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Summary 

 

The aim of this study was to develop a ZnO nanowire-array biosensor that would detect 

immunoglobulins and record changes in the concentration of an antibody. Early detection of 

disease-causing agents is essential for an early response. In contrast to conventional methods, 

biosensors may detect disease-associated agents much faster and more accurate, which holds 

specific benefits to rural communities. The development of such a biosensor would be 

favourable for diagnostics in underprivileged communities without infrastructure. The 

hypothesis was that binding of antibodies to the surface of ZnO nanowires would result in the 

generation of a piezoelectric potential that, when channelled through a Schottky barrier, 

would produce a constant voltage reading. Piezoelectricty would be generated due to the 

bending of the nanowires, or tensile stress applied to the nanowires due to binding of the 

antibodies. The performance of such a device largely depends on the methods used to 

construct the ZnO nanowires and methods used to funtionalize the sensor surface. The 

biggest challenge was thus to chemically modify the self-assembled monolayers (SAMs) and 

create intermediate monolayers that would react to primary amino groups of lysozyme and 

form a covalent amide bond. Lysozyme was selected as model antigen, since its structure and 

reaction with antibodies has been well studied. 

Alkanethiol and dialkyl disulphides were used to form SAMs. Different SAMs were 

compared to select the absorbate that would bind the highest concentration of lysozyme. 

Lysozyme was best immobilized onto Au film layers in the presence of SAM 3-

mercaptopropionic acid. Weakest immobilization was in the presence of combined SAM 11-

mercaptoundecanoic acid/1-nonanethiol. The sensitivity of the constructed ZnO nanowire 

biosensor was tested in vitro, in the presence of different concentrations of lysozyme 

antibodies. 

An increase in the dimension of the ZnO seed layer led to an increase in the mean 

diameter of the ZnO seed grains, and subsequently an increase in the mean diameter of the 

synthesized ZnO nanowires. Deposition of the ZnO seed layer, using the RF cylindrical 

magnetron sputtering technique, improved the c-axis alignment of the nanowires and 

produced nanowires with similar dimensions. However, deposition of the ZnO seed layer 

using the sol-gel spin coating technique, produced nanowires with irregular c-axis alignments 
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and irregular diameters. An increase in the Au film thickness led to a decrease in the mean 

diameter of the synthesized ZnO nanowires and worsening of the c-axis alignment. In 

contrast to single crystalline Au (111) film layers, polycrystalline Au layers increased the 

mean diameter of the synthesized nanowires. The crystal orientation of the Au film layer had 

no effect on the c-axis alignment. 

Increased voltage readings were recorded with an increase in antibody binding, 

indicating that the ZnO nanosensor may be used to record changes in immunoglobulin levels. 

Antibody concentrations ranging from 10 ng/ml to 20 μg/ml were sensed. 

This is the first study showing that ZnO nanowires, conformed into piezoelectric 

transducers, may be used in the detection of antibodies. The current size of the chip with ZnO 

nanowires is approximately 1 cm
2
, which is too big to incorporate into a compact monitoring 

device. Apart from the challenge to produce smaller nanowire-arrays, highly sensitive sensors 

and miniature amplifiers will have to be developed to increase the strength of the signals 

generated by the nanowires. The biosensor will also have to be optimised to detect a variety 

of immunoglobulins. 
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Opsomming 

 

Die doel van hierdie studie was om ‘n ZnO nanodraad biosensor te ontwikkel wat 

immunoglobuliene kan opspoor en veranderinge in konsentrasies van die teenliggaampies sal 

reflekteer. Vroë deteksie van siekte veroorsaakende agente is belangrik vir n vroeg tydige 

respons. In teenstelling tot konvensionele metodes, kan biosensors siekte veroorsaakende 

agente vining en akkuraat opspoor, wat veral voordele vir gemeenskappe in landelike gebiede 

inhou. Die hipotese was dat binding van teenliggaampies aan die ZnO nanodrade ‘n piëzo-

elektriese potensiaal sal skep, wat dan ‘n konstante leesbare spanningspotensiaal sal lewer 

nadat dit deur ‘n Schottky versperring gestuur is. Piëzo-elektrisiteit word gegenereer deur die 

buiging van die nanodrade, of deur spanning wat op die nanodrade geplaas word deur binding 

van die teenliggaampies. Die sukses van die ontwerp hang grootliks af van die metode wat 

gebruik word om die ZnO nanodrade te konstrueer en metodes wat gebruik word om die 

sensor oppervlak te funksionaliseer. Die grootste uitdaging was dus om die monolae wat 

outomaties saam groepeer (SAMs) chemies so te verander dat intermediêre monolae vorm 

wat aan primêre aminogroepe van lisosiem bind ten einde kovalente amied-bindings te vorm. 

Lisosiem is as model antigeen geselekteer omdat die struktuur en reaksie daarvan met 

teenliggaampies reeds goed bestudeer is. 

Alkaantiol en di-alkiel disulfied is gebruik om SAMs te vorm. ‘n Verskeidenheid 

SAMs is vergelyk ten einde die anker te selekteer waaraan die hoogste konsentrasie lisosiem 

sal bind. Lisosiem is die effektiefste aan Au film lae ge-immobiliseer in die teenwoordigheid 

van SAM 3-merkapto-propanoësuur. Die swakste immobilisasie is in die teenwoordigheid 

van kombineerde SAM 11-merkapto-dekanoësuur/1-nanotiol waargeneem. Die sensitiwiteit 

van die ZnO nanodrade is in vitro getoets, in die teenwoordigheid van verskillende 

konsentrasies van lisosiem teenliggaampies. 

‘n Toename in die dimensie van die ZnO grondlaag het die gemiddelde deursnit van die 

ZnO grein verhoog en so ook die gemiddelde deursnit van die gesintetiseerde ZnO 

nanodrade. Toediening van die ZnO grondlaag deur gebruik te maak van die RF silindriese 

mikrogolf-verstuiwings tegniek het die orientasie van die c-aslyn van die nanodrade verbeter. 

Toediening met die sol-gel draai-bedekkings tegniek het ‘n onreëlmatige orientasie van die c-

aslyn teweeg gebring, asook ‘n variasie in die afmetings van die nanodrade. ‘n Toename in 
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die Au laag het ‘n afname in die gemiddelde afmetings van die nanodrade en ook ‘n 

onreelmatige oriëntasie van die c-aslyn veroorsaak. In teenstelling met enkel-kristallyne Au 

(111) het poli-kristallyne Au lagies ‘n toename in die gemiddelde deursnit van die nanodrade 

veroorsaak. Die kristal-oriëntasie van die Au laag het geen effek op die belyning van die 

nanodrade gehad nie. 

Die spanningspotensiaal het verhoog met ‘n toename in teenliggaampie binding. 

Hiervolgens kan die ZnO nanosensor gebruik word om veranderinge in immunoglobulien 

vlakke te monitor. Teenliggaampie konsentrasies wat wissel van 10 ng/ml tot 20 μg/ml is 

opgespoor. 

Hierdie is die eerste studie wat toon dat ZnO nanodrade, omskep tot piëzo-elektriese 

transduseerders, gebruik kan word in die opsporing van teenliggaampies. Die grootte van die 

skyfie met die ZnO nanodrade is tans ongeveer 1 cm
2
 en is te groot om in ‘n kompakte 

biosensor in te bou. Benewens die uitdaging om kleiner nanodraad skyfies te ontwikkel, sal 

hoogs sensitiewe sensors en seinversterkers ontwikkel moet word om die sein afkomstig van 

die nanodrade te versterk. Die biosensor sal ook ge-optimiseer moet word om ‘n 

verskeidenheid immunoglobuliene op te spoor. 
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Introduction 

 

Bacterial and viral infections are responsible for millions of deaths and non-fatal infections 

world-wide. Rapid detection and accurate identification of microbial cells, antigens, 

metabolic compounds, nucleic acids, proteins and antibodies are important in making the 

correct diagnosis. This is, however, difficult to achieve in third-world countries with little or 

no infrastructure. Many scientists are of the opinion that nano biosensors may provide a rapid 

and cost-effective alternative to current diagnostic techniques. Developing a portable and 

self-powered biosensor would improve the health of millions of people in underprivileged 

communities, especially in rural areas with a lack of infrastructure and electricity. 

Most biosensors have a biologically active molecule in direct contact with a transducer 

element, sensitive enough to detect changes in concentration, or activity, of other 

biomolecules they interact with (Strehlitz et al., 2008). The utilization of zinc oxide 

nanostructures as transducers for biosensors are one of the most promising materials for their 

development (Ahmad and Zhu, 2011). Zinc oxide nanostructures have several advantages 

over other nanostrucutures (i.e. graphite, carbon, gold), which includes the presence of polar 

surfaces and the lack of centre symmetry (Wang, 2008). The interaction of polar surfaces 

makes the growth of diverse ZnO nanostructures possible (Wang et al., 2004), whereas the 

lack of centre symmetry provides ZnO with piezoelectric properties (Wang, 2007 and 2008). 

Numerous factors need to be taken into account when synthesizing ZnO nanowires. 

Performance of the biosensors is improved by growing highly-oriented ZnO nanowires with 

identical dimensions (Song and Lim, 2007). It is thus important to control the growth, 

orientation, position and size of the ZnO nanowires to increase the sensitivity and 

reproducibility of the biosensor (Liu et al., 2008). The most challenging step in the 

construction of a biosensor is the immobilization of biomolecules close to the surface of the 

nanowires without losing biological activity (Fransconi et al., 2010; Gooding and Hibbert, 

1999; Rusmini et al., 2007; Wong et al., 2009). Immobilized denatured proteins, for instance, 

lowers the sensitivity of a biosensor. 

In this study, a nanoforce ZnO nanowire-array biosensor was developed to detect 

immunoglobulins. ZnO nanowire-arrays were synthesized by using the hydrothermal growth 

method. The RF cylindrical magnetron sputtering and sol-gel spin coating methods were 
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compared to determine which deposition technique resulted in nanowires with the best c-axis 

orientation and similar dimensions. The effect of an Au film layer, thickness and crystal 

orientation, on the growth of ZnO nanowires were also determined. Deposited ZnO seed 

layers were characterized by atomic force microscopy (AFM) and ellipsometry. Synthesized 

ZnO nanowires were characterized by scanning electron microscopy (SEM), energy 

dispersive spectroscopy (EDS), transmission electron microscopy (TEM) and X-ray 

diffraction (XRD). 

Immobilization of lysozyme onto Au films was accomplished by using self-assembled 

monolayers (SAMs). The SAMs were chemically modified to create intermediate monolayers 

that would react to primary amino groups of proteins. Different SAMs were tested to identify 

the absorbate that would support the highest concentration of immobilized lysozyme. 

Alkanethiol and dialkyl disulphides were used to form SAMs. The SAMs and their chemical 

modifications were studied by AFM and fourier-transform infrared (FTIR) spectroscopy. 

Immobilized lysozyme was studied by AFM, FTIR spectroscopy, fluorescence microscopy 

and BacLight
TM

, a staining technique that differentiates between viable and dead cells. 

Construction of the nanoforce sensor was studied by AFM, SEM, TEM, and XRD. 

Immobilization of lysozyme to the sensor surface was characterized by AFM, FTIR 

spectroscopy, and fluorescence microscopy. In vitro tests were conducted to determine 

whether different concentrations of antibody binding would produce different voltage 

readings. In theory, increased binding of antibodies to the surface of the biosensor would 

disturb the ZnO molecules in the nanowires. These disturbances displace Zn
2+

 and O
2-

 in the 

ZnO crystal, resulting in the generation of piezoelectricity. This piezoelectric potential when 

channelled through a Schottky barrier produces a voltage. 
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Literature review 

 

1. Introduction 

Research on nanostructures gained considerable interest over the past decade, mostly due to 

the demand for smaller components in electrical, mechanical and optical devices (Baruah and 

Dutta, 2009). Nanostructures are incorporated in a number of electronic, optical and photonic 

equipment (Ahmad and Zhu, 2011; Arya et al., 2012; Wei et al., 2011). Biosensors are 

nanosensors used in mechanical, electrical and optical devices in which a biologically active 

molecule is directly attached to the sensor that is in contact with a highly sensitive transducer 

element (Strehlitz et al., 2008). The nanosensor has to be sensitive enough to detect changes 

in the activity or concentration of molecules. Most of the research on biosensors focussed on 

increasing the sensitivity through the incorporation of unique nano-material (Ansari et al., 

2008; Hrapovic et al., 2004; Lin et al., 2004; Rout et al., 2006; Wang et al., 2008; Zhang et 

al., 2008). 

Several methods have been designed to synthesise ZnO nanostructures. These include 

vapour-liquid-solid (VLS) growth, with the use of a catalyst (Huang et al., 2001b); pulsed 

laser deposition (Choi et al., 2001); electrochemical deposition in porous membranes (Liu et 

al., 2003); metal vapour transport, using Zn sources (Lyu et al., 2002); physical vapour 

transport, using ZnO and graphite powder (Yao et al., 2002); chemical vapour deposition, 

using zinc acetylacetonate hydrate (Wu and Liu, 2002); metal organic chemical vapour 

deposition, using diethylzinc and O2/N2O as precursor (Kim et al., 2003); and hydrothermal 

growth (Vayssiers et al., 2001). Of all these methods, hydrothermal growth is used the most 

on industrial scale (Yousefi and Zak, 2011). Special care should be taken to grow highly 

oriented ZnO nanowires. This increases the surface per unit area of the biosensor and 

improves the overall performance (Song and Lim, 2007). 

The most challenging part in developing a biosensor is controlling the growth of the 

nanostructures and immobilizing the biomolecules to the sensor surface without losing 

biological activity (Fransconi et al., 2010; Gooding and Hibbert, 1999; Rusmini et al., 2007; 

Wong et al., 2009). Proteins are easily denatured or inactivated during immobilization, 

mostly due to changes in their tertiary structure (Jonkheijm et al., 2008; Rusmini et al., 2007; 

Sarma et al., 2009; Wong et al., 2009). Moreover, proteins adhere to surfaces through non-
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specific interactions, i.e. electrostatic interactions, hydrogen bonding and hydrophobic 

interactions (Mrksich, 2005). Immobilization of biomolecules to sensor surfaces need to be 

consistent, as variations would have a major effect on the overall performance of the 

biosensor. 

Electrochemical devices using ZnO which have been developed include field-effect 

transistors (FET) (Hagen et al., 2011; Kim et al., 2006), gas sensors (Lupan et al., 2007), pH 

sensors (Al-Hilli et al., 2007) and humidity sensors (Fang et al., 2009; Park et al., 2010; 

Zhang et al., 2005). Electromechanical devices that have been developed include acoustic 

wave based sensors (Talbi et al., 2006), nanogenerators (Chang et al., 2010; Wang and Song, 

2006; Wang et al., 2007b; Xu et al., 2010), piezoelectric-FETs (Rocha-Gaso et al., 2009) and 

piezodiodes. Optoelectronic devices include UV detectors (Bai et al., 2011), UV lasers, solar 

cells (Law et al., 2005) and field emission devices (Hwang et al., 2011; Zhao et al., 2011). 

This paper reviews the properties of ZnO and the different nanostructures that have 

been synthesized. Synthesis of ZnO nanowires by the two most popular methods, i.e. vapour 

phase synthesis and the hydrothermal solution method, are discussed. The immobilization of 

proteins is discussed, with special emphasis on methods used in non-specific immobilization. 

Self-assembled monolayers (SAMs) and their role in covalent binding of biomolecules are 

discussed in detail. ZnO nanowire devices developed are also reviewed. 

 

2. ZnO nanostructures 

Nanostructures are classified as 0-dimensional, 1-dimensional and 2-dimensional structures. 

Zero-dimensional structures include quantum dots and nanoparticles. Two-dimensional 

nanostructures are thin films, while 1-dimesional nanostructures refer to nanowires, nanobelts 

and nanotubes (Zhang et al., 2012). The interaction of polar surfaces makes the growth of 

diverse ZnO nanostructures possible (Wang et al., 2004). ZnO exhibits a variety of novel 

structures. These structures can be grown by tuning the growth rates along three fast growing 

directions: [2-1-10] (± [-12-10], ± [2-1-10], ± [-1-120]); [01-10] (± [01-10], ± [10-10], ± [1-

100]) and ± [0001]. The relative growth rate of the various facets determines the surface 

morphology of the synthesized nanostructures (Baruah and Dutta, 2009). 

Nanostructures such as nanobelts (Gao et al., 2005; Pan et al., 2001), nanosprings 

(Kong and Wang, 2003), nanorings (Kong and Wang, 2003), nanohelixes (Gao et al., 2005), 

nanobows (Hughes and Wang, 2004), nanowires (Huang et al., 2001b), nanotubes (Sun et al., 
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2005), nanocages (Snure and Ashutosh, 2007), nanoshells (Leung et al., 2005), nanospheres 

(Zhang et al., 2009b), nanofibers (Fang et al., 2006), nano-tetrapods (Newton and Warburton, 

2007), nanonails and nanobridges (Lao et al., 2003) have been synthesized. Of all the 1-

dimensional ZnO nanostructures, ZnO nanowires have been studied extensively. Examples of 

ZnO nanostructures are shown in Fig. 1. 

 

Fig. 1. Examples of ZnO nanostructures that have been synthesized (Wang, 2004a and b). 

 

3 Properties of ZnO 

The ZnO crystal has a hexagonal wurtzite structure and exhibits partial polar characteristics 

(Wang, 2004a), with lattice parameters a = 0.3296 nm and c = 0.52065 nm. The best 

description for a structure composed of ZnO is a number of alternately planes composed of 

tetrahedrally coordinated O
2-

 and Zn
2+

, stacked alternatively along the c-axis (Fig. 2). The 

tetrahedral coordination in ZnO gives rise to the piezoelectric and pyroelectric properties, 

which is due to the absence of inversion symmetry (Wang, 2004a; Zhang et al., 2012). 

Another important characteristic of ZnO is the presence of polar surfaces. The most common 

polar surface is the basal plane (0001). One end of the basal plane terminates in partially 

positive Zn lattice sites and the other end in partially negative oxygen lattice sites. The 
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oppositely charged ions produce positively charged Zn-(0001) and negatively charged O-

(000-1) surfaces, resulting in a normal dipole moment and spontaneous polarization along the 

c-axis, as well as variations in surface energy (Wang, 2004a). 

 

Fig. 2. Schematic representation of the wurtzite structure of ZnO, showing the tetrahedral 

coordination (Wang, 2004a). 

To maintain a stable structure, the polar surfaces have facets or exhibit massive surface 

reconstructions. However, ZnO ± (0001) surfaces are exceptions in that they are atomically 

flat, stable and exhibit no reconstruction (Chen et al., 2000b; Emanetoglu et al., 1999). 

Understanding the superior stability of the ZnO ± (0001) polar surfaces are at the forefront of 

research (Lee et al., 2002a; Liang et al., 2001; Saito et al., 2002).  

The other two most commonly observed facets for ZnO are (2-1-10) and (01-10), which 

are non-polar with lower surface energy than (0001) facets. Some typical growth 

morphologies of 1-dimensional ZnO nanostructures are shown in Fig. 3. These structures 

tend to maximize the areas of the (2-1-10) and (01-10) facets because of lower energy. The 

morphology shown in Figure 3 (b) is dominated by polar surfaces, which can be grown by 

introducing planar defects parallel to these surfaces. Occasional planar defects and twins can 

be observed parallel to the (0001) plane, but dislocations are hardly seen (Wang, 2007). 
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Fig. 3. Growth morphologies of one-dimensional ZnO nanostructures (a) nanowire, (b) 

nanobelts type I, (c) nanobelts type II, and (d) polar-nanobelts with corresponding facets 

(Wang, 2004a and b). 

ZnO crystal possesses two important characteristics, i.e. the presence of polar surfaces 

and the lack of centre symmetry (Wang, 2008). The interaction of polar surfaces makes the 

growth of unique ZnO nanostructures possible. The lack in centre symmetry gives ZnO its 

piezoelectric and pyroelectric properties (Wang, 2008). Piezoelectricity is generated when 

pressure applied to the nanostructure causing displacement of Zn cations and O anions in the 

crystal. Numerous materials exhibit piezoelectric properties, e.g. quartz, wurtzite structured 

crystals, Rochelle salt, lead zirconate titanate ceramics, barium titanate and polyvinylidene 

fluoride (Wang, 2007). Another characteristic of ZnO is that it is a semiconductor with high 

bandgap energy of 3.37 eV (Zhao et al., 2007; Zhou et al., 2008). ZnO structures are 

biocompatible (Li et al., 2008), chemically stable, non-toxic, biomimetic and possess high 

electron communication features (Rodriquez et al., 2000; Sberveglieri et al., 1995; Tian et al., 

2002), all of which renders these structures excellent transducers for biosensors. 

 

4. Synthesis of ZnO nanowires 

Because wurtzite structure has no centre of inversion, an inherent asymmetry along the c-axis 

is present which allows the preferential growth of the crystals along the [0001] direction 

(perpendicular to the surface) to form ZnO nanowires. The [0001] direction of ZnO crystals 

has the fastest growth velocity, and the growth rate under thermodynamic equilibrium for the 

hydrothermal approach is V[0001] > V[0110] > V[1000] (Baruah and Dutta, 2009). 
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Synthesis of ZnO nanostructures is broadly classified as either a solution phase or 

vapour phase approach. In the case of solution phase synthesis, the growth of ZnO nanowires 

is conducted in liquid. If aqueous solutions are used, the process is referred to as 

hydrothermal growth. Numerous solution phase methods have been developed to synthesize 

ZnO nanostructures. These include zinc acetate hydrate derived nano-colloidel sol-gel route 

(Spanhel, 2006), zinc acetate hydrate in alcoholic solutions with sodium hydroxide (NaOH) 

or tetra-methyl-ammonium-hydroxide (Kohls et al., 2002; Ma et al., 2005; Xu et al., 2003), 

template assisted growth (Shingubara, 2003), spray pyrolysis for growth of thin films 

(Ayouchi et al., 2003; Krunks and Mellikov, 1995) and electrophoresis (Wang et al., 2006b). 

Vapour phase synthesis uses a gaseous environment in closed chambers to control the 

synthesis of ZnO nanowires. Synthesis is carried out at high temperatures ranging from 500 ° 

to 1500 °C (Dalal et al., 2006). Numerous gas phase methods for the synthesis of ZnO 

nanostructures have been developed. These include vapour phase transport, i.e. either vapour 

phase solid or vapour liquid solid growth (Miao et al., 2007; Pan et al., 2001; Wang and Li, 

2002); physical vapour deposition (Dalal et al., 2006; Protasova et al., 2011); chemical 

vapour deposition (Satoh et al., 2005); metal organic chemical vapour deposition (Ashraf et 

al., 2011; Yasuda and Segawa, 2004); thermal oxidation of pure Zn and condensation (Li and 

Gao, 2007); microwave assisted thermal decomposition (Lagashetty et al., 2007); molecular 

beam epitaxy (Wang, 2009); pulsed laser deposition (Tien et al., 2008) and metal organic 

vapour phase epitaxy (Kitamura et al., 2008). 

The most common techniques for the synthesis of ZnO nanowires, hydrothermal 

growth and the vapour-liquid-solid (VLS) phase synthesis, is further discussed in detail, with 

special emphasis on thermodynamic kinetics. 

 

4.1 Vapour-liquid-solid (VLS) phase synthesis 

Vapour-liquid-solid phase synthesis of ZnO nanowires involves the evaporation and 

condensation of zinc vapour onto a substrate in the presence of oxygen (Fig. 4). Zinc vapour 

is produced by evaporation, chemical reduction, and gaseous reactions, after which the 

evaporated Zn is transferred and condensed onto a substrate to form ZnO nanowires. The 

vapour phase approach is differentiated as a catalyst-free vapour-solid (VS) process and 

catalyst-assisted VLS process. During the VS approach, nanowires are synthesized by direct 
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condensation of Zn vapour. This approach provides less control over the dimension and 

orientation of the synthesized ZnO nanowires. Controlled growth of ZnO nanowires is 

achieved by the VLS approach (Li et al., 2003b; Sberveglieri, 1995; Yang et al., 2002), using 

catalysts such as Au, Cu, Co or Sn (Chang et al., 2004; Gao et al., 2003; Lee et al., 2002a). 

Formation of eutectic alloy droplets occur at each catalytic site, followed by the nucleation 

and growth of ZnO nanowires as each droplet super saturates. Incremental growth of ZnO 

crystals takes place at the droplet interface, which constantly pushes the catalyst upwards 

resulting in synthesized nanowires with a catalytic tip at the end of the structure. 

 

Fig.4. A schematic diagram of the growth of ZnO nanostructures by using the solid-vapour 

phase process (Wang, 2004a). 

