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SUMMARY 

The biologically catalysed oxidation of pyrite in the outer layers of coal waste dumps leads to the 

formation of acid mine drainage. The oxidation of pyrite to ferric iron and sulphate is a complex 

process involving various abiotic and biologically catalysed reactions. 	Pyrite is abiotically 

oxidized by ferric iron, with the formation of thiosulphate and ferrous iron. Thiosulphate 

decomposes to form various inorganic sulphur compounds. Bacterial catalysis of pyrite oxidation 

is achieved by iron-oxidizing bacteria oxidizing ferrous iron to ferric iron. Bacteria that oxidize 

sulphur compounds assist the catalysis by oxidizing thiosulphate and its decomposition products. 

Heterotrophic organisms may play a role by consuming organic substances inhibitory to the 

lithotrophic bacteria. 

Abiotic ecological factors, acid formation and populations of iron-oxidizing bacterial groups were 

studied in 10 differently constructed pilot scale coal waste dumps, as the second phase of a study 

which started in September 1993. Gas samples were withdrawn weekly from coal waste through 

permanently buried stainless steel probes, for analysis in the field using a portable oxygen/carbon 

dioxide meter. Samples of coal waste were extracted by auger for analysis of moisture, pH and 

microbial populations. The analyses of oxygen and pH can be recommended for the routine 

monitoring of rehabilitated waste dumps. 

Covers of Avalon soil 0.3 or 0.5 m thick, were not adequate to prevent acidification. Coal waste 

covered with 0.7 m compacted beneath 0.3 m uncompacted Avalon soil, showed a slow pH decline, 

but reached approximately pH 3 in 1997. Covers of compacted Estcourt soil beneath tmcompacted 

Avalon soil to a cover depth of 1 m were effective in preventing acidification and generally kept the 

coal waste anaerobic. However, all covers developed cracks during drought conditions in 1995, 

allowing aeration. Low pH of some samples from these dumps during 1995/1996 may have 

indicated the start of acidification. 

Bacteria oxidizing high concentrations of ferrous iron and considered to be Thiobacillus 

ferrooxidans, were monitored routinely, but may not have been the dominant iron-oxidizer, as 

population counts using media with a lower ferrous iron concentration were higher. The majority of 

the latter organisms could also not oxidize sulphur, hence were not T. ferrooxidans. The 
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populations of the high ferrous iron-oxidizing bacteria were affected by pH, tending to be high in 

acidified and low in non-acidified coal waste. 

Investigations of microbial populations forming iron-oxidizing consortia in enrichment cultures 

from coal waste and acid drainage samples showed the presence of T. ferrooxidans, the 

heterotrophic bacterial genus Acidiphilium, fungi of the genus Penicillium, unidentified filamentous 

fungi, including Cladophialophora-like morphological types, and a yeast of the genus Dipodascus. 

In interaction studies, the Penicillium isolate had an inhibitory effect on T. ferrooxidans (subjected 

to organic compound stress), but the Cladophialophora-like fungi reduced inhibition by organics. 

Fungi have not previously been studied in detail as components of iron-oxidizing consortia, but the 

bacterial isolations agree with those elsewhere, indicating that appropriate conclusions from acid 

mine drainage research in other parts of the world can be applied in KwaZulu-Natal. 
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OPSOMMING 

Die biologies gekataliseerde oksidasie van piriet in die buitenste lae van steenkoolafvalhope lei tot 

die vorming van suur mynafloopwater. Die oksidasie van piriet tot ferri-yster en sulfaat is 'n 

komplekse proses wat abiotiese en biologies gekataliseerde reaksies insluit. Piriet word abioties 

deur ferri-yster geoksideer, met die vrystelling van tiosulfaat en ferro-yster. Tiosulfaat verval om 

verskeie anorganiese swawelverbindings te vorm. Bakteriese katalise van pirietoksidasie word deur 

ysteroksiderende bakteriee wat ferro-yster na ferri-yster oksideer, bewerkstellig. Bakteriee wat 

swawelverbindings oksideer maak 'n bydrae tot die katalise deur tiosulfaat en vervalprodukte 

daarvan te oksideer. Heterotrofe organismes mag ook 'n rol speel deur organiese verbindings wat 

die litotrofe bakteriee mag inhibeer, te verbruik. 

Abiotiese ekologiese faktore, suurvorming en bevolkings ysteroksiderende bakteriee is in 10 

verskillend gekonstrueerde loodsskaal steenkoolafvalhope bestudeer, as die tweede fase van 'n 

studie wat in September 1993 begin het. Gas monsters is weekliks uit die steenkoolafval onttrek 

deur vlekvrye staal peilers wat permanent daarin begrawe is, en met behulp van 'n draagbare 

suurstoflkoolstofdioksiedanaliseerder in die veld ontleed. Monsters van die steenkoolafval is met 

behulp van 'n kleiboor vir die analise van vog, pH en mikrobepopulasies geneem. Die analise van 

suurstof en pH kan aanbeveel word vir die roetiene monitering van gerehabiliteerde afvalhope. 

Bedekkings van 0.3 of 0.5 m Avalongrond was nie voldoende om suurvorming te verhoed nie. 

Steenkoolafval wat met 0.7 m gekompakteerde en 0.3 m ongekompakteerde Avalongrond bedek is, 

het 'n stadige pH-daling getoon, maar het in 1997 ongeveer pH 3 bereik. Bedekkings van 

gekompakteerde Estcourtgrond onder ongekompakteerde A valongrond met 'n totale dikte van 1 m, 

was effektief in die voorkoming van suurvorming. Hulle het oor die algemeen die steenkoolafval 

anaerobies gehou, maar aile bedekings het tydens die droogte in 1995 krake ontwikkel, wat suurstof 

laat binnedring het. 'n Lae pH gedurende 1995/1996 by sommige monsters uit hierdie hope mag 

die begin van suurvorming aangedui het. 

Bakteriee wat hoe konsentrasies ferro-yster oksideer en wat as Thiobacillus ferrooxidans beskou is, 

was moontlik nie die dominante ysteroksideerder nie, aangesien bevolkingstellings waar 'n medium 

met 'n laer konsentrasie ferro-yster gebruik is, hoer bevolkings getoon het. Die meerderheid van 

laasgenoemde organismes kon ook nie swawel benut nie en dus nie T. ferrooxidans was nie. Die 
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bevolkings van die hoe ferro-ysteroksiderende bakteriee is deur pH beInvloed, met 'n geneigdheid 

tot hoe bevolkings in suur en lae bevolkings in minder suur steenkoolafval. 

Ondersoeke na die rnilcrobebevollcings wat in ysteroksiderende konsortia in verryldngslculture vanaf 

steenkoolafval- en suur mynafloopwatermonsters voorgekom het, het die teenwoordigheid van 7'. 

ferrooxidans, die heterotrofe balcteriegenus Acidiphilium, fungi van die genus Penicillium, 

ongeIdentifiseerde fungi, insluitend Cladophialophora-agtige tipes en 'n gis van die genus 

Dipodascus aangetoon. By interaksiestudies het die Penicillium-isolaat 'n inhiberende effek op T 

ferrooxidans (onderworpe aan organiese verbindingstres) gehad, maar die Cladophialophora-agtige 

fungi het die inhibisie deur organiese verbindings verminder. Fungi is nog the in detail as 

komponente van ysteroksiderende konsortia bestudeer the, maar die isolasies van bakteried stem 

saam met die van elders wat aandui dat toepaslike gevolgtreldcings ten opsigte van suur 

mynafloopwatemavorsing vanaf ander dele van die wereld ook in KwaZulu-Natal toegepas kan 

word. 
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GENERAL INTRODUCTION 

Drainage from coal mines is typically high in acidity (as sulphuric acid), iron and sulphates 

(Kleinmann, 1979). Sulphuric acid and ferric iron, resulting from the chemical and biological 

oxidation of pyrite, enter the drainage and runoff areas surrounding coal mine waste dumps. 

Pollution from coal mine drainage water causes great concern and is difficult to treat. The rate-

limiting step for the oxidation of pyrite is the oxidation of ferrous to ferric iron, which then 

oxidizes pyrite (Hutchins et al., 1986; Lundgren and Silver, 1980; Moses et al., 1987; Mustin et 
al., 1992; Sand et al., 1995). Thiobacillus ferrooxidans and other iron-oxidizing bacteria 

growing in the aerobic outer layers of coal waste dumps play a major role in the formation of 

acid drainage (Kleinmann and Crerar, 1979; Kleinmann et al., 1981). As T. ferrooxidans grows 

as an aerobic micro-organism when it oxidizes iron (Kelly and Harrison, 1989), anaerobic 

conditions can be expected to inhibit iron oxidation by this organism, thereby reducing the 

production of acid drainage. 

Many of the older coal waste dumps in South Africa are producers of acid drainage. (Director 

General: Water Affairs, 1987-88; Henzen and Pieterse, 1978; Kemp, 1962) Recent 

developments in dump construction and rehabilitation techniques have the aim of counteracting 

both acid drainage and spontaneous combustion of the coal waste by reducing access of air to the 

dumps and the flow of water through and from the dumps. Dump compaction is one such 

technique; covering dumps with soil which is vegetated or with a clay cap and vegetated soil are 

other techniques. 

The effects of these dump construction and rehabilitation techniques on acid drainage production 

have to be assessed. Hydrological and chemical studies of the dumps are important, but studies 

of the occurrence of iron-oxidizing bacteria in the dumps, particularly of population sizes, may 

most rapidly give an evaluation of the success of different dump construction techniques in 

limiting acid drainage and also indicate where problems still exist, i.e. where construction or 

rehabilitation procedures are inadequate to prevent bacterial development and do not block the 

bacterial reaction(s) in the production of acid drainage. Attention needs to be focussed on the 

outer layers of dumps for ease of sampling and because of the limited penetration of oxygen into 

dumps which are not even covered or compacted. From reports elsewhere (Dugan, 1975; 

Erickson, 1985; Good etal., 1970; Goodman et al., 1983) conditions may become anaerobic at 

depths from as shallow as 30 cm or less to several m, with fluctuation due to dump 'breathing'. 

Norris and Kelly (1982) reviewed evidence of the possibility that acid formation might be 

caused not only by T ferrooxidans, but also by several other bacterial species found in pyritic 
materials undergoing acidification. Although T ferrooxidans was confirmed as the most 
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important iron-oxidizing microorganism in the mesophilic temperature range, roles of the iron-

oxidizing Leptospirillum ferrooxidans and the sulphur-oxidizing Thiobacillus thiooxidans were 

sometimes indicated (see also Wichlacz and Unz, 1981). Furthermore, the strictly lithotrophic 

iron-oxidizing bacteria of the species T. ferrooxidans live in close association with heterotrophic 

bacteria in their environment. Many of these heterotrophic bacteria have been placed in the 

genus Acidiphilium (Harrison, 1981; 1984, 1989; Johnson and Kelso, 1983; Wichlacz et al., 

1986). These bacteria consume organic molecules that are inhibitory to the lithotrophs, thereby 

reducing the inhibition and enhancing the growth of the lithotrophs (Harrison, 1984). 

Moderately thermophilic, mixotrophic or facultatively chemolithotrophic iron-oxidizing bacteria 

have been isolated and studied by Norris and Barr (1985) and Ghauri and Johnson (1991), while 

Johnson ,et al. (1992) and Pronk and Johnson (1992) have isolated and studied mesophilic 

heterotrophic iron-oxidizing bacteria from acid mine drainage. No studies have previously been 

conducted on the consortia of microorganisms involved in acid mine drainage production in 

northern KwaZulu-Natal or even in other parts of South Africa. 

Kemp (1962) reported serious pollution of rivers in northern KwaZulu-Natal as a result of acid 

mine drainage from coal mining operations in that area. Recently, acting on recommendations 

of Report WP E-87 of the Director General: Water Affairs (1987-88), the Department of Water 

Affairs and Forestry has started to rehabilitate old coal waste dumps under its jurisdiction. The 

strategy being followed is to collect all the coal waste of a mine into a well-defined dump, which 

is then covered with a layer of clay followed by topsoil to give a total cover thickness of 1 m. A 

suitable vegetation cover, for example, grass, is established on the topsoil. This rehabilitation 

technique appears superficially to be highly successful, but is expensive, costing in the region of 

R2 000 000 per dump. Before the present investigation, scientific assessment of the inhibition of 

acid-producing microorganisms by the covers and whether similar inhibition could be achieved 

by a thinner, cheaper cover has been lacking. Also the hydrology of dumps under covers of 

different types under the conditions of northern KwaZulu-Natal has not been determined. Pilot 

scale coal waste dumps without and with different covers were constructed by the Department of 

Water Affairs and Forestry for the microbiological investigations described in this thesis, as well 

as a parallel hydrological investigation conducted by Wates, Meiring and Barnard (1993, 

1995a,b) as project K5/575 of the Water Research Commission. 

The objectives of this study were: 

(i) 
	

Comparative quantitative and qualitative studies of iron-oxidizing bacterial populations 

(for example, Thiobacillus ferrooxidans), which could catalyse acid drainage production 

in the outer layers of coal waste dumps of different construction (different rehabilitation 

techniques), namely, non-compacted (control) and compacted dumps, dumps without and 

with clay and/or soil caps, vegetated and non-vegetated dumps. 
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(ii) From the results of (i), identification of dump construction or rehabilitation techniques 

which most successfully limit populations of acid drainage-producing bacteria. 

(iii) From the results of (i), and accompanying studies of ecological determinants in the 

dump, identification of ecological factors in the variously constructed dumps which 

cause acid drainage-producing bacteria to flourish or to be suppressed. 

(iv) From (ii) and (iii), an assessment of the success of present construction and rehabilitation 

techniques for coal waste dumps in inhibiting or limiting the development of iron-

oxidizing bacteria, thereby inhibiting or reducing the production of acid mine drainage. 

(v) Determination of the main microbial species or groups involved in the production of 

acidity in coal waste dumps and the drainage water therefrom in northern Kwazulu-Natal, 

including the possible role of consortia. 

To attain these objectives the research was divided into two distinct experimental parts, 

Experimental Part 1 and Experimental Part 2. 

In Experimental Part 1 the effects of different dump construction techniques on abiotic ecological 

factors and bacteria causing acid mine drainage were investigated. The study was conducted using 

the pilot scale dumps constructed by the Department of Water Affairs and Forestry. 

The abiotic ecological determinants, rainfall and moisture in the coal waste, oxygen and carbon 

dioxide concentrations of the atmosphere in the coal waste and the pH of the coal waste were 

studied. The last four determinations were made in the coal waste to a depth of 15-30 cm in 

covered pilot scale dumps (mini-dumps or cells) or between depths of 15 and 30 cm in uncovered 

pilot scale dumps (outer layer of the coal waste). The present investigation followed that of 

Cleghorn (1997) to give studies extending over 3- or 4-year periods. 

Monitoring of bacterial population sizes in samples from the outer layer of the coal waste in the 

pilot scale dumps in the present study included populations of the following bacteria: 

(i) Acidophilic chemolithotrophic bacteria oxidizing high concentrations of ferrous iron 

(assumed during the planning of the experiment to be T. ferrooxidans). 

(ii) Acidophilic bacteria oxidizing high concentrations of ferrous iron at relatively high 

temperature and low pH. 
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(iii) Acidophilic bacteria oxidizing moderate concentrations of ferrous iron. 

(iv) 	Acidophilic bacteria oxidizing moderate concentrations of ferrous iron and sulphur (S °). 

(v) Acidophilic bacteria oxidizing moderate concentrations of ferrous iron, sulphur and 

thiosulphate. 

The group under (i) was monitored in every sample over a 3-year period, and the groups under (ii)-

(v) over shorter periods, which usually included at least three samplings. When the significance or 

not of a particular group was established, another group was investigated. 

As nothing was known of the identity of microorganisms involved in acid mine drainage formation 

in the Klip River Coal Field of northern Kwazulu-Natal and as the bacterial groups investigated 

under Experimental Part 1 of this investigation were not studied as far as establishing their identity, 

the following studies were undertaken in Experimental Part 2: 

(i) Development of stable iron-oxidizing enrichment cultures, especially in the selective 

medium for acidophilic chemolithotrophic high ferrous iron-oxidizing bacteria, from coal 

waste samples from mine dumps in the Klip River Coal Field. Attempted isolation of the 

iron-oxidizing bacteria from these cultures. Isolation and identification of heterotrophic 

microorganisms (bacteria and fungi) growing in association with the iron-oxidizing bacteria 

in the enrichment cultures (microbial consortia). 

(ii) Development of stable iron-oxidizing cultures in the selective medium for acidophilic 

chemolithotrophic high ferrous iron-oxidizing bacteria, from acid mine drainage water from 

mine dumps in the flip River Coal Field. Isolation and identification of iron-oxidizing 

bacteria from these cultures. Isolation and identification of heterotrophic microorganisms 

(bacteria and fungi, including yeasts) growing in association with the iron-oxidizing bacteria 

in the enrichment cultures. 

(iii) A study of the effects of heterotrophic fungi isolated under (i) and (ii) on growth and iron-

oxidation by T ferrooxidans. 
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LITERATURE REVIEW 

CHEMICAL, MICROBIOLOGICAL AND ECOLOGICAL 
ASPECTS OF PYRITE OXIDATION IN RELATION TO ACID 

MINE DRAINAGE FORMATION 

Introduction 

Coal and other minerals are enclosed in geological formations of a reduced nature, and are often 

associated with pyrite. When mining activities expose pyrite to oxidizing agents such as molecular 

oxygen (02) and ferric iron, a complex oxidation process occurs. This process is a combination of 

auto-oxidation and bacterially catalysed oxidation reactions (Atlas and Bartha, 1993; Bos et aL, 1994; 

Mustin et al., 1992). The phenomena involved in the process include oxidation-reduction processes, 

as well as solid-solution equilibria, involving ions and intermediate sulphur-containing compounds. 

Furthermore, the semiconducting properties of pyrite also play a role. 

The oxidation of sulphidic minerals, such as pyrite, is central to a number of environmentally and 

economically important issues. These include the formation of acid mine drainage, the leaching of 

gold, copper, uranium and other minerals from ore and the biogeochemical cycling of sulphur, carbon, 

oxygen, iron and other metals (Hutchins et al., 1986, Lundgren and Silver, 1980; Moses et al. ,1987; 

Mustin et al., 1992). An understanding of the mechanisms of pyrite oxidation is needed to understand 

these processes. 

Various bacterial groups catalyse the oxidation of pyrite. These organisms can directly catalyse pyrite 

oxidation by the oxidation of ferrous iron to ferric iron which can then act as an oxidant in pyrite 

oxidation. Other organisms indirectly catalyse pyrite oxidation, either by stimulating the growth of 

iron-oxidizing organisms or by oxidizing intermediary sulphur compounds formed during the 

oxidation of pyrite ( Harrison, 1984; Johnson, 1995a; Sand et al., 1995; Schippers et al., 1996). 

In this review pyrite oxidation will be described as both an abiotic and a biologically catalysed 

process. The classical view of biological pyrite oxidation will be evaluated critically, taking into 

account recent observations and alternative hypotheses. This review supports the model of bacterial 

pyrite oxidation proposed by Sand et al. (1995), based on the concept that the oxidation of pyrite is a 

chemical process driven by the concurrent reduction of ferric iron to ferrous iron. Bacterial catalysis 

of this process is achieved by the lithotrophic bacteria, Thiobacillus ferrooxidans and Leptospirillum 
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ferrooxidans, regenerating ferric iron during their energy metabolism and concentrating ferric iron in 

their extracellular polymer matrix (Gehrke et al., 1995). Further, the oxidation of thiosulphate, a 

major intermediate product of pyrite oxidation, is also driven by the reduction of ferric iron in abiotic 

processes, as well as by enzymatic catalysis by T. ferrooxidans and other Thiobacillus (Pronk et al., 

1990; Schippers et al., 1996). The mechanism of pyrite oxidation and the involvement of the energy 

metabolism of the lithothrophic bacteria therein will therefore be described as a cyclical process 

dependent on the ferric:ferrous iron redox couple. This review will also focus on the characteristics of 

the most important organisms hitherto identified that directly or indirectly catalyse the formation of 

acid mine drainage. An understanding of these organisms can assist in understanding acid mine 

drainage formation and in the development of strategies for the isolation, enumeration and 

identification of the organisms involved in the microbial ecology of the process. 

Chemistry of Pyrite Oxidation 

Early models of pyrite oxidation 

The solubility of pyrite is very low, but it is chemically unstable in aqueous environments containing 

molecular oxygen or ferric iron as oxidizing agents. The overall reactions for the oxidation of pyrite 

by these oxidizing agents are as follows (Moses et al., 1987): 

2FeS2  + 702  + 2H20 —> 2Fe2++ 45042-  + 4H+ (1)  

FeS2  + 14Fe3+ + 8H20 —> 15Fe2+ + 2S042" + 16H+ (2)  

At and above neutral pH, oxidation by atmospheric or dissolved oxygen (reaction 1) occurs 

spontaneously and rapidly, but this reaction slows down dramatically below pH 4,5 (Kleinmann et 

a/. ,1981). Moses et aL (1987) indicated that in terms of macro-reaction rates ferric iron is the preferred 

oxidizing agent (as opposed to dissolved oxygen) in solutions between pH 2 and pH 9. However, the 

availability of ferric iron for oxidation is limited by its low solubility at pH higher than 3.5 (Sand et 

al., 1995). 

Although pyrite oxidation can occur abiotically, micro-organisms (bacteria) play an important role in 

catalysing the process, especially in low pH environments. The resulting high rates of pyrite oxidation 

are significant in the formation of acid mine drainage and other biogeochemical phenomena already 

mentioned (Atlas and Bartha, 1993; Bos et al. 1994; Kleinmann and Crerar, 1979; Kleinmann et al., 
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1981; Lundgren and Silver, 1980; Silverman, 1967). Historically the mechanisms by which micro-

organisms catalyse the oxidation of pyrite and other sulphide minerals were considered to be via the 

so-called direct mechanism, involving direct enzymatic attack on the pyrite, or the indirect 

mechanism, where inorganic products of microbial metabolism acted as reagents (Ewart and Hughes, 

1991; Lundgren and Silver, 1980; Sand et al., 1995; Silverman, 1967). These mechanisms were 

believed to run alongside each other, and to act synergistically. 

Direct mechanism. The postulated direct mechanism for the oxidation of sulphide minerals was seen 

as a purely enzymatic process that does not entail the use of ferric iron as oxidizing agent (Sand et al., 

1995). It involves physical contact between the bacteria and the sulphide mineral surface. The 

bacteria then oxidize both the metal and the sulphur moieties of the sulphide mineral enzymatically, 

using molecular oxygen (02) as electron acceptor. The reaction therefore can be represented as: 

MS + 202 
	micro-organisms 	

M2+  — — sn 
4
2- 	

(3) 

In experiments using iron-free synthetic cobalt and nickel sulphides and washed cells of Thiobacillus 

ferrooxidans the bacteria consumed oxygen and solubilized the metals as sulphate, suggesting that the 

direct mechanism was involved (Duncan et al., 1967; Rickard and Vanselow, 1978). 

Indirect mechanism. Ferric iron is the main oxidizing agent of pyrite and other sulphidic minerals in 

acid environments. At pH lower than 4.5, the reduction of ferric iron to ferrous iron by pyrite is more 

rapid than the reoxidation of ferrous iron to ferric iron by dissolved oxygen (Evangelou and Zhang, 

1995 and references therein). To maintain high rates of pyrite oxidation in acidic environments, a 

mechanism is necessary for ferric iron to be regenerated rapidly. The oxidation of ferrous iron by iron-

oxidizing bacteria (such as T ferrooxidans, L. ferrooxidans, or acidophilic heterotrophic iron-

oxidizing bacteria) is considered to be the main catalytic function of bacteria involved in pyrite 

oxidation ( Pronk and Johnson, 1992; Silverman, 1967). 

The indirect mechanism proposed the following steps in the oxidation of pyrite (Evangelou and 

Zhang, 1995): 

(i) 
	

The pyrite is oxidized chemically by Fe+ according to reactions 4 and 5, or 2, which is the sum 

of these reactions or an overall reaction not specifying the production of sulphur as an 

intermediate. 
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FeS2  + Fe2(SO4)3 ---+ 3FeSO4  + 2S°  

2S°  + 6Fe2(SO4)3.8H20 

 

12FeSO4  + 8H2SO4  

 

(ii) Chemolithotrophic iron-oxidizing bacteria, such as T ferrooxidans and L. ferrooxidans, then 

regenerate the ferric ions (reaction 6), thereby causing the reactions to continue (Evangelou 

and Zhang, 1995). 

4Fe SO4  +02+2H2504  
Iron-oxidizing bacteria 

 	2Fe2(SO4)3  + 2H20 	(6) 

(iii) Micro-organisms capable of oxidizing sulphur, such as members of the genus Thiobacillus, 

could oxidize the sulphur (S°) formed in reaction 4 to sulphuric acid (reaction 7), thereby 

regenerating the acid consumed in reaction 6 (Ewart and Hughes, 1991; Evangelou and Zhang, 

1995; Lundgren. and Silver, 1980; Sand etal., 1995). 

2S°  + 302  + 2H20 
Sulphur-oxidizing bacteria 

2112S 04 (7) 

 

Reaction 8, which is derrived from reactions 4, 6 and 7, is an overall reaction for the microbially 

mediated oxidation of pyrite. It would lead to the dissolution of pyrite and the formation of acid mine 

drainage. 

4FeS2  + 1502  + 2H20 

 

2Fe2(SO4)3 2H2SO4  (8) 

 

However, the ferric sulphate could react with water to form insoluble ferric hydroxide ('yellow boy') 

and sulphuric acid (Atlas and Bartha. 1993). 

Criticism of early models. These early models of microbially mediated oxidation of pyrite in acidic 

mineral environments explain most experimental observations and give a broad overview of the 

possible abiotic and biotic processes involved in the oxidation of pyrite. However, the schemes are a 

gross simplification, as they consider only very superficially the sulphur chemistry of pyrite oxidation. 

They pay very little attention to the role of the extracellular organic matrices produced by these 

bacteria, the enzymatic systems and metabolism of pyrite-oxidizing bacteria, the various phases of 

attack (as can be observed in batch culture experiments), the role of non-attached and attached cells 

during the oxidation process and the role that impurities and electrochemical dissolution sites of 
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natural pyrite play in the interaction of the bacteria and pyrite. The chemical reactions (reactions 4 to 

8) are stoichiometric descriptions of the process, but have very little mechanistic meaning. 

Furthermore, it is extremely doubtful whether the direct mechanism, as it is understood in the classical 

model, exists at all. The main reasons for doubting this mechanism of attack are as follows: 

(i) Most of the sulphate oxygen derived from pyrite oxidation in acid mine drainage field settings 

as well as in laboratory experiments is derived from water and not dissolved molecular oxygen 

as the direct mechanism would imply (Taylor et al., 1984 a, b). 

(ii) Electron microscopic studies have revealed that the dissolution and primary oxidation of 

pyrite, by adhered cells of T. ferrooxidans, occurs in a reaction space formed by extracelluar 

polymers and not on the cell membrane surface as the direct mechanism implies (Rodriguez-

Leiva and Tributsch, 1988; Rojas et al., 1995). 

(iv) Experiments using iron-free metal sulphides and washed cells of T ferrooxidans, which 

indicated the presence of a ferric iron-independent (direct) mechanism (Duncan et al., 1967; 

Rickard and Vanselow, 1978), are not valid for the oxidation of pyrite (and most naturally 

occurring sulphidic minerals) where iron is present (Sand et al., 1995). 

(v) Only the iron-oxidizing bacteria T ferrooxidans and L. ferrooxidans can grow on pyrite as 

sole source of energy (Hallmann et al., 1992; Kelly and Harrison, 1989). This suggests that 

the oxidation of iron, and therefore the production of ferric ions, is central to the oxidation of 

pyrite. 

(vi) Certain enzymes involved in sulphur metabolism by T. ferrooxidans are linked to the 

ferric:ferrous iron redox couple and are strongly inhibited by ferrous iron (Sugio et al., 1990). 

(vii) Thiosulphate is the first intermediary sulphur compound in both biotic and abiotic pyrite 

oxidation (Schippers et al., 1996). 

For these reasons it has become necessary to take a closer look at the mechanism of pyrite oxidation, 

both by abiotic and microbially mediated processes. 
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Abiotic pyrite oxidation 

Models explaining the mechanism of the oxidative attack on pyrite, need to take into account the 

following observations (Lowson, 1982; Luther, 1987; Moses et al., 1987; Sand et al., 1995): 

(1) 	Ferric iron (as Fe(H20)63+) is apparently the oxidizing agent. 

(ii) 	Sulphur and sulphoxy anions, such as sulphite (S032-), thiosulphate (S2032-) and 

polythionates (S.062-) appear to be formed as intermediates. 

