked at different models on super-
infection, acquired immunity obtained through continuous reinfection and also the human
resistance to malaria treatment drugs. Chiyaka et al. [14] considered a model that incor-
porated the delay in both disease latency and immunity.

2.2 Sickle cell – Malaria models

Literature on sickle cell models alone is not common but its selective advantage towards
malaria disease has been brought to attention by many researchers. As noted by most
of them, in the absence of malaria disease, the gene is disadvantaged and its frequency
declines in the whole population.

In 1910, Herrick made the first description of sickle cell disease in a Caribbean man of
African origin. Then Archibald described the first case of the disease in 1926 as reviewed by
T.R. Jones [27]. Jones examined the prediction of sickle cell gene frequency and its selective
advantage towards heterozygous individuals in malaria endemic areas. He investigated
what can be deduced about malaria transmission from the analysis of the distribution of
the sickle cell gene. He noted that the inheritance of the gene followed an autonomous
recessive pattern1. He used Hardy-Weinberg law to predict the expected gene frequency
at equilibrium when the frequency of the parental population is known. In order to use
Hardy-Weinberg law [27], he assumed that the population was isolated (no emigration
and immigration), infinitely large so that mating was random, meiosis was normal and no
mutation from one allele to another occurred.

1mutation occurs in both copies of the gene
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Hardy-Weinberg law is given by

p2 + q2 + 2pq = 1

with p and q as the proportionals of A and S alleles in the parental pool respectively. The
frequency of the dominant homozygous genotype is given as p2, heterozygous genotype
as 2pq and that of the recessive genotype given by q2. Using Hardy-Weinberg’s law, the
distribution of the expected genotype at equilibrium could be calculated from the expected
gene frequencies. He noted that if we know the gene frequency then the number of malaria
deaths will be in the same proportions as the frequency of the A-gene to S-gene. Further-
more, the proportion of sickle cell gene in the population is proportional to the malaria
transmission density. Therefore, any effort to eradicate malaria will result in reduction of
the sickle cell allele after many generations since the gene will cease to provide selective
advantage but become disadvantaged in the population.

Allison [8], noted that individuals with sickle cell trait suffer from malaria less often and
less severely compared to those without the trait. Therefore in malaria endemic areas,
children without the S-gene are eliminated before acquiring solid immunity. To justify
these remarks, Alison carried out two different studies. One was conducted among a group
of 30 adult men of which 50% had the sickle cell trait. He infected them, with plasmodium
falciparum and followed the development of parasitemia2 for 32 days. After this period,
it was noted that 2 out of the 15 adults with the sickle cell trait developed parasitemia
compared to 14 out 15 of those without the trait. He therefore concluded that sickle cell
trait was associated with protection from parasitemia [8, 27].

In the same paper, he conducted a study to record the malaria incidence among a group
of 290 Ganda children around Kampala aged between 5 months and 5 years. He obtained
the results shown below.

Table. 2.1. Malaria incidence among the Ganda children [8]
With parasitaemia Without parasitaemia Total

Sicklers (HbAS) 12 (27.0%) 31(72.1%) 43
Non-sicklers (HbAA) 113(45.7%) 134(53.3%) 247

It was noted that, the incidence of parasitaemia was lower in sicklers compared to non-
2Presence of malaria parasite in the body
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sicklers. These two groups were further tested for plasmodium malaria and plasmodium
falciparum and it was found that sickle cell trait provided protection for only plasmodium
falciparum and not other species.

Michael and colleagues [7] carried out a study to investigate the protective effect of sickle
cell gene against malaria morbidity and mortality in Kenya. HbAS results were found to be
significantly associated with the reduction in all cause morbidity during 2 to 16 months of
age. However when compared with HbAA genotype, there was no significant reduction in
morbidity among children of the same age. The reduced risk of morbidity among children
between 2–16 months was attributed to sickle cell gene. Children below two months have
got immunity from their mothers while those of more than 16 months have gained solid
immunity. The reduction in morbidity against malaria was about 60% for those between
2–16 months which was provided by the recessive gene.

Feng and colleagues [18, 20] considered a mathematical model to analyse the dynamics of
malaria disease and sickle cell evolution and how malaria parameters affect the establish-
ments of the gene in a fully susceptible population. To the best of our knowledge, this is the
only model that incorporated the dynamics of malaria and genetic make up of individuals.
More information on this model is given in Chapter 4.

2.3 Summary

We have reviewed some of the work done on malaria modelling which included models
for malaria transmission dynamics, immunity and treatment as conducted by different
researchers. Furthermore, we have reviewed studies conducted on malaria parasitemia and
sickle cell gene frequency. We noted that AS individuals are less likely to be affected by
malaria parasites than AA individuals. This background gives the basis for our study.
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Chapter 3

Mathematical Modelling

3.1 Basic concepts

Mathematical models have played an important role in dealing with the spread and control
of infectious diseases. They are based on the assumptions made about the variables, pa-
rameters and functions describing the relationship between parameters and variables. The
modelling process is a series of steps taken to convert ideas first to a conceptual model and
then into a quantitative model. A conceptual model represents our ideas about what is
happening in the real world and is usually represented with the diagram showing the flow of
activities between and within the system. From these, mathematical equations are formu-
lated to describe the processes that occur. The equations are then studied mathematically
and numerically using computer simulations.

Formulated models are very useful experimental tools for building and testing hypotheses,
assessing quantitative conjectures, estimating parameters from data, determining sensitiv-
ity to parameter changes and answering specific questions. They provide a good insight of
the real world scenarios and more so for the infectious diseases in the human population
where experiments are unethical, expensive and almost impossible. There are various types
of models such as stochastic, deterministic, discrete, continuous and so on. Some of which
are described below.

• Stochastic and deterministic:. Stochastic models are characterized by uncertainty

16
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whereby things happen by chance. In this case, random probability distributions are
assigned to parameters and variables so that results obtained change depending on the
distribution taken. On the other hand, deterministic models have got no component
of uncertainty i.e. no parameter or state variable is characterized by a probability
distribution. They use a single estimate for a particular variable. For these models,
starting with a fixed initial condition will always yield the same results.

• Static and dynamic: Static models are independent of time, such as equilibrium
or steady states. Dynamic models on the contrary change with time and are usually
formulated as difference or differential equations.

• Discrete and continuous: Discrete models are characterized with discrete time
step and formed as difference equations while continuous models are characterized
with continuous time and are formulated as differential equations.

We note that despite the differences in these models, they can all be used to study similar
scenarios and give results in the same range. In this chapter, we introduce the concept of
deterministic models with continuous time step.

Consider time to be the independent variable and x1, x2, . . . xn as the dependent variables
for a particular conceptual model, then the system of differential equations can be formu-
lated as,

d

dt



x1

x2

x3

...
xn


=



f1(x1, x2, . . . xn)

f2(x1, x2, . . . xn)

f3(x1, x2, . . . xn)
...

fn(x1, x2, . . . xn)


. (3.1)

In general, the system can be formulated as;

d

dt
X(t) = f(X(t)). (3.2)

Such a system is considered to be autonomous since it does not depend on the independent
variable. Although system (3.1) seems to consider first order derivatives, higher orders can
also be used to describe biological phenomena. However we restrict our study to first order
derivatives. In order to capture the biological picture of the real world, all initial conditions
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must be non-negative.

Using the fundamental theorem of existence and uniqueness of initial valued problems, the
solution to (3.1) exists and is unique if fi is continuous and differentiable [39]. To examine
the local behaviour of system (3.1), we determine the equilibrium points by setting the right
hand side to zero. We then compute the Jacobian matrix evaluated at those equilibrium
points.

Suppose x∗ = (x∗1, x
∗
2 . . . x

∗
n) is any arbitrary equilibrium point of (3.1) so that f(x∗) = 0,

then the Jacobian matrix evaluated at x∗ is given by;

J =


∂
∂x1
f1(x∗) ∂

∂x2
f1(x∗) . . . ∂

∂xn
f1(x∗)

∂
∂x1
f2(x∗) ∂

∂x2
f2(x∗) . . . ∂

∂xn
f2(x∗)

...
... . . . ...

∂
∂x1
fn(x∗) ∂

∂x2
fn(x∗) . . . ∂

∂xn
fn(x∗)

 . (3.3)

When all the eigenvalues of J have negative real parts, then, locally (x1(t), x2(t)) . . . xn(t)) −→
x∗ as t −→ +∞ and the equilibrium point x∗ is said to be locally asymptotically stable.
This implies that all solutions with initial condition starting close to x∗ will always tend to
x∗ as t −→ +∞. On the contrary, if at least one of the eigenvalues has a positive real part,
the equilibrium point is unstable. This concept is widely applied to dynamical systems
describing the dynamics of infectious diseases to predict the extinction or persistence of an
infection in a given population.

3.2 Singular perturbation theory

Most dynamical systems consider the occurrence of activities in the system to be on the
same time scale yet this is not always the case in the real world. For instance malaria
and sickle cell gene dynamics, the demographic events occur on a much slower time scale
compared to the transmission event of malaria. Therefore to analyse such systems, it is
important that we rescale the parameters such that there is consistence in their varia-
tion. By re-writing the system with the rescaled parameters, we have a rescaled system
referred to as a singular perturbed system. Singular perturbation systems are systems that
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can not be approximated by setting the rescaling parameter to zero. They are analysed
using techniques that aim at investigating whether the structure of the unperturbed sys-
tem is preserved after perturbation. In order to attain a clear understanding of singular
perturbation techniques, we need to define some important terminology.

• Invariant set

An invariant set is a set that remains unchanged when transformations of a certain
kind are applied to it. The equilibrium point is an example of an invariant set. If we
consider an autonomous system (3.1), then a set S ⊂ Rn is invariant with respect to
the system if for every trajectory x,

x(t) ∈ S ⇒ x(τ) ∈ S for all

{
τ ≥ t (positively invariant) or
τ ≤ t (negatively invariant).

In other words, the trajectory x will always stay in S provided it starts close to S or
move away from S for negative invariance. An invariant set V is said to be locally
invariant with respect to an open set W under the system (3.1) if V is a subset of
W and if any trajectory leaving V simultaneously leaves W [28].

• Stable, Unstable and Centre manifold

Consider a system of differential equations (3.1) whose Jacobian matrix evaluated at
its equilibrium point x∗ has eigenvalues with positive or negative real parts. Such an
equilibrium point is referred to as a hyperbolic equilibrium point otherwise its non
hyperbolic. Let v1, . . . , vn−k denote the eigenvectors corresponding to the eigenvalues
with positive real parts and vn−k+1, . . . , vn denote the eigenvectors whose eigenvalues
have negative real parts. Then the linear subspaces of Rn defined as

Es = span{vn−k+1, . . . , vn}, (3.4)

Eu = span{v1, . . . , vn−k}

are referred to as stable and unstable subspaces of the linearised system respectively.
The stable and unstable manifold Theorems given in 3.2.1 asserts that in a neigh-
bourhood of the equilibrium point, there exist a differentiable k− dimensional surface
tangent to Es and a differentiable n − k− dimensional surface tangent to Eu with
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properties that orbits of points on those surfaces approach the equilibrium point
asymptotically in positive and negative time respectively [50]. These surfaces are re-
ferred to as stable and unstable local manifolds respectively of the equilibrium point.
If the linearised system has eigenvalues with zero real parts, then such a subspace
is referred to as a centre subspace and the corresponding surface is called the center
manifold.

Theorem 3.2.1 (Stable and unstable theorem). [39, 40]
Let E be an open subset of Rn containing the origin, let f ∈ C1(E) and φ(t) the flow
of the non-linear system (3.1). Suppose f(0) = 0 and Df(0) has k eigenvalues with
negative real parts and n − k eigenvalues with positive real part. Then there exist a
k-dimensional differentiable stable manifold S tangent to the stable subspace Es of
the linear system at 0 such that for all t ≥ 0 φt(S) ⊂ S and for all x0 ∈ S

lim
t→∞

φt(x0) = 0

and there exist an n − k dimensional differentiable unstable manifold U tangent to
the unstable subspace Eu such that for all t ≤ 0, φt(U) ⊂ U and for all x0 ∈ U

lim
t→−∞

φt(x0) = 0.

Furthermore, S and U have the same dimension as Es and Eu

Note: Df represents the Jacobian matrix of the system.

Kaper [28], demonstrates the application of singular perturbation techniques to differential
equations. The aim is to identify dynamical structures such as invariant sets, phase space
and manifolds of the singular perturbation problem near a point (local) or on a larger
domain (global) [21]. Singular perturbation problems are characterized by two time scales
i.e. t fast time scale and τ slow time scale which are related such that τ = εt. Here ε is
a parameter that measures the separation of the two time scales. For easy reference we
describe this approach below.

Consider a singularly perturbed ordinary differential system of equations;

du

dt
= f(u, v, ε),

dv

dt
= εg(u, v, ε), (3.5)
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with f and g sufficiently smooth vector functions in u, v. Then u is the fast variable and v
is the slow variable. By changing the variable such that τ = εt, the reformed system (3.5)
is given by;

ε
du

dτ
= f(u, v, ε),

dv

dτ
= g(u, v, ε). (3.6)

Note that the two systems (3.5) and (3.6) are the same provided ε 6= 0. Setting ε = 0, we
obtained the reduced fast and slow systems of (3.5) and (3.6) as;

du

dt
= f(u, v, 0),

dv

dt
= 0, (3.7)

and

0 = f(u, v, 0),

dv

dτ
= g(u, v, 0), (3.8)

respectively.

When ε is sufficiently small, the system is singular and the singularities on the slow time
scale appear as manifolds (center manifold) of the equilibrium points of the fast dynamics
[21]. The reduced systems (3.7) and (3.8) represent the unperturbed systems that can be
analysed using the techniques described in Section 3.1.

