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Abstract

In this dissertation we set out to develop the first relativistic model for calculating complete

sets of (p, 2p) spin transfer observables. In addition to this a new technique has been developed

which allows us to evaluate the transition amplitude, which is used to calculate the scattering

observables for the reaction directly. The influence of various modiuin-modificd parameters ()1I

the scattered wave functions anr] NN interact ion lH-IVC' })('('11 invest igatcd DlIC t,C) (I,llIlJigllitic's

surrounding the nNN coupling we have included both pseudosoalar and pseudovector coupling

into the nucleon-nucleon interaction model. Furthermore we have included two different kine-

matic prescriptions to obtain the effective NN laboratory kinetic energy and center of mass

scattering angle, which are used to obtain the NN scattering amplitudes. The aim of this

study is to investigate the effects of the various model parameters on complete sets of scattering

observables.

Our investigation has shown that although the analyzing power is not very sensitive to nu-

clear medium effects, and the various other spin transfer observables such as Dnn should provide

valuable insight. Further refinements of the model would be to include nuclear distortions as

well as the IA2 model of the NN interaction.
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Samevatting

In hierdie tesis ontwikkelons die eerste relatiwistiese model vir die berekening vall 'n volledige

stel (p, 2p) spin waarneembares. Verder word 'n nuwe tegniek ingevoer wat ons toelaat om die

oorgangsamplitude, wat gebruik word in berekening van die verstrooings waarneembares vir

die reaksie, direk te evalueer. Die invloed van verskeie medium-gemodifiseerde parameters op

die verstrooide golffunksies en die NN wisselwerking word bestudeer. As gevolg van onseker-

hede betreffende die JrNN koppeling word beide die pseudoskalaar en pseudovektor koppeling

in die nukleon-nukleon interaksie model ingesluit. Ons sluit ook twee verskillende kinematiese

preskripsies in om die effektiewe NN laboratorium kinetiese energie en die massa middelpunt

verstrooiings hoek, wat gebruik word vir die berekening van die NN verstrooiings amplitude,

te bereken. Die doel van hierdie studie is om die effek van verskeie model parameters op 'n

volledige stel spin waarneembares te ondersoek.

Die studie toon dat alhoewel die analiseervermoë me baie sensitief is vir medium effekte

nie, die ander spin waarneembares soos byvoorbeeld Dnn waardevolle insig lewer. Daar word

voorgestel dat die model verfyn word deur kerndistorsies as ook die meer algemele IA2 model

vir die NN interaksie in te sluit.
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Chapter 1

Scientific motivation

1.1 Introduction and motivation

Historically proton knockout reactions, and in particular (p, 2p) reactions have often been used

to study single-particle properties of nuclei and the momentum distributions of bound protons

in various nuclei [Kit76]. For such investigations the unpolarized triple differential cross section

has usually been adequate to extract the required information. Polarized (p, 2p) experiments

are currently being performed at energies above 400 MeV [NorOO], for which nuclear distortion

effects on the scattered protons are expected to become negligible. Consequently a plane wave

model should provide a reasonable description of the scattering observables at high energies.

Spin observables, being ratios of spin-dependent cross sections, are expected to be relatively

insensitive to distortions of the scattering wave functions at energies above 400 MeVand, hence,

can provide unique information regarding the modification of the free nucleon-nucleon (NN)

interaction by the surrounding nuclear medium in the high energy region. Hence, simple plane

wave models of the scattering process should provide an adequate first order description of

the spin observables within this energy regime. In particular, the exclusive (p.2p) reaction.

whereby an incident polarized proton knocks out a proton from specific orbital in the nucleus

and the two outgoing protons are detected in coincidence, is ideally suited for studying medium

modifications of the NN interaction [Kud86].

There are a number of compelling reasons for pursuing relativistic- models of nuclear strur-

ture and nuclear scatt.ering. For example. it. is important t.o have a manifestlv Lorentz rovariant

formalism [Ser86], especially for reliable extrapolation of nuclear systems to extreme conditions

of density, or momentum transfer. Historically, the first great triumph of the Dirac equation was

its explanation of the spin and magnetic moment of the electron. The relativistic 4-component

1
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CHAPTER 1. SCIENTIFIC MOTIVATION 2

Dirac equation provides a natural explanation of the nuclear spin-orbit force. Simple relativis-

tic models provide an excellent description of spin observables for elastic proton scattering at

medium energies [McN83]. On the other hand only very sophisticated state-of-the-art non-

relativistic models can describe elastic proton scattering with the same level of accuracy. The

above considerations motivate our choice of relativistic Dirac-equation-based models as opposed

to conventional non-relativistic Schrodinger-equation-based models.

For (p,2p) reactions. all existing relati vistic (ami non- relati vist.ir ) distorted wave' iIIIpulse-

approximation models appear to fail to reproduce the analyzing power Ay for knockout of 2s, /2

protons from 40Ca at incident energies of 200 and 300 MeV [CowOO]. Clues for the latter failure

will hopefully be found by comparing calculations to complete sets of spin transfer observables

allowed by parity and time-reversal invariance, namely P, Ay, Dnn, Ds'e, Deis, Ds's and De'e·

However, current relativistic models [Coo89, Ike95, Man96, Man98] have yet to be extended to

include the latter observables. In an effort to systematically investigate the analyzing power

problem and also to provide a benchmark for future relativistic distorted wave calculations of

complete sets of spin transfer observables, we develop a simple relativistic plane wave model

where the NN interaction is parametrized in terms of five Fermi (scalar. pseudo-scalar. vector.

axial-vector, tensor) invariants, the so-called lA 1 representation [Mc:N83]. This model will allow

us to investigate the importance of nuclear medium effects within the context of the relativistic

mean field approximation of Serot and Walecka [Ser86], whereby free nucleon masses are re-

placed by smaller effective nucleon masses in the plane wave Dirac spinors, thus enhancing the

lower component contributions of the relativistic four-component scattering wave functions. In

addition, we will be able to study the influence of different representations of the NN interaction

on effective-mass-type medium modifications of the spin transfer observables. For example, for

inclusive quasi-elastic (p,p') scattering it has been shown that the lAl representation overesti-

mates the importance of nuclear medium effects compared to a more general Lorentz invariant

representation of the NN interaction in terms of 44 invariant amplitudes [Ven99].

By definition the polarization transfer observables are ratios of linear combinations of polar-

ized triple differential cross sections. We have developed a relativistic plane wave model whereby

the polarized triple differential cross section it; written as a contraction between a hadrou tensor

and a nuclear response tensor. The hadron tensor contains information about the spin projec-

tions of the projectile and outgoing scattering wave functions. The spin-independent. nuclear
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CHAPTER 1. SCIENTIFIC MOTIVATION 3

response tensor, on the other hand. contains information about the nuclear st rurt ure of the tar-

get nucleus. For the NN amplitudes we use the relativistic Horowitz-Love-Franey morlel [Hor85]

which parameterizes the lAl representation as a sum of Yukawa-like meson exchanges where

both direct and exchange diagrams are considered separately. The relativistic bounds tate wave

function for the struck nucleon is generated using the self-consistent Dirac-Hartree approach

developed by Horowitz and Murdock [Langl].

The layout of this thesis is as follows: Chapter 2 deals with the relativistic plane wave impulse

approximation formalism for calculating complete sets of (p, 2p) spin transfer observables. In

chapter 3 we show numerical results of our calculations of these sets of observables. Finally, in

chapter 4 we give a summary of this thesis.
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Chapter 2

Relativistic plane wave model

2.1 Introduction

In this chapter we present a relativistic plane wave impulse approximation formalism for calcu-

lating complete sets of (p, 2p) spin transfer observables.

The following section deals with the (p, 2p) reaction mechanism and a brief discussion of

the polarized (p, 2p) reaction. In section (2.3) we define the (p, 2p) scattering observables. The

unpolarized triple differential cross section is defined and discussed in section (2.3.1) as an

introduction to section (2.3.2) which deals with the polarized triple differential cross section.

Polarized spin transfer observables are introduced in section (2.3.3), which are linear combi-

nation of polarized triple differential cross sections. In section (2.4) we derive the kinematic

quantities which are needed in our model. The wave functions of the various scattered particles

are dealt with in section (2.5), which also covers the relativistic plane wave model. A short

discussion of the Dirac-Hartree approximation and its implementatiun for extracting the rela-

tivistic boundstate wave function is given in section (2.6.1). The nucleon-nucleon interaction

employed is discussed in section (2.7). The relativistic Love-Franey (RLF) model is used to

generate Lorentz invariant NN amplitudes. We also include Maxwell's energy dependent pa-

rameterization [Max96, Max98] into the RLF model. We will show how nuclear medium effects

are included in our model with the inclusion of both pseudoscalar and pseudovector coupling

for the 7l'NN vertex. The transition amplitude is evaluated in section (2.9). Section (2.10) gives

a summary on this chapter.

4

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 2. RELATIVISTIC PLANE WAVE MODEL 5

2.2 The reaction mechanism

The reaction mechanism for ip, 2p) reactions is depicted schematically in fig. (2.1). The exper-

imental setup is such that the scattering angles of the two ejectiles are fixed at ea, and eb' to

the left and right of the incident beam, respectively. The experiment is set up in such a way

that only protons which are detected in coincidence with each other, are counted. In a polarized

(p,2p) experiment the spin polarization of the projectile and left scattered beam (a') are mea-

sured along any two combinations of the incident and scattered beam directions represented by

the unit vectors (i,s,n) and ([',S',n) respectively as shown in fig. (2.1), and allowed by parity,

time- reversal and rotational iuvariance.

2.3 Scattering observables

In this section we will give expressions for the scattering observables which are measured in

(p,2p) reactions. All (p,2p) scattering observables are expressed ill terrus of the uausit iou

amplitude TLbJb(J..la,/1'a',J..lb', Mb), which contains inforruatiou about the dynamics of r.he scat-

tered protons in the entrance and exit channels, the nucleon-nucleon interaction as well as the

boundstate wave function of the bound proton b, and is defined by the expression

TLbJb(J..la, J..la', J..lb', Mb) = J J dxdx-'~- (ka" x, J..la') ® ~-(Ï;b, Xl, J..lb')tNN(lx - x'I)

x\ll+(ka,X,J..la) ® épLbJbMb(X'). (2.1 )

The symbols \li (ka" x, J..la') and \li (kb, Xl, J..lb') refer to the particle wave functions of the scattered

protons (a') and (b') ,whereas \lI(ka,X,J..la) and épLbJbMb(X') represent the particle wave function

for the projectile a and boundstate wave function of the target nucleon b in the entrance chan-

nel, respectively. The bar notation is used to denote the complex conjugate transpose of a wave

function and is related to the adjoint of the wave function by 'ÏJ = \lit 'Yo, where (+) and (-) rep-

resent incoming and outgoing boundary conditions for the projectile and ejectiles. respect.i vely,

The scattering wave functions are expressed as functions of the laboratory ruorueuta ka.', kbl and

ka of protons a', b' and a respectively; explicit expressions for the scattering momenta are giveu

in section (2.4.1). The position vectors of the protons are labeled by x and ;'. In a plane wave

model distortions, due to the proton-nucleus optical potentials, on the projectile and scattered
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CHAPTER 2. RELATIVISTIC PLANE WAVE MODEL 6

"n "z. Sa'
3> Z......

ko Sb'

x
y

Figure 2.1: A schematic representation of the knockout of the proton b bound in a nucleus

by an incident proton a with momentum ka for a (p, 2p) reaction. The left and right scattered

protons are labeled a' and IJ respectively. The reference axes are chosen such that z points in the

incident beam direction with x in the scattering plane. The y-axis is taken to be perpendicular

to the scattering plane.
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CHAPTER 2. RELATIVISTIC PLANE WAVE MODEL 7

protons are ignored. The scattering wave functions are thus taken to be free plane waves. III

section (2.9) we will evaluate the transition amplitude associated with this plane wave model.

2.3.1 Unpolarized triple differential cross section

The probability for a proton knockout reaction to occur is related to the triple differential cross

section. In a (p, 2p) reaction this quantity is associated with the probability that an incident

proton knocks out a bound proton from a specific orbital in the target nucleus and then detecting

these two protons in the exit channel in coincidence with each other. The expression for the

unpolarized triple differential cross section is given by [Kud86]

(2.2)

where Fkin is a kinematic factor

EaEa' Eb' ka' kb' [ Eb' (ka ka' )] .- 1
Fkin = (27r)5 ~ 1+ Ec 1 - kb' COS()b'+ k;COS(()a' + ()b')

which is a function of the kinetic energies Ei and momenta k; of the projectile (a), the two

(2.3)

scattered protons (a') and (b') and the residual nucleus C in the exit, a spectroscopic factor

S LbJb' which gives the probability that a proton is found in an orbital specified by the orbital

angular momentum and total angular momentum quantum numbers Lb and Jb respectively. The

symbols Sa, !--la, !--la', !--lb'and Mb represent the spin of the incident proton a, the spin projection

of the projectile a, the two ejectiles a' and b', and the total angular momentum projection of

the bound particle b respectively. We use dEa" dna' and dnb to represent the kinetic energy

increment of the scattered proton a' and the solid angles of the detectors fixed at the laboratory

scattering angles ()a' and ()b' respectively.

