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Risk assessment of the Acacia cyclops dieback pathogen, 

Pseudolagarobasidium acaciicola, as a mycoherbicide in the South 

African strandveld and limestone fynbos  

 

Summary 

 

Acacia cyclops, an invasive weed in South Africa, was initially imported to stabilize the 

sand dunes in the southern Cape. The spread of A. cyclops is a major threat to the fragile 

biodiversity of the strandveld and limestone fynbos vegetation. Acacia cyclops dieback 

has been observed for some time, although the causative agent, Pseudolagarobasidium 

acaciicola, has only recently been described. This fungus is nominated for development 

as a mycoherbicide to control A. cyclops. Although current biological and mechanical 

control efforts are proving to be partially effective, A. cyclops is still causing major 

damage to natural ecosystems. The introduction of a mycoherbicide would increase the 

cost effectiveness of controlling this weed in the long term. The majority of the literature 

that was reviewed supports the use of mycoherbicides as biocontrol agents, especially 

when taking into account the decrease in acceptance and availability of chemical control 

agents. Considering that the Pseudolagarobasidium genus consists of saprobes, 

opportunistic facultative pathogens and endophytes, P. acaciicola is predicted to have 

similar biological characteristics. The species is also highly likely to be indigenous, 

although with a wider distribution range than previously envisaged. Strict precautions 

should still however be taken to ensure that non-target species will not be threatened. This 

study consists of a unique risk assessment comprising different sections. A field survey 

was performed to record disease incidence among indigenous woody plant species around 

100 diseased A. cyclops trees. Subsequently, DNA extractions were made from the roots 

of the diseased indigenous plants and A. cyclops trees to verify the presence of P. 

acaciicola. Of the 2432 indigenous woody plants observed, 22 (0.9%) were dead or 

dying, while P. acaciicola was detected in 10 of these (0.4%), representing six species. 

Pseudolagarobasidium acaciicola was detected in 47% of the A. cyclops trees. Although 

P. acaciicola could be a weak pathogen in a broad range of indigenous plant species, the 

extremely low disease incidence is an indication of a low level of risk associated with 

using P. acaciicola as a mycoherbicide. Additionally, pathogenicity trials on indigenous 
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plant species were conducted to give an indication of host susceptibility. A total of 30 

indigenous plant species were wound inoculated at two field sites, and potted plants 

representing 17 indigenous plant species were wound and soil inoculated in a nursery. 

The optimum growth temperature for P. acaciicola was determined in order to understand 

it’s seasonal and landscape preference. Mortality was recorded in five of nine indigenous 

Fabaceae species, while a single plant each of four other non-Fabaceae species died after 

inoculation. No plants outside the Fabaceae family died in the field. Only A. cyclops 

seedlings died following soil inoculation. Longitudinal sections of stem inoculated plants 

revealed no systemic infection in Fabaceae species that survived inoculation. Infection in 

susceptible Fabaceae species was generally more extensive than infection in susceptible 

non-Fabaceae species. The optimum growth rate for P. acaciicola was determined at 

35°C, indicating an adaptation to summer conditions. Indigenous Fabaceae species do 

display greater susceptibility than species from other families, indicating some level of 

specificity, although susceptible species can not be phylogenetically circumscribed. Aside 

from being a facultative pathogen on A. cyclops, results from this study suggest that P. 

acaciicola is primarily a saprophyte and an occasional opportunistic pathogen on some 

indigenous Fabaceae, possibly only being a weak opportunistic pathogen on some non-

Fabaceae species. However, the risk of not effectively managing A. cyclops populations 

in these threatened vegetation types outweighs the risk associated with using P. 

acaciicola as a mycoherbicide. Therefore the use of P. acaciicola as a mycoherbicide on 

A. cyclops would be recommended, provided that sufficient monitoring of treated sites is 

implemented that primarily focus on the indigenous Fabaceae species. The effective 

control of A. cyclops could be achieved when P. acaciicola is used to compliment current 

mechanical, biological and chemical control methods in an integrated management 

strategy. 
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‘n Risiko-assessering van die Acacia cyclops terugsterf patogeen, 

Pseudolagarobasidium acaciicola, as ‘n swam-gebaseerde 

onkruiddoder in die Suid-Afrikaanse strandveld en kalksteen fynbos  

 

Opsomming 

 

Acacia cyclops, ook bekend as rooikrans, is ‘n indringerplant in Suid-Afrika wat 

oorspronklik vanaf Australië ingevoer is om die sandduine in die Kaap te stabiliseer. Die 

verspreiding van rooikrans bedreig die sensitiewe biodiversiteit van die strandveld en 

kalksteen fynbos. Rooikrans terugsterwing is al vir ‘n geruime tyd opvallend in die 

grootste deel van die plant se verspreiding in Suid-Afrika, alhoewel die veroorsakende 

organisme, Pseudolagarobasidium acaciicola, eers onlangs beskryf is. Hierdie swam is as 

‘n geskikte kandidaat vir die ontwikkeling van ‘n biologiese onkruiddoder om rooikrans 

te beheer, genomineer. Alhoewel die huidige biologiese- en meganiese beheer metodes 

vir rooikrans gedeeltelik suksesvol is, hou dié indringer steeds ‘n ernstige bedreiging vir 

die natuurlike ekosisteme in. Die gebruik van ‘n swam-gebaseerde onkruiddoder sal die 

beheer van rooikrans oor die langtermyn meer koste-effektief maak. Die oorgrote 

meerderheid van die literatuur wat hersien is, ondersteun die gebruik van swam-

gebaseerde onkruiddoders as biologiese beheermiddels, veral as die afname in 

aanvaarbaarheid en beskikbaarheid van chemiese beheermiddels in ag geneem word. 

Aangesien die Pseudolagarobasidium genus uit saprofiete, opportunistiese fakultatiewe 

patogene en endofiete bestaan, word daar voorspel dat P. acaciicola ‘n soortgelyke 

biologiese karakter sal hê. Dit is hoogs waarskynlik dat hierdie swamspesie inheems is, 

alhoewel die verspreiding wyer mag wees as wat oorspronklik voorspel is. Streng 

maatreëls moet egter steeds in plek wees om te verseker dat nie-teiken plantspesies nie 

bedreig word nie. Hierdie studie bestaan uit ‘n unieke risiko-analise met verkeie 

onderafdelings. ‘n Veld-opname is uitgevoer om die siekte-voorkoms van die inheemse 

houtagtige plantspesies rondom ‘n 100 siek rooikrans plante te bepaal. DNA ekstraksies 

is vervolgens vanuit die wortels van siek inheemse plantspesies en -rooikrans uitgevoer, 

om uiteindelik die teenwoordigheid van P. acaciicola binne die hout te kon bevestig. Uit 

‘n totaal van 2432 inheemse houtagtige plante wat aangeteken is, was 22 (0.9%) siek of 

dood, terwyl die teenwoordigheid van P. acaciicola in 10 van hierdie plante (0.4%), wat 
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ses spesies teenwoordig, bevestig is. Die teewoordigheid van P. acaciicola is ook in 47% 

van die rooikrans bevestig. Alhoewel P. acaciicola moontlik ‘n swak opportunistiese 

patogeen op ‘n verskeidenheid inheemse plantspesies is, dui die lae verhouding van dooie 

inheemse plante teenoor gesonde plante in die veld op ‘n lae risiko vir die gebruik van P. 

acaciicola as ‘n biologiese onkruiddoder. Patogenisiteitstoetse is op inheemse 

plantspesies uitgevoer om ‘n aanduiding van gasheervatbaarheid te verkry. Wond-

inokulasies is op ‘n totaal van 30 inheemse plantspesies by twee veldstudie-areas 

uitgevoer, terwyl wond- en grond-inokulasies op 17 inheemse spesies potplante in die 

kweekhuis uitgevoer is. Die optimale temperatuur waarby P. acaciicola groei, is bepaal 

om die swam se seisoenale- en habitatsvoorkeure beter te verstaan. Plante van vyf uit die 

nege inheemse Fabaceae spesies het doodgegaan, terwyl ‘n enkele plant van vier nie-

Fabaceae spesies doodgegaan het. Alle plante buite die Fabaceae familie het oorleef in die 

veld na inokulasie. Slegs rooikranssaailinge het na grond inokulasie doodgegaan. 

Lengtedeursnee van die stam en wortels van elke geïnokuleerde plant het bevestig dat 

daar geen sistemiese infeksie in Fabaceae spesies wat inokulasie oorleef het, plaasgevind 

het nie. Infeksies in vatbare Fabaceae spesies was oor die algemeen meer ernstig as 

infeksies in vatbare nie-Fabaceae spesies. Die optimale groei van P. acaciicola het by 

35°C plaasgevind, wat aandui op ‘n voorkeur vir somerstoestande. Inheemse Fabaceae 

spesies het meer vatbaar as vatbare plantspesies van ander families voorgekom. Hierdie 

verskynsel dui op ‘n sekere vlak van spesifisiteit, alhoewel daar geen duidelike 

filogenetiese grense vir vatbare spesies bepaal kon word nie.  Behalwe vir die feit dat P. 

acaciicola ‘n fakultatiewe patogeen op rooikrans is, stel resultate van hierdie studie voor 

dat hierdie swam hoofsaaklik ‘n saprofiet is wat soms ook ‘n opportunisties patogeen op 

sekere inheemse Fabaceae is en moontlik slegs ‘n swak opportunistiese patogeen op 

plantspesies buite die Fabaceae familie is. Die swak en oneffektiewe bestuur van 

rooikrans in hierdie bedreigde plantegroeitipes hou egter ‘n groter bedreiging in as die 

gebruik van P. acaciicola as ‘n biologiese onkruiddoder.  Pseudolagarobasidium 

acaciicola word daarom aanbeveel vir die beheer van rooikrans, mits voldoende 

monitering, wat fokus op inheemse Fabaceae spesies, gepaard gaan met die gebruik van 

hierdie biologiese onkruiddoder. Rooikrans kan effektief beheer word as P. acaciicola 

ingespan word om huidige meganiese-, biologiese- en chemiese beheermetodes in ‘n 

geïntegreerde bestuurstrategie te komplimenteer.  
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Chapter 1 

Risk assessment of the Acacia cyclops dieback pathogen, 

Pseudolagarobasidium acaciicola, as a mycoherbicide in the South 

African strandveld and limestone fynbos – a review 

 

1.1. Introduction 

 

After being introduced to South Africa in 1835 (Poynton, 2009), the Western Australian 

tree Acacia cyclops A. Cunn ex G. Don (Fabaceae, Mimosoideae), became one of the most 

invasive tree species in the country. These trees were initially introduced to stabilize the 

moving sand dunes along the southwestern Cape coast because of their ability to tolerate the 

blast of the sand, the salt from the ocean and the saline soil (Marcar et al., 1995; van Wilgen 

et al., 2011). These trees are now distributed all along a coastal belt in the Western-, Eastern- 

and Northern Cape provinces of South Africa from Hondeklipbaai to East London (Coates 

Palgrave, 2002), preferring limestone fynbos and strandveld as habitat (Henderson, 1998). In 

Australia, the tree is known as the red-eyed wattle or western coastal wattle, while it is known 

colloquially as “rooikrans” in South Africa.  

Rouget and Richardson (2003) found it to be the most widespread weed in the Agulhas 

Plain and Cape Peninsula, the two areas with the most detailed vegetation maps in the fynbos 

biome. A potential range expansion was also predicted for A. cyclops in these areas. The 

seeds are known to be fed on and subsequently dispersed by a variety of vectors including 

redwinged starlings (Fraser, 1990), pied starlings (Török, 1999), European swallows 

(Hofmeyr, 1989), barn swallows (Underhill and Hofmeyr, 2007), baboons (Richardson and 

Kluge, 2008), ants and rodents (Holmes, 1990). This invasive tree has become economically 

important in strandveld and fynbos areas where very few native trees grow. The wood is used 

as fuel and the profits made in this industry benefit many poor local communities. 

 

1.2. Threats associated with the Acacia cyclops invasion 

 

The largest part of A. cyclops’ distribution lies within the boundaries of the fynbos biome 

in the Cape Floristic Region. This biome contains more plant species per unit area than any 
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other biome on earth. With almost 9,000 plant species within an area of around 90,000 km2 

(Manning, 2007), it is essential to control invasive weeds within this biome. Fynbos is known 

as a fire prone habitat and woody invasive weeds increase the fuel load that consequently 

lead to hotter fires that kill native seed banks (Brooks et al., 2004). 

Weeds like A. cyclops physically outcompete indigenous plants and their seed banks by 

forming a dense upper canopy, and blocking light from the undergrowth (Vosse, 2007). 

Dense stands of this weed also decrease the grazing capacity on stock farms. There is a high 

probability of losing rare plant and dependent species in the long term if A. cyclops is not 

effectively managed. Higgins et al. (1999) found that A. cyclops poses the greatest threat to 

native, rare and endemic species in the Cape Peninsula respectively when compared to other 

Australian acacias. Australian acacias were found to cause the most significant decreases in 

indigenous species richness in South Africa (Gaertner et al., 2009). Consequently, these 

invaders significantly alter the natural ecosystems and the services they provide (Le Maitre et 

al., 2011), amounting to an estimate annual cost of around R4 billion on grazing, biodiversity 

and water resources (de Lange and van Wilgen, 2010). These negatives effects are felt by a 

range of social classes, including some of the poorest local communities (Kull et al., 2011). 

Furthermore, the reduction of invasive weeds like A. cyclops would likely lead to an increase 

in aesthetic value and possibly higher ecotourism revenue, especially within nature reserves 

(Higgins et al., 1997).  

 

1.3. Invasion hypotheses 

 

The successful or unsuccessful establishment and spread of exotic plants within natural 

systems can be ascribed to many different key environmental factors. The enemy release 

hypothesis (ERH) attributes the success of invaders to the lack of enemies in the invaded 

environment (Keane and Crawley, 2002), while the biotic resistance hypothesis highlights the 

competitive pressure from indigenous species on exotic species that inhibits invasions 

(Simberloff, 2010). It also appears as if the lack of generalist enemies in the newly 

established habitat play as an important role in the process of invasion, if not more important, 

than the lack of specialist enemies (Halbritter et al., 2012). The ERH is not necessarily the 

sole explanation for non-indigenous species becoming invasive. Agrawal et al. (2005) 

concluded that the escape from one suite of enemies does not automatically give organisms 

immunity against all enemies, and that invasions are likely the result of the varying effects of 

enemies through time and space that leads to windows of opportunity. A study by Parker and 
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Gilbert (2007) also found no significant difference between the attack from herbivores on 

invasive and native clover species in California’s coastal prairies. In a recent study by 

Bennett and Strauss (2013), invasion is attributed to the lack of responsiveness from non-

indigenous species to soil communities varying across landscapes. This allows these plants to 

establish and spread across a wide range, outcompeting indigenous species that are sensitive 

to soil community composition. There seems to be a wide and varying range of biotic and 

abiotic factors contributing to the establishment and spread of each invasive species. 

The success of A. cyclops as a strandveld and fynbos invader, in all probability, can be 

ascribed to its high propagule pressure (van Wilgen et al., 2011). Biotic resistance can, to 

some extent, be overcome by propagule pressure of the invading organism (D’Antonio et al., 

2001). Rooikrans seed was sown in large quantities as part of a vast dune stabilization project 

undertaken by the government in the southern Cape between 1850 and 1974 (Shaughnessy, 

1980). Between 1901 and 1951, the dunes in the Still Bay area were stabilized by planting 

445 hectares of A. cyclops (Avis, 1989). After a non-indigenous plant species has established 

itself and enters the invasive phase, which could be decades after its initial introduction, it 

becomes nearly impossible to successfully implement a short-term eradication strategy 

(Evans, 2000). Consequently, the development of a long-term control strategy is essential for 

these species. 

 

1.4. The control of Acacia cyclops 

 

Since the realization of the negative effects of A. cyclops on local fauna and flora, 

various methods have been implemented to control this alien invader. According to the 

Conservation of Agricultural Resources Act 43 (CARA) of 1983, and the more recent 

National Environment Management: Biodiversity Act (NEMBA), A. cyclops is a Category 2 

invader. Species within this category may not be planted without a permit and have to be 

controlled or eradicated if possible on privately owned land by law. This often results in 

farmers simply burning the invaded land, leading to mass germination of seed in the soil and 

subsequent further proliferation of species like A. cyclops (Munalula and Meincken, 2009).   

 

1.4.1.   Non-biological control 

 

Mechanical clearing is a very effective way of eradicating A. cyclops mainly because 

this species has a lower number of sprouting seedlings than most other invasive acacias 
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(Milton and Hall, 1981). Rooikrans seed, unlike other invasive acacias, mostly germinate 

within a year or two of production, while the minority stays dormant for extensive periods. 

Their seed rain is lower (2,000 seeds m-2) than species like Acacia saligna (Labill). Wendl. 

(10,000 seeds m-2) and Acacia longifolia (Andrews) Willd. (11,500 seeds m-2), while the 

density of soil-stored seed is also much lower (5,100 seeds m-2) than their relative Acacia 

melanoxylon R. Br. (49,000 seeds m-2) (Milton and Hall, 1981). This results in more 

manageable seed banks and consequently a smaller number of sprouting seedlings. Fire has 

been used to compliment mechanical control by ensuring the destruction of seed, stimulating 

germination and subsequently also exhausting seed banks (Pieterse and Cairns, 1986; 1988). 

