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Abstract

Pomegranate fruit has witnessed tremendous growth over the past decade in pro-
duction, consumption, processing and research within South Africa. Currently, in
order to provide value-addition and effective utilisation of pomegranate fruit parts,
the edible portion has been processed by the food industry into various co-products
such as juices, dried arils, seed oil and powders. The food processing industry is
frequently confronted by new technological challenges to meet the increasing de-
mand for quality assured processed products. This, however, has led to a shift
in agribusiness reliance from subjective assessment of quality and authenticity to
increasing adoption of objective, quantitative and non-invasive measurement.

For pomegranates, non-invasive techniques such as X-ray computed tomogra-
phy and infrared spectroscopy have successfully been used to evaluate postharvest
rind disorders, quality attributes of whole fruit, and several of its co-products
such as fresh arils and pomegranate juice. For processed agricultural and horti-
cultural products, non-invasive techniques have been successfully used to evaluate
and predict quality attributes related to juice, powders oils and minimally pro-
cessed products. However, limited information on non-invasive techniques exist
for evaluating different processed pomegranate co-products such as dried arils,
powders and seed oil. Therefore, the aim of this research study was to develop
non-invasive methods using infrared spectroscopy to predict the quality attributes
of pomegranate co-products (dried arils and seed oil). Section I (Chapter 1) pro-
vides background information and the problem statement, including the aims and
objectives of the research study. Chapter 2 provides a review of literature on
non-invasive methods used to predict the quality attributes for different processed
horticultural products with emphasis on juices, oils and powdered products and
highlights potential research scientific gaps.

Section II covers the application of infrared (FT-NIR and FT-MIR) spec-
troscopy in evaluating pomegranate co-products (dried arils and seed oil). In
Chapter 3, Fourier-transform near infrared (FT-NIR) spectroscopy and associ-
ated chemometric analysis was used to evaluate quality attributes of dried pome-
granate arils. This study compared two different regression techniques, namely
partial least squares (PLS) and support vector machine (SVM), to develop cali-
bration models over a spectral region of 800 – 2500 nm. Model development was
based on pre-processing methods that yielded higher values of coefficient of de-
termination (R2) and residual predictive deviation (RPD), and root mean square
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error of prediction (RMSEP). It was found that SVM could predict acidity (R2=
0.85, RMSEP = 0.04%, RPD = 2.50), redness (a∗) colour attributes (R2 = 0.72,
RMSEP = 1.82%, RPD = 1.71) and intensity (Chroma) (R2 = 0.70, RMSEP =
1.99%, RPD = 1.77). PLS regression also accurately predicted sensory attributes
(pH, (R2 = 0.86, RMSEP = 0.13%, RPD = 2.38 and TSS:TA ratio, R2= 0.74,
RMSEP = 1.68%, RPD = 1.68). These results suggest that SVM was better
suited to evaluate the quality attributes of dried pomegranate arils. Chapter 4
(Section III) evaluated the quality of pomegranate seed oil by comparing two
different spectrophotometers, namely; the Multipurpose Analyzer (MPA) in the
FT-NIR spectral region of (12500 – 4000 cm−1) and the Alpha ATR-FT-MIR in
the spectral region of 4000 – 400 cm−1. The MPA (FT-NIR) showed good pre-
diction in the FT-NIR spectral region for total carotenoid content (R2 = 80.45,
RMSEP = 0.0185 β-carotene/ mL oil, RPD = 2.28) and yellowness index (R2

= 53.19, RMSEP = 14.30%, RPD = 1.49). The Alpha (FT-IR) instrument in
the FT-MIR spectral region provided good prediction for refractive index (R2 =
80.92, RMSEP = 0.0003%, RPD = 2.32) and prediction for peroxide value (R2

= 62.00, RMSEP = 3.88 meq O2/mL oil, RPD =1.62). In this study, FT-MIR
spectroscopy provided better prediction statistics compared to than FT-NIR spec-
troscopy for evaluating the quality attributes of pomegranate oil. This research
study has demonstrated that infrared spectroscopy and associated chemometric
analysis has the ability to predict the quality attributes of pomegranate dried arils
and seed oil.
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Chapter 1

General Introduction

1.1 Background
Pomegranate, scientifically known as Punica granatum L., is a fruit-bearing de-
ciduous shrub or small tree in the family of Lythraceae. The fruit is spherically
shaped, has a thick leathery exocarp and an interior that is separated by mem-
brane walls and packed into compartments. The compartments consist of edible
portions called arils, and each aril contains a seed which is surrounded by a translu-
cent sac containing juice. The edible portion (arils) consist of 50 to 70% of the
total fruit weight, While the juice volume consists of 60-80% the aril weight or
30-40% of the fruit weight and the seeds constitute 3-5% of the total fruit weight
[1, 2, 3]. The fruit (and its co-products) has captured increasing consumer inter-
est due to its multi-functionality human diet as ’superfruit’. The fruit has been
reported to possess high nutritional content, potent pharmacological and antioxi-
dant properties which have been related to improved human health [4, 5]. Scientific
studies have linked pharmacological activities of pomegranate to several groups of
phytochemicals found within the fruit. These phytochemicals include polypheno-
lic compounds, which have been reported to possess anti-microbial, anti-diabetic,
anti-mutagenic, antioxidant, anti-hypertension, anti-inflammatory and atheroscle-
rotic properties [4, 6]. The fruit is frequently consumed fresh; however, despite
the nutritional and health benefits, consumption is still limited due to the diffi-
culty of extracting the arils. Currently, in order to increase fruit consumption,
the edible portion (containing sacs of arils) has been processed into ready-to-eat
fresh arils. However, fresh arils have a relatively short shelf-life of 5-8 days. To
overcome this limitation, the pomegranate industry has promoted research and
development of value-added pomegranate co-products such as dried pomegranate
arils, pomegranate seed oil, dehydrated powder and juices (Fig. 1.1).

1
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Figure 1.1: Basic structure of a pomegranate fruit with its co-products

Processed pomegranate products such as dried arils are rich sources of vita-
mins, polysaccharides, mineral elements, fatty acids and antioxidant compounds
[7]. Processing of fresh pomegranate arils into dried arils has several advantages
these include extended shelf-life and preservation of several nutritional compounds
[8]. The seeds are a by-product of the food processing industry, but recent reports
have highlighted their potential use as a source of seed oil with health beneficial
attributes [1, 6, 9]. Pomegranate seed oil (PSO) contains high levels of punicic acid
(>60%) and several other fatty acids such as palmitic, stearic, oleic and linoleic
acid. Several studies have shown that PSO are good sources of phytochemical and
antioxidant compounds [2, 9].

Pomegranate fruit has witnessed a tremendous growth since 2009 in produc-
tion, marketing, consumption, processing and research globally and within South
Africa. Over the last decade, pomegranates have been grown for commercial ex-
port, with over 8000 tons currently being produced and South Africa exports more
of its pomegranate than is consumed locally. Approximately 80% of pomegranate
produced locally is consumed in the international markets, 9% consumed locally
and 11% is used in the processing industry [10]. The Wonderful cultivar consti-
tuted about 6% of total production and exports in 2017, this cultivar rank 18th
in terms of fruits consumed annually in the world [11]. The 11% of pomegranates
used for processing constitute approximately 900 tonnes that has an estimated
value of 42-79 million Rands (based on R46 617 - R87 923 per tonne) depending
on season and demand for the fruit [12]. Therefore, the production of pomegra-
nate by-products such as the seed oil and powder from fruit waste can contribute
to value addition, thereby reducing waste and increasing profits for growers and
processors. The South African pomegranate industry aims at increasing pomegra-
nate yield and quality to meeting meet rising export and local demands [10, 12].

Quality testing is very vital in the agricultural industry as it guarantees con-
fidence to consumers and food processors alike. Several standard analytical tech-
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niques are currently been employed for authenticity, quality control, and contami-
nation assessment in agro-food products. These standard techniques include high
performance liquid chromatography (HPLC), gas chromatography-mass spectrom-
etry (GC-MS), spectrometric and colorimetric methods. Although, reliable, these
methods are time consuming, expensive and requires specialized sample prepa-
ration. Additionally, these methods only evaluate a single sample batch and do
not reflect the quality of the entire consignment, considering that samples may
exhibit significant variation in both external and internal quality due to variabil-
ity amongst cultivars, fruit maturity status, and even processing conditions. The
high market value associated with processed pomegranate products have spurred
the agribusiness industry to invest in research and application for fast, accurate
and objective assessment for authenticity, food quality and contamination [13, 14].

Several objective and non-invasive methods include infrared spectroscopy (IRS),
hyperspectral imaging (HSI), Raman spectroscopy, nuclear magnetic resonance
and X-ray computed tomography [15, 16]. From the above-mentioned non-invasive
methods, IRS coupled with chemometric analysis have shown to be the most highly
effective in the measurement and prediction of various quality parameters in fresh
and processed horticultural produce. IRS is fast, accurate, does not require sample
preparation and can simultaneously analyse several constituents within a sample.
IRS in the near infrared (NIR) (12,000–4000 cm−1, 833–2500 nm) and the mid
infrared (MIR) (4000–400 cm−1, 2500–25,000 nm) spectral regions has been ex-
tensively applied as alternative analytical tools in the food industry [17]. For
pomegranates, IRS have been successfully applied to evaluate whole fruit quality
[18], fresh pomegranate arils [19] and even fresh juice [20]. However, a review of
literature suggest that limited information exist on the suitability of non-invasive
measurement such as infrared spectroscopy for the assessment of pomegranate
co-products such as dried arils, powders and seed oil. Non-invasive assessment
of processed pomegranate co-products can contribute to the implementation of
suitable management strategies to predict and control desired quality attributes.
The implementation of non-invasive techniques such as infrared spectroscopy will
ensure that the agricultural industry and consumers are provided with high qual-
ity processed pomegranate products free from contamination and that is safe to
consume.

1.2 Research Aim and Objectives
The overall aim of this research study is to develop non-invasive methods to mea-
sure and predict the quality attributes of different processed pomegranate prod-
ucts. To achieve this aim, the study included the following specific objectives:

1. Determine optimum conditions for near infrared spectroscopic measurement
by evaluating the accuracy of various analytical techniques to quantify physic-
ochemical and phytochemical properties of dried pomegranate arils.
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2. Compare the application of different infrared spectroscopic measurement
ranges (NIR & MIR), to measure and predict the chemical and phytochem-
ical attributes of pomegranate seed oil.

1.3 Thesis structure
This thesis is structured as follows:

• Chapter 1 and Chapter 2 provide background information, discussing the
general aim and objectives (General introduction) of the thesis study and
also provides a review of literature on previous work done on different non-
invasive techniques for evaluating different processed horticultural products
over the last ten years.

• Chapter 3 and Chapter 4 evaluate different infrared spectroscopic techniques
for the measuring of physicochemical and phytochemical quality attributes
of different pomegranate co-products these include dried arils and seed oil.

• Chapter 5 presents a general discussion which integrates the results from pre-
vious chapters. It highlights the important practical contribution of this the-
sis towards successful non-invasive evaluation of pomegranate co-products.
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Chapter 2

Non-invasive methods for predicting
the quality of processed
horticultural food products, with
emphasis on dried powders, juices
and oils: A review

This review covers recent developments in the field of non-invasive techniques
for quality assessment of processed horticultural products over the past decade.
A section on the concept of quality and various quality characteristics related
to evaluate processed horticultural products are discussed. A brief overview of
each non-invasive methods is presented, including spectroscopic, nuclear magnetic
resonance and hyperspectral imaging techniques, followed by discussion on the
applications to predict quality attributes of different processed horticultural prod-
ucts (powders, juices and oils). A concise summary of their potential commercial
applications in quality assessment, control and monitoring of processed agricul-
tural products is explored. Finally, we discuss their limitations, and highlight
other emerging non-invasive techniques applicable for monitoring and evaluating
the quality attributes of processed horticultural products.

2.1 Introduction
Horticultural crops play an essential role in human nutrition and health as they
are known to be a major source of beneficial phytonutrients, dietary fiber and
other micro-nutrients [16]. The majority of fruits and vegetables are consumed
fresh, and hence remain perishable along the value chain. In order to reduce
waste and extend the shelf-life of horticultural crops, fruits and vegetables are
processed into various products for direct consumption and as food ingredients.
During processing, the main objective is to preserve the colour, flavour, texture,
and nutrition while prolonging the shelf-life of perishable fruits and vegetables
[21]. Consequently, during postharvest processing, storage, and transportation,

5
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the physiological quality of harvested foods continue to change. Food safety issues
especially processed food must be effectively monitored by the food industry [22].
Food processing chains undergo many steps which pre-expose them to pathogenic
infestation, adulteration, contamination with unwanted chemical compounds or
defect deliberately or accidentally. This safety concerns with pre-exposure of the
processing chain can not only reduce their functional properties and nutritive val-
ues, or even pose a serious health risk to humans and consumers. Accordingly, it
is highly important and necessary that processed horticultural products such as
oils, powders and juices are often subjected to stringent inspection for quality and
authenticity.

The global food processing industry is frequently confronted by new techno-
logical challenges to meet the increasing demand for quality-assured processed
products. Consequently, this has led to a shift in agribusiness reliance on sub-
jective assessment of quality and authenticity to increasing adoption of objective,
quantitative and non-invasive measurement.

During the last decade, several novel systems have been developed to mea-
sure quality attributes non-destructively. Several of them are now commercially
available as desktop units or mounted on a grading line so that quality control of
individual products becomes feasible. Several studies have highlighted the poten-
tial of different non-invasive approaches and methods applied to processed hor-
ticultural products and promoting its use as a rapid and non-invasive analytical
method for quantitative or qualitative analysis [23, 24, 25, 26]. These include in-
frared spectroscopy [15], hyperspectral and multispectral imaging [27, 28], Raman
spectroscopy [29], nuclear magnetic resonance (NMR) [30] and X-ray computed
tomography [31]. Several of these techniques have been successfully employed in
classification, authenticity and quantification in commercial juices, oils, powders
and dried products.

Currently, scientific literature and reviews on non-destructive quality assess-
ment of fresh fruit and vegetables are abundant. However, there is a dearth of
literature reviews on non-invasive measurement of processed horticultural prod-
ucts. A refined Scopus search over the last decade revealed that there are currently
59 reviews for non-destructive assessment of fresh fruit and vegetable quality, only
3 reviews included information on aspects of some processed horticultural products
[16, 32, 33]. Additionally, the fore-mentioned reviews with information on some
processed horticultural products mainly focus on assessing either a specific prod-
uct or non-destructive technique and do not integrate assessing different products
or reviewing other possible non-destructive techniques. The limited information
on non-invasive quality evaluation for different processed horticultural products
could provide readers with insight towards current usage of non-invasive methods,
highlighting a potential research scientific gap. The objective of this review is to
provide an overview of recent developments in non-invasive quality measurements
applied for different processed horticultural products with emphasis on juices, oils
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and powdered products.

2.1.1 The concept of quality

The word "quality" is derived from the Latin "qualitas", which means attribute,
property or basic nature of an object [34]. Several experts within the field have
proposed brief definitions of quality: "fitness for use" [35], "conformance to re-
quirements" [36], "loss avoidance" (Taguchi, cited in [37], "degree of excellence
or superiority" [38], understanding and optimizing the whole system of value ex-
change [39, 40]. Regardless of the time period or context in which quality is
examined, the concept has had multiple and often confusing definitions and has
been used to describe a wide variety of phenomena.

For the agricultural industry, the quality of fresh and processed horticultural
produce is assessed based on the combination of values from several attributes or
characteristics specific to the commodity. Quality of fresh and processed produce
encompasses sensory properties (appearance, texture, taste and aroma), nutritive
values, chemical constituents, mechanical properties, functional properties and
defects [41]. Therefore, it is difficult to decide on a single universal definition of
quality with regards to horticultural products considering the different views on
quality held by major stakeholders in the field of horticulture [42, 43].

2.1.2 Quality measurement and evaluation

The measurement of quality attributes of horticultural produce plays an important
role in quality management during postharvest handling. These measurements
allow for comparison against industrial standards by ensuring that the product
meets the limits of acceptability by the consumer [44]. Product quality attributes
may be evaluated using a sensory panel or instrumental analysis. The quality
of agricultural commodities is characterized based on individual or a combina-
tion of various properties such as physical, chemical, and microbial characteristics
[33]. These quality attributes includes appearance (size, shape, gloss and colour,
freedom of defect and decay), texture (firmness, crispness, juiciness, mealiness),
flavour (sweetness, acidity, astringency, aroma and off-flavours) and nutritive value
(dietary fiber, vitamins, minerals, phytonutrients) [25, 45, 46]. Other measurable
quality attributes like fat content, moisture and protein content are also analysed
[47]. A block diagram of different food quality aspects and related parameters are
presented in Figure 2.1.

The block diagram shows different food quality aspect and related parameters.
The upper line indicates the different food quality aspects, while the bottom line
is the different attributes on the different quality aspects.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. NON-INVASIVE METHODS FOR PREDICTING THE
QUALITY OF PROCESSED HORTICULTURAL FOOD PRODUCTS, WITH
EMPHASIS ON DRIED POWDERS, JUICES AND OILS: A REVIEW 8

Figure 2.1: A block diagram of different food quality aspect and related parameters

2.1.3 Parameters used for evaluating models performance

For non-invasive quality analysis, the performances of multivariate models have
been assessed based on different factors of merit. One of the mostly used is the
coefficient of determination (R2), for prediction (R2

p), for calibration (R2
c) and for

cross-validation (R2
cv).

Other statistical parameters explaining a good model includes root mean square
error (RMSE) for calibration (RMSEC), prediction (RMSEP) and cross-validation
(RMSECV), residual predictive deviation (RPD) and bias. Further information
on different parameters used for evaluating the models performance have been
extensively reviewed by [16, 48, 49].

2.2 Infrared spectroscopy (IRS)

2.2.1 Overview of infrared spectroscopy

Infrared (IR) spectroscopy includes visible to near infrared (Vis/NIR) and mid
infrared (MIR) region of the electromagnetic spectrum. IRS technology employs
the principle of interactions between matter that contains molecular bonds with
the electromagnetic radiation in the near and mid infrared range. Vis/NIR and
MIR spectroscopy cover an electromagnetic range of 12500 – 4000 cm−1 or 800 –
2500 nm (NIR), and 4000 – 400 cm−1 or 2500 – 25000 nm (MIR), respectively.
The NIR spectrum of a biological product consists of broad bands arising from
overlapping absorptions, corresponding mainly to overtones and combinations of
vibrational modes. Chemical bonds between light atoms, such as C–H, O–H, and
N–H, generally have high vibrational frequencies, which result in overtones. NIR
spectroscopy has several advantages. It has the added versatility of penetrating
food samples at finite distances and provides spectral information of surfaces and
internal characteristics [15]. IR spectroscopy, on the other hand, captures more
spectral information due to the higher resolution of the fundamental vibrational
absorption bands compared to the broad overtone and combination absorption
bands in the NIR region [20, 50]. A block diagram illustrating the basic steps for
NIR spectral acquisition and model development is presented in Figure 2.2.
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Figure 2.2: Block diagram with basic steps for developing NIR calibration model
a) the sample is irradiated with NIR radiation, b) a fundamental analytical method
also known as reference method is used to obtain the dependant variable to be
calibrated, c) the acquired spectral data is subjected to pre-processing methods
using chemometrics, d) the combination of reference and spectral data are used
to develop calibration model, e) calibration model are validated to test the model
performance.

2.2.2 Application of infrared spectroscopy for assessment
of processed horticultural products

NIR and MIR spectroscopy in combination with multivariate data analysis has
extensively been used for the characterization of food attributes, providing accu-
rate, fast and cost-effective non-destructive quantification of major components in
different food and processed agricultural materials.

