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Abstract 

In this computational study we investigate the ability of various neutral R-AuI-NHC  

(NHC = N-heterocyclic carbene) complexes [R = H, CH3, Cl, OH] to form hydrogen bonds with the 

amphiprotic binary hydrides NH3, H2O and HF. Optimised geometries of the adducts calculated at 

various levels of theory all exhibit Au···HX hydrogen bonds. In adducts of complexes containing NHC 

ligands with -N–H units (NH)carbene···XH interactions also exist, yielding hydrogen-bonded rings with 

graph-set notation R2
2(6) that correspond to pseudo chelates with 2C,H coordination. AIM analysis at 

the MP2/aug-cc-pVTZ-pp level of theory indicates that the (NH)carbene···XH hydrogen bonds are 

generally stronger than the Au···HX interactions, except for those involving HF. The Au···HX 

interactions vary with the Lewis basicity of the Au(I) centre as a result of the nature of the R ligand, 

while  the (NH)carbene···XH hydrogen bonds are unaffected by R. Energy Decomposition Analysis at the 

BP86/TZP level of theory identifies the origin of this difference as the greater component of polarisation 

involved in Au···HX interactions. Replacing the (N)Hs with methyl groups prevents formation of a 

strong (NH)carbene···XH interaction, thus reducing the overall stabilisation of the adducts. Nevertheless, 

the Au···H interactions remain largely unchanged and are strong enough to sustain the hydrogen-

bonded complexes, although weak C–H···X interactions are often also present.  
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Introduction 

In 1993, Kazarian and coworkers [1] posed the question “Is Intermolecular Hydrogen-Bonding 

to Uncharged Metal Centres of Organometallic Compounds Widespread in Solution?” and 

considered the examples of Co, Rh and Ir. They pointed out that the protonation of a metal 

centre is of importance, since it is widely recognised as a key step in organometallic chemistry, 

but is somewhat poorly understood even though hydrogen bonding to the group 9 metals can 

be observed by IR and is quite widespread. We have recently shown [2,3] that the Au(I) centre 

can act as a hydrogen-bond (H-bond) acceptor when it is coordinated to two strongly electron-

donating ligands. The ligands induce a partial negative charge on the gold atom, enabling the 

Au(I) centre to act as a Lewis base and thus as an H-bond acceptor to a wide variety of H-bond 

donors. Although the ligands were typically negatively charged, yielding anionic complexes, 

we were able to show that even neutral complexes could form weak hydrogen bonds with H2O 

[2].  

Nevertheless, there is little experimental data available for AuI···H interactions [4]. This could 

be due to the presence of complementary interactions that stabilise the geometries of the 

Au···H interactions [2]. Two of the few examples of crystal structures exhibiting the AuI···H 

interaction [5] are neutral complexes containing the N-methylbenzothiazole-2-thione (mbtt) 

ligand coordinated to the Au(I) centre, with the second ligand being either Cl− or Br−. Atoms 

in Molecules analysis of the crystal structures showed that the C-H···Au contact was the 

strongest interaction, but that a second hydrogen bond involving the neighbouring CH group 

on the mbtt interacting with the coordinating thione atom was also present, thus forming a 6-

membered pseudo-chelate ring. The presence of such multiple interactions may be indicative 

of cooperativity, which occurs when a species behaves as both a hydrogen bond donor and an 

acceptor, leading to additional stabilisation greater than the sum of the two hydrogen bonds 

[6].  

Taking our lead from a study by Kryachko on hydrogen bonds involving Au– [7], and the work 

of Brammer on electron-rich anionic transition-metal complexes forming hydrogen bonds [8], 

our previous reports [2,3] have focussed primarily on anionic complexes. However, anionic 

AuI complexes are fairly uncommon, only 7.82% (485) of 6202 crystal structures containing 

AuI compounds in the Cambridge Structural Database [9; August 2018 update] contain anionic 

AuI species, as compared to 4062 neutral or 1655 cationic Au(I) species. Hence, it is of greater 

interest to determine the ability of neutral AuI centres to act as hydrogen bond acceptors. 

In particular, we aimed to investigate how important the presence of a second hydrogen-

bonding interaction is for the stabilisation of AuI···H hydrogen bonds. We have therefore 
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studied the interactions between a range of neutral RAu(NHC) (NHC = N-heterocyclic 

carbene) complexes with a series of amphiprotic main-group hydrides, namely NH3, H2O and 

HF. Our main objective was to determine if an Au···H interaction forms and what its nature is 

as defined by geometrical and AIM parameters. In addition, with the range of complexes 

chosen we aimed to determine how the R group influences the formation of the Au···H 

interaction and its properties. NHCs were selected as neutral ligands since they are electron 

donating, as required to enable the Au(I) centre to act as a hydrogen-bond acceptor. In addition, 

synthesis of Au(NHC)X (X = Cl, Br and I) complexes in a one-step methodology is typically 

“straightforward”, as described by Collado et al. [10]. Furthermore, an (NHC)AuH complex 

has been synthesised by Phillips et al. [11], while Nahra et al. [12] have recently proposed a 

novel route to obtain (NHC)AuOH complexes in multi-gram scale. Gold complexes with 

unsubstituted NHCs are more difficult to synthesise, for instance it is not possible using 

Arduengo's method although an alternative route starting from imidazole has proven successful 

[13] and partially unsubstituted Au-NHCs have been prepared [14]. However, to investigate 

whether the formation of pseudo chelates is necessary to stabilise the Au···H interaction it was 

nevertheless decided to utilise simplified model AuI complexes consisting of unsubstituted 

imidazolylidene, in combination with various anionic secondary ligands, as the first step in the 

study presented here.  In addition to the anionic groups H–, Cl– and OH–, CH3
– was also 

included as a second ligand as we recently showed [2,3] that since the methyl ligand is a good 

electron donor the [(Me)2Au]− complex forms strong unassisted H-bonds. The most stable 

hydrogen-bonded adducts of [(Me)2Au]− with NH3, OH2 and FH involve interaction energies 

of -6.9 kcal/mol, -11.5 kcal/mol and-16.0 kcal/mol, respectively, as a result of the influence of 

the CH3 ligand on the AuI centre [3]. In addition, the linear geometries observed for these 

interactions suggest that they can be classified as moderately strong hydrogen bonds, which, 

according to Jeffrey [15], typically have EINT values of 4-15 kcal/mol and angles of 130-180º.  