2.3.2 Polarized triple differential cross section

In the previous section we have defined the unpolarized triple differential cross section. In

the following two sections we define the polarization transfer observables in terms of ratios

of linear combinations of polarized triple differential cross sections for various orientations of

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 2. RELATIVISTIC PLANE WAVE MODEL 8

spin projections allowed by time reversal, parity and rotational invariance. Polarized triple

differential cross sections are obtained by selecting the spin projections of the projectile (l-ta)

and the proton which is scattered to the left of the incident beam (p'u') The polarized triple

differential cross section for this particular selection of spin projections is obtained by selecting

the particular spin orientations for protons a and a' in Eq. (2.2), hence giving the relationship

d3a(l-ta, I-ta') Fkin ~ 12
dna' dnb' dEa, = (2Jb+l)SLbJb L ITLbJb(l-tu,l-tu"l-tb"Mb) .

Jl/i Mb

(2.-1)

In section (2.9) we will look at ITLbJ!>(l-ta., I-ta', I-tb', MbW in greater detail. The (p, 2p) polarization

transfer observables (or spin observables for short) will be defined in the next section.

2.3.3 Polarization transfer observables

Due to technological advances in the development of polarized proton beams and high resolu-

tion spectrometers with focal plane polarimeters, the recent focus has shifted from measuring

unpolarized cross sections towards measuring complete sets of polarization transfer observables

for various nuclear reactions. These polarization experiments utilize an incident proton beam

polarized in an arbitrary orientation to determine the components of the polarization of the

scattered protons.

Expressions for calculating complete sets of nucleon-nucleon (NN) spin transfer observables

(Di'j) in terms of differential cross section are given by [PaI8l]

_ a3-,>i' - a3-,>-i' - a -3-'>i' + a -3-,>-i'Di' j - --"----"--------''-------''---
a3-,>i' + a3-'>-i' + a -3-'>1' + a -)-,>-1'

where 3 E {i, ii, s} and 1.' E {i', ii, s'}. The unit vectors i, nand s are defined in terms of the

(2.5)

initial and final laboratory momenta k and k' as follows

I
k
Ikl'

i' k'
Ik'I'

n kxk'
Ik x k'I'
nxf

s
In x LT
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CHAPTER 2. RELATIVISTIC PLANE WAVE MODEL 9

For the analyzing power (Don) we measure the probability that an incident beam with

polarization direction n is unpolarized by the interaction with the target nucleus. Hence, we

define Don as

D _ an-tO - a -n-tO
On -

an-tO + a_n-tO
(2.6)

where

(2.7)

By imposing rotational, parity and time-reversal invariance on NN scattering only a set of

7 spin transfer observables {Dno, Don, Dnn, Ds'l, Ds'." Dl,s. Dr!} are allowed. Analogous t.o NN

scattering one can define a set of polarization transfer observables for (p, 2p) reactions in terms

of the polarized triple differential cross section as follows:

(2.8)

Similar to Eq, (2.6) we define the analyzing power for the (p, 2p) reaction as follows

(2.9)

where

(2.10)

The polarization transfer observables for (p. 2p) reactions are related to the probability that

the projectile proton (a) with initial spin projection along the 3 direction. will be scattered

into a final spin state with projection along ~, while at the same time also being detected in

coincidence with the second scattered proton (b'). The unit vectors 3 and ~ are taken to be valid

combinations of vectors (allowed by certain symmetries) out of the sets (i, s, n) and (i', s', n) as
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CHAPTER 2. RELATIVISTIC PLANE WAVE MODEL 10

shown in fig. (2.1). For our model we define the directions of spin polarization as follows

l ka
(2.11)

Ikal

l' v: (2.12)
Ik\1

ii
ka X t:

(2.1 J)
Ika X ka'i

s ii X l
(2.14)

In X LI

s'
ii X [,

(2.15)
In x i'l

where the laboratory momenta ka and ka' are schematically depicted in fig. (2.1) . In the

discussions which follow we use the symbol Ay = Don to present the analyzing power. The fol-

lowing sections deal with the (p, 2p) kinematics, the relativistic plane wave scattering functions,

the boundstate wave function, the nucleon-nucleon t-matrix and the evaluation of the (p,2p)

scattering amplitude ITLbJb ({-ta, {-ta', {-tb', Mb) 1
2.

2.4 Kinematics for (p, 2p) reactions

The kinematic quantities such as the momenta and scattering angles of the scattered protons,

which are required for calculating the wave functions of the scattered particles as well as the

kinematic factor which appears in Eq. (2.2), are derived in this section. In addition to this we

will derive the kinetic energy, momentum and scattering angle of the recoil particle as well as

the center of mass scattering angle and effective laboratory kinetic energy which are required

for generating the NN scattering amplitudes in Eq. (2.2) 1.

2.4.1 The laboratory system

We will now derive the momenta and scattering angles which are needed to calculate the scat-

tering wave functions and the kinematic factor which appears in Eq. (2.2). In addition to this

we will derive the kinetic energy, momentum and scattering direction of the recoil nucleus.

lWe use natural units throughout this thesis to simplify many of the derivations. Hence c = h = 1

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 2. RELATIVISTIC PLANE WAVE MODEL Il

In fig. (2.1) we show a schematic representation of a (p, 2p) reaction in the laboratory Irarue of

reference. The labels a, a', b' A and C are used to represent the projectile, the two ejectiles,

the target and residual nucleus respectively. We use the symbols ma, ma', mb', MA, Me, to

represent the rest masses of particles a, a', b', A and C respectively. The scattering angles of

the two ejectiles a' and b' as well as the residual nucleus are labeled by Ba" Bb' and Be. The

total relativistic energy, kinetic energy and momentum of particle i are represented by Ei, Ei

and ki. These quantities are related to each other by the following expressions:

(2.16)

and

(2.1 ï)

Due to energy conservation one can write

(2.18)

where Ex is the excitation energy respectively. Assuming that momentum conservation holds it

follows that

(2.19 )

Hence

(2.20)

One can eliminate ke in Eq. (2.18) by substituting Eq. (2.20) to yield

Ea+MA = Ea,+JkE,+(mb,)2+

k~ + k~, + kE' - 2kaka' cos Ba' - 2kakb' cos Bb' + 2ka, kb' cos( Ba' + Bb') + (Me)2 +

(2.21)

Squaring yields

[Ea+ MA - Ea' - Ex - JkE' + (mb' )2]2

= [k~ + k~, + kE' - 2kaka' cos Ba' - 2kakb' cos Bb' + 2ka, kb' cos(Ba' + Bb')] + (Me)2 (2.22)
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CHAPTER 2. RELATIVISTIC PLANE WAVE MODEL 12

which one can write as

+2ka,kb' cos(ea, + eb')]

= 2[ka cos eb' - ka.' cos(eQ, + eb' )]kb' + (fa + MA

- [k~ + k~, - 2kaka cos ea,]

(2.23)

where

Cl = 2[ka COS eb' - ka' cos(ea' + eb,)J, (2.24)

and

Squaring Eq. (2.23) yields

(2.26)

or

which can be written as

(2.28)

where

(2.29)

and

(2.30)

Hence from Eq. (2.28) it follows that

(2.31 )
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CHAPTER 2. RELATIVISTIC PLANE WAVE MODEL 13

The projectile kinetic energy in the entrance and exit channel, labeled (Eo.) and (Ea,), it; fixed

when running a calculation. The momenta of particles a and a' in the entrance and exit channels

can be calculated from the expressions

(2.32)

and

(2.33)

The momentum of b' is calculated with Eq. (2.31). The total relativistic laboratory energy,

kinetic energy and momentum of the residual nucleus C are given by the expressions

Ee fa + MA - fa.' - fb' - Ex

Ee fe - Me

(2 :34)

Due to conservation of momentum, it follows that along the incident beam direction, which it;

chosen as the z-direction,

(2.35)

and

(2.36)

Hence

e ka. - ka.' cos ea.' - kb' cos eb'
cos e = ke

Similarly we have in the y-direction

(2.37)

(2.38)

and

o ka' sin eO., - kb' sin eb' - kc sin ee,
(2.39)
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CHAPTER 2. RELATIVISTIC PLANE WAVE MODEL 14

which yields
. (J ka' Sill (Ja' - kb' siu (Jb'
sin C = kc

In the following section we derive the quantities which are needed to calculate the nucleon-

(2.40)

nucleon t-rnatrix.

2.4.2 Kinematics of the nucleon-nucleon system

In this section we derive the kinematic quantities which are needed Lo obtain the uucleou nucleon

t-rnatrix. These include the nucleon nucleon center of mass scattering angle and effective labo-

ratory kinetic energy which will be used to calculate the NN scattering amplitudes associated

with the nucleon nucleon interaction model, which is discussed in section (2.7).

Consider the reaction A(a, al bl)C where (as before) A represents the target nucleus, a labels

the projectile, al and bl represents the two scattering protons to the left and right of the incident

beam, and C labels the residual nucleus. Because of the conservation of four momentum in this

reaction, one can write

(2.41 )

where Pi represents the four momentum of particle i in the laboratory system. We define

(2.42)

which allows one to write Eq. (2.41) as

(2.43 )

By using the Mandelstam variables sand t, which are Lorentz invariant quantities, we have

that in the laboratory frame

(2.44 )

and

(2.45)

We have thus reduced the three body problem to a two body problem. The impulse approx-

imation assumes that the reaction is dominated by the interaction between the projectile and
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the struck bound proton in the target nucleus. Therefore the effect of the rest of the nuclear

medium is ignored. The proton-proton interaction is essentially a two body interaction, and

hence we need to reduce the three body (p, 2p) problem to a two body problem to obtain the

kinematic quantities used for the two-body nucleon-nucleon interaction. Because the interac-

tion between the two protons is strictly speaking not between free protons, we make use of two

possible kinematic prescriptions to obtain the effective laboratory kinetic energy and center of

mass scattering angle at which the NN scattering amplitudes are evaluated. In the case of the

initial energy prescription we use

(2.46)

where we assume that mB is the same as the free proton mass mp' Hence the effective kinetic

energy of the proton in the laboratory frame, which follows from Eq. (2.46), is given by

St - 4m~Ea = ---"--
2mp

(2.47)

In the case of the final energy prescription we use

(2.48)

to obtain an effective kinetic energy which is given by

sf - 4m~Ea = -'-__ "-
2mp

The NN center of mass scattering angle is calculated from the Mandelstam variable t. From

(2.49 )

Eq. (2.45) it follows that in the laboratory system

(2.50)

Within the impulse approximation we assume that the projectile strikes a free proton. Hence,

we assume that in the rest frame of the projectile and the struck target proton, the center of
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mass momenta of the projectile and the left scattered proton satisfy the condition

(2.51)

It therefore follows that

2 2 2 cm cm 2k2 ()cmma + ma' - ta ta' + cm COS a'

(2.52)

Let ()~r;n= ()cm, then from Bq. (2.52) we get

t 2 2cmcm
()cm _ • - mp - ta ta'

cos - 2(kcm)2

Because of the assumption made in Bq. (2.51) it follows that

(2.53)

cm cm Ecm +ta = ta' = N Nmp, (2.54)

where ENN is defined as the center of mass kinetic energy of both a and a'. Hence Eq. (2.5J)

can be written as

()cm _ t + 2(ENmN)2 + 4mpENN
cos - 2(kcm)2 .

If we let tem = t~m = t~~l then the total relativistic center of mass energy of the protons a or a'

(2.55)

is given by the relationship

(2.56)

It therefore follows that

2(kcm)2 - 2(Ecm )2 + 4m Ecm- NN p NN' (2.57)

Thus Bq. (2.55) becomes

cos ()cm
t + 2(kcm)2

2(kcm)2
t (2.58)

The NN center of mass scattering angle is therefore given by

()cm -1 [t 1
= cos 2(kcm)2 + 1 . (2.59)
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We define the quantity kern in the center of mass frame where k~·:n+ kgm = O. In the laboratory

we have that, from the Mandelstam variable sf, we get

2 ~ ~ 2
= (Ea' +Eb') - (ka' +kb,)

(Ea' + Eb,)2 - k;, - k~, + ka,kb, COS e(ea, + eb')

(2.60)

Since Sf is an invariant quantity under a Lorentz transformation it follows that in the a + a'

center of mass system

(2.61 )

where tT~t represents the total sum energy of the particles a and a' in the a. + 0.' rost syste-m.

which is related to the center of mass momentum kern by the relationship

(kern)2 +m2 = ternp Tot· (2.62)

Thus from Eqs. (2.61)and (2.62) we get

(kern)2 = s; _ m~. (2.63)

In the following three sections we will discuss the relativistic plane wave model, the bounds tate

wave function and the nucleon nucleon t-matrix.