The temperatures of these fires are too hot for most fynbos seed to survive.  

Making mechanical clearing even more effective is the fact that rooikrans does not 

vigorously coppice after clearing, and needs no chemical application on the tree stump. The 

problem with mechanical control however is that it is labour intensive and costly, often 

demotivating farmers from clearing their land of invasive tree species. While mechanical 

clearing has proven to be a very successful control method for relatively small scale projects, 

it is very costly to implement on a large scale.  

Rooikrans is one of nearly 70 Australian acacias that have been introduced in South 

Africa (Poynton, 2009). Acacia cyclops was predicted to invade a greater area of the Cape 

Peninsula (up to 64%) than any other invasive weed (Higgins et al., 1999). In 1996, Le 

Maitre et al. (2000) estimated that A. cyclops occupied more than 45% (291,000 of 643,000 

ha) of the total area invaded by Australian acacias in South Africa (measured in closed 

canopy hectares). However Kotzé et al. (2010) estimated that this figure has decreased by 

81% to 55,000 ha. These are crude estimates and respective methods implemented by the two 

authors differ significantly. Although a dramatic drop like this within A. cyclops populations 

in a relatively short period is questionable, any negative or static population growth would 

likely be attributed to a combination of extensive harvesting and the effect of the biocontrol 

agents on the trees (van Wilgen et al., 2011). 

Between 2000 and 2010, Working-for-Water has spent more than R880 million 

(adjusted to 2010 South African rands) on the clearing of acacias (van Wilgen et al., 2011). 

Although many other factors besides biomass like slope, proximity to sensitive areas and 

distance to roadside will have an influence on the cost, it would cost approximately up to 

R15,000 to fell a hectare of closed canopy A. cyclops, and in addition have biennial follow-

ups for 2 years (Ahmed Khan, Working-for-Water, pers. comm.).  
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1.4.2. Biological control 

 

When it became clear that mechanical clearing alone is not effectively controlling 

the spread of rooikrans, research on biological control options commenced. Although it has 

been recorded that indigenous insects such as tortricid moth larvae (Donnelly and Stewart, 

1990) and alydids (Holmes and Rebelo, 1988) can destroy immature A. cyclops pods or 

seeds, the damage they cause have an insignificant effect on the overall reproduction of A. 

cyclops. Research focused on A. cyclops’ enemies within its natural range, the southwest of 

Australia. 

This search resulted in the release of two biocontrol agents in South Africa. The first 

is a seed-feeding weevil, Melanterius servulus Pascoe (Coleoptera: Curculionidae), 

introduced in 1991, and the small fluted galler midge, Dasineura dielsi Rübsaamen (Diptera: 

Cecidomyiidae), introduced in 2001 (Impson et al., 2004). The latter cause the formation of 

galls instead of seed pods by laying its eggs within the flower, while the former feeds on and 

consequently destroys the seed inside the pods. Although both of these Australian insects 

have been locally successful in reducing reproduction, they do not have a significant effect on 

the growth rate or mortality of rooikrans (Wilson et al., 2011). A variable performance of D. 

dielsi in South Africa has been observed between the levels of infection in different stands of 

A. cyclops. This could possibly be the result of major genetic variability in A. cyclops as a 

result of a complex introduction history, which inhibits recognition by D. dielsi (le Roux et 

al., 2011).   

The need for a more cost-effective and less labor intensive method to control A. 

cyclops has become apparent. A viable solution to address this large scale problem is the 

introduction of a biological control agent that would significantly increase the mortality rate 

of A. cyclops. 

 

1.5. Commercial importance of Acacia cyclops 

 

South Africa is faced with a major challenge in formulating management strategies for 

Australian acacias throughout their distribution, recognizing the worth of some species at 

community- and commercial level, but also the ecological damage they cause in the natural 

areas where they occur (van Wilgen et al., 2011).  

Fire wood for fuel is still a fundamental resource for households in poor communities, 

mainly because it is free and easily accessible (Shackleton et al., 2006).  The fynbos- and 
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strandveld environment in which A. cyclops has established has little to no trees, resulting in 

this woody invader being a very important resource for local communities in these areas 

(Figure 1). Although rooikrans was originally introduced to stabilize sand dunes, the wood is 

an excellent source of fuel and charcoal and can also be used as durable fencing and screens 

(Kull et al., 2011).  

In the Western Cape, rooikrans is rated as the best quality fuelwood, consequently 

leading to a commercialized industry in some parts of this province where the trees are 

abundant (Mustart et al., 1997; Munalula and Meincken, 2009). Even though the harvesting 

of the wood is encouraged to assist in the control of the rooikrans, many rural communities 

have become dependent on this as a source of income, leading to further conflict of interest 

(Kull et al., 2011). Rooikrans also has the potential to be used for gasification and 

pelletization projects, although these initiatives are fairly marginal due to the cost of moving 

the cleared plants long distances from invaded areas to processing plants (Guy Preston, 

Working-for-Water, pers. comm.). Theron et al. (2004) estimated the woody biomass (with 

stem diameters greater than 2.5 cm) of A. cyclops, A. saligna (Labill) Wendl. and A. mearnsii 

De Wild. in stands where crown cover exceeded 50% on the Cape coastal plains at more than 

10,000 tons. Although this indicates the potential for large-scale utilization of the plants, it 

could lead to environmental degradation and livelihood dependency (Theron et al., 2004). 

Although policies in this country are set to protect economic trade, the value of healthy 

ecosystems is grossly underestimated. South Africa’s Accelerated and Shared Growth 

Initiative (ASGISA) policy clearly state that economic growth consumerisms will enjoy 

preference over sustainability and conservation, indicating the broad misconception that 

conservation is a luxury that can only be attended to once social welfare have been addressed 

(van Wilgen et al., 2011). The fact that the poorest people often rely heaviest on ecosystem 

services is overlooked. The overwhelming majority of A. cyclops harvesters are poor people 

that are as dependent, if not more so, on the services provided by natural ecosystems as 

rooikrans wood itself. 

The commercial value of A. cyclops has restricted the biocontrol programme against it to 

seed reducing agents that do not damage the non-reproductive parts of the weed (Impson et 

al., 2011; van Wilgen et al., 2011). The continuous spread of unwanted A. cyclops in coastal 

areas however has led to this restriction being challenged by biological control researchers 

(Rouget and Richardson, 2003).   
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1.6. Acacia cyclops dieback 

 

After a noticeable number of rooikrans were seen dying off in the field, the phenomenon 

was classified as A. cyclops dieback. Acacia cyclops dieback was first recorded in South 

Africa in 1969 along the Garden Route and wrongly attributed to a Ganoderma species 

(Taylor, 1969). By the early 1980’s dead and dying rooikrans were a common occurrence, 

especially between George and Still Bay in the Western Cape. These populations are 

experiencing significant mortality as a result of the dieback disease and it seems as if the 

disease will eventually spread over the entire distribution area of A. cyclops in South Africa 

(Wood and Ginns, 2006).  

 

1.6.1. Symptoms 

 

The earliest visible sign of stress displayed by affected trees in the field is the 

discolouration and wilting of the phyllodes. The older leaves tend to shed at an unnatural rate, 

leaving branches almost bare, with only a few younger phyllodes at the tip of the branch. This 

is a slow process that can last up to 6 months before the remainder of the phyllodes drop and 

the aboveground parts die off. A disease interface characterized by dark lines was observed 

when cutting through the roots of trees at a very early stage of disease. When the trees are at 

an advanced stage of disease or already dead, a white mycelial mantle covers the roots. This 

mantle is followed by dry rot that eventually degrades the roots (Wood and Ginns, 2006).  

 

1.6.2. Pseudolagarobasidium acaciicola 

 

Initial efforts to isolate the die-back pathogen were unsuccessful, only delivering a 

leaf pathogen, Cylindrocladium pauciramosum Schoch & Crous (Schoch et al., 1999), and a 

root pathogen, Ganoderma sp. (Taylor, 1969). After pathogenicity screening tests, neither of 

these fungi proved to cause mortality in rooikrans. In 1995, an unidentified basidiomycete 

was isolated from the roots of an A. cyclops tree in the early stages of disease in a stand near 

Vermaaklikheid. This fungus caused 100% mortality of A. cyclops in pathogenicity tests 

(Wood and Ginns, 2006). In 2006, this fungus was named as a new species, 

Pseudolagarobasidium acaciicola (Polyporales, Basidiomycota) Ginns (Wood and Ginns, 

2006). Pseudolagarobasidium acaciicola is difficult to isolate due to secondary fungi taking 

over the root system as soon as the tree becomes symptomatic. The pathogen has since been 
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isolated from the roots of four A. cyclops trees along the coastal belt from Hermanus to Still 

Bay (Wood and Ginns, 2006). The fact that P. acaciicola has only been isolated from roots, 

and that the only internal symptoms visible are in the roots and lower stem, confirms that this 

pathogen infects the tree via the root system. 

 

1.6.2.1. Taxonomy 

 

Various authors synonymized certain species of the genus Pseudolagarobasidium 

with Radulodon because of similar morphological traits (Stalpers, 1998; Nakasone, 2001). 

This synonymy was rejected when molecular analysis revealed Pseudolagarobasidium as a 

monophyletic group that was well supported (Hallenberg et al., 2008). The genus 

Pseudolagarobasidium currently includes six other species, which are P. pronum (Berk. and 

Broome) Nakasone and D.L. Lindner, P. pusillum Nakasone and D.L. Lindner, P. venustum 

(Hjortstam and Ryvarden) Nakasone and Lindner, P. belizense Nakasone and Lindner, P. 

subvinosum (Berk. and Broome) Sheng H. Wu and P. modestum (Berk.) Nakasone and 

Lindner. 

Pseudolagarobasidium acaciicola has only been isolated from South African plant 

species and is believed to be a native pathogen. The classification of three specimens 

collected in Kwazulu–Natal by P. A van der Bijl (PREM 602, 669 and 674), which were 

initially misidentified as Irpex modestus Berk., were revised and reclassified as P. acaciicola 

(Nakasone and Lindner, 2012). This finding suggests that P. acaciicola occupies a wider 

geographical range and greater variety of habitats than currently assumed. Another fungus, 

tentatively identified as P. acaciicola (ITS sequence GENBANK AM849050), was isolated 

from soil in an Indian rainforest. This sequence however differs by 9% and 10% respectively 

from the two South African sequences (GENBANK DQ517882 and DQ517883) and is very 

likely to be classified as another species (Nakasone and Lindner, 2012). This relatedness 

however affirms the complexity of classifying locally occurring fungi as indigenous or non-

indigenous.  

As the biological character of P. acaciicola is still poorly understood, the 

biological character of its closest phylogenetic relatives might provide some guidelines. 

According to DNA sequence analyses, P. belizense is the closest related to P. acaciicola, 

with both of them being part of the same monophyletic clade along with an undescribed foliar 

endophyte (ITS sequence GENBANK HM060641) (Nakasone and Lindner, 2012) isolated 

from healthy cedar mangrove leaves in Thailand (Chokpaiboon et al., 2010). 

Stellenbosch University  http://scholar.sun.ac.za



9 

 

Pseudolagarobasidium pronum is known as a widespread saprobe, but is also the only other 

species in this genus known to causes a dieback disease, namely that of white lead trees, 

Leucaena leucocephala (Larn.) de Wit, in Western Australia (Wood and Ginns, 2006). Shivas 

and Brown (1989) associated P. pronum, initially misidentified as P. subvinosum (Nakasone 

and Lindner, 2012), with stem and root rot of the same tree species in India. 

Pseudolagarobasidium subvinosum, mainly known as a saprophyte, has however been found 

to be responsible for a root rot or stem canker of white lead trees in Taiwan (Jang and Chen, 

1985) and India (Sankaran and Sharma, 1986). Although white lead trees belong to the same 

subfamily (Mimosoideae) as A. cyclops within the Fabaceae family, recent phylogenetic 

studies of the Mimosoideae reveal that they are very distantly related within this subfamily 

(Bouchenak–Khelladi et al., 2010; Miller et al., 2011; Miller et al., 2013). 

Pseudolagarobasidium subvisnosum was re-isolated from the diseased roots of another 

Acacia spesies, A. decurrens Willd. and other tree species in Sri Lanka (Petch, 1923). Both P. 

pronum (Sierra Leone) and P. subvinosum (Democratic Republic of the Congo) have been 

reportedly isolated on the African continent. The remainder of the Pseudolagarobasidium 

genus is known as saprophytes (Hallenberg et al., 2008; Nakasone and Lindner, 2012). The 

P. acaciicola specimens described by van der Bijl was collected from dead tree stumps 

(Nakasone and Lindner, 2012), confirming that this species is not only pathogenic but also 

saprophytic to some extent. With regard to Pseudolagarobasidium, it is clear that species 

within this genus are cryptic and apparently uncommon, although they might be more 

widespread that currently known and it is likely that there are several species yet to be 

described.   

 

1.6.2.2. Pathology 

 

Wood and Ginns (2006) tested 42 isolates of various fungal species for 

pathogenicity on A. cyclops. Fungi commonly isolated from A. cyclops and screened for 

pathogenicity included C. pauciramosum (11 isolates) and Fusarium spp. (five isolates). 

Pseudolagarobasidium acaciicola caused the mortality of all inoculated seedlings and 

saplings after 2 months in the pathogenicity screening tests. None of the controls died. Purple 

basidiomata were observed around the dead seedlings on the soil surface. A dark disease 

interface could be observed in the roots of the dead saplings, along with hyphae occupying 

the xylem vessels, ray cells and occasionally intercellular spaces. In field trials, trees older 
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than 10 years were inoculated at two sites near Agulhas National park, resulting in the 

respective mortality rates of 86% and 54% after 3 years. None of the controls died. 

 

1.6.2.3. Mode of infection 

 

Pseudolagarobasidium acaciicola’s exact mode of infection and subsequent cause 

of pathogenicity on A. cyclops are unknown, although above mentioned pathogenicity trials 

required wounding of the stem to introduce the fungus to the xylem of A. cyclops. As a result, 

the wounding of A. cyclops in the field would presumably be a prerequisite for infection to 

take place. Hyphae dimensions of P. acaciicola range between 2 and 4 μm (Wood and Ginns, 

2006). This implies that a wound of the same dimensions or larger is necessary for hyphae to 

penetrate into the xylem vessels. Wounds with these dimensions could easily be created by 

lesion nematodes, Pratylenchus spp. (Castillo and Vovlas, 2007). These nematodes have a 

wide variety of plant hosts and are known as the most common nematode genus that allows 

fungi access to roots. Some vascular wilts like Ophiostoma are known to inhibit root hair 

production, alter the permeability of root cells or block the xylem vessels, all subsequently 

leading to reduced water intake and transport (Martín et al., 2005). The reduction in water 

intake ultimately leads to water stress symptoms (like the discoloration and wilting of leaves) 

similar to A. cyclops dieback.   

 

1.6.3. Implications of Acacia cyclops dieback 

 

Since A. cyclops is a successful invader in large parts of the coastal plains of South 

Africa, the biotic resistance hypothesis per se would not apply to the A. cyclops dieback. 

Delayed biotic resistance or the new association hypothesis could be better applied to the 

situation, where invading species form new relationships with locally occurring species 

within the area of invasion that could impede invasion success (Mitchell et al., 2006). Rout 

and Callaway (2012) also found that invasive plants outside of their natural range generally 

tend to interact differently with micro-organisms in the soil compared to indigenous plant 

species.  

Alternatively, the susceptibility of A. cyclops could be attributed to enemies from A. 

cyclops’ native range arriving in South Africa at a later stage. This would allow a window 

period of absence in which A. cyclops could have experienced a loss of resistance to these 

enemies (Bossdorf et al., 2004). The loss of resistance can be explained by the endophyte-
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enemy release hypothesis (Evans, 2008) or the similar evolution of increased competitive 

ability hypothesis (Blossey and Nötzold, 1995), where the lack of enemies leads to a shift in 

the plant’s resource allocation from defense to vegetative growth, reproduction, maintenance 

or storage. These hypotheses state that plant species that become invasive outside of their 

natural range, without the mutualistic endophytes from their natural range, can experience 

sudden widespread susceptibility when a natural enemy is eventually introduced. Acacia 

cyclops dieback could possibly be associated with the trend of collapsing populations of non-

indigenous species after their successful establishment and substantial spread (Simberloff and 

Gibbons, 2004). This slowing down, stop or even reverse of invasions can likely be attributed 

to the effect of pathogens (Hilker et al., 2005). With regard to the high probability of P. 

acaciicola to be an indigenous pathogen as discussed earlier, the delayed biotic resistance 

hypothesis is however seen as the more likely explanation of the two for A. cyclops dieback. 

Pseudolagarobasidium acaciicola could provide a compromise for the conflict-of-

interest situation between the beneficiaries of A. cyclops’ commercial exploitation and the 

need to control this invasive plant. In a study by de Wit et al. (2001) on A. mearnsii, another 

commercially important invader, it was concluded that the most viable economic scenario 

would be to implement weed-attacking biological control in combination with mechanical 

clearing in some areas, while commercial growing is continued in other areas. 