From the second equation of (3.7), v is considered to be a parameter and the stability
of the first equation can be used to describe the dynamics of the reduced system on the
fast time-scale. Fenichel [21] illustrates that if the equilibrium point is hyperbolic, then
it corresponds with a nearby hyperbolic invariant manifold called the slow manifold [48].
Therefore we have the normally hyperbolic stable and unstable manifold1 M s

0 and Mu
0

which by Fenichel’s second theorem persists2 for small non- zero ε as M s
ε and Mu

ε with the
slow flow on it [21].

1manifolds that agree with the hypothesis of the stable and unstable manifold theorem
2A manifold persists if for small non zero ε there exists ε0 such that the construction is valid for any

0 < ε < ε0 [25]. Such persistent manifold are labelled slow manifolds.
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Theorem 3.2.2 (Fenichel’s second theorem). [21] Suppose M0 ∈ {f(u, v, 0) = 0} is
compact possibly bounded and normally hyperbolic, and suppose f and g are sufficiently
smooth3, then for ε > 0 and sufficiently small, there exist manifolds W u(Mε) and W s(Mε)
that are o(ε) close and diffeomorphic 4 toW u(M0) andW s(M0) respectively invariant under
the flow of system 3.5.

3.2.1 Implications of Fenichel’s second theorem

i. Hyperbolic fixed points of the differential equation persist under small perturbations
together with their stable and unstable manifolds.

ii. The manifolds W u(Mε) and W s(Mε) are still stable and unstable respectively but
in a different sense since Mε is no-longer a set of fixed points but has a property
that solutions in W u(Mε) decay to Mε at an exponential rate in backward time and
solutions in W s(Mε) decay exponentially to Mε in forward time.

iii. Local invariance in this case implies that the solutions only decay to Mε as long as
they stay in the neighbourhood of the compact possibly bounded Mε.

3.3 Summary

In this chapter, we have presented the basic concepts relevant to mathematical modelling.
We have discussed the techniques used to analyse a deterministic model which included the
linearisation of the model system and stability analysis of the equilibrium point. We have
also described singular perturbation techniques for perturbed systems of equations. We
intend to use these techniques to analyse the model in Chapter 4 considering the fact that
malaria parameters occur on a much faster time scale than demographic parameters. Other
methods we intend to use include numerical simulations obtained by writing computer
codes in Python and Matlab programming languages.

3at least C1 in u, v and ε [25]
4 A mapping f : X → Y of a subset of two euclidean spaces is called a Cr diffeomorphism if its one to

one and onto and if the f−1 = Y → X is also Cr [50].
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Chapter 4

Model Without Treatment

4.1 Introduction

In this chapter, we adopt the model by Feng and colleagues [18, 20] to describe the dynamics
of malaria disease and sickle cell gene. Our main aim is to get a clear understanding on
how malaria parameters influence the dynamics of sickle cell gene among heterozygous
individuals and how sickle cell gene frequency affects the dynamics of malaria. This model
will later be extended to include malaria treatment of AA genotype individuals.

4.2 Model formulation

The model described below is the classical Ross-MacDonald model including the relevant
genotype structure of the human population, that is AA and AS genotype. Let S1 and
S2 be the population densities of uninfected AA and AS individuals respectively, and let
I1 and I2 be the densities for the infected individuals of AA and AS genotype. We do
not consider SS genotype individuals on assumption that, due to the high mortality rate
in countries with high malaria transmission, they do not reach reproductive maturity.
However, a complex model including these individuals could be formulated and analysed
though it will be difficult to interpret the threshold conditions. Given the total human

23
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population, Nh = S1 + S2 + I1 + I2, the proportion of AS and AA individuals is given by

w =
S2 + I2

Nh

and (1− w) =
S1 + I1

Nh

respectively.

The frequency of the S-gene is then given by q = w
2
and consequently that of the A-gene

is given by p = 1 − q. Let m be the proportion of mosquitoes carrying the plasmodium
parasite (Im/Nm) with Im as the number of infected mosquitoes and Nm the total number
of mosquitoes.

Individuals are recruited in the respective susceptible classes, S1 and S2 by birth. When a
mosquito carrying plasmodium parasite bites a susceptible human, there is a risk that the
parasite will be passed on to the human and the person will move to the respective infected
class I1 or I2. The probability that an individual of genotype AA acquires parasitemia1

per bite, θ1, is taken to be greater than that of AS individuals, θ2. i.e θ1 > θ2. Infected
individuals from Ii, (i = 1, 2), either recover spontaneously and join the susceptible pop-
ulation again at a rate γi ( with γ1 < γ2) or die at a rate αi (with α1 > α2). The biting
rate per human per mosquito is taken to be a. The mortality rate of humans of genotype
AA, µ1, is assumed to be equal to natural mortality, while that of individuals of genotype
AS is given by µ2 = µ1 + ν, where ν is the extra mortality due to S-gene complications.

A mosquito biting an infected individual of either genotype AA or AS acquires plasmodium
with a probability φi (with φ1 > φ2). The average life span of mosquitoes is taken to be
1/δ and we assume that there is no mortality due to the presence of the parasite.

In addition to the above assumptions, we consider the ratio of the total number of mosquitoes
to humans (Nm/Nh) to be a constant c. Secondly, the fractions of the new born individuals
of the two genotypes AA and AS are given by P1 and P2 respectively where,

P1 = p2 p is the frequency of the A-gene,

P2 = 2pq q is the frequency of the S-gene.

Figure 4.1 illustrates the dynamics of the model showing the in-flow and out-flow of indi-
viduals of both genotypes in each compartment.

1The presence of a parasite in the blood

Stellenbosch University  http://scholar.sun.ac.za



Chapter 4. Model 25

Figure. 4.1. Schematic diagram illustrating the dynamics of malaria and S-gene.

We formulate the model mathematically as a system of coupled ordinary differential equa-
tions given in (4.1)

dS1

dt
= P1b(Nh)Nh − µ1S1 − λh1S1 + γ1I1,

dS2

dt
= P2b(Nh)Nh − µ2S2 − λh2S2 + γ2I2,

dI1

dt
= λh1S1 − (µ1 + γ1 + α1)I1, (4.1)

dI2

dt
= λh2S2 − (µ2 + γ2 + α2)I2,

dm

dt
= (1−m) (λm1 + λm2)− δm,
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where b(Nh) is the density dependent per capita birth rate given by b(Nh) = b(1−Nh/K)

with b the maximum birth rate constant when the population size is small and K is
approximately the density dependent reduction in the birth rate (carrying capacity).
m is the proportion of mosquitoes with plasmodium. The force of infection of humans of
genotype i by mosquitoes (λhi) is given

λhi = amcθi = aθi
Im
Nh

and the force of infection of mosquitoes by humans of genotype i is also given by

λmi = aφi
Ii
Nh

for i = 1, 2.

The other parameters are described in Table 4.1 below.

Table. 4.1. Parameters and their description for the model
Name Description

i = 1 Individuals with AA genotype.
i = 2 Individuals with AS genotype.
Si Number of uninfected individuals of genotype i.
Ii Number of infected individuals of genotype i.
m Proportion of mosquitoes with plasmodium parasite.
a Biting rate per human per mosquito.
Nh Total human population.
θi Probability that an individual of type i acquires plasmodium per

bite, θ1 > θ2.
φi Probability that a mosquito acquires plasmodium from biting an

infected individual of genotype i, φ1 > φ2.
δ Mortality rate of mosquitoes.
c Ratio of mosquitoes to human.
µ1 Human natural mortality rate.
ν Extra mortality due to sickle cell gene complications.
αi Malaria-induced mortality rate for genotype i, α1 > α2.
q Frequency of the S-gene.
γi Recovery rate from malaria for genotype i. γ1 < γ2.
b(Nh) Per capita birth rate of humans.
w Fraction of AS individuals.
P1 Fraction of the total birth of individuals of genotype AA, 1−w+ w2

4
.

P2 Fraction of the total birth of individuals of genotype AS , w(1− w
2
).
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4.3 Model analysis

The model for malaria and sickle cell gene described by system (4.1) is analysed in a
biologically feasible region. Thus, the following theorem holds.

Theorem 4.3.1. Suppose S1(0), S2(0), I1(0), I2(0) are non negative initial conditions , then
S1(t), S2(t), I1(t), I2(t) are also non negative for t > 0. Moreover,

lim
t→∞

supNh(t) ≤ K.

Furthermore, if in addition

Nh(0) ≤ K, then Nh(t) ≤ K.

In particular, the region D with

D = {(S1, S2, I1, I2) ∈ R4 : S1 + S2 + I1 + I2 ≤ K and 0 < m < 1}

is positively invariant.

Proof. Suppose (S1(0), S2(0), I1(0), I2(0)) is a set of non negative initial conditions and
that the maximum interval of existence of the corresponding solution is [0, tmax].

Let,
t1 = sup{0 < t < tmax : S1, S2, I1, I2 are positive for [0, t]}.

Since S1(0), S2(0), I1(0), I2(0) are non negative, then t ≥ 0. If t1 < tmax, then by the
variation of constant formulae, we obtain from the first equation of (4.1)

S1(t1) = U(t1, 0)S1(0) +

∫ t1

0

U(t1, ξ)(P1b(Nh)Nh + γ1I1)(ξ)dξ (4.2)

where
U(t, ξ) = e−

∫ t
ξ (λh1+µ1)(s)d(s).

Clearly S1(t1) > 0. We can show in the similar way that all the other variables are positive
at t1. This contradicts the fact that at t1 at least one of the variables is equal to zero.
Thus t1 = tmax.

Moreover,

dNh

dt
= P1b(Nh)Nh + P2b(NN)Nh − µ1(S1 + I1)− µ2(S2 + I2)− α1I1 − α2I2.
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Since all the variables are positive for t < tmax, we obtain

dNh

dt
≤ b(P1 + P2)Nh

(
1− Nh

K

)
.

Thus,

Nh(t) ≤
KNh(0)eb(P1+P2)t

K +Nh(0)(eb(P1+P2)t − 1)
.

Moreover, if Nh(0) ≤ K then Nh(t) ≤ K for all t < tmax. Therefore tmax = ∞. These
results establishes the invariance property of D. Therefore the system of equations (4.1)
is biologically feasible in region D.

Using proportions;

xi =
Si
Nh

, yi =
Ii
Nh

, i = 1, 2 and x1 + x2 + y1 + y2 = 1, (4.3)

we obtain;

ẏ1 = β1m(1− y1 − w)− (µ1 + γ1 + α1)y1 −
Ṅh

Nh

y1,

ẏ2 = β2m(w − y2)− (µ2 + γ2 + α2)y2 − y2
Ṅh

Nh

,

ṁ = (1−m) (ρ1y1 + ρ2y2)− δm, (4.4)

ẇ = P2b(Nh)− µ2w − α2y2 − w
Ṅh

Nh

,

Ṅh = Nh ((P1 + P2)b(Nh)− µ1(1− w)− µ2w − α1y1 − α2y2) ,

where βi = aθic and ρi = aφi. The notation “ · ” hereafter represents the derivative with
respect to time t.

In order to proceed with the mathematical analysis of the model equations, we note that
malaria and genetic changes occur on different time scales, therefore the parameters vary
across many orders of magnitude. The malaria parameters (ρi, βi and δ) occur on a much
faster time scale i.e. on the order 1/days while the genetic and demographic parameters
( µ1, b, αi) occur on a slower time scale i.e. on the order 1/decades. Therefore though
we have a coupled system of equations describing the dynamics of malaria and genetic
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changes, we can not ignore the differences in the time scales. We rescale the demographic
and genetic parameters so that µ̂i = µi/ε, b̂ = b/ε and α̂i = αi/ε with 0 < ε << 1 as
the scaling factor and µ̂i, b̂, α̂i as the new scaled parameters. Then system (4.4) can be
formulated as;

ẏ1 = β1m(1− y1 − w)− (εµ̂1 + γ1 + εα̂1)y1 −
Ṅh

Nh

y1,

ẏ2 = β2m(w − y2)− (εµ̂2 + γ2 + εα̂2)y2 − y2
Ṅh

Nh

,

ṁ = (1−m) (ρ1y1 + ρ2y2)− δm, (4.5)

ẇ = P2εb̂(Nh)− εµ̂2w − εα̂2y2 − w
Ṅh

Nh

,

Ṅh = Nh

(
(P1 + P2)εb̂(Nh)− εµ̂1(1− w)− εµ̂2w − εα̂1y1 − εα̂2y2

)
.

System (4.5) has a similar format as system (3.5) in Chapter 3. Therefore system (4.5) is
a singular perturbation problem that we analyse using the method described in Chapter
3. By rescaling the independent variable t such that t = τ/ε, system (4.5) can be written
on the slow time-scale as;

εy′1 = β1m(1− y1 − w)− (εµ̂1 + γ1 + εα̂1)y1 − εy1
N ′h
Nh

,

εy′2 = β2m(w − y2)− (εµ̂2 + γ2 + εα̂2)y2 − εy2
N ′h
Nh

,

εm′ = (1−m) (ρ1y1 + ρ2y2)− δm, (4.6)

w′ = P2b̂(Nh)− µ̂2w − α̂2y2 − w
N ′h
Nh

,

N ′h = Nh

(
(P1 + P2)b̂(Nh)− µ̂1(1− w)− µ̂2w − α̂1y1 − α̂2y2

)
,

where “′” is the derivative with respect to τ . Thus the malaria variables y1, y2 and m are
considered as the fast variables whereas the measure of the abundance of S-gene, w, and
the total human population, Nh, are the slow variables. In the next section we carry out
the analysis on the fast time scale.
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4.4 Fast dynamics of malaria

In this section, we carry out the analysis on the fast time scale using singular perturba-
tion techniques. Setting ε = 0, the reduced system on the fast time scale represents the
dynamics of malaria only. Moreover, the variable corresponding to the frequency of sickle
cell gene, w, is then considered as a constant parameter. System (4.5) thus reduces to;

ẏ1 = β1m(1− y1 − w)− γ1y1,

ẏ2 = β2m(w − y2)− γ2y2,

ṁ = (1−m) (ρ1y1 + ρ2y2)− δm. (4.7)

4.4.1 Existence of equilibrium points

Let E? = (y?1, y
?
2,m

?) represent any arbitrary equilibrium point of system (4.7) obtained
by setting the right hand side to zero;

β1m
?(1− y?1 − w)− γ1y

?
1 = 0,

β2m
?(w − y?2)− γ2y

?
2 = 0,

(1−m?) (ρ1y
?
1 + ρ2y

?
2)− δm? = 0. (4.8)

In the absence of malaria disease, we have E0 = (0, 0, 0) as an equilibrium point referred
to as the disease free equilibrium point.