Using molecular orbital theory, Luther (1987) deduced that dissolved ferric iron (ferric hexahydrate) 

was a suitable oxidizing agent for the attack on pyrite. This was supported by the observation that 

water, and not dissolved oxygen, was the source of sulphate-oxygen in laboratory as well as acid mine 

drainage field settings (Taylor et al., 1984 a,b). It could therefore be proposed that reaction 2, but 

with the ferric ion as the hexahydrate (Fe(H20)63+), is the most important reaction involved in the 

oxidation of pyrite in acid mine drainage environments. 

Luther (1987) and Moses et al. (1987) independently proposed similar mechanisms for the oxidation 

of pyrite using ferric hexahydrate as oxidizing agent, with thiosulphate as the first intermediate 

sulphoxy anion. Schippers et al. (1996) used silver ions to prove conclusively that thiosulphate is the 

first intermediary in the oxidation of pyrite in both biotic and abiotic processes. A schematic 

summary of the mechanism of pyrite oxidation as proposed by Luther (1987) is given in Fig. 1. The 

sum of the reactions for the first step in the oxidation of pyrite by ferric iron can therefore be written 

as follows: 

FeS2  + 6Fe(H20)63+  +3H20 --> Fe2+ + S2032-  + 6Fe(H20)62+ + 611+ 
	

(9) 

Moses et al. (1987) postulated a mechanism involving the addition of two hydroxy groups followed 

by the removal of water to add each of the oxygens to the one pyrite sulphur atom. It is not clear how 

the addition of the last two hydroxy-ions to supply the third oxygen of the thiosulphate would occur. 

Brown and Jurinak (1989) found that the oxidation of pyrite was enhanced by an increase in pH. They 

proposed that the enhancement of pyrite oxidation by hydroxy ions (OH- ) may be through an inner- 
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Fe - - - Fe(H20).13+  

2 Fe(H 20)62+  + 2H+  
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Fe(H 20)63" + 2E190 

191 
- - _ 

Fe(H 2 0)i" 
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transfer 
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Fe(H,0).3+ 	Fe(Hi 0)53+7- Fe(H20)63+  
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Fe2++ S2032  - 

Fig. 1. Schematic diagram of the oxidation of pyrite by ferric hexahydrate, which by repetitive transfers of electrons to 

ferric iron from one of the pyrite sulphurs leads to the dissolution of pyrite as ferrous iron and thiosulphate. (Adapted from 

Evanglou and Zhang, 1995; Luther, 1987). 
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sphere electron transfer mechanism where OW and an electron are exchanged simultaneously 

between Fe(H20)50H2+ and the disulphide. 

Fe-S-S + Fe(H20)50H2+  

 

Fe-S-S-OH + Fe(H20)52+  

 

 

(10) 

 

This differs from the mechanisms of Moses et al. (1987) and Luther (1987), in that the ferric 

hexahydrate loses a hydrogen ion in solution rather than at the pyrite surface. Six electron transfers 

are needed before the sulphur can leave the pyrite structure as thiosulphate. Reaction 10, repeated 

three times, is sufficient to explain the transfer of three electrons by the addition of hydroxyl ions. 

Three more electrons could be transferred by the removal of hydrogen ions from the Fe-S-S-OH and 

subsequent hydroxylated intermediates, with the formation of water which may leave with the 

ferrous complex. 

Fe-S-S-OH + Fe(H20)50H2+  

 

Fe-S-S-0 + Fe(H20)62+  

 

 

Repetition of reactions 10 and 11 leads to the formation of a thiosulphate leaving unit which is 

released into solution along with ferrous iron. 

Moses and Herman (1991) proposed a mechanism for pyrite oxidation at circurruieutral pH involving 

ferrous iron, adsorbed to the pyrite surface, giving up electrons to dissolved oxygen and the resulting 

ferric iron rapidly accepting electrons from the pyrite. The adsorbed iron is, therefore, cyclically 

oxidized and reduced while acting as a conduit for electrons travelling from pyrite to dissolved 

oxygen (Fig. 2). 

Although the exact mechanism of pyrite oxidation may not be clear and may vary according to the 

pH at which the reaction proceeds, it is generally agreed that pyrite oxidation proceeds via hydro-

or hydroxy-complexed iron electron carriers and that thiosulphate is the first intermediate formed 

(Brown and Jurinak, 1989; Moses and Herman, 1991; Moses et al., 1987; Luther, 1987; Sand et 

a/.,1995; Schippers et al., 1996). Ferric iron is therefore the main oxidizing agent for pyrite, with 

oxygen playing a vital role by reoxidizing ferrous iron to ferric iron. 
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Fig. 2. Schematic model of pyrite oxidation at circtunneutral pH, involving fen ous iron, adsorbed 
to the pyrite surface, giving up electrons to oxygen. Repeated electron transfers between oxygen 
and pyrite via the adsorbed iron conduit lead to the dissolution of pyrite. The adsorbed and liberated 
iron is hydrated. (Adapted from Moses and Herman, 1991). 
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Thiosulphate formed during pyrite oxidation is unstable in acidic environments and various sulphoxy 

intermediates and sulphur form during its decay, with the reaction superficially being: 

8S2032-  H+ 	S8  ± 7S032-  HS03- 	 (12) 

However, reaction 12 is the sum of a sequence of reactions and there are numerous possibilities for 

the formation of side products (Moses et al., 1987). Polythionates found during leaching operations 

may arise from chemical reactions starting from thiosulphate (Sand et al., 1995; Schippers et al., 

1996). 

New model of biotic pyrite oxidation 

General. Sand et al. (1995) and Schippers et al. (1996) have considered the fate of the iron and 

sulphur of pyrite. Their reviews suggest a new model for the mechanisms of biotic pyrite oxidation by 

T ferrooxidans and L. ferrooxidans. Thiobacillus ferrooxidans is the best characterized member of 

the lithotrophic organisms involved in pyrite oxidation through its metabolism (oxidation) of ferrous 

iron, sulphur and inorganic sulphur compounds (Blake et al., 1994). Leptospirillum ferrooxidans is 

also capable of oxidizing pyrite through.  its metabolism (oxidation) of ferrous iron (Hallmarm et al., 

1992). Although sulphate is formed during pyrite oxidation by L. ferrooxidans, this organism does 

not have the enzymes required for sulphur metabolism (Hallmann et al., 1992), suggesting that the 

oxidation of sulphur or sulphoxy intermediates formed during the pyrite oxidation occurs abiotically if 

ferric iron is present as oxidant. 

The following discussion of the bacterially mediated pyrite oxidation and dissolution process will deal 

with bacterial pyrite oxidation as an iron-dependant cyclical process where pyrite and the resulting 

intermediary sulphur compounds are oxidized with the concurrent reduction of ferric iron to ferrous 

iron, which then acts as electron donor for the lithotrophic bacteria. The oxidation of the intermediate 

sulphur compounds can proceed via purely abiotic processes (as with L. ferrooxidans) or abiotic as 

well as enzymatically catalysed processes (as with T ferrooxidans). Pyrite oxidation in relation to the 

different growth phases observable during batch culture experiments with T ferrooxidans and L. 

ferrooxidans (Mustin et al., 1992; Fernandez et al., 1995) will also be considered. 

Chemical/biochemical processes (components) of the model. A comprehensive model can be 

developed for the chemical/biochemical processes by combining the following component models: 
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(ii) The first component model is the abiotic oxidation of pyrite to ferrous iron and thiosulphate 

(Luther, 1987; Moses et al., 1987) (Fig. 1). The bacteria may enhance this process by 

concentrating the ferric ions in their extracelluar matrix (Gehrke et al., 1995). A cyclical 

iron oxidation-reduction process then occurs, in which the ferrous ions produced in the 

oxidation of pyrite are reoxidized by the bacteria to yield energy before again being reduced 

by the pyrite (Sand etal., 1995). 

(iii) The second component model describes the abiotic reactions of sulphur compounds 

originating from the thiosulphate produced by the oxidation of pyrite. Thiosulphate is 

unstable in acidic environments and decomposes to form various sulphur compounds, 

including all the sulphoxy intermediates detected in leaching operations, as well as sulphur 

(Sand etal. 1995; Schippers et al., 1996). Schippers et al. (1996) proposed a decomposition 

pathway for thiosulphate (Fig. 3), based on the detection of intermediary sulphur 

compounds in the oxidation of pyrite by sterile ferric iron or T ferrooxidans or 

L. ferrooxidans. Only T ferrooxidans produces enzymes that could assist with the oxidation 

of sulphur compounds. The pathway, which is similar to that proposed by Pronk et al. 

(1990), is cyclical and involves both ferric iron and oxygen as electron acceptors. Sulphate 

is an important product. The details of the pathway are as follows: 

In the first step thiosulphate is oxidized to tetrathionate (reaction 13). 

2Fe3+ + 2S2032-  
	

2FeS203+ 	 2Fe2+ + S4062- 	(13) 

As this reaction proceeds faster than the dissolution of pyrite (Fig. 1, 2 and reaction 9), 

thiosulphate is barely detectable. The hydrolysis of tetrathionate leads to the formation of 

highly reactive disulphane monosulphonic acid and sulphate (reaction 14) 

S4062- ± H2O 

 

HSSS03-  + S042-  + It 	 (14) 

 

Disulphane monosulphonic acid may react in several ways to form elemental sulphur, 

sulphite, thiosulphate, trithionate, pentathionate (via reactions 15 to 18) and various other 

polythionates (Pronk et al., 1990; Schippers et al., 1996). 
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Fig. 3. Cycle of oxidative pyrite oxidation by chemical and/or bacterial leaching. Dotted lines 

indicate where thiosulphate may enter the cycle again. (Adapted from Pronk et al., 1990; Schippers 

et al., 1996). 
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4S3032-  S8  + 4S032" (15)  

s3032.  s4062. 	 s2032. 	s5062- (16)  
2S3032-  + 302 	 2S3062" -0, (17)  

2S3032-  + 2S2032- + 02  + 4H+  2S3062" + 2H20 (18)  

The cycle is completed by hydrolysis of trithionate to yield sulphate and thiosulphate. 

S3062-  + H20 --O. S042" + S2032-  + 2H+ 	 (19) 

This cycle of reactions is catalysed by the pyrite surface as vigorous shaking was required 

for the reactions to proceed in experiments where no bacterial catalyst was available 

(Schippers et al., 1996). 

Reaction 15 seems to be the dominant reaction in which disulphane monosulphonic acid is 

involved, as S°  was the dominant intermediary sulphur product formed in experiments 

using T ferrooxidans, L. ferrooxidans or sterile ferric iron to oxidize pyrite (Schippers et 
al., 1996). This observation provides an alternative explanation of how the sulphur 

'intermediate' of reactions 4 and 5 in the early models of biotic pyrite oxidations may be 

produced. 

(iv) 	The third component model is concerned with the bacterial oxidation of sulphur and sulphur 

compounds. Thiobacillus ferrooxidans is capable of metabolizing the sulphur and sulphur 

compounds formed during the oxidation of pyrite (Fig. 3), leading to less accumulation of 

these products than when the transformations are entirely abiotic (Schippers et al., 1996). 

The S° formed during the decomposition of thiosulphate (Pronk et al., 1990; Schippers et 
al., 1996) is deposited as storage globules extracellularly in a polymer matrix (Rojas et al., 

1995) or in the periplasmic space (Schippers et al., 1996). Steudel et al. (1987) proposed a 

structure for these globules with deposits of polythionate ions on the surface (Fig. 4), which 

make the globules hydrophilic and should therefore assist enzymatic sulphur oxidation. 
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Fig. 4. Simplified model of a sulphur globule as it is formed extracellularly by T ferrooxidans. It consists mainly of S, 
and small amounts of other molecules (S,, Si, S, and S12) which impede crystallization, as in globules of supercooled liquid 
sulphur. Long chain polythionate ions (O3S.S„.S03-) deposited on the surface make the globule hydrophilic. (Adapted 
from Steudel et aL, 1987). 
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(v) 	A further component model linking sulphur and iron transformations comes from the studies 

of Sugio et al. (1985, 1987, 1988) who found in T. ferrooxidans an enzyme system 

catalysing sulphur oxidation to sulphite coupled to the reduction of ferric to ferrous iron 

(Fig. 5). The enzyme was first named sulphur:ferric iron oxidoreductase and subsequently 

named hydrogen sulphide:ferric iron oxidoreductase, following further studies of its 

catalytic activities (Pronk and Johnson, 1992; Sugio et al., 1990). Sugio et al. (1988) 

reported that T ferrooxidans also possessed a sulphite-oxidizing iron-reducing enzyme 

system, although the oxidation of sulphite to sulphate with the concomitant reduction of 

ferric to ferrous iron can also occur abiotically (Sugio et al., 1985). The ferric iron reduction 

permits the reoxidation of ferrous iron for energy generation by the organism. The 

oxidation of sulphur is strongly inhibited by high concentrations of ferrous iron (Sugio et 

al., 1990), indicating a preference by the bacteria for the metabolism of ferrous iron if it is 

abundant. The oxidation of thiosulphate to tetrathionate may also be coupled to ferric iron 

reduction (Schippers et al., 1996). 

Comprehensive chemical/biochemical model. When these component models are brought together, 

a comprehensive model for microbially mediated pyrite oxidation can be constructed (Fig. 6). This 

model links the abiotic chemical oxidation of pyrite by ferric iron via thiosulphate (Luther, 1987; 

Moses et al., 1987; Schippers et al., 1996) to the important catalytic function of iron-oxidizing 

bacteria such as T ferrooxidans and L. ferrooxidans, which oxidize ferrous iron to ferric iron for 

metabolic energy (Johnson, 1995a). The model also indicates the fate of sulphur compounds that 

form during the decomposition of thiosulphate. 

Bacteria Involved in Pyrite Oxidation 

Acidophilic iron-oxidizing bacteria 

Various acidophilic bacterial groups possess the capacity to catalyse the formation of acid mine 

drainage by oxidizing ferrous iron to ferric iron, which is the most important oxidizing agent in the 

oxidation of pyrite. The most important groups are described in the following paragraphs. 
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Sulphur:ferric iron 
oxidoreductase 

Iron-oxidizing 
system 

s" 

so42-< 	 

Chemical or 
enzymatic 
reaction 

Outer Peptido- 	 Inner 
membrane glycan 	 membrane 

Fig. 5. Model linking the oxidation of sulphur and sulphite to the cyclic reduction of ferric 
iron to ferrous iron and reoxidation of ferrous by T. ferrooxidans. The oxidation of sulphur 
is mediated by sulphur:ferric iron oxidoreductase (subsequently renamed hydrogen 
sulphide:ferric iron oxidoreductase), while the oxidation of sulphite occurs spontaneously or 
enzymatically. (Adapted from Sugio et al., 1985, 1987, 1988). 
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Fig. 6. Comprehensive model of abiotic and biotic oxidation processes involved in the 
oxidation of pyrite to sulphate, ferrous and ferric iron. The linked chemical transformstions in 
this diagram are not balanced. T.f. = Thiobacillus ferrooxidans and L.f. = Leptospirillum 
ferrooxidans. 
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Thiobacillus ferrooxidans. Thiobacillus ferrooxidans is the best characterized member of the iron-

oxidizing bacteria involved in the formation of acid mine drainage and bioleaching, and was for many 

years considered to be the only organism involved (Blake et al., 1994; Hutchins et al., 1986). 

Colmer and co-workers isolated T ferrooxidans from bituminous coal mines in 1947-51 (Colmer and 

Hinlde, 1947; Colmer etal., 1950; Temple and Colmer, 1951). Other iron-oxidizing bacteria isolated 

later were placed in the genus Ferrobacillus (Kinsel, 1960; Leathen et aL, 1956), but further 

investigation of these isolates indicated that they belonged to the same species as the organism 

isolated by Colmer et al. (1950) and that they should be included in the species T ferrooxidans (Kelly 

and Tuovinen, 1972). This organism seems to be ubiquitous in acid mineral environments (Johnson, 

1995a). 

Morphologically T. ferrooxidans cells are short gram negative rods (0.5 x 1.011m), usually occurring 

singly or in pairs (Kelly and Harrison, 1989). Different strains possess flagella and/or pili (DiSpirito 

etal., 1982). 

The organism is an obligate chemolithotroph capable of growth on ferrous iron, sulphur and a range of 

sulphur compounds, including pyrite, thiosulphate, tetrathionate and sulphite (Kelly and Harrison, 

1989). 	Shrader and Holmes (1988) observed phenotypic switching when T. ferrooxidans 

ATCC19859 and other strains of T ferrooxidans were grown on media containing ferrous iron and 

thiosulphate. Under these conditions variants arose that formed large spreading colonies that utilized 

tetrathionate only. This switching was genetic and may be a way of adapting to changing 

environmental conditions. A detailed discussion of the mechanism of pyrite and sulphur oxidation by 

this bacterium is given in a previous section (see New model of biotic pyrite oxidation). 

Thiobacillus ferrooxidans is aerobic, but has been reported to grow and oxidize sulphur anaerobically 

using ferric iron as electron acceptor (Kelly and Harrison, 1989; Pronk et al., 1991; Sugio et al., 

1985). Macintosh (1978) demonstrated nitrogen fixation by T ferrooxidans; however, the organism 

prefers to grow on fixed nitrogen, with ammonium salts being the best source (Kelly and Harrison, 

1989). 

Thiobacillus ferrooxidans is mesophilic and grows between 2°C and about 40°C with an optimum in 

the vicinity of 30°C (Hallmanri et al., 1992; Kelly and Harrison, 1989; Leduc et al., 1993). It is an 
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obligate acidophile with a pH range for growth of approximately pH 1.3-4.8, but the range and/or 

optimum may vary according to the substrate on which it is growing under laboratory conditions. On 

thiosulphate, growth occurs between pH 1.5 and pH 4.3, with the optimal growth being at pH 3.6, 

while on tetrathionate growth also commences between pH 1.5 and pH 4.3, but with optimal growth at 

pH 2.5. The optimum pH for the oxidation of ferrous iron is approximately pH 2.0-2.5 (Ingledew, 

1982; Kelly and Harrison, 1989). 

Growth of T. ferrooxidans is highly susceptible to inhibition by organic compounds, as is clearly 

illustrated by the difficulty of growing this organism in media containing organic gelling agents such 

as agar or agarose (Johnson, 1995b; Mishra and Roy, 1979; Tuovinen and Kelly, 1973; Visca et al., 

1989). Colmer and Hinkle (1947) found that 1000 mg/1 phenol and 100mg/1 formaldehyde inhibited 

ferrous iron oxidation. Further studies indicated inhibition by ethylenediaminetetraacetic acid 

(EDTA), a complexing agent (Silver and Lundgren, 1968), anionic detergents, such as sodium lauryl 

sulphate (Dugan and Lundgren, 1964; Loos et al., 1990a,b), as well as the antimicrobial benzoic and 

sorbic acids (Loos et al., 1990a,b; Onysko et al., 1984). Tuttle and Dugan (1976) found that ferrous 

iron and sulphur oxidation, as well as growth of T. ferrooxidans, were inhibited by a wide range of 

organic compounds (including citric acid cycle acids and amino acids). They found that inhibition by 

organic compounds was affected by the presence of inhibitory or stimulatory inorganic ions, the 

molecular structure of the organic compounds, pH, physical treatment of cells and temperature. 

Furthermore, the relative electronegativity of the organic inhibitor was found to be a major 

contributing factor in the inhibiton of ferrous iron oxidation. Their data led them to suggest that 

inhibitory organic compounds may directly affect the iron-oxidizing enzyme system, react abiotically 

with ferrous iron outside the cell, interfere with the roles of phosphate and sulphate during iron 

oxidation, and/or non-selectively disrupt the cell envelope or membrane. 

Acid mine drainage is an environment with high concentrations of sulphate and metal ions (Silverman 

and Ehrlich, 1964), making metal ion tolerance a prerequisite for growth in these environments. 

Thiobacillus ferrooxidans is grown routinely in the 9K medium of Silverman and Lundgren (1959) 

containing 44.2 g/1 FeSO4.7H20 (= 8900 mg/1 Fe). It is tolerant to zinc, nickel, cobalt, manganese and 

aluminium salts at metal concentrations exceeding 10 000 mg/1 (Table 1). Heavy metal tolerance is 

strain dependant and varies according to the growth substrate, with cells growing on ferrous iron 

exhibiting the highest tolerance to the heavy metal ions (Tuovinen etal., 1971). The inhibitory levels 

of other metal ions tested by Tuovinen etal. (1971) are summarized in Table 1. 
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TABLE 1. Inhibitory levels of some metal salts for ferrous iron 

oxidation by Thiobacillus ferrooxidans (Tuovinen et al., 1971) 

Salt added 	Inhibitory level of metal in mg/1 

ZnS 04  7H2  0 	 Zn > 10 000 

NiSO4.6H20 	 Ni > 10 000 

CuSO4.5H20 	Cu > 1 000 

CoSO4.7H20 	 Co > 10 000 

MnS 04. 4H20 	Mn > 10 000 

Al2(SO4)3.6H20 	Al > 	10 000 

UO2SO4.3,5H20 	U < 700 

Ag2SO4 	 Ag < 50 

NaAsO, 	 As < 200 

Se02 	 Se < 100 

Na2Te03 	 Te < 100 

Na2Mo04.2H20 	Mo < 5 
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Thiobacillus ferrooxidans strains vary considerably in terms of temperature (optimum and range), 

colony and cell morphology, as well as heavy metal resistance (Kelly and Harrison, 1989; Leduc et 

al., 1993; Roberto et al., 1993; Tuovinen et al., 1971). Harrison (1982) conducted a study on 23 

strains from various geographical locations. He found that these strains belonged to seven different 

DNA homology groups that correlated with their physiological characteristics. Although two of these 

groups of organisms were unable to oxidize sulphur and were later found to be morphologically and 

phylogenetically far removed from the thiobacilli (Kelly and Harrison, 1989; Lane et al., 1985), the 

DNA of the remaining five homology groups had base compositions ranging from 56 to 62 mol% 

G + C, suggesting that T ferrooxidans is a phenospecies rather than a genospecies. 

Leptospirillum ferrooxidans. Although T ferrooxidans is the best characterized lithotrophic 

organism involved in pyrite oxidation and acid mine drainage formation, it is becoming increasingly 

clear that other organisms and especially Leptospirillum ferrooxidans may play as important a role in 

catalysing the process (Hallmann et al., 1992; Johnson, 1995a; Pronk and Johnson, 1992; Sand et al., 

1992). Leptospirillum ferrooxidans was first isolated by Markosyan (1972) from a copper deposit in 

Armenia. Many similar organisms have been isolated from different parts of the globe, and as 

L. ferrooxidans has almost the same environmental parameters for growth as T. ferrooxidans 

(Hallmann et al., 1992; Harrison and Norris, 1985; Sand et al., 1992 ), it is conceivable that 

L. ferr000xidans is as widely distributed as T. ferrooxidans. 

Morphologically L. ferrooxidans cells are characterized by a spiral or vibroid shape, but they may be 

morphologically variable. Filaments of up to 30 turns have been observed. The cells are motile by 

polar flagella and swim with a corkscrew motion. The cells are Gram-negative (Harrison and Norris, 

1985). 

The organism is an obligate chemolithotroph, deriving its energy from the oxidation of ferrous iron, 

but is incapable of oxidizing sulphur or any of the sulphur compounds oxidized by the thiobacilli 

(Hallmann et al., 1992; Harrison and Norris, 1985; Sand et al., 1992). When grown on ferrous iron-

containing media, the optimum substrate cencentration for L. ferrooxidans lies between 6 and 8 g/1 

ferrous iron, hence below that of T. ferrooxidans which is generally about 9 g/1 ferrous iron. The 

organism is aerobic. 
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Leptospirillum ferrooxidans is a mesophilic organism which grows well between 20°C and 40°C and 

optimally between 28°C and 30°C. However, below 20°C its growth rate declines far more rapidly 

than that of T. ferrooxidans and it will therefore probably be outcompeted in leaching environments 

below 20°C (Hohmann et al., 1992). The organism is obligately acidophilic, growing optimally at 

approximately pH 1.6, which is below the optimum pH for T. ferrooxidans. 

Like T ferrooxidans, L. ferrooxidans is inhibited by organic compounds such as glucose (Hohmann et 

al., 1992; Tuttle and Dugan, 1976). Leptospirillum ferrooxidans is generally more sensitive to toxic 

metals than T. ferrooxidans, but has been shown to tolerate uranium, molybdate and silver better than 

certain strains of T ferrooxidans (Harrison and Norris, 1985). 

Leptospirillum ferrooxidans strains have lower G+C contents in their DNA than T. ferrooxidans, and 

phylogenetically do not resemble any known bacteria on the basis of 16S rRNA analysis (Lane et al., 

1992). The L. ferrooxidans strains analysed by Lane et al. (1992) were also not closely related to one 

another. Hallmann et al. (1992) also found large genetic variation among the strains tested by them 

and concluded that L. ferrooxidans, like T ferrooxidans, is a phenospecies rather than a genospecies. 

Moderately thermophilic, mixotrophic/facultatively lithotrophic iron-oxidizing bacteria. Le 

Roux et al. (1977) were the first to report the existence of moderately thermophilic facultatively 

lithotrophic acidophilic bacteria. These organisms could oxidize ferrous iron and catalyse the 

oxidation of pyrite (Hutchins et al., 1986). Since then similar organisms have been isolated from 

various sources. These bacteria are short rods, with certain isolates exhibiting filamentous growth 

and/or endospores (Brierley and Lockwood, 1977; Ghauri and Johnson, 1991) 

These organisms prefer to grow mixotrophically, on ferrous iron or pyrite and yeast extract, but 

certain isolates have appeared to grow chemo-autolithotrophically on iron or pyrite, as well as 

heterotrophically on yeast extract (Ghauri and Johnson, 1991; Norris and Barr, 1985). Although most 

of the moderately thermophilic facultatively lithotrophic iron-oxidizing bacteria seem to require 

reduced forms of sulphur for biosynthesis, strains have been isolated that could utilize sulphate as 

sulphur source (Hutchins et al., 1986; Norris and Barr, 1985). The rate at which carbon dioxide was 

fixed by these organisms, was negatively influenced by the availability of yeast extract (a carbon 
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source). The growth rate of the organisms decreased considerably when they were grown either 

heterotrophically or lithotrophically (Ghauri and Johnson, 1991; Norris and Barr, 1985). 

Phylogenetically (based on 16S rRNA sequence analysis) the three strains of moderately thermophilic 

facultatively lithotrophic iron-oxidizing bacteria tested by Lane et al. (1992), grouped within the 

Gram-positive bacteria, despite being characterized as Gram-negative or Gram-indeterminate. The 

strains branched from very close to the origin of the phylogenetic tree of the Gram-positive bacteria, 

with representatives in both major sub-divisions of the Gram-positive bacteria (Lane et al., 1992). 

Mesophilic heterotrophic iron-oxidizing bacteria. Johnson et al. (1992) isolated from streamer 

growth in acid water a heterotrophic bacterium that was capable of oxidizing ferrous iron. In liquid 

medium the isolate (CCH7) appeared macroscopically as thread-like growths and was considered to 

be the main organism involved in acid streamer formation. A second heterotrophic iron-oxidizing 

bacterium (1-21) isolated by the same laboratory (Pronk and Johnson, 1992) grew as short rods and 

did not form any macroscopic growth in liquid media. 

Neither of the two organisms fixed carbon dioxide and ferrous iron oxidation activity tended to be 

limited by the availability of a suitable organic substrate. Neither of the organisms possessed the 

capacity to oxidize sulphur compounds, but T-21 was shown to catalyse the oxidation of pyrite, via 

the production of ferric ions, if ferrous ions and yeast extract (a carbon source) were present. Pyrite 

dissolution by strain T-21 was only about 30% of that of T. ferrooxidans (Pronk and Johnson, 1992). 

Strain CCH7 was generally less tolerant to heavy metal inhibition than T ferrooxidans or L. 

ferrooxidans (Johnson et al., 1992). 

Metallogenium spp. In 1972 Walsh and Mitchell postulated a possible role for the moderately 

acidophilic bacteria of the genus Metallogenium in a succession of micro-organisms in mine waste 

dumps and the formation of acid mine drainage. At pH values above pH 4.5, abiotic oxidation of 

ferrous iron by dissolved oxygen proceeds rapidly, and at pH values below pH 3.5 ferrous iron 

oxidation by T ferrooxidans becomes significant. They suggested that Metallogenium spp. catalyse 

the oxidation of ferrous iron in the range pH 3.5-4.5, which is too high for rapid iron oxidation by 

T. ferrooxidans. 

Metallogenium spp. are polymorphic with cell shapes ranging from coccoid to threadlike. The cells 

are normally encrusted heavily with ferric precipitates. They are aerobic and multiply by means of 
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budding (Dubinina,1970; Walsh and Mitchell, 1973). The bacterium isolated by Walsh and 

Michell (1972) was capable of oxidizing low concentrations of ferrous iron and grew optimally at 

pH 4.1. 