2.5 Relativistic plane wave model

In the following three sections we will discuss the relativistic plane wave functions, the bound

state wave function and nucleon nucleon t-matrix which enters in the definition of the (p,2p)

transition amplitude defined by Eq. (2.1). In this section we focus on the relativistic plane wave

functions which describe the dynamics of the projectile and scattered protons.

The model presented in this dissertation ignores distortions of the incident and outgoing protons.

Spin transfer observables, being ratios of polarized triple differential cross sections, are expected

to be relatively insensitive to distortions of the scattered wave functions (especially at high
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energies) and hence all proton scattering wave functions in both the entrance and exit channel

satisfy the free Dirac equation [Bjo64]

(iY; - m)¢(k, i, J.L) = 0, (2.64)

where Yl = ,J.L8w In terms of the free Dirac spinors, the plane wave scattering wave functions

associated with the incoming and two outgoing protons in Eq. (2.1) are given by [GregO, Bjo64]

-u.;«. (k~ )p. u, :(1, Pa

(2.65)

where

u(k,l'l = N ( (2.66)

is the Dirac spinor for a particle with mass m, total relativistic energy E, momentum k and

spin projection J.L respectively. The normalization condition

(2.67)

where lY is the index of the 4-component vector u(k. fJ.). and

The Pauli spinors for spin projections along the z-axis are explicitly given by

Xl = @ and X_i = (~),respectively.
2 2

In the following section we will discuss the relativistic bound state wave function.
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2.6 Bound state wave function

In order to derive the (p,2p) transition amplitude, which is defined by Eq. (2.1), we need

to define the bound state wave function for the bound proton in the target nucleus. In a

relativistic model this involves generating the upper and lower component radial bound state

wave functions. To generate these wave functions, we employ the program Timora [Lan9l]

which in based on the Dirac-Hartree approximation. In this section we will briefly discuss the

ingredients of this model.

2.6.1 The Dirac-Hartree Approximation

The Dirac-Hartree equation for a finite nucleus can be derived from an interacting relativistic

field theory of mesons and baryons by approximating the meson field operators by classical fields.

In the discussion which follows, only the contributions from the neutral scalar (¢) and vector

(Vi-') meson field, as in the Walecka model [WaI74], will be considered. The code however also

contains contributions from a neutral (isovector ) p meson and the coulomb potential [Hor8l].

Considering only static, spherically symmetric nuclei, the meson fields depend only on the radius,

and only the VO component of the vector field contributes. Thus the Dirac equation for the

baryon field ('If;) is

(2.69)

where '"'ti-' represents the Dirac gamma matrices as defined by Bjorken and Drell [Bj064] and

the appropriate values for the scalar and vector coupling constants gs and gv are given below.

Although the baryon field is still an operator, the meson fields are classical; hence Eq, (2.69) is

linear, and one may seek normal mode solutions of the form 'If;(x) = 'If;(x)e-id. This leads to

h·tjJ(i) = ctjJ(x), (2.70)

which defines the Hamiltonian h

h == -i5 . V + gv VO(r) + fJ[M - gs¢(r)]. (2.71)

Both positive and negative solutions U(x) and V(X) are obtained from Eq. (2.70), and thus the

field operator is given by the expansion

(2.72)
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where Al and Bl are the baryon and antibaryon creation operators which satisfy the standard

anti-commutation relations. The label o specifies the full set of single particle quant urn numbers.

Since it is assumed that the system is spherically symmetric and parity conserving. n contains

the orbital angular moment.um (Lb). total angular momentum ('h). total angular momenturn

projection (Mb) and spin projection quantum numbers (!I'b). as described in rpfs [Bjo64] and

[Ser86], Using the well-known properties of the relativistic angular momentum operator, it is

easy to show that the angular and spin solutions are spin spherical harmonics [Var88]:

(2,73)

h Y . heri I h . CLb~MLbJ-Lb Cl b h ffici d .were Lb,MLb IS a sp erica armome, JbMb presents a e sc eoe cient an XJ-Lb IS a

two component Pauli spinor. It follows that the four component Dirac wave functions can be

divided into its upper and lower two component pieces. Thus the positive-energy spinors can

be written as

(2.74)

The normalization is given by the expression

(2.75)

With the general form for the spinors in Eq. (2.74), one can evaluate the nuclear densities,

which serve as source terms in the meson field equations. For the discussion which follows

we will introduce the quantum number I'\, which is related to the orbital and total angular

momentum by the following relations

1'\,=

- (l + 1), if j = l + 1

l, if j = i - 1
(2.76)

Assume that the nuclear ground state consists of filled shells up to some values of n, and 1'\"

which may be different for protons and neutrons; this is appropriate for double magic nuclei.

In addition, assume that all bilinear products of baryon operators are normal ordered, which
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removes contributions from the negative-energy spinors Va (x). This amounts to neglecting

contributions from the filled Dirac sea of baryons. These contributions are however beyond

the scope of the work presented in my thesis and will therefore not be discussed. With these

assumptions, the local baryon (PB) and scalar (Ps) densities become

PB(X)

1

,,0
<I>~ (x)

ace

L 1>~ (x)
Q

Ps(x)

(2.71)

where we have used the identity

",'= ±"'. (2.78)

which holds for filled shells, and the remaining quantum numbers are denoted by {Cl!} == {"" Mb}

and {,B} == [x]. Note that since the shells are filled, the sources are spherically symmetric. The

sources produce the meson fields, which satisfy the static Klein-Gordon equation

d2 2 d-¢(r) + - -¢(r) - m2¢(r-)dr? r dr s
d2 2 d- VO (r) + - - VO (r) - m2 VO (r )
dr2 r dr v

(2.79)

-gvPB(r). (2.80)

The symbols mv and m, in Eq. (2.80) represent the vector and scalar meson masses. For the

Coulomb potential, one uses the contribution to PB arising from protons only, while for the P

meson one uses half the proton and neutron densities [Hor81].

The equations for the baryon follow upon substituting Eq. (2.74) into (2.70), which produces

!ua(r) + ~Ua(r-) - [EB - gvVo(r) +M - gs¢(r-)]wa('r)

d '" °-wa(r) - -wa(r) - [EB - gvV (r) +M - gs¢(r)]ua(r)
dr r

o (2.81 )

0, (2.82)

with M representing the hadron mass of the protons or neutrons. Thus the spherical nuclear

ground state is described by coupled, one dimensional differential equations that may be solved

by an iterative procedure which is discussed in ref. [Lan91]. Once the solution has been found,

the total energy of the system is given by

odd 1J
E =LEB(2Jb + 1) - 2 d3[-gs¢(r)ps(r) + gvVo(r)PB(r)].

a
(2.83)
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Solutions of the preceding equations depend on the parameters 9s, 9v, m., and 9s (when the

p meson is included). The experimental values M = 939MeV, mv = m.; = 783MeV, mp =

770MeV and e2/47f = a = 1/137.036 (which determines the Coulomb potential) are taken as

fixed values. The free parameters are solved in the limit of infinite nuclear matter, the empirical

equilibrium density (p~ = 0.1484 fm-Jl, binding energy (15.75 MeV), and symmetric energy (35

MeV) are produced. In the next section we will discuss the nucleon nucleon t-rnatrix.

2.7 The nucleon nucleon t-matrix

2.7.1 Introduction

We use the relativistic Love-Franey model to evaluate tNN(li - i'l) in Eq. (2.1). Various phe-

nomenological forms have in the past been used to fit the free nucleon-nucleon t-rnatrix. A

non-relativistic model of the NN t-matrix was developed by Love and Franey [LF81]. in which

the NN t-matrix is presented as the sum of Yakawa terms. While providing good fits to (p, p')

and (p, n) amplitudes, the non-relativistic Love-Franey t-matrix suffers from some disadvantages

of a non-relativistic treatment. Since it is not Lorentz invariant, it cannot be used in relativistic

calculations based on the Dirac impulse approximation. Large cancellations between the direct

and exchange contributions to the amplitudes are found. Such cancellations do not occur in

relativistic treatments. Finally, comparisons between the non-relativistic Love-Franey t-matrix

and microscopic NN potentials are hampered by the fact that the parameters of the fit and the

meson parameterization of the potentials are not related in any simple fashion.

Subsequent to the work by Love and Franey, a Lorentz covariant treatment of the NN amplitude

was developed by McNeil, Ray and Wallace (MRW) [McN83] to study elastic proton-nucleus

scattering. One disadvantage of this work is that the Lorentz invariant amplitudes are obtained

by a transformation from the Wolfenstein amplitudes, so that there is no separation into di-

rect and exchange amplitudes. As a result, the MRW t-matrix cannot be used in calculations

where one wishes to treat the direct and exchange contributions explicitly, such as in relativistic

treatments of (p, 2p) reactions [Co089, Ike95]. As pointed out by Horowitz [Hor85], the MRW

t-matrix does not incorporate the non-localities associated with the exchange terms and con-

sequently must fail at energies well below 500 MeV, where exchange contributions have been
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shown to be important [HiI99].

In an attempt to resolve some of the difficulties associated with existing fits, Horowitz [Hor85]

introduced a relativistic version of the Love-Franey parameterization in which the NN t-matrix

is parametrized in terms of phenomenological relativistic "meson" exchanges: we refer to this

model as the relativistic Love-Franey model. Such a form combines several desirable features.

Since it is Lorentz invariant, it can be readily incorporated in calculations based on the Dirac

impulse approximation. The various meson exchange amplitudes, with forrn factors included,

can be written analytically in both momentum space and position space, so that calculations

using the t-matrix can be carried out in either space. Direct and exchange contributions to the

t-matrix are explicitly separated, thereby eliminating some of the difficulties associated with the

MRW amplitudes. Finally, the meson-exchange parameters of the fit can be directly compared

with those occurring in microscopic one-boson-exchange potentials.

2.7.2 The relativistic Love-Franey model

A Lorentz invariant representation of the NN scattering amplitude (F), commonly called the

lAl representation, is given by [McN83]:

F(q) = FS (q) (h 012)+ FV (q) ('Yi0'Y2J.L)+ FP (q) ('Yf0'Y25)+ FA (q) ('Y5'Yi0'Y5'Y2J.L)+ FT (q) (ail! 0 a2w),

(2.84)

where the superscripts S, V, P, A and T refer to the Scalar-Pseudoscalar-Vector-Axialvector-

Tensor parameterization of the relativistic NN amplitudes. The latter representation is related

to the commonly used Wolfenstein representation of the NN scattering amplitude

(2.85)

via

(2.86)

The orthogonal unit vectors m, ft and ij in Eq. (2.86) are defined in terms of the initial (ki) and

final (kJ) center of mass momenta of the projectile and ejectile nucleon which are given by the
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expressions

kf - ki
Ikf - kil'

l = kf + k,
Ikf + kil'

(2.87)

and

kf X ki
Ikf x kil

(2.88)

Adopting the ansatz of Horowitz [Hor85], one can divide FL into two parts: a direct term and

an exchange term. Thus

FL(q) = i
2k

M~ [FI5(q) + FJ:(Q)],
cm cm

(2.89)

where the index L labels the corresponding Dirac gamma matrices and the symbols D and X

distinguish between the direct and exchange terms of FL The direct momentum transfer (q)

for the scattering angle eem is

q = 2kem Sin(e;m),

while the exchange momentum transfer Q is

(2.90)

. [Jr - ecm]Q = 2kem SUl 2 - .

The direct and exchange terms are given by the expressions
N

FI5(q) =L OL,typej (Tl' T2)Jj Jl (q)
j=l

(2.91)

(2.92)

and

(2.93)

respectively, where

typej kind of meson-N coupling for the jth meson, (S,V,P,A,T),

N number of mesons used in fit,

Ij isospin of j th meson (0 or 1),

IN N 1 for pp scattering
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and

2 2 1 -2 2

8 -4 0 -4 -8

Ctypej,L == 24 0 -4 0 24 (2.94)

-8 -4 0 -4 8

2 -2 1 2 2

In the Relativistic Love-Franey model, the f1(q)'s are separated into real and imaginary

parts

P(q) = fh(q) - if!(q) (2.95)

which are given explicitly by the expressions

2
gj (1 +l/2A2)-2,

q2 + m2 J
J

-2
gj (1+ q2/2A2)-22+-2 J'q mj

(2.96)

fj (2.97)

with the real and imaginary meson masses mj, mj. coupling constants qJ. ij} ann cutoff'

parameter Aj Aj obtained by fitting to data (see ref. [Hor85] for informat.ion on t.he fitting

procedure). Note that imaginary meson masses mi are chosen arbitrarily, and the coupling

constants ?h and cutoff parameters Ai are included simply as fitting parameters.

2.7.3 Maxwell's Energy Dependent Parameterization

The Lorentz invariant Horowitz parameterization has been used successfully in proton-nucleus

studies through the (p,2p) reaction. It, however, suffers from the disadvantage that the various

amplitudes were fitted separately at each individual energy (135, 200, 400 and 800 MeV), rather

than as functions of energy. This is not only inconvenient from the numerical point. of view,
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since it necessitates interpolation between the energies used in the fit, but it also rules out

any meaningful comparison of off-shell properties of the t-matrix at different energies, since the

fits at different energies are not related to one another. The cut.off parameters obt.ained by

Horowitz vary dramat.ically from one energy t.o the next Since the NN amplit.udr-s t hemselves

vary smoothly with energy. one might expect. t.hat. a fit could be found in which the individual

coupling constants and cutoff parameters also vary smoothly with energy.