4.4.2 Basic reproduction number, R0

The basic reproduction number denoted as R0, is a threshold value that is often used in
mathematical models to measure the spread of a disease. It is defined as the number of new
infections in humans that arise as a result of a single infected individual being introduced
in a fully susceptible population. When R0 < 1, it implies that on average an infectious
individual infects less than one person throughout his/her infectious period and in this case
the disease is wiped out. On the other hand, when R0 > 1, then on average every infectious
individual infects more than one individual during his/her infectious period and the disease
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persists in the population. P.van den Driessche and J. Watmough [47] described the next
generation method used to compute the basic reproduction number. Given as system,

dX

dt
= f(X),

= F(X ) + V(X ),

= F(X )− (V+(X )− V−(X )),

where F(X ) is the rate at which new infections appear in each compartment, V+(X ) is
the rate of transfer into each compartment and V−(X ) is the rate of transfer out of each
compartment. Applying this to system (4.7), we have,

F =


β1m(1− w − y1)

β2m(w − y2

(1−m)(ρ1y1 + ρ2y2

 and V =


γ1y1

γ2y2

δm

 .
We evaluate the Jacobian matrices for F and V at disease free equilibrium such that;

F = DF|E(0,0,0) =


0 0 β1(1− w)

0 0 β2w

ρ1 ρ2 0

 and V = DV|E(0,0,0) =


γ1 0 0

0 γ2 0

0 0 δ

 .
The reproduction number R0 is given as the dominant positive eigenvalue of the next
generation matrix

FV−1 =


0 0 β1(1−w)

δ

0 0 β2w
δ

ρ1
γ1

ρ2
γ2

0

 . (4.9)

The eigenvalues of (4.9) are,

λ = 0, λ = ±

√
β1ρ1

γ1δ
(1− w) +

β2ρ2

γ2δ
w.

Thus;

R̃0 =

√
β1ρ1

γ1δ
(1− w) +

β2ρ2

γ2δ
w =

√
R0. (4.10)
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The original definition of R0 gives the number of humans that one infected human infects
through out his or her infectious period when introduced in a fully susceptible population.
However, the reproduction number given in (4.10) obtained from the next generation op-
erator gives the number of infected human (mosquito) that an infected mosquito (human)
infects throughout out the infectious period when introduced to a fully susceptible human
(mosquito) population [11, 12, 47]. Thus, the basic reproduction number as per the original
definition is given by;

R0 =
β1ρ1

γ1δ
(1− w) +

β2ρ2

γ2δ
w.

R0 can be written as
R0 = R1(1− w) + R2w,

where
Ri =

βiρi
γiδ

for i = 1, 2

is the reproduction number when the population consists of entirely individuals of genotype
i. The threshold value R0 is a very important parameter for explaining disease outbreak
and determining control strategies to encounter the problem. Furthermore, the stability of
the equilibria can be analysed based on R0.

4.4.3 Local stability of disease free equilibrium (DFE)

The local stability of the DFE is determined by the eigenvalues of the Jacobian matrix of
system (4.7) evaluated at DFE.

J|E0 =


−γ1 0 β1(1− w)

0 −γ2 β2w

ρ1 ρ2 −δ

 . (4.11)

That is, the roots of
λ3 + r2λ

2 + r1λ+ r0, (4.12)
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with

r2 = δ + γ1 + γ2, r1 = δγ1(1− R1) + δγ2(1− R2) and r0 = δγ1γ2(1− R0).

Routh-Hurwitz stability criterion suggests that if r0, r1, r2 > 0 and r2r1 > r0 then all the
eigenvalues are negative [24].

• If R0 < 1, then r0, r1, r2 > 0 and r2r1 − r0 > 0, thus DFE is locally asymptotically
stable.

• When R0 > 1, r0 < 0, then atleast one root of equation (4.12) is positive thus the
DFE is unstable.

4.4.4 Endemic equilibrium point (EE)

Solving (4.8), we obtain

y∗1 =
β1m

∗(1− w)

β1m∗ + γ1

,

=
Th1m

∗(1− w)

Th1m
∗ + 1

where Th1 =
β1

γ1

. (4.13)

Similarly from the second equation of (4.8),

y∗2 =
β2m

∗w

β2m∗ + γ2

,

=
Th2m

∗w

Th2m
∗ + 1

where Th2 =
β2

γ2

. (4.14)

Substituting equations (4.13) and (4.14) in the third equation (4.8) and simplifying we
obtain m∗ as a solution to the quadratic equation

k0m
∗2 + k1m

∗ + k2 = 0, (4.15)
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where,

k0 = Th1Th2 + R1Th2(1− w) + R2Th1w > 0,

k1 = Th1(1− wR2) + Th2(1− (1− w)R1) + R0,

k2 = 1− R0.

We determine the conditions for which positive roots of equation (4.15 ) exist. We consider
the following,

• When R0 < 1, k2 > 0 and k1 > 0, then (4.15) has no positive root. Therefore, no
endemic equilibria exist when R0 < 1.

• If R0 > 1, then k2 < 0.

Let f(m∗) = k0m
∗2 + k1m

∗ + k2, then

f(0) = k2 < 0,

f(1) = k0 + k1 + k2,

= Th1Th2 + Th1 + Th2 + 1,

> 0.

The intermediate value theorem guarantees the existence of one root in the interval
(0,1) of equation (4.15). The other root is negative since the product of roots is
k2/k0 < 0. Therefore, when R0 > 1, system (4.7) has one unique endemic equilibrium
point.

4.4.5 Local stability of EE

The Jacobian matrix of system (4.7) is used to determine the local stability of the endemic
equilibrium point E∗. Thus

J|E∗(y∗1 ,y
∗
2 ,m

∗) =


−(β1m

∗ + γ1) 0 β1(1− w − y∗1)

0 −(β2m
∗ + γ2) β2(w − y∗2)

ρ1(1−m∗) ρ2(1−m∗) −(ρ1y
∗
1 + ρ2y

∗
2 + δ)

 .
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The above matrix J can be written as

J = H −D

where,

H =


0 0 β1(1− w − y∗1)

0 0 β2(w − y∗2)

ρ1(1−m∗) ρ2(1−m∗) 0


and

D =


(β1m

∗ + γ1) 0 0

0 (β2m
∗ + γ2) 0

0 0 (ρ1y
∗
1 + ρ2y

∗
2 + δ)

 .
We note that H is a positive matrix since 1−w− y∗1 = x∗1 > 0 and 0 < m∗ < 1. Also D is
a diagonal matrix therefore non-singular.

Then the eigenvalues of J have negative real parts if the spectral radius of HD−1 is less
than one [47]. We have

HD−1 =



0 0
β1(1−w−y∗1
ρ1y∗1+ρ2y∗2+δ

0 0
β2(w−y∗2

ρ1y∗1+ρ2y∗2+δ

ρ1(1−m∗)
β1m∗+γ1

ρ2(1−m∗)
β2m∗+γ2

0


.

with eigenvalues,

λ0 = 0,

λ1 = −

√(
β1(1− w − y∗1)

(ρ1y∗1 + ρ2y∗2 + δ)

)(
ρ1(1−m∗)
(β1m∗ + γ1)

)
+

(
β2(w − y∗2)

(ρ1y∗1 + ρ2y∗2 + δ)

)(
ρ2(1−m∗)
(β2m∗ + γ2)

)
,

λ2 =

√(
β1(1− w − y∗1)

(ρ1y∗1 + ρ2y∗2 + δ)

)(
ρ1(1−m∗)
(β1m∗ + γ1)

)
+

(
β2(w − y∗2)

(ρ1y∗1 + ρ2y∗2 + δ)

)(
ρ2(1−m∗)
(β2m∗ + γ2)

)
.
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From system (4.8), we have,

m∗ =
ρ1y
∗
1 + ρ2y

∗
2

ρ1y∗1 + ρ2y∗2 + δ
=

γ1y
∗
1

β1(1− w − y∗1)
=

γ2y
∗
2

β2(w − y∗2)

and using γi < γi + βim
∗ for i = 1, 2,

λ2
2 =

(
β1(1− w − y∗1)

(ρ1y∗1 + ρ2y∗2 + δ)

)(
ρ1(1−m∗)
(β1m∗ + γ1)

)
+

(
β2(w − y∗2)

(ρ1y∗1 + ρ2y∗2 + δ)

)(
ρ2(1−m∗)
(β2m∗ + γ2)

)
,

<

(
γ1y

∗
1

ρ1y∗1 + ρ2y∗2

)
ρ1(1−m∗)

γ1

+

(
γ2y

∗
2

ρ1y∗1 + ρ2y∗2

)
ρ2(1−m∗)

γ2

,

= 1−m∗ < 1.

This implies that the dominant eigenvalue of HD−1 < 1 and therefore all the eigenval-
ues of J have negative real parts implying that the unique endemic equilibrium point
E∗ = (y∗1, y

∗
2,m

∗) is locally asymptomatically stable. The results of the fast dynamics are
summarized in the following theorem,

Theorem 4.4.1. For the system of equations (4.7) of the fast dynamics,

(i) If R0 < 1, the disease free equilibrium E0 is locally asymptotically stable and endemic
equilibrium E∗ is not biologically feasible.

(ii) If R0 > 1, then E0 is unstable and the E∗ is locally asymptotically stable.

4.5 Estimation of parameter values

Here, we present the parameter values that are used for our numerical simulations. Esti-
mation of the parameters for both genotype is not trivial since most of the malaria models
in literature do not consider the genetic make up of individuals. Most of the parameters
used in this model are obtained from [18, 19, 20]. Other parameters used for numerical
simulations are either assumed or obtained from other malaria models from literature as
explained below.
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• Demographic parameters

Demographic parameters vary from one setting to another. We consider a birth rate,
b, of 0.00004 per day obtained from [18, 19, 20]. We assume that the recruitment by
birth of both AA and AS individuals depends on the frequency of the sickle cell gene
of the parental pool.
The human mortality rate, µ1, was estimated to be 0.00004 per day which corre-
sponds to 65 years of life expectancy [20, 34]. The extra mortality rate due to sickle
cell complications, ν, was estimated to be 0.00002 [20]. This implies that the total
mortality rate for the AS individuals was taken to be 0.00006 per day which corre-
sponds to their life expectancy of 45 years.
The malaria induced mortality rate, αi, i = 1, 2, is estimated to be 0.0005 [20, 37].
This rate is varied depending on whether the individual has AA or AS genotype.

• Transmission parameters

The mosquito biting rate, a, was taken to be 0.2 in [34] and between 1 and 2 in [19].
Feng et al. [20] estimated the probability of mosquito transmission of plasmodium
parasite to humans, θi, i = 1, 2, to be between 0.01 to 0.09. Other malaria models
considered this value to be 0.833 [11, 15, 32, 34]. The human to mosquito transmission
probability, φi, is estimated to range between 0.01 to 0.09 [15, 34]. This variation in
these probabilities is due to the different settings taken and also the distribution of
the sickle cell gene frequency.

• Mosquito parameters

The mosquito survival period is about 10 – 25 days. We note that mosquitoes are not
affected by the malaria parasite. Therefore, on average the estimated mortality rate
of mosquitoes, δ, is 0.07 which corresponds to an average of 15 days of life expectancy
[34].

• Recovery parameters

The spontaneous recovery rate of AA individuals, γ1, is estimated to be 0.033 which
corresponds to 33 days of infection [41]. It is assumed that it takes a maximum of 33
days to clear the parasite from body by the immune system. On the other hand, the
recovery rate for the AS individuals, γ2, is assumed to be 0.066 which is twice that of
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AA individuals. This is because the parasite is continuously destroyed together with
sickled red blood cells by the spleen in a period of 10 – 20 days compared 120 days
for the normal red blood cells. This gives an advantage to the AS individuals since
it takes a shorter period to clear the parasite from their body as compared to their
counterparts of AA genotype. Depending on the individuals immune system, these
values can vary between 0 – 0.2.