However, subsequent research has questioned the role of Metallogenium in the bacterial 

succession involved in the formation of acid mine drainage as postulated by Walsh and Mitchell 

(1972). Kleinmann and Crerar (1979) found that T. ferrooxidans was able to adapt to a neutral 

macro-environment (pH 6.9), and to change it sufficiently to allow its own growth and survival. A 

previously reported study performed in our laboratory could detect only very low numbers of 

Metallogenium-like organisms in coal waste undergoing acidification (Cleghorn, 1997), while 

Harrison (1978) in his laboratory scale experiment on the microbial succession in coal waste dumps 

could not find Metallogenium-like organisms. 

Acidophilic sulphur-oxidizing bacteria 

This section will focus on the members of the genus Thiobacillus that are well known in acid drainage 

and other pyrite dissolution environments. Extremely thermophilic sulphur-oxidizing bacteria among 

the archaeobacteria (Staley et a/.,1989) will not be discussed, even though Brierley (1978) discussed 

in considerable detail the potential of Sulfolobus spp. to assist the bacterial leaching of ores. 

Sulfolobus spp. occur typically in hot springs and have not been implicated yet as organisms of acid 

mine drainage generation. 

During the biotic oxidation of pyrite by ferric iron, sulphur and a range of sulphur-containing 

compounds are formed (see New model of biotic pyrite oxidation). Although the capacity to oxidize 

inorganic sulphur compounds does not enable the responsible bacteria to catalyse directly the 

oxidation of pyrite and therefore the formation of acid mine drainage, they do catalyse acid mine 

drainage formation indirectly by oxidizing the sulphur compounds to sulphuric acid (Evangelou and 

Chang, 1995). 

Certain iron-oxidizing bacteria, such as T. ferrooxidans and strains of moderately thermophilic 

facultatively lithotrophic iron-oxidizing bacteria, also possess the capacity to oxidize inorganic 

sulphur compounds. These orgainsms therefore catalyse both the primary oxidation of pyrite (via 

ferric iron formation) and the downstream oxidation of sulphur-containing intermediates. As these 
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organisms have been described under the iron-oxidizing bacteria, descriptions of them will not be 

repeated. 

Thiobacillus thiooxidans. This organism was first isolated by Waksman and Joffe (1922). It is a 

short Gram-negative rod (0.5 x 1.0-2.04m), occurring singly and in short chains (Kelly and Harrison, 

1989). 

Thiobacillus thiooxidans is an obligate chemolithotroph and autotroph. It is capable of oxidizing 

elemental sulphur and various inorganic sulphur compounds, including sulphide, thiosulphate, 

tetrathionate and sulphite, but not pyrite (Kelly and Harrison, 1989). 

The organism is strictly aerobic. It grows between 10°C and 37°C, with optimal growth occurring at 

29-30°C. Thiobacillus thiooxidans is an acidophilic organism, growing at pH 0.5-5.5, with optimal 

growth at pH 2.0-3.0 (Kelly and Harrison, 1989). 

Phylogenetically, on the basis of 5S rRNA analysis, this organism is most closely related to the type 

strain of T. ferrooxidans (Lane at al., 1985). 

Facultatively lithotrophic Thiobacillus spp. Several acidophilic and moderately acidophilic 

Thiobacillus spp. are capable of heterotrophic growth on various organic substrates (Kelly and 

Harrison, 1989). The acidophilic Thiobacillus acidophilus was isolated from a culture of 

T. ferrooxidans (Guay and Silver, 1975). Moderately acidophilic thiobacilli, which may have been 

Thiobacillus novellus, Thiobacillus thioparus or Thiobacillus intermedius, were detected in large 

numbers in uranium mine waste dumps (Sand et al., 1995). 

The organisms of this group are short Gram-negative rods. They are capable of growing 

lithotrophically on a range of inorganic sulphur compounds, but are incapable of oxidizing pyrite. 

They can also grow heterotrophically on various organic substrates, including glucose. Thiobacillus 

intermedius does not grow well in media containing only a single carbon source, but grows when 

yeast extract is added to the medium (Kelly and Harrison, 1989). 

The facultatively lithotrophic Thiobacillus spp. may stimulate the oxidation of pyrite and acid mine 

drainage generation in two ways. Firstly, they oxidize sulphur-containg intermediates formed during 

pyrite oxidation in a similar way to the obligately lithotrophic T thiooxidans. Secondly, the organisms 

might remove organic substances inhibitory to the obligately lithotrophic iron-oxidizing bacteria that 
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are sensitive to inhibition by organic substances. This role has been indicated for the consortium of T. 

acidophilus in association with T ferrooxidans (Harrison, 1984). 

Acidophilic heterotrophic bacteria 

Acidophilic heterotrophic bacteria occur in acid mine drainage water and have been found in cultures 

of T. ferrooxidans (Harrison, 1981; Wichlacz and Unz, 1981). The obligately chemolithotrophic iron-

oxidizing bacteria which catalyse the oxidation of pyrite and the subsequent formation of acid mine 

drainage are very sensitive to inhibition by organic substances (Hallmann, et al., 1992; Harrison, 

1984; Tuttle and Dugan, 1976). It has been postulated that the acidophilic heterotrophic bacteria 

stimulate the growth of these bacteria by removing inhibitory organic molecules (Harrison, 1984). 

Harrison (1984), as well as Johnson and McGinness (1991a), used acidophilic heterotrophic bacteria 

to facilitate the growth of T ferrooxidans and other iron-oxidizing bacteria on plates solidified with 

agar or agarose. Hallmann etal. (1992) found that heterotrophic bacteria could stimulate the oxidative 

dissolution of pyritic ores by mixed cultures of T. ferrooxidans, L. ferrooxidans and T thiooxidans. 

Acidophilic heterotrophic bacteria isolated from acid mineral environments have been assigned 

mainly to the genus Acidiphilium (Hallmann et al., 1992; Harrison, 1981, Harrison, 1984; Johnson 

and Kelso, 1983; Pronk and Harrison, 1995) and this genus is therefore considered to contain the 

most important heterotrophic bacteria stimulating the formation of acid mine drainage. 

Harrison (1989), in Bergey's Manual of Systematic Bacteriology, described members of the genus 

Acidiphilium as straight Gram-negative rods (0.3-1.2 lam x 0.6-4.2 p.m) with rounded ends. The 

organisms are aerobic and wealdy catalase-positive. They are acidophilic, growing between pH 2.0 

and pH 5.9. They are mesophilic, with optimum growth between 31°C and 41°C. They grow slowly 

below 20°C, do not grow at 47°C and die rapidly at 67°C. Acidiphilium spp. are organotrophic and do 

not grow on elemental sulphur, inorganic sulphur compounds or ferrous iron. However, these 

organisms are inhibited by the high concentrations of organic substances used in conventional organic 

media. Various members of the genus are capable of reducing ferric iron to ferrous iron, and may 

therefore play an important role in the biogeochemical cycling of iron in acid mine drainage 

environments (Johnson and McGinness, 1991b). Hallmann et al. (1992) found that L. ferrooxidans 

formed flocs in mixed cultures with Acidiphilium strains and suggested that the Acidiphilium might 

also stimulate pyrite oxidation by encouraging adhesion between iron-oxidizing lithotrophic bacteria 

and the pyrite surface. 
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Based on 16S rRNA analyses, Acidiphilium spp. are closely related to Thiobacillus acidophilus (Lane 

et al., 1992). Recently Kishimoto et al. (1995) proposed that the genus Acidiphilium be divided into 

two genera, Acidiphilium and Acidocella. The new genus Acidocella was proposed to accommodate 

the organisms previously lcnown as Acidiphilium facilis and Acidiphilium aminolytica. The 

distinction between the two genera is based on 16S rRNA analysis, as well as differences in 

pigmentation, including the synthesis of photopigments (Acidocella spp. are not pigmented), and 

susceptibility to inhibition by organic acids. 

Development and Interactions of Bacterial Populations Associated with Pyrite 

Degradation 

Iron-oxidizing bacteria 

Cyclical reactions involving iron oxidation and reduction lead to the oxidation of pyrite and the 

formation of acid mine drainage. A detailed description of the mechanisms of pyrite oxidation has 

been given under a detailed review of the organisms and reactions involved in iron oxidation and 

reduction in acid mineral environments presented by Pronk and Johnson (1992). The oxidative 

dissolution of pyrite to thiosulphate and ferrous iron requires ferric iron as oxidizing agent. During 

this process the ferric iron is reduced to ferrous iron (Moses et al., 1987; Sand et al., 1995; Schippers 

et al., 1996). The ferrous iron produced in the oxidation of pyrite is oxidized by iron-oxidizing 

bacteria, such as T ferrooxidans and L. ferrooxidans, to ferric iron. Catalysis of these reactions is 

assisted by the concentration of ferric iron in the extracellular matrices with which the bacteria adhere 

to the pyrite surface (Gehrke et al., 1995; Sand et al., 1995). The ferric iron can then once again act 

on the pyrite as oxidizing agent. A schematic summary of the transformations of pyrite and iron by 

attached and unattached bacteria in acid mine drainage-forming environments is given in Fig. 7. In 

view of the potential significance of the bacterial attachment to pyrite, the process and its role in iron 

oxidation and pyrite dissolution are described in detail below. 

Phase 1: Bacterial adsorption to pyrite and the initiation of pyrite dissolution. In batch culture 

experiments using T ferrooxidans to oxidize pyrite, an initial period where no observable dissolution 

of the pyrite takes place can be observed. During this period the bacteria attach themselves to the 

pyrite surface (Espejo and Ruiz, 1987; Fernandez et al., 1995; Muslin et al., 1992; Muslin et al., 

1993.). The adhesion of bacteria to pyrite is a complex and non-random process influenced by surface 
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Fig. 7. Catalysis of the oxidation of pyrite by attached and unattached iron-oxidizing bacteria 
oxidizing ferrous iron to ferric iron. The ferric iron in turn drives the oxidation of pyrite, yielding 
sulphur and sulphur compounds and ferrous iron that can be reoxidized by the iron-oxidizing 
bacteria. 
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energy effects (Bagdigan and Myerson, 1986). Electrostatic and hydrophobic interactions between 

the bacteria and the pyrite (Blake et al., 1994) and chemotaxis by the bacteria to sites where 

electrochemical dissolution due to semiconducting properties of pyrite takes place (Acuria et aL, 1992, 

1992; Sand et al., 1995), are also involved. Gehrke et al. (1995) noted that ferric iron in the 

exopolymer sheaths of T ferrooxidans and L. ferrooxidans is necessary to mediate the electrostatic 

interaction between the negatively charged pyrite surface and the bacterium, thereby facilitating 

adhesion. Heterotrophic bacteria of the genus Acidiphilium may also aid the attachment of 

L. ferrooxidans to pyrite (Mustin et al., 1993). 

According to the model of Zobell (1943), bacterial adhesion is a two phase process, involving an 

initial reversible step, followed by a second irreversible step. This can be written as: 

    

* [BS] 	BS 

 

B + S 4 	 

  

(20) 

  

where the reactants B and S are the bacteria and the solid surface, respectively, and [BS*] a 

metastable state which results from the initial interaction between the bacteria and the substrate 

surface. In this state the bacterium is held at a finite distance from the surface, due to a balancing of 

attractive and repulsive forces between the two bodies. This complex may dissociate to leave a free, 

non-interacting cell and surface site. However, the bacterium may excrete the necessary exopolymers 

to produce a permanent association, BS, between the bacterium and the surface site. 

Studies by Bagdigan and Myerson (1986) on the adhesion of T. ferrooxidans to pyrite in coal showed 

that a mathematical model based on the two phase adhesion model fitted the kinetics of the adhesion. 

They further showed a constant non-zero amount of reversibly adsorbed bacteria, which also 

suggested that the adsorption process takes place in two steps. Electron microscopic studies by Rojas 

et al. (1995) confirmed this model, for during the initial (reversible) interaction between 

T. ferrooxidans and pyrite, the bacteria retained their normal appearance. Subsequently, however, a 

dramatic change took place. The cells covered themselves with an organic substance that contained 

phosphorous (suggesting phospholipids). This layer formed a contact zone between the bacteria and 

the pyrite, by which the bacteria remained attached to the pyrite surface. 

During the initial adhesion of the bacteria to the surface of the pyrite, very little or no observable 

pyrite dissolution takes place but ferric iron present in the liquid medium is reduced to ferrous iron, 

(Mustin et al, 1992). However, the electron microscopic observations of Rojas et al. (1995) clearly 
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showed growth and pyrite oxidation activity after 12 hours, as the organic matrix surrounding the 

bacteria became dotted with sulphur colloids and cell division was observed. These observations can 

be explained by considering the chemistry of pyrite oxidation as well as the metabolic action of 

T ferrooxidans in re-oxidizing (recycling) ferrous to ferric iron. Ferric iron acts as the electron 

acceptor in the oxidation of pyrite (Luther, 1987; Moses et al., 1987) and is reduced to ferrous iron. 

This would explain the observed reduction of ferric iron early in phase 1. The sulphur atoms in 

pyrite are thermodynamically loose (Andrews, 1987) and iron is recycled and trapped in the 

reaction space, which could explain the apparent preference for sulphur solubilization in the non-

stoichiometric solubilization of pyrite observed by Andrews (1987) and Mustin et al. (1992) during 

phases 1-3 of pyrite oxidation. 

Phase 2: Early logarithmic growth phase of free bacteria. Phase 2 of bacterial pyrite oxidation 

in batch culture experiments is marked by sharp increases in the percentage of non-attached bacteria 

and ferric iron. The growth of free bacteria corresponds to the early logarithmic phase. The 

solubilization of iron and sulphur becomes significant, and pyrite or arsenopyrite crystals show 

surface cracks as the early corrosion pattern (Fernandez et al., 1995; Mustin et al., 1992). 

The availability of ferrous iron in the surrounding medum (formed during phase 1), as well as 

competition for attachment sites on the pyrite, leads to the onset of the logarithmic growth of free 

bacteria. During this phase the biological oxidation of ferrous iron starts to exceed the rate at which 

ferric iron is reduced. This leads to the decline of observable ferrous iron in the medium while the 

increased availability of ferric ions increases the redox potential of the reaction medium and 

therefore the oxidative attack on the pyrite. 

Phase 3: Late logarithmic growth phase of free bacteria. This phase corresponds to the later 

part of the logarithmic growth phase of free bacteria. It is characterized by high concentrations of 

ferric iron and very low concentrations of ferrous iron. The redox potential of the medum stabilizes 

at a high level and the solubilization of iron and sulphur increases strongly. Pits, which later 

become the dominant corrosion pattern, start to appear on pyrite or arsenopyrite crystals (Fernandez 

etal., 1995; Mustin et al., 1992). 
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During this phase the increase in the rate of bacterial oxidation of ferrous iron is limited by the rate 

at which ferric iron is reduced during the oxidation of pyrite. This leads to the stabilization of the 

redox potential, and an increase in the oxidative attack on the pyrite surface. 

Phase 4: Stationary growth phase of free bacteria. After the free bacteria enter the stationary 

growth phase, the ferrous iron concentration increases, but remains far below that of the ferric iron. 

Deep pores develop as the dominant corrosion pattern on the pyrite surface (Fernandez et al., 1995; 

Mustin et al., 1992). 

Bacterial metabolism of iron becomes low during this phase. The reduction of ferric to ferrous iron 

during the oxidation of pyrite exceeds the rate of reoxidation of the ferrous iron by the bacteria, so 

that ferrous iron increases to a higher concentration in the medium. 

Sulphur-oxidizing bacteria 

A schematic summary of the fate of the sulphur moiety of pyrite in reactions involving attached and 

non-attached sulphur-oxidizing bacteria during acid mine drainage formation is given in Fig. 8. 

The oxidation of the sulphur moiety of pyrite by ferric iron (produced by iron-oxidizing bacteria 

such as T ferrooxidans and L. ferrooxidans) leads first to the formation of thiosulphate (Moses et 

al., 1987; Sand et al., 1995; Schippers et al., 1996). Thiosulphate is unstable in acidic 

environments and decomposes to form sulphur and a range of sulphur-containing compounds, 

including polythionates (Moses et al., 1987; Schippers et al., 1996). Thiobacillus spp. present in 

acid mine drainage-producing environments oxidize thiosulphate to sulphuric acid via similar 

intermediates and are therefore also capable of oxidizing the abiotically formed compounds 

(Evangelou and Chang, 1995; Pronk et al., 1990; Schippers et al., 1996). 

During the initial stages of pyrite oxidation by T. ferrooxidans, the process proceeds non-

stoichiometrically, with more sulphate being released than the stoichiometric ratio (Andrews, 

1987). Rojas et al. (1995) found that attached cells of T. ferrooxidans deposited sulphur storage 

globules in their extracellular polymer matrix. These globules can subsequently be oxidized to 

yield energy for the organism and sulphate. The organism is also capable of oxidizing elemental 

sulphur under anaerobic conditons using ferric iron as electron acceptor (Suzuki et al., 1990). 
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Fig. 8. Roles of attached and non-attached sulphur-oxidizing bacteria (Thiobacillus spp., 
including T. ferrooxidans) in the oxidation of thiosulphate, other sulphur compounds and 
sulphur formed during the oxidation of pyrite. 
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Interactions between litho-autotrophs and heterotrophs in relation to organic nutrition and 

toxicity 

Acid mine drainage-forming environments contain high numbers of litho-autotrophic or facultatively 

litho-autotrophic iron- and sulphur-oxidizing bacteria (Harrison, 1984; Johnson, 1995a; Sand et al., 

1992). These organisms are capable of fixing carbon dioxide and are the main source of recently 

fixed organic carbon in acid mine drainage-generating environments (Johnson, 1995a). Leakage of 

organic compounds or lysis of litho-autotrophic cells liberates organic substrates for use by 

heterotrophic organisms such as bacteria from the Acidiphilium/Acidocella group (Harrison, 1984, 

1989; Johnson and McGinness, 1991a; Johnson, 1995a). As the litho-autotrophic iron-oxidizing 

bacteria T ferrooxidans and L. ferrooxidans are strongly inhibited by organic compounds (Hohmann, 

et al., 1992, Johnson, 1995a; Mishra and Roy, 1979; Tuovinen and Kelly, 1973; Tuttle and Dugan, 

1976; Visca et al., 1989), heterotrophic organisms may play an important role in the generation of 

acid mine drainage by consuming the organics and preventing inhibition of the litho-autotrophic 

bacteria that catalyse the oxidation of pyrite. Acidophilic protozoa and rotifers that graze on the 

bacteria present in acid mine drainage environments have been isolated (Johnson and Rang, 1993; 

McGinness and Johnson, 1992). A schematic summary of interactions among litho-autotrophic and 

heterotrophic microbial populations in respect of carbon nutrition, toxicity and detoxification of 

organic microbial products in acid mine drainage-producing environments is presented in Fig. 9. 

Combined model of bacterial transformations and interactions involved in pyrite oxidation in 

acid mine drainage environments 

The microbial catalysis of acid mine drainage formation in pyritic mineral environments is linked to 

transformations of iron, sulphur, carbon and oxygen. A combined model of these transformations, 

interactions among them and microbial populations that catalyse them is presented in Fig 10. 

Environments where acid mine drainage is generated, are not closed systems. Biogeochemical cycles 

in these environments are therefore also not closed. Pyritic minerals are the primary energy source in 

these environments. The central reaction in the formation of acid mine drainage is the oxidation of 

pyrite by ferric ions (Luther, 1987; Moses et al., 1987; Sand et al., 1995, Schippers et al., 1996). The 

pyrite is consumed with the production of ferrous iron and thiosulphate, which are subsequently 
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Fig. 9. Schematic summary of the carbon flow in acid mine drainage-generating environments, 
indicating the various groups of organisms and processes involved. 
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oxidized and released into the environment as ferric iron and sulphate (Atlas and Bartha, 1993). The 

oxidation of pyrite is therefore driven by ferric iron, which is also an end-product of the microbially 

catalysed oxidation of pyrite. Cyclic reactions of the ferrous iron-ferric iron redox couple and 

bacterial populations catalysing these reactions are thus central to acid mine drainage formation (Fig. 

6, 7 and 10). Bacterial populations that catalyse the oxidation of thiosulphate, other inorganic sulphur 

compounds and sulphur also enhance the formation of acid mine drainage by oxidizing these 

components to sulphuric acid (Fig. 8 and 10). Furthermore, these litho-autotrophic iron- and sulphur-

oxidizing bacteria are the primary poducers in acid mineral environments. However, they are 

inhibited by low concentrations of many organic compounds, including products of their metabolism 

(Harrison, 1984). Heterotrophic organisms that consume these organic compounds therefore form an 

essential component of the ecology of acid mine drainage formation (Fig. 9 and 10). 

Conclusions 

Pyrite oxidation is a complex phenomenon with many steps, which lead to the formation of various 

intermediates and side products, such as sulphur and sulphoxy anions. The process is further 

complicated by the interactions of abiotic and biotic transformations in the reaction sequences. The 

understanding of pyrite oxidation is by no means complete, but recent observations on the mechanism 

of pyrite oxidation suggest the following hypothesis: 

i. Pyrite oxidation is primarily an abiotic process. 

ii. Ferric hexahydrate is the main oxidizing agent in the primary oxidation of pyrite, as well as the 

subsequent oxidation of intermediary sulphur-containing compounds resulting therefrom. 

Chemolithotrophic iron-oxidizing bacteria, such T ferrooxidans and L. ferrooxidans, catalyse 

the oxidation of pyrite by the production of ferric ions. 

iv. Free and attached cells of the lithotrophic bacteria catalyse the oxidation of pyrite. 

v. During the initial stages of attack, attached cells are the dominant catalytic agents, but non-

attached cells play an increasingly important catalytic role as the leaching environment matures. 
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vi. Various groups of acidophilic organisms interact synergistically to catalyse the oxidation of 

pyrite, which leads to the formation of acid mine drainage. 

This discussion of pyrite oxidation supports the cyclic mechanism proposed by Sand et al. (1995), in 

which iron is oxidized by the bacteria and reduced on the pyrite surface. Using this model and taking 

into account the enzymatic systems of T ferrooxidans as well as the chemistry of the intermediary 

sulphur compounds formed during the oxidation of pyrite, the model of biologically catalysed pyrite 

oxidation can be enlarged. Pyrite and intermediate sulphur-containing compounds formed by its 

dissolution in aqueous environments containing ferric iron act as indirect energy sources for 

chemolithotrophic iron-oxidizing bacteria in that they reduce ferric iron to ferrous iron which the 

bacteria can utilize as a source of electrons for their energy metabolism. 

Although T ferrooxidans is the best characterized member of the acidophilic iron oxidizing bacteria, 

it is becoming increasingly clear that other iron-oxidizing bacteria such as L. ferrooxidans and 

heterotrophic iron-oxidizing bacteria may also play a very important part in catalysing pyrite 

oxidation. Sulphur-oxidizing members of the genus Thiobacillus may also play an important part in 

the formation of acid mine drainage as they oxidize sulphur compounds formed as intermediates 

during pyrite oxidation to sulphuric acid. Heterotrophic organisms living in acid mine drainage-

generating environments stimulate the growth of iron-oxidizing bacteria in two possible ways. Firstly, 

they remove inhibitory organic substances from the environment and secondly, they assist in the 

adhesion of iron-oxidizing bacteria to the pyrite surface. 

The study of the ecology of acid mine drainage-generating environments necessitates an 

understanding of the transformations of iron, carbon, sulphur and oxygen, as well as the organisms 

involved. Litho-autotrophic iron-oxidizing bacteria, such as T ferrooxidans and L. ferrooxidans, play 

a pivotal role in the ecology of acid mine drainage-generating environments, as they not only produce 

the ferric iron necessary for pyrite oxidation, but are also responsible for carbon fixation. Various 

organoheterotrophic and mixotrophic organisms then utilize the carbon fixed by the litho-autotTophic 

organisms. 

The study of the ecology af acid mine drainage-generating environments has often been hampered by 

difficulties experienced in culturing organisms from these environments. The most probable number 

(MPN) technique is frequently used to enumerate iron-oxidizing bacteria, but this technique is 

Stellenbosch University http://scholar.sun.ac.za/



42 

inherently inaccurate. Organic inhibitors in gelling agents such as agar or agarose hamper the use of 

solid media for the culturing and enumeration of acid mine drainage-causing organisms. However, 

recent media that use the symbiotic relationship between heterotrophic and litho-autotrophic bacteria 

in double layered media can overcome this inhibition by organic compounds (Johnson, 1995b) and 

may permit more acurate determinations of litho-autotrophic bacteria by plate counts. 
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EXPERIMENTAL PART 1. ABIOTIC ECOLOGICAL 

DETERMINANTS (TEMPERATURE, MOISTURE, 

OXYGEN, CARBON DIOXIDE AND pH) AND IRON- 

OXIDIZING BACTERIA IN PILOT SCALE COAL WASTE 

DUMPS IN RELATION TO COVERS USED FOR DUMP 

REHABILITATION 

INTRODUCTION 

In 1993, as part of the Water Research Commission Project K5/454, the Department of 

Microbiology at the University of Stellenbosch, in conjunction with the Department of Water 

Affairs and Forestry and consulting engineers Wates, Meiring and Barnard, started a pilot scale 

experiment to study the effects of various dump cover treatments on the acidification of coal 

waste dumps and the microbial populations that could be involved in accelerating the process. It 

was hoped that results from this study would provide guidelines for the successful rehabilitation 

of coal waste dumps and the prevention of acid mine drainage. 

Initial studies of the acidification of the pilot scale dumps (mini-dumps or cells) and abiotic 

factors and organisms associated with it, until August 1995, were conducted by Cleghorn (1997). 

Experimental Part 1 of this thesis is a continuation of the studies of Cleghorn (1997). The 

construction of the mini-dumps and the experimental methodology are described in detail by 

Cleghorn. (1997) and Loos etal. (1997). Where experimental procedures in the present thesis are 

those of Cleghorn (1997), they are indicated by reference to his thesis and Loos et al. (1997). 

Where necessary to provide a complete picture of the acidification process, Cleghorn's data 

pertaining to pH, other abiotic factors affecting the mini-dumps and the populations of bacteria 

capable of oxidizing high ferrous iron concentrations before August 1995, have been included in 

the present thesis with acknowledgement of their source. 

The research of the present thesis was not only a continuation of the studies started by Cleghorn 

(1997) but was expanded to include: 

(i) 
	

The determiniation of populations of bacteria oxidizing a high concentration of ferrous 

iron and capable of growth at the elevated temperature of 37°C and the lowered pH of 

1.0-1.3. 
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(ii) The determination of populations of bacteria oxidizing a moderate concentration of 

ferrous iron and including a wider range of bacteria than the high iron oxidizers. 

(iii) The testing of cultures of moderate ferrous iron-oxidizing bacteria for utilization of 

sulphur and thiosulphate, to ascertain the occurrence of T. ferrooxidans among them. 

(iv) The testing of a plate count method involving the FeSo-medium of Johnson (1995b), as a 

possible method to determine various populations of acidophilic bacteria involved in acid 

mine drainage generation. 

It was hoped that these studies and those of Cleghom (1997) would indicate the main groups of 

bacteria involved in the generation of acidity in the control and unsuitably rehabilitated mini-

dumps. 

MATERIALS AND METHODS 

Construction and Materials of Pilot Scale Dumps 

A diagram summarizing the construction of the variously treated mini-dumps (cells) in the pilot 

scale experiment at the Kilbarchan mine is presented in Fig. 11. Detailed descriptions of the 

construction of the cells are given by Cleghom (1997) and Loos etal. (1997). 

The coal waste used in the experiment was obtained from the Kilbarchan Mine. The waste 

consisted of fine particles of which at least 95% were <3 mm in cross-section. Two soil types, 

namely, an Avalon soil and an Estcourt soil, were used to cover the cells. Compacted Escourt 

soil, which had the highest bulk density and the lowest water permeability, was used as the clay 

barrier between the coal waste and the Avalon topsoil in covers consisting of both soil types and 

for the vertical barrier walls separating and surrounding the cells. Analyses of the coal waste, 

Avalon and Estcourt soils are presented by Cleghom (1997) and Loos etal. (1997). 

As vegetation may play an important role in the stabilization and prevention of erosion of the 

cover material, cells 3-10 were seeded as descibed by Cleghom (1997) and Loos et al. (1997). 

