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Abstract 
 
Background: The conventional sequence analysis is the most common method used 

for the detection of drug-resistant mutants. Due to its sensitivity limitations, it is 

unable to detect these mutants when comprising less than 20% (minor populations) of 

the total virus population in a sample. However, real-time PCR-based assays offer a 

rapid, sensitive, specific and easy detection and quantification of such mutants. The 

HIV-1 variants harbouring the K103N mutation are associated with resistance to 

nevirapine (NVP) and efavirenz (EFV). The persisting drug-resistant mutants decay 

slowly to low levels, and therefore they are called minor drug-resistant mutants. 

Consequently, they affect subsequent treatment with the drugs of the relevant class.  

 

Objectives: The objective of this study was to design two TaqMan real-time PCR-

based assays called selective-polymerase chain reaction (SPCR), namely the total 

viral copy SPCR assay and the K103N-SPCR assay. The former detects HIV-1 of 

subtype C reverse transcriptase sequences, whereas the latter detects K103N drug-

resistant variants in these sequences. 

 

Design and Methods: In developing the SPCR assays, sets of appropriate primers 

and probes for the HIV-1 subtype C reverse transcriptase (RT) were developed to use 

in the K103N-specific reaction and the total copy reaction. Twelve DNA plasmid 

standards with sequence diversity were constructed for the assay from two HIV-

1subtype C samples known to harbour the K103N mutation (AAC or AAT) in our 

Department‟s Resistance Databank. Their RT regions were amplified, cloned and 

verified with sequencing. Site-directed mutagenesis was used to induce mutations at 

103 amino acid position in some of these clones to generate more standards with 

either one of the three codons (AAA, AAC and AAT). The two assays were optimized 

and validated, and a standard curve was generated for each assay using 10-fold serial 

dilution (5x107-5x100 DNA copy/µL) of a K103N-mutant plasmid standard. The 

optimized and validated SPCR assays were used to screen 40 nested PCR products of 

previously genotyped patient samples for minor K103N variants. 

 
Results: Two sensitive and reproducible selective real-time PCR (SPCR) assays, with 

cut-offs of 8.23 and 10.33 and a detection limit of 0.01% for the K103N resistance 
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variants, were successfully developed. The assays detected a prevalence of 25.64-

46.15% for the K103N resistance mutation in 39 patient samples. The genotyping 

(population sequencing) missed 40-53.85% of these variants. 

 

Conclusion: In conclusion, sensitive and reliable selective real-time PCR assays to 

detect and quantify minor K103N variants of HIV-1 in nested PCR products were 

successfully developed. The assay had a lower detection limit of 0.01%.  

Stellenbosch University  http://scholar.sun.ac.za



6 

Opsomming 
 
 
Agtergrond: Konvensionele volgorde bepaling analise is die mees algemeenste 

metode wat gebruik word vir die opsporing van middel-weerstandige mutasies, maar 

weens beperkte sensitiwiteit is dit nie moontlik om hierdie mutante op te spoor 

wanneer dit minder as 20% (minderheids populasie) van die totale viruspopulasie in 

`n monster uitmaak nie. Nietemin, kwalitatiewe PKR-gebaseerd toetse bied vinnige, 

sensitiewe, spesifieke en makliker opsporings en kwantifisering van sulke mutante 

aan. MIV-1 variante wat die K103N mutasie bevat word geassosieer met weerstand 

teen nevirapine (NVP) and efavirenz (EFV). Volhoudende middel-weerstandige 

mutasies vergaan stadig na laer vlakke en word daarom na minderheids middel 

weerstandige mutasies verwys. Gevolglik affekteer dit opvolgende behandeling met 

die middel van die relevante klas. 

 

Doelwitte: Die doel van die studie was om twee TaqMan kwantifiserende PKR 

gebaseerde selektiewe polymerase ketting reaksies (SPKR), naamlik totale virale 

kopie SPKR en K103N-SPKR te ontwikkel. Die voormalige toets het die MIV-1 

subtipe C omgekeerde transkriptase volgorde bepaal, waar K103N die middel-

weerstand variante in hierdie volgorde opspoor. 

 

Ontwerp en Metodes: `n Geskikte stel inleiers en peiler was ontwikkel vir die MIV-1 

subtipe C omgekeerde transkriptase (OT) vir gebruik in die K103N-spesifieke en die 

totaal kopie reaksie. Twaalf DNS plasmied standaarde met volgorde diversiteit was 

saamgestel vir die toets vanaf twee MIV-1 subtipe C monsters wat volgens ons 

Departement se weerstand databasis geklassifeer is vir die besit van die K103N 

mutasie (AAC of AAT). Die OT streke was geamplifiseer, gekloneer en geverifieer 

deur volgorde bepaling. Punt-gerigte mutagenese is gebruik om `n mutasie by die 

amino suur posisie 103 van sekere klone te induseer om meer standaarde te genereer 

wat een van die drie kodons (AAA, AAC en AAT) bevat. Die twee toetse is 

geoptimiseer en gevalideer en `n standard kurwe is genereer vir elk van die toetse 

deur die gebruik van tienvoud serie verdunnings (107-1 DNS kopie/µL) van `n 

algemene K103N-mutante plasmied standard. Die geoptimiseerde en gevalideerde 
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SPKR toets was gebruik om vir die minderheids K103N variante in 40 “nested” PKR 

produkte van voorheen gegenotipeerde pasiënt te soek. 

 

Resultate: Twee sensitiewe en herproduseerbare selektiewe kwantitiewe PKR toetse 

met `n ΔCt afsnypunt van 8.23 en `n deteksie limiet van 0.006% was ontwikkel vir die 

K103N weerstand variant. Die toets het `n voorkomsyfer van 25.6 % vir die K103N 

weerstand mutasie in 40 pasiënt monsters bepaal, waar genotipering (populasie 

volgorde ) 40% van hierdie variante nie opgespoor het nie. 

 

Gevolgtrekking: `n Sensitiewe en betroubare selektiewe kwantitatiewe PKR toets vir 

die opspoor en kwantifisering van die minderheids K103N variante van MIV-1 in 

PKR produkte was ontwikkel. Hierdie toets het `n laer opsporings limiet van 0.01%. 
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Chapter 1 
 

1.1 Introduction  

 

South Africa has been devastated by the HIV/AIDS epidemic more than any other 

country with an estimate of 5.7 million people living with the human 

immunodeficiency virus type 1 (HIV-1) infection. At the end of 2009, the national 

HIV prevalence was estimated to be 17.8% among the 15-49 year olds (UNAIDS, 

2010). There are 2 800 000 to 3 700 000 women and 230 000 to 320 000 children 

under 15 years living with the infection in South Africa (UNAIDS, 2010). The impact 

of the epidemic is reflected in the gradual increase of the country‟s morbidity and 

mortality rate, with 316, 559 deaths in1997 to 607,184 deaths in 2007 

(http://www.statssa.gov.za). A majority of the young women or antenatal clinic 

attendees in the 25-39 age groups is particularly dying. This group has the highest 

HIV prevalence 35-42%, whereas in the males the highest HIV prevalence is seen in 

the 30-34 age groups (South African Department of Health Study, 2009). Half of the 

country‟s orphans is attributed to HIV/AIDS related deaths, with 70% children 

without maternal parents. Since 2006, the premature deaths have significantly 

increased from 39% to 70% in 2010 (http://www.statssa.gov.za).  

 

The most common antiretroviral treatment (ARV) of HIV/AIDS in the developing 

countries including South Africa, as recommended by World Health Organization 

(WHO), consists of two drugs from the NRTI class (nucleoside reverse transcriptase 

inhibitor) combined with one drug from the NNRTI class (non-nucleoside reverse 

transcriptase inhibitor) or one drug from the PI class (protease inhibitor) boosted with 

a small dose of ritonavir. Nevirapine (NVP) and efavirenz (EFV) are the widely 

prescribed NNRTIs in developing countries including South Africa. Selective 

pressure from these drugs causes high levels of resistance-associated mutations in the 

reverse transcriptase gene (RT) that can be transmitted and account for the majority of 

treatment failures (Feinberg 1997; Grant, Hecht et al. 2002; Little, Holte et al. 2002; 

Violin, Cozzi-Lepri et al. 2004).  
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Several studies using standard genotyping have revealed that NVP selects for resistant 

HIV-1 variants, commonly the K103N, in 15-50% of mothers who administered 

intrapartum single-dose nevirapine (sdNVP) (Eshleman, Mracna et al. 2001; 

Eshleman and Jackson 2002; Martinson, Morris et al. 2009). Genotyping is the most 

common method used in the developed countries to detect K103N mutations in 

patient samples. However, it is unable to reliably detect resistance variants comprising 

less than 20% of the total virus population in a sample (Grant, Kuritzkes et al. 2003; 

Halvas, Aldrovandi et al. 2006; Hirsch, Gunthard et al. 2008). Typically, the NVP-

resistant population harbouring K103N in the plasma decreases to below the limit of 

detection (50 copies of HIV-1 RNA/mL) by standard genotyping after six months of 

stopping the treatment (Johnson, Li et al. 2005; Loubser, Balfe et al. 2006; Palmer, 

Boltz et al. 2006; Palmer, Boltz et al. 2006; Metzner, Giulieri et al. 2009; Saladini, 

Vicenti et al. 2009; Toni, Asahchop et al. 2009; Wind-Rotolo, Durand et al. 2009). 

These minor variants persist for a maximum period of five years in the plasma after 

withdrawal of the relevant drug pressure (Flys, Donnell et al. 2007). They are also 

found in the latent reservoirs of resting CD4 T cells (Siliciano, Kajdas et al. 2003; 

Bailey, Sedaghat et al. 2006; Briones, de Vicente et al. 2006; Wind-Rotolo, Durand et 

al. 2009).  Unlike genotyping, real-time PCR-based mutation-specific assays have 

been shown to detect and quantify minor drug-resistant variants harbouring K103N 

and other resistance-associated mutations when present in a patient sample at 

frequencies of 20% or less than 0.1% (Metzner, Bonhoeffer et al. 2003; Halvas, 

Aldrovandi et al. 2006; Palmer, Boltz et al. 2006; Palmer, Boltz et al. 2006; Johnson, 

Li et al. 2007; Paredes, Marconi et al. 2007; Balduin, Oette et al. 2009). 

 

This study will investigate a selective real-time PCR assay to detect minor HIV-1 

resistant variants harbouring K103N that are not detected with more expensive and 

laborious genotyping methods. 

 

The literature review section will focus on the classification, characteristics and life 

cycle of the HIV-1 with more emphasis on the RT. The section will also cover the 

HIV-1 treatment, mechanisms of treatment by NNRTIs and drug resistance 

development, the detection methods for the K103N minor/drug-resistant variants and 

fully describe the sensitive real-time PCR-based assays which include the selective 

real-time polymerase chain reaction (SPCR) assay which is developed in this study. 
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1.2 Literature review 

 

1.2.1 Human Immunodeficiency Virus Type 1 (HIV-1) 

1.2.1.1 Classification 

HIV-1 belongs to the genus Lentivirus, a family of Retroviridae. Lentiviruses are slow 

viruses (lenti-, Latin for “slow”) which infect many species and are characterized by 

long-term illnesses and long incubation periods (Levy 1993). They are transmitted as 

a single-stranded, positive-sense, enveloped RNA virus.  

 

1.2.1.2 Structure and Genome 

HIV-1 is approximately 120 nm in diameter and roughly spherical (McGovern, 

Caselli et al. 2002). A diagram of the HIV-1 structure is illustrated in Figure 1.1 and 

the genome organization is illustrated in Figure 1.2.  

 

 

Figure 1.1: A Schematic representation of a mature HIV-1 particle showing the major 

viral proteins, lipid bilayer and the RNA genome (Freed, 1998). 
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Figure 1.2: HIV-1 genome organization. Gene start and end sites are numbered 

according to the HXB2 (http://www.hiv.lanl.gov/). 

 

All single-stranded RNA viruses contain genes that are required for viral replication 

and host defence evasion (Watts et al., 2009). HIV-1 RNA genome is composed of 

nine genes namely, gag, pol, env, tat, rev, nef, vif, vpr, and vpu which encode viral 

proteins (Figure 1.2) (http://www.hiv.lanl.gov/). The three structural genes include 

the gag (group-specific antigen) which codes for internal structural proteins, such as 

the matrix (MA, p17), capsid (CA, p24), nucleocapsid (NC, p7) and p6 proteins; pol 

(polymerase) for encoding protease, reverse transcriptase, ribonuclease H (RNase H) 

and integrase enzymes necessary for viral replication, and the env (envelope 

glycoprotein) gene which encodes a 30-amino-acid signal peptide (SP) and gp160, the 

precursor to gp120, an extracellular protein, and gp41, a transmembrane protein 

(Figure 1.1) (Freed 1998; Watts, Dang et al. 2009) (http://www.hiv.lanl.gov/). The tat 

and rev genes encode regulatory proteins involved in viral propagation, and 

transcriptional and posttranscriptional steps of virus gene expression. The vpr, nef, vif, 

and vpu are accessory or auxiliary genes encoding proteins that regulate the HIV-1‟s 

ability to infect cells, replication or pathogenicity (http://www.hiv.lanl.gov/). 

 

 

1.2.1.3 The HIV-1 life cycle 

HIV-1 life cycle includes a series of events which are divided into two phases, early 

and late, as shown in Figure 1.3 (Freed 2001). 
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Figure 1.3: HIV-1 life cycle (Freed, 2001). 

 

The early events includes: (1) membrane fusion a process in which the gp120 binds to 

target cell by interacting with CD4 receptors and co-receptors. Thereby, it causes 

conformational changes in the gp41 which enables it to facilitate membrane fusion 

between lipid bilayers of the viral envelope and host cell plasma membrane. The viral 

core enters the cytoplasm of the host cell through this fusion. (2) “uncoating” -  is 

when the lipid bilayer is removed from the HIV-1 virion leaving a structure called the 

viral core. RT occurs and then you get assembly of the PIC (pre-integration complex). 

During “uncoating” event the capsid (CA) is lost whereas the viral RNA, accessory 

protein Vpr, MA, NC, pol-encoded enzyme RT and IN remain associated with the 

PIC.  (3) Reverse transcription – whereby the viral RNA genome is converted to a 
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double-stranded DNA by the reverse transcriptase (RT) enzyme of the virus particle. 

(4) Nuclear import of the PIC associated with the viral DNA is translocated to the 

nucleus of the host cell (Freed 2001). Whilst inside the cell, the HIV-1virion can 

either enter a latent state and the infected cell continues to function normally or 

actively replicate to form a large number of virus particles that are subsequently 

released to infect neighbouring cells (Freed 2001).   

 

In the late stage the viral RNA is transcribed from the integrated viral genome. 

Furthermore it is processed to form viral messenger RNA (mRNA) and full-length 

viral genomic RNA. They are then transported through the nuclear pore into the 

cytosol and the mRNA is translated to generate viral proteins which are processed. 

Core particles encompassing the viral genomic RNA and proteins assemble at the host 

cell membrane. The immature HIV-1 virion is released by budding. Following that, it 

matures into an infectious virion (Frankel and Young, 1998; Freed, 2001; Miller and 

Bushman, 1997). 

 

1.2.1.4 Genetic Variability 

HIV-1 is divided into four groups, namely the „major‟ group M, the „outlier‟ group O 

and two new groups, N (http://www.hiv.lanl.gov/) and P (Plantier, Leoz et al. 2009). 

In general, the M group accounts for a majority of infections by HIV-1. It is divided 

into nine different subtypes, namely A, B, C, D, F, G, H, J and K. In addition to this, 

there are also circulating recombinant forms, CRF, as a result of recombination 

between these subtypes. Group O is found only in west-central Africa. Group N was 

discovered in Cameroon in 1998 (http://www.hiv.lanl.gov/). In 2009 group P was 

identified in a Cameroonian woman, and it was found to be closely related to gorilla 

simian immunodeficiency virus (SIVgor) (Plantier, Leoz et al. 2009). The enormous 

diversity of HIV-1 poses a major challenge in the development of effective drugs and 

vaccines (http://www.avert.org/hiv-types.htm). 

 

1.2.2 The HIV-1 polymerase (pol) gene 

The viral enzymes encoded by the pol gene are initially produced as a Gag-Pol 

polyprotein precursor, Pr160GagPol, which is later cleaved by the viral PR into a Gag 

and a Pol polypeptide. The Gag-Pol precursor is produced by ribosomal frame-

shifting during translation, which is activated by specific cis-acting RNA elements 
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located in the 3‟ end region of the Gag RNA. This event occurs in order to maintain a 

certain production ratio of Gag and Gag-Pol precursor (Peng, Chang et al. 1991; 

Parkin, Chamorro et al. 1992; Various 2008). Furthermore, the Pol is processed by 

viral PR to produce individual enzymes PR, RT (p51), Rnase (p15) and integrase (IN, 

p31) in the viral maturation step (Parkin, Chamorro et al. 1992).  All of the pol gene 

products are located in the capsid of free HIV-1 virions. The PR, as mentioned above, 

is involved in the cleavage of Gag and Pol polypeptides into major structural proteins 

and enzymes required for the formation of viral particles (Birk and Sonnerborg 1998). 

The RT and together with RNase H, which is linked to the carboxyl-terminus of RT, 

are involved in viral replication, whereas the IN facilitates the incorporation of the 

HIV proviral DNA into the genomic DNA of an infected cell (Birk and Sonnerborg 

1998).  

 

1.2.2.1 Reverse transcriptase (RT) 

Reverse transcriptase is used by retroviruses in the reverse transcription step during 

replication process. It is known as RNA-dependent DNA polymerase that reverse 

transcribes the two RNA copies of an HIV-1 virion into a single-stranded DNA 

(cDNA), followed by formation of a double-stranded DNA. The reverse transcriptase 

enzyme has no error-correction or proofreading mechanism. Therefore, it introduces 

mutations in every replication cycle. It has been an ideal target for antiretroviral 

therapy, since the early era of HIV-1 treatment strategies (Larder, Purifoy et al. 1987). 

HIV-1 reverse transcriptase has five enzyme activities, namely; the RNA-dependent 

DNA polymerase activity which copies the viral positive(+) RNA strand into a 

minus(-) viral complementary DNA (cDNA); the ribonuclease activity carried out by 

RNAse H, located in the C-terminal region, which degrades the viral RNA during the 

synthesis of cDNA; a DNA-dependent DNA polymerase activity that copies the 

minus (-) cDNA strand into a (+) DNA to form a double-stranded DNA intermediate; 

strand transfer; and strand displacement (Menendez-Arias 2009).  

 

A mature RT is composed of two polypeptides, p66 and p51. However, a functional 

RT consists of p66 only, a homodimer, or both p66 and p51 subunits called a 

heterodimer. The heterodimer is the predominant functional RT. The two subunits are 

linked by a common amino (N) terminus, with p66 consisting of 560 amino acid 

residues and p51 with only 440 residues (Sarafianos, Das et al. 2004). A few years 
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after the discovery of HIV-1, studies showed that the p66 subunit is actually 

exhibiting the majority of the RT activity, whereas p51 has minute or no activity 

(Hansen, Schulze et al. 1988; Lori, Scovassi et al. 1988; Lowe, Aitken et al. 1988; 

Starnes, Gao et al. 1988; Tanese, Prasad et al. 1988). According to crystallographic 

structures of the HIV-1 RT, p66 contains the two domains, polymerase and RNase H, 

whereas p51 has only the former. The active sites for both domains are found only on 

p66, and as for p51, it acts as a structural subunit (Huang, Zhang et al. 1998; 

Sarafianos, Das et al. 1999; Sarafianos, Das et al. 2004).  

 

The polymerase domain of both subunits is further compartmentalized into four 

common subdomains, called, the „fingers‟ (residues 1-85 and 118-155), „thumb‟ 

(residues 237-318), „palm‟ (residues 86-117 and 156-236), and „connection‟ (residues 

319-426) (Huang, Zhang et al. 1998). A structure of the HIV-1 RT heterodimer 

showing the polymerase subunits (p66 and p51) with its domains and subdomains is 

shown in Figure 1.4. 
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Figure 1.4: A structure of the HIV-1 RT heterodimer (p66/p51). The ribbons and 

coils represent the polypeptide backbones of the RT catalytic complex. The subunits 

p66 and p51 are indicated. P66 is associated with subdomains fingers; palm; thumb 

and connection, and RNAse H in purple (Huang et al, 1998). 

 

In both subunits, the individual subdomains fold similarly, except for their spatial 

arrangement (Huang, Zhang et al. 1998). In the p66, the polymerase active site is 

located in the palm. A deep template-binding cleft, which helps position the template-

primer, is formed by the most conserved parts of the fingers and palm together with 

two helices of thumb subdomain (Freed 2001; Sarafianos, Das et al. 2004). One part 

of the palm acts as a DNA primer grip by positioning the primer terminus at the 

polymerase active site, and it also translocates the template primer after 

polymerization (incorporation of nucleotides) (Jacobo-Molina, Ding et al. 1993; Ding, 

Das et al. 1998). A proper binding or positioning is essential for the subsequent 

cleavage of RNA by RNase H (Sarafianos, Das et al. 2001; Julias, McWilliams et al. 

2002; Julias, McWilliams et al. 2003).   
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1.2.2.2 Reverse Transcription 

Following infection, all retroviruses including HIV-1 convert their RNA genomes into 

double-stranded DNA during reverse transcription, which is catalyzed by the reverse 

transcriptase enzyme. The process of reverse transcription is illustrated in Figure 1.5.  

 

 

 
Figure 1.5: A schematic representation of reverse transcription after entry of HIV-1 

RNA genome into a host cell cytoplasm (Mudrow and Falke, 2003). 
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Reverse transcription is initiated at the 3‟-end of a cell-derived tRNALys,3 molecule 

that acts as a primer by binding its last 18 nucleotides to HIV-1 RNA sequence. The 

sequences are called the primer-binding site (PBS), and are complementary to these 

nucleotides. The tRNALys,3 primes the synthesis of HIV-1‟s single-stranded cDNA, by 

the RNA-primed RNA-dependent DNA polymerase activity (RDDP) of RT, upto the 

5‟ end of the RNA genome generating a DNA-tRNA hybrid molecule. This hybrid 

molecule is called minus-strand strong-stop DNA. In the meantime, the RT 

ribonuclease H (Rnase H) activity hydrolyzes the viral RNA, allowing the transfer of 

the DNA-tRNA strand to the 3‟-end of the template (HIVgenomic RNA) to hybridize 

with the repeat sequence (R) (Figure 1.5, Step 1). Following that, the RT DNA-

primed RDDP elongates the DNA strand for synthesis of the first DNA strand. Again, 

the Rnase H degrades the single-stranded RNA (ssRNA) but leaving only the purine-

rich sequence called the polypurine tract (PPT) to serve as a primer for the second 

strand synthesis (Figure 1.5, Step 2). The second strand synthesis is initiated at the 3‟-

end of the HIV genomic RNA (template) by RNA-primed DNA-dependent DNA 

polymerase activity (DDDP) through elongation of the PPT primer. At the same time 

the Rnase H degrades the PPT, followed by the tRNA allowing the second strand to 

be transferred through interaction of the complementary PBS sequences (Figure 1.5, 

Step 3 and 4). The synthesis of both strands is then completed by the DDDP activity 

as well as the strand-displacement activity generating a final product carrying U3-R-

U5 LTR at both dsDNA ends (Figure 1.5, Step 5) (Harrich, Ulich et al. 1996; Freed 

2001; Mudrow and Falke 2003; Sluis-Cremer and Tachedjian 2008). Therefore, it is 

this product, the viral genomic DNA, that is inserted into the host cell chromosome 

during integration catalyzed by HIV-1 integrase enzyme (Sluis-Cremer and 

Tachedjian 2008). 