4.6 Numerical simulation of fast dynamics

In this section, we carry out numerical simulation of the model given in system (4.7). The
Euler and 4th order Runge Kutta methods are the common numerical techniques used for
solving ordinary differential systems of equations. However, convergence and stability of
results obtained by applying these techniques is only guaranteed for small time step size
(< 0.1). For any arbitrary step size, the two techniques may fail or diverge. On addition,
the two schemes do not necessarily preserve positivity of the solution which is a basic
property as far as biological systems are concerned. The non-standard finite difference
method is a technique that has been proved to preserve both positivity and stability of
the equilibrium point. It is developed from the forward finite difference method but with
a denominator function and has been used by various researchers including Ibijola et al.
[26], Lubuma and Patidar [33], and Anguelov et al. [9]. Here, we restrict ourselves to the
4th order Runge Kutta scheme in Matlab and odesolver packages in Python with small step
size for our numerical simulations. The choice of the parameters used in this model are
as per the explanation given in Section 4.5 but mostly obtained from [19, 18, 20] (Table
4.2). Simulations carried out in this section explain the dynamics of malaria disease among
individuals of AA and AS genotypes.
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Table. 4.2. Parameter values used for the model given in (4.7) obtained from [20]
Parameter Parameter value (per day)

a 1
b 0.00004
θ1 0.05
θ2 0.06
φ1 0.05
φ2 0.09
γ1 0.05
γ2 0.05, 0.09
α1 0.0001
α2 0.00005
δ 0.07
µ1 0.00003
ν 0.00002
ε 10−5

c 4
K 10000
w 0.1, 0.7

Figure 4.2 and Figure 4.3 show the change in the proportions of infected AS, AA individuals
and mosquitoes with plasmodium for R0 less than one while Figure 4.4 and Figure 4.5
indicate the change when R0 is greater than one. We note that when R0 < 1, both the
human and mosquito infected proportions go to zero. On the other hand, when R0 > 1,
then the proportion of infected humans and mosquitoes stabilize at the endemic equilibrium
E∗ = (0.187, 0.303, 0.344) given w = 0.7. This is in agreement with the local stability of
the disease free and endemic equilibrium points as stated in Theorem 4.4.1. Furthermore,
Figure 4.6 and Figure 4.7 demonstrates that irrespective of the initial conditions, the
disease will always persist in the population for R0 > 1. This agrees with the global
stability results of the endemic equilibrium point.
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Figure. 4.2. Illustrates a decrease in the
proportion of infected individuals with
time, R0 < 1

Figure. 4.3. Illustrates a decrease in the
proportion of mosquitoes carrying plas-
modium parasite with time, R0 < 1

Figure. 4.4. Illustrates how the propor-
tion of infected AA and AS individuals
change with time, R0 > 1

Figure. 4.5. Demonstrates how the pro-
portion of mosquitoes with plasmodium
parasite change with time, R0 > 1

4.6.1 Impact of S-gene frequency on malaria prevalence

In this subsection, we investigate the impact of S-gene frequency on malaria prevalence.
We consider two cases, when the recovery rate of AS individuals is small i.e. γ2 = 0.055
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Figure. 4.6. Shows the behaviour of the
proportion of infected AA individuals for
R0 > 1 given different initial conditions

Figure. 4.7. Demonstrates the behaviour
of the proportion of infected AS individ-
uals for R0 > 1 given different initial
conditions

and when γ2 = 0.09. We observe the change in the malaria prevalence as we increase the
frequency of S-gene. Figure 4.8 shows that malaria prevalence increases with increase in
S-gene frequency for small values of γ2. This implies that for smaller values of γ2, higher
S-gene frequency leads to higher malaria endemic levels at equilibrium. This is expected
especially in cases where AS individuals rarely show clinical symptoms but still inhabit the
parasite and transmit it. On the other hand, increasing the recovery rate with γ2 = 0.09,
Figure 4.9 shows that at equilibrium, malaria prevalence decreases with increase in S-gene
frequency. This is also illustrated in Figure 4.10. where the reproduction number R0

increases with increase in frequency for smaller values of γ2 and decreases with sickle cell
gene frequency for higher values of γ2. Therefore, increasing the duration of parasitemia
for AS individuals (reducing γ2) leads to higher malaria prevalence thus increased selection
for the S-gene.
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Figure. 4.8. Plot showing the change
in malaria prevalence with time for dif-
ferent values of the sickle cell gene fre-
quency, recovery rate,γ2 = 0.055

Figure. 4.9. Plot showing the change
in malaria prevalence with time for dif-
ferent values of the sickle cell gene fre-
quency, γ2 = 0.09

Figure. 4.10. Plot of variation of the reproduction number with recovery rate γ2 and S-gene
frequency w
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4.7 Sensitivity analysis

In this section, we carry out sensitivity analysis of the reproduction number in order to
determine the important parameters that can be targeted so as to bring the reproduction
value below one. Sensitivity analysis is commonly used to determine the robustness of the
model predictions to parameter values [12]. One way of studying the sensitivity of the
model’s parameters is to calculate the sensitivity index which is the measure of the relative
change in the parameter value to a given outcome (variable).

Definition 4.7.1. [12] The normalised forward sensitivity index of a variable u that dif-
ferentiably depends on the parameter p can be defined as;

Xu
p =

∂u

∂p

p

u
(4.16)

4.7.1 Sensitivity indices for reproduction number

Using parameters in Table 4.2 and Definition 4.7.1, we compute the indices for the repro-
duction number given above. For example, for the malaria infection rate of humans of AA
genotype β1, we have

XR0
β1

=
β1ρ1γ2(1− w)w

β1ρ1γ2(1− w) + β2ρ2γ1

.

In the same way the sensitivity indices of the other parameters used in the model for the
fast dynamics are computed and their values given in Table 4.3. We consider two cases,
when S-gene frequency is small (w = 0.1) and when w = 0.7 to compare our results. Figure
4.11 and Figure 4.12 give the graphic representation of these values.

The sign of the sensitivity index gives the behaviour of the reproduction number with an
increase or decrease in that parameter value. The (+) shows that the reproduction num-
ber is an increasing function of the parameter implying that an increase in the parameter
value leads to an increase in the reproduction number. The (–) shows that the reproduc-
tion number is a decreasing function of that parameter implying that an increase in the
parameter value leads to a decrease in the reproduction number. For the sensitivity anal-
ysis done, we discover that when w = 0.1, the reproduction number is most sensitive to
the infection rates and the recovery rate of AA individuals i.e β1, ρ1 and γ1. It shows that
an increase in the infection rate leads to an increase in the reproduction number while an

Stellenbosch University  http://scholar.sun.ac.za



Chapter 4. Model 44

increase in the recovery rate leads to a decrease in the reproduction number. This agrees
with intuitive reasoning since we expect a high transmission rate if the infection rate is
increased and a longer period of infectiousness with a reduced recovery rate. We also note
that increasing the mortality rate of mosquitoes with plasmodium by 10% decreases the
reproduction number by 10%.

When the frequency of the S-gene is high i.e w = 0.7, the basic reproduction number is
sensitive to the recovery rate of AS individuals. An increase in the recovery rate by 10%
decreases the reproduction number by 6.604% (see Table 4.3 and Figure 4.12). This concurs
with the numerical results obtained above whereby reduction in duration of parasetaemia
leads to reduction in the reproduction number. We also note that the reproduction number
is as equally sensitive to infection rate of the mosquitoes by individuals of each genotype
as to the infection rate of individuals by the mosquitoes.

Table. 4.3. Sensitivity indices for R0 given w = 0.1 and w = 0.7

Parameter Parameter Value w = 0.1 w = 0.7

β1 0.24 +0.9153 +0.3396
β2 0.2 +0.0325 +0.0487
γ1 0.05 –0.7627 –0.2830
γ2 0.09 –0.0847 –0.6604
δ 0.07 –1 –1
ρ1 0.05 +0.9153 +0.3396
ρ2 0.09 +0.0325 +0.0487
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Figure. 4.11. Sensitivity indices for R0

given w = 0.7
Figure. 4.12. Sensitivity indices for R0

given w = 0.7

4.8 Slow dynamics

In this section, we study the dynamics of malaria and sickle cell gene in the limit as
ε −→ 0 where the fast system is singular and the singularities appear as manifolds on the
slow system (Chapter 3). In this case, the set of equilibria of the fast system gives a two
dimension slow manifold which is normally hyperbolically stable. i.e

M0 = {(y1, y2,m,w,Nh) : y1 = y∗1(w,Nh), y2 = y∗2(w,Nh),m = m∗(w,Nh)}

with y∗1, y
∗
2 given by equations (4.13) and (4.14) respectively. Fenichil’s second theorem,

Theorem 3.2.2 guarantees the persistence of this manifold for small non zero ε as

M ε = {(y1, y2,m,w,Nh) : y1 = yε1, y2 = yε2,m = mε}.

The stable manifoldM ε has a property that for the initial condition close to it, the solution
will always decay towards M0 for t > 0. Singular perturbation techniques thus allow us to
study system (4.6) as the following reduced system;
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dw

dτ
= ((1− w)P2 − wP1)b̂(Nh) + (µ̂1 − µ̂2)w(1− w) + α̂1wy

∗
1 − α̂2(1− w)y∗2,

dNh

dτ
= Nh

(
(P1 + P2)b̂(Nh)− µ̂1(1− w)− µ̂2w − α̂1y

∗
1 − α̂2y

∗
2

)
. (4.17)

This gives the differential system that describes the evolution of the slow variable when
constrained on the fast system for ε = 0. Therefore on the slow manifold, we have smooth
functions

yε1 = y∗1 + o(ε), yε2 = y∗2 + o(ε) and mε = m∗ + o(ε).

The manifold M ε is diffeomorphic to M0, normally hyperbolically stable and invariant
with respect to both equations (4.5) and (4.6) for ε > 0. M ε admits asymptotic phase such
that;

y1 = yε1(w,Nh) + Y1(t),

y2 = yε2(w,Nh) + Y2(t), (4.18)

m = mε(w,Nh) +M(t),

with w and Nh being solutions of the reduced system (4.17) and Y1(t), Y2(t),M(t) are
exponential decay functions with exponents in the scale of upper bound of eigenvalues of
the linearised system (4.7) about the equilibrium point (y∗1, y

∗
2,m

∗) [18, 25]. Thus, if we
can describe the dynamics of system (4.17) using bifurcation parameters, we get a clear
understanding of this system on the manifold hence for the full system (4.6). Analysis of
both systems (4.7) and (4.17) explains the dynamics of malaria and sickle cell gene.

4.8.1 Dynamics on the slow manifold

Recall that when R0 > 1, the unique positive solution of equation (4.15) is given by,

m∗ =
−k1 +

√
∆

2k0

,
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where,

∆ = k2
1 − 4k0k2,

= a0w
2 + 2a1w + a2, (4.19)

with,

a0 = (R1(1 + Th2)−R2(1 + Th1))2,

a1 = −(1 + Th2)2R1 + (1 + Th2)(Th2 − Th1 +R2(1 + Th1))R1 −R2(1 + Th1)(Th1 − Th2),

a2 = (Th1 − Th2 + (1 + Th2)R1)2. (4.20)

Then the unique endemic equilbrium point of system (4.7) is given by;

y∗1 =
−k1 +

√
∆

−(k1 − u1k0) +
√

∆
(1− w), (4.21)

y∗2 =
−k1 +

√
∆

−(k1 − u2k0) +
√

∆
w, (4.22)

m∗ =
−k1 +

√
∆

2k0

, (4.23)

where ui = 2/Thi for i = 1, 2.

We also recall that, q = w/2, p = 1− w/2 and P1 = p2, P2 = 2pq, then

P1 + P2 = 1− w2

4
and (1− w)P2 − wP1 = −w

2

2

[
1− w

2

]
.

The reduced system (4.17) can be re-written as;

w′ = w

(
−1

2
b̂w
(

1− w

2

)(
1− Nh

K

)
+ g1(w)

)
, (4.24)

N ′h = Nh

(
b̂

(
1− w2

4

)(
1− Nh

K

)
− g2(w)

)
, (4.25)

where

g1(w) = (1− w)(α̃1L1(w)− α̃2L2(w)), (4.26)

g2(w) = α̃1L1(w)(1− w) + α̃2L2(w)w, (4.27)
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with α̃i = α̂i + µ̂i > 0 for i = 1, 2 and

Li(w) =
−(k1 − vik0) +

√
∆

−(k1 − uik0) +
√

∆
(4.28)

with
vi =

µ̂i
α̃i
ui =

µ̂i
α̂i + µ̂i

ui < ui.

We can re-write equation (4.28) by rationalising and simplifying as;

L1(w) = 1−M1

(
C11 +

C12 +
√

∆

1− w

)
,

L2(w) = 1−M2

(
C21 +

C22 −
√

∆

w

)
, (4.29)

where

Mi =
α̂iThi

2Riα̃i(Th1 − Th2)(1 + Thi)
,

C11 = (−1 + Th2 − 2Th1)R1 + (1 + Th1)R2,

C12 = Th1 − Th2 −R2(1 + Th1),

C21 = (1− Th1 + 2Th2)R2 − (1 + Th2)R1,

C22 = Th1 − Th2 +R1(1 + Th2).

Moreover with m∗ > 0, the following proposition can be stated;

Proposition 4.8.1. For i = 1, 2, Li(w) are smooth functions such that

0 < Li(w) < 1.

Using equations (4.26) and (4.27), we can re-write equation (4.24) as;

w′ = wq1(w)(Nh −H1(w)),

N ′h = −Nhq2(w)(Nh −H2(w)), (4.30)
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where

q1(w) =
b̂

2K
w
(

1− w

2

)
, q2(w) =

b̂

K

(
1− w2

4

)
,

H1(w) = K − g1(w)

q1(w)
and H2(w) = K − g2(w)

q2(w)
. (4.31)

Analysis of the slow system (4.30) is not a trivial task due to the complexity of functions
gi(w) and Hi(w). In order to proceed with the analysis, we note that system (4.30) is in a
biologically feasible region with the following property;

Proposition 4.8.2. [18] With respect to system (4.30), the closed rectangle

D := {(w,Nh)| 0 ≤ w ≤ 1, 0 ≤ Nh ≤ K}

is invariant and attracting.

4.8.2 Existence of equilibrium points

The equilibrium points for the slow system (4.30) are obtained by setting the right hand
side to zero. Thus, we have the trivial equilibrium point E0 = (0, 0), boundary equilibrium
on the Nh - axis Ẽ = (0, Ñh) where Ñh = H2(0) and the boundary equilibrium on the
w-axis has the form Ê = (ŵ, 0) where ŵ is a solution of H1(w) = 0 with ŵ ∈ (0, 1). The
intersection of Nh = H1(w) and Nh = H2(w) gives the interior equilibrium E∗ = (w∗, N∗h)

with w∗ ∈ (0, 1).

The most crucial parameters to describe the dynamics on the slow time scale are scaled
per-capita birth rate b̂ and the weighted death rates σi = α̃iLi(0), i = 1, 2 where,

σ1 = α̃1L1(0) = µ̂1 +
Th1(R1 − 1)

(1 + Th1)R1

α̂1,

σ2 = α̃2L2(0) = µ̂2 +
Th1(R1 − 1)

(1 + Th2)R1 + Th1 − Th2
α̂2. (4.32)

We use these parameters as bifurcation parameters to analyse the existence and stability of
the equilibria points. By fixing b̂ > 0 and varying σ1 and σ2, the stability for any arbitrary
equilibrium point E = (w,Nh) is determined by the eigenvalues of the Jacobian matrix J
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for system (4.30);

J(E) =

(
(q1 + wq′1)(Nh −H1)− wq1H

′
1 wq1

−Nhq
′
2(Nh −H2) +Nhq2H

′
2 −q2(Nh −H2)− q2Nh

)
. (4.33)

The notation “′” denotes the derivative with respect to w.