By November 1995 the vegetation was not well established and the Chamber of Mines 

Vegetation Unit again seeded these cells. The cells were fertilized with 500 kg/ha 2:3:2 N-P-K 
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Cell 1 
3.0 m uncovered uncompacted coal 
waste 

Cell 3 
3.0 m uncompacted coal waste 
Limed, fertilized and vegetated 

Cell 5 
2.5 m uncompacted coal waste 
0.5 m compacted Avalon soil 
Vegetated 

Cell 7 
2.0 m uncompacted coal waste 
0.7 m compacted Avalon soil 
0.3 m uncompacted Avalon soil 
Vegetated 

Cell 9 
1.0-2.0 m uncompacted coal waste 
to give 1 in 10 surface slope to west 
0.7 m compacted Estcourt soil 
0.3 m uncompacted Avalon soil 
Vegetated 

Cell 2 
3.0 m uncovered compacted coal waste 

Cell 4 
2.7 m uncompacted coal waste 
0.3 m uncompacted Avalon soil 
Vegetated 

Cell 6 
2.0 m uncompacted coal waste 
0.7 m compacted Estcourt soil 
0.3 m uncompacted Avalon soil 
Vegetated 

Cell 8 
2.0 m uncompacted coal waste 
0.3 m compacted Estcourt soil 
0.7 m uncompacted Avalon soil 
Vegetated 

Cell 10 
0.0-2.0 m uncompacted coal waste 
to give 1 in 5 surface slope to west 
0.7 m compacted Estcourt soil 
0.3 m uncompacted Avalon soil 
Vegetated 

4 	 

Fig. 11. Diagram summarizing the construction, treatment and relative positions of the cells 
of the pilot scale coal waste dump rehabilitation experiment at the Kilbarchan mine. The 
horizontal dimensions of all cells were 10 x 10 m. The cells were constructed on a plastic 
liner and were seperated by 1-m-wide barrier walls of compacted Estcourt soil, which was 
also used in a sloped containment barrier around the block of cells. 
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fertilizer and bare areas lightly scarified, seeded with a grass cocktail and lightly cultivated to 

cover the seed and fertilizer. In addition to this treatment, cell 3 was limed (30 tons/ha dolomitic 

lime) and planted with stargrass (Cynodon ethiopicus). The stargrass plants were planted in 

shallow holes prepared on a grid of approximately 0.5 m by 0.5 m and watered (data supplied by 

B. L. Dawson, Chamber of Mines Vegetation Unit, Regents Park). The 1995/1996 rainy season 

was particularly wet and the grass covers on the cells became well established. 

Studies of Abiotic Ecological Determinants 

Rainfall 

Rainfall was measured weekly in two rain-gauges on the pilot scale dumps as detailed by 

Cleghorn (1997) and Loos et al. (1997). 

Oxygen and carbon dioxide in the coal waste 

The oxygen and carbon dioxide concentrations of the atmosphere within the upper 15 cm of coal 

waste in the cells were measured weekly .using buried sintered stainless steel probes and a 

portable carbon dioxide/oxygen monitor as described by Cleghorn (1997) and Loos et al. 

(1997a). However, no readings could be taken from February to May 1996 due to malfunctions 

in the carbon dioxide/oxygen monitor. 

Sampling and analysis of coal waste for moisture and pH 

Sampling. Sampling of the upper 15 cm of coal waste in the covered dumps or at 15-30 cm 

depth in uncovered dumps was performed using a clay auger as described by Cleghorn (1997) 

and Loos et al. (1997). Until September 1996, samples were transported to Stellenbosch the 

same day by car and plane. Thereafter samples for pH determination only were taken in the 

same way by the Department of Water Affairs and Forestry, but sent to Stellenbosch by fast 

mail to arrive usually 2 days after sampling. 

Moisture and pH analysis of coal waste. The coal waste samples were analysed for moisture 

and pH as described by Cleghorn (1997) and Loos et al. (1997). 

Microbiological Studies 

Experimental approach 

As T. ferrooxidans was generally regarded as the main acid-generating chemolithotrophic 

bacterial species in coal waste dumps (Blake et al., 1994; Harrison, 1978; Kleinmann et al., 

1981), populations of this organism were monitored by most probable number (MPN) counts in 
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samples from near the top of the coal waste in the mini-dumps throughout the period of the 

study. The selective medium for the MPN counts was the modified 9K medium used by 

Harrison et al. (1980), designated HE medium. 

Populations of various other groups of iron-oxidizing bacteria were counted alongside the 

routine counts of high ferrous iron-oxidizing organisms believed to be T. ferrooxidans. These 

included bacteria able to grow at higher temperature than the usual T ferrooxidans in an 

acidified HJJ medium (designated L medium) and bacteria requiring the lower iron 

concentration of the JLFe medium developed by D.B. Johnson (University of Wales, Bangor, 

personal communication). From these studies it might be possible to obtain indications of 

possible roles of iron-oxidizing bacteria able to function under relatively high temperature, high 

acid and high ferrous iron conditions (unusual strains of T ferrooxidans; see Norris, 1990), or 

high acid and moderate but not high ferrous iron concentrations (L. ferrooxidans and others; see 

Sand et al., 1992). 

Subsequently, bacteria growing in the JLFe medium were tested for sulphur metabolism (which 

identifies Thiobacillus) in the S°  medium of D.B. Johnson (personal communication). Those 

that metabolized sulphur were tested further for their ability to metabolize thiosulphate in 

Starkey's medium (Allen, 1957). 

Plates of the FeSo medium developed by Johnson and his colleagues (Johnson, 1995b; Johnson 

et al., 1987; Johnson and McGinness 1991a) were inoculated from the same dilution series used 

for the MPN counts of the abovementioned groups of iron-oxidizing bacteria to test the 

possiblity of using a more accurate plate count method to determine the numbers of acidophilic 

bacteria involved in acid mine drainage generation. 

Media 

HJJ medium. This medium, which was named after Harrison, Jarvis and Johnson (1980), was a 

modification (reduced ammonium sulphate concentration) of the widely used 9K liquid medium 

of Silverman and Lundgren (1959) for T ferrooxidans. It was used for the MPN determinations 

as well as enrichment culturing of these and possibly other similar acidophilic high ferrous iron-

oxidizing bacteria in the coal waste. The basal medium consisted of 2.00 g (NH 4  ) 2  SO 4, 0.10 g 

KC1, 0.50 g K2HPO4, 0.50 g MgSO4.7H20, 0.01 g Ca(NO3)2  and 1.0 ml 10 N H2SO4  in 700 ml 

distilled H20. To the sterilized (121°C for 15 min) basal medium were added 44.2 g 

FeS0 4  .7H 20 in 300 ml distilled water, which was sterilized by passage through a 0.2 gm 

nitrocellulose membrane filter (Millipore SA, Bellville). The pH of the basal medium and of the 
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FeS0 4  .7H 20 solution was adjusted before sterilization to pH 2.0 by the addition of a 15 % (v/v) 

H PO -15 % (v/v) H SO solution or H SO. 3 	4 	 2 	4 	 2 	4 

L medium. This medium was used for MPN determinations of high ferrous iron-oxidizing 

bacteria with relatively high temperature (37°C) and low pH growth parameters (extreme 

conditions) and differed from HE medium only in that the pH was lowered to pH 1.0-1.3. 

JLFe medium. This moderate ferrous iron medium developed by D.B. Johnson (personal 

communication), contained about one third of the ferrous iron contained in HE medium, as some 

iron-oxidizing bacteria (including L. ferrooxidans) may be inhibited by the ferrous iron 

concentration employed in HE medium. The JLFe medium was used for more inclusive MPN 

determinations of acidophilic iron-oxidizing bacteria than those achieved with HJJ medium. 

For the preparation of this medium a basal salts stock solutions (BSS) and a trace element stock 

solution (TES) were first prepared. The BSS contained 1.50 g (NH4)2SO4, 0.50 g KC1, 5.0 g 
MgSO4.7H20, 0.50 g KH2PO4  and 0.10 g Ca(NO3)2  in 1 000 ml distilled water and was acidified 
to pH 2.0-2.5 with H2SO4. The TES (modified slightly) contained 10 g ZnSO4.7H20, 1.0 g 
CuSO4.5H20, 1.0 g MnSO4.4H20, 1.0 g CoSO4.7H20, 0.5 g Cr2(SO4)3.K2SO4.24H20 (modified 
component), 0.5 g Na2B407.10H20 and 0.5 g NaMo04.2H20 in 1 000 ml distilled water and was 
acidified to pH 2.0 with H2SO4. A salts solution was then prepared from 100 ml BSS, 0.5 ml 

TES and 800 ml distilled water. To this was added (after sterilization) a solution containing 14 g 

FeSO4.7H20 in 100 ml distilled water. Both the salts and ferrous sulphate solutions were 

adjusted to pH 2.0 with H2SO4  before sterilization. The salts solution was sterilized by 

autoclaving (121°C for 15 min), while the ferrous sulphate solution was sterilized by passage 

through a 0.2 1.tm nitrocellulose membrane filter (Millipore SA, Bellville). 

S°  medium. This medium of D. B Johnson (personal communication) was used to test positive 

MPN cultures in JLFe medium for the utilization of sulphur (S°), thereby confirming the 
presence of T ferrooxidans (Harrison, 1978; Kelly and Harrison, 1989). It had the same basal 

ingredients as the JLFe medium, containing 100 ml BSS, 0.5 ml TES and 900 ml distilled 1120 
plus 10 g ground sulphur. The pH of the solution was adjusted to pH 2.7 using H2SO4. The 
medium was sterilized by steaming at 100 °C for 1 hour. 

Starkey's medium. The medium as specified by Allen (1957) was used to test MPN cultures 

that grew in the JLFe medium and subsequently in the S°-medium for thiosulphate utilization. 

Basal medium consisted of 0.30 g (NH4)2SO4, 3.00 g KH2PO4, 0.50 g MgSO4.7H20, 0.25 g 

CaCl2  and 0.01 g Fe2(SO4)3.9H20 in 980 ml of distilled water. Thiosulphate solution was 

prepared as 5.00 g Na2S203.5H20 in 20 ml distilled water. The solutions were sterilized 

separately at 121°C for 15 min then mixed in the ratio 49:1. 
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FeSo medium. This solid medium developed by Johnson and his colleagues (Johnson, 1995b; 
Johnson et al., 1987; Johnson and McGinness 1991a) was tested for the enumeration of 

acidophilic bacteria in coal waste by plate count. It consisted of four solutions that were 

sterilized separately and mixed after cooling to 45°C in a water bath. The basal salt stock 

solution (BSS) and trace element stock solution (TES) were as described under JLFe medium. 

Solution A consisted of 575 ml distilled water, 100 ml BSS, 0.5 ml TES, 0.25 g Tryptone Soy 

Broth (Biolab Diagnostics, Midrand) and 1.1 g (NH4)2SO4. The pH was adjusted to pH 2.5 using 
H2SO4  and the solution was heat-sterilized (121 °C for 15 min). Solution B consisted of 5 g 

agarose (FMC Bioproducts, Rockland, USA) in 250 ml distilled water and was heat-sterilised 

(121 °C for 15 min). Solution C consisted of 7 g FeSO4.7H20 dissolved in 50 ml distilled water. 
This solution was adjusted to pH 2.0 using H2SO4  and sterilized by passage through a 0.2 gm 

nitrocellulose membrane filter (Millipore SA, Bellville). Solution D consisted of 1.51 g K2S406  
• dissolved in 25 ml distilled water and sterilized by passage through a 0.2 gm nitrocellulose 

membrane filter (Millipore SA, Bellville). After sterilization, the heat-sterilized solutions (A 

and B) were allowed to cool to 45 °C in a water bath. The other solutions were warmed to 45 °C 

and mixed into A in the order C, D and then B. This molten medium was then split in two and 

one of the halves returned to the water bath to prevent gelling. To the other half were added 10 

ml of an active culture of Acidiphilium strain El A (isolated during this study from enrichment 

culture KJE1 from a fine soft waste from a duff-washing process at the Kilbarchan Mine). After 

thorough mixing, this inoculated medium was used to pour a thin underlayer in a standard Petri 

dish and allowed to gel. After gelling of the underlayer, a sterile overlayer of the same thickness 

as the underlayer was poured using the rest of the medium. 

Coal waste samples from pilot scale dumps for microbiological analyses 

Samples for MPN counts of bacteria in the coal waste in the pilot scale dumps were portions of 

those described previously under the heading Sampling and analysis of coal waste for 
moisture and pH. 

MPN counts: General procedures 

For MPN determinations of specific chemolithotrophic bacterial groups, flasks of the appropriate 

medium (see next section) were inoculated in triplicate with coal waste or dilutions thereof using 

the basal medium as diluent. The first two inoculations were 10 g coal waste in 50 ml medium 

and 1 g coal waste in 20 ml medium. The first dilution was 5 g coal waste in 50 ml basal 
medium (10-' dilution), which was shaken for 5 min at maximum speed (approximately 600 

oscillations/min) on a Griffin wrist action flask shaker (Griffin and George, London). 

Subsequent tenfold dilutions were prepared by suspending 10 ml of the 10' and subsequent 
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dilutions in 90 ml of the appropriate basal medium. Flasks containing 20 or 50 ml of complete 

medium were inoculated with 1 ml of the appropriate dilution and incubated at 26 °C (most 

studies) or 37°C as specified in the next section. After appropriate incubation times, flasks were 

recorded as positive or negative for bacterial growth as specified in the following section. 

From the patterns of cultures showing growth of the specific organisms in the MPN series, the 

populations of the organisms were determined using the appropriate MPN table of De Man 

(1983) or the American Public Health Association et al. (1955). The indicated populations were 

corrected to populations per g dry coal waste using the moisture content values for the samples. 

The reliability of each MPN test result, as the likelihood of obtaining the specific test result, was 

noted from Table 1 of De Man (1983), which was also used to determine the 95 % confidence 

limits of the MPN values. Confidence limits (95%) that could not be obtained from the De Man 

tables were computed according to Dr. J. H. Randall (Biometrician, Faculty of Agricultural 

Sciences, University of Stellenbosch). . 

MPN counts: Specific procedures for different bacterial groups 

Acidophilic high ferrous iron-oxidizing bacteria. 	These iron-oxidizing bacteria were 

believed to be T ferrooxidans. They were investigated in all the coal waste samples from the 

pilot scale dumps throughout the study period using HJJ medium. The diluent for preparing the 

dilutions was basal HJJ medium without the ferrous sulphate. The inoculated MPN flasks were 

incubated at 26 °C in the dark for 4 weeks and tubes which had changed colour from light green 

to a reddish brown colour (caused by the presence of ferric ions) were scored as positive. 

Acidophilic relatively high temperature high ferrous iron-oxidizing bacteria. The L 

medium and incubation at 37 °C used in this study would select iron-oxidizing bacteria able to 

grow under extreme conditions of high iron concentration, low pH (1.0-1.3) and relatively high 

temperature. High temperature strains of T ferrooxidans (Norris, 1990) tolerant of low pH 

(Raz7ell and Trussell, 1963) and possibly strains of L. ferrooxidans would be counted by this 

procedure. The basal salts solution of the HJJ medium was used as diluent and the MPN flasks 

were 250-ml Erlenmeyer flasks containing 100 ml L medium. The inoculated flasks were 

incubated at 37°C in the dark for 4 weeks and scored for growth in the same way as the cultures 

growing in HJJ medium. 

Selected active cultures of these bacteria from MPN flasks inoculated with 10 g coal waste and 

the highest dilution giving growth, were subcultured into L medium and incubated at 40°C in the 

dark to investigate their ability to grow at this elevated temperature. 
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Acidophilic moderate ferrous iron-oxidizing bacteria (count in JLFe medium). This 

medium was the least selective of all the media used for iron-oxidizing bacteria, and should have 

allowed growth of T. ferrooxidans, L. ferrooxidans and possibly other species that might be 

inhibited by the high iron concentration of HJJ medium. The basal HJJ medium without ferrous 

sulphate was used to prepare the dilutions, which were inoculated into 250 ml Erlenmeyer flasks 

containing 50 ml JLFe medium. Incubation was for 4 weeks at 26°C in the dark, after which the 

flasks were scored in the same way as for the MPN counts in HJJ and L medium. 

Iron- and sulphur-oxidizing bacteria able to grow in both JLFe and S°  medium. The 

positive MPN cultures in JLFe medium were inoculated (1 ml in 10 ml) into S°  medium in 15 x 

150-mm test tubes which were then incubated for 8 weeks at 26 °C in the dark. Positive tubes 

containing S°-metabolizing bacteria were identified by measuring the pH of each culture. A 

decline in the pH of more than 0.3 pH units relative to the pH of a non-sulphur-oxidizing control 

inoculated with L. ferrooxidans CF12 (supplied by Dr. D. B. Johnson, University of Wales, 

Bangor) was taken as positive. Thiobacillus ferrooxidans ATCC 23270 (American Type Culture 

Collection, Rockville, Maryland, USA) was used as a positive control. 

Iron-, sulphur- and thiosulphate-oxidizing bacteria able to grow in JLFe, S°  and Starkey's 
medium. Cultures that had grown in JLFe medium and subsequently in S°  medium were 

subcultured from the latter after 8 weeks of incubation (1 ml inoculum into 50 ml of Starkey's 

media in 250-ml Erlenmeyer flasks) and incubated at 26°C in the dark for 4 weeks. After 

incubation, thio sulphate metabolism was detected by titration of 10 ml samples of the cultures 

with a 0,02 N I20,4%  (m/v) KI solution using starch as indicator (Vogel, 1951). 

Plate counts of acidophilic bacteria in coal waste 

For the determination of acidophilic bacteria in coal waste samples by plate count, 1 ml 

quantities of inoculum from the dilutions prepared for MPN determinations of acidophilic high 

ferrous iron-oxidizing bacteria were spread evenly over FeSo plates. The inoculated plates were 

inverted after 1 day, then incubated in the dark until countable colonies formed (usually 4-6 

weeks). 
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RESULTS 

Abiotic Ecological Determinants in Pilot Scale Coal Waste Dumps 

Moisture conditions 

Rainfall. Rainfall on the pilot scale dumps during the study period January 1994 to July 1997 is 

shown in Fig. 12. The 1994/1995 rainy season was rather dry. This, combined with the dry 

winters in 1994 and 1995, caused the soil covers to dry out by September 1995. Because of the 

clayey nature of the cover materials, large cracks appeared in the covers as well as in the barrier 

walls separating the individual cells. 

Although the 1995/1996 rainy season started late (October), it was particularly wet (Fig. 12). 

The cracks in both the covers and the walls separating the cells closed by the middle of the rainy 

season. Good rainfall continued throughout the rainy season which lasted until the end of May, 

then sporadically during June to August 1996. The cracks did not reappear during the dry winter 

months in 1996. 

Good rains fell during the 1996/1997 rainy season, particularly during the last part of the season 

which extended to July 1997. As there was enough moisture in the cover material at the onset of 

the 1996 dry period, the cracks did not reappear. 

Moisture content of coal waste. The mean moisture contents of the duplicate coal waste 

samples from each cell over the entire period of the experiment to September 1996 are shown in 

Fig. 13. Details of the moisture in individual samples from February 1995 to September 1996 

are provided in Appendix Tables 1-9a. 

The moisture content of the uncovered coal waste in cells 1, 2 and 3 was affected by rainfall or 

desiccation conditions prior to sampling as the coal waste in these cells was directly exposed to 

the elements, resulting in considerable fluctuation of the moisture content through the samplings. 

The moisture levels were generally higher during the very wet 1995/1996 summer, after they 

had decreased to their lowest levels in September 1995. 

The moisture content of the coal waste in the cells covered with Avalon soil only (cells 4, 5 and 

7) remained close to the orginal level of approximately 10%, although with a slight decline as 

dry conditions persisted, until the very wet 1995/1996 rainy season when it increased sharply 

before returning to the original levels during the winter of 1996. 
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During the period September 1993 to September 1995, the cells covered with both an Estcourt 

and an Avalon soil layer (cells 6, 8, 9 and 10), seemed stabilised at a moisture content of about 

10 %. During the 1995/1996 rainy season, the moisture content rose sharply before returning to 

the original levels during the winter of 1996. 

Oxygen and carbon dioxide concentrations in coal waste 

Oxygen and carbon dioxide concentrations in the atmosphere in the upper 15 cm of coal waste in 

the various cells are shown in Fig. 14 and 15. The concentrations are monthly mean values 

determined from weekly readings. 

The oxygen and carbon dioxide concentrations generally had an inverse relationship; the higher 

the oxygen concentration (more aerobic) in the coal waste, the lower was the carbon dioxide 

concentration and vice versa. As the monitoring apparatus could measure carbon dioxide levels 

only up to 5%, concentrations of 5% shown in Fig. 15 could have been higher. 

Uncovered cells (1, 2 and 3). All three uncovered cells remained aerobic during the course of 

the experiment, with the mean oxygen concentrations remaining mostly above 15% and carbon 

dioxide concentrations below 2%. The vegetated cell 3 containing uncompacted waste was 

slightly more aerobic than cells 1 and 2 containing uncompacted and compacted waste, 

respectively, hence no effect could be ascribed to compaction. During the extended very wet 

summer of 1995/1996, all three cells showed temporary declines in oxygen concentration, but 

not always a corresponding rise in carbon dioxide concentration. 

Avalon soil-covered cells (4, 5 and 7). These cells were covered with different depths of the 

cover material, resulting in their oxygen and carbon dioxide profiles differing substantially. 

Cell 4, covered with 30 cm of uncompacted Avalon soil remained aerobic; however, it was 

usually slightly less aerobic than the uncovered cells, and often contained a higher carbon 

dioxide concentration. 

Cell 5, covered with 50 cm of compacted Avalon soil, became anaerobic soon after construction. 

However, the cover was permeable to oxygen during dry periods, particularly after July 1995 

when it developed cracks. Although the cracks closed during the subsequent wet season, cell 5 

retained a concentration of oxygen higher than 10% until July 1996, after which it slowly 

declined to become anaerobic in September 1996. Thereafter it remained anaerobic until the end 

of the experimental period. 
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Fig 14. Monthly mean oxygen concentrations (from weekly measurements) at depths of 5-15 
cm below the upper surface of the coal waste in cells of the pilot scale dump rehabilitation 
experiment. Dotted lines indicate periods when no determinations could be made. (Data prior 
to August 1995 were obtained from Cleghom, 1997.) 
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Fig. 15. Monthly mean carbon dioxide concentrations (from weekly measurements) at depths of 
5-15 cm below the upper surface of the coal waste in cells of the pilot scale dump rehabilitation 
experiment. Dotted lines indicate periods when no determinations could be made. (Data prior to 
August 1995 were obtained from Cleghorn, 1997.) 
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Cell 7, covered with 70 cm compacted and 30 cm uncompacted Avalon soil, became anaerobic 

soon after construction. The cover remained an effective barrier to oxygen penetrating into the 

cell (which remained anaerobic) until it cracked during the latter part of the 1995 dry season. 

However, cell 7 again become anaerobic by July 1996, about 2 months earlier than cell 5. It then 

remained anaerobic until the end of the experimental period. 

Estcourt and Avalon soil-covered cells (6, 8, 9 and 10). The very dry conditions during the 

latter half of the 1995 dry season caused the covers to crack, allowing considerable gas exchange 

with the atmosphere. Aerobic conditions developed in the coal waste and persisted despite the 

good rains in the 1995/1996 rainy season, until June 1996. Thereafter, the cells returned to being 

anaerobic and remained so until the end of the experimental period. 

pH of coal waste 

The mean pH for the two samples of coal waste from each cell at each sampling was determined 

from the values in Appendix Tables 1-10. These mean pH values and those of Cleghorn (1997) 

are plotted in Fig. 16. 

Uncovered cells (1, 2 and 3). These cells acidified at approximately similar rates, acidifying 

from an initial pH of just below 6 to approximately 	3 by April 1995 (Cleghrorn, 1997), after 

which the pH in cells 1 and 2 remained more or less constant. 

The pH of cell 3 rose sharply to pH 4.5 after the lime treatment of November 1995, after which it 

returned to its previous levels. Subsequently, however, pockets of relative alkalinity probably 

due to the lime treatment were sampled frequently, leading to fluctuation of the mean pH values 

in the range approximately pH 3-6. 

Avalon soil-covered cells (4, 5 and 7). As these cells differed considerably in construction and 

aerobicity, their acidification trends also differed substantially. 

Cell 4, covered with 30 cm of Avalon soil, remained aerobic during the experimental period. Its 

acidification proceeded similarly to that of the uncovered cells. A sharp rise in the mean pH 

(from a high pH of one sample) was observed during March 1996 in the very wet rainy season, 

but it returned thereafter to approximately pH 3. 

Stellenbosch University http://scholar.sun.ac.za/



59 

B. Coal waste with Avalon soil cover 

C. Coal waste with Estcourt and Avalon soil cover 

Cell 

Cell 

Cell 

0 	20 40 60 80 100 120 140 160 180 200 

SNJMMJSNJMMJSNJMMJSNJMMJ 

1993 I 	1994 	 1995 	I 	1996 	I 	1997 

Time (week, month, year) 

Fig. 16. Mean pH of duplicate samples from the upper 30 cm of coal waste in the cells of the 

pilot scale dump rehabilitation experiment in relation to the time of sampling.(Data prior to 

August 1995 were obtained from Cleghorn, 1997.) 

-0-4 
-6- 5 

±7 

-9-  6 
- 8 
+ 9 

0 

Stellenbosch University http://scholar.sun.ac.za/



60 

Cell 5, covered with 50 cm of compacted 'Avalon soil, fluctuated between periods of being 

aerobic in the dry seasons and anaerobic during the wet seasons. It already contained pockets of 

acidification at the onset of the experiment causing an extreme scatter of pH values around the 

general pH trend (Cleghorn, 1997). However, from Fig. 16 it appears that the pH declined to 

about pH 3 by January 1996, then showed a sharp rise similar to that in cell 4 before returning to 

about pH 3 for the remainder of the experimental period. 

Cell 7, covered with a total thickness of 1 m of Avalon soil, of which the lower 70 cm was 

compacted, remained anaerobic until the cover cracked during the extremely dry winter of 1995. 

Slight and slow acidification occurred over most of the experimental period, but seemed to 

increase from December 1996 to March 1997 after the aerobic period. A pH of about 3-4, 

comparable to the pH at which the more aerobic cells stabilized, was measured in the samples 

taken from March to June 1997. 

The sharp, short-lived pH increases measured in cells 4, 5 and 7 during March 1996 seemed to 

result from random sampling of pockets of coal waste that had not yet acidified substantially, 

giving mean pH values above the general pH trends for the respective cells (see Appendix Table 

6). 

Estcourt and Avalon soil-covered cells (6, 8, 9 and 10). These cells remained mainly 

anaerobic throughout the experiment, except when the covers cracked after the dry winter of 

1995, allowing gaseous exchange which resulted in aerobic conditions in the waste from August 

1995 to June 1996. From September 1995, pockets of acidification were detected during 

sampling, suggesting that the acidification process may have started in these cells, although the 

overall pH of the four cells did not drop appreciably during the almost 4-year duration of the 

experiment. Cells 9 and 10, sloped 1 in 10 and 1 in 5, respectively, seemed to yield acidic 

samples more frequently than the flat-topped cells 6 and 8. 

Microbial Populations in Coal Waste of the Pilot Scale Dumps 

Acidophilic high ferrous iron-oxidizing bacteria 

Population sizes of acidophilic iron-oxidizing bacteria capable of growth at 26 °C in HJJ-
medium from various cells of the pilot scale experiment from September 1995 to September 

1996 are shown in Table 2 and Appendix Tables 3-9 (with 95% confidence limits). Fig. 17 

shows the mean log populations of duplicate samples from each cell at the various samplings, 

including the period September 1993-June 1995 from Cleghorn (1997). 
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Table 2. Populations (MPN) of acidophilic high ferrous iron-oxidizing organisms capable of 
growth at 26°C in HJJ medium in coal waste samples from the pilot scale dump rehabilitation 
experiment from September 1995 to September 1996 

Cell and 
(sample) 

MPN/g dry coal waste in samples of 
24/09/95 20/11/95 21/01/96 18/03/96 06/05/96 03/06/96 02/09/96 

1(1) 21 673 27 49 105 1 056 10 096 47 
1(2) 478 260 496 39 1 663 50 250 259 
2(1) 308 799 107 17 2 557 5 025 377 47 
2(2) 1 172 110 17 1 037 50 2 275 47 
3(1) 2 454 127 170 239 2 382 316 224 
3(2) 24 712 1 755 182 2 608 319 25 244 131 
4(1) 99 666 3 347 169 26 1 632 10 200 164 
4(2) 10 003 473 1 034 8 475 1 634 395 266 
5(1) 101 536 429 106 4 976 2 437 47 165 
5 (2) 467 25 107 1 764 231 82 25 
6(1) 4 702 716 25 27 50 3 10 509 
6(2) 3 82 87 26 167 2 535 26 
7(1) 463 231 261 231 4 834 2 291 164 25 
7 (2) 21 636 47 323 1 748 103 103 25 
8 (I) 1 648 168 330 50 26 103 168 
8(2) 254 166 47 32 17 221 2 551 10 267 25 
9(1) 163 785 104 27 10 486 485 263 
9(2) 468 26 262 111 1 686 3 132 168 
10(1) 45 406 47 109 55 26 4 263 
10(2) 13 052 3 86 519 43 2 974 26 
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Large fluctuations of the population sizes (in some cases reflecting growth not occurring 

homogeneously throughout the coal waste) complicate analysis of the results; however, the 

following observations can be made: 

(i) The uncovered consistently aerobic cells 1-3 generally had the highest populations, ranging 

mostly between 100 and 100 000 per g dry coal waste. 

