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ABSTRACT 

The objective of this study was to develop an allometric model for Pinus elliottii grown in 

the Tsitsikamma region of the Eastern Cape province in South Africa. 20 trees were 

destructively sampled were within a chronosequence of three ages in plantations with 

uniform attributes. In-field data were collected of DBH (diameter at breast height) and 

height (H). Samples of discs, branches and foliage were collected from the felled trees. 

Variables collected from the biomass samples were used for biomass and nutrient export 

modeling. Density of the wood discs and bark was determined by a water displacement 

technique.  Stem biomass was reconstructed using Smalian’s volume formula. To develop 

a set of linear models for biomass prediction, dry mass of the sampled biomass 

components was regressed against logarithmically transformed predictors that included 

DBH, H, and DBH2H. Models were chosen based on goodness-of-fit assessment statistics 

and parsimony. A two-step process was used to upscale samples to tree level and from 

tree to stand level using the allometric models. For additivity purposes, logarithmic 

transformed (ln) DBH was used as a single predictor to determine the aboveground 

biomass (AGB) at stand level. The estimated AGB for the 16 (522 SPH), 28 (347 SPH) 

and 33 (380 SPH) years old P. elliottii trees were 99, 254 and 205 Mg haˉ¹ respectively. 

The BEF values of this study which were 0.81, 0.96 and 1.37 for Site 1, 2 and 3. Macro-

nutrients export increased with stand age. The estimated N export due to harvesting 

stemwood and bark alone was 388.7 kg ha-1 in younger trees (16 years) and 720.7 kg ha-1 

in older trees (28 and 33 years). A larger export of micro-nutrients such as Mn, Fe and Zn 

is potentially through harvesting of needles. 

Keywords: Pinus elliottii, allometric model, models, DBH, H, AGB, nutrient, nutrient export. 
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 OPSOMMING 

Die doel van die studie was om ‘n allometriese model vir Pinus elliottii wat groei in die 

Tsitsikamma area van die Oos-Kaap provinsie in Suid Afrika, te ontwikkel. 20 bome wat 

destruktief getoets is, is gebruik binne ‘n krono-orde van drie ouderdoms groepe in 

plantasies met uniforme kenmerke. Veld data was versamel van DBH (diameter by bors 

hoogte) en hoogte (H). Monsters van stomp skuiwe, takke en blare was versamel van die 

gesaagde bome. Veranderlikes wat ingesamel is van die biomassa monsters was gebruik 

vir die biomassa en voedingstowwe uitvoer modelering. Die digtheid van die hout skuiwe 

en bas was bepaal deur water ‘n verplasing tegniek. Stam biomassa was 

geherkonstruktireer met behulp van Smalian’s se volume formule. Die droë massa van die 

biomassa monsters is met behulp van regressive gebruik om ‘n stel lineêre modelle te 

ontwikkel wat biomassa voorspel teen logaritmies getransformeer voorspellers wat DBH, 

H, en DBH2H ingesluit. Modelle is gekies deur middel van orde-van-pas analise statistieke 

en parsimonie. ‘n Twee-stap skaal proses was gebruik om monsters op te skaal tot boom 

grootte en van boom grootte tot vak grootte, met behulp van alometriese modelle. 

Logaritmiese (ln) veranderde DBH was gebruik as enkel voorspeller vir die op skalings 

proses om bo-grond biomassa van ha orde te voorspel. Die berame AGB vir die 16 (522 

SPH), 28 (347 SPH) en 33 (380 SPH) jaar oue Pinus elliottii bome was 99, 254 en 205 

Mg haˉ¹ onderskeidelik.  Die BEF waardes vir die studie was 0.81, 0.96 en 1.37 vir ligging 

1, 2 en 3. Makro-voedingstowwe uitvoer toegeneem met die stand ouderdom. Die geskatte 

N uitvoer as gevolg van die oes stemwood en bas alleen was 388,7 kg ha-1 in jonger 

bome (16 jaar) en 720,7 kg ha-1 in ouer bome (28 en 33 jaar). 'N Groter uitvoer van mikro-

voedingstowwe soos Mn, Fe en Zn is potensieel deur die oes van. 

Sleutelwoorde: Pinus elliottii, allometriese model, models, DBH, H, bogrondse biomassa, 

voedingstowwe, voedingstowwe uitvoer. 
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Chapter 1: Introduction 

1.1 BACKGROUND 

Commercially managed forest plantations are considered an opportunity for mitigating the 

effects of climate change by their potential to sequester atmospheric carbon dioxide (IPCC 

2006). Carbon sequestration in plantation forestry is assessed by estimating the size of the 

carbon stocks and comparing changes in stocks over a given time frame (Picard et al. 

2012). Carbon stocks are known to be site specific and are constituted of pools within 

each facet of the forest ecosystem. The carbon stock includes above-ground biomass 

(AGB), below-ground biomass (BGB), forest floor litter biomass, dead material biomass, 

soil carbon and harvested woody product pools (IPCC 2006). Apart from the soil and forest 

floor, the greatest potential for AGB and carbon storage in forest ecosystems is reported to 

be within tree biomass components such as stem, branches, and foliage (Peichl and Arain 

2006; Pretzsch 2009; Zao et al. 2012). Carbon fluxes of each of the pools vary with 

climatic, edaphic, biotic and management influences (Bird et al. 2010). Biomass estimates 

are therefore needed to determine carbon sequestration, biomass growth and competition 

in forest ecosystems (Parresol 1999; Gonzalez-Benecke et al. 2014). Moreover, increased 

regional and global expectations in renewable energy, ecosystem services and the need 

for sustainable forestry practices has led to a rise in the demand of biomass estimation 

models. In most of the cases this is driven by environmental legislation change which 

provides a strong incentive for realistic carbon estimates. 

Inventory based methods are often used for assessing forest carbon stock and changes 

(Correia et al. 2010). Biomass assessment is done by either directly employing allometric 

models that predict tree biomass components based on field measurements of individual 

trees or by applying multiplication factors that allow to convert or expand stem volume to 

the required tree biomass components (IPCC 2003). Remote sensing, and geographic 

information systems are also powerful interrelated technologies for biomass assessment 

(Parresol 1999; Kunneke et al. 2014).  

Furthermore, measuring above-ground biomass is necessary as it is the first step in 

evaluating site nutrient demands and management practices for rapidly growing stands 

(Adegbidi et al. 2002; Sanchez et al. 2006; Gonzalez-Benecke et al. 2014). This is 

Stellenbosch University  https://scholar.sun.ac.za



2 

because harvesting of biomass in commercial timber plantations is known to result in 

significant macro-nutrient content loss which ultimately affects nutrient reserves. It is 

therefore important to understand the status of biomass and nutrient stocks to secure a 

continued supply of tree biomass components (long-term productivity). The productivity 

and commercial importance of P. elliottii makes it a key component of the carbon balance 

in South Africa. It is noteworthy to mention that biomass estimation is key to the South 

African forestry industry. The contribution of the commercial forestry industry in South to 

the Gross Domestic Product (GDP) is estimated to be 1.27% (DAFF 2011). Planted forests 

constitute close to 1.27 million hectares of land and are across different site types. A 

significant amount of the planted forest area is under Pinus elliottii, a Pine sub-species 

(FSA 2011).  

Thus, the goal of the study is to develop a species-specific model for AGB estimation of P. 

elliottii by testing a variety of model types. The study also aim to develop other biomass 

quantification methods such as expansion factors. The developed allometry model is 

useful in inventories especially in the carbon off-setting potential of forest plantations under 

similar environmental conditions. Furthermore, the study seeks to determine the exported 

macro and micro-nutrients of P. elliottii at stand level.  

1.2 PROBLEM STATEMENT 

While several biomass studies have been published in South Africa on species such P. 

patula and P. radiata (van Laar and van Lill 1978; van Laar 1982; Carlson and Allan 2001; 

van Zyl 2015). It is therefore important to note that Pinus elliottii lacks a biomass 

estimation model despite its commercial and ecological relevance to South African forestry 

industry. Species-specific models for estimating AGB lead to more accurate estimates 

than generalised functions which rely on diameter at breast height (DBH) (Gholz and 

Fisher 1982; van Lear et al. 1984) or DBH and Height (van Lear et al. 1986; Baldwin 

1986). 

1.3 RESEARCH OBJECTIVES 

1.3.1 Main objective 

The main objective of the study is to develop a model for the estimation of stand level AGB 

and nutrient export for P. elliottii. 

Stellenbosch University  https://scholar.sun.ac.za



3 

1.3.2 Specific objectives 

1. To develop and assess a range of models and coefficient sets for estimating stand-

level AGB.

2. To estimate total AGB and formulate estimators such as biomass expansion factors

(BEFs) for P. elliottii in South Africa.

3. Based on the best AGB model, to develop models which estimate potential nutrient

export.

Stellenbosch University  https://scholar.sun.ac.za



4 

Chapter 2: Literature Review 

2.1 DRIVE TOWARDS CARBON ESTIMATION 

In the context of global climate change, the capacity of forest ecosystems to sequester 

carbon has attracted increasing attention (IPCC 2006). Like many other countries, South 

Africa resolved to voluntarily align and conform to the United Nations Framework 

Convention on Climate Change (UNFCCC) in 2002. In the succeeding years, it signed 

agreements with affiliated regulatory bodies which include; Reducing Emissions from 

Deforestation and Forest Degradation (REDD+) and the Intergovernmental Panel on 

Climate Change (IPCC) (IPCC 2003; DEAT 2006; UNFCCC 2009). The objective of the 

bodies is to reduce greenhouse gas (GHG) emission, and spearhead climate change 

mitigation and adaptation strategies (UNFCCC 2011). 