Trivial equilibrium E0

First we consider the trivial equilibrium point E0 such that;

J(E0) =

(
σ1 − σ2 0

0 b̂− σ1

)
. (4.34)

The eigenvalues σ1−σ2 and b̂−σ1 give the stability of E0. This can be summarised in the
following proposition.

Proposition 4.8.3. i). If σ1 > σ2 and b̂ < σ1 or σ1 < σ2 and b̂ > σ1, then E0 is a
hyperbolic saddle point.

ii). If σ1 > σ2 and b̂ > σ1, then E0 is a repelling node.

iii). If σ1 < σ2 and b̂ < σ1 , then E0 is an attracting node.

iv). If σ1 = σ2 and σ1 = b̂, then E0 is a degenerate2 equilibrium with at least two co-
dimension but if σ1 = σ2 and σ1 6= b̂ or σ1 6= σ2 and σ1 = b̂ then it is a saddle
node3

The above analysis indicates the trivial case where the frequency of the S-gene is zero when
the population is zero. This implies that the entire population can be wiped out provided
the weighted death rate of AS individuals is greater than that of AA individuals and the
per-capita birth rate.

2Degenerate node if the two eigenvalues are identical
3A saddle node occurs when the critical equilibrium has one zero eigenvalue. The other describes the

stability of the saddle node

Stellenbosch University  http://scholar.sun.ac.za



Chapter 4. Model 51

The Nh - axis equilibrium point

The equilibrium point on the Nh - axis is given by Ẽ = (0, Ñh) where

Ñh = H2(0) =
K

b̂
(b̂− σ1)

which is positive if b̂ > σ1. Therefore

J(Ẽ) =

(
σ1 − σ2 0

−K

b̂
(b̂− σ1) σ1 − b̂

)
. (4.35)

Proposition 4.8.4. i). The equilibrium point Ẽ is only feasible provided σ1 < b̂

ii). If σ1 < b̂ and σ1 < σ2, then Ẽ is an attracting node.

iii). If σ1 < b̂ and σ1 > σ2, then Ẽ is a saddle point.

iv). We note that if σ1 increases and crosses σ1 = σ2, then Ẽ coalesces with one interior
equilibrium point to form an attracting saddle node.

v). If σ1 = b̂, then the equilibrium point Ẽ coalesces with the trivial equilibrium point at
the origin. This becomes an attracting saddle node if σ2 > b̂, a repelling saddle node
if σ2 < b̂ and a degenerate node if σ2 = b̂.

From the above proposition, we note that the S-gene frequency will tend to zero provided
the weighted death rate of AS individual is greater than that of AA individuals but less
than the per-capita birth rate. In this case the population will be composed of entirely AA
individuals.

Equilibrium on the w-axis

The equilibrium points on the w-axis are given by the solution set of H1(w) = 0 for
w ∈ (0, 1). This can be written as

φ(w) = g1(w)− b̂

2
w(1− w

2
) = 0. (4.36)
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After some tedious calculations we obtain;

√
∆ =

h1

h0

, (4.37)

where

h1 =
b̂

4
w3 − w2

(
α̃1 − α̃2 −M1C11α̃1 + α̃2C21M2 +

b̂

2

)
,

+w (α̃1 − α̃2 − α̃1M1(C11 + C12) + α̃2M2(C21 − C22)) + α̃2M2C22,

h0 = α̃1M1w + α̃2M2(1− w),

and ∆ is given by equation (4.19).

Let G1(w) =
√

∆ and G2(w) = h1
h0
, we have

d2G1

dw
=

(a0a2 − a2
1)

∆
√

∆
, (4.38)

then using the idea of convexity analysis, we note that G1 is concave or convex if a0a2−a2
1 6=

0. Then G1 has at most two roots. However, we can not conclusively determine the number
of roots of equation (4.36) in this case.

If a0a2 − a2
1 = 0, then a2 =

a21
a0
. From equation (4.19), we obtain

∆ = a0

(
w +

a1

a0

)2

.

Thus equation (4.37) has at most three roots. Also, if we re-write G2 such that,

G2 = f2(w) +
p0

α̃2M2 + w(α̃1M1 − α̃2M2)
, (4.39)

where f2(w) is a quadratic function of w and p0 is a constant.

The second derivative of (4.39) equated to zero is equivalent to,

(α̃2M2 + w(α̃1M1 − α̃2M2))3 = p1 (4.40)

which admits at most one root in (0,1). Therefore there are at most three equilibria on
the w-axis. However, we recall that w = 0 gives the trivial equilibrium, this implies that
equation (4.30) has at most two equilibria for w ∈ (0, 1). From equation (4.36), we note
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that φ(0) = g1(0) = σ1 − σ2 and φ(1) = −b̂/4 < 0. We summarize these results in the
proposition below.

Proposition 4.8.5. i). If σ1 > σ2, then φ(0) > 0 and φ(1) < 0. The intermediate value
theorem guarantees that equation (4.36) has atleast one positive root (ŵ0) in interval
(0,1) such that φ(ŵ0) = 0. But since φ(w) = 0 has at most two roots, then there is
a unique root ŵ0 in (0,1).

ii). If σ1 < σ2, then φ(0) < 0 and φ(1) < 0. This implies that (4.36) has zero or
two positive roots in the interval (0,1). Suppose equation (4.36) has two positive
roots ŵ01, ŵ02 and that ŵ01 < ŵ02, then φ′(ŵ01) > 0 and φ′(ŵ02) < 0. Also if
ŵ01 = ŵ02 = ŵ0, then φ′(ŵ0) = 0.

iii). If σ1 = σ2, then φ(0) = 0 and φ(1) < 0 indicating that (4.36) has zero or one unique
root in the interval (0,1).

Then the Jacobian matrix evaluated at the boundary equilibrium point Ê = (ŵ, 0) simpli-
fies to;

J(E) =

(
− b̂

4
ŵ2 + g1(ŵ) + ŵg′1(ŵ) wq1(ŵ)

0 −q2(ŵ)H2(ŵ)

)
. (4.41)

The eigenvalues of this matrix are used to determine the stability of the equilibria points
on the w-axis. Using the parameter values given Table 4.2, we show the intersection of the
two curves g1(w) and b̂/2w(1 − w/2) in Figure 4.13 and Figure 4.14 which concurs with
our analytical results.
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Figure. 4.13. shows the equilibria on the
w-axis for σ1 > σ2

Figure. 4.14. Demonstrates the equilib-
ria on the w-axis for σ1 > σ2

The interior equilibria

The positive interior equilibrium point E∗ = (w∗, N∗h) of equation (4.30) is given by the
intersection of H1(w) and H2(w). By equating the two functions and simplifying, we obtain
the w−coordinate w∗ in the interval (0,1) as the root to the following equation;

H(w) = −(1 +
w

2
)g1(w) +

w

2
g2(w). (4.42)

By substituting w∗ in either H1(w) or H2(w), we obtain the Nh−coordinate hence the
interior equilibrium point. Just as we did in the previous section, we can write H(w) = 0

as; P1(w) = P2(w) where

P1(w) =
√

∆, P2(w) =
h21

h20
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and

h21 = [2α̂1(1−M1C11)− α̂2(1−M2C21)]w2,

+[2α̂2(1−M2C21)− 2α̂1(1−M1(C11 + C12)) + α̂2M2C22]w − 2α̂2M2C22,

h20 = (α̂2M2 − 2α̂1M1)w + 2α̂2M2.

From equation (4.38), we note the P1(w) is concave or convex if a0a2−a2
1 6= 0. If a0a2−a2

1 =

0 then (4.42) has atmost two roots. Also,

P2(w) = f(w) +
d0

(α̂2M2 − 2α̂1M1)w + 2α̂2M2

,

where f(w) is a linear function and d0 is a constant. ThusH(w) has at most two roots in the
interval (0,1). From equation (4.42), its shown that H(0) = σ2−σ1 and H(1) = α̃L2(1) > 0

from proposition 4.8.1. Thus, the roots of equation (4.42) depend on whether σ2 − σ1 is
positive or negative. We consider the following cases

• If σ1 > σ2, then H(0) < 0 and H(1) > 0. This implies that H(w) has atleast one root
in the interval (0,1). But since H(w) has at most two roots, then H1(w) and H2(w)

have a unique intersection point thus a unique equilibrium point (w∗, H1(w∗). The
interior equilibrium point remains in D provided σ1 < b̂ for a fixed σ2 ∈ (0, b̂). How-
ever, if σ1 increases such that σ1 > b̂, then the interior equilibrium point (w∗, H1(w∗))

coincides with the unique equilibrium on the w-axis Ẽ = (w̃, 0).

• If σ1 < σ2, then H(0) > 0 and H(1) > 0 thus, H(w) has either zero or two roots in
the interval (0,1). Therefore H1(w) and H2(w) have two points of intersection w∗1, w∗2.
Then the two interior equilibria are (w∗1, H(w∗1)) and (w∗1, H(w∗1)). If w∗1 < w∗2, then
H ′(w∗1) < 0 and H ′(w∗2) > 0. Moreover if w∗1 = w∗2 = w∗, then H ′(w∗) = 0 agreeing
to a unique equilibrium. We note that this is only true if σ1 < b̂. However if σ1

increases such that σ1 > b̂, then the only equilibrium point that exist will be the
trivial equilibrium.

• If σ1 = σ2, then H(0) = 0 and H(1) > 0 this implies that there exists zero or
one equilibrium point depending on the sight of H ′(0). If H ′(0) < 0, then there
is no interior equilibrium but if H ′(0) > 0, then an interior equilibrium point say
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(w∗, H(w∗)) exists. If H ′(0) = 0, then the existing equilibrium coincides with the
trivial equilibrium point.

These results are summarised in the Table 4.4.

Table. 4.4. Interior equilibria points
Condition Number of roots

σ1 > σ2 and σ1 < b̂ One unique interior equilibrium point.
σ1 > σ2 and σ1 > b̂ Interior equilibrium coincides with the w-axis equilibrium Ẽ = (w̃, 0).

σ1 < σ2 and σ1 < b̂ Two interior equilibria point exist with w∗1 < w∗2.
such that H ′(w∗1) < 0 and H ′(w∗2) > 0.

σ1 < σ2 and σ1 > b̂ The two interior equilibria combine and coincide with the
trivial equilibrium point.

σ1 = σ2 Zero or one interior equilibrium point exist.

Furthermore, for the interior equilibrium point E∗ = (w∗, N∗h), N∗h = H1(w∗) = H2(w∗) = 0

and H2(w∗) > 0. The Jacobian matrix evaluated at E∗ reduces to;

J(E∗) =

(
−w∗q1(w∗)H ′1(w∗) w∗q1(w∗)

q2(w∗)H2(w∗)H ′2(w∗) −q2(w∗)H2(w∗)

)
. (4.43)

We note that;

Det(J(E∗)) = w∗q1(w∗)q2(w∗)H2(w∗)(H ′1(w∗)−H ′2(w∗)),

= w∗q1(w∗)q2(w∗)H2(w∗)H ′(w∗).

Trace(J(E∗)) = −(w∗q1(w∗)H ′1(w∗) + q2(w∗)H2(w∗)).

From this, we have the determinant negative provided H ′(w∗) < 0. Thus, the interior
equilibrium point is a hyperbolic saddle point. If H ′(w∗) > 0, then all the eigenvalues are
negative and the equilibrium point is stable. We illustrate the intersection of the interior
equilibrium points for σ1 < σ2 and σ1 > σ2 in Figure 4.15 and Figure 4.16.
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Figure. 4.15. Demonstrates the interior
equilibria points as the intersection of
H1(w) and H2(w) for σ1 > σ2

Figure. 4.16. Shows the interior equilib-
ria points as the intersection of H1(w)
and H2(w) for σ1 < σ2

4.9 Numerical results of slow dynamics

In this section, we present the numerical results for the slow dynamics to support our
analytic results obtained in the previous section and explain other findings. As discussed
earlier, the existence and stability of these equilibrium points depend on the bifurcation
parameters, σ1, σ2 and b̂. By changing the parameter values given in Table 4.2 obtained
from [18, 19, 20] and using odesolver package in Python programming language, we obtain
the phase portraits illustrating the stability of these equilibria points.

Figure 4.17 explains the trivial equilibrium point. As noted earlier, this equilibrium point
exists and is an attracting node provided the per-capital birth rate is less than the weighted
death rates of AA and AS individuals. This implies that the human population declines
and eventually will be wiped out if more deaths occur compared to births. Numerical
results obtained concur with our analytical results.
Figure 4.18 demonstrates the behaviour of the equilibrium point on the w-axis. We note
that, with different initial conditions, we have a stable and attracting equilibrium on the
w-axis as the total population decreases. This occurs when the weighted death rate of
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AA individuals is greater than the weighted death rate of AS individuals and the per-
capita birth rate, that is ( σ1 > σ2 and σ1 > b̂). It implies that, as the population of AA
individuals decreases due to the high death rates, the S-gene frequency establishes itself.
However, since the birth rate is also small to balance the death rates, eventually the total
population goes to extinction as the S-gene frequency reaches maximum value.

Figure. 4.17. Phase portrait for the slow
system given (σ1 < σ2 and σ1 > b̂)

Figure. 4.18. Phase plot for the slow
system given (σ1 > σ2 and σ1 > b̂)

Figure 4.19 and Figure 4.20, illustrate the interior equilibria points which exist for σ1 < σ2

and σ1 < b̂ or σ2 < σ1 and σ2 < b̂. These equilibria demonstrate the persistence of S-gene
in the population which is also in agreement with our analytical results. It implies that as
long as the birth rate is big enough to balance the death rate of AA and AS individuals,
we will always have sickle cell anaemia people in the population.
Figure 4.21 and Figure 4.22, illustrate the equilibrium point on the Nh - axis where the
entire population is S-gene free. In this case the population will be composed of only AA
individuals. This implies that we only need to reduce the death rates of AA individuals as
compared to AS individuals or if the death rate of AS individuals is greater than that of AA
individuals, then the birth rate should be greater than the death rate of AA individuals.