Kinetics of the carbothermal reduction and reoxidation of Zn vapour, which leads to the 

formation of ZnO nanowires, is complex and involves controlling several interdependent 

variables. The growth of ZnO nanowires are affected by the chamber pressure, oxygen partial 

pressure, chamber temperature, and thickness of the catalytic layer (Song et al., 2005; Wang 

et al., 2006b). 

Control of the Zn reoxidation and condensation kinetics seems to be key to achieving 

controllable well-aligned growth. The thermodynamic equation is described as follows: 

ZnO (solid) + C (solid) ↔ Zn (vapour) + CO (gas) (T > 970 °C)     (1) 

2C + O2 = 2CO          (2) 

2CO + O2 = 2CO2          (3) 

2Zn + O2 = 2ZnO          (4) 
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Chamber pressure has the most profound effect on the morphology of the nanowires. 

Varying the pressure changes not only the diameter, length and density, but also the 

morphology of the ZnO nanostructures. Chamber pressure affects the supersaturation level of 

the vapour, which is critical in determining the type of growth that occurs (Yang et al., 2002). 

Supersaturation is higher at low pressures and decreases at higher pressures (Menzel et al., 

2012). Variation in the oxygen partial pressure directly affects the process of reoxidation of 

the Zn vapour and thus also the growth rate (Yang et al., 2002). 

Chamber temperature affects the growth in three ways: temperature affects the size of 

the catalytic droplet, i.e. it determines how much the vapour would condense. This in turn 

determines the length of surface diffusion of the absorbed vapour (Dalal et al., 2006). Higher 

deposition temperatures results in the formation of smaller catalytic-Zn droplets which in turn 

results in thinner and denser ZnO nanowires (Wang, 2004b). With the decrease in chamber 

temperature, the nanowires become wider and shorter. Surface diffusion and condensation of 

vapour yield differences at different temperatures. Higher chamber temperatures results in 

shorter nanowires with smaller diameters, whereas lower temperatures results in diameter and 

height increases (Lyu et al., 2003). 

The thickness of the catalytic layer affects the diameter and density of the synthesized 

nanowires (Dalal et al., 2006). Due to minimization of free energy (Hu et al., 1999), the 

diameter of the nanowires is related to the size of the catalytic droplet. When the droplet 

reaches supersaturation, ZnO precipitates as nanowires, with diameters equal to that of the 

catalytic-Zn islands (Li et al., 2009). Dense areas of nanowires can be reached when thinner 

catalytic films are used. An SEM image of ZnO nanowires synthesized by the VLS approach 

is shown in Fig. 5. The catalytic tip at the end of each nanowire is clearly visible. 

 

Fig. 5. (a) ZnO nanowires grown by using the VLS method, (b) ZnO nanowires with gold 

particles on their tips (Xing et al., 2006). 
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4.2 Hydrothermal method 

This method involves an aqueous mixture of soluble metal salts (metal and/or metal-organic 

compounds) which is placed in an oven under elevated temperatures (70-90 °C) to form ZnO 

nanowires (Fig. 6). The method is preferred in the synthesis of ZnO nanowires, due to lower 

synthesis temperatures as opposed to the VLS method (Guo et al., 2005; Liu and Zeng, 2003; 

Wang and Gao, 2003). 

 

 

Fig. 6. Schematic diagram of the hydrothermal growth approach. A substrate (a) is coated 

with a ZnO seed layer, which is placed in a aqueous solution containing equimolar amounts 

of zinc nitrate hexahydrate and hexamethylenetetramine at 90 °C (b), resulting in the growth 

of ZnO nanowires (c). 

Growth of ZnO nanowires in aqueous solutions requires controlled precipitation of 

ZnO on a substrate through hydrolysis/condensation reactions of metal ions and their 

complexes (Baruah and Dutta, 2009). Hexamethylenetetramine (HMTA) added to the 

reaction acts as a pH buffer and supplies OH
-
, HMTA hydrolysis forms formaldehyde which 

is converted to ammonia. Ammonia reacts with water to form OH
-
 which drives the 

crystallization of ZnO (McPeack et al., 2011). Ammonia and ammonium salts are added to 

the reaction. The lone-pair electrons on the nitrogen then react with empty orbitals of metal 

ions, generating metal-ammonium complexes. These complexes stabilize the structural units 

that modify, promote and direct the formation of nanostructures (Wen et al., 2008). 
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The growth of ZnO nanowires is controlled by controlling the supersaturation of the 

reactants. High supersaturation levels favour nucleation and low supersaturation levels favour 

crystal growth (Weintraub et al., 2010). If high levels of OH
-
 are produced in a short period, 

the Zn
2+

 ions in the solution precipitates rapidly and nanowires do not form (Xu et al., 

2008b). It is thus important to control the concentration of OH
-
 in the solution to ensure low 

levels of supersaturation. Growth of ZnO nanowires by the hydrothermal growth approach is 

expressed by the following reactions (Wang et al., 2008). 

(CH2)6N4 + 6H2O → 6HCHO + 4NH3       (1) 

NH3 + H2O ↔ NH4
+
 + OH

-
         (2) 

2OH
-
 + Zn

2+
 → Zn(OH)2         (3) 

Zn(OH)2 → ZnO + H2O         (4) 

Numerous factors need to be taken into consideration when synthesizing nanowires by 

the hydrothermal growth method. These factors includes the type of zinc salt precursor, 

concentration of the precursor (Li et al., 2005), pH of the growth solution (Baruah and Dutta, 

2009), growth temperature and time (Wang et al., 2012), presence of impurities (Wang et al., 

2012), substrate onto which nanowires are grown (Yousefi and Zak, 2011), the addition of 

chelating agents (Wen et al., 2008), and the presence of a ZnO seed layer (Wang, 2004a). 

Low ZnO precursor concentrations decrease the diameter and length of nanowires 

(Hirano et al., 2005; Li et al., 2005). Morphology and growth rate can be controlled by 

controlling the pH of the reaction (Pal and Santiago, 2005). During the initial growth stage, 

the pH and the concentration of Zn
2+

 ions is such that ZnO growth occurs through Zn(OH)2 

formation. With a gradual increase in the pH of the reaction solution (due to increased 

hydrolysis of HMTA) and a decrease in the concentration of Zn ions, Zn(OH)2 becomes 

thermodynamically unstable and the Zn(OH)2 formed on the substrate dissolves (Baruah and 

Dutta, 2009). 

Growth temperature affects nucleation and the growth rate of nanowires, and therefore 

plays a significant role in shaping the synthesized nanowires. ZnO nanowires do not form at 

low temperatures (48 °C). Higher temperatures (58-88 °C) results in thicker films and better 

nanowires alignment (Wang et al., 2012). However, when the temperature is too high (95 °C) 

the reaction occurs inside the solution, which consumes the reactants to produce ZnO 
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nanoparticles, leading to slower nanowire growth and bush-like bundles. This is possibly due 

to the presence of impurities in the solution. When the growth temperature increases from 60 

to 90 °C, the average diameter of the synthesized ZnO nanowires decreases (Guo et al., 

2005). The increase in temperature causes evaporation of ammonia. Left long enough, there 

may not be enough base left in the solution to react with the Zn precursor, thus restricting 

nanowire growth. The length of the nanowires can be tailored by adjusting the growth time, 

although the growth rate decreases with time. An increase in time results in longer and 

intertwined nanowires (Li et al., 2005). Growth time does, however, not influence the average 

diameter of the synthesized ZnO nanowires (Kenanakis et al., 2009). 

The presence of impurities (i.e. dust, undissolved chemicals) on the surface and in 

solution results in more favourable nucleation sites for growth of nanowires, as these 

impurities have larger grain sizes than those of the deposited ZnO seed layer nuclei. The ZnO 

nanowires grow radically outwards from the larger grains and form bush-like nanowire 

bundles which are disoriented (Wang et al., 2012). 

The morphology and alignment of the ZnO nanowires are also affected by the 

substrate onto which the nanowires are synthesized. As lattice mismatches between the 

substrate and the ZnO nanowires (Yousefi and Zak, 2011) influences the dimensions and 

aligment of the synthesized ZnO nanowires. Surface atoms in a Si (100) substrate are 

arranged in a square pattern, whilst they follow a hexagonal pattern for a Si (111) substrate. 

This is also seen in ZnO crystal structures. The Si (111) surface has a better matching lattice 

with the ZnO lattice, compared to that of Si (100). ZnO nanowires grown on Si (111) 

substrates have larger diameters than those grown on Si (100) and are more crystalline than 

amorphous (Yousefi and Zak, 2011). 

The HMTA chelating agent supplies OH
-
 ions for ZnO growth through a process called 

thermal decomposition (Govender et al., 2004; McPeak et al., 2011; Schmidt-Mende and 

MacManus-Driscoll, 2007). Compared to strong bases such as NaOH, HMTA releases OH
-
 

groups much slower and control crystallization more accurately (Xu et al., 2010). ZnO 

crystallization is therefore under thermodynamic control, which promotes heterogeneous 

nucleation and growth over homogeneous nucleation (McPeak et al., 2011). HMTA acts as a 

shape-inducing surfactant (Fig. 7) and attaches to the non-polar facets of ZnO, thereby 

restricting the access of Zn
2+

 ions leaving only the polar (0001) facets open for epitaxial 

growth (Sugunan et al., 2006). Addition of ethylenediamine (EDA) as a chelating agent 
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inhibits the radial enlargement of nanowires (Wen et al., 2008). Cetyl trimethylammonium 

bromide (CTAB) addition has a profound effect on the final morphology of the synthesized 

nanostructures. The chelating agent binds to positive polar plane rich in Zn
2+

, thus retarding 

growth of ZnO nanowires (Wen et al., 2008). Polyethylenimine (PEI) affects nanowire 

growth by inhibiting crystal growth along the a and b directions, thus increasing the aspect 

ratio of the synthesized ZnO nanowires (Xu et al., 2010). Addition of ammonia (NH3·H2O) 

suppresses the homogeneous nucleation of ZnO in solution by forming zinc amine complexes 

(Greene et al., 2006). 

 

Fig. 7. Attachment of hexamine to the non-polar facets of the ZnO crystals, allowing the 

growth of crystals in a (0001) direction. (a) A hexagonal ZnO crystal and (b) possible 

attachment of hexamine onto the non-polar facets, leaving the polar facets exposed allowing 

further crystal growth along the c-axis (Sugunan et al., 2006). 

Presence of a ZnO seed layer affects the dimensions and orientation of the synthesized 

ZnO nanowires. Several methods have been developed to deposit ZnO seed layer films, i.e. 

chemical vapour deposition (Hu and Gordon, 1992), reactive evaporation (Swamy and 

Reddy, 1990), pulsed laser ablation (Ardakani, 1996), sputtering (Yoon et al., 1997), spray 

pyrolysis (De le Olvera et al., 1993), hydrothermal evaporation (Nishizawa and Yuasa, 1998) 

and sol-gel spin coating (Ohyama et al., 1997). 

The most important role of ZnO seed layers is to align the synthesized nanowires. This 

is achieved due to matching lattice structures and the polar nature of the ZnO surface (Wang, 

2004a). The ZnO surface is either positively charged or negatively charged. In either case the 

surface will attract ions of opposite charges (OH
-
 or Zn

2+
) to form ZnO (Li et al., 2005). 

Thus, the ZnO seed layer initiates nanowire growth, layer by layer, to form the correct 

alignment. In addition, ZnO nanowires grow intrusively along the [0001] direction. This is 

Stellenbosch University  http://scholar.sun.ac.za



 
 

18 
 

due to a dipole charge that ZnO has along this direction. This dipole charge will align itself 

with charged surfaces of the ZnO thin film to minimize energy (Wang, 2004a and b). The 

ubiquitous surface roughness formed from the seed layer serves as nucleation sites for 

nanowire growth (Wen et al., 2008). Introducing the seed layer effectively lowers the 

interfacial energy between the crystal nuclei and the substrate, hence decreasing the 

nucleation barrier and facilitating the growth of ZnO nanowires. The size of the ZnO seed 

grains also determines the size of the synthesized ZnO nanowires (Cui et al., 2005). The ZnO 

seed layer grains and surface roughness increase with the increase in deposition, which 

subsequently increases the diameter of the synthesized ZnO nanowires (Kenanakis et al., 

2009). Nanowires synthesized on less oriented seed layers reduce the c-axis alignment and 

forms random crystallographic orientation (Erdélyi et al., 2011). 

With the increase in the ZnO seed layer grain and film thickness the mean diameter of 

the synthesized ZnO nanowires increases (Tak and Yong, 2005). Deposition of ZnO seed 

layers by the sol-gel spin coating technique requires controlling factors such as baking 

temperature and time, sintering temperature and time, and concentration of the Zn precursor. 

The speed at which the organic solvent evaporates should be similar to that of ZnO 

crystallization (200 °C). Too high temperatures (350 °C) results in fast-growing grains with 

random orientation. This worsens the ZnO nanowire orientation. If the temperature is too low 

(150 °C), organic compounds are deposited and the seed layer shrinks (Xiao and Kuwabara, 

2005). At low sintering temperatures (500 °C), the grain sizes are small and the boundaries 

unclear. At 700 °C the grains are larger and clear, whereas too high temperatures (900 °C) 

results in a discontinuous seed layers (Xiao and Kuwabara, 2005). For a high Zn sol-gel 

precursor concentration the seed layer results in closely packed ZnO nanowires, as compared 

to lower concentrations which result in less densely packed ZnO nanowires (Ghosh et al., 

2007). Higher concentration also produces nanowires with a smaller diameters, opposed to 

lower concentrations (Ghosh et al., 2007). Factors that need to be controlled during ZnO seed 

layer deposition by sputtering techniques are sputtering time and power, as these influences 

the diameter of the ZnO grains, and subsequently the diameter of the synthesized ZnO 

nanowires. The ZnO grain diameters decrease with an increase in sputtering power, which in 

turn leads to a decrease in the mean nanowire diameter (Wang et al., 2012). A SEM image of 

ZnO nanowires synthesized by the hydrothermal growth approach is shown in Fig. 8. 

Stellenbosch University  http://scholar.sun.ac.za



 
 

19 
 

 

Fig. 8. ZnO nanowires synthesized by the hydrothermal growth approach. 

 

5. Protein immobilization strategies 

Protein immobilization can be defined as the attachment of biomolecules to a surface with the 

reduction or loss of mobility. The immobilization strategy may lead to the partial/complete 

loss of protein activity, which is attributed to random orientations and structural deformations 

induced. To fully retain biological activity of the immobilized protein, proteins should be 

attached onto surfaces without affecting conformation or active sites. The immobilization 

strategy is choosen based on the physicochemical and chemical properties of the surface and 

biomolecule to be immobilized. Numerous immobilization strategies have been developed 

and are broably classified as physical, covalent, and bioaffinity immobilization (Rusmini et 

al., 2007). This paper focusses on physical and covalent immobilization strategies, as they do 

not require engineering of the biomolecule to be immobilized. Biomolecules have their own 

characteristic and functional properties. It is thus not possible to use the same strategy for 

different proteins. The physical and chemical stability of adsorbed proteins and the retention 

of the biological activity are general requirements for protein immobilization (Brinkley, 

1992; Johnson and Martin, 2005; Karyakin et al., 2000; O’Shannessy et al., 1992; Tsang et 

al., 1995). 

The most challenging step during the development of biosensors is the immobilization 

of biomolecules in such a manner that they are positioned close to the surface, whilst 

retaining biological activity. Furthermore, the immobilization strategy has to render the 
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biomolecule enhanced stability and robustness, be applicable to many different biological 

molecules, has to be resistant to the reagents and metablic compounds and control the 

distribution and orientation of the immobilized biomolecule (Gooding and Hibbert, 1999). 

Covalent immobilization using linkers (coupling agents) has gained considerable attention as 

an alternative method (Brinkley, 1992; Karyakin et al., 2000; O’Shannessy et al., 1992). This 

strategy provides direct and robust coupling to solid substrates via the formation of physical 

and chemical stable covalent bonds by using various linkers on substrates (Kim et al., 2010). 

Self-assembled monolayers (SAMs) can provide reproducible and robust 

immobilization, as some control over the orientation and distribution is afforded, due to the 

targeting of selected amino acid functional groups. Furthermore, the affinity thiols have for 

some metal surfaces, particularly gold, renders alkanethiols SAM ideal for the 

immobilization of biomolecules (Gooding and Hibbert, 1999). Despite many advantages of 

covalent conjugation, the orientation of immobilized proteins are significantly affected by the 

choice of linkers used and the corresponding conjugation sites targeted for covalent bonding 

(Karyakin et al., 2000). Physical and covalent immobilization strategies do not require 

alterations to the protein structures for immobilization to occur, as opposed to bioaffinity 

immobilization. These immobilization strategies will be discussed in more detail. 

 

5.1 Physical immobilization 

Proteins can adsorb onto surfaces via intermolecular forces, mainly ionic bonds and 

hydrophobic and polar interactions (Wong et al., 2009). The intermolecular forces that 

participates in the interaction depends on the particular biomolecule and surface. The 

resulting layer is likely to be heterogeneous and randomly oriented, since each molecule can 

form many contacts in different orientations for minimizing repulsive interactions with the 

substrate (Rusmini et al., 2007). The adsorption capacity is limited by the geometric size of 

the immobilized biomolecule (Khan et al., 2006). 

The advantage of using such a strategy for protein immobilization is that neither 

coupling reagents nor modifications to the biomolecule is required for immobilization to 

occur. Physical immobilization strategies involve relatively weak and reversible interactions, 

that result in desorption of the biomolecule and loss of activity over time (Khan et al., 2006). 

This has reproducibility implications, particularly when used in analytical assays and 
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biosensors. Additionally, immobilization of biomolecules to surfaces through physical 

strategies often results in conformational changes and denaturation of the biomolecule, 

resulting in loss of biological activity (Butler, 2000). Furthermore, since there is no control 

over the packing density of immobilization by this strategy, the biological activity may be 

further reduced by steric hindrance (Kusnezow and Hoheisel, 2003). 

 

5.2 Covalent immobilization 

Biomolecules are often covalently bound to surfaces through accessible functional groups of 

exposed amino acids. During this strategy covalent bonds are formed between side-chain 

functional groups of biomolecules with suitably modified surfaces, resulting in an irreversible 

bond and high surface coverage.  

Table 1 shows the functional groups in biomolecules targeted for immobilization and 

the required surface properties for covalent bonding to occur. Amino acid side chain groups 

targeted for chemical conjugation should not be in high abundance (> 10%), as attachment 

through several residues may form simultaneously, thereby restricting the conformational 

freedom and also increasing heterogeneity in the population of immobilized biomolecules 

(Fransconi et al., 2010). 

Covalent immobilization using amino acid side chains are often random, since it is 

based upon residues typically present on the exterior of the protein. The attachment may thus 

occur simultaneously at many residues. This approach lacks regiospecificity and an 

immobilized biomolecule may not be correctly oriented. The reactive site of the biomolecule 

may also be blocked, resulting in a reduction or loss of biological activity (Fransconi et al., 

2010). To ensure retention of biological structure and activity, a homogeneous surface 

orientation on modified surface should be sought (Fransconi et al., 2010). 
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Table 1.  Functional groups available in biomolecules for immobilization and surface 

properties required for covalent bonding (Rusmini et al., 2007). 

Side chain 

groups Amino acid Surface property 

-NH2 Lys, hydroxyl-Lys carboxylic acid 

  

active ester (NHS) 

  

epoxy 

  

aldehyde 

−SH Cys maleimide 

  

pyridyil disulfide 

  

vinyl sulfone 

−COOH Asp, Glu amine 

 

The most common method to covalently bind biomolecules to surfaces involves the 

functionalization of self-assembled monolayer (SAM) surfaces, which is then conjugated to a 

biomolecule. Different classes of chemical reactions have been explored for modifying 

surfaces, e.g. nucleophilic substitution, esterification, acylation and nucleophilic addition 

(Sullivan and Huck, 2003). 

One of the simplest and most applicable methods used to modify SAMs exploits the 

formation of amide linkages via an interchain anhydride intermediate (Ducker et al., 2008; 

Sun et al., 2006). Trifluoroacetic anhydride dehydrates, when exposed to amine groups of 

amino acid side chain groups, form an amide bond (Fig. 9 a). However, one disadvantage of 

using NHS esters is that they are unstable in aqueous conditions. The attachment of proteins 

in aqueous buffers will thus compete with ester hydrolysis, resulting in only modest levels of 

immobilization. Aldehyde functional surfaces can be coupled with exposed amines of 

biomolecules to produce an imine that is reduced by sodium cyanoborohydride to form a 

stable secondary amine linkage (Hahn et al., 2007; MacBeath and Schreiber, 2000) (Fig. 9 b). 

SAMs containing maleimide terminal functional groups may react with cysteine residues of 

biomolecules (Houseman et al., 2003) to form stable covalent bonds (Fig. 9 c). Proteins 

generally have very few surface-exposed Cys residues and it is thus possible to achieve site-

selective immobilization. If the protein of interest can be engineered to remove all but one 

surface Cys residue, or to insert a single Cys on the surface where none previously existed, 
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site-specific immobilization can be achieved (Cheung et al., 2003; Ferrero et al., 2008). The 

nucleophilicity of the amine groups also allows reaction with epoxide functionalized 

materials (Reynolds et al., 2007) to form a covalent bond (Fig. 9 d). 

 

Fig. 9. Schematic representation of chemoligation methods for immobilization with 

nucleophilic residues of biomolecules. The reaction of lysine residues to NHS esters (a) or 

aldehydes (b) and cysteine residue bonding to maleimide groups (c). Epoxides may react with 

either of the nucleophilic residues (d) (Wong et al., 2009). 

Aspartate (Asp) and glutamate (Glu) residues of biomolecules can also be targeted for 

immobilization by converting them to active esters with a carbodiimide coupling agent and 

an auxiliary nucleophile (Fig. 10). The most commonly used coupling agent is N-ethyl-N-(3-

dimethylaminopropyl) carbodiimide (EDC), whereas N-hydroxysuccinimide (NHS) is widely 

used as the auxiliary to generate the NHS ester on biomolecules (Liu et al., 2006; 

Subramanian et al., 2006a and b; Yam et al., 2006; Wong et al., 2009). These active esters 

react with an amine bearing surfaces to form a covalent bond. Immobilization efficiency with 
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using this strategy dependents on several factors, such as the pH of the solution, 

concentration of coupling reagents, and the reaction time (Fransconi et al., 2010). Advantages 

of using this covalent immobilization strategy, is that the reagents are water-soluble, although 

the instability of carbodiimides and the active esters subsequently generated under these 

conditions means that the reaction yields are low (Wong et al., 2009). NHS-esters formed on 

the biomolecules may, however, interact with each other to form poorly defined polymers. 

 

Fig. 10. Carbodiimide-mediated chemoligation of Glu and Asp residues of biomolecules to 

amine-functionalized surfaces via the generation of active NHS esters (Wong et al., 2009). 

 

6. Self-assembled monolayers (SAMs) 

Self-assembly is a process which involves the spontaneous arrangement of atoms and 

molecules in an ordered functional structure which is a strategy used in nature to create life 

from basic building blocks (Samanta and Sakar, 2011). Biological membranes, cellular 

structures and viruses can be regarded as sophisticated self-assembly systems (Vericat et al., 

2010). Among various self-assembly processes, the formation of a self-assembled monolayer 

(SAM) is the most elegant way for creating an organic thin film with specific surface 

properties onto which biomolecules can be immobilized (Flink et al., 2000; Gooding and 

Hibbert, 1999; Love et al., 2005; Ulman, 1996). 
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Some control over the orientation and distribution of the immobilized protein is 

afforded by this approach, which is due to the reactivity of the SAM functional groups 

towards specific functional groups of the biomolecule. The affinity of thiols for some metal 

surfaces (i.e. Au, Ag, Pt and Cu), particularly gold, makes alkanethiols ideal absorbates for 

the formation of SAMs (Gooding and Hibbert, 1999). Numerous surface-active 

organosulphur compounds have been studied for SAM formation on gold. These include 

alkanethiols, arenethiols, alkanedithiols, arenedithiols, dialkyl disulphides and dialkyl 

sulphides. Alkanethiols and dialkyl disulphides for similar SAMs (Biebuyck et al., 1994; Noh 

et al., 2000), however, disulphides have solubility issues which could lead to the formation of 

multilayers, whereas dialkyl sulphides form a weaker bond with gold in comparison to thiols 

and disulphides (Fransconi et al., 2010; Jung et al., 1998). 

SAMs are formed by attaching organic compounds from solution or gas phase onto a 

solid surface. The absorbates organize spontaneously into crystalline/semicrystalline 

structures. A thiol SAM consists of three parts: the sulphur head, the hydrocarbon chain (of 

variable length), and the terminal group (different functionalities) (Fig. 11). The headgroups 

guides the self-assembly process, linking the hydrocarbon chain to the metal surface through 

a strong semi-covalent bond.  