The natural spread of P. acaciicola appears to be slow, which would increase its 

potential to control A. cyclops on privately owned land and nature reserves without affecting 

A. cyclops populations near communities that use this tree as a source of fuelwood and 

income (Wood and Ginns, 2006). From field observations, P. acaciicola also seems to kill 

randomly within dense stands, creating space for the remaining trees to reach harvestable size 

and be more accessible (Wood, pers. comm.). 

 

1.7. Weed biocontrol in perspective 

 

According to van Wilgen et al. (2011), impact reduction is the only feasible tactic with 

regards to the management of widespread Australian acacias. This tactic would entail 

chemical and mechanical control combined with weed biocontrol to reduce density and 

distribution of these invasive trees. Ten biocontrol agents (nine insects and one fungus) have 

been released onto ten invasive Acacia species in South Africa (Impson et al., 2009). 

Although reproductive feeders like Melanterius servulus and Dasineura dielsii on A. cyclops 

(as discussed earlier) can reduce the rate of spreading, a high and constant level of damage is 
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needed over a long period of time before the densities of A. cyclops will be affected without 

the aid of additional control methods (Rouget and Richardson, 2003). In cases where the 

value of the impact of an invasive species is higher than the benefits, more aggressive 

biological controls should seriously be considered rather than seed attackers (van Wilgen et 

al., 2011). Taking into account the results that weed biocontrol has delivered; this practice is 

grossly underfunded (van Wilgen and de Lange, 2011). The effectiveness of biological 

controls that kill plants has varied from substantial to complete (Zimmermann et al., 2004), 

with the key issues being the ability of commercial growers of the invasive plant to protect 

their crops and the ability of the agent itself to establish and become effective in the field 

(van Wilgen et al., 2011). In the case of rooikrans, there are no commercial growers, and the 

proof of establishment and effectiveness of P. acaciicola are evident in the field. 

Barton (2012) listed 28 fungal pathogens used as biocontrol agents around the world and 

contains four South African case studies between 1987 and 1991. The gall forming rust 

fungus, Uromycladium tepperianum (Sacc.) McAlpine, introduced as a classical biological 

control on A. saligna in the fynbos biome, is included. The pathogen managed to establish 

throughout the entire distribution of its host weed and significantly decreased its spread. After 

15 years of post-release monitoring, it was found that U. tepperianum had decreased tree 

density at specific sites between 87% and 98%, with an average annual mortality of 18% 

during the years monitored (Wood and Morris, 2007). This suggests that the use of a fungal 

biocontrol on an invasive Australian wattle in South Africa could be successful. The use of 

plant pathogens as biological control agents continues to gain recognition as an effective way 

of controlling invasive weeds in agricultural and natural ecosystems. In many cases it has 

been proven to be a safe, effective and convenient method of control (Charudattan, 2001). 

The major advantage of using biological control compared to chemical control is its 

evolutionary stability and subsequent low risk for induction of resistance (Evans, 2000; 

Sundh and Goettel, 2013), even if the relationship between the agent and the host is newly 

developed as described in the new associations hypothesis. Biological control offers a more 

sustainable impact as it is based on co-evolving systems where the control agent or enemy 

can adapt to changes in host genetics, while chemical herbicides are known to encourage 

resistance development in target weed populations (Heap, 2014).  
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1.7.1 Mycoherbicides 

 

Bioherbicides can be described as formulations of an organism’s infective propagules 

in a carrier, which can be applied to target weeds in the same way as a chemical herbicide 

and cause disease, which ultimately should kill the plant (Morris et al., 1999). This differs 

from classical biological control in that the control organisms used in the formulation are 

locally isolated and not ‘released’ as a non-indigenous organism to spread independently. 

Mycoherbicides are simply fungal bioherbicides, with the infective propagules being either 

spores or mycelia. Strategies involving the use of mycoherbicides are often referred to as 

inundative or augmentative biological control, an attractive alternative to classical biological 

control with regards to predictability (Evans, 2000). The development of mycoherbicides is 

faced with numerous challenges that include the cost of registration, stability and ease-of-use 

of the product. The greatest challenge however seems to be proving the field efficacy of a 

product (Hallet, 2005). Although mycoherbicides still form a minor part of weed 

management, serious investments are being made in this field as producers are forced by the 

public, research development and environmental degradation to move away from chemical 

control. 

 Stumpout® is an example of a registered mycoherbicide that has been successfully 

used on invasive Acacia species in South Africa. The active ingredient of this mycoherbicide 

is the spores of a wood rotting fungus, Cylindrobasidium laeve (Pers.) Chamuris in an oil 

suspension that is applied to the cut stumps of Acacia mearnsii (black wattle) or Acacia 

pycantha Benth. (golden wattle) to kill the developing shoots (Morris et al., 1999). Although 

this fungal species is known as a saprophyte from North America (Nakasone, 1993), it was 

found naturally colonizing dead A. mearnsii stumps near George in the Western Cape 

Province of South Africa. Both C. laeve and P. acaciicola belong to the class 

Agaricomycetes.  

Stumpout® is only the second mycoherbicide in the word to be registered for the 

biocontrol of a tree weed after Biochon®, a product registered in the Netherlands. Biochon®, a 

formulation of Chondrostereum purpureum (Pers.: Fr.) Pouzar, is applied to the cut stump of 

various hardwood species to inhibit sprouting by promoting wood decay (de Jong, 2000). 

Subsequently, C. purpureum was also registered in Canada and the United States of America 

as Chontrol® on hardwood tree species including white birch, red alder and aspen (Boyetchko 

et al., 2009). In Lithuania, it has recently been proven that C. purpureum is as effective in the 
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stump treatment of the invasive Acer negundo L. (box elder) as the popular chemical 

herbicide, Roundup®BIO (Lygis et al., 2012). 

 Silverleaf disease of fruit trees is a well known disease caused by C. purpureum and 

therefore a thorough risk assessment was undertaken prior to registration of Biochon® in the 

Netherlands. The study revealed that the mycoherbicide can effectively control the invasive 

shrub Prunus serotina Erhr. (black cherry) in native forests, without being a risk to the fruit 

industry, provided inoculations take place at least 5 km from fruit orchards (de Jong, 1988).     

Another South African mycoherbicide, Hakatak® (Colletotrichum acutatum J.H. 

Simmonds), was provisionally registered on an invasive shrub Hakea sericea Schrad. and 

J.C. Wendl. (silky hakea), in 1990, but has not since been registered due to a lack of large 

scale demand. The mycoherbicide was originally applied to seedlings as gluten granules with 

a mycelial coating. More recently though, a suspension of dried conidia in water have been 

produced by the PPRI to supply a small, but growing need for this mycoherbicide (Morris et 

al., 1999). These are good examples of the low risks associated with the development of 

mycoherbicides from locally occurring fungi with proven field efficacy (Morris et al., 1999). 

The limited demand for mycoherbicides with single target species could however become an 

obstacle in the development and production of a registered mycoherbicide.  

Mycoherbicides have been used in combination with chemical agents as a form of 

integrated management. An example of this is the control of Euphorbia heterophylla Linn. 

(wild poinsettia) in Brazil by using the leaf-spot fungus, Lewia chlamidosporiformans Vieira 

and Barreto, in conjunction with the herbicide, fomesafen. By combining the latter herbicide 

with the fungal pathogen, Nechet et al. (2008) developed an effective method to control all 

three weed populations in their study.  

Pseudolagarobasidium acaciicola has been nominated as an appropriate candidate for 

development as a mycoherbicide to control rooikrans due to its proven pathogenicity and 

local presence (Wood and Ginns, 2006). A number of formulations and methods of 

inoculation have been explored to produce a cost effective way of controlling A. cyclops with 

P. acaciicola. A suspension of mycelia and water proved to cause high mortality (95–100%) 

in wild rooikrans trees (Impson et al., 2011). The suspension was applied by means of an 

automatic dispenser into several wounds made by a chisel at the base of the tree. Although 

some of these trees took up to 6 years to die, a number of adjacent uninoculated trees have 

also started dying (Wood, pers. comm), indicating P. acaciicola’s ability to effectively, albeit 

slowly, spread from inoculated trees which supports P. acaciicola’s development as a 

mycoherbicide.   
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1.7.2 Potential risks associated with mycoherbicides  

 

Biocontrol agents that reduce seed production are the only ones that should be used 

when the weed is of commercial value (van Wilgen et al., 2011). This however refers to 

“classical” biological control agents that are introduced into South Africa and not potential 

mycoherbicides produced from locally occurring fungi. With the most recent legislation 

requiring land-owners to co-ordinate an extensive and clear strategy for the control of key 

invasive species like A. cyclops on their land (van Wilgen et al., 2011), a mycoherbicide like 

P. acaciicola would have the potential to play a crucial role in long term weed control 

strategies. 

The primary concern for using P. acaciicola as a mycoherbicide is the potential threat 

to native species in the diverse Cape Floristic Region. Indigenous plant species closely 

related to the invasive plant are most likely to be at risk (Pemberton, 2000), thus species 

within the Fabaceae family could be susceptible to P. acaciicola. Wood (2001) concluded 

that P. acaciicola causes mortality in the seedlings of indigenous legumes Aspalathus linearis 

(Burm. f.) Dahlg. (rooibos), Crotalaria capensis Baker (Cape rattle-pod) and Virgilia 

oroboides (Bergius) Salter (keurboom) after inoculations. Although these species share a 

partial distribution overlap with A. cyclops, they rarely occur in the same habitat (Coates 

Palgrave, 2002). Keurboom is a pioneer species susceptible to a whole suite of pathogens 

because of its meager investment in defense mechanisms (Coates Palgrave, 2002). In a recent 

study by Machingambi (2013), stem cankers, root diseases and rot, bracket fungi, rapid 

wilting and death were all recorded on keurboom. These were caused by Fusarium species, 

Phomopsis species, Armillaria mellea (Vahl) Quel., Schizophyllum commune Fries, 

Ceratocystis tsitsikammensis Kamgan and Jol. Roux and Ophiostoma plurianulatum (Hedgc.) 

H.P. Sydow. Pseudolagarobasidium acaciicola was not implicated in any observed disease 

occurrence of keurboom and appears not to be a natural host of the fungus.    

The reason for the mortality of indigenous species in pathogenicity trials by Wood 

(2001) and not in the field could be explained by the unnaturally large entry wounds caused 

by artificial inoculations that create direct contact between the plant’s xylem vessels and the 

pathogen (Wood pers. comm.). This allows the pathogen to bypass some of the host’s natural 

defense mechanisms, which includes the production of sufficient resin to protect a wound 

from being penetrated. Another explanation could be that, even though the pathogen only 

forms a canker due to host defense mechanisms, the seedling stems are too thin to survive the 
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canker. This canker would not kill off mature trees in the field and, because field infection 

takes place via the roots, seedlings should still survive, even though they might lose the 

infected roots (Wood pers. comm.).  

Deliberately increasing the population of an alien pathogen, compared to a native 

pathogen, could pose a greater risk to the natural environment due to the lack of co-evolution 

and resistance. Since there are no ITS sequences of P. acaciicola submitted from outside 

South Africa (Wood and Ginns, 2006), it is likely to be an indigenous fungus, with 

subsequent lower associated risks compared to alien fungi.  

 

1.8  Aims of this study 

 

This project addresses the control of A. cyclops through the application of P. acaciicola 

as a mycoherbicide. The main objective, that the following chapters will discuss, is an 

estimation of the risk involved with using P. acaciicola as a biocontrol agent in Strandveld 

and Limestone fynbos vegetation. The assessment should reveal whether P. acaciicola could 

be detrimental to native species within these vegetation types, especially those in the 

Fabaceae family, by means of field observations, supported by nursery and field 

pathogenicity trials. Since the potential of P. acaciicola as a mycoherbicide against rooikrans 

has already been demonstrated (Wood and Ginns, 2006); this study aims to provide evidence 

as to whether this potential should be realised, and the fungus made available for public use 

as a mycoherbicide. 

 

1.9 Conclusion 

 

The spread of A. cyclops is a major threat to the fragile biodiversity of the fynbos biome. 

The majority of the literature reviewed supports the use of mycoherbicides as biocontrol 

agents, especially when taking into account the decrease in acceptance and availability of 

chemical control agents. Classical biological control efforts on A. cyclops are partially 

successful; however the introduction of a mycoherbicide would increase the cost 

effectiveness of controlling this weed in the long term. Considering the 

Pseudolagarobasidium genus consists of saprobes, opportunistic facultative pathogens and 

endophytes, P. acaciicola is predicted to have similar biological characteristics. The species 

is highly likely to be indigenous, although with a wider distribution range than previously 

envisaged. Strict precautions should however be taken to ensure that non-target plant species 
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will not be threatened. Field observations in previous studies indicate that A. cyclops 

populations around communities benefiting from its harvest should not be significantly 

affected when P. acaciicola is applied as a mycoherbicide in other areas where the weed is 

unwanted. Ensuring that P. acaciicola becomes available as a mycoherbicide for A. cyclops 

in the future would be beneficial to farmers, alien clearing organizations like Working-for-

Water and especially the conservation sector in the Western Cape of South Africa. 
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1.11 Figures 

 

 

Figure 1. The commercial importance of Acacia cyclops is evident in the poor community of 

Melkhoutfontein, near the Still Bay field site used in this study. 
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Chapter 2 

Host range- and molecular detection of Pseudolagarobasidium 

acaciicola in the field 

 

2.1 Abstract 

 

The rich biodiversity of the fynbos biome along the southern coast of South Africa is 

threatened by the spread of Acacia cyclops. A locally occurring root pathogen is responsible 

for an Acacia cyclops dieback disease. Pseudolagarobasidium acaciicola, the causal 

organism, is being considered as a potential mycoherbicide against A. cyclops. A risk analysis 

to determine the effect that P. acaciicola could have on the surrounding indigenous plants 

was undertaken. A field survey was performed to record disease incidence among indigenous 

woody plant species around 100 diseased A. cyclops trees. Subsequently, DNA extractions 

were made from the roots of the diseased indigenous plants and A. cyclops trees to verify the 

presence of P. acaciicola. Of the 2432 indigenous woody plants observed, 22 (0.9%) were 

dead or dying, and P. acaciicola was detected in 10 of these (0.4%) representing six species. 

Pseudolagarobasidium acaciicola was detected in 47% A. cyclops trees. Although P. 

acaciicola could be a secondary pathogen, endophyte or weak pathogen in a broad range of 

indigenous plant species, the extremely low disease incidence is an indication of a low level 

of risk associated with using P. acaciicola as a mycoherbicide. 

 

2.2 Introduction 

 

Acacia cyclops A. Cunn. ex G. Don. (Fabaceae, Mimosoideae) is an invasive weed along 

the southern coast of South Africa. The tree is of commercial importance for poor local 

communities selling firewood as a source of income. For this reason, only biological control 

agents that damage the reproductive parts of the tree have been released. These include a 

seed-feeding weevil, Melanterius servulus Pascoe (Coleoptera: Curculionidae) and a galler 

midge, Dasineura dielsi Rübsaamen (Diptera: Cecidomyiidae) (Impson et al. 2004). 

Although both of these Australian insects have been locally successful in reducing 

reproduction, they do not have a significant effect on the growth rate or mortality of rooikrans 
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(Wilson et al., 2011). A study on the spread of another commercially important invasive 

Acacia in South Africa concluded that the implementation of a weed-attacking biological 

control to compliment mechanical control would be the most viable and economic solution to 

the spread of the species (de Wit et al., 2001).  

Acacia cyclops dieback is a common occurrence throughout the largest part of the weed’s 

distribution range since the 1980’s. The causal pathogen, Pseudolagarobasidium acaciicola 

(Polyporales, Basidiomycota) Ginns, was isolated from A. cyclops roots and tested for 

pathogenicity on A. cyclops seedlings in glasshouses (Wood and Ginns, 2006). This testing 

and field observations provided support for the development of this locally occurring 

pathogen as a bioherbicide. Prior to mass production and of this pathogen and its release, an 

in-depth risk analysis is needed to provide an indication of the risk levels that indigenous 

plants in the species rich fynbos biome could be exposed to. Determining the relationship 

between P. acaciicola and indigenous plant species will provide a better understanding of the 

potential risks associated with using this fungus as a mycoherbicide on A. cyclops. Although 

the order Polyporales are generally characterized as saprophytic fungi on wood and litter 

(Hibbet and Donoghue, 1995), the genus Pseudolagarobasidium also hosts facultative and 

opportunistic pathogens (Nakasone and Lindner, 2012) as well as endophytes (Hallenberg et 

al., 2008).    

Although numerous studies have assessed the risk of exotic fungi as classical biocontrol 

agents, few discuss the risks associated with the use of locally occurring fungi as 

mycoherbicides. Sundh and Goettel (2013) state that the extent of the actual increased 

exposure of non-target plants to mycoherbicides is an issue that needs to be further 

investigated. The application of mycoherbicides, or augmentation biocontrol, pose a 

relatively lower risk when compared to classical biological control, given that the fungus 

used in the formulation is indigenous to the area of intended use (Sundh and Goettel, 2013).  