Basing on both our analytic and numerical results, we note that the dynamics on the slow
time scale are highly influenced by the weighted death rates and per -capita birth rate.
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Figure. 4.19. Phase diagram for the
slow system given (σ1 < σ2 and σ1 < b̂)

Figure. 4.20. Phase portrait for the slow
system given (σ2 < σ1 and σ2 < b̂)

Moreover these rates are dependent on the epidemiological parameters such as βi, γi, ρi for
i = 1, 2. Our analysis of both the fast and slow system thus explains the interaction of
malaria and sickle cell gene in the population. In the next subsection, we investigate how
these epidemiological parameters influence the extinction or establishment of S-gene in a
population.
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Figure. 4.21. Phase portrait for the slow
system given (σ1 < σ2 and σ2 < b̂)

Figure. 4.22. Phase diagram for the
slow system given (σ2 < σ1 and σ1 < b̂)

4.9.1 Impact of malaria parameters on S-gene frequency

In order to examine the impact of epidemiological parameters on the frequency of sickle
cell gene, we use a quantity F that gives the fitness of the S-gene whereby;

F =

(
1

w

dw

dτ

)∣∣∣∣
w=0

If w is the abundance of the S-gene, then F will represent the per-capita growth rate of
the S-gene when the gene is initially introduced into the population. Thus F describes
the invasion ability of the S-gene [20]. The interpretation of the fitness coefficient F can
be related to the reproduction number of the infectious disease whereby the S-gene can
establish itself or not depending on this value.

From equations (4.24) and (4.28), we have;
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1

w

dw

dτ

∣∣∣∣
w=0

= α̃1L1(0)− α̃2L2(0),

= µ̂1 − µ̂2 + α̂1

(
Th1(R1 − 1)

R1(1 + Th1

)
− α̂2

(
Th2(R1 − 1)

Th1 +R1(1 + Th2)− Th2

)
,

= µ̂1 + α̂1W1 − (µ̂2 + α̂2W2), (4.44)

where
W1 =

Th1(R1 − 1)

R1(1 + Th1)
and W2 =

Th2(R1 − 1)

Th1 +R1(1 + Th2)− Th2
.

Then F = σ1 − σ2 where σi = µ̂i +Wiα̂i.

σi gives the total per-capita death rate of type i individuals that is weighted by Wi which
depends on the malaria epidemiological parameter. This suggests that the establishment
of the S-gene that is initially introduced in a population depends on whether the fitness is
positive or negative. i.e. σ1 < σ2 or σ1 > σ2.

If the fitness coefficient is negative i.e, σ1 < σ2, then it indicates that the selection for the S-
gene is weak and it cannot establish itself. Relating our result here and those obtained from
the model, Figure 4.17 and Figure 4.21 of our analysis depicts these findings whereby the
entire population can be wiped out if σ2 > b̂ or composed of only AA genotype individual
if σ2 < b̂ .

Contrary to the above, when the fitness coefficient is positive i.e σ1 > σ2, then there is a
strong selection for the S-gene and in this case it gets established in the population. As
depicted from our model in Figures 4.18 and 4.22, the entire population can be wiped out
in this case as the S-gene frequency attains the maximum value i.e if σ1 > b̂ or persist if
σ1 < b̂.

Let R0 = σ1
σ2
, this value describes the invasion ability of sickle cell gene in the same way

the basic reproduction number determines the invasion of the infectious disease. Note that
if R0 < 1 i.e σ1 < σ2 then the gene fails to establish it self but if R0 > 1 i.e σ1 > σ2, then
persistence of the gene in the population is observed.

We proceed to determine how the fitness coefficient is influenced by the epidemiological
parameters;
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Recall µ̂1 − µ̂2 = −ν̂, thus;

F = −ν̂ +
α̂1Th1(R1 − 1)

(1 + Th1)R1

− α̂2Th2(R1 − 1)

(1 + Th2)R1 + Th1 − Th2

where
Ri = ThiTvi i = 1, 2

Thi involves only parameters that are related to the malaria infection of genotype i indi-
vidual by mosquitoes and Tvi involves parameters that are related to mosquito infection
by humans of genotype i. In Figure 4.23, we note that the fitness of the S-gene does not
change much with Th2 for a given value of Th1 . This implies that any change in malaria
transmission rate θ2 or in the recovery rate γ2 will not cause a greater change in the fitness
of the S-gene. On the other hand, for a given value of Th2 an increase in the transmission
rate of AA genotype individuals or a decrease in the recovery rate increases the fitness coef-
ficient. This explains the high percentages of sickle cell gene frequency in malaria endemic
areas.

Figure. 4.23. Fitness of S-gene with transmission parameters
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4.10 Summary

In this chapter, we have analysed the model developed by Feng et al. [18, 19, 20] for the
interaction between malaria and sickle cell gene. We considered malaria epidemiological
parameters and demographic/genetic parameters to occur on two different time scales that
is 1/days and 1/decades respectively. This was done using singular perturbation techniques
discussed in Chapter 3.
On the fast time scale, we carried out both analytical and numerical simulations to inves-
tigate how malaria dynamics change with time. We considered the measure of the S-gene
frequency w as a constant. The basic reproduction number of the reduced system was
computed. Our results indicated that the basic reproduction number is composed of two
terms that is, Ri, for i = 1, 2 where Ri represents the basic reproduction number if the
population is composed of individuals of only genotype i. Furthermore, we checked for the
existence and stability of the equilibrium points. We found that the disease free equilibrium
point exists and is locally asymptotically stable only if R0 < 1 and unstable otherwise. On
the other hand, the endemic equilibrium was found to be unique and locally asymptotically
stable for R0 > 1. Our numerical simulations confirmed the analytic results obtained.

We further investigated how the sickle cell gene frequency affects the epidemiological mea-
sure i.e. reproduction number. Our findings showed that higher sickle cell gene frequency
lead to high malaria endemic levels for low values of the recovery rate of AS individuals, γ2,
and to low endemic levels for higher values of γ2. In addition, using sensitivity analysis of
the basic reproduction number to the parameter values given in Table 4.2, we observed that
the most important parameters were transmission parameters of malaria parasite from and
to humans, the recovery rates of both AA and AS individuals as well as the mosquito death
rate. In all this analysis, we note that the recovery rate of both AA and AS individuals
has a great influence on the maintenance of the S-gene in the population.

On the slow time scale, we described the evolution of the slow variable on the manifold (
slow manifold). We carried out both analytical and numerical simulations to investigate
the existence and stability of equilibrium points on the manifold. In our analysis, we
discovered that the most important and crucial parameters to describe the dynamics on
the slow time scale were the weighted death rates of both AA and AS individuals and
the per-capita birth rate. We examined all the possible equilibria and their stability using
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these parameters. Furthermore, we investigated the impact of epidemiological parameters
on the sickle cell gene frequency. The fitness coefficient obtained as the difference between
the weighted death rates σ1 and σ2 was used as a measure to determine the influence of the
malaria epidemiological parameters on the invasion of the S-gene. Our findings indicated
that the gene may or may not establish itself depending on whether this coefficient is
positive or negative. In addition, we discovered that the gene’s ability to invade is more
dependent on the transmission parameters of AA than for AS individuals. In conclusion,
our analysis of both the fast and slow dynamics give a clear understanding of malaria
and sickle cell gene which other epidemiological models without genetic structure ignore
or genetic models without malaria epidemiology can not explain.

Furthermore, given that the recovery rate of AA and AS individuals have a great influence
on the maintenance of sickle cell gene in the population, it would be good venture for us
to investigate how malaria treatment of AA individuals affect the frequency of sickle cell
gene. This is done in the next chapter with the assumption that AS individuals are less
likely to develop clinical malaria therefore no drugs are administered to them.
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Model With Treatment

5.1 Introduction

Malaria treatment involves the use of drugs such as quinine, chloroquine, sulfadoxine-
pyrimethamine (Fansidar), mefloquine (Lariam) as well as hospitalization for the severe
cases. Administering of malaria drugs leads to a reduction in the malaria induced mortality
rate.
Our analysis in Chapter 4 suggests that sickle cell gene will always persist with high fre-
quency provided the mortality rate of AA individuals is greater than that of AS individuals.
As a result, we extend the model discussed in Chapter 4 to include malaria treatment for
AA genotype individuals. We do not consider treatment of AS individuals because they
are less likely to develop clinical symptoms [8]. Our main objective is to investigate the
impact of malaria treatment on the frequency of S-gene. Thus, we modified the model
described in Chapter 4 as follows.

• We add an extra compartment (R) for the recovered individuals of AA genotype.
Infected AA individuals from I1 recover due to treatment at a rate η and move to
compartment R. Recovered individuals have partial immunity but still inhabit some
parasite in their blood stream and can be passed on to the mosquitoes though with
a reduced probability [13, 15]. Immunity is lost at a rate k and individuals become
susceptible again as shown in Figure 5.1. However, new infections boosts the immune
system thereby development of solid immunity [29, 30].

65
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• For simplicity, we assume the probability of transmission from mosquitoes to humans
of genotype i to be the same in malaria endemic areas (θ1 = θ2 = θ). Thus, the force
of infection of mosquitoes to humans is given by

λh = aθ
Im
Nh

.

Additionally, the probability of transmission from humans of genotype i to mosquitoes
is also considered to be the same (φ1 = φ2 = φ). Then the force of infection of humans
to mosquitoes is given by

λm = aφ

(
I1 + I2 + εR

Nh

)
where ε is reduced transmission factor of recovered individuals (0 < ε < 1).

• In the previous model we considered a logistic birth rate but in the modified model
we take the recruitment rate by birth of both AA and AS individuals to be constants
Λ1 and Λ2 for simplicity.

• The malaria induced mortality rate of AS individuals is not considered in this model
for simplicity. We assume that in extreme cases, AS individuals do not die from
malaria since they are less likely to develop clinical symptoms. Thus, malaria induced
mortality rate of AA individuals is given by α1 = α.

• Two compartments for the mosquito dynamics are considered, that is Sm and Im

for the susceptible and infected mosquitoes respectively. In the previous model, we
considered a constant ratio of mosquito to human population c. However, due to the
high migration of people to urban areas thus creating habitats for mosquitoes makes
such an assumption to be unrealistic. This implies that mosquitoes are recruited at
different rates. Thus, the ratio of mosquitoes to human vary causing a change in the
transmission dynamics.
Let the recruitment rate of mosquitoes into Sm by birth be a constant Λm.

Having made the above changes in the model described in Chapter 4, the following diagram
shows the in flow and out flow of individuals for each compartment.
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Figure. 5.1. Schematic diagram for malaria and sickle cell gene with malaria treatment

5.1.1 Model equations

The conceptual model described by the schematic diagram in Figure 5.1 with above as-
sumptions can be formulated as a system of ordinary differential equations for humans and
mosquitoes respectively as;

Ṡ1 = Λ1 − λhS1 + γ1I1 + kR− µ1S1, (5.1)

Ṡ2 = Λ2 − λhS2 + γ2I2 − µ2S2, (5.2)

İ1 = λhS1 − (α + γ1 + µ1 + η)I1, (5.3)

İ2 = λhS2 − (γ2 + µ2)I2, (5.4)

Ṙ = ηI1 − (µ1 + k)R, (5.5)
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and

Ṡm = Λm − λmSm − δSm, (5.6)
˙Im = λmSm − δIm, (5.7)

with
λh = aθ

Im
Nh

, λm = aφ

(
I1 + I2 + εR

Nh

)
and µ2 = µ1 + ν.

Then,

Ṅh = Λ1 + Λ2 − µ1Nh − ν(S2 + I2)− αI1, (5.8)

Ṅm = Λm − δNm, (5.9)

where Nh(t) = S1(t) + S2(t) + I1(t) + I2(t) + R(t) and Nm(t) = Sm(t) + Im(t) whenever
Nh(0) = S1(0) + S2(0) + I1(0) + I2(0) +R(0) and Nm(0) = Sm(0) + Im(0).

5.2 Model analysis

In this section we study the quantitative behaviour of the model. This involves linearisation
of the model system to determine the stability of the equilibrium points. In the model
described in Chapter 4, we considered two time scales to analyse it. However, in modified
model we ignore the differences in time scales for simplicity.
The state variables used in the model with non-negative initial values are analysed in a
biologically feasible region. Theorem 5.2.1 gives this property.

Theorem 5.2.1. Suppose S1(0), S2(0), I1(0), I2(0), R(0), Sm(0) and Im(0) are all non -
negative values, then S1(t), S2(t), I1(t), I2(t), R(t), Im(t), Sm(t) are also non-negative for
t > 0 moreover ,

lim
t→∞

supNh(t) ≤
Λ1 + Λ2

µ1

and lim
t→∞

supNm(t) ≤ Λm

δ
.

Furthermore, if in addition

Nh(0) ≤ Λ1 + Λ2

µ1

, Nm(0) ≤ Λm

δ
,
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then
Nh(t) ≤

Λ1 + Λ2

µ1

, Nm(t) ≤ Λm

δ
.

In particular, the region ∆ = ∆h ×∆m with

∆h = {(S1, S2, I1, I2, R) ∈ R5
+ : S1 + S2 + I1 + I2 +R ≤ Λ1 + Λ2

µ1

},

∆m = {(Sm + Im) ∈ R2
+ : Sm + Im ≤

Λm

δ
}, (5.10)

is positively invariant.

Theorem 5.2.1 is proved in the similar way as Theorem 4.3.1 in Chapter 4.

5.2.1 Existence and stability of equilibrium points

In this subsection, we determine equilibrium points of the model by setting the right hand
side of equations (5.1) – (5.7) to zero. When all the infectious classes equal to zero, we
obtain the disease free equilibrium point,

E0 =
(

Λ1

µ1
, Λ2

µ2
, 0, 0, 0, Λm

δ
, 0
)
,

otherwise we have endemic equilibrium points.

