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Abstract

The advent of the synthesis or manufacturing of controlled structures on sub-
micron scales as well as experimental developments enabling the investigation
of physics in speci�c biological systems at extremely small length scales under-
lines the need for dealing with the statistical physics of small systems which
are geometrically con�ned. A typical example of a system for which physi-
cal questions can be answered by means of theoretical modelling is the virus,
where polymer genetic material is encapsulated in a protein shell.

In this project the role of con�nement on polymer chains will be inves-
tigated. We investigate how the translocation of polymer from one region to
another through a small opening depends on various electrolytic, polymer con-
centration and wall interaction conditions. This is an extension of the simple,
purely entropic, picture in that the interaction terms enter the picture. We
employ a variational scheme in deriving our results.
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Opsomming

Sowel die moontlikheid van beheerbare sintese of vervaardiging van strukture
op sub-mikrometer lengteskale asook die koms van eksperimentele metodes
vir die ondersoek van biologiese stelsels op baie klein lengteskale onderstreep
hoe nodig dit is om die statiestiese �sika van klein stelsels met geometriese
beperkings te verstaan. 'n Tipiese voorbeeld waar teoretiese metodes vir �siese
vrae aangewend word is 'n virus, waar die polimeriese genetiese materiaal in
'n proteïen skil beweeg.

In die huidge projek word die rol van 'n spesi�eke geometriese beperking op
polimeerkettings ondersoek. Ons ondersoek hoe die oorplasing van 'n polimeer
deur 'n klein opening van een gebied na die ander deur verskillende elektroli-
etiese, polimeer-konsentrasie en wandinteraksie eienskappe afhang. Dit is 'n
uitbreiding van die eenvoudige, volledig entropiese beeld vir oorplasing deur-
dat wisselwerkings ingesluit word. 'n Variasiebeginsel word aangewend om die
resultate af te lei.
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Chapter 1

Introduction

Polymer theory has become a well developed subject since when S. F. Edwards
formulated the problem of a self-avoiding polymer in a continous model of a
Hamiltonian with two terms (13). The �rst term giving a description of the
segments connectivity and the second being the repulsive pseudo potential
between segments. This model is a basis of theoretical polymer physics. It is
closely linked to the path integral formalism of Quantum Mechanics (19; 22).
Thus it enables the application of sophisticated techniques already developed
in high energy physics and condensed matter.

P.G. de Gennes took the subject further when he introduced scaling meth-
ods in analog to phase transitions. He showed that the self-avoiding polymer
problem is a critical phenomenon when the polymer length becomes in�nitely
long (7).

1.1 Polymer theory

1.1.1 The single phantom polymer

An ensemble of Brownian particles performing a random walk with steps of
�nite size l is equivalent to the ensemble of random chains (22). We mention
this remark to bring the notations and the formal mathematical representation
of polymers and their connection with the classical process of di�usion.

The probability density G(R(s),R(s′), s, s′) for a N step unrestricted ran-
dom walk is well known to satisfy the Fokker-Planck-Smoluchowski equation

∂sG(R(s),R(s′), s, s′)− l2

6
∇2G(R(s),R(s′), s, s′)

= δ(R(s)−R(s′))δ(s− s′) (1.1)

with the solution given by

G(R(s),R(s′), s, s′) = N exp

(
− 3

2l2
(R−R′)2

(s− s′)

)
. (1.2)

1
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CHAPTER 1. INTRODUCTION 2

Alternatively, this solution can be written in the path integral language using
the Feynman-Kac theorem (19) as

G(R(s),R(s′), s, s′) = N exp

{
− 3

2l

∫ s′

s

ds

(
∂R

∂s

)2
}

(1.3)

Our object of interest the free energy functional can then be derived from the
partition function

Z =

∫ Rf (L)

Ri(0)

DR(s) exp

{
− 3

2l

∫ L

0

ds

(
∂R

∂s

)2
}

(1.4)

where
∫ Rf (L)

Ri(0)
DR(s) denotes the summation over all possible paths of length L.

This expression is in the view of a polymer where L = Nl is the chain contour
length and l is the Kuhn length, the e�ective length accounting correlations
between chain segments. This corresponds to the phantom polymer since two
segments can occupy a single point in space which is an unphysical scenario.
However it serves as a good model for chains in certain solvent conditions.
Formally

βH0 =
3

2l

∫ L

0

ds

(
∂R

∂s

)2

(1.5)

can be taken to represent the Hamiltonian for the phantom chain.

1.1.2 The self-avoiding polymer

In the preceeding section we have described random polymers by their coun-
terpart of free Brownian motion. However, polymers should be at the very
least be described by self-avoiding random walks. This constraint of self-
avoidance ensures that the trajectories do not cross themselves. Accounting
for self-avoidance requires a modi�cation of the Hamiltonian H0 by including
an appropriate potential

∫ L
0

∫ L
0
ds ds′ V (R(s)−R(s′)). The choice of a two-

body interaction potential as opposed to higher order interaction is due to the
physics of these systems. The scenario whereby the segment density is very
high such that three segments get close enough to interact is infrequent. This
potential must always be repulsive when two segments of the chain come to
close contact. It has been realized that (13)∫ L

0

∫ L

0

ds ds′ V (R(s)−R(s′)) =
v

2

∫ L

0

∫ L

0

ds ds′ δ(R(s)−R(s′)) (1.6)
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CHAPTER 1. INTRODUCTION 3

is a good approximation for this type of interaction. Including this term in
the Halmitonian the partition function for a single self-avoiding polymer is

Z =

∫ Rf (L)

Ri(0)

DR(s) exp

{
− 3

2l

∫ L

0

ds

(
∂R

∂s

)2

− v

2

∫ L

0

∫ L

0

ds ds′ δ(R(s)−R(s′))

}
(1.7)

where we have set β = 1. This innocent expression turns out to be di�cult
to evaluate and �eld theory methods have to be invoked in order to make
progress. Without going to great detail we highlight some aspects of the recipe
employed (13; 8).

The Hubbard-Stratonovich transformation (21; 8)

exp

(
v

2

∫ L

0

∫ L

0

ds ds′ δ(R(s)−R(s′))

)
=

∫
Dφ exp

{
−i
l

∫ L

0

ds φ[R(s)]− v

2

∫
dr φ(r)φ(r)

}
(1.8)

is applied such that the partition function becomes

Z =

∫
Dφ
∫
DR(s) exp

{
− 3

2l

∫ L

0

ds

(
∂R

∂s

)2

− i

l

∫ L

0

ds φ[R(s)]− v

2

∫
dr φ(r)φ(r)

}
.

(1.9)

De�ning

K(Ri,Rf ;φ, L) =

∫
DR(s) exp

{
− 3

2l

∫ L

0

ds

(
∂R

∂s

)2

− i

l

∫ L

0

ds φ[R(s)]

}
(1.10)

then this partition function can be written as

Z =

∫
DφK(Ri,Rf ;φ, L) exp

{
−v

2

∫
dr φ(r)φ(r)

}
. (1.11)

K(Ri,Rf ;φ, L) corresponds to the propagator of a particle in an imaginary
potential iφ. Therefore it must satisfy (22)[
∂

∂s
− l2

6
∇2 + iφ(R(s))

]
K(R(s),R(s′);φ, L) = δ(R(s)−R(s′))δ(s− s′).

(1.12)
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CHAPTER 1. INTRODUCTION 4

1.1.3 Collective system � melts and solutions

More often than not polymers exist as a collective thereby forming a polymer
solution in a presence of a solvent. Depending on the polymer segment density
ρ polymer solutions are usually classi�ed into three regimes, namely, dilute,
semidilute and concentrated polymer solutions. Dilute regime is de�ned by
ρ < ρ∗, for which ρ∗ is the overlap concentration. The overlap concentration
is reached when the average bulk density exceeds overlap density inside a
polymer coil (31). Since the polymer end-to-end distance R is approximated
by the scaling relation R ∼ lNν . The characteristic concentration ρ∗ can then
be estimated as

ρ∗ ≈ N

R3
= l−3N1−3ν . (1.13)

This shows that the overlap concentration decreases much more rapidly with
increasing chain length and even more so for self-avoiding(swollen) chain in
contrast to the �exible (ideal) chain since ν is larger. The crossover to the
concentrated regime occurs when the density reaches the local density ρ∗∗

inside a Gaussian blob, which is for good solvent conditions given by (31)

ρ∗∗ ' v

l6
(1.14)

where v is the second virial coe�cient. The semidilute regime falls into the
range ρ∗ < ρ < ρ∗∗.

In this collective many chain system excluded volume interactions are now
not only taking place within one single chain, but at an increasing number
of contact points from other chains, that is, increasing polymer concentration
gives rise to additional excluded volume. On the other hand, the correlations
within one chain become more and more destroyed (4). The partition function
is no longer dominated by all the self-avoiding paths but by the remaining
density �uctuations. It is thus useful to introduce collective variables (4; 43;
42), such as collective densities and construct free energy functionals which
contain the collective properties.

We shall now extend the formulation of the preceeding section to that of
dense monodisperse chain system. Taking into account the multiplicity of the
chains the partition function now becomes

Z[R] =

∫ Rf (L)

Ri(0)

n∏
α=1

DRα(s) exp

{
− 3

2l

∑
α

∫ L

0

ds

(
∂Rα

∂s

)2

− v

2

∑
α,β

∫ L

0

∫ L

0

ds ds′ δ(Rα(s)−Rβ(s′))

}
.

(1.15)

This partition function is di�cult to evaluate and approximation methods have
to be employed. This is done by transforming the problem from chain variables
to chains segment density variables also known as collective variables.
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CHAPTER 1. INTRODUCTION 5

1.1.3.1 De�ning collective variables

As noted above it is now traditional to transform such a problem formulation
to microscopic density variables

ρ(r) =
n∑

α=1

∫ L

0

ds δ(r−Rα(s)).

(1.16)

It is convenient to work with the Fourier transform counterpart ρk. This we
de�ne from

ρ(r) =
∑
α=1

∫ L

0

ds

∫
dk e−ik·(r−Rα(s))

(1.17)

where we have substituted the Fourier representation of the delta function to
the last expression (1.16). Switching between continuous and discrete repre-
sentation under the rule

∫
dk→ 1

V

∑
k leads to

ρ(r) =
∑
α=1

∫ L

0

ds
1

V

∑
k

e−ik·(r−Rα(s))

ρ(r) =
∑

k

∑
α=1

1

V

∫ L

0

ds eik·Rα(s) e−ik·r

(1.18)

of which the �nal result is

ρ(r) =
∑

k

ρke
−ik·r

ρk ≡
∑
α=1

1

V

∫ L

0

ds eik·Rα(s).

(1.19)

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 6

1.1.3.2 Transformation of the partition function

Our principal goal is to evaluate or at least approximate the generating func-
tion Z and as such we want to perform the following transformation

Z[R] 7→ Z[ρ(r)] = Z[ρk]. (1.20)

The intent of transforming to the reciprocal space k is because of the notation
and the bene�ts of Fourier methods. This we achieve by performing a passive
transformation

Z[ρk] = Z[R]

∫ ∏
k

dρkδ

(
ρk −

∑
α=1

1

V

∫ L

0

ds eik·Rα(s)

)
︸ ︷︷ ︸

=1

(1.21)

which e�ectively transforms the partition function to density variables. Re-
minding ourselves that

Z[R] =

∫ Rf (L)

Ri(0)

n∏
α=1

DRα(s) exp

{
− 3

2l

∑
α

∫ L

0

ds

(
∂Rα

∂s

)2

− v

2

∑
α,β

∫ L

0

∫ L

0

ds ds′ δ(Rα(s)−Rβ(s′))

}
. (1.22)

According to equations (1.16)�(1.19) the interaction component of the Hamil-
tonian is transformed to the density variables as follows

v

2

∑
α,β

∫ L

0

∫ L

0

ds ds′ δ(Rα(s)−Rβ(s′))

=
v

2

∑
α,β

∫ L

0

∫ L

0

ds ds′

(
1

V

∑
k

e−ik·(Rα(s)−Rβ(s′))

)

=
v

2

∑
k

(∑
α

1

V

∫ L

0

ds ei(−k)Rα(s)

)(∑
β

∫ L

0

ds′ eik·Rβ(s′)

)

=
v

2
V
∑

k

(∑
α

1

V

∫ L

0

ds ei(−k)Rα(s)

)(∑
β

1

V

∫ L

0

ds′ eik·Rβ(s′)

)
.

(1.23)

Thus the transformed interaction potential is

v

2

∑
α,β

∫ L

0

∫ L

0

ds ds′ δ(Rα(s)−Rβ(s′)) =
v

2
V
∑

k

ρ-kρk.

(1.24)
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CHAPTER 1. INTRODUCTION 7

As we shall see later that the recipe that we are following expresses quantities
in terms of averages over the Gaussian distribution∫ Rf (L)

Ri(0)

n∏
α=1

DRα(s) exp

{
− 3

2l

∑
α

∫ L

0

ds

(
∂Rα

∂s

)2
}
.

(1.25)

We now turn our attention to transform the delta functional in (1.21) to a
more useful form (43)

δ

(
ρk −

∑
α=1

1

V

∫ L

0

ds eik·Rα(s)

)

=

∫ ∏
k

dφk exp

{
i
∑

k

φk

(
ρ-k −

∑
α=1

1

V

∫ L

0

ds eik·Rα(s)

)}

=

∫ ∏
k

dφk exp

{
i
∑

k

φkρ-k −
i

V

∑
k

φk

∑
α=1

∫ L

0

ds eik·Rα(s)

}
(1.26)

taking a quadratic order approximation we have

δ

(
ρk −

∑
α=1

1

V

∫ L

0

ds eik·Rα(s)

)

'
∫ ∏

k

dφk

[
1− i

V

∑
k

φk

∑
α=1

∫ L

0

ds eik·Rα(s)

+
1

2

(
i

V

∑
k

φk

∑
α=1

∫ L

0

ds e−ik·Rα(s)

)2
 exp

{
i
∑

k

φkρ-k

}

=

∫ ∏
k

dφk

[
1− i

V

∑
k

φk

∑
α=1

∫ L

0

ds eik·Rα(s)

− 1

2V 2

∑
k,k′

α,β

φkφk′

∫ L

0

ds

∫ L

0

ds′ eik·Rα(s)+ik′·Rβ(s′)

 exp

{
i
∑

k

φkρ-k

}
.

(1.27)
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CHAPTER 1. INTRODUCTION 8

With this crucial result the partition function can be expressed as

Z[R]

∫ ∏
k

dρkδ

(
ρk −

∑
α=1

1

V

∫ L

0

ds eik·Rα(s)

)

=

∫ ∏
k

dρk

∫ ∏
k

dφk exp

{
−v

2
V
∑

k

ρ-kρk + i
∑

k

φkρ-k

}
(∫ ∏

α

DRα exp

{
− 3

2l

∑
α

∫ L

0

ds

(
∂Rα

∂s

)2
}

−
∫ ∏

α

DRα

[
i

V

∑
k,α

φk

∫ L

0

ds eik·Rα(s)

]

exp

{
− 3

2l

∑
α

∫ L

0

ds

(
∂Rα

∂s

)2
}

−
∫ ∏

α

DRα

 1

2V 2

∑
k,k′

α,β

φkφk′

∫ L

0

ds

∫ L

0

ds′ eik·Rα(s)+ik′·Rβ(s′)


exp

{
− 3

2l

∑
α

∫ L

0

ds

(
∂Rα

∂s

)2
})

(1.28)

= N
∫ ∏

k

dρk

∫ ∏
k

dφk

[
1− i

V

∑
k,α

φk

∫ L

0

ds
〈
eik·Rα(s)

〉
0

− 1

2V 2

∑
k,k′

α,β

φkφk′

∫ L

0

ds

∫ L

0

ds′
〈
eik·Rα(s)+ik′·Rβ(s′)

〉
0


exp

{
−v

2
V
∑

k

ρ-kρk + i
∑

k

φkρ-k

}
.