Quantifying biomass is needed for site productivity assessment, which entail stand, tree 

growth and yield studies (Madgwick and Satoo, 1975). Estimates of biomass components 

such as the crown, provide detailed understanding on the quantity of harvesting residues 

and fuel load which is essential for planning prescribed burning and accounting for 

biomass for bio-energy production (Gonzalez-Benecke et al. 2014). Estimates of biomass 

removals are also necessary as they reflect the effects of biomass removal on site 

productivity and nutrition depletion (Shan et al. 2001; Sanchez et al. 2006). 

Of late,  the forest industry in South Africa was subjected to tax implications because of its 

active role in sequestering atmospheric carbon dioxide (CO2) and storage of carbon (C) in 

tree biomass, dead organic matter and soil carbon pools (West 2009; Zao et al. 2012). The 

carbon sequestration capacity of forests is strongly correlated to forest carbon stock, which 

is equal to forest biomass multiplied by carbon content factor (CCF) (Zao et al. 2012).  

2.1.1 Key carbon pools and fluxes in forest ecosystems 

Forestry ecosystems are known to be sanctuaries for carbon storage. They are constituted 

of several pools which include AGB, BGB, under-storey vegetation, dead organic matter, 

and the soil (Figure 2.1).  

Stellenbosch University  https://scholar.sun.ac.za



5 

It is essential to measure and monitor the amount of C kept in AGB pools stock and its 

change over time (IPCC 2006). This is because emission and carbon capture that may 

result due to land use change, management, forest growth or site degradation can be 

examined (Gibbs et al. 2007). IPPC (2006) proposed a method to determine annual 

change in carbon stocks in forest plantations by summing changes in living biomass, dead 

organic matter and soil pools. 

2.1.2 Carbon estimation 

Carbon in the growing portion of a stand (living trees) is estimated using mathematical 

equations that convert tree or stand inventory data to biomass and to carbon. These are 

normally allometric equations that convert tree diameter and tree height to biomass, or 

biomass expansion factors that convert standing volume to biomass (IPCC 2006). Forest 

biomass estimation has become a central facet of measuring capacity of forest 

ecosystems to sequester carbon (Zao et al. 2012). Even though IPCC Tier 1 proposed 

Figure 2.1: Major carbon and fluxes in forest ecosystems.  

The carbon pools are represented by filled circles (measurements in t C ha-1) and 

the fluxes in dotted circles (measurements expressed in t C ha-1 annum-1). The 

ranges given are typical ranges compiled from several sources found mostly in 

South African pine and eucalypt plantation forests (du Toit et al. 2016). 
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international level default values to estimate plantation C stocks at a country wide level 

(IPCC 2006), it is important to note that IPCC methods are viewed as generic, implying 

that they are not specific to local conditions. Moreover, they lack the desired precision for 

South African C accounting and taxation systems (du Toit et al. 2016). Progression 

towards higher resolution country-specific Tier 2 and regional specific Tier 3 estimates are 

encouraged for reporting and essential for taxation systems (IPCC 2006; Bird et al. 2010).  

2.2 ESTIMATION METHODS FOR TREE BIOMASS 

2.2.1 Measuring aboveground biomass 

Allometry is the measure and study of growth or size of a part in relation to an entire 

organism (Parresol 1999). Estimates of AGB, for practical reasons, are frequently based 

on easily made measurements, such as tree diameter, and a suitable predictive equation. 

These functions reflect total AGB, or some component thereof (Nemeth 1973; Ritchie et al. 

2013). As Parresol (1999) notes, biomass estimating models of a forest stand involve 

prediction of individual tree biomass and summation of the quantities to obtain per-hectare 

stand biomass.  

It is important to note that there are various methods for assessing AGB (Parresol 1999; 

van Laar and Akça 2007; Samalca 2007; Picard et al. 2012; Seifert and Seifert 2014). 

These methods include; field measurements, remote-sensing, and inventory assessments. 

Though remote sensing is expensive, some studies have reported that it generally 

produces more accurate estimates than other conventional options (Samalca 2007; Picard 

et al. 2012). Principally, this study focused on in situ sampling, which is a destructive and 

direct biomass measurement technique (van Laar and Akça 2007; Picard et al. 2012; 

Seifert and Seifert 2014; Magalhães 2016).  The method is described in the sections that 

follow and in Chapter 3.  

2.2.2 Plot area-basis biomass estimation 

In situ biomass sampling method is divided into; bulk sampling and biomass component 

sampling (with regression) (Seifert and Seifert 2014). As noted by Seifert and Seifert 

(2014), the bulk sampling method is more commercially practical than in situ sampling as it 

is determined based on in-field chipping. The method is often useful when determining 

biomass value per area of invasive woody vegetation (Seifert and Seifert 2014; Magalhães 

2016). Biomass component sampling involves harvesting trees or tree components on an 
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individual tree or on a plot area, measuring key metrics, drying the material, and then 

(fresh and dry) weighing the biomass components (Gibbs et al. 2007; Seifert and Seifert 

2014). 

2.2.3 Single tree-basis biomass estimation 

When developing biomass models; the in situ destructive biomass determination method is 

recommended (Parresol 2001; Husch et al. 2003). This is because the method precisely 

caters for tree-specific biomass measurements at an extensive scale (GTOS 2009). 

However, the non-destructive biomass measurement does not need felling of tree; hence, 

it employs developed biomass models and biomass expansion factors (BEF) to infer 

biomass to unit areas (Pearson et al. 2007). Amongst, the two measurement methods, the 

regression models generate more accurate biomass predictions (IPCC 2003). Usually, 

regression models are site specific and they mimic the distribution of trees of a site 

especially if they are derived from a large enough and representative number of trees 

(Husch et al. 2003).  

2.3 SAMPLING AND UPSCALING OF BIOMASS 

The first sampling phase involve selection of trees normally in randomly located circular 

plots. There are several ways to randomly select these plots. The Hawth’s Tools in ArcGIS 

software has been employed in some studies to select plots (Magalhães and Seifert 2015). 

After the plots are marked, a sub-set of trees for destructive measurement of biomass is 

selected from the pre-sampling enumeration data trees (first sampling phase) representing 

a stratified DBH range for each plot. Individual trees are felled and often divided into 

stemwood and crown (branches and needles) biomass components. Tree components are 

then sampled and the dry weights estimated. Section 2.4 highlights the procedure followed 

in measuring biomass components. 

2.4 MEASURING BIOMASS COMPONENTS 

The AGB of trees is usually divided into three main components, namely: stemwood, stem 

bark and the crown (Parresol 1999). The crown component is often separated into two 

components, which are: branches and needles (van Laar and Akça 2007; Seifert and 

Seifert 2014).  
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2.4.1 Branches 

A sampling with regression procedure proposed by Seifert and Seifert (2014) is commonly 

used to sample branches. Regression models are developed to estimate biomass based 

on the sampled branches in the second phase to increase the size of the sample (Saint-

André et al. 2004). Since 75% of the destructively sampled trees in this study were mature 

trees, the sampling procedure recommended by Seifert and Seifert (2014) was used for 

sampling the branches of all the trees. However, in the case of younger trees, the entire 

branches can be weighed in-field because of the relatively small size of the trees. The 

predictor variables for regression models typically include; branch diameter, branch length 

and basal area (van Laar and Akça 1997; Seifert and Seifert 2014). Although compound 

variables may improve models, it is important to note that metrics of these variables are 

cumbersome to collect hence sometimes a single variable is used.  

2.4.2 Needle 

Like the branch biomass components, needles are separated from the branches and oven-

dried until a constant mass is achieved (Litton 2003; van Laar and Akça 2007). The 

process of removing needles from branches of mature trees is time consuming and labour 

intensive. Thus, needle biomass samples are regressed with the branch diameter or basal 

area as proposed by Parresol (1999) and Saint-André et al. (2004) to determine needle 

biomass of the entire tree. In this study, a sampling with regression approach was also 

employed for the needle biomass.  

2.4.3 Stemwood 

Stemwood biomass measurement is normally done in two phases: volume measurement 

and density determination. The derived basic density is multiplied with the sectional 

volume to determine the biomass of the stem section. Sectional volume of stems is often 

determined by using the CT-scanner or a water displacement method. The weight of the 

water replaced after full immersion, denotes the volume of the sample in cm³ (American 

Society for Testing and Materials 2008). The two density methods are not feasible for the 

entire merchantable stem since they are associated with a high capital cost. Thus, wood 

discs or stem portions are used (van Laar and Akça 2007; Picard et al. 2012).  

For practical purposes, stem volume equations are commonly and widely applied to 

estimate the total and merchantable volume of stems from limited diameter measurements 
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along the stem (van Laar and Akça 2007). These equations are practicable for the 

calculation of frustums of different forms. Smalian and Hubert’s formula can be applied 

when the frustums are that of a paraboloid while Newton’s formula can be applied to all the 

frustums. The geometric formula is often used to calculate the volume of the truncated 

cone (Seifert and Seifert 2014). Volume formulas generally used to calculate the volume of 

stem sections are shown below (van Laar and Akça 2007; Seifert and Seifert 2014). 

Smalian’s formula: V =   (2.1) 

Huber’s formula: V = m (2.2) 

Newton’s volume formula: V =  (2.3) 

Geometric formula: V =       (2.4) 

Where: 

gm = cross sectional area at the midpoint of the stem section (cm2) 

gu = cross sectional area at the upper end (cm2) 

gl = cross sectional area at the lower end (cm2) 

l = length of stem sections (m) 

R = diameter at thick end of log (cm) 

r = diameter at thin end of log (cm) 

V = volume (m3) 

2.4.4 Variability in density 

Stem volume and basic density calculation are central for the successful determination of 

stem biomass.  Plantation trees are known to differ considerably in wood density within the 

stem in radial and longitudinal direction and between trees and sites (Seifert and Seifert 

2014). Therefore, information on density gradients is fundamental in determining biomass 

of most softwood trees. As noted by Seifert and Seifert (2014), employing literature 

derived density values is a crude method which does not factor in density variability and 

generates biased biomass predictions. Upscaling from sample disc entails a measurement 

component where basic density is determined at disc level. This is followed by a modelling 
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exercise which is typically based on the estimation of fresh weight to dry weight ratios or a 

regression approach to obtain information for the entire stem (Seifert and Seifert 2014). 