2.2.2.1 Dried horticultural products

Food powders are dried solid materials and should meet specific quality standards,
including moisture content, particle size, and particle morphology. Attention needs
to be given to quality evaluation of powdery food particles, with emphases on pa-
rameters such as chemical composition (regarding starch, protein), adulteration
and mycotoxin content. Recent progress and applications of IR spectroscopic tech-
nologies for non-invasive quality determination of powdery horticultural products
are reviewed (Table 2.1). For the evaluation of tea powder, FT-NIR spectroscopy
provided a satisfactory performance for the prediction of catechin, with predic-
tion statistics of R2 as high as 0.980, and RMSEP as low as 0.017% [51]. MIR
spectroscopy was applied in a study by Li et al. [52] for the detection of polyphe-
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nols in tea powder. In this study, the authors combined the wavelength selection
algorithms of backward interval partial least squares (biPLSR). The partial least
square (PLS) model provided comparable results (R2=0.708) to the full spectral
model (R2=0.713), which demonstrated the effectiveness of the PLS regression
model and the biPLSR-RF algorithm. In a different study, Li et al. [53] inves-
tigated FT-MIR spectroscopy to quantify talcum powder contamination in tea
powder. Based on a hybrid of biPLSR, competitive adaptive reweighted sampling
(CARS) and selection of 18 characteristic variables. The authors obtained bet-
ter detection results of talcum concentration (R2=0.927, RMSEP=0.137). Other
physicochemical properties that were evaluated in using IR spectroscopy include
starch [54], protein [55], metanil yellow [56] and total phenolic content [57].

Table 2.1: Summary of infrared spectroscopy applied for quality evaluation of
different horticultural dried products 

Products Non-invasive 
analysis used 

Parameters Wavelength 
range 

Predictors accuracy References 

Black tea NIRs Caffeine 
Free amino acid 
Total phenolics 
Water extract 

12500 – 4000 cm-1 R2 = 0.955, RMSEP = 0.16% 
R2 = 0.927, RMSEP = 0.273% 
R2 = 0.954, RMSEP = 0.594% 
R2 = 0.962, RMSEP = 0.685% 

[57] 

Chilli powder NIRs Aflatoxin B1 12000 – 4000 cm-1 R2 = 0.967, RMSECV = 0.654% [23] 

Chilli powder NIRs Sudan I dye adulterant 9000 – 4000  cm-1 R2 = 0.991, RMSEP = 0.141% [58] 

Corn flour NIRs Protein 10000 – 4000 cm-1 R2 = 0.882, RMSEP = 0.413% [144] 

Garlic powder MIRs Starch 4000 – 650 cm-1 R2 = 0.950 for VIP, R2 = 0.890 for SR [54] 
Lotus root flour MIRs Starch 4000 – 500 cm-1 R2 = 0.981, SDR = 5.47% [145] 
Tea powder MIRs Catechin 1000 – 4000 cm-1 R2 = 0.921-0.971, RMSEP = 0.017%-

0.384% 
[51] 

Tea powder MIRs Polyphenol 4000 – 400 cm-1 R2 = 0.708 - 0.713 [52] 

Tea powder MIRs Talcum concentration 4000 – 400 cm-1 R2 = 0.927, RMSEP = 0.137% [53] 

Turmeric powder MIRs Metanil yellow 4000 – 650 cm-1 
3700 – 100 cm-1 

Detection of 5% (w/w) 
1% (w/w) 

[56] 

RMSEP: root mean square error of prediction, NIRs: Near-infrared spectroscopy, MIRs: Mid-infrared spec-
troscopy, RMSECV: Root mean square error of cross validation, R2:Coefficient of determine for validation, VIP:
Variable importance in projection, SR: Selectivity ratios.

IR spectroscopy has been successfully used in detection and classification of my-
cotoxins and adulteration of powdered foods. For instance, Tripathi and Mishra,
[23] used FT-NIR spectroscopy to detect Aflatoxin B1 in chilli powder. The de-
veloped PLSR model provided satisfactory prediction statistics with R2 of 0.967
and RMSECV of 0.654%. For adulteration Haughey et al. [58], applied NIR spec-
troscopy to detect fraudulent adulteration of chili powder using Sudan dye (0.1
– 5%). The developed quantitative models determined that the limit of detec-
tion was 0.25%, and coefficients of determination (R2) were found to be between
0.991 and 0.994. Hu et al. [59] also investigated the use of Fourier transform
mid infrared spectroscopy to both identify adulteration of Sichuan pepper, and
examine the authenticity of black pepper samples using both GA-SVM and PLS-
DA calibration and prediction set models achieved 100% accurate classification
rate. These studies have reported successful applications of both FT-NIRs and
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FT-MIRs in the different horticultural dried or powdered products, suggesting
that the techniques can be further explored for quality assessment of other dried
fruit samples like dried pomegranate aril, banana slices, and others.

2.2.2.2 Juice products

Over the last decade, several research publications on the usage of IR spectroscopy
for quality control and authenticity of commercial juices were published (Table
2.2). Xie et al. [60], investigated the usage of NIR spectroscopy to determine
individual sugars (glucose, fructose, sucrose) in bayberry juice in the NIRS re-
gion of 800 – 2400 nm. According to Włodarska et al. [61], the NIRS region of
6896, 5587, and 4413 cm−1 as optimal for the assessment of sucrose, fructose, and
glucose in apple juice. Masithoh et al. [62] reported Vis/NIR measurements for
soluble solid content (SSC) and titratable acidity (TA) of Satsuma mandarin juice
in the region of 600 – 1100 nm, with calibration model to predict SSC yielding
R2 = 0.92, standard error of prediction (SEP) = 0.42 ◦Brix and R2 = 0.56 ◦Brix,
SEP = 0.14% for acidity.

Table 2.2: Summary of infrared spectroscopy applied for quality evaluation of
different horticultural juice products

 Product Non-invasive 
method 

Parameters Wavelength range  Predictors accuracy References 

Apple juice NIRs SSC 
TA 
SSC/TA 

12500 – 4000 cm-1 R2 = 0.881, RMSECV = 0.277% 
R2 = 0.761, RMSECV = 0.239% 
R2 = 0.843, RMSECV = 0.113% 

[61] 

Bayberry juice NIRs Glucose 
Fructose 
Sucrose 

800 – 2400 nm R2 = 0.74669 – 0.85492 
R2 = 0.69893 – 0.96364 
R2 = 0.89083 – 0.99321 

[60] 

Black currant 
juice 

MIRs SSC 
TA 

7000 – 600 cm-1 R2 = 0.97, RMSECV = 1.14% 
R2 = 0.96, RMSECV = 2.61% 

[67] 

Grape juice Vis/ NIRS SSC 
pH 

325 – 1075 nm R2 = 0.979, RPD = 6.971 
R2 = 0.951, RPD = 5.432 

[65] 

Grape juice MIR/NIR TAC 
TPC 

10000 – 829.11 cm-1 
10000 – 823.52 cm-1 

R2 = 0.81, RMSEP = 4.22% 
R2 = 0.90, RMSEP = 0.21% 

[69] 

Mango juice MIRs ASC 
TSS 
RJC 

4000 – 650 cm-1 R2 = 0.996 
R2 = 0.997 
R2 = 0.986 

[68] 

Pomegranate 
juice 

NIRs/MIRs TSS 
TA 
TSS/TA 

12500 – 4000 cm-1 R2 = 0.9234, RMSEP = 0.31%, RPD = 3.63 
R2 = 0.8623, RMSEP = 0.11, RPD = 2.7 
R2 = 0.8176, RMSEP = 1.04%, RPD = 2.35. 

[20] 

Strawberry 
juice 

MIRs Glucose, 
Sucrose, 
Fructose 

1200 – 900 cm-1 R2 ≥ 0.97 [63] 

Satsuma 
mandarin 

Vis/NIRs SSC 
TA 

600 – 1100 nm R2 = 0.92, SEP = 0.42 ºBrix 
R2 = 0.56, SEP = 0.14% 

[62] 

Tomato juice NIRs SSC 
pH 

800 – 2400 nm 100% accuracy [66] 

Tomato juice MIRs Glucose, 
Fructose, 
TSS, 
Viscosity 

1460  – 950 cm-1 R2  ≥ 0.82 [64] 

R2: coefficient of regression, RMSECV: root mean square error of cross validation, RMSEP: root mean square
error of prediction, RPD: residual predictive deviation NIRs: Near-infrared spectroscopy, MIRs: Mid-infrared
spectroscopy
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In a recent study, Cassani et al. [63] investigated the usage of FT-MIR spec-
troscopy to simultaneously quantify simple sugars and exogenously added fructo-
oligosaccharides (FOS) in 4 types of strawberry juices during storage. The authors
performed principle component analysis which explained (76–97%) of the varia-
tion and observed high correlation coefficient R2 >97% for the developed PLS
models. Ayvaz et al. [64] applied FT-MIR spectroscopy in the spectral region
of 1460–950 cm−1 for predicting glucose, fructose, total reducing sugars, soluble
solids (◦Brix) and serum viscosity in tomato juice. Using PLS regression analysis
the authors predicted glucose (R2=0.95%, SEP=1.4 g/L), fructose (R2=0.95%,
SEP=1.46 g/L), total reducing sugars (R2=0.97%, SEP=2.06 g/L), soluble solids
(◦Brix) (R2=0.99%, SEP=0.12 g/L) and serum viscosity (R2=0.85%, SEP=1.32)
with good accuracy. MIR spectroscopy has successfully been applied to evaluate
the quality of several juices including grape [65], tomato [66], blackcurrant [67],
mango [68] and pomegranates [20].

From the published literature, MIR spectroscopy seems better suited to evalu-
ate the quality attributes of juices due to the higher resolution of the fundamental
vibrational absorption bands compared to the broad overtone and combination
absorption bands in the NIR region. For comparison between NIR and MIR spec-
troscopy, Caramês et al. [69] conducted a study to develop calibration models
to predict total phenolic content (TPC) and total anthocyanin content (TAC) in
grapefruit. In their study, 65 samples of grapefruit juice were used to develop
calibration models employing partial least squares regression (PLSR) to predict
TPC and TAC in grape juice. Results showed that MIR and NIR had a similar
satisfactory performance to predict TAC presenting low RMSEP (4.22 mg/100 mL
and 4.44 mg/100 mL). In TPC prediction, MIR provided an RMSEP (0.21 mg
GAE/mL) slightly better compared to that of NIR (0.37 mg GAE/mL), indicat-
ing that MIR spectra are more accessible to interpret than the NIR spectra. In
another study, Arendse et al. [20] statistically compared the usage of several NIR
and MIR instruments for quality evaluation of pomegranate juices. The authors
observed that MIR spectroscopy performed better in the prediction of quality pa-
rameters such as TSS, TA. However, their statistical approach based on Bland and
Altman, and Passing-Bablok suggested that there were no significant differences
between the results obtained with NIR or MIR spectroscopic measurements. This
means that both spectra ranges of the infrared spectroscopy can be applied for
quality analysis of juice samples.

IR spectroscopy have been used classification and authentication of adulterated
juices. Xie et al. [70] reported that NIR spectroscopy has the ability in discrimi-
nating adulteration of bayberry juice with water using radial basis function neural
network classifiers, acquiring a classification accuracy of 97.62%. Snurkovic et
al. [71] demonstrated that NIR spectroscopy could detect a mixture of various
substance such as water, sugar and other juice to fruit juices as evidenced by
discriminant analysis applied to spectral data. Other reports on applications of
infrared spectroscopy for authentication and detecting adulteration of fruit juices
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have proven the relevance and effectiveness of this technique, based on studies
predominantly in the ’mid-infrared’ spectral range [68, 72].

2.2.2.3 Oil products

One of the quality control aspects of edible fats and oils is the determination of
oxidation products. Oxidation of fats and oils produces either primary (peroxides)
or secondary oxidation products. Recently, FT-IR spectroscopy, in combination
with chemometrics, has been developed to monitor certain absorption bands that
changed during oxidation. Table 2.3 compiles the usage of IR spectroscopy for
quality assessment of different oil sample and oil blends samples that appear in
several publications from 2009–2019. Marina et al. [73] applied 30 Fourier trans-
form infrared (FT-IR) spectroscopy on 30 samples of virgin olive oil for the quan-
titative analysis of peroxide value (PV) using. In their study, calibration models
were obtained that yielded satisfactory results with RMSEP value of 0.4978% and
R2=0.9826. In a similar study, Marina et al. [74] investigated the free fatty acid
profile of virgin coconut oil using FT-MIR spectroscopy in the spectral region
of 1730–1690 cm−1. The authors obtained satisfactory results with (R2=0.9281
and RMSEP=0.1264. Results show great potential of the application of FTIR in
the rapid, accurately quantify VCO. In another study. Three essential quality of
binary blend of palm and canola oil assessment was investigated by Mba et al.
[75]. The authors achieved accurate results for iodine value (IV), free fatty acid
(FFA) and peroixde value (PV) with (R2 values ≥ 0.99 and RPD ranging from
6.11–11.60. Other quality parameters of different edible oils have been evaluated
using IR spectroscopy. These include acid value [76], peroxide value [24, 77], total
phenolic content [76], Squalene [14], and total sterol content [78].
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Table 2.3: Summary of infrared spectroscopy applied for quality evaluation of
different horticultural oil products
 

Products Non-invasive 
method 

Regression 
Analysis 

Parameters Wavelength range  Predictors accuracy References 

Extra Virgin 
Olive oil 

NIRs PLS TSC 
SFA 
MUFA 
PUFA 

9403 – 749 cm−1 
6800 – 6098, 5450 – 4597 cm−1 
5450 – 4597 cm−1 
9403 – 7498, 5025 – 4597 cm−1 

R2 = 0.839, RPD = 2.64 
R2 = 0.998, RPD = 21.8 
R2 = 0.997, RPD = 18.7 
R2 = 0.998, RPD = 25.1 

[78] 

Olive oil NIRs  PLS MUFA 
PUFA 
SFA 
PV 

3033 – 700 cm-1 

3033 – 700 cm-1 
3033 – 700 cm-1 
4000 – 700 cm-1 

R2 = 0.89, REP = 1 % 
R2 = 0.98, REP = 4 % 
R2 = 0.71, REP = 6 % 
R2 = 0.99, REP = 20 % 

[77] 

Olive oil NIRs 
Vis/NIRs 

PLS Squalene 
Squalene 

350 – 2500 nm 
1100 – 2300 nm 

R2 = 0.83, RPD = 2.31 
R2 = 0.74, RPD = 1.94 

[14] 

Virgin olive 
oil 

NIRs PLS SFA 
PV 
TPC 

12,500 – 4000 cm−1 R2 = 0.42, RPD = 1.13 
R2 = 0.79, RPD = 1.64 
R2 = 0.79, RPD = 1.71 

[24] 

Virgin 
coconut oil 

ATR-FT-MIRs  PV 4000 – 650 cm−1 R2 = 0.9826, RMSEP = 0.4978 [73] 

Virgin 
coconut oil 

ATR-FT-MIRs  FFA 1730 – 1690 cm−1 R2 = 0.9281, RMSEP = 0.1264 [74] 

Rapeseed 
and canola 
oil blend  

NIRs PLS AV 
TPC 

1800 – 2200 nm 
1100 – 1800 nm 

R2 = 0.99, RPD = 12.8 
R2 = 0.98, RPD = 7.8 
 

[76] 

Palm and 
canola oil 
blend 

FT-NIRs  PLS IV 
FFA 
PV 

9404 – 7498 cm-1 

7502 – 6098 cm-1 
6102 – 5446 cm-1 

R2 = 0.98, RPD = 6.11 
R2 = 0.99, RPD = 11.60 
R2 = 0.97, RPD = 6.40 

[75] 

FFA: Free fatty acid, PLS: partial least square, R2: coefficient of determination for validation, REP: relative error
of prediction, PV: Peroxide value, TSC: Total sterol content, SFA: saturated fatty acid, MUFA: Monounsaturated
fatty acid, PUFA: Polyunsaturated fatty acid, NIRs: Near infrared spectroscopy, vis/NIRS; Visible infrared
spectroscopy.

Researchers have also compared the performance of MIR and NIR in classi-
fication, authentication and adulteration detection for different horticultural oil
products [79, 80, 81, 82]. Their findings showed the ability of this technique to
successfully replace the existing traditional wet chemistry analytical methods of
quality analysis.

2.3 Hyperspectral imaging (HSI) and
multispectral imaging (MSI)

2.3.1 Overview of hyperspectral imaging (HSI) and
multispectral imaging (MSI)

Hyperspectral imaging (HSI) also known as chemical and spectroscopic imaging
integrates the main features of spectroscopic and imaging or computer vision [49].
It is often used to collect images with high spatial and spectral resolutions and
has been widely used for the studied for food technique. It acquires monochro-
matic images with numerous (hundreds) continuous wavebands, and a full spec-
trum which are extracted for each pixel in an image. The data obtained from
HSI systems are 3-dimensional (3-D) structures that consist of two spatial and
one spectral dimension [16]. The process usually involves a significant amount of
time for image acquisition under laboratory conditions and relatively complicated
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procedures for offline image analysis. Multispectral imaging (MSI) on the other
hand, is considered a reformation of the hyperspectral imaging [83]. It involves
creating images using more than one spectral component of the electromagnetic
wavelength from the same region of an object and at the same scale [48, 84]. MSI
aims to acquire spatial and spectral information which is useful for real time ap-
plications (packinghouses and food processing plants). MSI accomplish this by
capturing two or more waveband monochromatic images with a few (generally
less than 10) discrete wavebands in the spectrum [85]. This process involves fast
image acquisition and simple algorithms for image processing and decision making.

HSI and MSI make use of one of three methods to generate 3-D hyperspectral
cubes [hypercubes (x, y, k)] namely, point (whiskbroom) scanning, line (push-
broom) scanning, and area scanning (tunable filter or staredown). A block di-
agram illustrating the basic steps HSI and MSI spectral acquisition and model
development is presented in Figure 2.3.

Figure 2.3: Block diagram of basic steps for hyperspectral imaging. a) The sample
is radiated with NIR radiation, b) the reflected radiation is captured by a filter and
optics which is responsible for wavelength selection, separation and measurement,
c) the spectrum of each pixel is captured and is recorded by a detector, d) the image
of the sample at each wavelength is recorded resulting in image slices

MSI for real-time application is not feasible as the point-scan method may not
be suitable for fast image acquisition due to scanning along two spatial dimensions
as it makes it time-consuming. Moreover, the previously mentioned methods (i.e.
line-scan and area-scan) can be adjusted to meet the requirements for rapid im-
age acquisition. Hyperspectral imaging when compared to traditional analytical
methods is highly sensitive to minor constituents but has a poor limit of detection
[86]. Further information on the principles of these technologies can be found in
a review by Qin et al. [87].
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2.3.2 Application of hyperspectral imaging (HSI) and
multispectral (MSI) for assessment of processed
horticultural products

As can be inferred from the research of Wu & Sun, [49] most of the applications of
hyperspectral imaging concern the analysis of solid food products. MSI and HSI
techniques have successfully been applied for the quality and safety assessment of
intact fruits and vegetables mainly through reflectance mode in the ranges 400–
1100 and 900–1700 nm. Their applications to fresh fruits and vegetables have
been applied to determine contamination, bruises, surface defects, insect damage,
microbial diseases, starch index, firmness, soluble solid content, sugar content, bit-
ter pit, and chilling injury. However, on processed horticultural products, limited
investigation has been conducted. For the evaluation of powdery foods, research
and application of HSI have mainly been applied to the evaluation of agronomy
powders such as soybean flour, wheat flour, spent flour and oat flour. The ranges
usually considered were: 400–1000, 700–1000, 960–1750, and 1100–2400 nm [83].
These powders have been successfully analysed for colour classification, authen-
ticity, contamination, and mycotoxins.