(1.29)

The angular brackets denotes averaging as follows

〈. . .〉0 ≡

∫ ∏
αDRα [. . .] exp

{
− 3

2l

∑
α

∫ L
0
ds
(
∂Rα

∂s

)2
}

∫ ∏
αDRα exp

{
− 3

2l

∑
α

∫ L
0
ds
(
∂Rα

∂s

)2
}

(1.30)

where N is the Gaussian distribution function given by equation (1.25).
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CHAPTER 1. INTRODUCTION 9

Perhaps it is well suited to evaluate N here. The evaluation follows from
the standard result (19) in path integral methods, namely∫ R,s

R,s0

DR(s)e
− 1

4D

∫ s
s0
dsṘ2(s)

=
1√

4πD(s− s0)
e
− (R−R0)2

4D(s−s0) . (1.31)

It then follows from this result that∫ ∏
α

DRα exp

{
− 3

2l

∑
α

∫ L

0

ds

(
∂Rα

∂s

)2
}

=

 1√
2
3
πlL

3n

exp

{
− 3

2lL

∑
α

(Rα(L)−Rα(0))2

}
. (1.32)

The next step to complete the evaluation of the generating function Z is
then to perfom the sums I1 and I2, which we de�ne below, in order to integrate
out the ρ and φ variables. This is done by rewriting R in terms of the centre
of mass coordinates R0.

I1 ≡
i

V

∑
k,α

φk

∫ L

0

ds
〈
eik·Rα(s)

〉
0

(1.33)

and

I2 ≡
1

2V 2

∑
k,k′

α,β

φkφk′

∫ L

0

ds

∫ L

0

ds′
〈
eik·Rα(s)+ik′·Rβ(s′)

〉
0
.

(1.34)

As for I1 in these new relative coordinates we have

I1 =
i

V

∑
k,α

φk

∫ L

0

ds
〈
eik(R0+Yα(s))

〉
0

(1.35)

which is equivalent to

i

V

∑
k,α

φk

∫ L

0

ds

∫
dR0

∫ ∏
αDYαe

ik(R0+Yα(s)) exp
{
− 3

2l

∑
α

∫ L
0
ds
(
∂Yα

∂s

)2
}

∫
dR0

∫ ∏
αDYα exp

{
− 3

2l

∑
α

∫ L
0
ds
(
∂Yα

∂s

)2
}
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=
i

V

∑
k,α

φk

∫ L

0
ds

∫
dR0e

ik·R0
∫ ∏

αDYαe
ik·Yα(s) exp

{
− 3

2l

∑
α

∫ L
0 ds

(
∂Yα
∂s

)2}
∫
dR0

∫ ∏
αDYα exp

{
− 3

2l

∑
α

∫ L
0 ds

(
∂Yα
∂s

)2}

=
i

V

∑
k,α

φk

∫ L

0
ds

δ(k)
∫ ∏

αDYαe
ik·Yα(s) exp

{
− 3

2l

∑
α

∫ L
0 ds

(
∂Yα
∂s

)2}
∫
dR0

∫ ∏
αDYα exp

{
− 3

2l

∑
α

∫ L
0 ds

(
∂Yα
∂s

)2}

=
i

V

∑
α

φ0

∫ L

0
ds

∫ ∏
αDYα exp

{
− 3

2l

∑
α

∫ L
0 ds

(
∂Yα
∂s

)2}
∫
dR0

∫ ∏
αDYα exp

{
− 3

2l

∑
α

∫ L
0 ds

(
∂Yα
∂s

)2}
=

i
V

∑
α φ0

∫ L
0 ds∫

dR0

I1 =
i

V

nLφ0

V
.

(1.36)

Then as for I2 we have

I2 =
1

2V 2

∑
k,k′

α,β

φkφk′

∫ L

0

ds

∫ L

0

ds′
〈
eik(R0+Yα(s))+ik′(R0+Yβ(s′))

〉
0

(1.37)

which we split into two sums one for α = β and the other for α 6= β, that is,

1

2V 2

∑
k,k′
α

φkφk′

∫ L

0

ds

∫ L

0

ds′
〈
eik(R0+Yα(s))+ik′(R0+Yα(s′))

〉
0

+
1

2V 2

∑
k,k′

α6=β

φkφk′

∫ L

0

ds

∫ L

0

ds′
〈
eik(R0,α+Yα(s))+ik′(R0,β+Yβ(s′))

〉
0

(1.38)
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The �rst sum

1

2V 2

∑
k,k′
α

φkφk′

∫ L

0

ds

∫ L

0

ds′
〈
eik(R0+Yα(s))+ik′(R0+Yα(s′))

〉
0

=
1

2V 2

∑
k,k′
α

φkφk′

∫ L

0

ds

∫ L

0

ds′
〈
ei(k+k′)R0eik·Yα(s)+ik′·Yα(s′)

〉
0

=
1

2V 2

∑
k,k′
α

φkφk′

∫ L

0

ds

∫ L

0

ds′

×
δ(k + k′)

∫ ∏
αDYαe

ik·Yα(s)+ik′·Yα(s′) exp
{
− 3

2l

∑
α

∫ L
0
ds
(
∂Yα

∂s

)2
}

∫
dR0

∫ ∏
αDYα exp

{
− 3

2l

∑
α

∫ L
0
ds
(
∂Yα

∂s

)2
}

=
1

2V 2

∑
k
α

φkφ-k

∫ L

0

ds

∫ L

0

ds′

×

 ∫ ∏αDYαe
ik(Yα(s)−Yα(s′)) exp

{
− 3

2l

∑
α

∫ L
0
ds
(
∂Yα

∂s

)2
}

∫
dR0

∫ ∏
αDYα exp

{
− 3

2l

∑
α

∫ L
0
ds
(
∂Yα

∂s

)2
}

 .
(1.39)

If we split the expression inside the parantheses such that it can be expressed
in manner as follows

〈K(0, s)〉0 〈K(s′, s)〉0 〈K(s, L)〉0 (1.40)

then the last line then simpli�es to

=
1

2V 2

∑
k
α

φkφ-k

∫ L

0
ds

∫ L

0
ds′

×

∫
DYα exp

{
− 3

2l

∫ s
s′ dσ

(
∂Yα
∂σ

)2
+ ik (Yα(s)−Yα(s

′))
}

∫
dR0

∫
DYα exp

{
− 3

2l

∫ s
s′ dσ

(
∂Yα
∂σ

)2}

=
1

2V 2

∑
k
α

φkφ-k

∫ L

0
ds

∫ L

0
ds′

∫
DYα exp

{
− 3

2l

∫ s
s′ dσ

[(
∂Yα
∂σ

)2 − i2l
3 k
(
∂Yα
∂σ

)]}
∫
dR0

∫
DYα exp

{
− 3

2l

∫ s
s′ dσ

(
∂Yα
∂σ

)2}

=
1

2V 2

∑
k
α

φkφ-k

∫ L

0
ds

∫ L

0
ds′

∫
DYα exp

{
− 3

2l

∫ s
s′ dσ

[(
Ẏα − i l3k

)2
+ l2

9 k
2

]}
∫
dR0

∫
DYα exp

{
− 3

2l

∫ s
s′ dσẎ

2
α

} .

(1.41)
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Performing a transformation

Xα = Yα − i
l

3
kσ

Ẋα = Ẏα − i
l

3
k (1.42)

thereby leading to

1

2V 2

∑
k
α

φkφ-k

∫ L

0

ds

∫ L

0

ds′

∫
DXα exp

{
− 3

2l

∫ s
s′
dσ
[
Ẋ2
α + l2

9
k2
]}

∫
dR0

∫
DYα exp

{
− 3

2l

∫ s
s′
dσẎ2

α

}
=

1

2V 3

∑
k
α

φkφ-k

∫ L

0

ds

∫ L

0

ds′ e−
l
6
k2|s−s′|

≈ n

2V 3

∑
k

φkφ-k

[
L2

1 + k2Ll
12

]
. (1.43)

The �nal step comes from the approximation which reduces the double integral
to ∫ L

0

ds

∫ L

0

ds′ e−
l
6
k2|s−s′| ' L2

1 + k2Ll
12

(1.44)

the details of which are given in appendix A. Then the second sum is evaluated
to

1

2V 2

∑
k,k′

α6=β

φkφk′

∫ L

0

ds

∫ L

0

ds′
〈
eik(R0,α+Yα(s))+ik′(R0,β+Yβ(s′))

〉
0

=
1

2V 2

∑
k
α

φk

∫ L

0

ds
〈
eik(R0,α+Yα(s))

〉
0

∑
k′
β

φk′

∫ L

0

ds′
〈
eik
′(R0,β+Yβ(s′))

〉
0

=
n2 − n

2V 2

(
Lφ0

V

)2

(1.45)

which leads to the conclusion

I2 =
1

2V 2

(
nLφ0

V

)2

+
n

2V 3

∑
k

φkφ-k

[
L2

1 + k2Ll
12

]
(1.46)

where we approximated n2− n ' n2 at large n limit. Combining these results
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the generating function (1.28) becomes

Z[ρk]

= N
∫ ∏

k

dρk

∫ ∏
k

dφk

[
1− i

V

(
nφ0L

V

)
− 1

2V 2

(
nφ0L

V

)2

− 1

2V 3

∑
k
α

φkφ-k

[
L2

1 + k2Ll
12

] exp

{
−v

2
V
∑

k

ρ-kρk + i
∑

k

φkρ-k

}

= N
∫ ∏

k

dρk

∫ ∏
k

dφk

[
− i

V

(
nφ0L

V

)
− 1

2V 2

(
nφ0L

V

)2
]

× exp

−v2V
∑

k

ρ-kρk −
1

2

∑
k

[(
nL2

V 3

(
1

1 + k2Ll
12

))
φ-kφk − iρ-kφk

]
(1.47)

where k 6= 0. If we now de�ne the bare structure function as

S0(k) =
nL2

V

(
1

1 + k2Ll
12

)
(1.48)

we can then express the generating function as

Z[ρk]

= C
∫ ∏

k

dρk

∫ ∏
k

dφk

× exp

−v2V
∑

k

|ρk|2 −
1

2

∑
k

[
1

V 2
S0(k)|φk|2 − iρ-kφk

]
= C

∫ ∏
k

dρk exp

{
−v

2
V
∑

k

ρ-kρk

}

×
∫ ∏

k

dφk exp

−1

2

∑
k

[
1

V 2
S0(k)φ-kφk − i (ρ-kφk + ρkφ-k)

]
(1.49)

where symmetry has been employed in the last line. We are then now in a
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position to complete the square and perform the φk integral, that is,

Z[ρk]

= C
∫ ∏

k

dρk exp

{
−v

2
V
∑

k

ρ-kρk

}∫ ∏
k

dφk

× exp

−1

2

∑
k

[(
φk − i

V 2

S0(k)
ρk

)∗
S0(k)

V 2

(
φk − i

V 2

S0(k)
ρk

)
+ V 2 ρ-kρk

S0(k)

]
(1.50)

= C
∫ ∏

k

dρk exp

{
−V

2

2

∑
k

[
v

V
+

1

S0(k)

]
ρ-kρk

}∫ ∏
k

dφk

× exp

−1

2

∑
k

[(
φk − i

V 2

S0(k)
ρk

)∗
S0(k)

V 2

(
φk − i

V 2

S0(k)
ρk

)
+ V 2 ρ-kρk

S0(k)

]
(1.51)

= C
∫ ∏

k

dρk exp

{
−V

2

2

∑
k

[
v

V
+

1

S0(k)

]
ρ-kρk

}

×
∫ ∏

k

dφ̃k exp

− 1

2V 2

∑
k

S0(k)φ̃-kφ̃k


(1.52)

= C ′
∫ ∏

k

dρk exp

{
−V

2

2

∑
k

[
v

V
+

1

S0(k)

]
ρ-kρk

}
Z[ρk] = C ′′ 1√

det
(
v
V

+ 1
S0(k)

)
(1.53)

where C ′ and C ′′ contains the in�nite prefactors and factors we are not inter-
ested in from the evaluation of the integrals. We have used the identity∫

RN

dy exp

{
−1

2
yTAy

}
=

√
2π

N√
det(A)

, (1.54)

further upon (1.53) we apply the identity

det B = expTr ln B (1.55)

and �nally obtain

F ' F0 +
kBT

2

∑
k

ln

(
v

V
+

1

S0(k)

)
. (1.56)
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1.1.3.3 The e�ective screened potential

The important result of the preceeding calculation is the description of the
screening phenomenon of the interactions on a single chain that takes place in
the system of su�ciently many chains. This result was �rst formally obtained
by Edwards (13). We shall outline its derivation here. This is done by rewriting
the interaction term such that we tag one of the chains with a label 1 and apply
the so called Random Phase Approximation again. Thus we have

v

2

n∑
α,β

∫ L

0

∫ L

0

ds ds′ δ(Rα(s)−Rβ(s′))

=
v

2

[
n−1∑
α,β

∫ L

0

∫ L

0

ds ds′ δ(Rα(s)−Rβ(s′)) +

∫ L

0

∫ L

0

ds ds′ δ(R1(s)−R1(s′))

+
n−1∑
α

∫ L

0

∫ L

0

ds ds′ δ(R1(s)−Rα(s′))

]
(1.57)

employing the transformation as before in (1.16) and (1.19) results in

Z[ρk] ∼∫ ∏
k

dρk exp

[
−V

2

2

∑
k

(
v

V
+

1

S0(k)

)
ρ-kρk −

v

2

∑
k

ρk

∫ L

0

dse−ik·R1(s)

−v
2

∫ L

0

∫ L

0

ds ds′ δ(R1(s)−R1(s′))

]
(1.58)

employing symmetry we have

−V
2

2

∑
k

(
v

V
+

1

S0(k)

)
ρ-kρk −

v

2

∑
k

ρk

∫ L

0

dse−ik·R1(s)

= −V
2

2

∑
k

(
v

V
+

1

S0(k)

)
ρ-kρk

−v
4

(∑
k

ρk

∫ L

0

dse−ik·R1(s) + ρ-k

∫ L

0

dseik·R1(s)

)
(1.59)
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enabling us to completing a square for the �rst two terms which then become
equivalent to

= −V
2

2

∑
k

[(
v

V
+

1

S0(k)

)1/2

ρk −
v

2

((
v

V
+

1

S0(k)

)−1/2 ∫ L

0

dse−ik·R1(s)

)]

×

[(
v

V
+

1

S0(k)

)1/2

ρk −
v

2

((
v

V
+

1

S0(k)

)−1/2 ∫ L

0

dseik·R1(s)

)]∗

+
∑

k

V 2v2

8

(
v

V
+

1

S0(k)

)−1 ∫ L

0

ds ds′ eik·(R1(s)−R1(s′)).

(1.60)

Therefore, the �rst two terms are reduced to

−V
2

2

∑
k

(
v

V
+

1

S0(k)

)
ρ-kρk −

v

2

∑
k

ρk

∫ L

0

dse−ik·R1(s)

= −V
2

2

∑
k

ρ̃-kρ̃k +
∑

k

[
V 2v2

8

(
v

V
+

1

S0(k)

)−1
]∫ L

0

ds ds′ eik·(R1(s)−R1(s′)).

(1.61)

This shows that the interactions within the single chain are no longer

∑
k

v

2

∫ L

0

ds ds′ eik·(R1(s)−R1(s′)) (1.62)

but they become reduced or screened to

∑
k

[
v

2
− V 2v2

8

(
v

V
+

1

S0(k)

)−1
]∫ L

0

ds ds′ eik·(R1(s)−R1(s′)) (1.63)

due to the presence of other chains in a melt. Substituting for S0(k) as given
in (1.48) we have the approximation

∆ (R1(s)−R1(s′)) =
∑

k

[
v

2
− v2V 2/8

v
V

+ k2l2

12ρ

]∫ L

0

ds ds′ eik·(R1(s)−R1(s′))

∆ (R1(s)−R1(s′)) =
∑

k

[
v

2
− v2V 2/8

l2

12ρ
(k2 + ξ−2)

]∫ L

0

ds ds′ eik·(R1(s)−R1(s′))

(1.64)
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where we have set the L dependent term to zero and de�ned ρ = nL/V . If we
transform this result back to real space variables we have

∆ =
v

2

∫ L

0

ds ds′ δ(R1(s)−R1(s′))

−v
2

8

(
12ρV 2

l2

)(
V

(2π)3

)∫ L

0

ds ds′
∫
dk
eik·(R1(s)−R1(s′))

k2 + ξ−2
.

(1.65)

The Fourier transformation relationship (44).∫
dr

e−|R(s)−R(s′)|/ξ

|R(s)−R(s′)|
eik·(R(s)−R(s′)) =

4π

k2 + ξ−2
(1.66)

allows us to �nally obtain,

∆ =
v

2

∫ L

0

ds ds′ δ(R1(s)−R1(s′))

−v
2

8

(
12ρ

l2

)∫ L

0

ds

∫ L

0

ds′
e−|R1(s)−R1(s′)|/ξ

|R1(s)−R1(s′)|
(1.67)

where ξ = ξ(ρ−1/2) is the Edwards screening length which determines the
length scale or concentration at which the interactions are important. Beyond
this length the chain can progressively be treated as a Gaussian chain.