An energy-dependent parameterization of the cutoff parameters and coupling constants are

presented by Maxwell [Max96]. Two sets of parameters have been generated for the energy

regions 200-500 MeV and 500-800 MeV respectively. A linear energy dependence proved to be

adequate for the cutoff parameters, while in the case of the coupling strengths a quadratic term

is required, namely

A(E) = Ao(l + ,Trel) (2.98)

and

(2.99)

were used for both the real and imaginary parts of the amplitudes, with

T -To
Trel = __ ...c.

To
(2.100)

where To = 200 MeV for incident energies 200-500 MeV and To = 500 MpV for the energy

range 500 - 800 MeV. The parameterization is carried out in terms of the laboratory energy T,

rather than the center of mass energy Ecm· The quantities Ao, 90, 91, 92, Ao, 90, 9j and 92 are

parameters to be fitted [Max96, Max98].

We now discuss the effects of the nuclear medium on the scattered protons and nucleon-nucleon

interaction.

2.8 Medium effects

The impulse approximation assumes that the interaction between the projectile and the struck

target proton is essentially between two free particles. This assumption ignores the infiuence

of the rest of the nucleons on both protons as they propagate through the nuclear medium.

However, according to the Walecka model [Serëb], the nucleon mass ill the nuclear ruediuiu is

modified (reduced relative to the free value) by an attractive scalar potential S which results
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from the interactions of the nucleon with the other nucleons in the nucleus. The effective nucleon

mass MN is calculated from relativistic mean field theory and is related to it's free value MN

by

(2.101)

where < S > represents the average scalar field experienced by the nucleon as it propagates

through the nuclear medium. Since the projectile and scattered protons in the (p, 2p) reaction

move under the influence of scattering potentials in the nucleus, their masses will be modified

by the medium according to Eq. (2.101). We hence include medium effects in the incident and

scattered wave functions by replacing the free proton mass with an effective mass in the Dirac

spinor in Eq. (2.66).

In recent years numerous models have also been developed which incorporate medium modi-

fications of coupling constants, meson masses and nucleon masses in the nuclear medium. In

particular, we use the Brown-Rho scaling law [Br091] to include the latter medium effects in

our formalism. According to this the hadron mass scales as

(2.102)

where ma, mp and m.; are the masses of the a, pand w mesons, respectively; the starred

quantities refer to the corresponding medium-modified values. The nucleon-meson coupling

constants for the a and w mesons are also assumed to be modified by the nuclear medium

according to the relationship
* *

9aNN = 9wNN = X,
9aNN 9wNN

where 9aNN and 9wNN are the coupling constants for the (J and w mesons respectively.

(2.103)

Medium effects to the NN-interaction are included by replacing the free proton mass, a, (J

and w meson masses and a and w meson-nucleon coupling constants with their corresponding

medium-modified values via Eqs. (2.102) and (2.103). The optimal choice for ~ and X is found

to be 0.70 and 0.75 respectively [Kre95]. We only include medium effects on the real meson

masses and coupling constants (and not on the imaginary meson masses and coupling constants)

since these are physical quantities.
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2.8.1 Pseudoscalar versus pseudovector coupling

In the past, concern has been expressed about the ambiguities in the form of the relativistic

NN scattering operator j given by Eq. (2.1:54)[Matl:52, Serëb, Horeb, La.n!:.ll]. There are ruany

other possible operators with the same five au-shell matrix elements, but different 4 x 4 @ 4 x 4

matrix structures [Ven99]. Furthermore the impulse approximation aSS\lIlIl'S t.he s.uuo forui

for the free and medium modified NN scattering. The question arises as to how the medium

modified scattering matrix, and the polarization transfer observables, change when other forms

of i: different to that specified by Eq. (2.84) are used.

One of the major ambiguities concerns the choice of the nNN vertex in the amplitudes

[Mat82, Ser86, Mur87, Hor88, Lan91]. We will investigate how these ambiguities will manifest

itself in our model by using the prescription of [HiI99] for the pseudosoalar and pseudovector

vertex. This involves using a pseudoscalar vertex which simply implies using the free pion

coupling constant g; for the nNN vertex or a pseudovector vertex which implies replacing the

free pion coupling constant in the relativistic Love-Franey model with

(2.104 )

where ~ is the fraction with which the protou mass is modified iu the nuclear uiediuiu relative

to it's free value. We will now do a further evaluation of ITLbJb(fJ.u,fJ.u',fJ.b"Mb)12

2.9 Evaluating ITLbJb (fla" fla', flb', Mb) 1
2 within a relativistic plane

wave approximation

In the (p, 2p) formalism information about nucleon-nuclear distortions and the nucleon-nucleon

interaction are contained in the transition amplitude ITLbJb(fJ.al,fJ.a"fJ.b"Mb)12 which is defined

by Eq. (2.1). We will present two techniques for evaluating the transition amplitude. The first

technique involves writing ITLbJb (fJ.a" fJ.a', fJ.b', Mb) 1
2 as a contraction between 2 tensor covari-

ants. This approach is similar tb that used in high energy electron knockout reactions. In the

alternative method, which we call the brute force method. we evaluate TII,II. (/1". Po' .u« Mh)

first by using relativistic plane wave functions for our scattered wave function in which the spin

polarizations are obtained by performing Wigner transformations on the Dirac spinors. The
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transition amplitude is then obtained by multiplying TLb,Jb (j.J.a, j.J.a', j.J.b', Mb) with its complex

conjugate transpose. The trace method is preferred above the brute force method because

ITLbJb (j.J.a, j.J.a', j.J.b', Mb) 1
2 is computed directly. We will simply use the brute force approach as a

numerical check for the trace method.

2.9.1 The trace method

In the plane wave approximation all nucleon-nuclear scattering potentials are assumed to be

zero, thus the wave function 'IjJ (ki, X, j.J.i) for the various protons found in the entrance and exit

channels are replaced by plane waves which are given by Eqs. (2.b5). Hence ill the plalle wave

approximation, substitution of the plane wave scattering wave functions given by Eq. (2.65)

into the expression for the transition amplitude TLbJb (j.J.a, j.J.a', j.J.b', Mb) given by Eq. (2.1). yields

(2.105)

The quantities ka', kb' and ka represent the momenta of the two outgoing protons a' and b' as

well as the projectile a in the laboratory frame of reference. The positions of the projectile a

and struck proton relative to the center of mass of the target nucleus is labeled by Xl and x2i
respectively. The nucleon-nucleon t-matrix in position space is represented by tNN(I·TI - x21)·
For convenience we define the coordinates rand f' such that

(2.106)

and

-+/ -Ir = x.

The position of the projectile relative to the center of mass of the target nucleus is therefore

given by

(2.107)

(2.108)
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If mb « MA, then X rv Xl' Hence, one can write Eq. (2.105) as

( ) IJ ~~, -iq·f i(ka-k.,-kb,)f'-(~ ) -(~ '(~ ~) (~')
TLbJb {la,{la,,{lb',Mb = .. drar e e a U ka.,.{la.' 011, kbl,{lb,)tNN r)u(k:a,jJ,u 0cJ>"/)JbMI> T .

(2.109)

where

(2.110)

is the momentum transfer for the reaction. From Eq. (2.19) we have that the recoil momentum

of the residual nucleus is given by

(2.111)

Thus Eq. (2.109) becomes

[u(ka"jJ,ul) 07ï,(kb':IJ'b')] j die-iij-ff,v'V(i")

[u(ka,{lu) 0 jdTJei(k( )f'cJ>LbJbNhCr')]. (2.112)

Using the Fourier transforms [Math70]

(2.113)

and

(2.114)

we get

We use the relativistic Love-Franey model, discussed in section (2.7), to obtain the nucleon-

nucleon t-rnatrix [Hor85, LF81], that is

iN N(q) = -is;kcm t Fi(q)(A\ 0 A2i),
cln 1=8

(2.116)

where the Ai's are the five Dirac matrices (1,1'/L,1'5,'ll'/l,atW) and the indices 1 and 2 refer to

the projectile and target nucleon respectively. Substituting Eq. (2.116) into Eq (2.115) yields

T

TLbJb ({la, {la', f.kb', Mb) =L Fi (q)[u(ka" f.ka') 0 u(kb" f.kb')JlAi 0 Ai][11,(ka, f.ka) 0 cJ>LbJbMb (-kC)].
i=S

(2.117)
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Using the identity [Zha99]

(A 0 B)(C 0 D) = (AC) 0 (BD), (2.118)

we get
T

TLbJb (f.1-a, f.1-a', f.1-b', Mb) = 2)Fi )(q) ([11(ka" f.1-a')Ai U(ka'/la)] 0 ['U(kb" f.1-b') A<!l <PLbJuJl/b ( - kc)l·
i=S

(2.119)

Terms of the form 11(k, f.1-)Au(k, f.1-) are complex numbers. Thus one can write

T

TLbJb (f.1-a, f.1-a',u«, Mb) = L(Fi) (q) ([11(ka" f.1-a')A\ u(ka, /-"0,)] [U(kb' . Pb' )A2i<P Lf>.}nMu ( - k(.) l
i=S

(2.12U)

The complex conjugate of Eq. (2.120) yields

T

TLbJb (Pa, /-"0,', /-"b', Mb) =L(Fi) * (q) ([11( ka', /-"0,' ) Al u(ka, /-"0,)] [U(kb' , /-"b' )A2i<P LbJbMb ( - kc)]) * .
i=S

(2.121)

Using the identity [Fra90] (AB)* = B* A* we get

T

TibJb (Pa, Pa', /-"b', Mb) = L(FT (q)[u(kb" f.1-b')A2i<P LbJbMb ( -kc) ]*[11(ka" Pa' )A\ u(ko" /-"0,)]*'
i=S

(2.122)

Since 11(k, /-,,)AU(k', /-,,) are complex numbers for which the operation of taking the complex con-

jugate and the adjoint are identical it follows that

(2.123)

Using the identity [Gre90]
- ~ t ~ uu(k,/-,,) = u (k,f.1-h , (2.124)

one gets

(2.125)

The identity [AB]t = Bt A t of adjoint yields

(2.126)

Making use of Eq. (2.124), and introducing the notation 3..i = ,O(Ai)t,O, yields

K = 11(k, /-"hO(Ai)t,OU(k', f.1-')

11(k, /-,,)3..iu(k', /-,,'). (2.127)
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Hence

(2.128)

Using the identity given by Eq. (2.128), one can write Eq. (2.122) as

T

TibJb (fLa, fLa', fLb', Mb) = 2:)FT (q)[ ~ LI,J" Mb ( - kc:) )..2iU( kb' . fLb' )][u( ka. P·n) .. ~71,( ko,. P'o' )](2.129)
i=S

One can find ITLbh(fLa, fLa', fLb', Mb)12 by taking the product of Eqs. (2.120) and (2.129) to yield

T

ITLbJb (fLa, fLa', fLb', MbW = L r(p)* [u(ka" fLa' )A{ u(ka, fLa)][u(kb" fLb' )A2j<I> LbJbNh ( -kc)]
i,j=S

4

L [ua(ka',fLa')(AnaJ3U/3(ka,fLa)]
i,j=S o./3.ó,f=l p.(T,T.A=l

x [uó (kb, fLb)(A2j )ÓE {<I> LbJbMb ( -kc) }E][ {~LbJbMb ( - kc)} p( )..2i) p(T1J.(T(kb" fLb' )]

X [UT (ka, fLa) ()..l)~ AUA (ka" fLa' )]
4

L [UA (ka" fLa' )Ua (ka' , fLa' )] (A{ )a/3uJ3 (ka, P'a)
i,j=S a,/3,ó,E=l P,(T,T,A=l

X UT (ka, fLa)]( )..Il ) TA['U(T(kb' , fLb' ) 'U,tj (kb' , fLb' )]( AL) )6,

X {<I> LbJbMb ( - kC)}E {<P LbJbMb ( - kc)} P)...2zP(T· l~·lJU)

Using the definition of the energy projection operator [Bjo64, Gre92]

(2.131)

where p represents the four momentum vector of the particle in question and the spin projection

operator t [Bjo64, Gre92]

(2.132)

where Si = (Sf, Si) is the four component spin polarization vector of particle i (associated with

the spin projection quantum number fLi), one can express ITLbh (fLa, fLa', fLb', Mb) 1
2 in the desired

form. In Eq. (2.131) and (2.132) we make use of the Feynman slach notation namely Jf.. = "(Jl. Aw

