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Abstract

Transcriptomic Profile Based Cancer Disease Prediction and
Patient Survival Time Differentiation

Samuel Ofosu Mensah
Department of Mathematical Sciences,
University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.
Thesis: MSc. (Mathematics)

December 2018

Cancer disease is an abnormal growth of cells, which may be caused by mu-
tations in genes which, as a result, alter the way cells function mainly in the
way they grow and divide. Cancer cells are regulated by complex interactions
mediated by a group of proteins and miRNAs which are expressed and re-
pressed. With the help of transcriptomic technologies such as RNA-sequencing
(RNA-seq), it is now possible to profile thousands of genes at once to create
a global picture of the functions of cells. Here, the study employs a statistical
approach, called Significance Analysis of Microarray (SAM), to identify genes
that are differentially expressed in breast cancer patients. Genes with scores
greater than a threshold are deemed potentially significant. Genes identified as
significantly different are used for twofold reasons. First, the study uses these
significantly identified genes to predict breast cancer using three machine learn-
ing algorithms. The machine learning algorithms used are random forests, ar-
tificial neural networks and support vector machines. Secondly, clinical details
of patients and significantly identified genes are combined to build a survival
model to predict the probability of survival and risk to the event in breast can-
cer patients. Using The Cancer Genome Atlas (TCGA) as the primary data for
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the study, SAM reported 23 genes as significantly different. Further investiga-
tions revealed that these 23 significant genes are involved in tumour suppres-
sion, angiogenesis, cell growth factor, tumourigenesis, cell proliferation, tumour
progression and tumour necrosis activities. In predicting breast cancer, 10 out
of the 23 genes contribute significantly to the model. Finally, it was identified
that log-logistic distribution best describes the survival time of breast cancer pa-
tients. Moreover, the survival model revealed that expression levels of six genes
influence the survival probability of a breast cancer patient.

Keywords: Breast Cancer, RNA—sequencing, Differential Expression, Significance
Analysis of Microarray, TCGA, Machine Learning, Survival Analysis.
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Opsomming

Transcriptomic Profiel Gebaseer Kanker Siekte Voorspelling en
Geduldige Oorlewing Tyd Onderskeid

(“Transcriptomic Profile Based Cancer Disease Prediction and Patient Survival Time
Differentiation ")

Samuel Ofosu Mensah

Departement Wiskundige Wetenskappe,
Universiteit van Stellenbosch,
Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: MSc. (Wiskunde)
Desember 2018

Kanker siekte is 'n abnormale groei van selle, wat veroorsaak kan word deur
mutasies in gene, gevolglik, verander die manier waarop selle hoofsaaklik funk-
sioneer in die manier waarop hulle groei en verdeel. Kanker selle word geregu-
leer deur komplekse interaksies gemedieer deur 'n groep proteiene en miRNAs
wat uitgedruk en onderdruk word. Met behulp van transcriptomiese tegnolo-
gie soos RNA-sequencing (RNA - seq), is dit nou moontlik om duisende gene
gelyktydig te profileer om 'n globale prentjie van die funksies van selle te skep.
Hier gebruik die studie 'n statistiese benadering, genoem Significance Analy-
sis of Microarray (SAM), om betekenisvolle gene te identifiseer wat differensieel
uitgedruk word in borskankerpasiénte. Genes met tellings groter as 'n drempel
word beskou as potensieel betekenisvol. Vervolgens gebruik die studie hierdie
beduidende geidentifiseerde gene om borskanker te voorspel deur gebruik te
maak van drie machine learning algoritmes, insluitend random forests, artificial
neural networks en support vector machines. Laastens word kliniese beson-
derhede van pasiénte en beduidende geidentifiseerde gene gekombineer om 'n
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oorlewingsmodel te bou om die waarskynlikheid van oorlewing en risiko vir die
gebeurtenis in pasiénte met borskanker te voorspel. Die risiko vir die geleent-
heid vir hierdie studie is die dood. Met behulp van The Cancer Genome Atlas
(TCGA) as die primére data vir die studie, het SAM 23 gene so beduidend an-
ders aangedui. Verdere ondersoeke het getoon dat hierdie 23 belangrike gene be-
trokke was by tumour suppression, angiogenesis, sel groeifaktor, tumourigene-
sis, sel proliferasie, tumor progressie en tumor necrosis aktiwiteite. By die voor-
spel van borskanker dra 10 uit die 23 gene aansienlik by tot die model. Ten slotte
is geidentifiseer dat log-logistieke verspreiding die oorlewingstyd van pasiénte
met borskanker die beste beskryf. Daarbenewens het die oorlewingsmodel ge-
openbaar dat uitdrukkingsvlakke van ses gene die oorlewingswaarskynlikheid
van 'n pasiént met borskanker beinvloed. Die oorlewingsmodel het verder ge-
toon dat borskanker pasiénte waarskynlik groter risiko vir die gebeurtenis sal
hé, maar na 3243.38 dae kan hul risiko vir die gebeurtenis geleidelik verminder.

Keywords: RN A-Seq, Borskanker, Differensiéle Uitdrukking, Betekenisanalise van
Microarray, Masjienleer, Oorlewingsontleding.
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Chapter 1

Introduction

1.1 Background

Cancer disease is an abnormal growth of cells, which may be caused by muta-
tions in genes which, as a result, alter the way cells function mainly in the way
they grow and divide (National Cancer Institute, 2017). Mankind has a history
of experiencing different deadly diseases, but cancer has been considered as the
most complex he has ever faced. According to the World Health Organisation
(2017), almost 1 of 6 deaths is caused by cancer, making it the second leading
causes of death in the world. Tomczak et al. (2015) stated that there are more
than 200 forms of cancer discovered and each uniquely identified by a differ-
ent molecular structure. In this study, we investigate breast cancer, which is the
most common type of cancer in women (Wang et al., 2018). Breast cancer is also
the second cause of cancer death in women after lung cancer (Siegel et al., 2018).

A conventional way of detecting breast cancer in women is by screening the
breast organ using mammography. This approach of diagnosing breast cancer
is however limited because of low sensitivity and specificity. For this reason,
continuous research is being done to develop novel diagnostic and therapeutic
strategies to improve breast cancer detection and treatment in women. Unfortu-
nately, the molecular mechanisms involved in the formation and development
of breast cancer continues to be ill-defined. Hence, it is essential to find novel
genes that contribute to the formation and development of breast cancer (Wang
et al., 2018).
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Nowadays transcriptomic technologies provide an opportunity for detecting genes
that may influence breast cancer formation and development. These technolo-
gies are used to profile the genome of a cell which eventually measures the tran-
scription level of the genes. A more accurate transcriptomic technology is the
RNA-sequencing (RNA-seq). It is sensitive and provides a global picture of the
functions of cells (Wang et al., 2009).

Typically, RNA-seq from different cells can be combined to generate large ma-
trices of breast cancer gene expression data. A comparative study may then be
used to elucidate the differences that exist between the gene expression of breast
cancer patients and normal samples. Genes that are significantly different in ex-
pression levels are known as differentially expressed genes. Usually, these com-
parative studies employ statistical tools, such as edgeR, DESeq2, SAMseq and
many others, to identify differentially expressed genes (Li and Tibshirani, 2013).
Using a statistical approach to detect genes that are significantly different have
several advantages. They include improvement in classification related tasks,
decreasing clinical cost and increasing biological knowledge of a disease (Jian-
geng et al., 2007).

There may exist elusive patterns in the breast cancer gene expression data. More-
over, gene expression data may have high dimensions and may be noisy. Using
such data to make the predictions can be challenging. Machine learning meth-
ods are used to extract relevant features and train models to identify hidden

patterns that exist in gene expression data to make accurate predictions (Danaee
et al., 2017).

An important information for clinicians is the survival details of a breast cancer
patient. Traditionally, medical practitioners use cancer survival rates to predict
the survival time of patients. In particular, the most common survival rate used
by medical practitioners is the 5—year survival rate. However, this technique
may not be a useful measure for developing prognostic tools and therapeutic
interventions for breast cancer (Li et al., 2017). Survival analysis techniques are
therefore used to build models to predict patients” survival.
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1.2 Problem statement

The biological mechanism involved in breast cancer is still unclear. Moreover,
clinically examining a patient’s genome to identify differentially expressed genes
can be costly. To this end, recent advances in transcriptomic technology have
been developed to provide essential tools to maximise meaningful insight into
the genome of a cell (Wang et al., 2009). However, data obtained from tran-
scriptomic technologies can be high dimensional. This is because, the human
genome contains about 20500 genes (Clamp et al., 2007; Ezkurdia et al., 2014).
Even though a large amount of data is generated, methods are needed to iden-
tify significant genes that may contribute to breast cancer.

Earlier studies applied clustering techniques on the data generated to determine
genes that are similar (van 't Veer et al., 2002). Similar genes are then used to
develop strategies for the treatment of breast cancer. For example, van 't Veer
et al. (2002) used a hierarchical clustering algorithm to cluster 98 tumours based
on their similarity. Other studies performed further investigations on genes that
have already been identified as significant genes. For example, Mensah et al.
(2017) clustered 969 breast cancer samples using genes that have already been
identified as significant to breast cancer. These approaches may be useful but
provide little information and may be limited in identifying novel genes (Tusher
et al., 2001). This study is conducted in the perspective of the above.

1.3 Aims and objectives of the study

The aims and objectives of this study are:

i. To conduct a comparative study on patients in order to identify genes that
are differentially expressed between breast cancer and normal samples.

ii. To build a model to predict breast cancer based on a patient’s transcription
profile.

iii. To build a model to predict the survival probability of a breast cancer patient
based on expression levels of significantly identified genes.
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1.4 Contributions of the study

A statistical technique called significance analysis of microarray (SAM) is used
to identify differentially expressed genes. Earlier research work apply SAM only
with a subset of the genome, as they have a priori knowledge about the signifi-
cance of genes. Here we consider all genes of a genome to identify differentially
expressed genes hence we have no such knowledge of which gene is significant.
By so doing, we identified novel genes that contribute to the formation of breast
cancer. We then use identified genes as features for supervised learning tech-
niques to predict breast cancer. Furthermore, the identified genes are used to
build a model to predict the survival probability of breast cancer patients.

1.5 Outline of the study

The rest of this thesis is organized as follows. Chapter 2 reviews the techniques
used for the study. The techniques used for the study include significance anal-
ysis of microarray (SAM), three machine learning algorithms and survival anal-
ysis techniques. This Chapter also provides vivid reasons for employing these
techniques. Chapter 3 presents a detailed description of the techniques used
for the study. Chapter 4 also presents and discusses the results obtained in the
study. Finally, Chapter 5 concludes and presents potential future work.
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Literature review

This chapter reviews important techniques used to analyse a patient’s gene ex-
pression and associated clinical data.

2.1 A brief review of RNA-sequencing

Recent advancement in transcriptomic technologies has made it possible to study
the entire genome of an organism at a large—scale (Poulin and Nielsen, 2009).
These technologies have mainly been categorised into hybridization and sequenc-
ing methods (Wang et al., 2009). More generally, hybridization methods quantify
an organisms’ transcriptome using a measure of fluorescence. A popular exam-
ple of the hybridization method is microarray. On the other hand, sequencing
methods use high-throughput approaches to deduce the transcriptome of an
organism. A recent example of sequencing methods is the RNA-sequencing
(RNA-seq). This review focuses on RNA-seq and microarray as they are the
main contemporary technologies used in this area of research (Lowe et al., 2017).

RNA-seq, however, has several advantages over microarray experiments. For
example, Wang et al. (2009) mentioned that hybridization techniques rely on
existing knowledge of a biological sample, produces high background noise
and have a limited range of detection. Unlike microarray which makes use of
hybridization, RNA-seq can produce transcripts with or without a reference
genome of a biological sample. For this reason, it is the ideal technique to be
used if the objective of a transcription profiling experiment is to identify novel
genes. Also, it is relatively capable of mapping DNA sequences to unique re-

5
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gions of a genome with low background noise. Finally, it has no upper limit for
quantification of DNA sequences identified, hence making it have a wider range
of detecting expressions. Thus, RNA-seq is capable of identifying more differ-
entially expressed genes with higher fold change (Zhao et al., 2014). Also, Costa-
Silva et al. (2017) stated that RN A-seq is highly reproducible with a little number
of technical replicates. However, microarrays are likely to face a problem called
cross-hybridization, which involves an overlap of fluorescence dyes reducing
the signal intensities of a transcript (Draghici et al., 2006).

RNA-seq also permits quantitative profiling and is, therefore, increasing our
knowledge of the transcriptome. In general, RNA-seq has provided increased
detection sensitivity and has open new avenues of research in transcriptome
analyses, such as the study of gene fusions, allele-specific expression and novel
alternative transcripts (Su et al., 2014). In this regard, RNA-seq is continuously
becoming the method of choice for transcriptional profiling experiments (Cor-
ney and Basturea, 2013). To illustrate further, Figure 2.1 shows the history of
how these two technologies have been used for transcriptomic profiling.

3500
|

— RNA-seq
— Microarray

3000
1

1000 1500 2000 2500
|

Number of articles published

500
1

1995 2000 2005 2010 2015
Year published

Figure 2.1: A history of the number of articles published about a transcriptomic technology.
Microarray used to be the preferred transcriptomic technology but it use declines after RNA-seq
was introduced.
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In general, the RNA-seq technology is very useful for differential expression
analysis involving some specific conditions (Costa-Silva et al., 2017). Zhang
et al. (2014) also noted that the cost involved in RNA-seq experiments is grad-
ually decreasing due to its continuous interest as an ideal technology for tran-
scriptomic profiling. In summary, RNA-seq is a sequencing approach that can
quantitatively profile the entire transcriptome of a biological sample in a high—
throughput manner (Wang et al., 2009).

2.2 A brief review of significance analysis of
microarray (SAM)

Many statistical methods have been developed to analyse RNA-seq data, due to
its growing popularity in profiling experiments (Li and Tibshirani, 2013; Li and
Li, 2018; Seyednasrollah et al., 2013). Li and Li (2018) mentioned that more than
two thousand of these statistical methods have been designed in the past decade
to help visualise, process, analyse and interpret RNA-seq data. These statistical
methods specifically help to identify genes with changes in the level of expres-
sion between comparison groups (Poulin and Nielsen, 2009).

Li and Tibshirani (2013) reported that the statistical methods may either be para-
metric or non—parametric. Parametric methods assume that gene expression fol-
lows underlying distributions, such as normal, negative binomial, or Poisson
distribution. Most commonly used parametric methods includes edgeR (Robin-
son et al., 2009), DESeq (Anders and Huber, 2010; Love et al., 2014), Poisson-
Seq (Li et al., 2012), and baySeq (Hardcastle and Kelly, 2010). Even though the
sample size of the experiment may be small, parametric models can be powerful
and efficient only when their underlying assumptions hold. However, results
from parametric models can be unreliable for real data, because it is uncertain
to be correctly described by the assumed distribution (Li and Tibshirani, 2013).
Non-parametric methods, however, do not assume that gene expression follows
an underlying distribution, but are capable of producing reliable results. An ex-
ample of the non—parametric method used to identify differential genes is the
SAM-seq (Li and Tibshirani, 2013).

Here, we use SAM-seq to identify differentially expressed genes. This method
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of differential gene expression is used because, RNA—-seq data is in the form of
counts and can be very skewed due to outliers. Parametric approaches, unfor-
tunately, are sensitive to outliers making them not the best techniques to an-
swer questions related to differential gene expressions. In addition, SAM-seq
can handle several output types, including one—class, survival, quantitative and
multiple—class. Also, SAM-seq incorporates a resampling technique in the algo-
rithm to get rid of sequencing depth problems which emanate by reason of dif-
ferent ways of performing experiments (Li and Tibshirani, 2013). SAM-seq as a
non—-parametric approach may have several advantages over parametric meth-
ods, but there is no principled guide for best practices (Seyednasrollah et al.,
2013).