1.1.4 Adsorption

Generally, polymers exist in con�ning environments of one form or the other.
These environments can be membranes, for example, which can interact with
the chain in a variety of ways. In the context of this thesis we shall be interested
in adsorption type of interaction in conjunction with polymer translocation
under constriction. Under certain physical conditions, polymers can adsorb
spontaneously from solution onto a con�ning surface if the interaction between
the polymer and the surface is more favourable than that of a solvent with the
surface. In equilibrium, adsorption increases the concentration of the polymers
near the surface. The knowledge of conformational states of the polymer at
the surface and the polymer monomer density pro�le near the surface enables
the evaluation of physical quantities such as the surface tension (39).

In the literature various models have been reported for equilibrium ad-
sorption. In these models e�ects of either the nature (liquid or solid) or the
geometry of the interface are studied. These are coupled to the nature of the
interactions whether they are short or long ranged interactions.
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In cases of weak adsorption �uctuations of monomer concentration are of
central importance (31). It has been shown (7) that the thickness t of the
adsorbed polymer layer is characterized by a divergent power law

t ∼ (T − Tc)−1

However, in the cases of strong adsorption and long ranged attractive surface
potentials mean �eld theory (30) su�ces in describing adsorption behavior.

An interesting example of adsorption is that of a polyelectrolyte chain
con�ned into a vesicle. This study well illustrates the physics of adsorption
phenomena. When the pH of the solution in the vesicle is altered the vesicle
undergoes rupture (41).

1.1.5 Translocation

As mentioned earlier, our study will evolve around translocation upon con-
striction. We shall brie�y review here the background of our study we �nd
relevant. Starting with the de�nition. Polymer translocation is a stochastic
process whereby a chain threads through a pore with a size comparable to
the segment of the chain crossing from one side of a membrane under the free
energy barrier determined by the con�guration partition function (38).

Due to various potential technological applications such as rapid DNA se-
quencing, gene therapy and controlled drug delivery, polymer translocation
has received considerable experimental and theoretical interest in the last
decade (38).

The research e�orts have increasingly been investigating quantitatively the
force driving translocation on physical grounds. Amongst the investigated
driving mechanisms is the e�ect of asymmetry in the solution concentrations on
both sides of the membrane (3), and selective adsorption of the membrane (38)
and the Brownian ratchet mechanism (37).

The theoretical treatment normally reduces this problem to a one dimen-
sional di�usion process. The translocation coordinate s is considered the only
relevant dynamical variable. The central di�culty is to �nd an appropriate
expression for the probability current that correctly re�ects the correlated mo-
tion of the whole polymer (25). A simpli�ed model is usually adopted upon
the assumption that the polymer progression is slow compared to the equili-
bration period for both polymer strands on both sides of the membrane. Thus
the force acting on the translocating segment is taken to be only due to the free
energy F (s) barrier of an entropic nature. The dynamics of the translocation
coordinate s then follows standard Brownian motion. The Smoluchowski (34)
equation can be used with the free energy F (s) playing the role of an external
potential.

Under the above mentioned assumption the average passage time τ is found
to scale as τ ∼ l2N2

D
where l is the Kuhn length and D is the di�usion con-

stant (6). There is controversy around the di�usion constant D. Sung and
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Park (38) chose D ∝ N−1 in analogy to reptation dynamics of a Rouse chain,
thus yielding τ ∝ N3 whilst Muthukumar (29) argued that D is not the di�u-
sion coe�cient for the whole chain but rather that of the individual segment
threading through the pore thus D 6= D(N). On the other hand the equilibra-
tion time scales as τ ∝ N2ν+1 (6) where ν is the Flory exponent. This then
raises questions on the foundation of the entire approach since the equilibra-
tion time in this picture is larger than the translocation time. On the basis
of these inconsistencies Metzler and coworker then suggested that anomalous
di�usion should be a more suitable description (24). Sakaue (40) took another
approach and formulated the problem in the framework of tension propagation
dynamics (40; 20).

1.2 Thesis organization

In Chapter 2 we shall study the translocation of a single polymer con�ned to
a semi-in�nite space. We �rst start by a very simpli�ed picture of a phantom
polymer to outline the program we will be applying. We model this process
by applying the method of images (5) in order to compute the force driving
the translocation. Thereafter we introduce the short range interactions of
excluded volume type between the polymer segments. In the study of this
translocation scenario we introduce a variational calculation to compute the
renormalized Kuhn length (17) which we shall further employ in the rest of
the chapters. E�ectively our scheme is to compute the renormalized Kuhn
length of the polymer such that the polymer is viewed as a Markov chain in
order to follow the same method as in the phantom polymer to compute the
driving force. We apply the afore mentioned methods to a scenario of a charged
polymer chain under various solvent conditions. These electrolyte conditions
are chosen to be dissimilar on the either side of the wall. We have derived the
translocation force under various of these solvent conditions. This force we
used to determined how far would the chain thread to a zero force.

In contrast to the hardwall con�nement in Chapter 5 we model a scenario
whereby one of the walls has an attractive long range potential. We limit the
wall interactions to be such that the polymer on the other half of the partition
does not interact with the strand on the other side of the wall. We similarly
determine how far does the translocation progress under various regimes.

Finally we present the summary of the results and highlight the possible
further investigations that we would like to undertake for this long standing
problem.
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Chapter 2

Phantom chain under hard wall

con�nement

In this section we shall formulate the ideas that we shall be using later for
non-phantom chain models we are interested in. Here we describe the phan-
tom chain model of contour length L translocating through a pore under wall
con�nement by studying the statistical force f on the segment at the transition
point. This force is a function of the free energy F of the chain.

We shall account for electrolytic conditions by using the method of e�ective
step length developed by Edwards and Singh (17). That is the polymer chain
is modelled by a Gaussian chain of a renormalized Kuhn length. This e�ective
step length is computed by variational methods. In this chapter we shall not
formulate this variational scheme but assume the validity of the approach. We
will demonstrate how the role of the e�ective step length a�ects the free energy
of the chain.

2.1 The free energy

We shall simplify our model by assuming that part of the chain, with contour
length L−, has already threaded to the left side (cis-side) of the con�ning wall
thereby we shall not consider the initial pore targeting process. The total free
energy F is given by the combination of the cis-side free energy F−(L−) and
the trans-side free energy F+(L+)

F = F−(L− L+) + F+(L+). (2.1)

The trans-side free energy F+ is given by the partition function Z+ through
the relationship

F+ = −kBT lnZ+ (2.2)

where Z+ is given by

Z+ =

∫
dr dr′ G+(r, r′;L+). (2.3)

20
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G+(r, r′;L+) is a probability distribution function satisfying (1.1). The solu-
tion for the uncon�ned chain is given by

G(r, r′;L+) =

(
3

2πN+l+

) 3
2

exp

(
− 3

2N+l2+
(r− r′)

)
. (2.4)

with the reminder that L = Nl. In this model, analogous to the free random
�ight, we can apply the method of images (5) to determine our probability dis-
tribution function G+(r, r′;L+) for the semi-in�nite space con�nement. That
is,

G+(r, r′;L+) = G(r, r′;L+)−G(r,−r′;L+). (2.5)

Setting the starting anchor vector point r′ to r′ = 〈0, 0, ε〉 near the wall. The
probability distribution function G+(r, r′;L+) is

G+(r, r′;L+)

= [Gz(z, ε;L+)−Gz(z,−ε;L+)]Gx(x, 0;L+)Gy(y, 0;L+)

=

(
3

2πN+l2+

)
e

(
− 3

2N+l
2
+

(x2+y2)

) [
e

(
− 3

2N+l
2
+

(z−ε)2

)
− e

(
− 3

2N+l
2
+

(z+ε)2

)]
.

(2.6)

This distribution function inserted in (2.5) then results in (2.3) becoming

Z+ =

(
3

2πN+l2+

)∫ +∞

−∞
dx

∫ +∞

−∞
dy exp

(
− 3

2N+l2+
(x2 + y2)

)
∫ ∞
ε

dz

[
exp

(
− 3

2N+l2+
(z − ε)2

)
− exp

(
− 3

2N+l2+
(z + ε)2

)]
Z+ =

√
πl2+N+

6
erf

( √
6ε√
N+l2+

)
(2.7)

or rather in terms of length we have

Z+ =

√
πl+L+

6
erf

( √
6ε√
l+L+

)
.

(2.8)

Therefore the free energy F+ of the trans-side follow as

F+ = −kBT ln

[√
πl+L+

6
erf

( √
6ε√
l+L+

)]
.

(2.9)
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2.2 E�ect of electrolytic conditions on the force

We shall account for electrolytic conditions by using the method of e�ective
step length developed by Edwards and Singh (17). That is the polymer chain
is modelled by Gaussian chain of a renormalized Kuhn length. The implicit
assumption we shall make is that the wall has no e�ect on the renormalized
step length. This might not be completely accurate.

The second law of thermodynamics (33)

F = U − TS (2.10)

where U , S and T are the internal energy, temperature and the entropy of the
system respectively allows us to calculate the statistical force f as

f = −∂F
∂L

. (2.11)

2.2.1 Similar electrolytic conditions

The partition function Z− of the cis-side is essentially similar in form to that
of the trans-side

Z− =

√
πl-(L− L+)

6
erf

( √
6ε√

(L− L+)l-

)
(2.12)

and thus the cis-side free energy

F− = −kBT ln

{√
πl-(L− L+)

6
erf

( √
6ε√

(L− L+)l-

)}
(2.13)

with the emphasis on the e�ective Kuhn length. The partition function of the
whole chain is given by the product of the generating function of the polymer
strand on the trans and cis-side, with the note that l- = l+ under similar
electrolytic conditions, is

Z =
πl+
6

√
L+(L− L+) erf

( √
6ε√
l+L+

)
erf

( √
6ε√

l+(L− L+)

)
.

(2.14)

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 2. PHANTOM CHAIN UNDER HARD WALL CONFINEMENT 23

Therefore the total free energy F follows from this generating function as

F = −kBT ln

{
πl+
6

√
L+(L− L+) erf

( √
6ε√
l+L+

)
erf

( √
6ε√

l+(L− L+)

)}

F = −kBT ln

[
πl+
6

√
L+(L− L+)

]
−kBT ln

[
erf

( √
6ε√
l+L+

)
erf

( √
6ε√

l+(L− L+)

)]
.

(2.15)

The driving force f follows from (2.11) and is given by

f =
kBT

2

{
L− 2L+

L+(L− L+)

}

+kBTε

√
6l+
π

 exp
{
− 6ε2

l+(L−L+)

}
(L− L+)3/2 erf

( √
6ε√

l+(L−L+)

) − exp
{
− 6ε2

l+L+

}
L

3/2
+ erf

( √
6ε√
l+L+

)
 .

(2.16)

The pro�le of such a force is shown below in Figure 2.1

20 40 60 80 100
L+

-2. ´ 10
-6

-1. ´ 10
-6

1. ´ 10
-6

2. ´ 10
-6

f

Figure 2.1: Force pro�le for the phantom chain where the Kuhn lengths are
set to 1 unit.

2.2.2 Di�erent electrolytic conditions

We shall now demonstrate in a simple pertubation of the e�ective step length
from the case of equivalent Kuhn lengths how the force pro�le changes due to
such a pertubation. This consequently demonstrates how the translocation is
biased. This is essentially the manner we shall be incorporating the e�ect of
solvent conditions on the translocation.
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We have seen above that the translocation force is zero when the chain
strands are of equivalent length on either side of the partition. We shall deter-
mine on this basis, f

(
L+ = L

2

)
= 0 when l+ = l-, what will be the new chain

length distribution on either side of the partition that achieves this. We shall
also derive the rates of translocation at least from the force pro�le gradients.
We let the new Kuhn lengths be de�ned by

l′+ = l+ + λ

l′
-

= l+ − λ (2.17)

and we want to determine the length L+ such that the translocation force is
equivalent to zero, that is,

f
(
L0

+ + αλ, l+ + λ, l+ − λ
)

= f

(
L

2
+ αλ, l+ + λ, l+ − λ

)
= 0 (2.18)

which reduces this to the problem of calculating α. Performing a Taylor ex-
pansion to the �rst order produces the constraint that determines α, namely

df
(
L
2

+ αλ, l+ + λ, l- − λ
)

dλ
= 0 (2.19)

where the function f (L+, l-, l+;L) is given by

f (L+, l-, l+;L)

=
kBT

2

{
L− 2L+

L+(L− L+)

}

+kBTε

√
6

π


√
l- exp

{
− 6ε2

l
-

(L−L+)

}
(L− L+)3/2 erf

( √
6ε√

l
-

(L−L+)

) −
√
l+ exp

{
− 6ε2

l+L+

}
L

3/2
+ erf

( √
6ε√
l+L+

)


(2.20)

The length distribution is then given by the α equivalent to

α

=

2Lε

(√
3πe

12ε2

l2L (l2L− 24ε2) erf
(

2
√

3ε
l
√
L

)
− 12l

√
Lε

)
l

(
6
√

3πεe
12ε2

l2L (8ε2 − l2L) erf
(

2
√

3ε
l
√
L

)
+ πl3L3/2e

24ε2

l2L erf
(

2
√

3ε
l
√
L

)2

+ 24l
√
Lε2
)

(2.21)

so that the zero force will be attained when the length distribution is

L+ = L/2 + αλ. (2.22)

An illustration for L = 100 is shown in Figure 2.2. The pro�le depicting
this translocation force for a di�erent Kuhn length is shown in Figure 2.3
This graphical result illustrates the bias on translocation due to the di�erence
in e�ective step length. Also from this pro�le we get insight on the rate of
translocation due to the bias.
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Figure 2.2: The variation of the length that corresponds to the zero force.

20 40 60 80 100

L+

-6. ´ 10-6

-4. ´ 10-6

-2. ´ 10-6

2. ´ 10-6

4. ´ 10-6

f

Figure 2.3: Force pro�le for the phantom chain where the Kuhn lengths for
are varied by 0.5 units each set to 1.5 and 0.5 units.
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Chapter 3

Self avoiding chain under hard

wall con�nement

In this chapter we shall further develop what we started with in the last section
of the previous chapter. We shall account for the chain interactions on the
e�ective Kuhn length such that we can treat the chain as a Markov chain.
This e�ective Kuhn length is derived by applying a variational method. We
shall model a chain in a good solvent translocating under similar geometric
con�nement introduced earlier to the cis-side with a theta solvent.

3.1 Formulation

The strategy we are following here was pioneered in (17; 15). We will largely
be borrowing from this work. We have mentioned in section (1.1.2) that the
probability distribution of the self-avoiding polymer, corresponding to good
solvent conditions, is of the form

G(R,R0;L) = exp

{
− 3

2l

∫ L

0

ds

(
∂R

∂s

)2

− v
∫ L

0

∫ L

0

ds ds′ δ(R(s)−R(s′))

}
.

(3.1)

We shall use this distribution to pursue a simpler alternative method to model
interacting polymer chains by introducing an e�ective step length l1 such that〈

[R(L)−R(0)]2
〉

= Ll1. (3.2)

26
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Hence the task is reduced to calculating this e�ective Kuhn length. The aver-
age square end-to-end distance of the chain on the trans-side is given by〈
[R(L)−R(0)]2

〉
=

1

N

∫ Rf (L)

Ri(0)

DR[R(L)−R(0)]2

exp

{
− 3

2l

∫ L

0

ds

(
∂R

∂s

)2

− v
∫ L

0

∫ L

0

ds ds′ δ(R(s)−R(s′))

}
(3.3)

where

N =

∫ Rf (L)

Ri(0)

DR exp

{
− 3

2l

∫ L

0

ds

(
∂R

∂s

)2

− v
∫ L

0

∫ L

0

ds ds′ δ(R(s)−R(s′))

}
.