2.4.5 Bark 

Like stemwood biomass determination (Section 2.4.3), the collected stem discs are also 

considered for the bark density determination. Bark volume is measured by subtracting 

volume under bark from volume over bark. Alternatively, bark is removed from each disc to 

measure its weight (Saint-André et al. 2004). Functions for bark-thickness, such as those 

developed by Deetlefs (1957), can also be used to calculate the bark volume which is later 

multiplied by a single oven-dry to green-weight ratio. However, this technique will only be 

useful if estimation errors related with bark thickness model are negligible (van Laar and 

Akça 2007). 

2.5 STATISTICAL PROCEDURE 

2.5.1 Biomass modelling 

Biomass modelling is an upscaling process which is based on statistical procedures which 

entail use of regression models (Seifert and Seifert 2014).  

2.5.2 DBH-Height models 

Stem diameter at breast height (DBH) and tree height (H) are commonly used measures of 

tree growth. Several models forms which include the inverse DBH and ln-transformation 

DBH are used to explain the height to DBH relationship. These include: compound 

variables, linear and polynomial functions (Chave et al. 2005; Feldpausch et al. 2011; 

Sileshi 2014). In other studies, site factors such as MAT, MAP, BA, SPH, age and DBH 

have also been considered (Bollandsås 2007; van Laar and Akça, 2007; Feldpausch et al. 

2011; van Wyk et al. 2013).  

2.5.3 Models for biomass components 

Regression analysis is a common method for predicting biomass in forest stands. 

Standard least squares techniques are commonly used in fitting regression lines with 

different parameters (Parresol 1999; Picard et al. 2012). These models are frequently 

logarithmically (ln) transformed linear models (Seifert and Seifert 2014). Non-linear 

correlations of predictors are often logarithmically transformed to attain the linearity while 
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satisfying the assumptions of homoscedasticity. Linear regression models forms used to 

estimate biomass include: simple linear and multiple linear and multiple linear.  

Simple linear regression (Picard et al. 2012): Y =𝛽0 +𝛽1𝑋+ ∈  (2.5) 

ln-transformed (Picard et al. 2012): ln(𝑌) = 𝛽0 +𝛽1ln(Χ)+ ∈  (2.6) 

Multiple linear regression (Parresol 1999): Y = 𝛽0𝑋1𝛽1𝑋2𝛽2…𝑋𝑗𝛽𝑗+ ∈  (2.7) 

Multiple linear (ln) (Parresol 1999): ln(𝑌) = 𝑙𝑛𝛽0 +𝛽1ln(𝑋1)+⋯+𝛽𝑗ln(Χ𝑗)+ ∈     (2.8) 

Where:  

Y = Tree component mass (kg) 

X = Tree dimensional variables 

𝛽j = Model parameter  

βₒ = Intercept value  

β₁ = Slope value  

2.5.4 Biomass Expansion Factors 

Biomass expansion factors (BEFs) are calculated as the ratio between the mass of the 

whole tree and stem volume. BEFs are usually applied at the stand level and allometric 

functions at the tree level. This is because they are default ratios which are applied on 

inventory data (volume of stand). BEFs are frequently applied for upscaling biomass. 

National and regional AGB estimates are often calculated based on BEFs (Schroeder et 

al. 1997). Local commercial forest biomass can be estimated from BEFs by applying them 

to forest inventory data (Brown 2002; West 2009). AGB estimates are often derived from 

calculated stem volume from forest inventories and default BEFs (Brown 2002). However, 

variations in tree age, size and site conditions may result in unreliable BEFs estimates 

(Brown et al. 1989; Sanquetta et al. 2011). In contrast to these findings, a biomass 

modelling study on Androstachys johnsonii Prain (Mecrusse Woodlands) in Mozambique 

showed that the BEFs were weakly related to tree size (Magalhães and Seifert 2015). 

Other studies have also reported that BEF vary with tree size (Brown et al. 1989; 

Sanquetta et al. 2011). This study did not attempt to test the independence or weak 

dependence of BEF values on tree size.  
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2.6 ADDITIVITY 

Additivity is a sought attribute of biomass models (Picard et al. 2012). When all model 

formulas of biomass components are equivalent to the estimation of the total biomass with 

one additivity is achieved. Ecosystem productivity, energy and nutrient flow studies often 

categorise biomass into components thus additivity is essential (Cunia and Briggs 1985). 

Often different methods to achieve additivity are compared in many studies (Phiri 2015; 

Magalhães 2016). The additivity process entails use of several linear and nonlinear 

regression model forms where they are tested for each tree component and for the total 

tree using weighted least squares (Parresol 1999; Parresol 2001; Saint André et al. 2004; 

Picard et al. 2012). These weight functions are determined by iteratively finding the optimal 

parameters that homogenises the residuals, and enhances other fit statistics (Picard et al. 

2012). In Magalhães (2016) study, the following independent variables were tested in a 

multivariate regression; 1/DBH, 1/DBH2, 1/DBH·H, 1/DBH·LCL, 1/DBH2·H and 

1/DBH2·LCL, the best (approximation) weight function was found to be 1/D2H, for all tree 

component equations (linear or nonlinear).  

Methods such as the SUR which join all components and the total tree biomass model by 

considering contemporaneous correlations and introducing restrictions on a set of 

regression equations have been used in the study of AGB and BGB (Saint André et al. 

2004; Goicoa et al., 2011). However, it is worth noting that they use non-linear models 

which are associated with multiplicative errors especially when logarithmic transformed. 

The main methods of enforcing additivity are: Conventional (CON), Seemingly Unrelated 

Regression (SUR) with parameter restriction, Isometric Log Ratio (ILR), Composition 

models and Nonlinear Seemingly Unrelated Regression (NSUR) with parameter restriction 

(Parresol 1999; Parresol 2001; Seifert and Seifert, 2014). The CON method which was 

employed in this study consists of using uniform independent variables for all tree 

component models and the total tree model thereby achieving additivity automatically 

(Parresol 1999; Goicoa et al. 2011). The most widely used simple linear model form 

(Equation 2.5) is often used for the tree biomass components and for total AGB. Linear 

models are preferred over nonlinear models because the conventional method of enforcing 

additivity is only valid for linear models (Parresol 1999; Goicoa et al. 2011).  
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 2.7 ERROR PROPAGATION 

To make correct inferences about long term dynamics in biomass stocks, it is important to 

understand the uncertainties (errors) associated with the biomass estimation (Samalca 

2007). Biomass stock is often assessed by combining the estimates of the first and second 

phases. Thus, the calculation of the error propagation forms an essential part of 

estimation. Two main sources of error are accounted for in this calculation. These are; 

error resulting from plot-level variability (first sampling phase) and error which emanate 

from the choice of biomass regression equations (second phase).  

As reported by Seifert and Seifert (2014), errors in the first phase are largely affected by 

the sampling design, sample size, type of estimator used and the inherent variation 

between the sampled trees. Errors due to sampling in the second phase involve 

regressions. The magnitude of second phase error is mainly affected by the sampling 

design, the sample size, the estimation procedure and the variation of the biomass value 

of the regression function (Samalca 2007). Cunia (1986) demonstrated that linear models 

are preferred because the procedure of combining the error of the first and second 

sampling phases is limited to biomass regressions estimated by linear weighted least 

squares. Efforts to reduce first phase errors (inventory) have been made by using random 

sampling but this does not guarantee unbiased estimates (van Laar and Akça, 1997).   

The combination of the two errors in the two phases generates a value for the total error 

propagated. Samalca (2007) based on the works of Cunia (1986), proposed a method for 

determining the error propagated (Equation 2.9). 

S2 = S2(x) + S2(y)   (2.9) 

Where: 

S2 = total variance 

S2 (X) = variance associated with sampling 

S2 (y) = variance associated with regression 

2.8 GOODNESS OF FIT FOR REGRESSION MODELS 

Statistical regression procedures are used to formulate models for scaling dimensional 

variables of standing trees to biomass (Parresol 1999; Picard et al. 2012). Several 
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measures for goodness of fit and comparing alternatives between different models (least 

squares regressions) have been recommended by Parresol (1999). 

Akaike’s Information Criterion (AIC) is a common measure for comparing models and is 

used in selecting the best fitted model. The smaller AIC value indicates a better fit for the 

model. Several biomass studies have used AIC as criterion because it considers the 

number of parameters in the model when comparing different models and thus ensures 

parsimony in model selection (Parresol 1999; Ott et al. 2001). The AIC, the residual sum of 

squares, number of samples and terms used in each regression, thus penalises inclusion 

of additional parameters into each model (Anderson et al. 1994). In Payne (2015) study, 

the Wald’s test was used to test the effect of dropping terms.  

Some of these methods are: Adjusted coefficient of determination (R²), error of estimates 

(se), Coefficient of variation (CV) and relative standard error S (%). The se uses the actual 

units of measurements. Saint-André et al. (2004) and FAO (2012) highlighted that when 

the value for se is small compared to the value from other models, it means the model has 

a good fit.  

Cook’s test statistic, which join the leverage and residual for each data point in the 

regression is widely employed to detect possible outliers (Cook 1979). In this study, 

outliers that had a strong influence on the regression outcome was traced back through 

each raw data-set to ascertain for data capturing or calculation errors before segregation 

from the analysis. For visual assessment: residual scatter, leverage and Cook’s statistics 

plotted against fitted values are used to ascertain normality and heterogeneity (Payne 

2015). The 95% Confidence limits of coefficients and intercepts were estimated using the 

product of the standard error, t-test statistic and coefficient estimates for regression 

equations as reported by Payne (2015).  