Performing a Lorentz boost from the rest system of the particle to a frame of reference in which

the particle moves with a momentum of jJ, one call show that the zeroth component (If S, will

be given by ~ [Gre92] where i E ii.i: s, s', 'n}. The spatial components of the four component

spin vector are chosen to be anyone of the directions (i, i, s, s') or n.
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In a polarized (p,2p) experiment the spins projections of the projectile (a) and scattered

particle (a') are fixed, while the spin projections of the bound proton (b) and the other scattered

proton (b') are not. In the case ofEq. (2.130) the spin projections are all fixed values. To obtain

the desired form for ITLbJb (/-La, /-La', /-Lb', Mb) 1
2 one has to sum over the spin projections of band

b' while keeping the spin projections of a and a' constant. For the bound proton one has to sum

over all possible spin projections which a proton in a state with total orbital angular momentum

of Jb can have. This implies taking the sum over the total angular momenturn projection MIJ

and the spin projection /-Lb" Thus

T 4

L L L
4

L F' (FJ) * [U>. (ka" /-La' )UQ (ka', /-La' )J (A{ )Q{3

(2.133)

In ref. [GregO] it is shown that the spin projection operator satisfies the relationship

(2.134)

Using identity (2.134) one can write

4

L P!(FJ)* [U>. (ka" /-LF )'lLQ(ka" /-LF)]
i,j=S MbJ1b J1FJ1/ Ot,{3,6,f= I P,(I,T,>'= I

X {t(/-La' )(A~ )Q{3U{3(ka, /-Lf )'[LT(ka, /-LI )]{t(/-La)(:\~ )T>'[U(I(kb,. /J'b')

X [U(I(kb, /-Lb')(A2i)6f]{ <PLiJJbMb (-kC) }f{ Ci.>LbJbMb( -kc) }p{:\2i }P(I,

(2.135)

where the indices /-LF and /-LJ represent alllJussible corubiuatious of spin projections over u.' aud

a respectively, Using the identity given by Eq, (2.131), one can rewrite the previous equation

as

L ITLbJb (/-La, /-La', u«, Mb) 1
2

MbJ1b'
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Thus

Note that with the spin-projection operators the spin projections of particles a and a' in the

entrance and exit channels are fixed. Substitution of Eq, (2.132) into Eq. (2.137) yields

L ITLbJb (/--La,/--La',/--Lb',Mb) 1
2

MbJ.Lb'

x C + 'Y;$a ) (>:DlTr[(Pb
l 2; m) A2j

cf.>LbJbMb (-kc)iP LbJbMb ( -kc){ A2i}.

(2.138)

Defining

Kl Po'=
m

PI Pa
m

K2
Pb' (2.139)=
m

Eq. (2.138) can be written as

L ITLbJb(/--La,Pal,/--Lbl,Mb)12
MbJ.Lb'

T

L L (Fj)*Fi~Tr[($1 + 1)(1 +'Y5$al )A~
M .. S 32

b 2,J=

x (11\ + 1)(1 + 'Y5 s; )>:ll
xTr[($2 + 1)A2jcf.> LbJbMb (-kc)iP LbJbMb (-kc )>:2il·

(2.140)

In a more compact notation Eq. (2.140) can be written as

T
L ITLbJb(/--La,/--Lal,Pbl,Mb)12 = L (Fj)*FiVi(K1, P1, Sa, Sal) LHji(X,;',Mb,K2), (2.141)

MbJ.Lbl i,j=S Mb

where
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defines the projectile tensor and

(2.143)

the target tensor which is often also referred to as the nuclear response function. In the fol-

lowing two sections we will write down explicit expressions for both Lji(K1, PJ, Sa. Sa') and

2.9.2 The hadronic tensor

Information about the polarization of the protons in the entrance and exit channels of a polar-

ized (p,2p) reaction is contained in the spin-dependent hadronic tensor defined by Eq.(2.142).

Further evaluation of the hadronic tensor is performed so as to write it in a form which is con-

tractable with the response function. The hadronic tensor defined by Eq.(2.142) can be written

in the form

(2.144)

where

(2.145 )

and

(2.1-16)

In the case where one works with unpolarized beams, the spin vectors Sa and Sa' can be set

equal to zero, yielding

(2.147)

and

(2.148)

It is shown in the appendix that any 4 x 4 matrix X can be written as

2

X = L (er ®ej) e x.;
i,j=l

(2.149)
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where el and e2 are the two component unit row vectors (1,0) and (0,1), ® denotes a Kronecker

product, and Xij is a 2 x 2 matrix. It therefore follows that Eq. (2.144) can be written as

2 2
irt«; Pl, Sa, Sa') = Tr[( L (eIn ® en) ® X;:;n»lj( L (e&® er) ® X;)Ai]. (2.150)

m,n=l q,r=l

Any 2 x 2 matrix Mij can be expanded in terms of the set of 2 x 2 matrices consisting of the

2 x 2 identity matrix 12and the three Pauli matrices {ax,ay,az}' Thus

az

Xii = L G~fR
R=h

(2.151)

and
a.

Xi} = L P;1fT'
T=/2

(2.152)

Hence

.. 1 2 2 o ,

truc; Pl, Sa, Sa') = 16 L L L GWnpj,rTr[((eIn®en) ®fR)Aj((e&r®er) ®fT).i].
m,n=l q,r=l R,T=/2

(2.153)

In ref. [Its80] it is shown that the bilinear gamma matrices A, eau be constructed by taking till'

Kronecker product, of various combinations of the Pauli matrices so that. ODe can wr il.e

(2.154)

where At and A; represents the two Pauli matrices which gives us the matrix Ai. Similarly one

can write

(2.155)

Using the latter two identities one can write Eq. (2.153) as

1 2 2 az

Lji(K1,P1, Sa, Sa') = 16 L L L GwnprTr[(eIn®en)®rR)(A;®AI)(e~r®er)®rT)(Bl®BI)]·
m,n=l q,r=l R,T=h

(2.156)

Using the identity given by Eq. (2.118) and the fact that Tr[AB] = Tr[A]Tr[B] yields

2 '2 a.

Lji(K1,n, Sa, Sa') = /6 L L t GwnprTr[(e~n®en)AJ(e~r®eT)BnTr[rRA;rTBn
'm,n=l q,r=l R,T=12

(2.157)

One can further simplify the expression (2.157) by using the trace identity

(2.158)
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yielding

.. 1 2 2 a.

LlZ(K1,P1, Sa, Sal) = 16 L L L G~npr[(etnA;er)(e~Blen)lTr[rRA]rTBll·
m,n=l q,r=l R,T=I2

(2.159)

The expansion coefficients G~n and pr in Eq. (2.159) can be derived as follows. One can write

Eqs. (2.145) and (2.146) explicitly as

(2.160)

and

(2.161)

where

(2.162)

Substituting the latter expressions into Eqs. (2.160) and (2.161) yields

x+ = [ X~ Xli]
Xii xi; ,

(2.Hi3)

where

Xii
xii

Xiï
xi; =

(KlO + 1)12+ Saljaj

(KliSa'i - (1 + KlO)Sa'o)12 - (K1i - i(K1jSa'k + KlkSalj))ai

(KliSa'i + (1 - KlO)Sa'O)h - (K1i + i(K1jSa'k + KlkSalj))ai

(1 - KlO)12 - Saljai. (2.164)

Similarly one can write

(2.165)
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where

XII = (PlO + 1)12 + Saja)

X12 = (PliSai - (1 + PlO)Sao)h - (Pli - iPljSak)ai

Xii = (PliSai + (1 - PlO)Sao)I2 - (Pli + iPI]Sak)aZ

X22 = (1 - PlO)I'2 - SUlai. (2.166)

Thus from identities (2.151, 2.152) and Eqs. (2.164) and (2.166), it follows that

Gil KlO + 112

G~~ Sa'i

Gl2 = -(1 + KlO)Sa'O12

Gl2 -(Kli - iKljS(Jlk)a t

G21 = (1 - KLO)Sa'O12

G;; = -(Kil + iKIJSulk)

G22 = 1 - KLO12

G;~ = -s-. (2.167)

and

pil PlO + 112

pJ/ s:
pl2 -(1 + PLO)SaO12

pl2 = -(Pli - iPljSak)(li

p21 (1 - PLO)SaO12

p;} = - (P1i + 'iP1j Sak)

p22 1- PLO12

p22 = -s; (2.168)
(li
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2.9.3 The response function

We now proceed to write down simplified expressions for the response function which is defined

by Eq. (2.143). The relativistic boundstate wave function (see also section (2.6.1)) is given by

[Ike95]

(L.lo!:))

where the labels C~bb~~MLbJLb, YLbMLb (i:) and XJLb represent the Clebsch-Cordou coefficients,

the spherical harmonics and the two compollent Spill vectors associated with the bound proto II

(b). We first evaluate Eq. (2.114). A partial wave expansion of eikc of yields

00 L
eikc·of = 4n L L = -iLbiLbjLb(kcr)YLbMLb (kC)YLbMLb (f),

L=OML=L

(2.170)

where i« (r) represents the spherical Bessel function of order n. Hence

Furthermore the Clebsch-Gordon coefficients are non-zero only if MLb = Mb - /-lb. Integrating

over all space yields

where

(2.173)

and

(2.174)

The identity Jo47r dnYLML (f)YL' ML' (f) = OLL' [Sak85] allows us to write

(2.175)
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and

We define

utJb (kc)

wfbJb (kc)

1000 dr ru; (kcr)utJb (r)

1000 drrjLb(kcr)wfbJb(r).

Hence

where Lb = 2Jb - Li: Substituting

x~ = G)
X-~ = (nand

into Eq. (2.179) gives

Let

B -¢2LbJb (-kc)

B -¢3LbJb (-kc)

Thus one can write Eq. (2.180) as

40

(2.176)

(2.177)

(2.178)

(2.179)

(2.180)

(2.181)

(2.182)
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The complex conjugate transpose of the boundstate wave function is given by

- B - Bt - ° (2.183)<'PLbJbMb(-kc) = ipLbJbMb(-kc)r ,

where the matrix ,a is given by the relationship [Its80]

1 0 0 0

,a =
0 1 0 0

(2.184 )
0 0 -1 0

0 0 0 -1

Using Eqs. (2.182), (2.183) and (2.184) one can write

We define

Substituting Eqs.(2.183) and (2.185) into Eq.(2.186) yields

where

41

(2.185)

(2.186)

(2.187)

(2.188)
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Using the unit vectors ê] = (6) and ê2 = (~)one can show t.hat

2

XB(X,X',f.Lb,f.L~)= L(eJ®ei)®x~.
i,j=l

(2.189)

For particle b in the exit channel one defines

1 (Kg + 1)12 -K2· s.
-
2

Ri ~ (-Kg + l)h2' a,

Yll Y12
(2.190)

Y21 Y22

where Ykl are 2x2 matrices which are related to the momentum and mass of b by

Yll
Kg + 1I

2 2

Kiai
Y12 2---

2

Y21 =
K2ai
2

Y22
-Kg + 1I (2.191)2 2·

As in the case of the boundstate wave function one can show that

2

y(K2' f.Lb) = L (eJ ® ei) ® Yij·
i,j=l

(2.192)

Employing Eq. (2.192) and Eq.(2.187) one ran write

2

y(K2, f.Lb)A2jXB (kc,Mb) .. 2i = ~ L [(e~ ® es) e X~]A2j[(eL ® el) ® Ykl]A2i
rr r,s,k,l

(2.19;))

using the identity which states that any 2 x 2 matrix can be expanded in terms of the four

linearly independent 2 x 2 matrices consisting of 12, together with the three Pauli matrices ax,
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One can therefore expand the matrices x~ and Ykl in terms of h and the Pauli matrices. Hence

ay and az, that is

where

A
1

= 2(a + d)

1
B = 2(b+c)

z
C = --(c-b)

2

D
1

= -(a - d).
2

az

x~ 2:= [RC~bJb(i,X',Mb)]rR
R=I2
az

Ykl = 2:= p!JlrT.
T=I2

Using Eq. [2.195], the expansion coefficients RC~bJb (i, i') can be found to be

11 I -12C LbJb(-kc, Mb) =

Il C' (- -« M) =ax LbJb X,X, b

llC' C _,M)ay LbJb X,X, b =

IIC' (- _, M)az LbJb X,X, b =

12C' (- -t M) =[2 ua, X,X, b

12C' (- -t M) =ax LbJb X,X, b

12C' (- -t M) =ay LbJb X,X, b

12C' (--tM)a; LbJb X,X, b =

21C' (- -t M)[2 Lbh X, X, b =

21C' (- _, M)ax LbJb X,X, b =

21C' (- _, M)ay LbJb X,X, b =

21C' C _,M)a, LbJb X,X, b =

1 a-a. - a-a. -
2[¢ILbJb( -kc)¢ILbJb( -kc) + ¢2LbJb( -kc)¢2LbJb( -kc)]

1 a-a. - a-B. -
2[¢ILbJb(-kc)¢2LbJb(-kc) + ¢2LbJb(-kc)¢lLbJb(-kc)]

za - a - 8 - 8 --2[¢ILbJb(-kc)¢2Lbh(-kc) - ¢2LbJb(-kc)¢2LbJb(-kc)]