(3.4)
Introducing the e�ective Kuhn length l1 as follows〈

[R(L)−R(0)]2
〉

=
1

N

∫ Rf (L)

Ri(0)
DR[R(L)−R(0)]2

exp

−
3

2l1

∫ L

0
ds

(
∂R

∂s

)2

︸ ︷︷ ︸
Ha

−

Hb︷ ︸︸ ︷[
3

2

(
1

l
−

1

l 1

)∫ L

0
ds

(
∂R

∂s

)2

+ v

∫ L

0

∫ L

0
ds ds′ δ(R(s)−R(s′))

]
(3.5)

and replacing e−Hb with its series representation

e−Hb = 1−Hb +
H2
b

2
+ . . . (3.6)

where we shall limit ourselves to �rst order approximation〈
[R(L)−R(0)]2

〉
≈

∫Rf

Ri
DR[R(L)−R(0)]2 e−Ha∫Rf

Ri
DR e−Ha

−

[∫Rf

Ri
DR[R(L)−R(0)]2 Hb e

−Ha
∫Rf

Ri
DR e−Ha

]
[∫Rf

Ri
DR e−Ha

]2

+

[∫Rf

Ri
DR[R(L)−R(0)]2 e−Ha

∫Rf

Ri
DR Hbe

−Ha
]

[∫Rf

Ri
DR e−Ha

]2

= Ll1 +O(Hb).

(3.7)
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We have used the approximation

1

1−Hb

' 1 +Hb +Hb
2 (3.8)

to obtain the result in (3.7). Now, in order for (3.2) to be ful�lled we have the
constraint O(Hb) must be equivalent to 0, that is,∫ Rf

Ri
DR[R(L)−R(0)]2 Hb e

−Ha
∫ Rf

Ri
DR e−Ha[∫ Rf

Ri
DR e−Ha

]2

=

∫ Rf

Ri
DR[R(L)−R(0)]2 e−Ha

∫ Rf

Ri
DR Hbe

−Ha[∫ Rf

Ri
DR e−Ha

]2 (3.9)

which e�ectively determines the e�ective step length l1. Splitting Hb to two
terms(see expression (3.5)) the �rst term integral on the left hand side of the
above expression is equivalent to∫ Rf

Ri
DR[R(L)−R(0)]2 H i

b e
−Ha

∫ Rf

Ri
DR e−Ha[∫ Rf

Ri
DR e−Ha

]2

=
3

2

(
1

l
− 1

l 1

) ∂

∂λ

∫
DR[R(L)−R(0)]2 exp

{
λ
∫ L

0
ds
(
∂R
∂s

)2
}

∫
DR exp

{
λ
∫ L

0
ds
(
∂R
∂s

)2
}

∣∣∣∣∣∣
λ=−3/2l1

+


∫
DR[R(L)−R(0)]2 exp

{
− 3

2l1

∫ L
0
ds
(
∂R
∂s

)2
}

[∫
DR exp

{
− 3

2l1

∫ L
0
ds
(
∂R
∂s

)2
}]2


×
∫
DR

[∫ L

0

ds

(
∂R

∂s

)2
]

exp

{
− 3

2l1

∫ L

0

ds

(
∂R

∂s

)2
}]

(3.10)

=
3

2

(
1

l
− 1

l 1

)
∂

∂λ

(
−3L

2λ

)∣∣∣∣
λ=3/2l1

+
〈
[R(L)−R(0)]2

〉
1

〈
3

2

(
1

l
− 1

l 1

)[∫ L

0

ds

(
∂R

∂s

)2
]〉

1

= Ll21

(
1

l
− 1

l 1

)
+
〈
R2
〉

1

〈
3

2

(
1

l
− 1

l 1

)∫ L

0

ds Ṙ2

〉
1

.

(3.11)

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 3. SELF AVOIDING CHAIN 29

The second term integral on the left hand side of (3.9) with the second term
of Hb, H

ii
b , is equivalent to∫ Rf

Ri
DR[R(L)−R(0)]2 H ii

b e
−Ha

∫ Rf

Ri
DR e−Ha[∫ Rf

Ri
DR e−Ha

]2

= v

∫ Rf

Ri

DR

[
R2

(∫ L

0

∫ L

0

ds ds′ δ(R(s)−R(s′))

)
exp

{
− 3

2l1

∫ L

0

ds Ṙ2

}]
×
∫ Rf

Ri

DR exp

{
− 3

2l1

∫ L

0

ds Ṙ2

}
=

v

(2π)3

∫ Rf

Ri

DRR2

∫ L

0

ds

∫ L

0

ds′
∫
dk

× exp

{
ik · (R(s)−R(s′))− 3

2l1

∫ L

0

ds Ṙ2

}
×
∫ Rf

Ri

DR exp

{
− 3

2l1

∫ L

0

ds Ṙ2

}
(3.12)

where we omitted the normalization factor from the second line. Applying
the same arguments as in (1.39) and (1.40) and transforming the k integral to
spherical coordinates∫

Ω

dk =

∫ π

0

∫ π

0

∫ ∞
−∞

k2 sin θ dθ dφ dk = 4π

∫ ∞
−∞

k2 dk (3.13)

we have (3.11) becoming

v

2π2

∫ L

0

ds

∫ L

0

ds′
∫ ∞
−∞

dk k2 e
k2l1|s−s

′|
6

[〈
R2
〉

1
− k2l21|s− s′|2

9

]
=

v

2π2

∫ L

0

ds

∫ L

0

ds′
∫ ∞
−∞

dk k2 e
k2l1|s−s

′|
6

〈
R2
〉

1

− vl21
18π2

∫ L

0

ds

∫ L

0

ds′
∫ ∞
−∞

dk k4 e
k2l1|s−s

′|
6 |s− s′|2.

(3.14)

Therefore, the left hand side of (3.9) is equivalent to

Ll21

(
1

l
− 1

l 1

)
+
〈
R2
〉

1

〈
3

2

(
1

l
− 1

l 1

)∫ L

0

ds Ṙ2

〉
1

+
v

2π2

∫ L

0

ds

∫ L

0

ds′
∫ ∞
−∞

dk k2 e
k2l1|s−s

′|
6

〈
R2
〉

1

− vl21
18π2

∫ L

0

ds

∫ L

0

ds′
∫ ∞
−∞

dk k4 e
k2l1|s−s

′|
6 |s− s′|2. (3.15)
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Similarly, we evaluate the right hand side of (3.9)∫ Rf

Ri
DR[R(L)−R(0)]2 e−Ha

∫ Rf

Ri
DR Hbe

−Ha[∫ Rf

Ri
DR e−Ha

]2

=
〈
R2
〉

1

[〈
3

2

(
1

l
− 1

l 1

)∫ L

0

ds Ṙ2

〉
1

+
v

(2π)3

∫ L

0

ds

∫ L

0

ds′
∫
dk
〈
eik·(R(s)−R(s′))

〉
1

]
=

〈
R2
〉

1

〈
3

2

(
1

l
− 1

l 1

)∫ L

0

ds Ṙ2

〉
1

+
v

2π2

∫ L

0

ds

∫ L

0

ds′
∫ ∞
−∞

dk k2 e−
k2l1|s−s

′|
6

〈
R2
〉

1
.

(3.16)

Equating between (3.14) and (3.15) results in the cancellation of similar terms
and leaves us with

Ll21

(
1

l
− 1

l1

)
=

vl21
18π2

∫ L

0

ds

∫ L

0

ds′
∫ ∞
−∞

dk k4 e−
k2l1|s−s

′|
6 |s− s′|2

Ll21

(
1

l
− 1

l1

)
= 2v

√
6

π3

√
L3

l1
. (3.17)

The �nal step is a result from

vl21
18π2

∫ L

0

ds

∫ L

0

ds′
∫ ∞
−∞

dk k4 e−
k2l1|s−s

′|
6 |s− s′|2

=
vl21

18π2

∫ L

0

ds

∫ L

0

ds′
∂2

∂α2

∫ ∞
−∞

dk e−αk
2|s−s′|

∣∣∣∣
α=l1/6

=
vl21

18π2

3
√
π

4

(
6

l1

)5/2 ∫ L

0

ds

∫ L

0

ds′|s− s′|−1/2

=
vl21

18π2

3
√
π

4

(
6

l1

)5/2 ∫ L

0

ds

[∫ s

0

ds′(s− s′)−1/2 +

∫ L

s

ds′(s− s′)−1/2

]
=

vl21
18π2

3
√
π

4

(
6

l1

)5/2(
4

3

)
L3/2 = v

√
6

π3

√
L3

l1

(3.18)

Investigating di�erent limits of (3.17), we have in the limit of small v, l1
approximately equivalent to l. A more interesting limit is when v < L

1
2 such
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that

l
5
2
1

(
1

l
− 1

l1

)
= 2

√
6

π3
vL

1
2

(3.19)

thereby leading to the conclusion that

l1 = 2
2
5

(
6

π3

) 1
5

l
2
5v

2
5L

1
5 .

3.2 The free energy

We then approximate from the above results the total free energy of our
translocating polymer with a strand on the cis-side having the e�ective step
length l-

e� = l+ and corresponding cis-side free energy

F− = −kBT ln

[√
πl+(L− L+)

6
erf

( √
6ε√

(L− L+)l+

)]
. (3.20)

The free energy of the strand on the trans-side having the e�ective step
length

l+
e� = 2

2
5

(
6

π3

) 1
5

l+
2
5v

2
5L

1
5 (3.21)

is approximated as

F+ = −kBT ln

√πl+
e�L+

6
erf

( √
6ε√

l+
e�L+

) .
(3.22)

Therefore the approximate total free energy is

F = −kBT

{
ln

[√
πl+(L− L+)

6
erf

( √
6ε√

(L− L+)l+

)]

− ln

√(2πl+v

62

)2/5

L+L1/5 erf

 √
6ε√(

6
π3

)1/5
(2πvl+)2/5 L+L1/5

 .

(3.23)
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3.3 The force driving translocation

The force that that will be experienced by the chain segment at the pore
follows from (2.11) and is given by

f =
1

2

− 2αε exp
(
− β 5√πε2

5√LL+(l+v)2/5

)
π2/5L+

√
5
√
LL+ (l+v) 2/5erf

(
α 10√πε√

5√LL+(l+v)2/5

)

+
2
√

6
π
l+εe

6ε2

l+(L+−L)

(l+ (L− L+)) 3/2erf

(
√

6ε√
l+(L−L+)

) +
2L+ − L

L+(L+ − L)


(3.24)

where α = 5
√

232/5 and β = 22/534/5. This force has the pro�le depicted in
Figure 3.1

20 40 60 80 100

L+

- 0.00015

- 0.00010

- 0.00005

0.00005

0.00010

f

Figure 3.1: The force pro�le where the strength v is varied from 0.1 represented
by the leftmost pro�le to 60 units represented by the rightmost pro�le.

Figure 3.1, shows that the chain will thread further upon the increase of
the excluded volume strength from 0.1 units to 30 and 20 units for an increased
volume strength to respectively, 3 and 60 units. This we �nd interesting since
it demonstrates somewhat the complex relationship between the translocation
force and excluded volume interaction strength and hence the translocation
time. It is also worthwhile to note the rates of translocation for the di�erent
regimes depicted in the same �gure.
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Chapter 4

Polyelectrolyte chain under hard

wall con�nement

In this chapter we shall again outline an approximation scheme presented by
Muthukumar (28), somewhat similar to that of the preceeding chapter, that
provides us with limiting laws and analytical interpolation formulas for the
renormalized step length for various polyelectrolyte concentrations. We then
use these to model the translocation of a single polyelectrolyte chain under
similar geometric constraints that we have introduced.

4.1 Collective chain system

The calculation here is built on what we presented in section 1.1.2-3. Our ideal
is to determine the e�ective interaction and e�ective step length. In order to
achieve that we need to undergo the following constructs since these quantities
of interest are interelated. We have already seen that the free energy of the
polymer solution takes the following form

e−βFp =
1

n!

∫ Rf (L)

Ri(0)

∏
α

DRα(s) exp

{
− 3

2l

n∑
α

∫ L

0

ds

(
∂Rα

∂s

)2

− 1

2l2

n∑
α,β

∫ L

0

∫ L

0

ds ds′ V (Rα(s)−Rβ(s′))

}
(4.1)

where V (Rα(s) − Rβ(s′)) for this model contains not only the excluded vol-
ume interactions but also the long range interactions of Coulomb type. The
strategy pursued here requires that we perfom a Hubbard-Stratonovich trans-
formation as before by introducing an auxillary �eld φ such that

33
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exp

(
1

2l2

n∑
α,β

∫ L

0

∫ L

0

ds ds′ V (Rα(s)−Rβ(s′))

)

=

∫
Dφ exp

{
− i
l

∑n
α

∫ L
0
ds φ[Rα(s)]− 1

2

∫
dr dr′ φ(r)V −1(r− r′)φ(r′)

}
∫
Dφ exp

{
−1

2

∫
dr dr′ φ(r)V −1(r− r′)φ(r′)

}
(4.2)

where the operator V −1(r− r′) is de�ned such that∫
dr′ V (r− r′)V −1(r′ − r′′) = δ(r− r′′). (4.3)

The result of this transformation is that the free energy expression (4.1) be-
comes

e−βFp =
M−1

n!

∫ Rf (L)

Ri(0)

∏
α

DRα(s)Dφ

[
exp

{
− 3

2l

n∑
α

∫ L

0

ds

(
∂Rα

∂s

)2

+

(
−i
l

n∑
α

∫ L

0

ds φ[Rα(s)]− 1

2

∫
dr dr′ φ(r)V −1(r− r′)φ(r′)

)}]
(4.4)

where

M =

∫
Dφ exp

{
−1

2

∫
dr dr′ φ(r)V −1(r− r′)φ(r′)

}
. (4.5)

Proceeding in a similar manner as we did in (1.9) we have

K(Ri,Rf ;φ, L) ≡
∫ Rf (L)

Ri(0)

DR exp

{
− 3

2l

∫ L

0

ds

(
∂R

∂s

)2

− i

l

∫ L

0

ds φ[R(s)]

}
(4.6)

which we shall write in shorthand as K(φ). This reduces the free energy
expression to

e−βFp =
1

n!

∫
Dφ[K(φ)]n exp

{
−1

2

∫
dr dr′ φ(r)V −1(r− r′)φ(r′)

}∫
Dφ exp

{
−1

2

∫
dr dr′ φ(r)V −1(r− r′)φ(r′)

} . (4.7)

If we apply the identity (16)

[K(φ)]n = n!

∫
C

dµ

2πi
exp[−(n+ 1) lnµ+ µK(φ)] (4.8)
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where the closed contour C encloses the origin once in the complex plane. The
free energy expression becomes

e−βFp = M−1

∫
Dφ
[∫

C

dµ

2πi
exp[−(n+ 1) lnµ+ µK(φ)]

]
exp

{
−1

2

∫
dr dr′ φ(r)V −1(r− r′)φ(r′)

}
.

(4.9)

We now introduce an e�ective distribution function for a labelled chain in order
to evaluate these integrals. Let K̄ represents this distribution with any pair
of its segments undergoing an e�ective interaction through the �eld created
by all other chains. We denote this e�ective interaction by ∆ which combines
both screened Coulomb and excluded volume interactions. Hence K̄ can be
written as

K̄ =

∫
DφK(φ) exp

{
µK(φ)− 1

2

∫
dr dr′ φ(r)V −1(r− r′)φ(r′)

}∫
Dφ exp

{
µK(φ)− 1

2

∫
dr dr′ φ(r)V −1(r− r′)φ(r′)

}
≡

∫
DR exp

{
− 3

2l

∫ L

0

ds

(
∂R

∂s

)2

− 1

2l2

∫ L

0

∫ L

0

ds ds′ ∆(R(s)−R(s′))

}
.

(4.10)

This then enables the computation of the e�ective interaction and the related
quantities of interest as we see in the next section when we implement this to
the free energy expression.

4.1.1 The free energy

The e�ective distribution function of a labelled chain K̄ can be introduced by
adding and subtracting µK̄ in (4.9) yielding

e−βFp = M−1

∫
Dφ
{∫

C

dµ

2πi
exp[−(n+ 1) lnµ+ µK(φ)]

}
exp

[
µK̄ − µK̄

]
× exp

{
−1

2

∫
dr dr′ φ(r)V −1(r− r′)φ(r′)

}
= M−1

∫
C

dµ

2πi
exp[−(n+ 1) lnµ+ µK̄]

×
∫
Dφ exp

{
µ
[
K(φ)− K̄

]
− 1

2

∫
dr dr′ φ(r)V −1(r− r′)φ(r′)

}
.