The role of the formation of pseudo chelates was investigated with respect to the abilities of 

both the NHC ligands and the amphiprotic hydrides to form hydrogen bonds. In the former 

case, the NHC ligands were varied with respect to the number of available N-H hydrogen bond 

donors, by utilising the model ligands imidazol-2-ylidene (NHC1) with two -N–H units, 

pyrrol-2-ylidene (NHC2, one -N–H unit) and 1,3-dimethylimidiazol-2-ylidene (NHC3, no N–

H units). 
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Methods 

Our investigation was performed using two Density Functional Theory (DFT) methods and the 

MP2 method combined with correlation consistent triple-zeta quality basis sets, which we have 

shown previously give good descriptions for interactions involving related complexes [2, 3, 

16b]. In particular, the calculated interaction energies correspond to those determined at the 

CCSD(T)/aug-cc-pVTZ-pp level of theory [16b], and in previous studies [7, 16c]. MP2 is 

known to overestimate dispersion interactions, although our previous results [16], and those of 

others [17], have shown that MP2 combined with the smaller basis set cc-pVTZ provides a 

better EINT value than the larger aug-cc-pVTZ basis set. The DFT methods were found to give 

similar results to those obtained with MP2, so for the large systems with NHC3 the 

B3LYP/aug-cc-pVTZ values are reported since MP2 is too computationally expensive.  

All geometry optimisations were performed in the gas phase, with counterpoise corrections 

[18, 19], utilising the Gaussian 09 revD.01 [20] software package. During the optimisations no 

symmetry constraints were enforced and frequencies were calculated to verify that geometries 

were energy minima. 

The counterpoise corrected interaction energy was calculated using: 

𝐸𝐼𝑁𝑇 = 𝐸𝐴𝐵
𝐵𝑆𝑆𝐸 − (𝐸𝐴 + 𝐸𝐵) 

where the energies of fragments A and B (EA and EB) were calculated with the individual 

geometries extracted from the AB adduct.  

The B3LYP [21-23] and TPSSTPSS (TPSS) [24] density functionals were utilised in 

combination with the aug-cc-pVTZ-pp [25] basis set describing the Au atom in combination 

with the effective core potential (ECP) developed by Figgen et al. [26]. The pseudopotential 

incorporated into this basis set describes the relativistic effects exhibited by Au, which we have 

previously shown is vital for accurate calculation of hydrogen bonds involving gold [2, 3]. The 

other atoms (H, C, F, O, N) were represented by the aug-cc-pVTZ [27, 28] basis set. The MP2 

[29,30] method was employed in combination with the cc-pVTZ-pp and the aug-cc-pVTZ-pp 

basis sets [25] with the correct ECP [26] corresponding to the Au atom for each basis set. When 

the cc-pVTZ-pp or aug-cc-pVTZ-pp basis sets were employed to describe Au, the 

corresponding basis sets, cc-pVTZ and aug-cc-pVTZ, were utilised to describe the other atoms, 

to ensure all atoms are described by the same type of basis set. All basis sets were downloaded 

from the EMSL basis set exchange website [31, 32]. The ChemCraft [33] suite was utilised for 

visualisation of the output files.  

The van der Waals (vdW) radii of N, O, F and Au were obtained from Bondi [34] and were 

selected as 1.55 Å, 1.52 Å, 1.47 Å and 1.66 Å, respectively. The vdW radius for the H-atom 
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was selected as 1.2 Å. The sum of vdW radii for Au···H, N···H, O···H and F···H are therefore 

2.86 Å, 2.75 Å, 2.72 Å and 2.67 Å, respectively.  

The wave function files (wfx) obtained from Gaussian at the MP2/aug-cc-pVTZ-pp level of 

theory were analysed with the Atoms In Molecules (AIM) analysis program AIMAll [35] 

version 14.06.21. The electron density [𝜌𝑏 (𝑒a0
−3)] and the Laplacian of the electron density 

∇2(𝜌𝑏) (𝑒a0
−5) at the intermolecular Bond Critical Points (BCPs), were obtained as is from 

AIMAll. The b subscript indicates that it is a property at the intermolecular BCP of the H-bond. 

Values for the total electronic energy density, 𝐻𝑏  (𝑎𝑢) =  −𝐾 (𝑎𝑢), were also determined, 

however, these are known to fluctuate when ECPs are utilised, as the electron density is not 

completely recovered and will not be discussed further [36, 37].  

Noncovalent Interaction (NCI) plots developed by Johnson et al. [38] were also calculated from 

the wfx file and were graphically investigated and displayed utilising AIMAll. The Reduced 

Electron Density Gradient (RDG) isosurfaces were calculated with a resolution of 0.04 au. The 

isosurface visualisation of the RDG was calculated at a value of 0.5 au and with a minimum 

and maximum electron densities of 0.0001 and 0.05 𝑒a0
−3, respectively. The RDG surfaces 

were visualised by mapping sign(2)(r) onto them. The colour scale was chosen so that red 

indicates a negative (2)(r) value and blue a positive value of (2)(r), indicating attractive 

and repulsive interactions, respectively.  