5.2.2 The basic reproduction number with treatment, RT

The existence and stability of the equilibrium points depend on the basic reproduction
number, RT , which is obtained by the next generation matrix as described by P. van den
Driessche and J. Watmough [47]. We consider the reduced system for infectious classes i.e.
I1, I2, R, Im as;
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İ1 = λhS1 − (α + γ1 + µ1 + η)I1,

İ2 = λhS2 − (γ2 + µ2)I2,

Ṙ = ηI1 − (µ1 + k)R, (5.11)
˙Im = λmSm − δIm.

Separating (5.11), into matrix of new infections, F , and transition matrix, V , we have

F =


λhS1

λhS2

0

λmSm

 , V =


(γ1 + α + µ1 + η)I1

(γ2 + µ2)I2

(µ1 + k)R− ηI1

δIm

 .

Then we determine the Jacobian matrix of F and V evaluated at DFE E0. Thus

F = DF|E0 =


0 0 0 aθΛ1

µ1N?
h

0 0 0 aθΛ2

µ2N?
h

0 0 0 0
aφΛm
δN?

h

aφΛm
δN?

h

aεφΛm
δN?

h
0

 ,

V = DV|E0 =


(γ1 + µ1 + η + α) 0 0 0

0 γ2 + µ2 0 0

−η 0 µ1 + k 0

0 0 0 δ

 .

Let
q1 = α + µ1 + η + γ1, q2 = µ2 + γ2, q3 = k + µ1.

Note: In the absence of disease, N?
h = Λ1µ2+Λ2µ1

µ1µ2
.

Then the spectral radius (dominant eigenvalue) of the next generation matrix (FV−1) gives
the reproduction number RT .
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Thus

R̃T =

√
a2θφΛmµ2

2µ
2
1

δ2(Λ1µ2 + Λ2µ1)2

[
(q3 + εη)Λ1

µ1q1q3

+
Λ2

µ2q2

]
=
√

RT

gives the number of humans (mosquitoes) that one infectious mosquito (human) infects
through out the infectious period when introduced in a fully susceptible human (mosquito)
population. The basic reproduction number as per the original definition is given as;

RT =
a2θφΛmµ

2
1µ

2
2

δ2(Λ1µ2 + Λ2µ1)2

[
(q3 + εη)Λ1

µ1q1q3

+
Λ2

µ2q2

]
,

Note that RT can be given as;
RT = RT1 + RT2

where,

RT1 =
a2θφΛmµ

2
2µ

2
1

δ2(Λ1µ2 + Λ2µ1)2

(q3 + εη)Λ1

µ1q1q3

,

RT2 =
a2θφΛmµ

2
2µ

2
1

δ2(Λ1µ2 + Λ2µ1)2

Λ2

µ2q2

.

RT1 and RT2 are referred to as the basic reproduction numbers if the population composed
of only AA and AS individuals respectively.

5.2.3 Local stability of the DFE

Using the stability analysis techniques discussed in Chapter 3, the stability of the DFE is
obtained by the eigenvalues of the Jacobian matrix of the linearised system of (5.1) – (5.7)
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evaluated at E0. Thus;

J|E0 =



−µ1 0 γ1 0 k 0 − aθΛ1

µ1N?
h

0 −µ2 0 γ2 0 0 − aθΛ2

µ2N?
h

0 0 −q1 0 0 0 aθΛ1

µ1N?
h

0 0 0 −q2 0 0 aθΛ2

µ2N?
h

0 0 η 0 −q3 0 0

0 0 −aφΛm
δN?

h
−aφΛ2

δN?
h
−aεφΛm

δN?
h
−δ 0

0 0 aφΛm
δN?

h

aφΛ2

δN?
h

aεφΛm
δN?

h
0 −δ



. (5.12)

Then the characteristic polynomial of (5.12) equated to zero gives the following eigenvalues;

λ = −µ1, λ = −µ2, λ = −δ,

and the zeros of

c4λ
4 + c3λ

3 + c2λ
2 + c1λ+ c0 = 0, (5.13)
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where,

c4 = δµ1µ2(N?
h)2,

c3 = δµ1(N?
h)2µ2(q1 + q2q3 + δ),

c2 = δ2(N?
h)2µ1µ2[q1(1− RT1) + q2(1− RT2)] + δµ1(N?

h)2µ2(q3δ + q1q2 + q1q3 + q2q3)

+
a2θφεηΛ1Λm

q3

,

c1 = δ2(N?
h)2µ1µ2[q1q3(1− RT1) + q2q3(1− RT2) + q1q2(1− RT ) + q1q2q3] +

a2εθφΛ1Λmηµ2q2

q3

,

c0 = δ2(N?
h)2µ1µ2q2q3(1− RT ).

We use Descartes’ rule of signs given by Theorem 5.2.2 to determine the number of positive
and negative roots of (5.13).

Theorem 5.2.2. [45] Let P(X) be a polynomial with real coefficients.

i. The number of positive roots of P is at most the number of sign changes of the
coefficients of P(X).

ii. The number of negative roots of P is at most the number of sign changes of the
coefficients of the polynomial P(-X).

Applying Theorem 5.2.2 to equation (5.13), we have,

• If RT < 1, all the coefficients of (5.13) are positive hence no positive root. Thus
all the eigenvalues are negative. This implies that the DFE is locally asymptotically
stable.

• RT > 1, c0 < 0 and Descartes’ rule of sign guarantees at least one positive root of
(5.13). Thus one positive eigenvalue implying DFE is unstable.

These results are be summarised by Theorem 5.2.3;

Theorem 5.2.3. Disease free equilibrium is locally asymptotically stable if RT < 1 and
unstable otherwise.
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5.2.4 Existence and stability of endemic equilibrium points

Let E? = (S?1 , S
?
2 , I

?
1 , I

?
2 , R

?, S?m, I
?
m) represent any arbitrary equilbrium point of the model

and let
λ?h =

aθ

N??
h

I?m and λ?m =
aφ

N??
h

(I?1 + I?2 + εR?) (5.14)

represent the forces of infection at equilibrium for the human and mosquito population
respectively. E? is obtained by setting the right hand side of equations (5.1) –(5.7) to zero.

We have,

S?1 =
Λ1q1q3

λ?h((µ1 + α)q3 + µ1η) + µ1q1q3

,

S?2 =
Λ2q2

µ2(λ?h + q2)
,

I?1 =
Λ1q3λ

?
h

λ?h((µ1 + α)q3 + µ1η) + µ1q1q3

,

I?2 =
Λ2λ

?
h

µ2(λ?h + q2)
, (5.15)

R? =
Λ1λ

?
hη

λ?h((µ1 + α)q3 + µ1η) + µ1q1q3

,

S?m =
Λm

λ?m + δ
,

I?m =
Λmλ

?
m

δ(λ?m + δ)
.

Substituting (5.15) in (5.14) gives,

λ?h = aθ
Λmλ

?
m

N??
h δ(λ

?
m + δ)

, (5.16)

λ?m = aφ
λ?h
N??
h

(
Λ1(q3 + εη)

((µ1 + α)q3 + µ1η)λ?h + µ1q1q3

+
Λ2

µ2(λ?h + q2)

)
, (5.17)

with
N??
h =

Λ1(q1q3 + λ?hq1 + ηλ?h)

((µ1 + α)q3 + µ1η)λ?h + µ1q1q3

+
Λ2

µ2

,

and q1 = (µ1 + γ1 + η + α), q2 = (µ1 + ν + γ2), q3 = µ1 + k.
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Substituting equation (5.17) in equation (5.16) and simplifying we obtain,

λ?h(b0(λ?h)
2 + b1λ

?
h + b2) = 0, (5.18)

where,

b0 = δN??
h (µ2(δNh(µ1η + (α + µ1)q3) + aφ(εη + q3)Λ1) + aφ(µ1η + (µ1 + α)q3)Λ2),

b1 = aφδN??
h (q2µ2Λ1(εη + q3) + µ1q1q3Λ2) + δ2(N??

h )2q1q3µ2µ1(1− RT1)

+δ2(N??
h )2q2µ2(µ1η + (µ1 + α)q3)(1− RT2),

b2 = δ2µ1(N??
h )2q1q2q3µ2(1− RT ).

We consider the following,

i. When RT < 1, then b2 > 0 and b1 > 0, then equation (5.18) has no positive roots.

ii. When RT = 1, b2 = 0 and b1 > 0. Since b0 > 0, then there is one negative root hence
no endemic equilibrium point.

iii. When RT > 1, then b2 < 0 and ∆ = b2
1 − 4b0b2 > 0. Then equation (5.18) has two

real roots, since the product is given by b2/b0 < 0, then one of them is negative and
the other is positive.

We proceed to determine the endemic equilibrium point when RT > 1 by substituting for
N??
h in equation (5.18). We have

λ?h(a3(λ?h)
3 + a2(λ?h)

2 + a1λ
?
h + a0) = 0 (5.19)
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where,

a3 = δ[(η + q3)µ2Λ1 + yΛ2][(η(δ + aεφ) + (δ + aφ)q3)µ2Λ1 + (δ + aφ)yΛ2] > 0,

a2 = δ[(η + q3)µ2Λ1 + yΛ2][(η(δ + aεφ) + (δ + aφ)q3)µ2Λ1 + (δ + aφ)yΛ2]

+δq1q3

(
(η(2δ + aεφ) + (2δ + aφ)q3)µ2

2Λ2
1 + (µ1η(4δ + aφ(2 + ε))

+(2αδ + aαφ+ 4δµ1 + 3aφµ1)q3)µ2Λ1Λ2 + 2(δ + aλ)µ1yΛ2
2

)
−a2θφµ1µ2[(εη + q3)µ2Λ1 + yΛ2]Λm,

a1 = δ2q2
1q

2
3(µ2Λ1 + µ1Λ2)2

(
1− 1

q1q3

(RT1(1 + yq2µ1) +
2yq2RT2

q1q3

)

)
+δq1q3 [2yΛ2 + (µ2Λ1 + µ1Λ2)[q2(η(2δ + aεφ) + q3(aφ+ 2δµ2Λ1)] + aφµ1q1q3Λ2] ,

a0 = δ2q2
1q2q

2
3(µ2Λ1 + µ1Λ2)2[1− RT ] < 0

with y = µ1η + (α + µ1)q3.

Then λ?h = 0 corresponds to the disease free equilibrium point and the cubic polynomial
gives the value of λ?h for which the endemic equilibrium point exists. Using Descartes rule
of signs, we find that equation (5.19) has at most three positive roots for RT > 1. The
roots depend on the discriminant, ∆ given by;

∆ = 18a3a2a1a0 − 4a3
2a0 + a2

2a
2
1 − 4a3a

3
1 − 27a3a

2
0. (5.20)

But we know from equation (5.18) that equation (5.19) has only one positive root when
RT > 1 and no positive root when RT ≤ 1. In this case necessarily ∆ < 0 and

λ?h =
1

3a3

3

√
1

2

[√
(2a3

2 − 9a3a2a1 + 27a2
3a0)2 − 4(a2

2 − 3a3a1)3 − (2a3
2 − 9a3a2a1 + 27a2

3a0)

]
.

(5.21)
The other two roots are complex. In Figure 5.2 we illustrate that the model exhibits
transcritical bifurcation whereby the endemic equilibrium point only exists for RT > 1 and
is stable.

When λ?h is substituted back in equation (5.15) we obtain the endemic equilibrium point
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Figure. 5.2. Bifurcation diagram for system (5.1) – (5.7) as a function of the reproduction
number

E?. The existence of the endemic equilibrium is summarised in the theorem below.

Theorem 5.2.4. A unique endemic euilbrium point exist if RT > 1 and no biologically
feasible equilibrium exists for RT < 1

5.3 Numerical results

In this section, we carry out numerical simulations to confirm our analytical results and
other findings as regards to this model. In addition to the parameter values given in Section
4.5 in Chapter 4, other parameters used are described below;

• Recruitment parameters

Richard Gammon [22], estimated the current birth rate to be 0.05 per year. Then
the birth rate per day is estimated as 0.05/365. We assume this rate to be the same
for both AA and AS individuals more so in malaria endemic areas. This is multiplied
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by the total population to give the recruitment rate, Λ1, into the human population.
The female anopheles mosquitoes are continuously recruited by birth. It is estimated
that 500 mosquitoes are produced every day [31]. Thus, the recruitment rate, Λm =

500 per day.

• Transmission parameters

In addition to the transmission parameters described in Section 4.5 in Chapter 4,
we assume that recovered individuals transmit the parasite at a reduced rate. we
consider the reduced transmission factor, ε, to be 0.5.

• Treatment parameters

The recovery rate, η, due to treatment vary depending on how quickly the infected
person receives treatment and the kind of treatment given to him/her. It can take
3 to 14 days to clear the parasite which corresponds to 0.014 and 0.333 recovery
rates respectively. we use an estimated value of 0.2 which corresponds to 5 days
[15, 41]. Malaria treatment does not provide permanent immunity therefore recovered
individuals tend to lose their immunity in a period of 0 to 2 years. We estimate the
rate, k, at which immunity is lost to be 1/(2× 365) [34].

The chosen parameter values and their references are given in Table 5.1.

Table. 5.1. Parameter values used in the model
Parameter Description Value Reference
a Biting rate 0.2 [34, 15]
Λ1 Recruitment rate 0.2 estimated
Λm Mosquito recruitment rate 500 [31]
α Malaria induced death rate 0.0005 [37]
γ1 Recovery rate of AA individuals 0.033 [41, 32]
γ2 Recovery rate of AS individuals 0.066 Assumed
µ1 Human natural mortality rate 0.00004 [34, 20, 15]
ν Sickle cell related death rate 0.00002 [20]
ε Reduced transmission factor 0.5 Assumed
φ Probability of human to mosquito transmission 0.09 [34, 15]
θ Probability of mosquito to human transmission 0.833 [34, 15, 11, 32]
η Recovery rate due to treatment 0.2 [15, 41]
δ Mosquito mortality rate 1/15 [34]
k Rate at which immunity is lost 1/(2× 365) [34, 15]
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Using parameter values in Table 5.1 and odesolver packages in Python programming lan-
guage, we investigate how the populations of susceptible, infectious and recovered, for
both AA and AS groups change over time when the reproduction number is less or greater
than unity. In order to simulate these results, we choose the following initial conditions,
S1(0) = 500, S2(0) = 500, I1(0) = 100, I2(0) = 100, R(0) = 1, Sm(0) = 950, Im(0) = 50. We
assume the same recruitment rate of AA and AS individuals.