1 8 - 8. - 8 - 8* -2[¢ILbJb(-kc)¢ILbJb(-kc) - ¢2LbJb(-kc)¢2LbJb(-kc)]

18 - 8 - 8 - 8 -2[¢ILbJb (-kc )¢3LbJb (-kc) + ¢2LbJb (-kc )¢4L/JJb(-kc)]

18 - 8 - 8 - 8 -2 [¢lLbJb ( -kc )¢4LbJb ( -kc) + ¢2LbJb ( -kc )¢4LbJb ( -kc)]

Z 8 - 8* - 8 - 8. -- 2 [¢2LbJb (- kc )¢3LbJb ( -kc) - ¢2LbJb ( - kc )¢4LbJb ( -kc)]

18 - 8 - 8 - 8 -2[¢ILbJb(-kc)¢3LbJb(-kc) - ¢2LbJb(-kc)¢4LbJb(-kc)]

18 - 8 - 8 - 8 -2 [¢3LbJb (-kc )¢ILbJb ( -kc) + ¢4LbJb ( -kc )¢2LbJb ( -kc)]

18 - 8 - 8 - 8 -2 [¢3LbJb ( -kc )¢2LbJb ( -kc) + ¢4LbJb ( -kc)¢lLbJb ( -kc)]

z8 - 8 - 8 - 8 -- 2 [¢4LbJb ( -kc )¢ILbJb ( -kc) - ¢4LbJb ( -kc )¢2LbJb ( -kc)]

18 - 8 - 8 - 8 -2[¢3LbJb(-kc)¢lLbJb(-kc) - ¢4LbJb(-kc)¢2LbJb(-kd]

43

(2.194)

(2.195)

(2.196)

(2.197)
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Similarly it can be shown that the p!Jlls are explicitly given by

p'll K~ + 1
[2 2

pill 0
U.T

pill = 0uy

pill 0rT,

pll2 0[2

pll2 Ki2=Ux 2

pll2 Ki
2

Uy 2

ptl2 Ki
2

Uz 2
p'21 012

p'21 K2
UX 2

p'21 Ki
= 2

Uy 2

p'21 Ki
2

Uz 2
1'22 -KJ + 1

PJ2 2
122 0PUx =

1'2'2 0PUy

p'22 0,Uz

(2.199)

where Kt = p~ jm. It can be shown that the 16 x 16 matrices represented by AQ!3 are constructed
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by taking Kronecker products of the matrices in the set {I2,ax,ay,az} [Its80]. Hence

(2.200)

where A~j and A~j represents the two particular Pauli matrices which construct A2j. Similarly

it follows that one can write

(2.201)

Using Eqs. (2.200) and (2.201) in conjunction with the identity (A ® B)(C ® D) = (AC ® BC)

allows one to write the righthand side of Eq. (2.193) as

The trace of Eq. (2.202) yields

1 2 CJ z

rr' 2:= 2:= GkS(X,x',Mb)P-tl(K2)Tr[(e~®es)AL(et®el)Biil®[rRA~jrTBiJl· (2.203)
r,s,k,l=l R,T=I2

Applying the trace identity Tr(A ® B) = Tr(A)Tr(B) yields

(2.204)

With the identity Tr[('U t ® v)X (x t ® y) Yl = (ut X Y)(L tYv) alle arrives at the desired e-xpression

for the nuclear response, namely

(2.205)

2.9.4 The brute force method

The brute force method involves direct computation of TLbJb (/-La, /-La',ue, Mb) as given by Eq.

(2.119), namely

T

TLbJb (/-La,/-La', /-Lb',Mb) = 2:= Fi (q )[u(ka" /-La')Ai 'U(ka, /-La)]['U(kb" /-Lb') A2i <I> LbhMb ( -kC) l· (2.206)
i=S

The choice of spin polarizations of the scattered protons is selected in the two component

Pauli spinors XS in the Dirac spinors given by Eq. (2.66). The orientation of spin polarization
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is obtained by performing a Wigner transformation on XS. Assuming the x-z plane as the

scattering plane and Ok as the scattering angle of a particle with momentum k, one can write

s .k in Eq. (2.66) as

k sin Okax + k cos Okaz

ksinO, U :) + kCOSOk (: ~1)
sin Ok 1
- cos (h

(2.207)

Thus one can write Eq.(2.66) as

u(k,s) = N (2.20fl)
(: ~) X,

_k (cos Ok sin Ok )
t+m Xs

sin Ok - cos Ok

"
We expand the polarized 2 component spin vectors in terms of the base vectors Xt = (6) and

Xt = (~)such that

Xs

(2.209)

Hence

u(k,s) = N (2.210)

a

b

f:m (a cos Ok + bsin Ok)

f:m( a sin Ok - b cos Ok)

We now have to find the coefficients a and b associated with the polarization directions i. s
and ii. For a particle scattered in the x-z plane with scattering angle Ok relative to the z-axis

we have

• for the polarization direction i(t), we rotate the spin basis Xt with Ok around the y-axis,
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• for the polarization direction lU.), we rotate the spin basis X.J,. with Bk around the y-axis,

• for the polarization direction s(t), we rotate the spin basis Xt with Bk+ i around the y-axis,

• for the polarization direction sU.), we rotate the spin basis X.j. with Bk + i around t.he y-axis.

• for the polarization direction n(t), we rotate the spin basis Xt with i around the y-axis,

• for the polarization direction nU.), we rotate the spin basis X.j. with i around t.he y-axis.

The Euler angles associated with the rotations mentioned above are

for i, a=O (3 = Bk, ')'=0

for s, a=O (3 = Bk + i, ')'=0

for 71, _7r (3_7r ')' = O.a-2 - 2'

Using the Wigner rotation function represented by the 2 x 2 matrix [Sak85]

[

e-i(a+"Y)/2 cos((3/2)

ez(a-"Y)/2 sin((3/2)

_e-i(a-"Y)/2 sin((3/2) 1
ei(a+"Y)/2 cos((3/2) ,

(2.211)

where the angles a, (3 and')' represent the Euler angles associated with rotations around the

z-,y, and x-axes respectively, the rotation matrices used to find the two component spins (~)

associated with the polarization directions i, sand 71 are
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[ cos ~ - sin ~ 1 for i
sin~ cos ~2 2

[ .1_(cos ~ _ sin~) .1_(sin ~ + cos ~

1
.J2 2 2 .J2 2 2 for s
.1_(sin ~ + cos ~) .1_(cos ~ _ sin ~).J2 2 2 .J2 2 2

[
1-1 - I,' 12 for ii.
1+1 1+1
2 2

The 2 component spin vectors (~) are obtained by letting the rotation matrices operate on the

basis vectors Xt or X.t to give

[

cos ~

sin ~2

for iU)

for i(t)

[

cos ~

sin~ 2

[

.1_(cos ~ _ sin~)"f2 2 2

.1_(sin ~ + cos~)"f2 2 2
](~) ( for s(t)

.1_(cos ~ _ sin~) )"f2 2 2

.1_(sin ~ + cos ~).J2 2 2

.1_ (sin ~ + cos ~.J2 2 2

.1_(cos ~ _ sin~).J2 2 2

[

.1_(cos ~ _ sin~).J2 2 2

.1_(sin ~ + cos ~).J2 2 2
]( ~) ( for s(t)

-.1_(sin ~ + cos~) ).J2 2 2

.1_(cos ~ _ sin~).J2 2 2

.1_ (sin ~ + cos ~.J2 2 2

.1_(cos ~ _ sin~).J2 2 2

for h(t)

for nU).
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The desired form for the transition amplitude is obtained by calculating

(2.212)

and summing over the unpolarized protons to obtain LJ.Lbl Mb ITLbJb (/-la, /-la', /-lb, MbW which is

substituted into Eq. (2.4) to calculate the polarized triple differential cross sections.

2.10 Synopsis of theoretical formulation

In this chapter we have presented the relativistic plane wave impulse approximation model for

calculating complete sets of (p, 2p) spin transfer observable. A short review of the (p, 2p) reaction

mechanism was given. Next we defined the transition amplitude in terms of the scattered particle

wave functions, the nucleon-nucleon t-matrix and a boundstate wave function. Expressions of

the unpolarized triple differential cross section and spin transfer observables for the (p, 2p)

reaction were given. This is followed by the (p, 2p) kinematics which is used to calculate the

wave functions for the scattered protons and the NN interaction. Furthermore Dirac plane

wave functions were used for the scattered particle wave functions. Radial boundstate wave

functions were generated with the self consistent Dirac-Hartree approximation. The relativistic

Love-Franey model, based on the lAl representation, was used to obtain Lorentz invariaut NN

amplitudes. We have also included Maxwell's energy dependent parameterization t.o obtaiu

the meson coupling constants and cutoff parameters for the RLF model. In addi t.ion to t.his.

medium effects were introduced through the Brown-Rho scaling law. We have also looked at

pseudoscalar and pseudovector couplings for the 7rNN vertex. Radial boundstate wave functions

were generated with the self consistent Dirac-Hartree approximation. Thus we have developed a

new method for evaluating the modulus-square of the transition amplitude directly. Finally we

have reduced the modulus-square of the transition amplitude to the product of two traces. This

procedure allowed us to separate the information about the polarized proton beams and struck

protons. Using the properties of the energy-momentum projection operator and spin projection

operator, we could replace the projectiles wave function and scattered wave functions with terms

containing four-momentum and spin vectors. Further simplification was introduced by writing

the five covariant matrices (I4,"YJ.L,"Y5,"Y5"YJ.L,ajJ.v) in t.heir Pauli form.

Clearly some refinements to our model are needed. In future models we will include nuclear
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distortion effects and a more general IA2 representation of the NN interaction.

In the next chapter numerical results for complete sets of (p, 2p) spin transfer observables

will be shown based on the formalism developed in this chapter. We will also discuss numerical

checks which we have performed on our code.
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Chapter 3

Numerical analysis

3.1 Introduction

In this chapter we will present numerical results of unpolarized triple differential cross sections

and complete sets of spin transfer observables which have been obtained with our relativistic

plane wave code. Calculations are based on the trace method, previously discussed in Chapter

2. In addition results of various numerical checks of the accuracy of our code are provided.

The choice of kinematic conditions for which calculations are performed is based on a (p,2p)

experiment underway at RCNP (Osaka, Japan) [Nor99] in which unpolarized triple differential

cross sections and analyzing powers on 40Ca at 392 MeV were measured. However, since the

analysis of this experiment has not been completed yet, it will not be possible to compare

our results to data. Nevertheless, we will compare results obtained with our newly developed

trace technique to that of the traditional "brute force" method which is discussed ill section

(2.9.4) at an incident energy of 400 MeV on 40Ca. We compare result.s of (p,2p) scattering

observables based on both the initial and final energy prescriptions, which were discussed in

section (2.4.2), to see whether any differences in these prescriptions for the nucleon-nucleon

kinematics are reflected in any of the observables. Medium modifications to the NN-interaction

and the incident and scattered wave functions based on the Brown-Rho scaling law [Bro91]

have been included in our calculations as described in section (2.8). In this way a systematic

study showing the contributions of various medium modifications to the calculated scattering

observables is presented. The results of the medium-modified observables are then also compared

to results calculated with free quantities. These calculations include both pseudoscalar and

pseudovector coupling to investigate the ambiguities surrounding the medium effects OIl the

7rNN vertex.

51
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3.2 Numerical checks

We now discuss the numerical checks performed on our computer code to the theoretical for-

mulation. To ensure that the algorithm for the scattering observables is programmed correctly.

we calculate the free nucleon-nucleon differential cross section and spin observables by replacing

the boundstate wave function and momenta in Eq. (2.122) with a relativistic plane wave func-

tion and NN center-of-mass momenta respectively. The NN scattering amplitudes are obtained

with the relativistic Love-Franey model [Hor85]. Our results are compared to spin observables

calculated directly from Arndt phases [Arn86]. Due to differences in the choice of directions

for the (p, 2p) and NN spin polarization vectors i, [', sand s', only the triple differential cross

section, analyzing power (Ay) and Dnn are compared. Results of our calculations for an in-

cident energy of 400 MeV are shown ill fig. (3.1). Good agreement between OUI calculat.ious

and the experimental observables are obtained, hence we are confident that our formulation for

calculating these spin observables is programmed correctly.