Numerous studies have been carried out to compare the performance of these
statistical methods. Li and Tibshirani (2013) simulated three types of data (first
data contained outliers, second data did not contain any outlier, and the third
data had a small sample size) to evaluate the performance of edgeR, DESeq,
PoissonSeq, and SAM-seq. They further compared these statistical methods us-
ing three different real data, namely; Marioni data, t'‘Hoen data, and Witten data.
For all, they noted significant genes identified by parametric methods were ex-
tremely influenced by outliers whereas SAM-seq was robust with outliers, sim-
ple to use and consistent with identified significant genes. Similarly, Seyednas-
rollah et al. (2013) compared 8 different statistical methods to formulate princi-
pled guidelines for best practices. Zhang et al. (2014) also carried out a com-
parative study of techniques used for RNA-seq differential expression analy-
sis. Likewise, Soneson and Delorenzi (2013) conducted a comparative study on
11 statistical methods used for RNA-seq differential analysis. They concluded
that, for data with large sample sizes, SAM-seq performed well under several

conditions.

2.3 A brief review of classification algorithms in

medical studies

Lately, machine learning algorithms have become essential tools in medical di-
agnosis primarily because they are effective in helping clinicians to classify and
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recognise diseases (Polat and Giines, 2007). As an illustration, a machine learn-
ing algorithm that correctly classifies cancer patients to their corresponding classes
can effectively guide medical experts in making therapeutic decisions (Vanneschi
etal.,2011). Recent achievements in medical data have led to high—dimensionality
in feature space problems, linearly inseparable and missing data issues. Hence,
the need for machine learning techniques to fully extract information from these

data (Khondoker et al., 2016).

Several studies compare different machine learning techniques to assess their
performance to make accurate decisions (Kourou et al., 2015). Such compar-
isons are done mainly because of the “no free lunch theorem” which states that
there is no single learning algorithm that universally performs best across all
domains (Wolpert and Macready, 1995). In addition, different machine learning
may be employed based on the type of data. For example, support vector ma-
chines may be used in cases where data is linearly inseparable (Friedman et al.,
2001).

For this reason, different machine learning techniques may be explored (Douglas
et al., 2011). Studies like Douglas et al. (2011) compared the accuracy of six dif-
ferent machine learning algorithms using neuroimaging data. Similarly, Khon-
doker et al. (2016) compared five widely used machine learning techniques on
simulated data to investigate the performance of the algorithms under differ-
ent circumstances. In addition, Yue et al. (2018) employed four machine learn-
ing techniques to correctly diagnose breast cancer patients using the “Wisconsin
breast cancer database” as their primary data. Nevertheless, various studies re-
ported different best performing algorithms which justifies the “no free lunch
theorem". Here, we used random forests, artificial neural network (ANN), and
support vector machines (SVM) because they are able to handle data with high
dimensional feature space problems and data that are not linearly separable.

2.4 A brief review of survival analysis

One major task of clinicians is to make meaningful interpretation and prediction
of patients molecular information. Hence, there is a high demand to determine
the outcome of patients based on their molecular profiles. Identifying the rela-
tionship that exists between clinical results and molecular information has led
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to the adaptation of survival analysis to help determine a patient’s outcome. In
the past decade, molecular information has assisted in the identification of prog-
nostic factors and therapeutic targets, hence the need to include them in survival
analysis techniques (Chen et al., 2014).

Mostly, clinical information consists of the patient’s survival details which may
include censoring. The use of statistical approaches, such as linear and logistic
regression cannot account for the censoring in a clinical information (McGready,
2009). Hence, several medical research has employed survival analysis to anal-
yse a patient’s outcome. For example, Abadi et al. (2014) used survival analysis
to investigate how different treatment of breast cancer influence their survival
time. Specifically, they used the Cox proportional hazard model to study 15830
women diagnosed with breast cancer. Their results indicated that radiotherapy
and chemotherapy increased the hazard of patients at the first and second stage
of breast cancer.

Also, Carey et al. (2006) investigated the prevalence of breast cancer subtypes
within racial subsets to determine their association with breast cancer survival.
They discovered that young African American patients had a higher prevalence
of breast tumours compared to older African Americans and non-American pa-
tients. They, therefore, concluded that a higher prevalence of basal-like breast
tumours and lower prevalence of luminal A tumours may influence the poor
prognosis of young African American women with breast cancer. Miecznikowski
et al. (2010) also developed a model to determine the survival of breast cancer pa-
tients using their gene expression data. In particular, they use Cox proportional
hazard to identify tumour size and oestrogen status as the main influencer of
breast cancer.

In short, there have been several applications and developments in survival
analysis. For instance, Liang et al. (2016) developed a novel semi—supervised
learning method founded on Cox proportional hazard and accelerated failure
time model to predict risk involved in treatment and survival time of patients.
Chai et al. (2017) identified that the model is easily influenced by noise. Hence,
they improved it by incorporating a self-paced learning algorithm to fully utilize
censored data. Here, our major interest is in using significant genes identified
by significance analysis of microarray (SAM) to build a model to predict the sur-
vival probability of breast cancer patients.
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Chapter 3

Different analysis method for breast
cancer gene expression and clinical
data

This chapter gives details of techniques and approaches used for this research.
First of all, it gives details of the type of data used for the study and how it
is generated. This is then followed by a technique used to find genes that are
differentially expressed. Next, we explore three machine learning methods to
find the best classification algorithm for the study. Finally, survival analysis is
employed to build a model and predict the survival time for patients expressing
particular genes.

3.1 RNA-seq data matrix

Figure 3.1 shows the process for obtaining RNA-seq data. To begin with, RNA-
seq uses Next Generation Sequencing (NGS) to profile the transcriptome of an
organism. The first step of RNA-seq is to randomly fragment messenger RNA
(mRNA) into short pieces. This is followed by a process called reverse tran-
scription which involves converting the fragmented mRNA to complementary
DNA (cDNA) using a random primer. With the help of Polymerase chain reac-
tion (PCR) amplification, cDNA is used to generate millions of short sequence
reads. Finally, mapping algorithms are used unambiguously to identify the
region where these short reads belong (Wang et al., 2009). A popular algo-

11
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rithm used for mapping short sequence reads to the region of interest is the
RNA-sequencing Expectation Maximization (RSEM). Specifically, RSEM uses a
Bayesian network approach to estimate the abundant level of a gene (Li and
Dewey, 2011; Li et al., 2009). This protocol has been implemented in sequencing
machines. For instance, the sequencing machine used to generate data for this
study is called Illumina HiSeq. Note that the process described above is only
for one sample. Fortunately, sequencing machines allow multiple samples to be
run in parallel. Results from running multiple samples can, therefore, be sum-
marised to form a matrix.

Suppose there are n samples, each having p number of genes, then the resulting
matrix N with n rows and p columns (n x p dimension). Element Nj; of ma-
trix N is the number of reads mapped to gene j, for 1 < j < p in sample i, for
1<i<n.

Experiment 1
a list of reads

| ATCAG.. | mapping | Number of reads mapped to |
i T * genel00 . {
P i icountin i
i1 TCGAG.. ‘ ] |ﬁ]‘> gene 1 gene2 .. genep |

i gene i 85 (00 1000 |

{1 GGCTA.. [— gene2000 |

Experiment n

gene 1 gene 2 gene 3 genep
SEmple 1 Nll N12 N13 ™ Nlp
sample2| Ny Ny, N3 N3y
sample3| Ny N, N Nap
samplen| Ny N, Nz Nop

Figure 3.1: A pipeline showing how RNA-seq data matrix is obtained. Illumina HiSeq ma-
chine allows several samples to be run in parallel producing a matrix. For every sample, there
exists a p number of genes. This reveals the level of expression of each gene for every sample.


https://www.illumina.com/systems/sequencing-platforms/hiseq-3000-4000.html
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3.2 Describing RNA-seq data used

This study compares RNA-seq data of 1212 samples with each having 20532
genes. To be specific, the data used for this study is The Cancer Genome At-
las (TCGA) which have analysed the transcriptome of 30 human tumours. In
this data, 1100 patients are labelled as breast cancer patients whiles 112 are la-
belled as non-breast cancer patients. In classification tasks, data with an unequal
number of instances for different classes are known to be unbalanced. The data
used for this study is considered as an unbalanced data because it does not have
equal instances for the breast cancer class and non-breast cancer class. Making
this data publicly available has enabled researchers to provide global informa-
tion on cancer and improved diagnostic methods (Tomczak et al., 2015). Further-
more, the study uses TCGA because it provides corresponding clinical data for
the samples. For example, follow-up time and patient status (alive or dead) are
provided in the clinical data which will be used for survival analysis.

3.3 [Extraction of essential genes

Significance Analysis of Microarray (SAM) is a statistical technique used to iden-
tify genes that are significantly different in an expression data. Previously, it was
used only to analyse microarray experiments, but the recent RNA-seq technol-
ogy led Li and Tibshirani (2013) to developed SAMseq. The algorithm takes in
gene expression data of a sample and compares with a response variable. Ex-
amples of the response variable are tumour versus normal samples, treated and
untreated, level of glucose in patient’s blood, and survival time of patients (Chu
et al., 2001). In contrast to microarray data, RNA-seq data are in the form of
counts hence models based on Gaussian assumptions are not suitable because
they are positive integers and can be very skewed (Chu et al., 2001; Li and Tib-
shirani, 2013).

Statistical techniques used for microarray data are mostly parametric while RNA-
seq data uses non—parametric methods. For instance, taking the case of tumour
versus normal patients, SAM becomes analogous to a t-test when gene expres-
sion data is from a microarray experiment and it becomes a Mann-Whitney-
Wilcoxon test if is RNA-seq (Li and Tibshirani, 2013). The focus of SAM for


https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
https://www.rdocumentation.org/packages/samr/versions/2.0/topics/SAMseq

Stellenbosch University https://scholar.sun.ac.za

Chapter 3. Different analysis method for breast cancer 14

this study is specifically on two-class unpaired output because the response
variable has tumour and normal patients. The Mann-Whitney-Wilcoxon test
statistic is given by
ni(n+1)
Tj= ) Ry(N) - ———, (3.3.1)
teCy

where Rt]-(N) is the rank of Njj fori =1,...,n,j =1,...,p, ny are sample sizes
with k = 1, 2 for this study, and Cj is the class (tumour or normal) for the data.

To process Equation (3.3.1) correctly, RNA-seq data must be normalised by us-
ing sequencing depth. This is because samples express a different number of
reads in RNA-seq data making counts N;; also depend on the total number of
reads generated by sample i. For example, if the total number of reads for two
samples are Zle Nyjj =1x 10° and Z]r;l Nyj = 2 x 10° and their genes are not
differentially expressed, then probably 2Ny; ~ Np; forany j = 1,..., p. In such
a situation, we say sample 2 is relatively expressing twice as much as sample 1.
Thus to compare different samples, their sequencing depths must be the same.
To overcome this problem, SAMseq uses a resampling technique to short-list sam-
ples with a probability distribution as follows

, d
Ni/j ~ P01550n<d—iNij)/ (3.3.2)

1

n

where d is a geometric mean of the sequencing depths defined as d = ( 4
d; denotes sequencing depth and is estimated by iterating a two—step function.
Let N = Y0 Nyj, Nj = Ly Nij, N = 11 37| Njj, then the first step of
estimating sequencing depth d;, is given by
4 — Ljes Nij
1 E]'GS N]/

where S is a set of genes that are not differentially expressed.

(3.3.3)

The second step involves the prediction of the set of genes, S, using the goodness—
of-fit (GOF) statistic given by

GOF; = = , 3.34

i=1

" (N —d;iN,j)?
j
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and genes in S are those with GOF; values in the (¢, 1 — €) quantile of all GOF;
values, where € € (0, 2) is a fixed constant. The predicted set S is used in Equa-
tion (3.3.3) to update d; which is used in Equation (3.3.4) to update GOF; until d
becomes invariant. d; is initially set to % (Liet al., 2012).

After resampling, Equation (3.3.1) changes to

1
= Y Ry(N) — (”; ) (33.5)
teCy

However, ties may exist in Rj(N’) in Equation (3.3.5) hence, small random num-
bers are added to each count. This results in Ni']. — Nl-’]- + ¢;; where ¢;; ~ Uni-
form(0, 0.1) for 1 < i < n,1 < j < p. Unfortunately, the introduction of €ij
decreases the power of Equation (3.3.5) by increasing its variance. Also, a sig-
nificant amount of reads are not included during the resampling technique. To
increase the power of Equation (3.3.5), the geometric average d of a repeated
resampling technique in Equation (3.3.2) is computed. This gives the statistic

L
I = %Z ( Y- Ry(N") - %ﬂ)) (3.3.6)
=1

tGCk

where L is the number of times resampling is repeated for I = 1,...,L and N”
represents the /th N’ resampling.

In brief, SAM computes Tj* for each gene by first estimating sequencing depth
and applying resampling technique using the estimated sequencing depth. There-
after, the Mann—Whitney test statistic is applied to each resampled data to obtain
a summary measure. Finally, an average of the summary measure is then com-
puted. Below are the steps involved in SAMseq;

i. Compute T7,..., Ty forj=1,...,p.

. . . N "
ii. Order statistic such that T(l) < T(z) <...< T(p).

iii. Permute the response values y; B times. For each permutation b, compute

statistic T]*b and their corresponding order T(*lb) < T(*Zb) <...< T(*;’).

iv. Estimate the expected order statistic by TG.) = 1Y T(*].l; from the set of B
permutations.
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* Tx
v. Plot T(j) values versus the T(].).

vi. We then choose a fixed threshold (A), such that all genes with |T(*].) | > Aare
called significant genes.

Depending on the gene expression and the class of the sample, T/ may either be
positive or negative. A gene in which higher expression correlates with higher
values of the class is known as significant positive genes. Significant positive
genes can also be lower expression correlating with the lower values of the class.
For example, in an experiment with two classes labelled 1 and 2, genes with
higher expression correlating with class 2 are significant positive genes. Simi-
larly, a significant negative gene has lower expression correlating with higher
values of the class.

Even though genes with |T| > A are considered significant, some are just iden-
tified by chance. It is therefore important to measure the accuracy of the signif-
icant genes. In this case, the False Discovery Rate (FDR) is used to compute for
the rate at which genes are identified by chance. It is defined as the expected
proportion of false positive in the significant genes. Hence, FDR is estimated by

FDR,, — "%V, (3.3.7)

where

4
o« fig=2)_1 (RE A is the median of all permuted values |Tj*b |, and I rep-
j=1

resents an indicator function,

1PB

e V= B Z Z I(\T].*b\> A) and it represents the number of false positives in

j=1b=1
the significant genes. The numerator in Equation (3.3.7) gives the median
number of falsely called genes,

P
e R= I+ represents the total number of genes that are significant.
(IT[>a) T€P & g
]

j=1
The study also seeks to use the differential gene expression identified to classify
breast cancer. After genes have been found to be differentially expressed, ma-
chine learning techniques are applied to build a model to classify breast cancer.
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3.4 Exploring different classification algorithms

Machine learning are techniques which enable computers to learn from data
with the help of statistical techniques. Specifically, it is used to identify pat-
terns and hidden insights by exploring relationships in data which is then used
to build models for prediction. It has two main types and they are supervised
learning and unsupervised learning. A study which seeks to perform classifica-
tion tasks with labelled data applies supervised learning technique. For exam-
ple, this study uses gene expression data of breast cancer to classify patients by
employing machine learning techniques. This is achieved by using knowledge
obtained from labelled data. Examples include random forests and support vec-
tor machines. In a case where data is unlabelled, unsupervised learning is em-
ployed. The latter technique, on the other hand, has no prior knowledge but
makes decisions by clustering patients based on the closeness of their gene ex-
pression. Evidently, unsupervised techniques cluster by using distant measures.
Examples include k-means and hierarchical clustering (Brown et al., 2000). The
data used for this study is labelled, thus, this section presents three supervised
machine learning techniques to be used for the study.