Interactions among backbone hydrocarbon chains (involving van der Waals and 

hydrophobic forces) ensure an efficient packing of the monolayer and contribute to 

stabilization. The terminal group confers specific properties to the surface (hydrophilic, 

hydrophobic), and can be used to anchor different biomolecules by weak interactions or 

covalent bonds (Dubois and Nuzzo, 1992; Love et al., 2005). The energy related to each part 

of the molecule has a different order of magnitude: 50 kcal mol
−1

 for the interaction between 

the S head and the substrate (a thiolate bond); 1–2 kcal mol
−1

 per methylene for the van der 

Waals interactions between hydrocarbon chains; and only a few kT for energies related to the 

terminal groups (Ulman, 1996). However, all three parts of the molecule contribute to the 

structure and to the physical and chemical properties of the SAM (Vericat et al., 2005). 
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Fig. 11. Schematic representation of an alkanethiolate molecule adsorbed on Au (111) in a 

standing up configuration (stable phase). The angles are α = 30˚, β = 55˚ and x = 14˚ (Vericat 

et al., 2010). 

Combined SAMs (Fig. 12) are useful for controlling the degree of biomolecule 

immobilization (Mrksich, 2009). They are formed from the co-adsorption of two different 

absorbates of similar dimension, but possessing different terminal functional groups (one 

reactive and one inert). Combined SAMs provides a method for incorporating molecular 

species with physical dimensions that would normally prevent a well-organized assembly 

(Gooding et al., 2003). By varying the composition of a combined SAM, the density of 

attachment points can be controlled and hence also the surface loading of the biomolecule 

(Gooding and Hibbert, 1999). The ratio of the two dissimilar molecules is usually 

proportional to the ratio of the initial concentration of the absorbates (Bain et al., 1989a; 

Wasserman et al., 1989). 

 

Fig. 12. Schematic representation of self-assembled monolayers of alkanethiols on gold. (a) 

A pure monolayer and (b) a mixed monolayer (Gooding and Hibbert, 1999). 
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Dithiolated SAMs contain two identical alkyl thiol substituents attached to a phenyl 

ring through phenolate bridges, providing two attachment points on the surface (Subramanian 

et al., 2006b). This generates monolayers which are more stable than monothiols. 

Furthermore, it provides more adequate spacing, thus allowing improved mobility and 

flexibility at the recognition terminus (Gobi et al., 2007). 

 

6.1 SAM kinetics 

Alkanethiols adsorb spontaneously on metal surfaces (i.e. gold, silver, platinum and copper). 

Gold is the most frequently used, because it does not have a stable oxide under ambient 

conditions. The thiol groups absorb onto the metal surface via a metal-thiol bond (Li et al., 

1992; Ulman, 1996). The alkyl chains bound to the surface is in a trans-conformation, tilted 

at an angle of 20-30° to the surface, resulting in the formation of densely packed highly 

ordered monolayers (Gooding et al., 2003). Van der Waals forces between the alkyl chains 

enhance the stability and order of the SAM (Bain et al., 1989b). Therefore, long-chain 

alkanethiols produce more ordered SAMs than shorter chains. The order of monolayer is also 

adversely affected by the roughness of the surface (Creager et al., 1992). 

Many controversies still exist about the kinetics of the assembly process and the 

structural characteristics of the alkanethiol SAM–metal surface interface, such as the head-

group bonding structure, the packing configuration and the nature of the adsorption site (Li et 

al., 2003a; Torrelles et al., 2006). It is nevertheless clear that the process involves a subtle 

interplay of the energetics of the metal–sulphur bonds and non-covalent lateral interactions 

among the organic groups (Love et al., 2005). 

The specific ordering of the sulphur moieties on the metal lattice defines the free space 

available to the organic components. The lateral interactions between alkyl chains (van der 

Waals, hydrogen bonding) determine the organization of the monolayer (Love et al., 2005). 

The metal–sulphur interaction drives the assembly. The lateral interactions of alkyl chains 

promote the secondary organization, resulting in a superlattice structure (Fransconi et al., 

2010). Typical defects observed for SAMs on metal surfaces include, missing rows, vacancy 

Au islands, molecular defects, and disorder (Vericat et al., 2005) (Fig. 13). 
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Fig. 13 STM images of alkanethiolate SAMs on Au (111) showing different types of surface 

defects (sketched in the insets) (a) vacancy islands and missing rows (48 × 32 nm
2
 image), 

(b) domain boundaries and step edges (46 × 33 nm
2
 image) (c) molecular defects (pinholes) 

(19 × 12 nm
2
 image) (Vericat et al., 2010). 

SAM formation occurs in two steps; an initial fast step of absorption, followed by a 

slower step of monolayer organization (Godin et al., 2004; Schwartz, 2001). Initially, a small 

molecular density binds to the surface (Fig. 14 i) and forms either an ordered two 

dimensional lying down phase (Fig. 14 ii), or a disordered mass of vertically orientated 

molecules (Fig. 14 iii) (Schreiber, 2000; Schwartz, 2001). As more molecules absorb to the 

surface, the molecules form a three dimensional crystalline or semi-crystalline structure on 

the surface (Fig. 14 iv) (Schwartz, 2001; Vos et al., 2003). The head groups assemble 

together, while the tail groups assemble far from the surface. Areas of close-packed 

molecules nucleate and grow until the surface of the substrate is covered in a single 

monolayer. 
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Fig. 14. Schematic representation of the different steps during the self-assembly of 

alkanethiol on Au (111): (i) physiorption, (ii) lying down phase formation, (iii) nucleation of 

standing up phase, (iv) completion of the standing phase (Vericat et al., 2010). 

 

6.2 Factors affecting SAM formation 

Several experimental factors need to be controlled during the formation of SAMs by the 

solution phase method. These factors include the cleanliness of the substrate (Hoogvliet et al., 

2000), solvent used during assembly (Dannenberger et al., 1998), incubation temperature and 

immersion time (Chen et al., 2000a; Kim et al., 1993; Yamada et al., 2000), concentration 

and nature of the absorbate (Kim et al., 1993), the chain length (Vericat et al., 2006) and the 

presence of oxygen (Lee et al., 1998). 

Cleanliness and crystallinity of the substrate plays an important role in determining the 

compactness of the monolayer, as bare metal tends to absorb organic substances which results 

in monolayer defects (Creager et al., 1992; Guo et al., 1994; Lee et al., 1998; Ron and 

Rubinstein, 1998; Tsuneda et al., 1999; Yang et al., 1995). Well-defined, smooth substrates 

like Au (111) bind alkanethiols stronger than Au (100), which results in higher SAM density 

Stellenbosch University  http://scholar.sun.ac.za



 
 

30 
 

and regularity (Hou et al., 1998; Lee et al., 1998). For smoother substrates, the density of 

defects are lower due to fewer grain boundaries, step edges and other surface features that are 

known to cause defects in SAMs (Leopold and Bowden, 2002). 

Various solvents can be used for SAM formation. However, monolayers formed by low 

polar solvents have poor orientation compared to that formed in high polar solvents such as 

ethanol (Bain et al., 1989b; Dannenberger et al., 1998; Mamum and Hahn, 2012; Schneider 

and Buttry, 1993; Yamada et al., 1999). Ethanol is most commonly used for SAM formation. 

The use of polar solvents other than ethanol (i.e. tetrahydrofuran, dimethylformamide, 

acetonitrile, cyclooctane, and toluene) form monolayers of similar quality (Bain et al., 

1989a). The effects of the solvent on the kinetics of formation and the mechanism of 

assembly are complex and poorly understood (Schwartz, 2001). The presence of a solvent 

adds additional parameters to the dynamic equilibrium governing the adsorption of thiols. 

Solvent-substrate and solvent-adsorbate interactions complicate the thermodynamics and 

kinetics of assembly (Love et al., 2005). Solvent-substrate interactions can hinder the rate of 

adsorption of thiols from solution because the solvent molecules must first be displaced from 

the surface prior to the adsorption of thiols (Love et al., 2005). It has been shown that the rate 

at which SAMs are formed from alkanethiolates is faster in certain nonpolar solvents 

(heptane, hexanes) than in ethanol (Dannenberger et al., 1998; Peterlinz and Georgiadis, 

1996). 

Increasing the reaction temperature results in less monolayer defects, compared to 

SAMs formed at room temperature (Kang et al., 2010; Korolkov et al., 2010). However, the 

size of the SAM domain and the vacancy islands are larger and the numbers of vacancy 

islands are smaller when the temperature of the reaction solution is higher (Mamun and 

Hahn, 2012; Yamada et al., 2000). Forming SAMs at temperatures above 25 °C can improve 

the kinetics of formation and reduce the number of defects in them (Kawasaki et al., 2000; 

Yamada et al., 2000). Elevated temperatures increases the rate of SAM desorption allowing 

for chain reorganization and lateral rearrangements (Mamun and Hahn, 2012). 

A reaction solution with a lower concentration requires longer immersion time for 

complete formation. Low concentrations and longer immersion time results in more regular 

SAMs, compared to high concentrations and shorter immersion times (Bain et al., 1989b; 

Bensebaa et al., 1997). Dense coverage of absorbates occurs fast, but the reorganization 

process requires time to maximize the density of molecules and minimize the defects in the 
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SAM. Formation of well-assembled monolayers also depends on the purity of the absorbate, 

as thiolated precursor impurities lack functional head groups and compete with the molecule 

of interest for available surface binding sites. 

Van der Waals forces between the alkyl chains enhance the stability and order of the 

absorbates. Thus, more alkyl chains in the absorbate [HS(CH2)nX, where n≥10] enhances the 

stability and regularity of the monolayer, whereas short chain lengths results in more 

molecular disorder (De Groot et al., 2007; Hong and Park, 2001; Nuzzo et al., 1987; Yue et 

al., 2008). Additionally, the length of the aliphatic chain also significantly influences the rate 

and extent of oxidation and desorption, as longer alkyl chain SAMs are more susceptible to 

oxidation (Wang et al., 2003). The presence of oxygen and the absence of light oxidizes 

thiolates and forms sulfonates (-SO
3-

) and sulfinates (-SO
2-

) which results in desorption of the 

SAM from the surface (Ron and Rubinstein, 1998; Wang et al., 2003). SAMs formed in the 

presence of inert gasses, results in the improvement of the SAMs quality (Laibinis et al., 

1991; Love et al., 2003). By reducing the concentration of oxygen in the reaction solution, 

oxidation of the thiols to sulfonates and other oxygenated species can be limited. 

 

7.1 Biosensors 

Detection of specific metabolites, nucleic acids, proteins and pathogens are essential in the 

diagnosis of diseases. Infectious diseases are responsible for approximately 40 % of the 50 

million deaths recorded world-wide (Ivnitski et al., 1999). Waterborne pathogens cause 10-20 

million of these deaths. Per annum more than 200 million people suffer from non-fatal 

infections. Many of these cases could have been treated if the diagnosis had been made 

sooner. With the advances in nanotechnology, it should be possible to develop a rapid, 

sensitive and portable, but power-efficient and low cost biosensor. 

The detection of biological and chemical species at their earliest stage has become ever 

important (Liu et al., 2008b). The early detection of these compounds is essential for early 

response. The established methods for detecting biological species require radioactive 

material (Wolf et al., 1987), biotin (McInnes et al., 1989), digoxigen (Girotti et al., 1991), 

fluorescent dye (Abel et al., 1996; Chehab and Kan, 1989), labelled probes, and large 

quantities of probe and analyte molecules. These methods are cumbersome and are unable to 

achieve a rapid detection at low levels of concentration. Portable, reliable, and cost effective 
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bioelectronics systems are in demand to overcome the draw backs of conventional 

approaches (Liu et al., 2008b). 

A schematic representation of the principle of a biosensor shown in Fig. 15, indicates 

that sensing biomolecules need to be integrated into the system on a solid support. The type 

of solid support that holds the sensing biomolecule (receptor) is known as a matrix. A 

suitable matrix enhances signal transduction and helps to immobilize biomolecules with 

retained or enhanced activity. The physico-chemical properties of the matrix dictate the 

method of immobilization and the operational stability of the biosensor (Fransconi et al., 

2009). Moreover, the matrix alters the resistance of the biomolecule to various physical and 

chemical changes, such as pH, temperature and chemical composition changes. 

 

Fig. 15. Schematic diagram of a typical biosensor sensing process (Arya et al., 2012). 

The biosensor has to be sensitive enough to provide quantitative, or at least semi-

quantitative, data. This means the device has to detect small changes in the concentration of 

molecules that react with a transducer (Strehlitz et al., 2008). Major developments have been 

made to increase the performance of biosensors by incorporating various nanostructured 

material (Ansari et al., 2008; Hrapovic et al., 2004; Lin et al., 2004, Rout et al., 2006; Wang 

et al., 2008; Zhang et al., 2008). 
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7.2 ZnO devices developed 

ZnO nanostructures have enormous applications in electrochemical, electromechanical and 

optoelectronic devices, but also as photocatalysts. ZnO electrochemical devices that have 

been developed include field-effect transistors (FET), gas sensors, pH sensors and humidity 

sensors. In FETs, the ZnO nanostructures are laterally bonded on a substrate that serves as a 

gate electrode. Current transported from the drain to the source along the nanowire is 

controlled by applied gate voltage. 

ZnO nanowire field-effect transistors have been developed for sensing of oxygen (Fan 

et al., 2004), carbon monoxide gas (Khoang et al., 2013), riboflavin (Hagen et al., 2011) and 

streptavidin (Kim et al., 2006) amongst others. Gas sensors have been developed for the 

detection of H2 (Lupan et al., 2007), CO (Wang et al., 2007a), H2S (Wang et al., 2006a), NH3 

(Wen et al., 2005), CH4 (Gruber et al., 2003), NO2 (Fan and Lu, 2005), NO (Farmakis et al., 

2008), O3 (Martins et al., 2004), and O2 (Li et al., 2004) amongst others. 

Gas sensors are divided into reductive or oxidative gas sensors. For reductive gas 

sensors absorption of gases would results in the release of electrons to the ZnO 

nanostructures. The gained electrons will increase the carrier concentration, resulting in a 

thinner depletion layer, and a decrease in the ZnO nanowire resistance (Fig. 16). For 

oxidative gas sensors the mechanism is opposite, resulting in the release of electrons from the 

ZnO nanostructures and a thicker depletion layer due to the decrease in the carrier 

concentration (Fig. 17). A thicker depletion layer results in the increase in resistances of the 

ZnO nanostructures. 

pH sensors using ZnO nanostructures have also been developed. Exposure to 

electrolytic solutions results in the formation of a surface charge which alters the ZnO 

nanostructure conductive properties (Al-Hilli et al., 2007). ZnO nanostructures have also 

been proposed as humidity sensors. With the increase in the relative humidity, the resistance 

of some sensors decreased (Fang et al., 2009; Park et al., 2010; Zhang et al., 2005). 
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Fig. 16. Schematic diagram of a reductive gas sensor (Wei et al., 2011). 

 

Fig. 17. Schematic diagram of an oxidative gas sensor (Wei et al., 2011). 

Electromechanical devices that have been developed include acoustic wave based 

sensors, nanogenerators, piezoelectric-FETs (PE-FET), and piezodiodes (Lee et al., 2002b). 

Acoustic wave biosensors are mass sensors which operate with mechanical acoustic waves as 

their transduction signal (Rocha-Gaso et al., 2009). Interaction at the surface interface causes 

changes in the acoustic wave properties (i.e. wave propagation, velocity, amplitude, or 

resonant frequency). Surface acoustic wave (SAW) pressure sensors (Talbi et al., 2006), film 

bulk acoustic resonators (FBAR) (Chen et al., 2009b) and lateral extensional mode (LEM) 

piezoelectric resonators (Pang et al., 2006) based on ZnO nanostructures have been used to 

detect changes in mass or pressure. Electroacoustic devices used in biosensors are based on 

the detection of a change of mass density, elastic, viscoelastic, electric, or dielectric 
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properties of a membrane made of chemically interactive materials in contact with a 

piezoelectric material. A schematic representation of a surface acoustic wave sensor is shown 

in Fig. 18. 

 

Fig. 18. Schematic representation of a surface generated acoustic wave sensor (Rocha-Gaso 

et al., 2009). 

Nanogenerators have been developed by utilizing the piezoelectric effect of ZnO 

nanowires (Chang et al., 2010; Wang and Song, 2006; Wang et al., 2007b; Xu et al., 2010). 

The combination of the piezoelectric and semiconducting properties of ZnO, and the gating 

effect of a Schottky barrier, transforms the mechanical displacement to an electrical signal. 

Piezoelectric-FET (PE-FET) has been developed by coupling the semiconductive and 

piezoelectric properties of ZnO, which is defined as the piezotronic effect (Gao et al., 2009; 

Kwon et al., 2008; Wang et al., 2006b). The working principle of PE-FET relies on the 

piezoelectric potential of the nanowire under straining and serves as the gate voltage for 

controlling the current flow from the drain to source (Fei et al., 2009; Wang et al., 2006a). 

Optoelectronic devices with ZnO nanostructures as transducers are UV detectors, UV 

lasers (Huang et al., 2001a), solar cells and field emission devices. UV detectors rely on 

changes in electric potential of the ZnO nanostructures when irradiated with UV (Bai et al., 

2011; Chen et al., 2009a; Fang et al., 2009; Lu et al., 2009). ZnO nanostructure-based light 

emitting diodes (LEDs) have also been developed (Chen et al., 2011; Djurišić et al., 2010; 

Hsu et al., 2008; Sadaf et al., 2011; Willander et al., 2009; Yang et al., 2008). ZnO-based 

dye-sensitized solar cells (DSSCs) have been developed using ZnO nanostructures which 

transports electrons fasters, with less recombination loss (Law et al., 2005). ZnO 
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nanostructures are also considered good candidates for field emitters due to their high melting 

point and high stability under oxygen environments (Hwang et al., 2011; Zhao et al., 2011). 

ZnO nanostructures as photocatalysts have been reported (Kenanakis and Katsarakis, 

2010; Ma et al., 2011; Sugunan et al., 2010), and exhibit high photocatalytic efficiency for 

dye degradation (Hariharan, 2006). Photocatalytic dye degradation by ZnO occurs due to the 

production of charge transferred photogenerated carriers and reactive oxygen species (ROS) 

due to UV illumination of the nanostructures (Guo et al., 2011). Photocatalysis utilizes 

semiconductor photocatalysts to carry out a photo-induced oxidation process to break down 

organic contaminants and inactivate bacteria and viruses (Fig. 19). When photons with 

energies greater than the band gap energy of the photocatalyst are absorbed, the valence band 

(VB) electrons are excited to the conduction band to facilitate a number of possible 

photoreactions. The photocatalytic surface with sufficient photo energy leads to the formation 

of a positive hole (h
+
) in the valence band and an electron (e

+
) in the conduction band (CB) 

(Zhang et al., 2012). The positive hole could either oxidize organic contaminants directly or 

produce very reactive hydroxyl radicals (OH
-
) which acts as the primary oxidants in the 

photocatalytic system, which oxidizes the organic compounds (Zhang et al., 2012). 

 

Fig. 19. A schematic representation of the principle of photocatalysis (Ahmed et al., 2010). 
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Abstract 

Controlling the synthesis of ZnO nanowires is crucial when designing nano-generators and 

piezoelectric sensors. In this study, seed layer deposition, RF cylindrical magnetron 

sputtering and sol-gel spin coating were compared in the synthesis of ZnO nanowires by 

using the hydrothermal growth approach. The effects of Au film layer thickness and its 

crystal orientation on the growth of ZnO nanowires were also assessed. Deposited ZnO seed 

layer films were characterized by atomic force microscopy (AFM) and ellipsometry. 

Synthesized ZnO nanowires were characterized by scanning electron microscopy (SEM), 

energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM) and X-ray 

diffraction (XRD). Deposition of ZnO seed layer films by the RF cylindrical magnetron 

sputtering technique resulted in the most c-axis oriented ZnO nanowires with uniform 

dimensions. An increase in the Au film layer thickness led to a decrease in diameter of the 

nanowires and less orientation in the c-axis. Polycrystalline Au film layer increased the mean 

diameter of the ZnO nanowires without effecting the c-axis orientation. These findings give 

insight into the conditions which are required to control the dimensions and alignment of 

ZnO nanowires. 
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Introduction 

ZnO nanowires perpendicular to the substrate surface have the potential to generate 

piezoelectric energy which is used in electromechanical devices (Li et al., 2004). To use ZnO 

nanowires as nanosensors, the ZnO crystals have to be aligned perpendicular to the sample 

surface, e.g. along the c-axis of the substrate. By growing highly oriented ZnO nanowires, the 

surface per unit area of the nanosensor increases and improves the performance of the 

nanodevice (Song and Lim, 2007). It is thus important to control the growth, orientation, 

position and size of the ZnO nanowires to increase the output voltage of the nanosensor (Liu 

et al., 2008). 

ZnO nanowires grown on silicon substrates are receiving increased interest due to the 

low production cost, large scale potential and different applications in electronic equipment. 

Numerous methods have been developed for the synthesis of ZnO nanostructures, e.g. 

vapour-liquid-solid (VLS) growth with the use of a catalyst (Huang et al. 2001), pulsed laser 

deposition (Choi et al., 2001), electrochemical deposition in porous membranes (Liu et al., 

2003), metal vapour transport using Zn sources (Lyu et al., 2002), physical vapour transport 

using ZnO and graphite powders (Yao et al., 2002), chemical vapour deposition using zinc 

acetylacetonate hydrate (Wu and Liu, 2002), metal organic chemical vapour deposition using 

diethylzinc and O2/N2O as precursors (Kim et al., 2003) and the hydrothermal growth 

approach (Vayssiers et al., 2001). Of all these techniques, the hydrothermal growth method is 

preferred as it is performed at low growth temperatures and has the greatest potential in large 

scale production (Yousefi and Zak, 2011). 

Parameters that need to be controlled to obtain ZnO nanowires with reproducible mean 

diameters and orientations when using the hydrothermal growth method includes the 

presence of a ZnO seed layer film, concentration of the reactants, pH of the solution, growth 

temperature, growth time and the type of substrate onto which the nanowires are synthesized 

(Bai and Wu, 2011; Ghosh et al., 2007; Song and Lim, 2007; Xiao and Kuwabara, 2005) It is 

important to control all parameters as they alter the morphology, crystallinity and alignment 

of the synthesized ZnO nanowires. 

Growth directly onto bare silicon substrate is difficult due to the presence of lattice and 

thermal mismatches between the ZnO crystal nuclei and the silicon substrate (Zhang, 2010). 

The presence of a ZnO seed layer film strongly influences the morphology and orientation of 

the synthesized ZnO nanowires (Erdélyi et al., 2011). The ZnO seed layer lowers the 
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interfacial energy between the crystal nuclei and the substrate, hence decreasing the 

nucleation barrier and facilitating the growth of ZnO nanowires (Bai, 2012). Superior 

alignment of ZnO nanowires on ZnO seed layers are due to matching lattice structures and 

the polar nature of the ZnO surface. The ZnO surface is either positively or negatively 

charged and attracts ions of opposite charges (OH
-
 or Zn

+
) to form ZnO (Wang, 2004). 

Moreover, the seed layer increases the surface roughness of the substrate surface, which 

results in more available nucleation sites for the growth of ZnO nanowires (Li et al., 2005; 

Wen et al., 2008). A decrease in the ZnO seed layer thickness results in the decrease in the 

mean ZnO nanowire diameter. This is due to the smaller grain sizes of the seed layer which in 

turn leads to an increase in the total surface area of the ZnO nanowires (Song and Lim, 2007; 

Wang et al., 2008). 

Several methods have been developed to deposit ZnO seed layer films, e.g. chemical 

vapour deposition (Hu and Gordon, 1992), reactive evaporation (Swamy and Reddy, 1990), 

pulsed laser ablation (Ardakani, 1996), sputtering (Yoon et al., 1997), spray pyrolysis (Olvera 

et al., 1993), a hydrothermal method (Nishizawa and Yuasa, 1998) and the sol-gel spin 

coating technique (Ohyama et al., 1997; Xiao and Kuwabara, 2005). When a seed layer 

deposition technique is used, a number of factors need to be controlled, as they influence the 

c-axis orientation of the synthesized ZnO nanowires. The principle behind the sol-gel spin 

coating technique entails that a liquid precursor is dropped onto a surface which is spun to 

form a uniform monolayer. With the sol-gel spin coating technique, the concentration of the 

ZnO seed layer, baking temperature and time, and the final sintering temperature and time 

need to be carefully controlled (Bai and Wu, 2011; Li et al., 2004; Xiao and Kuwabara, 2005; 

Zhang et al., 2006).
 
For the RF magnetron sputtering technique the most important factors 

include the sputtering time and power, as these factors influences the diameter of the ZnO 

grains, and subsequently, the diameter of the synthesized ZnO nanowires. The principle 

behind the RF magnetron sputtering technique entails radio frequencies creating plasma, 

which is deposited onto a surface to from a uniform monolayer. The ZnO grain diameters 

decrease with an increase in sputtering power, which in turn leads to a decrease in the mean 

diameter of the synthesized ZnO nanowires (Hwang et al., 2008; Yang et al., 2011). 