The Gaussian optimised geometries were used to perform Energy Decomposition Analysis 

(EDA) [39] based on the methods of Morokuma [40] and Ziegler and Rauk [41] with the 

2017.113 release of the ADF software suite [42] at the BP86/TZP level of theory [43]. Core 

electrons were treated with a small core frozen core approach and scalar relativistic effects 

were included by applying the zeroth-order regular approximation (ZORA) [44]. In EDA the 

instantaneous interaction Eint consists of four components, such that 

Eint = Eelstat + EPauli + Eorb+ Edisp 

where Eelstat and Eorb are attractive electrostatic and orbital overlap terms and EPauli 

indicates the repulsion between the two fragments as a result of two electrons with the same 

spin being forbidden to occupy the same region in space. The dispersion energy component, 

Edisp, is determined using Grimme's DFT-D3-BJ dispersion correction [45]. 
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Results and Discussion 

NHC1 complexes  

The four Au(NHC1)R complexes with the unsubstituted N-heterocyclic carbene NHC1 = 

imidazol-2-ylidene and R = H (1), H3C (2), Cl (3), HO (4) can be divided into two groups, 

namely those with electron-donating R groups (complexes 1 and 2), and those with electron-

withdrawing groups (complexes 3 and 4). The optimised geometries for the H-bonded adducts 

of NH3, H2O and HF with complexes 1 – 4 are shown in Figure 1. Within each adduct there 

are two hydrogen bonds, which together form a pseudo-chelate ring with graph set notation 

R2
2(6) [46]. The interaction energies and values for selected geometrical parameters, are shown 

in Figure 1, and are also given in Tables S1-S4 in the ESI. The hydrogen atoms in the 

interacting molecules appear to be pointing towards the R ligand (see Figure 1), suggesting that 

competing R···HX interactions may be present. These distances are given in Tables S1-S4 in 

the ESI for reference. 

Geometrical parameters can be indicators of the strength of the H-bond, with shorter Au···H 

distances, longer H-X bonds and more linear Au···H-X angles generally correlating with 

stronger H-bonds to the metal, although care should be taken since the application of this 

estimation has limitations [47]. The Au···H distances remain relatively constant for complexes 

1 and 2, but longer for complexes 3 and 4, with the same H-bond donor, while for each complex 

the distances increase HF < H2O < NH3. On this basis, the results suggest that the Au···HX 

hydrogen bonds decrease in strength HF > H2O > NH3, with the Au···H distances being about 

80% of the sum of the van der Waals radii (sum vdW) for HF, 90% of sum vdW for H2O and 

larger than sum vdW for NH3, depending on the electron-withdrawing or -donating nature of 

the R ligand. The ligands show an influence on the Au···H distance, which suggests that the 

Au···H interaction strength decreases with the ligands in the order H– ~ CH3
– > OH– > Cl–. This 

is similar to our previous result [2] that electron-donating ligands provide electron density on 

the gold centre thus allowing it to behave as a Lewis base.  The Au···H distances are 

comparable with the C-H···Au distances of 2.82 Å and 2.84 Å found by Koskinen et al. [5], 

but longer than the intramolecular N-H···Au hydrogen bonds identified by Berger et al. (2.06 

Å) [48] and Rigoulet et al. (2.24 Å) [49] as part of six-membered pseudo-chelate rings. On the 

other hand, the Au···H-X angles deviate substantially from linearity with the smallest angle 

being 125.5º for 3.NH3, and the largest angle being 154.8º for 2.HF. This could be indicative 

of an interaction with the R group, but the R···HX distances (shown in Tables S1-S4 of the 

ESI) are considerably longer than the Au···HX distances, suggesting that such interactions 

would be negligible in comparison. This is in contrast with the anionic complex HAuCH3
–, 
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which exhibits H···H interactions between the hydride R group and the HX hydrogen bond 

donors [2, 50]. In addition, even the relatively strong interactions calculated by Kryachko [7] 

and ourselves [2,3] for H2O and NH3 interacting with the benchmark hydrogen-bond acceptor, 

the auride anion, exhibited Au···HX angles of ~160°. In the current study where weaker 

interactions would be expected, owing to the Au complex being neutral, all the angles are below 

160º. However, it should be noted that smaller Au···H-X angles correspond not only to a 

lengthening of the Au···H distance, but also to short (NH)carbene···X distances, indicative of 

potential NH···X hydrogen bonds. The deviation from linearity can thus be explained as the 

H-bond donor orientating itself to maximise interactions with both the Au and carbene-NH 

group. The (NH)carbene···X contact distances are short, with concomitantly longer N-H bond 

lengths, as would be expected for typical hydrogen bonds. Interestingly, the (NH)carbene···X 

contact distances and carbene N–H bond lengths are independent of R, however the linearity 

of the (N–H)carbene···X angle increases as the Au···H distance lengthens with changing R 

(Figure 1).  

The interaction energies follow the opposite trend to that found above for the Au···H distances, 

with the strength decreasing: NH3 > H2O > HF. Therefore there is no correlation between 

Au···H lengths and EINT values. Instead, closer inspection of the variation in (NH)carbene···XH 

distances reveals that for each Au complex the EINT value increases as the (NH)carbene···X 

hydrogen bond length decreases. This is not unexpected, as these hydrogen bonds are 

anticipated to be of moderate strength [14], as opposed to the Au···HX interactions, which 

would be expected to be weaker since the neutral Au(I) centre is a poorer H-bond acceptor. 

Since there is a better correlation between the EINT values and the geometrical parameters of 

the (NH)carbene···X H-bond rather than those of the Au···HX interaction, we can postulate that 

the NH···XH interaction has a greater contribution to the total EINT value than the AuI···H 

interaction. Nevertheless, since the bond lengths of the (NH)carbene···X hydrogen bonds are 

almost identical for a specific XH species the variation in EINT values with changing R groups 

should be as a result of the variation in the strength of the Au···HX hydrogen bonds. However, 

no clear trends with regard to Au···H strengths are evident, which suggests that the energetic 

penalty of the deformation of the (NH)carbene···X hydrogen bonds away from linearity also plays 

a role in the overall stabilisation of the system. 

Since topological parameters such as the electron density and Laplacian of the electron density 

[51] can be useful to determine if an interaction is a hydrogen bond [52-54], Atoms in 

Molecules (AIM) analysis was performed in conjunction with NCI plots (see Table 3 and 

selected plots in Figure 2 with the remainder in Figure S1 in the ESI).  
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Figure 1 – Optimised geometries of complexes 1 – 4 H-bonded to  (a) NH3, (b) H2O and (c) HF at the MP2/aug-cc-pVTZ-pp 

level of theory. Distances and angles are in Å and degrees, respectively. Counterpoise-corrected values for the interaction 

energies in kcal/mol, EINT, at the MP2/aug-cc-pVTZ-pp level of theory are given below each adduct (EINT values at the B3LYP-

D3/aug-cc-pVTZ-pp level of theory are given in parenthesis). 
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The most important characteristics of the molecular graphs in Figure 2 are the atomic 

interaction lines, with associated bond critical points (BCPs) present for the Au···H and 

(NH)carbene···XH interactions in all H-bonded adducts. These are indicative of overlap between 

atoms and can be interpreted as confirmation that noncovalent interactions exist. The lack of 

atomic interaction lines between the hydrogen bond donors and the R groups confirms our 

earlier assumption that the H···R distances are too long for such an interaction to be present. 