The potential risks include the spread, population establishment and adverse effects of the 

fungus on non-target organisms outside the area of intended use. Another risk to consider is 

the influence that a higher than normal concentration of a fungal species might have on the 

soil community (Cipriani et al., 2009). The degree to which P. acaciicola can move and 

persist in the soil is uncertain. All of the literature reviewed during this study associated a low 

environmental risk with the use of mycoherbicides. Even if harmful effects arise from the 

application of a mycoherbicide, the effects are expected to cease after the discontinuation of 

inoculations and the subsequent return of population numbers to a background level (Sundh 

and Goettel, 2013).        
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The fact that P. acaciicola is already present in the field implies that an adapted risk 

assessment should be considered rather than the traditional assessment of host specificity 

testing for classical agents. The methodology of a post-introduction assessment is a more 

appropriate guideline for this study. According to Louda et al. (2003), the physiological host 

range can largely be determined by testing host-specificity, but proves to be inadequate when 

predicting the ecological host range. The reason for this is that a multitude of factors 

contribute to host selection in the field. These factors can include dispersal patterns of the 

host and the biocontrol agent, a variation in life history and even the type of habitat. A 

suggested methodology to follow for a post-release assessment by Carvalheiro et al. (2008) 

consists of two components. The first is to describe the food web in the invaded habitat by 

studying the trophic relations between herbivores, plants and parasitoids. The second 

component focuses on the effect that the abundance of the invasive weed and the biocontrol 

agent have on the surrounding indigenous populations of species by means of statistical 

testing. 

For this study, the most important trophic relations are between P. acaciicola and the 

indigenous woody vegetation that act as potential hosts. These relations along with the effect 

the fungus has on the indigenous plant species should be reflected by the number of dead or 

dying native plants surrounding dead A. cyclops trees. Although this would give an indication 

that the biocontrol agent might be a threat to the native ecological community, the only way 

to prove this would be to isolate P. acaciicola from the plant tissue. Isolating P. acaciicola 

from rooikrans roots is however challenging due to the high frequency of other secondary 

fungi present (Wood, pers. comm.).  

To date, very few isolations from diseased A. cyclops successfully delivered P. acaciicola 

(Wood pers. comm.). Successful isolations were all made from the roots of trees with early 

symptoms. By the time the trees begin dying back secondary fungi like Ganoderma species 

have started colonizing the root, making it difficult to associate P. acaciicola with the 

dieback (Wood and Ginns, 2006). A more accurate approach would be to develop a species–

specific primer and amplify DNA from A. cyclops root tissue to verify the presence of the 

pathogen.  

Verifying the presence of a fungus within woody plant material by means of DNA 

extraction can be challenging. DNA extraction methods used for root samples are not only 

time consuming, but they also tend to yield impure DNA in low quantities as a result of 

phenolics, polysaccharides and other secondary metabolites contaminating the DNA in the 

samples (Khan et al., 2007). However, a number of studies have managed to accurately verify 
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the presence of fungal species within woody plant material through the optimization of 

molecular techniques (Ridgeway et al., 2002; Retief et al., 2005). 

One of the few protocols designed around fungal pathogens in hard woody root material 

was developed by Retief et al. (2005) for the molecular detection of Phaeomoniella 

chlamydospora Crous and Gams in grapevine wood. Before the latter study, DNA extraction 

and amplification of P. chlamydospora was successful from fungal cultures by using a variety 

of protocols (Doyle and Doyle, 1987; Lee and Taylor 1990; Groenewald et al., 2000; 

Ridgeway et al. 2002), but less successful from the grapevine wood samples. Retief et al. 

(2005) ultimately combined and optimized the protocols of Lee and Taylor (1990) and 

Ridgeway et al. (2002) who produced successful amplification from the wood samples. 

The first objective of this chapter was to quantify the occurrence of dead or dying 

indigenous woody plants (DDIPs) around A. cyclops trees displaying dieback symptoms in 

the field. Secondly, the presence of P. acaciicola within the DDIPs and A. cyclops trees 

displaying dieback symptoms was to be determined by means of a species–specific primer to 

give an indication as to whether A. cyclops is the exclusive host of P. acaciicola in the field. 

A taxonomic assessment of the DDIPs were undertaken to determine whether possible 

susceptible species can be circumscribed. Furthermore, the roots of symptomatic plants were 

investigated macro– and microscopically to provide possible explanations for the 

pathogenicity of P. acaciicola.  The results of this chapter ultimately form the basis of the 

risk assessment. 

  

2.3 Materials and methods 

 

2.3.1 Field survey 

 

Two study sites were selected within the distribution range of P. acaciicola in the 

areas surrounding Still Bay and Walker Bay (Hermanus) (Figure 1). The study sites included 

a wide range of plant species and excluded any extremely dense stands of A. cyclops, as little 

or no native vegetation grows within these stands. Dead or diseased A. cyclops trees at each 

site were identified, and within a 3 m radius of each A. cyclops tree, the number of indigenous 

woody plants was recorded (Figure 2). This ensured that the largest area of root occupation is 

included around each tree and includes the potential dispersal distance of P. acaciicola via 

the roots. Indigenous plant species were analysed around a total of 100 A. cyclops trees. The 

indigenous plants were visually classified as either healthy or dying/dead. 
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The roots from all DDIPs and rooikrans trees that formed part of the survey were 

excavated and stored at 8°C for no longer than 5 days, before being processed for DNA 

extraction. All the native plants that formed part of the survey were photographed, coded and 

subsequently identified to species or subspecies level (Manning, 2007; Bohnen, 1986, 1995; 

Mouton and Naudé, 2008; Oberholzer, 2010; Mustart et al., 1997; Moriarty, 1997; 

www.ispot.org.za). 

 

2.3.2 Sample preparation 

 

To prepare the samples for DNA extraction, thin disc sections of approximately 3 mm 

wide were made from the root sample after thorough rinsing with water. These discs were cut 

from various parts of the root and crown, especially where the disease could easily be 

observed. After the bark was removed, discs were sterilized by submergence in ethanol 

(98%) for 15 seconds. They were allowed to dry before being cut up into fine pieces with a 

flame-sterilized pruner. Before being manually ground down to shavings with a Husqvarna® 

reliance hand mill, some of these pieces were cut into 2 mm3 cubes and plated out on potato 

dextrose agar with streptomycin (PDA+) in an attempt to isolate P. acaciicola (both before 

and after ethanol sterilization). Isolations were attempted from the roots of all DDIPs and 20 

A. cyclops trees. Ethanol (96%) was used to sterilize the mill between samples. The shavings 

were milled with an IKA® A11 basic analytical mill and sieved (600 μm) to produce a fine 

powder that was stored at -80°C. The analytical mill was sterilized with soapy water and 96% 

ethanol between each sample. 

 

2.3.3 DNA extraction 

 

A variety of DNA extraction protocols were performed from the wood powder of 

inoculated A. cyclops trees that included a modified soil DNA extraction protocol (Cullen et 

al., 2001), Zymo Plant/Seed DNA Kit™ (Zymo Research, Orange, California, USA), DNeasy 

Plant Mini Kit (Qiagen, Valencia, California, USA), Phire® Plant Direct PCR Kit (Finnzymes 

Oy, Finland) and a DNA extraction protocol by Retief et al. (2005). DNA concentrations 

were determined using a Nanodrop™ ND–1000 spectrophotometer (Thermo Scientific, 

Wilmington, Delaware, USA). DNA from the wood powder of dead or dying A. cyclops was 

subsequently extracted using the protocol that delivered the highest DNA concentration from 
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the powder. After optimization, a modified version of the protocol used by Retief et al. 

(2005) was used.  

From each sample, two 2–mL Eppendorf tubes were filled with 100 mg of the root 

powder and 1 mL 2% CTAB buffer (0.2 M TrisHCl pH 8.0.; 1.4 M NaCl; 0.02 M EDTA) 

was added. Sterile glass beads were added and the tubes were shaken in a Retch mill for 5 

minutes at 30 Hertz. The tubes were spun down and placed in a water bath at 65°C for 30 

minutes, inverted and placed back in the water bath for another 30 minutes. After removal 

from the water bath, 400 μL of cold chloroform: isoamylalcohol (IAA) (24:1) was added to 

each tube and vortexed. The tubes were centrifuged for 15 minutes at 13,000 revolutions per 

minute (rpm). The resulting supernatant was transferred into new tubes and the steps 

following the water bath were repeated. Each new tubes with supernatant received 50 μL of 

7.5M ammonium acetate (NH4OAc) and 600 μL of cold isopropanol. 

After an hour of incubation at -20°C, the tubes were inverted 10 times and centrifuged 

for 10 minutes at 14,000 rpm. The supernatant was discarded and the remaining pellet was 

dried for 5 minutes and resuspended in 500 μL of TE01 buffer. Another 500 μL of cold 

chloroform–IAA was added and centrifuged for 5 minutes at 14,000 rpm. The supernatant 

was transferred to new 2–mL Eppindorf tubes. The steps after adding the TE01 buffer were 

repeated, after which 50 μL of 3M NaOAc and 1 mL 100% ethanol were added. After 

incubation for an hour at -20°C, the tubes were centrifuged for 10 minutes at 14,000 rpm. The 

supernatant was discarded and the tubes were left for 5 minutes. Two hundred μL of 70% 

ethanol was added to each tube and centrifuged for 5 minutes at 14,000 rpm. The supernatant 

was discarded and tubes were placed in a heating block for 30 minutes at 60°C. The pellet 

was resuspended in 50 μL TE01 buffer and stored at -20°C for a maximum of 24 hours before 

use. After use, DNA was stored at -80°C. 

 

2.3.4 Polymerase chain reaction for P. acaciicola species identification 

   

In this study, species–specific forward and reverse primers, Pac1 (5’- 

ATGACAGGGTTGTTGCTGGCCC-3’) and Pac2 (5’- GGGCGCAAGGTGCGTTCAAAG-

3’) were designed for the South African P. acaciicola sequences DQ517882 (CBS 115544, 

PPRI 7336) and DQ517883 (DAOM 230979, CBS 115543, PPRI 7335) retrieved from the 

National Centre for Biotechnology Information’s nucleotide database. Primers were designed 

using Primer3 (version 4.0.4). This enabled sequencing of all the root tissue samples to test 

for the presence of P. acaciicola. A polymerase chain reaction (PCR) was performed with a 
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GeneAmp® PCR System 2720 thermocycler (Applied Biosystems, Foster City, California, 

USA) in a total reaction volume of 40 μL. Each reaction contained 1 x PCR buffer (Bioline, 

London, United Kingdom), 0.2 μM of each primer, 0.2 mM of dNTPs, 2 mM MgCl2, 0.05 

mg/ml bovine serum albumin (BSA) Fraction V (Roche Diagnostics South Africa, Randburg, 

South Africa) and 0.65 U BIOTAQ™ (Bioline, London, UK). The PCR was performed using 

the following conditions; an initial denaturing step of 3 minutes at 95°C, 35 cycles of 

denaturing for 1 minute at 95°C, annealing for 1 minute at 58°C and extension for 1 minute 

30 seconds at 72°C. This was followed by a final extension at 72°C for 5 minutes. A negative 

control (deionised, autoclaved water) was included in each PCR reaction. 

PCR products were resolved in 1% agarose gels for electrophorosis. A solution of 

ethidium bromide (1 μL) was added to the agarose to stain DNA fragments in order to 

visually compare it against a 100 base pair DNA ladder (Thermo Scientific). All DDIPs that 

amplified were then sequenced (DNA Sequencing Unit, Central Analytical Facility (CAF), 

Stellenbosch University) using the BigDye Terminator version 3.1 sequencing kit (Applied 

Biosystems) to confirm the presence of P. acaciicola. All indigenous plant samples and (due 

to time and cost restrictions) 20 representative A. cyclops samples that amplified, were sent to 

the CAF for sequencing. 

 

2.3.5 Symptom observations 

 

Cross sections of the dead or dying A. cyclops crown and roots were photographed to 

give an indication of P. acaciicola’s movement through the plant. Microscopic photograhps 

were taken of thin transverse sections cut from the stems of both inoculated A cyclops trees 

and A. cyclops trees showing symptoms in the field. The sections were stained with analine 

blue in lactophenol for 2 minutes and mounted in glycerol to be examined with a Zeis 

Axioskop light microscope. 

 

2.4 Results 

 

2.4.1 Field survey 

 

In total, 2432 individual indigenous woody plants were surveyed representing 85 

species from 27 families (Table 1). The survey included five indigenous plant species 

belonging to the Fabaceae family making up 4.9% of the total of individuals. Of the 2432 

Stellenbosch University  http://scholar.sun.ac.za



36 

 

woody plants, 22 (0.9%) were diseased or dead (Table 2). These DDIPs represented 11 

different species from eight families. None of the indigenous Fabaceae species were found to 

be diseased or dead in the field. Outside the 3–m radii it was observed that indigenous plants 

appeared to be in a healthy state, even where more than approximately 50% of A. cyclops 

trees within the area had died. Field sites where approximately more than half the A. cyclops 

trees have died were common. None of the DDIPs and only a single A. cyclops plant yielded 

P. acaciicola through isolations, although Ganoderma and Trichoderma species were 

common. The P. acaciicola strain was isolated from the roots of a dead A. cyclops tree at Still 

Bay.  

 

2.4.2 Molecular detection 

 

During gel electrophoresis (Figure 3), 77 of the 100 A. cyclops and 15 of the 22 

DDIPs produced bands using the designed primer pair. After sequence analysis, 10 of the 22 

(45%) DDIPs tested positive for the presence of P. acaciicola in their roots. These plants are 

listed in Table 2 and comprise six different plant species from four families. 

Pseudolagarobasidium acaciicola was detected in 12 of the 20 (60%) A. cyclops samples that 

were sequenced.  This translates to 47% when extrapolating this figure to the 77 A. cyclops 

samples that amplified during electrophoresis. The majority of sequences obtained that were 

not P. acaciicola were identified as Ganoderma lucidum (Leyss. ex Fr.) Karst by performing 

a BLAST search. 

 

2.4.3 Symptom observations 

 

Typical symptoms caused by P. acaciicola as described by Wood and Ginns (2006) 

were observed in the root sections of nearly all diseased or dead A. cyclops samples (Figures 

4 and 5). Although aboveground symptoms of some the DDIPs resembled that of A. cyclops 

dieback (leaf senescence and wilt), none of the typical symptoms could be observed in the 

root sections of these plants. Disease symptoms observed on the stem of Polygala myrtifolia 

L. (thin fingerprint-like black lines) resembled symptoms on Protea species caused by 

Phytophthora cinnamomi Rands (Tammy Jensen pers. comm., USPP disease clinic). In the 

case of Chrysanthemoides monilifera (L.) T. Norl., Muraltia spinosa (L.) F. Forest and J. C. 

Manning and Passerina corrymbosa Eckl. Ex C. H. Wright, the plants were already dead and 
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the wood at an advanced stage of decay, which disguised any possible root symptoms. The 

roots of the other DDIPs appeared asymptomatic. 

The margins of the lesions on symptomatic A. cyclops roots were defined by irregular 

thin black lines that separate the healthy root tissue from the dead wood. Although less often, 

some lesions were clearly sectorial (Figure 4a and b), especially infected lateral roots. Most 

lesions also had a watery appearance. In the majority of the sections, the rot could be 

observed in the heartwood, with a narrow corridor joining the white rot to the vascular 

cambium (Figure 4iii), from where it progressively surrounds the sapwood (Figure 4c and d). 

Other cases involved rotting sapwood without the heartwood being affected (Figure 4e). In 

the majority of the infected A. cyclops crowns the rot of the xylem seem to precede the dying 

of the heartwood. The rot also varied from partial cover of the section surface area (Figure 

4a-d) to near complete cover (Figure 4e and f). Large volumes of the smaller lateral roots 

were infected and this appeared to serve as a good source of infection for the larger taproot. 

In some instances, infection into the taproot was clearly visible from one or more of the 

lateral roots (Figure 5a). Lengthwise sections clearly display the girdling of the heartwood by 

the rot due to the movement of the pathogen through the vascular tissue (Figure 5b). 

Microscopic observations of the vascular cambium prove that P. acaciicola’s hyphae 

primarily move up and down the larger xylem vessels, but do not completely block the 

plant’s nutrient transport (Figure 6a). Purple basidiomes (Figure 6b) were observed in the 

phyllode litter at the base of some of the mature inoculated rooikrans.  

   

2.5 Discussion 

 

 The field survey revealed a low fraction (0.9%) of DDIPs with the majority of plants 

appearing healthy. Taking into account that the majority of the survey was performed in areas 

where more than 50% of the rooikrans were dead or dying, the low number of DDIPs 

indicates that increased P. acaciicola populations by use as a mycoherbicide should pose a 

low risk to the indigenous fynbos and strandveld species. Within the fraction of DDIPs, 

abiotic factors and other disease causing organisms could have contributed to the death of 

these plants. Although P. corymbosa represented approximately one third of the DDIPs, this 

member of the Thymeleaceae family is known to be a short-lived pioneer species, typically 

dying off in fynbos or strandveld communities that are between 10 and 15 years old (Oliver, 

2006).  