 

1.2.3 Treatment of HIV-1 

 

Since the discovery of HIV-1, 26 years ago, there are more than 20 anti-HIV drugs 

licensed for the treatment of HIV-1 infection. These drugs are intended to inhibit 

retroviral infectivity and replication. They are classified on the basis of the target with 

which they interact during HIV-1 replication. In these intensive efforts of anti-HIV 

drug research and development, the reverse transcriptase was an early target, followed 
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by the proteolytic enzyme, viral protease, which cleaves the viral polyprotein 

precursor into mature structural and functional proteins (De Clercq 2009). 

 

Globally, the national antiretroviral therapy (ART) policy is guided by World Health 

Organization (WHO) to minimize HIV drug resistance 

(http://www.who.int/hiv/pub/guidelines/adult/en/index.html). In South Africa, the 

national antiretroviral (ARV) treatment programme started in April 2004. This 

treatment programme consisted of two different regimens, namely, the first line and 

the second line. The first-line regimen comprised stavudine (d4T), lamivudine (3TC) 

and efavirenz or nevirapine (NVP) with Kaletra (KLT), lopinavir boosted with 

ritonavir (LPV/r) for children and infants (http://www.doh.gov.za/index.html). The 

second-line regimen is used when the first-line regimen fails, and it consists of two 

NRTIs namely, zidovudine (AZT) and didanosine (ddI), and one PI (LPV/r). It is 

meant to minimize cross-resistance particularly caused by the first-line regimen 

(Sungkanuparph 2007). The national programme for the prevention of mother-to-child 

transmission (pMTCT) of HIV-1 was implemented in September 2001. The 

programme supplied single-dose nevirapine (SD-NVP) to women at delivery and 

infants at birth (http://www.doh.gov.za/index.html). Thus far, an estimate of 70% 

HIV-1 positive people (children, men and women) are benefiting from the national 

antiretroviral rollout program, with 90% national treatment coverage on pregnant 

women (UNAIDS, 2010). 

 

The HAART strategy involving combinations of these classes (NRTI, NNRTI, PI) of 

drugs was implemented to combat resistance mutations. Its efficacy is more 

prominent in the Western countries where subtype B is prevalent (Brenner, Turner et 

al. 2003). In contrast to developing countries, it is because ARV treatment is mostly 

initiated at an acute stage on HIV infection when the CD4 cells, in which HIV is 

found, count is >350 cells/µl. Thus, the higher the CD4 count, greater are the chances 

of slowing down HIV replication in the body and the more effective treatment is. 

Additionally, an effective treatment is indicated by undetectable viral load (<50 RNA 

copies/ml). Subtype C accounts for the majority of this infection in South Africa (van 

Harmelen, Shepard et al. 2003). 

In the developed countries, the antiretroviral drugs have been remarkably successful 

in suppressing the HIV-1 replication, even though not completely, and as a result 
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reduced mortality and morbidity. The suppression is not complete, but the plasma 

HIV-1 RNA levels are maintained below the detection limits (<50-400 copies/ml) of 

commercially available assays such as genotyping assay. These countries are 

achieving these results in large numbers unlike the developing countries because they 

have unlimited number of anti-HIV drugs from several classes other than the NRTIs 

and NNRTIs. In the developing countries the emergence of drug resistance to this 

limited number of drugs has been a serious hindrance to treatment successes 

particularly due to high replication and mutation rate of HIV (Freed 2001; De Clercq 

2009). Therefore, monitoring of treatment in developing countries is essential in order 

to guide with a selection of effective drugs which can minimize HIV drug resistance. 

In South Africa the ARV treatment is monitored by CD4 counts and measuring of 

viral load (VL) (detection limit, <50 copies.ml) at least every six months 

(http://www.doh.gov.za/docs/hivaids-progressrep.html). A high viral load signals 

ARV failure which may be due to the presence of drug resistant HIV, lack of 

adherence or poor drug interactions. An increasing viral load is followed by a 

decreasing CD4 count and a subsequent development of HIV-related opportunistic 

infections such as pulmonary TB, severe fungal and bacterial infection (WHO, 2006). 

This stage of the infection is referred to as AIDS.  

 

South Africa has launched the new guideline on the 1st of April 2010. The previous 

(2004-2010) and new treatment guidelines are shown in Table 1.1.  
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Table 1.1: The previous and new HIV-1 treatment guidelines of HAART used in 

South Africa. 

Regimen 
Drugs 

Age group 
Previous Guideline New Guideline 

1 

d4T+3TC+EFV TDF+3TC/FTC+EFV/NVP 

d4T+3TC+EFV 

AZT+3TC+LPV/NVP 

Adults 

d4T+3TC+Liponavir/r ABC+3TC+LPV/r 

ABC+3TC+EFV 

< 3 year-olds 

d4T+3TC+NVP sdNVP+AZT (during labour) 

TDF+FTC (after delivery) 

Mothers/pregnant 

women 

2 

AZT+ddI+Liponavir/r TDF+3TC/FTC+LPV/r 

AZT+3TC+LPV/r 

Adults 

AZT+ddI+NVP AZT+ddI+LPV/r 

ABC+3TC+LPV/r 

< 3 year-olds 

3TC – Lamivudine; ABC - Abacavir; AZT – Zidovudine; d4T – Stavudine; ddI – 

Didanosine; EFV – Efavirenz; FTC - Emtracitabine; Lopinavir/r – Liponavir boosted 

with Ritonavir; NVP – Nevirapine; TDF – Tenofovir. 

 

1.2.3.1 Mechanisms of inhibition of HIV-1 replication by NNRTIs 

The major role of the NNRTIs is to block HIV-1 replication by binding to the binding 

pocket, in the palm of p66, distal to the active site of the RT. Thereby it interferes 

with the precise positioning of the 3‟-end of the template-primer and the incoming 

nucleotide. Following binding to the p66, an NNRTI breaks the hydrogen bond 

between Lys103 and Tyr188 side chains to form a hydrophobic binding pocket close 

to the template-primer binding site. This pocket is made up of Pro95, Leu101, 

Lys103, Val179, and Tyr181 of p66 (Figure 1.6 and Figure 1.7) (Rodriguez-Barrios 

and Gago 2004). 
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Figure 1.6: A structure of HIV-1 reverse transcriptase (RT) enzyme showing the 

binding sites for NRTIs, NtRTIs, and NNRTIs (De Clercq, 2009). 

 

 

(a)      (b) 

  
 

Figure 1.7: Structure of the p66/p51 heterodimer showing the closed and opened 

conformation of the hydrophobic binding pocket. (a) The p66 and p51 subunit 

showing a closed state of the conformation of a hydrophobic binding pocket. (b) 

Shows an open conformation (Rodriguez-Barrios and Gago, 2004).  
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1.2.4 Development of HIV-1 drug resistance mutations 

 

The current recommended antiretroviral drug combinations completely suppress the 

HIV-1 replication in patients. Nevertheless, a rapid turnover (~109 viral particles per 

day) of virions carrying resistance-associated mutations (viral quasispecies) facilitated 

by selection pressure from antiretroviral drugs, natural occurring diversity, or 

transmission of drug resistance reduce their efficacy (Bergroth, Sonnerborg et al. 

2005; Couto-Fernandez, Silva-de-Jesus et al. 2005; Metzner, Rauch et al. 2005; 

Johnson, Li et al. 2008; Bergroth, Ekici et al. 2009; Menendez-Arias 2009). In 

addition to its high recombination frequency, HIV-1 produces about 10-4 to 10-5 

mutations per nucleotide in every replication cycle in every infected individual. These 

mutations develop in the viral genes coding for structural proteins that are targeted by 

the current drugs and are involved in the binding or the activity of the antiretroviral 

drugs. As a result of these, the majority of HIV-infected patients fail therapy and they 

have to switch from one treatment regimen to the other (Menendez-Arias 2009). 

 

Development of inhibitor-specific mutations is the substitutions of amino acids as a 

result of specific nucleotide changes, which could be in the HIV-1 proteins such as the 

reverse transcriptase, protease, envelope or integrase. They are known as NRTI 

resistance mutations, NRTI multi-drug resistance mutations, NNRTI resistance 

mutations, protease resistance mutations, integrase resistance mutations and entry 

resistance mutations. The amino acids are the residues in the active site regions on the 

inhibitors. Majority of licensed antiretroviral drugs, the nucleoside inhibitors (NRTIs), 

nucleotide inhibitors (NtRTIs) and the non-nucleoside inhibitors (NNRTIs), are 

targeting the DNA polymerase activity of the HIV-1 RT. Mutation(s) in the viral RT 

make it impossible for the enzyme to bind these RT inhibitors (e.g. lamivudine, 3TC 

and emtricitabine, FTC), conferring either high-, (M184V), or low-level of resistance 

to specific ARV drug(s), subsequently decreasing the viral fitness or replication 

capacity (Sarafianos, Das et al. 1999; Gao, Boyer et al. 2000; Menendez-Arias, 

Martinez et al. 2003; Menendez-Arias 2009). In contrast, other compensatory 

mutations, such as K103N (NNRTI resistance mutation), counteract these effects, thus 

enhancing the viral replication capacity (Menendez-Arias, Martinez et al. 2003). 

Other resistance-associated mutations in the RT influence the nucleotide 

discriminatory ability of RT from differentiating between the normal substrate, dNTP 
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with 3‟-OH, and nucleoside analogue inhibitors which do not harbor the 3‟-OH 

(Menendez-Arias 2009). 

  

Understanding the molecular mechanisms whereby mutations give rise to drug 

resistance will help with the design of effective novel drugs and the selection of 

suitable drug combinations that are able to combat a large spectrum of HIV-1 mutated 

variants (Das, Sarafianos et al. 2007; Ren and Stammers 2008). Structural studies 

using  X-ray crystallography are helping in this regard to reveal the effects of these 

mutations on the drug-binding sites, for example NNIBP (size, shape, and chemical 

environment) in NNRTIs, and the adaptability of potent inhibitors (Das, Sarafianos et 

al. 2007). The NNRTI class, which encompasses a wide range of chemically diverse 

compounds, gives rise to a different spectrum of resistance mutations which include 

the loss of important interactions such as the hydrophobic, electrostatic, stacking, or 

van der Waal, in binding the drug(s) to viral RT (Menendez-Arias 2009). Therefore, 

there are differences in the conformation of the drug-binding pocket depending on a 

compound. Common observed NNRTI resistant mutations in both clinical trials and 

therapeutic use include Leu100Ile (L100I), Lys103Asn (K103N), Val106Ala/Met 

(V106A/M), Val108Ile (V108I), Tyr181Cys/Ile (Y181C/I), Tyr188Cys/Leu/His 

(Y188C/L/H), Gly190Ser/Ala (G190S/A), or Pro225His (P225H), or combinations. 

The positions associated with these mutations in the polymerase active site of HIV-1 

RT are shown in Figure 1.8 (http://hivdb.stanford.edu). 
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Figure 1.8: The structure of polymerase active site of HIV-1 RT showing sites for the 

NNRTI-associated resistance mutations in the non-nucleoside inhibitor binding 

pocket (NNIBP). The subdomains palm; thumb; fingers and connection are also 

shown. The solid molecule-like structure is nevirapine bound to the NNIBP 

(http://hivdb.stanford.edu). 

 

1.2.4.1 K103N and Minor Drug-Resistant Variants  

K103N is the most frequent and studied NNRTI mutation in patients treated with 

nevirapine (a first generation compound) or efavirenz (a second generation 

compound), (Ren, Milton et al. 2000; Das, Sarafianos et al. 2007; Johnson, Brun-

Vezinet et al. 2008). It confers a high-level of resistance to these drugs, as well as a 

cross-resistance to all NNRTIs at varying levels, thus resulting in treatment failure. 

The mutation is caused by a single base substitution in the lysine residue at codon 103 

(Lys103) of the RT gene, situated at the outer edge of the NNRTI binding pocket 

(NNIBP) (Hsiou, Ding et al. 2001; Rodriguez-Barrios, Perez et al. 2001). The 

substitution is a change of the adenine (A), third base in this codon (AAA), to either 

cytosine (C) or thymidine (T) (AAA to AAC/T). 
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The primary mechanism of resistance by K103N mutation in the HIV-1 RT involves a 

greater stabilization of the closed conformation (unliganded) of RT, unlike in the 

wildtype RT, which create an energy barrier to binding NNRTIs thereby reducing the 

binding potency. The loss of interactions between RT and inhibitor is challenging in 

terms of drug development, as this affects inhibitor entry from many chemically 

diverse compounds of the NNRTI class. This stronger stabilization involves additional 

hydrogen bonds between Asn103 and Tyr188 side chains, with extra interactions of 

two neighbouring water molecules (Hsiou, Ding et al. 2001). In addition, an 

alternative resistance mechanism by K103N involves the coordination of sodium ion 

(significant quantity of sodium ions in the host cells) with both side chains, thus 

inhibiting the binding of an NNRTI (Das, Sarafianos et al. 2007).  However the newer 

second generation of NNRTI drugs are able to break this stronger hydrogen bond at 

the expense of more energy, e.g., TMC125 (etravirine) and TMC278 (not yet 

licensed) (Rodriguez-Barrios and Gago 2004). 

 

The absence of drug-associated selection pressure causes the drug-resistant viruses to 

decline with time after discontinuation of the relevant drug(s), and these small 

populations of viruses are known as minor drug-resistant variants (Johnson, Li et al. 

2008). According to genotypic assays for testing resistance, minor drug resistant 

variants is a population comprising less than 20-25% of the total virus in a patient 

(Bergroth, Sonnerborg et al. 2005; Balduin, Oette et al. 2009). Single-dose NVP for 

PMTCT is a proper example for suboptimal regimen that allows a selection of drug-

resistant strains, and commonly carrying the prevalent K103N, which decline with 

time since the treatment is temporary. In addition to that, NVP has a long half-life 

meaning it remains longer in the blood even after its termination. Therefore, it 

continues to promote the generation of more K103N variants. Moreover, the K103N 

slightly reduces the viral replication capacity, to prevent the wildtypes from 

dominating them completely when NVP and EFV are discontinued. However, they 

may replicate at low copy number or rate (Balduin, Oette et al. 2009). When a 

treatment with either or both of these drugs is resumed, the K103N variants dominate 

the viral population, and are then called the majority population. With the use of 

highly sensitive detection methods, higher prevalence of K103N minor populations 

has been observed relative to major populations (Metzner, Rauch et al. 2005; Balduin, 

Oette et al. 2009). The emergence of K103N mutation is a major problem especially 
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in the developing countries where NVP is widely used and a majority of the world‟s 

HIV-1 infected individuals reside. Although NVP is used in such countries in babies 

and mothers for PMTCT, there was no significant difference observed in terms of 

K103N prevalence among men and women (Balduin, Oette et al. 2009). This is due to 

transmission, which clearly explains the high prevalence of K103N minorities. And 

minor populations of drug-resistance variants have been detected in the early phase of 

therapy failure (Grant, Hecht et al. 2002; Little, Holte et al. 2002; Violin, Cozzi-Lepri 

et al. 2004; Metzner, Rauch et al. 2005). 

 

1.2.5 Detection methods for drug-resistant mutants of HIV-1 

 

With the widespread use of anti-HIV drugs in many parts of the world and rapid 

emergence of drug resistance mutations, transmission of drug-resistant HIV-1 is 

becoming more common. Drug resistance is a major health concern globally, 

considering that only one mutation is required to make HIV-1 fully resistant to 

lamivudine (3TC), efavirenz or nevirapine; and that a single pattern of mutations 

causes cross-resistance to one class of drugs. In the developed countries, drug 

resistance testing is now considered the standard-of-care in the management of anti-

HIV treatment failure for optimizing treatment therapy in individuals. Currently, the 

testing is recommended when a person has just been diagnosed with HIV, when a 

patient is about to start anti-HIV treatment for the first time, in women who are 

pregnant, and children (www.aidsmap.com). HIV Genotyping and phenotyping drug 

resistance tests are the two main methods for the management of antiretroviral 

therapy, which have contributed much knowledge regarding HIV-1 resistance patterns 

(Hirsch, Brun-Vezinet et al. 2000).  

 

1.2.5.1 Genotyping methods 

Genotyping is based on DNA sequencing that detects specific mutations in the HIV 

genes that are linked with resistance to anti-HIV drugs by using commercial assay kits 

or in-house (home-brew) techniques (Hirsch, Brun-Vezinet et al. 2003). Commercial 

assay kits and in-house techniques showed a high concordance in blinded, multicenter 

comparison for quality assurance of genotyping, with TRUGENE (Bayer, Tarrytown, 

New York, USA) as the most sensitive, followed by ViroSeq (Celera Diagnostics 

ViroSeq™ HIV-1 Genotyping System), then in-house assays (Hirsch, Gunthard et al. 
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2008). Commercial assay kits used for genotyping are ViroSeq and TRUGENE, 

which come with amplification and sequencing primers, and genotyping software. For 

the in-house assays amplification and sequencing primers are custom-designed. 

Genotyping (direct sequencing or sequencing of clones) is the most preferred as it is 

used widely in developed countries to provide resistance mutation profiles for reverse-

transcriptase inhibitors, protease inhibitors, entry inhibitors and integrase inhibitors. It 

has a faster turn-around time, and is less complex in contrast with phenotyping 

(Vercauteren and Vandamme 2006). However, it cannot detect mutants that comprise 

less than 20% of the virus population. 

 

A major challenge lies in the interpretation of reports for genotyping since they lack 

consensus, mainly due to the HIV-1 diversity and the large number of drug-resistant 

mutations (Daar 2007; Shafer, Rhee et al. 2008). Sequencing technologies used 

(ViroSeq, TRUGENE or in-house techniques) are not accountable for the level of 

variation encountered between laboratories, but rather laboratory-related. This implies 

laboratories must perform accurate genotyping with appropriately trained operators, 

certification, and where periodic proficiency testing is done. Resistance testing 

laboratories are therefore advised to take part in quality assurance programs 

(Schuurman, Brambilla et al. 2002; Hirsch, Brun-Vezinet et al. 2003; Hirsch, 

Gunthard et al. 2008).   

Other problems with genotyping are that amplification of specimens with <500-1000 

HIV-1 RNA copies/mL, and testing of other subtypes other than B, because majority 

of genotypic algorithms are built based on data from subtype B viruses (Hirsch, 

Gunthard et al. 2008). Algorithms differ in their interpretation of the expected drug 

activity (Ross, Boulme et al. 2005; Ross, Boulme et al. 2005).   

 

1.2.5.2 Phenotyping methods 

Phenotyping method is a cell culture-based assay that measures the concentration of a 

drug required to reduce replication of the virus (Hirsch, Gunthard et al. 2008). Virtual 

phenotyping uses genotypic algorithms to interpret drug resistance, in which a 

genotypic data for plasma HIV-1 RNA of a candidate gene is compared to a large 

database comprising paired phenotypes and genotypes (Bacheler, Jeffrey et al. 2001; 

Beerenwinkel, Daumer et al. 2003; Mazzotta, Lo Caputo et al. 2003; Perez-Elias, 

Garcia-Arota et al. 2003). This linkage then assigns the generated “virtual phenotype” 
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fold-changes in drug susceptibility. The main limitation to Virtual phenotyping is the 

predictive power which is determined by the number of matched datasets available. 

The matches are derived from pre-selected codons, not from the whole nucleotide 

sequence (Hirsch, Gunthard et al. 2008).  

 

1.2.5.3 Sensitive detection methods 

The era of relying on in vitro cell culture for routine laboratory diagnosis of virus 

infections is over. Currently, molecular methods are preferred for the detection and 

characterization the most common and frequent etiological agents in humans. 

According to a blinded, multicenter comparison of ten methods for the detection of 

K103N minor drug-resistant variants, two out of three real-time PCR-based assays 

called allele-specific RT-PCR (ASPCR) assays, and the Ty1/HIV-1 RT hybrid system 

(TyHRT) were the most sensitive (Metzner, Bonhoeffer et al. 2003; Nissley, Halvas et 

al. 2005; Halvas, Aldrovandi et al. 2006; Palmer, Boltz et al. 2006). One of the 

ASPCR assays quantified mutant down to 0.1%, and the other one quantified down to 

0.4% (Metzner, Bonhoeffer et al. 2003; Nissley, Halvas et al. 2005; Palmer, Boltz et 

al. 2006). The third ASPCR assay was less sensitive, which could be due to 

differences in primer design or the number of samples analyzed (Kutyavin, Afonina et 

al. 2000). TyHRT was the second most sensitive method as it quantified K103N 

mutant down to 0.4% (Nissley, Halvas et al. 2005; Halvas, Aldrovandi et al. 2006). 

TyHRT is a phenotypic assay that assesses drug susceptibility by determining the 

effects of reverse transcriptase inhibitors on hybrid elements derived from the 

Saccharomyces cerevisiae Ty1 retrotransposon carrying reverse transcriptase derived 

from HIF-1 RT (Nissley, Halvas et al. 2005).  

 

1.2.6 Real-time polymerase chain reaction (Real-time PCR)  

Real-time PCR is a quantitative PCR (qPCR) which is characterized by the ability to 

detect and quantify specific nucleic acid sequences, and determine sequence 

variations (Houghton and Cockerill III 2006). Addition of sequence detection 

chemistry to PCR technology enabled the detection of amplicon as it accumulates in 

“real” time, during each PCR amplification cycle (Higuchi, Fockler et al. 1993; Bustin 

and Mueller 2005; Houghton and Cockerill III 2006). During amplification the 

amount of fluorescence emitted by the PCR chemistry is proportional to the 

increasing PCR product. In the conventional PCR the results or the accumulated PCR 
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products are analyzed at the end of PCR amplification (www.appliedbiosystems.com). 

Real-time PCR was developed in the mid 1990s (Walker 2002), whereas the PCR 

technology (conventional) was discovered in 1983 by Kary Mullis (Saiki, Scharf et al. 

1985).  