(4.11)

It is useful to rewrite the auxillary �eld variable φ(r) by its Fourier represen-
tation

φ(r) = φ0 +

∫
k6=0

d3k

(2π)3
φk exp(ik · r) (4.12)
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such that the pair interaction term becomes∫
dr dr′ φ(r)V −1(r− r′)φ(r′)

= φ2
0

∫
dr dr′ V −1(r− r′)

+
1

(2π)6

∫
dk′ dk φkφk′

∫
dr dr′ V −1(r− r′)eik·r+ik′·r′

= φ2
0ΩV −1

0 +
1

(2π)6

∫
dk′ dk φkφk′

∫
dr dr′ V −1(r− r′)eik·r+ik′·r′

= φ2
0ΩV −1

0 +
1

(2π)6

∫
dk′ dk φkφk′

∫
dr d∆V −1(∆)ei(k−k′)·r+ik′·∆

(4.13)

and �nally∫
dr dr′ φ(r)V −1(r− r′)φ(r′) = φ2

0ΩV −1
0 +

1

(2π)3

∫
dk φkφkV

−1
k (4.14)

where we have employed (4.3) to obtain the �rst term and r transformed to r′+
∆. The volume is now represented by Ω. Hence,

exp

{
−Fp +

ΩV0φ
2
0

2

}
=

∫
C

dµ

2πi
exp[−(n+ 1) lnµ+ µK̄]

×

∫ ∏
k6=0 dφk exp

{
µ
[
K(φ)− K̄

]
− 1

2

∫
k6=0

d3k
(2π)3φ

2
kV
−1
k

}
∫ ∏

k6=0 dφk exp
(
−1

2

∫
k6=0

d3k
(2π)3φ2

kV
−1
k

) .

(4.15)

This transformation also a�ects K̄ so that it becomes

K̄ =

∫ ∏
k6=0

dφk

∫
DR exp

{
− 3

2l

∫ L

0

ds

(
∂R

∂s

)2

−i
l

∫ L

0

ds

∫
k6=0

d3k

(2π)3
φk exp(ik ·R(s)) + µK(φ)− 1

2

∫
k6=0

d3k

(2π)3
φ2
kV
−1
k

}
÷
∫ ∏

k6=0

dφk exp

{
µK(φ)− 1

2

∫
k6=0

d3k

(2π)3
φ2
kV
−1
k

}
.

(4.16)

In order to turn K̄ into a Gaussian function that is ameanable to evaluation
we need to rede�ne K(φ) in a suitable manner. The choice

µK(φ) ≡ µK(0)− 1

2

∫
k6=0

d3k

(2π)3
EkV −1

k φ2
k (4.17)
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ful�lls this requirement, where Ek is an unde�ned quantity. As a result K̄
becomes

K̄ =

∫ ∏
k6=0

dφk

∫
DR

× exp

{
− 3

2l

∫ L

0

ds

(
∂R

∂s

)2

−i
l

∫ L

0

ds

∫
k6=0

d3k

(2π)3
φk exp(ik ·R(s))

−1

2

∫
k6=0

d3k

(2π)3
EkV −1

k φ2
k −

1

2

∫
k6=0

d3k

(2π)3
φ2
kV
−1
k

}
÷
∫ ∏

k6=0

dφk exp

{
1

2

∫
k6=0

d3k

(2π)3
EkV −1

k φ2
k −

1

2

∫
k6=0

d3k

(2π)3
φ2
kV
−1
k

}
(4.18)

where the µK(0) terms have cancelled out. Combination of the quadratic
terms give us

K̄ =

∫ ∏
k6=0

dφk

∫
DR

× exp

{
− 3

2l

∫ L

0

ds

(
∂R

∂s

)2

−i
l

∫ L

0

ds

∫
k6=0

d3k

(2π)3
φk exp(ik ·R(s))

−1

2

∫
k6=0

d3k

(2π)3
(Ek + 1)V −1

k φ2
k

}
÷
∫ ∏

k6=0

dφk exp

{
−1

2

∫
k6=0

d3k

(2π)3
(Ek + 1)V −1

k φ2
k

}
.

(4.19)

If we complete the square and evaluate the φk integrals in the similar fashion
as in (1.49)-(1.52) we have

K̄ =

∫
DR exp

{
− 3

2l

∫ L

0

ds

(
∂R

∂s

)2

− 1

2l2

∫ L

0

∫ L

0

ds ds′
∫

k6=0

d3k

(2π)3
∆k exp(ik[R(s)−R(s′)])

}
(4.20)

where the Gaussian integrals cancelled out with those of the denominator. It
is be�tting to de�ne the quantity resulting from the completion of the square
in (4.19)

∆k ≡ [V −1
k (1 + Ek)]−1

(4.21)
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or equivalently

∆k = Vk (1 + Ek)−1 (4.22)

and importantly Edwards and Anderson showed that (12)

∆k =
1

Ω

〈
φ2
k

〉
(4.23)

These two equations are of central importance in the calculation of the quanti-
ties we are interested in, namely, the renormalized step length and the e�ective
interaction. The connection to the free energy expression (4.15) follows from
the average of (4.17) with the substitution of (4.22)

µ 〈K(φ)〉 =

〈
µK(0)− 1

2

∫
k6=0

d3k

(2π)3
EkV −1

k φ2
k

〉
= µK(0)− 1

2

∫
k6=0

d3k

(2π)3
EkV −1

k

〈
φ2
k

〉
µ 〈K(φ)〉 = µK(0)− Ω

2

∫
k6=0

d3k

(2π)3
EkV −1

k ∆k. (4.24)

Therefore µ [K(φ)− 〈K(φ)〉] in the free energy expression can be expressed as

µ [K(φ)− 〈K(φ)〉] = −1

2

∫
k6=0

d3k

(2π)3
EkV −1

k (φ2
k − Ω∆k) (4.25)

such that the exponential of the free energy expression is equivalent to

exp

{
−Fp +

ΩV0φ
2
0

2

}
=

∫
C

dµ

2πi
exp[−(n+ 1) lnµ+ µK̄]

×

∫ ∏
k6=0 dφk exp

{
−1

2

∫
k6=0

d3k
(2π)3EkV −1

k (φ2
k − Ω∆k)− 1

2

∫
k6=0

d3k
(2π)3φ

2
kV
−1
k

}
∫ ∏

k6=0 dφk exp
(
−1

2

∫
k6=0

d3k
(2π)3φ2

kV
−1
k

)
=

∫
C

dµ

2πi
exp[−(n+ 1) lnµ+ µK̄]

×

∫ ∏
k6=0 dφk exp

{
−1

2

∫
k6=0

d3k
(2π)3

[
(Ek + 1)V −1

k φ2
k − ΩEkV −1

k ∆k

]}
∫ ∏

k6=0 dφk exp
(
−1

2

∫
k6=0

d3k
(2π)3φ2

kV
−1
k

) .

(4.26)
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Applying the identity (4.8) again we have

exp

{
−Fp +

ΩV0φ
2
0

2

}

=
K̄n

n!

∫ ∏
k6=0 dφk exp

{
−1

2

∫
k6=0

d3k
(2π)3

[
φ2
k

∆k
− Ω

(
1− ∆k

Vk

)]}
∫ ∏

k6=0 dφk exp
(
−1

2

∫
k6=0

d3k
(2π)3φ2

kV
−1
k

)
=

K̄n

n!

∫ ∏
k6=0 dφk exp

{
− 1

2Ω

∑
k6=0

[
φ2
k

∆k
− Ω

(
1− ∆k

Vk

)]}
∫ ∏

k6=0 dφk exp
(
− 1

2Ω

∑
k6=0 φ

2
kV
−1
k

) (4.27)

Taking the natural logarithm on both sides gives the free energy expression as

−βFp = −ΩV0φ
2
0

2

+ ln

K̄n

n!

∫ ∏
k6=0 dφk exp

{
− 1

2Ω

∑
k6=0

[
φ2
k

∆k
− Ω

(
1− ∆k

Vk

)]}
∫ ∏

k6=0 dφk exp
(
− 1

2Ω

∑
k6=0 φ

2
kV
−1
k

)


−βFp = −ΩV0φ
2
0

2
+ ln

[
K̄n

n!

]
+ ln

∫ ∏
k6=0

dφk exp

{
− 1

2Ω

∑
k6=0

[
φ2
k

∆k

− Ω

(
1− ∆k

Vk

)]}

− ln

∫ ∏
k6=0

dφk exp

(
− 1

2Ω

∑
k6=0

φ2
kV
−1
k

)
(4.28)

evaluating the Gaussian integrals in a similar manner for (1.53) and recombin-
ing the logarithm terms gives us

βFp =
ΩV0φ

2
0

2
− ln

[
K̄n

n!

]
− 1

2

∑
k6=0

[
1− ∆k

Vk

]
− 1

2Ω

∑
k6=0

ln

[
Vk
∆k

]−1

(4.29)

the free energy from various contributions, namely, the background contribu-
tion, the n many e�ective chains contribution and the �uctuation contribution.
This free energy expression takes the similar form to that derived by Vilgis
and Borsali (42).
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4.2 Isolated polyelectrolyte chain

4.2.1 The E�ective interaction

We shall determine the e�ective interaction ∆ by the method of e�ective step
length which we have seen already in Chapter 3. The actual distribution
function of the n many chain system

G(φ,R) =
∏
α

exp

{
− 3

2l

∫ L

0

ds

(
∂Rα

∂s

)2

− i

l

∫ L

0

ds

∫
k6=0

d3k

(2π)3
φk exp(ik ·Rα)− 1

2

∫
k6=0

d3k

(2π)3
φ2
kV
−1
k

}
(4.30)

is approximated by an e�ective Gaussian distribution

G0(φ,R) =
∏
α

exp

{
−3

2

∫ L

0

ds

l1

(
∂Rα

∂s

)2

− 1

2

∫
k6=0

d3k

(2π)3
φ2
k∆
−1
k

}
≡ exp [−H0] (4.31)

where l1 is an e�ective step length, such that〈
[Rα(L)−Rα(0)]2

〉
= Ll1. (4.32)

In a similar construction, as in the previous chapter, we add and subtract the
Hamiltonian H0 to the argument of the exponent of the actual distribution.
This gives us

G(φ,R) =
∏
α

exp

{
− 3

2l

∫ L

0

ds

(
∂Rα

∂s

)2

− i

l

∫ L

0

ds

∫
k6=0

d3k

(2π)3
φk exp(ik ·Rα)

− 1

2

∫
k6=0

d3k

(2π)3
φ2
kV
−1
k +

3

2

∫ L

0

ds

l1

(
∂Rα

∂s

)2

− 1

2

∫
k6=0

d3k

(2π)3
φ2
k∆
−1
k −

3

2

∫ L

0

ds

l1

(
∂Rα

∂s

)2

+
1

2

∫
k6=0

d3k

(2π)3
φ2
k∆
−1
k

}
G(φ,R) ≡ exp [−H0 −H11 −H12 − iH2]

(4.33)
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where the di�erent terms in the exponent are de�ned below, namely

H11 =
3

2

∑
α

∫ L

0

ds

(
1

l
− 1

l1

)(
∂Rα

∂s

)2

(4.34)

H12 =
1

2

∫
k6=0

d3k

(2π)3
φ2
k

(
V −1
k −∆−1

k

)
(4.35)

H2 =
1

l

∑
α

∫ L

0

ds

∫
k6=0

d3k

(2π)3
φk exp(ik ·Rα). (4.36)

The de�nition of the e�ective interaction ∆k was established in (4.23) as

∆k =
1

Ω

〈
φ2
k

〉
. (4.37)

According to the distribution function (4.33) we have

∆k =
1

Ω

∫
Dφ DRφ2

kP (φ,R)∫
Dφ DRP (φ,R)

(4.38)

=
〈
φ2
k

〉
0

+
{〈
φ2
k(−H11 −H12 + h)

〉
0

−
〈
φ2
k

〉
0

〈
φ2
k(−H11 −H12 + h)

〉
0

+ . . .
}

(4.39)

where the identity we employed in (3.8) has been invoked. One should per-
haps stress that the averaging is over the e�ective (renormalized step length)
Gaussian distribution of (4.31). Further, h is de�ned as

h ≡
∞∑

j=2,4

(−1)
j
2Hj

2

j!
. (4.40)

If we approximate ∆k by the zeroth term 〈φ2
k〉0 then we have the constraint

from the next two terms in (4.39)〈
φ2
k(−H11 −H12 + h)

〉
0
−
〈
φ2
k

〉
0

〈
φ2
k(−H11 −H12 + h)

〉
0

= 0 (4.41)

resulting in 〈
φ2
k(H12 − h)

〉
0

=
〈
φ2
k

〉
0

〈
φ2
k(H12 − h)

〉
0

(4.42)

sinceH11 is independent of φk as listed in (4.32). The derivation of the e�ective
interaction ∆k essentially rests upon this constraint. The problem is then
reduced to the evaluation of the above expression.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. POLYELECTROLYTE CHAIN 42

We start by evaluating the left hand 〈φ2
k(H12 − h)〉0.〈

φ2
k(H12 − h)

〉
0

=

∫
Dφ DRφ2

k(H12 − h) exp [−H0]

Dφ DR exp [−H0]

=

∫
Dφ DRφ2

k

[
1

2

∫
µ6=0

d3µ

(2π)3
φ2
µ

(
V −1
µ −∆−1

µ

)
− h
]

× exp

{
−3

2

∑
α

∫ L

0

ds

l1

(
∂Rα

∂s

)2

− 1

2

∫
k6=0

d3k

(2π)3
φ2
k∆
−1
k

}

÷ Dφ DR exp

{
−3

2

∑
α

∫ L

0

ds

l1

(
∂Rα

∂s

)2

− 1

2

∫
k6=0

d3k

(2π)3
φ2
k∆
−1
k

}
(4.43)

factoring the chain variable components leaves us with〈
φ2
k(H12 − h)

〉
0

=
1

Ω

∫
Dφφ2

k

[
1
2

∫
µ6=0

d3µ
(2π)3φ

2
µ

(
V −1
µ −∆−1

µ

)
− h
]

exp
{
−1

2

∫
k6=0

d3k
(2π)3φ

2
k∆
−1
k

}
Dφ exp

{
−1

2

∫
k6=0

d3k
(2π)3φ2

k∆
−1
k

}
(4.44)

Without going to the details of pictorial representation of h, the contribution
from all terms of h upon con�gurational average is de�ned to be (28)

h → −1

2
ρ

∫
µ6=0

d3µ

(2π)3
φ2
µζµ

(4.45)

where

ζµ = g(µ)− βg(µ)

∫
d3ν

(2π)3
ζµ+ν∆−νg(ν) (4.46)

with g(µ) given by

g(µ) ≡ 6

µ2l1l
. (4.47)
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Applying the fundamental result (4.45) to (4.44) then we have〈
φ2
k(H12 − h)

〉
0

=
W−1

Ω

∫
Dφφ2

k

[
1

2

∫
µ6=0

d3µ

(2π)3
φ2
µ

(
V −1
µ −∆−1

µ

)
+

1

2
ρ

∫
µ6=0

d3µ

(2π)3
φ2
µζµ

]
× exp

{
−1

2

∫
k6=0

d3k

(2π)3
φ2
k∆
−1
k

}
=
W−1

Ω

∫
Dφφ2

k

[
1

2

∫
µ6=0

d3µ

(2π)3
φ2
µ

(
V −1
µ −∆−1

µ + ρζµ
)]

× exp

{
−1

2

∫
k6=0

d3k

(2π)3
φ2
k∆
−1
k

}
(4.48)

where

W−1 = Dφ exp

{
−1

2

∫
k6=0

d3k

(2π)3
φ2
k∆
−1
k

}
. (4.49)

A shorthand de�nition of the quantity in braces

Fµ = V −1
µ −∆−1

µ + ρζµ (4.50)

allows us to turn the integral into a generating function as we outline below〈
φ2
k(H12 − h)

〉
0

=
1

Ω

∫
Dφφ2

k

[
1
2

∫
µ6=0

d3µ
(2π)3φ

2
µFµ

]
exp

{
−1

2

∫
k6=0

d3k
(2π)3φ

2
k∆
−1
k

}
Dφ exp

{
−1

2

∫
k6=0

d3k
(2π)3φ2

k∆
−1
k

} (4.51)

=

 1

Ω

∫
Dφφ2

k

[
1
2

∫
µ6=0

d3µ
(2π)3φ

2
µFµ

]
×

Dφ exp
{
−
[
λ
2

∫
k 6=0

d3k
(2π)3φ2

kFk + 1
2

∫
k6=0

d3k
(2π)3φ2

k(∆
−1
k − Fk)

]}
exp

{
−
[
λ

2

∫
k 6=0

d3k

(2π)3
φ2
kFk +

1

2

∫
k6=0

d3k

(2π)3
φ2
k(∆

−1
k − Fk)

]}]
λ=1

.