The morphology of the ZnO nanowires is also affected by the purity of the growth 

solution and the cleanliness of the substrate surface. Any impurities in the solution or on the 

substrate surface result in grain sizes larger than that of the ZnO seed layer nuclei. These sites 

are more favourable for nucleation, which ultimately results in the formation of bush-like 
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nanowire bundles (Wang et al., 2012). The influence of gold on the growth of ZnO nanowires 

when using the hydrothermal growth approach has not yet been elucidated. However, for the 

VLS method gold plays a catalytic role. The thickness of the catalyst affects the diameter and 

the density of the ZnO nanowires (Brewster et al., 2011). A thinner catalytic layer results in 

smaller diameters and more dense ZnO nanowires compared to thicker catalytic layers (Dalal 

et al., 2006). 

An increase in zinc precursor concentration increases the length and mean diameter of 

the synthesized ZnO nanowires (Song and Lim, 2007; Tak and Yong, 2005; Wen et al., 

2008). The diameter of the ZnO nanowires also decreases with a decrease in the pH of the 

growth solution (Li et al., 2005; Tak and Yong, 2005), thus by controlling the concentration 

and pH of the aqueous solution, the growth of ZnO nanowires can be tailored to desired 

dimensions (Song and Lim, 2007).
 
Hexamethylenetetramine (HMTA) also plays a role in the 

growth of ZnO nanowires in that it decomposes to formaldehyde and ammonia, which acts as 

a pH buffer and supply of OH
-
 precursor (Wang et al., 2008). HMTA also assists in the 

epitaxial growth of the ZnO nanowires. The precursor is a nonpolar chelating agent that 

preferentially attaches to the nonpolar facets of ZnO nanostructures, thereby exposing the 

(0001) plane for epitaxial growth (Sugunan et al., 2006; Wen et al., 2008). 

Synthesis of ZnO nanowires by the hydrothermal growth approach involves the 

controlled precipitation onto a substrate through the hydrolysis/condensation reaction of 

metal ions and their complexes. In an ammonium-rich environment, most of the zinc ions 

form amine complexes. When the temperature of the solution is increased, the amine 

complexes reacts with the reaction media and produce ZnO crystals, and heterogeneous 

nucleation will take place preferentially on the ZnO seed layer surface (Wen et al., 2008). 

The growth temperature of ZnO nanowires affects the nucleation rate and thus the nanowire 

growth rate. ZnO nanowires do not form at low temperatures (≥ 48 °C), while too high 

temperatures (≤ 95 °C) results in slower nanowire growth and the presence of impurities 

(Wang et al., 2012). When growth temperature decreases from 90 to 60 °C, the average 

diameter of the synthesized ZnO nanowires decrease (Song and Lim, 2007). 

The hydrothermal growth approach uses a closed system with limited amounts of 

precursors. Therefore the depletion of the precursors is inevitable and the growth rate will 

decrease as the reaction time increases (Tak and Young, 2005).
 
The length of the ZnO 

nanowires can be experimentally tailored until precursors become depleted by adjusting the 
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growth time. However, as the nanowires grow longer they become intertwined (Li et al., 

2005). 

The substrate onto which the ZnO nanowires are grown should also be considered as 

lattice mismatches between the substrate and the ZnO nanowires affect the morphology and 

alignment of the synthesized ZnO nanowires (Yousefi and Zak, 2011). Surface atoms in a Si 

(100) substrate are arranged in a square pattern, whilst they follow a hexagonal pattern for a 

Si (111) substrate as does the ZnO crystal structure. The Si (111) surface has a better 

matching lattice with the ZnO lattice, compared to that of Si (100) (Yousefi and Zak, 2011). 

ZnO nanowires grown on Si (111) substrates have larger diameters than those grown on Si 

(100) and are more crystalline as opposed to amorphous (Sugunan et al., 2006; Wen et al., 

2008). 

Control of the morphology and alignment of ZnO nanowires involves controlling 

numerous factors and their combined activities result in well-aligned ZnO nanowire arrays. In 

this study we report the synthesis of ZnO nanowires by the hydrothermal growth approach on 

Si (100) substrates coated with an Au film layer and a ZnO seed layer film. A comparative 

study was used to determine the most suitable seed layer deposition technique for the 

synthesis of ZnO nanowires. Sol-gel spin coating and the RF cylindrical magnetron 

sputtering techniques were compared. The effect of Au film layer thickness and crystal 

orientation on the morphology and alignment of the synthesized ZnO nanowires were also 

assessed. The ZnO seed layers were characterized by atomic force microscopy (AFM) and 

ellipsometry. ZnO nanowires were characterized by scanning electron microscopy (SEM), 

energy-dispersive x-ray spectroscopy (EDS), transmission electron microscopy (TEM) and 

X-ray diffraction (XRD). 

 

Materials and Methods 

Preparation of silicon wafers 

Silicon (100) wafers were cut into 1 x 1 cm sizes and sonicated for 10 min in acetone, 

followed by 10 min in absolute ethanol and 10 min in distilled H2O. The wafers were dried 

under nitrogen gas and placed on a hot plate at 110 °C for 5 min and then immersed in 40 % 

(v/v) hydrofluoric acid for 30 sec to enhance bonding between the Si and Au atoms. The 

wafers were then rinsed in distilled H2O, dried under nitrogen gas and heated on a hot plate as 
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before, and placed in an Edwards S150B sputter coater (Edwards, West Sussex, UK). A 

40 nm Au film layer was sputtered onto the silicon wafers at 1.5 kV and 20 mA, under 

vacuum (2 x 10
-1

 mbar) in the presence of argon. 

 

Deposition of the ZnO seed layers 

The gold-plated Si wafers were cleaned by rapid immersion in absolute ethanol to remove 

surface impurities, dried under nitrogen gas and placed on a hot plate at 110 °C for 5 min. 

ZnO seed layers were deposited by the sol-gel spin coating or the RF cylindrical magnetron 

sputtering techniques. The sol-gel spin coating technique was performed as follows: zinc 

acetate dehydrate was dissolved in a mixture of 2-methoxyethanol and monoethanolamine at 

25 °C. The concentration of zinc acetate was 0.75 M and the molar ratio of 

monoethanolamine to zinc acetate was 1:1. The solution was stirred for 1 h at 60 °C and 25 µl 

was placed onto the gold-plated Si wafers and spun in a Laurell WS-400-6NPP spin coater 

(Laurell Technologies, Pennsylvania, USA) at 3000 rpm for 30 sec. After spin-coating, the 

wafers were baked at 200 °C for 5 min on a hot plate to evaporate the solvent and remove the 

residual organic components. The procedure was repeated up to six times. The ZnO seed 

layers were then annealed in air at 700 °C for 10 min. 

With the RF cylindrical magnetron sputtering technique, ZnO was deposited under 2 x 

10
-2

 mbar pressure in the presence of 60 % oxygen and at 100 W. The deposition time varied 

from 1 to 6 min. 

 

Effect of Au thickness on the growth of ZnO nanowires 

To determine the effect Au film layer thickness has on the growth of ZnO nanowires 

synthesized using the hydrothermal growth approach, Au film layers of different thicknesses 

were used. Silicon wafers were prepared as before. However, after etching with hydrofluoric 

acid, the wafers were sputtered with Au using an Edwards S150B sputter coater, as described 

before, to yield layers of 20, 40 and 60 nm in thickness. The ZnO seed layers were deposited 

for 3 min using the RF cylindrical magnetron sputtering technique under 2 x 10
-2

 mbar 

pressure in the presence of 60 % oxygen and at 100 W. 
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Effect of Au crystal orientation on the growth of ZnO nanowires 

To determine the effect of Au crystal orientation on the growth of the ZnO nanowires, single 

and polycrystalline Au film layer were used. Silicon wafers were prepared as described 

before, and sputtered with a single crystalline Au film layer (40 nm) by an Edwards S150B 

sputter coater as described above or a 40 nm polycrystalline Au film layer by the 

hydrothermal evaporation method. In the latter, the chamber was evacuated to 2 x 10
-5

 mbar 

and the thickness of the Au film layer was controlled using a QCM sensor (Sigma 

Instruments, Colorado, USA). ZnO seed layers were deposited for 3 min using the RF 

cylindrical magnetron sputtering technique under 2 x 10
-2

 mbar pressure in the presence of 

60 % oxygen and at 100 W. 

 

Synthesis of ZnO nanowires 

ZnO nanowires were synthesized using the hydrothermal growth method. The gold-plated Si 

wafers coated with a ZnO seed layer were placed in a solution of 0.01 M zinc nitrate 

hexahydrate [Zn(NO3)2·6H2O] and 0.01 M hexamethylenetetramine [C6H12N4] in distilled 

H2O for 7 h in an oven at 90 °C. The wafers were then washed with distilled water to remove 

residual salts and amino complexes, dried under nitrogen gas and placed on a hotplate at 

110 °C for 5 min. The wafers were then baked at 350 °C for 30 min. 

 

Characterization of ZnO nanowires 

A Nanosurf AFM Easyscan 2 (Nanosurf Inc., California, USA) was used to characterize the 

surface topology and to determine the surface roughness of the ZnO seed layers deposited by 

the sol-gel spin coating and RF cylindrical magnetron sputtering techniques. A Woollam J.A. 

M-2000 variable angle spectroscopic ellipsometer with a rotating analyser, VASE (J.A. 

Woollam Co. In., Nebraska, USA), was used to determine the surface thickness of the 

deposited ZnO seed layer films. The ellipsometric angles  and  were obtained for variable 

incidence angles by measuring the complex Fresnel reflection coefficients rp and rs as 

indicated in equation 1(Madsen et al., 2011). 

(1) 
 ie

s
r

p
r

)tan(
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Measurements were obtained in the range of 10-500 nm at room temperature for an 

angle of incidence of 65°. The films were regarded as homogeneous material with film 

thickness modelled using a Cauchy model.
 
The experimental data was fitted to obtain the 

optical functions of the blends using a Lorentz model. Model parameters were obtained by 

minimizing the error function which is defined by the following equation (Jellison, 1993). 

(2) 

 

 

Where MSE is the mean square error, exp, Δexp are the measured values and cal, Δcal 

are the calculated values, N is the number of wavelengths at which measurements were 

performed, and M is the number of parameters used in the fit. 

The surface morphology, diameter and density of the synthesized ZnO nanowires were 

evaluated using a FEI Nova NanoSEM 230, equipped with a TLD detector (FEI, Oregon, 

USA). The purity and elemental composition of the ZnO nanowires were analysed by energy-

dispersive x-ray spectroscopy (EDS) using a FEI Nova NanoSEM 230, equipped with an 

X/Max Oxford energy-dispersive x-ray (EDX) detector (Oxford Instruments, Oxfordshire, 

UK) with a detector area of 20 mm
2
. EDS spectrums were analysed using INCA software 

(Inca Software, Berkshire, UK). 

TEM micrographs were collected with a FEI Tecnai G
2
 F20 TEM (FEI, Oregon, USA), 

of which the LaB6 filament was operated at an accelerating voltage of 200 kV. Selected area 

electron diffraction (SAED) patterns were collected on a Philips Tecnai TF20 TEM (FEI, 

Oregon, USA), equipped with a field emission gun and operated at an accelerating voltage of 

200 kV. High resolution transmission electron microscopy (HRTEM) images were obtained 

to analyse the crystal structure of the ZnO nanowires and indicate whether the axial growth is 

along the [0001] direction. The mean length and wall diameter of the ZnO nanowires were 

also determined using TEM micrographs. For this purpose ZnO nanowires were scratched off 

the substrate surface, dissolved in absolute ethanol and ultrasonicated for 10 sec. A drop of 

the liquid was placed on a Cu grid of which the back was covered with a carbon film layer. 

The samples were allowed to air dry prior to analysis. 
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The ZnO nanowires and Au film layers crystal structures and phase compositions were 

determined by XRD using a Bruker AXS D8 Advance X-ray diffractometer operated in 

locked coupled mode (Bruker AXS, Frankfurt, Germany). The instrument was equipped with 

a Vantec-1 position sensitive detector optimized for Cu-Kα radiation with λ= 1.5406 Å. The 

X-ray tube was operated at 40 mA and 40 kV and the measurements were recorded at a 

scanning rate of 0.5 sec/step with a step size of 0.014° in a for 2θ range extending from 

31.28° to 149.3°. 

 

Results and Discussion 

Seed layer deposition 

Surface topology images of the ZnO seed layers deposited by the sol-gel spin coating and RF 

cylindrical magnetron sputtering techniques are shown in Fig. 1. ZnO seed layer films 

deposited by the RF cylindrical magnetron sputtering technique for 1 to 6 min [Fig. 1 (a-f)] 

resulted in mean ZnO seed grain diameters of 25, 33, 49, 54, 62 and 72 nm, respectively, and 

a corresponding root-mean-square surface roughness of 14, 13, 13, 12, 11 and 9 nm. The ZnO 

seed layer films deposited by the sol-gel spin coating technique for 1 to 6 coats [Fig. 1 (g-l)] 

resulted in mean ZnO seed grain diameters of 34, 58, 87, 96, 112 and 133 nm, respectively, 

and a corresponding root-mean-square roughness of 24, 38, 54, 68, 84 and 98 nm. In both 

seed layer deposition techniques an increase in ZnO deposition resulted in an increase in the 

ZnO seed grain diameter, which is consistent with previous reported results (Zhang et al., 

2006). An increase in ZnO deposition using the sol-gel spin coating technique resulted in an 

increase in surface roughness. However, in the case of the RF cylindrical magnetron 

sputtering technique a decrease in surface roughness was observed. The thickness of the ZnO 

seed layers deposited by the RF cylindrical magnetron sputtering technique for 1 to 6 min 

was 14, 25, 39, 59, 78 and 92 nm, respectively. The sol gel spin technique with 1 to 6 coats 

produced ZnO layers with a thickness of 49, 98, 147, 194, 248 and 301 nm, respectively. 

High magnification top SEM images of ZnO nanowires synthesized on ZnO seed layers 

deposited by both deposition techniques revealed the effect an increase in the ZnO seed layer 

thickness had on the mean diameter of the synthesized nanowires [Fig. 2 and 3 (a-f)]. An 

increase in the ZnO seed layer thickness resulted in an increase in the mean diameter of the 

synthesized ZnO nanowires. Low magnification 45° tilted SEM images [Fig. 2 and 3 (g-l)] 
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indicated that the ZnO nanowires were uniformly spread and mainly c-axis oriented. These 

results correspond with that previously reported by Xiao and Kuwabara (2005). All ZnO seed 

layers deposited by both deposition techniques resulted in hexagonal shaped ZnO nanowires 

[Figs. 2 and 3 (a-f)]. 

The mean diameter of the synthesized ZnO nanowires was calculated by determining 

the relative diameter abundance of 500 ZnO nanowires. The mean diameter of ZnO 

nanowires synthesized on a seed layer deposited by the RF cylindrical magnetron sputtering 

technique for 1 to 6 min was 26 nm (σ= 2.53), 36 nm (σ= 2.44), 35 nm (σ= 3.42), 45 nm 

(σ= 2.62), 46 nm (σ= 2.07) and 83 nm(σ= 4.05), respectively. An F-test was conducted to 

determine whether the means of the samples were normally distributed. The Kruskal-Wallis 

test was done to determine whether the samples originated from the same distribution. 

ANOVA statistical test was conducted to test whether the means of the samples of the 

different groups were equal. Statistical analysis indicated that the ZnO nanowire diameters 

followed a normal distribution which differed significantly in their average and standard 

deviation for deposition times between 1 and 6 min. However, deposition between 2 and 

3 min, and 4 and 5 min were statistical similar ZnO nanowire diameters. The nanowire 

densities of the respective sputtering times were 48, 75, 120, 91, 49 and 43 per µm
2
. The 

density of the nanowires increased up to 3 min of deposition, followed by a steady decrease. 

The initial increase is as a result of disoriented ZnO nanowires becoming more oriented. The 

decrease is due to an increase in the mean ZnO nanowire diameter. These results correspond 

with previously reported results, i.e. increasing the sputtering time results in an increase in 

the mean ZnO seed grain diameter, and subsequently an increase in the average diameter of 

the synthesized ZnO nanowires (Song and Lim, 2007). 

A mean diameter of 40 nm (σ= 8.14), 65.6 nm (σ= 8.74), 64 nm (σ= 4.46), 63 nm 

(σ= 4.75), 84 nm (σ= 4.44) and 79 nm (σ= 8.7) was recorded for ZnO nanowires synthesized 

on seed layers deposited by the sol-gel spin coating technique for 1-6 spin coats, respectively. 

Statistical analysis concluded that the ZnO nanowire diameters followed a normal 

distribution which differed significantly in their average and standard deviation for 1-6 spin 

coats, however were statistically similar for 2-4 spin coats, and 5-6 spin coats. These results 

correspond with previously reported results (Kenanakis et al. ; Wang et al., 2008). The ZnO 

nanowire densities recorded with sol-gel spin coating were 123, 75, 68, 57, 49 and 44 

per µm
2
 for 1 to 6 spin coats, respectively. The nanowire density decreased continuously as 

the mean ZnO nanowire diameter increased. RF cylindrical magnetron sputtering resulted in 
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a higher abundance of the mean ZnO nanowire diameter as appose to sol-gel spin coating 

technique which resulted in a more diverse ZnO nanowire diameter range. Energy dispersive 

spectroscopy analysis of the individual ZnO nanowires synthesized on both types of ZnO 

seed layers indicated that Zn (47-49 %) and O (53-51 %) elements were nearly stoichiometric 

with a ratio of 1:1. 

Transmission electron microscopy images of ZnO nanowires synthesized on seed layers 

deposited by the RF cylindrical magnetron sputtering [Fig. 4 (a-f)] and the sol-gel spin 

coating technique [Fig. 4 (g-l)], with corresponding HRTEM images and SAED patterns, 

where used to study the crystallinity and crystal growth planes of the synthesized ZnO 

nanowires. Transmission electron microscopy and SEM observations indicated that an 

increase in the ZnO seed layer thickness by either deposition technique resulted in an increase 

in the mean diameter of the synthesized ZnO nanowires. The corresponding HRTEM images 

of the synthesized ZnO nanowires by both deposition techniques revealed a major lattice 

spacing of 0.28 nm, which corresponds to the distance of the (002) crystal plane of wurtzite 

ZnO. Additional lattice spacings for seed layers deposited by the RF cylindrical magnetron 

sputtering technique were 0.37 nm and 0.44 nm for 1 min deposition, which corresponds to 

the crystal planes (102) and (103) respectively; 0.26 nm for 5 min deposition, corresponding 

to crystal plane (100); and 0.48 nm for 6 min deposition, corresponding to crystal plane (105) 

of wurtzite ZnO. The HRTEM image also confirmed the perfection of the atomic 

arrangements within the ZnO nanowires. The corresponding SAED patterns of individual 

ZnO nanowires synthesized on both types of seed layer films revealed that the ZnO 

nanowires have a single-crystal hexagonal wurtzite structure. By indexing the diffraction 

patterns the main axis of the ZnO nanowires equivalent to the growth direction can be 

determined. All ZnO nanowires synthesized on both types of seed layer films grew along the 

[0001] direction. The average length of ZnO nanowires synthesized for a growth period of 

7 h was estimated by using a TEM micrograph which contained ZnO nanowires attached to 

the substrate surface [Fig. 5 a-c]. The average length of ZnO nanowires were between 1.6 and 

1.7 µm for ZnO nanowires synthesized on both types of ZnO seed layers. 

The XRD patterns of ZnO nanowires produced on ZnO seed layers deposited by both 

deposition techniques were used to assess which seed layer film results in the most c-axis 

(Table 1) oriented ZnO nanowires by looking at the at the relative abundance of ZnO 

diffraction peaks other than the 002 peak. Since the surface of the sample lies in the 

scattering plane of the instrument, a set of perfectly aligned nanowires standing perpendicular 
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to that surface would result in a single diffraction peak, e.g. the 002 peak. Those nanowires 

standing oblique to the surface will, however, contribute to diffraction peaks other than the 

002 peak. Hence, the relative distribution of ZnO diffraction peaks will indicate which 

samples present the highest orientation of nanowires along the [0001] direction. The ZnO 

diffraction peaks that did not overlap with either the gold layer or the Si substrate peaks are 

listed. The XRD patterns of all ZnO nanowires synthesized on both seed layer films were 

indexed using the JCPDS database and corresponded to hexagonal ZnO. The peak intensities 

of all XRD patterns were normalized with respect to the 002 reflection. The XRD patterns 

indicated that an increase in the ZnO seed layer thickness, using the RF cylindrical 

magnetron sputtering technique, resulted in a decrease in the intensity of crystal planes other 

than the (002) plane, which indicates that an increase in the ZnO seed layer thickness 

improved the c-axis orientation of the synthesized ZnO nanowires. The XRD patterns of ZnO 

nanowires synthesized on seed layers deposited by the sol-gel spin coating technique 

indicated that increasing the ZnO seed layer thickness resulted in an increase in the intensity 

of other crystal planes other than the (002) plane, which indicates a worsening of the c-axis 

alignment. This may be due to the increase in the surface roughness of the seed layers 

deposited by the sol-gel spin coating technique. As increasing the seed layer thickness by the 

RF cylindrical magnetron sputtering technique decreased the surface roughness and improved 

the c-axis orientation of the ZnO nanowires. This may be due to surface impurities, as 

increased deposition by the sol-gel spin coating technique results in the increase in exposure 

to impurities. Results previously reported show that smoother seed layer surfaces result in 

more aligned nanowires as opposed to rougher surfaces (Erdélyi et al., 2011). Findings by 

Wang et al. (2008) and Zhang (2010) indicated that an increase in the spin coating time of the 

sol-gel spin coating technique results in worsening of the seed layer quality, and subsequently 

gives rise to disoriented nanowires. However, the presence of strong 002 diffraction peaks for 

all ZnO nanowires synthesized on seed layers deposited by both deposition techniques 

confirmed that the ZnO nanowires were preferentially oriented along the [0001] direction. 

Results obtained by XRD, SEM and TEM have shown that the ZnO nanowires are 

vertically aligned and are preferentially oriented along the [0001] direction. Increasing the 

ZnO seed layer thickness by both deposition techniques resulted in an increase in the mean 

ZnO nanowire diameter. The RF cylindrical magnetron sputtering technique resulted in a 

higher abundance of mean ZnO nanowires compared to the sol-gel spin coating technique 

which resulted in more diverse ZnO nanowire diameters. Increasing the ZnO seed layer 
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thickness by the RF cylindrical magnetron sputtering technique improved the c-axis 

alignment. However, for the sol-gel spin coating technique a worsening of the c-axis 

alignment was observed, which may be due to the increase in surface roughness. Previous 

reports showed that smoother seed layer surfaces results in more aligned nanowires, as 

opposed to rougher surfaces (Erdélyi et al., 2011). These results show that the morphology 

and alignment of the ZnO nanowires depends on the quality of the deposited seed layer, 

corresponding to findings reported by Ladanov et al. (2013), Li et al. (2005), and Xiao and 

Kuwabara (2005). 

 

Au film layer thickness 

The effect of the Au film layer thickness on the growth of the ZnO nanowires was assessed 

by varying the Au film layer thickness from 20-60 nm. X-ray diffraction analysis indicated 

that a single crystalline Au (111) film layer was deposited using the Edwards sputter coater. 

The hexagonal shape of the synthesized ZnO nanowires was clearly visible in high 

magnification top SEM images [Fig. 6 (a-c)]. The ZnO nanowires were uniformly distributed 

over a large surface area and were mainly c-axis oriented, as shown with the 45° tilted SEM 

images taken at low magnification [Fig. 6 (d-f)]. An increase in the Au (111) film layer 

thickness resulted in a decrease in the mean diameter of the synthesized ZnO nanowires. The 

mean diameter for the ZnO nanowires synthesized on a 20, 40 and 60 nm Au (111) film was 

48 nm (σ= 19), 32 nm (σ= 3.35) and 27 nm (σ= 1.93), respectively. Statistical analysis 

concluded that the ZnO nanowire diameters followed a normal distribution and that the 

average diameter and standard deviation differed significantly for ZnO nanowires synthesized 

on different Au (111) film layer thicknesses. The nanowire densities were 68, 112 and 184 

per µm
2
, respectively. An increase in the Au (111) film layer thickness resulted in an increase 

in the nanowire density, which is due to the decrease in the mean ZnO nanowire diameter. 

Energy dispersive spectroscopy analysis of individual ZnO nanowires synthesized on varying 

Au film layer thicknesses showed that the elements Zn (48-50 %) and O (50-52 %) were 

nearly stoichiometric with a ratio of 1:1. 