The NCI plots (Figure 2), which supplement the AIM analysis by highlighting weak 

interactions (both attractive and repulsive), also show no evidence of RDG surfaces 

corresponding to weak interactions involving the R ligand. 

 

 

Figure 2 – The two-dimensional contour plot of ∇2(ρb) (ea0
−5) with the NCI plots shown as green to red areas on the images 

for complexes 1 (left) and 3 (right) with (a) NH3, (b) H2O and (c) HF.  
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The colouring of the NCI plots shown in Figure 2 is based on a scale relative to the largest 

(2)(r) value for each respective adduct. In terms of repulsion and attraction cyan and blue 

regions represent nonbonding or repulsive interactions whereas the red, yellow and lime green 

regions indicate stabilising interactions. The lime green regions indicate (2)(r) values of 

weaker H-bonds, typically dispersion-type interactions, whereas red regions indicate strong 

interactions. Most importantly, the NCI plots contrast the two H-bonds, confirming that in 

general the NH···XH interaction is more stabilising than the AuI···H interaction, except for 

interactions involving HF. In these cases the AuI···H interactions contribute greater 

stabilisation to EINT than the NH···XH hydrogen bonds. In addition, the NCI plots show that 

there is no detectable stabilisation between the H-bond donor and the formally anionic ligand 

coordinated to Au(I), while there seems to be a nonbonding/repulsive interaction between the 

heteroatom of the H-bond donor and the NHC carbon atom coordinated to Au(I).  

 

Table 1 – Selected AIM parameters at the bond critical points for the indicated hydrogen bonds in the optimised structures of 

complexes 1 – 4 H-bonded to NH3, H2O and HF at the MP2/aug-cc-pVTZ-pp level of theory. 

  Au···H-X (NH)carbene···X-H 

  𝝆𝒃 (𝒆𝐚𝟎
−𝟑) 𝛁𝟐(𝝆𝒃) (𝒆𝐚𝟎

−𝟓) 𝝆𝒃 (𝒆𝐚𝟎
−𝟑) 𝛁𝟐(𝝆𝒃) (𝒆𝐚𝟎

−𝟓) 

 NH3 0.012 0.036 0.036 0.086 

1 H2O 0.018 0.049 0.028 0.104 

 HF 0.026 0.055 0.019 0.090 

 NH3 0.012 0.035 0.035 0.085 

2 H2O 0.018 0.049 0.027 0.104 

 HF 0.027 0.054 0.019 0.091 

 NH3 0.008 0.027 0.038 0.084 

3 H2O 0.012 0.037 0.029 0.105 

 HF 0.017 0.047 0.019 0.090 

 NH3 0.009 0.029 0.036 0.084 

4 H2O 0.014 0.041 0.028 0.103 

 HF 0.023 0.051 0.020 0.094 

 

In addition, the properties at the BCPs can indicate the type of interaction present. The 𝜌𝑏 

values at the BCPs for complexes 1 – 4 in Table 1 are within the expected range for H-bonds, 

with only the 𝜌𝑏 values of the AuI···H interactions for 3.NH3 and 4.NH3 indicative of vdW-

type interactions. The 𝜌𝑏 values at the BCPs corresponding to the (NH)carbene···X-H hydrogen 

bonds are higher than those of the Au···H interactions, indicating generally stronger H-bonds. 

The exceptions are those involving HF, where the 𝜌𝑏 values for AuI···H interaction in 1 and 2 
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are 37 % higher than those of the NH···XH hydrogen bonds. The 𝜌𝑏 values of the AuI···H 

interaction for each Au complex decrease in the order HF > H2O > NH3 and simultaneously 

increase for the second H-bond in the order HF < H2O < NH3. These trends correlate with the 

NCI plots in shown Figure 2 and the bond lengths as previously discussed. In particular, the 

properties of the BCPs along the (NH)carbene···X-H bonds are nearly identical for each XH, 

which corresponds to the very similar hydrogen-bond lengths seen in Figure 1. The small 

variations seen in Table 1 could be a result of the slight changes in N–H···X angle shown in 

Figure 1. 

The ∇2(𝜌𝑏) values listed in Table 1 are all positive, characteristic of noncovalent interactions, 

and generally falling within the range expected for H-bonds as determined by Nakanishi et al. 

[55]. Furthermore, we note that the ∇2(𝜌𝑏) values of the (NH)carbene···X hydrogen bonds 

involving H2O and NH3 are almost twice those of the Au···H hydrogen bond. It is surprising 

that the ∇2(𝜌𝑏) value for the AuI···H interaction of the 3.H2O adduct is outside the range 

expected for H-bonds, since the 𝜌𝑏 value falls within the H-bond range. However, it is only 

0.003 𝑒a0
−5 less than what is expected for H-bonds, we thus describe this as a borderline case, 

i.e. a very weak H-bond with a substantial vdW contribution.  

The Au···H interactions for the NH3 hydrogen-bond donor are significantly weaker and 

characteristic of vdW-type interactions [55]. This may be due to the H atom being less acidic 

than H2O and HF, or more likely that, since the NH···XH interaction is stronger for NH3 (a 

stronger base) this forces the H atom to be further away from the Au, thus resulting in a weaker 

interaction. Nevertheless, the parameters at the BCPs are consistent with the geometrical 

parameters for the various Au···H hydrogen bonds; for instance, 1.NH3, 2.NH3 and 3.H2O 

exhibit similar hydrogen bond distances and the parameters at the BCPs (Table 1) are 

practically identical. This indicates that Au···H hydrogen bonds display a relationship between 

bond length and BCP parameters. Since the BCPs of hydrogen-bonding interactions typically 

have 𝜌𝑏 values greater than 0.01 according to Nakanishi et al.[55] Au···H hydrogen bonds can 

be identified based on the parameters of the BCPs shown in Table 1. Correlating this with the 

structures shown in Figure 1 suggests that Au···H hydrogen bonds typically are shorter than 

2.79 Å.  
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Table 2 – Atomic charges (au) obtained using the Merz-Singh-Kollmann method at the MP2/aug-cc-pVTZ-pp level of theory. 

