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Copper lined wave shaped shaped charges of particular design and liner metallurgy were used to
investigate the effect of explosive crystal size on the resultant shaped charge jet parameters. Composition
A3 with RDX of three different average crystal sizes, i.e. 30 pm, 100 um and 300 pm were used in the
investigation. All other parameters in the charge were kept constant and in particular, care was given to
obtain consistent dimensional quality and liner microstructure, in order to prohibit the variation of other

parameters. Specific flash-X-ray diagnostics were used in field tests to obtain the jet parameters from
multiple firings of similar charges. It is found that the varying crystal size of the RDX has a marginal
influence in the total jet length of the jets. However, it is also found that there is less variation between
firings in the jet parameters for jets from the charges loaded with the crystal size of 100 um.
© 2019 Production and hosting by Elsevier B.V. on behalf of China Ordnance Society. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Warhead designers are continually in pursuit of improving the
performance of their products. For decades, shaped charge de-
signers have focused on liner material [1—5], the microstructure of
the liner material, initiation systems and different explosive ma-
terials. Few researchers have quantified the influence of the
explosive microstructure or the initial energetic material crystal
size on the performance of shaped charges. Generally, a qualified
explosive is used to quantify various parameters of shaped charge
jets. This paper aims at providing experimental data demonstrating
the influence of the explosive crystal size on the cumulative lengths
generated in precision shaped charge jets.

Rheinmetall Denel Munition is in the fortunate position of
manufacturing small batches of explosives within pilot plants
whilst pressing explosives and manufacturing liners all at one site.
This provided the opportunity to conduct this investigation with
full control of all the relevant manufacturing parameters.

An 80 mm diameter concept warhead design was selected
containing a 60° copper cone with an average liner grain size of
30 um with a variation of 10 um, Comp A3 — RDX91:WAX9 main
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and relay charge with a combined mass of approximately 580 g,
wave shaper for peripheral initiation, as shown in Fig. 1. No hous-
ing/confinement was used for this evaluation.

The trending motion of the explosive community has moved
from TNT based explosives onto plastic bonded explosives and now
even more modern binder materials for more insensitive explo-
sives. Optimizing an explosive material for the improvement of its
sensitivity/insensitivity involves an optimization process in terms
of explosive crystal size. Some formulations make use of mono-
modal, bi-modal and even tri-modal explosive mixtures. A few
decades ago, shaped charges were typically cast with a mixture of
TNT and other explosives. Early attempts were made to measure the
roughness of the detonation front resulting from inhomogeneity's
of the explosive and the detonation front. The question was raised if
this roughness has an impact on the performance of a shaped
charge jet (SCJ). However, experiments were difficult to perform
due to the many other parameters in the charge that could vary and
results were either inconclusive, or showed that the influence was
only marginal [6]. This question re-emerged when the classical cast,
or pressed-cast, TNT based explosives were replaced by plastic
bonded explosives (PBX) to make the charges more insensitive [7].
While the TNT in previous compositions (effectively a castable
binder the explosive mixture) was detonable and the detonation
front could propagate with closely similar velocity in the explosive
and in the ‘binder’, this is not the case with the inert plastic binders.
Consequently, the use of PBX should increase the roughness of the
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Fig. 1. Concept warhead design for evaluation.

detonation front [8].

The characterisation of the crystal structure in the explosive is
well established process and has been used as a tool for correlating
parameters such as explosive sensitivity, efficiency of different
binders [9], the formation of hotspots with in a granulated pressed
PBX [5,6], evaluation of pressing quality [7,8] and evaluating fractal

Table 1

Various lots of Comp A3 manufactured with different RDX grades/crystal sizes.
RDX Grading Coarse Medium Fine
Lot 003 005 006
RDX Name 107 105 104
RDX Grain Size/um 300—400 100 20-30

EHT= 2004/ SignalA = SE
WD = 13,0 mm Mag= 200X

ENT= 2004

Tima :1419:01 WO 5.5 mm

networks of intergranular voids [14].

Crystal sizes of 30 pm, 100 um and 300 pm were selected for this
investigation. The fine crystal size was selected to be comparable to
the average grain size of the copper liners. The larger crystals were
selected three and ten times larger to ensure good variation in the
three the explosive batches.

This particular project made use of Comp A3: RDX 91% - Wax 9%.
Three batches of RDX were manufactured with different crystal
sizes at RDM's pilot plants. These three batches of explosives were
placed behind OFHC copper liners with a fixed average grain size of
30 um. These liners form part of another investigation, where the
emphasis is on strict control of the microstructure and dimensional
consistency. The investigation of this paper focusses on quantifying
the effects of RDX particle size on the breakup behaviour of the
shaped charge jets.