Variance inflation factor (VIF) is another measure of assessing the goodness of fit of a 

model. VIF also known as tolerance. Studies have proposed different VIF values as the 

maximum. For instance, a maximum VIF value of 10 was recommended by Neter et al. 

(1989). Others scholars have recommended a maximum VIF value of 5 and even 4 

(Allison 2012). Therefore, it would appear, that most studies can use whichever VIF bound 

they wish to help enhance substantial and important or new information about the 

predicting variables. 
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 2.9 TRANSFORMATION BIAS CORRECTION   

Extensive literature has been published on how to comply with various model 

assumptions, especially when data transformations are involved prior to the fitting 

procedure (Seifert and Seifert 2014). To minimise heteroscedasticity, dimensions of 

organisms inherently require logarithm transformation prior to the testing of hypothesis on 

regression analysis (Baldwin 1986). Logarithmic transformed DBH is usually selected for 

statistical procedures such as upscaling branch and needle biomass. Schroeder et al. 

(1997) found nonlinear models to perform better than the linear ones. However, values 

from the logarithm regression results in biased estimates (Phiri 2015). Because of this 

biasness, a formula (Equation 3.6) shown in detail in Chapter 3, Section 3.7.2.1 was 

developed by Baskerville (1972) for the corrections of error in biomass inventories. 

2.10 NUTRIENT EXPORT 

The demand for biological resources such as forest products, including saw timber, 

pulpwood and wood chips continue to rise especially with the ever-increasing demand of 

South African forest products in Asian markets. The drive towards renewable energy such 

as bio-energy also continue to put pressure on plantation forest resource base in South 

Africa. This has led to more forest resources being harvested from industrial plantations 

which already face numerous environmental and socio-political influences (Dovey 2009). 

The operational consequences is often pressure on production, hence frequently forestry 

practices may be altered to suit the ever-rising market demands. This has prompted 

prompt research initiatives that assess the impact of biomass removal (harvesting) on site 

nutrient reserves (Dovey 2009) which by far has the greatest impact on nutrient fluxes and 

reserves in South African plantation forestry (Binkley 1986, du Toit and Scholes, 2002). 

When additional biomass components are harvested (foliage and bark) with together with 

primary biomass (stemwood) nutrient pools are at risk because of accentuated nutrient 

export.  

2.11 FACTORS INFLUENCING NUTRIENT RESERVES AND EXPORT 

Several other factors influence nutrient reserves and export. These include: tree species, 

site, age, biomass component harvested, harvesting method, rotation length, climate, soil, 

atmospheric deposition, and mineral weathering (Binkley 1986; du Toit and Scholes 2002; 

Saint Andre et al. 2006; Dovey 2009).  In addition, when productivity increases because of 
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site management practices, the rotation length for plantations is lowered leading to 

increased nutrient export through improved quantity and frequency of AGB extraction 

(Binkley 1986; Dovey 2009). In Binkley (1986) view, the economic imperative leading to 

reducing rotations further exacerbates site quality due to nutrient export. However, rapid 

export of vital nutrients may not be detected on sites with well-buffered soils and massive 

nutrient capital, but may speedily diminish unproductive sites. Zululand coastal plain of 

South Africa with minimum clay and organic carbon content, have a narrow nutrient-

holding capacity and hence have low nutrient reserves (du Toit and Dovey 2002; Dovey 

2009). Soils of similar quality are in the Tsitsikama region where biomass samples of this 

study were collected have shown to have the same high risk of nutrient depletion under 

poor management.  

2.12 FOREST BIOGEOCHEMICAL CYCLE 

Nutrients are found in forest ecosystems in several pools which include the above and 

below-ground biomass, the forest floor and in the soil. The biogeochemical cycling of 

nutrients is fundamentally fluxes of nutrients from plant forms in the soil into the biomass 

(stand uptake), and eventually back to the forest floor as litterfall and harvesting residue 

where nutrient-rich material undergoes decomposition and return to the soil as nutrient-

containing organic or mineral compounds. Fine root turnover plays a major role in 

contributing to fluxes via living biomass to soils. 

Figure 2.2: Schematic representation of the forest biogeochemical cycle (nutrient 

pools and fluxes within a forest ecosystem) (Ackerman et al. 2013). 
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From the illustration in Figure 2.2, nutrients can be added to the forest ecosystem, 

primarily by weathering, atmospheric deposition, fertilisation and nitrogen fixation. 

Nutrients can be removed from ecosystems, mainly through leaching, erosion, fire-induced 

losses, volatilisation, and harvesting removals (du Toit and Scholes 2002). Moreover, 

metamorphosis during the cycling of each nutrient element in the various soil pools are 

complex and specific to each individual nutrient (Ackerman et al. 2013). It is noteworthy 

mentioning that certain pools of nutrients may be readily available for plant uptake, while 

other pools are only potentially available for plant uptake in the long term, once they have 

been transformed to plant-available form (Fisher and Binkley 2000).  

2.13 THE SOUTH AFRICAN FORESTRY INDUSTRY 

Plantation forests in South Africa represent 1.27 million hectares and 1% of total land area 

geographically spread between 23° and 34° South latitude (FSA 2011). The planted 

forests are within climatic regions with a mean annual temperatures (MAT) ranging 

between 12.0 and 22.5 °C, mean annual precipitation (MAP) between 500 and 2000 mm, 

altitudes between 0 and 2200 m above sea level, and on soils derived from 23 major 

parent materials (Schulze et al. 1997). Different silvicultural management techniques are 

employed on these diverse sites types to grow a diverse range of wood and fibre products. 

Of the Pine species, 15.6% is planted to long rotation and 12.8% to short rotation regimes 

(FES 2011; FSA 2011). These rotation lengths vary from short (6-12 years) to long (up to 

35 years). The long-rotation regimes are constituted of pine species grown for veener 

(plywood), solid wood (sawn-log) and short rotation mainly grown for pulp and wood chips. 

Rotation lengths vary with tree growth and site productivity, with felling age generally 

determined by market forces and management goals.  

2.13.1 The genus Pinus elliottii 

Pinus elliottii (Engelmann), commonly known as slash pine, is an introduced species 

grown typically in even-aged commercial plantation forests in South Africa. It is native to 

the South Eastern United States; predominantly found in the coastal plains of North and 

Central Florida. However, its dominance extends into neighbouring states as well (Poynton 

1979). P. elliottii has also been planted in many countries mainly for timber production and 

pulpwood. These countries include; Argentina, Australia, Venezuela, Brazil, China, New 

Zealand, Uruguay and USA (Gonzalez-Benecke et al. 2014).  
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 2.13.2 Pinus elliottii in South Africa 

In South Africa, it has a relatively long history of use in the commercial forestry sector, with 

seeds first imported in 1916 and extensive expansion occurring since. Pinus elliottii has a 

very wide planted range in both the summer and all-year rainfall regions, including a very 

wide altitudinal gradient. It is known as a hardy, relatively slow growing species that is 

adaptable to many different site conditions (du Toit 2012). Softwoods (pines) is 44% of 

total plantation area (1 273 357ha) in South Africa. As shown in Figure 2.2, P. elliottii is the 

second most commercially grown softwood (after P. patula) covering a planted area of 196 

575 ha equivalent to 15.4 % of forest land in South Africa (Dovey 2014). 
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Figure 2.2: Pine species commercially grown in South Africa in terms of Pines 

planted area. 

2.13.3 Factors affecting Pinus elliottii choice in South Africa 

Pinus elliottii is noted to have a fair resistance against Diplodia pinea, which is a major 

disease that cause dieback and stem cankers. P. elliottii is also considered as one of the 

species which resist Fusarium circinatum (pitch canker fungus) and Sirex noctilio when it is 

crossed with P. caribaea (du Toit 2012). In addition, P. elliottii is amongst the pine species 

that is known to withstand severe frost and exposure to cold winds (Polynton, 1979, du 

Toit 2012). The species has a superior resistance to waterlogging; being able to withstand 

near-permanent waterlogged conditions (Polynton 1979; Schultz 1997; Chmura et al. 

2007). The idle MAT for P. elliottii is above 14°C and the optimum MAT range is South 

Africa is between 17°C and 22°C. The minimum MAP (mm) of cool temperate (< 16°C) 

and all-year zones is 700 mm, whilst Sub-tropical zones (> 19°C) is 900 mm. P. elliotti 

grows poorly in cool temperate climate (du Toit 2009) such as the Tsitsikamma region 
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where this study was carried out. Furthermore, P. elliottii is regarded as fire resistant from 

a young age. P. elliottii grows across all sites, from very low productivity sites to the highly 

productivity sites (MAI > 20) (du Toit 2012). However, the species productivity on high 

altitude sites is reported to be low (du Toit 2012).  

2.13.4 Wood properties of P. elliottii 

The pine resource supply has always been generally accepted by sawmilling sector 

because of its relatively good wood properties and qualities. P. elliottii is preferred because 

it does not manifest any specific direction in spiral grain (du Toit 2012). The core wood is 

the least spiral amongst South African commercial pines (Banks 1969). However, the 

South African P. elliottii is associated with resin shakes. The species is known to be quite 

resinous as its ducts usually respond quickly and sometimes abruptly to any form of 

damage (Malan 1994). Resin shakes and infiltration also occur in P. elliottii x P.caribaea 

hybrid but rarely occur in other South African grown pines (du Toit 2012). Although in-

roads have been made to develop a better understanding of the phenomenon and its 

effect on processing and end-product value, no solutions towards the reduction in severity 

or elimination of resin shakes in P. elliottii have been forthcoming (du Toit 2012).  

2.14 BIOMASS MODELS FOR LOCAL PINE SPECIES 

P. elliottii is an important plantation species internationally, as well as in South Africa.  

However, there is lack of published allometry functions for the species. Table 2.1 shows 

studies that have been reported on P. patula in Swaziland (Morris 1986; Morris 1992; 

Carlson and Allan 2001) and P. radiata across a range of site conditions in the southern 

regions of South Africa (van Laar and van Lill 1978; van Laar 1982; van Zyl 2015). 
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Table 2.1: Summary of Pine biomass studies carried out in South Africa (du Toit et al. 2016). 