 

1.2.6.1 TaqMan
® 

probes 

Most studies find the TaqMan® chemistry to be more sensitive and specific for 

detection in real-time PCR, hence, accuracy is of higher importance in real-time 

quantification PCR. Introduction of fluorogenic-labeled probes that employ the 5‟ 

nuclease activity of the Taq DNA polymerase improved the real-time PCR. Such 

probes enabled the detection of only specific PCR products. A detection probe binds 

complementarily with a gene of interest to confirm the specific identification of a 

target gene (Mackay, Arden et al. 2002; Watzinger, Ebner et al. 2006). TaqMan 

regular hydrolysis and TaqMan-MGB (modified hydrolysis probes) are better suited 

for variable nucleotide sequences between pathogen strains, rather than hybridization 

probes. TaqMan probes are either fluorogenic or non-fluorogenic. The fluorogenic 

probes have a fluorescent quencher dyes such as TAMRA, black-hole quencher 

(BHQ) or QSY-7at the 3‟ end and a fluorescent reporter dye called FAM at the 5‟ end. 

Non-fluoregenic probes, which are called the MGB (minor groove binder), are 

without any dye at the 3‟end, but are labelled with a fluorescent reporter dye called 

FAM at the 5‟ end (Applied Biosystems Chemistry Guide, Part #4348358 Rev. E). 

The TaqMan-MGB probes are more advantageous as they have minor groove binding 

molecules attached at the end of the probe to enhance the binding of DNA, and they 

have shorter oligonucleotide sequences (Whiley and Sloots 2006). A demonstration of 

how the TaqMan sequence detection using fluorescent probes works in real-time PCR 

is illustrated in Figure 1.9.  

It is described by the following steps: (1) Polymerization - a probe is intact with the 

reporter dye molecule (R) and the quencher dye (Q) attached to the 5‟ and 3‟ ends; (2) 

Strand displacement - the quencher significantly reduces the fluorescence emitted by 

the reporter dye through a non-irradiative process of fluorescence resonance energy 

transfer (FRET); (3) Cleavage -  once the target sequence is present in a reaction, the 

probe anneals downstream from one of the primer sites and is cleaved by the 5‟ 

nuclease activity of Taq DNA polymerase during every extension cycle.  This 

separates the reporter dye from the quencher; (4) Polymerization completed - as the 
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primer extension continues to the end of the template strand, the probe is removed 

from the target strand, thus allowing the reporter dye to emit a detectable fluorescence 

signal (www.appliedbiosystems.com). FRET is a process in which the fluorescent 

energy is transferred between permissive molecules which have emission and 

absorption spectra that overlap, and they are situated 10-100 Å apart (Stryer and 

Haugland 1967) 

 

 

 
Figure 1.9: The principle of TaqMan sequence-specific detection chemistry. 

(www.appliedbiosystems.com).   

 

 

1.2.6.2  Absolute quantification 

Types of real-time PCR assays include the relative quantification which uses the 

comparative Ct (threshold cycle) method, allelic discrimination, plus/minus and the 

absolute quantification which uses a standard curve (www.appliedbiosystems.com).  

The latter assay type will be employed in this study. In absolute quantification, a 

nucleic acid standard curve of the gene of interest is required to determine or calculate 
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the absolute quantity (number of copies) of a specific nucleic acid target sequence in 

an unknown sample (VanGuilder, Vrana et al. 2008) (www.appliedbiosystems.com). 

It is used to quantify the exact viral copy number of the target nucleic acid (RNA or 

DNA) which are then associated with the stage of a disease. The absolute quantity 

(concentration) of the standard, a sample with known concentration used to construct 

a standard curve, must be determined by some independent means. Standards for real-

time PCR assays are often quantified by direct measurement of nucleic acid 

concentration. These could be either plasmid DNA or in vitro transcribed RNA. In the 

case of HIV-1, the concentration of the complimentary DNA (cDNA) of HIV-1 RNA 

or the RNA itself is commonly quantified spectrophotometrically at 280 nm (Palmer, 

Wiegand et al. 2003).  

 

The samples with valid concentration values in terms of the A260/A280 ratio for their 

UV absorbance at wavelengths of 260 nm and 280 are then diluted by accurate 

volumetric means to the final concentration series for the set of standards. When this 

ratio is greater than 1.8, it is indicative of the purity of the samples. The commonly 

used instrument for spectrophotometric measurements is the NanoDrop® 

spectrophotometer (NanoDrop Technologies, Wilmington, DE). It can measure 

concentrations ranging from 2 to 3700 ng/µl with the highest accuracy, requiring only 

a microliter of the sample to be loaded to an instrument‟s detector. By using the 

molecular weight of the DNA or RNA, the measured concentration is then converted 

to the copy numbers. DNA can be used as a standard for absolute quantification of 

RNA. The achieved dilution series of standards is run in a real-time PCR assay 

parallel with the test or unknown specimens, thereby generating the standard curve 

from which the concentrations of the target specimens will be extrapolated 

(http://www.appliedbiosystems.com).  

 

1.2.6.3  Data analysis 

The sequence detection system (SDS) software and the real-time PCR instrumentation 

acquire fluorescence data as amplicon accumulates (www.appliedbiosystems.com). 

Data are usually collected only once per PCR cycle at the same temperature (Wittwer, 

Herrmann et al. 1997). In that case, it is best collected during the extension of primers 

to make new PCR product (Reynisson, Josefsen et al. 2006). The fluorescence 

detected over a number of PCR cycles performed is then presented graphically in an 
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amplification plot that can be displayed in a linear or logarithmic (Figure 1.10) form. 

Baseline, threshold and Ct value are the three important parameters that determine the 

accuracy and reproducibility of real-time quantitative PCR assays 

(http://www.appliedbiosystems.com). 

 

 

 
Figure 1.10: An amplification plot/curve showing the kinetic analysis of fluorescent 

changes during a real-time PCR run. (www.appliedbiosystems.com). 

 

Baseline is the little change in fluorescence signal in the first few cycles performed. 

The sequence detection software generates an amplification curve by subtracting a 

normalized reporter (Rn) from the baseline, which is delta Rn (ΔRn = Rn – baseline).  

The dots on the amplification curve represent an increase in fluorescence above the 

baseline, which is directly proportional to the amount of PCR product produced. Delta 

Rn is the amount of fluorescence signal generated by the set of PCR conditions used. 

Normalizer reporter is the ratio of the fluorescence emission intensity of the reporter 

dye to the fluorescence emission intensity of the passive reference dye. Then, 

algorithm finds the point on the amplification plot at which the delta Rn value crosses 

the threshold. Threshold is the line whose intersection with the amplification plot 

defines a threshold cycle (Ct). Threshold cycle is the fractional cycle number at which 

the fluorescence emission passes the background threshold 

(www.appliedbiosystems.com). The higher the starting copy number of a target 

nucleic acid, the smaller the threshold cycle (Bustin and Mueller 2005).  
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Data acquisition at the end of the amplification reaction (plateau phase) poses 

problems because amplicon accumulation is more likely to be influenced by PCR 

inhibitors, poor reaction conditions, or excess amplicon. Moreover, there is no precise 

relationship between the initial template and the final amplicon at the end-point 

(Mackay 2007).  

 

1.2.6.4 Applications of real-time PCR 

Real-time PCR is being used increasingly in novel clinical diagnostic assays and 

research applications as the state-of-the-art technology for doing detection (diagnosis 

of hereditary and infectious diseases), characterization (genotyping) and 

quantification (microbial load) experiments of microbial nucleic acids (Mackay 2004; 

Bustin and Mueller 2005). The use of real-time PCR as a method for the quantitative 

detection (real-time quantification PCR) of DNA and RNA viruses is becoming 

increasingly prominent. The efficacy of antiretroviral therapeutic regimens on the 

viral reservoirs in HIV-1 patients is increasingly being evaluated through the 

quantification of the HIV-1 proviral DNA. The proviral DNA load (viral load) serves 

as specific marker for the early diagnosis of perinatal HIV-1 infection (Hatzakis 2004; 

Halfon 2006; Sarrazin 2006; Malnati, Scarlatti et al. 2008). Development of real-time 

PCR assays for gene expression studies by measuring the mRNA levels is 

significantly increasing. Nonetheless, microarray is still a method of choice in gene 

expression studies of whole-genome but real-time quantitative PCR is the gold 

standard for fast and easy confirmation of microarray results (Canales, Luo et al. 

2006). High-throughput, automatization and accurate viral load measurements make 

real-time quantification PCR (real-time qPCR) suitable for use in the routine clinical 

diagnostic setting (Malnati, Scarlatti et al. 2008). Moreover, the facts that the method 

is less laborious; it reduces costs as no post-amplification steps, such as radioactive 

labelling and hazardous reagents in the conventional PCR, are required; it guides with 

the selection of intervention therapy; it can be performed on crude cellular extracts 

and provide crucial information such as the staging (acute and chronic) of the viral 

infections and the disease progression make it more fitting for resource-limited 

countries. (Koralnik 1999; Shiramizu, Gartner et al. 2004; Blackard 2005; Shiramizu 

2005; Perrin 2006; Malnati, Scarlatti et al. 2008).  
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1.3 Motivation for study 

 

South Africa is still the country that is most heavily struck by the AIDS epidemic with 

around 5.7 million people infected as estimated by UNAIDS in 2009. It has set up the 

largest antiretroviral treatment programme in the world with an estimate of 1000 000 

people benefiting towards the end of 2009 (UNAIDS, 2010). In most studies, 

selective-polymerase chain reaction (SPCR) analysis detected resistant variants for the 

most common resistance mutations, such as K103N, V106M/I, M184V and Y181C, 

comprising of 0.1 to 20% of viral population in patient samples which were identified 

as wild-type by the conventional genotyping. These minor populations have a 

significant impact on virologic failure. Coupling of SPCR to the real-time PCR 

technology has improved resistance testing by making it more sensitive, accurate, less 

time-consuming, high-throughput and reproducible technique to assess drug-

resistance variants in minor populations.  

 

Therefore, the purpose of this study is: 

1. To develop rapid and sensitive selective real-time PCR (SPCR) assays to 

detect minor HIV-1 resistant variants harbouring K103N which are not 

detected with more expensive and time-consuming genotyping methods,  

2. To evaluate the method using constructed plasmid standards,  

3. To screen 40 previously-genotyped patient samples. These samples were 

collected before the new HIV treatment regimens were in effect. 
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Chapter 2 
 

2.1 Materials and Methods   

 
Procedures carried out in this study are described herein. Briefly, two selective real-

time PCR (SPCR) assays to enable the detection of K103N HIV-1 minor variants are 

being developed. They are total viral (non-specific) copy SPCR and K103N-SPCR 

assays, and use primers and TaqMan probes. K103 wild-type and K103N mutant 

plasmid standards with AAA and AAC/T codon, respectively, at 103 amino acid 

position of the HIV-1 reverse transcriptase (RT) will be constructed using the site-

directed mutagenesis. The presence of the mutations will then be confirmed by 

cloning and sequencing. Once the assays are validated and optimized, 40 previously 

genotyped samples from patients (40) infected with HIV-1 subtype C will be screened 

for K103N minor resistance variants in the reverse transcriptase gene. The 

methodology and research approach are illustrated in a step-wise manner as follows: 

 

1. To investigate HIV-1 RT diversity 

 Subtype C RT sequences were downloaded from the Los Alamos National 

Library HIV database to investigate the diversity in the RT. 

 Selection of primers and probes for both SPCR assays from literature 

review.  

 Comparison of the oligonucleotides with the sequences from the database 

to aid with the selection of primers and probes which accommodate 

polymorphisms. 

 

2. Cloning and construction of mutant and wildtype standards 

 Two HIV-1 RNA samples from the department were amplified by RT-

PCR and nested PCR 

 The resulted DNA was sequenced by genotyping and cloned into pGEM 

T-Easy vector 

 Site-directed mutagenesis was performed on the clones to induce K103 

wildtype (AAA) codon, and both K103N mutant (AAC or AAT) codons. 

 Induced mutations were verified by sequencing 
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3. Optimization and Validation of total copy SPCR and K103N-specific SPCR 

assay on real-time PCR system 

 Testing the reactivity of primers and probes for each SPCR assay on all 

constructed standards 

 Optimization of primers for each assay 

 Optimization of probes for each assay 

 Construction of standard curves for each assay using a set of common 

mutant standards 

 Evaluation of discriminatory ability of a set of primers and probes for 

K103N-specific SPCR assay on all standards 

 Evaluation of the accuracy of both SPCR assays on wildtype-plus-mutant 

plasmid mixtures 

 

4. Detection of K103N minor variants in patient samples 

 HIV-1 DNA was detected and quantified in 40 nested PCR products of 

previously genotyped patient samples using the optimized and validated 

total copy SPCR assay 

 HIV-1 DNA harbouring the K103N mutation was detected and quantified 

in the same 40 PCR products using the optimized and validated K103N-

specific SPCR assay. 

 

2.1.1 Patient samples 
 

Patient samples used in the study were obtained from the HIV-1 database at the 

Division of Medical Virology at Tygerberg Academic Hospital, University of 

Stellenbosch and NHLS. We routinely screen patients for HIV-1 drug resistance at 

this division. HIV-1 status of patients is confirmed by the division before performing 

resistance testing. For this test, the samples are directly sequenced using population 

based (bulk) sequencing and followed by profiling the HIV-drug resistance mutation 

with the Stanford University HIV Drug Resistance interpretation algorithm Version 

4.3.7 (available on http://hivdb.stanford.edu).  
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This study was approved by the Human Research Ethics Committee of the 

Stellenbosch University on the 20
th

 of May 2008, and the project number assigned is 

N08/03/069. 

 

2.1.2 Analysis of known RT gene sequences in Los Alamos HIV database 

 

2.1.2.1 Multiple alignments of RT gene sequences from Los Alamos HIV 

database 

Total of 495 sequences were downloaded from the Los Alamos HIV database 

(http://www.hiv.lanl.gov) in 2008. Multiple alignments were generated using 

ClustalX (Thompson© et al., 1997), and viewed with BioEdit Sequence Alignment 

Editor v7.0.9.0 (Hall 1999). The diversity or sequence variations in the reverse 

transcriptase (RT) gene at amino acid position 103 was noted in the generated multiple 

alignments to aid in the construction of plasmid-derived standards or controls, and the 

design of primers and probes for the development of a real-time PCR-based assay, 

selective-polymerase chain reaction (SPCR), to detect K103N resistance mutation.  

 

2.1.3 Construction of plasmid-derived DNA standards to use in the SPCR 

assays 

 

2.1.3.1  RNA isolation of patient samples 

Two samples, STV139166 and STV128864 known to carry the K103N resistance 

mutation were selected to use as controls in the study. HIV-1 RNA was extracted the 

from plasma of each sample with the QIAamp® UltraSens™ Virus Kit (Qiagen 

GmbH, Hilden, Germany) according to the manufacturer‟s protocol. Briefly, the 

QIAamp® UltraSens™ technology lyses 1 mL plasma samples to concentrate viral 

RNA, which is applied to a QIAamp® spin column. RNA selectively binds to the 

QIAamp® membrane as contaminants and enzyme inhibitors pass through. The pure 

viral RNA is then eluted, aliquoted and stored at –70 ºC for further analysis.  

 

2.1.3.2  RT-PCR and PCR of the HIV-1 RT gene 

The purified HIV-1 RNA was reverse-transcribed and amplified in one step reverse 

transcription-polymerase chain reaction (RT-PCR) using a forward primer MJ3 (Jung, 

Agut et al. 1992; Plantier, Dachraoui et al. 2005) and a reverse primer MJ4 (Jung, 
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Agut et al. 1992; Plantier, Dachraoui et al. 2005). This was followed by a separate 

polymerase chain reaction for nested amplification of the RT-PCR product, cDNA, 

using a forward primer A35 (Larder, Kellam et al. 1991) and a reverse primer NE135 

(Larder, Kellam et al. 1991). This is illustrated below in Figure 2.1.  

 

 

 

Figure 2.1: The schematic diagram showing the reverse transcription-polymerase 

chain reaction (RT-PCR) and the polymerase chain reaction (PCR) of the selected 

HIV-1 RT region which encompasses the amino acid position 103 associated with 

K103N resistance mutation. The arrangements of the primers to amplify this region 

are also shown based on the HIV-1 HXB2.  

 

The method for one-step RT-PCR was adapted from Plantier et al (2005). (Plantier, 

Dachraoui et al. 2005)Briefly, RT-PCR was performed on stored purified viral RNA 

for samples STV139166 and STV128864. The reverse primer MJ4 and the forward 

primer MJ3 listed in Table 2.1 were used in order to obtain the RT fragment of these 

samples. Access RT-PCR system (Promega, Madison, Wisconsin, USA) was used. A 

50 µL reaction mixture was prepared with AMV/Tfl, dNTPs Mix (0.2 mM each), 2 

mM MgSO4, 0.1U/µL AMV RT, 5 U/µL Tfl DNA Polymerase, forward and reverse 
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primer each at a final concentration of 40 picomoles (pmol), nuclease-free water, and 

10 µL RNA in 0.2-ml thin-walled PCR® tubes (QSP, Porex Bioproduct Inc., 

California, USA). The reaction was performed on the GeneAmp® 9700 PCR system 

(Applied Biosystems, Foster City, California, USA).Cycling conditions were hot start 

at 65°C for 30 seconds, RT at 48°C for 50 minutes, one cycle of denaturation at 94°C 

for 2 minutes, followed by 40 cycles of 94°C further denaturation for 20 seconds, 

55°C annealing of primers for 30 seconds and 68°C extension for 90 seconds.  

 

 

Table 2.1: Primers used in RT-PCR and Nested PCR. 

Primer Name Sequence (5’-‘3) 
 Tm 

(ºC) 

HXB2 nucleotide position  

Start-Stop 

a MJ4 CTGTTAGTGCTTTGGTTCCTCT  54.8 3420-3399 
a MJ3 ATGAGGACCTACACCTGTCA 54.3 2480 to 2499 

b NE135 
CCTACTAACTTCTGTATGTCATTGACA

GTCCAGCT 
61.4 3334 to 3300 

bA35 
TTGGTTGCACTTTAAATTTTCCCATTA

GTCCTATT 
58.9 2530 to 2564 

 

 

 

The RT-PCR products were further amplified by nested amplification using reverse 

primer NE135 and forward primer A35. GoTaq® Flexi DNA Polymerase (Promega 

Corporation, Madison, Wisconsin, USA) was used to make the reaction mixture. It 

was prepared with  GoTaq Flexi buffer, 0.2 mM of each dNTP, 1.5 mM of MgCl2, 2.5 

U/µl Taq DNA Polymerase, the forward and the reverse primer were each at a final 

concentration of 40 picomol, and nuclease-free water to a final volume of 50 µL in 

0.2-ml thin-walled PCR® tubes (QSP, Porex Bioproduct Inc., California, USA). The 

GeneAmp® 9700 PCR system (Applied Biosystems, Foster City, California, USA) 

was used at a ramp speed of 9600, with the following cycling conditions:  94ºC for 

two minutes; 40 cycles which include denaturation at 94ºC for 30 seconds, annealing 

of primers at 55ºC for 30 seconds as well as primer extension at 68ºC for 90 seconds, 

and followed by one cycle of final extension at 68ºC for five minutes.  

 

 

a – Jung et al., 1992 
b – Larder et al., 1991 
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2.1.3.3  Agarose gel electrophoresis of PCR products 

All nested PCR products sized 804 bp were analyzed by agarose gel electrophoresis. 

A gel was prepared with 0.8% agarose (WhiteSci, Whitehead Scientific (Pty) Ltd., 

Burgos, Spain) in TAE buffer (0.04 M Tris hydrochloride (Roche, Berlin, Germany), 

0.001 M EDTA (Sigma-Aldrich, Saint-louis, USA). A 0.5 µg/ml Ethidium bromide 

(Promega, Madison, Wisconsin, USA) was added to the gel to trace the DNA. After 

the gel was set, 8 µL of each PCR product was mixed with 2 µL of Blue/Orange 6X 

Loading Dye (Promega Corporation, Madison, Wisconsin, USA) and ran on the gel in 

parallel with 1 kb DNA ladder (Promega Corporation, Madison, Wisconsin, USA) 

which acts as their molecular size marker. The ultra violet (UV) light was used to 

visualize the DNA bands at 302 nm wavelength. Then the images were captured with 

the GeneSnap image acquisition software version 4.0.0 (Synoptics Ltd., Cambridge, 

UK). 

 

2.1.3.4  Cloning 

The product of the nested PCR was further cloned into a pGEM® T East vector to 

construct plasmid standards for the real-time selective-polymerase chain reaction 

(SPCR) assays. 

 

Ligation with pGEM®-T Easy vector (3015 bp) 

After electrophoresis, the PCR products were purified with QIAquick® PCR 

Purification Kit protocol (Qiagen GmbG, Hilden, Germany). The concentration of the 

purified PCR products was determined by the Nanodrop™ ND-1000 system 

(Nanodrop Technologies Inc., Delaware, USA). A 2X Rapid Ligation Buffer, 

included in the pGEM®-T Easy Vector system II (Promega Corporation, Madison, 

Wisconsin, USA) was used to ligate a purified 804-bp HIV-1 RT fragments of both 

samples separately, as inserts, with a 3015-bp pGEM®-T Easy vector (Figure 2.2). 

Promega‟s Protocol for ligations (Part# TM042, Promega Corporation, Madison, 

Wisconsin, USA) was followed. A 40 ng (1 µL for sample 1 and 1.2 µL for sample 2) 

of each PCR product was used in the ligation reactions to reach a 3:1 vector to insert 

molar ratio required by the protocol.  
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Figure 2.2: A structure of pGEM®-T Easy vector showing its multiple restriction 

sites within the multiple cloning sites (Technical Manual Part# TM042, Promega 

Corporation, Madison, Wisconsin, USA) (http://www.promega.com). 

 

 

Transformation using the JM109 High efficiency competent cells 

Following incubation, the two ligation reactions of our respective samples were 

transformed into JM109 high-efficiency competent bacterial cells (Promega 

Corporation, Madison, Wisconsin, USA) according to Promega‟s „Protocol for 

Transformations Using the pGEM®-T Easy Vector Ligation Reactions‟ (Part# 

TM042, Promega Corporation, Madison, Wisconsin, USA). Modifications to the 

protocol include transferring 5 µL instead of 2 µL of each ligation reaction into a 

sterile 1.5-mL microcentrifuge tube, and adding 90 µL instead of 50 µL of the JM109 

bacterial cells to each tube. Following that, the LB plates were incubated in inverted 

position overnight in a 37°C walk-in incubator, to allow the colonies to develop. The 

LB plates contained Amp/X-gal/IPTG ([100 ug/ml]/ [20 µl/ml]/100 µl/ml]). 

 

Culturing of colonies 

White colonies which grew on the plates were aseptically picked with a pipette the 

following day and each was inoculated in a 15-ml centrifuge tube containing 3 ml of 

LB (Luria-Bertani) (Fluka Biochemika, Buchs, Switzerland) medium containing 100 

µg/ml ampicillin (Invitrogen Corporation, Paisley, UK) prepared according to 
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Promega‟s protocol (Technical Manual Part# TM042, Promega Corporation, 

Madison, Wisconsin, USA). Six (6) colonies for each sample were cultured. The 

cultures were incubated overnight at 37°C in a Labcon® shaking incubator (Labmark, 

Roodepoort, RSA) at speed of 157 rpm.  