We illustrate with the following numerical simulations that indeed the analysed model
has locally asymptotically stable equilibria points whenever the initial conditions are in
the feasible region. The prevalence defined as the proportion of infected individuals in the
population at a given time is also simulated to show the spread or extinction of the disease.

Figure 5.3 illustrates how total prevalence changes with time for RT < 1. We observe
that malaria prevalence goes to zero for RT < 1. Epidemiologically, our results agree with
the universal understanding of the reproduction number whereby the disease is wiped out
whenever RT is less than unity. Moreover, our analytical results given in Theorem 5.2.3
concur these results.

Figure. 5.3. Shows the malaria prevalence for values in Table 5.1 given RT < 1.

The dynamics of malaria disease with RT < 1 are given in Figure 5.4. We observe that
the infected populations converge to zero as the susceptible populations increase for both
humans and mosquitoes.
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Figure. 5.4. Illustrates the dynamics of malaria disease for RT = 0.30

When RT > 1, Figure 5.5 illustrates that, malaria prevalence increases with time but later
stabilizes when the dynamics are at equilibrium. This describes the disease persistence
equilibrium point obtained in subsection 5.2.4. This also is in agreement with the epidemi-
ological interpretation of RT .
Figure 5.6 shows how the dynamics of malaria vary for both AA and AS genotype.
In Figure 5.7, we observe that the susceptible human population decreases as the infected
population increases. However, due to treatment, we have an increase in the recovered
population.

The high prevalence of malaria in the population for RT > 1 is attributed towards the
infected AS individuals. In our model, we considered treatment of AA individuals only
because we assume that they are the only ones who show clinical symptoms and AS individ-
uals do not show clinical symptoms. But although AS individuals rarely show symptoms,
long duration of parasitemia leads to high endemic levels hence high prevalence.
In Figure 5.8, the graph shows malaria prevalence of AA individuals taken independently.
We note that the prevalence increases and then declines. The decline in prevalence among
AA individuals is a result of malaria treatment as transmission will be reduced in this pop-
ulation. On the other hand, Figure 5.9, illustrate malaria prevalence among AS genotype
individuals. We observe that the prevalence increases to high values. This is due to the fact
that AS individuals are not treated therefore in an isolated population of such individuals
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Figure. 5.5. Demonstrates malaria
prevalence for RT = 3.14

Figure. 5.6. Shows human population
dynamics for RT = 3.14

the prevalence increases. This explains why treatment of only individuals showing clinical
symptoms is bound to fail in the fight for malaria eradication.
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Figure. 5.7. Illustrates the dynamics of malaria disease for RT = 3.14

Figure. 5.8. Demonstrates malaria
prevalence for AA genotype individuals,
RT = 3.13

Figure. 5.9. Illustrates malaria preva-
lence for AS genotype individuals,
RT = 3.13
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5.3.1 Impact of recovery rate on S-gene frequency

In this subsection, we investigate the impact of the recovery rate on the frequency of S-gene.
Much as treatment does not directly affect the frequency of the gene, it leads to an increase
in AA genotype group which in return affects the emergence of new AS individuals. We
note that, AS individuals have a single copy of the S-gene, thus the frequency of the gene is
given as half the proportion of AS individuals in the population. The frequency of S-gene,
q in the population is given by;

q =
S2 + I2

2Nh

. (5.22)

To investigate how q changes with the recovery rate η, we determine the derivative of q
with respect to η. If the derivative for a given value of η is positive, then the frequency is an
increasing function of η and if its negative, then q is a decreasing function of η. However,
since we can not explicitly solve system (5.1 – 5.7) to obtain the expression for q, we use
the equilibrium point given in equation (5.15) to examine how the frequency changes with
η at equilibrium. Thus;

q? =
S?2 + I?2
2N??

h

. (5.23)

Figure 5.10 shows that, at equilibrium the the sickle cell gene frequency decreases as the
recovery rate of AA individual increases. If we consider the recovery rate to take values
between 0 – 0.4, it shows that individuals take at least three days to recover. On average,
infected individuals take atleast 5 days to recover from the infection. This implies that
with a recovery rate of 0.4, either strong medication should be administered or combined
therapy where more than one drugs should be given. Therefore, with effective treatment
of AA population a reduction in the emergence of new AS individuals in a long run will
be observed.
In Figure 5.11, we observe that even though malaria may persist in the population, that is
increase in reproduction number, the frequency declines because of the effective treatment.
When we plot the frequency at equilibrium with the number of AS infected individuals
(Figure 5.12), it is shown that the frequency declines as AS infected population reduces.
This implies that much as AS individuals do not show symptoms, they indirectly contribute
toward the high mortality rate of AA genotype individuals. We know that malaria mortality
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Figure. 5.10. Demonstrates the decrease in sickle cell gene frequency as the recovery rate,
η increases at equilibrium.

is high among children below 5 years and pregnant women, Brian Greenwood [23] in his
study suggested that chemoprophylaxis is an effective way of preventing morbidity and
mortality among these vulnerable groups. He suggested the use of intermittent preventive
methods where anti-malaria drugs are given to infants, children and pregnant mothers in
consistent intervals. If chemoprophylaxis is administered to all infants irrespective of their
genotype status and infectious status, then we would not only control the spread of malaria
but also reduce the frequency of sickle cell gene in the entire population. However this is
bound to increase spread of drug-resistance malaria in low endemic areas though its has
little impact in high endemic areas [41].

Figure 5.13, shows that the frequency of sickle cell gene decreases as time increases for
different recovery rates, η. We observe a bigger decline when the recovery rate is 0.4
compared to 0.1. This implies that the effectiveness of malaria treatment will influence the
frequency of sickle cell gene. As explained earlier, even though malaria treatment does not
directly affect the frequency of sickle cell gene, it leads to a reduction in mortality of AA
individuals.
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Figure. 5.11. Demonstrates the de-
crease in sickle cell gene frequency at
equilibrium with change in reproduction
number, RT

Figure. 5.12. Demonstrates the decline
in sickle cell gene frequency at equilib-
rium with a decrease in the number of
infected AS individuals

Figure. 5.13. Shows the decrease in sickle cell gene frequency with time as we increase the
recovery rate.
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5.4 Summary

In this chapter, we analysed a 7-dimensional ordinary differential system of equations show-
ing the dynamics of malaria and sickle cell gene for two genotypes. The system is composed
of 5 - variables for the humans and 2-variables for the mosquitoes. We demonstrated that
the model is epidemiologically feasible and mathematically well posed in a specific domain.
From the model, we were able to determine the basic reproduction number which was given
as a sum of two terms, that is AA and AS reproduction numbers RT1 and RT2 respectively.
Furthermore, we studied the existence of the disease free and the unique endemic equilib-
rium points. Our analysis showed that for RT < 1, the disease free equilibrium is locally
asymptotically stable and unstable otherwise. Moreover, the unique endemic equilibrium
point only exists for RT > 1 thus transcritical bifurcation.
We also carried out numerical simulations to verify our analytical results and to investigate
the impact of malaria treatment of AA individuals on the frequency of the S-gene. Results
showed that, the frequency declines with increase in the recovery rate due to treatment
upto a certain level. This implies that treatment of a single group will not lead sickle cell
eradication but will only reduce its frequency.
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Chapter 6

Conclusion and Recommendations

6.1 Conclusion

In this thesis, we investigated the impact of malaria treatment of AA genotype individuals
on the frequency of sickle cell gene using mathematical models. we first started by reviewing
the model by Feng et al. [20] to understand the impact of sickle cell gene on malaria
dynamics and how the malaria epidemiological parameters affect the maintenance of S-gene.
We used singular perturbation techniques to analyse this model with an argument that
malaria dynamics occur on a much faster time scale compared to the sickle cell dynamics.
Therefore, we considered two time scales (fast and slow time scale).

On the fast time scale, the dynamics discussed correspond to malaria disease only. We
determined the basic reproduction number and noted that it constitutes two terms R1

and R2 with R1 and R2 being the basic reproduction numbers when the population is
composed of AA and AS individuals respectively. Both our analytical and numerical results
indicated that, when R0 < 1, then malaria is wiped out in both populations. This is in
agreement with the previous work done on malaria models. When R0 > 1, our model
suggested that a unique endemic equilibrium point exists which is locally asymptotically
stable. Furthermore, we investigated how the frequency of the S-gene affects the dynamics
of malaria. We were able to conclude that higher frequency of sickle cell gene leads to
high malaria endemic levels for small recovery rate values for AS individuals. On the other
hand, reduced level of endemicity was observed for high recovery rate values in areas with
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high sickle cell gene frequency. This was also confirmed by the numerical results of the
reproduction number as we change the frequency of the gene and the recovery rate of AS
individuals. Thus, a single copy of sickle cell gene is only advantageous to the population
in malaria endemic areas provided the parasite is cleared quickly from the blood stream of
those individuals otherwise it leads to high malaria endemic levels.

We also carried out sensitivity analysis of the basic reproduction number. All the sensitivity
indices obtained agreed with the intuitive expectations. Moreover, we noted that the basic
reproduction number was most sensitive to the infection rates and the recovery rate of AS
individuals in areas with high sickle cell gene frequency. The basic reproduction number was
also observed to be sensitive to the mosquito death rate. Therefore, for malaria encounter
in both populations, these parameters should be targeted so as to bring the reproduction
number to value below unity.

Singular perturbation techniques suggest that the locally asymptotically hyperbolic equi-
librium point of the fast time scale appears as a normally hyperbolic manifold on the slow
time scale. This is in the sense that when we start in the neighbourhood of equilibrium set,
the solution will always decay towards the manifold. The evolution of the slow variables
on the slow time scale was studied on this manifold. We noted that the dynamics of the
slow variable i.e the abundance of the S-gene (w) and the human population (Nh) are well
explained by the per-capita birth rate and the weighted (maximum per-capita ) death rates
of AA and AS individuals. These parameters were the most crucial ones to describe the
existence and stability of the equilibria points on the slow time scale.

We used the fitness coefficient as a measure for the invasion ability of the S-gene when
initially introduced in a population. This was given as the difference between the weighted
death rate of AA and AS individuals. Both our mathematical and numerical results in-
dicated that, the gene may establish itself if the death rate of AA individuals is greater
than that of AS individuals. Moreover, if the per-capita birth rate is greater than both the
weighted death rate of AA and AS individuals, the gene will always be maintained in the
population and if it is less than both the weighted death rates, then eventually the entire
population will be wiped out. The fitness coefficient was noted to be composed of mainly
malaria parameters.This explains why in malaria endemic areas, the frequency of the gene
is high compared to areas where malaria has been eradicated.
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We extended this model by adding another compartment for the recovered AA individuals
in order to investigate the impact of malaria treatment on sickle cell gene frequency. In
the extended model, we assumed that AS individuals do not show clinical symptoms for
malaria therefore do not need treatment. We carried out mathematical analysis of the
model which included determining of the basic reproduction number and the equilibria
points. We noted that the disease free equilibrium point is locally asymptotically stable
for RT < 1 and unstable otherwise.
In addition, the model exhibits transcritical bifurcation whereby a unique endemic equi-
librium point exists for RT > 1. The stability of the endemic equilibrium point was only
determined numerically due to the complexity of its form. In order to investigate the im-
pact of malaria treatment of AA individuals on the sickle cell gene frequency, we evaluated
the gene frequency at equilibrium and used the parameters values given in Table 5.1 to
carry out the numerical results. Our results indicated that, the frequency declined with an
increase in the recovery rate. We noted that sickle cell gene frequency could only reduce
to a certain value no matter the increase in the recovery rate. We also noted that if the
number of infected AS individuals is reduced, then the frequency also reduces. This is
not surprising since even though AS individuals do not show malaria symptom they still
transmit the parasite. Therefore, we conclude that, malaria treatment of a single group
will to some extent lead to the reduction in the sickle cell gene frequency.

6.2 Recommendations

Basing on the results obtained from both models, we recommend the following.

• Administering of drugs to both AA and AS individuals irrespective of whether symp-
toms show or not. Brian Greenwood [23] suggested the use of intermittent preven-
tative programmes whereby malaria drugs are given to all individuals in intervals
irrespective of their infection status as one way to control malaria morbidity and
mortality. This has been noticed to be effective among pregnant women. If this is
extended for young children that have not yet developed solid immunity, it would
reduce on malaria transmission and mortality, hence reducing new AS individuals.
However, implementation of this programme might lead to high spread of drug re-
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sistance in low malaria endemic areas. Therefore, it would require invention of new
drugs or combination therapy.

• Combined strategies such as the use of mosquito treated nets, treatment and use of
insecticides for mosquitoes will greatly lead to malaria eradication and reduction in
the frequency of the S-gene.

6.3 Limitations and future work

In this thesis, we did not considered all the possible dynamics of malaria and sickle cell gene
in order to reduce on the complexity of the model. For instance, we did not include the
exposed classes for both human and mosquitoes. We assumed that the time since infection
and onset of the disease is too small and can be ignored which is not entirely true.
Due to the fact that malaria models in literature did not consider genetic make up of
individuals, obtaining of parameter values was also a limitation to our study.
We could not obtain data in order to validate our models. Therefore, for future work, we
suggest the following.

• A model explaining the full dynamics of malaria and sickle cell gene should be for-
mulated. i.e SEIR model for both genotypes.

• A model with treatment of AS individuals should be formulated and a measure for
cost effectiveness of this intervention be investigated.

• Use of data to validate the model.
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