Species 
No. 

Trees 
No. 

Sites 
Age 

(years) 
SPH 

(trees/ha) 
DBH 
(cm) 

H 
(m) 

Elevation 
(m) 

Rainfall 
(mm) 

Temperature 
(°C) 

Source 

P. patula 65 16 1-28.5 443-1612 0.8-33.4 1.6-27.1 761-1520 
825-
1645 

15.5-19.5 
Morris (1986) 
Morris (1992) 
Carlson and  
Allan, (2001) 

P. radiata 52 6 25-40 222-417 11.4-60 12.4-41.1 30-750 
1000-
1300 

13.5-18.5 

van Laar and 
van Lill (1978) 
van Laar 
(1982) 
van Zyl (2015) 
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van Laar and van Lill (1978) published allometric coefficients are: 

 ln(oven-dry AGB) = 8.51584 + 2.19497*ln(DBH)

van Zyl (2015) reported: 

 ln(oven-dry AGB) = -1.83 + 2.24*ln(DBH)

van Zyl (2015) biomass estimates of 63.2 - 255.2 Mg ha-1 corresponds van Laar and van 

Lill (1978) 184.9 Mg ha-1. It is worth mentioning that the biomass datasets in Table 2.1 

were built using a comparable biomass sampling approach involving destructive 

harvesting of trees and their components selected to represent the tree size distribution 

across each study site. The biomass components of van Laar and van Lill (1978) and van 

Zyl (2015) studies were weighed in the field to ascertain the wet mass and sub-samples 

were oven-dried to constant mass to develop dry to wet mass ratios similar to Seifert and 

Seifert (2014) recommendations.  

2.15 EXTRAPOLATION OF PUBLISHED BIOMASS MODELS 

Different methodologies (on wood weight determination), high variability of sites and 

species are a challenge to extrapolation of biomass models (Ackerman et al. 2013). For 

instance, differences were noticed in biomass component drying temperatures. van Zyl 

(2015) biomass samples were dried at 105°C standard to dry P. radiata components, while 

van Laar and van Lill (1978) and van Laar (1982) dried P. radiata at 80°C.  Therefore, a 

standardised sampling approach, analysis and reporting guideline is essential to compare 

results. To apply available biomass functions, a drying study is necessary to attain 

species-specific correction factors for determining weight of wood using different 

temperatures (Ackerman et al 2013; Phiri 2015). Recently, a drying study was carried out 

on South African Eucalyptus trees where sub-sample were subjected to different drying 

temperatures in a series between 60 and 105 ºC (Phiri 2015). Stemwood had the largest 

percentage change of 6% when drying from 60 ºC to 105 ºC while foliage had the lowest 

percentage change of less than 2%. As reported by Phiri (2015) samples dried at 

temperatures less than the standard drying temperature of 105 ºC lead to a proportional 

over-estimation of biomass. Therefore, this may generate biased results when 

extrapolating. Published functions for P. patula which covers the full age spectrum was 

recommended to apply to adjacent areas in South Africa (Ackerman et al. 2013). At 

present, P. radiata functions cover a wider climatic range though in the confines of the 
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Western and South Cape provinces. Therefore, it is necessary to test the model. However, 

van Zyl (2015) cautioned that failing to consider site variations may result in poor 

estimations. 

2.16 RELEVANCE OF INTERNATIONAL MODELS 

As reported by Dovey (2014), equations developed internationally can be used as a 

potential resource for equation comparison or as interim measure whilst developing locally 

relevant carbon equations. This is because equations produced in the literature are useful 

for prescribed conditions, hence they cannot be extrapolated outside their geographic and 

age limits. However, it is noteworthy mentioning that they are exceptions to the application 

of fitting generalised models. For instance, if the trade-off between accuracy and cost 

effectiveness is relatively high. 

Several P. elliottii models have been published elsewhere. Some of the component and 

total AGB models are presented in Table 2.2. 
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Table 2.2: Summary of Pine elliottii biomass models with predicting variables: DBH, DBH+1, (DBH+1)2, H, CL, SPH and DBH2H. 

Reference Component Formula R2(%) Age Samples Location 

Cobb et al. 
(2008) 

Branches y = 51.4 (DBH2H) - 0.79  67 6 45 GA, USA 

Stemwood y = 117.0 (DBH2H) + 1.39 94 

Total stem y = 152.0 (DBH2H) + 2.02 96 

Nemeth 
(1973) 

Total tree ln(y) = -2.08597 + 1.31232 ln (DBH+1) + 0.15839 [ln (DBH+1)]2 + 0.56439 ln (CL) 98.5 
4 & 

8 15 NC, USA 

Main stem ln(y) = -2.67757 + 1.39684 ln (DBH+I) + 0.11902 [ln (DBH+1)]2 + 0.23986 ln (H)2 99.1 

Stem bark ln(y) = -3.98837 + 1.42810 ln (DBH+1) + 0.83321 [ln (H) - 0.37012 (SPH)  98.5 

Stemwood ln(y) = -2.96870 + 1.28600 ln (DBH+ 1) + 0. 15201 [ln (DBH+ 1)]2 + 0.26975 ln (H)2  99.2 

Bole needles ln(y) = +0.21097 + 0.05515 ln (DBH+1) - 0.24120 (SPH) 82.5 

Total branch 
ln(y) = -3.70861 - 0.93318 ln (DBH+ 1) + 0.66271 [ln (DBH+ 1)]2 + I. 14562 ln CL + 3.67463 ln (H) -
1.28437 ln (H)2 94.7 

Branchwood & bark ln(y) = -4.68738 + 0.49666 [ln (DBH+1)]2 + 1.41693 ln (CL) + 1.94392 ln (H) - 0.80510 ln (H)2 94 

Branch needles  ln(y) = -4.17512 + 0.49941 [ln (DBH+1)]2 + 0.94595 ln (CL) + 2.93469 ln (H) - 1.15977 ln (H)2 92.6 

Dead branches  ln(y) = +0. 38503 - 1.54483 ln (H) + 0.80618 ln (H)2 + 0. 19008 (SPH) 87.7 

Jokela and 
Martin 
(2000) 

Total aboveground ln(y) = -2.715 + 1.261 ln (DBH2) 95 13 40 FL, USA 

Needles ln(y) = -5.359 + 1.294 ln (DBH2) 70 

Branch ln(y) = -6.740 + 1.629 ln (DBH2) 88.4 

Stemwood ln(y) = -3.009 + 1.231 ln (DBH2) 93.5 

Bark ln(y) = -3.423 + 1.028 ln (DBH2) 95.4 

Jokela and 
Martin 
(2000) 

Total aboveground ln(y) = -2.264 + 0.802 ln (DBH2H) 98.6 4 25 FL, USA 

Stemwood ln(y) = -3.694 + 0.882 ln (DBH2H) 99.2 34 

Xuanran 
et al. 

(2008) 

Needles y = 5.2255 (DBH2H)0.8529  75.8 19 18 JX, China 

Branch y = 18.5862 (DBH2H)0.7945 73.3 

Stemwood y = 8.6613 (DBH2H)1.0178  99.8 

Aboveground y = 2852.04 + 14.6382 (DBH2H) 97.5 

Gholz and 
Fisher 
(1982) 

Aboveground ln(y) = a + b ln (DBH)    - 
5 to 
34 19 FL, USA 
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Nemeth (1973), expressed the relationships between dimensions (independent variables) 

and component (biomass) with logarithmic transformed multiple regressions (Table 2.2). 

Signs on the coefficients of the DBH and height variables in the biomass models (Table 

2.2) reflect on the tree growth behaviour (Nemeth 1973). For instance, the negative sign 

on the linear equation in the branch component model reveal the relationship (a 

decreasing rate of increase). This was reported to be due to the canopy closure effect. 

Therefore, the equation mirrors exactly what one would anticipate (Nemeth 1973). 

Model form determines the precision of biomass estimates. In the case of Nemeth (1973) 

in Table 2.2, logarithmic transformed multiple linear model with variables ln(DBH+1), 

ln(DBH+12) and ln(CL) produced excellent results for total AGB (R2 = 99%). Nemeth 

(1973) results are not significantly different from Xuanran et al. (2008) simple linear model 

with variables D2H (R2 = 98%). However, a difference was observed on needle and branch 

biomass components model performance. Other studies have also reported biomass 

models for P. elliottii that ware based on DBH as a single predictor variable, height 

predictors and age covariates (Baldwin 1986; Albaugh et al. 1998; Chave et al. 2005; 

Coyle et al. 2008). It is important to note that robust biomass model allow estimates of 

biomass to be made using easily available stand attributes such as DBH (Gonzalez-

Benecke et al. 2014).  

2.17 ESTIMATED ABOVEGROUND BIOMASS OF P. ELLIOTTII 

Available lliterature assist in understanding the estimated AGB of young and mature P. 

elliottii trees. In Chapter 5, the results of this study will be compared with some of the AGB 

estimates reported in this section. For a typical age like the one under study (16 years), 

Gonzalez-Benecke et al. (2010) reported stemwood biomass between 65.1 - 72.3 Mg ha-1, 

branch biomass of 11.8 - 3.4 Mg ha-1 and foliage of 9.8 - 10.8 Mg ha-1. Shan et al. (2001) 

who studied 17 years old trees published a foliage biomass of 4.2 - 6.8 Mg ha-1, branches 

biomass between 5.7 - 10.2 Mg ha-1, stemwood biomass within 75.6 - 125.6 Mg ha-1 and 

total AGB of 85.5 -142.6 Mg ha-1. In Gholz and Fisher (1982) study on 26-year-old trees, 

stemwood biomass ranged from 100.1 - 148.8 Mg ha-1 and the total AGB was 114.9 - 

172.1 Mg ha-1. Furthermore, Vogel et al. (2010) reported a stemwood biomass of 87.8 - 

154.2 Mg ha-1 and AGB which ranged from 106.0 - 184.2 Mg ha-1. The change in biomass 

distribution observed over time is attributed to the dynamic processes involved in the 

development of a forest (Nemeth 1973).  
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Chapter 3: Materials and Methods 

3.1 STUDY AREA 

Three sites were considered in this study, all located on the southern coastline of South 

Africa in the Eastern Cape Province (Figure 3.1). Two of the study sites were at Lottering 

Plantation and one at Witelsbos Plantation.  