3.4.1 Explaining random forests

Random forest is a supervised machine learning algorithm of ensemble decision
trees that works by using bootstrap aggregate (bagging) to decorrelate features
to perform classification or regression tasks (Breiman, 2001). Bootstrap how-
ever simply means to sample with replacement. Hence, bagging is a technique
that bootstraps instances to create trees and aggregate them, which, as a result,
reduces variance in the prediction function (Efron and Hastie, 2016). Breiman
(2001) then introduced decorrelation of features to add an additional layer of
randomness to bagging. An example of a tree is shown in Figure 3.2. A decision
tree can be used for a classification or a regression task.

Classification and regression trees both build models by recursively partition-
ing the training data in a feature space to achieve maximum pureness (Strobl
et al., 2009). Pureness is defined by a node containing only a single class whereas
impureness is defined as a node containing several classes. At each stage, the al-
gorithm utilizes the concept of information gain (IG) to split variables. The best



Stellenbosch University https://scholar.sun.ac.za

Chapter 3. Different analysis method for breast cancer 18

Figure 3.2: A diagram showing an example of a decision tree. The first topmost node is called
the root node and only have arrows leaving it. Nodes having arrows pointing to it and arrows
leaving it are known as interval node. Leaf nodes only have arrows pointing to it.

splitting variable is the one with the maximum IG. In other words, IG is used to
determine the impurity before splitting and the impurity after splitting. This is
done to obtain the level of impureness among the variables.

Given training data: D = {(x1,y1), (X2, Y2), - - -, (Xn, Yn) } With x; equal to a vector
of predictor variables and v; is response, fori = 1,2,...,n, IG is defined by

IG = Impurity(Z E Impurlty( i) (3.4.1)
\,ﬁ f= |Z |
Impurity before split /

-~

Impurity after split
where Z C D and is a subset of instances from the data, |Z| is the total number
of instances in Z, Z; are instances that belong to class j for j = 1,..., kand | Z;] is
the number of instances that belong to class j. Since classification and regression
deal with discrete and continuous dependent variables respectively, they have
different impurity measures. Regression trees employ mean square error as their
impurity measure. It is given by

|Z|
Impurity(Z Z . (3.4.2)

Unlike regression, there are three different impurity measures that classification
trees can apply. These are misclassification error, Gini index, and cross entropy.
Let p; be the probability of class j, then details of the three impurity measures
are given below:
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I.

1.

iii.

The misclassification error is given by
misclassification error = 1 — max{p;}. (3.4.3)

The misclassification error of a pure variable is zero (0) and its value is al-
ways in a closed unit interval [0, 1]. This is because, for a pure variable, the
probability is 1 therefore

1—-max{1} =1-1=0.
The Gini index is given by

k
Gini Index =1-)_ p?. (3.4.4)

j=1

Gini index of a pure variable is zero (0) because, for a pure variable, the sum
of the probabilities is 1 therefore

1-12=1-1=0.

The values of the Gini index is also in a closed unit interval [0, 1]. Gini in-
dex reaches its maximum value when all the classes of a variable have the
same probability. The maximum value of the Gini index is the same as the
maximum value for the misclassification error (Teknomo, 2009). Assuming
we set an equal probability of % for v classes, then the maximum value for

v /1\? 1\2 1
1— ) =1—0(=) =12,
B () -

and maximum value for misclassification error is

1—max{1} :1—1.
v v

The cross entropy is given by

the Gini index is

k
cross entropy = — Z p;log, p;- (3.4.5)
j=1
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Cross entropy of a pure variable is also zero (0) because 1 * log,(1) = 0.
Also, the cross entropy reaches its maximum value when all the classes of
a variable have the same probability. Again, assuming there are v classes
having the same probability 1, then the maximum value of cross entropy is

) (2) ) (2) - () -

This process of partition continues until a stopping criterion is reached. Exam-
ples of stopping criteria may be a maximum number of objects in a leaf node,
when IG becomes invariant, setting a maximum depth for nodes.

In general, ensemble trees perform better than single trees (Liaw and Wiener,
2002). Breiman (2001) therefore discovered a relationship between the upper
bound of the generalization error and correlation among the individual trees.
He realised that the lower the correlation between the single trees, the lower
the error. This is because features that were not selected in a tree have an op-
portunity of being selected in another tree resulting in a decorrelated prediction
function. Random forests aggregate all the trees to build one prediction model.
This is achieved by averaging in regression and by majority voting in classifi-
cation. In short, ensemble trees have an advantage of including every feature
in different trees which after combining them can lead to obtaining significant
effects on the response (Strobl et al., 2009). Below is the algorithm for random
forests.

Algorithm 1: Random Forest algorithm

Data: training set D = {(x1,y1), ... (Xu, ¥n) }
Result: Ensemble (Ty(x), ..., Tg(x))
1 initialization;
2 B: number of iterations;
3 forb=1,...,Bdo
4 | Draw a bootstrap sample of D* of size n from training data;
5 | Select m variables at random from the p variables;
6 Grow a random forest (decorrelated) tree Tj;

After getting the ensemble of decision trees, a single prediction model is built
by;
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B
i. Regression: f(x) = % Y Tp(x).
b=1

ii. Classification: majority vote of all decision trees predictions T;(x),b = 1,...,B.

In addition, the random forest has only two parameters. They are the number
of features for each split which is denoted by m and the number of trees also
denoted by B. Typically, the number of splitting features for classification is
computed as +/n, whereas for regression is given as 4. Training samples that
were discarded during the bootstrap sampling are known as Out-of-bag (OOB).
OOB data are therefore used as validation data to test the prediction function.
Hence, the OOB can be used to tune the train model to obtain optimal results.
Specifically, OOB error obtained from the validation is used to determine the
optimal number of trees for the model.

Another important type of information that random forests provide is variable
importance. Random forests use OOB data to identify variables that are im-
portant to the model. When trees are constructed, the OOB data are used for
validation and its prediction accuracy is recorded. During the validating pro-
cess, values in the variables are permuted and its prediction accuracy computed.
This results in a decrease in prediction accuracy. These accuracies are averaged
over all the trees constructed, to determine the prediction strength of each vari-
able (Friedman et al., 2001).

3.4.2 Explaining artificial neural network (ANN)

An Artificial Neural Network (ANN) is a mathematical model designed to sim-
ulate the function and structure of the brain. The motivation behind this is to
build a model that is able to perform human-related tasks. Humans are mainly
able to perform several tasks because of the brain and it has about 86 million
neurons. Generally, the neurons receive signals through dendrites which un-
dergo a mechanism to produce an output in the axon terminal. The output from
the neuron multiplicatively interacts with synapses which may become the in-
put for other neurons. Mathematically, input data is passed through a neuron
of a layer (a layer is a collection of neurons which operate together in a specific
depth) where it multiplicatively interacts with weights. The weight corresponds
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to the strength of connected neurons. To get the desired output from the in-
teraction, an activation function is applied to generate an output which then
may become an input for another neuron in a different layer (Karpathy, 2017).
The process where the output of one layer becomes the input for the next layer
without loops is termed as feedforward (Raschka, 2015). Finally, an output of
an ANN is a function of learned weights and bias. The network learns by us-
ing gradient descent to continuously update the weight and bias. This process is
combined with a chain rule technique called backpropagation. Figure 3.3 depicts
how the neuron of a brain is mathematically modelled to ANN.
o wo
impulses carried oo oo ® synapse

toward cell body WoIQ
branches

dendrites

cell body

i (Z w;z; + b)
Z w;T; + b :

output axon

activation
function

axon

nucleus terminals

\ impulses carried
away from cell body

(a)

(b)

Figure 3.3: The analogy of biological neuron 3.3a used to mathematically model artificial neu-
ral network 3.3b. Both have a cell body which receives signals through the dendrite to the out-
put (Karpathy, 2017).

An ANN is mainly characterised by three different layers and they are input
layer, hidden layer, and an output layer. The first and last layers of a neural
network are the input layer and output layer respectively. The hidden layer
is found between the input and output layer. Also, each layer contains neurons
and these are the smallest unit of a neural network. The neurons from a layer are
only able to connect to the neurons of an immediate layer. They are connected
by weights and is achieved by computing for the weighted sum of the neurons
with the current layer. Figure 3.4 shows a simple 3-layered neural network with
only one output.

The explanations above can be mathematically expressed as

a(L) — f(Z(L)), (3.4.6)
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input layer

hidden layer 1 hidden layer 2

Figure 3.4: Design of a 3-layered artificial neural network. Specifically, this neural network
has one input layer, two hidden layers and one output layer. Each layer has neurons and they
are the smallest unit of a neural network. The layers are also connected by weights (Karpathy,
2017).

where L denotes layer, a(l) is the output of the current layer, f is an activation

function and z(1) is given by
z(1) = wb)g(L=1) 4 (L)

where w(l) is the weights for the current layer, a(-~1)

is the input for the current
layer which is obtained from the output of the previous layer. b1 also represents
the bias of the current layer. In brief, an ANN computes for the summation of
the dot product of input and weight to obtain results that are linear. This is fol-
lowed by an activation function on the results to obtain the non-linear output to

be fed to different layers.

An ANN without an activation function may simply be a linear function. Un-
fortunately, linear functions are limited in learning from complex data, such as
images, videos, audio and data with higher dimensions. Evidently, activation
functions are relevant for ANN because they introduce non-linear properties in
the network which helps it to learn from complex data. In addition, an activa-
tion function should be differentiable so as to perform backpropagation. Pop-
ular activation functions used include the sigmoid function, hyperbolic tangent
function, and rectified linear unit (ReLU).

i. The sigmoid function is denoted by ¢(z) and is expressed as
o) = 1o

T 1texp(-2)
This activation function outputs values ranging between 0 and 1. Specifi-
cally, large negative outputs tend to have numbers closer to 0 whereas large
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ii.

iii.

positive outputs tend to have numbers closer to 1. Unfortunately, when a
sigmoid function is applied, most neurons may get values close to either 0
or 1. When this happens, the gradient of the neurons vanishes as weights
and biases are learned. This eventually makes the network slow to learn
and yield poor accuracies.

The hyperbolic tangent function tanh(x) is expressed as

1 —exp(—2z)

tanh(z) = T+ exp(—22)°

The hyperbolic tangent function also outputs values ranging between -1 and
1. Similar to the sigmoid function, large negative outputs tend to have num-
bers closer to -1 while large positive outputs tend to have numbers closer to
1. Hyperbolic tangent functions also suffer from vanishing gradient prob-

lems.

The Rectified Linear Unit (ReLU) is given by

f(z) = max{0,z}.

ReLU simply takes in input signals and return zero if it is negative but re-
turns the same number if it is positive. Unlike sigmoid and hyperbolic tan-
gent function, ReLU does not suffer from vanishing gradient problems and
is not computationally expensive. ReLU transforms linear results into non-
linear outputs, but still remain close to the linear space. It has the ability
to preserve many properties that make linear models easy to optimize with
gradient-based methods, therefore it is considered as nearly linear. Thus
for feedforward neural networks, the recommended activation function is
ReLU (Goodfellow et al., 2016).

In addition, this study seeks to classify breast cancer samples. Again, the data

used has two classes; namely tumour or tumour—free. For this reason, the output

layer will also need another activation function called the softmax function. The

output layer uses the softmax function because the desired results must be in the

form of either 0 or 1. For K—dimensional data, the softmax function is given by

exp (z))

_ 3.4.7
T, exp(zy) (347)

o(zj) =
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As it can be seen in Equation (3.4.7), the outputs of softmax function are prob-
abilities, therefore their sum is equal to 1. Although the sigmoid function also
ranges between 0 and 1, the softmax function is preferred because it is able to
take in a K—dimensional vector of real numbers and return a K—dimensional

vector of probabilities.

It is also important to measure the performance of the network. This is achieved
by measuring the discrepancy between the target value and the output produced
by the network (LeCun et al., 2012). The function used to check performance is
known as a cost function. For a classification problem, the cost function com-
putes the average of cross entropy for all m training examples.

Let y; be the target value for training example i and if a(l) is the output layer,
then the cost function is given by

3

Twb) =Y £(y, al),

1

Il
—

where L(y;, aZ(L)) is cross entropy defined as

£<y1~, afL)> = — iy,’ log<a§L)>.
j=1

Next, the network seeks to minimize the cost function by going through the
backpropagation process. Backpropagation uses the gradient to gradually op-
timize the weights of the network. This is important because it helps in un-
derstanding how sensitive the cost function is to small changes in the weights.
In others words, backpropagation gives the derivative of the cost function with
respect to weight. This is made possible by using the chain rule to iteratively
compute gradients for each layer. It is hence computed as follows:
07 (w,b)  azL) 9all) 9.7 (w,b)

oW aw® 220 a0 (348)

The weights are optimized using an optimization algorithm called gradient de-
scent. It is defined as

07 (w,b
W i=W — qﬁ, (3.4.9)
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where 7 is a learning rate. It is a hyper—parameter that determines the rate at
which the weights are updated. High learning rate means the weights will be
updated at a faster rate. The problem with high learning rate is, the parameter
may never settle at the minima causing the cost function to fluctuate or diverge.
Small learning rate also means the weights will be updated at a slower rate. The
problem with small learning rate is, the weights take long to learn. Figure 3.5
displays the effect of different learning rates on the loss function.

loss

low learning rate

high learning rate

good learning rate

Py
>

epoch

Figure 3.5: A diagram showing the effect of different learning rate on loss function (Karpathy,
2017).

The line labelled as very high learning rate has exploded and it may never settle at
a minima. This suggests that a gradient descent with a large learning rate may
cause the loss function to diverge. Also, the line labelled as high learning rate
initially was fast to approaching the loss but could not converge to the optimal
loss. This suggests that a gradient descent with a high learning rate may appear
to be fast initially but will be stuck after training for a while. The line labelled as
low learning rate was gentle throughout the training process. This suggests that
a gradient descent with a low learning rate will find the minima at a very slow
rate. Finally, the line labelled good learning rate decays at a good rate and it is
able to approach the loss.

Figure 3.6 shows an example of parameter finding the optimal loss in an ANN.
The main aim of gradient descent is to reduce the cost function and possibly find
the optimal loss. This is because, in a cost function, there may exist many local
minima. In the figure, there exist only two minima. The parameter starts off
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Figure 3.6: A diagram showing a cost function with two minima. The blue and black parame-
ter starts off at different positions. Only the black parameter reaches the global minima.

by finding the steepest direction downwards until it reaches the minima. It is
seen that the blue parameter starts at a steep descent and ends at a local minima
while the black parameter starts at another steep descent and ends at the global
minima. In such a scenario, the parameter at the global minima is preferred.

However, it should be noted that Equation (3.4.8) and (3.4.9) are only computed
with respect to the weights. The weight (w) is substituted with bias (b) to also
determine how sensitive the cost function is to small changes in the bias. The
goal of backpropagation is to train a multi-layered neural network such that it
can learn the appropriate internal representations to help learn any arbitrary
mapping of input to output (Rumelhart et al., 1986).