 

Screening for recombinant clones 

To preserve the transformed bacterial cells, 150 µL of sterile glycerol (15%) was 

added to 850 µL of the stock cultures (85%), and frozen away at -20°C for future use. 

The plasmid DNA was extracted according to Promega‟s Standard DNA Purification 

protocol (Technical Manual Part# TM253) using the PureYield™ Plasmid Midiprep 

system (Promega Corporation, Madison, Wisconsin, USA). Briefly, the bacterial cells 

were lysed and applied to a silica-membrane column in which DNA binds to the 

binding membrane. The vacuum is applied to the column to purify DNA of substantial 

amounts of protein, RNA and endotoxin contaminants with Endotoxin Removal 

Wash. A purified plasmid DNA is then eluted with 600 µL of nuclease-free water 

(Promega Corporation, Madison, Wisconsin, USA). DNA concentration was 

measured using the Nanodrop™ ND-1000 system (Nanodrop Technologies Inc., 

Delaware, USA).  

 

The plasmid DNA was later subjected to restriction digestion with the restriction 

enzyme EcoRI (Promega Corporation, Madison, Wisconsin, USA) in Buffer H (90 

mM Tris-HCl, 10 mM MgCl2, 50 mM NaCl, pH 7.5) (Promega Corporation, 

Madison, Wisconsin, USA). The reaction was incubated at 37°C for four hours. 

Agarose gel electrophoresis was used to verify the presence of an insert as described. 

 

2.1.3.5 DNA sequencing 

 

Cycle Sequencing Reactions  

Recombinant clones were sequenced using sequencing primers listed in Table 2.2. A 

500-ng DNA of each clone was added in a separate reaction with each of these 

primers. The reactions were prepared with the BigDye™ Terminator V3.1 Cycle 

Sequencing Mix (Applied Biosystems, Foster City, California, USA) and Half-dye 

Buffer (Bioline USA Inc., Randolph, Miami, USA). Then the cycling reactions were 

run on the GeneAMP® 9700 PCR system (Applied Biosystems, Foster City, 
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California, USA) at a ramp speed of 9700. The cycle method used is as follows: 25 

cycles which included a heat-denaturation at 95ºC for 10 seconds, primer annealing at 

45ºC for five seconds and elongation at 60ºC for 4 min. These sequencing extension 

products were analyzed on the ABI prism® 310 Genetic Analyzer (Applied 

Biosystems, Foster City, California, USA) to generate data trace files. 

 

Table 2.2: Sequencing primers used for plasmid clones. 

Primer 

name Tm (ºC) Sequence (5’-‘3) 

HXB2 

nucleotide 

position 

Start-Stop 

Pol3D 45 CAG TAC TGG ATG TGG Ga 2869-2884 

Pol3rev 50 CTG AAA AAT ATG CAT CCC CCa 2901-2882 

ABB20-3F 50 ATC AGT ACA ATG TGC TTC CAb 2980-2999 

HIV-AK12 50 TGG TGT YTC ATT RTT TRY ACT AGc 2969-2947 

HIV-AK11 50 GTA CCA GTA AAA TTA AAR CCA Gc 2571-2592 
a, Susan Engelbrecht, personal communication 
b, John Hachett, personal communication 
c, Plantier et al, 2005 
 

Sequence analysis of pGEM®-T Easy plasmid clones 

Raw data trace files were read and edited using Sequencher version 4.6 (Gene Codes 

Corporation, Michigan, USA). Initially, the sequences were trimmed of poor quality 

ends, and then overlapping fragments, elongated with varying primers, were 

assembled to form a contig. The correct consensus RT sequences were exported in a 

FASTA format to be analyzed for drug resistance-associated mutations. 

  
2.1.4 Site-directed mutagenesis 

 

2.1.5.1 Mutagenic primer design 

Mutagenic primers were manually designed according to the requirements in 

Stratagene‟s protocol for mutagenic oligonucleotide primers. The primers should be 

between 25 and 45 bases in length, and with a melting temperature (Tm) of ≥78°C. 

Briefly, the mutagenic primer design was based on the sequences of each generated 

plasmid, which span nucleotides 2844-2877 of the HXB2 HIV-1 RT. They were 

designed to replace amino acid lysine (AAA, K103), a wildtype, with asparagine 
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(AAC/T, K103N), a mutation, or vice versa, at codon 103 and simultaneously with the 

substitution of amino acid valine (GTA, V106), a wildtype, with methylene (ATG, 

V106M), a mutation, at codon 106 in these plasmid clones. The mutation V106M was 

meant to be investigated in this study to but due to time constrain further attempt to do 

so were discontinued. The primers were designed such that the mutations were 

situated in the middle of the mutagenic primers with 10-15 nucleotides at both ends. 

The primers contained one or two C and/or G bases at both ends. They are listed in 

Table 2.3.  

 

Table 2.3: Site-directed mutagenesis primers used on four of the generated plasmid 

clones. 

Primer name 

Tm 

(ºC) Sequence (5’-‘3) 

HXB2 

nucleotide 

position 

Start - Stop 

MS3-N103K-

V106M(F) 55.3 

GGT TAA AAA AGA ATA AGT CAA TGA CAG TAT 

TGG 2946-2978 

MS3-N103K-

V106M(R) 55.3 CCA ATA CTG TCA TTG ACT TAT TCT TTT TTA ACC 2978-2946 

MS1-V106M(F) 49.3 GAA CAA ATC AAT GAC AGT ACT AG 2947-2970 

MS1-V106M(R) 49.3 CTA GTA CTG TCA TTG ATT TGT TC 2970-2947 

MS9-N103K-

V106M(F) 53.9 

GGA TAA AAA AGA AAA AAT CAA TGA CAG TAC 

TAG 2946-2978 

MS9-N103K-

V106M(R) 53.9 CTA GTA CTG TCA TTG ATT TTT TCT TTT TTA TCC 2978-2946 

MS10AK1-N103K(F) 47.3 GAT AAA AAA GAA AAA ATC AGT GAC 2947-2970 

MS10AK1-N103K(R) 47.3 GTC ACT GAT TTT TTC TTT TTT ATC 2970-2947 

The nucleotides in red are the mutations implemented in these primers as compared with the sequences 

of plasmids so they can be used to induce the desired mutations. F – Forward, R – reverse. 

 

2.1.4.2 Mutant strand synthesis and Dpn I Digestion of the amplification 

products 

 Eight forward and reverse mutagenic primers (Table 2.3) were used to induce the 

desired mutations in the RT sequence of the four plasmids using QuikChange® 

Lightning Site-Directed Mutagenesis Kit (Stratagene, La Jolla, Canada) according to 

the manufacturer‟s protocol. In contrast to other kits, the QuikChange® Lightning Kit 
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induces a site-specific mutation in almost any double-stranded plasmid; therefore we 

needed not to convert our plasmids into single-stranded DNA prior to site-directed 

mutagenesis. 

 

The mutagenesis protocol uses 125 ng of each oligonucleotide primer. The higher or 

lower concentrations of primers could have inhibitory effects on the site-directed 

mutagenesis. To apply this amount to the reactions nanograms (ng) of oligos had to be 

converted to picomoles (ρmol). The following equation was applied to calculate the 

desired concentration for the primers: 

 

 

X pmoles of oligo =------------------------------------ ×1000 

 

 

The mutant strand synthesis reaction was done according to Stratagene‟s protocol. 

Each reaction was prepared with 5 μl of 10 × reaction buffer, 100 ng plasmid DNA, 

appropriate amount of each mutagenic primer pair as calculated using the formula 

above, 1μl of dNTP mix (0.2 mM of each dNTP), 1.5 μl of QuikSolution, nuclease-

free water (Promega Corporation, Madison, Wisconsin, USA) to a final volume of 50 

μl, and then 1μl of QuikChange® Lightning Enzyme.  

 

The PCR reaction was performed on the GeneAMP® 9700 PCR system (Applied 

Biosystem, Foster City, California, USA) using the standard 9700 ramp speed. The 

cycling conditions were, 95ºC for 2 minutes; 18 cycles of DNA denaturation at 95ºC 

for 20 seconds, primer annealing at 55ºC for 30 seconds, and extension at 68ºC for 

140 seconds; followed by a final extension step at 68ºC for 5 minutes. Following the 

thermal cycling, 2µl of Dpn I restriction enzyme was added to each amplification 

reaction, and then immediately incubated at 37°C for 5 minutes to digest the 

methylated parental plasmids (the unmutated), leaving the desired mutated ones 

intact.  

 

2.1.4.3 Transformation of XL10-Gold® ultra-competent cells 

After the site-directed mutagenesis, the plasmids had to be transferred to bacteria to 

obtain enough plasmid DNA for screening and further analysis. The plasmids were 

ng of oligo 

330 × of bases in oligo 
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transformed into XL10-Gold® ultracompetent cells (Stratagene, La Jolla, USA), 

which are included in the kit. Modification to the protocol included the use of SOC 

medium (Sigma-Aldrich, Saint-Louis, USA) medium for transformation instead of 

NZY+ broth. Briefly, the XL10-Gold ultracompetent cells were thawed on ice. For 

each sample reaction to be transformed, a 45 μl of the ultracompetent cells was 

aliquoted to sterile 14-ml polypropylene round-bottom tubes (Becton Dickinson, 

Franklin Lakes, USA) on ice. Two-microliter of the β-mercaptoethanol mix, provided 

with the kit, was added to the 45 μl of cells, and the cells were incubated on ice for 2 

minutes. Two-microliter of the Dpn I-treated DNA samples was transferred to 

separate aliquots of the ultracompetent cells. The transformation reactions were gently 

mixed and incubated the on ice for 20 minutes. The tubes were heat-shocked in a 

42°C water bath for 30 seconds and the samples were immediately transferred on ice 

and incubated for 2 minutes. A preheated SOC medium (0.5 ml) was added to each 

tube the tubes were incubated at 37°C for 1 hour with shaking at 200 rpm in Labcon® 

shaking incubator (Labmark, Roodepoort, RSA). For each sample, 20 and 100 μl of 

each transformation reaction, were plated on LB agar plates containing the 100 μg/ml 

ampicillin (Invitrogen Corporation, Paisley, UK). The transformation plates were 

incubated at 37°C for 16-24 hours. 

 

2.1.4.4 Confirmation of the presence of the desired mutations by sequencing 

To screen the colonies for the desired mutations, 4 colonies were tested for each 

sample. Briefly, 4 colonies from each sample were picked and inoculated in 3-mL LB 

medium containing 100 μg/ml ampicillin. The 16 tubes were incubated in a Labcon® 

shaking incubator (Labmark, Roodepoort, RSA) overnight at 150 rpm and 37°C to 

allow the cultures to grow. After 16 hours the mutated plasmids were extracted from 

the cultures of XL10-Gold® ultracompetent cells using QIAprep® Spin Miniprep Kit 

(Qiagen GmbH, Hilden, Germany) according to manufacturer‟s protocol. 

 

To confirm if the 16 plasmid clones are carrying the intended mutations, cycle 

sequencing reactions were performed as previously described. Primer HIV-AK12 

(Table 2.2) and HIV-cm237R2500 (5‟-GTA CTG ATA TCT AAT CCC TGG -3‟) 

were used. The latter primer starts at nucleotide (nt) position 2987 and stops at 2967 

of the HIV-1 HXB2, and has a melting point (Tm) of 50°C. Following sequencing, 
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the resulting raw data were read and edited with Sequencher version 4.8 (Gene Codes 

Corporation, Michigan, USA). Furthermore, the multiple sequence alignments of the 

consensus C, HIV-1 HXB2, the constructed plasmids and their parental plasmids were 

constructed by Geneious version 4.5.5 (htpp://www.geneious.com) to view and ensure 

that the intended mutations at amino acid positions 103 and 106 were successful. 

 

2.1.5 Development of primers and probes for the selective real-time polymerase 

chain reaction (SPCR) assays 

Sets of primers and probes used in Johnson et al, 2005 and Johnson et al., 2007 for the 

detection of K103N minor resistance variants were multiple-aligned with the 

constructed plasmid standards using Geneious version 4.5.5 

(http://www.geneious.com) to ensure sequence complementarities (Johnson, Li et al. 

2005; Johnson, Li et al. 2007). The two sets of primers and probes from the former 

were found suitable for the total copy and the K103N-specific SPCR assays in terms 

of sequence complementarities and their consideration for HIV-1 nucleotide 

polymorphisms. They are shown in Table 2.4.  

 

Table 2.4: Primers and probes used for total copy and K103N-specific SPCR assays. 

Probe/Primer 

Name 
Sequence (5’-3’) 

HXB2 

nucleotide 

position 

Start-Stop 

Tm (°C) 

a1P TaqMan® Probe FAMb-TGG GGG ATG CAT ATT TTT CAG TTC CTT 

TAG ATG A –TAMRAc  

2879-2913 56.1 

a 2P TaqMan® Probe FAMb-TGG GAG ATG CAT ATT TTT CAG TTC CTT 

TAG ATG A-TAMRAc 

2879-2913 56.8 

a C-103N.1F Primer CCC AGT AGG RTT AAA RAA GGA C 2838-2860 52.4 
a C-103N.2F Primer CCC AKC RGG GTT RAA AGA GGA C 2838-2860 58.8 

C a C-103NT.3F Primer CCC AGC AGG RTT AAA AVA GGA T 2838-2860 55.5 
a ComFWD Primer CTT CTG GGA AGT TCA ATT AGG AAT ACC 2808-2835 55.3 
a 103/com.C3R CAT TGT TTA TAC TAG GTA TGG TGA ATG C 2962-2934 54.1 

a – Johnson et al., 2005 
b – FAM is a fluorescent reporter dye 
c – TAMRA is a non-fluorescent quencher 
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Multiple sequence alignment was generated with all 2008 HIV-1 subtype C 

RTsequences to view the extent of sequence similarities and mismatches at the 

binding sites of these primers and probes. The total copy SPCR assay amplifies all the 

HIV-1 present in a sample, whereas the K103N-SPCR assay amplifies only the HIV-1 

habouring the K103N resistance mutation. Both assays use common reverse primer 

called 103/com.C3R and two TaqMan® detection probes, namely 1P and 2P. They 

only differ by forward primers. In the total copy assay only one forward primer called 

ComFWD is employed, whereas the K103N-specific assay has three specific forward 

primers namely, C-103N.1F, C-103N.2F and C-103NT.3F. 1P and 2P are labelled 

with 6-carboxifluorescein (FAM) as the reporter or fluorophore at a 5‟end and 

TAMRA as the fluorophore quencher at a 3‟end. Schematic diagram in Figure 2.3 

roughly illustrates the position of these primers and probes in the RT gene of HIV-1 

HXB2. 

 

 

Figure 2.3: A schematic representation showing the positioning of primers and probe 

for the total copy and the K103N-specific SPCR assays on the HIV-1 HXB2. 
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Probe hybridization to a complementary target followed by 5‟-3‟ exonuclease 

hydrolysis causes release of the fluorophore (FAM) (Holland, Abramson et al. 1991). 

All oligonucleotides were custom synthesized by IDT (Whitehead Scientific (Pty) 

Ltd) with standard purification. 

 

2.1.6 Preparation of plasmid DNA standards/controls 

The concentrations of all 12 plasmid DNA standards constructed by site-directed 

mutagenesis (and the others as original clones) were measured using a Nanodrop™ 

ND-1000 spectrophotometer (Nanodrop Technologies Inc., Delaware, USA). Ten-fold 

serial dilutions from 109 to 1 copy/µl of each plasmid DNA was made to use as 

standards/controls in the two real-time SPCR assays.  

A mass of one DNA copy per µl was calculated from the determined concentration of 

each plasmid DNA sample using the following formula: 

 
According to this calculation 1 copy of DNA per µl is equivalent to 4 attograms (4 x 

10-18 grams) of plasmid DNA. In that case, 4 nanograms will have 109 copy/µl. 

Initially, each plasmid stock was diluted to a concentration of 4 ng DNA per µl which 

corresponds with 109 copies of DNA per µl. In summary, for each set 900 µl of 

nuclease-free water was added into ten 1.5-ml Eppendorf tubes. Then a 100 µl of the 

respective diluted plasmid stock was transferred into a 1.5-ml Eppendorf tube with 

nuclease-free water (Promega Corporation, Madison, Wisconsin, USA). The tube was 

mixed by vortexing. For each subsequent dilution, 100 µl was transferred from the 

previous dilution into another tube with 900 µl of nuclease-free water. Each plasmid 

dilution was then divided into small aliquots of 100 µl and stored at -20°C. Each 

aliquot was thawed and used not more than three times. 

 

2.1.7 General conditions and execution of real-time SPCR assays 

All the reactions were prepared on Standard 96-well plates (Applied Biosystems, 

Forster City, California, USA) to a total volume of 25 µl. Each reaction per well, 
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among other reagents, contained 12.5 µl of TaqMan® Gene Expression Master Mix 

(Applied Biosystems, Forster City, California, USA). Optical caps (Applied 

Biosystems, Forster City, California, USA) were used to close the wells. All the 

experiments were done at least three times, each run included a no-template control 

(NTC) in triplicates and each standard or sample was run in duplicate on the 7900HT 

Real-Time PCR System (Applied Biosystems, Foster city, California, USA). Data 

were captured and analyzed by using SDS© 2.3 (Sequence Detection System) 

software (Applied Biosystems, Foster city, California, USA). The thermal cycling 

conditions for every real-time PCR or SPCR assay throughout this study are shown in 

Table 2.5, and they will be used unless stated otherwise.  

 

Table 2.5: Thermal cycling conditions for the real-time SPCR assays. 

 

 

 

2.1.8 Testing the reactivity of primers and probes for total viral copy SPCR 

assay  

The primers and probes (Table 2.4) for the total viral copy SPCR were tested for their 

reactivity on all 12 constructed plasmid standards/controls at low and high 

concentrations of 5x103 and 5x106 DNA copy/µl. The master mix included total copy 

forward primer ComFWD, a common reverse primer 103/com.C3R and a mixture of 
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probe 1P and 2P at 75% and 25% proportions respectively. The highest final 

concentrations of 900 nM and 250 nM for each primer and probe were used, 

respectively, as recommended by Applied Biosystems‟ protocol for „Preparing the 

PCR Master Mix‟ (Part# 4364014Rev. C, Applied Biosystems, Forster City, 

California, USA). The PCR reaction setup of the experiment for testing the reactivity 

on each plasmid standard is shown in Table 2.6. 

 

 

Table 2.6: Total copy reaction setup for testing the reactivity of total copy primers 

and probes. 

Total copy reaction 

Reagents 
Final concentration 

[nM] 

TaqMan Gene Expression Master mix 12.5µL/reaction 

ComFWD primer 900 

103/com.C3R primer 900 

75% 1P  

25% 2P 250 

Nuclease-free water Up to 25µL 

Template: plasmid standard 5x104 DNA 

copies/µl 

Total volume of reaction: 25 µL 

 

 

2.1.9 Optimization of primers for total viral copy SPCR assay 

Forward and reverse primers for total viral copy reaction were optimized by adjusting 

their working concentrations. Briefly, ComFWD and 103/com.C3R were used in each 

reaction at 50 nM, 300 nM and 900 nM with 75%1P and 25%2P probe mixture at a 

constant concentration of 300 nM. The ratios for forward to reverse primer were 

alternated using these concentrations. A K103N-mutant plasmid standard MS15-3 

(harbouring AAA codon at amino acid position 103 containing 5 000 DNA copy/µl) 

was used as a template in each reaction. A concentration ratio of the forward to 

reverse primer that yielded the minimum threshold cycle (Ct) in each experiment was 

considered optimal. 

Probe mix 
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2.1.10 Optimization of probes for total viral copy SPCR assay 

The optimal working probe concentration for the total viral copy SPCR assay was 

determined with varying concentrations of 50 nM, 100 nM, 150 nM, 200 nM, 250 nM 

and 300 nM for the mixture of 75% 1P and 25% 2P. ComFWD (900 nM) and 

103/com.C3R (900 nM) primers were used at their determined optimal working 

concentration and kept constant, in each reaction. AAC-mutant standard MS15-3 at 

5 000 DNA copies/µL was used as a template. The probe concentration that yielded 

the minimum threshold cycle (Ct) was considered the optimal. 

 

2.1.11 Construction of standard curve for total viral copy SPCR assay 

To determine the reportable linear dynamic range of the total viral copy SPCR assay 

5x107 to 5x100 DNA copy/µl serial dilution of MS15-3 was used to construct a 

standard curve. SDS v2.3 software (Applied Biosystems, Forster City, California, 

USA) generated a standard curve. The software analyses detected fluorescence data 

from the real-time instrument and presents it in the form of a standard curve, 

amplification plot or curve. Optimal concentrations determined above for ComFWD 

primer (900 nM), 103/com.C3R primer (900 nM), and the two probes (1P and 2P at 

300 nM) were used in the PCR master mix setup. In addition to NTC, of two K103 

wild-type (MS9-3 and MS10-2) and one K103N mutant (MS10-4) controls were 

included in two replicates at concentrations of 5x100 and 5x106 DNA copy/µl for 

each. The reactions were run for 55 cycles.  

 

2.1.12 Testing the reactivity of primers and probes for K103N-SPCR assay  

Reactivity testing for K103N-specific primers was divided into five experiments using 

C-103N.1F, C-103N.2F, C-103NT.3F individually, or mixed. Each experiment was 

done on all 12 plasmid standards containing 5x104 DNA copy/µl, individually. 

Despite the common reagents such as the reverse primer 103/com.C3R and a mixture 

of 1P and 2P at 75% to 25% ratio in all their master mixes, the experiments differed 

with K103N specific primers. Experiment 1 included primer C-103N.1F, Experiment 

2 included primer C-103N.2F, Experiment 3 included C-103NT.3F, Experiment 4 

included a mixture of C-103N.1F and C-103NT.3F (50:50), and Experiment 5 is for 

testing the reactivity of a mixture of all three K103N-specific primers with 47% C-

103N.1F, 33% C-103N.2F and 20% C-103NT.3F. The reaction setup of these 

experiments is summarized in Table 2.7. The highest final concentrations of 900 nM 
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and 250 nM for each primer and probe were used, respectively, as recommended by 

Applied Biosystems‟ protocol for „Preparing the PCR Master Mix‟ (Part# 

4364014Rev. C, Applied Biosystems, Forster City, California, USA). 

 

 

Table 2.7: PCR master mix setup for five experiments using all three K103N specific 

forward primers. 

Reagents Exp* 1 Exp* 2 Exp* 3 Exp* 4 Exp* 5 

TaqMan® Gen Ex Master Mixα X X X X X 

Probe [1P+2P]  X X X X X 

C-103N.1F X   X X 

C-103N.2F  X   X 

C-103NT.3F   X X X 

Template: standard 50 000 DNA copies 

Nuclease-free water Up to a final volume of 25 µL 

* Experiment 
α TaqMan® Gene Expression Master Mix 
X – Means the corresponding reagent is included in the reaction mix. 
 