2.3.2.1 Dried horticultural products

The application of HSI to horticultural products have been on dried seed where
it was used to discriminate different varieties of tomato. Wang et al. [88] applied
the PLS-DA to distinguish different varieties of tomato. The authors applied
on a spectral range of 375–970 nm and reported an accuracy of above 82%. In
another study, Shrestha et al. [89] also discriminated tomato seed using PLS-
DA and spectral range. The authors reported better accuracy of 99.6%. The
polyphenols in tea was assessed using the HSI [90]. The authors reported regression
of determination, R2=0.915. Other applications of HSI has been reported on
spinach seed [91] and watermelon seed [92].

2.3.2.2 Juice products

From literature search, it can be observed that limited information is available on
the application of HSI and MSI on quality evaluation of horticultural processed
juices. Reason for this may be due to the homogeneous nature of juice samples.
Future research focus must be on this aspect of processed juice.

2.3.2.3 Oil products

The HSI has also successfully been applied for classification, authenticity detection
and quality evaluation of edible oils. In a study on near-infrared hyperspectral
imaging (NIR-HSI), Gou et al. [93] used HSI to classify edible oil and waste
vegetable oil based on their spectral characteristics with the spectral region of
350–2500 nm. By applying unweighted distance method and interior square sum
distance, the authors successfully classified 22 corresponding types based on clus-
tering their hyperspectral digital numbers. Martinez-Gila et al. [94] applied HSI
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for the evaluation of three chemical indexes: acidity, peroxide index and humidity
content in virgin olive oil. The authors evaluated using 2 component algorithms,
namely partial least squares regression (PLS) and genetic algorithm (GA-PLS).
The authors reported comparable results for the two algorithms for acidity, per-
oxide index and humidity content, with R2 of 0.95, 0.98, and 0.91, respectively for
PLS and R2 of 0.93, 0.92 and 0.92 for GA-PLS. Their results suggest that HSI can
quickly and simultaneously predict various oil quality parameters. A summary
of the different applications of HSI and MSI for quality evaluation of processed
horticultural products is summarized in Table 2.4.

Table 2.4: Application of hyperspectral imaging in the evaluation of different pro-
cessed horticultural products

Product Non-invasive 
method 

Regression Analysis Parameters Wavelength range Predictors 
accuracy 

Reference 

Tea HSI PLS Polyphenols 405 – 970 nm R2 = 0.915 [90] 

Tomato seed HSI PLS-DA Variety discrimination 375 – 970 nm 99.60 % [89] 

Tomato seed HSI PLS-DA Variety discrimination 375 – 970 nm ≥ 82 % [146] 
Spinach seed HSI PLS-DA Germination ability 395 – 970 nm 68 % [91] 
Virgin olive oil 
 
 

 

HSI  PLS 
 
 
GA-PLS 

Acidity 
Peroxide index humidity 
content 
Acidity 
Peroxide index humidity 
content 

900 – 1700 nm 
 
 
900 – 1700 nm 

R2 = 0.95 
R2 = 0.98 
R2 = 0.91 
R2 = 0.93  
R2 = 0.92 
R2 = 0.92 

[94] 

Watermelon HSI PLA-DA Virus infection 1411 – 1867 nm 83.3 % [92] 
Edible 
cooking oils blend 

HSI PLS Classification 350 – 2500 nm 100 % [93] 

 
GA-PLS: Genetic algorithm-Partial least squares, PLS: partial least squares, PLS-DA: Partial least squares-
discriminant algorithm, R2: coefficient of determination for validation

2.4 X-ray micro-computed tomography

2.4.1 Overview of X-ray micro-computed tomography

Microfocus X-ray computed tomography (µCT) is a visualization technique that
reconstructs and render three-dimensional images which is used for characteriza-
tion and defect detection [95, 96]. X-ray CT is a proven method for evaluating a
cross-section of an object using a movable X-ray source and detector assembly to
accumulate data from thousands of projected slices of a sample. The basic princi-
ple behind the CT is that the internal structure of an object can be reconstructed
from multiple projections of the object [97].

X-ray computed tomography is based on X-ray radiograph. An X-ray beam is
focused towards the sample, and the transmitted radiation is recorded by a multi-
channel detector. The transmission of the radiation depends on the mass density
and mass absorption coefficient of the scanned material. A series of 2-dimensional
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(2D) images are captured while rotating the sample between 0◦ and 180◦, using
filtered back-projection algorithm the volume of the object can be reconstructed
into a 3-dimensional (3D) image which is superimposed information (projection)
of the stack of (2D) images [95]. A block diagram illustrating the basic steps X-ray
CT and image development are presented in Figure 2.4. X-ray CT allows for the

 

Sample Sample 
mounted on 
rotational 
stage 

Analysis 
using 
reconstruc
tion 
software 

e 

a Exposed 
to x-ray 
radiation 

Photodete
ctor 

Series of 2-D 
projection 
images 

Tomogra
phic 
reconstru
ction of 
2D- 
images 
into 3-D 
object 

d 

c 

b 

f 

Figure 2.4: Block diagram of X-ray-CT acquisition and reconstruction process a)
selected sample mounted on a rotational stage, b) A collimated X-ray radiation is
focused on the sample c) the remainder radiation is captured by a multi-channel
detector, d) which transmits a response signal to a computer and produces a series
of 2-D projection images, e) 2-D images are then reconstructed into a 3-D object, f)
the 3-D object is analysed using reconstruction software

visualization, characterisation and analysis of physical and physiological structures
of biological materials with a resolution as low as few micrometres. Considering
that fruits and vegetables have a high moisture content, water dominates X-ray
absorption and defects that affect the density and the water content can, therefore,
be visualized [95]. X-ray CT is one of the most powerful non-destructive techniques
for the evaluation of internal and external characteristics including the detection
of defects in agricultural products [84]. Further information on the principles of
these technologies have been explained and extensively reviewed by Kotwaliwale
et al. [96].

2.4.2 Application of X-ray computed tomography for
assessment of processed horticultural products

The use of X-rays in the inspection of agricultural commodity is still in primary
stage. Use of X-ray imagery for agricultural product inspection offers considerable
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advantages and complements present inspection techniques [98]. Research studies
with regards to X-ray µCT have mainly been focused on non-destructive character-
isation of food microstructure for fresh horticultural fruits (Table 2.5). However,
limited information has been published on any horticultural products processed
into powders (dried) and seed oil. The application of X-ray has been shown to be
an effective technique for estimation and characterization of internal structures.
For instance, Arendse et al. [31] estimated the juice content of pomegranate fruit
cv. ’Wonderful’ grown in South Africa. The authors predicted the juice volume
(142.7±16.4 mL) constituting 89.8% of the total aril volume (162.5±16.2 mL). In
a similar study on the same fruit, Arendse et al. [99] quantified volumes of key
parts of pomegranate fruit (cv. Wonderful) relevant to the food and beverage in-
dustry. These authors were able to estimate the total amount of arils per fruit and
quantify volumes of arils, kernels, albedo and juice content. Magwaza & Opara
[100] estimated the volume of minimally processed pomegranate arils. The limited
knowledge of X-ray µCT applied on dried fruit samples and seed oil provides novel
research opportunities that may evaluate the quality of these processed horticul-
tural products.

Table 2.5: Summary of the information concerning the application of X-ray micro
computed tomography in the evaluation of different processed products

Products Tube voltage 
and current 

Spatial 
resolution 

Application Reference 

Banana slices 60 kV, 167mA 
 

15 µm 
 

Effect of far-infrared radiation on 
the microstructure 

[101 

Coffee beans 29 kV, 175 µm 2.8 µm Microstructural changes induced 
by roasting 

[103] 

Coffee beans 19 and 20 keV 9 µm Evaluation of microstructural 
properties 

[102] 

Minimally processed 
pomegranate arils 

200 kV, 100 µA 71.4 µm. Characterization and estimation of 
pomegranate arils 

[100] 

Pomegranate juice 245 kV, 300 µA 71.4 µm Characterization and estimation of 
pomegranate juice, aril and peel 

[31] 

Pomegranate fruit 
parts 

100 kV, 200 µA 71.4 µm Estimation of pomegranate whole 
fruit and different parts 

[147] 

 

Although scientific literature is replete with studies exploring the research as-
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pect of X-ray µCT for non-destructive defect detection and characterisation of
internal and external structures of biological materials [101, 102, 103], on-line and
real-time applications are limited. Some of the drawbacks of X-ray µCT systems
is that they are expensive, bulky and more complicated to use than some other
non-invasive technologies. Additionally, the vast amounts of data acquired during
acquisition involve significant amount of time and relatively complicated proce-
dures for offline image analysis. Another potential aspect includes the health and
safety concerns that may arise from equipment usage. However, these drawbacks
provide novel research opportunities in reducing large data size and time required
for image analysis to provide rapid real time non-destructive characterisation and
detection of internal defects.

2.5 Raman Spectroscopy

2.5.1 Overview of Raman spectroscopy

Raman spectroscopy is another analytical vibrational spectroscopy which has been
employed for food quality analysis and authenticity. Theoretically, Raman spec-
troscopy is based on the principle that when light incident on a molecule interacts
with the electron cloud of the bonds within a molecule, and the incident pho-
ton excites an electron into a virtual state. When a molecule is excited from the
ground state to a virtual energy state and then relaxes into an excited vibrational
state [104]. This scatter is referred to as Raman scattering. In this process, an
elastic collision between the incident photon and the molecule of the sample oc-
curs [105]. The scattered light is collected, then dispersed in a monochromator and
then detected by a sensor [106]. As a result, the vibrational or rotational energy
of the molecule is changed, and the scattered radiation is shifted to a different
wavelength. The frequency difference between scattered radiation and incident
radiation is called a Raman shift. If the molecule gains energy, scattered photons
are shifted to longer wavelengths, giving rise to stokes lines in the Raman spec-
trum; otherwise, they are shifted to shorter wavelengths, giving rise to anti-stokes
lines in the Raman spectrum [105]. The spectra that are generated from this re-
laxation and excitation of molecules of samples by radiation of light can provide a
fingerprint of a specific substance, indicating the analysis of this compound, which
offers the basis for structural analysis and qualitative analysis. A block diagram
illustrating the basic steps of Raman spectroscopy is presented in Figure 2.5.

Raman spectroscopy has also been used to perform quantitative analysis be-
cause the intensity of an analyte band is linearly proportional to the analyte
concentration, which can be represented by

Iv = IoKvC (2.5.1)

where Iv is the measured Raman intensity, Io is the excitation intensity, Kv is
the constant and C is the analyte concentration. The vibrational spectrum as in
the case of Raman spectroscopy provides similar information as the infrared (IR)
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Figure 2.5: Block diagram illustrating basic steps using FT-Raman scattering a)
high powered He-Ne laser provide an excitation signal to excite the sample of interest,
b) the Raman signal scatters on the sample and passed though filters which eliminate
the scattered Rayleigh light and transmit the desired wavelength only, d) the lens
then focus and transfers the scattering signals to the Raman spectrometer which is
detected by the CCD detector, e) a computer analyses the signals to form a set of
spatially offset Raman spectra.

vibrational spectrum, but they have few important distinctions. For instance,
Raman spectroscopy has high specificity, Raman bands have a good signal-to-
noise ratio (SNR) and are non-overlapping, which allows Raman spectroscopy to
be used for fingerprinting of samples to conduct analysis. Additionally, Raman
spectroscopy provides good compatibility for the analysis of aqueous systems, since
Raman spectra of water are weak and unobtrusive, making it an ideal tool for the
application in aqueous solutions.

2.5.2 Application of Raman spectroscopy for assessment of
processed horticultural products

Advances in instrumentation coupled with chemometric analysis have led to Ra-
man spectroscopy being used as the tool of choice for an increasing number of
applications in the food and beverage industry. Raman spectroscopy has sev-
eral advantages. It is a rapid analysis, requires minimal sample preparation and
compatibility with aqueous solutions. Such features make it a versatile tool for in-
line or on-line analysis in different fields, including agricultural, pharmaceutical,
biomedical, material science, geological and environmental science.

2.5.2.1 Dried horticultural products

Several studies on dried powder products have been done on processed horticul-
tural products (Table 2.6). Reis et al. [107] applied Raman spectroscopy for the
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detection of the adulteration of Sudan I dye in chilli powder. The authors ob-
served high accuracy in their prediction model with R2=0.994. Similarly, Pei et
al. [108] discriminated between Sudan dye I and II in chilli powder and was able
to detect to a limit of 0.6 mg/kg for Sudan I and 0.4 mg/kg for Sudan II respec-
tively. This was also reported by [109], for paprika powder with good prediction
model. The presence of melanin yellow was successfully detected in turmeric pow-
der within the frequency range of 1800–200 cm−1 [56]. The authors obtained a
classification model with a prediction coefficient of determination of 0.916 and a
limit of detection (LOD) of 1%. Li et al. [110] applied the Raman spectroscopy to
detect the presence of lead chrome green in tea powder at different concentrations.
The models were developed using SPA and PLSR (Partial least square regression)
multivariate analysis. Successive projection algorithm was used for wavenumber
selection and of the selected 8, the corresponding characteristic wavenumbers were
2775, 2176, 1666, 1541, 1297, 988, 547 and 262 cm−1. Based on these 8 charac-
teristic wavenumbers, the detection model was built using PLSR. The authors
reported the PLS model to give the best performance with R2

p=0.936 and RM-
SEP=0803 with a LOD of lead chrome green was 0.651 mg/g.

Table 2.6: Summary of Raman spectroscopy applied for quality evaluation of pow-
dered products

 

Products Parameters Wavelength range Multivariate 
Analysis 

Predictors accuracy References 

Chili powder Sudan I dye adulterant 2000 – 200 cm-1 SG, SNV, PCA, 
PCR, PLSDA 

R2 = 0.891 – 0.994 [107] 

Chili powder Sudan I, Sudan II 
adulterants 

1700 – 400 cm-1 PCA Detection of 0.6 mg/kg 
and 0.4 mg/kg for sudan I 
and II respectively 

[108] 

Turmeric powder Melanil yellow 3700 – 100 cm-1 SG, MSC, BR LOD = 1%   [56] 

Tea powder Lead chrome green 2804 – 230 cm-1 PLSR, SPA R2 = 0.858 [110] 

Chilli powderr Sudan dye adulterant 2000 – 200 cm-1 PLS, PLS-DA, 
PCA, PCR 

R2 = 0.971, LOD = 0.88% [58] 

Paprika powder Sudan I adulterant 2200 – 200 cm-1 PCA, PLSR R2 = 0.788 – 0.983 [109] 

PLS-DA: partial least square discriminant analysis, LOD: Limit of detection, PCA: principal component analysis,
SPA, successive projections algorithm, SNV: standard normal variate, SG: Savitzky-Golay, MSC: multiplicative
scatter correction, BR: band ratio, PCR: principal components regression.

In another study, Ma et al. [111] applied Surface-enhanced Raman scattering
(SERS) for authentication and detection purposes. The authors compared SERS
and high-performance liquid chromatography (HPLC) for the detection of Car-
bendazim (CBZ) presence in tea. Their result detected CBZ to a limit of 0.1 mg
kg−1 with an accuracy of R2=0.9546 and RSD=12.4%.

2.5.2.2 Juice products

For the evaluation of juice quality, several researchers have applied Raman spec-
troscopy. A summary of Raman spectroscopy applied for quality evaluation of
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horticultural juice products is presented in Table 2.7. For instance, Shende et al.
[112] applied Surface-enhanced Raman spectroscopy (SERS) coupled with solid-
phase extraction on orange juice to detect the presence of chlorpyrifos-methyl
(CPM). The artificial addition of CPM to orange juice was detected in 12 minutes
and at a concentration level of 50 ppb. This concentration was well below the EPA
tolerance levels of 0.1 ppm for CP in citrus fruit. Malekfar et al. [113] reported
the detection of carbohydrate and protein in tomato juice using the SERS Raman
spectroscopy. The authors applied a spectral range of 100 and 4000 cm−1 and
carbohydrates and protein were detected and assigned wavelengths of 738 cm−1,
1333 cm−1 and 2930 cm−1. The authors also observed that SERS proved to be an
advantageous method to evaluate major parameters of tomato fruit in comparison
with the normal spontaneous Raman spectroscopy and was suitable for applica-
tion in quality control lines and fruit processing industries.

Table 2.7: Summary of Raman spectroscopy applied for quality evaluation of hor-
ticultural juice products 

Products Parameters Wavelength range Predictors accuracy References 

Apple juice Detection of phosmet 
concentration in standard apply 

200 – 2000 cm-1 R2 = 0.905 – 0.984 [148] 

Citrus juice Degree of freshness  100 – 1800 cm-1 Cfresh range from 2.8 to 3.5 [114] 

Pear juice Detection of A. alternate 400 – 1800 cm-1 LOD = 1.0 * 103 cfu/mL [149] 

Tomato juice Carbohydrate, protein 700 – 1600 cm-1 738 cm-1, 1333 cm-1 and 2930 
cm-1 assigned to Carbohydrate 

[113] 

Orange juice Chlorpyrifos-methyl (CPM) 600 – 785 cm-1 LOD = 50 ppb [112] 

Carrot juice Polyacetylenes, carotenoids 400 – 550 nm LOD = 1400 μg/g [150] 

Cfu: colony forming unit, Cfresh: coefficient of freshness, LOD: Limit of detection, PLSR: partial least square
regression, PPB: parts per billion, SGS: Savitzky-Golay smoothing.

Nekvapil et al. [114] assessed the freshness of citrus juice using the Raman
spectroscopy technique. Raman spectroscopy within the spectral range (100–1800
cm−1) using two highly sensitive, high-resolution portable Raman systems with
fiber optic probes. The authors reported that the coefficients of freshness (CFresh)
value for the three varieties of citrus juice (the values associated to freshness)
ranged from 2.8 to 3.5 for clementine (Day 1), 1.5 for both mandarins and tanger-
ines, respectively. Meanwhile, the lowest values ranging between 0.5 and 0.8 were
observed at a different time course for different species.

2.5.2.3 Oil products

The application of Raman spectroscopy for authentication, detection of adulter-
ation and evaluation of quality attributes of oil have been reported by various
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authors (Table 2.8). El-Abassy et al. [115] applied Raman spectroscopy to de-
velop a calibration model using partial least squares regression. In this study, the
degradation of carotenoid content in extra virgin oil was monitored when heated
by microwave and conventional process in the spectral range of 945–1600 cm−1.
Their model result showed a high correlation coefficient R2=0.99 and low RMSE
of 0.027 and 0.079 for calibration and prediction respectively. El-Abassy et al.
[116] in another study, detected adulteration of extra virgin olive oil with sun-
flower oil using the SERS technique. The authors obtained a very accurate model
for their study. Ahmad et al. [117] used the Raman spectroscopy to define the
cooking range of extra virgin olive oil at 140–150 ◦C at a wavenumber range of
540–1800 cm−1. Sesame seed oil was assessed for authenticity and adulteration
with other processed seed oils (vegetable oils from almond, castor, coconut, argan,
avocado, macadamia, peanut, pumpkin, soybean, sunflower, olive carrot, jojoba,
wheat seed, wild rose, marigold and pomegranate). The authors reported that
the develop models were able to discriminate to an accuracy of 99.83% for all
the oil samples due to a specific spectral band at 1651 cm−1 associated with the
C=C stretching mode [118]. The linear discriminant analysis (LDA) was used for
discriminant analysis, and sesame oil was successfully discriminated from other oil
samples with accuracy of 100%.