(4.52)

Now, de�ning

z(λ) =

[
λ

2

∫
k 6=0

d3k

(2π)3
φ2
kFk +

1

2

∫
k6=0

d3k

(2π)3
φ2
k(∆

−1
k − Fk)

]
(4.53)

z(λ) =
1

2

∫
k6=0

d3k

(2π)3
φ2
k(∆

−1
k + (λ− 1)Fk). (4.54)
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The expression (4.52), in a similar fashion to (3.10), simpli�es to the desired
result 〈

φ2
k(H12 − h)

〉
0

=

 1

Ω

∫
Dφ φ2

k

[
1
2

∫
µ6=0

d3µ
(2π)3φ

2
µFµ

]
e−z(λ)∫

Dφ e−z(λ)


λ=1

= −∂λ
[

1

Ω

∫
Dφφ2

k e
−z(λ)∫

Dφ e−z(λ)

]
+
〈
φ2
k

〉
0

〈
φ2
k(H12 − h)

〉
0
. (4.55)

The quantity in the brackets is given by

1

Ω

∫
Dφφ2

k e
− 1

2

∫
k6=0

d3k
(2π)3

φ2
k(∆−1

k +(λ−1)Fk)∫
Dφ e−

1
2

∫
k6=0

d3k
(2π)3

φ2
k(∆−1

k +(λ−1)Fk)

=
1

Ω

δ
δµk

∫
Dφ e−

1
2

∫
k′ 6=0

d3k′
(2π)3

µk′φ
2
k′∫

Dφ e−
1
2

∫
k′ 6=0

d3k′
(2π)3

µk′φ
2
k′

(4.56)

following the same procedure as in (1.50), (4.56) reduces to

1

Ω

δ
δµk
e
−Ω

2

∫
k′ 6=0

d3k′
(2π)3

lnµk′

e
−Ω

2

∫
k′ 6=0

d3k′
(2π)3

lnµk′

= −1

2

δ

δµk

∫
k′ 6=0

d3k′

(2π)3
lnµk′

= −1

2

∫
k′ 6=0

d3k′

(2π)3
µk′
−1δ(k′ − k)

= −1

2

[
∆−1
k + (λ− 1)Fk ]−1. (4.57)

Therefore,〈
φ2
k(H12 − h)

〉
0
−
〈
φ2
k

〉
0

〈
φ2
k(H12 − h)

〉
0

= ∂λ
[
∆−1
k + (λ− 1)Fk ]−1 (4.58)

where λ is set to unity thereafter. Equation (4.41) requires that the right hand
side is equated to zero which implies Fk = 0. According to (4.50) we have

V −1
k −∆−1

k + ρζk = 0 (4.59)

giving us the quantity of interest

∆k =
Vk

1 + ρVkζk(∆k, l1)
. (4.60)
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Vilgis and Borsali (42) showed that for the system under consideration

Vk =

(
w +

wc
k2 + κ2

)
(4.61)

where w,wc and κ are respectively the excluded volume strength, Coulomb
strength and the Debye screening length. Thus the e�ective interaction is
given by

∆k =

(
w + wc

k2+κ2

)
1 + ρ

(
w + wc

k2+κ2

)
ζk(∆k, l1)

. (4.62)

4.2.2 The E�ective step length

Our primary goal has been to determine the renormalized step length under
various salt and concentration regimes. This we pursue in this section with a
construction closely similar to that of Chapter 3 but for more general type of
interactions presented in (26). The distribution function of the labeled chain

K̄ =

∫
DR exp

{
− 3

2l

∫ L

0

ds

(
∂R

∂s

)2

− 1

2l2

∫ L

0

∫ L

0

ds ds′
∫

k6=0

d3k

(2π)3
∆k exp(ik[R(s)−R(s′)])

}
as in (3.5) then becomes

K̄ =

∫
DR exp

{
− 3

2l1

∫ L

0

ds

(
∂R

∂s

)2

−3

2

(
1

l
− 1

l 1

)∫ L

0

ds

(
∂R

∂s

)2

− 1

2l2

∫ L

0

∫ L

0

ds ds′
∫

k6=0

d3k

(2π)3
∆k exp(ik[R(s)−R(s′)])

}
.

(4.63)

Writing R(s) in its Fourier representation

R(s) =

∫ ∞
−∞

dq

2π
Rq exp(iqs) (4.64)
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leads to ∫ L

0

ds

(
∂R

∂s

)2

=

∫ ∞
−∞

dq

2π

∫ ∞
−∞

dq′

2π

∫ L

0

ds i2qq′RqRq′ exp(i(q + q′)s)

=

∫ ∞
−∞

dq

2π

∫ ∞
−∞

dq′i2qq′RqRq′δ(q + q′)

=

∫ ∞
−∞

dq

2π
q2RqR−q =

∫ ∞
−∞

dq

2π
q2RqR

∗
q

=

∫ ∞
−∞

dq

2π
q2R2

q. (4.65)

Therefore, the generating function becomes

K̄ =

∫
DR exp

{
−3

2

∫ ∞
−∞

dq

2π

R2
q

g(q)

−
{

3

2

∫ ∞
−∞

dq

2π

(
1

g0(q)
− 1

g(q)

)
R2
q

+
1

2l2

∫ L

0

∫ L

0

ds ds′
∫

k6=0

d3k

(2π)3
∆k

× exp

[
ik

∫ ∞
−∞

dq

2π
Rq exp(iqs)− exp(iqs′)

]}}
K̄ =

∫
DR exp

{
−3

2

∫ ∞
−∞

dq

2π

R2
q

g(q)
−X

}
(4.66)

where g(q) ≡ l1/q
2 and X is de�ned by

X ≡ 3

2

∫ ∞
−∞

dq

2π

(
1

g0(q)
− 1

g(q)

)
R2
q

+
1

2l2

∫ L

0

∫ L

0

ds ds′
∫

k6=0

d3k

(2π)3
∆k

× exp

[
ik

∫ ∞
−∞

dq

2π
Rq exp(iqs)− exp(iqs′)

]
.

(4.67)

In order to make progress from this point onward we employ the maximum
entropy condition (33)

1

kBT

δS

δg(q)
= 0 where S = kB ln K̄ (4.68)

at equilibrium. A key construct to this program is the inequality relation

〈exp(−x)〉 ≥ exp 〈−x〉 (4.69)
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that we apply to the generating function (4.66) with the consequence∫
DR exp

{
−3

2

∫ ∞
−∞

dq

2π

R2
q

g(q)
−X

}
≥
∫
DR exp

{
−3

2

∫ ∞
−∞

dq

2π

R2
q

g(q)
− 〈X〉g

}
(4.70)

where

〈X〉g =

∫
DRX exp

{
−3

2

∫∞
−∞

dq
2π

R2
q

g(q)

}
∫
DR exp

{
−3

2

∫∞
−∞

dq
2π

R2
q

g(q)

} . (4.71)

The entropy function is obtained by taking the logarithm on both sides such
that

kB ln

[∫
DR exp

{
−3

2

∫ ∞
−∞

dq

2π

R2
q

g(q)
−X

}]
≥ kB ln

[∫
DR exp

{
−3

2

∫ ∞
−∞

dq

2π

R2
q

g(q)
− 〈X〉g

}]
(4.72)

or rather

S ≥ kB ln

[∫
DR exp

{
−3

2

∫ ∞
−∞

dq

2π

R2
q

g(q)
− 〈X〉g

}]
. (4.73)

Now, applying the extremum condition (4.68) we have

δ

δg(q)
kB ln

[∫
DR exp

{
−3

2

∫ ∞
−∞

dq

2π

R2
q

g(q)
− 〈X〉g

}]
= 0

δ

δg(q)
ln

[∫
DR exp

{
−3

2

∫ ∞
−∞

dq

2π

R2
q

g(q)

}]
=

δ

δg(q)
〈X〉g

(4.74)

this forms the principal construct in the derivation of the renormalized step
length equation. The task remaining is to evaluate this expression. Beginning
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with the left hand side we have

δ
δg(q)

∫
DR exp

{
−3

2

∫∞
−∞

dq
2π

R2
q

g(q)

}
∫
DR exp

{
−3

2

∫∞
−∞

dq
2π

R2
q

g(q)

}
=

∫
DR exp

{
−3

2

∫∞
−∞

dq
2π

R2
q

g(q)

}
δ

δg(q)

{
−3

2

∫∞
−∞

dq
2π

R2
q

g(q)

}
∫
DR exp

{
−3

2

∫∞
−∞

dq
2π

R2
q

g(q)

} (4.75)

=

∫
DR exp

{
−3

2

∫∞
−∞

dq
2π

R2
q

g(q)

}{
−3

2

∫∞
−∞

dq′

2π
R2
q′

δ
δg(q)

[g(q′)]−1
}

∫
DR exp

{
−3

2

∫∞
−∞

dq
2π

R2
q

g(q)

} (4.76)

=

∫
DR exp

{
−3

2

∫∞
−∞

dq
2π

R2
q

g(q)

}{
3
2

∫∞
−∞

dq′

2π
R2
q′ [g(q′)]−2δ(q′ − q)

}
∫
DR exp

{
−3

2

∫∞
−∞

dq
2π

R2
q

g(q)

} (4.77)

=

∫ ∏
k dr k

[
3
2

R2
q

g2(q)

]
exp

{
−3

2

∫∞
−∞

dk
2π

R2
k

g(k)

}
∫ ∏

q dr q exp
{
−3

2

∫∞
−∞

dq
2π

R2
q

g(q)

} . (4.78)

Discretization of the integral in the exponent where now q → 2πp
L

and perfom-
ing the Gaussian integrals we have∫

dr q

[
R2
q

g2(q)

]
exp

{
− R2

p

Lg(p)

}
∫
dr q′ exp

{
−3

2

R2( 2πp
L

)

Lg(p)

} =
L

g(q)
. (4.79)

Our next focus is the evaluation of the right hand side of (4.74)

δ

δg(q)

〈
3

2

∫ ∞
−∞

dq

2π

(
1

g0(q)
− 1

g(q)

)
R2
q

+
1

2l2

∫ L

0

∫ L

0

ds ds′
∫

k6=0

d3k

(2π)3
∆k exp

[
ik

∫ ∞
−∞

dq

2π
Rq exp(iqs)− exp(iqs′)

]〉
g

=
δ

δg(q)

〈
3

2

∫ ∞
−∞

dq

2π

(
1

g0(q)
− 1

g(q)

)
R2
q

〉
g

+
δ

δg(q)

〈
1

2l2

∫ L

0

∫ L

0

ds ds′
∫

k6=0

d3k

(2π)3
∆k exp

[
ik

∫ ∞
−∞

dq

2π
Rq exp(iqs)− exp(iqs′)

]〉
g

.

(4.80)
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The �rst term is computed as follows

δ

δg(q)

〈
3

2

∫ ∞
−∞

dq

2π

(
1

g0(q)
− 1

g(q)

)
R2
q

〉
g

=
δ

δg(q)

∫ DR
{

3
2

∫∞
−∞

dq′

2π

(
1

g0(q′)
− 1

g(q′)

)
R2
q′

}
exp

{
−3

2

∫∞
−∞

dq
2π

R2
q

g(q)

}
∫
DR exp

{
−3

2

∫∞
−∞

dq
2π

R2
q

g(q)

}


(4.81)

discretization of the term in the exponent leaves us with standard multiple
Gaussian integrals

δ

δg(q)

〈
3

2

∫ ∞
−∞

dq

2π

(
1

g0(q)
− 1

g(q)

)
R2
q

〉
g

=
δ

δg(q)

∫ ∏p dr p

{
3

2L

∑∞
−∞

(
1

g0(p′)
− 1

g(p′)

)
R2
p′

}
exp

{
− 3

2L

∑∞
−∞

R2
p

g(p)

}
∫ ∏

p dr p exp
{
− 3

2L

∑∞
−∞

R2
p

g(p)

}


(4.82)

=
δ

δg(q)

∑∞−∞ ∫ ∏p dr p

{
3

2L

(
1

g0(p′)
− 1

g(p′)

)
R2
p′

}
exp

{
− 3

2L

∑∞
−∞

R2
p

g(p)

}
∫ ∏

p dr p exp
{
− 3

2L

∑∞
−∞

R2
p

g(p)

}


(4.83)

=
δ

δg(q)

∑∞−∞ ∫ dr p

{
3

2L

(
1

g0(p)
− 1

g(p)

)
R2
p

}
exp

{
− 3

2L

R2
p

g(p)

}
∫
dr p exp

{
− 3

2L

R2
p

g(p)

}
 (4.84)

(4.85)

where we use the Gaussian integral as the generator to get

δ

δg(q)

〈
3

2

∫ ∞
−∞

dq

2π

(
1

g0(q)
− 1

g(q)

)
R2
q

〉
g

=
δ

δg(q)

∞∑
−∞

[
g(p)

g0(p)
− 1

]
(4.86)

=
δ

δg(q)
L

∫ ∞
−∞

dq′

2π

[
g(q′)

g0(q′)
− 1

]
(4.87)

= L

∫ ∞
−∞

dq′

2π

[
δ(q′ − q)
g0(q′)

]
(4.88)

δ

δg(q)

〈
3

2

∫ ∞
−∞

dq

2π

(
1

g0(q)
− 1

g(q)

)
R2
q

〉
g

=
L

g0(q)
. (4.89)
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Then as for the second term of (4.80) we have

δ

δg(q)

〈
1

2l2

∫ L

0

∫ L

0

ds ds′
∫

k6=0

d3k

(2π)3
∆k exp

[
ik

∫ ∞
−∞

dq

2π
Rq [exp( iqs )− exp (iqs′)]

]〉
g

=
δ

δg(q)

[∫
DR

{
1

2l2

∫ L

0

∫ L

0

ds ds′
∫

k6=0

d3k

(2π)3
∆k

× exp

[
ik

∫ ∞
−∞

dq

2π
Rq [exp (iqs)− exp (iqs′)]

]}
exp

{
−3

2

∫ ∞
−∞

dq

2π

R2
q

g(q)

}
÷
∫
DR exp

{
−3

2

∫ ∞
−∞

dq

2π

R2
q

g(q)

}]
(4.90)

=
δ

δg
(

2πp
L

) [∫ ∏
p

dr p

{
1

2l2

∫ L

0

∫ L

0

ds ds′
∫

k6=0

d3k

(2π)3
∆k

× exp

[
i

L
k ·

∞∑
−∞

Rp

[
exp

(
2πips

L

)
− exp

(
2πips′

L

)]]
exp

{
− 3

2L

∞∑
−∞

R2
p

g(p)

}

÷
∫ ∏

p

dr p exp

{
− 3

2L

∞∑
−∞

R2
p

g(p)

}]
(4.91)

=
δ

δg
(

2πp
L

)
∏

p

∫
dr p

{
1

2l2

∫ L
0

∫ L
0
ds ds′

∫
k6=0

d3k
(2π)3 ∆k

}
exp

{
− 3

2L

R2
p

g(p)

}
∫
dr p exp

{
− 3

2L

R2
p

g(p)

}
× exp

[
i

L
k ·Rp

[
exp

(
2πips

L

)
− exp

(
2πips′

L

)]]

=
δ

δg
(

2πp
L

)
 1

2l2

∫ L

0

∫ L

0

ds ds′
∫

k6=0

d3k

(2π)3
∆k

∏
p

∫
dr p exp

{
− 3

2L

R2
p

g(p)

}
∫
dr p exp

{
− 3

2L

R2
p

g(p)

}
× exp

[
i

L
k ·Rp

[
exp

(
2πips

L

)
− exp

(
2πips′

L

)]]
=

δ

δg
(

2πp
L

) [ 1

2l2

∫ L

0

∫ L

0

ds ds′
∫

k6=0

d3k

(2π)3
∆k

×
∏
p

∫
dr p exp

[
i
L
k ·Rp

[
exp

(
2πips
L

)
− exp

(
2πips′

L

)]
− 3

2L

R2
p

g(p)

]
∫
dr p exp

{
− 3

2L

R2
p

g(p)

} .