 

2.1.12.1 Design of additional K103N-specific primer and its reactivity 

testing 

Another specific primer named C-103N.3FC was designed similar to C-103NT.3F, 

but the last nucleotide of codon 103, thymine (T), was replaced by cytosine (C). This 

new primer was tested likewise as the only forward primer on all 12 standards (50 000 

DNA copy/µL). The experiment was run for 50 cycles. 

 

2.1.13 Optimization of primers for K103N-SPCR assay  

The K103N-SPCR assay was optimized by individually adjusting the forward and the 

reverse primers to optimal working concentrations. This means that two experiments 

were performed with a common reverse primer 103/com.C3R, but with different 

individual specific forward primers. This is to determine the optimal proportion or 

concentration each primer will be required to achieve its full effectiviness, and this 

will also guide when the primers are used as a mixture. Experiment 1 included 
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forward C-103NT.3F and Experiment 2 included forward primer C-103N.3FC. Each 

primer was used with the reverse primer in each reaction. The ratios for forward to 

reverse primer were alternated at concentrations 50 nM, 300 nM and 900 nM with 

75% 1P and 25% 2P probe mixture at a constant concentration of 300 nM. In 

Experiment 1 a mutant plasmid standard MS3-4 (AAT) was used as a template, 

whereas mutant standard MS15-3 (AAC) was used in Experiment 2. Each standard 

contained 5x105 DNA copies per µl. The primer concentration ratio that yielded the 

minimum threshold cycle (Ct) in each experiment was considered the optimal. 

 

2.1.14 Optimization of probes for K103N-SPCR assay  

Optimal working probe concentration for the K103N-SPCR assay was determined by 

varying the concentration of a probe mixture of 75% 1P and 25% 2P and keeping all 

the primers constant. Probe concentrations used were 50 nM, 100 nM, 150 nM, 200 

nM, 250 nM and 300 nM. Two experiments were performed, namely, Experiment 1 

which used C-103NT.3F forward primers with MS3-4 (AAT) as the template, and 

Experiment 2 which used C-103N.3FC with MS15-3 (AAC) as the template. This is 

because each primer is specific for a different codon of the K103N mutation. In that 

case, this is to determine the optimal probe concentration at which each of these 

primers will work effectively. All the primers including 103/com.C3R reverse primer 

were used at their optimal working concentration of 900 nM. The templates were used 

at 105 DNA copy/µL each. The probe concentration that yielded the minimum 

threshold cycle (Ct) was considered the optimal. 

 

2.1.15 Construction of standard curve for K103N-SPCR assay 

To determine a reportable linear dynamic range of the K103N-SPCR assay 107 to 1 

DNA copy/µl serial dilutions of K103N-mutant standard MS15-3 (AAC) were used to 

construct a standard curve with SDS© v2.3. Optimal concentrations determined above 

for the specific forward primer mixture (50% C-103N.3FC plus 50% C-103NT.3F at 

900 nM), 103/com.C3R (900 nM), and a mixture of the two probes (75% 1P plus 25% 

2P at 300 nM) were employed in the master mix setup of the reactions. Other controls 

included were 106 and 1 copy/µL of MS9-3 (Wt), MS10-2 (Wt) and MS10-4 (Mut) as 

wild-type and mutant controls. The experiment was run for 55 cycles.  
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2.1.16 Evaluation of the discriminatory ability of K103N-SPCR assay  

The discriminatory ability of the K103N-specific SPCR assay was assessed on each of 

the 12 plasmid standards at low (5x103) and high (5x106) DNA copies. The specific 

forward primer mixture (50% C-103N.3FC and 50% C-103NT.3F) and the universal 

reverse primer 103/com.C3R were used at a concentration of 900 nM. The probe 

mixture (75% 1P and 25% 2P) was used at 300 nM. The PCR cycles were repeated 50 

times. The assay was run together with known standards to generate a curve. Then the 

unknowns were compared to this standard curve in order to interpolate their absolute 

quantity such as the DNA copies from the generated standard curve. 

 

2.1.17 Evaluation of the accuracy of both SPCR assays  

The accuracy for both SPCR assays was evaluated in the wild-type/mutant (Wt/Mut) 

plasmid mixture experiment. This was investigated by independently assessing the 

total viral copy SPCR assay and the K103N- SPCR assay on a panel of K103-

wildtype (MS10-2, AAA) and K103N-mutant (MS15-3, AAC) plasmid mixtures. A 

10-fold serial dilution of the mutant standard at 5x106 to5x100 DNA copy/µl was 

added to a constant background of 5x107 DNA copy/µl of the wild-type standard. This 

was prepared by adding 10 µl of mutant to 90 µl of wildtype.  In all experiments, the 

primers were used at a concentration of 900 nM and a mixture of two probes, 1P and 

2P, at 300 nM. Other controls included were 5x106 and 100 DNA copy/µl of pure 

MS15-3 as the K103N mutant control, and 5x107 and 5x100 DNA copy/µl of pure 

MS10-2 a K103 wild-type control, with each concentration in duplicates. Each assay 

was run together with the 10-fold serial dilutions of its validated standard curve. The 

PCR cycle was repeated 55 times.  

 

The detection limit of K103N variants by the SPCR assays was calculated using the 

formula from Paredes et al, 2007:  

 

% of K103N detection limit = [input of K103N-mutants MS15-3 at 5x103 DNA 

copy/µL detected by K103N-SPCR assay)/(Input of MS15-3 total viral copies at 

50 005 000 DNA copy/µL detected by total copy SPCR assay)] x 100. It was found to 

be equal to to 0.01%. 
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2.1.18 Detection of K103N minor variants in patient samples 

 

2.1.18.1 Total viral copy SPCR assay on patient samples 

The optimized total viral copy SPCR assay was used to detect and quantify HIV-1 in 

the nested RT PCR products of 40 HIV-1 subtype C patient samples. The 40 samples 

were run along a 10-fold (107-1 DNA copy/µL) serially diluted MS15-3 mutant 

standard (K103N) to construct a valid standard curve. Real-time PCR cycling 

conditions stated in Table 2.5 were followed, but using 55 cycles. Fluorescence data 

(Ct) and the amount of viral DNA (copy/µl) detected in each 40 samples were 

interpolated from the standard curve.  

 

2.1.18.2 K103N-SPCR assay on patient samples 

The optimized K103N-SPCR assay was used to detect and quantify the minor variants 

of both K103N codons (AAT and AAC) in the nested RT PCR products from 40 HIV-

1 subtype C patient samples in which resistance mutations were previously analyzed 

by population sequencing. The 40 samples were run along a 10-fold (107-1 DNA 

copy/µL) serially diluted MS15-3 mutant (K103N) plasmid standard that generated a 

valid standard curve. Real-time PCR cycling conditions stated in Table 2.5 were 

followed, but using 55 cycles. Fluorescence data (Ct) and the amount of viral DNA 

(copy/µl) detected in each 40 samples were interpolated from the standard curve.  
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Chapter 3  
 
 

3.1 Results 

 

3.1.1 Patient samples 

Clinical information and demographies of the patients are supplied in Table 3.1. All 

the patients are infected with HIV-1 subtype C. There are 25 females (62.5%) and 15 

males (37.5%), with average age of 26. Assignment of NRTI and NNRTI drug 

resistance mutations was done using the Stanford University HIV Drug Resistance 

database (http://hivdb.stanford.edu/pages/algs/HIVdb.html). The RT (reverse 

transcriptase) sequences of the patient samples were compared to HIV-1HXB2 

(http://hiv-web.lanl.gov).  

 

3.1.2 Analysis of RT gene sequences in the Los Alamos HIV database 

 

3.1.2.1 Multiple alignments of the RT gene sequences from Los Alamos HIV 

database 

Part of the generated multiple sequence alignments of the all 2008 subtype C HIV-1 

RT sequences, 494 in total, is depicted in Appendix B. Codon 103 at nucleotide 

position 307-309 is very diverse, but with many wildtype codons such as AAA and 

AAG. It harbours either one of the following codons in the prevalence order; AAA, 

AAG, AAC, AGA, AAM, AGC, GAA, AAS. Neither of the sequences has AAT at 

codon 103. Therefore, the prevalence ratio for AAC to AAT was 100% to 0%, 

respectively.  

 

3.1.3 Construction of plasmid-derived standards for the SPCR assays 

 

3.1.3.1  RT-PCR and PCR amplification of HIV-1 RT gene  

Both pre-nested (RT-PCR) and nested PCR amplifications for samples STV139166 

and STV128864 were successful and negative controls showed that the PCR reagents 

were not contaminated. Nested PCR generated 804-bp amplicons spanning the RT 

gene, and these were verified on a 0.8% agarose gel (Figure 3.1) with reference to a 
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1-kb DNA molecular marker. The concentrations of the purified nested PCR products 

for the samples determined by Nanodrop™ ND-1000 system (Nanodrop Technologies 

Inc., Delaware, USA) were 39.1 ng/µL and 37.1 ng/µL, respectively.  

 

 

Table 3.1: Clinical information and demographies of patient samples. 

STV # Age Gender Treatment NNRTI mutations 

297883 9 Female 3TC,AZT,NVP NONE 
294855 <1 Male 3TC,d4T,KLT NONE 
294773 9 Male 3TC,d4T,EFV NONE 
294771 7 Male 3TC,d4T,EFV NONE 
293935 11 Male 3TC,EFV,d4T NONE 
290766 5 Female 3TC,d4T,KLT, Cotria NONE 
288044 47 Female ddI,d4T, Alluvia NONE 
286813 31 Female KLT,ddI,AZT NONE 
286808 35 Female 3TC,KLT,d4T NONE 
286807 45 Female 3TC,AZT,EFV NONE 
286803 39 Female KLT,ddI,AZT NONE 
284540 2 Female 3TC,d4T,KLT NONE 
288667 4 Male 3TC,d4T,ABC NONE 
288668 4 Female 3TC,KLT,d4T NONE 
291336 40 Female ddI,d4T NONE 
291337 33 N/A* 3TC,d4T,EFV NONE 
294770 2 Male 3TC,KLT,d4T NONE 
296155 6 Male 3TC,d4T,KTL NONE 
285739 67 Male KLT,ddI,AZT  K103N 
288042 63 Female 3TC,d4T,EFV K103N 
288043 41 Male 3TC,d4T,EFV K103N 
289783 44 Female KLT,AZT,ddI K103N 
290767 12 Male 3TC,d4T,EFV K103N 
292197 48 Female 3TC,EFV,d4T K103N 
294767 48 Male 3TC,AZT,EFV K103N 
284246 8 Male 3TC,d4T,EFV K101E,V106M,G190A 
288041 42 Female AZT,3TC,KLT K101E,V106M,G190A 
275180 2 Male 3TC,KLT,ABC,INV,Cotria NONE 
285742 41 Female 3TC,KLT,SQV,TDF Y181C 
292196 32 Female KLT,AZT,ddI, Cotria E138A 
286812 36 Female 3TC,d4T,EFV V90I,K103N,V108I 
275181 4 Male 3TC,d4T,KLT NONE 
296685 2 Female 3TC,KLT,d4T E138S 
289781 37 Female 3TC,d4T,EFV V106M,Y188C 
294769 13 Female 3TC,EFV,d4T V106M.Y188L 
293934 12 Female 3TC,d4T,KLT NONE 
294772 34 Female 3TC,d4T,EFV NONE 
295251 36 

 56 
N/A* 
Ma 

3TC,EFV,d4T, Cotria 
 
 

NONE 
293936 56 Male 3TC,EFV,d4T, Cotria V106M,G190A,F227L 

M230L 
 
 

297431 30 Female TDF,EFV,3TC V106M,G190A,F227L 
N/A*, Not available; Cotri, Cotrimoxazole; AZT, Zidovudine; ABC, Abacavir; ddI, didanosine; 3TC, 
lamivudine; d4T, stavudine; NVP, nevirapine; IDV, indinavir; SQV, saquinavir; KLT, Kaletra 
(Lopinavir/ritonavir); EFV, efavirenz.  

 

  

Stellenbosch University  http://scholar.sun.ac.za



73 

 

Figure 3.1: A 0.8% agarose gel image of 804-bp amplicons for samples STV139166 

and STV128864 after RT-PCR and nested PCR amplification. Lanes 1-4 belong to 

samples STV128864 and lanes 4-8 to sample STV139166. Lane M is the molecular 

marker, 1-kb DNA ladder, and lane 9 is the negative control. 

 

 

3.1.3.2  Transformation using JM109 High efficiency competent cells 

A transformation efficiency of 1 x 108cfu/µg DNA was achieved. Approximately 80 

white and 15 blue colonies were observed on each of the two LB/ampicillin/IPTG/X-

gal control plates on which a 100 µL of the transformation culture with uncut plasmid 

was streaked. This proves that the JM109 cells used here were highly competent. The 

LB/ampicillin/IPTG/X-gal control plates, on which the JM 109 cells alone were 

streaked, had no colonies indicating that the ampicillin was active and it was not 

contaminated with plasmid. The LB/IPTG/X-gal control plates with no ampicillin, 

and streaked with the JM109 reaction was crowded with white colonies indicating that 

the JM109 cells were viable.  

 

3.1.3.3  Screening for recombinant clones 

The arrangement of the purified plasmid DNA is shown in Figure 3.2 with reference 

to a 1-kb DNA ladder as the molecular marker. Lanes 2 and 3 for sample STV139166 

shows that these clones do not have an insert because their bands moved faster than 
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the others which are circular or supercoiled like the pGEM®-T Easy vector. 

Therefore, these clones were excluded for further analysis. The negative control, N (-

), which has all PCR reagents including the primers except for template, shows that 

the PCR reactions were not contaminated.  

 

 

 
Figure 3.2: A 0.8% agarose gel image of some of the purified pGEM®-T Easy 

plasmid clones. Lane M represents the 1-kb DNA marker, lane 1-8 are plasmids from 

sample STV139166, lane 9-11 are for sample STV128864, and lane N(-) is a negative 

control. 

 

 

An agarose gel image of pGEM®-T Easy plasmid DNA after enzyme digestion with 

the restriction enzyme EcoRI is shown in Figure 3.3. This is to verify if the insert is 

of the correct size. According to the agarose gel electrophoresis, the plasmid clones in 

lanes 2, 4, 10 and 13, which are uncut and supercoiled, have the correct insert of size 

804 bp. This is because their cut plasmid DNA, which follows after each one of them, 

shows to have the desired insert of 804 bp and the linearized pGEM®-T Easy vector 

individually. 
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Figure 3.3: A 0.8% agarose gel photo of the pGEM®-T Easy recombinant plasmid 

clones after a restriction digestion with EcoRI. Lanes M represent the 1-kb DNA 

molecular marker, Lanes 1 and 8 are the plasmid control (pGEM®-T Easy vector). 

Lanes 2, 4, 6 and lanes 9, 11, 13, represent the uncut plasmid DNA of samples 

STV139166 and STV128864, respectively. Lanes 3, 5, 7 and lanes 10, 12, 14 

represent the cut plasmid DNA of samples STV139166 and STV128864, respectively. 

 

 

3.1.3.4  Sequence analysis of pGEM®-T Easy plasmid clones 

The RT sequences of pGEM®-T Easy plasmid clones are shown in Appendix C, as 

supplementary results. The plasmid clones are listed in Table 3.2, with their codon at 

amino acid position 103 of the RT. They are all harbouring the K103N resistance 

mutation which is encoded by codon AAC or AAT. 

 

3.1.4 Site-directed Mutagenesis  

 

3.1.4.1  Mutagenesis of selected recombinant plasmids 

The site-directed mutagenesis performed on four recombinant plasmids (MS3-A, 

MS9-A, MS10-A and MS15-A) is summarized in Table 3.3. During site-directed 

mutagenesis, MS1-V106M (F)/(R) primer set only changed valine(Val) to methylene 

(Met) at amino acid position 106 of the plasmid clone MS15, thereby generating a 

plasmid with V106M mutation.  MS3-N103K-V106M (F)/(R) primer set replaced the 

amino acid lysine (Lys) in plasmid clone MS3 with asparagine (Asn) at position 103, 
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by inducing AAT transversion, another codon encoding K103N mutation, from AAC 

codon. Unlike codon AAC, which also encodes K103N, AAT is very uncommon.  

The primer set simultaneously substituted valine (Val) with methylene (Met) at 

position 106, causing a V106M mutation. MS9-N103K-V106M (F)/(R) and 

TV10AK1-N103K (F)/(R) primer sets replaced amino acid asparagine in plasmid 

MS9 and MS10 with lysine at position 103, respectively, generating AAA 

transversion (K103 wildtype). Simultaneously, MS9-N103K-V106M (F)/(R) primer 

set substituted valine (Val) in the same plasmid with methylene (Met) at position 106 

to induce V106M mutation. The purpose of these primers was to generate sufficient 

standards with varying codons with regard to wiltype K103 and mutant K103N at 

amino acid positions 103 for the optimization of the K103N-specific SPCR assay.  

 

 

Table 3.2: pGEM®-T Easy plasmid clones and their codon at amino acid position 

103 of HIV-1 RT. 

  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Sample 
Plasmid 

Clone 

Sequence 

length (bps) 
K103N 

STV# 
139166 

MS1 1729 AAC 
MS2 1784 AAC 
MS1-A 529 AAT 
MS2-A 619 AAT 
MS3-A* 617 AAC 
MS6-A 269 AAT 

STV# 
128864 

MS9 1632 AAC 
MS9-A* 631 AAC 
MS10-A* 699 AAC 
MS11-A 721 AAC 
MS12-A 689 AAC 
MS14-A 614 AAC 
MS15-A* 648 AAC 
MS17-A 622 AAC 

*Plasmid DNA used for site-directed mutagenesis. 
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Table 3.3: A summary of site-directed mutagenesis and the mutated plasmids 
generated. 
 

 
 

 

3.1.4.2  Sequence analysis of site-directed mutagenesis-generated plasmid clones  

All the mutated plasmids generated by site-directed mutagenesis were also sequenced 

and their sequences were compared with the consensus sequences of the four parental 

plasmids (MS3-A, MS9-A, MS10-A and MS15-A) in a multiple alignment. This was 

to verify if the desired mutations were successfully induced. The multiple sequence 

alignment is shown in Figure 3.4. 

 

3.1.5 Primers and probes used for two real-time SPCR assays 

According to the generated multiple sequence alignments of all 2008 subtype C HIV-

1 RT sequences (shown in Appendix C) the greatest sequence diversity was found 

from RT nt 292-1326. This region encompasses a sequence where the K103N-specific 

forward primers C-103N.1F, C-103N.2F and C-103N.3F (nt 288-309), the two 

probes, 1P and 2P (nt 332-365), and the universal reverse primer 103/com.C3R (nt 

Parental Plasmids & 

Genotype 

Mutagenic primers K103/N V106/M Mutated plasmids 

generated 

MS15-A 
Asn (103)=K103N [AAC] 
Val (106) = V106 [GTG] TV1-V106M (F) 

TV1-V106M (R) 
Mutagenesis was not 

intended. 
Val > Met = V106M 

(GTG > ATG) 
MS15-3 
MS15-4 

MS3-A 
Asn (103) =K103N[AAC] 
Val (106) = V106 [GTG] TV3-N103K-V106M (F) 

TV3-N103K-V106M (R) 
Asn > Asn = K103N 

(AAC > AAT) 
Val > Met = V106M 

(GTG > ATG) 

MS3-1 
MS3-2 
MS3-4 

MS9-A 
Asn (103) =K103N[AAC] 
Val (106) = V106 [GTG] TV9-N103K-V106M (F) 

TV9-N103K-V106M (R) 
Asn > Lys = K103 

(AAC > AAA) 
Val > Met = V106M 

(GTG > ATG) 

 
MS9-2 
MS9-3 
MS9-4 

MS10-A 
Asn (103) =K103N[AAC] 
Val (106) = V106 [GTG] TV10AK1-N103K (F) 

TV10AK1-N103K (R) 
Asn > Lys = K103 

(AAC > AAA) 
Mutagenesis was not 

intended. 

MS10-1 
MS10-2 
MS10-3 
MS10-4 
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385-412) were derived from (Johnson, Li et al. 2005). The region spanning nt 293 and 

further upstream to 5‟ end of the RT is more conservative and encompasses 

ComFWD, a forward primer that is meant to amplify or target any HIV-1 in a sample. 

A multiple sequence alignments of all primers and probes, 14 pGEM® T-Easy 

recombinant plasmid clones, Consensus C, and HIV-1 HXB2 as a background 

sequence, are displayed in Appendix C. 

 

 

 

Figure 3.4: A multiple sequence alignment of RT Consensus C, consensus RT 

sequences of the four parental plasmids (pGEM® T-Easy) and all 12 mutated plasmid 

clones generated using Geneious version 4.5.5 (http://www.geneious.com). As in this 

order in the figure, it is parental plasmid (template for site-directed mutagenesis), 

mutagenic forward primer, mutagenic reverse primer (reverse complement), then the 

clones after site-directed mutagenesis. The first column labeled K103/N shows how 
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mutagenesis occurred at codon position 103. The second column labeled V106/M 

shows how mutagenesis occurred.  

 

 

3.1.6 Total viral copy SPCR assay 

 

3.1.6.1  The reactivity of total viral copy primers and probes 

After three runs of the total viral copy experiment the total copy primers ComFWD 

(forward primer) and 103/com.C3R (reverse primer) were able to amplify all the 12 

plasmid standards at 5 000 (Figure 3.5 (a) as well as at 5 000 000 DNA copies/µl 

Figure 3.5 (b)). The reactions were not contaminated as three replicates of the no-

template controls (NTCs - negative controls) were not amplified. The probes are 

working effectively as indicated by the amplification curves (fluorescent signals) in 

Figure 3.5 generated for all these plasmid standards.  

 

The threshold cycle (Ct) values after three runs, including the representative 

amplification plots in Figure 3.5, for testing the reactivity of the total copy primers 

and probes on 12 plasmid standards are supplied in Table 3.4. A successful 

amplification of all K103 wild-type and K103N-mutant plasmid controls with Ct 

ranges of 26-30 for 5x103 and 17-20 for 5x106 DNA copy/µl indicate that the primers 

and the probes are ideal for annealing to various HIV-1 subtype C sequences. A 

significant difference in Ct observed with the plasmid standards at 5 000 DNA 

copy/µl is due to the presence of diferent nucleotide sequences with varying binding 

affinity for total copy primers found when the same standard is being used across the 

three runs. 
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Figure 3.5: Representative amplification plots showing the amplification curves of all 

12 plasmid standards for testing the reactivity of total copy primers and probes. (a) 

Run 1 - all 12 plasmid standards at 5 000 DNA copy/µl with Ct values ranging from 

26-31. (b) Run 3 - all 12 plasmid standards at 5 000 DNA copy/µl with Ct ranging 

from 17-20. 