(ii) The Avalon soil-covered cells 4 and 5, which were aerobic for all or part of the time, 

respectively, showed similar populations to those of the uncovered cells. However, samples 

from cell 7, which was covered by 1 m of Avalon soil and was anaerobic for most of the 

time, had populations mainly between 100 and 10000 per g dry coal waste, hence 

comparable with the lowest counts for cells 4 and 5. 

(iii) The cells covered with Estcourt and Avalon soil (cells 6, 8, 9 and 10) generally had the 

lowest populations, mostly ranging between 10 and 10 000 per g dry coal waste. 

The fluctuations suggest the possibility of cyclic seasonal fluctuations, with peak populations in 

spring and late summer to autumn, when temperature and moisture conditions would be 

favourable for microbial development. Declining temperatures and drying may be the cause of 

the autumn declines. Wet conditions with poor gas diffusion to growth sites in the coal waste, 

could be the cause of the summer declines of the populations. 

Acidophilic relatively high temperature, high ferrous iron-oxidizing bacteria 

The populations of these organisms which grew at 37°C in L medium are given in Table 3 and 

Appendix Tables 1-3 and 5. The counts were often lower but sometimes higher than the 

corresponding counts at 26°C in HJJ medium (also see Appendix Tables 11 and 12 of Cleghorn, 

1997), although the differences were usually slight (less than one order of magnitude) and often 

not statistically significant. This suggested that MPN determinations at 37°C in L medium might 

have counted very similar if not the same organisms as the 26°C counts in HJJ medium. 

However, some strains which grew at 26°C in HJJ medium of pH 2.0 could apparently not grow 

under the more extreme conditions of incubation at 37°C in L medium of pH 1.0-1.3. 

Table 3 suggests further that a large proportion of the cultures growing at 37°C in L medium 

could also grow in this medium at 40°C. 
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Table 3. Populations (MPN) of acidophilic high temperature (37°C) high ferrous iron-oxidizing 
bacteria able to grow in L medium in coal waste samples from the pilot scale dump 
rehabilitation experiment and growth of selected subcultures at 40°C 

Cell and 

(sample) 

1VEPN/g dry coal waste and growth of selected subcultures at 40°C 

27/02/95 10/04/95 24/09/95 21/01/96 

MPN 
(37°C) 

subcultures 
growing at 

40°C 

MPN 
(37°C) 

subcultures 
growing at 

40°C 

MPN 
(37°C) 

MPN 
(37°C) 

1(1) 13 158 101  (2) 855 10' (2) 47 307 

1(2) 16 434 10' (2) 5118 l0'(2), 10-3  (1) 46 1 352 

2(1) 82 10'(2) 51313 10'(2) 99 5 

2 (2) 1016 10' (2), 	10-3 (1) 25 10' (2), 104  (2) 46 1 056 

3 (1) 360 10' (2) 4258 101 (2) 10 32 

3 (2) 262 10' (2) 266 10'(2), 10-2 (2) 31 318 

4 (1) 3 767 101 (2) 25 10' (2), 104  (1) 15 846 

4 (2) 38 101 (2) 25 10' (2), 101  (2) 31 1 667 

5 (1) 47 10' (2) 10 10' (2), 104  (1) 4 1 062 

5(2) 50117 10'(2) 24891 10'(2) 1 629 70 

6(1) 3 10'(2) 0.3 10'(2) 25 5 

6(2) 5 10' (2), 10° (1) 0.4 10'(l) 10 27 

7(1) 47 10'(2) 2 10' (2) ), 10'(l) 3 173 

7 (2) 25 10' (2), 104  (2) 2 10' (2), 10°  (2) <0.3 23 

8 (1) 402 10' (2) 16 10' (2), 104  (1). 22 106 
10-2 (1) 

8 (2) 26 10' (2), 	10-' (2) 2 10' (2), 10°  (2) <0.3 108 

9 (1) 2 462 10' (2) 1498 10' (2), 104  (1) 4 695 27 

9(2) 16902 10'(2) 1 101 (2) 41 106 

10(1) >110000 10'(2) 100 10'(2) 3 11 

10(2) 1 042 10' (2) 1 752 10' (2) 5 173 

a 	Value in brackets shows number of subcultures that grew at 40°C, out of two inoculated from 
37°C 10' cultures and two inoculated from 37°C cultures from the indicated end-point dilution 
or dilutions (not tested for the MPN counts of 24/09/95 and 21/01/96). 
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Acidophilic moderate ferrous iron-oxidizing bacteria 

The populations of acidophilic moderate ferrous iron-oxidizing bacteria capable of growth in 

JLFe medium are shown in Table 4 and Appendix Tables 7-9. Counts of these organisms were 

usually higher than the corresponding counts in HJJ medium. The difference was generally at 

least one order of magnitude, suggesting that more groups of organisms were counted using 

JLFe medium. As the JLFe medium is suitable for T. ferrooxidans, the difference indicates 

those organisms that can grow in this moderate ferrous iron medium, but not in the high iron HJJ 

medium. These organisms might include L. ferrooxidans as a major group. There is no clear 

indication that the populations may be generally larger in the aerobic cells 1-4 than in the usually 

anaerobic cells 6 and 8-10 which showed no or little overall acidification. 

Acidophilic moderate ferrous iron- and sulphur (S°)-oxidizing bacteria 

Cultures showing iron oxidation in MPN determinations in JLFe medium were tested for sulphur 

utilization in S°-medium. Thiobacillus ferrooxidans utilizes ferrous iron and sulphur as energy 

sources (Kelly and Harrison, 1989), but neither L. ferrooxidans nor expected heterotrophic 

associates of iron-oxidizing bacteria in enrichment cultures (see EXPERIMENTAL PART 2) 

utilize sulphur. This test could therefore be used to indicate JLFe cultures in which T 

ferrooxidans was the organism responsible for iron oxidation (Harrison, 1978), and to obtain 

MPN counts of presumptive T ferrooxidans in the coal waste samples. A serious problem was 

that sometimes the patterns of sulphur-oxidizing cultures were confusing in that only the highest 

dilutions were positive, suggesting repression of sulphur-oxidizing by non-sulphur-oxidizing 

iron-oxidizing bacteria in the low dilution MPN cultures in JLFe medium. However, this 

phenomenon was observed only with samples from the aerobic uncovered cells. Where the 

pattern of positive results at higher dilutions was suitable, an MPN was determined making the 

assumption that negative tubes in the lower dilutions would have been positive in the absence of 

this repression. 

The populations of the sulphur-oxidizing organisms are shown in Table 4, alongside the 

populations of moderate ferrous iron-oxidizing bacteria, as well as in Appendix Tables 7a-9a. 

Counts for these organisms were generally much lower than those for the moderate ferrous iron-

oxidizing bacteria, with some MPN series yielding no sulphur-oxidizing tubes. These results 

suggest that T. ferrooxidans may have formed only a small portion of the total iron-oxidizing 

populations in the coal waste samples. If the results of Tables 4 and 2 are compared, it appears 

that the counts of acidophilic high ferrous iron-oxidizing bacteria in HJJ medium estimate not 

only T ferrooxidans populations, but populations of other species as well. Possibly these could 

Stellenbosch University http://scholar.sun.ac.za/



66 

Table 4. Populations (MPN) of acidophilic moderate ferrous iron-oxidizing bacteria capable of 
growth in JLFe medium, as well as the populations (MPN) of these organisms also capable of 
growth on sulphur (S°-medium) and thiosulphate (Starkey's medium), in coal waste samples from 
the pilot scale dump rehabilitation experiment 

Cell and 
(sample) MPN/g dry coal waste 

06/05/96 03/06/96 02/09/96 
JLFe S°  JLFe S°  JLFe S°  Starkey 

1(1) 2 612 34 2 497 <0.3 11 905 17 10 

1(2) 265 <0.3 21 776 806 49 584 4 958 4 

2(1) 18 7 22 649 669 50 104 32 25 

2(2) 337 <0.3 47 675 8 119 582 1 196 8 

3(1) 2 609 4 16 320 3 213 416 800 117 

3(2) 4 730 <0.3 47 195 670 78 908 2 301 25 

4(1) 2 503 <0.3 102 000 22 50 404 1 205 47 

4(2) 10 130 12 10 212 33 166 161 2 326 510 

5(1) 406 50 47 <0.3 121 011 15 15 

5(2) 23 139 4 17 452 <0.3 121 448 8 4 

6(1) <0.3 <0.3 105 48 1 660 830 7 

6(2) 480 <0.3 474 <0.3 511 48 10 

7(1) 106 512 <0.3 4 715 22 102 103 17 

7(2) 16 10 474 <0.3 251 275 120170 <0.3 

8 (1) 168 <0.3 476 <0.3 2 529 506 8 

8(2) 1 664 10 15 455 <0.3 5 015 1 635 <0.3 

9(1) 226 4 846 4 25 248 23 <0.3 

9(2) 483 33 10 402 10 2 572 1 230 4 

10(1) 157 4 18 <0.3 252 25 <0.3 

10(2) 49 17 16 520 10 2 649 1 267 <0.3 
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include high ferrous iron-oxidizing strains of L. ferrooxidans. The September 1996 sampling 

yielded far greater numbers of iron- and sulphur-oxidizing bacteria than the May and June 1996 

samplings. This observation can possibly be explained by seasonal variation in the population of 

iron-oxidizing bacteria, as T. ferrooxidans tends to outcompete L. ferroxidans at lower 
temperatures (Hallmann et al., 1992). 

Acidophilic moderate ferrous iron-, sulphur- and thiosulphate-oxidizing bacteria 

As the type strain, 7'. ferrooxidans ATCC 23270, and many other strains of T ferrooxidans can 
utilize thio sulphate, the presumptive T ferrooxidans cultures from the 3 June 1996 and the 2 
September 1996 samplings growing in the S°  medium were subcultured into flasks containing 

Starkey's medium to test their ability to utilize thiosulphate. However, of the 27 sulphur-

utilizing cultures, only two tested positive for thiosulphate utilization. When this procedure was 

repeated with the cultures from the sampling of 2 September, a greater percentage yielded 

positive results and therefore confirmation of the presence of T ferrooxidans. The MPN counts 
of these confirmed T ferrooxidans are also given in Table 4. 

The positive T ferrooxidans ATCC 23270 control utilized thiosulphate in this test, as well as the 

iron in the JLFe medium and sulphur in the S°  medium. 

Acidophilic bacteria by plate count 

The plate counts of acidophilic bacteria capable of growth on FeSo plates are given in Table 5 

and Appendix Table 6 and 8. The counts are mean counts of bacterial colonies on three replicate 

plates. As the FeSo plates permit the growth of most types of organisms known to be directly 

or indirectly involved in catalysing acid mine drainage formation (Johnson, 1995b), the counts 

were generally higher than the corresponding MPN determinations of iron-oxidizing bacteria 

using HJJ or JLFe medium. However, fungal growth often interfered with bacterial growth on 

the plates, causing many plates of the reported studies and all plates of two entire additional 

samplings to be of no use for counting acidophilic bacteria. Only plates with low numbers of 

bacteria could be counted, as precipitation of ferric salts by iron-oxidizing bacteria hampered the 

viewing of single colonies. The low numbers of bacteria counted per plate negatively affected 

the statistical value of the plate counts. 
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Table 5. 	Plate counts of acidophilic bacteria capable of growth on FeSo plates in coal 
waste samples from the pilot scale dump rehabilitation experiment 

Cell and 

(sample) 

Plate count/g dry coal waste 

18/03/96 3/06/96 

1(1) 236460 ND' 

1 (2) ND 166949 

2(1) 311220 352310 

2(2) 1036764 657323 

3(1) 102501 232107 

3 (2) ND' 274400 

4(1) 9205 5209800 

4(2) 644100 874740 

5(1) 266166 ND' 

5 (2) 70566 NDa 

6(1) ND' ND' 

6 (2) ND' ND' 

7(1) 314776 219300 

7 (2) ND' ND' 

8 (1) 6565 73767 

8 (2) 68886 ND' 

9(1) 16243 NW 

9 (2) NW NW 

10(1) 38073 NW 

10(2) 54333 NW 

'ND = not determined. 
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DISCUSSION 

Characteristics of Coal Waste and Cover Materials used in Construction of 

Pilot Scale Dumps 

General Characteristics 

The coal waste used in the construction of the mini-dumps for this experiment had a high acid 

potential, equivalent to 0.77% unoxidized sulphur according to an analysis at the Institute for 

Ground Water Studies at the University of the Orange Free State, Bloemfoentein (Cleghom, 1997; 

Loos et al., 1997). This sulphur content was conducive for oxidative reactions which would lead 

to the production of acidity and to the growth of organisms catalysing the formation of acid mine 

drainage. The fine texture of the coal waste used in this experiment facilitated handling and 

sampling. The texture of the coal waste was comparable to that of a sandy soil (Soil Classification 

Working Group, 1991), allowing good water drainage and diffusion of gases (Gray and 

Williams,1971). 

The clayey nature of the cover materials used in the construction of the mini-dumps should limit 

the diffusion of gases and the infiltration of water into the cells (Cleghom, 1997; Loos et al., 

1997). This was particularly evident in cells covered with 1 m of cover material (Avalon soil only 

or the various combinations of Estcourt and Avalon soil). Under conditions of extreme desiccation 

clays have a tendency to crack (Daniel and Wu, 1993), as happened at the end of the extremely dry 

1995 winter season. Large cracks appeared in the Estcourt soil side walls separating the cells from 

each other and smaller cracks were noted on the surface of the Avalon soil cover on most of the 

cells. This was not suprising, as both the Avalon and Estcourt soil had a clay content of 30-34% 

and a silt content of 20-29% (Cleghom, 1997; Loos et al., 1997). The cracks allowed much 

oxygen, which is the electron acceptor for the oxidation of ferrous to ferric iron, to penetrate the 

cells. The ferric iron in turn is the main electron acceptor in the oxidation of pyrite which leads to 

acid mine drainage formation (Luther, 1987; Moses et al., 1987). The infiltration of oxygen (also 

the terminal electron acceptor for the reactions arising from the oxidation of pyrite) due to the 

cracking of the cover material could therefore have far-reaching consequences for acidification of 

the coal waste underlying the covers. Oxygen infiltrating the underlying material could create 

conditions favourable for a bacterial bloom as soon as sufficient moisture became available, 

causing the biotic oxidation of ferrous iron to become increasingly rapid as pyrite oxidation 

proceeded, liberating substrate for further bacterial activity and lowering the pH (Atlas and Bartha, 

1993; Kleinmann et al. 1981). After the good rains of the 1995/1996 rainy season the cracks 

closed, once again limiting the infiltration of water and the diffusion of gases into the mini-dumps. 
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Because of the relatively wet conditions during the remainder of the experiment, the cells 

maintained their integrity after the cracks had closed at the end of the 1995/1996 rainy season. 

Abiotic Conditions Affecting Bacterial Growth in the Pilot Scale Dumps 

Moisture conditions 

Rainfall. The rainfall occurred mainly during the summer and other warm months (October to 

May), with drought occurring during the winter months (June to September). In the area in which 

the experimental site was located, the rainfall occurs mainly as events lasting for 1 to 2 hours. 

Continuous rain over long periods ( > 1 day) rarely occurs (Wates, Meiring and Barnard,1995a, b). 

Although the rainfall in this area is seasonal, the duration and total rainfall of both the wet and the 

dry seasons varied considerably during the almost 4-year experimental period (Fig. 12). The most 

extreme wet and dry seasons were the summer of 1995/1996 and the winter of 1995, respectively. 

Both of these extreme seasons had profound effects on the soil covers and hence on the coal waste. 

The dry conditions during the winter of 1995 desiccated the cover materials and caused the covers 

to crack, whereas the extremely wet rainy season that followed, saturated the soil cover material 

and restored the integrity of the covers. The effect on the coal waste, apart from changes in the 

moisture content, was a marked effect on the penetration of oxygen through soil covers into the 

underlying waste (see later). 

Moisture content of coal waste. The moisture content of the coal waste samples taken over a 3-

year period of the experiment ranged mainly between 8 and 16 % (Fig. 13). If the moisture 

characteristic curve for a sandy or sandy loam soil (Gray and Williams, 1971) is applicable to the 

coal waste, the moisture would at all times have exceeded that at the permanent wilting point for 

plant growth, where suppression of microbial growth may also occur. Moisture did not therefore 

appear to be a limiting factor for bacteria in the coal waste of the pilot scale dumps. 

The lack of a soil cover on cells 1, 2 and 3 made their moisture contents most responsive to rainfall 

or desiccation. The coal waste in these cells tended to be dryer during the dry seasons and 

responded more rapidly to the early rains of the very wet 1995/1996 rainy season than that in the 

other cells. The moisture contents of cells 4, 5 and 7 showed the least fluctuation and hence the 

clearest trends, notably the general drying trend through the winters of 1994 and 1995, as well as 

the intervening rather dry 1994/1995 summer, until it increased sharply during the 1995/1996 rainy 

season. Cells 6, 8, 9, and 10 covered with both an Estcourt and an Avalon soil layer, showed a 
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rather similar trend but with more fluctuation, particularly when the collected drainage water that 

accumulated at the bottom of cell 10 was sometimes included in a sample. 

The moisture content patterns suggest that the soil covers protected the coal waste from rapid and 

extensive drying, but did not prevent water penetration to the waste in the extremely wet 

1995/1996 rainy season. The main effect of the seasonal moisture changes relevant to the activity 

of acid-generating bacteria in the coal waste, is likely to have been its effect on the aeration of the 

coal waste, discussed in detail in the next section. Heavy rains, which saturated the cover 

materials, would have been the main factor causing anaerobic conditions to develop in covered 

cells. 

Oxygen and carbon dioxide concentrations in coal waste 

The three uncovered cells 1, 2, and 3 remained highly aerobic during most of the experiment, 

with oxygen concentrations mainly above 15% and carbon dioxide concentrations below 2% 

(Fig. 14 and 15). This is understandable as coal waste is porous (with particle size distribution 

resembling that of a sandy soil) which would allow gases to diffuse in and out of the coal waste. 

The effect of high rainfall, filling pores with water, displacing oxygen and hindering its 

diffusion was evident during wet periods such as the summers of 1993/1994, 1995/1996 and 

1996/1997, when the cells became slightly less aerobic. Chemical reactions of the coal and 

microbial metabolism under warm, wet conditions might also help to lower the oxygen 

concentration in the atmosphere of the coal waste. This could be the explanation for increases in 

the carbon dioxide concentration coinciding with reduced oxygen levels. As the cells remained 

aerobic, proliferation of iron-oxidizing bacteria and pyrite oxidation could ensue, leading to the 

acidification of the cells. 

The Avalon soil-covered cells 4, 5 and 7 formed an interesting series. The coal waste was 

covered with different depths of soil cover material, and therefore their oxygen and carbon 

dioxide profiles differed substantially. The 30 cm of uncompacted Avalon soil on cell 4 was 

insufficient to create the anaerobic conditions which would inhibit bacterial iron oxidation and 

the acidification of the coal waste. However cell 4 consistently showed a higher carbon dioxide 

concentration than the uncovered cells, because the covering partially inhibited diffusion of 

gases in and out of the coal waste layer. Cell 5, covered with 50 cm of compacted Avalon soil, 

became anaerobic soon after construction, but the cover became permeable to oxygen during 

extended dry periods, such as the winters of 1994 and 1995. Aerobic conditions became well 

established following cracking of the covers during the 1995 winter, and despite the good rains 

of the 1995/1996 rainy season, persisted until September 1996. The periodic exposure of the 

coal waste in this cell to oxygen, allowed acidification to take place (see next section on pH of 
coal waste). Cell 7 covered with 70 cm compacted and 30 cm uncompacted Avalon soil, also 
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became anaerobic soon after construction. It remained anaerobic throughout the dry 1994 

winter, hence the 1-m cover was a more effective barrier to oxygen penetration than the 50-cm 

cover of cell 5. Nonetheless, during the latter part of the 1995 dry season, the cover showed 

cracks and became permeable to oxygen. As cell 7 remained anaerobic through most of the 

experiment, the chemical and bacterial oxidation of pyrite, as well as acidification of the cell, 

were inhibited to a considerable extent until very late in the experiment. During the last six 

months of the experimental period, pockets of acidification were sampled regularly, indicating 

that acidification may have become established during the aerobic period and subsequently 

progressed steadily despite the anaerobic conditions prevalent in the cell at this stage (see next 

section). 

Cells 6, 8, 9 and 10 with 1-m-thick covers of 30 or 70 cm uncompacted Avalon soil on 70 or 30 

cm compacted Estcourt soil, showed the same trends in oxygen and carbon dioxide 

concentrations as cell 7. Cracking of the covers at the end of the dry 1995 winter resulted in 

aerobic conditions which persisted until June 1996, despite the good rains in the 1995/1996 rainy 

season. As these cells remained anaerobic through most of the experiment, the chemical and 

bacterial oxidation of pyrite, as well as the acidification of the cells, were almost completely 

inhibited (see next section). 

This study has clearly shown that all cells without a soil cover or covered with less than 0.5 m 

soil (cells 1-4), remained essentially aerobic during the course of the experiment, allowing the 

aerobic iron-oxidizing bacteria to grow and acidification to take place. From the results with 

cells 5-10, a minimum cover depth of between 0.5 and 1.0 m seems necessary to create the 

required anaerobic conditions needed to inhibit iron oxidation in coal waste dumps, but 

desiccation and the resulting increased permeability to atmospheric gases or, in extreme cases, 

cracking of the cover may permit the development of temporary aerobic conditions. Where 

desiccation is not so pronounced, a 1-m cover but not a 0.5-m cover, may maintain anaerobic 

conditions (as during the 1994 winter). Further studies are necessary to establish the effect of 

limited periods of aerobiasis during and following drought conditions on the acidification of the 

coal waste 

pH of coal waste 

The pH of the coal waste was of major interest as an indicator of acidification of the various 

cells, in addition to its possible effects on the microbial populations as an ecological 

determinant. The uncovered cells 1-3 showed steadily progressing acidification (Fig. 16), 

stabilizing at a mean pH of approximately 3 from April 1995, but with cell 3 showing pockets of 

higher pH following liming. A similar decline in pH was observed in cell 4 where the 0.3-m 

cover of uncompacted Avalon soil caused little reduction of the oxygen concentration in the 
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underlying coal waste. The acidification of these aerobic cells would have created conditions 

favourable for high populations of iron-oxidizing bacteria and continued acidification at an 

accelerated rate (Harrison, 1984; Kleinmann et al., 1981). However, acidification of the cells 

over an 80-week period was slow in comparison with that in a pilot scale experiment conducted 

near Witbank (Mpumalanga) by Loos et al. (1990b). All the uncovered dumps in that 

experiment showed acidification within 81 days of dump construction, while the pH of the 

effluent from all the dumps was below pH 3 within 120 days. The coal waste in the Witbank 

mini-dumps was not a small particle rather homogenous material as in the Kilbarchan mini-

dumps, but contained material of all sizes to the size of small boulders. 

The outer layers of the aerobic cells 1-4 seemed to have acidified at an almost uniform rate. This 

could be expected as these outer layers seemed to be wholly aerobic, and therefore ideal for the 

growth of iron-oxidizing bacteria and acidification. Localized differences in the rate of 

acidification would therefore not be as pronounced as in the more effectively covered cells 

where oxygen penetrated only occasionally and less uniformly. The form of the acidification 

curves of the aerobic cells (cells 1-4), resembled decay curves (Fig. 16). This is understandable, 

as provided bacterial activity is substantial and the supply of ferric ions is not limiting, the 

generation of acidity is linked to the oxidative decay of the pyrite in the coal waste. 

Cell 5 covered with 50 cm of compacted Avalon soil fluctuated between periods of being aerobic 

in the dry seasons and anaerobic during the wet seasons, except during the 1995/1996 wet season 

following cracking of the cover. It already contained pockets of acidification at the onset of the 

experiment, causing extreme fluctuations of the mean pH values from that time. However, the 

mean pH values declined to just above pH 3 in 102 weeks (by September 1995) before rising 

slightly during the 1995/1996 rainy season. The cover was therefore not effective in preventing 

acidification of the coal waste. 

Cell 7 with the 1-m of Avalon soil cover, of which the lower 70 cm was compacted, remained 

anaerobic until cracking occurred during the extremely dry winter of 1995. Slow acidification 

seemed to occur over the experimental period. Considerable fluctuation of the pH was observed 

among samples, supporting the concept of acidification starting in pockets. It is not clear to 

what extent acidification might have progressed if the cell had not become aerobic as a result of 

the cover cracking, but it seems that the aerobic period stimulated adification as evidenced by 

the pH of samples taken over the last six months of the experimental period. However, it 

appears that the 1-m Avalon soil cover of cell 7 was not as efficient a barrier to oxygen 

penetration as the covers of cells 6, 8, 9 and 10 consisting of layers of both Estcourt and Avalon 

soil. The cells covered with Estcourt and Avalon soil also remained mostly anaerobic 

throughout the experiment, except when cracking of the cover during the dry winter of 1995 

allowed oxygen entry from the atmosphere. For about the first 18 months very little change in 
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the mean pH of these cells occurred, with the mean pH values remaining mainly between 5 and 

6. 	But thereafter, pockets of acidification were detected more frequently, suggesting that the 

acidification had started in these cells, although overall the pH of the four cells did not seem to 

drop appreciably over the 4-year duration of the experiment. The aerobic period did not seem to 

have the same adverse effect on the cells covered with both Estcourt and Avalon soil as it had 

on the other cells; this was especially true for the flat-topped cell 6 covered with 0.7 m 

compacted Estcourt soil below 0.3 m uncompacted Avalon soil. Although the oxygen profiles 

for cell 8 (covered with 0.3 m compacted Estcourt and 0.7 m uncompacted Avalon soil) and the 

sloped cells 9 and 10 (with the same cover as cell 6) were similar to that of cell 6, pockets of 

acidity were more frequently detected in these cells. 

As samples of coal waste were taken only from the upper layers of the coal waste, the observed 

acidification may yield a distorted picture of the acidification of the total coal waste in a cell. The 

elevated sulphate concentrations measured in leachate from the experimental cells, suggest that 

bacteria caused the oxidation of pyrite, although a leachate pH of 6.7-7.4 was noted (Wates, 

Meiring and Barnard, 1995a,b). Neutralization of acid by carbonate present in the coal waste may 

occur at sites separated from those where pyrite oxidation becomes established in localized acidic 

regions ('pockets'). The overall high pH in the cells, reflected in the leachate pH, may have a 

relatively small effect on such localized acid production. 

Microbial Populations in Coal Waste of Pilot Scale Dumps 

Acidophilic high ferrous iron-oxidizing bacteria 

The uncovered cells (1-3) tended to show higher counts of acidophilic high ferrous iron-oxidizing 

bacteria than the cells covered with 1 m of Avalon soil (cell 7) or Estcourt plus Avalon soil (cells 

6, 8, 9 and 10). This tendency can be explained by the aerobic nature of these bacteria which were 

expected to be T ferrooxidans (Belly and Brock, 1974; Kleinmann et al., 1981), but could include 
L. ferrooxidans or even heterotrophic iron-oxidizing bacteria (Johnson, 1995a), in relation to the 

oxygen concentrations in the various cells. The aerobic conditions and the moisture in the upper 30 

cm of the coal waste in the uncovered cells and cell 4 with the 0.3 m cover of uncompacted Avalon 

soil would have been favourable for their development most of the time. Moderately large 

populations (often 103-1051g waste) of acidophilic high ferrous iron-oxidizing bacteria have 

persisted in these cells from September 1993 to September 1996, coinciding with the decline in pH 

and the subsequent persistence of low pH conditions. Table 6 clearly shows the overall favourable 

effect of low pH on the size of the populations of these acidophilic bacteria. 
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Table 6. Distribution of acidophilic high ferrous iron-oxidizing microbial populations of different 
sizes in coal waste samples of different pH, sampled every 6-11 weeks from 27 September 1993 to 
2 September 1996 from the mini-dumps of the pilot scale dump rehabilitation experiment. (Data 
prior to August 1995 were obtained from Cleghorn, 1997.) 