(4.92)

After completing the square for the Rp variable to evaluate the Gaussian in-
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tegrals we have (4.92) equivalent to

δ

δg
(

2πp
L

) [ 1

2l2

∫ L

0

∫ L

0

ds ds′
∫

k6=0

d3k

(2π)3
∆k ×

∏
p

exp

{
−gk

2

6L

(
eiσs − eiσs′

)2
}

=
δ

δg (q)

[
1

2l2

∫ L

0

∫ L

0

ds ds′
∫

k6=0

d3k

(2π)3
∆k exp

{
− k

2

6L

∑
q

g(q)
(
eiqs − eiqs′

)2
}]

(4.93)

=
δ

δg (q)

[
1

2l2

∫ L

0

∫ L

0

ds ds′
∫

k6=0

d3k

(2π)3
∆k

× exp

{
−k

2

6

∫
dq′

2π
g(q′)

(
eiq
′s − eiq′s′

)2
}]
(4.94)

= − 1

12l2

∫ L

0

∫ L

0

ds ds′
∫

k6=0

d3k

(2π)3
∆k k

2
(
eiqs − eiqs′

)2

× exp

{
−k

2

6

∫
dq′

2π
g(q′)

(
eiq
′s − eiq′s′

)2
}

= − 1

12l2

∫ L

0

∫ L

0

ds ds′
∫

k6=0

d3k

(2π)3
∆k k

2 sin2

(
q′(s− s′)

2

)
× exp

{
−k

2

6

∫
dq′

2π
g(q′) sin2

(
q′(s− s′)

2

)}
= − 1

12l2

∫ L

0

∫ L

0

ds ds′
∫

k6=0

d3k

(2π)3
∆k k

2 sin2

(
q′(s− s′)

2

)
× exp

{
−k

2

6

∫
dq′

2π

l1(q′)

q2
sin2

(
q′(s− s′)

2

)}
.

(4.95)

Combining this result and (4.79) as well as (4.89) we therefore arrive at the
integral expression that one has to solve to determine the approximate renor-
malized step length given here

Lq2

(
1

l
− 1

l1(q)

)
=

1

12l2

∫ L

0

∫ L

0

ds ds′
∫

k6=0

d3k

(2π)3
∆k k

2 sin2

(
q′(s− s′)

2

)
× exp

{
−k

2

6

∫
dq′

2π

l1(q′)

q2
sin2

(
q′(s− s′)

2

)}
.

(4.96)

Evaluating this expression require numerical methods in general except in some
limits. At this point we shall quote the analytic results given in the reference
paper (28) for di�erent salt and polymer concentration limits.
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4.2.2.1 High salt limit

The approximate analytic results for high salt condition where the e�ective
interaction takes the form of (1.67) with a slight modi�cation

∆(r) =
(
w +

wc
κ

)[
δ(r)− 1

4πrξ2
1

e−r/ξ1
]

(4.97)

where w,wc and κ are respectively the excluded volume, Coulomb strength
and the inverse Debye screening length a parameter depending on the charge
density of counterions and salt ions. ξ1 is the exclude volume screening length
depending on polymer segments concentration ρ and w + wc

κ2 .

� In�nitely dilute solution

Within this salt limit when the polymer concentration ρ → 0 which
corresponds to ξ1 →∞ we have

l
5
2
1

(
1

l
− 1

l1

)
=

1

l2

√
6

π3

(
w +

wc
κ2

)
L

1
2 . (4.98)

� Approaching the overlap density

When the polymer concentration ρ approaches the overlap concentra-
tion ρ∗ we have

l1 =
1

2
1
4

√
6

π
β

1
4

(
w +

wc
κ2

) 1
4
ρ−

1
4 l−

1
2

ξ1 =
1

2
5
4

√
3

π
β

3
4

(
w +

wc
κ2

)− 1
4
ρ−

3
4 l−

1
2 . (4.99)

� Concentrated regime

Above the overlap concentration we have

l1 = l +O
(
w + wc

κ2

ρl4

)1/2

ξ1 = l
(

6ρ
(
w +

wc
κ2

))−1/2

. (4.100)

4.2.2.2 Low salt limit

The approximate analytic results for low salt condition where the e�ective
interaction is given by both screened and oscillatory expression

∆(r) =
wc
4πr

cos

(
− r√

2ξ2

)
e−r/

√
2ξ2 . (4.101)

ξ2 is the correlation length depending on polymer segments concentration ρ
and Coulomb strength wc.
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� In�nitely dilute solution

Within this salt limit when the polymer concentration ρ → 0 which
corresponds to ξ2 →∞ we have

l
3
2
1

(
1

l
− 1

l1

)
=

1
√

3π
5
2 l2

(
w +

wc
κ2

)
L

3
2 . (4.102)

� Approaching the overlap density

When the polymer concentration ρ approaches the overlap concentra-
tion ρ∗ we have

l1 =

√
β

8

(
6
√

2

π

)2/3 (wc
l

)1/6

(ρl)−1/2

ξ2 =

√
β

8

(
6
√

2

π

)1/3 (wc
l

)−1/6

(ρl)−1/2 . (4.103)

� Concentrated regime

Above the overlap concentration we have

l1 = l +O

(
w

1/4
c

l3/2
ρ−3/4

)

ξ2 =

(
6ρwc
l2

)−1/4

. (4.104)

4.3 The force driving translocation

We shall discuss translocation upon three regimes, namely, translocation be-
tween high and low salt in in�nitely dilute solution, again translocation be-
tween high and low salt,however, for semidilute solution and �nally transloca-
tion between concentrated and in�nitely dilute solutions in both salt limits.

4.3.1 High and low salt limit � in�nitely dilute solution

In this section we shall investigate the translocation from a high salt to a low
salt solvent conditions for in�nitely dilute concentration. We shall do this, as
before, by determining an approximate force driving translocation.
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High salt case on the trans-side

The renormalized Kuhn length from (4.96) is given by

l
5
2
1

(
1

l+
− 1

l1

)
=

1

l2+

√
6

π3

(
w +

wc
κ2

)
L

1
2
+ (4.105)

which shows the l1 ∼ L
1
5
+ scaling relationship. We write the solution to this

expression as

l1 ' γL
1
5
+ (4.106)

thereby resulting in the trans-side free energy, with the new renormalized step
length accounting for the chain interactions in high salt conditions, given by

F+ = −kBT ln

√πγL
6/5
+

6
erf

 √
6ε√

γL
6/5
+

 .
(4.107)

Low salt case on the cis-side

If, in contrast to the trans-side, we have low salt conditions such that the
renormalized step length of the chain is given by (4.102)

l
3
2
1

(
1

l−
− 1

l1

)
=

1
√

3π
5
2 l2−

(
w +

wc
κ2

)
L

3
2
− (4.108)

which shows the l1 ∼ L − L+ scaling relationship. We write the solution to
this expression as

l1 ' η (L− L+) . (4.109)

Therefore the cis-side free energy follows from (2.13) as

F− = −kBT ln

[√
πη(L− L+)2

6
erf

( √
6ε√

η(L− L+)2

)]
.

(4.110)

The total free energy is thus given by

F (L+) = −kBT ln

√πγL
6/5
+

6
erf

 √
6ε√

γL
6/5
+


−kBT ln

[√
πη(L− L+)2

6
erf

( √
6ε√

η(L− L+)2

)]
.

(4.111)
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The force driving translocation then follows as

f =
1

5
kT

− 6
√

6
π
εe
− 6ε2

γL
6/5
+

L+

√
γL

6/5
+ erf

(
√

6ε√
γL

6/5
+

)

+
10
√

6
π
η (L− L+) εe

− 6ε2

η(L−L+)2

(η (L− L+) 2) 3/2erf

(
√

6ε√
η(L−L+)2

) +
3L− 8L+

(L− L+)L+

 .

(4.112)

The force pro�le corresponding to this modelled situation is shown in Figure
4.1.

20 40 60 80 100

L+

- 0.00005

0.00005

0.0001

f

Figure 4.1: The force pro�le for translocation between high and low salt con-
ditions in in�nitely dilute solution.

In this scenario of in�nitely dilute polymer density between high and low
salt the threading traverses till 70 units towards the high salt side. The rate
of translocation is also enhanced as depicted in Figure 4.1.

4.3.2 High and low salt limit � semidilute solution

In this section we shall investigate the translocation again from a high salt to
a low salt solvent condition, however, for semidilute concentration. We shall
do this, as before, by determining an approximate force driving translocation.
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High salt case on the trans-side

The renormalized Kuhn length from (4.99) is given by

l1 =
1

2
1
4

√
6

π
β

1
4

(
w +

wc
κ2

) 1
4
ρ
− 1

4
+ l
− 1

2
+

l1 = δ l−
1
2 (4.113)

and a screening length relationship

ξ1 =
1

2
5
4

√
3

π
β

3
4

(
w +

wc
κ2

)− 1
4
ρ
− 3

4
+ l−

1
2 (4.114)

thereby resulting in the trans-side free energy, with the new renormalized step
length accounting for the chain interactions in high salt conditions, given by

F+ = −kBT ln

√πδ l−
1
2L+

6
erf

 √
6ε√

δ l−
1
2L+

 .
(4.115)

Low salt case on the cis-side

If, in contrast to the trans-side, we have low salt conditions such that the
renormalized step length of the chain from (4.103) is given by

l1 =

(
6
√

2

π

) 2
3

√
β̃

8
(w̃c)

1
6 ρ̃
− 1

2
− l
− 2

3
−

l1 = µ l−
2
3 (4.116)

and the screening length relationship

ξ1 =

(
6
√

2

π

) 1
3

√
β̃

8

(
w̃c
l−

)− 1
6

ρ̃
− 1

2
− l−

1
2 . (4.117)

Therefore the cis-side free energy follows from (2.13) as

F− = −kBT ln


√
πµ l−

2
3 (L− L+)

6
erf

 √
6ε√

µ l−
2
3 (L− L+)

 .

(4.118)
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The total free energy is thus given by

F (L+) = −kBT ln

√πδ l−
1
2L+

6
erf

 √
6ε√

δ l−
1
2L+


−kBT ln


√
πµ l−

2
3 (L− L+)

6
erf

 √
6ε√

µ l−
2
3 (L− L+)

 .

(4.119)

The force driving translocation then follows as

f =
1

2
kT

 2
√

6µ 3
√
lεe
− 6l2/3ε2

µL−µL+

√
π (µ (L− L+)) 3/2erf

(
√

6
3√
lε√

µ(L−L+)

)

− 2
√

6δ 4
√
lεe
− 6
√
lε2

δL+

√
π (δL+) 3/2erf

(
√

6
4√
lε√

δL+

) +
L− 2L+

(L− L+)L+

 .

(4.120)

The force pro�le corresponding to this modelled situation is shown in Figure
4.2.

20 40 60 80 100

L+

- 0.0004

- 0.0002

0.0002

0.0004

f

Figure 4.2: The force pro�le of varying l from small to large for high-low salt
translocation in semi dilute concentration.

In the semidilute regime electrolytic conditions asymmetry do not seem to
have any signi�cant bias on the translocation force bias as shown in Figure 4.2
except for the steepening of the force pro�le.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. POLYELECTROLYTE CHAIN 58

4.3.3 In�nitely dilute and concentrated solutions

We have seen that in the concentrated regime for both salt limits the renor-
malized step length is essentially re�ecting Guassian chain statistics and it is
given by l1 = l+. Therefore the free energy expression of the trans-side is given
by

F+ = −kBT ln

[√
πl+L+

6
erf

( √
6ε√
l+L+

)]
(4.121)

On the other hand we have already determined the free energies of in�nitely
dilute concentration for both salt limits as shown in equations (4.107) in the
high salt and (4.111) in the low salt. Combining the free energies for either
salt concentration for dense polymer regime and high salt in�nitely dilute
solution and for either salt concentration for dense polymer regime and low
salt in�nitely dilute solutions we, respectively, have

F (L+) =



−kBT ln

[√
πl+L+

6
erf

(
√

6ε√
l+L+

)]
−kBT ln

[√
πγ(L−L+)6/5

6
erf

(
√

6ε√
γ(L−L+)6/5

)]

−kBT ln

[√
πl+L+

6
erf

(
√

6ε√
l+L+

)]
−kBT ln

[√
πη(L−L+)2

6
erf

(
√

6ε√
η(L−L+)2

)]
.

(4.122)
The force expressions then follow from this equation as as

f(L+) =



1
10
kT

(
− 10

√
6
π
εe
− 6ε2

lL+

√
lL

3/2
+ erf

( √
6ε√

l
√
L+

)

+6

 2
√

6
π
εe
− 6ε2

γ(L−L+)6/5

√
γ(L−L+)8/5erf

( √
6ε

√
γ(L−L+)3/5

)
+ 5L−11L+

L−L+


1
2
kT

(
2
√

6
π
ε

(
2e
− 6ε2

η(L−L+)2

√
η(L−L+)2erf

( √
6ε√

η(L−L+)

) − e
− 6ε2

lL+

√
lL

3/2
+ erf

( √
6ε√

l
√
L+

)
)

+ L−3L+

(L−L+)L+

)
.

(4.123)
The accompanying force pro�les are shown below in Figure 4.3
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Figure 4.3: The force pro�les for concentrated to high and low salt in semi
dilute concentration with high salt on the left.

The translocation to the in�nitely dilute polymer concentration in the high
salt limit does not show any signi�cant bias. However, when in the low salt
limit the bias is clearly illustrated where the chain progresses 75% to the
concentrated side at a slower rate contrast to the case of both sides being of
in�nitely dilute concentrations. Thus the density asymmetry is manifested
through the rate of translocation.
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Chapter 5

Polyelectrolyte chain under

attractive wall con�nement

Short range adsorption behavior of Gaussian chain models has been investi-
gated to a large extent (31) with experimental results achieved. When in-
teractions such as excluded volume interactions are present the description of
the adsorption behavior becomes di�cult to determine (2). In this chapter
we shall model the polyelectrolyte chain translocation in the presence of an
attractive wall of uniform charge density σ in the regime where the e�ects
due to counterion condensation on the chain and on the surface respectively
obtained by Manning and Gouy-Chapman theory (31) will not be taken into
account. This is an initial investigation where the role of the length variation
upon the adsorption is not considered. We will do this by again employing
the approximate method of e�ective step length to account for other interac-
tions excluding the surface chain interactions. This enables the separation of
variables, that is, the probability distribution function can be written as the
product of three functions, each of single real space co-ordinate. The result
of this is the two dimensional di�usion equation with a renormalized Kuhn
length and a one dimensional di�usion equation, of renormalized step length,
with a surface chain potential.

5.1 Formulation

The strategy we are pursuing here closely follows the work of Wiegel (45).
We have discussed in the preceding chapter the e�ective Halmitonian of a
collective system of charged polymers. That is, the probability distribution
for the polyelectrolyte chain interacting with an attractive potential can be

60
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modelled as

G(R, L) =

∫ Rf (L)

Ri(0)

DR(s) exp

{
− 3

2l

∫ L

0

ds

(
∂R

∂s

)2

−
∫ L

0

∫ L

0

ds ds′ ∆ (R(s)−R(s′))− β

∫ L

0

d2S
σQ

εrl
e−κr

}
.