In short, an ANN goes through two main phase cycles and they are feedfor-
ward and backpropagation. When a neural network is fed with an input vec-
tor, it propagates forward through different layers until it reaches the output
layer. A cost function is then used to measure the performance of the network
by comparing the output with the target values. The output layer is always in
a K—dimensional vector which represents the number of classes for the target.
Each neuron in the output layer represents a class and each has an error value.
These values are therefore used to backpropagate from the output layer through
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each neuron in the network to help determine their contribution to the output.

Finally, the gradient of the cost function is computed using the error values.
The resulting gradient is then fed into an optimization algorithm to update the
weights and bias. This process continues until the cost function reaches local or

global minima.

3.4.3 Support vector machines (SVM)

Support vector machines (SVM) is a supervised machine learning algorithm
which uses the concept of hyperplanes and margins to separates classes. Fig-
ure 3.7 depicts the use of a hyperplane to discriminate two groups.

I —
o+ !
| —

++¢ ?_ _

+ + t! I -
=g —_ _
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I

Figure 3.7: An example of a hyperplane separating the positive group from the negative
group (Bottou and Lin, 2007).

The thick solid line in Figure 3.7 is called the hyperplane while the dashed lines
are the margins. There may be several hyperplanes but the best is chosen based
on the one that maximizes the distance between the margin (Bishop, 2016). Thus,
the main objective of SVM is to optimally find a hyperplane that widens the dis-
tance between the margins to distinctly separate groups involved. It, therefore,
applies an implicit function which incorporates the use of kernels for data whose
classes are linearly non-separable (Friedman et al., 2001). The objective function
of SVM is therefore given by

y = wld(x)+b, (3.4.10)
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where w is the weight of the objective function and is also given by
n
w=Y a;t;®(x}), (3.4.11)
i=1
with «; being a Lagrange multiplier and ¢; an indicator which takes a value of 1

if x; is positive and -1 if x; is negative. ®(x;) is also a fixed feature space of x;

Equation (3.4.10) therefore becomes
n
y=)_ ait;®(x)- O(x) +b. (3.4.12)
i=1

Cortes and Vapnik (1995) then represented ®(x) - ®(x]) with K(x,x!) which is
known as the kernel function. Thus, Equation (3.4.12) is written as

n
y=Y at;K(x,x])+b. (3.4.13)
=1

Again, Cortes and Vapnik (1995) noted that SVM is a Universal Machine because
the kernel function can take different forms leading to the implementation of
networks with several functions. Hence, different kernel functions can be used
to obtain an optimal hyperplane. It enables the input data to be transformed into
a higher feature space F, which aid in obtaining the optimal hyperplane (Tong
and Koller, 2000). Kernel functions used for this study includes polynomial of
order d, radial basis, sigmoid and linear function (Jean-Philippe Vert, 2001).

i. Kernel function for a polynomial of order d is given by

K(x,xI) = (x-xI +1)4.

ii. Kernel function for radial basis is also written as

LT
K(x,x]) = exp (M)

o2
iii. Kernel function for sigmoid is given by
K(x,x!) = tanh(Kx x4 9),

where « is called the gain parameter and 0 is the threshold.
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iv. Kernel function for linear is also given by

K(x,x) =x-xI.
A relevant property of the SVM algorithm is its ability to correspond to the con-
vex space. Due to this, any local optimum will be a global solution (Bishop,
2016).

3.4.4 Median-supplement: a balancing data technique

As mention in Section 3.2, it is evident that the data is unbalanced. An unbal-
anced data refers to classification problems where there are unequal instances
for different classes. A major problem of unbalanced data is that the model is
likely to be biased to the dominant class during prediction. A popular solution
to this problem is to either oversample or under-sample the data. In the case
of under—sampling with two classes, a random subset of samples of the larger
class is selected to match the number of samples of the smaller class. Unfortu-
nately, there is a possibility of losing important information from the discarded
samples in the larger class. For oversampling with two classes, instances in the
smaller class are randomly duplicated to match the number of samples of the
larger class. An advantage of oversampling is that it has a low possibility of los-
ing relevant information but there is also a risk of overfitting because it may be
more likely to obtain similar samples in the data (Glander, 2018).

A method called median-supplement was therefore introduced by Adabor and
Acquaah-Mensah (2017) to balance the data. This method of balancing data uses
the idea of oversampling by generating a matrix J with dimension m x n. m
is the difference between the number of samples for the two classes while 7 is
the number of variables for the data. The matrix is generated by first randomly
generating an m x n matrix L using Latin hypercube sampling with uniformly
distributed values between 0 and 1 (McKay et al., 1979; Stein, 1987). The proce-
dure for generating Latin hypercube samples is described below.

Let P = (pjx) be a matrix with dimension m x n, where each column of P is
an indepedent random permutation of {1,2,...,m}. Also, let {;x be m x n iid
up,1, j=1,...,m; k=1,...,n. Then Xjx is an element in the Latin hyper-
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cube matrix defined by
Xje = FH(m™ (pje = 1+ 8je)),s (3.4.14)

where F is a cumulative distribution function (CDF). pj; determines which cell
Xj belongs to and jx determines where in the cell is X;. Figure 3.8 shows Latin
hypercube samples
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Figure 3.8: A Latin hypercube sampling with m = 10 and n = 2. Every row or column does
not contain more than one point.

Figure 3.8 has been constructed in a way that each point has been located to a
particular cell such that a row or column do not contain more than one point.
The Latin hypercube sampling method attempts to distribute samples evenly
over the sample space. It can also be seen that every point sampled is between
0 and 1. This approach of generating random samples is therefore used to con-
struct the matrix L.

Afterwards, the matrix L is multiplied by the median of each variable yielding
the matrix J. The matrix J then becomes a supplement for the data. For instance,
consider data with 50 patients each with 5 attributes. If 35 of them are labelled
as having breast cancer and 15 of them do not have breast cancer, this data is
deemed as unbalanced. It can be balanced by generating an extra 20 instances
using the median-supplement method.

The median-supplement J is therefore computed by,

men =LM, (3.4.15)
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where L is an m x n dimension matrix generated using Latin hypercube sam-
pling with uniformly distributed values between 0 and 1. It is therefore given

by

t=10-1

mxn

Also, M is a m x n diagonal matrix of the median. Let the median for variable i
be denoted by fi;, then M is given by

Hn ] yisn

After Adabor and Acquaah-Mensah (2017) applied this method in random forests
and Naive Bayes, they had higher accuracies in classifying breast cancer patients
into their HER2 receptor status phenotype.

3.5 Performance metrics for classification

algorithms

The performance metric used for this study is the confusion matrix. It is a mea-
sure used to evaluate the performance of classifiers. A confusion matrix for a
two—class data can also be described as a table with four different combinations
of predicted and actual values. They are true positive (TP), true negative (TN),
false positive (FP), and false negative (FN). Suppose confusion matrix is denoted
by C such that C; ; is the number of individuals observed in class i but predicted
to be in class j, then in a binary classification problem, true positive is Cj 1, true
negative is Cp o, false positive is Cy ; and false negative is Cj o.



33

Stellenbosch University https://scholar.sun.ac.za

3.5. Performance metrics for classification algorithms

Actual Values

Positive (1) Negative (0)

Positive (1) TP FP

Predicted Values

Negative (0) FN TN

Figure 3.9: A confusion matrix with two classes; positive class and a negative class. The row
of the matrix represents class predicted by the classifier. The column of the matrix represents the
actual class from the data.

These combinations are used to compute for sensitivity, specificity, false positive

rate and false negative rate.

i.

il.

iii.

Sensitivity: This is used to measure the proportion of correctly identifying
actual positives. It is computed as

TP

For example in a breast cancer study, sensitivity is the percentage of patients
who are correctly classified as having breast cancer. For sensitivity, the big-
ger the percentage, the better.

Specificity: This is used to measure the proportion of correctly identifying
actual negatives. It is also computed as

Specificity = % (3.5.2)

Again in a breast cancer study, specificity is the percentage of patients who

are correctly classified to not having breast cancer. Also for specificity, the
bigger the percentage, the better.

False Positive Rate: This is used to measure the proportion of all negatives
that are falsely classified as positives. It is therefore computed as
FP

FP + TN’
Likewise in a breast cancer analysis, the false positive rate is the percentage

False Positive Rate = (3.5.3)

of patients who have been wrongly classified as having breast cancer. For
the false positive rate, the smaller the rate, the better.
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iv. False Negative Rate: This is a measure used to determine the proportion of
positives that are falsely classified as negatives. It is also computed as

FN

m . (3.5.4)

False Negative Rate =

Similarly, in a breast cancer study, the false negative rate is the percentage
of patients who have been falsely classified as not having breast cancer. For
the false negative rate, the smaller the rate, the better.

v. Accuracy: This is a measuring system used to determine the degree of close-
ness to the quantity of the true value. Hence, it is computed as

Accuracy = TP+ 1N
Y = TP+IN + FP + EN’

(3.5.5)

For example in a breast cancer study, accuracy is the percentage of correctly
classifying patients to their true class. Finally, the classifier seeks to obtain
the highest accuracy.

3.6 Investigating survival analysis

Survival analysis is used to understand and make inferences about time to an
event. Examples of time to an event includes time to death, remission duration of
a disease, failure times of a machine, completion of graduate degrees, in human
lifetime data (Nasejje, 2012). Lifetime data may either be complete or incomplete.
It is complete when the event of interest is observed and incomplete otherwise.
Incomplete data is popularly known as censored. Generally, there are three types

of censoring, namely: right censoring, left censoring and interval censoring.

Right censoring occurs when the time to an event of interest is unknown but
greater than the survival time or when an event of interest happens after the
study. Similarly, when time to an event of interest is less than the survival time,
it is known as left censoring. Also, interval censoring happens when an event
of interest is only known to be between two known survival times but the exact
time is unknown. For this study, the event of interest is time to death and it only
considers right censoring because death can only be observed once.
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3.6.1 Defining survival function

To understand and analyse lifetime data, we use a survival function. A survival
function S(t) gives the probability that an object of interest will survive beyond a
specified time t. In this research, the objects of interest are patients. The survival
function is formally defined as

S(t) = P(T > t). (3.6.1)

where T is a non—negative random variable which represents the survival time
of a patient.

3.6.2 Exploring non-parametric survival models

Using the definition above, one can estimate S(t) empirically as

S(t
(*) Number of individuals in the dataset
Equation (3.6.2) works if no observation is censored it is limited because it does

_ Number of individuals with survival time >t

(3.6.2)

not take into account censored data. Given this difficulty, Kaplan and Meier
(1958) used a product-limit approach to take into account the censored data. This
method of estimating S(t) is called Kaplan—-Meier survival and is also used to
generate Kaplan-Meier survival curves. To estimate the probability of surviving
in an interval I;, we have to know the number of individuals who have died in
the interval.

3.6.2.1 Kaplan—Meier Survival Estimate

Let g; be the probability of dying in the interval I;, and 7; be an estimate of g;
then

5=, (3.6.3)

where d; is the number of individuals or units that have died in the interval I;
and n; is the total number of individuals at risk in the interval. We can now
compute for the probability of surviving in the interval I;.

Let p; be the probability of surviving in the interval I;, and let p; be the estimate
of p; then

pi=1-7q:. (3.6.4)
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Equation (3.6.4) is therefore re-written as

4
pl_l_n_i/
. ni—d;
pi=— (3.6.5)

We then compute for the product of all probability of surviving within the inter-
vals that precede a specific time t. Hence, the survival estimate for the Kaplan—
Meier is given by

k
S(t) = H Pi,
i=1

& ni —di
S(t) = E ( " ) (3.6.6)
Kaplan-Meier survival estimate is a non—parametric method as it does not re-
quire specific parameters and assumptions to be made about the underlying
probability distribution of the survival times. There are cases where it is of in-
terest to compare the Kaplan—-Meier survival curve of groups in a study. This is
done by using a test statistic called the log-rank statistic.

3.6.2.2 Log-Rank Statistic

A log-rank test is used to compare survival curves of two or more groups of
individuals in a given sample. Log-rank test works like the chi-square (x?) test
which employs the observed output and the expected output to make inferences.
For example, this study is interested in whether the levels of gene expressed
affects survival time. This, in particular, helps identify a significant difference
between patients survival time based on the level of a gene expressed. Although
log—rank test can be used for multiple groups, this study focuses on two group
comparison. In a log-rank test, an inference is made to either reject or accept
the null hypothesis that the two groups have a significantly equivalent survival

curve.

Let n;; be the number of individuals at risk in group i for i = 1,2 at time £;. Also
let d;; be the number of observed deaths in group i for i = 1,2 at time ¢}, then
O; = ¥;djj is the total number of observed deaths in group i. Similarly, let ¢;; be
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the expected deaths in group i for i = 1,2 at time tj, then E; = ZJ- ej; is the total
expected deaths in group i, where

n ..
ejj = "l X (d1] + d2])
i
The log-rank test statistic is therefore given by

T, — (O; — E;)?

= %O, E (3.6.7)

and

Var(O; — ;) — M2+ dj) (mj o = dyy = dyj)
: : (Tlij + 712]')2(711]' + lej — 1) '

One disadvantage of using the non-parametric model is that it cannot be ap-
plied to data with multiple covariates. Also, it does not give any information on
the best probability distribution that describes the data. This is the reason why
parametric models are needed.

3.6.3 Exploring specific probability distributions

Generally, the death of an individual in a study may be caused by several factors
and can be difficult to estimate mathematically. Applying theoretical distribu-
tion can make things easier in describing survival data. In this section, we ex-
plore common theoretical distributions used to analyse survival time and their
applications. These theoretical distributions are known as probability distribu-
tions. They are defined by a finite number of parameters and underlying as-
sumptions. Such parameters include the scale parameter, shape parameter and

location parameter.

A scale parameter expresses how samples are spread in a distribution. Examples
include standard deviation and variance. Location parameter is used to deter-
mine the shift of the distributions. Popular examples of the location parameter
are mean, median and mode. A shape parameter determines the shape of the
distribution and an example is skewness.

In probability distributions, cumulative distributive function (CDF) gives the
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probability that a continuous random variable T (an object of interest) will have
a value less than t. A CDF is denoted by F(t) and is given by

F(t) = P(T < 1). (3.6.8)

This definition creates a complementary relationship between S(t) and F(t).
Equation (3.6.1) can therefore be written as

S(t)=P(T>t)=1—-P(T <t).
Hence from Equation (3.6.8)
S(t) =1—F(t). (3.6.9)
When F(t) is differentiated, we get another function called probability density
function (PDF). It is denoted by f(f) and is expressed as

£(t) = dl;—(:). (3.6.10)

This implies that the F(t) can also be expressed as

F(t) = /_toof(u) du=P(T <t). (3.6.11)

Another function used to describe the distribution of T is the hazard function. As
the survival function gives the probability that an event will occur past a time
t, the hazard function gives the instantaneous potential of the event occurring
per unit time, given that an individual has survived up to time t. The hazard
function thus gives the risk of the event occurring per unit time during the study.
The hazard function is denoted by h(t) and it is formally given by

P(t<T<t+dHT >t)
dt—0 dt

. (3.6.12)

The numerator of Equation (3.6.12) can be interpreted as the conditional prob-
ability that an individual will experience the event of interest in the interval
(t,t + dt] given that he has survived beyond time ¢. The denominator also de-
scribes the length of the interval. Thus, the function gives an instantaneous rate
of the event occurring as the limit of the interval approaches zero (Rodriguez,
2007).
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Using the approach of conditional probability, we can write Equation (3.6.12) as

P(t < T < t+dt)

) = = gpTr s (36.13)
but from Equation (3.6.8), we can also write
F(t+dt) = P(T < t+dt).
Hence we can write h(t) as
i) = Jm,
1) = fim, MG
n(t) = dg—gt)%. (3.6.14)
From Equation (3.6.10), we can write Equation (3.6.14) as
h(t) = & (3.6.15)

5(t)
Relationships of functions in survival analysis

Interestingly, there exists a mathematical relationship between survival function
and hazard function. This means that they can be derived from each other. From
Equation (3.6.9), we can write Equation (3.6.10) as
a(1-5(1)
= —~—— 7
flty =

f(t) = _ddi(t), (3.6.16)

but from Equation (3.6.15), we can write Equation (3.6.16) as

C—ds() 1
ht) = a S(t)’

_—ds() 1
h(t) = Tt) X ar
n(t) = —4InGM)) (3.6.17)
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Multiplying (3.6.17) through by dt
h(t)d(t) = —d (In (5(t))). (3.6.18)

Integrating both sides, in Equation (3.6.18),
t
| n) du = —In (5(1)),
0
t
S(t) = exp (—/ h(u) du). (3.6.19)
0

Given that we have the hazard function, we can always take the exponent of
the integrated hazard function to obtain the survival function. Thus, when the
survival function is specified, the hazard function can be obtained by taking the
logarithm of the differentiated survival function given by (3.6.17).