Stellenbosch University  http://scholar.sun.ac.za



38 

 

Sequencing results verified the presence of P. acaciicola in almost half of the diseased A. 

cyclops and approximately the same portion of the DDIPs. It should however be kept in mind 

that proving the presence of a fungal species within a plant species does not necessarily imply 

that the fungal species concerned is the direct cause of the plant’s death or disease, as it may 

be either a secondary organism or a non-lethal endophyte living in a parasitic relationship 

with the indigenous plant species. This possibility is confirmed by the majority of species 

within the Pseudolagarobasidium genus being saprophytic, with the remainder being either 

endophytes or facultative weak pathogens (Nakasone and Lindner, 2012; Hallenberg et al., 

2008). Koch’s postulates by means of inoculation are crucial in confirming the pathogenicity 

of a species. 

Confirming the presence of P. acaciicola in indigenous plant species does however give 

an indication of the host range of this fungal species. This is the first record of P. acaciicola 

being detected in a wild plant species other than A. cyclops, although no isolations were 

successful. The two Polygalaceae-, two Thymeleaceae-, one Ebenaceae- and one Proteaceae 

species within which P. acaciicola was detected are not phylogenetically related, providing 

evidence that P. acaciicola has multiple hosts. Three possible theories regarding P. 

acaciicola’s biological character can potentially be inferred.  

For one, P. acaciicola could be a broad pathogen, affecting a large number of plant 

species from different families. To support this theory, the susceptibility of the DDIPs that 

tested positive for P. acaciicola needs to be proven by field or nursery pathogenicity trials 

(Chapter 3). This theory would imply that P. acaciicola was in fact the cause of death or 

disease for the above mentioned DDIPs. Most of the DDIP species were well represented in 

the overall survey, but with a very low rate of mortality or disease. For this reason, assuming 

P. acaciicola acts as a pathogen, the field survey would support the classification of P. 

acaciicola as a mild pathogen (and not an aggressive pathogen) on certain indigenous 

species. Pseudolagarobasidium subvinosum has also been associated with disease symptoms 

of a wide range of plant hosts (Nakasone and Lindner, 2012).  Plant species susceptible to P. 

acaciicola could share phylogenetically, morphologically or physiologically traits with A. 

cyclops. 

The second possibility would be that, although P. acaciicola is an opportunistic pathogen 

on rooikrans, it functions as a saprophyte on some indigenous species, explaining the 

presence of P. acaciicola on the DDIPs. This would mean that P. acaciicola was not the 

primary cause of death or disease on the DDIPs, but colonized the dead wood as a saprobe. 

The saprophytic nature of P. acaciicola is strongly supported by three collections of this 
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species by P. A van der Bijl (PREM 602, 669 and 674) misidentified as Irpex modestus Berk 

(Nakasone and Lindner, 2012). These specimens were all isolated from a dead tree stump in 

Kwazulu–Natal, South Africa. In addition, the indigenous plant species in which P. 

acaciicola was detected were already dead, with some of the roots at an advanced stage of 

disintegration. 

The third and final possibility suggests that P. acaciicola has an endosymbiotic 

relationship with some of the fynbos and strandveld species. Mutualistic relationships 

between endophytes and woody plants are uncommon (Faeth and Fagan, 2002), implying that  

is more likely that the relationship between P. acaciicola and the indigenous plant species, if 

P. acaciicola is in fact an endophyte, can be described as a commensalism, parasitism, or a 

combination of the two. Some endophytes can also be latent pathogens (Evans, 2008), 

implying that P. acaciicola may occasionally switch from being an endophyte to a pathogen. 

Various fungal species within close phylogenetic proximity to P. acaciicola have been 

isolated from healthy mangrove leaves in Thailand (Chokpaiboon et al., 2010) and cacao 

stems in Cameroon (Crozier et al., 2006). This theory also suggests that P. acaciicola was not 

the primary cause of death of the DDIPs in which it was detected and that A. cyclops is the 

only susceptible species of this endophyte. The widespread occurrence of the A. cyclops 

dieback could be explained by indigenous plants acting as alternative hosts and sources of 

inoculum. 

The potential opportunistic nature of P. acaciicola is an example of a recent trend during 

the last two and a half decades of fungal pathogens emerging in non-native Acacia species. 

Ceratocystis fimbriata Ellis and Halstead s.l. was recorded on Acacia decurrens Willd. in 

Brazil, causing a canker and subsequent death of these trees (Ribeiro et al., 1988), while 

another novel Ceratocystis species, later named C. albifundus Morris, de Beer and M.J. 

Wingfield (Wingfield et al., 1996) was found to cause the wilt and death of A. mearnsii in 

South Africa (Morris et al., 1993). Native pathogens can play an important role in limiting 

the spread of invasive weeds (Duncan and Williams, 2002; Beckstead and Parker, 2003). 

There seems to be a strong association of Ganoderma species with A. cyclops. Wood and 

Ginns (2006) consistently isolated a Ganoderma species from A. cyclops roots, although none 

of the 14 isolates caused mortality in pathogenicity tests. Even with the first report of the A. 

cyclops dieback, a Ganoderma species was thought to be the responsible pathogen (Hall, 

1979). Ganoderma species are known as wood decaying fungi, normally saprophytic or 

parasitic on dead or living tree stumps (Keypour et al., 2010). Ganoderma lucidum, detected 

in some sequenced samples of A. cyclops and DDIPs, has been isolated in Western India, 
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causing root rot and subsequent mortality of Acacia and Prosopis trees (Bhansali, 2012). It 

was one of the most frequently encountered fungi in natural agroforestry stands in this part of 

India. Bhansali (2012) found that once a tree is wounded, Ganoderma rapidly colonizes the 

outer wood or sapwood. An undescribed species similar to G. lucidum has also been reported 

to be pathogenic on certain broadleaf tree species in Queensland, Australia, invading the 

xylem and phloem tissue in some cases (Hood et al., 1996).  

From the symptom observations, it is hypothesised that wounds on lateral roots are the 

primary point of entry for P. acaciicola. The pathogen appears to move through the lateral 

root’s xylem vessels within the stele to the heartwood in the taproot. The narrow corridor of 

rot joining the heartwood to the vascular cambium is probably the easiest route for P. 

acaciicola to follow and subsequently surround the sapwood. Although the hyphae do not 

seem to block the xylem vessels, phyllode symptoms indicates a definite shortage of water 

supply. This could be due to the death of a large proportion of wood (xylem) that would 

subsequently block the water supply either in the crown or in the lateral roots.  Other 

mechanisms, like the production of toxins, might also be involved in the colonization of the 

living plant tissue by the pathogen, although it is unknown if P. acaciicola produces toxins. 

Although P. acaciicola was detected in six diseased indigenous plant species, 

pathogenicity can only be confirmed after the completion of Koch’s postulates. The disease 

incidence (0.9%) of indigenous woody plants within the fynbos and strandveld vegetation is 

comparatively lower than that of A. cyclops. If P. acaciicola was responsible for the death of 

the 10 indigenous plants (0.4%) in which it was detected, the threat that A. cyclops poses to 

these sensitive plant communities overshadows the relatively low risk of P. acaciicola being 

weakly pathogenic to some of the indigenous plant species. Alternatively, it is possible that 

P. acaciicola acts as a non-lethal endophyte or saprophyte that became an opportunistic 

pathogen on A. cyclops. Since all 10 indigenous plants in which P. acaciicola was detected 

were already dead, the latter possibility is favored. The exact trigger that caused the switch to 

a pathogen on A. cyclops is uncertain, but the evolution of increased competitive ability 

hypothesis (Blossey and Nötzold, 1995), is the most likely explanation. 
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2.7 Tables and figures 

 

 

 

Figure 1. A map of South Africa indicating the locations within the distribution range of 

Acacia cyclops where Pseudolagarobasidium acaciicola has been isolated (Wood and Ginns, 

2006) as well as the two field sites within the fynbos biome.  
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Figure 2. Schematic illustration of a study site indicating the dead or diseased Acacia cyclops 

trees (between live A. cyclops trees) around which all indigenous woody plants in a circle 

with a 3 m radius were recorded, photographed and subsequently identified. Root tissue 

samples of the identified dead or diseased indigenous plants were taken for later analysis. 

 

3m 
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3m 

3m 

Diseased / dead Acacia cyclops tree 

Living Acacia cyclops tree 

3m Living indigenous woody plant 

Diseased / dead  indigenous woody plant 

Figure 3. Detection of Pseudolagarobasidium acaciicola from the roots of (1-15) diseased 

Acacia cyclops and (16-20)–indigenous plants. The size of digested products was estimated 

by using a 100bp DNA ladder. PCR was conducted with primers Pac1 and Pac2; nC, negative 

control. 
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Figure 4. Symptoms observed on sections of Acacia cyclops in which Pseudolagarobasidium 

acaciicola was molecularly detected. Sections displayed are of the taproot just above the last 

lateral root. Symptoms of root colonization range from (a and b) sectorial to (c and d) partial 

to (e and f) near complete with (i) thin black lines at the disease interface, (ii) a watery 

appearance of dead wood, and (iii) rot corridors joining the heartwood to the vascular 

cambium. 
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Figure 5. A section made through roots of Acacia cyclops from the field in which 

Pseudolagarobasidium acaciicola was molecularly detected. Infection of the taproot can take 

place via one or more lateral roots (a). The vertical cross section indicates how the pathogen 

girdles the stem (C) from the point of infection by moving through the vascular tissue (b). 

 

 

Figure 6. A longitudinal section of a vascular bundle showing the presence of 

Pseudolagarobasidium acaciicola hyphae within a xylem vessel of an inoculated Acacia 

cyclops tree (a) and purple basidiomes of the same pathogen on phyllode litter in the field 

against the stem of an inoculated A. cyclops tree (b).  
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Table 1. A list of indigenous woody plant species surveyed within a 3 m radius of 100 dead 

or dying Acacia cyclops trees in Still Bay and Walker Bay.  

Species Family Common name Total 

Acmadenia heterophylla Rutaceae Longstem Pinkfanbuchu 4 

Acmadenia obtusata Rutaceae Dune buchu 12 

Agathosma apiculata Rutaceae Garlic buchu 2 

Agathosma muirii  Rutaceae Still Bay buchu 4 

Aloe arborescence Asphodelaceae Krantz aloe 25 

Aspalathus quinquefolia ssp. hispida Fabaceae  50 

Aspalathus sanguinea ssp. sanguinea Fabaceae Limestone peabush 59 

Asparagus rubicundus Asparagaceae Wag-'n-bietjie 113 

Berkheya coriaceae Asteraceae Wild thistle 5 

Carissa bispinosa Apocynaceae Num-num 10 

Carpobrotus edulis Mesembryantheaceae Sour fig 25 

Chironia baccifera Gentianaceae Christmas berry 19 

Chironia tetragona Gentianacea Sticky Centaury 59 

Chrysanthemoides monilifera Asteraceae Tick Berry 180 

Chrysocoma tenuifolia Asteraceae Bitterbush 67 

Cliffortia alata Rosaceae Pypsteelbos 102 

Cliffortia obcordata Rosaceae Diamond Caperose 54 

Cliffortia stricta Rosaceae Stipuled Caperose 14 

Coleonema calycinum Zygophyllaceae Confetti bush 15 

Conicosia pugioniformis ssp. muirii Mesembryantheaceae Pigroot 49 

Conyza scabrida Asteraceae Oven bush 28 

Crassula fascicularis Crasulaceae Ruiksissie 18 

Diosma awilana Rutaceae  2 

Diosma echinulata Rutaceae Bitterboegoe 38 

Diosma hirsuta Rutaceae Rooiboegoe 19 

Diospyros dichrophylla Ebenaceae Common star-apple 2 

Eriocephalus africanus var. africanus Asteraceae Wild Rosemary 54 

Euchaetis meridionalis 

 

Rutaceae  41 

Euclea racemosa Ebenaceae Dune guarrie 17 

Gnidia setosa Thymeleaceae  2 

Gnidia squarrosa Thymelaeaceae  60 

Gymnosporia heterophylla Celastraceae Common spikethorn 12 

Gymnosporia polyacantha Celastraceae Kraal spike thorn 7 

Helichrysum crispum Asteraceae Hottentot's bedding 135 

Helichrysum teretifolium Asteraceae Heath-leaf Strawflower 4 

Indigofera hamulosa Fabaceae Indigo 6 

Lauridia tetragona Celastraceae Climbing-Saffron 18 

Leucadendron coniferum Proteaceae Cone bush 6 

Leucadendron salignum Proteaceae Geelbos 7 

Leucospermum praecox Proteaceae Still Bay pincusion 1 

Lycium ferocissimum  Solanaceae African boxthorn 3 

Metalasia densa Asteraceae Blombos 5 

Metalasia luteola Asteraceae Yellow blombos 4 

Metalasia muricata Asteraceae White bristle bush 10 
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Table 1 continued    

Species Family Common name Total 

Muraltia ericaefolia Polygalaceae Tortoiseberry 3 

Muraltia spinosa Polygalaceae Tortoiseberry 7 

Myrsine africana Myrsinaceae Cape myrtle 93 

Oedera imbricata Asteraceae Butterfly bush 2 

Oedera squarrosa Asteraceae Vierkantperdekaroo 5 

 

 
Oedera steyniae Asteraceae Kalkrandperdekaroo 6 

Olea europaea ssp. africana Oleaceae Wild olive 99 

Olea exasperata Oleaceae Dune olive 7 

Osyris compressa Santalaceae Cape Sumach 15 

Otholobium candicans Fabaceae  2 

Otholobium fruticans Fabaceae Cape Town pea 1 

Passerina corymbosa Thymelaeaceae Gonna bush 217 

Passerina galpinii Thymelaeaceae Dune strong bark bush 20 

Phylica axillaris Rhamnaceae Hard leaf 6 

Phylica ericoides var. muirii Rhamnaceae Heath phylica 18 

Phylica stenopetala Rhamnaceae  6 

Polygala myrtifolia Polygalaceae September bush 51 

Protea obtusifolia Proteaceae Limestone sugarbush 3 

Protea repens Proteaceae Sugarbush 1 

Pterocelastrus tricuspidatus Celastraceae Cherry wood 10 

Pteronia uncinata Asteraceae Strandgombos 2 

Roepera calcicola Zygophyllaceae  24 

Roepera flexiosum Zygophyllaceae Spekbos 16 

Salvia africana-lutea Lamiaceae Beach salvia 1 

Scolopia mundii Salicaceae Red pear 2 

Searsia crenata Anacardiaceae Dune crowberry 29 

Searsia glauca  Anacardiaceae Kuni-bush 158 

Searsia laevigata Anacardiaceae Dune currant bush 78 

Searsia longispina Anacardiaceae Spiny currant-rhus 8 

Searsia lucida Anacardiaceae Glossy current bush 6 

Senecio burchellii Asteraceae Molteno disease plant 3 

Senecio halimifolius Asteraceae Tabakbos 9 

Senecio umbellatus Asteraceae Grounsel 23 

Sideroxylon inerme Sapotaceae White milkwood 21 

Solanum africanum Solanaceae Dune nightshade 5 

Stoebe muirii  Asteraceae Krulblaarslagbos 5 

Stoebe nervigera  Asteraceae Steekblaarslangbos 3 

Stoebe plumosa Asterceae Slangbos 30 

Struthiola argenteum Thymelaeaceae Featherhead 26 

Ursinia anthemoides Asteraceae Bergmagriet 2 

Wahlenbergia calcarea Campanulaceae African bluebell 2 

85 Species 27 Families  2432† 
†Individual plants    
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Table 2. A list of diseased indigenous woody species from a field survey (compared to 

Acacia cyclops) that were tested for the presence of Pseudolagarobasidium acaciicola in the 

roots. 

Species Family Detected*/ plants† Total surveyed 

Acacia cyclops Fabaceae 47/100 100 

Chrysanthemoides monilifera Asteraceae 0/2 180 

Searsia glauca Anacardiaceae 0/2 158 

Olea exasperata Oleaceae 0/1 7 

Diosma echinulata Rutaceae 0/1 38 

Agathosma apiculata Rutaceae 0/1 2 

Passerina corymbosa Thymeliaceae 4/7 217 

Euchaetis meridionalis Thymeliaceae 1/1 41 

Muraltia spinosa Polygalaceae 2/2 7 

Polygala myrtifolia Polygalaceae 1/1 51 

Leucadendron salignum Proteaceae 1/1 10 

Euclea racemosa Ebenaceae 1/3 16 

11 Species 8 Families 10/22 727 

*Number of confirmed P.  acaciicola identifications after gel electrophorosis and sequence analysis 

 
†Number of dead or dying plant individuals from the specified species of which a root sample was sequenced  
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Chapter 3 

Pathogenicity studies to determine susceptibility of indigenous 

fynbos and strandveld plants to Pseudolagarobasidium acaciicola 

 

3.1 Abtract 

 

Acacia cyclops is a major Australian invasive weed in the species rich strandveld and 

fynbos vegetation types of South Africa. Observations of Acacia cyclops dieback over the 

past 30 years have lead to the isolation of the causative agent, Pseudolagarobasidium 

acaciicola. This locally occurring fungus is proposed as a mycoherbicide on A. cyclops. 