Sample 
pH 

Number (and percentage) of samples with 
iron-oxidizing microbial populations/g 

Total >100 000 
10 000 - 
100 000 

1 000 - 
10 000 

, 

100 - 
1 000 <100 

2-3 6(1.5) 14(3.5) 9(2.3) 9(2.3) 8(2.0) 6(11.6) 

3-4 9 (2.3) 17 (4.3) 26 (6.5) 23 (5.8) 9 (2.3) 84 (21.1) 

4-5 2 (0.5) 12 (3.0) 15 (3.8) 23 (5.8) 8 (2.0) 60 (15.1) 

5-6 4(1.0) 11(2.8) 27(6.8) 47 (11.8) 42 (10.6) 131 (32.8) 

6-7 1 (0.3) 2 (0.5) 6 (1.5) 27 (6.8) 41 (10.3) 77 (19.3) 

Total 22 (5.5) 56 (14.1) 83 (20.9) 129 (32.4) 108 (27.1) 398 (100.0) 
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The 0.5 m of compacted Avalon soil, covering cell 5, was unable to sustain anaerobic conditions 

and populations of iron-oxidizing organisms between 104  and 105/g waste were often observed, 

particularly in acid samples. The distribution pattern of samples with low pH and high iron-

oxidizing bacterial populations suggests that the coal waste contained pockets of acidified 

materials at the time of construction of the cell. The acidophilic iron-oxidizing bacteria in the 

aerobic cells 1-4 and the partially aerobic cell 5 seemed to respond to reduced oxygen diffusion 

into the coal waste during the wet season with declines in their populations. The 1-m thick covers 

(Avalon soil or Estcourt and Avalon soil) on cells 6-10 caused the atmospheric oxygen to diffuse 

very slowly or not at all to the underlying coal waste, resulting in anaerobic conditions and 

relatively low counts (mostly less than 104/ g dry coal waste) of acidophilic iron-oxidizing bacteria 

most of the time. The pH also remained high except in isolated pockets and therefore unfavourable 

for the presumed T ferrooxidans. According to Kelly and Harrison (1989), T ferrooxidans 

actively oxidizes ferrous iron in the pH range 1.3-4.5, with the optimum pH between 2 and 4. 

An important question arises concerning the specificity of these MPN counts in the HJJ medium at 

26°C. The medium and incubation conditions were certainly favourable for T. ferrooxidans, but to 

what extent would they have favoured growth of other chemolithotrophic or heterotrophic iron-

oxidizing bacteria? An acidophilic iron-oxidizing bacterium that appears to play an important role 

alongside T. ferrooxidans in metal bioleaching, is L. ferrooxidans (Johnson, 1995a; Norris, 1990; 

Norris and Kelly, 1982). The only possible limiting factor for this organism in the MPN 

determinations would be the high ferrous iron concentration of the HJJ medium, but 

L. ferrooxidans can grow in medium with 30 g/1 FeSO, .7H20 (Hallmann et al., 1992). This 
specificity issue will be considered further in later sections. 

Acidophilic relatively high temperature high ferrous iron-oxidizing bacteria 

Counts of these organisms using L medium of pH 1.0-1.3 at 37°C were often lower but sometimes 

higher than those of the acidophilic iron-oxidizers in HJJ medium of pH 2.0 at 26°C, but the 

differences were usually slight (less than one order of magnitude) and often not statistically 

significant (Appendix Tables 1-3 and 5). The two different MPN determinations may have 

counted the same or mainly the same organisms, with a few being eliminated by the more extreme 

conditions (higher temperature and lower pH) of the former counting procedure. This explanation 

seems likely, as many strains of T. ferrooxidans can grow at 40 °C (Norris, 1990), as could most 

of the cultures incubated at 40 °C in our study. A pH of 1.0 can also be suitable for growth of 

strains of T ferrooxidans (11a77e11 and Trussell, 1963). 
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Acidophilic moderate ferrous iron-oxidizing bacteria 

The populations of these iron-oxidizing bacteria capable of growth in JLFe medium containing 

only 14 g/1 FeSO4.7H20 were usually higher than those in HJJ medium containing 44 g/1 

FeSO4.7H20 (Appendix Tables 7-9). The difference was usually one order of magnitude or 

larger, suggesting that more groups of organisms were counted using JLFe medium. The count 

should include T. ferrooxidans and L. ferrooxidans, of which strains may have been counted in 

HJJ medium, and possibly heterotrophic iron-oxidizing bacteria (Johnson, 1995a). The T. 
ferrooxidans ATCC 23270 and L. ferrooxidans CF12 used as control cultures both grew in the 

JLFe medium, but only the former grew in HJJ medium. However, one culture of the latter 

containing a filamentous fungus contaminant did grow in HJJ medium. Some of the moderately 

thermophilic iron- and sulphur-oxidizing bacteria described by Norris (1990) might also have 

been counted using the JLFe medium, but whether they could have grown at the high iron 

concentrations of HJJ or L medium was not indicated in the descriptions of these organisms. 

The higher populations of iron-oxidizing bacteria detected using this medium, indicate that the 

JLFe medium may be better than HJJ medium for determining the total population of iron-

oxidizing bacteria responsible for catalysing the oxidation of pyrite and the subsequent 

formation of acid mine drainage in coal waste dumps. 

Acidophilic moderate ferrous iron- and sulphur-oxidizing bacteria 

Tubes testing positive for iron oxidation in JLFe medium in MPN determinations were tested for 

sulphur utilization in S'-medium, as T ferrooxidans oxidizes ferrous iron and sulphur as energy 

sources (Kelly and Harrison, 1989). This test was therefore used to indicate in which tubes 

T ferrooxidans was the organism responsible for iron oxidation (Harrison, 1978). The pattern of 

tubes positive for sulphur utilization was used to determine the MPN of presumptive 

T. ferrooxidans in a given sample. This cascade of MPN determinations was analogous to that 

employed for Escherichia coli (American Public Health Association et al, 1955). The counts of 
presumptive T ferrooxidans determined in this way were generally much lower than those for 

both the moderate and high ferrous iron-oxidizing bacteria and some coal waste samples yielded 

no sulphur-oxidizing tubes. Harrison (1978) in his laboratory scale experiment, found that 

T. ferrooxidans, which could oxidize both iron and sulphur after transfer from one medium to 

the other, was the most important acid mine drainage-causing organism. However, our results 

suggest that T ferrooxidans may form a far smaller percentage of the total iron-oxidizing 

population than originally suspected. 
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Acidophilic moderate ferrous iron-, sulphur- and thiosulphate-oxidizing bacteria 

This study failed to confirm the identity of most of the 27 presumptive T. ferrooxidans cultures 
from the 3 June 1996 sampling that metabolized sulphur in the S°  medium, as only two showed 
thiosulphate utilization. However, the identity of the other 25 could still be T. ferrooxidans 

(non-thiosulphate-utilizing strains) as they agree with the description "acidophilic iron- and 

sulphur-oxidizing chemolithotrophic bacteria", which is a significant part of the definition of the 

species (Kelly and Harrison, 1989). Among the iron-oxidizing MPN cultures from the 2 

September 1996 sampling, a greater number tested positive for sulphur and thiosulphate 

utilization. However, the number of confirmed T. ferrooxidans was similar to or lower than the 

number of high ferrous iron-oxidizing organisms from the same sampling. This suggests that 

MPN determinations in HJJ medium counted not only T. ferrooxidans, but also a small number 
of other organisms, notably L. ferrooxidans which does not utilize sulphur (Norris, 1990). 

Acidophilic bacteria by plate count 

As could be expected, plate counts on FeSo medium that allows the growth of most acid mine 

drainage-causing organisms (Johnson, 1995b), were generally higher than any of the MPN 

determinations that counted only iron-oxidizing organisms. The plate counts would also have 

been more accurate than the MPN determinations. Despite these two advantages over the MPN 

determinations, it was found that FeSo-plates were not suitable for routine determinations of acid 

mine drainage-causing populations for the following reasons: 

(i) Coal waste particles obscured growth on plates inoculated with dilutions lower than 10. 

(ii) Ferric iron precipitation often made the counting of individual colonies impossible 

where plates had moderate colony density. The consequence was that only plates with a 

very low number of colonies could be counted, which compromised the statistical 

validity of the counts. 

(iii) Fungal growth very often interfered with or obscured bacterial growth leading to many 

individual plates and even the plates of two entire samplings having to be discarded. 
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EXPERIMENTAL PART 2. MICROORGANISMS OF 

IRON-OXIDIZING CONSORTIA INVOLVED IN THE 

GENERATION OF ACID MINE DRAINAGE IN 

NORTHERN ICWAZULU-NATAL 

INTRODUCTION 

Acid mine drainage is caused by the biologically catalysed oxidation of pyrite. It has been 

suggested (for example, by Norris and Kelly, 1982) that various groups of organisms may 

interact as consortia to cause or enhance the oxidation of pyrite which leads to the production of 

ferric iron and sulphuric acid in coal waste dumps. The production and regeneration of ferric 

iron by iron-oxidizing bacteria, such as T ferrooxidans and L. ferrooxidans, normally in 

association with heterotrophs, is the rate-limiting step in the oxidation of pyrite in low pH 

environments. The investigation of Experimental Part 1 has thrown some light on groups of 

iron-oxidizing bacteria involved in ferrous iron oxidation in the coal waste of the pilot scale 

dump rehabilitation experiment, but left various problems of bacterial identity unanswered. In 

this study, an attempt was made at a better understanding of the ecology of iron oxidation in coal 

mine dumps in the Klip River Coal Field, particularly the responsible microorganisms. Iron-

oxidizing bacteria in samples of coal waste and acid mine drainage water were enriched in 

selective culture media, isolated (from water samples only) and characterized. Heterotrophic 

organisms that were closely associated with the iron-oxidizing bacteria during enrichment, were 

also isolated and characterized. Several fungi were found in close association with the iron-

oxidizing bacteria in the enrichment cultures from the coal waste, and their interactions with 

T. ferrooxidans, the iron-oxidizing species identified in the cultures, were studied to investigate 

whether they might have a positive influence on the rate of iron oxidation in the presence of 

organic compounds that could inhibit T ferrooxidans. 

MATERIALS AND METHODS 

Microbiological Media 

HJJ, 9K, L, S°  and FeSo media 

The composition and use of the HJJ, L, S°  and FeSo media have been described in Experimental 

Part 1. The 9K medium (Silverman and Lundgren, 1959) was the same as HJJ medium except 

that it contained a higher ammonium sulphate concentration (3.00 g/l). 
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H medium 

This medium was devised for the enrichment of iron-oxidizing bacteria, such as those described 

by Ghauri and Johnson (1991) and Johnson et al. (1992). These bacteria oxidize ferrous iron, 
but have a lower iron tolerance than T. ferrooxidans and require yeast extract for growth. The 
basal medium consisted of 1.3 g (NH4)2SO4, 0.1 g KC1, 0.5 g MgSO4.7H20, 0.5 g K2HPO4, 
0.01 g Ca(NO3)2.4H20 and 0.5 g of yeast extract (Biolab Diagnostics, Midrand) dissolved in 

700 ml distilled water. The pH was adjusted to pH 2.0 with H2SO4  and the medium was 

sterilized at 121°C for 15 minutes. To this basal medium, a filter-sterilized solution of 14 g 

FeSO4.7H20 in 300 ml distilled water was added aseptically. The pH of the FeSO4.7H20 
solution was adjusted to pH 2.0 before sterilization, using H2SO4. 

Thiobacillus solid medium (TSM) 

This medium was modified from the TSM media developed by Visca et al. (1989) for the 
isolation of T. ferrooxidans. It comprised a basal salts solution, a substrate solution and a 

gelling agent solution. The basal salts solution consisted of 3.0 g (NH4)2SO4, 0.1 g KC1, 0.05 g 
K2HPO4,, 0.5 g MgSO4.7H20 and 0.015 g Ca(NO3)2•4H20 dissolved in 600 ml distilled water, 
acidified to pH 2.0 using H2SO4, sterilized at 121°C for 15 minutes and cooled to between 45 

and 50°C. The substrate solution comprised 22.0 g FeSO4-7H20 in 150 ml distilled water, which 

was acidified to pH 2.5, filter-sterilized and warmed to between 45 and 50°C. The gelling agent 

solution for TSM was 5 g SEAKEM GTG agarose (FMC Bioproducts, Rockland, Maine, cat. no. 

50071) as the modified component in 250 ml distilled water, which was autoclaved at 121°C for 

15 minutes and cooled to 55°C. The solutions were mixed gently prior to pouring the plates. 

Acidiphilium solid medium (ASM) 

This medium, which was similar to that of Harrison (1989), was used to detect, culture and 

isolate acidophilic heterotrophic organisms associated with T ferrooxidans. The ASM consisted 

of a basal salts solution comprising 2.0 g (NH4)2SO4, 0.1 g KC1, 0.5 g K2HPO4  and 0.5 g 
MgSO4•7H20 in 500 ml distilled water, which was acidified to pH 2.0 with H2SO4, and an 

organic solution comprising 1.0 g glucose, 0.1 g yeast extract and 12.0 g Oxoid Ionagar no. 2 

(Oxoid Ltd, Basingstoke, Hampshire, England) in 500 ml non-acidified distilled water. Both 

solutions were autoclaved at 121°C for 15 minutes and cooled to 45-50°C. After cooling, the 

solutions were mixed gently and poured aseptically into sterile Petri dishes. 
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Enrichment Cultures 

Cultures from coal waste 

Mines at which coal waste was sampled are shown in Fig. 18. Three enrichment cultures of 

iron-oxidizing bacteria in HJJ medium were supplied in October 1994 by Mr. C. Cleghom and 

have been described in detail in his M.Sc. thesis (Cleghom, 1997). They were CD1 from Corby 

Rock duff, K./E1 from a fine soft waste from a duff-washing process at the Kilbarchan Mine and 

K/G1 from coal waste from the Kilbarchan Mine. Culture WC1 was an enrichment culture line 

from an iron-oxidizing MPN culture from the Kilbarchan pilot scale dump rehabilitation 

experiment. Further enrichment cultures were started from coal waste from the other listed mines 

in the northern KwaZulu-Natal area in June 1995. This was done by inoculating 1 g of coal 

waste sample into 100 ml of HJJ, H and L medium for enrichment of the groups of iron-

oxidizing bacteria indicated under Microbiological Media. The source, moisture content and 

pH of these samples are indicated later under RESULTS. Cultures in HJJ and H medium were 

incubated stationary at 26°C and other cultures in L and H medium at 40°C. After 1 month, iron 

oxidation was determined by titration with acidic dichromate (Loos et al., 1990a). The cultures 

were transplanted (10% v/v inoculum) into fresh medium when most of the ferrous iron had 

been metabolized. Subsequently these enrichment cultures were transplanted into fresh medium 

every 4-6 weeks. 

Cultures from mine dump drainage water 

Enrichment cultures of iron-oxidizing bacteria were started in May 1994 by inoculating 10 ml 

mine drainage water collected at the listed mines into 100 ml HJJ medium. The pH of the 

samples from which active enrichment cultures were derived, is reported under RESULTS. The 

cultures were incubated at 26 °C with shaking at 80 r.p.m. on a Gerhardt RO 20 rotary shaker 

(Laboratory and Scientific Equipment Co., Cape Town). Active cultures were transplanted (10% 

v/v) into fresh medium every 2-6 weeks, when most of the ferrous iron had been oxidized as 

determined by the acidic dichromate titration. 

The isolations of organisms from the cultures (as described in the following section) were 

attempted after at least eight transfers of the cultures to fresh media to allow the selected 

populations to be enriched and to establish stable consortia. 
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with sampled mines indicated by numbers on the map. 
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Isolation of Iron-oxidizing Bacteria 

Plating procedures 

Drops of inoculum removed with the aid of a loop from active iron-oxidizing enrichment 

cultures were streaked on TSM plates and incubated for 2-4 weeks at 26°C to allow single 

colony development. Colonies from these plates were each streaked over two plates and 

incubated at 26°C for 2 weeks to yield single colonies. Representative single colonies were 

streaked repeatedly in this manner for the isolation of iron-oxidizing bacteria in pure culture. 

After a minimum of four repetitions of the single colony streaking procedure, isolated strains 

were inoculated into HJJ liquid medium and incubated at 26°C for 2 weeks to test for iron-

oxidizing activity. 

Test for heterotrophic associates 

Heterotrophic organisms, especially bacteria of the genus Acidiphilium, commonly occur as 
associates in T ferrooxidans cultures. The combination of these two organisms forms colonies 

resembling single organism colonies (Harrison, 1984, 1989). The testing of iron-oxidizing 

cultures derived from single colonies for the presence of acidophilic heterotrophs was therefore 

necessary. This was done by inoculating a single colony from a TSM plate into 100 ml HJJ 

medium. After 2 weeks of growth, inoculum from this culture was streaked in duplicate on 

ASM plates, which were incubated at 26°C for 2 weeks. Growth on these plates would indicate 

the presence of heterotrophic organisms. 

Culture maintenance 

Isolated strains of iron-oxidizing bacteria and 'single colony' mixed cultures, were maintained by 

transplanting them every 2 weeks into fresh HJJ medium, using a 10% (v/v) inoculum and 

incubating them with shaking (80 r.p.m.) at 26°C. 

Isolation of Heterotrophic Organisms 

In view of the close association often found between T ferrooxidans and acidophilic 
heterotrophic bacteria of the genus Acidiphilium (Harrison, 1981, 1984, 1989; Harrison et al., 

1980) attempts were made to isolate these bacteria and other heterotrophic microorganisms from 

enrichment cultures of iron-oxidizing bacteria in HJJ medium for investigation of their possible 

role in iron-oxidizing consortia. 
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Plating procedures 

Active iron-oxidizing enrichment cultures from coal waste and mine drainage, which had been 

subjected to at least eight successive transfers, were used to inoculate ASM plates by streaking 

for single colonies. The plates were incubated at 26°C for 2 weeks. Different colonies from 

these plates were each streaked over two plates to yield single colonies. Single colonies thus 

obtained, were streaked in a similar way. After at least three restreakings and picking of single 

colonies, the isolates were considered to be pure strains. Bacteria, yeasts and filamentous fungi, 

which grew on the ASM plates streaked with some of the enrichment cultures, were isolated in 

this fashion. 

Culture maintenance 

Pure cultures of acidophilic heterotrophs from single colonies were streaked on ASM plates, 

which were incubated at 26°C. These streaked cultures were transplanted every 3-6 weeks onto 

fresh ASM plates. 

Characterization of Iron-oxidizing Bacteria 

For microscopic observation of morphology and Gram-reaction, cells were collected by 

centrifuging early stationary phase cultures in HJJ medium at 6000 r.p.m. for 30 min, then 

washed repeatedly with 0.01N H2SO4  (pH 2) and collected by centrifuging at 13 000 r.p.m. 

Gram-stained smears were viewed microscopically at 1250 x magnification. 

Sulphur utilization was tested by inoculating 2-week-old cultures into S'-medium (1 ml in 10 

ml) and incubating at 26°C for 5 weeks. Thiobacillus ferrooxidans ATCC 23270 and 
L. ferrooxidans CF12 were included as positive and negative controls, respectively. A drop in 

medium pH of 0.3 relative to that of the negative control was taken as positive for sulphur 

utilization. 

Characterization of Heterotrophic Organisms 

Bacteria 

Cell morphology and motility were determined by bright field microscopic observation at 1250 x 

magnification of wet preparations of cells from 7-day-old cultures on ASM plates. 

Catalase and oxidase tests were performed on streak cultures on ASM plates, using, respectively, 

30 % (m/v) H202  solution and Oxidase Identification Sticks from Oxoid Ltd, as directed by the 

manufacturer. 
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Pigmentation was observed in 2-week-old streak cultures on ASM plates. 

Sulphur utilization tests were performed in 15- x 150-mm test tubes, using the S°  medium. 
Inoculated tubes were incubated for 4 weeks at 26°C. Thiobacillus ferrooxidans and 
Thiobacillus acidophilus were included as positive controls, while Acidiphilium organovorum 
and Acidiphilium rubrum served as negative controls for sulphur utilization. 

All isolates were tested for growth at pH 2.0, 2.5 and 7.0 on ASM plates modified to the 

appropriate pH. 

Yeasts 

Cell morphology was determined by bright field microscopic observation at 1250 x 

magnification of wet preparations of cells from 10-day-old cultures grown on ASM plates at 

26°C. 

Physiological tests used for yeast identification were similar to those described by Barnett et al. 

(1990). Inoculum of 0.1 ml of a 4-day-old culture in Acidiphilium liquid medium (ASM without 

agar) in 10 ml test medium was used. 

Carbon source utilization was tested in 15- x 150-mm test tubes, covered with metal caps and 

containing 10 ml of Yeast Nitrogen Base (Difco Laboratories) supplemented with 50 mM test 

carbon source. The basal medium was sterilized at 121°C for 15 minutes and the carbon sources 

filter sterilized through a 0.2 gm nitrocellulose membrane filter (Millipore SA, Bellville). 

Inoculated tubes containing only the Yeast Nitrogen Base served as negative controls. The tubes 

were incubated at 26°C with shaking at 100 r.p.m. After 10 days tubes showing turbidity greater 

than that of uninoculated controls containing the same carbon source, were scored as positive. 

Fermentation ability was tested using 10 ml of yeast extract-glucose medium in which Durham 

tubes were submerged. The medium consisted of 0.5% (m/v) yeast extract (Difco Laboratories) 

containing 50 mM glucose. Inoculated tubes containing no glucose served as negative controls. 

Tubes were incubated stationary at 26°C for 10 days. Gas accumulation in the Durham tubes 

would indicate a positive result (Barnett et al., 1990). 

Tests for the production of extracellular starch-like compounds were performed by adding six 

drops of a solution containing 4 g/1 KI and 2,54 g/1 to 10 ml of a 1-week-old culture grown in 
Acidiphilium liquid medium. 

Tests for nitrogen source utilization were similar to those for carbon source utilization, except 

that the test medium was Yeast Nitrogen Base without Amino Acids and Ammonium Sulphate 
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(Difco Laboratories) to which 5 mM test nitrogen source and 1 g/litre glucose were added 

(Barnett et at , 1990). 

Filamentous fungi 

The morphology of filamentous fungi isolated from the enrichment cultures derived from coal 

waste was determined by bright field microscopic observation at 400 x magnification. Colony 

and cultural characteristics were observed in 1-week-old cultures on ASM-plates. 

Studies of Interactions Between T. ferrooxidans and Fungi from Enrichment 

Cultures 

Five sets of media were prepared, consisting of JLFe medium with no organic supplementation 

and four sets where the JLFe medium was supplemented with yeast extract added to the basal 

salts solution to yield final concentrations (after addition of the ferrous sulphate solution) of 

0.25, 0.50, 1.0 and 5.0 g/1 yeast extract, respectively. Duplicate flasks (100 ml medium in 250 

ml Erlenmeyer flasks) of each set of media were inoculated with the following combinations of 

organisms: 

(i) T. ferrooxidans ATCC 23270 alone, 

(ii) T. ferrooxidans ATCC 23270 and Acidiphilium organovorum, a known bacterial 

associate of T. ferrooxidans, 

(iii) T ferrooxidans ATCC 23270 and a Penicillium sp., 

(iv) T. ferrooxidans ATCC 23270 and a fungus of the unidentified Type 2, and 

(v) T. ferrooxidans ATCC 23270 and a fungus of the unidentified Type 3. 

Thiobacillus ferrooxidans ATCC 23270 was inoculated as 0.5 ml of a 4-week-old stationary 

phase culture in JLFe medium, while the heterotrophic organisms were inoculated by means of 

an inoculation loop from 1-week-old cultures on ASM-plates. The cultures were incubated 

stationary at 26°C for 15 days. At approximately 24-hour intervals, the percentage ferrous iron 

oxidized in each flask relative to the mean concentration of unoxidized ferrous iron in duplicate 

uninoculated control flasks, was determined by dichromate titration as described by Loos et al. 

(1990a). The mean percentage of ferrous iron that had been metabolized was calculated for the 

duplicate flasks of each medium set as an indicator of growth of the T ferrooxidans in the 

different media with the different associates. 
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RESULTS 

Enrichment Cultures 

Cultures from coal waste 

Enrichment cultures CD1, K/E1, K/G1 and WC1 in HJJ medium started from 1992 to 1994 by 

Cleghorn (1997) from samples became stable and remained active over a long period of 

subculturing. Attempts to isolate iron-oxidizing bacteria from the cultures were not successful 

on account of overgrowth of the TSM isolation plates by fungi, but these enrichment cultures 

were used for the isolation of acidophilic heterotrophic associates of the iron-oxidizing bacteria. 

Other iron-oxidizing enrichment cultures from Corby Rock duff and Kilbarchan coal waste 

samples in 9K or HJJ medium died out, sometimes after surviving many successive subcultures. 

The ferrous iron in all of the enrichment cultures started from coal waste in June 1995 was 

completely oxidized after 1 month of incubation. The subcultures in HJJ medium incubated at 

26°C, remained active and became stable by February 1996. They were used for the isolation of 

acidophilic heterotrophic associates of the acidophilic high ferrous iron-oxidizing bacteria, as 

TSM and FeSo plates on which isolation of the iron oxidizers was attempted, became overgrown 

with fungi. The cultures in L medium incubated at 40°C (selection for acidophilic high 

temperature high ferrous iron-oxidizing bacteria), and cultures in H-medium, which were 

incubated at 26 and 40°C (selection for acidophilic iron-oxidizing bacteria with low iron 

tolerance and a need for yeast extract), initially grew very well, but soon lost viability and were 

terminated. 

Cultures from mine dump drainage water 

All of the enrichment cultures from drainage water in HJJ medium oxidized the ferrous iron 

fully within 2 weeks. Usually the characteristic brown-red colour indicative of growth and iron 

oxidation by T. ferrooxidans appeared 3-5 days after transfer. Stabilized cultures were used for 

the isolation of acidophilic high ferrous iron-oxidizing bacteria and their heterotrophic 

associates. 
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Isolation and Identification of Iron-oxidizing Bacteria from Enrichment 

Cultures 

Isolation 

Iron-oxidizing bacteria could be successfully isolated and maintained only from cultures derived 

from mine drainage. 	 • 

In most cases, well defined single colonies of iron-oxidizing bacteria developed on TSM plates. 

Various colony morphologies were observed, ranging from small black-brown colonies which 

were less than 1 mm in diameter to large spreading colonies with orange ferric iron precipitation. 

Generally only one or two of these morphologies could be observed on plates inoculated from a 

specific enrichment culture. However, colony morphology did not seem to be a stable 

characteristic of these iron-oxidizing bacteria, as spreading colonies on subsequent streaking 

could yield small pin-point colonies, and vice versa. 

Identification 

All the iron-oxidizing bacterial isolates, were short Gram-negative rods occurring singly or in 

pairs. They oxidized both iron and sulphur. These characteristics agree with those for 

T ferrooxidans in Bergey's Manual of Systematic Bacteriology (Kelly and Harrison, 1989). The 

isolates were therefore considered to be this species. 

Isolation and Identification of Heterotrophic Organisms from Enrichment 

Cultures 

Isolation 

Stable enrichment cultures from duff, coal waste, and drainage water, when tested by streaking 

on ASM plates, showed the presence of various heterotrophic contaminants or associated 

bacteria or fungi (including a yeast in the case of one enrichment culture derived from drainage 

water). Representative single colonies were isolated and purified by successive single colony 

streaking on ASM plates. 

Identification 

Bacteria. All bacterial isolates from the various iron-oxidizing HJJ enrichment cultures were 

short, motile, Gram-negative rods, occurring singly or in pairs. They were weakly catalase-

positive and oxidase-negative. All the strains were obligate acidophiles, growing well at pH 2.0 

and 2.5, but not at pH 7.0. They were incapable of oxidizing sulphur These properties are 

consistent with the description of the genus Acidiphilum (Harrison, 1981, 1989; Kishimoto et 
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a/. ,1995) and the isolates were all assigned to that genus. 

The isolates showed differences in pigmentation, with some strains being light pink, and others 

ranging from mauve to light brown. This indicates that more than one species of Acidiphilium 
might be present as heterotrophic associates to T. ferrooxidans in the northern KwaZulu-Natal 

area. The pigmentation also indicates that these organisms belong to the genus Acidiphilium 
rather than Acidocella (Kishimoto et al., 1995) 

Ambiguous results from carbon utilization tests have made more accurate description and 

identification impossible to date. 

Yeast. The yeast isolated from the H.T.T enrichment culture PB#1 derived from a drainage water 

culture was ovoid and replicated by budding. Budding was usually slightly subpolar, and cells 

with multipolar budding were observed. Colonies on ASM plates were white, raised and became 

surrounded with hyphae on aging. Both mycelium and pseudomycelium were observed, growth 

becoming progressively more mycelial with aging of the colony. A high degree of 

polymorphism was observed and yeast cells or pseudomycelium, forming true mycelial hyphae 

at budding foci, were a common observation. 

Both sexual and asexual reproductive structures were observed on the mycelial hyphae. Single 

conidia formed terminally and were similar in size and shape to the yeast cell. Asci formed 

laterally on the hyphae and contained numerous spores. Although the asci were extremely 

loosely connected to the hyphae and could be observed only by placing an undisturbed colony 

on a Petri dish directly under the microscope, they persisted in the unconnected form. 

In the carbon utilization tests the yeast grew on glucose, galactose, sorbose, sucrose, maltose, 

lactate, succinate, citrate and ethanol, but not on melibiose, lactose, glycerol or mannitol. The 

organism did not ferment glucose (no gas production) and did not produce extracellular starch-

like substances. As growth occurred in the negative control tubes of the nitrogen source 

utilization tests, these tests were not considered for identification purposes. 