We use a Gauss-Kronrod integration [Num92] method to perform the integration over the up-

per and lower radial boundstate wave functions. The integration limit on the radial boundstate

wave function is obtained by plotting both the upper and lower radial bounds tate wave func-

tions as a function of the distance between the bound nucleon and the center of mass of the

residual nucleus for the knockout states Id;!, Id~ and 23! respectively. From fig. (3.2) one can
2 2 2

see that all radial wave functions are negligible beyond 20 fm. We take the upper integration

limit to be 30 fm. We have also checked that the radial wave functions successfully satisfy the

normalization condition given by Eq. (2.75)

3.3 Calculations of (p, 2p )scattering observables

In this section we will show results of calculations of unpolarized (p, 2p) triple differential cross

sections and complete sets of spin transfer observables which are derived from Eqs. (2.2), (2.8)

and (2.9). The NN scattering amplitude is calculated with the relativistic Love-Franey code of

Horowitz [Lan91]. We use the code TIMORA [Lan91] to calculate the radial boundstate wave

functions. Calculations are done for a 40Ca target nucleus, with projectile energy of 400 MeV,

scattering angles of 32.5° and -50.0°, and knockout of protons from Id~ and 23 I shell model
2 "2
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Figure 3.1: Comparisons between the experimental and calculated free NN cross section and

spin observables at an incident laboratory energy of 400 MeV, plotted as a function of the

center-of-mass scattering angle Bern. The solid line shows observables calculated from pp Arndt

amplitudes while the dashed line shows our calculation values.
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Figure 3.2: The figures on the right and left show the upper (ULJ) and lower (WLJ) radial wave

functions as function of the separation distance between the residual nucleus and the bound

proton respectively for the Id §., Id;i and 2s 1.
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orbitals. As was mentioned before, these kinematic conditions are dictated by an experiment

which is underway at RCNP [Nor99J. In addition we also include calculations for the Id~ state
2

with the same kinematic constraints as for the Id;! and 231. states. In the following sections we
2 2

will show comparisons between calculations based on our trace technique and the brute force

method. We will also investigate nuclear medium effects on the scattered particles and the

NN-interaction based on the Brown-Rho scaling relations [Br091]: see section (2.8). Various

contribution to the medium effects will be examined.

3.3.1 Brute force versus trace technique

Calculations of the unpolarized triple differential cross section and spin transfer observables are

presented which show comparisons between results obtained with the trace method to that of

the brute force approach. The trace method has the advantage that it allows one to evaluate the

modulus-squared of the transition amplitude directly, which is used in calculating the scattering

observables, directly whereas this is not the case when using the brute force method. These

two methods are formulated in sections (2.9.1) and (2.9.4). The projectile kinetic energy is

400 MeV and the scattering angles of 32.5° and -50.0° are used for the calculations. A free

nucleon-nucleon interaction is taken in both cases, i.e. medium effects are excluded. III fig. (3.3)

we compare triple differential cross sections calculated with the brute force and trace uier.hud

for the Id~, Id;! and 231. states. In figs. (3.4) to (3.6) we show comparisons between the two
2 2

methods for polarization transfer observables for the various knockout states. The methods are

in prefect agreement with each other and hence we cannot distinguish between the curves shown

in fig. (3.3).

3.3.2 Initial versus final energy prescription

The plots in figs. (3.7) to (3.10) show comparisons between results of calculated unpolarized

triple differential cross sections and spin transfer observables obtained with both initial and final

energy prescriptions. All quantities are plotted as a function of the kinetic energy of the proton

scattered towards the smaller angle (32.5°). We use Eqs. (2.47) and (2.49) to calculate t.he

effective NN laboratory energy with the initial or final energy prescript.ion respect.ivclv. Again

the calculations are done for knockout from the Id~, Id;! and 281. states. The unpolarized triple
2 2 2
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differential cross sections predicted with the initial energy prescription are strongly reduced

relative to those predicted by the final energy prescription. However, both predictions give the

same shape for the cross sections. We see the same trends for all three knockout states. On the

other hand, the values of the final and initial energy predictions for spin observables are very

close. We nevertheless see a small reduction in the prediction of Ds'l for all three states for

the final energy prescription compared to the initial energy prescription. The analyzing power

predicted by the initial energy prescription is observed to be higher than the values obtained

with the final energy prescription for knockout from the Id§. and 2s 1., but there is no apparent
'2 ,

trend of the results in general.

3.3.3 Medium effects

In this section we investigate nuclear medium effects all unpolarized triple differeut.ial cross

sections and spin transfer observables. Medium modifications are included to the projectile and

the scattered wave functions as well as the NN-interaction. We use the Brown-Rho scaling law

[Bro9l], which is discussed in section (2.8) with optimum scaling parameters of ~ = 0.7 and

X = 0.75 for the proton mass, meson mass, and coupling constants; as shown by Krein et. al.

[Kre95]. In order to get insight into the sensitivity of the various scattering observables to the

different medium modified parameters we systematically replaced the free parameters with the

medium modified parameters. We will use the symbols Mp, mmeson and gmeson to represent the

free proton mass, a, pand w meson masses and meson coupling constants respectively and M;,
m:neson and g:neson to represent the medium modified quantities. Pseudoscalar and pseudovector

coupling are included to investigate medium effects on the 7rNN vertex as discussed in section

(2.8.1). All results are calculated with the trace method. As before the reaction considered

involves an incident energy of 400 MeV and scattering angles of 32.50 and -50.00 OIl Cl targ<'t of

40Ca. Knockout from the Id§., Id;!. and 2S1 states are considered. All observables are plotted
2 2 2

as a function of the left-scattered (small angle) proton kinetic energy. For comparisons of the

unpolarized triple differential cross sections we take the spectroscopic factor S LbJb to be unity:

see Eq. (2.2).

In addition to the spin transfer observables we have also calculated free and medium mod-

ified unpolarized triple differential cross sections for all states. In figs. (3.11) to (3.13) we
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compare results of unpolarized triple differential cross sections calculated with various medium

modified terms and a pseudoscalar 7l'NNcoupling to corresponding calculations with free param-

eters. Furthermore our results of spin transfer observables which were calculated with t.hr: sanw

type of medium-modifications are compared t.o calculations performed wit.h free paramorers are

shown in figs. (3.14) to (3.28). Similar calculations have heen performed with a pseudovector

7l'NN coupling and the results are shown in figs. (3.29) to (3.46).

In the following section we will compare the results obt.ained with the pseudosoalar and

pseudovector rrNN coupling.

3.3.4 Pseudoscalar versus pseudovector coupling

We will now give some general trends observed in the results shown in the previous section

for calculation of complete sets of (p, 2p) scattering observables with medium effect included.

Referring to figs. (3.11) to (3.13) and figs. (3.29) to (J.31) we see that with pseudoscalar

and pseudovector coupling the calculated cross sections with and without medium effect are

similar in shape for all knockout states. Both pseudosoalar and pseudovector calculations of

the unpolarized triple differential differential cross sections with medium modifications on the

meson mass increase dramatically relative to the free values. We see that for pseudoscalar

coupling with medium effects on the meson masses and coupling constants the results of the

scattering observables are almost the same as when we only include medium effects on the

coupling constants. This trend is seen in the results of pseudovector coupling as well. We

attribute this to the high momentum transfer involved in the reaction which dominates over the

meson masses in the NN form factor given by Eq. (2.97). Its also observed that only m:neson and

g:neson dramatically change the scattering observables when compared to the free calculations.

Medium effects on the proton masses only shift the curves to a lower energy. This observation

is seen for both pseudoscalar and pseudovector coupling.

In reference to figs. (3.14) to (3.28) and (3.32) to (3.46) we see that the spin transfer

observables calculated with pseudoscalar and pseudovector coupling and the various medium

effects included generally seem to have the same form as the free predictions. This appears to

be the trend for all knockout states. The analyzing power calculated with pseudosoalar coupling
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and the inclusion of various medium effects deviates slightly from the free values. If we however

use a pseudovector coupling the medium modified results for the analyzing power are virtually

the same as the free predictions. If we take all medium-modified quantities into account then

we observe a strong reduction in Dnn and Ds' s relative to the free predictions. We see the

same result if we use medium-modified meson masses and coupling constants or only medium-

modified coupling constants. This observation holds for pseudoscalar and pseudovector coupling.

In general the medium-modified spin observables calculated with pseudovector coupling included

tend to be closer to the free values than is the case for pseudoscalar 7fNN coupling.

3.4 Synopsis of the numerical analysis

In this chapter we presented results of calculated (p, 2p) triple differential cross sections and

complete sets of spin transfer observables. Calculations were performed for incident energy of

400 MeV with scattering angles 32.50 and -50,00 on a target of 40Ca, and knock out states Id§.,
2

Id;! and 2s l respectively. We discussed results of various checks performed on our code. We
2 2

compared results of scattering observables obtained with the trace method to those calculated

with the brute force approach. A systematic study of nuclear medium modifications on the

proton mass, a, pand w meson masses on (p,2p) scattering observables was made. Pseudoscalar

and pseudovector coupling of the 7fNN vertex have been included in the calculations and the

results which include the different contributions of the various medium effects were compared.

We showed that identical results are obtained for calculations of spin observables based on

both the the brute force method and the trace method. This inspires confidence that our trace

method, which is a more transparent and elegant formalism, is accurate. We also observe very

little differences between the results predicted with the initial energy prescription and the final

energy prescription (apart for the cross sections). With the inclusion of a pseudoscalar cou-

pling we see some significant differences between the medium modified and free predictions of

the scattering observables. With pseudovector coupling we see that the trends in the shape of

the medium modified scattering observables are quite similar to those seen with pseudoscalar

coupling. We however see that with pseudovector coupling the analyzing power is virtually the

same as the free values. Pseudovector coupling also seems to bring most of the spin observ-

abies closer to the free predictions. This is due to cancelations of the scaling factors for the
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medium-modified meson masses and rrNN coupling constants which appear in the Eq. (2.97).

Unpolarized triple differential cross sections calculated with a pseudovector coupling appear to

be reduced relative to the pseudoscalar predictions. For a complete experimental study of nu-

clear medium effects one should consider all possible spin observables, as this study shows that

spin transfer observables, other than the analyzing power , are 4uite seusi ti ve Lu the iuLruJ uctior.

of different medium effects.

Some refinements to the present model are clearly required. For example nuclear distortions

on the projectile and scattered protons need to be included for calculations at the lower energy

regime where distortion effects become important. There is also still a big uncertainty as to

which momentum transfer to use for the NN-interaction [Cha98, ManOa]. Finally the simplistic

lAl form of the NN t-matrix needs to be replaced by the more general lA2 representation

[Ven99].

The model presented in this thesis is useful for the experimental (p, 2p) program at RCNP

where data are currently being collected at an energy region which is high enough for one to

ignore the effects of nuclear distortions on the projectile and scattered protons. Future compar-

isons with data could give guidelines as to the choice between pseudosoalar and pseudovector

for the rrNN coupling.
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Figure 3.3: Plots comparing the calculated unpolarized triple differential cross sections for the

Id§., Id~ and 2s 1 states based on the brute force and trace methods. The results obtained with
222

both brute force and trace method are exactly the same (solid line). Triple differential cross

sections are in units of ub/ sr2 MeV.
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Figure 3.7: Plots comparing the calculated unpolarized triple differential cross sections for the

Id§., Id;! and 2s 1 states based on the initial and final energy prescriptions. The solid line
2 2 2

represents the results obtained with the initial energy prescription while the dashed line shows

the results of the final state energy prescription.

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 3. NUMERICAL ANALYSIS 65

LO 1.0

j ~ ::--...
0.5 0.5 r ~

)

~
t .#

~ 0.0 " 0.0 ~-e " ~

1
Cl

r
, f

-0.5
-05 t

-1.0 ' I , , !-1.0
0 20 40 60 80 100 0 20 40 60 80 100

E•.(MeV) E•.(MeV)

LO r
LO1 i

j
1

0.5 10.5 --/

00 I'. 0.0 / ="- -i
Cl Cl 1

../ ~

-0.5 -0.5 r 1
-1.0 -1.0

0 20 40 60 80 100 0 20 40 60 80 100
E•.(MeV) E•.(MeV)

1.0 1.0

f
0.5 f 0.5

.#
/ '-': - ---",f /' '-

-"
Cl':. 0.0 .: 0.0 /'

Cl

-0.5 ::} J
i

-1.0 I I I I 1
0 20 40 60 80 100 0 20 40 60 80 100

E•.(MeV) E•.(MeV)

Figure 3.8: Plots comparing complete sets of (p, 2p) spin transfer observables for the Id ~ state

based on the initial (solid line) and final energy prescriptions (dashed line).
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based on the initial (solid line) and final energy prescriptions (dashed line),
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Figure 3.10: Plots comparing complete sets of (p. 2p) spin transfer observables for the 2s 1 state
2

based on the initial (solid line) and final energy prescriptions (dashed line).
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Figure 3.11: Plots of (p, 2p) triple differential cross sections for the Id~ state obtained with the
2

trace method which include no medium effects (solid line) compared with calculations including

medium modifications (dashed line). The plots from right to left, and top to bottom show

calculations with M;, m:neson and g:neson effect, m:neson' g:neson and free Mp, g:neson and free

Mp and mmeson, M; and free mmeson and gmeson, m:neson and free Mp and gmeson respectively

for pseudoscalar 7T'NNcoupling.
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Figure 3.12: Plots of (p, 2p) triple differential cross sections for the 1d~ state obtained with the
2

trace method which exclude medium effects (solid line) compared with calculations including

medium modifications (dashed line). The plots from right. t.o left. and top to bottorn show

calculations with M;, m~eson and g~pson effect, m~e8on' g~w8on and free Mp. g':r,pwlI and free

Mp and mmeson, M; and free mmeson and gmeson, m~eson and free Mp and gmeson respectively

for pseudoscalar 7fNN coupling.
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Figure 3.13: Plots of (p, 2p) triple differential cross sections for the 281 state obtained with the
2

trace method which exclude medium effects (solid line) compared with calculations including

medium modifications (dashed line). The plots from right to left, and top to bottom show

calculations with M;, m:neson and g:neson effect, m:neson' g:neson and free Mp, g:neson and free

Mp and Ut-meson- M; and free mmeson and gmeson, m:neson and free Mp and gmeson respectively

for pseudoscalar nNN coupling.
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Figure 3.14: Plots of (p, 2p) spin transfer observables for the Id§. state obtained using the trace
2

method which exclude medium effects (solid line) compared with calculations including medium

modified M;, m:neson and g:neson (dashed line) for pseudoscalar JrNN coupling.
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Figure 3.15: Plots of (p, 2p) spin transfer observables for the Id§. state obtained using the trace
2

method which exclude medium effects (solid line) compared with calculations which include free

Mp and medium modified m~eson and g:neson (dashed line) for pseudoscalar 7rNN coupling.
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Figure 3.16: Plots of (p, 2p) spin transfer observables for the Id!? state obtained using tho t.rare
2

method which exclude medium effects (solid line) comparee! with calculations which include free

Mp and mmeson with medium modified g:neson (dashed line) for pseudoscalar 7fNN coupling.