  Δq(A) of the Au(I) centre in (e) 

 q(A) of Au(I) q 

Complex monomer NH3 H2O  HF 

1 
-0.191 0.037 0.065 0.108 

2 
-0.166 0.042 0.085 0.080 

3 
0.047 0.031 0.040 0.060 

4 
0.149 -0.008 0.037 0.083 

 

To gain further insight into the AuI···H interaction, we also investigated the charges of the AuI 

atom before adduct formation, obtained using the Merz-Singh-Kollmann method [56,57], as 

well as the change in the charge on the Au(I) centre upon adduct formation, see Table 2. 

As expected, the electron-donating groups yield partial negative charges on the gold for 1 and 

2, while the electron-withdrawing groups induce partially positive charges on the Au(I) centre 

for 3 and 4. Nevertheless, in all except one case (4.NH3) the charge on the Au is less negative 

upon adduct formation. These results suggest that even if gold has a partial positive charge, it 

can still donate electron density and hence act as a Lewis base and H-bond acceptor. We noted 

similar behaviour for the [(CF3)2Au]− complex [2]. However, it has recently been argued by 

Clark and collaborators [58-60] that charge transfer is an unphysical construct, and effects such 

as those calculated here are better described by polarisation (these two terms are often grouped 

together as 'orbital effects'). Furthermore, they state that "Polarization and charge transfer are 

equivalent in the context of noncovalent interactions, and should be treated as such."[60] Since 

gold is known to be polarisable (for instance, it has been found that polarisation plays the 

dominant role in the bonding energy associated with adsorption involving Au [61]) the results 

shown in Table 2 could also be explained by variation in the polarisation of the Au(I) centres 

owing to the electron-donating or -withdrawing abilities of the R ligands. 

Another general trend is that the change in charge is ΔqHF > ΔqH2O > ΔqNH3 for all complexes. 

This agrees with the Au···HX hydrogen bond lengths that suggest that the strength decreases 

in the order HF > H2O > NH3. 

In a naive effort to establish the relative strengths of the various hydrogen bonding interactions 

a series of fixed scans were undertaken that systematically break the two hydrogen bonds, as 

shown in Scheme 1.   
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Scheme 1 – Definition of torsion angles systematically varied to break hydrogen bonds: Rotation around 1 and 2 break the 

NH···X hydrogen bond; rotation around 3 breaks Au···HX hydrogen bond. 

 

Rotation of HF around 1 for the 2.HF adduct (Figure 3(a)) results in the breaking of the 

Au···HF hydrogen bond, with a corresponding energetic penalty of 13.3 kcal/mol, while 

rotation around 2 breaking the (NH)carbene···O hydrogen bond (Figure 3(b)) requires 6.1 

kcal/mol at the B3LYP/aug-cc-pVTZ-pp level of theory. Since the total stabilisation for the 

1.HF adduct is –11.8 kcal/mol at this level of theory this suggests that breaking one hydrogen 

bond results in the almost complete simultaneous breakdown of the second hydrogen bond. 

This is, however, an artefact of the fixed scan undertaken since the hydrogen bond geometries 

in the adduct are not ideal in order to maximise both interactions. In order to accurately 

determine the effect of breaking one of the hydrogen bonds a relaxed scan should be 

undertaken, however all attempts failed to yield partially optimised geometries involving only 

one of the two hydrogen bonds. On the other hand, although rotation of H2O around 3 for the 

2.H2O adduct (Figure 4) involves breaking the NH···O hydrogen bond there is a low barrier 

suggesting that there is only a 4.1 kcal/mol energetic penalty. (The alternative NH···O 

hydrogen bond is 0.5 kcal/mol higher in energy as a result of a slight bending of the NHC ring 

towards the H2O, with the two Au-C-N angles being 127.7° and 129.4°, respectively.) These 

results therefore suggest that hydrogen bond cooperativity may be present in the adduct, 

although the (NH)carbene···X distances do not change with variation in R.  

As described by Steiner in his review of hydrogen bonding [6], there are two types of 

cooperativity, namely -bond and -bond cooperativity. -bond cooperativity, also described 

as "polarisation-assisted hydrogen bonding" involves the formation of a chain of hydrogen 

bonds, Y-H···X-H···A, where the presence of the Y-H···X hydrogen bond results in the X-H 

species becoming more polar and thus forming a stronger X-H···A hydrogen bond, and vice 

versa. This type of cooperativity could explain the non-linear orientations of the hydrides 
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relative to both the Au and the carbene NH groups in order to maximise both hydrogen bonds. 

However, the presence of -bond cooperativity would imply that the strength of the 

(NH)carbene···X would change concomitantly with the Au···HX hydrogen bond upon varying 

the R group, which is not the case. It therefore seems unlikely that -bond cooperativity plays 

a role. 

In -bond cooperativity the hydrogen bonds stabilise a zwitterionic resonance form, such as 

O=C
|
–N

|

–H  –O–C
|
=N

|
+–H [6]. The equivalent resonance forms for the complexes studied here 

are shown in Scheme 2, where the formation of the (N–H)carbene···X hydrogen bond would 

mean that the first two resonance forms in Scheme 2 should dominate, particularly since Au is 

highly electronegative. The increase in negative charge on the AuI centre would thus make it a 

better hydrogen-bond acceptor. Thus, it appears that -bond cooperativity could play an 

important part in stabilisation upon hydrogen-bond formation with the HX species.  

     

(a) (b) 

Figure 3 – Change in relative energy (kcal/mol) with rotation around torsion angles (a) 1 and (b) 2 for 2.HF. 

 

 

Figure 4 – Change in relative energy (kcal/mol) with rotation around torsion angle 3 for 2.HF. 
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Scheme 2 – Proposed resonance forms involved in -bond cooperativity. 