Morphologically the organism closely resembled the photographs and description of Dipodascus 
macrosporus in Barnett et al. (1990). Its lack of fermentation and most of the carbon source 

utilization results also agreed with the properties of this species. However, Dipodascus 
macrosporus, as well as the other members of the genus, cannot utilize the disaccharides, 

sucrose and maltose, which this strain could utilize. The identification of the strain to the 

species level has therefore not been possible, but on the grounds of morphology, the lack of 

pigmentation, the presence of asci, and the inability to ferment, it is likely that the organism 

belongs to the genus Dipodascus. 
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Filamentous fungi. Filamentous fungi were an important component of the heterotrophic 

population in enrichment cultures K/E1 and K/G1 derived from coal waste at the Kilbarchan 

mine and the cultures derived from coal waste in 1995. Only three different colony types were 

observed among the cultures from the latter samples. They included Penicillium isolates as 

Type 1 and two unidentified forms as Types 2 and 3. These types were similar morphologically, 

but Type 2 had a darker brown pigmentation than Type 3. Colonies on solid medium had a 

shiny yeast-like central area and outward radiating strands of growth on the medium surface. The 

hyphae formed cross-walls and fragmented to form cylindrical spores. Although not identified 

with certainty, these fungi can be described as Cladophialophora-like and closely resemble the 

drawings and photos of Braun and Feiler (1995). 

All of the filamentous fungi detected in the H.J.T enrichment cultures derived from drainage water 

were hyphomycetes, but as fungi formed only a small percentage of the heterotrophic component 

from these cultures, no further studies were performed on them. 

Distribution of Isolated Organisms in Enrichment Cultures from Coal Waste 

or Mine Drainage Water 

Organisms in enrichment cultures from coal waste 

The iron-oxidizing cultures from coal waste in HJJ medium yielded no iron-oxidizing isolates 

because of fungal growth over the isolation media, but yielded associated Acidiphilium 

heterotrophic bacteria and fungi. The CD1 culture from Corby Rock duff and the WC1 culture 

from coal waste from Kilbarchan mini-dumps yielded bacteria identified as Acidiphilium, 

whereas the K/E1 and K/G1 cultures from Kilbarchan coal waste yielded unidentified 

filamentous fungi (hyphomycetes). 

The distribution of isolated Acidiphilium heterotrophic bacteria and fungi among enrichment 

cultures from the 1995 coal waste samples is shown in Table 17. All samples from which the 

enrichment cultures were developed, were highly acid, except a single sample from Spring Lake 

from coal waste which had not acidified. Most of the cultures yielded bacteria, identified as 

Acidiphilium isolates, about half yielded Penicillium isolates and most yielded the brown 

unidentified Cladophialophora-like Type 3 fungus. Only one yielded the somewhat similar 

darker brown Type 2 fungus. 

Organisms in enrichment cultures from mine dump drainage water 

The enrichment cultures from mine dump drainage water did not produce fungal overgrowth of 

plates during the isolation of iron-oxidizing bacteria, which were isolated from 8 out of 15 
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Table 17. Source mine, sample moisture content and pH, enrichment culture code and isolation 

of heterotrophic microorganisms from iron-oxidizing enrichment cultures originating from coal 

waste samples in northern Kwazulu-Natal 

Culture Source Heterotrophic Composition 

Bacteria Fungi 

Sample Sample Type 1 Type 2 Type 3 
moisture pHb Acidi- Penici- uniden uniden- 

Mine (%)a Culture code philium Ilium -tilled tified 
Ballengeich 9.05 3.33 1A@SILTEL - + - + 

5.98 2.82 1B@SILTEL + . _ + 

Durban 6.70 3.27 1A@DURNACOL + - + - 
Navigation 

Spring Lake 7.14 6.49 1A@S/L + + - - 
Natal 12.12 2.10 1A@NNC4 + + - + 
Navigation 4 9.75 2.50 1B@NNC4 + _ _ + 
Gladstone 12.28 2.41 1A@GLADST + - - + 

11.50 2.51 1B@GLADST + _ _ + 

Avoca 9.10 2.42 1A@TALANA - - - + 
10.86 2.82 1B@TALANA _ _ _ + 
11.78 2.50 2A@TALANA + + - + 
16.13 2.88 2B@TALANA + + - + 

Slater 12.51 2.13 1A@SLC - + - + 
Coal 14.73 2.13 1B@SLC _ + _ + 
Met Mining 9.47 2.60 1A@MM - + - + 
Newcastle 9.87 2.88 1A@PB + - - -  
Platberg 9.21 3.66 1B@PB + _ _ + 

aMean of two determinations of g moisture/100 g dry coal waste. 
bMean pH of duplicate 10 g samples in 25 ml water. 
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enrichment cultures. The samples yielding or not yielding these bacteria are shown in Table 18. 

All of the samples were acid. Acidophilic heterotrophic isolates from these samples are also 

shown in Table 18. All except one sample yielded heterotrophic bacterial isolates, identified as 

Acidiphilium. 	However, only three samples yielded filamentous fungi (unidentified 

hyphomycete isolates), while one yielded a yeast, which appeared to be a Dipodascus species. 

Interactions Between T. ferrooxidans and Fungi from Enrichment Cultures 

The growth curves of T. ferrooxidans, given as percentage ferrous iron oxidized by each of the 

combinations of organisms in four of the five sets of media, are shown in Fig. 19. Two growth 

curves, for T. ferrooxidans on its own and in association with A. organovorum, served as 

controls. When no organic compounds (yeast extract) were added to the cultures, very little 

difference in iron oxidation was observed among the cultures. However as the yeast extract 

concentration in the medium increased, the following observations were made: 

(i) The iron oxidation capacity of T. ferrooxidans on its own did not seem to be affected by 

a yeast extract concentration of 0.5 g/l, but 1.0 g/1 showed some inhibition and 5.0 g/1 

inhibited iron oxidation completely (not shown in Fig. 19). 

(ii) The Penicillium sp. seemed to have an inhibitory effect on iron oxidation by 

T ferrooxidans and the inhibition increased with increases in the yeast extract 

concentration. 

(iii) Slight inhibition of iron oxidation seemed to occur in cultures where A. organovorum 

was present at a yeast extract concentration of 0.5 g/l. When the yeast extract 

concentration showed inhibition of T ferrooxidans at 1.0 g/l, A. organovorum seemed to 
lessen the effect. 

(iv) The cultures containing the fungi of the unidentified Types 2 and 3 oxidized the ferrous 

iron the fastest at all yeast extract concentrations and were best capable of overcoming 

the limited inhibition of 1.0 g/1 yeast extract for T. ferrooxidans. 
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Table 18. Source mine, sample pH, enrichment culture code and isolation of iron-oxidizing 

bacteria and heterotrophic microorganisms from iron-oxidizing enrichment cultures originating 

from mine drainage in northern Kwazulu-Natal 

Culture source and code Iron-oxidizing 
bacteria 

Heterotrophic isolates 

Sample Number of 
PH Culture isolates Bacteria Fungi (F) / 

Mine code (T. ferrooxidans) (Acidiphilium) Yeast (Y) 
Ballengeich 2.50 SILTEC#1 0 + - 

4.55 SILTEC#2 0 + - 

Durban 5.90 DURNACOL#1 0 - - 
Navigation 

Spring Lake 2.75 S/L#1 0 + _ 
Natal 1.95 NNC4#2 0 + _ 

Navigation 

Gladstone 2.71 GLADST#2 2 - _ 
Avoca 2.27 TALANA#1 1 + F 

2.60 TALANA #2 1 + F 
2.42 TALANA #3 3 + - 

Natal Steam 2.18 NS#1 1 + - 
Coal 

Slater Coal 3.55 SLC#1 3 + - 
2.28 SLC#2 3 + F 

Met Mining 4.65 MM#1 0 + - 
Newcastle 2.38 PB#1 3 + Y 
Platberg 2.72 PB#2 0 + - 
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Fig. 19. Metabolism of ferrous iron by Tferrooxidans in JLFe medium without organic 

supplementation (A) or supplemented with 0.25, 0.50 or 1.00 g/1 yeast extract (B, C and D, 

respectively), alone (T.f) or in association (T.f +) with A.organovorum (A.o), Penicillithn sp. (Pen) 

or unidentified fungus of Type 2 or 3 (2 and 3, respectively). 
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DISCUSSION 

Microbial Consortia in Iron-oxidizing Enrichment Cultures 

The oxidation of ferrous ions to ferric ions is the rate-limiting step in the oxidation of pyrite and 

the subsequent formation of acid mine drainage in pyritic mineral environments, as ferric ions 

are the main agent of the oxidation (Kleinmann et al., 1981; Luther, 1987; Moses and Herman, 
1991; Moses et al, 1987; Sand et al., 1995). The two well known lithotrophic bacterial species 
capable of oxidizing ferrous iron in acidic mineral environments, T. ferrooxidans and 
L. ferrooxidans, are known to live in close association with acidophilic heterotrophic organisms 
(especially bacteria of the genus Acidiphilium) which share their environment (Hohmann et al., 
1992, Harrison, 1984). It has been proposed that the association with heterotrophic organisms in 

consortia benefits the lithotrophs by removing substances inhibitory to them or by aiding their 

attachment to solid surfaces (Hohmann et al., 1992; Harrison, 1984; Johnson, 1995a). The 

heterotrophs remain closely associated with the lithotrophs in iron-oxidizing enrichment 

cultures, which were therefore used to study the composition of the consortia in coal waste and 

mine dump drainage in the Klip River Coalfield. 

Cultures from coal waste 

The analyses of the iron-oxidizing consortia in the enrichment cultures started in 1995 from 

many different mines in the Klip River Coalfield, showed that both heterotrophic bacteria and 

fungi remained associated with the iron-oxidizing lithotrophic bacteria throughout the 

enrichment procedure. As in the older cultures, the bacterial isolates could all be assigned to the 

genus Acidiphilium. The fungi comprised at least two distinct major types, namely, strains of 

Penicillium and fungi of uncertain taxonomy (Types 2 and 3) with a resemblance to 

Cladophialophora. 

Coal waste is a solid mineral environment, comparable to soil. It is also the site where primary 

oxidation of pyrite and subsequent acidification take place. As the coal waste is a soil-like 

environment and fungi account for most of the biomass and metabolic activity in soils (Allen, 

057; Anderson and Domsch, 1975), the presence of fungi could be expected. That only three 

types of fungi (two major types) were isolated from the 1995 samples could suggest either a 

semispecific association between these fungi and the iron-oxidizing bacteria in the enrichment 

cultures or that only these three types were capable of surviving the enrichment procedure. 

However, the abundance of fungi (especially the unidentified Type 3) in these samples suggests 

a possible ecological role for these organisms in the coal waste environment. 
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As the enrichment cultures in H and L media were unstable and lost viability, no microbiological 

analysis of these cultures could be performed, although active iron oxidation was initially 

observed in the cultures. A study of the organisms that developed in H medium, in particular, 

might have yielded valuable information on groups of iron-oxidizing bacteria other than 

T ferrooxidans, which is the species normally enriched in HJJ medium. 

Cultures from mine dump drainage water 

Drainage water from coal mine dumps is generally of low pH and contains high amounts of 

dissolved minerals (including iron). It is therefore ideal for the proliferation of lithotrophic iron-

oxidizing bacteria. As oxidation of pyrite, the production of acidity and the mobilization of 

minerals occur in coal waste itself, the iron-oxidizing populations of the drainage water 

environments can be considered as secondary populations, benefitting from processes occurring 

in the adjacent waste dumps. Dissolved iron compounds in these environments might be 

involved in cyclic oxidation-reduction processes yielding ferrous iron as an energy source and 

ferric iron as an electron acceptor for different bacterial groups in the environments (Johnson, 

1995a). 

The drainage water is also an aqueous environment (in contrast to the mineral soil-like 

environment of waste dumps), which can explain why fungi were isolated from so few 

enrichment cultures as a heterotrophic component. However, the low occurrence of fungi in the 

cultures from mine dump drainage made the isolation of strains of iron-oxidizing bacteria 

possible. All of these isolates were Gram-negative rods oxidizing both iron and sulphur and 

could therefore be classified as T. ferrooxidans. Leptospirillum ferrooxidans was probably not 
obtained because HJJ medium favours T ferrooxidans. A medium such as the JLFe medium 

with its lower concentration of ferrous iron, which gave greatly increased MPN counts of iron-

oxidizing organisms in the pilot scale dump study of EXPERIMENTAL PART 1, might yield 
a wider range of iron-oxidizing bacterial species (Johnson, D.B., 1995, personal 
communication). 

All the cultures, except Gladst # 2 which contained no detectable heterotrophic component, 

contained bacteria of the genus Acidiphilium, suggesting an important ecological role for these 

bacteria in the mine drainage environment which is not too different from that of HJJ-medium. 

Both hyphomycete fungi and a yeast tentatively identified as a strain of Dipodascus were found 

in a few cultures, suggesting that fungi might also play an ecological role in iron oxidation in the 

mine drainage water environment. 
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Interaction Studies between T. ferrooxidans and Fungi from Enrichment Cultures 

The interaction studies between T ferrooxidans, that was subjected to organic compound stress, 

and fungi isolated from enrichment cultures derived from coal waste suggest that interactions 

between the iron-oxidizing bacteria and the fungi that occur in acid mine drainage-generating 

environments in northern Kwazulu-Natal may form an integral part of the ecology of acid mine 

drainage generation. The obvious stimulatory effect of fungi of the unidentified Types 2 and 3 

may be as a result of the consumption of inhibitory organic compounds. Bosch (1990) and Loos 

et al. (1990b) reported the degradation of SLS (a known inhibitor of T ferrooxidans) by yeasts 

isolated from a pilot scale coal waste dump rehabilitation experiment in the Witbank area of 

Mpumalanga. It therefore seems that yeasts and fungi may stimulate the growth of 

T. ferrooxidans in a similar way to that of heterotrophic bacteria (see Harrison, 1984; Johnson, 

1995a,b). It is noteworthy that the Type 2 and 3 fungi seemed to have a greater stimulatory 

effect under appropriate experimental conditions than A. organovorum, a member of the genus 
Acidiphilium that is well documented for enhancing the growth of iron-oxidizing bacteria 

(Johnson, 1995a, b). It is unclear why the Penicillium sp. had such an inhibitory effect on iron 

oxidation at elevated yeast extract concentrations. One possible explanation is that during 

growth on yeast extract this organism produced metabolites that were strongly inhibitory to 

T ferrooxidans. Such fungi might play an important role in the inhibition of T. ferrooxidans 

below soil covers, by converting organic compounds of the soil to inhibitory compounds. The 

role of the interactions between fungi and iron-oxidizing bacteria in acid mine drainage-

generating environments warrants further investigation. 
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GENERAL DISCUSSION AND CONCLUSIONS 

An important aim of the present investigation, namely, determination of the effectiveness of 

various types and depths of soil cover material in creating conditions in coal waste dumps 

unfavourable for the growth of acid-generating microbial populations, has supplied valuable 

information over 4 years with their cycles of seasons that can serve as a basis for establishing 

effective procedures for coal waste dump rehabilitation. 

Aerobic conditions, notable decreases in pH and moderately high populations of iron-oxidizing 

bacteria were observed in uncovered cells and in the coal waste beneath a 0.3-m cover of 

uncompacted Avalon soil. The moderately high content of clay (30-34%) and silt (26-29%) was 

obviously not adequate to create unfavourable conditions for iron-oxidizing bacterial populations 

beneath Avalon soil of that thickness and hence could not prevent the formation of acid mine 

drainage in the underlying waste. A compacted Avalon soil cover of 0.5 m thick was also not 

adequate to create permanently anaerobic conditions in the coal waste and prevent acid mine 

drainage generation. The Avalon soil cover consisting of 0.7-m compacted underlying 0.3-m 

uncompacted soil, created apparently anaerobic conditions in the coal waste most of the time 

(becoming aerobic temporarily after prolonged drought conditions) but could not prevent slow 

acidification of the waste. 

The results with the other covers comprising 0.3 or 0.7 m of compacted Estcourt soil (33% clay 

and 20 % silt) covered by uncompacted Avalon soil to give a total cover thickness of 1 m, 

provide valuable guidelines to the types of soil cover that can be used to rehabilitate coal waste 

dumps. These covers created anaerobic conditions in the coal waste and were effective in 

preventing acidification during the 4-year experimental period. However, these covers showed a 

shortcoming under drought conditions in 1995, when they developed cracks allowing the 

entrance of oxygen, so that conditions became aerobic in the coal waste. Surprisingly, the 

aerobic conditions persisted through the 1995/1996 rainy season, but returned to anaerobic in 

July 1996. Increasing fluctuation of pH during 1995/1996 among samples from previously 

anaerobic mini-dumps may indicate that some acidification may have taken place in localized 

pockets, but there is no evidence of general acidification. Based on these studies, the dump 

rehabilitation procedures followed by the Department of Water Affairs and Forestry are correct, 

while 'short cuts' involving the use of a single soil layer with a thickness of 1 m or less would 

probably be ineffective. The results with cell 8 suggest that a 30-cm clay layer covered by less 

than 70 cm of topsoil could be investigated as a possible cheaper cover. It is hoped that the final 

report by Wates, Meiring and Barnard on the hydrology of the pilot scale dumps (project K5/575 
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of the Water Research Commission) will help to clarify the differences in effectiveness between 

the clay/soil and single soil covers. 

Valuable methodology for monitoring the success of soil covers in preventing aerobic conditions 

and acidification in underlying coal waste was demonstrated in this investigation. The gas 

atmosphere of the coal waste was analysed immediately in the field using permanently buried 

stainless steel probes, through which gas could be drawn for analysis in a portable 

oxygen/carbon dioxide meter. Samples of coal waste were extracted by auger for analysis of 

moisture, pH and microbial populations. The analyses of oxygen and pH can be recommended 

for the routine monitoring of rehabilitated waste dumps, as they show very quickly whether 

conditions in the coal waste are favourable for acidification and whether acidification is actually 

occurring. 

Bacteriological investigations for assessment of the effectiveness of covers in controlling acid 

mine drainage generation cannot be recommended. They are .labour-intensive and time-

consuming and do not give a reliable indication of whether acidification is taking place 

extensively or not, as the numbers of iron-oxidizing bacteria can vary dramatically according to 

their micro-environment which may be quite different from the general macro-environment. The 

numbers of these organisms will be influenced strongly by environmental conditions, such as 

oxygen supply and pH, which can be monitored much more quickly and cheaply as 

recommended in the previous paragraph. 

The presence of a vegetation cover should prove valuable, by preventing the erosion of soil 

covers on dumps and reducing the diffusion of oxygen to the coal discard, but further advantage 

could not be evaluated in the present study. 

The quantitative studies of the various microbial groups possibly associated with the generation 

of acidity in the coal waste of the pilot scale dumps at the Kilbarchan Mine indicate the 

dominance of acidophilic iron-oxidizing bacteria rather than sulphur-oxidizing bacteria. 

However, the high ferrous iron-oxidizing T. ferrooxidans may not have been the dominant iron-

oxidizer, as population counts using media with a lower ferrous iron concentration indicated that 

large numbers of other iron oxidizers with a lower ferrous iron tolerance were present. These 

populations require further investigation. The populations of the high ferrous iron-oxidizing 

bacteria were particularly affected by pH, tending to be high in acidified samples and low in 

non-acidified samples. 

Investigations of microbial populations forming iron-oxidizing consortia in enrichment cultures 

from a wide range of coal waste and acid mine drainage samples from northern KwaZulu-Natal, 

showed the presence of T ferrooxidans, the heterotrophic bacterial genus Acidiphilium, fungi of 
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the genus Penicillium, unidentified filamentous fungi, including Cladophialophora-like 
morphological types, and a yeast of the genus Dipodascus. Except for the fungi, which have not 

been studied in detail as components of iron-oxidizing consortia elsewhere, the results of these 

microbiological studies agree with those elsewhere, indicating that appropriate conclusions from 

acid mine drainage research in other parts of the world can be applied in KwaZulu-Natal. The 

study of the interactions of three fungal isolates with T. ferrooxidans in the presence of organic 

compounds suggests that fungi may have important roles in determining the iron-oxidizing 

activity of T ferrooxidans in coal waste dumps; on the one hand they may alleviate inhibition of 

the bacteria by utilizing inhibitory organic substrates, but on the other hand, they may 

themselves produce active inhibitors. These possibilities require further investigation. 
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APPENDIX 

DETAILS OF pH, MOISTURE, MPN DETERMINATIONS AND PLATE 

COUNTS OF MICROBIAL POPULATIONS OF COAL WASTE SAMPLES 

FROM THE 10 EXPERIMENTAL PILOT SCALE DUMPS CONSTRUCTED 

NEAR THE KILBARCHAN MINE 

Appendix Sampling 	Microbial population investigated besides 

Table date acidophilic high ferrous iron-oxidizing 

microorganisms (260C)a 

1 27/2/95 Highly acidophilic high ferrous iron-oxidizing (37°C) 

2 10/4/95 Highly acidophilic high ferrous iron-oxidizing (37°C) 

3 24/9/95 Highly acidophilic high ferrous iron-oxidizing (37°C) 

4 20/11/95 

5 21/1/1996 Highly acidophilic high ferrous iron-oxidizing (37°C) 

6 18/3/1996 Acidophilic bacteria by plate count (26°C) 

7 6/5/1996 Acidophilic moderate ferrous iron-oxidizing (26°C) 

7a 6/5/1996 Acidophilic moderate ferrous iron- and sulphur-oxidizing (26°C) 

8 3/6/1996 Acidophilic moderate ferrous iron-oxidizing (26°C) 

8a 3/6/1996 Acidophilic moderate ferrous iron- and sulphur-oxidizing. as well 

as acidophilic bacteria by plate count (26°C) 

9 2/9/1996 Acidophilic moderate ferrous iron-oxidizing (26°C) 

9a 2/9/1996 Acidophilic moderate ferrous iron-and sulphur-oxidizing; also 

thiosulphate oxidizing strains of this group (26°C) 

10 	21/10/1996-7/8/1997 	pH and sampling positions of samples taken between 21/10/1996 and 7/8/1997 

a Microbial populations able to oxidize ferrous iron in HJJ medium at 26 °C were counted by MPN in all samples until 

2 September 1996. Counts of these organisms in the 27/2/95 and 10/4/95 samples have been recorded by Cleghom 

(1997). 
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Appendix Table 1. Details of pH, moisture and MPN determinations of acidophilic high ferrous 
iron-oxidizing microbial populations able to grow in L medium at 37°C (including category and 95% 
confidence limits), of coal waste samples obtained on 27 February 1995 from the 10 experimental 
mini-dumps constructed near the Kilbarchan mine 

Mini- 
dump/ 
samplea pHb 

Moisture in 
sample 

(g/100 g dry 
mass)C 

Organisms growing in L-medium 

mpisugd 
Cate- 
goryd 

95% 	• 
Confidence 

limitsd 
K1/W5 2.53 9.65 13158 3 3290-39474 
K1/N7 2.68 9.56 16434 1 3287-41633 
K2/N9 3.18 9.27 82 1 19-217 
K2/E6 3.68 9.23 1016 1 197-3932 
K3/N10 4.24 8.72 360 1 90-1080 
1(3/E1 2.87 10.63 262e - 96-1041 
K4/N2 2.96 7.64 3767 0 969-10118 
K4/N8 4.71 9.13 38 2 10-103 
K5/N1 5.16 9.28 47 1 10-198 
K5/W7 3.04 8.95 50117 1 9806-205720 
K6/N6 5.47 12.42 3 1 1-11 
K6/W2 5.26 14.14 5 1 1-21 
K7/S8 5.12 8.95 47 1 10-197 
K7/W3 4.94 8.74 25 1 5-102 
K8/S1 5.39 11.67 402 0 101-1050 
K8/E7 5.53 11.53 26 1 6-105 
K9/S2 5.67 7.06 2462 1 535-10064 
K9/W4 5.88 12.68 16902 1 3380-42818 
K10/S6 4.79 10.34 >110000 - - 
K10/N5 4.22 12.01 1042 1 202-4032 

a 	N=North side, 1-10 east to west (with 1 m interval).- 

S=South side, 1-10 east to west (with 1 m interval) 

E=East side, 1-10 north to south (with 1 m interval) 

W=West side, 1-10 north to south (with 1 m interval). 

b 	pH of suspension of 10 g sample in 25 ml distilled water; mean of duplicate determinations. 
Mean of duplicate determinations. 

MPN, category and 95% confidence limits according to De Man (1983). 

MPN according to American Public Health Association et al. (1955); no category; 95 % 

confidence limits according to Dr. J. H. Randall (Biometrician, Faculty of Agricultural Sciences, 

University of Stellenbosch, personal communication). 
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Appendix Table 2. Details of pH, moisture and MPN determinations of acidophilic high ferrous 
iron-oxidizing microbial populations able to grow in L medium at 37°C (including category and 95% 
confidence limits), of coal waste samples obtained on 10 April 1995 from the 10 experimental mini-
dumps constructed near the Kilbarchan Mine 

Mini- 
dump/ 
samplea pHb 

Moisture in 
sample 

(g/100 g 
dry mass)c 

Organisms growing in L medium 

MPN/gd 
Cate- 
goryd 

95% 
Confidence 

limitsd 
K1/E6 3.25 13.94 855 1 194-2267 
K1/N9 2.76 11.27 5118 1 1001-22031 
K2/E1 2.86 11.55 51313 1 10040-220869 
1(2/W5 2.83 10.26 25 1 6-104 
K3/E4 3.08 12.04 4258 1 1008-11652 
K3/E10 2.67 11.53 266 1 56-1048 
K4/E5 2.74 9.43 25 1 5-103 
K4/N7 3.52 8.53 25 1 5-102 
K5/N6 6.01 8.71 10 1 2-39 
K5/N3 2.92 8.22 24891 1 5411-101727 
K6/S8 6.05 9.29 0.3 1 0.1-1 
K6/N5 6.23 9.26 0.4 1 0.1-2 
K7/E2 6.16 8.57 2 0 0.3-4 
K7/W2 5.66 7.54 2 1 1-10 
K8/E3 6.03 7.92 16 1 3-41 
K8/N10 6.14 8.24 2 1 1-10 
K9/S2 4.46 7.00 1498 2 428-3745 
K9/W2 6.03 9.81 1 2 0.1-2 
K10/N1 6.45 7.87 100 1 19-388 
K10/S9 6.57 16.79 1752 1 350-4438 

N=North side, 1-10 east to west (with 1 m interval) 

S=South side, 1-10 east to west (with 1 in interval) 

E=East side, 1-10 north to south (with 1 m interval) 

W=West side, 1-10 north to south (with 1 in interval). 

pH of suspension of 10 g sample in 25 ml distilled water; mean of duplicate determinations. 
Mean of duplicate determinations. 

MPN, category and 95% confidence limits according to De Man (1983). 
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Appendix Table 3. Details of pH, moisture and MPN determinations of acidophilic high ferrous 
iron-oxidizing microbial populations able to grow in HJJ medium at 26°C or L medium at 37 °C 
(including category and 95% confidence limits), of coal waste samples obtained on 24 September 
1995 from the 10 experimental mini-dumps constructed near the Kilbarchan Mine 

Mini- 
dump/ 
samplea pHb 

Moisture in 

(g/100 g dry 
mass)C 

sample  
Organisms growing in HJJ medium ., - - Organ'sms growing inli medium' . 

MPN/gd 
Cate- 
goryd 

95% 
Confidence 

limits(' MPN/g# ,: 

,. 
Cate- N 
gorYd,' 

95% 
- 	Onfiiience -, 

'.iiinitsd'' 	- , 
K1/W3 2.67 8.36 21673 0 5418-41178 47 0 10-196 
K1/N2 2.51 6.28 478260 1 95652-1923668 46 1 10-192 
K2/S10 2.60 6.48 308799 3 95834-1054177 99 1 19-383 
1(2/W9 2.70 6.50 1172 3 426-3728 46 3 10-193 

K3/N8 2.70 6.71 2454 1 534-10030 10 1 2-38 

K3/W6 2.58 7.45 24712 1 5372-100999 31 3 10-101 

K4/W4 3.64 7.17 99666 1 19290-385804 15 2 4-38 

K4/N5 2.87 7.56 10003 1 1936-38720 31 3 10-101 

K5/E7 3.42 9.18 101536 1 19652-393 041 4 1 1-11 

K5/E10 2.75 8.57 467 1 98-1965 1629 1 326-4 126 

K6NI 3.22 9.37 4702716 1 984289-19795155 25 1 5-103 

K6/W1 6.90 9.46 3 1 1-10 10 1 2-39 

K7/S2 5.06 7.73 463231 1 96955-1949881 3 1 1-10 

K7/N7 4.29 8.18 21636 2 5409-40174 <0.3 - - 
K8/S1 6.10 9.84 1648 1 330-4174 22 2 5-42 

K8/W2 6.27 10.51 254166 1 55253-1005613 <0.3 - - . 