CHAPTER 3. NUMERICAL ANALYSIS

0.5

,

\/
<~ 0.0

-0.5

-1.0 '-'--'-........__,~~~--'--'-~....__,__,~~
o 20 40 60 80 100

E.(MeY)

0.5

/'"

/ \
/ \

\

o· 0.0

-0.5

-1.0 '-'--'-...........L~..........L~___,_~-'--'-~__J

o 20 40 60 80 100
E.(MeY)

0.5 /

d" 0.0
\
\
\ /
\

-0.5

-1.0 L.................__j~...........J.~....._J_~........t....~.....J

o 20 40 60 80 100
E.(MeY)

73

-0.5

-1.0 L.........~L.........~L.................__j~.._.__j--'--'-.._._j

o 20 40 60 80 100
E.(MeV)

. OSl

o 0.0 t ........

-0.5 ~

/
/

-1.0 L-..-~L-.....~L-..----"-'_~~---'

o 20 40 60 80 lOU
E.(MeY)

/
/

/--------0.5

-1.0 L.........~'-'-'-~c..........~~.._.__j--'--'-.._._j

o 20 40 60 80 100
E.(MeY)

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 3. NUMERICAL ANALYSIS 74

1.0 1.0

I
0.5 0.5

;; <,

<, /
s-, 0.0 ï 0.0 '-..: Q

r,
-0.5 1 -05 r. f

-1.0 -1.0
0 20 40 60 80 100 0 20 40 60 80 100

E,(MeV) E,(MeV)

1.0 1.0

t j
0.5 0.5 r

1". 0.0 I <, 0- 0.0 t /\Q

\

-0.5 f
-,

\ I --- \
-0.5 'j\J
-1.0 -1.0

0 20 40 60 80 100 0 20 40 60 80 100
E.(MeV) E.(MeV)

1.0 1.0 f i =;(""'- o,J0,5 I
-:

I ~
<,

Q" 0.0 "J .: 0.0 - __..
Q

_:: I
-0.5 -

t
I I -1.0

0 20 40 60 80 100 0 20 40 60 80 100
E,(MeV) E.(MeV)

Figure 3.17: Plots of (p, 2p) spin transfer observables for the Id§. state obtained using the trace
2

method which exclude medium effects (solid line) compared with calculations which include free

mmeson and 9meson with medium modified M; (dashed line) for pseudoscalar 7fNN coupling.
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Figure 3.18: Plots of (p, 2p) spin transfer observables for the 1d ~ state obtained using the trace
2

method which exclude medium effects (solid line) compared with calculations which include free

Mp and gmeson with medium modified m~eson (dashed line) for pseudoscalar rrNN coupling.
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Figure 3.19: Plots of (p, 2p) spin transfer observables for the Id:!, state obtained using the trace
2

method which exclude medium effects (solid line) compared with calculations including medium

modified M;, m-:neson and g-:neson (dashed line) pseudoscalar coupling.
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Figure 3.20: Plots of (p, 2p) spin transfer observables for the Id}, state obtained using the trace
2

method which exclude medium effects (solid line) compared with calculations which include free

Mp and medium modified m~eson and g~eson (dashed line) for pseudoscalar nNN coupling.
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Figure 3.22: Plots of (p, 2p) spin transfer observables for the Id;! state obtained using the trace
2

method which exclude medium effects (solid line) compared with calculations which include free

mmeson and 9meson with medium modified M; (dashed line) for pseudoscalar 7TNN coupling.
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Figure 3.24: Plots of (p, 2p) spin transfer observables for the 2s 1 state obtained using the trace
2

method which exclude medium effects (solid line) compared with calculations including medium

modified M;, m:neson and g:neson (dashed line) for pseudoscalar 7rNN coupling.
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Figure 3.25: Plots of (p, 2p) spin transfer observables for the 2s.1 state obtained using the trace
2

method which exclude medium effects (solid line) compared with calculations which include free

Mp and medium modified m-:neson and g-:neson (dashed line) for pseudoscalar nNN coupling.
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Figure 3.26: Plots of (p, 2p) spin transfer observables for the 281 state obtained using the trace
2

method which exclude medium effects (solid line) compared with calculations which include free

Mp and mmeson with medium modified g:neson (dashed line) for pseudoscalar 7l'NN coupling.
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Figure 3.27: Plots of (p, 2p) spin transfer observables for the 2s! state obtained using the trace
2

method which exclude medium effects (solid line) compared with calculations which include free

mmeson and 9meson with medium modified M; (dashed line) for pseudoscalar 7fNN coupling.
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Figure 3.28: Plots of (p, 2p) spin transfer observables for the 231 state obtained using the trace
2

method which exclude medium effects (solid line) compared with calculations which include free

Mp and 9meson with medium modified m:neson (dashed line) for pseudoscalar nNN coupling.
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Figure 3.29: Plots of (p, 2p) triple differential cross sections for the ld§. state obtained with the
2

trace method excluding medium effects (solid line) compared with calculations which include

medium modifications (dashed line). The plots from right to left, and top to bottom show

calculations with M;. m:neson and g:neson effect. m:neson' g:neson and free Mp, g:neson and free

Mp and mmeson, M; and free mmeson and gmeson, m:neson and free Mp and gmeson respectively

for pseudovector 7fNN coupling.
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Figure 3.30: Plots of (p, 2p) triple differential cross sections for the Id;! state obtained with the
2

trace method excluding medium effects (solid line) compared with calculations which include

medium modifications (dashed line). The plots from right to left, and top to bottom show

calculations with M;, m:neson and g:neson effect, m:neson' g:neson and free Mp, g:neson and free

Mp and mmeson, M; and free mmeson and gmeson, m:neson and free Mp and gmeson respectively

for pseudovector 7rNN coupling.
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Figure 3.31: Plots of (p, 2p) triple differential cross sections for the 281 state obtained with the
2

trace method excluding medium effects (solid line) compared with calculations which include

medium modifications (dashed line). The plots from right to left, and top to bottom show

calculations with M;, m-:neson and g-:neson effect, m-:neson, g-:neson and free Mp, g-:neson and free

Mp and mmeson, M; and free mmeson and gmeson, m-:neson and free Mp and gmeson respectively

for pseudovector 1fNN coupling.
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Figure 3.33: Plots of (p, 2p) spin transfer observables for the Id ~ state obtained using the trace
2

method excluding medium effects (solid line) compared with calculations which include free Mp

and medium modified m~eson and g~eson (dashed line) for pseudovector 7rNN coupling.
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Figure 3.34: Plots of (p, 2p) spin transfer observables for the Id§. state obtained using the trace
2

method excluding medium effects (solid line) compared with calculations which include free Mp

and mmeson with medium modified g:neson (dashed line) for pseudovector 1fNN coupling.
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Figure 3.35: Plots of (p, 2p) spin transfer observables for the ld.§. state obtained using the trace
2

method excluding medium effects (solid line) compared with calculations which include free

mmeson and 9meson with medium modified M; (dashed line) for pseudovector 7fNN coupling.
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Figure 3.37: Plots of (p, 2p) spin transfer observables for the ld ~ state obtained using the trace
2

method excluding medium effects (solid line) compared with calculations which include medium

modified M;, m~eson and g~eson effect (dashed line) for pseudovector ITNN coupling.
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Figure 3.39: Plots of (p, 2p) spin transfer observables for the Id a state obtained using the trace
2

method excluding medium effects (solid line) compared with calculations which include free Mp

and mmeson with medium modified g:neson (dashed line) for pseudovector nNN coupling.
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Figure 3.40: Plots of (p, 2p) spin transfer observables for the ld~ state obtained using the trace
2

method excluding medium effects (solid line) compared with calculations which include free

mmeson and 9meson with medium modified M; (dashed line) for pseudovector 7l'NN coupling.
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Figure 3.41: Plots of (p, 2p) spin transfer observables for the Id!! state obtained using the trace
2

method excluding medium effects (solid line) compared with calculations which include free Mp

and 9meson with medium modified m:neson (dashed line) for pseudovector nNN coupling.



Figure 3.42: Plots of (p, 2p) spin transfer observables for the 2s 1 state obtained using the trace
2

method excluding medium effects (solid line) compared with calculations which include medium

modified M;, m:neson and g:neson effect (dashed line) for pseudovector JrNN coupling.
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2
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and medium modified m~eson and g~eson (dashed line) for pseudovector 7fNN coupling.
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Chapter 4

Summary and conclusions

The work presented in this dissertation represents a first step towards calculating complete sets

of (p,2p) spin transfer observables. We have investigated t.he difference bei.wecu t.1J!'various

kinematic prescriptions used ill obtaiuiug t.ho ;'\:;--.;t-iuauix. Furt hcnuorc, Wt" have looked it.t

the effects of various nuclear medium modified parameters on the spin transfer observables.

In addition to this, we have included both pseudoscalar and pseudovector coupling for the

7rNN vertex. Clearly the work presented in this dissertation represents a benchmark for future

distorted wave models, which will allow an accurate calculation of complete sets of spin transfer

observables at both the low and high energy regime, as well as allow us to include medium

effects on the scattered wave function correctly.

Our formalism formulation, which is based on the relativistic impulse approximation model,

allows us to write the transition amplitude ITLbJb(/l-a,/l-al,/l-b"Mb)12 in a form which we can

directly use to calculate spin transfer observables. This is refered to as the trace method. We

have also presented an alternative method which involves calculating TLbJb (/l-a, /l-a', /l-b', Mb) first,

which we refer to as the brute force approach. The trace method allows one to separate the spin

dependent and independent components of the interaction into two separate terms. Because

we focus on the high energy regime, it is reasonable to only consider the relativistic plane

wave functions as describing the propagation of the scattered particles. The relativistic Love-

Franey model is used to include a Lorentz invariant form of the NN-interaction. Medium effects

are included through the Brown-Rho scaling law. Pseudoscalar and pseudovector coupling are

included for the 7rNN vertex. Radial boundstate wave functions are calculated with the Dirac-

Hartree approximation.

Our formalism has then been included in a numerical code, which we used to calculate

complete sets of (p, 2p) spin transfer observables. In addition we also include calculations of
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unpolarized triple differential cross sections. Results of checks performed on our code, as well

as results obtained for the unpolarized triple differential cross sections and spin observables

were presented and discussed. We also compared results for our newly developed trace method

to those of the traditional brute force approach. Furthermore, differences between the initial

and final energy prescription were investigated. Various medium modifications to the scattering

observables were included and compared to the results obtained with free parameters. We

also looked at the differences between pseudoscalar and pseudovector predictions of the (p, 2p)

scattering observables.

In conclusion:

• We have presented a simple, but nevertheless useful model. which has undergone stringent

numerically checks.

• This model demonstrates the influence of the various medium-modified parameters and

different 1fNN couplings on the different scattering observables, and thus provides us guide-

lines for new experiments.

• Future additions to our model will include nuclear distortion effects and the inclusion of

the more general IA2 representation of the NN interaction which will allow us to perform

calculations at low and high energies.



Appendix A

Mathematical identities

A.I Matrix identities

Theorem: Any 2 x 2 matrix can be expressed as

2

M = L (el ® ej)Mij
ij=l

(A.l)

where el = (1,0) and e2 = (0,1).

Proof: Let ei represent the unit vectors el = (1,0) and e2 = (0,1). Suppose M is a 2 x 2

matrix. The following properties hold

G)®(l,O)

=

o 0

1 °
(A.2)

G) e (0,1)

=

o 0

o 1

(A.3)

e~ ® el = (~) e (1, 0)
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=

1 0

o 0
(A.4)

=

o 1

o 0
(A.5)

If Mij is an entry of the matrix

M= (A.6)

then it follows from the equations above that one can write

2

M = L (er ® ej)Mij.
i,j=l

(A.7)
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