 

NHC2 complexes  

A second family of complexes with NHC2 = pyrrol-2-ylidene and R = H (5), CH3 (6), Cl (7) 

and OH (8) interact with the hydrides in a similar way to the complexes with NHC1, also 

forming a second hydrogen bond to the NH group of the pyrrolylidene ring (Figure 5, Table 

S5 in ESI). In addition, in order to determine whether the (NH)carbene···X hydrogen bonds are 

required to stabilise the adducts the conformational space was probed to identify if other 

minimum energy conformations where these hydrogen bonds were not present could be 

identified. By varying the starting geometries for the optimisations a second set of less stable 

adducts without (NH)carbene···X hydrogen bonds was identified for each adduct (Figure 6, Table 

S6 in ESI).  

All adducts of complexes 5 – 8 exhibit Au···HX hydrogen bonds, with those involving HF in 

general similar in distance and geometry to the Au···HF interactions obtained with 

complexes 1 – 4. However, the Au···H distances to H2O and NH3 are marginally shorter and 

more linear than those involving complexes 1 – 4 suggesting that the interactions are 

stronger. The origin of this effect is probably the slightly greater electron-donating ability of 

the pyrrolylidene carbene relative to the imidazolylidene carbene. This is borne out by the 

marginally larger changes in the Merz-Singh-Kollman charges upon adduct formation (Table 

3) than were observed for the NHC1 complexes (Table 2).  
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Figure 5 – Optimised geometries of complexes 5 – 8 H-bonded to (a) NH3, (b) H2O and (c) HF at the MP2/aug-cc-pVTZ-pp 

level of theory. Distances and angles are in Å and degrees, respectively. Counterpoise corrected values for the interaction 

energies in kcal/mol, EINT, at the MP2/aug-cc-pVTZ-pp level of theory are given below each adduct (EINT values at the B3LYP-

D3/aug-cc-pVTZ-pp level of theory are given in parenthesis). *MP2/cc-pVTZ-pp value as MP2/aug-cc-pVTZ calculation did 

not complete owing to computational expense.  
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Figure 6 – Optimised geometries of complexes 5 – 8 H-bonded to (a) NH3, (b) H2O and (c) HF at the MP2/aug-cc-pVTZ-pp 

level of theory in alternative geometries that do not exhibit (N-H)carbene···X hydrogen bonds. Distances and angles are in Å and 

degrees, respectively. Counterpoise corrected values for the interaction energies in kcal/mol, EINT, at the MP2/aug-cc-pVTZ-

pp level of theory are given below each adduct (EINT values at the B3LYP-D3/aug-cc-pVTZ-pp level of theory are given in 

parenthesis). *B3LYP/aug-cc-pVTZ-pp value as the alternative geometry could not be found as a minimum on the MP2/aug-

cc-pVTZ or MP2/cc-pVTZ-pp energy surfaces. **MP2/cc-pVTZ-pp value as MP2/aug-cc-pVTZ calculation did not complete 

owing to computational expense.  
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Table 3 – Atomic charges obtained using the Merz-Singh-Kollmann method at the MP2/aug-cc-pVTZ-pp level of theory. 

  Δq(A) of the Au(I) centre in (e) 

 q(A) of Au(I) q 

Complex monomer NH3 H2O  HF 

5 
-0.219 0.055 0.056 0.107 

5_alt 
 0.022 0.022 0.067 

6 
-0.209 0.048 0.039 0.101 

6_alt 
 0.008 0.013 0.094 

7 
0.027 0.026 0.019 0.030 

7_alt 
 0.004 0.036 0.041 

8 
0.130 -0.004 -0.017 0.004 

8_alt 
 0.030 0.089 0.092 

 

In addition, the (NH)carbene···X hydrogen bonds seen in Figure 5 are slightly weaker than those 

shown in Figure 1 (although again nearly identical for each hydride, independent of R), 

suggesting that the pyrrolylidene -N–H unit is a weaker hydrogen bond donor than the 

imidazolylidene -N–H. This could also result in less -cooperativity than for complexes 1 – 

4, which could also contribute to the greater stabilisation in the adducts of 5 – 8. Interestingly, 

the energies are quite similar for complexes 1 – 4 and 5 – 8, suggesting that the decrease in 

(NH)carbene···X hydrogen bond strength is balanced by the increase in Au···H–X strength. 

In the alternative conformations of the adducts of 5 – 8 with the three hydrogen bond donors 

(Figure 6, Table S6 in ESI) the Au···H distances are similar (particularly for the HF adducts) 

or slightly longer than those found in adducts containing N-H···X interactions, further 

suggesting that hydrogen-bond cooperativity does indeed play a role in the formation of 

Au···HX hydrogen bonds. On the other hand, the hydrogen bond approach is more linear, as 

might be expected since the hydrogen bond donor no longer has to accommodate the formation 

of a second fairly strong hydrogen bond with the NH group.  

Nevertheless, AIM analysis (Figure 7) shows that the deviation from linearity still present in  

5 – 8  is the result of other, weaker CH···X interactions that exist. As seen from the properties 

of the BCPs along the Au···H-X and CH···X atomic interaction lines in Table 4, and visually 

on the NCI plots, the Au···H interactions now contribute more to the stabilisation than the 
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CH···X interactions. In fact, for the adducts with HF, the C-H···X interactions are so weak that 

no BCP is identified. Nevertheless, the NCI plots show a weak, very slightly attractive 

dispersion-type interactions between the fluorine on the HF and one of the CH units on the 

NHC2 ligand. 

 

 

Figure 7 – The two-dimensional contour plot of ∇2(ρb) (ea0
−5) with the NCI plots shown as green to red areas on the images 

for selected adducts of complexes 5 - 8 with H2O and HF: (a) 6.H2O, (b) 6.HF, (c) 6.HF_alt, (d) 7.HF, (e) 8.HF_alt. The red 

(minimum) regions indicate stabilising interactions, yellow/lime green regions indicate dispersion-type interactions and blue 

regions (maximum) coincide with repulsive intermolecular interactions.  
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Table 4 – Selected AIM parameters (au) for the BCPs of the indicated hydrogen bonds for the optimised structures of 

complexes 6 – 8 H-bonded to H2O and HF at the MP2/aug-cc-pVTZ-pp level of theory.  