(a) 5 x 10
3 

- Run1
 

(b) 5 x 10
6
 – Run 3 
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Table 3.4: Mean threshold cycle (Ct) values after three runs of the total copy 

experiment for testing the reactivity of total copy primers and probes on all 12 

standards at low and high DNA copy numbers. 
 

 

Plasmid 

standard 

 

K103/N 

 
DNA copy/µl, 5x10

3
 

 
DNA copy/µl, 5x10

6 

 

Ct1 Ct2 Ct3 

 

Average 

Ct 
Ct1 Ct2 

 

Ct3 

Average  

Ct 

MS3-1 AAT 27.58 27.53 29.40 28.00 18.16 19.27 19. 

25 

19.12 

MS3-2 AAT 26.59 26.03 28.20 27.73 19.80 18.60 20.97 20.64 

MS3-4 AAT 28.55 27.90 28.40 28.70 20.74 19.68 18.92 
19.50 

MS9-2 AAA 28.00 29.70 28.76 28.82 19.62 19.48 18.90 
19.52 

MS9-3 AAA 28.42 27.89 29.45 28.76 18.50 19.78 20.42 19.96 

MS9-4 AAA 28.75 29.79 29.20 29.44 18.32 17.24 20.98 
18.85 

MS10-1 AAA 29.42 31.28 28.88 29.86 19.00 18.98 20.94 
19.64 

MS10-2 AAA 26.93 26.99 29.28 27.73 18.54 20.18 20.20 
19.64 

MS10-3 AAC 27.96 28.98 29.75 28.95 18.95 19.15 18.65 
18.98 

MS10-4 AAC 31.02 31.74 29.70 30.82 20.54 18.70 19.63 
19.72 

MS15-3 AAC 27.23 28.98 29.75 28.65 20.70 17.01 19.34 
18.62 

MS15-4 AAC 30.52 27.89 30.75 29.46 19.96 20.03 17.94 
19.31 

NTC  N/A N/A N/A N/A N/A N/A N/A N/A 

NTC  N/A N/A N/A N/A N/A N/A N/A N/A 

NTC  N/A N/A N/A N/A N/A N/A N/A N/A 
NTC - No-template control; N/A - No Amplification; Ct1 – mean Ct for Run 1; Ct2 – Mean Ct for Run 

2; Ct3 – Mean Ct for Run 3. 

 

 

3.1.6.2  Total viral copy primer optimization  

Three runs of the experiment to adjust the total copy primer concentrations using 

titrations of 50 nM, 300 nM and 900 nM concentrations revealed that 900:900 

forward primer to reverse primer concentration ratio of ComFWD and103/com.C3R, 

respectively, was found to be the optimal. This is because it yielded the lowest Ct 

values after three runs for the total copy reaction. The reactions were not 
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contaminated as three replicates of no-template controls (NTCs - negative controls) 

were not amplified. The results of the experiment are shown in Table 3.5. A 

significant difference in Ct observed with the plasmid standards at 5 000 DNA 

copy/µl is due to the presence of diference nucleotide sequences, with varying binding 

affinity for total copy primers, found in a common standard across the runs. 

 

 

Table 3.5: Mean Ct values after three runs for the titration experiment using the total 

copy primers on the AAC-mutant standard MS15-3 at 5 000 DNA copies/µl. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.6.3  Total viral copy probe optimization 

The results following three runs for the probe titration experiment in the total viral 

copy reaction using a mixture of 75% 1P and 25% 2P probes with MS15-3 (K103N) 

mutant plasmid standard as a template revealed that a mixture of the two probes offers 

the optimal sequence detection in real-time when each probe is at a concentration of 

300 nM, and provided that the total copy forward primer ComFWD and the universal 

reverse primer 103/com.C3R are at a constant concentration ratio of 900:900 (nM). It 

was therefore chosen because it yielded a minimum threshold cycle value compared 

to the rest of the concentrations (50 nM, 100 nM, 150 nM, 200 nM and 250 nM) used. 

Moreover, it yielded a smaller range, unlike the others, thus showing to be reliable. 

[ComFWD]:[103/com.C3R] 

[nM] 

Mean 

Ct1 

Mean 

Ct2 

Mean 

Ct3 

Average  

Ct 

50:50 37.45 37.78 39.46 38.92 

50:300 33.36 32.12 31.06 32.18 

50:900 33.00 34.25 30.05 33.10 

300:50 35.40 29.90 32.60 32.30 

300:300 28.80 32.75 29.05 29.85 

300:900 30.05 31.40 27.45 29.20 

900:50 31.32 33.46 30.82 32.60 

900:300 27.50 32.86 28.12 29.38 

900:900 27.60 31.30 29.28 28.76 

No-template control (NTC) N/A N/A N/A N/A 

No-template control (NTC) N/A N/A N/A N/A 

No-template control (NTC) N/A N/A N/A N/A 

N/A – No amplification; Ct1 – Ct for Run 1; Ct2 – Ct for Run 2; Ct3 – Ct for Run 3. 
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The reactions were not contaminated as three replicates of the no-template controls 

(NTCs - negative controls) were not amplified. The results are provided in Table 3.6. 

 

 

Table 3.6: Mean Ct values after three runs of the probe titration experiment with total 

copy primers (900:900 nM; forward: reverse) on the AAC-mutant standard MS15-3 at 

5x103 DNA copy/µl. 

[1P+2P]   

nM 
Mean Ct Mean Ct Mean Ct Average Ct 

50 33.78 32.85 27.20 31.22 

100 26.90 30.85 33.14 29.19 

150 32.29 27.02 31.15 29.78 

200 29.44 32.78 26.99 29.38 

250 30.88 32.05 27.02 29.40 

300 27.40 27.70 28.18 27.76 

NTC N/A N/A N/A N/A 

NTC N/A N/A N/A N/A 

NTC N/A N/A N/A N/A 

[1P+2P] – 75% Probe 1 plus 25% Probe 2; NTC – No-template control; N/A – No amplification; Ct1- 

Ct for Run 1; Ct2 – Ct for Run 2; Ct3 – Ct for Run 3. 

 

 

3.1.6.4  Standard curve for total viral copy SPCR assay 

Over eight standard curves were constructed in the total copy SPCR reaction with 

serial dilutions (5x107 to 5x100 DNA copy/µl) of MS15-3 K103N-mutant standard. 

The average Ct values of the linear dynamic range from the fluorescence data of eight 

runs is shown in Table 3.7. The reactions from the chosen eight runs were not 

contaminated as three replicates of the no-template controls (NTCs - negative 

controls) were not amplified. In addition, two K103-wild-type and one K103N-mutant 

controls included in two replicates for each at 5x100 and 5x106 copy/µl were MS9-3 

(WT), MS10-2 (WT) and MS10-4 (MUT). They were amplified with the same 

efficiency (approximately) as the MS15-3 standard at the same DNA copy numbers in 

all eight assay runs, thus validating the accuracy of the assay (data is supplied in 

Table 3.8). SDS 2.3 software collected these fluorescence data from the linear phase 
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of the exponential PCR so that a broad dynamic range of the amplicon, which is 

directly proportional to the fluorescence emitted, can be detected.  

 

 

Table 3.7: Threshold cycle (Ct) data after the construction of a standard curve with 

K103N-mutant standard MS15-3 (AAC) from eight (8) runs using total viral copy 

SPCR assay. Data for negative controls (NTCs), K103-wild-type and K103N-mutant 

controls is also included. 

DNA copy/ul 

(MS15-3) 
Ct1 Ct2 Ct3 Ct4 Ct5 Ct6 Ct7 Ct8 

Average 

Ct 

5 
5 

37.56 
37.96 

 N/A 
 N/A 

 N/A 
 N/A 

38.84 
38.48 

 N/A 
 N/A 

41.03 
41.16 

41.25 
41.25 

 N/A 
 N/A 

39.14 
39.71 

50 
50 

34.04 
34.01 

35.14 
34.92 

35.94 
35.98 

35.21 
35.21 

35.92 
35.60 

37.38 
37.56 

38.64 
38.01 

 N/A 
 N/A 

36.04 
35.90 

500 
500 

30.36 
30.20 

31.98 
32.06 

32.18 
32.75 

32.33 
32.24 

32.49 
32.49 

33.61 
33.91 

35.26 
34.47 

35.68 
35.79 

32.99 
32.99 

5 000 
5 000 

27.28 
27.31 

28.93 
28.93 

29.88 
29.88 

28.66 
28.66 

28.87 
28.61 

30.72 
30.84 

31.94 
31.67 

32.97 
32.93 

29.91 
29.85 

50 000 
50 000 

23.83 
23.02 

25.54 
25.50 

26.39 
26.22 

25.12 
25.02 

25.65 
25.65 

27.62 
27.6 

28.94 
28.75 

30.24 
30.34 

26.67 
26.51 

500 000 
500 000 

19.68 
19.99 

21.39 
21.23 

22.53 
22.53 

21.97 
21.90 

22.17 
22.10 

24.91 
25.02 

25.03 
25.29 

26.73 
26.84 

23.05 
23.11 

5 000 000 
5 000 000 

16.72 
16.96 

18.03 
18.10 

19.01 
18.79 

18.51 
18.61 

18.42 
18.34 

21.03 
20.97 

21.33 
21.52 

22.85 
23.01 

19.49 
19.54 

50 000 000 
50 000 000 

 N/A 
 N/A 

14.40 
14.48 

14.90 
14.94 

15.05 
15.05 

14.67 
14.88 

16.10 
16.15 

16.50 
16.53 

17.68 
17.71 

15.61 
15.68 

3 NTCs N/A N/A N/A N/A N/A N/A N/A N/A N/A 
Wt MS9-3 
(5x100)  N/A N/A 39.12 N/A 39.09 N/A 39.10 38.52 38.96 
Wt MS9-3 
(5x106)  20.56 20.12 19.20 19.85 19.72 19.33 18.32 20.08 19.65 
Wt MS10-2 
(5x100)  N/A 39.19 N/A N/A 38.94 N/A 38.66 38.79 38.90 
Wt MS10-2 
(5x106)  17.78 18.75 19.56 18.19 19.89 18.66 19.91 19.79 19.07 
Mut MS10-4 
(5x100)  N/A N/A N/A 39.19 N/A N/A N/A 38.79 38.99 
Mut MS10-4 
(5x106)  19.92 20.00 19.05 19.19 19.89 19.66 19.68 19.26 19.58 

N/A – No amplification; NTC – No-template control; Ct1 – Ct for Run 1; Ct2 – Ct for Run 2; Ct3 – Ct 

for Run 3; Ct4 – Ct for Run 4; Ct5 – Ct for Run 5; Ct6 – Ct for Run 6; Ct7 – Ct for Run 7; Ct8 – Ct for 

Run 8.
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The mean Ct linearly correlates with the DNA copy number over the range of 0log10 

to 7log10 of the mutant (K103N) dilution series. Overall, a slope of -3.35 proves that 

amplification or PCR was 98.84% efficient. Amplification efficiency (E) is calculated 

from the slope with the following equation: E = 10(-1/slope) -1 (Paredes, Marconi et al. 

2007).  It ranged from 90.59% to 97.99% across all eight runs, which is within the 

acceptable precision range of 90-110% (Burd 2010). The y-intercept reflects on the 

sensitivity or the lower detection limit of the assay by showing how many cycles are 

required to detect 1 DNA copy. An estimate of 40 cycles is required to detect 1 DNA 

copy using the total viral copy primer and probe set. The intra- and inter-assay 

precision is 99.84% and 99.54% and it is defined by the repeatability (R2) and the 

reproducibility, respectively. The former reflects on the closeness of the replicate data 

points (concentration) to the regression line in each assay run, whereas the latter is 

average the former across eight assay runs. The intra-assay precision for each of the 

eight runs ranged from 98.33 to 99.96% (Table 3.8). This makes the total viral copy 

SPCR assay highly consistent (Muller, Stelzl et al. 2004). The standard curve with the 

average values (Ct) of all eight runs is shown in Figure 3.6. 

 

 

Table 3.8: Assay efficiency and reproducibility results for the total copy SPCR 

standard curve experiment after 8 runs. 

 Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Average 

Slope -3.57 -3.47 -3.49 -3.37 -3.49 -3.41 -3.45 -3.54 -3.35 
Efficiency 90.59 93.99 93.59 97.99 93.36 95.64 94.92 91.78 98.84 
Y-intercept 37.16 39.95 39.79 38.73 39.39 41.05 41.85 43.64 39.63 
R2 - repeatability 99.80 99.79 99.68 99.96 99.93 99.48 99.36 98.33 99.84 
Cycles  50 55   55  55 55  55  55  55   
Reproducibility  99.54 
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Figure 3.6: The average standard (std) curve for the total viral copy SPCR assay. The 

mean threshold values (Ct) are plotted on the y-axis and the mean logarithmic of the 

initial DNA copy number/µL of the AAC-mutant standard MS15-3 on the x-axis are 

from eight runs with each dilution/point in duplicates. The standard curve forms a 

straight line over eight orders of magnitude. The equation on the plot stands for y = 

mx +c, which defines the linear regression, with „m‟ representing the slope (-3.3493), 

„c‟ as the y-intercept (39.627) and „R2
‟ stands for the repeatability of the assay.  

 

 

3.1.7 K103N-SPCR assay 

 

3.1.7.1  The reactivity of K103N-specific primers and probes 

Among several experiments (Experiment 1-5) performed on 12 plasmid standards 

(50 000 DNA copy/µl) with three specific forward primers C-103N.1F, C-103N.2F 

and C-103NT.3F, individually or in a mixture, amplification was found only in 

Experiment 3, 4 and 5. These are the experiments in which primer C-103NT.3F is 

present either alone (Experiment 3) or in a mixture with C-103N.1F (Experiment 4) or 

C-103N.1F and C-103N.2F (Experiment 5). In Experiment 3, C-103NT.3F amplified 

the K103N standards encoded by AAT (MS3-1, MS3-2 & MS3-4) at RT codon 103. 

In Experiment 4 and 5, it was still able to amplify the same standards when used in 

combination with C-103N.1F, or with both C-103N.1F and C-103N.2F, but with less 

y = -3.3543x + 39.627 
R² = 0.9984 

M
e

an
 C

t 

Logarithmic concentration 

Total copy SPCR Average Std curve  
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efficiency though. The probes are working as indicated by the fluorescent signals (on 

the amplification plots in all five experiments) generated during specific hybridization 

between the 5‟ FAM-labelled probes and the target. The reactions were not 

contaminated as three replicates for no-template controls (NTCs - negative controls) 

were not amplified. Amplification plots for Experiment 3, 4, and 5 on the 12 plasmid 

controls are shown in Figure 3.7.  

 

The mean threshold cycle (Ct) values for Experiment 4 when C-103NT.3F was used 

in a mixture with C-103N.1F range from 33 to 36. This indicates C-103N.1F 

decreases the reactivity of C-103NT.3F with AAT standards, unlike when it is used 

alone, as shown above. Moreover, its reactivity in Experiment 5 decreases when used 

in a mixture with C-103N.1F and C-103N.2F, resulting in a mean threshold cycle (Ct) 

range of 31-33. It worked better in Experiment 3 when used alone as the only forward 

primer, yielding a mean Ct of 28-31. Three no-template controls (NTCs) included in 

each run were not amplified, showing that the reagents were not contaminated. 

Threshold cycle (Ct) values representing the reactivity of the K103N-specific primer 

and probe sets used in experiment 3, 4, and 5, are shown in Table 3.9.  

 

3.1.7.2  New additional specific-primer and its reactivity 

Since out of all three K103N-specific primers only C-103NT.3F was able to amplify 

some of the 12 standards which are encoded by codon AAT at 103, it was then 

decided to design another primer which was called C-103N.3FC which will target the 

prevalent codon AAC for K103N. This new primer was found specific for codon 

AAC after assessing it on all 12 plasmid standards (500 000 DNA copy/µl) in three 

runs. The results are represented by an amplification plot displaying amplification 

curves for all four AAC mutant plasmid standards (MS10-3, MS10-4, MS15-3 and 

MS15-4) in Figure 3.8. 

 

 

  

Stellenbosch University  http://scholar.sun.ac.za



88 

 

 

 

Figure 3.7: Representative amplification plots showing the reactivity of K103N 

specific primers and probes on three (3) plasmid standards. (a). Exp 3: amplification 

curves for the three AAT-K103N standards generated with C-103NT.3F only. (b) Exp 

4: amplification curves generated with a mixture of C-103N.1F and C-103NT.3F. (c) 

Exp 5: amplification plot generated with a mixture of C-103NT.3F, C-103N.1F and 

C-103N.2F. 

(b) Exp 4: Ct 33-36 

(a)Exp 3: Ct 29-31 

(c) Exp 4: Ct 31-33 
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Table 3.9: Threshold cycle (Ct) values from Experiments (Exp) 3, 4 and 5 for testing 

the reactivity of K103N-specific forward primers C-103NT.3F, C-103N.1F and C-

103N.2F on four AAT-K103N plasmid standards at 5x100 DNA copy/µL. 

AAT-

K103N 
Plasmid 

standard 

 

Exp 3 

 

Exp 4 

 

Exp 5 

 

Exp 3 

 

Exp 4 

 

Exp 5 

Ct1 Ct2 Ct3 Ct1 Ct2 Ct3 Ct1 Ct2 Ct3 Ave. Ct Ave. Ct Ave. Ct  

MS3-1 
31.23 

31.23 

28.78 

28.78 

30.26 

30.27 

32.84 

32.85 

36.98 

36.98 

37.95 

37.95 

30.25 

30.26 

36.26 

36.26 

33.06 

33.07 

30.09 

30.09 

35.92 

35.93 

33.19 

33.20 

MS3-2 
31.26 

31.27 

29.40 

29.40 

26.89 

26.88 

32.45 

32.44 

36.38 

36.38 

31.95 

31.96 

28.78 

28.79 

29.80 

29.79 

33.62 

33.63 

29.18 

29.18 

33.59 

33.59 

30.73 

30.74 

MS3-4 
30.62 

30.63 

30.10 

30.11 

27.05 

27.06 

31.48 

31.48 

34.42 

34.41 

32.00 

32.02 

29.45 

29.46 

30.50 

30.48 

33.87 

33.88 

29.26 

29.27 

33.49 

32.64 

31.47 

31.27 

Ct1 – Ct for Run 1; Ct2 – Ct for Run 2; Ct3 – Ct for Run 3; Ave. Ct – Average Ct. 

 

 

 

Figure 3.8: A representative amplification plot displaying amplification curves 

generated with the specific forward primer C-103N.3FC for all four AAC-K103N 

mutant standards.  
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The threshold cycle (Ct) values, for all four AAC-K103N plasmid standards (MS10-

3), MS10-4, MS15-3, and MS15-4), range from 28 to 31 across all three runs with 

each reaction in duplicate. There was no amplification the three reactions of the no-

template controls (NTCs) included. The results are provided in Table 3.10. 

 

 

Table 3.10: Threshold cycle (Ct) values for all K103N-mutant standards encoding 

AAC in the reactivity experiment using new specific forward primer C-103N.3FC. 
AAC-K103N 

Plasmid 

Standards Ct1 Ct2 Ct3 

Average 

Ct 

MS10-3 
 

28.01 27.02 29.64 28.00 
28.19 27.05 29.63 28.29 

MS15-3 
30.20 31.70 29.40 31.06 
30.23 31.69 29.47 30.46 

MS10-4 
28.55 28.02 31.38 29.01 

28.61 27.98 31.37 29.32 

MS15-4 
30.17 30.86 29.08 29.85 

30.18 30.86 29.10 30.05 

Ct1 – Ct for Run 1; Ct2 – Ct for Run 2, Ct3 – Ct for Run 3. 

 

 

3.1.7.3  K103N-specific primer optimization  

The experiments to adjust the K103N-specific primer concentrations using titrations 

of 50 nM, 300 nM and 900 nM concentrations revealed that 900:900 forward primer 

to reverse primer concentration ratio of C-103NT.3F and103/com.C3R is the optimal. 

The titration experiments with C-103N.3FC, the newly designed specific primer, and 

the universal reverse primer 103/com.C3R also revealed that the 900:900 

concentration ratio gives efficient amplification. This is because it yielded the lowest 

Ct values in two independent experiments. The reactions were not contaminated as 

three replicates of no-template control (negative control) were not amplified. The 

threshold cycle results for plasmid standard MS3-4 (AAT) as a template in the 

Experiment1, and MS15-3 (AAC) used in Experiment 1, at 500 000 copy/µl, are 

shown in Table 3.11. 
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Table 3.11: Mean threshold cycle (Ct) values from two primer titration experiments 

using two K103N specific primers individually. 

Forward: Reverse 

[nM] 

Exp 1  

(Run 1-3) [MS3-4] 

Mean Ct  

Exp 2  

(Run 1-3) [MS15-3] 

Mean Ct 

Exp 1 

 

Average 

Ct 

Exp 2 

 

Average 

Ct 

50:50 N/A N/A N/A N/A N/A N/A N/A N/A 

50:300 37.40 N/A N/A N/A 35.70 N/A 37.40 35.70 

50:900 N/A 37.83 N/A 38.99 N/A 37.89 37.83 37.94 

300:50 N/A N/A 36.21 N/A 37.25 N/A 36.21 37.25 

300:300 29.10 32.25 28.10 31.25 33.60 32.15 30.90  32.00 

300:900 27.80 28.70 30.85 32.17 33.15 30.26 29.45 31.22 

900:50 N/A 38.90 N/A N/A N/A 36.10 38.90 36.10 

900:300 27.40 28.14 29.25 29.45 28.10 27.26 28.74 28.82 

900:900 26.50 27.85 29.15 27.85 29.90 26.85 27.90 28.53 

N/A – No amplification; Exp 1 - [C-103NT.3F]: [103/com.C3R];  

Exp 2 - [C-103N.3FC]:[103/com.C3R] 

 

 

3.1.7.4  K103N-specific probe optimization 

The probe titration results from Experiment 1 using the K103N-specific primer C-

103NT.3F with 5x105 DNA copy/µL of MS3-4 (AAT-K103N) as the mutant 

standard; Experiment 2 which used C-103N.3FC as the specific primer with 5x105 

DNA copy/µl MS5-3 (AAC-K103N) standard revealed that a mixture of 1P and 2P at 

a 75:25 ratio offers optimal sequence detection when each probe is at a concentration 

of 300 nM. It was chosen since it yielded a minimum threshold cycle value compared 

to the rest of the probe concentrations used. The reactions were not contaminated as 

three replicates of the no-template control (negative control) were not amplified. The 

results are provided in Table 3.12. 
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Table 3.12: Mean threshold cycle (Ct) values from the probe titration experiments 

after using two K103N specific primers individually. In Experiment 1 C-103NT.3F 

was used on MS3-4 (AAT) and Experiment 2 C-103N.3FC was used on MS15-3 

(AAC).  