The ZnO crystallinity and growth direction of nanowires synthesized on an Au (111) 

film layer of 20, 40 and 60 nm thick were studied using TEM images [Fig. 7 (a-c)], HRTEM 

images and SAED patterns. Transmission electron microscopy images of the ZnO nanowires 

corresponded with SEM images, showing that the mean diameter of the nanowires decreased 
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with an increase in Au (111) film layer thickness. The HRTEM images revealed that the 

major lattice spacing is 0.28 nm, which corresponds to the (002) crystal planes of wurtzite 

ZnO. Additional lattice spacing of 0.26 nm was observed for 60 nm Au (111) film layer, 

which corresponds to the (100) crystal plane of wurtzite ZnO. The HRTEM images 

confirmed the perfection of the atomic arrangement within the ZnO nanowires. 

The corresponding SAED patterns revealed that the ZnO nanowires were single 

crystalline and have a wurtzite structure. The indexed diffraction patterns of the ZnO 

nanowires indicated that the growth direction of all ZnO nanowires is along the [0001] 

direction. XRD patterns of the ZnO nanowires synthesized on varying Au (111) film layer 

thicknesses are listed in Table 2. The XRD spectra of all ZnO nanowires were indexed to 

hexagonal ZnO, which correlates with SEM observations. X-ray diffraction spectra were 

normalized with respect to the 002 reflection. An increase in the Au (111) film layer 

thickness resulted in an increase in the intensity of other crystal planes other than the (002) 

plane, indicating a worsening in the c-axis alignment of the ZnO nanowires. The presence of 

strong 002 diffraction peaks for all ZnO nanowires confirmed that the synthesized ZnO 

nanowires were preferentially oriented perpendicular to the substrate surface. Based on data 

obtained from SEM, TEM and XRD the ZnO nanowires were vertically aligned and 

preferentially oriented along the [0001] direction. Increasing the Au (111) film layer 

thickness resulted in a decrease in the mean ZnO nanowire diameter and worsening of the c-

axis alignment.  

These results show that the presence of an Au film layer beneath the ZnO seed layer 

affects the morphology of the synthesized ZnO nanowires. Results recently reported showed 

that the growth of ZnO nanowires are effected by a metal underlayer (Brown et al., 2013). 

Brown et al. (2013) showed that the presence of an Au film layer leads to the decrease in the 

average nanowire diameter, which is due to a faster initial growth rate. It is speculated that 

the presence of a metal film layer inhibits nanowire growth by the presence of metal cations 

which causes fluctuations in the local pH and/or leading to defect formation in the crystal 

lattice (Brown et al., 2013; Chew et al., 2012). 

Au film layer crystal orientation 

Gold deposited by the sputtering technique using the Edwards S150B sputter coater resulted 

in single crystalline Au (111) film layers, whereas Au deposited by the hydrothermal 

evaporation method resulted in polycrystalline Au films layers [(111) 77%, (200) 7%, (220) 
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8%, and (311) 8%], as determined by XRD. The hydrothermal evaporation method resulted 

in a polycrystalline film layer due to the aqueous based method of deposition which 

ultimately results in poor orientation. Top high magnification SEM images [Fig. 8 (a-b)] of 

Au (111) and polycrystalline Au film layers indicated that hexagonal shaped ZnO nanowires 

were synthesized. Low magnification, 45° tilted SEM images [Fig. 8 (c-d)], revealed 

uniformly distributed, mainly c-axis oriented ZnO nanowires over a large surface area. The 

mean diameters for ZnO nanowires synthesized on polycrystalline Au and Au (111) film 

layers were 57 nm (σ= 6) and 35 nm (σ= 2), respectively. Statistical analysis concluded that 

the ZnO nanowire diameters were normally distribution and differed significantly with 

respect to their average diameter and standard deviation. Polycrystalline Au resulted in an 

increase in the mean ZnO nanowire diameter, whereas single crystalline Au (111) resulted in 

a decrease in the mean diameter. The nanowire density was 120 and 79 per µm
2
 for Au (111) 

and polycrystalline Au film layers, respectively. A single crystalline film resulted in higher 

densities of ZnO nanowires due to smaller diameters as compared to a polycrystalline film 

layer. Energy dispersive spectroscopy analysis of the individual ZnO nanowires indicated that 

the elements Zn (49-50 %) and O (50-51 %) were nearly stoichiometric with a ratio of 1:1. 

TEM images of synthesized ZnO nanowires [Fig. 9 (a-b)] corresponded with SEM 

images obtained, i.e. the mean diameter of the nanowires decreased with improvement in the 

single crystallinity of the Au film layer. Corresponding HRTEM images of the ZnO 

nanowires revealed a major lattice spacing of 0.28 nm, which corresponds to the (002) crystal 

plane. Indexing the diffraction patterns of the corresponding SEAD patterns indicated that the 

growth direction of all the synthesized ZnO nanowires was along the [0001] direction. The 

XRD pattern of the synthesized ZnO nanowires (Table 3) indicated that the crystal 

orientation of the gold film layer had no effect on the c-axis alignment of the synthesized 

ZnO nanowires. 

No major differences in the presence of planes other than the (002) plane was observed. 

The presence of strong 002 diffraction peaks for all ZnO nanowires confirmed that the 

synthesized ZnO nanowires were preferentially oriented along the [0001] direction. Based on 

SEM, TEM and XRD results the ZnO nanowires were vertically aligned and preferentially 

oriented along the [0001] direction. Polycrystalline Au film layers resulted in an increase in 

the mean ZnO nanowire diameter as compared to single crystalline Au (111) film layers, and 

the Au film layer crystal orientation had no effect on the c-axis alignment of the synthesized 

ZnO nanowires. 
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Conclusion 

Numerous factors need to be taken into account when synthesizing ZnO nanowires. An 

increase in ZnO seed layer thickness increased the mean diameter of the synthesized ZnO 

nanowires. When the RF cylindrical magnetron sputtering technique was used, an increase in 

the ZnO seed layer thickness decreased the reflection intensity of other ZnO crystal planes, 

excluding the (002) plane. This suggested an improvement in the ZnO nanowire c-axis 

alignment. However, when the sol-gel spin coating technique was used, an increase in the 

ZnO seed layer thickness increased the presence of other ZnO crystal planes, excluding the 

(002) plane. This suggested that the c-axis alignment of the ZnO nanowires worsened. The 

RF cylindrical magnetron sputtering technique resulted in a higher abundance of the mean 

ZnO nanowire diameter compared to the sol-gel spin coating technique which results in a 

more diverse ZnO nanowire diameter. An increase in the Au (111) film layer thickness 

resulted in a decrease in the mean ZnO nanowire diameter and an increase in the presence of 

other ZnO crystal planes, excluding the (002) plane. This suggested that the c-axis alignment 

worsened with the increase in Au (111) film layer thickness. Polycrystalline Au film layers 

increased the mean ZnO nanowire diameter as appose to single crystalline Au (111) film 

layers. Gold crystal orientation had no effect on the c-axis orientation of the synthesized ZnO 

nanowires. The optimal ZnO nanowire structure in a transducer is one with the smallest 

diameter and perfectly orientated. These findings show the importance of the intial quality of 

the ZnO seed layer. The seed layer deposition technique, RF magnetron sputtering produces a 

more uniform ZnO seed layer with seed grains of similar sizes, as opposed to the sol-gel spin 

coating technique. Metal surfaces beneath the ZnO seed layer effects the growth of ZnO 

nanowires. The quality of the metal film layer, in turn, effects the quality of the deposited 

ZnO seed layer and, hence, the quality of the synthesized ZnO nanowires. 
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Table 1. XRD patterns of ZnO nanowires synthesized on substrates covered with a 40 nm Au 

(111) film layer, and a ZnO seed layer film deposited by the RF cylindrical magnetron 

sputtering technique or the sol-gel spin coating technique for 1-6 min or 1-6 spin coats, 

respectively. 

hkl 100 002* 101 102 110 103 004 203 114 105 213 006 

RF cylindrical magnetron sputtering                 

1 min 1.05 100 5.80 4.71 3.64 7.41 2.56 0.64 0.81 2.17 16.58 0.85 

2 min 0.09 100 0.35 0.71 1.05 1.36 2.85 0.12 0.11 0.77 0.91 0.66 

3 min 0.05 100 0.31 0.5 0.28 0.61 2.85 0.06 0.05 0.28 0.67 0.61 

4 min 0.09 100 0.24 0.49 0.57 0.65 2.01 0.07 0.05 0.33 0.37 0.67 

5 min 0.06 100 0.14 0.59 0.51 0.56 2.71 0.09 0.06 0.32 0.27 0.66 

6 min  0.06 100 0.07 0.53 0.43 0.22 2.87 0.09 0.05 0.33 0.04 0.67 

Sol-gel spin coating                     

Seed 1 0.07 100 0.27 0.50 0.6 0.27 2.76 0.07 3.15 0.19 1.06 0.51 

Seed 2 0.38 100 0.9 0.73 0.75 0.95 2.53 0.13 4.62 0.39 0.3 0.58 

Seed 3 1.38 100 3.22 2.01 1.76 0.94 2.83 0.29 3.14 0.23 0.32 0.68 

Seed 4 1.31 100 2.53 2.12 2.02 0.94 1.79 0.32 1.56 0.26 0.38 0.63 

Seed 5 1.83 100 2.83 2.89 3.87 2.75 1.51 0.45 0.45 0.45 0.41 0.61 

Seed 6 2.15 100 3.07 2.34 2.87 2.88 2.41 0.57 0.15 0.54 0.43 0.60 

*XRD spectrums are normalized with respect to the (002) crystal plane. 

 

Table 2. XRD patterns of ZnO nanowires synthesized on substrates covered with a 20, 40 or 

60 nm Au (111) film layer, and a ZnO seed layer film deposited by the RF cylindrical 

magnetron sputtering technique for 3 min. 

hkl 100 002* 101 102 110 103 004 203 114 105 213 006 

Au thickness                       

20 nm 0.98 100 5.31 4.25 2.18 11.51 2.99 0.59 0.89 2.987 0.39 0.66 

40 nm  1.34 100 8.52 6.19 2.36 14.06 3.03 1.14 2.56 4.04 2.3 0.82 

60 nm 1.99 100 10.91 8.76 11.24 17.34 2.66 1.34 3.19 3.98 4.77 0.86 

*XRD spectrums are normalized with respect to the (002) crystal plane. 
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Table 3. XRD patterns of ZnO nanowires synthesized on substrates covered with a 40 nm Au 

(111) or 40 nm polycrystalline Au film, and a ZnO seed layer film deposited by the RF 

cylindrical magnetron sputtering technique for 3 min. 

hkl 100 002* 101 102 110 103 004 203 114 105 213 006 

Au orientation                       

Au (Poly) 0.07 100 0.24 0.21 0.2 1.39 2.71 0.04 0.07 0.99 0.09 0.63 

Au (111) 0.05 100 0.31 0.5 0.28 0.06 0.28 0.06 0.03 0.28 0.67 0.61 

*XRD spectrums are normalized with respect to the (002) crystal plane. 
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Fig. 1. AFM images of the surface topology of ZnO seed layer films deposited by the RF 

cylindrical magnetron sputtering technique for 1-6 min deposition (a-f, respectively) and the 

sol-gel spin coating technique for 1-6 spin coats (g-l, respectively). 
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Fig. 2. High magnification top FEI-SEM images of vertically aligned ZnO nanowires grown 

using the hydrothermal growth method on substrates containing a 40 nm Au (111) film layer 

covered with a ZnO seed layer film deposited by the RF cylindrical magnetron sputtering 

technique for 1-6 min deposition (a-f, respectively). Low magnification tilted (45°) FEI-SEM 

images of the different deposition times are shown in g-l, respectively. 
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Fig. 3. High magnification top FEI-SEM images of vertically aligned ZnO nanowires grown 

using the hydrothermal growth method on substrates containing a 40 nm Au (111) film layer 

covered with a ZnO seed layer film deposited by the sol-gel spin coating technique for 1-6 

spin coats (a-f, respectively). Low magnification tilted (45°) FEI-SEM images of the 

different spin coating times are shown in g-l, respectively. 
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Fig. 4. TEM images of ZnO nanowires synthesized on substrates covered with a 40 nm Au 

(111) film layer covered with a ZnO seed layer film deposited by the RF cylindrical 

magnetron sputtering technique for 1-6 min (a-f, respectively) and the sol-gel spin coating 

technique for 1-6 spin coats (g-l, respectively). Corresponding HRTEM images and SAED 

patterns are shown. 
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Fig. 5. TEM images of ZnO nanowires attached to the substrate surface which were grown on 

substrates containing a 40 nm Au (111) film layer covered by a ZnO seed layer film 

deposited for (a) 1 min by the RF cylindrical magnetron sputtering technique, (b) 1 spin coat 

by the sol-gel spin coating technique and (c) 3 min by the RF magnetron sputtering 

technique. 

 

 

Fig. 6. High magnification top FEI-SEM images of vertically aligned ZnO nanowires grown 

by the hydrothermal growth approach on substrates covered with either (a) 20, (b) 40 or (c) 

60 nm of Au (111) that were covered by a ZnO seed layer film deposited by the RF 

cylindrical magnetron sputtering technique for 3 min; (d-f) are low magnification tilted (45°) 

FEI-SEM images, respectively. 
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Fig. 7. TEM images of ZnO nanowires synthesized on substrates covered with either (a) 20, 

(b) 40 or (c) 60 nm of Au (111) film layers that were covered by a ZnO seed layer film 

deposited by the RF cylindrical magnetron sputtering technique for 3 min. Corresponding 

HRTEM images and SAED patterns are shown. 

 

 

Fig. 8. High magnification top FEI-SEM images of vertically aligned ZnO nanowires grown 

by the hydrothermal growth approach on substrates covered with 40 nm of either (a) 

polycrystalline Au or (b) Au (111) that were covered by a ZnO seed layer film deposited by 

the RF cylindrical magnetron sputtering technique for 3 min, c and d are low magnification 

tilted (45°) FEI-SEM images, respectively. 
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Fig. 9. TEM images of ZnO nanowires synthesized on (a) polycrystalline Au or (b) Au (111) 

that were covered by a ZnO seed layer film deposited by the RF cylindrical magnetron 

sputtering technique for 3 min. Corresponding HRTEM images and SAED patterns are 

shown. 
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layers using self-assembled monolayers 

  

Stellenbosch University  http://scholar.sun.ac.za



 
 

91 
 

Immobilization of lysozyme to Au film layers using self-assembled 

monolayers 

D.P. Neveling, L.M.T. Dicks 

Department of Microbiology, University of Stellenbosch, Private Bag X1, Matieland 7602, 

Stellenbosch, South Africa 

 

Abstract 

Lysozyme was immobilized onto Au film layers by using self-assembled monolayers 

(SAMs). Combinations of alkanethiols (3-mercaptopropionic acid, 11-mercaptoundecanoic 

acid, 1-nonanethiol and 1-propanethiol) and dialkyl disulphides [bis-(10-carboxydecyl) 

disulphide] were compared to select the SAM that forms the strongest binding with primary 

amino groups of lysozyme. Lysozyme adhered strongly to 3-mercaptopropionic acid, but not 

to 11-mercaptoundecanoic acid/1-nonanethiol, as revealed by atomic force microscopy 

(AFM) and Fourier transform infrared (FTIR) spectroscopy. Staining with BacLight
TM

 

indicated that cells of Micrococcus luteus were killed when exposed to the immobilized 

lysozyme surface. Immobilized lysozyme may have lost its biological activity, however, the 

immobilized structure was not denatured as antibody recognition occurred. This suggested 

that killing of the cells was most probably inflicted by the gold film layer. 
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Introduction 

The most challenging step during the development of biosensors is the immobilization of 

biomolecules in such a manner that they are positioned close to the surface, whilst retaining 

biological activity (Fransconi et al., 2010; Gooding and Hibbert, 1999; Rusmini et al., 2007; 

Wong et al., 2009). Proteins are easily denatured or inactivated during immobilization, 

mostly due to changes in tertiary structure (Jonkheijm et al., 2008; Rusmini et al., 2007; 

Sarma et al., 2009; Wong et al., 2009). Moreover, proteins adhere to surfaces through non-

specific interactions, i.e. electrostatic interactions, hydrogen bonding and hydrophobic 

interactions (Mrksich, 2005). Self-assembled monolayers (SAMs) may shield proteins from 

direct contact with solid surfaces and thus reduce the possibility of denaturation (Katz et al., 

1994). 

Self-assembly is a process which involves the spontaneous arrangement of atoms and 

molecules in an ordered and functional structure, similar to the creation of life from basic 

building blocks (Samanta and Sarkar, 2011). Biological membranes, cellular structures and 

viruses are examples of sophisticated self-assembly systems (Vericat et al., 2010). 

Constuction of a SAM is the most elegant way of creating an organic thin film with specific 

surface properties onto which biomolecules can be immobilized (Flink et al., 2000; Gooding 

and Hibbert, 1999; Love et al., 2005; Ulman, 1996). Some control over the orientation and 

distribution of the immobilized protein is gained by this approach. The affinity of thiols for 

some metal surfaces (i.e. Au, Ag, Pt and Cu), particularly gold, makes alkanethiols ideal 

absorbates (Gooding and Hibbert, 1999) for SAMs. Numerous surface-active organosulphur 

compounds have been studied, e.g. alkanethiols, arenethiols, alkanedithiols, arenedithiols, 

dialkyl disulphides and dialkyl sulphides. Alkanethiols and dialkyl disulphides form similar 

structures. However, disulphides are less soluble and often lead to the formation of 

multilayers, whereas dialkyl sulphides form a weaker bond with gold in comparison to thiols 

and disulphides (Fransconi et al., 2010). 

Self-assembled monolayer formation occurs in two steps, i.e. an initial fast step of 

absorption, followed by a slower step of monolayer organization (Godin et al., 2004; 

Schwartz, 2001). Initially, a small molecular density on the surface forms either a disordered 

mass of molecules, or an ordered two-dimensional horizontal phase (Schreiber, 2000; 

Schwartz, 2001). As more molecules absorb to the surface, the molecules start to form a 

three-dimensional crystalline or semi-crystalline structure on the surface (Schwartz, 2001; 
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Vos et al., 2003). The head groups assemble together, while the tail groups assemble far from 

the surface. Areas of close-packed molecules nucleate and grow until the surface of the 

substrate is covered in a single monolayer. A number of experimental factors affect the 

formation and the packing density of SAMs, i.e. the nature and surface roughness of the 

substrate (Hoogvliet et al., 2000), solvent used during assembly (Dannenberger et al., 1998), 

incubation temperature (Chen et al., 2000; Yamada et al., 2000), concentration and nature of 

the absorbate (Kim et al., 1993), immersion time (Kim et al., 1993) and the presence of 

oxygen (Lee et al., 1998). 

Cleanliness and crystallinity of the substrate plays an important role in determining the 

compactness of the monolayer, as bare metal tends to absorb organic substances which results 

in monolayer defects (Creager et al., 1992; Guo et al., 1994; Lee et al., 1998; Ron and 

Rubinstein, 1998; Tsuneda et al., 1999; Yang et al., 1995). Well-defined, smooth substrates 

like Au (111) bind alkanethiols stronger than Au (100), resulting in higher SAM density and 

regularity (Hou et al., 1998; Lee et al., 1998). For smoother substrates, the density of defects 

are lower due to fewer grain boundaries, step edges and other surface features that cause 

defects in SAMs (Leopold and Bowden, 2002). Defects in monolayers include missing rows, 

vacancy Au islands, molecular defects and disorder (Vericat et al., 2005). Various solvents 

can be used for SAM formation. However, monolayers formed by low polar solvents have 

poor orientation in comparison to those formed in high polar solvents such as ethanol (Bain et 

al., 1989b; Dannenberger et al., 1998; Mamum and Hahn, 2012; Schneider and Buttry, 1993; 

Yamada et al., 1999). Increasing the reaction temperature above that of room temperature 

decreases the chance of monolayer defect fromation (Kang et al., 2010; Korolkov et al., 

2010). At elevated temperatures the SAM domain and vacancy islands are larger, but the 

number of vacancy islands are less (Mamun and Hahn, 2012; Yamada et al., 2000). 

Low concentrations of absorbates in the reaction solution and a longer immersion time 

produce regular shaped SAMs, whereas high concentrations of absorbates at shorter 

immersion times produce irregular SAMs (Bain et al., 1989b; Bensebaa et al., 1997). The 

formation of well-assembled monolayers also depends on the purity of the absorbate, as 

thiolated precursor impurities lack functional head groups and compete with the molecule of 

interest for available binding sites. Van der Waals forces between the alkyl chains enhance 

the stability and order of the absorbates. Thus, more alkyl chains in the absorbate 

[HS(CH2)nX, where n ≥ 10] enhances the stability and regularity of the monolayer, whereas 

short chain lengths results in more molecular disorder (De Groot et al., 2007; Hong and Park, 
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2001; Nuzzo et al., 1987; Yue et al., 2008). The length of the aliphatic chain significantly 

influences the rate and extent of oxidation and desorption. Longer alkyl chain SAMs are 

more susceptible to oxidation (Wang et al., 2003). The presence of oxygen and the absence of 

light oxidizes thiolates and forms sulfonates (-SO
3-

) and sulfinates (-SO
2-

), which results in 

desorption of the SAM from the surface (Ron and Rubinstein, 1998; Wang et al., 2003). 

Combined SAMs is a result of co-adsorption of two different absorbates of similar 

dimension, but with different terminal functional groups (one reactive and one inert). 

Combined SAMs provides a method to immobilize molecular species with physical 

dimensions which would normally prevent a well-organized assembly (Gooding et al., 2003). 

By varying the composition of a combined SAM, the density of attachment points can be 

controlled and, hence, also the surface loading of the protein (Gooding and Hibbert, 1999). 

The ratio of the two dissimilar molecules is usually proportional to the ratio of the initial 

concentration of the absorbates (Bain et al., 1989a; Wasserman et al., 1989). 

Covalent attachment has the greatest potential for chemical conjugation, due to the 

stability of the bond (Fransconi et al., 2010; Samanta and Sarkar, 2011). The terminal 

functional groups of SAMs are often chemically modified to attach to biomoleclues. The 

enzyme either attaches to the SAM, or modified to contain thiol moieties that bind to the gold 

surface. The most common method to covalently attach proteins to surfaces involves the 

functionalization of SAM to form a reactive intermediate, which is then coupled to the 

biomolecule through specific amino acid side chain functional groups (Fransconi et al., 2010; 

Gooding and Hibbert, 1999). If the amino acid side chain functional group that is targeted for 

chemical conjugation is in high abundance (≥ 10 %) the protein is attached through numerous 

residues simultaneously. This restricts the proteins degree of conformational freedom and 

additionally increases the heterogeneity of the immobilized population (Fransconi et al., 

2010). 

Different organic reactions have been explored to modify terminal functional groups of 

SAMs. These include nucleophilic substitutions, esterification, acylation and nucleophilic 

addition (Sullivan and Huck, 2003). Despite the advantages of chemical conjugation, the 

orientation of the immobilized protein is significantly affected by the choice of chemical 

linkers used to create a reactive intermediate-SAM as well as the conjugation sites in the 

protein targeted for covalent bonding (Fransconi et al., 2010; Gooding and Hibbert, 1999; 

Samanta and Sarkar, 2011). Conjugation of proteins through covalent binding lacks 
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regiospecificity and, hence, the immobilized proteins may not be correctly oriented. In 

addition, the reactive site of the protein may be blocked by the immobilization procedure, 

resulting in the reduction or loss of protein activity (Fransconi et al., 2010; Rusmini et al., 

2007; Wong et al., 2009). 

During this study different absorbates were used to create SAMs on Au (111) film 

layers to determine which monolayer immobilizes lysozyme the best. The alkanethiol 

reagents used were 3-mercaptopropionic acid, 11-mercaptoundecanoic acid, 1-nonanethiol 

and 1-propanethiol. The dialkyl disulphide reagent was bis-(10-carboxydecyl) disulphide. 

Combinations of 3-mercaptopropionic acid/cysteamine, 3-mercaptopropionic acid/1-

propanethiol and 11-mercaptoundecanoic acid/1-nonanethiol were used to control the surface 

loading of the immobilized lysozyme. Self-assembled monolayers were reacted with 

chemical linking reagents to form intermediates reactive towards primary amino groups. Self-

assembled monolayers were characterized by AFM and FTIR spectroscopy. Immobilized 

lysozyme was characterized by AFM, FTIR spectroscopy, fluorescence microscopy and a 

BacLight
TM

 bacterial viability assay. 

 

Materials and Methods 

Substrate preparation 

Silicon (100) wafers were cut into 1 x 1 cm sizes and sonicated for 10 min in acetone, 

followed by sonication for 10 min in absolute ethanol and 10 min in distilled H2O. The 

wafers were dried under N2 and placed on a hot plate at 110 °C for 5 min. A 10 nm titanium 

(Ti) film layer was deposited by RF cylindrical magnetron sputtering at 2 x 10
-2

 mbar in the 

presence of 60 % argon at 50 V, - 400 V, 0.5 A, 100 W, 21 kHz and 100 W. 