2. Explosive analysis

A detailed analysis of the explosive granular product is shown
from RDX selection, to wax coating and then after pressing.

Three batches of the Comp A3 (RDX/WAX 91/9, p = 1.63 g/cm?)
with the different RDX particle sizes were manufactured within a
pilot plant as shown in Table 1. SEM images of the respective RDX
types are presented in Fig. 2. Images of the three different Comp A3
batches are shown in Fig. 3. By visual inspection it was already
noted that the granular material produced after coating with wax,
showed particle size differentiation. Molding powder granules of
PBX were prepared using the standard slurry coating process
[15—17]. Gravimetric analysis were conducted on the three Comp
A3 batches to ensure the RDX/WAX ratio was obtained. The results

EHT = 200KV o s -
200um G . =

Lot3

Lot 5

Fig. 3. Three lots of granular Comp A3.
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Table 2

Comp A3 — RDX-WAX ratio analysis.
Characteristics Lot 003 Lot 005 Lot 006
RDX/% 91.5 90.3 90.5
Wax/% 85 9.7 9.5

are presented in Table 2, and revealed all three were within spec-
ification with a variation of less than 1%.

3. Pressing analysis

All three batches of Comp A3 were used to conduct a pressing
analysis. Charges were pressed at room temperature and an
elevated temperature of 70°C at 100 MPa, 150 MPa and 200 MPa
effective pressure. The size of the charges pressed for the Comp A3
pressing analysis was 25 mm in diameter and 25 mm long. A
summary of the pressing analysis presented in Fig. 4. The densities
were calculated by measured the diameters and lengths of each
explosive charge.

The pressing analysis shows an increase in density at 21 °C from
94.1% TMD up to 95.67% TMD with an increase in effective pressure
from 100 MPa to 200 MPa for batch 6. The densities measured for
lots 3 to 5 were uniform at room temperature and at elevated
temperatures. The press was heated to 70 °C and new charges were
pressed at similar pressures. A more uniform density distribution
was measured across a variety of pressures for batch 6 when
conditioned at 70°C. This can be explained due to the binder
softening at high temperatures. The density of all charges across
batches at elevated temperature was within 0.025 g/cm?® from
100 MPa to 200 MPa effective pressure.

The densities for the consolidated charges when heated to 70 °C
are shown in Fig. 5. Based on the data a single pressure of 150 MPa
was selected to press the larger diameter charges. The difference in
densities measured for the respective charges at 150 MPa were
0.013 g/cm®. This change in density should not influence the per-
formance of the shaped charge jets.

The final charges, 85 mm diameter, manufactured were pressed
at 150 MPaat 70°C. The light micrographs shows the difference
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Fig. 4. Density report for consolidated charges.
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Fig. 5. Density report for the consolidated charges heated to 70 °C only.

between the fine and coarse pressed charges shown in Fig. 6. An
image of the machined Comp A3 is presented in Fig. 7.

4. Warhead manufacture

The 85 mm pressed Comp A3 charges were machined down to a

Fig. 6. Light microscopy of the pressed Comp A3, coarse (top) and fine (bottom).
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Fig. 7. Machined Comp A3 charges.

final warhead calibre of 80 mm. An image of the machined charges
are shown in Fig. 7. A foam wave shaper was used and a copper liner
with thickness of 1.7 mm.

5. Flash X-ray analysis

Flash x-ray analysis is the general accepted diagnostic tool used
to characterise shaped charge jets [18-21]. A 450 kV double flash X-
ray system was used for the firings. An image of the test setup is
presented in Fig. 8. The 450 kV system had a beam wide enough to
capture the particulated shaped charge jet from tip to slug. Position
markers were placed in each firing to ensure accurate allocation to
the distance travelled of each particle. The first flash time ensured
the jet tip captured at a large standoff to ensure particulation down
to 4 mm/ps. The second flash time ensured jet particulation down
to the jet tail/slug. Examples of the flash X-ray radiographs pre-
sented in Fig. 9 (fine RDX) and Fig. 10 (coarse), respectively. The
radiographs are analysed with a locally developed code called

Fig. 8. Flash X-ray setup.