Table 2.8: Summary of Raman spectroscopy applied for quality evaluation of hor-
ticultural oil products 

Products Parameters Wavelength range Multivariate 
Analysis 

Predictors accuracy References 

EVOO Carotenoid content 700–3100 cm−1 PLSR R2 = 0.99 [115] 

EVOO and 
Sunflower 

Adulteration detection  700–3100 cm−1 PCA and 
PLSR 

R2 ≥ 0.971, LOD ≥ 
1% 

[116] 

EVOO Cooking temperature 
range 

540 – 1800 cm−1 SGS Cooking range was 
established at 140 –
150 ºC 

[117] 

Different blends 
of edible oil 

Discrimination of fatty 
acids. 

800 – 3100 cm−1 PLS 99.83% [118] 

LOD: Limit of detection, PCA: Principal component analysis, PLSR: partial least square regression, SGS:
Savitzky-Golay smoothing, EVOO: Extra virgin olive oil, PLS: partial least square, R2: coefficient of regres-
sion.

Raman spectroscopy is an emerging non-invasive technique and has enormous
potential for biochemical and chemical structural analysis, which can be used in
situation without the need of sample pre- treatment. One major advantage of
this technique is its ability to provide information about concentration, structure,
and interaction of biochemical molecules within intact cells and tissues [119]. Its
applications in oil quality evaluation, however, is mainly focus on fat content, lipid
oxidation and protein structures. As a single point spectroscopic technique, it is
more efficient for adulteration detection and quality assessment for homogeneous
samples. In most heterogeneous food samples, like in powdered products, the
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Raman HSI is preferably applied for analysis purposes. The Raman HSI is a
combination of Raman and hyperspectral imaging technique.

2.6 Nuclear magnetic resonance (NMR)

2.6.1 Overview of nuclear magnetic resonance

Nuclear magnetic resonance (NMR) is a quantum mechanical phenomenon that
was discovered by scientists in the late 1930s. Historically, its discovery is credited
to Isidor Rabi, who in 1938 successfully designed an experiment to detect and
measure the magnetic spin of atomic nuclei in gases [120]. NMR is widely used
to investigate the structure of various materials in different fields of science and
medicine. Some of these materials include organic molecules, fresh and processed
produce in the food industry and living tissue [120]. A block diagram illustrating
the basic steps of the NMR technology is presented in Figure 2.6.

Figure 2.6: Block diagram of NMR imaging process. (a) Very strong magnetic
fields is generated using superconducting electromagnets (b), the Radio frequency
input signal receiver collects input from the response of the sample (c-g) signal pro-
duced by interaction of the sample and magnetic field is not ready for interpretation.
It needs to be detected and processed to provide useful information which is then
transmitted to (d) a computer and (e) produces an NMR spectrum.

The applications of various NMR methods can be divided into three main
groups based on the type of equipment being used, which can provide versatile
information about the chemical composition and structure of various biological
systems. These include magnetic resonance spectroscopy (NMR), magnetic reso-
nance imaging (MRI) and low-field (LF) NMR [121]. NMR is based on the prin-
ciple that nuclei manifest when exposed to a magnetic field and electromagnetic
(EM) pulse(s), which consists in the EM absorption of the pulse energy by the nu-
clei, followed by the back radiation of the absorbed energy at a specific resonance
frequency [84]. One of the most important applications of NMR technique is to
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measure water content and water distribution due to certain elements, especially
hydrogen nuclei, which show high response to magnetic fields. NMR has unique
advantages of detecting the variations in concentration or state of water and fats
in fruits and vegetables. This derived information can be useful for the assessment
of ripeness, defects, or decay in fruits and vegetables. NMR instruments require
high magnetic fields and sophisticated electronics, so they are generally large and
may be very expensive [122].

2.6.2 Application of nuclear magnetic resonance on
assessment of processed horticultural products

A summary of the application of nuclear magnetic resonance in quality assessment
on horticultural products is presented in Table 2.9. Review of literature has shown
that NMR is mainly affected by the presence of water in food matrixes. Recent
literature search indicates that much application of NMR on processed products
has been deployed in measuring quality of whole fruits and liquid samples like in
fruit juice and oil samples.

Table 2.9: Summary of nuclear magnetic resonance spectroscopy applied for quality
evaluation of horticultural juice products 

Products Parameters Frequency 
range 

Multivariate 
Analysis 

Predictor’s Accuracy References 

Mango juice Discrimination of different 
cultivars  

0.8 MHz PCA LOD = 3.0 – 5.5 ppm [126] 

Orange juice TSS 
pH 

8.5 MHz PLSR, S-GA SEP = 0.88 
SEP = 0.17 

[123] 

Orange juice Discrimination of pure and 
adulterated orange juice 

400 MHz PLSR, PCR, GA-PLS R2 = 0.79 [125] 

Pomegranate juice TA 
TSS 
pH 

1.7 MHz PLS R2 = 0.54 
R2 = 0.60 
R2 = 0.63 

[151] 

PCA: principal component analysis, PLSR: Partial least square regression, PCR: Principal component regression,
GA-PLS: Genetic algorithm-Partial least square, PLS: Partial least square, PPM: parts per million, LOD: limits
of detection, SEP: standard error of prediction, R2: coefficient of regression.

2.6.2.1 Juice products

Applications of NMR on fruit juices have been reported by several authors. Flores
et al. [123] applied time domain nuclear magnetic resonance (TD-NMR), coupled
with chemometrics for the prediction of different quality attributes in orange juice.
The authors reported the standard error of prediction (SEP) of 0.88 and 0.71 for
TSS and pH, respectively. The sensitivity and selectivity values of classification
in the prediction set (n=90) were 0.81 and 0.90, respectively. These values are
very close to 1, thus indicating the suitability of the method to classify oranges in
terms of low and high TSS using the TD-NMR and PLSR.
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Caroline et al. [124] applied the 1H NMR at a frequency range of 400.13 MHz
in grape juice. Their model was able to detect the addition of other juices suc-
cessfully. Principal component analysis (PCA) was performed and a classification
accuracy of 0.93 was achieved.

Vigneau et al. [125] applied the 1H NMR at 400 MHz for the qualitative eval-
uation of orange juice. The authors discriminated between authentic and adulter-
ated (clementine juice) samples of orange juices. A total of 150 samples, including
both authentic and adulterated orange juices ranging in different concentrations
(10–60%). The authors applied PLSR, PCR and GA-PLS on the obtained NMR
spectral data and reported the GA-PLS algorithm should be used as it provided
the best performing model for GA-PLS for R2=0.79. In a study to discriminate
between five different mango cultivars, Koda et al. [126] applied 1H NMR on
mango juice samples. The authors successfully applied a combination of unsuper-
vised principal component analysis (PCA) with low-field region on the spectrum
obtained. 1H NMR spectra obtained by band-selective excitation provided a good
discriminant model for the five mango cultivars. The authors identified several
minor components in mango juice and assigned a signal of the minor compo-
nents this includes arginine, histidine, phenylalanine, glutamine, shikimic acid,
and trigonelline. Their study showed that these components were important for
the classification of the five mango cultivars.

2.6.2.2 Oil products

NMR has been successfully applied for quality measurement and quality control
of oil products derived from horticultural produce. Skiera et al. [127] applied the
1H NMR on 120 samples of blends of different edible oils to determine the acid
value (AV) and peroxide value (PV). The authors used a frequency of 400.17 MHz
and reported a relative sensitivity (RSNMR/AV of 0.90). Their result from the
model indicated that both methods (Classical and 1H NMR) of analysis, exhib-
ited a similar analytical performance. Andrade et al. [128] assessed the presence
of fatty acids methanol esters (FAME) in different vegetable oil blends (soybean,
corn, sunflower, canola, linseed, cottonseed and jatropha) within a spectral wave-
length of 200 MHz. The authors reported a chemical shift that is characteristic
of the methoxyl groups in methyl esters. Their findings showed the limitation of
1H-NMR in the characterization of FAME products and its success as it obtained
a good resolution for all the 1H- NMR spectra of the transesterification products.

Sega et al. [129] observed the ozonation of sesame oil using the NMR. In
their study, they established relationship between the integral values of the signals
corresponding to protons which resonate at either both 5.29 and 1.97 ppm, or 5.11–
5.08 ppm in the 1H NMR and the iodine values (IV) and peroxide value (PV)
respectively. Table 2.10. provides a summary of NMR applied for the quality
evaluation on processed horticultural oil products.
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Table 2.10: Summary of nuclear magnetic resonance applied for quality evaluation
of horticultural oil products 

Products Parameters Wavelength 
range 

Predictor’s Accuracy References 

EVOO Stability of oil 300 MHz Order of stability are MO > EVOO > AKO 
> SO. 

[152] 

Different blend of edible oil Free fatty acid 400.17 MHz R2 = 0.9. [127] 

Different blends of 
vegetable oils 

SFA, linoleic acid 200 MHz methoxyl (δ = 3.70) and glyceryl 
methylene (δ = 4.10 – 4.40) protons, 
respectively. 

[128] 

EVOO: extra virgin olive oil, R2: coefficient of determination, SFA: saturated fatty acids, δ: chemical shift, MO:
moringa oil, AKO: apricot kernel oil, SO: sunflower oil

2.7 Other spectroscopy technologies

2.7.1 Dielectric spectroscopy

2.7.1.1 Overview of dielectric spectroscopy on assessment of
processed horticultural products

Dielectric spectroscopy is another non-invasive technological tool useful for ex-
amining the interaction between the electric field and tested material. It springs
from the effect of dielectric mechanisms and polarization effect, which comprise
the dielectric permittivity of the object. The dielectric properties of binary mix-
ture of solids and liquids have been researched extensively by various researchers
[130]. Dielectric spectroscopy provides information about the dielectric response
of materials to electromagnetic fields. It is a convenient method for evaluating
food quality, especially for detecting moisture content in foods [131]. The dielec-
tric properties of interest in most applications are the dielectric constant ε′ and
loss factor ε′′ . The dielectric constant indicates the ability of a material to store
electric energy in the material, and the loss factor, which is associated with energy
dissipation or conversion from electric energy to heat energy.

Different factors influence the dielectric properties of materials such as fre-
quency of the applied alternating electric field, moisture content, bulk density,
temperature, ionic nature, concentration (density), structure and constituents of
materials [132]. Dielectric properties usually correlate to temperature, frequencies,
and these findings have been reported for different agricultural commodities.

2.7.1.2 Application of dielectric spectroscopy for the assessment of
processed horticultural products

Research had shown that the dielectric properties of processed agricultural prod-
ucts are linked to their internal features or composition [132]. For instance, quan-
titative determination of the levels of adulterant in extra-virgin olive oil was re-
searched by [130]. Their results showed good prediction capability for the concen-
tration of the vegetable oil adulterant on the olive oil. PCA was used to classify
the adulterant while the PLS model showed good prediction with RMS = 0.053
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and R2 = 0.967 with LOD below 5%.

Sosa-Morales et al. [133] measured dielectric properties and sweetness (TSS) of
freshly harvested melons with an open-ended coaxial-line probe using an impedance
analyser over the frequency range from 10 MHz to 1.8 GHz at 25 ◦C and reported
that correlations were low for both the dielectric constant and the loss factor at
most frequencies

2.7.2 Fluorescence spectroscopy

2.7.2.1 Overview of fluorescence spectroscopy on assessment of
processed horticultural products

Fluorescence spectroscopy is an analytical technique whose theory and methodol-
ogy have been extensively applied for studies of molecular structure and function
in the discipline of chemistry and biochemistry. The introduction of new com-
mercially available instruments for fluorescence analysis, particularly, front-face
fluorescence spectroscopy (FFFS), has caused a recent rise in the use of the flu-
orescence technique for food analysis [134]. Fluorescence is the emission of light
subsequent to absorption of ultraviolet or visible light of a fluorescent molecule
or substructure, called a fluorophore [135]. Thus, the fluorophore absorbs energy
in the form of light at a specific wavelength and liberate energy in the form of
emission of light at a higher wavelength. In theory, when electrons are excited
by fluorescent light, this light is absorbed by the molecule, and it is transferred
to an electronically excited state, meaning that an electron goes from the ground
singlet states, S0, to an excited singlet state, S′1. This is followed by a vibrational
relaxation where the molecule undergoes a transition from an upper electronically
excited state to a lower one, S1, without any radiation. Finally, the emission occurs
typically 10−8 s after the excitation. In molecules, each electronical state has sev-
eral associated vibrational states. In the ground state, almost all molecules occupy
the lowest vibrational level. By excitation with ultraviolet or visible light, it is
possible to promote the molecule of interest to one of several vibrational levels for
the given electronically excited level. Therefore, excitation and emission spectra
are obtained to describe the detailed fluorescence characteristics of molecules. In
fact, fluorescence is characterized by two wavelength parameters that significantly
improve the specificity of the method, compared to spectroscopic techniques based
only on absorption: the quantum yield and the excitation and emission spectra.

The spectrofluorimeter, which is the instrument for measuring steady state
fluorescence consists of the following components; a light source. This is usu-
ally xenon or mercury lamp. Then two monochromator(s) and/or filter(s), one
for selecting the excitation wavelengths and the other for selecting the emission
wavelengths. The other components include a sample compartment; a detector,
which converts the emitted light to an electric signal; and a unit for data acqui-
sition and analysis. The FFFS and SFS (synchronous fluorescence spectroscopy)
are two fluorescence spectroscopy methods that have been utilized to determine
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the quality of processed food substances with thick surfaces. In the coming years,
FFFS and SFS combined with chemometric tools could be a reliable tool for un-
derstanding the bases of molecular food structure and, consequently, their quality
characteristics.

2.7.2.2 Application of fluorescence spectroscopy for assessment of
processed horticultural products

Recently, fluorescence spectroscopy in combination with multi-dimensional multi-
variate techniques have been applied for the evaluation of food, dairy and vegetable
products. For instance, Boubellouta & Dufour [136] reported using synchronous
fluorescence spectroscopy for the determination of fat melting and cheese melting
of two cheese varieties (Comté and Raclette). Saito [137] showed that Napa cab-
bage (Brassica rapa L.) laser-induced fluorescence (LIF) spectra of a normal core
and a rotten core show greater intensities in the green wavelength range of the
LIF spectrum of the rotten core in comparison to that of the normal core. The
integrated peak area between 450 and 600 nm for the rotten core was more than
twice that for the normal core. In a study on oil sample, Jiang et al. [138] ap-
plied the synchronous front-face fluorescence spectroscopy for the discrimination
of used frying oil (UFO) from edible vegetable oil. Partial least squares regres-
sion (PLSR) was used on 50 adulterant samples prepared in the range of 1–50%.
From their results, model exhibited high linearity (R2>0.96), with both root mean
square error of cross-validation (RMSECV) and root mean square error of predic-
tion (RMSEP) values lower than 3%. The high accuracy and sensitivity of the
model indicates that the synchronous front-face fluorescence spectroscopy can be
an effectively and accurately used to measure quantitatively and qualitatively the
quality of horticultural and agricultural oil sample. Other applications of fluores-
cence spectroscopy on different food materials includes measuring PV and acidity
of olive oil [139], detection of adulteration of orange juice with grape fruit [140],
and to monitor thermal degradation of different oil samples [141].

Though this review focuses on examples from processed horticultural products,
the principles are broader, and fluorescence could be applied to whole fruits or
other fields (pharmaceutical, biotechnology). Fluorescence spectroscopy being a
very sensitive tool, is always limited to samples or materials that have fluorescence
effect [135]. Traditional right-angle fluorescence spectroscopic technique cannot be
applied to thick substances due to large absorbance and scattering of light.

2.8 Future Prospects
The application of infrared spectroscopy has shown that it is suitable for an array
of applications in the food and beverage industry. IS spectroscopy combined with
advanced chemometric software packages has been applied successfully for online
and inline analysis including the development of portable hand-held devices mak-
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ing it the preferred method for non-invasive measurement.

Hyperspectral imaging, however, differs from the other techniques for non-
invasive analysis of horticultural processed food products. It is a point-based
scanning technique and only examine a relatively small area of a specimen; thus,
these techniques are unable to provide spatial information that is important for
many food inspection applications, especially involving heterogeneous food sam-
ples [142].

Considering that limited information exists on the application of HSI and MSI
on quality evaluation of horticultural powders and liquids, future research with
HSI and MSI should focus on developing models to predict various quality pa-
rameters including, detection of adulteration. Furthermore, in order to develop
systems for commercial application additional research needs to focus on reduc-
ing the total volume of the data, which is the key for building effective HSI and
MSI systems. In practice, this means acquiring images with relatively low spatial
resolutions at a few important wavelengths, thereby improving speed required for
analysis. Currently, with the large accumulation of vast amounts of data due to
multi-dimensional datasets from HSI, this application is currently used for aca-
demic research.

NMR on the other hand, is best suited for measurement and evaluation of
food and processed agricultural products with high water content and water dis-
tribution. It is due to certain elements being present, especially hydrogen nuclei
from water molecules which shows high response to magnetic fields. Although,
the disadvantage of NMR systems that prevent it from being used outside the
research field is that they require high magnetic fields, sophisticated electronics
and therefore are generally quite large and expensive. Further research into fabri-
cation of small, easy and cost-effective hand-held NMR devices is encouraged [143].

Compared to other non-invasive techniques, the Raman spectroscopy can be
used on solids, liquids and gasses food substances and requires no prior sample
preparation and can be applied regardless of sample thickness, shape or size. It
provides information about concentration, structure and interaction of biochemi-
cal molecules within intact cells. However, when comparing Raman spectroscopy
to IR spectroscopy, Raman spectroscopy has a low sensitivity for detection of con-
centration for substance. Also, Raman spectroscopy involves heating of samples
using a laser. This means that samples placed on metals and alloys cannot be
analysed. The FT-IR and Raman spectroscopies can only acquire spectral data
from a single point of a sample to determine food quality attributes of heterogene-
ity. It indicates that these single point spectroscopies (such as FT-IR and Raman)
are more effective for inspection of adulteration and chemical properties. Imaging
techniques such as the X-ray CT is not effective for checking the composition of
homogeneous samples but are more valuable for detecting particulate impurities
that tend to random probability distribution [16].
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2.9 Concluding remarks
As discussed in this review, diverse processed products contain fingerprint and
valuable information regarding the composition and nutritional properties. The
vast potential for the application of the various spectroscopy techniques combined
with multivariate statistical analyses for the evaluation of processed products has
been demonstrated. Differences between food substances have been related to the
dissimilarities in the molecular structure of the samples when they are irradiated
under different wavelengths ranges. Several of these methods are suited as an
effective research tool and can be a part of the evaluation procedure for processed
food quality.

The diverse chemometric analysis methods are combined with various non-
invasive technique to enable the extraction of relevant information from different
processed food samples. The different spectroscopic technological tools reviewed
offer potential for non-destructive measurement and prediction of various quality
attributes. However, these applications face many challenges. For instance, chal-
lenges such as online application is still a problem. This is due to factors such as
practicality, high cost of equipment, data acquisition and processing times, poten-
tial health hazard when utilizing equipment such as X-ray CT and NMR is still
an issue with regards to analysis [84].