In order to determine the potential risks associated with using P. acaciicola as a 

mycoherbicide in these vegetation types, pathogenicity trials on indigenous plant species 

were conducted to give an indication of host susceptibility. A total of 30 indigenous plant 

species were wound inoculated at two field sites, and potted plants representing 17 

indigenous plant species were wound and soil inoculated in a nursery. The optimum 

growth temperature for P. acaciicola was determined in order to understand it’s seasonal 

and landscape preference. Mortality was recorded in five of nine indigenous Fabaceae 

species, while a single plant each of four other non-Fabaceae species died after 

inoculation. Only A. cyclops seedlings died following soil inoculation. Longitudinal cross 

sections of stem inoculated plants revealed no systemic infection in Fabaceae species that 

survived inoculation. Infection in susceptible Fabaceae species was generally far greater 

than infection in susceptible non-Fabaceae species. The optimum growth rate for P. 

acaciicola was determined at 35°C, indicating an adaptation to summer conditions. 

Indigenous Fabaceae species display greater susceptibility than species from other 

families, indicating some level of specificity, although susceptible species can not be 

phylogenetically circumscribed. Aside from being a facultative pathogen on A. cyclops, 

results from this study and previous work suggest that P. acaciicola is primarily a 

saprophyte and an occasional opportunistic pathogen on some indigenous Fabaceae, 

possibly only being a weak opportunistic pathogen on some non-Fabaceae species. 

However, the risk of not effectively managing A. cyclops populations in these threatened 

vegetation types outweighs the risk associated with using P. acaciicola as a 

mycoherbicide. The use of P. acaciicola as a mycoherbicide on A. cyclops would be 
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recommended, given that sufficient monitoring is undertaken in the areas where this 

mycoherbicide is applied. This mycoherbicide should not be viewed as an independent 

solution to the A. cyclops problem in South Africa, but should be incorporated into an 

integrated management strategy to control this weed effectively.   

 

3.2 Introduction 

 

Acacia cyclops A. Cunn. ex G. Don. (Fabaceae, Mimosoideae) was originally introduced 

from Australia to South Africa to stabilize the shifting sand dunes along the southern coast. 

This weed has since successfully established and spread throughout the limestone fynbos and 

strandveld vegetation along the coast of of South Africa. Dense stands of A. cyclops are a 

major threat to these habitats that are exceptionally rich in biodiversity (Manning, 2007).  

Partial success have been achieved by the introduction of two classical biological control 

agents on A.cyclops from its natural distribution range that either feed on the seed or cause 

galling around the flower heads (Impson et al., 2011). The current effect that the biological 

control agents have on A. cyclops is however not sufficiently controlling these populations (le 

Roux et al., 2011) The introduction of a biological control agent that attacks the vegetative 

parts of the tree have not been considered as a result of the weed’s commercial value as 

firewood in an otherwise tree-poor environment (van Wilgen et al., 2011).  

A natural dieback of A. cyclops has been observed across a large part of its distribution 

range from as early as the 1960’s (Taylor, 1969). The causal organism, 

Pseudolagarobasidium acaciicola (Polyporales, Basidiomycota) Ginns was isolated from the 

roots of diseased trees (Wood and Ginns, 2006). This locally occurring Basidiomycete, 

currently under consideration for use as a mycoherbicide, could offer a compromise between 

the conservation of the indigenous biota and the commercial value of this tree to poor local 

communities. Before commercialization of this mycoherbicide, it is important to perform a 

risk assessment in order to determine the effect of amplified populations of P. acaciicola on 

the indigenous flora. Earlier work (Chapter 2) found a low incidence of dead and dying 

indigenous woody plants (DDIPs) (0.9%) in the immediate area around dead or dying A. 

cyclops trees. Pseudolagarobasidium acaciicola was detected in approximately half of the 

sampled A. cyclops and the DDIPs. The probability of P. acaciicola acting as a saprophyte on 

a variety of indigenous plant species was well supported. 

When doing research to determine the long term effect of a pathogen on its surrounding 

environment, multifaceted methodologies including comparative testing of pathogens in 
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natural- and controlled environments are necessary (Flory and Clay, 2013). The susceptibility 

of A. cyclops and indigenous plant species to P. acaciicola should therefore not only be 

determined in glasshouses, but also in the field where these plants occur naturally. 

The “centrifugal phylogenetic method” (CPM) has been used widely as a guideline for 

host-specificity testing for potential weed biocontrol agents (Wapsphere, 1974). This concept 

of testing is based on the principle that host susceptibility is directly associated with 

phylogenic relatedness. The ultimate aim of the concept is to determine whether susceptible 

plants in a test group can be circumscribed within a monophyletic clade or not. The test group 

focuses on species occurring within the proposed introduction area. Wapsphere stresses the 

importance of identifying the closest phylogenetically related species to the target species 

within the environment of its proposed introduction prior to pathogenicity trials. 

Of the 28 fungal biological control pathogens released internationally and reviewed by 

Barton (2012), 107 plant species were found to be susceptible in glasshouse pathogenicity 

trials prior to release. However, only six of these species were actually found to be affected in 

the field post-release. This implies that glasshouse pathogenicity trials are overly sensitive 

when assessing risk prediction of the true post-release effects of fungi in the field. Therefore 

glasshouse trials should only provide an indication of pathogenicity rather than mirror a 

prediction of what could happen in the field. It should be kept in mind though that this review 

only discussed biotrophic fungi used as biological control agents and that the situation might 

be different for necrotrophic biocontrol fungi. 

The large majority of pathogens target selected genotypes, species, genera or families, 

displaying different degrees of specificity (Keen and Staskawicz, 1988; Gilbert and Webb, 

2007). It is important to establish where P. acaciicola fits in this continuum of host 

specificity. If this pathogen is not species-specific on Acacia cyclops, it could be genus 

specific (infecting most of the Acacia species), family specific (infecting most Fabaceae) or 

non-specific (infecting a wide range of species). Susceptibility could be influenced by 

morphologic host similarities (Puchalska et al., 2006). Although initial pathogenicity trials 

suggest that P. acaciicola might be non-specific, these were artificial inoculations on thin 

stemmed plants under glasshouse conditions (Wood, 2001). Although a non-specific 

pathogen may infect multiple plant species, resistance and disease tolerance may vary 

between these plants that act as hosts for the pathogen, leading to more serious symptoms on 

some infected plants when compared to others (Holah and Alexander, 1999; Dobson, 2004). 

This suggests that P. acaciicola could cause symptoms other than dieback on other hosts 

even though it kills A. cyclops. 

Stellenbosch University  http://scholar.sun.ac.za



56 

 

Although the factors influencing the susceptibility of plant species to fungal pathogens 

are poorly understood, plant species with a close phylogenetic relationship to susceptible 

species are more likely to be susceptible than a distantly related species (Gilbert and Webb, 

2007). Since P. acaciicola is more likely to infect plant species that are phylogenetically 

closely related to A. cyclops than non-related species, it is important to determine the closest 

related species to A. cyclops within its invaded distribution range in South Africa. The tribe 

Acacieae has been proven not to be monophyletic and subsequently the genus Acacia is now 

split into five genera namely Acacia, Acaciella, Mariousousa, Senegalia and Vachellia 

(Brown et al., 2008; Miller et al., 2011). All Australian species are in Acacia, including A. 

cyclops, while species indigenous to Africa are now divided between the genera Vachellia 

and Senegalia (Miller et al., 2013). Acacia cyclops therefore has no genus-level indigenous 

relatives that could be threatened by P. acaciicola within its distribution. The risk assessment 

consequently reverts back to the broader Fabaceae group that includes a large number of 

species. 

Manning (2007) lists 668 species of Fabaceae in the fynbos biome alone, including 

species like Xiphotheca phylicoides A. L. Schutte and B.–E. van Wyk, which is critically 

endangered (Raimondo et al., 2009). Of the three small populations of this species surviving 

in the Outeniqua Mountains, two are already under threat by the invasive weeds Hakea 

gibbosa (Sm.) Cav. and Pinus patula Scheide & Deppe. However their distribution is 

ecologically distinct to the coastal plains invaded by A. cyclops and where dieback has been 

long observed to occur (Taylor, 1969).  

Temperature has a major impact on the growth and consequent interaction intensity 

between fungi and their hosts (Traill et al., 2010). Temperature also plays an essential role in 

a fungus’ persistence in the environment (Boivin et al., 2006). No optimum growth 

temperature for P. acaciicola has been determined. Determining the optimum growth 

temperature for P. acaciicola will give a better understanding of the pathogen in terms of its 

favoured conditions and adaptation to a specific environment. It is hypothesized that the 

changing climate could be the cause of emerging diseases caused by pathogens and their 

vectors sensitive to changes in temperature, rainfall or other environmental conditions (Patz 

et al., 2005). 

This study aims to give an indication of the host specificity of P. acaciicola through 

pathogenicity trials in the field and nursery. The pathogenicity trials will include plant species 

in which P. acaciicola was detected (Chapter 2) in order to complete Koch’s postulates to 

confirm whether P. acaciicola caused the death of these plants. Furthermore, the results of 
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the pathogenicity trials should give a clearer indication of the biological character of P. 

acaciicola, i.e. endophytic, saprophytic or pathogenic. A phylogenetic analysis of the 

susceptible species will attempt to circumscribe these species. Ultimately, the risk that P. 

acaciicola poses to the indigenous flora if applied as a mycoherbicide is to be determined.  In 

addition, by determining the optimal growth temperature for P. acaciicola, it’s seasonal and 

landscape preferences should be better understood. 

 

3.3  Materials and methods 

 

3.3.1 Inoculum preparation 

 

A P. acaciicola isolate (PPRI 7335, DAOM 230979, CBS 115543) from the Plant 

Protection Research Institute’s (PPRI) National Collection of Fungi was selected for the 

inoculation trials based on its proven pathogenicity on A. cyclops (Wood and Ginns, 2006). 

Sorghum seed on which P. acaciicola was grown was used as inoculum. The seed was 

soaked overnight, dried and autoclaved before adding potato dextrose agar (PDA) blocks (± 3 

mm3) on which P. acaciicola had grown for 7 days. The fungus was incubated on the 

sorghum seed for 7 days at 35°C. Controls were inoculated with autoclaved sorghum seed.  

 

3.3.2 Field inoculations 

 

Indigenous woody plant species, including Fabaceae species, were inoculated at two 

strandveld sites in the Western Cape. The plants were inoculated in the Walker Bay- (near 

Stanford) and Still Bay area. The age of the plants ranged between approximately 6 months 

and 6 years old. Plants were inoculated by cutting through the bark and cork cambium with a 

blade, and placing one to five treated sorghum seed, depending on the size of the plant, 

directly into the cavity. The wound was sealed with parafilm. For each species at a site, two 

plants were inoculated and one used as a negative control. Acacia cyclops plants were also 

inoculated to serve as positive controls. In total, 33 different species were inoculated in the 

field, 21 species at Walker Bay (Table 1) and 23 species at Still Bay (Table 2). Species were 

selected based on relatedness to A. cyclops, abundance, availability and stem diameter. Plants 

were monitored every 2 months for 14 months (Walker Bay) and 9 months (Still Bay) 

respectively. 
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3.3.3 Nursery inoculations 

 

In an experiment with indigenous woody plant species in pots under shade netting at 

the Plant Protection Research Institute (PPRI) near Stellenbosch, five plants per species were 

stem inoculated as above, five were soil inoculated and five untreated as negative controls 

(see Table 3 for list of inoculated species). For soil inoculations, 1 gram of colonized 

sorghum was placed in each of two 5–cm deep holes in the soil near the stem of the plants. 

The stem diameters at the point of inoculation and height of all plants were recorded at the 

time of inoculation. Plants were left for 8 months after inoculation and watered 3 days per 

week. The height of every plant was measured after 8 months. Two series of A. cyclops 

controls, both young and old plants, were inoculated in the nursery. 

 

3.3.4 Isolation from inoculated plants 

 

Longitudinal cross sections were made with a thin circular saw of all inoculated plants 

at the end of the study, or subsequent to a plant’s death. The nature of the infection, if any, 

was visually analysed and photographed. Isolations were made from these longitudinal 

transects by plating out small wood blocks (± 3 mm3) from approximately 10 mm above and 

10 mm below the point of inoculation onto potato dextrose agar amended with streptomycin 

(PDA+) in Petri dishes. Pure cultures were made of fungal growth resembling that of P. 

acaciicola. Its unique characteristics allowed for the distinction of P. acaciicola from other 

fungi based on the colour, growth rate and stereo microscope photos of the isolated cultures. 

These cultures were compared to pure cultures of the P. acaciicola strain that was used as 

inoculum to confirm identification.  

 

3.3.5 Phylogenetic analysis of Fabaceae species 

 

The available ITS sequences of Fabaceae species which were inoculated, as well as 

non-Fabaceae species which seemed susceptible, were obtained from GenBank. Inoculated 

Fabaceae species from Wood (2001) were also included. A sequence alignment program, 

MAFFT version 6 (Katoh and Toh, 2008), was used to align these sequences and adjusted 

manually in Sequence Alignment Editor v. 2.0a11 (Rambaut, 2002). To perform the 

maximum parsimony analysis, Phylogenetic Analysis Using Parsimony (PAUP* v. 4.0b10) 

was used. The heuristic search option was used to conduct the analysis with 10 random taxon 
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additions. For the branch swapping algorithm, tree bisection and reconstruction (TBR) was 

used with the option of saving a maximum of 10 trees with a score equal to or greater than 5 

(Harrison and Langdale, 2006). All alignment gaps were treated as missing data. Characters 

all had the same weight and were not ordered. The calculations of bootstrap support values 

were based on 100 heuristic search replicates and 10 random taxon additions. Retention index 

(RI), tree length (TL), consistency index (CI) and rescaled consistency index (RC) values 

were calculated for parsimony. 

 

3.3.6 Optimum temperature for growth of P. acaciicola 

 

The growth experiment was carried out by using the strain of P. acaciicola used for 

preceding inoculations (PPRI 7335, DAOM 230979, CBS 115543). The optimum growth 

temperature of P. acaciicola was determined by using 9–cm–diameter non–vented plastic 

Petri dishes containing 20 ml PDA+. A sterile cork borer was used to cut 5–mm–diameter 

plugs from the margin of actively growing P. acaciicola colonies on PDA+. The plugs were 

placed in the centre of the Petri dishes and incubated at 15°C, 20°C, 25°C, 30°C, 35°C and 

40°C respectively. Ten replicate dishes were placed at each temperature and incubated under 

dark conditions. All plates were sealed with parafilm and kept in a paper bag. Increase in 

colony size was measured at two diameters at 90° to each other every 24 hours for 4 days. 

The experiment was repeated twice. The radial growth rate (mm.day-1) on each Petri dish was 

determined by calculating the growth difference between the 24 hour intervals. An 

appropriate analysis of variance (ANOVA) was used to analyse the data from the growth rate 

trial as influenced by temperature. In order to demarcate the optimal temperature regime for 

fungal growth, Fisher’s least significant difference (LSD) was calculated to identify 

significant differences between temperature effects at a confidence interval of 95%. 

Addinsoft XLSTAT Version 2013.4.05 (www.xlstat.com) was used for all statistical analysis. 
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3.4 Results 

 

3.4.1 Field pathogenicity trials 

 

3.4.1.1 Walker Bay  

 

Plants from two indigenous plant species died subsequent to their inoculation 

(Table 1). Both plants of the Fabaceae species Indigofera brachystachya (DC.) E.Mey. and 

Otholobium bracteolatum (Eckl. & Zeyh.) C.H.Stirt. died after 2 and 6 months respectively. 

All inoculated A. cyclops died within 6 months after inoculation. Pseudolagarobasidium 

acaciicola was successfully re-isolated from the roots of all the dead plants. The other 

inoculated indigenous Fabaceae species, namely Psoralea pinnata L. and Aspalathus 

calcerea R. Dahlgren, survived the inoculation. Eighteen other plant species and their 

controls survived (Table 1). 

 

3.4.1.2 Still Bay  

 

Nine months after inoculation, two of the four inoculated A. cyclops plants had 

died, while the remaining two experienced wilt symptoms. Both controls survived. The only 

indigenous plant species that died was O. bracteolatum (after 2 months), a species belonging 

to the Fabaceae family. All controls and the other 22 inoculated plant species, including the 

legume, Aspalathus sanguinea Thunb. subsp. sanguinea, survived the inoculation (Table 2). 

  

3.4.2 Nursery pathogenicity trials  

 

After 2 weeks and 1 month respectively, all the stem– and soil–inoculated young A. 

cyclops had died. All five of the mature stem inoculated A.cyclops were dead after 9 months. 