Probability distributions to be used for this study are exponential, Weibull, log—
logistic, log—-normal and extreme—value model. These models assume that a con-
tinuous random variable T follows a specific distribution.

3.6.3.1 Exponential distribution

An exponential distribution of a continuous random variable T is characterised
by only a scale parameter A > 0 and is written as T ~ exponential(A). The
probability density function of the exponential distribution is given by

f(t) = Aexp(—At), t>0.
The CDF for the exponential distribution is given by
F(t) =1—exp(—At).

From the relation in Equation (3.6.9), we can write the survival function of the
exponential distribution as follows

S(t) = exp(—At).
From Equation (3.6.15), we can write the hazard function as

_ Aexp(—At)

h(t) = o (AT = A (3.6.20)
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Figure 3.10: Figure 3.10a shows a plot of the hazard function /(t) with A = 1 and Figure 3.10b
shows a probability density function f(t) for the exponential distribution with different A’s.
The exponential distribution is popularly known for its memoryless property.
As seen from Equation (3.6.20) and Figure 3.10a, the hazard function is a constant
which implies that risk does not change over time in an exponential distribution.
On the whole, an individuals” age does not have any effect on his survival in
an exponential distribution. Furthermore, a lower A implies a higher survival
probability with a lower risk of experiencing the event and vice versa.

3.6.3.2 Weibull distribution

The Weibull distribution of a continuous random variable T is characterised by
two parameters. They are the scale parameter & > 0 and the shape parameter
v > 0. It is expressed as T ~ Weibull(a, 7). The probability density function is
given by

_ T 1,
f(t) at exp( zxt ), t > 0.
The CDF for the Weibull distribution is also given by

F(f) =1 —exp (—%ﬂ) .
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Using the relation in Equation (3.6.9) the survival function can be written as

S(t) = exp(—lﬂ).

o

The hazard function is therefore given by

%ﬂ_l exp(—%t”) y

h(t) = " = Eﬂ—l. (3.6.21)
exp(—at7>
. — ,-05 & —— y=05
— y=1 — y=1
« y=2 v=2
y=3 y=3
P =1 {
2 \\ 2 \
7 \ \\\
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Figure 3.11: Figure 3.11a shows a plot of the hazard function h(t) and Figure 3.11b shows a
probability density function f(t) for the Weibull distribution for different ¢’s and & = 1.

The Weibull distribution is a general form of the exponential distribution. The
only difference between them is the shape parameter . The shape parameter
is very important because it determines the behaviour of the distribution. For
instance, from Figure 3.11a when 7y = 1, Weibull becomes an exponential distri-
bution. When <y > 1, the hazard rate increases as t goes to infinity and reduces
when ¢y < 1. This makes it versatile and easier to apply to different survival
problems. Lee and Wang (2003) mentioned that Weibull distribution has been
applied in several survival problems and human disease mortality.
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3.6.3.3 Log-logistic distribution

The log-logistic distribution is characterised by two parameters namely, scale
parameter A > 0 and shape parameter x > 0. A random variable T is said to
follow log-logistic distribution, if it's logarithm, follows the logistic distribution;
that is T follows log-logistic distribution if Y = log(T) is a logistic distribution
where T is time. The probability density function of a log-logistic is given by

Axc(At)F—1
)= ———~2 t .
A0 =15 e >0
The CDF for the log-logistic distribution is given by

__(pF
TR

From the relation in Equation (3.6.9), the survival function is,

1

Hence the hazard function is given by
_ Ax(At)t
}l ( t ) — '?i":;:"z';xji’j;z_ . (:3 .63.:2\35)
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Figure 3.12: Figure 3.12a shows a plot of the hazard function h(t) and Figure 3.12b shows a
probability density function f(t) for the log—logistic distribution for different x’s and A = 1.
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From Figure 3.12a, it can be seen that the hazard of the log—logistic distribution

starts from 0 and reaches its maximum at time ¢ = Al) when x > 1, which
later declines as t approaches infinity. Also, the hazard of the log-logistic starts
at A but only decreases as t approaches infinity when x = 1. Finally, the hazard
starts from infinity and decreases when x < 1. This distribution can be used to
describe survival problems that have its hazard increasing at the initial stage and
reducing at the later stage (Lee and Wang, 2003).

3.6.3.4 Log-normal distribution

The log—normal distribution of a continuous random variable T is characterised
by two parameters. This distribution is most easily characterized by saying
the continuous random variable T follows log-normal distribution if the log-
arithm of T is normally distributed; that is, T follows log—normal distribution if
Y = log(T) is normally distributed with mean and variance specified by p and

2

o respectively. Hence, Y is of the form Y = u + ¢Z, where Z is a standard nor-

mal. It is therefore expressed by T ~ Log-normal(y, ¢?). Its probability density

_ )2
exp(—u), t > 0.

202

function is hence given by

1
f(t):ta\/ﬁ

Its cumulative density function is also given by

F(t) = % + %erf (—ﬁ(h;_ ”)),

where

erf(t exp d u.

= h

Using the relation in Equation (3.6.9) the survival function can be written as

11 . (\/E(lnt—y)).

=33 2

Therefore, the hazard function is expressed as
N2
\/E exp (- (lnzt(ﬂpt) )
V2(Int— '
taﬁ(l — erf (%))

h(t) = (3.6.24)
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Figure 3.13: Figure 3.13a shows a plot of the hazard function k(t) and Figure 3.13b shows a
probability density function f(t) for the log—normal distribution for different ¢’s and y = 1.

Lee and Wang (2003) stated that log-normal distribution best describes survival
problems with initial increase of the hazard rate to a peak and later decrease of
the hazard rate to zero as t approaches infinity.

3.6.3.5 Extreme—value distribution

The extreme—value distribution of a continuous random variable T is charac-
terised by two parameters. They are the location parameter A and scale param-
eter 6 > 0. The probability density function of the extreme-value distribution is
expressed as

f(t):SeXp {%—exp (T)]’ —o0 < t < o0.
The CDF for the extreme—value distribution is given by

F(t) = 1 —exp [—exp (%)]

therefore we can deduce the survival function as

S(f) = exp [— exp (%)]
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Hence computing the hazard function, we get,

h(t) = %exp (%) (3.6.25)

Survival parametric regression models

Linear regression seeks to identify a relationship that exists in the dependent
variable (y;) and independent variable (x;). However, linear regression is able
to achieve this by satisfying certain underlying assumptions. This study is also
interested in investigating whether there exists some relationship between sur-
vival time and explanatory variables. For instance, suppose t denotes survival
time and x = (x1,...,x,)T a vector of differentially expressed genes, then we
investigate if the amount of genes expressed has an effect on the survival time.
For this study, these explanatory variables can also be referred to as prognos-
tic factors. Survival regression models are mostly expressed in terms of hazard
function and are given by

h(t, x) = exp(Bo + Bx),
h(t,x) = exp(Bo) exp(Bx). (3.6.26)

where x are explanatory variables, x € RY, 8 = [B1,B2,...,B4] are also coeffi-
cient of the explanatory variables, B € R and B is a baseline hazard function.
Denoting hy(t) = exp(Bo), Equation (3.6.26) becomes

h(t,x) = ho(t) exp(Bx). (3.6.27)

ho(t) is called the baseline hazard function because, h(t, x) reduces to hy(t) when
there are no explanatory variables; that is when x = 0 (Kleinbaum, 1998).

From Equation (3.6.19) and Equation (3.6.27), we can also write a survival re-
gression model as

t
S(t,x) = exp {( - / ho(u) du) exp(B x)] . (3.6.28)
0
Equation (3.6.28) can be expanded to give a new expression written as
exp(Bx)
5(t,x) = [So(1)] PP (3.6.29)
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t
where Sy(t) = exp (— / ho(u)du) is called the baseline survival function.
0

Given that the probability distribution function is known, we can then substitute
the ho(t) with the hazard function of the corresponding probability distribution.
Using the Weibull distribution as an example, the hazard function is known from
Equation (3.6.21). Hence, the hazard function for the Weibull regression model
can be written using Equation (3.6.27) as

h(t,x) = %t""l exp(Bx). (3.6.30)

Similarly, the survival function for the Weibull survival regression model can be
expressed by using Equation (3.6.29) as

1 exp(px)
S(t,x) = {exp(—at'yﬂ . (3.6.31)

Also, while linear regression uses the coefficient of the explanatory variable S as
its measure of effect, survival analysis uses Hazard Ratio (HR) as its measure
of effect. The hazard ratio is simply an expression written in terms of an expo-
nential of one or more coefficients of the explanatory variable of a model (Klein-
baum, 1998). It is actually computed by dividing the hazard of an individual by
the hazard of another individual.

Considering two individuals with explanatory variables x; and x; respectively,

then HR is given by
HR — hi(t,x1) _ ho(t) exp(,[%xl)/
ha(t,x2)  ho(t) exp(Bx2)
HR = exp [B(x1 — x2)]. (3.6.32)

HR = 1 means that both individuals have equivalent hazards. Also, HR > 1
implies that the first individual has a higher risk than the second individual.
Similarly, HR < 1 implies that the first individual has a lower risk than the sec-
ond individual.

The only limitation for the survival parametric regression model is, the underly-
ing probability distribution is mostly unknown hence making it difficult to ob-
tain the exact form of the model (Lee and Wang, 2003). Zhang (2016) stated that
the underlying mathematical model of the survival time needs to be described
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but to a great extent may be unrealistic and stringent. Fortunately, there are tech-
niques that can help determine or approximate the model but do not require the
underlying probability distribution to be known.

3.6.4 Semi-parametric survival models

A semi-parametric model does not specify the underlying probability distribu-
tion of the survival time but also possess a parametric property. A popular ex-
ample is the Cox proportional hazard which takes the form of Equation (3.6.27).

Describing Cox proportional hazard model

Generally, the Cox proportional hazard model with explanatory variables x =
(x1,...,%m,)7 is of the form,

h(t,x) = ho(t) exp(Bx). (3.6.33)

Cox proportional hazard do not specify the probability distribution of the base-
line hazard (ho(t)). For this reason, Cox proportional hazard is widely used
if the underlying assumptions of the baseline hazard are not of interest. Also,
the results of Cox proportional hazard are very close to correctly approximated
parametric models hence making them very robust. Cox proportional hazard
can also be used to estimate the hazard ratio discuss above. Specifically, Cox
proportional hazard can be used to compare and evaluate the relative risks of
patients. This is done by dividing the risk of a patient by a baseline risk. The
baseline risk is evaluated by multiplying thee coefficients of the variables with
the average of the genes.

3.6.5 Statistical model selection

A study like this will need a statistical model from the explanatory variables
upon which the hazard function will depend. Statistical models are used to
depict the distribution underlying the data used. Such models provide useful
information about how the data was generated, but they are almost never exact.
This is because some information may be lost by using statistical models to de-
pict the data generation process.
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It is therefore important to know the significant explanatory variables that im-
prove the prediction power of the hazard function. By knowing the signifi-
cant explanatory variables, several alternative models can be built and the best
among them should be chosen. For example, two models A and B may have
explanatory variables that are all contributing to the predictive power of the
hazard function. In such a case, the model with the highest predictive power is
preferred. There can also be cases where the explanatory variables of model A
is a subset for that of model B. In this case, we say model A is nested in model B
and the two models are said to be parametrically nested (Kleinbaum, 1998).

For these reasons, the study employs statistical model selection methods to help
compare and fit the best model among alternatives. In survival analysis, the
two most common statistics used to compare alternative models are the log-
likelihood ratio and Akaike Information Criterion (AIC) (Collett, 1993).

The log-likelihood ratio compares whether there is a significant difference be-
tween parametric nested models. Thus, it is used to compare the significance
of an additional variable between the two models. This statistic employs a like-
lihood function which summarises the information of a model as —21In(L(p)).
Hence, the statistic is given by

_2[(lnL(.B)modelA) - (lnL(,B)modelB)]/ (3-6-34)

where B is a vector of coefficients of the variables in the model and L(f) is an
estimate of the maximum likelihood function given by

L exp(ﬁTx]-)
L(ﬁ)—l} T exp(BTx)’ (3.6.35)
= ter(y)

where B7 is a transpose of the vector of coefficients of the variables.

Furthermore, it asymptotically follows a chi-square distribution with a null hy-
pothesis that B for additional explanatory variables equals to zero. The number
of degrees of freedom for this distribution is given by the difference between the
number of independent f—parameters being fitted under the two models. Two
models are therefore considered equivalently significant if their log-likelihood
ratio is significantly small, but for simplicity, the model with a smaller number
of explanatory variables is preferred. In the case where the log-likelihood ratio



Stellenbosch University https://scholar.sun.ac.za

Chapter 3. Different analysis method for breast cancer 50

for two models is significantly large, the additional explanatory variables are re-
quired to improve the predictive power of the hazard function (Collett, 1993).

The AIC is also used to estimate the relative quality of statistical models by find-
ing the information lost in a model. AIC is therefore given by

AIC = 2k —2In(L(B)), (3.6.36)

where k is the number of parameters to be estimated and L(j) is the estimate
of the maximum likelihood function given in Equation (3.6.35). Models do not
have to be necessarily nested to apply AIC (Kleinbaum, 1998). The best model is
then chosen based on the model with the smallest AIC value. For this study, AIC
will be used to find the best probability distribution for the survival time while
the log-likelihood ratio will be used to find the best model in a parametrically
nested model.

3.7 Software and packages used

The software used for this research is the R statistical program. The packages
used in the software also includes RTCGA, samr, randomForest, keras, e1071, 1hs,
survival, and survminer. RTCGA was used to obtain TCGA gene expression and
clinical data. samr was also used to find genes that are differentially expressed.
randomForest package was used to analysis random forests. keras and 1071
were used to analyse ANN and SVM respectively. Latin hypercube samples
were also obtained by using the package 1hs. survival and survminer were
also used for survival analysis and fancy plotting respectively.