Substrates were cleaned by immersion in absolute ethanol for 10 sec, dried under N2 

(99.9 %) and placed on a hot plate at 110 °C for 5 min. Substrates were then coated with a 

thin film of Au (20 nm), by using a Quorum sputter coater (Quorum Technologies Ltd, West 

Sussex, UK) set at 1.5 kV and 20 mA under 2 x 10
-1

 mbar pressure in the presence of argon. 

Gold coated substrates were then cleaned by immersion in gold cleaning solution (Sigma 

Aldrich, Missouri, USA) for 30 sec and rinsed with distilled H2O for 30 sec and dried under 

N2. 

Stellenbosch University  http://scholar.sun.ac.za



 
 

96 
 

SAM formation 

Glass containers were cleaned with piranha solution [30:70 v/v H2O2 and H2SO4] to avoid 

contamination and rinsed three times with either absolute ethanol or dimethyl sulfoxide 

(DMSO, ≥ 99 %), depending on the SAM that was used. All absorbates used for SAM 

formation were ≥ 99 % purity, unless otherwise stated. The alkanethiols used for SAM 

formation were 3-mercaptopropionic acid, 11-mercaptoundecanoic acid, 1-nonanethiol and 1-

propanethiol. The dialkyl disulphide used was bis-(10-carboxydecyl) disulphide (≥ 98 %). 

Self-assembled monolayers were dissolved in absolute ethanol, with the exception of 

bis-(10-carboxydecyl) disulphide, which was dissolved in DMSO at 1 mM. Reaction 

solutions for carboxylic acid-terminated SAMs were adjusted to pH 2.0. Surface loading of 

the immobilized protein was assessed using combinations of SAMs, with one terminal group 

reactive and one inert that acted as a spacer. Combinations used for SAM formation 

contained 3-mercaptopropionic acid/cysteamine, 3-mercaptopropionic acid/propanethiol or 

11-mercaptoundecanoic acid/nonanethiol, each at a ratio of 9:1 (reactive: inert group). The 

SAMs combinations were dissolved in absolute ethanol to 1 mM. 

The solutions were sonicated at 25 °C for 5 min to dissolve the absorbate. The gold 

substrates were immersed in the SAM solution for 24 h at 25 °C under N2. A vacuum was 

created in a Schlenk reaction vessel and filled with inert N2. After incubation, SAM 

formation was terminated by rinsing the substrates three times with absolute ethanol or 

DMSO, depending on the solvent used during SAM formation, and dried under N2. 

 

Protein immobilization 

Carboxylic acid terminated SAMs were reacted with 5m M EDC [ethyl 

(dimethylaminopropyl) carbodiimide] and 5mM NHS (N-hydroxysuccinimide, ≥ 97 %) in 

absolute ethanol (pH 7.0) under N2 at 25 °C for 3 h to form intermediates that would react 

with primary amino groups of lysozyme. EDC was used in combination with NHS to increase 

the coupling efficacy or to create a more stable reactive intermediate (Fig. 1 a). 

Methyl terminal SAMs were reacted with 5 mM DSP (dithiobis 

[succinimidylpropionate]) in DMSO (pH 7) under N2 at 25 °C for 3 h. Dithiobis 
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(succinimidylpropionate) exchanges with the bound SAMs for binding to the Au surface. The 

unreacted end of DSP reacted with the primary amino groups of lysozyme (Fig. 1 b). 

Combined SAMs carboxylic acid functional groups reacted with NHS and EDC, as 

described before. The methyl and amine terminal groups were used as inert groups to control 

the immobilization rate of lysozyme. 

Upon completion of SAM functionalization, substrates were rinsed with PBS solution 

(137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4·2H2O, 2 mM KH2PO4, pH 7.2) for 10 sec. 

Substrates were placed in PBS solution containing 1 mg/ml lysozyme from hen egg white 

(Roche, Mannheim, Germany) and incubated at 4 °C for 24 h (in the presence of N2). After 

immobilization of lysozyme, substrates were rinsed with PBS solution for 10 sec, dried under 

N2 and stored at 4 °C in the presence of a N2 atmosphere. 

 

Characterization of SAM 

The Au film layer crystal structure and phase composition was determined by XRD, using a 

Bruker AXS D8 Advance X-ray diffractometer operated in locked coupled mode (Bruker 

AXS, Frankfurt, Germany). The instrument was equipped with a Vantec-1 position sensitive 

detector optimized for Cu-Kα radiation with λ= 1.5406 Å. The X-ray tube was operated at 

40 mA and 40 kV and the measurements were recorded at a scanning rate of 0.5 sec/step with 

a step size of 0.014° in a 2θ range extending from 31.28° to 149.3°. 

Atomic force microscopy (AFM) images were collected with a Nanosurf AFM 

Easyscan 2 (Nanosurf Inc., California, USA) to assess the surface topology of the SAMs and 

to determine the surface roughness of the Au film layer. Images were acquired in tapping 

mode at a scan rate of 2 Hz with a Pt cantilever (spring constant of 0.06 N m
-1

) with drive 

amplitude between 20-50 mV and set-points in the range of 0.14 V. 

Infrared (IR) spectra of monolayers were obtained to confirm SAM formation and 

additionally to follow the chemical modification of the SAM functional groups. Attenuated 

Total Reflectance-Fourier-transform infrared (ATR-FTIR) spectra were recorded in the range 

of 500-4000 cm
-1

 by a Thermo Scientific Nicolet iS10 FTIR (Thermo Scientific Inc., 

Massachusetts, USA) spectrometer. ATR-FTIR spectra were collected using 250 scans with a 
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4 cm
-1

 resolution. FTIR spectra were background subtracted and corrected for atmospheric 

suppression using the OMNIC software (Thermo Scientific Inc., Massachusetts, USA). 

 

Characterization of protein immobilization 

Atomic force microscopy was used to measure the height increase in the SAMs after 

lysozyme had been immobilized. A Nanosurf AFM Easyscan 2 was used to characterize the 

SAMs, as describe before. Attenuated Total Reflectance-Fourier-transform infrared 

spectroscopy was used to determine if amide bond formation occurred and to assess the 

intensity of the remaining reactive intermediates which indicates the degree of protein 

immobilization. Attenuated Total Reflectance-Fourier-transform infrared spectra were 

collected with a Thermo Scientific Nicolet iS10 FTIR spectrometer, as described before. 

Fluorescence microscopy was used to study the surface coverage of the immobilized 

protein. Lysozyme-SAM-Au substrates were incubated with 100 µg/ml rabbit primary 

lysozyme antibody serum (Rockland Immunochemicals Inc., Pennsylvania, USA) in casein-

PBS solution (1 % casein in PBS solution, pH 7.2) for 30 min at 25 °C and then washed for 5 

min in casein-PBS solution. The antibody-lysozyme-SAM-Au substrates were incubated with 

10 µg/ml Alexa Fluor 488 goat anti rabbit H+L IgG (Life Technologies, California, USA) in 

casein-PBS solution for 30 min at 25 °C in the dark and then washed for 5 min in casein-PBS 

solution in the dark. Confocal images were acquired with a Carl Zeiss Confocal LSM 780 

Elyra S1 scanning laser microscope equipped with a SR-SIM super resolution platform (Carl 

Zeiss, Oberkochen, Germany) using a 100 X oil-immersion lens. An argon multiline laser 

excited the Alexa Fluor 488 at 488 nm and emitted light detected at 493-630 nm. 

A BacLight
TM

 (Life Technologies, California, USA) bacterial viability assay, using 

Micrococcus luteus ATCC 4698, was used to study the biological function of the 

immobilized lysozyme. The cell wall of M. luteus contains a thick outer peptidoglycan layer. 

Degradation of this layer by lysozyme results in cell lysis and cell death. By measuring the 

degree of cell death, the degree of protein activity could be inferred. The bacteria were grown 

in nutrient broth for 12 h, incubated on a rotating wheel at 30 °C. Mid-exponential phase cells 

(2 x 10
8
/ml) were collected at 9000 x g and washed with saline solution (8.5% NaCl). The 

cells were labelled with a BacLight
TM

 bacterial viability kit, as per manufacturer instructions. 

Stained M. luteus cells were added to the immobilized lysozyme-SAM-Au substrates and 
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followed by fluorescence microscopy for 3 h, using a Carl Zeiss Confocal LSM 780 Elyra S1 

scanning laser microscope to determine the degree of lysozyme activity (cell death). An 

argon multiline laser was used to excite syto9 at 488 nm (green) and propidium iodide at 514 

nm (red). Green fluorescence, which represented live bacteria, was detected at 517-572 nm, 

while red fluorescence indicated dead bacteria and was detected at 646-709 nm. 

 

Results and Discussions 

X-ray diffraction analysis was conducted to determine the crystal structure and phase 

composition of the Au film layer (Table 1). Formation of SAMs on Au (111) film layers 

yielded SAMs with highest density and highest degree of regularity (Hou et al., 1998). The 

majority of the Au atoms were oriented as (111) crystal planes [94.808 %], with few atoms 

being (200) [0.067 %], (220) [0.071 %], (311) [0.087 %], (222) [4.714 %] and (420) 

[0.253 %] crystal planes. Based on these results, a more single-crystalline Au (111) film layer 

was deposited as opposed to an amorphous Au film layer. 

Three-dimensional topographic images of a clean Au surface, a SAM and immobilized 

lysozyme surface are shown in Fig. 2 a-c, respectively. The average height of the deposited 

Au atoms was 4.5-5.0 nm, while the average height of bound SAMs was 5.5-6.0 nm. 

Monolayer formation increased the height of the Au film layer by 1 nm. The distance 

between a C-C bond is 120-154 pm (Weast, 1984). Thus, if a SAM contains 11 C-C bonds 

such as 11-mercaptoundecanoic acid, an average height increase of 1.32-1.69 nm can be 

expected. Similar results were obtained for all SAMs bound to the Au film layer surface. 

SAMs covalently immobilized with lysozyme showed an average height of 8.0-9.0 nm. An 

average height increase of 2.5-3.0 nm was observed between the SAMs and the immobilized 

protein. The lysozyme molecule has an ellipsoidal shape with dimensions of 2.8 x 3.2 x 

3.0 nm and a volume of 2.7 x 10
-20

 cm
-3

 (Steinrauf, 1959). Similar results were obtained for 

all SAMs immobilized with lysozyme. These results indicated that lysozyme was covalently 

bound to the SAM surface. 

Attenuated Total Reflectance-Fourier-transform infrared studies were conducted on 

separate substrates to confirm changes in the surface chemistry occurring after each 

modification step. FTIR analysis has been used extensively to investigate SAM formation 

and the reactions involving interfacial functional groups (Li et al., 2007; Moraillon et al., 
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2008; Ngunjiri et al., 2013; Nguyen, 2012; Techane et al., 2011). The FTIR spectra shown in 

Figs 3 to 5 were used to verify the monolayer formation, activation of the SAMs with 

EDC/NHS or addition of DSP to the monolayer, and immobilization of lysozyme through 

amide bond formation. 

Carboxylic acid-terminated SAM formation (Figs 3 and 4) was confirmed by the 

presence of peaks characteristic to carboxylic acid functional groups. Before activation with 

EDC/NHS, the carboxylic acid-terminated SAM spectrums exhibited a strong peak at 

1700 cm
-1

, which corresponds to the ʋ(C=O) free carboxylic acid stretch of carbonyls. 

Carbonyl stretching frequencies in this range are characteristic of dimerization or other 

intermolecular hydrogen bonding processes available to the carbonyl terminated SAM 

(Nuzzo et al., 1990). Additional peaks at 1310 and 1465 cm
-1

 were observed which belongs to 

alkane groups. The peak at 1310 cm
-1

 is assigned to the C-H scissor vibration mode for 

alkanes and the peak at 1465 cm
-1

 to methylene CH bending of methylene chains in the 

SAMs. The presence of these characteristic peaks indicates that carboxylic acid terminated 

SAMs formed on the Au surface. 

Carboxylic acid-terminated SAMs, 3-mercaptopropionic acid (Fig. 3 a), 3-

mercaptopropionic acid/1-propanethiol (Fig. 3 b), 3-mercaptopropionic acid/1-nonanethiol 

(Fig. 3 c), 11-mercaptoundecanoic acid (Fig. 4 a), 11-mercaptoundecanoic acid/1-nonanethiol 

(Fig. 4 b) and bis-(10-carboxydecyl) disulphide (Fig. 4 c) that underwent EDC/NHS 

esterification displayed different FTIR profiles. A strong peak at 1742 cm
-1

 was present 

which corresponded to the ʋ(C=O) asymmetric carbonyl stretch of NHS esters formed by the 

succinimidyl carbonyl group. Two smaller peaks were visible at 1830 cm
-1

 (NHS-ester 

carbonyl stretch) and 1782 cm
-1

 (NHS-ester C=O symmetric stretch), which are attributed to 

the band splitting of the ester carbonyl C=O stretching vibration. Additional bands appeared 

at 1733 cm
-1

 (ester C=O stretch of N-acylurea), 1760 cm
-1

 (anhydride antisymmetric C=O 

stretch) and 1804 cm
-1

 (anhydride symmetric C=O stretch) which are by-products of the 

EDC/NHS esterification. The presence of these characteristic peaks indicated that NHS 

esterification of the carboxylic acid groups formed. EDC reacts with the carboxylic acid 

functional groups to form O-acylurea intermediates which are converted to NHS-esters by 

reaction with NHS (Wang et al., 2011). Additionally, O-acylurea can also be converted to 

anhydrides by coupling with a neighbouring carboxylic acid group. Both NHS-esters and 

anhydrides couple with amine containing biomolecules to form a stable amide bond (Wang et 

al., 2011). 
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Formation of SAMs terminated with methyl functional groups were confirmed by the 

presence of characteristic peaks (Fig. 5). Methyl-terminated SAMs, 1-nonanethiol (Fig. 5 a) 

and 1-propanethiol (Fig. 5 b) showed a strong peak at 1430 cm
-1

, which corresponds to 

δ(CH3), the methyl deformation, and to ρs(CH2), the methylene scissor motions (Fig. 5). The 

presence of the 1430 cm
-1

 peak indicates that methyl-terminated SAMs are bound to the Au 

surface. Chemical modification of methyl terminated SAMs by the competition of DSP for 

binding sites to the Au surface showed different FTIR spectrums. Following the addition of 

DSP to the monolayer (Fig. 5), three bands appeared at 1809 cm
-1

 (anhydride symmetric C=O 

stretch), 1782 cm
-1

 (anhydride symmetric C=O stretch), and 1739 cm
-1

 (N-acylurea C=O 

stretch). The frequency of these bands corresponded to the C=O stretching vibration of ester 

groups. The presence of these characteristic bands confirms the binding of DSP to the Au 

surface. 

For all SAMs (Fig. 3-5) the addition of lysozyme to the chemically activated surface 

resulted in the presence of characteristic bands at 1540 and 1650 cm
-1

. The peak at 1650 cm
-1

 

can be assigned to amide I (C=O stretch) and 1540 cm
-1

 to amide II (NH bend and CN stretch 

combined) modes. The presence of these two peaks indicated that lysozyme was covalently 

immobilized to the SAM and thus subsequently immobilized to the Au surface. 

Fluorescence microscopy was used to assess the surface loading of lysozyme during 

use of different SAMs. The gold film layers immobilized with lysozyme were incubated with 

primary lysozyme antibodies and secondary lysozyme fluorescent antibody conjugates. The 

use of different SAMs resulted in different degrees of protein immobilization (Fig. 6). The 

length of the SAMs influences the compactness of the monolayer, and thus the amount of 

binding sites available for covalent immobilization (Vericat et al., 2010). 

Fluorescence microscopy images of the different SAMs immobilized with lysozyme is 

shown in Fig. 6. The fluorescence intensity of the immobilized protein monolayer was 

determined to elucidate which SAM results in the most immobilized lysozyme. Self-

assembled monolayer 3-mercaptoundecanoic acid (Fig. 6 a) had the highest relative 

fluorescence intensity at 11764 RFU (Relative fluorescence units), 3-mercaptoundecanoic 

acid/cysteamine (Fig. 6 b) at 8364 RFU, 3-mercaptoundecanoic acid/propanethiol (Fig. 6 c) 

at 10150 RFU, 11-mercaptoundecanoic acid (Fig. 6 d) at 5159 RFU, 11-mercaptoundecanoic 

acid/nonanethiol (Fig. 6 e) at 2381 RFU, bis-(10-carboxydecyl) disulphide (Fig. 6 f) at 8212 

RFU, 1-nonanethiol (Fig. 6 g) at 11285 RFU and propanethiol (Fig. 6 h) at 8496 RFU. 
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A negative control was included to assess the non-specific binding of the fluorescent 

antibody conjugate to the Au surface (Fig. 6 i). The relative fluorescence intensity measured 

for non-specific binding of the fluorescent antibody conjugate was 30 RFU. These results 

indicated that fluorescence observed is due to the binding of the secondary antibody to the 

primary antibody that, in turn, is bound to the lysozyme molecule. An additional control was 

included in which the non-specific binding of lysozyme to the Au surface was assessed (Fig. 

6 j). Lysozyme bound to a certain degree to the Au surface through non-specific interactions, 

i.e. electrostatic interactions, hydrogen bonding and hydrophobic interactions (Fransconi et 

al., 2010). However, compared to the relative fluorescence intensity of the SAMs (Fig. 6 a-h), 

the intensity for non-specific binding of lysozyme was low (587 RFU). These results 

indicated that the relative fluorescence intensities observed for the SAMs (Fig. 6 a-h) are due 

to the immobilization of the lysozyme to the SAMs, and not as a result of non-specific 

binding of lysozyme to the Au surface. 

Sel-assembled monolayer 3-mercaptoundecanoic acid immobilized lysozyme the best, 

whereas combined SAM 11-mercaptoundecanoic acid/nonanethiol resulted in the lowest 

levels of immobilization. Controlling the surface loading of the protein, combined SAMs are 

used that utilizes one reactive functional group and one inert functional group. The reactive 

group is used to immobilize the protein, and the inert group is used as a spacer molecule 

(Fransconi et al., 2010). Combined SAMs 3-mercaptoundecanoic acid/cysteamine, 3-

mercaptoundecanoic acid/propanethiol and 11-mercaptoundecanoic acid/nonanethiol resulted 

in lower relative fluorescence intensities as opposed to homogeneous SAMs 3-

mercaptoundecanoic acid and 11-mercaptoundecanoic acid, respectively. SAM 3-

mercaptoundecanoic acid had higher surface loading as opposed to 11-mercaptoundecanoic 

acid. 

Longer SAMs with longer alkyl chains are more prone to oxidation as opposed to 

shorter chain SAMs (Wang et al., 2003; Zamborini and Crooks, 1998). Thus a lower surface 

loading is observed for SAM 11-mercaptoundecanoic acid. Self-assembled monolayer bis-

(10-carboxydecyl) disulphide yielded high levels of protein immobilization (8212 RFU). 

However, the monolayer contained islands of high protein density which may be due to 

leaching of the protein from the surface or the immobilization of multiple lysozyme 

molecules by one bis-(10-carboxydecyl) disulphide molecule. Self-assembled monolayers 

nonanethiol and propanethiol resulted in high levels of protein immobilization. However, 

protein leaching from the surface was evident. For nonanethiol and propanethiol SAMs (Fig. 
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6 g-h, respectively) dark islands were present which represents areas of less surface loading 

or areas of protein leaching. 

The immobilized lysozyme activity was assessed using a BacLight
TM

 bacterial viability 

assay. Micrococcus luteus ATCC 4698 was deposited onto the gold film layers immobilized 

with lysozyme and examined for 3 h by fluorescence microscopy (Fig. 7-8). Micrococcus 

luteus has a thick peptidoglycan layer. Lysozyme hydrolyses alternating polysaccharide 

copolymers of N-acetyl glucosamine and N-acetyl muramic acid which is the basic subunits 

of peptidoglycan the polysaccharide structure of the bacterial cell wall (Schlegel, 1993; 

Seltmann and Holst, 2002). 

Green cells indicate bacteria that are alive and red cells indicate bacteria that are dead. 

The green fluorescence intensities of the cells decreased over time with no significant 

increase in the presence of red cells (Fig. 7-8). Lysozyme cleaves the cell wall component of 

the bacterial cells leaving the plasma membrane exposed. The red fluorescence stain 

propidium iodide only binds to membranes that are compromised. Degradation of the cell 

walls by lysozyme would result in the formation of protoplast; which would undergo 

cytolysis resulting in the binding of the red fluorescence stain. 

Red cells were present for SAMs; 3-mercaptopropionic acid (Fig. 7 a), 3-

mercaptopropionic acid/1-propanethiol (Fig. 7 c), 11-mercaptoundecanoic acid (Fig. 7 d), 11-

mercaptoundecanoic acid/1-nonanethiol (Fig. 7 e), bis-(10-carboxydecyl) disulphide (Fig. 8 

a) and 1-nonanethiol (Fig. 8 b) that were immobilized with lysozyme. No red cells were 

observed for SAMs, 3-mercaptopropionic acid/cysteamine (Fig. 7 b) and 1-propanethiol (Fig. 

8 c). The death of these cells may be due to either lysozyme degradation of the cell wall or 

due to the exposure to the antibacterial Au film layer surface. 

Table 2 contains the measured relative green fluorescence intensities of the M. luteus 

cells suspended on different SAMs immobilized with lysozyme, which were followed for 1-3 

hours by fluorescence microscopy. A general trend was observed in which the green 

fluorescence intensity decreases over time. The decrease in the fluorescence intensities may 

be attributed to the hydrolysis of cell walls by lysozyme, the exposure to the antibacterial Au 

surface or quenching of the fluorescent dye. 

M. luteus cells were suspended on a clean gold sample to act as a control (Fig. 8 d). M. 

luteus cells die faster than cells suspended on Au film layers immobilized with lysozyme. It 
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seems that the immobilized lysozyme film and SAM protects the bacterial cells from direct 

contact with the Au film layer. It is well know that Au has antibacterial properties. Gold 

nanoparticles exert their antibacterial activities mainly by causing a collapse of the membrane 

potential, inhibiting ATPase activities which results in the decrease in ATP levels, and inhibit 

the ribosome subunit from binding tRNA (Cui et al., 2012). Thus, in essence the use of a 

bacterial viability assay to determine the enzyme activity is trivial. M. luteus cells die much 

faster on Au film layers as opposed to cells suspended on lysozyme film layers. The decrease 

in cell viability could be due to the exposure to lysozyme, exposure to the antibacterial Au 

film layer or due to quenching of the fluorescent dye. Alternative methods should be 

employed to study the immobilized lysozyme activity. Techniques which assess the 

degradation of peptidoglycan could be used to determine the activity of the immobilized 

protein, or techniques which determine the three-dimensional structure could be used to 

assess the stability of the immobilized protein. 

 

Conclusion 

Self-assembled monolayers 3-mercaptopropionic acid, 3-mercaptopropionic acid/cysteamine, 

3-mercaptopropionic acid/1-propanethiol, 11-mercaptoundecanoic acid, 11-

mercaptoundecanoic acid/1-nonanethiol, bis-(10-carboxydecyl) disulphide, 1-nonanethiol and 

1-propanethiol were formed on Au (111) film layers. Atomic force microscopy studies 

confirmed the binding of SAMs to the Au (111) surface as well as the covalent 

immobilization of lysozyme to the SAMs. Attenuated Total Reflectance-Fourier-transform 

infrared spectroscopy studies also indicated the binding of SAMs to the Au surface, chemical 

modification of the SAMs by EDC/NHS or the addition of DSP to the monolayer, and the 

covalent immobilization of lysozyme to the SAMs. Fluorescence microscopy concluded that 

a high degree of lysozyme was immobilized. 

Self-assembled monolayer 3-mercaptopropionic acid resulted in the most immobilized 

lysozyme. Whereas 11-mercaptoundecanoic acid/1-nonanethiol SAM resulted in the worst 

immobilization. The use of combined SAMs resulted in the decrease in the surface loading of 

the lysozyme. Self-assembled monolayer bis-(10-carboxydecyl) disulphide resulted in a high 

degree of protein immobilization, however, islands containing high levels of protein loading 

was observed. This is as a result of two attachment sites on the SAM molecule being 

available for covalent attachment. Self-assembled monolayers 1-nonanethiol and 1-
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propanethiol resulted in high degrees of protein immobilization, however, numerous gold 

vacancy islands were present which suggested that protein leaching occurred or the 

absorbates bound less strongly to the Au surface. A BacLight
TM

 bacterial viability assay used 

to determine the lysozyme enzyme activity was inconclusive as the gold layer possesses 

antibacterial properties. The decrease in the green fluorescent intensity of M. luteus cell could 

be attributed to cell wall degradation by lysozyme, exposure to the antibacterial Au film 

surface or quenching of the fluorescent dye. Alternative techniques to assess the enzyme 

activity should be employed to study the activity of the immobilized enzyme. Techniques 

which follow the degradation of peptidoglycan or which assesses the three-dimensional 

structure could elucidate the activity and stability of the immobilized enzyme. These findings 

have shown that the type of absorbate used for SAM formation has to be selected carefully. 