[1P+2P]   

nM 

Exp 1 – MS3-4 

Mean Ct  

(Run 1-3) 

Exp 2 – MS15-3 

Mean Ct  

(Run 1-3) 

Exp 1 

Average 

Ct 

Exp  2 

Average 

Ct 

50 31.49 N/A N/A N/A N/A 32.14 31.49 32.14 

100 30.82 31.75 N/A N/A 30.05 N/A 30.09 30.05 

150 29.81 30.55 31.10 29.61 28.85 32.41 30.23 30.61 

200 31.80 33.68 32.00 33.45 27.85 28.80 32.49 30.00 

250 32.45 28.18 31.56 31.45 31.63 27.32 30.95 29.85 

300 31.40 31.50 27.23 30.25 27.55 30.60 29.96 29.80 

N/A – No amplification. 

 

 

3.1.7.5  Evaluation of the discriminatory ability of K103N-SPCR assay  

No cross-reactivity was observed between the K103 wild-types (AAA) and the 

K103N mutants (AAC or AAT) when comparing the Ct values of the three species 

(AAA, AAC, and AAT) in a K103N-specific experiment, with each standard at 5x106 

DNA copy/µl. The results after three runs are represented by the amplification plots in 

Figure 3.9 where the  amplification curves for the K103N-mutant standards encoded 

by AAC are depicted in (b), with mean Ct value of 30.65, whereas the rest of the 

wild-types ranged between 44 and 47 (Table 3.12). Amongst the mutants, the Ct 

values for the AAT mutant standards roughly ranged between 26 and 27, whereas all 

the AAC mutant standards ranged between 30 and 31. The reactions were not 

contaminated as the three replicates for the no-template controls (negative controls) 

were not amplified. The mean Ct values from the three runs of the discriminatory 

ability experiment on all 12 plasmid standards are shown in Table 3.13. 
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Figure 3.9: Amplification plots showing the discriminatory ability of five K103N 

specific primers on all 12 genetically varying standards. (a) Five WT-standards (MS9-

2, MS9-3, MS9-4, MS10-1 & MS10-2) at 5x106 copy/µL. (b) and (c) Seven MUT-

standards (AAC/T) (MS3-1, MS3-2, MS3-4, MS10-3, MS10-4, MS15-3 & MS15-4) 

at 5x106 copy/µL, and 5x103 copy/µL, respectively. 

 

(c) 

(a)

(b) 
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Table 3.13: Mean threshold cycle (Ct) values after assessing the discriminatory 

ability of a mixture of C-103N.3F and C-103NT.3FC on all 12 plasmid standards at 

low (5x103) and high (5x106) DNA copy/µl. 
Plasmid 

standard 
K103/N  

Low copy number 5x10
3
 

 

High copy number 5x10
6
 

5x10
3 

Average 

Ct
 

5x10
6
 

Average 

Ct 

Run 1 

Ct 

Run 2 

Ct 

Run 3 

Ct 

 

Run 3  

Ct 

Run 2  

Ct 

Run 3 

Ct 

MS3-1 AAT 37.58 39.22 38.20 27.80 28.10 29.02 38.00 28.92 

MS3-2 AAT 36.50 36.03 36.20 27.97 29.30 28.60 38.73 28.68 

MS3-4 AAT 38.50 37.90 39.40 28.92 29.78 29.68 38.70 29.44 

MS9-2 AAA N/A N/A N/A 44.90 44.62 45.48 N/A 45.00 

MS9-3 AAA N/A N/A N/A 50.42 48.50 50.78 N/A 49. 90 

MS9-4 AAA N/A N/A N/A 46.98 47.32 47.40 N/A 47.20 

MS10-1 AAA N/A N/A N/A 47.02 46.00 45.98 N/A 46.40 

MS10-2 AAA N/A N/A N/A 48.20 46.54 46.79 N/A 47.19 

MS10-3 AAC 37.95 40.00 38.90 28.65 28.95 29.00 38.95 29.20 

MS10-4 AAC 38.40 37.53 40.97 29.63 30.54 28.70 39.30 29.65 

MS15-3 AAC 38.75 39.30 37.20 29.33 30.70 27.01 38.45 28.52 

MS15-4 AAC 39.12 39.22 40.00 28.94 30.96 27.98 39.46 29.49 
N/A – No amplification. 

 

3.1.7.6  Standard curve for K103N-SPCR assay 

Data obtained from eight runs of the K103N-SPCR assay while generating the 

standard curve using the serial diluted (5x107 to 5x100 DNA copy/µl) AAC-K103N 

mutant standard (MS15-3) is presented in Table 3.14. The reactions were not 

contaminated as the three replicates of no-template controls (negative controls) were 

not amplified. Three 5x100 DNA copy/µl replicates for MS9-3 and MS10-2 as wild-

type controls were not amplified in all eight runs, whereas some of the three replicates 

at 5x106 DNA copy/µl for these controls were amplified with Ct values around those 

of the mutant standard MS15-3 at 5x100 DNA copy/µl concentration.  
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Table 3.14: Threshold cycle (Ct) values after eight runs for constructing K103N- 

SPCR standard curve using mutant standard MS15-3 (AAC).  

N/A – No amplification. Ct 

 

 

The three replicates for 5x100 and 5x106 DNA copy/µl MS10-4 K103N-mutant 

control were amplified with similar efficiency to those of the mutant standard MS15-

3. The K103N-SPCR assay efficiencies and reproducibility results from these eight 

runs are provided in Table 3.15. The resulted slope (m) of -3.44 indicates that 

amplification was 95.30% efficient, with the efficiencies of all eight runs ranging 

from 90.60 to 106.76%. Here, about 50 cycles are required to detect 1 DNA copy of 

MS15-3 

DNA copy/ 

uL 

Ct1 Ct2 Ct3 Ct4 Ct5 Ct6 Ct7 Ct8 
Ave. 

Ct 

5 
5 

 N/A 
 N/A 

 N/A 
 N/A 

49.43 
49.43 

 N/A 
 N/A 

49.81 
48.51 

 N/A 
 N/A 

 N/A 
 N/A 

49.75 
49.73 

49.66 
49.22 

50 
50 

 N/A 
 N/A 

 N/A 
N/A  

44.05 
45.43 

 N/A 
 N/A 

46.20 
46.68 

44.64 
43.69 

 N/A 
 N/A 

46.66 
46.58 

45.39 
45.60 

500 
500 

40.71 
41.96 

41.17 
42.32 

40.02 
40.58 

41.17 
42.32 

43.71 
43.71 

42.00 
41.95 

41.45 
41.45 

44.50 
43.67 

41.84 
42.25 

5 000 
5 000 

36.85 
37.01 

38.99 
38.06 

37.01 
36.01 

38.99 
38.06 

39.00 
39.00 

38.92 
39.05 

40.00 
40.55 

40.05 
40.19 

38.73 
38.49 

50 000 
50 000 

33.86 
34.03 

35.08 
35.24 

34.91 
34.80 

35.08 
35.24 

35.38 
35.00 

36.33 
36.10 

37.77 
37.36 

37.02 
37.89 

35.68 
35.71 

500 000 
500 000 

30.23 
30.05 

31.08 
31.08 

31.19 
32.42 

31.08 
31.08 

32.11 
32.26 

32.98 
33.65 

33.67 
34.13 

34.00 
34.24 

32.04 
32.36 

5 000 000 
5 000 000 

27.02 
26.95 

27.77 
27.33 

27.9 
28.12 

27.77 
27.33 

28.22 
28.57 

29.42 
29.19 

30.31 
30.62 

30.80 
30.80 

28.65 
28.61 

50 000 000 
50 000 000 

 N/A 
 N/A 

24.13 
24.19 

23.79 
25.43 

24.13 
24.19 

24.70 
24.60 

24.92 
24.92 

25.68 
25.52 

25.73 
25.89 

24.73 
24.96 

3 NTCs  N/A N/A N/A N/A N/A N/A N/A N/A N/A 
Wt MS9-3 
(5)  

N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Wt MS9-3 
(5x106)  

N/A N/A 50.90 N/A 47.78 N/A 52.06 N/A 50.25 

WT MS10-2 
(5)  

N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Wt MS10-2 
(5x106)   

N/A N/A 52.56 51.19 48.89 N/A N/A N/A 50.88 

Mut MS10-
4 (5)  

N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Mut MS10-
4 (5x106)   

27.92 28.04 28.05 29.19 28.89 29.66 31.68 29.26 29.09 
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the K103N variant using K103N-specific primer and probe set. The precision which is 

described by the intra- (repeatability) and the inter-assay (reproducibility) run after all 

three assay runs is around 99.88% and 98.90%, respectively. Therefore, this makes 

the K103N-SPCR a highly consistent assay  

(Muller, Stelzl et al. 2004).  

 

Table 3.15: Efficiency and reproducibility data from standard curve experiment using 

K103N-SPCR assay. 

 

 

The average Ct linearly correlated with the mean DNA copy number over the range of 

0log10 to 7log10 mutant and wild-type dilution series. The average standard curve 

representing eight runs for the K103N-SPCR assay generated with the serial dilutions 

(5x107 to 5x100 DNA copy/µl) of MS15-3 K103N-mutant standard is shown in 

Figure 3.10. 

  

 Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Average 

Slope -3.55 3.57 -3.38 -3.45 -3.57 -3.17 -3.21 -3.39 -3.44 
Efficiency 91.32 90.60 97.63 94.77 90.60 106.76 104.90 97.12 95.30 
Y-intercept 48.06 49.10 48.14 51.17 52.15 48.23 49.32 50.57 49.16 
R^2 99.31 99.63 98.50 99.58 99.51 98.66 96.81 99.17 99.88 
Cycles 50.00 55.00 55.00 55.00 55.00 55.00 55.00 55.00  

Reproducibility               98.90 
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Figure 3.10: A plot of standard (std) curve for the K103N-SPCR assay using average 

Ct values of eight runs. Serial dilutions of MS15-3 K103N-mutant plasmid standard 

were used to construct the standard curve. On the x-axis is the mean DNA copy 

number based on logarithmic and on the y-axis is the mean threshold cycle (Ct). The 

squares along the lines represent the concentration of the serial diluted (5x107-5x100 

DNA copy/µl) standard in duplicate. The standard curve forms a straight line over 

eight orders of magnitude. The equation, y = mx +c, defines the linear regression with 

„m‟ representing the slope (-3.4396) which describes the amplification efficiency of 

the assay run and „c‟ as the y-intercept (49.158) indicating the sensitivity or the lower 

detection limit of the assay. R2 represents repeatability or the level of consistency of 

the assay in terms of the closeness of the replicate data to each other.  

 

 

3.1.8 Accuracy of both SPCR assays 

 

3.1.8.1  Accuracy of the total viral copy SPCR assay 

Total viral copy SPCR reactions after three runs for the wild-type/mutant plasmid 

mixture experiment were not contaminated as three replicates for the no-template 

control (NTC - negative control) were not amplified. The three replicates for the 

y = -3.4396x + 49.158 
R² = 0.9988 

 C
t 

Logarithmic concentration 

K103N-SPCR Average std 

K103N-SPCR assay Std
curve
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consensus/subtype C wild-type control containing 5x100 and 5x107 DNA copy/µl of 

MS9-3 were amplified with the approximately same efficiency as the 5x100 and 5x107 

DNA copy/µl of MS15-3 K103N-mutant plasmid standard in all three assay runs. The 

mean Ct values for the standard curve are 39 and 16 at concentrations of 5 x 100 and 5 

x 107 DNA copy/µl, respectively (data not supplied). The average results of all three 

runs are represented in the amplification plot in Figure 3.11.  

 

 

 

Figure 3.11: A representative amplification plot for Run 2 with Ct values of the wild-

type/mutant plasmid mixture experiment in the total viral copy SPCR reaction. The 

total copy which is 5 x 106-0.5 DNA copy/µl of MS15-3 K103N-mutant plus 5 x 107 

DNA copy/µl of MS10-2 K103-wild-type resulted in a mean threshold cycle of ~17.  
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The Ct value of one of three runs (Run 2) for the total viral copy DNA (mutant plus 

wild-type) at all concentrations is approximately 17. This proves the accuracy of the 

total viral copy SPCR assay as the average concentration is in the order of 5x107 DNA 

copy/µl. However, there is overestimation as the quantity of the total viral copy 

detected by the assay is not the same as the input. Data is provided in Table 3.16.  

This could be due to pipetting errors, and this is reason why the average Ct is ~17 

instead of 16 as in the pure standard curve for the total copy SPCR assay. 

 

 

Table 3.16: Data of the results from the wild-type/mutant plasmid mixture 

experiment in the total copy SPCR reaction and the K103N-SPCR reaction.  

Total DNA Ct1 Ct2 Ct3 
Average 

Ct 
Ave. Qty 

copies/ul     Detected 

55 000 000 16.83 17.19 15.70 16.57 99 100 000 
55 000 000 16.85 17.22 15.70 16.59 99 000 000 
50 500 000 17.12 17.46 15.70 16.76 78 800 000 
50 500 000 17.10 17.43 15.90 16.81 73 800 000 
50 050 000 17.03 17.46 15.80 16.76 83 300 000 
50 050 000 17.11 17.39 15.80 16.77 85 800 000 
50 005 000 16.86 17.34 15.60 16.60 85 400 000 
50 005 000 16.99 17.36 15.70 16.68 82 300 000 
50 000 500 17.04 17.41 15.90 16.78 78 500 000 
50 000 500 16.97 17.36 15.80 16.71 81 700 000 
50 000 050 17.16 17.55 15.90 16.87 74 700 000 
50 000 050 17.16 17.53 15.80 16.83 73 600 000 
50 000 005 17.14 17.46 15.80 16.80 78 400 000 
50 000 005 17.17 17.57 15.80 16.85 83 100 000 
50 000 000.5 17.09 17.57 15.90 16.85 78 000 000 
50 000 000.5 17.08 17.53 15.80 16.80 80 200 000 

Ct1 – Ct for Run 1: 26/04/10; Ct2 – Ct for Run 2: 27-04-10; Ct3 – Ct for Run 3: 05-08-10; Ave. Qty 

detected – average quantity of K103-wildtype MS10-2 plus K103N-mutant MS15-3 DNA copies/5 uL. 

 

 

3.1.8.2  Accuracy of the K103N-SPCR assay 

K103N-SPCR reactions for the wild-type/mutant plasmid mixture experiment were 

not contaminated as three replicates for the no-template controls (NTCs - negative 

controls) were not amplified. Additionally, the three replicates for the 

consensus/subtype C wild-type control containing 5x100 DNA copy/µl of MS9-3 were 
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not amplified. However, the 5x107 DNA copy/µl was amplified with the 

approximately same efficiency (Mean Ct of 49) as the 5x100 DNA copy/µl MS15-3 

plasmid standard in all three assay runs. The results of all three runs using the K103N-

SPCR assay in the plasmid mixture experiment are plotted together with the pure 

K103N-SPCR standard curve (with MS15-3 as the standard) in Figure 3.12. Ct values 

for these plasmid mixture runs comply with or are similar to those of the pure K103N 

standard curve at each concentration point, especially from 6log10 (5x106 DNA 

copy/µl) to1log10 (5x101 DNA copy/µl). This proves the accuracy of the K103N-

SPCR assay since the addition of 107 DNA copy/µl of a wild-type standard MS10-2 to 

the serially diluted MS15-3 K103N-mutant did not change the K103N standard curve 

substantially (Paredes, Marconi et al. 2007).  

 

 

 

Figure 3.12: A representative of the accuracy of K103N-SPCR assay by comparing 

the three regression lines (Run 1-3) from three plasmid mixture runs with the K103N-

SPCR assay standard curve using pure K103N-mutant standard. The standard curve 

was generated with serial dilutions (5x107 to 5x100 DNA copy/µl) of pure MS15-3 

K103N-mutant standard.  The regression lines for Run 1-3 were generated with serial 

dilutions (5x106-5x100 DNA copy/µl) of MS15-3 mutant plasmid standard plus a 

background of 5x106 DNA copy/µl of MS10-2 wildtype plasmid standard.  
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However, the plasmid mixture Ct values at concentrations of 0log10 (1 copy/µl) to 

0.5log10 (0.5 copy/µl) do comply with those of their counterparts in the pure K103N 

standard curve experiment. This shows poor accuracy of the assay as concentration 

decreases to lower than 5x100 to1 DNA copy/µl. Pipetting errors as well as 

contamination by the wild-type plasmid MS10-2 could be accountable for that 

because higher copies (quantity) more than the input MS15-3 mutant DNA at these 

concentrations were detected. The data for the wild-type/mutant plasmid mixture 

experiment using the K103N-SPCR assay are shown in Table 3.17.  

 

 

Table 3.17: Data of results for the wild-type/mutant plasmid mixture experiment with 

5x106-0.5 DNA copy/µl of MS15-3 K103N-Mut plasmid DNA added to a background 

of 5x106 DNA copy/µl MS10-2 K103-Wt plasmid DNA in the K103N-SPCR reaction.  

MS15-3 

copies/ul 
Ct1 Ct2 Ct3 

Average  
Ct 

Ave. Qty 

Detected 

      

5 000 000 27.43 28.67 29.10 28.40 4 386 667 
5 000 000 27.31 28.66 28.90 28.29 4 710 000 
500 000 32.22 33.96 33.00 33.06 223 333 
500 000 31.33 32.76 33.20 32.43 329 667 
50 000 33.94 36.13 37.00 35.69 43 967 
50 000 34.69 36.20 36.60 35.83 35 067 
5 000 37.31 39.42 39.70 38.81 5 343 
5 000 39.20 39.57 38.80 39.19 4 123 
500 41.13 45.43 40.60 42.39 1 051 
500 43.33 46.04 41.70 43.69 505 
50 44.77 46.04 43.90 44.90 123 
50 44.17 45.91 42.90 44.33 214 
5 42.79 44.94 42.60 43.44 301 
5 45.78 45.91 42.80 44.83 221 
0.5 42.65 45.43 42.80 43.63 282 
0.5 48.12 47.63 44.10 46.62 85 

Ct1 – Ct for Run 1: 26-04-2010; Ct2 – Ct for Run 2: 27-04-2010; Ct3 – Ct for Run 3: 05-08-2010; Ave. 

Qty – Average quantity of MS15-3 DNA copies detected per 5 uL. 
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3.1.8.3  The assay cut-off and mutation detection limit 

A SPCR assay cut-off that differentiates the K103N-mutant and the K103-wild-type 

specimens was defined as the difference between the threshold cycle (Ct) of the total 

viral copy and the K103N-SPCR assay. This difference which is called delta Ct (ΔCt) 

ranges from 8.23 to 10.33 across the whole linear dymamic range and is provided in 

Table 3.18. Both the minimum (8.23) and the maximum (10.33) ΔCt were used as the 

assay cut-off. The minimum was chosen in order to avoid or exclude false positives, 

in other words it is used to buffer against non-specificity. In that case, any specimen 

with a delta Ct of 8.23 or lower indicates the presence of a K103N mutant virus. The 

maximum ΔCt of 10.33 was used as comparison because it is similar to a cut-off 

determined in a study by Johnson et al (2005) from which most of the primers and 

probes used in this study were taken. Johnson obtained a cut-off of 10.5 (Johnson, Li 

et al. 2005).  

 

A detection limit of K103N variants by the SPCR assays was calculated from the 

results in Table 3.16 and Table 3.17 using the formule from Paredes et al, 2007:  

% of K103N detection limit = [(detected quantity of K103N variants by K103N-

SPCR assay when MS15-3 input is 5x103 copy/µL)/(detected quantity of total viral 

copies by total copy SPCR assay when MS15-3 input is 50 005000 copy/µL)] x 100. 

It resulted in a detection limit of 0.01%. These concentrations were chosen because 

they are the lowest concentrations at which the standard curve of pure mutant MS15-3 

and the regression lines for wildtype/mutant plasmid mixture experiment showed to 

comply (Figure 3.12).  
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Table 3.18: Data of results for the total copy SPCR and the K103N-SPCR assay 

standard curves using a common K103N-mutant MS15-3 standard to determine the 

ΔCt assay cut-off.    

K103N-SPCR Assay Total copy SPCR Assay 

Mean (CtTotal -CtK103N) 
MS15-3 DNA 

copy/µl 8 runs 
MS15-3 DNA 

copy/µl 8 runs 

xLog10 Mean Ct xLog10 Mean Ct ΔCt 

0 49.00 0 39.90 9.10 
0 49.00 0 39.89 9.11 
1 45.30 1 35.18 10.12 
1 45.30 1 34.97 10.33 
2 42.18 2 32.99 9.19 
2 42.20 2 32.99 9.21 
3 38.01 3 29.78 8.23 
3 38.01 3 29.57 8.44 
4 34.91 4 26.54 8.37 
4 34.80 4 26.51 8.29 
5 31.85 5 22.99 8.86 
5 31.85 5 23.00 8.85 
6 27.90 6 19.36 8.54 
6 28.12 6 19.41 8.71 
7 24.00 7 15.61 8.39 
7 24.00 7 15.68 8.32 

 

 

3.1.9 Detection of K103N minor variants in patient samples 

The assay cut-off of 8.23 detected 10 (25.64%) patients with the K103N resistance 

variants in the HIV-1 reverse transcriptase (one could not be amplified) whereas the 

cut-off of 10.33 detected 13 (33.33%), out of the 39 patients using both the total copy 

SPCR and the K103N-SPCR assays. Since genotyping detected K103N resistance 

variants in only six (60%) patients out of 10 or 13 detected by the SPCR assays, 

therefore it missed 40% (based on a cut-off of 8.23) or 53.85% (based on a cut-off of 

10.33). Thus, these missed proportions are classified as the minor variants.  

 

In contrast to genotyping, SPCR assays could not detect the K103N variants in 

patients STV289783 when using either 8.23 or 10.33 assay cut-off. However, this 

patient yielded some of the highest ∆Ct values compared to a majority of the patients. 

It could be a false positive detected by the population-based genotyping. All three 
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replicates of the no-template controls (NTCs) in the three runs were not amplified, 

showing that all the reactions were not contaminated. Data of the results after three 

runs of detecting the K103N minor variants in 40 previously genotyped (population 

sequencing) patient samples using the optimized and validated total copy SPCR and 

K103N-SPCR assays are shown in Table 3.19. 
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Table 3.19: Data from three runs after detecting minor resistance variants of K103N 

in 40 patient samples using SPCR assay cut-offs of 8.23 and 10.33. 

Ct1- Ct for Run 1; Ct2 – Ct for Run 2; Ct3 – Ct for Run 3. 