  H-bond  Au···H-X NH···X-H CH···X-H 

 
 

 
𝝆𝒃  

(𝒆𝐚𝟎
−𝟑) 

𝛁𝟐(𝝆𝒃)  

(𝒆𝐚𝟎
−𝟓) 

𝝆𝒃  
(𝒆𝐚𝟎

−𝟑) 

𝛁𝟐(𝝆𝒃)  

(𝒆𝐚𝟎
−𝟓) 

𝝆𝒃  
(𝒆𝐚𝟎

−𝟑) 

𝛁𝟐(𝝆𝒃)  

(𝒆𝐚𝟎
−𝟓) 

 H2O  0.021 0.047 0.028 0.094   

6 HF Au···H-X 0.030 0.049 0.020 0.084   

 HF_alt Au···H-X 0.025 0.046   - - 

 H2O Au···H-X 0.012 0.038 0.027 0.102   

 H2O_alt Au···H-X 0.011 0.035   0.005 0.020 

7 HF Au···H-X 0.017 0.048 0.019 0.087   

 HF_alt Au···H-X 0.019 0.042   - - 

 H2O Au···H-X 0.013 0.040 0.026 0.099   

 H2O_alt Au···H-X 0.013 0.038   0.005 0.019 

8 HF Au···H-X 0.019 0.049 0.019 0.049   

 HF_alt Au···H-X 0.020 0.046   - - 

 

A change from the global minimum conformation with an (NH)carbene···X hydrogen bond to 

the alternative conformations shown in Figure 6 could occur through simple rotation of the 

hydrogen bond donor around the linear R-Au-C axis as indicated in Scheme 3.  The barrier to 

rotation of HF around the Au-C axis in 6.HF (Scheme 2, Figure 6) is very low (<4.5 kcal/mol), 

suggesting that even the weak CH···X hydrogen bond found in the alternative conformation is 

sufficient to stabilise the adduct and that the HF is always involved in an interaction in addition 

to Au···H-X that varies in strength depending on the hydrogen bond donor on the NHC ring.   

 

Scheme 3 – Rotation around 3 breaks NH···X hydrogen bond while maintaining Au···HX hydrogen bond. 

 

Figure 8 – Change in potential energy with rotation around 3 at the MP2/aug-cc-pVTZ-pp level of theory for 6.HF. 
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NHC3 complex  

Since it is clear from the results above that a second hydrogen bond contributes to the 

stabilisation of the Au···HX adduct, the importance of the presence of such an interaction for 

stabilising an Au···HX hydrogen bond was investigated. This was undertaken by further 

limiting the formation of (NH)carbene···X hydrogen bonds through considering N-methyl 

substituted imidazolylidene ligands. In particular, CH···F interactions are known to be weak 

[62], and should therefore be less likely to form as second hydrogen bonds. Nevertheless, the 

interactions of the hydrogen bond donors with complex 9 containing NHC3 = 1,3-Me- 

imidazol-2-ylidene and R = CH3 are similar to those found for the alternative conformations 

with the NHC2 complexes (Figure 9, Table S7 in the ESI). In all cases, the Au···HX hydrogen 

bonds occur with the now familiar variation in bond lengths. In addition, even though NH···X 

interactions are no longer possible, weaker CH···X interactions are still present, although these 

differ in the various adducts.   

 

Figure 9 – Optimised geometries of complex 9 H-bonded to (a) NH3, (b) H2O and (c) HF at the MP2/aug-cc-pVTZ-pp level 

of theory. Distances and angles are in Å and degrees, respectively. Counterpoise corrected values for the interaction energies 

in kcal/mol, EINT, at the B3LYP/aug-cc-pVTZ-pp level of theory are given below each adduct owing to computational expense 

of MP2/aug-cc-pVTZ-pp (EINT value at the B3LYP-D3/aug-cc-pVTZ-pp level of theory is given in parenthesis).  

 

 

Figure 10 – The two-dimensional contour plot of ∇2(ρb) (ea0
−5) with the NCI plot shown as green to red areas on the images 

for complex 9 with HF. The red (minimum) regions indicate stabilising interactions, yellow/lime green regions indicate 

dispersion-type interactions.  
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AIM analysis (Figure 10, Table 5) confirms the presence of both the Au···HF hydrogen bond, 

which is similar in strength to those found previously based on the properties of the BCP, and 

a second H2C-H···X interaction, which is considerably weaker than the Au···H interaction. 

According to the classification by Nakanishi [55] this Au···H interaction is a hydrogen bond, 

whereas the H2C-H···X interaction is a van der Waals-type interaction. In addition, the NCI 

analysis suggests that there are further, even weaker but still attractive, dispersion interactions 

between C-H hydrogens and the Au(I) centre.  

 

Table 5 – Selected AIM parameters for the optimised structures of complex 9 H-bonded to HF at the MP2/aug-cc-pVTZ-pp 

level of theory. 

  H-bond  𝝆𝒃 (𝒆𝐚𝟎
−𝟑) 𝛁𝟐(𝝆𝒃) (𝒆𝐚𝟎

−𝟓) 

9 HF Au···H-X 0.026 0.044 

   CH···X-H 0.004 0.017 

 

Merz-Singh-Kollmann charges (Table 6), suggest that there is more polarisation from the Au(I) 

centre to HF than to the other two H-bond donors. 

 

Table 6 – Atomic charges obtained using the Merz-Singh-Kollmann method at the MP2/aug-cc-pVTZ-pp level of theory. 