Chain length, molecular stability and the chemical reactions involved in activating the 

terminal functional groups determines the degree of protein immobilization. 
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Table 1. XRD spectrum of deposited Au film layer. 

2-theta hkl Intensity (%) 

38.18 111 94.808 

44.39 200 0.067 

64.58 220 0.071 

77.54 311 0.087 

81.72 222 4.714 

115.26 420 0.253 

 

Table 2. Relative green fluorescence intensities of M. luteus cells suspended on different 

SAMs immobilized with lysozyme, and followed for 1-3 hours by fluorescence microscopy. 

  RFU
*
 

Self-assembled monolayer 

(SAM) T=0 T=1 T=2 T=3 

3-mercaptoundecanoic acid 75.46 17.31 9.65 7.1 

3-mercaptoundecanoic 

acid/cysteamine 110 25.92 13.9 9.14 

3-mercaptoundecanoic 

acid/propanethiol 123 27.36 14.7 9.44 

11-mercaptoundecanoic acid 122 21.56 12.4 9.53 

11-mercaptoundecanoic 

acid/nonanethiol 157 10.19 8.26 0.02 

bis-(10-carboxydecyl) 

disulphide 82.67 11.72 5.52 1.08 

1-nonanethiol 72 16.82 10.1 4.19 

1-propanethiol 96 14.34 11 4.53 
*
 Relative fluorescence units 
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Fig. 1. Schematic representation of the lysozyme immobilization procedures. (a) Carboxylic 

acid terminated SAMs reacted with EDC (ethyl [dimethylaminopropyl] carbodiimide) and 

NHS (N-hydroxysuccinimide) to form SAM-intermediates reactive towards primary amino 

groups of lysozyme. (b) Methyl terminated SAMs reacted with DSP which exchanges with 

the bound SAM for binding sites on the Au surface. The unreacted end of DSP (dithiobis-

[succinimidylpropionate]) reacts with the primary amino groups of lysozyme to form a 

covalent amide bond. 
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Fig. 2. Three-dimensional AFM topographic image of (a) clean Au film layer, (b) bound self-

assembled monolayer (SAM) and (c) immobilized lysozyme. 
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Fig. 3. FTIR spectrum of SAMs (a) 3-mercaptopropionic acid, (b) 3-mercaptopropionic acid/cysteamine, (c) 3-mercaptopropionic acid/1-propanethiol 

with their respective EDC/NHS esterification and lysozyme immobilization FTIR spectrums. A gold film layer spectrum is included as reference. 
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Fig. 4. FTIR spectra of (a) 11-mercaptoundecanoic acid, (b) 11-mercaptoundecanoic acid/1-nonanethiol, and (c) bis-(10-carboxydecyl) disulphide with 

their respective EDC/NHS esterification and lysozyme immobilization FTIR spectrums. A gold film layer FTIR spectrum is included as reference. 
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Fig. 5. FTIR spectrum of SAMs (a) 1-nonanethiol and (b) 1-propanethiol, with their respective FTIR spectrums for modification with DSP and 

lysozyme immobilization. A gold FTIR spectrum is included as reference. 
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Fig. 6. Fluorescence microscopy images of lysozyme immobilized to SAMs (a) 3-mercaptopropionic acid, (b) 3-mercaptopropionic acid/cysteamine, 

(c) 3-mercaptopropionic acid/1-propanethiol, (d) 11-mercaptoundecanoic acid, (e) 11-mercaptoundecanoic acid/1-nonanethiol, (f) bis-(10-

carboxydecyl) disulphide, (g) 1-nonanethiol and (h) 1-propanethiol. Non-specific binding of lysozyme to (i) Au film layers is shown. Non-specific 

binding of the lysozyme fluorescent antibody conjugate (j) to Au film layers is shown. 
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Fig. 7. Fluorescence microscopy images of Micrococcus luteus suspended for 1-3 hours on 

an Au film layer immobilized with lysozyme using SAMs (a) 3-mercaptopropionic acid, (b) 

3-mercaptopropionic acid/cysteamine, (c) 3-mercaptopropionic acid/1-propanethiol, (d) 11-

mercaptoundecanoic acid and (e) 11-mercaptoundecanoic acid/1-nonanethiol. 
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Fig. 8. Fluorescence microscopy images of Micrococcus luteus suspended for 1-3 hours on 

an Au film layer immobilized with lysozyme using SAMs (a) bis-(10-carboxydecyl) 

disulphide, (b) 1-nonanethiol and (c) 1-propanethiol. M. luteus cells suspended on a (d) clean 

Au film layer is included as negative control. 
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A nanoforce ZnO nanowire-array 

biosensor for the detection and 
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Abstract 

A nanoforce ZnO nanowire-array biosensor was developed to detect immunoglobulins. 

Hydrothermally synthesized ZnO nanowires and the constructed biosensor were 

characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), 

transmission electron microscopy (TEM) and X-ray diffraction (XRD). Lysozyme antigens 

and antibodies were used as a model to evaluate the sensitivity of the biosensor. Lysozyme 

was covalently immobilized onto the Au-coated/ZnO nanowire constructs by using self-

assembled monolayers (SAMs) prepared with alkanethiol, 3-mercaptopropionic acid. Protein 

immobilization was characterized by AFM, Fourier transform infrared (FTIR) spectroscopy 

and fluorescence microscopy. In vitro tests were conducted with different concentrations of 

lysozyme antibodies. An increase in antibody concentration resulted in an increase in the 

piezoelectric signal and, subsequently, an increase in voltage. The piezoelectric potential is 

created due to disturbances induced in the nanowires, which in turn leads to the displacement 

of Zn
2+

 and O
2-

 in the crystal structure. This is the first report on the detection of antibodies 

using ZnO nanowires as piezoelectric transducers. Further research is in progress to optimize 

the biosensor. 
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Introduction 

Detection of specific metabolites, nucleic acids, proteins and pathogens are essential in the 

diagnosis of diseases. Infectious diseases are responsible for approximately 40 % of the 50 

million deaths recorded world-wide (Ivnitski et al., 1999). Waterborne pathogens cause 10-20 

million of these deaths. Per annum more than 200 million people suffer from non-fatal 

infections (Ivnitski et al., 1999). Many of these cases could have been treated if the diagnosis 

had been made sooner. With the advances in nanotechnology, it should be possible to develop 

a rapid, sensitive and portable, but power-efficient and low cost biosensor. 

The biosensor has to be sensitive enough to provide quantitative, or at least semi-

quantitative, data. This means the device has to detect small changes in the concentration of 

molecules that react with a transducer (Strehlitz et al., 2008). Major developments have been 

made to increase the performance of biosensors by incorporating various nanostructured 

material (Ansari et al., 2008; Hrapovic et al., 2004; Lin et al., 2004, Rout et al., 2006; Wang 

et al., 2008; Zhang et al., 2008). 

Nanostructures such as nanobelts (Gao et al., 2005; Pan et al., 2001), nanosprings 

(Kong and Wang, 2003), nanorings (Kong and Wang, 2003), nanohelixes (Gao et al., 2005) 

nanobows (Hughes and Wang, 2004), nanowires (Huang et al., 2001b), nanotubes (Sun et al., 

2005), nanocages (Snure and Ashutosh, 2007), nanoshells (Leung et al., 2005), nanospheres 

(Zhang et al., 2009), nanofibers (Fang et al., 2006), nano-tetrapods (Newton and Warburton, 

2007), nanonails and nanobridges (Lao et al., 2003) have been synthesized. The inherently 

larger surface area of the nanostructured material offers a higher enzyme loading capacity, 

which improves the sensitivity of the biosensor (Ramirez-Vick, 2012). The diameter of 

nanostructured material is usually comparable to the size of the biomolecule being sensed, 

which intuitively makes them excellent transducers for producing a signal. Biosensors offer 

several advantages over standard antibody detection methods (i.e. enzyme-linked 

immunosorbent assays, magnetic immunoassay, immunoprecipitation, radial 

immunodiffusion and Western blotting), such as, rapid detection, ease of use, low production 

cost, simplicity, portability, and ease of mass manufacturing (Strehlitz et al., 2008). 

ZnO nanostructures are ideal transducers for biosensors in that they have polar surfaces 

and no centre symmetry (Wang, 2008). The interaction of polar surfaces makes the growth of 

diverse ZnO nanostructures possible (Wang et al., 2004). The lack of centre symmetry gives 

ZnO its piezoelectric properties (Wang, 2007 and 2008). At ambient temperature and 
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pressure, ZnO crystalizes in a wurtzite structure with a hexagonal lattice that has two 

interconnecting sub-lattices of Zn
2+

 and O
2-

 with the zinc ion surrounded by tetrahedral 

oxygen ions and vice versa (Coleman and Jagadish, 2006; Özgür et al., 2005). This 

tetrahedral coordination gives rise to a polar symmetry along the hexagonal axis, which is 

responsible for the piezoelectric and spontaneous polarization properties (Wang, 2004). 

Another important property of ZnO is that it is a semiconductor with high bandgap energy of 

3.37 eV at room temperature (Zhao et al., 2007). ZnO nanostructured material are also 

biocompatible (Li et al., 2008), chemically stable, non-toxic, biomimetic and possess high 

electron communication features (Tian et al., 2002; Sberveglieri et al., 1995; Rodriquez et al., 

2000) which makes them excellent candidates as transducers for biosensors. 

ZnO nanostructures have enormous applications in electrochemical, electromechanical 

and optoelectronic devices, but also as photocatalysts. ZnO electrochemical devices that have 

been developed include field-effect transistors (FET), gas sensors, pH sensors and humidity 

sensors. In FETs, the ZnO nanostructures are laterally bonded on a substrate that serves as a 

gate electrode. Current transported from the drain to the source along the nanowire is 

controlled by applied gate voltage. ZnO nanowire field-effect transistors have been developed 

for sensing of oxygen (Fan et al., 2004), carbon monoxide gas (Khoang et al., 2013), 

riboflavin (Hagen et al., 2011) and streptavidin (Kim et al., 2006) amongst others. 

Gas sensors have been developed for the detection of H2 (Lupan et al., 2007), CO 

(Wang et al., 2007a), H2S (Wang et al., 2006a), NH3 (Wen et al., 2005), CH4 (Gruber et al., 

2003), NO2 (Fan and Lu, 2005), NO (Farmakis et al., 2008), O3 (Martins et al., 2004), and O2 

(Li et al., 2004) amongst others. pH sensors using ZnO nanostructures have also been 

developed. Exposure to electrolytic solutions results in the formation of a surface charge 

which alters the ZnO nanostructure conductive properties (Al-Hilli et al., 2007). ZnO 

nanostructures have also been proposed as humidity sensors. With the increase in the relative 

humidity, the resistance of some sensors decreased (Fang et al., 2009; Park et al., 2010; 

Zhang et al., 2005). 

Electromechanical devices that have been developed include acoustic wave based 

sensors, nanogenerators, piezoelectric-FETs (PE-FET), and piezodiodes. Acoustic wave 

biosensors are mass sensors which operate with mechanical acoustic waves as their 

transduction signal (Rocha-Gaso et al., 2009). Interaction at the surface interface causes 

changes in the acoustic wave properties (i.e. wave propagation, velocity, amplitude, or 
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resonant frequency). Surface acoustic wave (SAW) pressure sensors (Talbi et al., 2006), film 

bulk acoustic resonators (FBAR) (Chen et al., 2009b) and lateral extensional mode (LEM) 

piezoelectric resonators (Pang et al., 2006) based on ZnO nanostructures have been used to 

detect changes in mass or pressure. 

Nanogenerators have been developed by utilizing the piezoelectric effect of ZnO 

nanowires (Chang et al., 2010; Wang and Song, 2006; Wang et al., 2007b; Xu et al., 2010). 

The combination of the piezoelectric and semiconducting properties of ZnO, and the gating 

effect of a Schottky barrier, transforms the mechanical displacement to an electrical signal. 

Piezoelectric-FET (PE-FET) has been developed by coupling the semiconductive and 

piezoelectric properties of ZnO, which is defined as the piezotronic effect (Gao et al., 2009; 

Kwon et al., 2008; Wang et al., 2006b). The working principle of PE-FET relies on the 

piezoelectric potential of the nanowire under straining and serves as the gate voltage for 

controlling the current flow from the drain to source (Fei et al., 2009; Wang et al., 2006b). 

Optoelectronic devices with ZnO nanostructures as transducers are UV detectors, UV 

lasers (Huang et al. 2001a), solar cells and field emission devices. UV detectors rely on 

changes in electric potential of the ZnO nanostructures when irradiated with UV (Bai et al., 

2011; Chen et al., 2009a; Fang et al., 2009; Lu et al., 2009). ZnO nanostructure-based light 

emitting diodes (LEDs) have also been developed (Chen et al., 2011; Djurišić et al., 2010; 

Hsu et al., 2008; Sadaf et al., 2011; Willander et al., 2009; Yang et al., 2008). ZnO-based 

dye-sensitized solar cells (DSSCs) have been developed using ZnO nanostructures which 

transports electrons fasters, with less recombination loss (Law et al., 2005). ZnO 

nanostructures are also considered good candidates for field emitters due to their high melting 

point and high stability under oxygen environments (Hwang et al., 2011; Zhao et al., 2011). 

ZnO nanostructures as photocatalysts have been reported (Kenanakis and Katsarakis, 

2010; Ma et al., 2011; Sugunan et al., 2010), and exhibit high photocatalytic efficiency for 

dye degradation (Hariharan, 2006). Photocatalytic dye degradation by ZnO occurs due to the 

production of charge transferred photogenerated carriers and reactive oxygen species (ROS) 

due to UV illumination of the nanostructures (Guo et al., 2011). 

In the present study, a nanoforce ZnO nanowire-array biosensor was developed for the 

detection of immunoglobulins. The antigen-antibody recognition event is sensed by 

immobilizing the antigen onto the Au-coated/ZnO nanowire constructs. Binding of antibodies 

to the constructs results in the bending of the ZnO nanowires, and subsequently, the 
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displacement of the Zn cations and O anions in the crystal resulting in the generation of 

piezoelectricity. The semiconductor-metal interface between the ZnO nanowires and Au 

electrode forms a Schottky barrier which rectifies the piezoelectric effect making it possible 

to measure the resulting output voltage across a resistor. 

Lysozyme and anti-lysozyme was used as a model for the development of a prototype 

sensor capable of detecting biorecognition events. Hydrothermally synthesized ZnO 

nanowires and constructed biosensors were characterized by atomic force microscopy 

(AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and 

X-ray diffraction (XRD). The antigen was covalently immobilized onto the Au coated/ZnO 

nanowire constructs using self-assembled monolayers (SAMs). Immobilization of the antigen 

was characterized by atomic force microscopy (AFM), fourier transform infrared (FTIR) 

spectroscopy and fluorescence microscopy. In vitro studies were conducted to determine 

whether different levels of antibody binding results in different voltage production, due to the 

bending of the ZnO nanowires and subsequent piezoelectricity production. 

 

Materials and Methods 

Biosensor construction 

Substrate preparation 

Silicon (100) wafers were cut into 1 x 1 cm sizes and sonicated for 10 min in acetone, 

followed by 10 min in absolute ethanol and 10 min in distilled H2O. The wafers were dried 

under nitrogen gas and placed on a hot plate at 110 °C for 5 min. A 20 nm titanium (Ti) film 

layer was deposited by RF cylindrical magnetron sputtering at 2 x 10
-2

 mbar pressure in the 

presence of 60 % argon at 50 V, - 400 V, 0.5 A, 100 W, 21 kHz and 100 W. 

The coated wafers were cleaned by immersion in absolute ethanol for 10 sec, dried 

under nitrogen gas, placed on a hot plate at 110 °C for 5 min and then coated with a 40 nm 

layer of Au. Coating was done using a Quorum sputter coater (Quorum Technologies Ltd, 

West Sussex, UK), set at 1.5 kV and 20 mA and operated under 2 x 10
-1

 mbar pressure in the 

presence of argon. The Au coated substrates were then cleaned by immersion in gold 

cleaning solution (Sigma Aldrich, Missouri, USA) for 30 sec, rinsed with distilled H2O for 

30 sec and dried under N2 gas. ZnO seed layers were deposited by using the sol-gel spin 
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coating technique. In short, this involved the following: zinc acetate dehydrate (0.75 M) was 

dissolved in a mixture of 2-methoxyethanol and monoethanolamine at 25 °C, the molar ratio 

of monoethanolamine to zinc acetate was 1:1. The solution was stirred for 1 h at 60 °C, after 

which 25 µl was placed onto the gold-plated Si wafers and spun in a Laurell WS-400-6NPP 

spin coater (Laurell Technologies, Pennsylvania, USA) at 6000 rpm for 30 sec. After spin-

coating, the wafers were dried at 200 °C for 5 min on a hot plate to evaporate the solvents 

and remove the residual organic components from the film layer. The ZnO seed layers were 

then annealed in air at 700 °C for 10 min. 

 

Synthesis of ZnO nanowires 

Zinc oxide nanowires were synthesized using the hydrothermal growth method. Wafers 

coated with a ZnO seed layer were placed facing down on a solution of 0.01 M zinc nitrate 

hexahydrate [Zn(NO3)2·6H2O] and 0.01 M hexamethylenetetramine [C6H12N4] in distilled 

H2O for 7 h in an oven at 90 °C. The coated wafers were then washed with distilled water to 

remove the residual salts and amino complexes, dried under nitrogen gas and placed on a 

hotplate at 110 °C for 5 min. The ZnO-coated wafers were then baked at 350 °C for 30 min. 

 

Schottky barrier formation 

The ZnO-coated wafers were spun coated with 50 µl of poly(1-vinylpyrrolidone-co-2-

dimethylaminoethyl methacrylate) (PMMA; 3.04 % w/w), using a Laurell WS-400-6NPP 

spin coater at 7000 rpm for 30 sec. The PMMA layer acts as a barrier to prevent contact 

between the two Au film layers. Contact which each other would result in an electrical 

shortage of the diode. The wafers were dried at 120 °C for 5 min and then coated with a 10 

nm layer of Au at 70°, using a Quorum sputter coater at 1.5 kV and 20 mA, operated under 2 

x 10
-1

 mbar pressure in the presence of argon. A metal-semiconductor junction formed 

between the Au film layer and the ZnO nanowires, creating a Schottky barrier. The Au side 

of the biosensor acts as the anode and the ZnO semiconductor acts as the cathode (Fig. 1). 
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Protein immobilization 

Glass containers were cleaned with piranha solution [30:70 v/v H2O2 and H2SO4] to avoid 

contamination and rinsed 3 times with absolute ethanol. Alkanethiol, 3-mercaptopropionic 

acid (1 mM) was dissolved in absolute ethanol (pH 2.0) by sonication for 5 min at 25 °C. The 

Au coated/ZnO nanowire substrates were immersed in the SAM solution for 24 h at 25 °C 

under N2 atmosphere (99.9 %). Oxygen-free environments were created using a Schlenk 

reaction vessel. A vacuum was created within the vessel and the vessel filled with inert N2 

gas. Upon completion of SAM formation, the reaction was terminated by rinsing the 

substrates three times with absolute ethanol. 

The sensor surface bound with SAMs were incubated in the presence of chemical 

linkers to form SAM-intermediates reactive towards primary amino groups of proteins. The 

SAMs were reacted with 5 mM EDC (> 99 %) [ethyl (dimethylaminopropyl) carbodiimide] 

and 5 mM (≥ 97 %) NHS (N-hydroxysuccinimide) in absolute ethanol (pH 7.0), under N2 

atmosphere at 25 °C for 3 h. EDC is used in combination with NHS to increase the coupling 

efficacy or to create a more stable reactive intermediate. 

After SAM-intermediate formation, the sensors were rinsed with PBS solution 

(137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4·2H2O, 2 mM KH2PO4, pH 7.2) for 10 sec. 

The sensors were then placed in PBS solution containing lysozyme (1 mg/ml) from hen egg 

white (Roche, Mannheim, Germany), under N2 atmosphere at 4 °C for 24 h. Upon 

completion of protein immobilization, the functionalized biosensors were rinsed with PBS 

solution for 10 sec, dried with N2 gas and stored at 4 °C under N2 atmosphere. A schematic 

representation of the lysozyme functionalized nanoforce ZnO nanowire-array biosensor is 

shown in Fig. 1. 

 

Biosensor characterization 

Characterization of ZnO nanowires 

A Nanosurf AFM Easyscan 2 (Nanosurf Inc., California, USA) was used to characterize the 

surface topology of the deposited ZnO seed layers and to determine the surface roughness. 

The surface morphology, diameter and density of the synthesized ZnO nanowires were 

evaluated using a FEI Nova NanoSEM 230, equipped with a TLD detector (FEI, Oregon, 
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USA). The purity and elemental composition of the ZnO nanowires were analysed using a 

FEI Nova NanoSEM 230, equipped with an X/Max Oxford energy-dispersive x-ray (EDX) 

detector (Oxford Instruments, Oxfordshire, UK) with a detector area of 20 mm
2
. EDX 

spectrums were analysed using INCA software (Inca Software, Berkshire, UK). 

Transmission electron microscopy micrographs and selected area electron diffraction 

(SAED) patterns were collected with a Philips Tecnai TF20 TEM (FEI, Oregon, USA), 

equipped with a field emission gun and operated at an accelerating voltage of 200 kV. High 

resolution transmission electron microscopy (HRTEM) images were also obtained to analyse 

the crystal structure of the ZnO nanowires and to determine the axial growth direction. The 

mean length and diameter of the synthesized ZnO nanowires were also assessed using TEM 

micrographs. For TEM analysis, ZnO nanowires were scratched off the substrate surface, 

dissolved in absolute ethanol and ultrasonicated for 10 sec. A drop of the liquid was placed 

on a Cu grid of which the back was covered with a carbon film layer. The samples were 

allowed to air dry prior to analysis. 

The Au film layer and the ZnO nanowire crystal structures and phase compositions 

were determined by XRD using a Bruker AXS D8 Advance X-ray diffractometer operated in 

locked coupled mode (Bruker AXS, Frankfurt, Germany). The instrument was equipped with 

a Vantec-1 position sensitive detector optimized for Cu-Kα radiation with λ= 1.5406 Å. The 

X-ray tube was operated at 40 mA and 40 kV and the measurements were recorded at a 

scanning rate of 0.5 sec/step with a step size of 0.014° in a 2θ range extending from 31.28° to 

149.3°. 

 

Characterization of protein immobilization 

Atomic force microscopy (AFM) images were collected with a Nanosurf AFM Easyscan 2 

(Nanosurf Inc., California, USA) to assess the surface topology of the immobilized lysozyme 

and to determine the surface roughness of the deposited Au film layers. Images were acquired 

in tapping mode at a scan rate of 2Hz with a Pt cantilever (spring constant of 0.06 N m
-1

) with 

drive amplitude between 20-50 mV and set-points in the range of 0.14 V. 

Infrared (IR) spectra of the monolayers were obtained to confirm SAM formation, 

follow the chemical modification of the SAM functional groups and the immobilization of 

lysozyme. Attenuated Total Reflectance-Fourier-transform infrared (ATR-FTIR) spectra 
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were recorded in the range of 500-4000 cm
-1

 by a Thermo Scientific Nicolet iS10 FTIR 

(Thermo Scientific Inc., Massachusetts, USA) spectrometer. Attenuated Total Reflectance-

Fourier-transform infrared spectra were collected using 300 scans with a 4 cm
-1

 resolution. 

FTIR spectra were background subtracted and corrected for atmospheric suppression using 

the OMNIC software (Thermo Scientific Inc., Massachusetts, USA). 

Surface coverage of the immobilized lysozyme was studied using fluorescence 

microscopy. Lysozyme functionalized biosensors were incubated with 100 µg/ml rabbit 

primary lysozyme antibody serum (Rockland Immunochemicals Inc., Pennsylvania, USA) in 

casein-PBS solution (1 % casein in PBS solution, pH 7.2) for 30 min at 25 °C and thereafter 

washed for 5 min in casein-PBS solution. The biosensor bound with primary antibodies were 

then incubated with 10 µg/ml Alexa Fluor 488 goat anti rabbit H+L IgG (Life Technologies, 

California, USA) in casein-PBS solution for 30 min at 25 °C in the dark and thereafter 

washed for 5 min in casein-PBS solution in the dark. Confocal images were acquired with a 

Carl Zeiss Confocal LSM 780 Elyra S1 scanning laser microscope equipped with a SR-SIM 

super resolution platform (Carl Zeiss, Oberkochen, Germany) using a 100 X oil-immersion 

lens. An argon/krypton laser excited the Alexa Fluor 488 at 488 nm and emitted light 

detected at 493-630 nm. 