Figure 3.1: Map of South Africa showing study area in the Eastern Cape Province of 

South Africa. 

3.2 DESCRIPTION OF STUDY SITES 

Table 3.1 summarises the key attributes of the study sites. The study sites are typical of 

where Pinus elliottii is grown in South Africa. Trees were sampled across a 

chronosequence of three ages in plantations with uniform attributes; Lottering (Site 1), 

Witelsbos (Site 2) and Lottering (Site 3). Table 3.1 shows the key attributes of each site. 
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Table 3.1: Main attributes of the three study sites. 

Site 1 Site 2 Site 3 

Plantation Lottering Witelsbos Lottering 

Compartment number D65A B19B C27A 

Coordinates 
33°58'41.38''S 34°0'0.94''S 33°59'17.32''S 

23°42'37.43''E 24°5'58.45''E 23°47'26.84''E 

MAP (mm) 1008 1094 1008 

SI20 (m) 23.9 23.0 25.6 

Age (years) 16 33 28 

MAI (m3/ha/a) 16.5 14.9 19.5 

SPH (stems/ha) 522 380 347 

All sites have young soils, non-red neocutanics. The site index estimates were based on 

an inventory done in 2014. MAI, SI and SPH data was recorded in the same year. MAP 

data was obtained from nearest weather stations in 2015. The study sites did not consider 

growth gradient. The stand age of Site 2 and 3 were in the normal saw timber clear-fell 

age range of the region.  

3.3 RESEARCH METHODOLOGY 

The detail of methods used to identify sample trees and collect individual biomass 

component metrics are described below. A breakdown of the equipment and tools utilised 

during the study is listed in Appendix 1. 

3.3.1 Sampling approach 

The first sampling entailed measuring key metrics of Pinus elliottii, and in the second 

phase; destructive sampling was done on a subset of trees from the first phase. The 

second phase sampling was done to facilitate regression modelling as recommended by 

Seifert and Seifert (2014). Twenty trees were sampled in total, 15 from Lottering and 5 

from Witelsbos. Financial and time constraints limited the number of trees that could be 

destructively sampled. The methodological approach of the study sampling exercise was 

similar across the three sites.  
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3.3.2 Site enumeration 

An enumeration of trees at each site was done to identify sample trees. Caution was taken 

to ensure that a buffer of 25 m was maintained between plots and the edge of the 

compartment since edge trees produce relatively larger lateral branches than trees in the 

interior of the stand.  

Each plot constituted 100 trees. The trees in the plot where numbered sequentially for 

identification and marked with spray paint displaying the number of the tree. A DBH (1.3 

m) calliper was used to ensure that DBH measurements were consistently taken at the

correct height to the nearest cm. For precision in determining the height of the stem, the 

upper side of the slope was considered as the base of the tree. A Vertex lV hypsometer 

(Haglӧf) and a 360° transponder was used for tree height measurements on a subset (30 

trees) of the measured 100 trees. The subset trees represented the height distribution of 

the trees in the plot. The basis for the height measurements was to establish the 

compartment estimate of height range in which the measured heights were used to 

estimate the heights of the trees measured for DBH only.  

3.3.2.1 Sample tree selection 

For precise measurements, diameter of all trees in a 100-tree plot were measured as 

proposed by Kunneke et al. (2014) to get the compartment estimate of DBH distribution, 

and ultimately for selection of trees for destructive sampling and for upscaling. This was 

done using the pre-sampling enumeration data trees representing a DBH distribution for 

each site. Trees with a DBH that was within the DBH range values were selected for 

destructive sampling. Trees from each site were also selected based on a series of 

criteria; tree form, noticeable diseases, defects, damage (animal and mechanical) and 

uniform stocking). However, the specific criteria applied for selection considered healthy 

trees, it is important to note that resulting allometric model may be inherently biased.  

3.4 ABOVEGROUND COMPONENTS 

Detailed compositional data of individual trees for regression modelling and reconstruction 

of stem was carried out by sub-sampling the branches, needles and stem. Consequently, 

these regression models are then used to scale up the branch diameters for a full tree, 

where all branch diameters have been recorded after felling.   
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3.4.1 Tree measurements 

Before destructively sampling trees, a north direction mark was put on the trees and DBH 

was measured. After felling, measurements for taken of tree height (length), diameter 

(DBH) at 1.3 m, live crown base (to lowest live branch), dead crown base (to lowest dead 

branch) and pruning height (highest remains of pruning scars). Measurements of height of 

whorls (cluster of branches within a 0.5 m stem length) were done from tip (whorl 0) to live 

crown base and marked. All live branch diameters per whorl were measured using a 

vernier caliper and recorded. In this study, the height of the stump remaining after felling 

the tree was measured and considered to be part of the AGB. 

Figure 3.2: Procedure for destructive sampling and measuring key metrics of 

biomass components.  

3.4.2 Stemwood 

To reconstruct volume, 3 m sections were marked on the stem from the tree base (0 m) to 

the tip (whorl 0) of the stem. Figure 3.2 illustrate the procedure taken to measure, mark 
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and cut samples from the destructive sampling trees.  A north direction mark was put on 

the two discs and as well as the tree number and height. Two discs (25 mm thick) were 

marked and cut at the lower end of each 3 m section and (DBH) using a chain saw (Figure 

3.3). One disc was for density determination and the other one was for volume calculation. 

Under bark and over bark diameter readings were measured to calculate the bark volume. 

For detailed measurement steps see Appendix 1.  

3.4.3 Branches  

Branches were selected from a whorl using a random number table. Where necessary, 

additional branches were randomly selected to ensure the live crown sample branches 

represented a tree. Measurements on sample branches recorded: vertical and horizontal 

diameters, branch length and the horizontal length (90° to the stem). These were then cut 

off and put in sample branch bag Samples of branches were taken to recreate the branch 

biomass by developing an allometric model of branch biomass versus branch diameter, for 

upscaling to crown. 

3.4.4 Needles 

All needles from the sampled branches were removed and packed into labelled paper 

packets for each sample branch. The remaining wood after stripping the needles of the 

sampled branches and those on the stem were cut and packed in labelled paper packets 

Figure 3.3: Destructive sampling of biomass in field. 
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for each branch. The needles were separated from the branches and packed in separate 

paper bags.  

3.5 LABORATORY PROCEDURE 

3.5.1 Branches and needles 

Samples designated for drying were immediately weighed after transportation from the 

field. Due to the distance of the research site from University of Stellenbosch Forestry 

laboratory, the amount of time between sampling and lab weighing was between 96 to 120 

hours. The mass obtained was considered as the field wet mass, which was needed to 

calculate moisture loss. All needle and branch samples (stored in paper packets) were 

oven dried to 65°C until a constant weight reading was obtained. Sub-samples were dried 

at 105°C (three sample branches from the top, middle and bottom of the crown). After 

obtaining a constant mass, moisture loss percentage was calculated based on the 

laboratory mass and the dry mass (at 105 °C). The ratio was used to establish the dry 

mass of all the samples.  

3.5.2 Stemwood 

Volume estimates were made using the water displacement technique on fully saturated 

discs without bark (American Society for Testing and Materials 2008). The discs (without 

bark) were submerged for 7-14 days in drums filled with water (until saturation). 

Subsequent determination of the saturated volume and basic density followed.  

 =  = 1 -    (3.1) 

Where: 

W = weight (g) 

ρ = density (g/cm3) 

V = volume (cm3)  

Debarked discs and respective bark were oven dried at 105°C to constant weight. The 

standard drying temperature in most biomass studies is commonly 105 ºC or 103 ± 2 °C 

(Ackerman et al. 2012; Seifert and Seifert 2014).  Basic density was calculated by dividing 

the oven dry weight of the discs by the corresponding saturated volume. This study 

estimated the basic density at the point of geometric centroid where the Smalian volume 
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formula was used essentially as a weighting approach. The reason for considering a 

weighting approach was to represent the density of each section in the ultimate biomass 

calculation (Seifert and Seifert 2014; Magalhães 2016). The procedure on stem-level 

upscaling is presented in the statistical analysis section. 

3.5.3 Bark  

 

The previously described density determination procedure was repeated to estimate the 

basic density of stem bark at 1.3 m. Stem under bark volume was subtracted from over 

bark volume to obtain the bark volume. To calculate the biomass of bark, the density of 

bark is multiplied volume of bark. 

 

3.6 DETERMINING NUTRIENT CONTENT 

 

S, Cl and Mo are not routinely analysed by laboratories as deficiencies of these elements 

are rare (and hence they were not done in this study either).  For chemical analysis of key 

essential nutrients: sub-samples were taken from each biomass component (see Appendix 

1). The branch sub-sample represented the minimum, medium and maximum diameter of 

the branches. The needle samples represented each individual tree. Biomass components 

were separately dried at 65 ºC using ovens to minimise loss of volatile nitrogen and 

sulphur (Seifert and Seifert 2014). The branch, bark and stemwood sample were coarse 

milled to 30g for each sample. Macro-nutrients: nitrogen (N), phosphorus (P), calcium 

(Ca), magnesium (Mg) and potassium (K) were analysed by Bem Lab and reported as a 

percentage of total dry-matter. Micronutrients: iron (Fe), sodium (Na), zinc (Zn), copper 

(Cu), aluminium (Al) and manganese (Mn) were analysed and reported as recommended 

by Kalra (1998). The nitrogen content of samples was determined using Leco CNS-2000 

and Leco TruSpec NS analysers. Magnesium perchlorate (anhydrone) was used to 

remove any moisture from the system and a Cu catalyst for oxygen (O2) elimination. 