Considering the prospects of non-destructive and non-invasive approaches in
quality assessment for processed food products in recent research studies, further
work is required to utilize more refined and effective chemometric algorithms to
increase the evaluation accuracy of processed horticultural products. Primary
emphasis should be aimed at the selection of a practicable models for quality
parameter calibration and prediction, as it is a critical step to achieving reliable
results. Another focus is on acquiring spectroscopic data, with their valuable
imaging information, that can provide more details on the quality attributes of
food powders [16]. Therefore, to fully exploit the full potential of the above-
described technologies for successful application, future research needs to focus on
reliability and robustness of objective measurements as well as reduction of data
acquisition and processing times.
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Chapter 3

Application of Fourier-transformed
near infrared spectroscopy
(FT-NIRS) combined with
chemometrics for evaluation of
quality attributes of dried
pomegranate arils

Pomegranate fruit contains high nutritional and potent pharmacological properties
and is currently ranked 18th as the most consumed fruit in the world. Like in many
horticultural crops, fresh pomegranate arils have a relatively short shelf-life of 5
to 8 days and hence high postharvest losses. In order to overcome this limitation,
the pomegranate industry has promoted research and development of value-added
pomegranate co-products such as dried pomegranate arils, pomegranate seed oil,
dehydrated powder and juices. However, the quality and safety of processed prod-
ucts are a major concern for processors and consumers. Standard techniques used
for quality and microbial evaluation are labour intensive, not consistent and often
require specialized sample preparation. Therefore, in this study we investigated
the usage of Fourier-transformed near infrared (FT-NIR) reflectance spectroscopy
as a fast and non-destructive method. FT-NIR spectroscopy was used over a spec-
tral range of 800–2500 nm to develop multivariate prediction models for physical,
chemical and phytochemical parameters of dried pomegranate arils (cv. Wonder-
ful). Results from two different regression techniques, namely partial least squares
(PLS) and support vector machine (SVM) were compared. Model development
results showed varied success with statistics from PLS regression showing reli-
able prediction for pH (R2=0.86, RMSEP=0.13, RPD=2.38) and TSS/TA (R2=
0.74, RMSEP=1.68, RPD=1.68). SVM performed better for the prediction of
titratable acidity ((R2=0.85, RMSEP=0.04, RPD=2.50) and colour attributes for
redness (a∗) (R2=0.72, RMSEP=1.82, RPD=1.71) and Chroma (C∗) (R2=0.70,
RMSEP=1.99 RPD=1.77). In summary, SVM performed better than PLS re-
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gression in the prediction of quality attributes for died pomegranate arils. This
study demonstrated that FT-NIRs with SVM regression algorithm can be used
as a non-invasive technique to evaluate key visual and sensory attributes of dried
pomegranate arils.

3.1 Introduction
Pomegranate (Punica granatum L.) is a fruit bearing deciduous shrub or small
tree belonging to family punicaceae. The fruit originates from Persia (Iran) and
has widely been cultivated in the Mediterranean region [153]. The fruit is spher-
ically shaped, has a thick leathery exocarp and an interior that is separated by
membrane walls and packed into compartments. The compartments consist of
edible portions called arils, which are surrounded by a translucent sac contain-
ing juice and each aril has a seed. The combined aril weight ranges from 40 to
60% of the total fruit weight, whereas the juice volume comprises about 70 to
80% of the total aril weight [19, 154]. The consumption of pomegranate fruit
has remarkably increased in recent years, the fruit is currently ranked 18th as the
most consumed fruit within the world [10]. This is primarily due to the extensive
knowledge acquired on the health benefits linked to its consumption and increased
public awareness as a functional food [13, 14]. Scientific evidence have linked the
consumption of pomegranate fruit and its co-products such as arils, juice and oils
to improved human health as result of the unique and high phytochemical com-
position, which have been reported in literature to provide potent pharmalogical
properties [1, 5]. Despite the nutritional and health benefits, consumption is still
limited due to the difficulty of extracting the arils. Currently, in order to increase
consumption of pomegranate fruit by consumers, the edible portion has been pro-
cessed by the food industry into ready to eat fresh arils. However, fresh arils
have a relatively short shelf-life of 5 to 8 days [155] Therefore, to overcome this
limitation of short shelf-life the pomegranate industry has promoted research and
development of value-added pomegranate co-products such as dried pomegranate
arils, pomegranate seed oil, dehydrated powder and juices.

One of the many opportunities identified for extending the shelf-life of pome-
granate arils was to add value through dehydration. Products in this category are
characterized with low moisture content and thus the rate of quality deterioration
is minimised. Dried pomegranate arils are consumed in large quantities and are
commercially available in West and East Asian counties. Within South Africa,
dried pomegranate arils are an emerging and rapidly growing product. Dried po-
megranate arils are reported to have a high source of vitamins, mineral elements,
fatty acids and antioxidant compounds [7, 8]. Through value addition, the pome-
granate industry can reduce waste and provide products with higher resale value
and longer shelf life.

The quality and safety of fresh and processed food are usually defined by
its physical, chemical and microbial characteristics. Traditionally, assessment of
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quality and safety involves human visual inspection, in addition to chemical or
biological determination experiments which are tedious, time-consuming, destruc-
tive, and sometimes environmentally unfriendly. Some of these existing standard
destructive methods used for quality control include high performance liquid chro-
matography (HPLC), gas chromatography-mass spectrometry (GC-MS), spectro-
metric, colorimetric and microbiological methods [15, 156, 157]. This has led the
agribusiness industry to invest in objective, fast, real-time and non-chemical de-
tection technology, for quality assessment on colour [46], on sweetness [33] and on
textural [25, 158] characteristics.

Near infrared spectroscopy (NIRS) is a vibrational spectroscopic technique that
has been proven to overcome the limitations from standard destructive methods
for quality evaluation for a variety of fruits and vegetables [15, 95, 159]. NIRS is
based on the absorption of electro-magnetic radiation at wavelength in the range
780–2500 nm [160] The NIR spectra of food comprise of broad bands arising from
overlapping absorptions corresponding mainly to overtones and combinations of
vibrational modes involving C–H, O–H, and N–H chemical bonds. Due to the
broad and overlapping bands associated with NIR spectra, multivariate statisti-
cal approaches are required to extract useful information from the NIR spectra
[161]. Several factors may affect the spectral quality such as wavelength-dependent
scattering effects, instrumental noise, ambient effects and several other sources of
variability [162]. Therefore, in order to correlate spectral data (independent vari-
ables) to a specific quality attribute (dependent variables) regression techniques
are required [26]. As a result, studies have focused on developing calibration mod-
els, testing and comparing different pre-processing methods and optimizing only
a specific regression method [18, 163, 164, 165].

In the present study, two different regression algorithms are compared: partial
least squares (PLS) and support vector machine (SVM). PLS is today probably
the most widely linear applied method in chemometrics and was first developed
by Herman Wold and introduced in the 1975 to deal with problems concerning
econometric path-modelling [166]. In PLS regression an orthogonal basis of latent
variables (LV) is constructed. In quantitative spectroscopy, PLS analysis is com-
monly used to compare spectroscopic data (X) with associated physico-chemical
data (Y) [167]. In this way it is ensured that the latent variables are ordered
according to their relevance for predicting the Y-variable [15]. Furthermore, PLS
analysis always gives the lowest number of LV and excludes LVs that are not im-
portant in describing the variance of the quality parameter [167]. Whereas, SVM
has gained widespread acceptance in data-driven applications and the ability for
non-linear modelling applications. SVM was introduced by Vapnik and others
in the early 1990s as machine learning systems that utilize a hypothesis space of
linear functions in a high dimensional feature space, trained with optimization al-
gorithms that implements a learning bias derived from statistical learning theory.
The basic principle behind SVM regression is to map the original data set from
the input space to a high dimensional, or even infinite-dimensional feature space
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so that classification problem becomes simpler in the feature space. SVMs have
the potential to pro-create an unknown relationship present between a set of input
variables and the output of the system. The main advantage of SVM is that, it
uses kernel trick to build expert knowledge about a problem so that both model
complexity and prediction error are simultaneously minimized [168].

For pomegranates, Fourier-transformed near infrared spectroscopy (FT-NIR)
combined with multivariate analysis have successfully been used to evaluate posthar-
vest rind disorders [169], quality attributes of whole fruit [18], and several of its
co-products such as fresh arils [170] and pomegranate juice [20]. However, this
research study is the first application of FT-NIRs in the evaluation of quality at-
tributes of dried pomegranate arils. Therefore, this research study was undertaken
to explore the usage of these two different regression algorithms specifically PLS
and SVM for evaluating the organoleptic and phytochemical attributes of dried
pomegranate arils.

3.2 Materials and methods

3.2.1 Fruit procurement and sample preparation

This research was performed during the 2018 season with pomegranate fruit (cv.
Wonderful). A total of 210 fruit, 70 from each of three different commercial
orchards were procured from Sonlia pack-house and transported to Postharvest
Technology and Research Laboratory, Stellenbosch University. Upon arrival, fruit
without any physical defect and with good appearance were sorted and placed
under cold storage at 10 ◦C before being processed into arils. Arils from each
fruit were manually extracted at ambient conditions (21 ◦C ± 65% RH). Fresh
pomegranate arils were placed onto an aluminium dish and subjected to hot air
dryer (OTE 160, PROLAB South Africa). Samples were dried at 60 ◦C for 16-18
h in order to obtain a moisture content of 10-12%. After drying, a total of 25
samples for each orchard containing approximately 45 g of dried arils was used for
spectral acquisition and reference methods. The dried arils were then placed and
marked inside metallized bags and stored at ambient conditions (21 ◦C ± 65%
RH) until further use.

3.2.2 FT-NIR spectral acquisition

NIR spectral acquisition was performed on 70 samples each containing 45 grams
of dried arils in diffuse reflectance mode within the spectral range of 800–2500
nm using a Multi-Purpose Analyzer (MPA) FT-NIR spectrophotometer (Bruker
Optics, Ettlingen, Germany). The MPA was equipped with an integrating sphere
(IS) for direct contact with the sample and fitted with a permanently aligned and
highly stable RockSolidTM interferometer which comprised of gold coated mirrors.
The NIR beam is directed into the sphere and travels directly through the centre of
the sphere and the optical window into the aril sample. Due to the gold coating, all

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3. APPLICATION OF FOURIER-TRANSFORMED NEAR
INFRARED SPECTROSCOPY (FT-NIRS) COMBINED WITH
CHEMOMETRICS FOR EVALUATION OF QUALITY ATTRIBUTES OF
DRIED POMEGRANATE ARILS 37

light beams are collected and directed towards the detector [163]. The integrating
sphere makes use of a high sensitivity PbS detector with nonlinearity correction
[163]. An internal gold reference spectrum was obtained by mechanically closing
the optical window with a gold reference plate. The MPA scanning settings used
a resolution of 8 cm−1 and scanner velocity of 10 kHz. A total of thirty grams of
dried pomegranate arils was placed in a 50 mm width accessory sample holder.
For each sample a single scan was taken and for each spectrum a total of sixty-
four scans were acquired with a scanning time of about 60 s per sample and the
spectra was averaged to obtain a single spectrum. Instrument control, processing
and data acquisition were performed using OPUS software (v.6.5 Bruker Optics,
Ettlingen, Germany).

3.2.3 Reference measurements

Aril colour was measured in CIELAB coordinates (L∗, a∗, b∗) with a Minolta
Chroma Meter CR-400 (Minolta Corp, Osaka, Japan). Measurements were per-
formed on dried arils in a glass petri dish. From the L∗, a∗, b∗ values, the colour
components’ Chroma and Hue (h◦) values were calculated according to Pathare
et al. [171].

Total soluble solids (TSS) was measured using digital hand-held refractometer
(Palette, PR-32α, Atago, Tokyo, Japan) and results were expressed as percentage.
The pH values were determined at room temperature using a calibrated pH meter
(Crison, Model 00924, Barcelona, Spain). Titratable acidity (TA) was measured
by diluting 2 mL of supernatant in 70 mL of distilled water and titrating with
0.1M NaOH using a Metrohm 862 compact titrosampler (Herisua, Switzerland)
results were expressed in percentage of citric acid. TSS/TA was also calculated
[18]. These measurements were performed in triplicate and average was calculated
expressed as mean ±SD.

Total phenolic content was quantified using Folin-Ciocalteu method [172] with
modification according to Fawole et al. [173]. Briefly, in triplicate 50 µL of juice
supernatant was diluted with 450 µL of 50% methanol (v/v) before the addition
of 1N Folin C (500 µL) and 2% sodium carbonate (2.5 mL). The mixture was
stored in a dark environment for 40 min before the absorbance and measured at
725 nm against blank of 50% aqueous methanol. The final results were expressed
as grams gallic acid equivalents per gram of dried arils.

The quantification of total anthocyanin concentration was performed using the
pH differential method [174] with modification according to Arendse et al. [175].
The extract (1 mL) was diluted with 9 mL of pH 1.0 (potassium chloride, 0.025
M) and pH 4.5 (sodium acetate, 0.4 M) buffers, respectively. Samples were stored
in dark for 10 min before reading the absorbance at 510 and 700 nm respectively
against 50% blank aqueous methanol using a UV–visible spectrophotometer. Re-
sults was expressed as grams of cyanidin-3-glucoside equivalents per gram of dried
arils.Aril firmness was measured by compression test using a texture profile an-
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alyzer XT Plus (Stable MicroSystem Ltd., Godalming, UK). Optimal operating
settings: pre-test speed 1.5 mm s−1, probe test speed 1 mm s−1, post-test speed
10.0 mm s−1, compression force 10 N and compression distance of 10 mm. The
data attained from the texture profile analyser were interpreted using software
Exponent v.4 (Stable MicroSystem Ltd., Godalming, UK). Aril compression was
performed on 5 individual arils per fruit and the results presented as mean ±
standard error.

3.2.4 Precision and accuracy of destructive reference
measurements

Precision and accuracy of destructive measurements were performed as described
by Arendse et al. [18]. Reference measurements were evaluated for intra-day
and inter-day variability testing. This was performed as in order to test their
repeatability. For intra-day variability five replicates was performed within 1 day;
while, inter-day was done for 3 consecutive days. The relative standard derivation
(RSD) was calculated in order to determine their repeatability, using

RSD = SD.X× 100 (3.2.1)

where RSD is relative standard deviation, SD and X are standard deviation and
the average obtained from replicate measurements respectively. RSD values for
quality parameters ranged from 0.30 to 0.90% indicating acceptable accuracy. The
coefficient of variation (CV), is also determined (Table 3.1). This is defined as the
ratio of the standard deviation to the mean of the reference values was calculated
and multiplied by 100 and reported as a percentage [167].

3.2.5 Chemometric analysis

Two different regression algorithms were used for model development, namely;
PLS and SVM. Model development was performed using Solo software package, a
standalone version of PLS-Toolbox (Eigenvector Research, Inc., USA). First, the
spectra were pre-processed by applying the SNV (standard normal variate) algo-
rithm. In order to construct calibration models with robustness, the data for all
three orchards were combined and randomly split into 2:1 subset these included
calibration (70%) and prediction (30%). The data were divided in two sets by
way of the Kennard and Stone duplex algorithm [26]. PLS regression was calcu-
lated using the SIMPLS algorithm with venetian blinds (with 10 splits and blind
thickness=1) used for cross validation. SVM algorithm was applied, by choosing
the E-SVR (epsilon- support vector regression) algorithm [26] with the follow-
ing parameters: SVM kernel type: radial basis function, cost=100, epsilon=0.01,
gamma=10.

The spectral data were also subjected to various pre-processing methods in
order to correct light scattering, reduce the changes of light path length and re-
duce noise. Pre-processing methods were tested individually and in combina-
tion with others. These include Savitzky–Golay transformation (first derivative),
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Table 3.1: Mean, standard deviation (SD) range and coefficient of variation (CV)
for calibration and validation subsets for dried pomegranate arils

 

Quality parameter Calibration set              Validation set  
 

Mean SD Min Max Mean SD Min Max Overall CV 
(%) 

L* 25.15 3.00  20.54 33.62 24.46 2.20 21.39 28.46 10.46 

a* 18.51 3.16 12.26 24.44 19.38 3.24 15.11 26.97 16.89 

C* 19.72 3.61 12.84 29.83 19.69 3.65 13.51 26.36 18.42 

h° 17.23 3.68 12.00 27.10 16.55 2.82 12.43 21.41 19.20 

TSS 3.96 0.88 2.65 6.05 3.83 0.63 3.05 5.65 19.33 

TA 0.30 0.06 0.20 0.48 0.30 0.10 0.23 0.43 26.66 

pH 3.70 0.28 3.25 4.30 3.65 0.31 3.26 4.26 8.030 

TSS/TA 10.78 2.15 7.50 16.88 11.18 3.05 6.86 17.60 23.61 

Brim A 3.07 0.67 2.15 5.14 3.18 0.68 1.70 4.50 21.60 

Firmness (N) 82.17 16.78 43.39 125.26 89.28 10.27 63.81 105.47 15.96 

TPC (g/L) 19.91 6.93 10.31 42.62 19.73 10.87 10.47 41.38 44.95 

TAC (g/L) 12.00 3.88 6.79 19.59 11.97 2.80 6.68 15.70 27.86 

L∗: lightness, a∗: redness, C∗: Chroma, h∗: hue angle, TSS: total soluble solid, TA: titratable acidity, TSS/TA:
total soluble solid/ total acid, TPC: total phenolic content, TAC: total anthocyanin content, SD: standard
deviation, CV: coefficient of variation, Min: minimum, Max: maximum

multiplicative scattering correction (MSC) and vector normalisation (SNV) [161].
The developed models were selected based on statistical parameters that provided
higher coefficient of determination (R2), lowest root mean square error of cali-
bration (RMSEC) and root mean square error of prediction (RMSEP) and lower
number of latent variables (LV) [176, 177, 178, 179]. Other additional statistical
parameters that were considered were the bias (systematic difference between the
predicted and reference data) and residual predictive deviation (RPD). Literature
suggested that RPD values is an important statistical parameter used to confirm
the reliability of the developed model even if significant relationship is observed
between the NIR predicted and actual laboratory values [180]. Several studies sug-
gested that if an RPD value <1.5 it means that the model is unreliable and cannot
be used, while those between 1.5 and 2.0 are appropriate for rough predictions,
those between 2.0 and 2.5 are fit for quantitative predictions, those between 2.5
and 3.0 are considered good models while those >3.0 are regarded as satisfactory
models [18, 20, 163, 165].

3.3 Results and discussion

3.3.1 Spectra characteristics

The spectral absorbance profile for dried pomegranate arils for pomegranate arils
(cv. Wonderful) are presented in Figure 3.1. The spectral range was trimmed
from the region of 800 to 2400 nm to remove noise. The assignment of peaks
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for the acquired spectra was implemented according to a review of literature [15,
167]. The acquired spectra showed contours bands having noticeable peaks in the
region of 1100, 1350, 1488, 1606, 1775, 1915, 2029 and 2221 nm. The spectral peaks
observed between 1100 nm (O–H bond stretching and second water overtone) and
1488 nm (O–H bond stretching and first water overtone) have been reported to be
closely associated with the O–H stretching modes of water absorption. Prominent
peaks observed in the region of 1100, 1775 and 1915 nm correspond to the second
and first overtones of C–H stretching as well as the third overtone of OH, CH
and CH2. These peaks have been associated with the absorption profile of various
compounds. For instance, Manley et al. [181] reported that peaks in the region
of 1488 to 2221 nm corresponds to moisture (1440–1500 nm), proteins (2100–2200
nm) and fats (1725–2310 nm) for different biological materials. Sugars and organic
acids have been reported to display bands in the wavelength regions of 1100–1600
and 1700–2300 nm [167, 182, 183]. The spectral profile for dried pomegranate
arils is similar to profiles for other commodities such as fresh pomegranate arils
[19], avocado fruit [165] and oranges [163].

Figure 3.1: Representative absorbance unprocessed spectrum for averaged sample
of dried pomegranate aril

3.3.2 Distribution statistics for calibration and validation
reference data

Table 3.1 shows the distribution statistics (mean, standard deviation and coeffi-
cient of variation (CV%) for calibration and validation data sets for all the studied
attributes of the dried pomegranate arils. In this study, it was observed that the
investigated parameters were normally distributed around the mean values for
each parameter. Lu et al. [184] stated that the validation and accuracy of calibra-
tion models would depend on enough variation being present within a sample set.
NIRs have been reported to show better prediction capability when a sample has
a large variation within their calibration and validation data set [163, 185]. For
this study, the standard deviation (SD), minimum-to-maximum range and CV%
statistics has clearly shown that most parameters had high an overall CV% values
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of up to 44.95% with both calibration and validation data sets covering a wide
range of values.