JETPML. The program is a Matlab based image detection software,
which write out the most important shaped charge jet properties as
output. For the purpose of this paper, reporting of only the jet cu-
mulative lengths is required. A demonstration of the digitised
particles shown in Fig. 11. The cumulative lengths of the shaped
charge jets presented in Fig. 12. The length of each particle was
measured with a matching particle velocity. The cumulative length
per velocity segment is the sum of the particles measured up to that
particle. The graph on the left presents the cumulative length of the
shaped charge jet from tip down to approximately 4 mm/us. The
graph on the right zooms into the 5 mm/us regime outlining the
variation of the duplicate firings. The average breakup times and
average length/diameter ratios for particles of the shaped charge
jets are presented in Fig. 13.

6. Analysis and discussion

The cumulated length of the jet can be regarded as one of the
most important parameters for the SCJ jet performance [5,10—13].
The influence of the explosive crystal size distribution on this
parameter is thus of particular importance. The tip velocity
measured for each firing was 8.6 + 0.1 mm/us. The tip velocities of
each jet was measured by double flash X-ray radiographs only.
Fig. 12 shows the results for duplicate firings for the cumulative
length per jet velocity interval. The graphs depicted show marginal
influence of the explosive grain size distribution on the average
cumulative jet length of the combined firings. However, there are
differences in the variation of the individual jet length of similar
firings. Explosive lot 6 (black) had a variation of 20% in cumulative
length at 5000 mm/ps. Explosive lot 3 (red) showed a variation of
less than 10% in cumulative length at 5 mm/us. Explosive lot 5
(blue) showed a variation of less than 5% in cumulative length at
5 mm/us. The data suggests that the explosive microstructure has
little influence on the overall shaped charge jet cumulative length.
The data rather indicate that an RDX crystal size of 100 um pro-
duces more consistent jets; an initial explosive crystal size of
300—400 pm being too coarse and 20—30 um being too fine. The
physical and chemical explanation for this observation is the topic
of a continued investigation. The number of particles from jet tip
down to 4 mm/us were 45 + 2 for the six firing with an average
velocity difference of 100 + 15 m/s between particles. The average
breakup times presented in Fig. 13 (left), shows an average breakup
time of 80 ps at the tip and approximately 280 us at 3 mm/us; the
spread of data also verifies the consistency of the RDX crystal size of
100 um and the variation in breakup times of the fine and coarse
RDX crystals throughout the jet. The break up times were calculated
by measuring the inter particle spaces and the velocity difference
between those particles. The time was traced back to the point
these particles meet. This time is considered the breakup time. The

Fig. 9. Lot 6 (fine).

Fig. 10. Lot 3 (coarse).
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Fig. 11. Image Detection Software used for flash X-ray analysis, JETPMI.
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Fig. 12. Flash X-Ray Analysis — Cumulative length of shaped charge jet.
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Fig. 13. Flash X-Ray Analysis - Average breakup times (left) and average L/D of particles (right) of shaped charge jets.

average breakup time is the breakup time of all particles in a 1 mm/
us velocity segment. The breakup times are averaged for particles in
between 6 km/s and 7 km/s and so on. The L/D ratio presented in
Fig. 13 right refers to the length to diameter ratio of each particle
digitised for test. The average L/D ratios of the shaped charge jet

particles are presented in Fig. 13 (right). The average L/D were also
calculated for each 1 mm/us velocity segment. The graph shows an
average L/D of 2.5 at the jet tip increasing up to 5.5 at 4.5 mm/us.
The L/D ratios also confirmed the consistency for the medium sized
RDX crystals.
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7. Conclusion

Three batches of Comp A3 (RDX:WAX-91:9) were manufactured
with different initial RDX crystal sizes. A range of 30 pm, 100 pm
and 300 pm was selected for the evaluation. Chemical analysis
showed all three batches conformed to the 91:9 RDX:WAX ratio
within 1% tolerance. The pressing analysis showed all three press
charge densities (p = 1.63 g/cc) to be comparable within 0.25% g/
cm’>. Precision shaped charge warheads were manufactured with
copper liners with an average grain size of 30 um. Six flash X-ray
firings were conducted to quantify the influence of the RDX crystal
size on the cumulative length of jets produced. The data showed a
rather equal trend in terms of break up times and cumulative
length for the average of similar firings. The variation of these pa-
rameters between the similar firings, however, differed. The
conclusion drawn from the data generated is rather that an opti-
mum RDX crystal size exist for such composition that will produce
more consistent jet parameters. In the case of this investigation, the
100 um RDX-105 produced more consistent shaped charge jets over
and above that of the RDX 104 (20—30um) and RDX 107
(300—400 um) mixtures.
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