Concentrations of the inorganic elements: P, K, Fe, Ca, Mg, Na, Zn, Cu, Al and Mn were 

measured using inductively coupled plasma optical emission spectrometry and the 

samples were ashed in a furnace at 450 °C overnight and digested using hydrochloric 

acid. 

 

The mean and standard deviation of nutrient concentrations were calculated for the tree 

component of each tree (assuming normality). The nutrient concentrations were reported 

as mean concentrations of nutrients found in individual biomass components of each tree 
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and expressed in kilograms per hectare (Appendix VII). Biomass components were then 

multiplied with nutrient concentration to determine the nutrient accumulation (kg/tree). 

Linear models in Appendix VIII with component biomass as predicting variables were used 

to predict nutrient per plot (kg/plot) which were then up-scaled to stand level (kg ha-1). The 

relationship between tree size and concentration was not explored in this study.  

3.7 STATISTICAL ANALYSIS 

Statistical procedures were employed in both phases of the upscaling process using the R 

Core Team (2015) and SigmaPlot (2015). The details are presented in this section. 

3.7.1 Upscaling I 

3.7.1.1 Upscaling of samples 

A biomass upscaling procedure was used to upscale from sample to tree level (Upscaling 

I) and from tree to stand level (Upscaling II) (Seifert and Seifert 2014). The upscaling of

the crown and stem was carried out separately. The crown included the foliage and 

branches. Different parameter estimates were considered, which included mainly 

transformed variables. 

3.7.2 Upscaling of branch and leaf biomass with a regression approach 

The best branch and needle biomass models were selected after running potential linear 

regressions. Logarithmic (ln) transformed regression equations were used and several 

independent variables were tested. The widely-used power law logarithmic form was used 

to fit the allometric relationship between the independent variables; d2*l (branch diameter 

and branch length) and d (branch diameter) versus dependent variables (branch mass and 

needle mass).  Here, Y in Equation 3.3 can be branch mass and needle mass: X is d2l and 

branch diameter (d), ln(𝛽0) is the intercept, and the slope (𝛽1) is indicative of the relative 

growth rate between branch and needle biomass components and d2l and branch 

diameter (Pretzsch and Dieler 2012).  

ln (𝑌)=ln(𝛽0) + 𝛽1ln(Χ1) + ∈   (3.2) 

ln(Y) = ln(𝛽0) + 𝛽1ln(𝑋1) + 𝛽2ln(X2) + ∈  (3.3) 

Where:  

Y = biomass component mass (kg)  

Stellenbosch University  https://scholar.sun.ac.za



 

33 
 

X1 = dimensional variables  

𝛽2 = Model parameter  

βₒ = Intercept value  

β₁ = Slope value  

3.7.2.1 Correcting estimation bias 

 

The estimated branch and needle biomass was back-transformed to the original unit 

values by employing the correction factor. The logarithmic transformation induces a 

systematic bias in the estimation of the response when back transforming to original 

values. This is because of the log-normal distribution (Baskerville 1972). Therefore, the 

error was corrected by multiplying the predicted values by a correction factor (CF). The CF 

is shown in Equation 3.4: 

 

CF = exp * (RSE2/2)                                  (3.4) 

 

Where: 

RSE = residual stand error obtained from the model (regression) 

 

The correction factor was applied to back transformation bias correction to obtain unbiased 

results (Seifert and Seifert 2014). 

3.7.3 Upscaling stemwood biomass based on a geometric approach  

 

The volume of stem sections was calculated by employing the geometric formula for a 

truncated cone (Seifert and Seifert 2014). The lower and upper diameters of all stem 

sections were measured as indicated earlier in Figure 3.3. Widely used volume calculation 

formulas were used to determine the stemwood volume. These were the Smalian and 

Huber’s formula reported in Chapter 2 section 2.4.3 (Equation 2.1 and 2.2). 

 

For estimating stemwood biomass of each individual tree, the calculated volumes (m3) of 

the measured stem sections were then multiplied with the basic density values (kg m³) 

obtained from the discs representing different sections of the tree. It is important to note 

that wood density varies vertically, hence the weighting of each wood section was 

necessary to accurately estimate biomass of the section. The total stem wood biomass for 

each individual tree was obtained by adding all stem sections. 
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A combined variable linear model using ln(DBH2·H) as a predictor variable (Equation 3.2) 

was selected based on the actual volume measurements from Smalian and Huber’s 

volume formulas. Predictor variables were logarithmically transformed; DBH, Height, 

DBH2·H and Crown base height (CBH) to linearise the relationship between the predictor 

variable and minimise stemwood biomass, hence minimising heteroscedasticity. 

3.7.4 Upscaling total tree biomass with a regression approach 

The total tree biomass model which scored the highest according the goodness of fir 

statistics was determined by running un-transformed and In-transformed simple linear 

regression equations with both independent and compound predictors. These were DBH, 

height (H), DBH2·H and DBH and H (compound predictors). The widely-used power law 

logarithmic form was used to fit the allometric relationship between the independent 

variables DBH and dependent variables (total tree biomass). For instance, Equation 3.2 

and 3.3 were used, with Y as the total tree biomass and X as DBH2·H. The estimated total 

tree biomass was back-transformed to the original unit values by employing the correction 

factor (Equation 3.4). 

3.7.5 Upscaling from tree level to stand level 

Biomass models were applied at the tree level.  It is important to note that this phase of 

upscaling entail incorporating measured variables such as diameter at breast height (DBH) 

and total tree height, and then correlate with tree biomass components and the total AGB 

of the respective trees (Magalhães and Seifert 2015). Stand level estimates were then 

made using mean tree metrics.  

3.7.5.1 Height model 

A height model was essential in predicting heights of the plot trees where DBH was 

measured. Because of the wide difference in stand age, it was necessary to make height-

diameter models for younger trees and older trees (28 and 33 years). The study 

considered and parameterised two height models for Site 1 and Site 2 and 3 (combined) 

using Equation 3.2. The independent variables in the models were logarithmic transformed 

(ln)DBH and 1/DBH (inverse DBH). Most studies have explained the relationship between 

DBH and height using both linear and non-linear regressions (Chave et al. 2005; Sileshi 

2014). The power law model is known to be the most parsimonious and widely used 
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model. This is because in some cases it relates well with biomass allometry principles (van 

Laar and Akca 2007; Picard et al. 2015).  

ln(Y) = lnβ0 + β1 ln(1/DBH) + ∈  (3.5) 

Where: 

Y = height  

βₒ = Intercept value 

β₁ = Slope value  

The estimated heights of the young and older trees were back-transformed to the original 

unit values by employing the correction factor (Equation 3.4). 

3.7.5.2 Aboveground biomass 

A pooled model was used for each biomass component and total AGB (with DBH as 

predictor) to up-scale the biomass to plot and stand level for the three sampled sites using 

Equation 3.2. The total plot biomass of each component was multiplied by the stems per 

hectare to obtain the total biomass per hectare. Biomass estimates obtained were back-

transformed to the original unit values by using the correction factor as previously outlined. 

3.7.6 Biomass Expansion Factor 

BEFs was related to the corresponding biomass of the inventoried volume of the three 

sites under study as previously outlined in Chapter 2 section 2.5.4. The calculation 

procedure used in this study defined BEF as the product of volume per hectare (m-3 ha-1) 

and wood density (kg m-3) (Brown at al. 1991). Stem volume was preferred to 

merchantable volume because merchantable height is sensitive to personal judgment and 

thus is more subjective than stem height, especially for standing trees. Nevertheless, BEF 

computed based on biomass can be calculated as a function of BEF computed on volume. 

BEF’s were determined for each site as the proportion of stemwood to total AGB.  

3.7.7 Volume models 

As stated in the literature review, biomass measurement is typically done in two phases. 

This entail volume measurement, and wood density determination. At stand level, the 

derived basic density is multiplied with the stand volume to determine the biomass. 

Therefore, widely used functions were considered in estimating the volume of 20 trees and 
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upscaling volume of the rest of the trees in each of the sampled plots. The following 

models were parameterised for height: Standard Form Factor Model estimated from the 

segmented polynomial taper function (Max and Burkhart), Combined Variable Model and 

Schumacher and Hall. The formulas are given below: 

Standard Form Factor Model: 

DBH2 ∙ H     (3.6) 

k (0.403405352) derived from coefficients: β0 (-3.53841), β1 (1.68878), β2 (-2.23737), β3 

(89.12748), a1 (0.69458) and a2 (0.069477) as proposed by van Laar and Akça (2007). 

Combined Variable Model: 

The Combined Variable was also considered as an alternative to the Standard Form 

Factor Model and Schumacher and Hall. The Combined Variable Model is based on a 

fitted regression against the data of this study. Coefficients for estimation were generated 

from the data of this study. The coefficients were: β0 (-11.5394) and β1 (1.11235).   

Schumacher and Hall Model: 

ln(V) = β0 + β1 ln(DBH + f) + β2 ln(H)  (3.7) 

Where:  

In = natural logarithm to the base e 

V = stem volume (m3, under-bark) 

DBH = breast height diameter (cm, over-bark) 

f = correction factor 

H = tree height (m) 

For comparison purposes, widely used Schumacher and Hall volume parameter estimates 

were used for estimating P. elliottii.  The coefficients are; β0 (-10.677), β1 (1.931), β2 

(1.157) and f (0) (Loveday, unpublished in Bredenkamp 2012).  
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3.8 MODEL EVALUATION 

Least squares regressions were used. Evaluation of model compliance to the assumptions 

of linear modelling was through goodness of fit evaluation criteria. A criteria for selection of 

model was used; Coefficient of determination (R²), standard error of estimates (se), mean 

standard error (MSE), root mean standard error (RMSE), variance inflation factor (VIF) and 

the akaike information criterion (AIC) (Akaike 1973; Parresol 1999). Some methods of 

evaluating are known to be better than others and some are reported together to provide 

complementary information. The coefficient of determination (R2) is a well-known and 

widely used method. The RSE and RMSE add no new information on quantifying total 

error.  