  Δq(A) of the Au(I) centre in (e) 

 q(A) of Au(I) q 

Complex monomer NH3 H2O  HF 

9 
-0.106 0.006 0.009 0.059 

 

 

Energy Decomposition Analysis 

Although AIM and NCI yield complementary information about the strength and type of weak 

interactions they do not give any indication of the nature of the hydrogen bonds. Thus, to gain 

further insight, we undertook Energy Decomposition Analysis (EDA) of the adducts of 1 – 9 

with HF (Figure 11 and Table S8 in the ESI) at the BP86-D3/TZP level of theory, with 

application of ZORA for describing the relativistic effects of gold, which we have shown 

previously is necessary for successfully describing hydrogen bonding [2, 3]. EDA supplements 

the AIM and NCI analyses by separating out the components of the interaction into 

electrostatic, Pauli repulsion, orbital and dispersion contributions, where the orbital 

interactions are described as being a combination of charge transfer and polarisation. For all 
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the adducts with the gold complexes the electrostatic and orbital contributions are similar in 

magnitude, with adduct formation for 1 – 8 involving ~50% electrostatics, 42% orbital 

interactions and <10% dispersion. For 9.HF, 19% of the stabilisation found is from dispersion, 

confirming the results obtained with the NCI analysis (Figure 10).  

Comparing the adducts of 5 – 8 in the conformations with and without the (NH)carbene···X 

interactions enables us to establish the contribution made by these strong hydrogen bonds. For 

adducts of 5 – 8 in the alternative conformations, which do not exhibit the strong (NH)carbene···X 

interactions, the electrostatic contribution is lower than when the  (NH)carbene···X hydrogen 

bonds are present (typically ~ 44% as compared to ~50%). There are also slightly larger 

contributions to orbital interactions and dispersion than for the conformations with 

(NH)carbene···X hydrogen bonds (~43% and ~13% compared to 41% and ~9%, respectively). 

This suggests that the Au···H hydrogen bonds are less electrostatically driven than the 

(NH)carbene···X hydrogen bonds, and instead involve more orbital interactions, most likely 

owing to the polarisability of the Au(I) centre, as we have suggested previously [63]. This also 

agrees with the changes observed in Merz-Singh-Kollmann charges (Tables 2, 4 and 6), which 

suggest that polarisation is important in stabilising the hydrogen-bonded adducts. 

In a further effort to confirm the contribution of the (NH)carbene···X hydrogen bonds to the 

overall stabilisation, EDA analysis of the adducts of HF with the carbenes NHC1 and NHC3 

without the Au(I) and the second ligand, but in the same geometries as adducts 1.HF and 9.HF, 

respectively, was performed (Figure 12). The differences between the components of 1.HF and 

9.HF and NHC1.HF and NHC3.HF are also shown in Figure 12 as a rough estimate of the 

components of the Au···HF hydrogen bonds. The EDA analysis shows that since the formation 

of the NHC1.HF and NHC3.HF adducts is indeed primarily electrostatically driven (>60% 

contribution of electrostatics to the attractive interactions), as would be expected for moderate 

N-H···F hydrogen bonds, the Au···HF hydrogen bond involves a relatively greater orbital 

interaction.  
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Figure 11 – Components of interactions between complexes 1 – 9 and HF at the BP86-D3/TZVP level of theory.  

 

Figure 12 – Components of interactions involving NHC1 and NHC3 with HF at the BP86-D3/TZVP level of theory.  

 

 

Summary 

High quality wave functions of adducts of the neutral Au(I) complexes 1 – 9 with NH3, H2O 

and HF analysed using AIM and NCI confirm that these form Au···H hydrogen bonds since 

they exhibit BCPs along the atomic interaction lines connecting the Au and H that correspond 

to attractive interactions. The highest accumulation of electron density between the Au and H 

atoms occurs when R = CH3 and the lowest when R = Cl for all the H-bond donors and NHCs. 

This trend follows the resultant Lewis basicity of the Au(I) centre within the complexes and 

agrees with the calculated atomic charges, where it was found that the hydride and methanide 
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analogues produced the largest partial negative charges on the Au(I) atom. In addition, the 

change in charge follows the same trends, suggesting that the Au···H interaction is not only 

electrostatic in origin, but that polarisation also plays a role. This was confirmed by EDA 

analysis, where the orbital term, i.e. polarisation, was shown to play the most important role in 

the Au···H hydrogen bond, in contrast with the (NH)carbene···X hydrogen bonds, which are 

primarily electrostatically driven. This is probably due to the greater polarisability of Au 

relative to the X hydrogen bond acceptors.  

Furthermore, the AIM and NCI results suggest that for the Au···H interaction to occur in 

complexes containing the NHC1 ligand (complexes 1 – 4), a second H-bond, i.e. the 

(NH)carbene···XH interaction, must be present to aid in stabilising the adducts. In effect, the 

involvement of the amphiprotic main group hydrides in two interactions results in the formation 

of a pseudo chelate with 2-C-H coordination. In all adducts of NH3, H2O and HF and 

complexes 5 – 8 containing the NHC2 ligand (with only one -N–H unit that can form an 

(NH)carbene···X hydrogen bond) and complex 9 (with the NHC3 ligand with no N–H units) a 

second interaction in addition to the Au···H hydrogen bond was found to be present; this was 

usually a weak C-H···X interaction, but AIM analysis showed that sometimes even weak 

dispersion-type interactions could be identified. Scans of the potential energy surface suggest 

that -cooperativity plays a role in stabilising these adducts.   

The overall stability of the adduct results from a compromise between satisfying the 

geometrical requirements of the two hydrogen bonds, thus leading to large deviations from 

linearity. For instance, 3.NH3 has the highest EINT despite having the weakest Au···H 

interaction based on the AIM parameters. For H2O and NH3 the (NH)carbene···XH interactions 

add the most stabilisation to the total EINT values and are generally independent of the R groups, 

whereas Au···H interactions dominate the stabilisation of all adducts involving HF, and are 

strengthened by the presence of electron-donating R groups. 

In conclusion, the results presented here are able to address the questions raised by Kazarian et 

al. [1] and Schmidbaur et al. [2] and confirm that intermolecular hydrogen bonds involving 

neutral Au(I) complexes can theoretically exist. Furthermore, we have shown that the presence 

of a second hydrogen bond gives additional stabilisation to the adduct. Therefore, a strategy 

for designing neutral gold complexes that can form Au···HX hydrogen bonds would be the 

inclusion of a strong hydrogen-bond donor in a suitable orientation to allow the simultaneous 

formation of a pseudo chelate by involving both Au···HX and (NH)carbene···XH hydrogen 

bonds.   
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