Mortality was recorded in three indigenous Fabaceae species. All stem inoculated Podalyria 

calyptrata (Rctz.) Willd. and Virgilia divaricata Adamson were dead 2 months after 

inoculation. Two stem inoculated Psoralea pinnata plants died 6 and 9 months after 

inoculation respectively. Outside of the Fabaceae family, one stem inoculated Metalasia 

muricata (L.) D. Don and one C. monilifera (L.) T. Norl. plant (both Asteraceae) died after 2 

weeks, while one stem inoculated Searsia lucida (L.) F.A. Barkley (Anacardiaceae) and one 

stem inoculated Olea exasperata Jacq. plant (Oleaceae) died after 7 months (Table 3). 
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Pseudolagarobasidium acaciicola was successfully re-isolated from the stems and roots of all 

the dead plants, except M. muricata. Leaf senescence was recorded on the stem inoculated 

Olea europaea L. subsp. africana (Mill.) P.S. Green plants after 9 months, although none 

have died. All other inoculated and control plants were alive after 9 months.  

 

3.4.3 Growth, infection and re-isolation  

 

Nursery–inoculated Sideroxylon inerme L. was the only plant species where a clear 

distinction in growth between stem–inoculated and control plants could be observed (Figure 

1). The average growth of the stem–inoculated individuals of S. inerme over 8 months was 70 

mm, compared to the 334 mm recorded in controls and 246 mm in soil inoculated plants. 

Additionally, leaf senescence was observed in all stem–inoculated Olea europaea L. subsp. 

africana (Mill.) P.S. Green in the nursery, although none of these plants died. The 

longitudinal cross sections of all the dead plants, but also living plants revealed systemic 

infections (Figure 2). Infections did however seem more restricted in the dead non-Fabaceae 

species than Fabaceae species. Both of the inoculated A. cyclops plants at Still Bay still living 

displayed serious infections. Systemic infections outside the Fabaceae family include two 

Asteraceae, two Anacardiaceae, two Oleaceae and one Thymeleacea species (Table 4). 

Pseudolagarobasidium acaciicola was successfully re-isolated from all dead plants, with the 

exception of the two Asteraceae plants in the nursery. Re-isolations of P. acaciicola were 

successful from as high as 200 mm above and 100 mm below the point of inoculation in 

some cases.    

 

3.4.4 Phylogenetic analysis  

 

Phylogenetic analysis revealed no significant phylogenetic relatedness between 

susceptible species within the Fabaceae family. Subclades from the parsimony tree correlated 

well with the respective tribes within the Fabaceae (Figure 3).  

     

3.4.5 Optimum temperature for growth  

 

The linear growth rate of P. acaciicola with regard to temperature is illustrated in 

Figure 4. The maximum mean growth rate of P. acaciicola was recorded at 35°C (18.2 

mm.day-1), while the slowest mean growth was recorded at 40°C (0.3 mm.day-1). Fisher’s 
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LSD test revealed a significant difference between the mean radial growth rate of all 

temperature treatments (p < 0.05), except when comparing 30°C to 35°C (p = 0.176) and 

15°C to 40°C (p = 0.488). The growth rate increased as the temperature increased from 15°C 

to 35°C.  

 

3.5 Discussion 

 

When considering mortality found in the field pathogenicity studies, not only A. cyclops, 

but certain Fabaceae species, seem to be susceptible. This confirms that P. acaciicola should 

not be classified as a species–specific pathogen on A. cyclops, but supports the idea that P. 

acaciicola might act as an opportunistic pathogen on indigenous Faboideae within its 

distribution range (Hallenberg et al., 2008).  Although two of the inoculated A. cyclops plants 

survived at Still Bay, wilt symptoms and advanced systemic infections suggests that these 

plants would not have survived for much longer. Since the inoculated A. cyclops at Still Bay 

are approximately the same size than those at Walker Bay and all died within a relatively 

short period of time, other abiotic or biotic factors might explain the lower mortality rate at 

Still Bay. Climatic–related stress is most probably not the cause, as the sites experience very 

similar weather patterns. The most noticeable difference between these inoculation sites is the 

soil type. Rooikrans inoculated at Walker Bay are rooted in very sandy soils (closely 

associated with strandveld), while those at Still Bay are rooted in shallow limestone soils 

(closely associated with limestone fynbos) (Mucina and Rutherford, 2006). Keeping in mind 

that plants were stem inoculated, soil type could not be the direct cause of mortality 

difference. Soil type could however affect the hardiness and subsequent resistance of a tree, 

or drought stress experienced by plants. The same phenomenon was observed in a previous 

study where A. cyclops was inoculated with P. acaciicola at strandveld and limestone fynbos 

sites respectively (Wood, pers. comm.).    

Stem diameter does not seem to play a major role in susceptibility between species, 

although it clearly influences the resistance of plants within a species to inoculation. This can 

be illustrated by the thicker stemmed (16.2 and 25.2 mm) O. bracteolatum at Walker Bay 

taking three times as long to die off when compared to the thinner stemmed (6.1 and 7.8 mm) 

O. bracteolatum plants at Still Bay. One might argue that mature plants with stems greater 

than 60 mm (like P. pinnata) could take longer than 14 months to show signs of 

susceptibility. For exactly this reason, younger individuals of the same species were 

subsequently inoculated in the nursery and cross sections of each plant would also reveal 
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whether P. acaciicola caused a systemic infection, even if the plant is still alive. Mature trees 

in the field were selected, firstly, due to a lack of younger trees at the sites, and secondly to 

give an indication of whether P. acaciicola has any short term effects on mature indigenous 

species. Interestingly, the Fabaceae species with the smallest stem diameter, Aspalathus 

calcarea R. Dahlgren, survived the inoculation at Walker Bay. At the same time A. sanguinea 

subsp. sanguinea, a vulnerable endemic severely threatened by alien acacias (Raimondo et 

al., 2009), survived the inoculation at Still Bay. This provides evidence that susceptibility to 

P. acaciicola most likely does not encompass the whole of the Fabaceae family, but rather a 

selection of species within this family, and that the classification of a plant plays a more 

important role in susceptibility than stem diameter.  

Although the soil inoculations in the nursery did not result in mortality after 9 months, 

apart from the young A. cyclops seedlings, it could lead to mortality of older plants in the 

longer term. Wounds appear essential for infection, and nursery plants do not get the same 

exposure to wound causing organisms as plants in the field. This confirms that stem 

inoculations would be a more effective method of applying P. acccicola as a mycoherbicide 

than soil inoculations and that P. acaciicola is not an aggressively spreading pathogen. 

Both P. calyptrata and V. divaricata seem to be as susceptible to inoculation of P. 

acaiicola as A. cyclops, with 100% mortality in stem inoculated plants after 1 month. Wood 

(2001) recorded 100% mortality for V. oroboides in his pathogenicity trials. Although only 

two P. pinnata plants died, systemic infections observed in the living plants suggest that the 

remainder of the species might have died in due time. These are all fast-growing pioneer 

species (Coates Palgrave, 2002). High mortality rates have been recorded for fast–growing 

pioneer species (Dalling and Denslow, 1998) and this relationship can be interpreted as a 

trade-off to promote growth while chemical defenses are sacrificed in some cases (García-

Guzman and Espinosa-García, 2011). One could argue therefore that P. acaciicola might 

target the fast-growing species within the Fabaceae family. However the counter argument 

would be that A. cyclops is a slow–growing species (Coates Palgrave, 2002) and that 

Crotalaria capensis Jacq., which is a fast–growing Fabaceae species (Johnson et al., 2002), 

survived the stem–inoculations. This species did however react differently during 

pathogenicity trials by Wood (2001), where all three of the inoculated plants died, although 

these plants were significantly younger and thinner stemmed (Wood, pers. comm.). Even 

though a large number of isolations have been made from diseased Virgilia trees throughout 

the southwestern Cape, P. acaciicola was not identified from any of these isolations 

(Machingambi, 2013). This indicates that, even though Virgilia plants might be susceptible to 
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P. acaciicola, there is no evidence proving that P. acaciicola is a threat to these species in the 

field.  

Eleven of the plant species inoculated in the nursery trials were inoculated in the field at 

Walker Bay or Still Bay, or both of these field sites (Table 4). All 11 species, with the 

exception of A. cyclops, survived inoculations in the field. Mortality was recorded in three of 

the 11 species in the nursery. Re-isolations were made from M. muricata (after 2 weeks), P. 

pinnata (after 6 months) and S. lucida (after 7 months), of which the latter two yielded P. 

acaciicola. Metalasia muricata could have died as a result of the large wound made in its thin 

stem (4.8 mm). The maturity and larger stem diameter of P. pinnata plants in the field 

probably prevented this Fabaceae species from experiencing the same fate as some of the 

nursery plants. None of the susceptible species in the nursery, that were inoculated in the 

field, proved to be susceptible in the field, with only a single S. lucida and Olea exasperata 

plant displaying infection when sections were made from the stems. This lack of 

susceptibility in the field could be ascribed to the hardiness and slower growth of plants in the 

field compared to the nursery. Therefore findings of this study, in support of Barton (2012), 

indicates that glasshouse pathogenicity trials are not always an accurate reflection of what 

will happen in the field.  

The stem diameter of the mature A. cyclops in the nursery resembled those in the field, 

although the nursery trees were significantly taller. This phenomenon of plants growing 

slower in the field than the nursery is very common due to increased stress in the field. 

Regarding mature A. cyclops, P. acaciicola has a very similar efficacy in the field compared 

to the nursery. Long-term studies involving the monitoring of mature A. cyclops inoculations 

resulted in 95–100% mortality in the field (Impson et al., 2011), although this may take much 

longer than 12 months (Wood, pers. comm). Another interesting comparison was between the 

two inoculated Indigofera species. At Walker Bay, both I. brachystachya plants died 2 

months after inoculation, while none of the stem inoculated I. jucunda showed any signs of 

stress after 6 months in the nursery. Even more surprisingly, the stem diameter of I. 

brachystachya was almost five times that of I. jucunda on average. Substantial differences in 

resistance to P. acaciicola seem to not only differ between genera, but also within genera in 

the Fabaceae family. 

The observation of systemic infections and re-isolation of P. acaciicola were generally in 

accord with the observed mortalities, although it provided valuable insight into the 

susceptibility of species like Searsia crenata (Thunb.) Moffet and Olea europaea subsp. 

africana, in which no mortality was recorded. The fact that none of the isolations from 
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asymptomatic stems yielded P. acaciicola strongly suggests that this fungus does not act as 

an endophyte as recorded for other closely related fungi (Crozier et al., 2006; Chokpaiboon et 

al., 2010). Even though stunted growth was recorded for S. inerme in the nursery, no 

systemic infections were observed. The stunted growth was possibly a result of resource 

allocation of the plants towards defense mechanisms. Wood (2001) recorded no mortality in 

Sideroxylon inerme L. subsp. inerme in a preliminary pathogenicity trial using P. acaciicola.  

Other plant species inoculated in the present study were similar to some of the plants 

inoculated by Wood (2001). Although both A. calcarea and A. sanguinea subsp. sanguinea 

survived inoculations at Walker Bay and Still Bay, respectively, three A. linearis (Burm. f.) 

Dahlg. seedlings inoculated by Wood (2001) resulted in 100% mortality. Wood (2001) 

recorded 100% mortality in Olea europaea subsp. africana, which is in accord with the signs 

of susceptibility of the two Olea species in this study. Chrysanthemoides monilifera (L.) T. 

Norl. seedlings survived inoculation by Wood (2001), although a single mortality, three 

systemic infections and a successful re-isolation of P. acaciicola was recorded for the same 

species in the present study. Inoculation results are not identical to that of Wood, but the 

same conclusion can ultimately be made with regard to P. acaciicola. Since mortality and 

systemic infections were not only experienced by Fabaceae species, but non–Fabaceae to 

some extent, the results of the nursery pathogenicity trials supports Wood’s (2001) 

preliminary classification of P. acaciicola, in part, as a weak general facultative pathogen. 

The isolation of P. acaciicola from the most distant margin of lesions from indigenous 

plants above the point of inoculation proves that the fungus moved up the stem. However this 

could simply be a result of a localized canker at the point of inoculation that sealed of any 

water or nutrients to the top adjacent vascular tissue, which then becomes prone to fungal 

infection. This colonization of dead vascular tissue also supports the hypothesis of P. 

acaciicola as a possible saprophyte on indigenous plant species (Chapter 2). 

Not a single mortality, systemic infection or subsequent re-isolation of P. acaciicola was 

recorded in the five DDIP species in which P. acaciicola was detected through sequencing 

analysis in earlier work (Chapter 2). Koch’s postulates could therefore not be completed and, 

consequently, P. acaciicola is rejected as the causal organism for the death of these 

indigenous plant species. This provides further support for P. acaciicola as general 

saprophyte, consistent with the majority of species within the genus and wider order 

(Nakasone and Lindner, 2012).  

Phylogenetic analysis reveals that susceptible species can not be circumscribed, not 

even within the Fabaceae family and species within the same genus react differently to 
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inoculation with P. acaciicola. Susceptible species are found in all Fabaceae tribes included 

in the pathogenicity trials, although each tribe also comprised species that were not 

susceptible or partially susceptible. Plants that are susceptible to P. acaciicola could have 

some other physiological or ecological similarity determining their susceptibility, as also 

found by Puchalska et al. (2006). Apart from the previously discussed theories, this 

relationship remains speculative.    

The optimal growth temperature of 35°C for P. acaciicola is relatively high when 

compared to twelve wood-rotting Basidiomycete species in a similar study done by Boddy 

(1983). Boddy examined the radial growth of these species and found that the optimum 

growth rate for all species occurred between 20 and 30°C, while none grew at 40°C. All 

species examined by Boddy formed part of the fungal class Agaricomycetes as does P. 

acaciicola, with Bjerkandera adusta (Willd.) P. Karst. and Trametes versicolor (L.) Lloyd 

forming part of the same order as P. acaciicola (Polyporales). An optimum growth rate of 

30°C was recorded for both of these species. The average rate of mycelial growth recorded at 

optimum temperature of 35°C for P. acaciicola (18.2 mm.day-1) is three times higher than the 

average growth rate at optimum temperature in Boddy’s study (6.1 mm.day-1).  The only 

Basidiomycete that Boddy studied with an average growth rate at optimum temperature of 

more than ten was B. adusta (12.1 mm.day-1). A comparatively high growth rate would imply 

that, given the optimal conditions, P. acaciicola should be able to effectively spread through 

the soil from inoculated trees to infect uninoculated trees if used as a mycoherbicide.  

Pseudolagarobasidium acaciicola’s growth performance at 35°C indicates a 

preference to hot summer days for infection. Although climate change is a controversial 

topic, increasing temperatures could have favoured the gradual spread of A. cyclops dieback 

since the 1960’s. According to Kruger and Shongwe (2004), the annual mean maximum 

temperature for Cape St. Blaize, in the center of A. cyclops’ distribution range, has increased 

by more than 1°C from 1960 to 2003. The data revealed a significant increase in hot days 

(30°C to 35°C) in the southwestern Cape during this period. Pseudolagarobasidium 

acaciicola’s high optimal growth temperature might explain why A. cyclops dieback is more 

prominent in the warmer temperate region of the weed’s invasive range. 

In conclusion, the pathogenicity study determined that susceptibility to P. acaciicola 

inoculation ranges wider than the Fabaceae species, although Fabaceae species generally 

proved more susceptible. However, the susceptible species could not be phylogenetically 

circumscribed. No mortality of indigenous non–Fabaceae species was recorded in the field, 

suggesting that plants in the field are more resistant than nursery pathogenicity trials reflect. 
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From five DDIPs in which P. acaciicola was detected (Chapter 2), none died after 

inoculation and no subsequent re-isolation of P. acaciicola was successful. Therefore Koch’s 

postulates could not be completed for any of the inoculated DDIPs in which P. acaciicola 

was detected. Since P. acaciicola was proved not to be the causal organism of the death of 

these plants, the fungus is likely to primarily, apart from being a pathogen on A. cyclops, act 

as a saprophyte on a range of plants in the strandveld and limestone fynbos. Considering 

results of the pathogenicity study, P. acaciicola might occasionally, apart from being 

saprophytic, also act as a weak opportunistic pathogen on some indigenous species. However, 

an earlier field survey (Chapter 2) found very little actual impact on indigenous plant species 

in habitats where A. cyclops dieback is prevalent.  The use of P. acaciicola as a 

mycoherbicide on A. cyclops is associated with low to medium risk to the natural vegetation 

and is recommended for use to form part of an integrated management plant for this weed. 

Monitoring focusing on the state of indigenous Fabaceae species should follow inoculations. 
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3.7  Tables and Figures 

 

Table 1. Field pathogenicity trial results on plant species after stem inoculation with 

Pseudolagarobasidium acaciicola at Walker Bay. 