In summary, this chapter highlighted the techniques to be used for the study. It
started with the type of data (RNA-seq) to be used for the study and where it
was obtained from. It further presented an algorithm (SAM) which is used to
identify genes that are differentially expressed. Three machine learning algo-
rithms were also presented which will be applied to classify breast cancer pa-
tients. Finally, survival analysis was described which will also be used to build
a model to predict how long a breast cancer patient survives based on their dif-
ferentially expressed genes.


https://www.r-project.org/
https://rtcga.github.io/RTCGA/
https://www.rdocumentation.org/packages/samr/versions/2.0/topics/samr
https://www.rdocumentation.org/packages/randomForest/versions/4.6-14/topics/randomForest
https://keras.rstudio.com/
https://www.rdocumentation.org/packages/e1071/versions/1.7-0/topics/svm
https://www.rdocumentation.org/packages/pse/versions/0.4.7/topics/LHS
https://cran.r-project.org/web/packages/survival/index.html
http://www.sthda.com/english/rpkgs/survminer/
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Chapter 4

Statistical analysis of breast cancer
gene expression and clinical data

This chapter seeks to analyse breast cancer gene expression and clinical data. It
tirst identifies genes that are differentially expressed by applying Significance
Analysis of Microarray (SAM) to the TCGA data. The differentially expressed
genes identified are then used to predict breast cancer patients using three ma-
chine learning methods. Finally, a model is built to predict survival time for
breast cancer patients.

4.1 Identifying essential genes

The study seeks to identify genes that contribute to the formation of breast can-
cer. The algorithm used to achieve this is called the Significant Analysis of Mi-
croarray (SAM). For a set of genes, SAM identifies genes that are differentially
expressed by defining a threshold A for which genes with scores greater than
A are deemed potentially significant. The algorithm also returns a quantile-
quantile (Q-Q) plot between the observed scores of genes and the expected
scores of genes. As a reminder, the observed score is obtained from using the
whole data while the expected score is also obtained from permuting the re-
sponse values.

The algorithm, therefore, re—sampled the data 19 times to obtain observed scores
for the genes. It also performed 100 permutations on the response variable to
obtain the expected score for each gene. To be specific, observed scores became

51
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stable after re-sampling 19 times. Also, expected scores were invariant after 100
permutations. This yielded a maximum A = 49986 with 23 positive genes called
significant and zero negative genes. The results can be visualised in Figure 4.1.

observed score
-20000 0 20000 40000 80000

-40000

-60000

-10000 -5000 0 5000 10000

expected score

Figure 4.1: The Q-Q plot obtained by using the SAM algorithm with A = 49986. Scores
obtained by re-sampling 19 times and permuting 100 times. Red points represent differentially
expressed genes and black points represent non-differentially expressed genes

The black points in Figure 4.1 represent genes that have no difference in their ob-
served scores and their expected scores. For this reason, they are deemed not sig-
nificant. The red points represent genes with observed scores significantly dif-
ferent from their expected scores hence they are called significant genes. Specif-
ically, they are significantly positive genes. The results did not contain any
negatively significant gene. The significant genes in descending order of rank
score include FIGF, SDPR, CD300LG, ADAMTS5, MAMDC2, TMEM220, SPRY?2,
PAMR1, ARHGAP20, TSLP, LMOD1, FAM13A, CA4, PPP1R12B, ABCA10, MME,
SCN4B, DMD, FXYD1, CAV1, ITIH5, and BTNL9. Table 4.1, therefore, shows
significant genes with their corresponding description and scores. In addition,
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Table 4.2 also shows details of the molecular function of each gene and its cor-
responding biological process. These details were obtained from GeneCards®

(https://www.genecards.org/) and UniProt (https://www.uniprot.org/).

Table 4.1: Significant genes with their corresponding description and scores

Gene Symbol Description Score(T)
FIGF Vascular Endothelial Growth Factor D 60960.833
SDPR Serum Deprivation Response 60807.111
CD300LG Cluster of Differentiation 300 Molecule Like Family 60801.778
Member G
ADAMTS5 A Disintegrin And Metalloproteinase With Throm- 60667.889
bospondin Motifs-5
MAMDC2 MAM(Meprin, A-5 protein, and receptor protein— 60440.667
tyrosine phosphatase Mu) Domain Containing 2
TMEM?220 Transmembrane Protein 220 60436.278
SPRY2 Sprouty RTK Signaling Antagonist 2 60308.778
PAMR1 Peptidase Domain Containing Associated With Mus- 60308.389
cle Regeneration 1
SCARAS Scavenger Receptor Class A Member 5 60295.444
ARHGAP20 Rho GTPase Activating Protein 20 60218.778
TSLP Thymic stromal lymphopoietin 60144.842
LMOD1 Leiomodin 1 60175.737
FAM13A Family With Sequence Similarity 13 Member A 60161.737
CA4 Carbonic Anhydrase 4 60067.947
PPPIR12B Protein Phosphatase 1, Regulatory (Inhibitor) Subunit 60021.611
12B
ABCA10 ATP Binding Cassette Subfamily A Member 10 60004.158
MME Membrane Metalloendopeptidase 59994.333
SCN4B Sodium Voltage-Gated Channel Beta Subunit 4 59983.222
DMD Dystrophin 59893.778
FXYD1 FXYD Domain Containing Ion Transport Regulator 1 ~ 59884.833
CAV1 Caveolin 1 59881.056
ITIH5 Inter—Alpha-Trypsin Inhibitor Heavy Chain Family 59852.389
Member 5
BTNL9 Butyrophilin Like 9 59832.667



https://www.genecards.org/
https://www.genecards.org/
https://www.uniprot.org/
https://www.uniprot.org/
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Table 4.2: Molecular function and biological process for significant genes

Gene Symbol Molecular Function

Biological Process

FIGF
SDPR
CD300LG
ADAMTS5
MAMDC2
TMEM220
SPRY?2
PAMRI1

SCARAS5
ARHGAP20

TSLP

LMOD1
FAM13A
CA4
PPPIR12B
ABCA10
MME
SCN4B
DMD
FXYD1

CAV1
ITIH5

BTNL9

Growth factor activity

Protein kinase C binding
Receptor
Extracellular matrix binding

Protein serine/threonine kinase
activator activity
Calcium ion binding

Scavenger receptor activity
GTPase activation

cytokine activity, interleukin-7
receptor binding

Actin-binding
GTPase activation

Carbonate dehydratase activity,
zinc ion binding

protein kinase binding

ATP binding

endopeptidase activity
voltage—gated sodium channel
activity

actin binding

sodium channel regulator activ-
ity

ATPase binding

serine-type endopeptidase in-
hibitor activity

Angiogenesis, cell proliferation, posi-
tive regulation of cell division
Plasma membrane tubulation
Regulation of immune response
Defense response to bacterium

Regulation of cell differentiation, neg-
ative regulation of angiogenesis

May play a role in regeneration of
skeletal muscle

Cellular iron ion homeostasis
Regulation of small GTPase mediated
signal transduction

Positive regulation of inflammatory
response, negative regulation of
apoptotic process

Muscle contraction, positive regula-
tion of actin filament polymerization
Regulation of small GTPase mediated
signal transduction

Bicarbonate transport

signal transduction

lipid transport

cellular response to cytokine stimulus
regulation of sodium ion transmem-
brane transporter activity

regulation of skeletal muscle contrac-
tion

sodium ion transport

apoptotic signaling pathway
hyaluronan metabolic process

“u

means gene do not have either known biological process or known molecular function

4.2 Classifying patients based on essential genes

Using labelled response variable from the data, the machine learning algorithms,

including random forests, artificial neural network (ANN) and support vector

machines (SVM) were able to classify breast cancer patients into two classes
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namely; a tumour or a tumour—free class. The classifications were based on the
significant genes identified by SAM. The data matrix used had a dimension of
1212 x 24. 1212 represented the number of patients while 24 represented 23 sig-

nificant genes and one response variable.

The data matrix was then randomly divided into training data and test data. 70%
of the data were allocated to the training data while the remaining 30% were as-
signed to the test data. To obtain optimal results, the trained models had to be
tuned. They were tuned using a validation data which was generated from the
training data. Specifically, the random forest was tuned using the OOB samples,
whereas ANN and SVM used 20% of the training data to validate the trained
model.

After several tuning, random forests used 200 trees with 4 splitting variables at
each node to build a model for the study. Similarly, the artificial neural network
was built with 5 layers. It had an input layer, an output layer and 3 hidden lay-
ers. The input layer had 128 units, while the output layer had only two units.
However, the first hidden layer had 32 units followed by 16 units in the second
hidden layer and the last hidden layer had 8 units. In addition, each layer had a
bias except for the output. Thus, there were 7882 units in total for the artificial
neural network. The activation function used for each layer was ReLU, except
for the output layer which used the softmax activation function. Also, for the
support vector machine, the radial basis was better than the other three kernel
functions discussed.

Their performances were measured using a confusion matrix. Again, confusion
matrix measures how well an algorithm categorised each patient into a positive
group or negative group. The positive group for this study is the tumour class,
whereas the negative is a tumour—free class. This procedure was also applied for
the median supplement explained in Section 3.4.4.

4.2.1 Comparing the performance of classification algorithms
with and without supplement data
First, Table 4.3 summarises the performance of the machine learning algorithms

without the supplement data (that is unbalanced data with 1100 labelled tumour
and 112 labelled tumour—free).



Stellenbosch University https://scholar.sun.ac.za

Chapter 4. Statistical analysis of breast cancer gene expression and clinical
data 56

Table 4.3: Comparison of the performance of the classifiers without supplement
data

Sensitivity Specificity False Positive False Negative Accuracy

Random Forest  0.99377 0.96552* 0.03448* 0.00623 0.99143*
Neural Network 0.97708 0.91176 0.08824 0.02292 0.97128
Support Vector  0.99685* 0.85714 0.14286 0.00315* 0.98551

“u_

*” means preferred algorithm for the statistical measure

The results from Table 4.3 indicates that random forests was the best of the three
because it had the highest rate in accuracy. The next classifier with a higher rate
of accuracy was SVM and finally followed by the neural network. The perfor-
mance of the neural network may be due to the fact that the data is unbalanced.
Using random forest without the supplement data, we can say that, 99.377% of
the patients may be correctly diagnosed with breast cancer. Also, 96.552% of the
patients may be correctly classified as not having breast cancer. 3.448% of the
patients may be falsely diagnosed with breast cancer. Finally, 0.623% of the pa-
tients may be falsely classified as not having breast cancer.

Similarly, Table 4.4 also summarises performance of the machine learning algo-
rithms after using median supplement approach. After using the median sup-
plement technique to balance the data, the dimension of the data matrix changed
to 2200 x 24.

Table 4.4: Comparison of the performance of the classifiers using median sup-
plement data

Sensitivity Specificity False Positive False Negative Accuracy

Random Forest  0.94817* 1.00000* 0.00000* 0.05183* 0.97331*
Neural Network 0.84404 0.84953 0.15047 0.15596 0.84675
Support Vector  0.80060 0.97444 0.02556 0.19940 0.88509

7

*” means preferred algorithm for the statistical measure

Again, the results from Table 4.4 indicates that random forests performed better
than the other classifiers because it had the highest rate of accuracy. The next
highest rate of accuracy was the SVM and finally followed by the neural net-
work. Again, the results from the random forests with median supplement data
indicate that 94.817% of the patients may be truly diagnosed with breast can-
cer. Interestingly, 100% of the patients may be correctly classified as not having
breast cancer. Also, no patient may be wrongly diagnosed with the disease. Fi-
nally, 5.183% of the patients may be falsely classified as not having breast cancer.

In addition, a mean supplement was also generated to investigate if there would
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be a difference in the results. Table 4.5 summarises performance of the machine
learning algorithms after using the mean supplement approach. Similarly, the
dimension of the data matrix changed to 2200 x 24 after using the mean supple-
ment technique.

Table 4.5: Comparison of the performance of the classifiers using mean supple-
ment data

Sensitivity Specificity False Positive False Negative Accuracy

Random Forest 0.95918~ 1.00000* 0.00000* 0.04082*  0.97901*
Neural Network 0.88889 0.94328 0.05672 0.11111 0.97264
Support Vector 0.90801 0.98452 0.01548 0.09199 0.94545

7

*” means preferred algorithm for the statistical measure

Once again, random forests had higher rates in sensitivity, specificity and accu-
racy, hence it performed better than the other classifiers. Using random forest
with mean supplement data we can say that, 95.918% of the patients may be
truly diagnosed with breast cancer. Also, any patient diagnosed as not having
breast cancer may be true. Again, no patient may be wrongly diagnosed with
breast cancer. Finally, 4.082% of the patients may be wrongly classified as not
having breast cancer.

4.2.2 Details of the best performing classification algorithm

By far, the random forest has proven to be the best classifier of the data, hence
a deeper exploration will be beneficial. First, it is relevant to know the variables
that increase the predictive power of the model. Identifying these relevant genes
can help fine-tune the model to increase the prediction power. This is achieved
plotting the average decrease of Gini index that each gene contributes to the
model. Figure 4.2 summarises the first 10 important variables.
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Figure 4.2: First 10 variables that increase the prediction power of the random forest

Figure 4.2 shows that FIGF has the most averaged Gini index decrease of error
for the model. Interestingly, in the SAM analysis, FIGF also had the highest score.
The first 10 important variables were then used to build a new model. Fortu-
nately, there was no significant improvement of results from the new model. Oc-
cam’s razor states that “among several plausible explanations for a phenomenon,
the simplest is best” (Faraway, 2002). Thus, the final model to predict breast can-
cer will be based on the model with fewest variables which is the first 10 most
important variables. The new model presents a tree displayed in Figure 4.3.
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Figure 4.3: A random tree obtained for random forest algorithm with 23 nodes. 12 of the nodes
are leaf nodes and 10 of them are internal nodes. Y means yes and proceed to the left while N
means no and proceed to the right.

Figure 4.3 shows a random tree constructed by the model. This tree is relatively
small because it had a root node, 10 internal nodes and 12 leaf nodes. With this
tree, breast cancer can easily be predicted or diagnosed using a patient’s gene
expression data.

4.3 Identifying association between essential genes

and patients survival

Next is to build a model that predicts the survival time of patients using their
clinical data and the 23 significant genes. The clinical data contains both pa-
tients who experience the event of interest (death) and patients who were lost to
follow—up or were still alive at the end of the study (censored). Among the pa-
tients, 104 had experienced the event of interest while 993 were censored. How-
ever, the survival time for breast cancer patients in this study ranges from 1 to
7067. Figure 4.4 shows only the survival time of the first 50 patients for the study.
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Figure 4.4: Plot showing the first 50 patients and their survival time. Arrowed bars indicates
a censored patient.

4.3.1 Kaplan-Meier survival analysis

Figure 4.4 does not convey much information as it only reveals the survival
time of some patients. However, the Kaplan-Meier curve is able to estimate
the survival probability of patients given their survival time. Figure 4.5 displays
a Kaplan-Meier curve for the patients.
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Figure 4.5: A Kaplan-Meier curve to estimate the survival probability of the patients with a
median survival time at 3472 days. The vertical lines crossing the curves represent censored
patients.

From Figure 4.5, it can be seen that the survival probability reduces as time in-
creases. At the time t = 0, the survival probability was 100% because at t = 0, no
patient had experienced the event of interest. The Kaplan—-Meier then estimated
a median survival time of patients to be 3472 days (that is approximately 9 years
and 6 months). This means that the probability that a breast cancer patient will
survive beyond 3472 days is 50%.