STV # 

K103N 

Genotyping 

Results 

 

Mean 

ΔCt1 

 

Mean 

ΔCt2 

 

Mean 

ΔCt3 

 

Average 

ΔCt 

ΔCt 8.23 

Cut-off 

K103N 

ΔCt 10.33 

Cut-off 

K103N 

297883 NONE 13.12 14.21 13.18 13.50    
294855 NONE 12.69 13.41 12.83 12.98    
294773 NONE 13.84 11.14 16.33 13.77    
294771 NONE 10.20 11.03 9.71 10.31  Positive 
293935 NONE  11.34 11.19 11.64 11.39    
290766 NONE 11.98 12.73 12.47 12.39    
288044 NONE 9.61 13.90 13.80 12.44    
286813 NONE 12.53 15.11 18.02 15.22    
286808 NONE 6.53 6.65 6.29 6. 49 Positive Positive 
286807 NONE 11.23 13.67 12.82 12.57    
286803 NONE 7.99 8.14 7.67 7.93 Positive Positive 
284540 NONE 15.20 17.80 17.61 16.87    
288667 NONE 20.63 17.70 22.45 20.26    
288668 NONE 12.19 13.57 16.24 14.00    
291336 NONE 11.14 12.32 18.90 14.12    
291337 NONE N/A N/A N/A N/A     
294770 NONE 16.80 16.64 14.14 15.86    
296155 NONE 8.63 9.14 11.24 9.67  Positive 
285739 K103N 2.77 0.43 0.35 1.18 P ositive Positive 
288042 K103N 3.94 4.62 1.51 3.36 Positive Positive 
288043 K103N 4.50 4.22 3.11 3.94 Positive Positive 
289783 K103N 12.87 13.65 12.79 13.10    
290767 K103N 2.54 0.11 0.29 0.98 Positive Positive 
292197 K103N 6.75 6.78 5.39 6.31 Positive Positive 
294767 K103N 5.19 3.75 4.22 4.39 Positive Positive 
284246 NONE 21.81 10.31 N/A 16.06    
288041 NONE 19.12 23.76 N/A 21.44    
275180 NONE 10.81 11.50 10.27 10.86    
285742 NONE 15.39 16.69 14.84 15.64    
292196 NONE 8.54 9.71 8.67 8.97  Positive 
286812 K103N 0.78 14.29 2.48 5.85 Positive Positive 
275181 NONE 11.66 12.23 10.32 11.40    
296685 NONE 10.91 12.48 10.61 11.33    
289781 NONE 10.51 11.17 10.40 10.69    
294769 NONE 10.97 11.20 10.94 11.04    
293934 NONE 20.53 30.38 25.09 25.33    
294772 NONE 4.71 2.86 14.99 7.52 Positive Positive 
295251 NONE 12.14 14.63 14.35 13.71    
293936 NONE 12.10 11.60 13.78 12.49    
297431 NONE 11.26 11.92 10.74 11.31    
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Chapter 4  
 

4.1 Discussion 

 
4.1.4 The study findings 

This study presents the development sensitive selective real-time polymerase chain 

reaction (SPCR) assays for the detection and quantification K103N minor resistance 

variants in 39 previously genotyped patients infected with HIV-1 subtype C. The 

prevalence of K103N minor variants ranges from 25.64% (with an assay cut-of of ΔCt 

8.23) to 33.33% (with a cut-off of ΔCt 10.33) with a detection limit of 0.01%. The 

prevalence is lower than the 40-43% observed previously in the subtype C or non-

subtype B patients with the lowest detection limit of 0.2% (Johnson, Li et al. 2005; 

Palmer, Boltz et al. 2006; Balduin, Oette et al. 2009). Balduin and Johnson used the 

TaqMan fluorescence probes, whereas Palmer used the SYBR Green fluorescence. In 

this study, two K103N-specific primers were employed with only one derived from 

Johnson‟s study (in contrary to three specific primers). Owing to the discriminatory 

ability and reliability of K103N-specific primers, both SPCR assays detected these 

subpopulations in 25-33% of the patients. Additionally, the prevalence the major 

detected by genotyping and the minor K103N variants is equal. The sensitivity 

(0.01%) was directly proportional to the discriminatory ability of the K103N-specific 

primers because both assay cut-offs were able to rule out a false positive which was 

previously detected by genotyping. This sample (STV 289783) had considerable high 

ΔCt‟s relative to the minimum and maximum cut-offs. They ranged from 12.8 to 

13.10 after three runs. Sample STV 291337 could not be amplified by either the total 

copy assay or the K103N-specific SPCR assay.  

The plasmid constructs chosen as the standards resulted in highly reproducible total 

viral copy and K103N-SPCR assays with better amplification efficiencies. The 

annealing of the total copy primers to the highly conserved sites of the consensus C 

yielded accurate results, even though a forward primer had a single mismatch near the 

5‟ end.  Additional mismatch at this position does not have a significant effect on the 

primer binding, unlike near the 3‟end (Bergroth, Sonnerborg et al. 2005). The same 

principle as in previous studies was applied regarding primer design and the use of 

TaqMan technology instead of SYBR green technology (Hance, Lemiale et al. 2001; 
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Bergroth, Sonnerborg et al. 2005; Johnson, Li et al. 2005). It is about incorporation of 

a mismatch at the 3‟end of specific primers, and the use of TaqMan probes which are 

labelled with a fluorescent dye because they are more specific. In contrast, the SYBR 

Green technology is less specific since it detects all double-stranded DNA in the 

reaction. The presence of a single mismatch in the common mutant standard (MS15-

3) encoding AAC (K103N) in comparison to absence of mismatches in the other 

mutant standards encoding AAT (K103N) did not affect amplification efficiency or 

the binding of specific primers. A single intentional mismatch introduced at the 3‟end 

position of specific primers reduced the inaccuracy of the K103N-SPCR assay since 

polymorphisms are prevalent at the binding site for K103N specific primers as shown 

by data from large population scale in Appendix B (multiple alignment of all 2008 

subtype C HIV-1 RT sequences and primers and probes used in this study). 

 

 

4.1.2 Detection of HIV-1 K103N minor variants in South Africa 

There is a growing health concern that intrapartum single-dose nevirapine which 

decreases mother-to-child transmission of human immunodeficiency virus type 1 

(HIV-1) causes the development of nevirapine resistance mutations (e.g, K103N, 

Y181C, and G190A) in 20%-44% of women, especially in developing countries 

(Eshleman, Mracna et al. 2001; Eshleman and Jackson 2002; Abrams 2004). Viral 

populations harbouring these variants can be found in undetectable levels over time 

during therapy or in treatment-naive patients. These findings elevate the need to 

comprehend the exact clinical importance of K103N minor populations. Additionally, 

global reports suggesting that these minor populations contribute to virologic failure, 

and that they may cause earlier therapy failure, also led to the development of real-

time PCR assays for the detection of quantification these minor populations (Johnson, 

Li et al. 2005). SPCR assays are not commercially available, but they are only being 

used in research. The cost of implementing this type of assay for routine drug 

resistance genotyping is equivalent to a third of the cost of the conventional sequence 

based genotyping. This is because SPCR is faster and requires less manipulation of 

data. 
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In South Africa, sensitive real-time PCR or allele-specific real-time PCR assays were 

developed to detect and quantify K103N minor resistant variants in SD-NVP-exposed 

and unexposed women and their babies infected with HIV-1 subtype C (Johnson, Li et 

al. 2005; Loubser, Balfe et al. 2006; Palmer, Boltz et al. 2006; Coovadia, Hunt et al. 

2009; Martinson, Morris et al. 2009; Wind-Rotolo, Durand et al. 2009). Johnson and 

colleagues, using their developed K103N real-time fluorescence PCR assay, detected 

40% K103N out of 40 South African women infected with HIV-1 subtype C at 6-36 

weeks postpartum administration of SD-NVP. These samples had no detectable NVP 

resistant mutations by the conventional sequence analysis, and their limit of the 

mutation detection was 0.2% (Johnson, Li et al. 2005).  

 

Using the ASPCR assay, Loubser and colleagues detected 87.1% (27/31 of RNA 

samples) and 52.3% (23/44 of DNA samples) K103N resistance mutation in 67 HIV-

1-infected women after six weeks of using SD-NVP. It decayed over time with only 

with only 65.4%, 38.9%, and 11.3%  detected in the RNA samples at 3, 7, and 12 

months respectively. A major decline was noticed in the DNA samples with only 

4.2% detected at 12 months. A relative quantitation instead of a standard curve was 

used (Loubser, Balfe et al. 2006). To assess the persistence and rates of decay of the 

K103N resistance variants in South African women infected with HIV-1 subtype C 

after SD-NVP, Palmer and colleagues used a sensitive allele-specific RT-PCR assay. 

They detected K103N variants in 53% (8/15) of the samples that had no detectable 

NVP-resistance mutations by standard genotype analysis after 12 months following 

SD-NVP therapy. The detected mutant virus populations ranged from 0.7-21.6%.  In a 

group that had no detectable NVP-resistance mutations by genotyping at two months, 

ASPCR detected K103N in 43% (3/7) of the samples, with the mutant virus 

populations ranging from 0.2-15.3% (Palmer, Boltz et al. 2006).  

 

Unlike 15.1% of women without minor K103N mutations, 60.9% of women with 

these mutations detected by ASPCR before treatment did not experience viral 

suppression or viral rebound with subsequent nevirapine treatment (Coovadia, Hunt et 

al. 2009).  Almost all NVP-exposed and unexposed women with K103N at baseline 

experienced no viral suppression or viral rebound with subsequent antiretroviral 

therapy containing NVP or other NNRTIs (Coovadia, Hunt et al. 2009; Martinson, 

Morris et al. 2009). Moreover, 25% (3/15) of NVP-exposed women with K103N 
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minor variants transmitted HIV-1 to their infants, compared to only 12.5% (1/8) of 

NVP-unexposed women without K103N (Martinson, Morris et al. 2009). Overall, 

K103N minor resistant variants or the persisting drug-resistant mutants may affect 

antiretroviral regimens containing NNRTIs in subsequent pregnancies. 

 

 

4.1.3 Detection of HIV-1 minor K103N drug-resistant variants globally  

Globally, studies developing real-time PCR assays using either the probe-based 5‟ 

nuclease or the non-probe based SYBR® Green I dye chemistry to detect and/or 

quantify HIV-1 minor K103N drug-resistant variants are significantly increasing. 

These assays are referred to as selective/specific real-time PCR (SPCR) or allele-

specific real-time PCR (ASPCR) (Hance, Lemiale et al. 2001; Lecossier, Shulman et 

al. 2005; Metzner, Rauch et al. 2005; Johnson, Li et al. 2007; Church, Towler et al. 

2008; Johnson, Li et al. 2008; Rowley, Boutwell et al. 2008; Balduin, Oette et al. 

2009; Metzner, Giulieri et al. 2009). A widespread interest in understanding the 

clinical importance of K103N minor variants, and earlier findings that these variants 

are associated with reduced treatment efficacy have been the driving force behind the 

study (Balotta 2000; Aleman 2002). Additionally, K103N mutation develops more 

rapidly than most other resistance mutations under conditions of incomplete viral 

suppression. Non-nucleoside reverse transcriptase inhibitors (NNRTIs) have low 

genetic barrier. Therefore, they induce the highest level of resistance, since a single 

mutation such as K103N causes subsequent treatment failure with drugs belonging to 

this class (Schuurman, Demeter et al. 1999; Schuurman, Brambilla et al. 2002; 

Balduin, Oette et al. 2009). K103N is highly clinically relevant because a majority of 

HIV-1 patients are treated with nevirapine and efavirenz. K103N minorities were 

detected in 20.1% of 17 patients, with 40.6% in non-B subtypes and 15.0% in subtype 

B. Balduin and co-workers discovered that 24% of these patients failed NNRTI 

therapy after 12 weeks, in contrast with 15% of 67 patients without minorities 

(Balduin, Oette et al. 2009). Metzner and colleagues detected 10.2% (10/49) and 7.4% 

(8/109) prevalence for the K103N minorities in treatment-naïve subtype B patients 

(sero-converters), with mutant populations ranging from 0.01-25% (Metzner, Rauch 

et al. 2005; Metzner 2010). Johnson and colleagues detected K103N minor 

populations (ranging from 0.001-11%) in 27% (81/202) and 4% (8/205) of drug-naïve 
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subtype B patients. A standard curve was used, and the cut-off was defined similar to 

this study (Johnson, Li et al. 2007; Johnson, Li et al. 2008).  

 

The findings in most of these studies proved that a higher risk of NNRTI treatment 

failure as a result of K103N minor variants in patients or women receiving 

intrapartum single-dose nevirapine (Balduin, Oette et al. 2009). These subpopulations 

can rapidly replace the wild-type virus and become the major virus population and 

subsequently cause treatment failure in treatment-naive patients who receive 

antiretroviral therapy regimens with a low genetic resistance barrier (Metzner, Rauch 

et al. 2005; Metzner, Giulieri et al. 2009).  

 

The disadvantages of real-time PCR assays include the polymorphism in HIV-1 

sequences, and that they are unable to link mutations other than what the assay is 

targeting. Other more sensitive assays, such as the parallel allele-specific sequencing 

(PASS), are able to sequece all the virus sequences per sample and report on the 

resistance mutations present, but they are very expensive and require special expertise 

(Palmer, Kearney et al. 2005; Cai, Chen et al. 2007). Several studies using this 

technology revealed that drug-resistant minor variants, especially those encoding 

resistance to NNRTIs, detected in treatment-naïve and treatment-experienced patients 

are likely to cause subsequent treatment failure (Hirsch, Gunthard et al. 2008). 

 

 

4.1.4 Quality control issues 

A thorough detection and assessing of the associated mutations is increasingly 

imperative since all antiretroviral drugs select for resistance (Daar 2007; Johnson, Li 

et al. 2008). However quality control trial or technical quality for HIV-1 drug 

resistance testing needs to be improved, especially for the detection of minor species. 

This testing is challenging as a result of great sequence variability in the HIV-1 

genome. The high degree of genetic variability of HIV-1 makes it difficult to design a 

universal quantification real-time PCR assay for the detection of all the group-M 

HIV-1 subtypes with a higher specificity, sensitivity and reproducibility (Mackay 

2007; Boltz, Maldarelli et al. 2010). These nucleotide polymorphisms in the 

sequence-specific primer binding site cause primer-template mismatch which in turn 

results in underestimation or overestimation of drug resistant variants (Bergroth, 
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Sonnerborg et al. 2005; Palmer, Boltz et al. 2006; Palmer, Boltz et al. 2006; Mackay 

2007; Paredes, Marconi et al. 2007; Rowley, Boutwell et al. 2008). This non-specific 

binding compensates the accuracy of SPCR assays especially in detecting minor 

variants. To eliminate this problem, nested PCR products are used as templates in the 

SPCR assays to reduce non-specificity and contamination. Additionally, 

polymorphisim-specific primers are now designed by including intentional nucleotide 

mismatches (e.g., wobble bases) at positions -1 to -3 of the 3‟ end to eliminate non-

specificity (Rowley, Boutwell et al. 2008). Another modification is the incorporation 

of degenerate nucleotide bases at the positions where there is great variation or 

polymorphism, for instance, among sequences of subtypes B or C, consensus B or C, 

and HIV-1 HXB2 as the background sequence (Mackay 2007). Recently Boltz and 

colleagues advise that the use of a library of primers and standards based on the 

patients‟ HIV-1 concensus sequences can help eliminate the inaccuracies in allele-

specific PCR assays as a result of HIV-1 genetic variations (Boltz, Maldarelli et al. 

2010). 

 

Despite the high-throughput and faster turn-around time of real-time PCR-based 

assays, issues of sensitivity and specificity are problematic in detecting and 

characterizing viral pathogens accurately. The diversity of HIV is making it difficult 

for scientists to design more sensitive and more specific SPCR assays that can reliably 

detect a broad spectrum of viral quasispecies. This also limits the use on commercial 

assays (Mackay, Arden et al. 2002; Mackay 2004; Radonic, Thulke et al. 2004). 

Quantification of specimens of poor quality due to handling and storage is another 

problem real-time PCR assays are faced with (Mackay, Arden et al. 2002; Mackay 

2004; Radonic, Thulke et al. 2004; Bergroth, Ekici et al. 2009). 

 

A possible limitation to this study is that these newly developed SPCR assays were 

never tested directly on patient RNA samples or extracted proviral DNA to detect 

K103N. In future this can be evaluated as an ongoing study. But in the case of RNA, 

the RT step has to be carried out in order to make cDNA, and a pre-amplification of 

this in the pre-nested and nested PCR is essential in order to generate the RT fragment 

which can then be used as a template for SPCR assays. The advantages of using the 

nested PCR product is that they increase the specificity and sensitivity of the SPCR 

assays. The disadvantage is many steps prior to SPCR assay which involve a lot of 
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opening the tube which introduces contamination, and increases Taq polymerase 

error. In the case of extracted proviral DNA being used a template will results in low 

amplification rate because typically, HIV DNA copy number is low in the CD4 cells. 

Therefore, a pre-amplification is necessary to increase the DNA copy number. 

 

4.2 Conclusion 

 

In conclusion, the study successfully developed highly sensitive and reproducible 

SPCR assays for the detection and quantification of K103N resistance variants in the 

HIV-1 RT gene when using nested PCR products as templates. The assays achieved 

sensitivities of less than 1 DNA copy per reaction for the K103N resistance mutation. 

The detection of an additional 40-53.85% of the patients with these resistant 

subpopulations by both SPCR assays, which was missed by genotyping, proves this. 

When taken into account that genotyping is still considered the standard-of-care to 

monitor HIV drug resistance, the study findings that these newly developed SPCR 

assays were able to detect K103N resistant variants in 7 out 8 K103N-positive patient 

samples previously identified by genotyping supports their specificity, reliability and 

sensitivity. Therefore, these assays could be used on a large spectrum of clinical 

samples in a laboratory when validated and optimized for routine diagnostic use.  
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List of Addendums 
 

Appendix A 
 
Equipments, reagents and software packages used in this study are in Table 1-3. 

 

Table 1: Equipment used in this study. 

Equipment Supplier and location 

7900HT Fast Real-Time PCR system 
Applied Biosystems, Foster City, California, 

USA 

ABI prism® 310 Genetic Analyzer 
Applied Biosystems, Foster City, California, 

USA 

Centrifuge 5417C Eppendorf, New York, USA 

GeneAMP® 9700 PCR system 
Applied Biosystems, Foster City, California, 

USA 

Haake L (water bath) LabX, California, USA 

Labcon® shaking incubator Labcon Ltd., Krugersdorp, South Africa 

Nanodrop™ ND-1000  NanoDrop Technologies Inc., Delaware, USA 

 

 

Table 2: Commercial reagents and chemicals used this study. 

Product Company Location Catalogue 

Number 

1 kb DNA ladder Promega Corporation Madison, Wisconsin, 

USA 

G5711 

Access RT-PCR 

system 

Promega Corporation Madison, Wisconsin, 

USA 

A1250 

Ampicillin Invitrogen Corporation Paisley, UK 11593-027 

Bacteriological Agar Whitehead Scientific Cape Town, South 

Africa 

1800 
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BigDye™ Terminator 

v3.1 Cycle Sequencing 

Mix  

Applied Biosystems Foster City, 

California, USA 

4337455 

Blue/Orange 6X 

Loading Dye  

Promega Corporation Madison, Wisconsin, 

USA 

G190A 

EcoRI Promega Corporation Madison, Wisconsin, 

USA 

R6011 

Ethidium bromide Promega Corporation Madison, Wisconsin, 

USA 

H5041 

Ethylenediamine Tetra 

Acetic Acid (EDTA) 

Sigma-Aldrich Saint-Louis, USA L4509 

GoTaq® Flexi DNA 

Polymerase  

Promega Corporation Madison, Wisconsin, 

USA 

M8305 

Glycerol  Merck Darmstadt, Germany 28456 

Half-dye Buffer  Bioline USA Inc Randolph, Miami, 

USA 

BIO-36025 

Isopropyl-β-D-

thiogalactopyranosid 

(IPTG) 

Promega Corporation Madison, Wisconsin, 

USA 

V3951 

Luria-Bertani (LB) Fluka Biochemika,  Buchs, Switzerland 61748 

Molecular grade 

agarose 

Whitehead Scientific 

(Pty) Ltd.  

Burgos, Spain D1-LE 

Nuclease-free water Promega Corporation Madison, Wisconsin, 

USA 

P1193 

pGEM®-T Easy 

Vector system II 

Promega Corporation Madison, Wisconsin, 

USA 

A1380 

PureYield™ Plasmid 

Midiprep system,  

Promega Corporation Madison, Wisconsin, 

USA 

A2495 

QIAamp® 

UltraSens™ Virus Kit 

Qiagen GmbH Hilden, Germany 53706 

QIAprep® Spin 

Miniprep Kit  

Qiagen GmbH Hilden, Germany 27106 
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QIAquick® PCR 

Purification Kit  

Qiagen GmbG Hilden, Germany 28106 

QuikChange® 

Lightning Site-

Directed Mutagenesis 

Kit  

Stratagene La Jolla, Canada 210519 

RE 10X Buffer H Promega Corporation Madison, Wisconsin, 

USA 

R6011 

SOC medium Sigma-Aldrich Saint-Louis, USA S1797-

100ML 

TaqMan® Gene 

Expression Master 

Mix 

Applied Biosystems Foster City, 

California, USA 

4369514 

Tris hydrochloride Roche Berlin, Germany 708976 

X-Galactosidase (X-

Gal) 

Promega Corporation Madison, Wisconsin, 

USA 

V3941 

 

 

Table 3: A list of software packages used in this study. 

Program Version Company/reference 

BioEdit Sequence Alignment Editor 7.0.9.0 (Hall 1999) 

Clustal X 1.81.22 (Thompson© et al., 1997) 

Geneious Pro 4.5.5 Biomatters Ltd., Auckland, New 

Zealand. (http://www.geneious.com/) 

SDS©  2.3 Applied Biosystems, Foster city, 

California, USA 

Sequencher 4.8 Gene Codes, Ann Arbor, Miami, USA 

GeneSnap  image acquisition   4.0.0 Synoptics Ltd., Cambridge, UK 

QuikChange® Primer Design 

Program  

 Stratagene, La Jolla, USA 
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Appendix B 
 
 
Multiple alignments of all 2008 HIV-1 RT sequences and consensus C: This is a part 

of the generated multiple sequence alignments of the all 2008 subtype C HIV-1 RT 

sequences from the Los Alamos HIV database. They were generated with ClustalX 

and viewed with the BioEdit software. The sequences were 494 in total. The coloured 

bars (green, black, blue and red) represent the sequence similarities and identities. The 

regions without the bars are diverse.  
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The alignments continue in the next page... 

 

ComFWD  
[RT = 258-284] 

 

K103N-sp rev primers 
[RT = 288-309]  

 

1P/2P [RT = 332-365] 
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The alignments end here. 
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Appendix C 

 

Multiple alignments of plasmid standards, SPCR primers and probes: This is part of 

the multiple alignment of all primers and probes, pGEM® T-Easy plasmids, with 

Consensus C and HIV-1 HXB2 as background sequences, showing the mismatches 

and degenerate bases incorporated in the nucleotide sequences while designing the 

specific primers when compared to the HIV-1 HXB2.  

 
The alignments continue in the next page...
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The alignments end here. 
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