(5.1)

The last term represents the surface-chain segment interaction where r is the
distance between chain segment R(s) and the wall, κ is the inverse Debye
screening length, d2S is the surface element area, ε is the dielectric constant
and Q is charge of each monomer segment and �nally r is the distance from
the wall to the segment R(s) of the chain. The renormalized step length ap-
proximation method and Feynman-Kac theorem allow us to map the problem
to (27)[

∂

∂L
− l1

6
∇2 + β

2πσQ

εκl
e−κz

]
G(R(s),R0;L) = δ(R(s)−R(s′))δ(s− s′) (5.2)

where the chain-chain and chain-solvent interactions are encapsulated in the
e�ective step length l1 with the exclusion of the surface-chain interaction.
Fortunately, we have already computed this e�ective step length using a varia-
tional method approximation in Chapter 4. Upon the separability assumption
the solution can be written as

G(R(s),R0;L) = G(x, x0;L)G(y, y0;L)G(z, z0;L) (5.3)

where R0 = 〈0, 0, ε〉. The solution can then be derived from the two dimen-
sional di�usion equation in x and y, of renormalized step length, together with
the eigenvalue problem[

− l1
6

d2

dz2
− β 2πσQ

εκl
e−κz

]
ψm(z) = Emψm(z) (5.4)

for the z coordinate which has the boundary conditions

ψm(z = 0) = ψm(z →∞) = 0. (5.5)

The z-component of the Green function can be expressed as the expansion (44)

G(z, z0;L) =
∑
m

ψm(z)ψ∗m(z0)e−EmL. (5.6)

The transformation of this equation, see below, produces a Bessel di�erential
equation which has Bessel function solutions Jν(ξ). The x and y Green's
function component is

G(Rx,y,R0x,y;L) =
3

2πLl1
exp

{
− 3

2Ll1

[
x2 + y2

]}
(5.7)

Then the remaining task is to determine the eigenfunctions and their corre-
sponding eigenvalues for the z component.
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5.2 Adsorption Behaviour

An analogy to the quantum mechanical problem of a particle in a box with
the potential (35)

βV (z) = − 2π|σQ|
kBTεκl

e−κz (5.8)

suggests two regimes of di�erent characteristics. The regime where β < βc the
potential has no bound states(adsorbed states). Where βc is a certain critical
value. As for the case where β > βc the potential has at least one bound state.
That is for T < Tc there is a bound state with a ground state energy E0. In
the limit L→∞ (8)

G(z, z0;L) =
∑
m

ψm(z)ψ∗m(z0)e−EmL

G(z, z0;L) ≈ ψ0(z)ψ∗0(z0)e−E0L

(5.9)

where the sum is then dominated by the ground state term where

ψ0(z) ≈ Jν0

((
48π|σQ|
kBTεκ3ll1

) 1
2

e−
κz
2

)
(5.10)

as will be discussed shortly. ν0 is the value corresponding to the ground state
energy, (see (5.19) below). This eigenfunction is derived from the transforma-
tion of (5.4) by

φ(ξ) = ψ(z) (5.11)

ξ =

(
48π|σQ|
kBTεκ3ll1

) 1
2

e−
κz
2 (5.12)

since

d2

dz2
=

d2ξ

dz2

d

dξ
+

(
dξ

dz

)2
d2

dξ2

(5.13)

and (
dξ

dz

)2

=

{(
48π|σQ|
kBTεκ3ll1

) 1
2 [
−κ

2
e−

κz
2

]}2

=
κ2

4
ξ2

(5.14)

while

d2ξ

dz2
=

(
48π|σQ|
kBTεκ3ll1

) 1
2
[
κ2

4
e−

κz
2

]
=
κ2

4
ξ

(5.15)
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therefore [
− l1

6

d2

dz2
− β 2πσQ

εκl
e−κz

]
φ(ξ)

=

[
− l1

6

(
d2ξ

dz2

d

dξ
+

(
dξ

dz

)2
d2

dξ2

)
− β 2πσQ

εκl
e−κz

]
φ(ξ)

= −κ
2l1ξ

2

24

[
1

ξ

d

dξ
+

d2

dξ2
− β 48πσQ

ξ2εκ3ll1
e−κz

]
φ(ξ)

(5.16)

which eventually transforms (5.4) the eigenvalue expression to the Bessel equa-
tion (44)

d2φ

dξ2
+

1

ξ

dφ

dξ
+

(
1 +

λ

ξ2

)
φ = 0 (5.17)

upon the de�nition

λ =
24E

κ2l1

with the boundary conditions

φ(0) = 0 (5.18)

φ

((
48π|σQ|
kBTεκ3ll1

) 1
2

)
= 0. (5.19)

The regime that has a bound state (adsorb) is a solution to the di�erential
equation when λ < 0. The solutions to this equation is given by Bessel func-
tions of the �rst kind (45) that is

φ(ξ) = Const× Jν(ξ) (5.20)

where ν is determined by solving (45)

Jν

((
48π|σQ|
kBTεκ3ll1

) 1
2

)
= 0 (5.21)

(5.22)

upon the condition that
λ = −ν2, ν > 0. (5.23)

This expression shows that the ground state energy E0 corresponds to the case
where ν = νmax =: ν0. This value is obtained for the �rst time when (45)(

48π|σQ|
kBTεκ3ll1

) 1
2

= j0,1 = 2.4048. (5.24)
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The solution(s) which corresponds to the bound state (s) to this algebraic
expression thus exists only when(

48π|σQ|
kBTεκ3ll1

) 1
2

> j0,1 = 2.4048. (5.25)

The critical temperature Tc between the adsorbed and unadsorbed state then
follows as

Tc =
48π|σQ|

j2
0,1kBεκ

3ll1
. (5.26)

This equation determines the critical point between the state of adsorption
and unadsorption to the surface. In the limits of low and high salt we have
shown the values of the renormalized step length l1 at in�nitely dilute solutions
so that the critical temperature is determined by

Tc ∼


|σQ|
εκ3lL

κ→ 0

|σQ|
εκ

11
5 lL1/5

κ (Ll1)
1
2 →∞.

(5.27)

This illustrates that in the strong screening case, which corresponds to the
�exible chain, achieving adsorption would require greater temperature reduc-
tion when compared to the rod-like chain limit of low salt. This expressed
di�erently, when the excluded volume interaction dominates the electrostatic
interactions the critical temperature scales as

Tc ∼ L−
1
5 . (5.28)

5.3 The force driving translocation�adsorbing

trans-side and hard wall cis-side

Here we approximate the free energy in a scenario where the trans-side has
an attractive wall contrast to the cis-side which has the hard wall. The free
energy of the cis-side is given by equation (2.13)

F−(L+) = −kBT ln

{√
πl-(L− L+)

6
erf

( √
6ε√

(L− L+)l-

)}
. (5.29)
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We can now estimate the free energy F+ of the trans-side from equation (2.3),
(5.7) and (5.9) as follows

Z+ =

∫
dr

∫
dR0G(R,R0, L+)

Z+ =

∫ ∞
−∞

dxdy

(
3

2πL+l1

)
exp

{
3

2L+l1

[
x2 + y2

]}
×
∫ ∞
ε

dzψ0(z)ψ∗0(z0)e−E0L+

Z+ = e−E0L+

∫ ∞
ε

dzJν0

((
48π|σQ|
kBTεκ3ll1

) 1
2

e−
κz
2

)
J∗ν0

((
48π|σQ|
kBTεκ3ll1

) 1
2

e−
κε
2

)
(5.30)

substituting E0 from (5.17) and (5.23) we have

Z+ = exp

{
−κ

2l1ν
2
0

24
L+

}
J∗ν0

((
48π|σQ|
kBTεκ3ll1

) 1
2

e−
κε
2

)

×
∫ ∞
ε

dzJν0

((
48π|σQ|
kBTεκ3ll1

) 1
2

e−
κz
2

)
. (5.31)

The integral of Jν0 above, in the limit where L is large such that the argument
is small, is divergent. However, since our interest is on the logarithm of this
expression we then conclude that

F+ ' kBTα

(
κ2l1ν

2
0

24

)
L+ (5.32)

where

α = J∗ν0

((
48π|σQ|
kBTεκ3ll1

) 1
2

e−
κε
2

)
. (5.33)

In the following sections we shall determine the full approximate translocation
force expressions using the combination of these free energies (5.31), (5.34)
and the derived renormalized Kuhn lengths.

5.3.1 High and low salt limits � in�nitely dilute solution

� High salt
In a similar token as in (4.106) the renormalized step length of the at-
tractive wall side is given by

l1 = γL1/5. (5.34)
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Therefore, by combining (5.31) and (5.34), the total free energy is given
by

F−(L+) = kBTα

(
κ2l1ν

2
0

24

)
L+

−kBT ln

{√
πl-(L− L+)

6
erf

( √
6ε√

(L− L+)l-

)}

= kBTα

(
κ2γν2

0

24

)
L

6/5
+

−kBT ln

{√
πl-(L− L+)

6
erf

( √
6ε√

(L− L+)l-

)}
.

(5.35)

We then deduce the force that drives translocation as

f = − 1

20
kTαγκ2 5

√
L+ν

2
0

+
1

10
kT

 2
√

6
π
εe

6ε2

l2(L+−L)

l (L− L+) 3/2erf

(
√

6ε

l
√
L−L+

) +
1

L+ − L

 .

(5.36)

This force is depicted in Figure 5.1 below

20 40 60 80 100
L+

-0.18

-0.16

-0.14

-0.12

-0.10

-0.08

-0.06

-0.04

f

Figure 5.1: Force pro�le for translocation between the attractive wall for in-
�nitely dilute high salt limit side and theta conditions.

� Low salt
In a similar token as in (4.109) the renormalized step length of the at-
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tractive wall side is given by

l1 = ηL. (5.37)

Therefore, by combining (5.31) and (5.34), the total free energy is given
by

F−(L+) = kBTα

(
κ2ην2

0

24

)
L2

+

−kBT ln

{√
πl-(L− L+)

6
erf

( √
6ε√

(L− L+)l-

)}
.

(5.38)

We then deduce the force that drives translocation as

f =
1

12
kT

 12
√

6
π
εe
− 6ε2

l2(L−L+)

l (L− L+) 3/2erf

(
√

6ε

l
√
L−L+

) − ακ2ηL+ν
2 +

6

L+ − L

 .

(5.39)

This force is depicted in Figure 5.2 below

20 40 60 80 100
L+

-14

-12

-10

-8

-6

-4

-2

f

Figure 5.2: Force pro�le for translocation between the attractive wall for in-
�nitely dilute low salt limit side and theta conditions.

5.3.2 High and low salt limits � semidilute solution

� High salt
In a similar token as in (4.113) the renormalized step length of the at-
tractive wall side is given by

l1 = δl−1/2. (5.40)
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Therefore, by combining (5.31) and (5.34), the total free energy is given
by

F−(L+) = kBTα

(
κ2δl−1/2ν2

0

24

)
L+

−kBT ln

{√
πl-(L− L+)

6
erf

( √
6ε√

(L− L+)l-

)}
.

(5.41)

We then deduce the force that drives translocation as

f =
1

24
kT

 24
√

6
π
εe
− 6ε2

l2(L−L+)

l (L− L+) 3/2erf

(
√

6ε

l
√
L−L+

) − αδκ2ν2

√
l

+
12

L+ − L

 .

(5.42)

This force is depicted in Figure 5.3 below

20 40 60 80 100
L+

-0.04180

-0.04175

-0.04170

f

Figure 5.3: Force pro�le for translocation between the attractive wall for semi-
dilute high salt limit side and theta conditions.

� Low salt
In a similar token as in (4.113) the renormalized step length of the at-
tractive wall side is given by

l1 = µl−2/3. (5.43)
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Therefore, by combining (5.31) and (5.34), the total free energy is given
by

F−(L+) = kBTα

(
κ2µl−2/3ν2

0

24

)
L+

−kBT ln

{√
πl-(L− L+)

6
erf

( √
6ε√

(L− L+)l-

)}
.

(5.44)

We then deduce the force that drives translocation as

f =
1

24
kT

 24
√

6
π
εe
− 6ε2

l2(L−L+)

l (L− L+) 3/2erf

(
√

6ε

l
√
L−L+

) − ακ2µν2

l2/3
+

12

L+ − L


(5.45)

This force is depicted in Figure 5.4 below

20 40 60 80 100
L+

-0.04180

-0.04175

-0.04170

f

Figure 5.4: Force pro�le for translocation between the attractive wall for semi-
dilute low salt limit side and theta conditions.

The result from the pro�les derived above is that the active wall enhances the
translocation in general. In the in�nitely dilute density condition the role of
salt concentration is depicted in Figure 5.1 and Figure 5.2. The semidilute
case displays a nearly constant rate of translocation. In both scenarios above
95% of the chain thread through.
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Chapter 6

Summary and outlook

6.1 Summary of results

Our discussion is mainly based on the force pro�les we have derived. We have
computed the force that drives translocation under various conditions on the
basis of the method of images. The implementation of this method is only
limited to Markov chains. Thus we followed the renormalization of the step
length approximation. In the second chapter we illustrated this strategy for
the phantom chain. As intuitively expected, the translocation force reaches a
minimum when the chain has threaded half of its length. We then numerically
shown in Figure 2.3 how far would the chain translocate to reach the minimum
force. This was illustrated by varying the Kuhn lengths by 0.5 units in each
side as a re�ection of di�erent solvent conditions. In this �gure we understand
the gradient of the force as function of length L as well. In contrast to the
symmetric case the chain threads to by 25 units of length in this particular
example with the length chosen to be 100 units. That is, the chain will further
thread a 25 units to the side of 0.5 units step length.

In the following chapter we analytically estimate the renormalized Kuhn
length for a chain under good solvent conditions threading to the cis-side of
theta solvent conditions. We follow a similar program as before and conclude
that, as shown in Figure 3.1, that the chain will thread further from the weak
excluded volume strength to 30 and 20 units for an increased volume strength
to respectively, 3 and 60 units. This we �nd interesting since it demonstrate
sometime somewhat complex relationship between the translocation force and
excluded volume interaction strength and hence the translocation time. It
is also worthwhile to note the rates of translocation for the di�erent regimes
depicted on the same �gure.

The essence of the analytic calculation of the renormalized Kuhn length
that we outlined in Chapter 3 is taken a step further for the case where the
electrostatic interactions play a role. There exist various regimes of salt con-
centration and chain densities. We considered three cases after the derivation

70
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of the generic integral expression describing the renormalized step length. The
three situations are those of translocation between high and low salt condi-
tions for the in�nitely dilute conditions on both sides of the partition and
semidilute conditions on both sides of the partition. Also, the translocation
between the concentrated solution condition to the high and low salt limits
of in�nitely dilute conditions. In the �rst scenario of in�nitely dilute polymer
density between high and low salt the threading traverses till 70 units towards
the high salt side. The rate of translocation is depicted in Figure 4.1. In the
semidilute regime the electrolytic conditions asymmetry do not seem to have
any signi�cant bias on the translocation as shown in Figure 4.2. The e�ect of
polymer density asymmetry is illustrated in Figure 4.3. The translocation to
the in�nitely dilute polymer concentration in the high salt limit does not show
any signi�cant bias. However, when in the low salt limit the bias is clearly
illustrated where the chain progresses 75% to the concentrated side at a slower
rate contrast to the case of both sides being of in�nitely dilute concentrations.
Thus the density asymmetry is manifested through the rate of translocation.

The result from the pro�les derived above is that the active wall enhances
the translocation in general. In the in�nitely dilute density condition the role
of salt concentration is depicted in Figure 5.1 and Figure 5.2. The semidilute
case displays a nearly constant rate of translocation. In both scenarios above
95% of the chain thread through.

6.2 Outlook

It would be interesting to study the role of the geometry of the con�ning surface
such as that of a curved sphere to translocation, possibly, in conjuction with
adsorption. These curved geometries are encountered in biological systems. As
a motivating example, Alexander (1) found that adsorption on curved surfaces
changes the density pro�le of the adsorbed polymer chains. A �uctuating
surface would be a good model to bio-membranes.

As a further study, the hydrodynamical aspect would be a natural follow-
ing step where coupled Navier-Stokes and Langevin equations would have to
be solved to determine quantities such as the segment-to-segment correlation
function.
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Appendix A

Structure function

The integral ∫ L

0

ds

∫ L

0

ds′ e−
l
6
k2|s−s′| (A.1)

upon the transformation

σ =
s

L
; σ′ =

s′

L
and α =

k2lL

6

becomes ∫ L

0

ds

∫ L

0

ds′ e−
l
6
k2|s−s′|

= L2

∫ 1

0

dσ

∫ 1

0

dσ′e−α|σ−σ
′| (A.2)

and further

τ = σ − σ′ and S =
1

2
(σ + σ′)

which has the Jacobian equivalent to unity. This yields

L2

∫ 1

0

dσ

∫ 1

0

dσ′e−α|σ−σ
′|

= 2L2

∫ 1/2

0

dS

∫ 2S

−2S

dτe−α|τ |

= 2L2

∫ 1/2

0

dS

[∫ 0

−2S

dτeατ +

∫ 2S

0

dτe−ατ
]

= 4L2

∫ 1/2

0

dS

∫ 2S

0

dτe−ατ

=
4L2

α

∫ 1/2

0

dS(1− e−2αS)

(A.3)
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this results to∫ L

0

ds

∫ L

0

ds′ e−
l
6
k2|s−s′| = L2

[
2

α2

(
−1 + α + e−α

)]
= L2f(α)

=
L2

1 + α/2∫ L

0

ds

∫ L

0

ds′ e−
l
6
k2|s−s′| =

L2

1 + k2lL
12

(A.4)

where we have used the Debye function approximation (8) for f(α).
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