Furthermore, the study investigated the influence of variables (significant genes)
on the survival probability. It tested whether the level (high or low) of gene ex-
pression could affect the survival probability. For example, if a patient expresses
a high level of FIGF, what is the probability that she will survive beyond a par-
ticular time. For this reason, the study employs the log-rank test statistic to
investigate the influence gene levels expressed has on survival probability.
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Table 4.6: Log—rank test statistic for genes

Gene Symbol Chi-square p—value

FIGF 2.77 0.0960
SDPR 9.38 0.0022*
CD300LG 3.78 0.0519
ADAMTSS 3.97 0.0464*
MAMDC?2 2.50 0.1138
TMEM?220 490 0.0268"
SPRY?2 440 0.0360*
PAMR1 8.10 0.0044*
SCARAS5 1.48 0.2245
ARHGAP20 1.77 0.1831
TSLP 8.67 0.0032*
LMOD1 2.82 0.0930
FAMI3A 0.70 0.4036
CA4 0.64 0.4255
PPPI1R12B 0.06 0.8012
ABCA10 226 0.1328
MME 3.02 0.0821
SCN4B 1.40 0.2375
DMD 2.27 0.1321
FXYD1 1.02 0.3132
CAV1 5.07 0.0243*
ITIH5 141 0.2343
BTNL9 8.48 0.0036*

“u

*” means statistically significant

Table 4.6 thus summarises the influence of variables on patients survival prob-
ability. The table presents genes with their corresponding chi-square (x?) and
p—values. Using x? with one degree of freedom, the p—values for the genes
were generated. Results indicate that SODPR, ADAMTS5, TMEM?220, SPRY2,
PAMR1, TSLP, CAV1, and BTNL9 are significantly different. This means that
their levels of expression affect patients survival probability. In details, Kaplan—
Meier curves have been plotted to display significant genes identified by the
log—rank statistic.
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Figure 4.6: Plot for significant genes after using log-rank test statistics. Red curves indicate
Kaplan-Meier curve for patients who express more and blue curves for patients who express
less.
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Figure 4.6 thus displays the Kaplan-Meier curve for each significant gene. For
each plot of a significant gene, the red curve represents Kaplan—-Meier curve for
patients who express more of that particular significant gene. Similarly, the blue
curve also represents the Kaplan-Meier curve for patients who express less of
a particular significant gene. In general, it can be seen from the plots that the
red curves were below the blue curves. Thus, it indicates that patients who
expressed more of the significant genes had shorter survival time compared to
patients who expressed less of the significant genes. This may be attributed
to the fact that the significant genes identified by SAM were all significantly
positive genes.

4.3.2 Building parametric survival models

As stated in Chapter 3, survival probability may depend on several factors. Un-
fortunately, Kaplan-Meier can estimate the survival probability with only one
variable at a time. Parametric distributions can be used to build models to pre-
dict survival probability with more than one variable. Again, parametric dis-
tributions can be very accurate if it’s underlying assumptions are met. To in-
vestigate parametric distributions, we first use AIC to identify the probability
distribution that best describes the survival time.

Table 4.7 presents specific probability distributions used for the study with their
corresponding AIC values. The results indicate that log-logistic distribution best
describes the survival time for the patients. This is because it gave the least
AIC value of 2050.11. Most importantly, this means that among the probability
distributions log-logistic relatively provides the least information lost from the
patient’s survival time. It can also be seen that extreme—value distribution had
the highest AIC value of 2198.34 therefore, it relatively lost more information
than the other probability distributions. Figure 4.7 graphically presents the sur-
vival curves for the probability distributions for the study. It can be seen that
log-logistic again is closer to the Kaplan—-Meier curve than the other probability
distributions. Even though Weibull was very close to the Kaplan-Meier curve
but after about ¢t = 5000 days, it deviated. It can thus be concluded that log-
logistic distribution best describes the survival time of the patients.

Next, the study focuses on building a model for predicting the survival time
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Figure 4.7: Figure 4.7 shows survival curves for the proba-
bility distributions.
for breast cancer patients. The model is built using a backward elimination ap-
proach to select variables that may be significant in the model. In addition, the
statistical measure used for the variable selection is log-likelihood ratio. The
variables used to build the model are the 23 significant genes identified by SAM.
In essence, the model built after variable selection can be used to predict the sur-
vival probability of a patient. Table 4.8 provides details of the model with the 23
significant genes.

Table 4.8 provides details of building a full model with the 23 significant genes.
Specifically, the table presents genes with their corresponding coefficients (Value),
standard error (Std.Error), z-test value and its p—value. The p—value for the
genes is generated from z-test which in turn is obtained by dividing the coeffi-
cient by its corresponding standard error. Thus, with 23 degrees of freedom and
a significance level of 10%, the model yielded a p—value equal to 0.019 which
resulted in a log-likelihood ratio of 39.19. The intercept is used to estimate the
scale parameter (A) while the Log(scale) is used to estimate the shape parame-
ter («). Table 4.8 also shows that not all variables are significant. For example,
only FIGF, SDPR and PAMR1 will significantly contribute to prediction if the full
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Table 4.8: Details of log-logistic model with the 23 significant genes

Gene Symbol Value Std.Error  z-test p-value
(Intercept) 8.15e+00  1.60e-01 50.8483 0.00e+00

FIGF -3.29¢-03  1.70e-03 -1.9335 5.32e-02*
SDPR -9.36e-04  4.17e-04 -2.2445 2.48e-02*
CD300LG 1.53e-03 1.57e-03 0.9763 3.29¢-01
ADAMTS5 4.38e-04 4.10e-04 1.0696 2.85e-01
MAMDC2 -5.22e-04  4.97e-04 -1.0490 2.94e-01
TMEM220 -1.36e-03  1.62e-03 -0.8434 3.99e-01
SPRY?2 2.64e-04 550e-04 0.4807 6.31e-01
PAMRI1 -1.44e-03  4.72¢-04 -3.0531 2.26e-03*
SCARAS 8.29e-04 9.20e-04 0.9014 3.67e-01
ARHGAP20 -5.08e-04 2.21e-03 -0.2296 8.18e-01
TSLP 2.95e-03  5.46e-03 0.5408 5.89e-01
LMOD1 221e-05 2.39e-04 0.0923 9.26e-01
FAM13A 3.15e-05 2.82e-04 0.1117 9.11e-01
CA4 -6.64e-04  3.29e-03 -0.2021 8.40e-01
PPP1R12B 7.64e-05 1.63e-04 0.4699 6.38e-01
ABCA10 -1.81e-03  2.69e-03 -0.6734 5.01e-01
MME -2.06e-05  8.04e-05 -0.2562 7.98e-01
SCN4B 9.65e-04  6.52e-04 1.4799 1.39e-01
DMD 5.26e-04 3.30e-04 1.5904 1.12e-01
FXYD1 2.39e-03  1.93e-03 1.2386 2.15e-01
CAV1 -8.08e-05 1.03e-04 -0.7828 4.34e-01
ITIH5 2.01e-04 1.75e-04 1.1486 2.51e-01
BTNL9 -3.58e-04  8.05e-04 -0.4450 6.56e-01
Log(scale) -6.77e-01  6.99e-02 -9.6793 3.69e-22

“u

*” means statistically significant

model is maintained because they are the only variables with p-value less than
10%. Thus a parametric nested model was built to improve the prediction of
breast cancer patients.

Once again, the study employs a backward elimination procedure which re-
moves variables with the largest p—value until all the variables have their p—value
below the significance level. Table 4.9 gives details of how the variables were se-
lected.
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Table 4.9: Variable Selection Process for log-logistic distribution

Model Log-likelihood ratio p—value
model; = Full model 39.19 1.9e-02
model, = model; - LMOD1 39.18 1.3e-02
model; = model, - FAM13A 39.17 9.4e-03
modely = model; - CA4 39.13 6.4e-03
models = modely - ARHGAP20 39.08 4.3e-03
modelg = models - MME 39.03 2.8e-03
model; = modelg - BTNL9 38.82 1.9e-03
modelg = modely - SPRY?2 38.53 1.3e-03
modelg = modelg - PPP1R12B 38.16 8.5e-04
model;y = modelg - TSLP 37.82 5.5e-04
modely; = modelyy - TMEM?220 37.49 3.5e-04
model;; = model;; - MAMDC?2 37.07 2.2e-04
model;3 = model; - SCARAS 36.29 1.5e-04
modely4 = modely3 - ABCA10 35.68 9.6e-04
model;5 = modely4 - CAV1 34.49 7.3e-05
mode116 = mode115 - ADAMTS5 33.66 4.7e-05
model;7 = modely¢ - FXYD1 32.70 3.0e-05
model;g = model;7 - CD300LG 31.05 2.5e-05

Table 4.9 presents several models with their corresponding log-likelihood ra-
tio and p—values. The log-likelihood ratio is used to generate the p—value.
First, a full model containing all 23 significant genes was built. This resulted
in a p—value of 0.019 indicating that the full model is significant under a 10%
significance level. Next, the simplest method of the model was identified by
backwards elimination. The process involved is to remove the gene with the
largest p—value from the full model and fitting a new model without the re-
moved gene. For example, LMOD]1 had the highest p—value of 0.926 (see Ta-
ble 4.8) therefore, it was removed from the full model and new model was fitted
without LMODI1. It can be seen that the model became more significant after
LMOD1 was removed. That is the global p—value of the full model reduced
turther from 0.019 to 0.013. This process of removing genes with the highest
p—value and refitting continued until there was no significant improvement in
the model. Thus, the last gene to be removed from the model was CD300LG with
a p—value of 0.192. After CD300LG was removed from the model, there was no
significant improvement in the model. The results of this is a reduced model
presented in Table 4.10.
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Table 4.10: Details of the reduced log-logistic model

Gene Symbol Value Std.Error z-test p-value

(Intercept) 8.127554  0.102452 79.33 0.00e+00
FIGF -0.002298 0.001342 -1.71 8.68e-02*
SDPR -0.000678  0.000163 -4.16 3.14e-05*
PAMRI1 -0.001156  0.000377  -3.07 2.16e-03*
SCN4B 0.001195 0.000546  2.19 2.88e-02*
DMD 0.000491 0.000220  2.23 2.57e-02*
ITIH5 0.000229  0.000132  1.74 8.24e-02*
Log(scale) -0.666871  0.069598 -9.58 9.55e-22

“u

*” means statistically significant

Table 4.10 presents genes that contribute significantly to predicting breast can-
cer patients survival probability. The table shows genes with their correspond-
ing coefficient (Value), standard error (Std.Error), z—test value and p—value.
It can be seen that all the genes now have their p—value less than the signifi-
cant level which is 10%. The results indicate that FIGF, SDPR, PAMR1, SCN4B,
DMD and ITIH5 contribute significantly to predicting the survival probability of
breast cancer patients. In addition, the reduced model resulted in an intercept
of 8.127554 and Log(scale) of -0.666871. As discussed in Section 3.6.3, a random
variable T follows log-logistic distribution if Y = log(T) is a logistic distribu-
tion. Thus, A is estimated by exp(— (Intercept) ) therefore A = exp(—8.127554) =
0.0003. Also, « is estimated by (exp(—Log(scale)))™! = (exp(—0.666871))"! =
1.9481. Using Equation (3.6.23), the baseline hazard model at the time ¢ is given
as

~0.0003 x 1.9481(0.0003 £)1-9481-1

ho(t
o(t) 1+ (0.0003 t)1-9481

(4.3.1)

From Equation (4.3.1), the hazard model can now be written as

h(t,x) = ho(t) exp(—0.002298 FIGF — 0.000678 SDPR — 0.001156 PAMR1
+0.001195 SCN4B + 0.000491 DMD + 0.000229 ITIH5)  (4.3.2)

Equation (4.3.2) illustrates how an increase or decrease of a gene can affect the
hazard model. For instance, an increase of expression of FIGF will decrease the
hazard by a factor of exp(—0.002298); that is by 0.23%. Likewise, each increase
of SCN4B will increase the hazard by a factor of exp(0.001195); that is by 0.12%.

Similarly, from Equation (3.6.22), the baseline survival function at time ¢ is given
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as

1
1+ (0.0003 t)1.9481"

So(t) (4.3.3)

Hence Equation (4.3.3) can be substituted into Equation (3.6.29) to obtain a sur-
vival model as

S(t,x) = So(t) exp(—0.002298 FIGF — 0.000678 SDPR — 0.001156 PAMR1
+0.001195 SCN4B + 0.000491 DMD + 0.000229 ITIH5)  (4.3.4)
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Figure 4.8: Using a scale parameter A = 0.0003 and shape parameter « = 1.9481, Figure 4.8a
shows the hazard and probability density function for the log-logistic distribution. Figure 4.8b
also shows the survival curve for the log-logistic distribution.

Figure 4.8 shows plots for hazard, probability density function and survival
curve for log-logistic distribution. In Figure 4.8a, hazard initially increases but

starts to decline after about time (#) equal to 3243.38 days. This was estimated

1
by using t = @ since ¥ > 1. This suggests that breast cancer patients with

survival time less than 3243.38 days have a higher risk to the event than breast
cancer patients with survival time more than 3243.38 days. In addition, the haz-
ard suggests that breast cancer patients will experience the event of interest at
a lower rate if they survive beyond t > 3243.38 days. Also in Figure 4.8b, the
survival curve was very steep before ¢t = 3243.38 but became gentle afterwards.
This indicates a low survival probability for patients with survival time less than
3243.38 days.
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4.3.3 Analysing the Cox proportional hazard model

Finally, the study uses Cox proportional hazard to explore the relative risk of
the breast cancer patients. Similarly, a full model is built using the 23 significant
genes identified by SAM. The backward elimination method of variable selec-
tion is then applied to improve the prediction power of the model. The built
model can then be used to compute for hazard ratio of two individuals. Like-
wise, the statistical measure used for the variable selection is the log-likelihood
ratio. Table 4.11 presents details of the full model.

Table 4.11: Details of Cox Proportional Hazard with the 23 significant genes

Gene Symbol coef se(coef) z-test p-value
FIGF 5.71e-03 2.82e-03  2.03 0.0427*
SDPR 1.44e-03 7.37e-04 195 0.0507*
CD300LG -2.43e-03 2.48e-03 -0.98 0.3266
ADAMTS5 -8.18e-04 6.93e-04 -1.18 0.2379
MAMDC2 8.76e-04 791e-04 111 0.2682
TMEM?220 1.20e-03 2.47e-03  0.48 0.6279
SPRY2 -5.04e-04 9.07e-04 -0.56 0.5784
PAMR1 2.38e-03 7.80e-04 3.06 0.0023*
SCARAS5 -1.48e-03 1.57e-03 -0.94 0.3474
ARHGAP20 6.56e-04 3.53e-03  0.19 0.8525
TSLP 2.24e-03 9.33e-03 -0.24 0.8101
LMOD1 1.40e-05 4.11e-04 0.03 0.9728
FAM13A -1.31e-05 4.15e-04 -0.03 0.9749
CA4 2.02e-03 5.13e-03  0.39 0.6934
PPP1R12B -8.47e-05 2.66e-04 -0.32 0.7499
ABCA10 3.11e-03 4.39e-03  0.71 0.4796
MME 5.51e-05 1.25e-04 0.44 0.6591
SCN4B -1.83e-03 1.10e-03 -1.67 0.0942*
DMD -8.32e-04 5.67e-04 -1.47 0.1423
FXYD1 -3.93e-03 3.29e-03 -1.19 0.2326
CAV1 1.57e-04 1.79e-04  0.88 0.3786
ITIH5 -3.86e-04 2.65e-04 -1.45 0.1461
BTNL9 5.35e-04 1.30e-03 0.41 0.6806

“u

*” means statistically significant

Table 4.11 presents details of a Cox proportion hazard model with 23 genes. The
table shows genes with their corresponding coefficients (coef), standard error
(se(coef)), z—testand p—value. Again, using a 10% significance level, the model
resulted in a global p—value equal to 0.0027 with a log-likelihood ratio of 37.8.
The results from Table 4.11 shows that FIGE, SDPR, PAMR1 and SCN4B con-
tribute significantly to the model. To improve on this, the backward elimination
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procedure is used to build a new model. Table 4.12 presents the details of the
variable selection process.