K9/E1 3.48 9.19 163785 1 32757-414921 4 695 1 983-19763 

K9/S8 4.05 8.81 468 1 98-1969 41 1 10-113 

K I 0/E4 4.27 8.11 45406e - 9730-112434 3 1 1-10 
K10/S4 4.89 8.77 13052 3 3 263-39 157 5 1 1-20 

a 	N=North side, 1-10 east to west (with I m interval) 

S=South side, 1-10 east to west (with 1 m interval) 

E=East side, 1-10 north to south (with 1 m interval). 

W=West side, 1-10 north to south (with 1 m interval). 

pH of suspension of 10 g sample in 25 ml distilled water; mean of duplicate determinations. 
C 	Mean of duplicate determinations. 
d 	MPN, category and 95% confidence limits according to De Man (1983). 

MPN according to American Public Health Association etal. (1955); no category; 95 % 

confidence limits according to Dr. J. H. Randall (Biometrician, Faculty of Agricultural Sciences, 

University of Stellenbosch, personal communication). 
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Appendix Table 4. Details of pH, moisture and MPN determinations of acidophilic high ferrous 
iron-oxidizing microbial populations able to grow in HJJ medium at 26°C (including category and 
95% confidence limits), of coal waste samples obtained on 20 November 1995 from the 10 
experimental mini-dumps constructed near the Kilbarchan Mine 

dump/ 
samplea pllb 

Mini-  

Moisture in 
sample 

(g/100 g. 
dry mass)C 

Organisms growing')If.11,44i'mediumr 

MPN/gd 
Cate-. 
goryd'12,  

-;r7fotp,.. 	, 
Confidence - 	onfi_dence 

..,,.iiiiiit;d„,,,.• 
K1/W6 3.16 17.28 27 1 6-110 

K1/W2 2.99 15.31 496 1 196-2295 

K2/E4 2.99 14.96 107 1 21-414 

K2/WS 3.10 18.68 110 1 21-427 

K3/E9 4.18 15.27 127 2 46-403 

K3/W4 4.81 17.02 1755 1 468-4447 

K4/W4 3.30 15.43 3347 3 1039-11428 

K4/E6 2.97 10.04 473 1 99-1992 

K5/N3 4.06 12.88 429 1 102-1174 

K5/S3 3.34 7.86 25 1 5-101 

K6/W8 6.33 9.91 25 1 6-103 

K6/S10 6.35 9.81 82 1 19-219 

K7/N10 3.57 8.63 261 1 54-1021 

K7/E7 5.75 9.14 47 1 10-198 

K8/N7 5.20 11.89 168 1 34-425 

K8/S7 6.26 9.07 47 1 10-197 

K9/E3 4.54 12.04 104 1 20-403 

K9/N1 6.28 14.50 26 1 6-108 

K I 0/N6 5.22 9.56 47 1 10-198 

KI0/W9 6.41 14.71 3 I 1-11 

a  N=North side, 1-10 east to west (with 1 m interval) . 

S=South side, 1-10 east to west (with 1 m interval) , 

E=East side, 1-10 north to south (with l m interval) 

W=West side, 1-10 north to south (with 1 m interval). 

b 	pH of suspension of 10 g sample in 25 ml distilled water; mean of duplicate determinations. 
C 	Mean of duplicate determinations. 
d 	mpN, category and 95% confidence limits according to De Man (1983). 
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Appendix Table 5. Details of pH, moisture and MPN determinations of acidophilic high ferrous 
iron-oxidizing microbial populations able to grow in HJJ medium at 26 °C or L medium at 37 °C 
(including category and 95% confidence limits), of coal waste samples obtained on 21 January 1996 
from the 10 experimental mini-dumps constructed near the Kilbarchan Mine 

Mini- 
dump/ 
samplea plib 

Moisture in 
sample 

(g/100 g dry 
mass)C 

Organisms growing in HJJ medium Organisms growing in Iniiedium 

MiPN/gd 
Cate- 
goryd 

Confidence 
limitsd 

95%  

MPN/gd 
Cate--; 
gor}rd ,-  

Confidence,4,  
Minitel- - 

KI/N2 2.94 13.67 49 1 10-206 307 0 102-1069 
K1/S9 2.95 12.68 39 0 10-106 1352 3 338-4056 
K2/E4 3.06 12.63 17 1 5-43 5 1 1-20 
K2/W9 2.89 13.57 17 1 5-43 1056 1 204-4088 
K3/W5 4.43 13.18 170 3 57-430 32 3 10-106 
K3/S2 4.28 13.65 182 3 57-432 318 	• 3 102-1068 
K4/N5 2.53 12.79 169 1 34-429 846 1 192-2245 
K4/N6 2.50 11.14 1034 1 200-4001 1667 1 333-4223 
K5/E3 3.14 14.20 106 1 21-411 1062 e - 407-4269 
K5/S7 2.83 15.35 107 1 21-415 70 0 14-196 
K6/N7 6.87 16.85 27 1 6-110 5 1 1-21 
K6/S3 6.23 15.45 87 I 20-230 27 1 6-109 
K7/S10 3.07 15.45 231 2 58-439 173 1 21-416 
K7/W3 6.11 15.41 323 3 104-1085 23e - 5-44 
K8/W4 4.22 13.79 330 3 102-1 127 106 1 20-410 
K8/E1 5.72 16.05 32 3 10-110 108 1 21-418 
K9/N9 6.76 16.39 27 1 6-110 27 1 6-109 
K9/S4 5.74 14.06 262 1 57-1072 106 1 21-411 
K1O/N4 6.54 17.31 109 1 21-422 11 1 2-32 
K10/W6 4.34 15.16 86 1 20-230 173 1 35-438 

a 	N=North side, 1-10 east to west (with 1 m interval) 

•S=South side, 1-10 east to west (with 1 m interval) 

E=East side, 1-10 north to south (with I m interval) 

W=West side, 1-10 north to south (with 1 m interval). 

pH of suspension of 10 g sample in 25 ml distilled water; mean of duplicate determinations. 

Mean of duplicate determinations. 

MPN, category and 95% confidence limits according to De Man (1983). 

MPN according to American Public Health Association et al. (1955); no category; 95 % 

confidence limits according to Dr. J. H. Randall (Biometrician, Faculty of Agricultural Sciences, University of Stellenbosch, 

personal communication). 
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Appendix Table 6. Details of pH, moisture, MPN determinations of acidophilic high ferrous iron-
oxidizing microbial populations able to grow in HJJ medium at 26°C (including category and 95% 
confidence limits) and plate counts (with 95% confidence limits) of acidophilic bacterial populations, 
of coal waste samples obtained on 18 March 1996 from the 10 experimental mini-dumps constructed 
near the Kilbarchan Mine 

Mini-
dump/ 
samplea pHb 

Moisture in 
sample 

(g/100 g dry 
massr 

Organisms growing in ILJJ-medium., - 
, 	, 

Acidophilic bacteria Implate'count4 
onTeStrPgiel0' l',*, 

MPN/gd 
Cate; , 
gory° ' 

2.. ,
95% - 

Confidence , , 
limitsd 

comae 
Plate  

;COnfaineet, 
' LiUlitlf/,?  

K1/W4 3.10 12.60 105 1 20-405 236460 178069-294851 
KI/E10 3.18 10.88 1663 1 333-4213 ND - 
K2/S2 3.02 11.15 2557 1 556-10448 311220 244665-377775 	

. 

K2/W6 2.99 11.48 1037 1 200-5013 1036764 915108-11584201 
K3/N1 3.09 13.89 239 2 34-456 102501 55148-149854 
K3/S7 3.17 13.41 2608 1 567-10661 • ND - 
K4/N6 5.74 15.06 26 1 6-108 9205 5522-12887 
K4/W10 2.84 13.00 8475 1 1921-22448 644100 547559-740641 
K5/N2 4.09 15.72 4976 1 1042-20946 266156 203355-328957 
K5/E7 4.96 17.61 1764 1 353-4469 70566 20426-110492 
K6/W7 6.04 16.52 50 1 10-211 ND - 
K6/W8 6.19 14.80 26 1 6-108 ND - 
K7/N7 5.65 12.42 4834 I 1012-20348 314776 247460-382092 
K7/S3 5.52 16.56 1748 1 350-4429 ND - 
K8/E5 5.99 15.86 50 1 10-210 6565 3444-9686 
K8/W2 4.89 14.81 17221 1 3444-43627 68886 58822-78950 
K9/N4 6.14 12.02 10 1 2-39 16243 10331-22155 
K9/S9 6.25 19.50 111 1 22-430 ND - 
K10/S10 6.39 26.91 55 1 11-230 38073 13199-62947 
K10/W3 6.29 20.74 519 I 109-2185 54333 18835-89831 

N=North side, 1-10 east to west (with 1 m interval) 

• S=South side, 1-10 east to west (with 1 m interval) 

E=East side, 1-10 north to south (with 1 m interval) 

W=West side, 1-10 north to south (with 1 m interval). 

pH of suspension of 10 g sample in 25 ml distilled water; mean of duplicate determinations. 
Mean of duplicate determinations. 

MPN, category and 95% confidence limits according to De Man (1983). 

ND = not determined. 

f 	Confidence limits (95%) from the theoretical standard error for the total count over all replicate plates, assuming a Poisson 

distribution, according to Meynell and Meynell (1970). 
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Appendix Table 7. Details of pH, moisture and MPN determinations of acidophilic high ferrous 
iron-oxidizing and moderate ferrous iron-oxidizing microbial populations able to grow at 26°C in, 
respectively, HJJ and JLFe-medium (including category and 95% confidence limits), of coal waste 
samples obtained on 6 May 1996 from the 10 experimental mini-dumps constructed near the 
Kilbarchan Mine 

Mini- 
dump/ 
samplea pllb 

Moisture in 

(g/100 g 
dry mass)C 

sample  
Organisms growing in HJJ-medium Organisms growing in'JLFe:inediunr 

MPN/gd 
Cate- 
goryd 

95% 

Confidence 
limitsd NypN/gd 

Cate- 
goryd 

• 95%',I, . 	,. 
COnfidence.g.- 

hniitsch' 	' - 
K1/S7 2.98 13.57 1056 1 204-4088 2612 1 568-10675 
K1/N7 2.79 15.20 50 1 20-229 265 1 58-1083 
K2/S3 3.15 16.85 5025 1 1986-23253 18 3 6-44 
K2/N6 3.08 1625 50 1 20-231 337 3 105-1151 
K3/E5 3.58 13.45 2382 2 340-4538 2609 	. 1 567-10664 
K3/N10 3.43 10.01 319 3 99-1089 4730 1 990-19911 
K4/W3 3.51 8.81 1632 1 326-4135 2503 1 544-10228 
K4/N2 3.10 8.93 1634 1 327-4139 10130 1 1961-39215 
K5/W6 3.45 16.05 2437 2 348-4642 406 0 104-1091 
K5/W2 3.42 10.19 231 2 33-440 23139 2 3 306-44074 
K6/W4 6.29 13 .12 3 1 0.6-11 <0.3 - - 
K6/N5 6.42 11.59 167 1 10-202 480 1 100-2020 
K7/S10 3.29 14.53 2291 2 573-4352 106512 1 20615-412306 
K7/E6 6.10 11.11 103 1 20-400 16 2 4-39 
K8/E7 6.19 11.81 26 1 6-105 168 1 34-425 
K8/N8 5.42 10.91 2551 1 555-10426 1664 3 550-4210 
K9/E4 6.09 12.98 486 1 102-2045 226 2 56-429 
K9/S8 3.17 12.40 1686 1 337-4271 483 1 101-2034 
K10/E2 5.26 11.80 26 1 6-105 157 2 45-391 
K10/E7 3.80 12.81 43 1 10-117 49 1 10-204 

a 	N=North side, 1-10 east to west (with 1 m interval) 

•S=South side, 1-10 east to west (with 1 m interval) 

E=East side, 1-10 north to south (with 1 m interval) 

W=West side, 1-10 north to south (with 1 m interval). 

b 	pH of suspension of 10 g sample in 25 ml distilled water, mean of duplicate determinations. 
C 	Mean of duplicate determinations. 

d 	MPN, category and 95% confidence limits according to De Man (1983). 
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Appendix Table 7a. Details of pH, moisture and MPN determinations of acidophilic moderate 
ferrous iron-oxidizing microbial populations able to grow at 26°C in JLFe-medium (see Appendix 
Table 7) and subsequently in S°  medium (including category and 95% confidence limits), of coal 
waste samples obtained on 6 May 1996 from the 10 experimental mini-dumps constructed near the 
Kilbarchan Mine 

Mini- 
dump/ 
samplea pHb 

sample 

(g/100 g dry 
masoc 

Moisture in  Organisms growing in S0-medium 

mpisygd 
Cate- 
goryd 

95% 
Confidence 

limitsd 
K1/S7 2.98 13.57 34 2 10-114 
K1/N7 2.79 15.20 <0.3 - - 
K2/S3 3.15 16.85 7 2 2-19 
K2/N6 3.08 1625 <0.3 - - 
K3/E5 3.58 13.45 4 1 0.2-19 
K3/N10 3.43 10.01 <0.3 - - 
K4/W3 3.51 8.81 <0.3 - - 
K4/N2 3.10 8.93 12 I 4-38 
K5/W6 3.45 16.05 50 1 10-210 
K5/W2 3.42 10.19 4 1 0.2-19 
K6/W4 6.29 13 .12 <0.3 - - 
K6/N5 6.42 11.59 <0.3 - - 
K7/S10 3.29 14.53 <0.3 - - 
K7/E6 6.10 11.11 10 1 2-39 
K8/E7 6.19 11.81 <0.3 - - 
K8/N8 5.42 10.91 10 1 2-39 
K9/E4 6.09 12.98 4 I 0.2-19 
K9/S8 3.17 12.40 33 3 10-106 
K10/E2 5.26 11.80 4 1 0.2-19 
KI0/E7 3.80 12.81 17 I 5-43 

a 	N=North side, 1-10 east to west (with 1 m interval)_ 

S=South side, 1-10 east to west (with 1 m interval) 

E=East side, 1-10 north to south (with 1 in interval) 

W=West side, 1-10 north to south (with 1 in interval). 

b 	pH of suspension of 10 g sample in 25 ml distilled water; mean of duplicate determinations. 
C 	Mean of duplicate determinations. 
d 	MPN, category and 95% confidence limits according to De Man (1983). 
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Appendix Table 8. Details of pH, moisture and MPN determinations of acidophilic high ferrous iron-
oxidizing and moderate ferrous iron-oxidizing microbial populations able to grow at 26°C in, 
respectively, HJJ and JLFe medium (including category and 95% confidence limits), of coal waste 
samples obtained on 3 June 1996 from the 10 experimental mini-dumps constructed near the 
Kilbarchan Mine 

Mini- 
dump/ 
samplea pHb 

Moisture in 
sample 

(g/100 g 
dry mass)C 

Organisms growing in HJJ medium Organisms growing inILFe:mediume 

MPN/gd 
Cate- 
goryd 

Confidence 
limitsd 

95%  

MPN/gd 
Cate--: 
goryd-- 

-,COnfidenceA' 
iilliSOP 

KI/N2 3.06 8.56 10096 1 1954-39082 2497 1 543 -10205 
KI/W6 3.10 8.88 250 1 98-1132 21776 2 5444-41374 
1(2/W2 3.38 7.85 377 0 97-1014 22649 2 3236 - 43142 
K2/W4 3.04 8.35 2275 1 542-4334 47675e - 18412 - 190700 
K3/W9 3.56 8.80 316 3 98-1077 16320 . 1 3264-41345 
K3/S8 3.66 9.76 25244 1 5488-103170 47195 1 9 878-198 657 
K4/N1 3.22 9.68 10200 1 1974-39484 102000 1 19742-394837 
K4/N5 3.75 9.80 395 0 98-1032 10212 0 1976 - 39484 
K5/N4 5.76 10.15 47 1 10-199 47 1 10-199 
K5/E10 3.45 9.07 82 1 19-217 17452 0 3272 - 41447 
K6/S10 6.15 12.49 10 I 2-39 105 1 20 - 405 
K6/E9 6.37 10.23 2535 1 551-10361 474 1 99 -1995 
K7/W1 4.34 9.65 164 1 33-417 4715 1 987 -19847 
K7/E9 4.67 10.33 103 1 20-397 474 1 99 -1997 
K8/N3 6.04 10.65 103 1 20-398 476 1 100 - 2003 
K8/E4 5.33 10.39 10267 1 1987-39741 15455 2 4416 - 38637 
K9/W8 6.36 12.74 485 I 101-2041 846 1 192 - 2244 
K9/E3 3.19 11.85 3132 3 1007-10514 10402 1 2013-40265 
KI0/S9 6.45 20.31 4 I 0.2-20 18 1 5-46 
K10/S1 3.12 10.13 2974 0 991-10352 16520 0 3304-41850 

a  N=North side, 1-10 east to west (with 1 m interval) 

S=South side, 1-10 east to west (with 1 m interval) 

E=East side, 1-10 north to south (with 1 m interval) 

W=West side, 1-10 north to south (with I m interval). 

pH of suspension of 10 g sample in 25 ml distilled water; mean of duplicate determinations. 

Mean of duplicate determinations. 

MPN, category and 95% confidence limits according to De Man (1983). 

MPN according to American Public Health Association et at. (1955); no category; 95 % 

confidence limits according to Dr. J. H. Randall (Biometrician, Faculty of Agricultural Sciences,University of Stellenbosch, 

personal communication). 
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Appendix Table 8a. Details of pH, moisture and MIN determinations of acidophilic moderate 
ferrous iron-oxidizing microbial populations able to grow at 26°C in JLFe-medium (see Appendix 
Table 8) and subsequently in S°  medium (including category and 95% confidence limits) and plate 
counts (with 95% confidence limits) of acidophilic bacterial populations, of coal waste samples 
obtained on 3 June 1996 from the 10 experimental mini-dumps constructed near the Kilbarchan Mine 

Mini- 
dump/ 
samplea pHb 

sample 

(g/100 g dry 
mass)C 

Moisture in Acidophilicbacteria Organisms growing in SO-medium, brplate count.on 
FiSo platesr%  

MPN/gd 
Cate- 
goryd 

95% 
Confidence 

limitsd 

Plate- 
counte 

95%, 

Confidence . 
LiMitsf 

KI/N2 3.06 8.56 <0.3 _ - ND - 
KI/w6 3.10 8.88 806 3 131-8511 166949 118703-215195 
K2/W2 3.38 7.85 669 3 129- 8342 352310. 282556-422064 
K2/W4 3.04 8.35 8 2 1-80 657323 355329-959318 
K3/W9 3.56 8.80 3 3 0.1-10 232107 52280-411933 
K3/S8 3.66 9.76 670 3 132-866 274400 22585-514922 
K4/N1 3.22 9.68 22 0 5-42 5209800 2774768-6257448 
K4/N5 3.75 9.80 33 3 10-104 874740 524040-1225440 
K5/N4 5.76 10.15 <0.3 - - ND - 
K5/E10 3.45 9.07 <0.3 - - ND - 
K6/S10 6.15 12.49 48 1 10-204 ND - 
K6/E9 6.37 10.23 <0.3 - - ND - 
K7/W1 4.34 9.65 22 0 5-42 219300 4386-434214 
K7/E9 4.67 10.33 <0.3 - - ND - 
K8/N3 6.04 10.65 <0.3 - - 73767 41437-106096 
K8/E4 5.33 10.39 <0.3 - - ND - 
K9/W8 6.36 12.74 4 1 0.2-19 ND - 
K9/E3 3.19 11.85 10 1 2-39 ND - 
K10/S9 6.45 20.31 <0.3 - - ND - 
KI0/S1 3.12 10.13 10 1 2-39 ND - 

a 	N=North side, 1-10 east to west (with 1 m interval) 

S=-South side, 1-10 east to west (with 1 m interval) 

E=East side, 1-10 north to south (with 1 m interval) . 

W=West side, 1-10 north to south (with 1 m interval). 

pH of suspension of 10 g sample in 25 ml distilled water, mean of duplicate determinations. 
Mean of duplicate determinations. 

MPN, category and 95% confidence limits according to De Man (1983). 

ND = not determined. 

f 	Confidence limits (95%) from the theoretical standard error for the total count over all replicate plates, assuming a Poisson 

distribution, according to Meynell and Meynell (1970). 
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Appendix Table 9. Details of pH, moisture and MPN determinations of acidophilic high ferrous iron-
oxidizing and moderate ferrous iron-oxidizing microbial populations. able to grow at 26°C in, 
respectively, HJJ and JLFe medium (including category and 95% confidence limits), of coal waste 
samples obtained on 2 September 1996 from the 10 experimental mini-dumps constructed near the 
Kilbarchan Mine 

Mini- 
dump/ 
samplea pHb 

Moisture in 

(g/100 g 
dry mass)C 

sample  
Organisms growing in HJJ medium Organisms growing in..JLTe7inediitin* 

- 
MPN/gd 

Cate- 
goryd 

95% 
Confidence 

limitsd MPN/gd 
Cate- ,  

- goryd ;Ii 

z..195% 
onfidence 	' . 
litlitid 

KI/W3 2.96 8.23 47 1 10-196 11905 1 2165-43290 
KI/S7 2.98 7.79 259 1 43-1067 49584 1 9701-213425 
K2/E10 3.05 8.92 47 1 10-197 50104 1 9803-215667 
K2/S3 3.13 8.71 47 1 10-197 119582 1 21742-434470 
K3/S2 5.37 6.71 224 2 32-427 213416 2 53354-405491 
K3/W10 3.48 9.59 131 3 33-395 78908 2 13151-186 309 
K4/E4 3.45 9.57 164 1 33-416 50404 1 9862-216957 
K4/N9 2.89 10.77 266 I 44-1097 166161 1 33232-420941 
K5/W9 3.61 10.01 165 1 33-418 121011 1 22002-440038 
K5/S1 3.31 10.41 25 1 6-104 121448 1 22081-441629 
K6/N5 5.93 10.67 509 1 100-2191 1660 1 332-4205 
K6/N1 6.61 11.12 26 1 6-104 511 1 100-2 200 
K7/N2 5.50 10.31 25 1 6-104 102 1 20-397 
K7/W5 4.31 9.25 25 1 5-103 251275 1 54625-1026950 
K8/N4 5.88 9.94 168 1 33-418 2529 1 550-10334 
K8/N7 6.05 9.03 25 1 5-102 5 015 1 981-21588 
K9/E7 4.42 9.78 263 1 44-1087 25248 1 54894-103189 
K9/W4 5.98 11.82 168 1 34-425 2572 1 559-10511 
K1O/E6 4.83 9.42 263 1 44-1083 252 1 55-1029 
KI0/S8 5.93 15.16 26 1 6-108 2649 1 576-10825 

a 	N=North side, 1-10 east to west (with l m interval). 

S=South side, 1-10 east to west (with 1 m interval) 

E=East side, 1-10 north to south (with 1 m interval). 

W=West side, 1-10 north to south (with 1 m interval). 

pH of suspension of 10 g sample in 25 ml distilled water; mean of duplicate determinations. 
C 	Mean of duplicate determinations. 

d 	MPN, category and 95% confidence limits according to De Man (1983). 
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Appendix Table 9a. Details of pH, moisture and MPN determinations of acidophilic moderate 
ferrous iron-oxidizing microbial populations able to grow at 26°C in JLFe medium (see Appendix 
Table 9), and subsequently in S°  medium and then Starkey's medium (including category and 95% 
confidence limits), of coal waste samples obtained on 2 September 1996 from the 10 experimental 
mini-dumps constructed near the Kilbarchan Mine 

Mini- 
dump/ 
samplea pHb 

Moisture in 
sample 

(g/100 g 
dry mass)C 

Organisms growing in SU medium Organisms:giiTinglhilStailleeriqnedifith 
, 

mphygd 
Cate- 
goryd 

95% 

Confidence 
limitsd MY/i/gd" 

Cate--4 
,kcirydi4 

a 	95%7 , 
43,-- 

onfidenc.ell 
litadf, ;, 

KI/W3 2.96 8.23 17 3 5-41 10 1 2-38 
KI/S7 2.98 7.79 4958 1 970-21340 4 1 0.2-18 
K2/E10 3.05 8.92 32 3 10-102 25 1 5-102 
K2/S3 3.13 8.71 1196 1 217-4348 8 1 1-22 
K3/S2 5.37 6.71 800 1 181-2123 117 	. 3 43-373 
K3/W10 3.48 9.59 2301 1 548-4384 25 1 5-103 
K4/E4 3.45 9.57 1205 1 219-4383 47 1 10-198 
K4/N9 2.89 10.77 2326 1 554-4431 510 1 100-2193 
K5/W9 3.61 10.01 15 2 4-39 15 2 4-39 
K5/S1 3.31 10.41 8 2 1-19 4 1 0.2-19 
K6/N5 5.93 10.67 830 1 122-2202 7 0 1-19 
K6/N1 6.61 11.12 48 1 10-201 10 1 2-39 
K7/N2 5.50 10.31 103 1 20-397 17 1 4-42 
K7/W5 4.31 9.25 120170 1 21849-436980 <0.3 - - 
K8/N4 5.88 9.94 506 1 99-2177 8 1 1-20 
K8/N7 6.05 9.03 1635 1 327-4143 <0.3 - - 
K9/E7 4.42 9.78 23 1 5-44 <0.3 - _ 
K9/W4 5.98 11.82 1230 1 224-4473 4 1 0.2-19 
KIO/E6 4.83 9.42 25 1 5-103 <0.3 - - 
K10/S8 5.93 15.16 1267 1 230-4606 <0.3 - - 

a 	N=North side, 1-10 east to west (with 1 m interval) 

S=South side, 1-10 east to west (with 1 m interval) 

E=East side, 1-10 north to south (with 1 m interval) 

W=West side, 1-10 north to south (with 1 m interval). 

pH of suspension of 10 g sample in 25 ml distilled water; mean of duplicate determinations. 

Mean of duplicate determinations. 

MPN, category and 95% confidence limits according to De Man (1983). 
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Appendix Table 10. Details of pH of samples taken from the 10 experimental mini-dumps 
constructed near the Kilbarchan mine, during the period 21 October 1996 to 7 August 1997 

Date ' 21/10/96a 09/12/96 02/02/97 24/03/97 12/05/97
.,. , 

07/07/97-  

Cell and 

sample 

pH Posi- 

tionb 

pH Posi- 

tionb 

pH Posi- 

tionb 

pH Posi- 

tionb 

pH Posi-- 

tionb 

pH 

1(1) 3.07 E7 3.12 E2 2.99 E4 2.82 E2 3.00 W5 3.23 

1(2) 3.03 E8 3.14 S2 3.06 S4 2.97 W4 2.91 E5 3.21 

2(1) 3.12 N3 3.06 N7 2.99 W8 2.95 S6 2.88 S7 3.15 

2(2) 3.08 W8 3.16 S7 2.90 N3 2.94 N7 2.91 N3 3.19 

3 (1) 3.62 W6 2.98 S9 3.98 E8 5.35 S9 3.54 W4 4.32 

3(2) 4.32 W4 3.16 S5 3.90 S6 5.11 S7 6.01 S3 4.41 

4(1) 2.85 S3 3.51 S4 2.84 N2 3.50 S8 2.92 E9 2.99 

4(2) 3.14 S6 3.69 W3 2.76 E7 2.88 W3 3.34 E6 2.76 

5 (1) 3.36 W2 3.55 E5 3.26 N5 2.90 N2 3.02 E3 3.23 

5 (2) 3.04 S9 3.37 E9 3.00 W3 3.25 S8 2.89 N6 2.98 

6 (1) 5.90 E3 5.75 E7 5.75 W7 6.28 E8 6.57 W2 6.65 

6 (2) 6.13 S7 6.25 N2 5.86 W2 6.60 N3 6.67 N5 6.79 

7(1) 3.92 S5 3.96 S6 4.40 W9 3.16 W4 3.87 N4 3.65 

7 (2) 6.03 E2 5.54 S8 3.93 E5 2.73 S3 3.27 N2 3.56 

8 (I) 6.03 N2 6.03 E8 5.60 E9 6.02 E9 6.47 W6 6.29 

8(2) 5.70 N7 5.07 N3 5.73 S3 6.18 E6 6.38 S5 6.21 

9 (1) 3.44 E9 3.02 W8 5.74 W6 6.26 W5 6.67 W7 6.66 

9 (2) 4.20 S8 5.45 W6 5.81 W4 6.33 E5 6.57 N8 6.73 

10(1) 4.49 N2 4.11 W4 4.43 N8 4.05 N9 5.26 W3 4.05 

10(2) 3.40 N8 5.80 S3 4.85 S2 5.31 W7 6.17 W9 .3.53 

a 
Position not availiable. 

N=North side, 1-10 east to west (with 1 in interval) 

S=South side, 1-10 east to west (with 1 in interval) 

E=East side, 1-10 north to south (with 1 in interval) 

W=West side, 1-10 north to south (with 1 m interval). 
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