3.3.3 Model development for two regression algorithms
(PLS vs SVM)

The development of models using PLS and SVM regression algorithms was done for
each quality parameter while evaluating different pre-processing methods; whereby,
the latter were selected based on high R2 and RPD values, and low RMSEP val-
ues (Appendix A, Supplementary information, Tables 1–4). The best selected
FT-NIR models for quality parameters are presented in Table 3.2. The scatter
plots representing the relationships between selected measured quality parameters
and model predictions are presented in Figure 3.2. Physical parameters such as
fruit firmness can be determined indirectly through the light scattering proper-
ties associated with the tissue [15]. The prediction statistics for fruit firmness
for both algorithms are comparable with one another with PLS (R2=0.53, RM-
SEP=10.75, RPD=0.92) and SVM (R2=0.49, RMSEP=7.82, RPD=1.27) respec-
tively. For colour parameters, model development using SVM regression provided
better prediction statistics for redness a∗ (R2=0.72, RMSEP=1.82, RPD=1.71)
and C∗ (R2=0.70, RMSEP=1.99, RPD=1.77). The intensity of the colour hue
(h◦) and lightness (L∗) for both regression techniques performed relatively poor
as characterized by the low R2 and low RPD values. The wavelength range used
for the development of models for colour (a∗, C∗) were found to be in the region
of 1445–1640 and 1881–2319 nm. This wavelength region is comparable to those
reported by for colour model development of fresh pomegranate arils [170].

Table 3.2: Summary of best performing models for two different regression algo-
rithms for dried pomegranate arils cv. (Wonderful) 

Quality 
parameter 

Regression 
analysis 

Pre-
processing 

      Calibration model Validation model 

R2 RMSEC Bias R2 RMSEP RPD Bias 

a* SVM Smoothing 0.77 1.84 0.17 0.72 1.82 1.71 -0.56 

C* SVM None 0.75 2.15 0.25 0.70 1.99 1.77 -0.49 

TA SVM None 0.79 0.04 -0.00 0.85 0.04 2.50 -0.01 

pH PLS MSC 0.81 0.12 -0.00 0.86 0.13 2.38 -0.03 

TSS/TA PLS MSC+SNV 0.53 1.47 -0.00 0.74 1.68 1.68 -0.35 

L∗: lightness, a∗: redness, C∗: Chroma, TA: Total acid, pH: Potential hydrogen, TSS/TA: Total soluble solid/
total acid, R2: Coefficient of determination: PLS: Partial least squares, SVM: Support vector machine, MSC:
multiplicative scatter correction, SNV: Standard normal variate, RMSEC: Root mean square error of calibration,
RMSEP: Root mean square error of prediction, RPD: Residual prediction deviation.
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Figure 3.2: Score plots of FT-NIR predicted dried aril quality against reference
(measured) constituent values for L∗ (A), a∗ (B), Chroma (C), TSS/TA (D), pH
(E) and TA (F).

The prediction statistics for model development using PLS and SVM provided
reasonably accurate calibration models for several of the chemical parameters. For
instance, model development using PLS regression gave better prediction statis-
tics for TSS/TA ratio (R2=0.74, RMSEP=1.68, RPD=1.68) compared to SVM
(R2=0.58, RMSEP=1.31, RPD=1.52). For colour parameters, model development
using SVM regression provided better prediction statistics for redness a∗ (R2=0.72,
RMSEP=1.82, RPD=1.71) and C∗ (R2=0.70, RMSEP=1.99, RPD=1.77). Simi-
larly, pH was best predicted with PLS regression with an R2 of 0.86 and RPD of
2.38. Titratable acidity was best predicted with SVM regression (R2=0.85, RM-
SEP=0.04, RPD=2.50). The R2 values for prediction for TA was similar to model
developed by Arendse et al. [170]. The RPD values for TA and pH indicated that
the models were fit for quantitative prediction of the parameters in dried pome-
granate arils. The RPD value for TSS and BrimA suggested that the developed
models were unreliable. The developed models for physical (a∗, C∗) and chemical
parameters (TA, TSS/TA ratio, pH) had low bias values (0.02–0.08) indicating
robust fitting and stability and therefore not sensitive to the external factors such
as growing location.

For the prediction of phytochemical compounds such as total phenolics and to-
tal anthocyanin, both PLS and SVM calibration models performed poorly (Table
3.3). The poor predictions of the developed models (TSS, TPC, TAC) could pos-
sibly be related to the significantly wide variation in the reference values obtained
from the samples. The heterogeneity of the phytochemical composition could be
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the reason for the inconsistency of TPC and TAC values. Therefore, in order to
get better prediction of TSS, BrimA, TAC and TPC future research on dried po-
megranate arils should consider the application of other regression techniques and
include more spectral acquisition scans due to the heterogeneity of the sample set
as indicated by its min-max and CV%. This is to guarantee a wider variation to
avoid the low predictability of the models.

Table 3.3: Summary of best model calibration and prediction performance for both
PLS and SVM analysis 

Quality 
parameter 

Regression 
analysis 

Pre-processing       Calibration model                                         Validation model 
 R2 RMSEC Bias R2 RMSEP RPD Bias 

L* PLS 
SVM 

None 0.52 1.92 -0.03 0.48 1.71 1.29 0.67 
MSC+SNV 0.75 1.41 0.01 0.27 2.33 1.06 1.04 

a* PLS 
SVM 

MSC 0.86 1.41 0.00 0.26 2.83 1.10 0.95 
Smoothing 0.77 1.84 0.17 0.72 1.82 1.71 -0.56 

C* PLS 
SVM 

MSC 0.79 2.00 0.00 0.36 2.53 1.40 0.12 
None 0.75 2.15 0.25 0.70 1.99 1.77 -0.49 

h° PLS MSC 0.30 2.27 0.00 0.19 2.23 1.29 0.14 
SVM 1st derivative 0.12 3.18 -0.18 0.11 2.74 1.05 -0.38 

TSS PLS 
SVM 

None 0.05 0.77 -0.01 0.22 0.78 0.83 -0.31 
1st derivative 0.24 0.77 -0.07 0.01 0.65 0.97 0.01 

TA PLS 1st derivative 0.69 0.05 0.00 0.58 0.07 1.43 0.03 
SVM None 0.79 0.04 -0.00 0.85 0.04 2.50 -0.01 

pH PLS MSC 0.81 0.12 -0.00 0.86 0.13 2.38 -0.03 
SVM 1st derivative 0.82 0.13 -0.01 0.83 0.13 1.92 0.09 

TSS/TA PLS MSC+SNV 0.53 1.47 -0.00 0.74 1.68 1.68 -0.35 
SVM None 0.86 1.09 -0.21 0.58 1.31 1.52 0.34 

Brim A PLS 1st derivative 0.74 0.39 -0.00 0.17 0.77 0.71 0.27 
SVM MSC+SNV 0.27 0.70 0.10 0.27 0.65 0.85 0.22 

Firmness 
(N) 

PLS 1st derivative 0.60 10.52 -0.05 0.30 8.69 1.22 0.99 
SVM MSC 0.65 10.78 -1.09 0.49 7.81 1.27 -2.20 

TPC PLS MSC 0.02 14.80 0.00 0.06 10.44 0.82 3.33 
SVM Smoothing 0.95 4.35 -0.58 0.03 10.34 0.82 6.28 

TAC PLS 1st derivative 0.69 3.36 0.00 0.05 5.84 0.62 -0.66 
SVM 1st derivative 0.17 15.92 0.50 0.22 3.82 0.95 1.42 

SVM: Support vector machine, MSC: Multiplicative scatter correction, SNV: Standard normal variate, PLS:
Partial least square, 1st derivative: first-order derivative, R2, Coefficient of determination, SVM: Support vector
machine, MSC: multiplicative scatter correction, SNV: Standard normal variate, RMSEC: Root mean square
error of calibration, RMSEP: Root mean square error of prediction, RPD: Residual prediction deviation.

3.4 Conclusion
In this study, FT-NIR diffuse reflectance spectroscopy combined with chemomet-
rics allows us to determine the best modelling conditions for optimal prediction of
a given attribute for dried pomegranate arils. The usage of two different regression
techniques allowed us to determine which attributes were best predicted by a given
or specific regression method. For instance, PLS regression showed good predic-
tion of sensory quality (TSS:TA ratio), while SVM regression were best used in
the prediction of visual properties (colour parameters) of dried pomegranate arils.
Limitations of the study were related to the standardization of the spectra collec-
tion since only one scan was taken per sample and low accuracies of the calibration
models. This study suggested the importance of proper scheduling and multiple
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scanning or positioning of the sample for spectra collection. Therefore, it may be
possible to improve the model performance, through implementation of different
regression techniques, include more spectral acquisitions scans of the sample, in-
cluding larger datasets, different cultivars, which encompasses several orchards,
fruit maturity status and seasons towards improving model predictability and ro-
bustness. Additional, efforts should be made towards exploring other vibrational
spectroscopic techniques which have not been sufficiently explored such as Raman
spectroscopy which will reduce the effects of water on the absorption profile of
the spectra and reduce scattering effects. This may lead to novel and better cal-
ibration models especially for textural related attributes. These findings can be
employed by the pomegranate processing industry to develop a grading/sorting
system to rapidly evaluate several organoleptic and physicochemical attributes of
dried pomegranate arils.
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Chapter 4

Application of Fourier transform
near-infrared (NIR) and attenuated
total reflection FT mid-infrared
(MIR) spectroscopy for quality
evaluation of pomegranate seed oil

Pomegranate seed oil (PSO) has gained global attention as a result of the health
benefits linked with its consumption. Agribusiness as are moving away from sub-
jective, expensive and time-consuming methods of analysis to alternative ways
that provide objective, rapid and cost-effective ways of non-invasive measure-
ment. This chapter evaluated Fourier transform (FT) near-infrared (NIR) and
attenuated total reflection (ATR) FT-mid-infrared (MIR) spectroscopy as a non-
invasive method to predict the quality attributes of pomegranate seed oil. Partial
least squares (PLS) regression calibration models were constructed to predict to-
tal phenolic content (TPC), total carotenoid content (TCC), peroxide value (PV),
yellowness index (YI) and refractive index (RI) using the spectral regions of NIR
(500–4000 cm−1) and MIR (4000–400 cm−1), respectively. Generally, the mod-
els generated with MIR spectra showed better prediction performance compared
to than that developed with NIR spectra. FT-NIRS showed superior prediction
statistics for TCC (R2=80.45, RMSEP=0.0185, RPD=2.28) and YI (R2=53.19,
RMSEP=14.30, RPD=1.49), while FT ATR-MIRS gave the best prediction statis-
tics for RI (R2=80.92, RMSEP=0.0003, RPD=2.32), and PV (R2=62.00, RM-
SEP=3.88, RPD =1.62). These results have established that infrared spectroscopy
combined with chemometric analysis is a very useful technique that allows rapid
screening of PSO to estimate their quality parameters.

4.1 Introduction
Standard analytical and wet chemistry methods are mainly used to evaluate var-
ious chemical constituents and detect fraud within oil products. These methods
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are used for their ability to provide precise and accurate measurement of qual-
ity attributes. However, these approaches are time-consuming, expensive and not
always practical for large-scale commercial application as it involves the use of
trained sensory panellists or individual. These drawbacks have promoted the re-
searchers and to consider interest in the development of objective and non-invasive
techniques for faster and less expensive the assessment of oil quality attributes.

Infrared spectroscopy (IRS) combined with chemometrics is one of the most
widely used non-invasive tools used by food and beverage industry as an alter-
native to the analytical methods in quality assessment for food and processed
agricultural produce. This is due to its rapid, accurate, simple and cost-effective
way to evaluate chemical constituents [80, 186]. IR spectroscopy is appropriate
for the prediction of compounds containing polar functional groups such as –OH,
C–O, and N–H. In the agricultural industry, IR spectroscopy in the near-infrared
(NIR, 12500–4000 cm−1) and the mid infrared (MIR, 4000–400 cm−1) spectral
region have been applied as a non-invasive analytical tool. In combination with
chemometric tools, NIR spectroscopy (NIRS) is attractive and has more versa-
tility compared to MIR spectroscopy (MIRS). For instance, NIRS has cheaper
instrumentation cost and more robust components than MIRS. NIRS is attractive
due to the fact that it is rapid and non-invasive, and it has the additional ben-
efit of penetrating finite distances in fruit and can be utilized for the acquisition
of surface and internal characteristics of foods [15]. While, MIRS contains more
spectral information due to the higher resolution of the fundamental vibrational
absorption bands and can identify very complex or similar structures compared
to the broad overtone and combination absorption bands in the NIR region [181,
186, 187].

Oils are an essential component of diet because of their nutrition and biological
properties. Different types of oils are commercially available. The oils that are
mainly derived from plants such as palm oil, sesame, canola oil, coconut oil, soy-
bean oil, avocado oil and virgin olive oil [74, 82]. Literature has shown that infrared
spectroscopy has been recognised in various analytical applications for evaluating
quality and detecting of fraud in a variety of oil products. For instance, instance
infrared spectroscopy have been applied to evaluate quality attributes such as per-
oxide value, refractive index, phenolic content, carotenoid content, fatty acids in
olive oil [24, 188], maize oil [189], vegetable oil [190] and palm oil [75]. It has
been successfully used for classification purposes [191, 192] and adulteration in a
variety of oil products [79, 193].

Pomegranate seed oil (PSO) have been commercially available during the last
5–6 years. Pomegranate seeds constitute up to 6.6–24% of the total fruit weight
and contain 12–25% oil content [194, 195, 196]. The seed oil has been reported
to contain high levels of unsaturated fatty acids such as punicic acid, oleic acid,
linoleic acid and palmitic acid [3, 195, 196, 197, 198].To date, no comparative
studies for evaluating the performance of NIR and MIR spectroscopic techniques
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in predicting pomegranate seed oil quality attributes have been published. Com-
parative research that focuses on the effect of spectral pre-processing, wavelength
selection on model performance are limited. More efforts are needed to investigate
how the spectral pre-processing techniques and wavelength ranges impact on the
performance of PLS models developed with different spectroscopic techniques for
predicting qualitative and quantitative attributes of pomegranate seed oil. This
study aims to explore the application of FT-NIR and ATR-FT-MIR spectroscopy,
combined with chemometrics to construct calibration models for the quality eval-
uation of pomegranate seed oil.

4.2 Materials and Methods

4.2.1 Fruit supply and processing

Fruit from three different pomegranate cultivars (’Wonderful’, ’Acco’, ’Herskiwitz’)
were procured from Sonlia pack-house, the Western Cape region. Fruit were deliv-
ered to Stellenbosch University, Postharvest Technology and Research Laboratory.
Upon arrival, arils from each fruit were manually extracted at ambient conditions
(21 ◦C ± 65% RH) and the seeds were separated from the arils using a cheese-
cloth. The obtained seeds were thoroughly washed with distilled water to remove
the residual aril sacs and dried at 60 ◦C for 24 hr in a hot air oven (PROLAB,
South Africa). The final moisture content of the seeds was observed to be 1.7 wt.
% (dry basis). Pomegranate seeds were sealed in polyethylene bags and kept in
-20 ◦C until further use.

4.2.2 Oil extraction and yield

In this study, the solvent extraction method was performed as described by Am-
pem [3]. Dried pomegranate seeds were grounded into a fine powder with a particle
size of 0.25 mm using an IKA miller (Model A11B, Germany) in preparation for
oil extraction [199]. Pomegranate seed oil was extracted from seed powder using
the superheated hexane extraction method. Pomegranate seed powder (30 g) was
weighed into a glass flask and extracted twice respectively with a 300 mL of hex-
ane solvent at a time, reaching a total volume of 600 mL solvent solution for each
sample. The mixture (600 mL) was sonicated in an ultrasonic bath (Model DC
400H, Haifa, Israel) which was operated at 40 ◦C for 40 min. The oil filtrates from
repeated extractions were pooled and recovered through distillation process using
a rotary evaporator (Heidolph Instruments GmbH & Co. KG, Germany). There-
after, samples were placed within a vacuum oven at 60 ◦C for 1.5 hr to remove any
remaining hexane solution [200]. A total of 45 samples of PSO was transferred
into a 9 mL glass tubes and stored in a dark environment at room temperature
until further analysis.
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4.2.3 Spectral acquisition

FT-IR spectra was acquired in diffuse reflectance from two different spectropho-
tometers. The first, spectral acquisition was acquired using the Alpha ATR-FT-
MIR spectrophotometer (Bruker Optics, Ettlingen, Germany) over a spectral re-
gion of 4000–400 cm−1. The Alpha was equipped with a single bounce diamond
crystal sample plate (area2 mm2) with the temperature maintained at 50 ◦C. Prior
to obtaining FT-MIR spectra, reference measurements were performed against air
background and periodically at intervals of 30 min during sample spectra acqui-
sition. After each measurement, the scanned material was discarded and the dia-
mond crystal surface was cleaned with a soft paper and undiluted methanol and
then cleaned with distilled water to avoid cross-contamination between samples
[201]. Sample measurement time was 120s using the following operating param-
eters 4 cm−1 resolution scan and 10 kHz scanner velocity with a total of 128
averaged background and sample scans per spectrum.

The second spectral acquisition was acquired using the Multi-Purpose Analyzer
(MPA, Bruker Optics, Ettlingen, Germany). FT-NIR spectrometer, which was
equipped with InGaAs detector. The MPA incorporates a high energy air-cooled
NIR source (20 W tungsten-halogen lamp) and a permanently aligned Rocksolid
interferometer, which is equipped with gold-coated mirrors (high reflective surface
and inert). The permanent interferometer provides constant high-quality results
which have a wave number reproducibility superior to 0.04 cm−1 and a wavenum-
ber accuracy superior to 0.1 cm−1. NIR spectral data for pomegranate seed oil
were collected in diffuse reflectance using a sample compartment for the measure-
ment of liquids. Prior to spectral acquisition, samples were heated over a heating
block at 50 ◦C and placed in glass vials with 8mm path length. The glass vials
were placed into the sample compartment of the MPA. PSO samples were con-
ditioned by way of heating block to keep sample temperature at ±50 ◦C before
spectra recording. This was done for both spectrophotometers to ensure a con-
stant measuring temperature thought-out the scanning process. The spectral data
were collected over the range 12 500 to 4 000 cm−1 (scanning resolution 4 cm−1;
scanner velocity 10 kHz; background with air, 128 scans).

4.2.4 Reference measurement

4.2.4.1 Refractive index

Refractive index (RI) of PSO was measured using a calibrated Abbé refractometer,
Model 302 (ATAGO Co. Ltd., Japan) at room temperature [3, 202]. Three
drops of PSO were loaded onto the refractometer prism, and the RI readings
were recorded and expressed as mean. After each sample measurement, 100%
methanol solvent followed by distilled H2O and tissue paper was used to clean the
refractometer prism.
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4.2.4.2 Yellowness index

Yellowness index indicates the degree of yellowness associated with scorching, soil-
ing, and general product degradation by light, chemical exposure and processing.
The yellowness index of PSO was evaluated based on the CIE L∗a∗b∗ coordinates
from a calibrated Minolta Chroma Meter, Model CR-400 (Japan). The yellowness
index, as described by Pathare et al. [171], was calculated as

YI =
142.86 × b∗

L∗ . (4.2.1)

4.2.4.3 Total phenolic content

Total phenolic content was performed using Folin-Ciocalteau assay as described
by Abbasi et al. [203] with modification. Briefly, PSO (0.5 mL) was dissolved
in 5.0 mL of 50% aqueous methanol. An aliquot of 2.0 mL from the resulting
solution was pipetted into a test tube, followed by the addition of 0.5 mL of Folin-
Ciocalteau reagent followed by the addition of 1.0 mL of anhydrous 35% Na2CO3

solution. The mixture was vortexed and stored in a dark environment for 30 min
before the absorbance was recorded at 760 nm against blank aqueous methanol. A
standard curve consisting of 0.02 –0.10 mg/mL Gallic acid was prepared following
the same procedure. Total phenolic content (TPC) of PSO was extrapolated and
reported as milligram Gallic acid equivalent (mg GAE/100 mL of oil). The results
were presented as mean ±S.E (n=3).