Table 4.12: Variable Selection Process for Cox Proportional Hazard

Model Log-likelihood ratio p—value
model; = Full model 37.8 2.70e-02
model, = model; - FAM13A 37.8 1.95e-02
model; = model, - LMOD1 37.8 1.38e-02
modely = model; - ARHGAP20 37.7 9.58e-03
models = modely - TSLP 37.7 6.56e-03
modelg = models - PPP1R12B 37.6 4.41e-03
model; = modelg - CA4 37.5 2.92e-03
modelg = model; - TMEM220 37.3 1.89¢-03
modely = modelg - MME 37.2 1.20e-03
model;y = modely - BTNL9 36.9 7.66e-04
model;; = model;g - SPRY2 36.5 5.05e-04
modelj; = model;; - CD300LG 35.8 3.54e-04
model;3 = model;; - SCARA5 34.9 2.54e-04
model4 = model;3 - ABCA10 34.5 1.51e-04
model;s = modelyy - CAV1 33.9 9.32e-05
model;g = model;s - EXYD1 32.7 6.99e-05
modely7 = model g - ADAMTS5 31.9 4.31e-05

Table 4.12 presents different models with their corresponding log-likelihood
ratio and p—values. Using Table 4.11, the gene with the largest p—value is
FAM13A (p—value for FAM13A = 0.9749), hence it is the first to be removed
from the model. ADAMTSS5 was the last gene to be removed from the model.
Table 4.13, therefore, presents the details of the reduced model.

Table 4.13: Details of the reduced Cox Proportional Hazard

Gene Symbol coef se(coef) z-test p-value

FIGF 0.003925 0.002066  1.90 5.75e-02*
SDPR 0.001142 0.000244  4.68 2.80e-06*
PAMRI1 0.001863 0.000631  2.95 3.10e-03*
SCN4B -0.002129 0.000952 -2.24 2.54e-02*
DMD -0.001093 0.000467 -2.34 1.93e-02*
ITIH5 -0.000349 0.000205 -1.70 8.92e-02*
MAMDC2 0.000816 0.000495  1.65 9.88e-02*

“x” means statistically significant
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Table 4.13 shows details of the reduced Cox proportional hazard model. The
reduced model contains six genes that contribute significantly to identifying the
hazard ratio of patients. Each gene also has its corresponding coefficient (coef),
standard error (se(coef)), z-test and p—value. From (3.6.33) the hazard for a
breast cancer patients using the Cox proportional hazard is therefore given by

h(t) = exp(0.003925 FIGF + 0.001142 SDPR + 0.001863 PAMR1 — 0.002129 SCN4B
—0.001093 DMD — 0.000349 ITIH5 + 0.000816 MAMDC?2). (4.3.5)

Equation (4.3.5) illustrates how each gene contributes to the hazard of a patient.
For example, if other genes are held constant, an increase of expression of FIGF
will increase a patient’s hazard by a factor of exp(0.003925); that is by 0.39%.
Similarly, a decrease of expression of SCN4B will decrease a patient’s hazard by
a factor of exp(—0.002129); that is by 0.21%. Again, this is used to evaluate the
relative risk of patients by comparing their hazard with a baseline risk. In this
case, patients with hazard less than 1 are considered to have a relatively lower
risk and patients with hazard more than 1 have a relatively higher risk.

4.4 Discussion of results

Breast cancer is a malignant tumour caused by uncontrolled growth of abnor-
mal cells in the breast. To develop an effective diagnostic and therapeutic tool,
the molecular mechanism inherent in breast cancer have to be understood (Wang
etal.,2018). RN A-seq is frequently used to profile transcription level within cells
which helps to identify genes that are differentially expressed for breast cancer

treatment.

In this study, differentially expressed genes for breast cancer patients were iden-
tified using SAM. Out of 20532 genes, 23 were identified as significantly differ-
ent. Specifically, all 23 genes reported by SAM were significantly positive. The
study expected genes that were identified as differentially expressed to make bi-
ological sense, hence the functions of the genes are investigated.

FIGF which was ranked by SAM as the most significantly positive gene func-
tions as a growth factor in a cell. It is mainly involved in angiogenesis, which
is the process of forming new blood vessels (Hayes, 1994; Schneider and Miller,
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2005). Tian et al. (2016) discovered that SDPR inhibits the progression of breast
cancer and this may be due to the fact that SDPR starves the breast cancer cells
from serum. This leads to it suppressing breast cancer cell proliferation and inva-
sion. Their further investigation revealed SDPR to be down-regulated in human
breast cancer. Shen et al. (2015) also revealed CD300LG to be down-regulated in
breast cancer tumours.

Furthermore, Nissinen and Khri (2012) reported that ADAMTS5 may function as
a tumour suppressor because they oppose the growth of a tumour and demon-
strate antagonistic behaviour to angiogenesis. They further found evidence that
ADAMTS5 was down-regulated in malignant tumour progression. In addition,
a study by Porter et al. (2004) revealed that ADAMTS5 was down-regulated in
human breast cancer. Tishchenko et al. (2016) discovered MAMDC?2 to be as-
sociated with tumour necrosis and were down-regulated in breast cancer cells.
Also, Choi et al. (2017) identified TMEM220 as a down-regulated gene in gas-
tric cancer. Feng et al. (2011) found SPRY?2 to contribute to tumourigenesis when
they are deregulated. Faratian et al. (2011) also describe SPRY?2 to function as a
tumour suppressor.

Lo et al. (2015) stated PAMR1 as a putative tumour suppressor as they suppress
the growth of cancer cells. They then noted PAMRI to be suppressed in breast
cancer cells. Ulker et al. (2018) found that SCARAS had significantly decreased
in cancerous tissues compared to that of non-cancerous samples. They discov-
ered that the down-regulation was associated with hypermethylation of the pro-
moter and thus plays an important role in tumourigenesis. Yamada et al. (2005)
predicted ARHGAP20 to be a tumour suppressor gene activated by deletion in
breast cancer.

TSLP blockade could be an important therapy for cancer Lokuan and Ziegler
(2014) because they promote the survival of tumour cells through induction of
the expression of an anti-apoptotic molecule (Kuan and Ziegler, 2018). Accord-
ing to Guo et al. (2015), LMOD]1 are mostly involved in smooth muscle functions.
They also used SAMseq to identify LMOD]1 as an upregulated gene. FAM13A are
most highly expressed in lung cancer. They are mainly induced by hypoxia ef-
fect to reduce the amount of oxygen distributed to tumour cells. Their functions
are therefore involved in cell proliferation. Their expression in breast cancer tis-
sues may be attributed to the fact that, the breast lays close to the lung (Eisenhut
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et al., 2017; Zidtkowska-Suchanek et al., 2017).

Similarly, CA4 mostly expressed in lung cancer cells (Carter et al., 1990). Again, Lo
et al. (2015) identified PPP1R12B to be frequently down-regulated in breast can-

cer tissues. ABCAI0 is a lipid transporter but proved to correlate with breast

cancer (Wang et al., 2015). MME was identified to be highly expressed in breast

cancer progression and dissemination (Louhichi et al., 2018).

Bon et al. (2016) reported that SCN4B is a tumour suppressor gene and reduces
cancer cell invasiveness and tumour progression. DMD has been validated as
a new agent in tumour development for tumour progression (Luce et al., 2017).
Zhang et al. (2013) stated that supplementing oestrogen deficient can result in
complications such as breast cancer. However, FXYD1 can be used to inhibit the
expression of miR-151-5p which is associated with oestrogen deficiency. CAV1
has been discovered to function as a primary tumour growth regulator (Sloan
et al., 2004). It, therefore, plays an important role as a tumour suppressor in
breast cancer cells and is a therapeutic target for the treatment of breast can-
cer (Mercier and Lisanti, 2012). ITIH5 was recently identified to impair breast
cancer progression but its underlying functions are still unclear (Rose et al., 2017).
It is however associated to be a tumour suppressor as its absence increases the
rate of proliferation (Veeck et al., 2008). Hsu et al. (2017) identified BTNL9 to
function as a tumour suppressor in lung cancer.

Summarising the literature discussed above, 8 genes were found to be associated
with tumour suppression and they are SDPR, ADAMTS5, PAMR1, ARHGAP20,
SCN4B, CAV1, ITIH5, and BTNL9. The study noted that when they are down-
regulated, breast cancer is promoted. FIGF is both associated with angiogenesis
and cell growth factor. Both SPRY2 and SCARAb contributed to tumourigene-
sis when they are down-regulated. There were 4 antagonist genes that rather
promotes breast cancer when up-regulated. They are FAM13A, TSLP, MME and
DMD. When up-regulated, FAM13A contributes to cell proliferation, TSLP also
contributes to tumour survival, and both MME and DMD contribute to tumour
progression. Only MAMDC?2 gene was associated with tumour necrosis when it
was down-regulated. Also, CD300LG and PPP1R12B are only down-regulated
in breast cancer. TMEM?220 and CA4 are related to gastric cancer and lung cancer
respectively.
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Next, the study compared three different classifiers namely; random forest, ar-
tificial neural network and support vector machine. The comparison was per-
formed on three different datasets. In the first data, the two classes —which is
tumour class and tumour—free class— were not balanced. The second and third
data were then balanced using upsampling techniques called median supple-
ment and mean supplement respectively. After using a confusion matrix as a
measure to compare the performance of the three classifiers, random forest per-
formed better than the other classifiers in all three datasets. The performance of
random forest may be attributed to its bagging property which helps to decor-
relate variables to reduce variance and to also overcome overfitting (Friedman
et al., 2001). Hence, the results from random forests may be likened to a com-
bined decision obtained from a group of doctors based on a patient’s gene ex-
pression data. Moreover, when the random forest was investigated further, it
suggested FIGF, ADAMTS5, SPRY2, ARHGAP20, CD300LG, SCN4B, TMEM220,
MME, SDPR, and MAMDC?2 as prognostic factors that increase the prediction of
breast cancer. In Figure 4.3, the model was used to grow a tree. The tree grown
is relatively small, therefore, clinicians can quickly make diagnoses for further
treatment of the disease.

Finally, the study investigated how genes influence the survival of patients. It
started by using Kaplan—Meier survival curves to estimate the median survival
time for breast cancer patients. The results indicated that averagely, a breast can-
cer patient will survive for 3472 days. In addition, the study used the log-rank
test statistic to identify SDPR, ADAMTS5, TMEM220, SPRY2, PAMRI1, TSLP,
CAV1 and BTNL9 as independent prognostic factors to the survival of breast
cancer patients. Prognostic factors identified may be attributed to the fact that
the survival time of patients expressing more of the prognostic factors was sig-
nificantly different from the survival time of patients expression less of these
prognostic factors.

Further investigations revealed that log-logistic distribution best describes the
survival time for breast cancer patients. This was because log-logistic distribu-
tion had the smallest AIC value of 2050.11. This means that among the probabil-
ity distributions log-logistic relatively provides the least information lost from
the patient’s survival time. From Figure 4.7, it is seen that log-logistic distribu-
tion was very close to the curve estimated non—parametrically by Kaplan-Meier.
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The study does not use the Kaplan-Meier curve because the study is interested
in building a survival curve which incorporates significantly identified genes
as prognostic factors. However, the Kaplan-Meier provides a picture of the ex-
pected survival curve.

Moreover, the study built a survival model using the log-logistic distribution
to predict the hazard and survival probability of breast cancer patients. A sig-
nificant model containing all 23 genes identified by SAM was first built with a
p—value of 0.019. The model was then improved using a back elimination vari-
able selection. This yielded a new p—value of 0.000025. Genes included in the
improved model were FIGF, SDPR, PAMR1, SCN4B, DMD, and ITIH5. Specifi-
cally, when FIGF, SDPR and PAMRI are increased, the hazard of breast cancer
patients decreases by a factor of 0.23%, 0.07% and 0.12% respectively. Whereas
when SCN4B, DMD and ITIH5 are increased, the hazard of breast cancer patients
increases by a factor of 0.12%, 0.05% and 0.02% respectively. Hence, these genes
may serve as a potential prognostic factor to determine breast cancer patients
survival details. In addition, Figure 4.8 suggests that breast cancer patients at
the beginning of the disease will have an increased risk to the event but after
3243.38 days, their risk to the event may gradually decrease.

Again, the study employed Cox proportional hazard to investigate the relative
risk of breast cancer patients. Similarly, backward elimination was used to im-
prove a significant model which contained all 23 genes identified by SAM. The
improved model contained 7 genes namely; FIGF, SDPR, PAMR1, SCN4B, DMD,
MAMDC?2 and ITIH5. It can be seen in Equation (4.3.2) that Cox proportional
hazard contained all 6 genes in the log-logistic survival model and MAMDC2.
Similarly, the Cox proportional hazard model suggests that, when FIGF, SDPR,
PAMR1 and MAMDC2? are increased, the hazard of breast cancer patients de-
creases by a factor of 0.39%, 0.11%, 0.19% and 0.08% respectively. While, SCN4B,
DMD and ITIH5 increase the hazard of breast cancer patients by a factor of
0.21%, 0.10% and 0.03% when they are increased.

These results suggest that there exists a correlation between the regulation of
genes and risk to the event. In particular, it is identified that all genes which
promote breast cancer when down-regulated had a negative coefficient in the
survival model. Hence, genes that promote breast cancer when down-regulated
reduce patient’s risk to the event when they are increased. Similarly, the study
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identified that genes which promote breast cancer when upregulated had a pos-
itive coefficient in the survival model. Thus, genes that promote breast cancer
when upregulated increases patient’s risk to the event when they are increased.

In summary, this chapter used SAM to identify genes that are differentially ex-
pressed in breast cancer patients. The identified genes were then used to predict
breast cancer using three machine learning algorithms. The study then used a
confusion matrix to compare the performance of three machine learning algo-
rithms. Finally, the significant genes were used to build a model to predict the
survival time of breast cancer patients.



Stellenbosch University https://scholar.sun.ac.za

Chapter 5
Conclusion

In conclusion, the study identified potential genes that may contribute to the
formation and development of the breast cancer disease. This was achieved by
using a statistical technique called significance analysis of microarray (SAM) to
identify significant genes. Identified significant genes were used as features of
supervised learning techniques to predict breast cancer and a survival model to
predict the survival probability of breast cancer in patients.

In the experimental investigation, we identified 23 significantly positive genes
to be differentially expressed in breast cancer patients (see Table 4.1). Further
investigation revealed that most positive genes when down-regulated promote
the formation of breast cancer. This may lead to discovering novel genes that
contribute to breast cancer and enable clinicians to target specific genes for treat-
ing breast cancer.

Moreover, the study also concludes that random forest is well suited for predict-
ing breast cancer with FIGF, SDPR, CD300LG, ADAMTS5, MAMDC2, TMEM?220,
SPRY2, ARHGAP20, MME and SCN4B as predictive variables. The model was
used to construct a simple tree, which is easily interpretable and may be used by
clinicians to diagnose breast cancer (See Figure 4.3).

Finally, the study identified the median survival time for breast cancer patients
to be 3472 days. Further analysis using probability distributions commend us-
ing log-logistic distribution to build a model to predict survival probability for
breast cancer patients with FIGF, SDPR, PAMR1, SCN4B, DMD and ITIH5 as
prognostic factors. The survival model further revealed that breast cancer pa-
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tients will have an increased risk to the event but after 3243.38 days, their risk to
the event may gradually reduce.

In the future, we intend to create a gene-gene interaction network to discover
functional relationships that exist between identified genes at the systems level.
Lastly, we intend to use random survival forest to build a model to uncover in-
terrelationship which exists between predictive variables and prognostic factors
of breast cancer (Ishwaran et al., 2008).
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