 Stem diameter (mm) 

Plant species Family St1 St2 Control 

Acacia cyclops* (1) Fabaceae 34.2 28.3 24.7 

Acacia cyclops* (2) Fabaceae 14.6 16.5 24.4 

Otholobium bracteolatum Fabaceae 16.2 25.2 30.1 

Indigofera brachystachya Fabaceae 15.3 19.3 15.6 

Acacia saligna* Fabaceae 8.5 14.8 17.8 

Aspalathus calcarea Fabaceae 9 10.2 11.2 

Psoralea pinnata Fabaceae 49.3 62.2 66.6 

Chrysanthemoides monilifera  Asteraceae 51.9 62.5 63.5 

Metalasia muricata Asteraceae 48.6 56.6 24.2 

Leucodendron coniferum Proteaceae 35.4 41.7 26.6 

Protea obtusifolia Proteaceae 34.4 37.2 33.7 

Gnidia setosa Thymelaeaceae 9.9 10.3 12.6 

Passerina corymbosa Thymelaeaceae 11.1 9.5 11.6 

Searsia crenata Anacardiaceae 22.5 34 16.3 

Searsia lucida Anacardiaceae 19.6 21.2 17.9 

Olea exasperata  Oleaceae 23 25.6 17.8 

Myrsine africana  Myrsinaceae 6.9 7.7 4.5 

Osyris compressa Santalaceae 15.4 18.5 13.9 

Euclea racemosa Ebenaceae 17.4 38.8 31.3 

Sideroxylon inerme  Sapotaceae 18.4 19.4 20.4 

Euchaetis meridonialis Rutaceae 19.5 29.3 15.1 

Heliophila linearis Brassicaceae 13.1 14.2 14.4 

Senecio halimifolius Asteraceae 23.1 24.5 20 

*invasive species; St = Stem inoculated; Highlighted = dead 
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Table 2. Field pathogenicity trial results on plant species after stem inoculation with 

Pseudolagarobasidium acaciicola at Still Bay. 

 Stem diameter (mm) 

Plant species Family St1 St2 Control 

Acacia cyclops* (1) Fabaceae 12.7 13.2 14.8 

Acacia cyclops* (2) Fabaceae 10 17.9 10.5 

Otholobium bracteolatum Fabaceae 6.1 7.8 9 

Acacia saligna* Fabaceae 17.6 19.1 19.7 

Aspalathus sanguinea Fabaceae 16.5 18.4 9.7 

Chrysanthemoides monilifera Asteraceae 9 11 10 

Metalasia muricata Asteraceae 18.9 29 19.4 

Leucodendron linifolium Proteaceae 14.9 16.2 16 

Leucospermum praecox Proteaceae 27.7 31 21.3 

Gnidia setosa Thymelaeaceae 13.9 21 18 

Passerina corymbosa Thymelaeaceae 16.1 17.3 27.8 

Searsia crenata Anacardiaceae 19.2 26.2 14.9 

Searsia lucida Anacardiaceae 8.8 12.5 17 

Searsia glauca Anacardiaceae 13 13.3 7 

Euclea racemosa Ebenaceae 12.3 20.5 20.7 

Diospyros dichrophylla Ebenaceae 9.4 15.1 13.3 

Agathosma muirii Rutaceae 16.9 28 35.8 

Diosma echinulata Rutaceae 10.2 16.7 11.2 

Olea exasperata  Oleaceae 15.7 24.8 15.8 

Myrsine africana  Myrsinaceae 7.3 8.5 7.6 

Osyris compressa Santalaceae 13.5 28.2 10.4 

Sideroxylon inerme  Sapotaceae 20.6 28.4 15.1 

Polygala myrtifolia Polygalaceae 13 17.3 8.8 

Gymnosporia buxifolia Celastraceae 17.7 18.1 16.2 

Solanum quadrangulare Solanaceae 14.7 16.9 8.7 

*invasive species; St = Stem inoculated; Highlighted = dead 
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Table 3. Pathogenicity trial results of potted plant species after inoculation with Pseudolagarobasidium acaciicola in the nursery. 

 Stem diameter (mm) 

Plant species Family St1 St2 St3 St4 St5 So1 So2 So3 So4 So5 C1 C2 C3 C4 C5 

Acacia cyclops (young)* Fabaceae 4.5 4.8 4.9 5.2 4.5 4.6 4.5 4.3 4.7 3.9 4.4 4.4 4.6 5.1 4.9 

Acacia cyclops (older)* Fabaceae 10.6 11.8 12.2 13.3 13.9 13.6 14.5 11.3 15.2 12.7 11.3 13.3 12.7 14 11 

Podalyria calyptrata Fabaceae 9.6 11.6 10.8 10.8 9.2 12.4 7 12 11.4 9.6 11.4 7.8 8.6 13 9 

Virgilia divaricata Fabaceae 10 9.7 9.9 11.2 12.6 10.9 11.9 12.9 12 11.1 13.9 13.5 11.6 12.5 12.1 

Acacia saligna* Fabaceae 15.8 17.2 16.3 15.3 17.2 15.7 14.6 15.8 16.7 16.4 16.5 17.5 17.6 18.7 19 

Psoralea pinnata Fabaceae 15.4 11.1 14.5 18.1 14.9 17.9 13.2 15.9 11.5 12.3 12.9 12.3 12.1 11.9 11 

Crotalaria capensis Fabaceae 11.3 9.3 10.9 10.5 7.9 11.5 8.7 12.4 10.6 10 14.3 8.2 16 9.1 9.4 

Indigofera jucunda Fabaceae 3.5 3.8 3.1 4.1 3.8 3.2 4.2 3.6 3.5 3.8 3.1 4.2 3.6 3.4 3.4 

Metalasia muricata Asteraceae 5.9 4.6 6.3 4.8 6.1 6.2 5.9 7.4 4.8 4 5.7 5.7 4.1 4.4 6.3 

Chrysanthemoides monilifera Asteraceae 7.9 8.3 6.7 6.9 8.1 7.7 6.5 7.9 7.4 7.2 7.9 7 6.3 7.7 8.2 

Searsia crenata Anacardiacea

e 
7.5 7.8 8.9 9.4 10.3 7.3 5.9 6.1 5.2 11 9.6 8.1 9.8 7.8 10.1 

Searsia lucida Anacardiacea

e 
14.8 11.7 12.2 12.2 12.7 12.5 11.8 12.6 13.6 11.8 12 15.9 11.7 12.9 13.4 

Olea exasperata Oleaceae 10.7 12 16 9.1 10.7 10 9.8 19.7 12.4 10.8 8.5 12.1 10.7 11.1 9.5 

Olea europaea Oleaceae 8.5 12 8.8 11.6 9 11.1 9 8.5 5.9 9.6 9.9 9.5 6.9 9.4 9.8 

Myrsine africana Myrsinaceae 3.4 4.2 4.2 3.6 4.2 4.8 3.7 4.7 3.6 3.5 3.2 4.3 4.6 4.7 4 

Polygala myrtifolia Polygalaceae 10.2 7.3 12.5 9.1 9.5 10.1 10.2 7.9 10.2 10.1 11.7 7.2 9.2 9.6 7.2 

Leucodendron salignum Proteaceae 8.1 6.3 10.1 3.4 3.9 8.8 10.2 6.6 5.5 7.6 5.9 3.6 4.3 6.1 4.3 

Agathosma apiculata Rutaceae 4.3 5.2 4.3 4.6 4.6 4.2 5.2 4.1 4.4 6.4 4.4 6.1 4.2 4.2 4 

Sideroxylon inerme Sapotaceae 13.9 15.6 12.2 10.2 12 14.7 11.4 11.8 13.2 12.1 12.1 19.2 15.7 13.8 14.1 

Passerina rigida Thymelaeace

ae 
6.2 6 5.2 7.3 6.7 8 6.4 8.1 7.9 7.1 5.1 8.6 6.4 6.8 6.6 

*invasive species; St =stem inoculated; So = Soil inoculated; C = Control; Highlighted = dead 
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Table 4. The mortality and re-isolation success of plant species after stem inoculations with 

Pseudolagarobasidium acaciicola at Walker Bay, Still Bay and in the nursery.  

Plant species Family Nursery (5) W-Bay (2) S-Bay (2) 

Acacia cyclops Fabaceae ●●●●● 

 

 

 

 

 

 

●●●●(4) ●●○○ (4) 

Acacia saligna Fabaceae 
 

- ○○ 

Podalyria calyptrata Fabaceae ●●●●● 

   
Virgilia divaricata Fabaceae ●●●●● 

 
  

Otholobium bracteolatum Fabaceae 
 

●● ●● 

Indigofera brachystachya Fabaceae 
 

●● 
 

Psoralea pinnata Fabaceae ●●○** - 
 

Aspalathus calcarea Fabaceae 
 

- 
 

Aspalathus sanguinea Fabaceae 
  

- 

Indigodera jucunda Fabaceae - 
  

Crotalaria capensis  Fabaceae - 
  

Metalasia muricata Asteraceae †* - - 

Chrysanthemoides monilifera  Asteraceae †○** - - 

Searsia crenata Anacardiaceae * - - 

Searsia lucida Anacardiaceae ●* - ○ 

Searsia glauca Anacardiaceae 
  

- 

Myrsine africana  Myrsinaceae - - - 

Olea exasperata  Oleaceae ●○* ○ - 

Olea europaea Oleaceae ○○* 
  

Sideroxylon inerme  Sapotaceae - - - 

Leucodendron salignum  Proteaceae - 
  

Leucodendron coniferum Proteaceae 
 

- 
 

Protea obtusifolia Proteaceae 
 

- 
 

Leucodendron linifolium Proteaceae 
  

- 

Leucospermum praecox Proteaceae 
  

- 

Passerina rigida  Thymelaeaceae ** 
  

Passerina corymbosa Thymelaeaceae 
 

- - 

Gnidia setosa Thymelaeaceae 
 

- - 

Agathosma apiculata Rutaceae -   

Agathosma muirii Rutaceae 
  

- 

Diosma echinulata Rutaceae 
  

- 

Euchaetis meridonialis Rutaceae 
 

- 
 

Euclea racemosa Ebenaceae 
 

- - 

Diospyros dichrophylla Ebenaceae 
  

- 

Osyris compressa Santalaceae 
 

- - 

Solanum quadrangulare Solanaceae 
  

- 

Polygala myrtifolia Polygalaceae - 
 

- 

Heliophila linearis Brassicaceae 
 

- 
 

Gymnosporia buxifolia Celastraceae 
  

- 

Senecio halimifolius Asteraceae 
 

- 
 

● dead plant, systemic infection, P. acaciicola re-isolated; ○ living plant, systemic infection, P. acaciicola re-isolated 

* systemic infection only; † dead plant, systemic infection;  - plants unaffected; (#) number of inoculated plants. 

Stellenbosch University  http://scholar.sun.ac.za



76 

 

 

Figure 1. Stunted growth is noticeable after 9 months in Sideroxylon inerme plants in the 

nursery that were wound inoculated at the stem (St) with Pseudolagarobasidium acaciicola, 

compared to control plants (C). 

St St St St St C C C C C 
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Figure 2. Longitudinal sections of plant species inoculated with Pseudolagarobasidium 

acaciicola at the Still Bay (SB) field site, Walker Bay (WB) field site or the nursery (N) 

displaying systemic infections. Arrows indicate point of inoculation. 
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Figure 3. Phylogeny of Fabaceae species based on the ITS1, 5.8S and ITS2 regions of 

ribosomal RNA. Numbers within the tree represent the bootstrap values. Species that are 

partially susceptible to Pseudolagarobasidium acaciicola are indicated with an asterisk and 

totally susceptible species are in bold. TL = 4891 ; CI = 0.437 ; RI = 0.313 ; RC = 0.137 ; HI 

= 0.563. 
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Figure 4: The mean radial growth rate with standard error of Pseudolagarobasidium 

acaciicola measured every 24 hours over 5 days at different temperatures. Means that are 

significantly different according to Fischer’s LSD test are indicated by different letters. 
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Chapter 4 

Concluding discussion 

 

A risk assessment prior to commercialization of a mycoherbicide is essential to foresee 

possible negative biological interactions. The risk that Pseudolagarobasidium acaciicola 

poses to the indigenous plant species within the threatened limestone fynbos and strandveld 

vegetation types is investigated in the current study. These results not only provide an 

indication of the possible effects of using P. acaciicola to control Acacia cyclops in the field, 

but also explores the biology and host specificity of this pathogen. 

The field analysis of mortality among indigenous woody plants, where A. cyclops dieback 

is prevalent, revealed a very low rate of 0.9% of individual plants in comparison with a 

substantially higher observed mortality rate of A. cyclops at the same sites. There was no 

phylogenetic relatedness between the dead and dying indigenous plants (DDIPs) and A. 

cyclops. Molecularly, P. acaciicola was detected in less than half of the DDIPs and only 

0.4% of 2432 indigenous plants that were diseased or dead can be associated with P. 

acaciicola. The presence of P. acaciicola within these DDIPs does not imply that P. 

acaciicola is responsible for the state of these plants. Nine of the 11 species represented by 

the DDIPs formed part of the pathogenicity study to confirm Koch’s postulates, although 

none of these plants showed signs of susceptibility after being inoculated with P. acaciicola. 

It is likely that P. acaciicola naturally evolved with the indigenous species as a non-lethal 

endophyte or saprophyte, becoming an opportunistic pathogen on A. cyclops after its 

establishment as a widespread invasive weed along the southern coast of South Africa. The 

widespread incidence of the A. cyclops dieback could be explained by this association of P. 

acaciicola with indigenous plant species, since these plants act as a source of inoculum. This 

is the first study to use a field survey in combination with molecular detection to analyse the 

risk of a potential mycoherbicide. 

Pathogenicity trials revealed similar results when comparing field to nursery inoculations, 

while soil inoculations proved to be ineffective compared to stem inoculations within the 

given period of time. Four of the nine Fabaceae species proved totally susceptible and one 

partially susceptible. Two other individual plants from outside the Fabaceae family died 

subsequent to inoculation during the trial period. The pathogenicity results correlate to some 

extent with the results of Wood (2001), although a broader range of plant species outside of 

the Fabaceae family were susceptible. The susceptibility of these species were attributed to 
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the thin stems in combination with the development of a localized canker at the point of 

inoculation that seals off water and nutrient transport to the rest of the plant. In contrast to 

localized cankers, systemic infections were observed in A. cyclops stems that spread deep 

into the roots (Wood, 2001).       

Another hurdle to be cleared before recommending P. acaciicola as a mycoherbicide is 

the commercial value of A. cyclops and the consequent dependents of this trade. Programmes 

developed for the management of alien invasive plants should prioritise target areas while 

considering the benefits of these plants to local residents (de la Fontaine, 2013). Field 

observations suggest spread under natural conditions is slow, implying that the 

mycoherbicide can safely be applied in conservation areas and farms where A. cyclops is 

unwanted, without having a significant effect on populations of A. cyclops in areas where 

they are of commercial importance. Even if, by chance, any significant die-off of indigenous 

plant species is observed following the application of P. acaciicola as a mycoherbicide, 

inoculations could simply be ceased.  This would subsequently lead to P. acaciicola 

populations returning to natural background levels, an occurrence that has been confirmed in 

both fungi (Scheepmaker and Butt, 2010) and bacteria (Jackson, 2003).  

There may also be a very limited market for this mycoherbicide, as experienced 

internationally with other registered mycoherbicides (Morris et al., 1999). This would imply 

that the widespread application of P. acaciicola is highly unlikely and would most probably 

be used in localized small scale operations. The mycoherbicide will especially be useful in 

sensitive environments where mechanical and chemical control methods would cause a great 

amount of damage. Examples of these environments are dune-, wetland- and estuary systems 

that are unable to withstand soil exposure caused by felling or are in close proximity to water 

bodies that are prone to chemical contamination. The use of P. acaciicola would allow the 

gradual die-off of individual A. cyclops trees within dense stands without causing major soil 

exposure or chemical side effects in the ecosystem. 

Biological control agents feeding on reproductive parts alone would require a very long 

time before reducing A. cyclops population densities (Rouget and Richardson, 2003). Even if 

these current biological control agents eventually manage to stabilize A. cyclops populations, 

the loss of biodiversity caused in the interim may be irreversible. In a situation where the cost 

of the damage exceeds that of the benefits of a species, a biological control agent that targets 

vegetative parts of a weed, like P. acaciicola, should seriously be considered (van Wilgen et 

al., 2011).  
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With long-term control strategies rarely implemented in non-agricultural ecosystems 

(Evans, 2000), future management strategies should focus on the development and 

implementation of cheaper, more user-friendly and environmentally compatible products for 

use in these ecosystems, which ultimately plays a major role in the functioning of agricultural 

lands (Power, 2010). 

The risk that P. acaciicola poses to indigenous plant species can not be assessed in 

isolation to determine whether this fungus should be recommended as a mycoherbicide. 

Recommendations should rather be based on the comparative risk; a measure that also 

incorporates the risk that A. cyclops poses to the limestone fynbos and strandveld ecosystems 

if the weed is not effectively controlled. With the overwhelming evidence of the 

environmental degradation caused by A. cyclops (Richardson et al., 1989; Higgins et al., 

1999; van Wilgen et al., 2001; Wilson et al., 2011) and the results of the risk assessment 

performed in this study, P. acaciicola can be recommended as a mycoherbicide to control A. 

cyclops in the limestone fynbos and strandveld of South Africa. Field monitoring should 

accompany application to ensure indigenous plant populations are not negatively affected.    

Pseudolagarobasidium acaciicola should however not be regarded as the sole solution to 

the A. cyclops problem in South Africa, but rather form part of a strategy where mechanical, 

chemical and biological control complement each other in a combined effort to reduce the 

impact of this invader.  
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