4.2.4.4 Total carotenoid content

Total carotenoid content was evaluated in accordance to Association of Official
Analytical Chemists (AOAC) International 958.05 assay [202] with modifications
reported by Biehler et al. [204] and Siano et al. [9]. In brief, PSO (0.1 mL)
was dissolved in 10 mL dimethyl sulfoxide (DMSO). The total carotenoid content
(TCC) of the resulting mixture was recorded at 440 nm and 460 nm, against
blank DMSO solvent. TCC for each sample was expressed as mean ± S.E (n=3)
β-carotene/mL oil.

4.2.4.5 Peroxide value

The peroxide value assay was performed as described by AOAC [202] with mo-
dification, Briefly, PSO (0.2 mL) was dissolved in 9 mL of chloroform: methanol
mixture (7:3 ratio) in screw-capped vials. The resultant solution was mixed with
50 µL of 10 Mm xylenol orange methanol solution and 50 µL of 36 Mm iron (II)
chloride solution and vortexed respectively. The peroxide value of the resulting
mixture was measured at an absorbance reading of 560 nm. The peroxide value
was expressed as meq O2/mL oil. The equation for calculating PV is given by

PV =
(As-Ab) ×mi
W × 55.84 × 2

(4.2.2)
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where PV is the peroxide value, Ab the absorbance of the blank, As the absorbance
of the sample, mi the inverse of the slope (obtained from calibration),W the weight
of the sample (g) and 55.84 the atomic weight of iron.

4.2.5 Chemometric data analysis

OPUS version 7.0 software (Bruker Optics) was used for chemometric analysis.
The spectral parameters used for multivariate analysis were optimised by subject-
ing spectral data to the software’s "Optimise" function. This function provides
a combination of parameters such as different pre-processing methods and wave-
length regions and ranks results based on the number of latent variables and
RMSECV values.

Calibration models were constructed by subjecting infrared (NIR and MIR)
spectra to principal component analysis (PCA) and partial least squares (PLS)
regression analysis (including mean centering). Spectral outliers and variation
were explored by OPUS software using PCA (Figure 4.1). Spectral data with
high residual and located far away from the zero line of the residual variance was
perceived as potential outliers. Concentration outliers present in the dataset were
removed and successive rounds of PLS regression done with the reduced dataset.
After the outliers were removed, the resultant calibration models were validated
with the test dataset. ’Leave one out’ cross validation method was used for PLS
analysis. To construct calibration models with high robustness, the data for all
three cultivars were combined and randomly split into 2:1 subset, i.e. calibra-
tion (70%) and prediction (30%) sets, each subset containing sufficient samples of
each cultivar. Several statistical pre-processing methods (first derivative, second
derivative, straight line subtraction, multiplicative scatter correction, among oth-
ers) and in combination were tested to develop the PLS models.

The performance of PLS models was evaluated according to the coefficient of
determination (R2) (Eq. 4.2.3), root mean square error of estimation (RMSEE)
(Eq. 4.2.4) and root mean square error of prediction (RMSEP) (Eq. 4.2.5), as
defined by

R2 = 1− Σ(ycal − yact)
2

Σ(ycal − ymean)2
(4.2.3)

RMSEE =

√
1

M −R− 1
× SSE (4.2.4)

RMSEP =

√
Σ

(ypred − yact)2

n
(4.2.5)

where n is the number of spectra, yact is actual value, ymean is mean value, ycal is
calculated value, ypred is predicted value of the attribute, M is number of calibra-
tion samples, R is the rank, and SSE is the sum of squared error.
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Figure 4.1: PCA plot representing MIR spectra and reference values (Fig. 4.1A).
PCA scores plots based on spectra loadings for MIR spectra for pomegranate seed
oil (Fig. 4.1B). The colours represent different cultivars; green ’Wonderful’; blue
’Herskawitz’; red ’Acco’.

Other statistical indicators for this study include models bias (Eq. 4.2.6),
which gives an indication of the systematic error in the predicted values and is
calculated values and the residual prediction deviation (RPD) (Eq. 4.2.7) value.
This is defined as the ratio of the standard deviation of the reference data of the
validation set, to the RMSEP value and provides an indication of the efficiency of
a calibration model. These indicators are defined as

Bias =
1

n

√
Σ(ypred − yact)2 (4.2.6)

RPD =
SD

RMSEP
(4.2.7)

where SD is the standard deviation of reference values.

RPD is a statistic that is often used for the evaluation of calibration models in
spectroscopy [180]. It was suggested that RPD values below 1.5 indicate that the
developed model is unreliable, while RPD values ranging between 1.5 and 2.0 can
be used for rough predictions, those between 2.0 and 2.5 are considered adequate
for quantitative predictions, RPD values between 2.5 and 3.0 are considered good
models, satisfactory models can be regarded when the RPD values are above 3.0
[180]. Best performing models were selected based on the best overall performance
(low RMSEP, low RMSEE, high R2 and higher RPD and low bias).

Pearson’s correlation was performed on the reference data in order to demon-
strate that the prediction of the different selected quality parameters is from the
actual IR spectra and not due to possible correlations with the other measured pa-
rameters. Correlation analysis was performed using Statistica software (Statistica
13.0, StatSoft Inc., Tulsa, OK, USA) (Table 4.1).
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Table 4.1: Pearson correlation coefficient matrix of chemical indices measured in
pomegranate seed oil

 

Parameters PV  
(meqO2/mL)  

TPC  
(mg GAE/mL) 

RI TCC  
(mg β-carotene/mL) 

YI 

PV 1.000000 
    

TPC -0.09125 1.000000 
   

RI 0.080126 0.260478 1.000000 
  

TCC  0.334712 0.227483 0.176951 1.000000 
 

YI 0.021195 0.172994 0.258405 0.215358 1.000000 

PV: Peroxide value, RI: Refractive index, TCC: Total carotenoid content, TPC: Total phenolic content, YI:
Yellowness index

4.2.6 Chemicals and reagents

All chemical reagents were obtained from Sigma-Aldrich-Fluka Co. Ltd. (South
Africa) unless otherwise stated.

4.3 Results and discussion

4.3.1 FT-NIR and ATR-FT-MIR spectral characteristics

Figure 4.2 show the NIR (Figure 4.2a) and MIR (Figure 4.2b) spectra of pomegra-
nate seed oil, respectively. Peak assignment was done according to literature [24,
78, 201]. In the NIR region, bands around 8451 cm−1 arise from second overtones
of C–H stretching vibrations while those at 7502.1 and 7498.3 cm−1 are due to the
combination band of C–H. The peaks at 5774.1 and 5450 cm−1 arise from the first
overtone of C–H stretching vibrations of methyl, methylene and ethylene groups
[78, 205]. Small peaks at 4659 and 4597.7 cm−1 are associated with combination
bands of C–H and C–O stretching vibration. The MIR spectra were dominated
by peaks at 2918, 2556, 1837, 1463, 1377, 1238, 1163, 1114, 1099 and 721 cm−1.
Absorbance at 2924 and 2852 cm−1 could be ascribed to bands arising from CH2
stretching vibrations, asymmetric and symmetric, respectively [81, 206]. The ma-
jor peak at 1743 cm−1 arises from C–O stretching vibrations; the bands at 1463
and 1377 cm−1 arise from CH2 and CH3 scissoring vibration, while those at 1238,
1163, 1114, 1099 cm−1 are associated with the C–O stretching vibration. The
peak at 721 cm−1 corresponds to CH2 rocking mode [80, 193]. The spectral profile
for pomegranate seed oil are comparable to those reported for other oil samples
like avocado oil [201], virgin olive oil [80, 81], rapeseed oil blend [76] and palm oil
[75].

These peaks have been associated with the absorption profile of various com-
pounds. For instance, in the FT-NIR region, Pereira et al. [190] reported that
peaks in the range of 5888–5636 cm−1 for refractive index which is related to C–
H stretching of aliphatic chain that characterizes carboxylic acids. Peaks in the
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Figure 4.2: Representative absorbance spectra for ATR- FT-MIR (A) and FT-NIR
(B) of pomegranate seed oil

frequency ranges of 7502.3–6800.2 cm−1 and 5450.2–4597.8 cm−1, as in the case
of hydroxytyrosol and tyrosol secoiridoids, corresponds to total phenolic content.
Other chemical parameters reported for different wavelength ranges includes fatty
acid (4761.9–4545.45 cm−1), peroxide value (5313.5–4553 cm−1), carotenoid con-
tent (1700–1750 nm), iodine value (8800–8200 cm−1) [24, 75, 189, 190].

For ATR-FT-MIR region, the hydroperoxide bands have been reported peaks
at 3450 cm−1, due to –OO–H stretching vibration of the oxidized methyl oc-
tadecadieonate. Spectra between 1730–1690 cm−1 was used for quantitative de-
termination of free fatty acids and for iodine value (1050–800 cm−1) [73, 74, 77,
206, 207, 208].

4.3.2 Distribution of calibration and validation reference
data

Table 4.2 shows the statistics (mean, standard deviation, coefficient of variation)
for external and internal parameters of pomegranate seed oil. In this study, the
reference data for all parameters were normally distributed around the mean.
Lu et al. [184] stated that the validation and accuracy of calibration models
would depend on enough variation present within the sample set in the physical
and biochemical reference data. Furthermore, a large sample variation within
the calibration and validation data sets have been shown to be predicted better
by NIR spectroscopy [163, 185]. It was apparent from the standard deviation,
minimum-to-maximum range and CV% statistics that most parameters had high
CV% values of up to 40.52%, for both calibration and validation data sets covered
a wide range of values, except for refractive index.
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Table 4.2: Mean, standard deviation (SD), range and coefficient of variation (CV)
for calibration and validation subsets for selected parameters of pomegranate seed
oil

 

                                Calibration set (n = 32) Validation set (n = 13) Overall CV% 

Parameters Mean SD Min Max             Mean SD Min Max 
 

PV 8.368 5.309 1.746 24.856 9.982 6.575 1.793 23.645 40.52 
RI 1.521 0.0009 1.519 1.523 1.521 0.0009 1.519 1.522 0.06 
TCC 

0.094 0.038 0.05 0.27 0.098 0.0367 0.064 0.0192 38.66 
TPC 4.296 1.209 2.563 9.003 4.507 1.319 2.893 7.417 28.70 
YI 54.22 18.54 23.14 97.28 55.69 21.84 23.94 96.41 38.64 

n: Number of sample, PV: Peroxide value, RI: Refractive index, TCC: Total carotenoid content, TPC: Total
phenolic content, YI;:Yellowness index.

4.3.3 PLS regression models

The best model for each parameter was selected based on the evaluation of statis-
tical parameters that have higher R2, RPD values and lower RMSEE and RMSEP
values. The models that performed the best for both NIR and MIR spectroscopy
are presented in Table 4.3. Model development using the NIR and MIR spectral
regions had a major influence on the regression statistics and the prediction accu-
racy. The overall performance of the developed models for all quality parameters
is represented in Table 4.4. Scatter plots of FT-NIR and ATR- FT-MIR spec-
troscopy for predicted data plotted against measured reference data are presented
in Figure 4.3. Calibration models developed using the ATR-Alpha instrument in
the MIR spectral region gave relatively better prediction statistics for refractive
index (R2=80.92, RMSEP=0.0003 and RPD=2.32) compared to the MPA in NIR
spectral region (R2=72.29, RMSEP=0.0004 and RPD=2.00). The wavelength
range used during the development of the calibration model for refractive index
was between 3277 and 758 cm−1 which is within the range reported by Yang &
Irudayaraj [209] for olive oil. The RPD value for RI suggested the models can you
used for quantitative predictions, while the low bias (< 0.001) of the developed
model suggest that the model is were stable and non-sensitive to factors such as
cultivar, or growing location. Model development in the ATR-FT-MIR spectral
region of 3996 to 1476 cm−1 for PV (R2=62.00, RMSEP=3.88 and RPD=1.62)
performed better than the MPA (R2=55.24, RMSEP=4.34 and RPD=1.59) in the
FT-NIR spectral region of 5450-4597.7 cm−1. It can be attributed to the fact that
model development using ATR-FT-MIR provided lower number of latent variables
(7) and lower bias (-0.083) compared to the FT-NIR (LV=9, bias=1.49. Although,
it is noteworthy that the RPD values for the developed models suggest that these
models for PV can only be used for rough predictions.
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Table 4.3: Model performance for oil parameter using different FT-NIR instru-
ments

 

Parameter Acquisition 
mode 

Pre-
processing 

Wavelength range 
(cm-1) 

 Calibration (n = 32) Validation (n = 13) 

    Rank R2 RMSEE R2 RMSEP RPD Bias Slope Corr. 
PV ATR-FT-MIR 1st 3996.1 – 3635.6, 

1839.4 – 1476.9 
7 95.17 1.33 62.00 3.88 1.62 -0.083 0.646 0.788 

RI ATR-FT-MIR  2nd 3277.2 – 2197.2, 
1120.6 – 758 

6 98.26 0.0001 80.92 0.0003 2.32 -0.00 0.909 0.907 

TCC FT-NIR SLS 9403.7 – 7498.3, 
6102 – 5774.1 

5 89.25 0.015 80.45 0.0185 2.28 -0.0025 0.893 0.944 

YI FT-NIR  2nd 8451 – 7498.3, 
6102 – 4597.7 

5 55.66 13.6 53.19 14.30 1.49 2.64 0.543 0.740 

Corr: Correlation coefficient, n: Number of sample, PV: Peroxide value, R2: coefficient of determination, RI:
Refractive index, RMSEE, Root mean square error of estimation, RMSEP: Root mean square error of prediction,
RPD, residual predictive deviation, SLS: Straight line subtraction, TCC: Total carotenoid content, YI: Yellowness
index, 1st: First derivative, 2nd: Second derivative.

Table 4.4: Best performing PLS regression models for pomegranate oil quality
parameters

 

Parame
ter 

Acquisition 
mode 

Pre-
processing 

Wavelength range 
(cm-1) 

 Calibration (n = 32) Validation (n = 13) 

    Rank R2 RMSEE R2 RMSEP RPD Bias Slope Corr. 
PV ATR-FT-MIR 1st 3996.1 – 3635.6, 

1839.4 – 1476.9 
7 95.17 1.330 62.00 3.88 1.62 -0.083 0.646 0.788 

 FT-NIR  SLS 5450 – 4597.7 9 80.86 2.680 55.24 4.34 1.59 1.49 0.825 0.807 
RI ATR-FT-MIR  2nd  3277.2 – 2197.2 

1120.6 – 758 
6 98.26 0.000 80.92 0.000 2.32 0.000 0.909 0.907 

 FT-NIR  2nd 6102 – 4597.7 8 92.31 0.000 72.29 0.000 2.00 0.000 0.761 0.865 
TCC ATR-FT-MIR  2nd 3637.7 – 3275.2, 

2558.3 – 2197.9, 
760.1 – 399.6 

5 96.64 0.000 60.14 0.022 1.87 0.012 0.515 0.918 

 FT-NIR  SLS 9403.7 – 7498.3, 
6102 – 5774.1 

5 89.25 0.015 80.45 0.019 2.28 -0.003 0.893 0.944 

TPC ATR-FT-MIR  1st +SLS 3277.2 – 2916.7, 
2558.3 – 1837.4 

1 44.86 0.913 6.773 1.22 1.04 0.007 0.234 0.369 

 FT-NIR  SLS 7502.1 – 4597.7 2 33.22 0.855 18.5 1.39 1.26 0.657 0.226 0.774 
YI ATR-FT-MIR  2nd 2918.8 – 2556.3, 

1120.6 – 758 
1 30.77 11.900 20.52 15.0 1.15 -3.10 0.267 0.491 

 FT-NIR  2nd 8451 –7498.3, 6102 
– 4597.7 

5 55.66 13.600 53.19 14.30 1.49 2.64 0.543 0.740 

R2: coefficient of determination: RMSEE, Root mean square error of estimation: RMSEP: Root mean square
error of prediction, PV: Peroxide value, RI: Refractive index, TCC: Total carotenoid content, TPC: Total phenolic
content, SLS: Straight line subtraction, 1st: First derivative, 2nd: Second derivative, RPD, residual predictive
deviation, Corr: correlation coefficient, YI: Yellowness index

Figure 4.3: Scatter plots of FT-MIR predicted vs true test for PV (A), RI (B),
TCC (C), YI (D) and TPC (E) for test set validation model
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Model development using the FT-NIR in the spectral region of 9403 to 5774
cm−1 with pre-processing of straight-line subtraction showed good prediction statis-
tics for total carotenoid content (R2=80.45, RMSEP=0.0185 and RPD=2.28).
The wavelength range used during the development of calibration model for TCC
was 9403 to 5774 cm−1 which is within the range reported by [10, 189], for maize
oil. Furthermore, the RMSEE and RMSEP values were very similar, indicating
robust fitting and the low number of LVs (5) used for TCC suggest that over-
fitting noise to models were not evident. The RPD values for TCC suggest the
models can you used for quantitative predictions. While, model development for
yellowness index (R2=53.19, RMSEP=14.30 and RPD=1.49) and total phenolic
content (R2=18.50, RMSEP=1.39 and RPD=1.26) gave relatively poor prediction
statistics. This was characterised by low RPD values and high bias, suggesting
that the developed models were unreliable, and overestimation may have occurred
for these quality attributes.

4.4 Conclusion
The performance of FT-NIR and ATR-FT-MIR spectroscopic techniques com-
bined with chemometrics for the determination of quality attributes for pomegra-
nate seed oil was evaluated. Generally, the regression models developed within the
MIR spectral region performed slightly better than that developed with FT-NIR
spectroscopy. This can be due to the fact that the mid-infrared spectrum con-
tains wavelengths for fundamental rotational molecular vibration, which is highly
sensitive to specific chemical composition, whereas the near-infrared spectrum is
associated mainly with overtone and combination bands of fundamental transi-
tion, making it less reproducible and accurate. This finding agrees with the study
by Yang et al. [193]. In their study, FT-MIR spectroscopy was found to be more
superior to FT-NIR for discrimination and classification of edible oil and fats, and
for olive pomace oil adulteration in extra virgin olive oil [81, 209]. PLS prediction
models were developed for three of the five quality parameters that were analysed.
Considering the results, future research is required in order to improve the models
performance for both NIR and MIR spectroscopy by either increasing the sam-
ple size, including growing location and seasonality or by application of different
chemometric techniques.
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Chapter 5

General discussion and conclusions

5.1 Introduction
Pomegranate (Punica granatum L) fruit has seen tremendous growth in commer-
cial exports globally and within South Africa over the past decade with growth
projected over 13%. Over 1000 has been commercially planted within South Africa
and over 8000 tonnes per annum of pomegranate fruits is exported. On a global
scale, ’Wonderful’ is the most widely grown and consumed pomegranates cultivar,
and accounts for of 64% of total production in South Africa. One of the major
challenges the pomegranate industry faces is high incidence of postharvest losses
and waste, which can reach up to 9% in some seasons [210]. One of the strategies
to reduce wastage and increase grower returns is through value addition by pro-
cessing of pomegranate fruit into different co-products such as pomegranate juice,
fresh and dried arils. The by-products of the fresh aril and juice industries include
fruit skin (peel), membranes, and kernels (also referred to as seed). Therefore, the
utilization of pomegranate by-products from waste such as the dried arils, seed oil
and powder can contribute to value addition.