 

In vitro testing of the biosensor 

The lysozyme functionalized biosensors were fixed to a test-board as shown in Fig. 2. The 

biosensor is placed in the centre and the four corners are connected to one of the conducting 

lines, using silver paste. Conducting wires are also added to the lines to be connected to the 

measuring equipment. The area of the biosensor containing only Au (anode) is connected to 

ground and the area with the nanowires (diode) connected to the positive terminal of the 

measurement equipment. Binding of antibodies to the functionalized Au coated/ZnO 

nanowire constructs results in bending of the nanowires, which in turn creates a piezoelectric 

potential and a voltage reading. 

Voltage readings were taken using an amplifier with a gain of 100 V/V. Binding of the 

antibodies to the lysozyme-coated nanowires generated low electronic voltages. The 

amplified signal in analog format was converted to a digital signal using a LabJack U6 
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converter (LabJack Corporation, Colorado, USA). The digital signal was analysed using 

DAQFactory software (Azeotech Inc., Oregon, USA). 

Lysozyme functionalized biosensors were exposed to monospecific lysozyme 

antiserum at a concentration of 10 ng/ml, 50 ng/ml, 500 ng/ml, 1 µg/ml, 10 µg/ml and 

20 µg/ml (Rockland Immunochemicals Inc., Pennsylvania, USA). Antibodies were 

suspended in PBS solution, placed on the biosensor surface, incubated for 1 h at 25 °C, 

washed with PBS solution for 30 sec, dried with N2 gas and analyzed. 

 

Results and Discussion 

Two-dimensional and three-dimensional AFM surface topology images of deposited ZnO 

seed layers are shown in Fig. 3. According to two-dimensional surface topology (Fig. 3 a), 

the mean grain diameter of the deposited ZnO seed layer was 89 nm (σ= 22), with a root-

mean-square surface roughness of 2 nm. The three-dimensional topology images revealed 

that the average length of the ZnO grains ranged between 8 and 9 nm (Fig. 3 b). The mean 

diameter of the synthesized ZnO nanowires was calculated from the relative diameter 

abundance of 1000 ZnO nanowires. The nanowires had an average diameter of 78 nm 

(σ= 35), with a density of 108 per µm
2
 (Fig. 4 a). The hexagonal structure of ZnO nanowires 

was visible by SEM image (Fig. 4 a). The ZnO nanowires were uniformly distributed; mainly 

c-axis oriented (Fig. 4 b) and retained their hexagonal structure after PMMA and Au 

deposition (Fig. 4 c). Filling of the spaces between the ZnO nanowires with PMMA is clearly 

visible in Fig. 4 d. The average length of the parturition of the nanowires from the PMMA 

layer was 180 nm (σ= 45). 

The elemental composition of individual ZnO nanowires was determined by EDS 

analysis, which indicated that the Zn (51 %) and O (49 %) were nearly stoichiometric with a 

ratio a ratio of 1:1. TEM micrographs indicated that hexagonal ZnO nanowires were 

synthesized with an average diameter of 93 nm (Fig. 5 a) and an average length of 2.3 µm 

(Fig. 5 d). The HRTEM image of the synthesized ZnO nanowires (Fig. 5 b) revealed the 

major lattice spacing of 0.28 nm which corresponds with the distance of the (002) crystal 

plane of wurtzite ZnO. The HRTEM image also confirmed the perfection of the atomic 

arrangements within the ZnO nanowires. The ZnO nanowires had a single-crystal hexagonal 

wurtzite structure (Fig. 5 c). By indexing the diffraction pattern the main axis of the ZnO 
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nanowires equivalent to the growth direction can be determined. According to the indexed 

SEAD pattern, the ZnO nanowires grew along the [0001] direction. Based on TEM analysis, 

the average length of ZnO nanowire protrude from the PMMA layer was 216 nm (Fig. 5 e). 

Coating of the ZnO nanowire parturitions with Au is also clearly visible. 

XRD analyses of synthesized ZnO nanowires were used to assess whether the ZnO 

nanowires were c-axis oriented by looking at the relative abundance of the ZnO diffraction 

peaks (Table 1). Since the surface of the sample lies in the scattering plane of the instrument, 

a set of perfectly aligned nanowires, orientated perpendicular to the surface, would result in a 

single diffraction peak, the 002 peak. Hence, the relative distribution of the ZnO diffraction 

peaks will indicate whether the ZnO nanowires are oriented along the [0001] direction. The 

ZnO diffraction peaks that did not overlap with the Au film layer and Si substrate peaks are 

listed in Table 1. The XRD pattern of the ZnO nanowires was indexed using the JCPDS 

database and corresponded to hexagonal ZnO. XRD analysis indicated that the major crystal 

growth plane was (002) with low abundance of other crystal planes such as (100), (101), 

(102), (103), (004), (202), (104), (203), (105) and (006) indicating high orientation in the c-

axis. 

Atomic force microscopy was used to assess the constructed biosensor surface and the 

immobilization of lysozyme to the surface. Figure 6 shows the three-dimensional topographic 

images of the constructed biosensor (Fig. 6 a); a smooth area of the biosensor (Fig. 6 b) and a 

smooth area of the biosensor immobilized with lysozyme (Fig. 6 c). From these results it is 

clear that the ZnO nanowires protruded from the PMMA layer and that some were totally 

covered. A smooth surface was used to determine whether protein immobilization occurred 

as protruding nanowires would overshadow their signal. From Fig. 6 it is evident that protein 

immobilization occurred as an increase in the root mean square surface roughness was 

observed from 0.65 nm to 0.90 nm for unlabelled and labelled smooth biosensor surfaces, 

respectively. 

Attenuated Total Reflectance-Fourier-transform infrared spectroscopy studies were 

conducted on separate substrates to confirm changes in the surface chemistry that occurred 

after each modification step. The FTIR spectra shown in Fig. 7 were used to verify 

monolayer formation, the activation of the SAM with EDC/NHS as well as the 

immobilization of lysozyme. SAM formation was confirmed by the presence of peaks 

characteristic to carboxylic acid groups. The spectrum exhibited a strong peak at 1700 cm
-1
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which corresponds to the ʋ(C=O) free carboxylic acid stretch of carbonyls. Carbonyl 

stretching frequencies in this range are characteristic of dimerization or other intermolecular 

hydrogen bonding processes available to the carbonyl terminated SAM (Nuzzo et al., 1990). 

Additional peaks at 1310 and 1465 cm
-1

 were observed which belong to alkane groups. The 

peak at 1310 cm
-1

 is assigned to the C-H scissors vibration mode for alkanes and 1465 cm
-1

 

assigned to methylene CH bending of methylene chains. The presence of these characteristic 

peaks indicated that carboxylic acid terminated SAM 3-mercaptopropionic acid formed on 

the Au surface. 

The EDC/NHS esterification spectra displayed a different FTIR profile. A strong peak 

at 1742 cm
-1

 was present which corresponded to the ʋ(C=O) asymmetric carbonyl stretch of 

NHS esters that are contributed by the succinimidyl carbonyl group. Two weak peaks formed 

at 1830 cm
-1

 (NHS-ester carbonyl stretch) and 1782 cm
-1

 (NHS-ester C=O symmetric 

stretch). These peaks are attributed to the band splitting of the ester carbonyl C=O stretching 

vibration. Additional bands appeared at 1733 cm
-1

 (ester C=O stretch of N-acylurea), 

1760 cm
-1

 (anhydride antisymmetric C=O stretch) and 1804 cm
-1

 (anhydride symmetric C=O 

stretch) which are by-products of the EDC/NHS esterification chemistry. The presence of 

these characteristic peaks indicated that EDC/NHS esterification of the carboxylic acid 

groups occurred. The addition of lysozyme to the chemically activated surface resulted in the 

presence of characteristic bands at 1540 and 1650 cm
-1

. The peak at 1650 cm
-1

 can be 

assigned to amide I (C=O stretch) and 1540 cm
-1

 to amide II (NH bend and CN stretch 

combined) modes. The presence of these two peaks indicated that lysozyme was covalently 

immobilized to the SAM and thus subsequently to the Au surface. 

Fluorescence microscopy was used to assess the surface loading of lysozyme to the 

biosensor surface (Fig. 8). The lysozyme functional biosensor was incubated with primary 

lysozyme antibodies and secondary lysozyme fluorescent antibody conjugates. Lysozyme 

was immobilized to the biosensor surface. Non-specific binding of the secondary antibody 

conjugate and lysozyme to the surface was also assessed. The relative fluorescence intensity 

of the immobilized lysozyme biosensor surface was 287 RFU (Fig. 8 a), non-specific binding 

of the secondary antibody conjugates was 8 RFU (Fig. 8 b), and non-specific binding of 

lysozyme was 10 RFU (Fig. 8 c). Based on these results, lysozyme was immobilized to the 

SAMs, as the fluorescence intensity was not contributed by non-specific binding of the 

secondary antibody conjugate or lysozyme to the Au surface. 
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In vitro tests were conducted using monospecific antibody serum specific for lysozyme. 

Different concentrations were placed on the biosensor surface and incubated for 1 h to allow 

biorecognition. Voltage measured for biosensors prior to analysis and after incubation with 

different antibody concentrations is shown in Figs 9 and 10. The background voltage 

produced by the biosensor was measured to determine the voltage increase due to the binding 

of the antibodies to the nanowire constructs. The background signal arises from disoriented 

nanowires or pressure applied by the immobilized antigen. Prior to the addition of 10 ng/ml 

antibodies (Fig. 9 a) the biosensor produced an average voltage of 0.233 V. This increased to 

0.497 V after the addition of antibodies. The average voltage produced from 50 ng/ml 

antibodies prior to addition was 0.928 V (Fig. 9 b), and increased to 1.347 V after the 

addition of antibodies. The biosensor incubated with 500 ng/ml (Fig. 9 c) antibodies 

produced an average voltage of 1.493 V prior to addition and an average voltage of 2.063 V 

after the addition. Prior to the addition of 1 µg/ml (Fig. 9 d) antibodies the biosensor 

produced an average voltage of 1.551 V and after the addition produced an average voltage of 

2.321 V. For 10 µg/ml (Fig. 10 a) antibodies the biosensor produced an average voltage of 

1.484 V prior to addition and an average voltage of 2.312 V after the addition of antibodies. 

For 20 µg/ml (Fig. 10 b) antibodies the biosensor produced an average voltage of 1.838 V 

prior to addition and an average voltage of 2.882 V after addition. For the negative control 

(Fig. 10 c) in which only PBS-solution was added, the biosensor produced an average voltage 

of 0.713 V prior to analysis and an average voltage of 0.517 V after the addition. These 

results indicate that increasing the antibody concentration results in the increase in voltage 

generation, which is attributed to the increased binding of the antibodies to the ZnO nanowire 

constructs. The increased binding will induce more disturbances in the ZnO nanowire 

structure which would result in the increase in the piezoelectric potential, and subsequently 

the increase in voltage generation. A field effect transistor (FET) developed by Kim et al. 

(2006) for the detection of streptavidin could detect concentrations ranging from 25 nM to 

2.5 μM (Kim et al., 2006). Another ZnO nanowire FET developed by Choi et al. (2010) for 

streptavidin detection could detect concentrations ranging from 2.5 nM to 250 nM (Choi et 

al., 2010). A piezoelectric-FET (PE-FET) recently developed by Yu et al. (2013) to detect 

immunoglobulin G, could sense concentrations ranging from 0.1 ng/ml to 10 μg/ml (Yu et al., 

2013). Thus the designed nanoforce ZnO nanowire-array biosensor was able to detect 

concentration ranges as other previously designed ZnO nanowire biosensors. 
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The in vitro tests concluded that ZnO nanowires are promising piezoelectric transducers 

for the use in biosensors for the detection of biomolecular recognition events. This is the first 

report on the detection of antibodies using ZnO nanowires as piezoelectric transducers. 

Numerous types of ZnO nanowire biosensors have been developed for the detection of 

biomolecules, however, none have used nanowires soley as piezoelectric transducers to detect 

biorecognition events (Kumar and Chen, 2008; Liu, 2008; Ozgur et al., 2010).  

Further research is in progress to optimize the biosensor. The site-specific growth and 

controlled dimensions of ZnO nanowire growth requires optimization. Crystallization of ZnO 

is a thermodynamic process and can only be controlled to a certain degree. The dimensions of 

the ZnO nanowires can be controlled by a ZnO seed layer. However, seed layer deposition 

techniques can only control the ZnO grain size to a certain degree, and thus the dimensions of 

the synthesized ZnO nanowires. Techniques for the deposition of more controlled ZnO seed 

layer grains should be sought to control the ZnO nanowire dimensions more accurately. 

Additionally the site specific growth of ZnO nanowires should be sought as uncontrolled 

growth would result in different nanowire densities which would influence the performance 

of the developed biosensor. It should also be noted that the spin coating of PMMA into the 

ZnO nanowires is not efficient as some areas of the biosensor are fully covered with PMMA. 

Such surface defects would greatly influence the biosensor performance, as different amounts 

of protruding ZnO nanowires would influence the output voltage capacity of the biosensor. In 

the near future if these problems can be resolved ZnO nanowires would be great candidates 

as transducers for biosensors for the detection of biomolecular recognition events. 

 

Conclusions 

A nanoforce ZnO nanowire-array biosensor was fabricated for the detection of 

immunoglobulins. Highly c-axis oriented ZnO nanowire-arrays were synthesized by the 

hydrothermal growth method. The constructed biosensor was successfully constructed as 

shown by AFM, SEM, TEM, XRD, FTIR, and fluorescence microscopy analysis. The 

performance of the biosensor was tested by incubating different antibody concentrations on 

the sensor surface for 1 hour. Results show that increasing the antibody concentration results 

in the increase in the voltage generated by the biosensors. This is due to the increased binding 

of the antibodies to ZnO nanowire constructs which results in the increase in piezoelectric 

potential and subsequently the increase in voltage generated. Binding of antibodies to the 

Stellenbosch University  http://scholar.sun.ac.za



 
 

135 
 

ZnO nanowire constructs causes bending of the nanowires or tensile stress, which displaces 

Zn
2+

 and O
2-

 and generates piezoelectricty. However, crystallization of ZnO nanowires can 

only be controlled to a certain degree. Thus differences in site-specific growth, densities and 

average diameters of the synthesized ZnO nanowires occur. Additionally spin coating of 

PMMA results in areas fully covered with no ZnO nanowire protrusions. These variations 

would greatly influence the performance and reproducibility of the developed biosensor. ZnO 

nanowires are promising piezoelectric transducers for biosensors for the detection of 

biomolecular recognition events. These transducers could be used to detect disease-causing 

agents much more rapidly and may be of specific benefit to third-world countries. However, 

numerous hurdle needs to be overcome in order for ZnO nanowires to become successful 

transducers in biosensors. 
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Table 1. XRD pattern of synthesized ZnO nanowires on a substrate covered with a 20 nm Au 

(111) film layer and a ZnO seed layer film deposited the sol-gel spin coating technique. 

2-theta Hkl Intensity (%) 

31.74 100 0.025 

34.43 002 100 

36.25 101 0.113 

47.54 102 0.036 

62.87 103 0.113 

72.61 004 3.153 

76.95 202 0.006 

81.4 104 0.046 

89.63 203 0.006 

104.17 105 0.056 

125.23 006 0.007 

 

 

 

Fig. 1. Schematic diagram of the constructed nanoforce ZnO nanowire-array biosensor. 
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Fig. 2. Schematic diagram of the switch board onto which the ZnO nanowire-array biosensor 

is mounted. 

 

 

Fig. 3. Two dimensional (a) and three dimensional (b) AFM images of the surface topology 

of the ZnO seed layer film deposited by the sol-gel spin coating technique. 
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Fig. 4. High magnification top FEI-SEM images of vertically aligned ZnO nanowires grown 

using the hydrothermal growth method on substrates containing a 20 nm Au (111) film with a 

ZnO seed layer film deposited by the sol-gel spin coating technique (a). Low magnification 

tilted (50°) FEI-SEM image of ZnO nanowires (b). High magnification top FEI-SEM image 

of ZnO nanowires spin coated with PMMA and deposited with a 10 nm Au film layer (c). 

High magnification tilted (50°) FEI-SEM image of ZnO nanowires spin coated with PMMA 

and covered with a 10 nm Au film layer (d). 
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Fig. 5. TEM images of ZnO nanowires synthesized on substrates covered with a 20 nm Au 

(111) film which is covered by a ZnO seed layer film deposited the sol-gel spin coating 

technique (a) with its corresponding HRTEM image (b) and SAED pattern (c) are shown. 

The average length of the synthesized ZnO nanowires (d) and ZnO nanowires spin coated 

with PMMA and deposited with a 10 nm Au film layer (e) is shown. 
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Fig. 6. Three dimensional topographic AFM images of the (a) constructed biosensor, (b) a smooth surface of the biosensor, (c) a smooth surface 

of the biosensor immobilized with lysozyme. 
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Fig. 7. FTIR spectra of the (a) biosensor surface, (b) the biosensor surface bound with the 3-

mercaptopropionic acid SAM, (c) the SAM modified by EDC/NHS esterification and the 

biosensor surface (d) covalently immobilized with lysozyme is shown. 
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Fig. 8. Fluorescence images of the biosensor surface (a) immobilized with lysozyme, (b) non-specific binding of the secondary antibody 

conjugate to the biosensor surface, and (c) non-specific binding of lysozyme to the biosensor surface is shown. 
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Fig. 9. Measured output voltage of the biosensors prior to analysis and after incubation with 

primary lysozyme antibodies at a concentration of (a) 10 ng/ml, (b) 50 ng/ml, (c) 500 ng/ml 

and (d) 1 μg/ml for 1 hour. The Schottky barrier rectifies the generated piezoelectric potential 

resulting in the observed voltage peaks. 
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Fig. 10. Measured output voltage of the biosensors prior to analysis and after incubation with 

primary lysozyme antibodies at a concentration of (a) 10 μg/ml and (b) 20 μg/ml for 1 hour. 

A negative control (c) was included in which only PBS solution was incubated for 1 hour. 

The Schottky barrier rectifies the generated piezoelectric potential resulting in the observed 

voltage peaks. 
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CHAPTER 6 

General Discussion and Conclusions 
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General Discussion and Conclusions 

 

The aim of this study was to assess whether ZnO nanowires could be used as piezoelectric 

transducers for the detection of immunoglobulins. Growth factors which influences the 

synthesis of ZnO nanowires by the hydrothermal growth approach was assessed to determine 

the optimum growth conditions that would produce c-axis oriented ZnO nanowires with 

similar dimensions. The study also assessed the immobilization of lysozyme to Au film 

layers. The immobilization of lysozyme to different SAMs were assessed to determine which 

absorbate results in the highest surface loading of lysozyme, while retaining biological 

activity. The developed nanoforce ZnO nanowire-array biosensor was tested in vitro to 

determine whether biomolecular recognition could be sensed. In theory, binding of antibodies 

to the biosensor surface would induce disturbances in the ZnO nanowire structure, resulting in 

the generation of a piezoelectric potential, due to the Schottky barrier the piezoelectric 

potential is rectified and voltage is generated. 

Numerous factors need to be taken into account when synthesizing ZnO nanowires by 

the hydrothermal growth approach. The dimensions i.e. the mean diameter, position and 

density of the synthesized ZnO nanowires would influence the performance of the developed 

biosensor (Liu et al., 2008; Song and Lim, 2007). Seed layer deposition techniques sol-gel 

spin coating and RF cylindrical magnetron sputtering were compared, to determine which 

deposition technique results in the most c-axis oriented ZnO nanowires with similar 

dimensions. For both deposition techniques, the increase in the ZnO seed layer deposition 

resulted in an increase in the mean ZnO seed grain diameter and subsequently an increase in 

the mean diameter of the synthesized ZnO nanowires. This is consistent with previous reports 

(Zhang et al., 2006). Increasing the ZnO seed layer thickness by the RF cylindrical magnetron 

sputtering technique resulted in the improvement of the c-axis alignment of the synthesized 

ZnO nanowires. When the sol-gel spin coating technique was used, an increase in the ZnO 

seed layer thickness resulted in the worsening of the c-axis alignment of the synthesized ZnO 

nanowires. 

Worsening of the c-axis alignment may be attributed to the increase in the surface 

roughness as the ZnO seed layer thickness increases by the sol-gel spin coating technique. 

The rougher the surface, the more nucleation sites are created for ZnO nanowire growth 

resulting in the increase in disorientation (Wang et al., 2012). The RF cylindrical magnetron 
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sputtering technique resulted in the synthesis of ZnO nanowires with similar dimensions, as 

compared to the sol-gel spin coating technique which resulted in a more diverse diameters. 

The effects of Au film layer thickness and crystal orientation on the synthesis of ZnO 

nanowires were also assessed. Increasing the Au film layer thickness resulted in the decrease 

in the mean diameter and a worsening of the c-axis alignment of the synthesized ZnO 

nanowires. Polycrystalline Au film layers resulted in the increase in the mean ZnO nanowire 

diameter, as opposed to single-crystalline Au (111) film layers. Crystal orientation of the Au 

film layer had no effect on the c-axis alignment of the synthesized ZnO nanowires. 

Immobilization of biomolecules to the sensor surfaces is the most demanding aspect 

during the development of biosensors (Fransconi et al., 2010; Gooding and Hibbert, 1999; 

Rusmini et al., 2007; Wong et al., 2009). Lysozyme was immobilized to Au (111) film layers 

using self-assembled monolayers (SAMs). Different SAMs were created and chemically 

modified to become reactive toward primary amino groups of lysozyme, to determine which 

SAM results in the highest level of protein immobilization while retaining biological activity. 

SAM formation successfully occurred, as well as the modification of monolayers by 

EDC/NHS esterification or DSP addition. Results showed that the SAM immobilization 

approach resulted in high levels of lysozyme immobilization. Self-assembled monolayer 3-

mercaptopropionic acid resulted in the most immobilized lysozyme, whereas combined SAM 

11-mercaptoundecanoic acid/1-nonanethiol resulted in the worst immobilization. 

Short chain alkanethiol 3-mercaptopropanioc acid immobilized more lysozyme as 

appose to long chain alkanethiol 11-mercaptoundecanioc acid. Longer chain alkanethiol 

SAMs are more susceptible to oxidation than shorter chains, resulting in their desorption from 

the Au surface (Ron and Rubinstein, 1998; Wang et al., 2003). The use of combined SAMs 

controlled the degree of protein immobilization which corresponds with previously reported 

results (Gooding and Hibbert, 1999; Gooding et al., 2003; Wasserman et al., 1989). The 

immobilized lysozyme activity was assessed by a BacLight
TM

 bacterial viability assay and 

was found to be inconclusive. Micrococcus luteus cells died faster on clean Au film layers as 

opposed to the immobilized lysozyme layers. It seem as the immobilized lysozyme molecules 

protects the bacterial cells from direct contact with the antibacterial Au film layer surface. 

However, a decrease in the viability of the bacterial cells were observed which might be due 

to the degradation of the cell walls by lysozyme, the exposure to the antibacterial Au film 

layer surface or quenching of the fluorescent dye. 

Stellenbosch University  http://scholar.sun.ac.za



 
 

155 
 

A nanoforce ZnO nanowire-array biosensor was developed for the detection and 

quantification of immunoglobulins. Lysozyme antigens and antibodies were used as a model. 

The performance of the biosensor was assessed by incubating different lysozyme antibody 

concentrations on the surface. Voltage generated prior to analysis was measured to determine 

the background signal. After 1 h incubation with different antibody concentrations the 

resulting voltage was measured. ZnO nanowires show promising results as transducers for 

biosensors for the detection of biomolecular recognition events. 

Increased antibody concentrations resulted in increased voltage production. The 

increased binding of antibodies to the biosensor surface results in increased disturbances in 

the ZnO nanowire structures, and subsequently increased piezoelectric potential. The 

piezoelectric potential is rectified by a Schottky barrier which results in the generation of 

voltage. It should be expressed that numerous hurdles need to be overcome in order for ZnO 

biosensors to become more sensitive and reproducible. Site specific growth in which the 

dimensions are the identical or similar should be sought as variations would influence the 

sensitivity and reproducibility of the developed biosensor. Additionally, spin coating of 

PMMA to fill spaces between the ZnO nanowires creates areas that are fully covered with no 

ZnO nanowire protrusions which would influence the performance and reproducibility of the 

biosensor. ZnO nanowire possesses promising characteristics to be developed as nanoforce 

biosensors for the detection of biomolecular interactions. However, numerous hurdles need to 

be overcome to construct a ZnO nanowire biosensor which is reproducible. 
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