However, the need for safety and quality control of processed products that
meet the desire of local and international consumer has necessitated the advance-
ment of research into non-invasive quality testing. Although conventional quality
measurement methods on processed products exist, these analytical methods are
destructive in nature, often requiring sample preparation that are time consum-
ing and expensive often reflecting only the specific sample being analysed. An
extensive review of literature show a recent trend in postharvest research and an-
alytical chemistry are shifting towards the use of objective techniques that provide
accurate, fast and cost-effective solutions for the evaluation of physical, chemical,
microbial and sensory attributes of agricultural materials and its processed co-
products [16, 167, 170, 186, 211]. Infrared spectroscopy (IRS), which includes
visible to near infrared (Vis/NIR) and mid infrared (MIR) region used in con-
junction with multivariate analysis, has arguably become the most used method
for quality control due to its ability to predict compounds containing polar func-
tional groups such as –OH, C–O, and N–H. The overall aim of this research study
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evaluated infrared spectroscopy (IRS) as non-invasive method for the evaluation
of quality attributes, of pomegranate co products.

5.2 General discussion

5.2.1 Application of Fourier-transformed near infrared
spectroscopy (FT-NIRS) combined with
chemometrics for evaluation of quality attributes of
dried pomegranate arils.

Some of the main quality aspects consumers are confronted with when purchasing
food or any horticultural product are purely based on external aspects related to
size, appearance and colour characteristics [46]. While repeated, purchase of the
same product are dependent upon consumers satisfaction based on sensory char-
acteristics such as soluble solids content (SSC), titratable acidity (TA), soluble
solids to acid (SSC/TA) ratio and texture [25, 33, 158]. The study conducted in
Chapter 3 evaluated the application of Fourier transform near infrared (FT-NIR)
spectroscopy using two different regression techniques namely PLS and SVM re-
gression to evaluate the quality attributes of dried pomegranate arils. The devel-
oped models were optimized by selecting different wavelength ranges and different
pre-processing techniques. This study has shown that both visual key visual (a∗,
C∗) and sensory attributes (titratable acidity, TSS:TA ratio) of dried pomegranate
arils were successfully predicted, with SVM regression performing slightly better
than PLS regression. Future research on dried pomegranate arils should try to
improve the robustness of the developed models by adding different cultivars or
seasonality. Additionally, research needs to shift its focus on using a contactless
infrared spectrophotometer to provide a realistic representation for commercial
online analysis and extend the work to evaluate and predict the shelf life of dried
pomegranate arils. This research study is considered novel as it?s the first ap-
plication of infrared spectroscopy known to evaluate quality attributes of dried
pomegranate arils.

5.2.2 Application of Fourier transform (FT) near-infrared
(NIR) and attenuated total reflection (ATR) FT
mid-infrared (MIR) spectroscopy for the evaluation
of pomegranate seed oil quality

Global trends in postharvest research and the food industry has shifted its focus
towards the use of vibrational spectroscopy for objective measurement which pro-
vide accurate, fast and cost-effective solutions [212, 213]. Infrared spectroscopy
combined with multivariate analysis is a powerful tool capable of measuring qual-
ity attributes at a speed compatible with commercial pack-lines, which may be
as high as 10 fruit per second [15]. Therefore, chapter 4 evaluates the usage of
infrared spectroscopy using two instruments to assess the quality attributes of po-
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megranate seed oil. The first being Multi-purpose Analyzer (MPA) based on near
infrared spectroscopy in the spectral region of 12 500 to 4000 cm−1. While, the
second instrument uses Alpha ATR-FT-IR spectrophotometer in the mid infrared
region of 4000–400 cm−1. Partial least squares analysis was used to construct
calibration models for 5 parameters these include peroxide value (PV), refrac-
tive index (RI), yellowness index (YI), total phenolic content (TPC) and total
carotenoid content (TCC). The developed calibration models in the NIR spectral
region provided best prediction statistics for TCC (R2=80.45, RMSEP=0.0185,
RPD=2.28). While, MIR spectral region provided good prediction statistics for
PV (R2=62.00, RMSEP=3.88, RPD=2.32) and RI (R2=80.92, RMSEP=0.0003,
RPD=2.32). For this study, MIR spectroscopy provided better prediction for the
quality attributes of pomegranate oil. This may be due to fact that MIR spectra
contain more spectral information due to the higher resolution of the fundamental
vibrational absorption bands compared to the broad overtone and combination
absorption bands in the NIR region. For successful commercial application either
online or at-line, implementation of infrared spectroscopy is highly depended on
model robustness and for this study three different cultivars were included. Fu-
ture studies should look at evaluating various other parameters such as free fatty
acids, acid value, iodine value and saponification value which is used for quality
evaluation this will allow for the simultaneous measurement of multiple quality
parameters. Therefore, this study provided a significant contribution towards po-
tential development of an online or at-line application of infrared spectroscopy to
evaluate quality attributes for pomegranate oil.

5.3 General conclusion and recommendations
In conclusion, this thesis has made a significant contribution to the non-invasive
measurement and potential prediction of quality attributes for pomegranate co-
products (dried seeds and oil). This study showed that infrared spectroscopy could
be implemented as a rapid online tool for the assessment of various quality pa-
rameters in different co-products of pomegranate fruit. Another important aspect
of this research work was to provide robust models for the developed parame-
ters. This was taken into account by looking at two aspects; firstly, we looked at
three different growing locations, afterwards we considered three different culti-
vars (’Acco’, ’Wonderful’ and ’Herskawitz’). Consequently, same techniques can
be applicable to all cultivars and orchards. A limitation with the use of infrared
spectroscopy within this study was that fruit from only one season was consid-
ered. Therefore, such factors as seasonality was not considered for the model
development within this thesis. It is therefore, recommended that for success-
ful commercial online application, future studies need to consider such factors as
increased sample size, additional different cultivars, growing locations, and sea-
sonality. Future recommendations should also focus its efforts on evaluating other
processed pomegranate products such as powder, juices in order to reduce losses
and waste by value addition. Additionally, research needs to shift its focus to
noon-invasive evaluation and detection of fraud or adulteration within processed
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pomegranate products which is a global concern, this will allow the pomegranate
industry in South Africa to maintain its competitive edge in the global markets.
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Appendix A: Supplementary
information

Table 1: Summary of model performance for PLS regression analysis using different
pre-processing methods for textural and colour parameters of dried arils 

Quality 
parameter 

Pre-processing Wavelength range (nm)          Calibration model                        Validation model 
 R2 RMSEC Bias   R2 RMSEP RPD Bias 

L* None 1445–1640, 1881–2319 0.52 1.92 -0.03 0.48 1.71 1.29 0.67 
1st derivative 0.70 1.62 -0.01 0.30 2.18 1.01 0.88 
Smoothing 0.08 3.03 -0.09 0.01 2.34 0.94 1.14 
MSC 0.70 1.60 0.00 0.31 2.16 1.02 0.97 
MSC+SNV 0.64 1.75 -0.00 0.30 2.14 1.03 0.90 

a* None 1445–1640, 1881–2319 0.84 1.50 -0.01 0.21 2.96 1.05 0.95 
1st derivative 0.87 1.32 0.00 0.14 3.26 0.95 0.94 
Smoothing 0.84 1.50 -0.01 0.21 2.96 1.05 0.95 
MSC 0.86 1.41 0.00 0.26 2.83 1.10 0.95 
MSC+SNV 0.86 1.41 -0.00 0.26 2.84 1.10 0.96 

C* None 1445–1640, 1881–2319 0.75 2.19 -0.02 0.32 2.65 1.33 0.27 
1st derivative 0.81 1.87 -0.01 0.14 3.30 1.07 0.03 
Smooth 0.75 2.19 -0.02 0.32 2.65 1.33 0.27 
MSC 0.79 2.00 0.00 0.36 2.53 1.40 0.12 
MSC+SNV 0.79 2.00 0.00 0.36 2.53 1.40 0.12 

h* None 1045–1295, 1431–1668, 
1718–1807, 1874–2319 

0.33 2.91 -0.02 0.00 2.54 1.13 0.25 
1st derivative 0.58 2.31 -0.01 0.05 2.68 1.07 0.43 
Smoothing 0.33 2.92 -0.19 0.00 2.55 1.13 0.26 
MSC 0.30 2.27 -0.00 0.19 2.23 1.29 0.14 
MSC+SNV 0.59 2.27 0.00 0.19 2.23 1.29 0.15 

TSS None 1445–2319 0.05 0.77 -0.01 0.22 0.78 0.83 -0.31 
1st derivative 0.12 0.75 -0.03 0.06 0.82 0.79 -0.33 
Smoothing 0.14 0.72 -0.01 0.08 0.78 0.83 -0.23 
MSC 0.06 0.77 0.00 0.03 0.78 0.83 -0.12 
MSC+SNV 0.00 0.77 0.00 0.00 0.78 0.83 -0.12 

TA None 1052–1204, 1208–2319 0.58 0.06 0.00 0.57 0.07 1.43 0.02 
1st derivative 0.69 0.05 0.00 0.58 0.07 1.43 0.03 
Smoothing 0.19 0.08 0.00 0.33 0.08 1.25 0.00 
MSC 0.50 0.05 0.00 0.66 0.03 2.00 0.02 
MSC+SNV 0.25 0.08 0.00 0.13 0.10 1.00 0.02 

R2: Coefficient of determination, PLS: Partial least squares, SVM: Support vector machine, MSC: multiplicative
scatter correction, SNV: Standard normal variate, RMSEC: Root mean square error of calibration, RMSEP: Root
mean square error of prediction, RPD: Residual prediction deviation
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Table 2: Summary of model performance for PLS regression analysis using different
pre-processing methods for chemical and phytochemical parameters of dried arils

 

Quality 
parameter 

Pre-processing Wavelength range (nm)        Calibration model                  Validation model 
 R2 RMSEC Bias R2 RMSEP RPD Bias 

pH None 2280–2319 0.47 0.22 -0.01 0.68 0.17 1.82 -0.01 
1st derivative 0.78 0.13 0.00 0.81 0.14 2.21 -0.01 
Smoothing 0.42 0.24 -0.01 0.69 0.17 1.82 -0.00 
MSC 0.81 0.12 -0.00 0.86 0.13 2.38 -0.03 
MSC+SNV 0.81 0.12 0.00 0.86 0.13 2.38 -0.03 

TSS/TA None 834–1042, 1437–1826, 1967–
2003, 2049–2092 

0.55 1.44 -0.02 0.76 1.95 1.45 -0.66 
1st derivative 0.68 1.22 -0.00 0.73 1.74 1.63 -0.43 
Smoothing 0.55 1.44 -0.02 0.76 1.95 1.45 -0.66 
MSC 0.53 1.47 -0.00 0.74 1.69 1.67 -0.35 
MSC+SNV 0.53 1.47 -0.00 0.74 1.68 1.68 -0.35 

Brim A None 952–1083, 1123–1232, 1498–
1701, 2139–2278, 2280–2319 

0.04 0.75 -0.00 0.04 0.66 0.83 0.03 
1st derivative 0.74 0.39 -0.00 0.17 0.77 0.71 0.27 
Smoothing 0.04 0.75 -0.00 0.04 0.66 0.83 0.03 
MSC 0.04 0.77 0.00 0.06 0.67 0.82 0.06 
MSC+SNV 0.00 0.77 0.00 0.05 0.67 0.82 0.06 

Firmness None 1037–1248, 1277–2319 0.64 10.05 -0.13 0.04 10.35 1.02 -0.11 
1st derivative 0.60 10.52 -0.05 0.30 8.69 1.22 0.99 
Smoothing 0.64 10.05 -0.14 0.03 10.42 1.01 -0.16 
MSC 0.59 10.63 0.00 0.26 8.64 1.21 0.63 
MSC+SNV 0.59 10.63 -0.00 0.26 8.63 1.21 0.65 

TPC None 1037–1248, 1277–2319 0.00 14.81 -0.03 0.00 10.41 0.82 3.26 
1st derivative 0.04 14.99 -0.19 0.05 10.28 0.83 3.41 
Smoothing 0.00 14.81 -0.03 0.00 10.41 0.82 3.26 
MSC 0.02 14.80 0.00 0.06 10.44 0.82 3.33 
MSC+SNV 0.00 14.80 0.00 0.03 10.44 0.82 3.33 

TAC None 1037–1248, 1277–2319 0.00 6.05 -0.04 0.03 3.64 1.00 -0.16 
1st derivative 0.69 3.36 0.00 0.05 5.84 0.62 -0.66 
Smoothing 0.00 6.05 -0.04 0.03 3.64 1.00 -0.16 
MSC 0.04 6.00 0.00 0.13 3.57 1.02 -0.10 
MSC+SNV 0.04 6.00 0.00 0.00 3.57 1.02 -0.10 

R2: PLS: Partial least square, SVM: Support vector machine, MSC: multiplicative scatter correction, SNV:
Standard normal variate, RMSEC: Root mean square error of calibration, RMSEP: Root mean square error of
prediction, RPD: Residual prediction deviation
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Table 3: Summary of model performance for SVM regression analysis using differ-
ent pre-processing methods for textural and colour parameters of dried pomegranate
arils

 

Quality 
parameter 

Pre-processing Calibration model           Validation model 
  R2 RMSEC Bias   R2 RMSEP RPD Bias 

L* None 0.54 1.92 -0.08 0.26 2.28 1.08 0.92 
1st derivative 0.38 2.33 -0.15 0.18 2.46 1.00 1.06 
Smoothing 0.53 1.92 -0.08 0.25 2.28 1.08 0.92 
MSC 0.70 1.57 2.32 0.26 2.32 1.06 0.03 
MSC+SNV 0.75 1.41 0.01 0.27 2.33 1.06 1.04 

a* None 0.77 1.84 0.17 0.72 1.81 1.72 -0.56 
1st derivative 0.47 2.90 0.53 0.50 2.16 1.45 0.21 
Smoothing 0.77 1.84 0.17 0.72 1.82 1.71 -0.56 
MSC 0.77 1.84 0.24 0.68 1.84 1.69 -0.21 
MSC+SNV 0.77 1.87 0.27 0.69 1.82 1.71 -0.20 

C* None 0.75 2.15 0.25 0.70 1.99 1.77 -0.49 
1st derivative 0.47 3.32 0.60 0.53 2.44 1.45 0.30 
Smooth 0.75 2.16 0.25 0.70 1.99 1.77 -0.49 
MSC 0.78 2.01 -0.06 0.68 2.19 1.61 -0.66 
MSC+SNV 0.77 2.04 -0.04 0.66 2.19 1.61 -0.57 

h* None 0.39 2.70 -0.07 0.04 2.86 1.01 -0.36 
1st derivative 0.12 3.18 -0.18 0.11 2.74 1.05 -0.38 
Smoothing 0.39 2.70 -0.07 0.04 2.87 1.00 -0.39 
MSC 0.39 2.62 -0.07 0.06 2.87 1.00 -0.33 
MSC+SNV 0.40 2.58 -0.09 0.07 2.86 1.01 -0.35 

TSS None 0.36 0.70 0.01 0.03 0.73 0.86 0.02 
1st derivative 0.24 0.77 -0.07 0.01 0.65 0.97 0.01 
Smoothing 0.36 0.70 0.01 0.03 0.73 0.86 0.02 
MSC 0.33 0.71 -0.03 0.01 0.70 0.90 0.04 
MSC+SNV 0.33 0.72 0.01 0.01 0.69 0.91 0.04 

TA None 0.79 0.04 -0.00 0.85 0.04 2.50 -0.01 
1st derivative 0.78 0.05 -0.01 0.56 0.07 1.43 -0.03 
Smoothing 0.96 0.02 0.00 0.42 0.07 1.43 -0.02 
MSC 0.80 0.04 -0.00 0.54 0.07 1.43 -0.02 
MSC+SNV 0.85 0.02 -0.00 0.83 0.03 2.00 -0.00 

R2: PLS: Partial least square, SVM: Support vector machine, MSC: multiplicative scatter correction, SNV:
Standard normal variate, RMSEC: Root mean square error of calibration, RMSEP: Root mean square error of
prediction, RPD: Residual prediction deviation
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Table 4: Summary of model performance for SVM regression analysis using dif-
ferent pre-processing methods for chemical and phytochemical parameters of dried
pomegranate arils 

Quality 
parameter 

Pre-processing         Calibration model           Validation model 

  R2 RMSEC Bias   R2 RMSEP RPD Bias 
pH None 0.89 0.10 0.02 0.78 0.14 1.79 0.08 

1st derivative 0.82 0.13 -0.01 0.83 0.13 1.92 0.09 
Smoothing 0.88 0.11 0.02 0.79 0.14 1.79 0.08 
MSC 0.98 0.04 0.00 0.75 0.13 1.92 0.05 
MSC+SNV 0.99 0.02 -0.00 0.63 0.16 1.56 0.06 

TSS/TA None 0.86 1.09 -0.21 0.58 1.31 1.52 0.34 
1st derivative 0.32 2.23 -0.27 0.10 1.99 1.00 0.78 
Smoothing  0.86 1.10 0.34 0.57 1.32 1.51 0.34 
MSC 0.82 1.10 0.11 0.48 1.67 1.19 0.80 
MSC+SNV 0.86 1.01 -0.25 0.58 1.39 1.43 0.53 

Brim A None 0.42 0.61 -0.01 0.03 0.64 0.86 0.02 
1st derivative 0.31 0.69 -0.11 0.00 0.59 0.93 -0.03 
Smoothing 0.42 0.62 -0.01 0.03 0.64 0.86 0.02 
MSC 0.37 0.64 -0.04 0.02 0.61 0.90 0.03 
MSC+SNV 0.27 0.70 0.10 0.27 0.65 0.85 0.22 

Firmness None 0.59 11.44 -1.03 0.46 8.79 1.12 -3.44 
1st derivative 0.51 14.35 -0.73 0.39 7.91 1.25 -2.15 
Smoothing 0.59 11.46 -1.04 0.46 8.80 1.12 -3.43 
MSC 0.65 10.78 -1.09 0.49 7.81 1.27 -2.20 
MSC+SNV 0.68 10.31 -0.79 0.47 8.33 1.19 -2.20 

TPC None 0.94 3.92 -0.62 0.03 10.33 0.82 6.23 
1st derivative 0.01 15.29 -3.69 0.00 8.93 0.95 3.26 
Smoothing 0.95 4.35 -0.58 0.03 10.34 0.82 6.28 
MSC 0.77 7.30 -1.32 0.02 14.66 0.58 4.42 
MSC+SNV 0.63 9.26 -1.15 0.02 13.82 0.62 4.59 

TAC None 0.62 4.44 -0.34 0.00 3.59 1.01 0.48 
1st derivative 0.17 15.92 0.50 0.22 3.82 0.95 1.42 
Smoothing 0.62 4.44 -0.34 0.00 3.59 1.01 0.48 
MSC 0.72 3.36 -0.51 0.02 3.72 0.98 -0.52 
MSC+SNV 0.76 3.13 -0.47 0.03 3.60 1.01 0.61 

R2: PLS: Partial least square, SVM: Support vector machine, MSC: Multiplicative scatter correction, SNV:
Standard normal variate, RMSEC: Root mean square error of calibration, RMSEP: Root mean square error of
prediction, RPD: Residual prediction deviation, 1st derivative: First-order derivative, smooth: Smoothing
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Figure 1: Two instrument for spectral acquisition: FT-NIR Multipurpose analyser
(A) and (ATR) FT-MIR spectrometer (B)

Figure 2: Samples of the different pomegranate co-products for non-invasive ana-
lysis. Dried pomegranate aril (A) and pomegranate seed oil (B)
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Figure 3: Steps in processing dried pomegranate arils
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