Though AIC is most appropriately used for hierarchical models with greater independent 

variables. This study used AIC as a secondary criterion, considered in relative terms, in 

the context of the criteria which, in effect, gave a more absolute indication of goodness of 

fit. AIC was employed as a method of distinguishing information gain between models, and 

adds additional insight on the accumulation error. Models with less independent predictors 

were targeted, as they are more parsimonious (Burnham and Anderson 2002; Sileshi 

2014). Sileshi (2014) reported that an increase in model variables result in the 

accumulation of error. This is because each individual predictor is associated with 

measurement error and error in the estimation of the parameters (Sileshi 2014).  

Since additivity was desirable, a consistent model was selected in which the sum of the 

components equal the predicted whole (Parresol 1999). This was a conventional approach 

which automatically ensured additivity was used with the same predictors. The study could 

not develop a model that relied on wood density for ultimate up-scaling because density 

data only existed for sampled trees. Even though it was possible to build a conventional 

model with both DBH and H.  This study, opted to use variable DBH for upscaling because 

it was the simplest model in the additive form. 
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Chapter 4: Results

4.1 INVENTORY DATA 

4.1.1 Mean DBH and mean Height of trees 

According to the mixed model results, trees at the youngest site (Site 1) had, as expected, 

a significantly (p < 0.001) smaller DBH than trees at the older sites (Site 2 and 3) (p = 

0.921222), but there was no difference between the trees at the two older sites (Figure 

4.1). Younger trees had a markedly lower mean diameter and height compared to older 

trees. The mean height for 16, 28 years and 33 years stand age was 19.5 m, 28.9 m and 

28.6 m. 

Figure 4.1: Box-whisker plot of DBH and tree height at three stand ages. The line is 

the median, box represents the first standard deviation, lower and upper whiskers 

show the range and the circles represent potential outliers. 

4.1.2 Diameter distribution of sampled trees 

Younger trees showed evidence of skew (Shapiro-Wilk statistic 0.933163, p < 0.0001) 

while Site 2 and 3 were normally distributed (Shapiro-Wilk statistic 0.991619 and 

0.988935; p = 0.7930 and 0.5794) (Figure 4.2). Overall, there was evidence that DBH was 

not normally distributed (Shapiro-Wilk statistic 0.960848, p = 0.00486) (Figure 4.2).  
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Figure 4.2: Diameter distribution (diameter at 1.3 m from ground level) of the 

sampled trees at individual sites (a shows Site 1, b shows Site 2 and c shows Sites 

3, while d is combined data) for the biomass study. 

 

4.2 HEIGHT MODEL 

 

After fitting a regression for Site 1 and for Site 2 and 3 combined, using inverse DBH as a 

predictor (Table 4.1) the best models (Model 4.2 and Model 4.4) explained 66.9% and 

21.7% of height variation respectively. Site 1 (youngest site), Model 4.2 was preferred as it 

had a higher coefficient of determination (R2) than Model 4.1 (Table 4.1). However, several 

models of forms other than the inverse DBH and ln-transformations were also used, to 

explain the height to DBH relationship. Model 4.4 with a higher R2 was used to predict 

height for Site 2 and 3. The details of the results of Site 2 and 3 model are shown in Table 

4.1. Model 4.1 and 4.3 with ln(DBH) predictor variable had a lower R2, hence it was not 

selected. 
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Table 4.1: Summary of diameter-height models. 

H represent height (m) of trees in Site 1 and Site 2 and 3 combined. DBH is given in cm (at 1.3 m from 

ground level). 

 

4.3 UPSCALING I 

4.3.1 Branch and needle samples 

 

Table 4.2 and 4.3 shows key metrics of samples, these include; minimum and maximum 

length and diameter of branch, branch mass, needle mass, CBH and number of sample 

per measured parameter.  It is worth noting that the range of the branch length and branch 

diameter was due to the variability in tree architecture. For instance, for Site 1, 2 and 3, the 

minimum branch length was 20.5 cm, 7 cm, and 10 cm while the maximum recorded was 

489 cm, 400 cm and 710 cm respectively.    

 

Table 4.2: Basic statistics of branch biomass samples. Metrics of branch 

component are given in cm (for diameter and length of branch samples) and m 

(CBH). SE represents standard error. 

  Component Mean SE Minimum Maximum Samples 

Site1 

Branch diameter (cm) 2.8 0.15 0.7 5.4 58 

Branch length (cm) 178.8 13.92 20.5 489 58 

Cbh (m) 12.2 0.19 10 13.2 45 

Branch mass (kg) 0.4792 0.07 0.0003 2.6483 58 

Site2 

Branch diameter (cm) 2.8 0.14 0.6 6.6 77 

Branch length (cm) 136.3 11.71 7 400 77 

Cbh (m) 17.6 0.17 16.2 19.4 68 

Branch mass (kg) 0.4448 0.07 0.0014 3.4554 77 

Site3 

Branch diameter (cm) 4.4 0.17 0.9 10 123 

Branch length (cm) 276.2 13.67 10 710 120 

Cbh (m) 15.8 0.17 12.1 18.9 124 

Branch mass (kg) 2.4167 0.25 0.0344 16.3437 124 

         
Models Predictors Parameter  Estimate SE P R2 AIC RSE RMSE 

S
it
e

 1
 4.1 Intercept β0 1.781 0.265 0.095 64.76 -32.085 0.047 0.043 

 
ln(DBH) β1 0.348 0.079 0.002 

    4.2 Intercept β0 3.290 0.076 <0.001 66.86 -32.762 0.046 0.042 

  1/DBH β1 -9.607 2.088 0.001         

S
it
e

 2
 a

n
d
 3

 

4.3 Intercept β0 2.788 0.163 <0.001 20.73 
-

149.553 0.044 0.043 

 
ln(DBH) β1 0.154 0.044 <0.001 

    

4.4 Intercept β0 3.517 0.043 <0.001 21.71 
-

150.115 0.044 0.043 

  1/DBH β1 -6.298 1.733 <0.001         
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Table 4.3: Basic statistics of needle biomass samples. Metrics of needle component 

are given in cm (for diameter and length of branch samples) and m (CBH). SE 

represents standard error. 

Component Mean SE Minimum Maximum 

Number 
of 

samples 

Site1 Branch diameter (cm) 2.40526 0.169897 0.65 4.55 38 

Branch length (cm) 148.845 13.8719 20.5 326 38 

Needle mass (kg) 0.199934 0.031391 0.00456 0.66312 38 

Site2 Branch diameter (cm) 2.86722 0.201639 0.75 6.55 45 

Branch length (cm) 168.209 15.4731 8.3 400 45 

Needle mass (kg) 0.234694 0.035283 0.00116 1.06551 45 

Site3 Branch diameter (cm) 4.32143 0.176824 0.9 10 112 

Branch length (cm) 273.536 13.7689 10 600 112 

Needle mass (kg) 0.722225 0.059454 0.072 2.98886 112 

4.3.2 Pooled branch and needle models 

Models for estimating branch and needle biomass were fitted using logarithmically 

transformed branch diameter (d), branch length (l) and d2l as independent variables 

(predictors). Compound predictor variable models were also formulated. These are Model 

4.8 and 4.12. Tables 4.4 show more details of the models considered. 

Table 4.4: Summary of pooled branch and needle model performance. 

Models Predictors Parameter  Estimate SE P R2  AIC RSE RMSE 

B
ra

n
c
h

 b
io

m
a
s
s
 

4.5 Intercept β0 -4.456 0.130 <0.001 77.80 683.516 0.903 0.899 

ln(d) β1 3.092 0.103 <0.001 

4.6 Intercept β0 -10.360 0.338 <0.001 75.83 696.299 0.94 0.937 

ln(l) β1 1.860 0.066 <0.001 

4.7 Intercept β0 -7.643 0.195 <0.001 83.20 603.479 0.784 0.781 

ln(d2l) β1 0.913 0.026 <0.001 

4.8 Intercept β0 -7.751 0.376 <0,001 83.14 605.366 0.785 0.781 

ln(d) β1 1.773 0.168 <0,001 

ln(l) β2 0.947 0.103 <0,001 

N
e

e
d

le
 b

io
m

a
s
s
 

4.9 Intercept β0 -3.480 0.108 <0,001 72.59 399.211 0.667 0.663 

ln(d) β1 1.922 0.085 <0,001 

4.10 Intercept β0 -7.424 0.366 <0,001 57.74 474.185 0.808 0.804 

ln(l) β1 1.190 0.070 <0,001 

4.11 Intercept β0 -5.400 0.202 <0,001 69.54 419.795 0.703 0.699 

ln(d2l) β1 0.553 0.026 <0,001 

4.12 Intercept β0 -2.885 0.562 <0,001 72.62 400.029 0.666 0.661 

ln(d) β1 2.146 0.224 <0,001 

ln(l) β2 -0.165 0.153 0,281 
Note: independent variables used in the models are; (d) branch diameter, (l) branch length and (d2l) is 

combined variable of branch diameter and length independent variables (predictors). 

Stellenbosch University  https://scholar.sun.ac.za



42 

4.3.2.1 Pooled branch model 

Of the tested equations, Model 4.7 was the best fitting model, with the highest R2 and 

lowest AIC (Table 4.4). For upscaling, however, this model was not useful, as it did not 

meet the criteria of parsimoniousity and additivity. Thus, Model 4.5 4 was used for 

upscaling to tree level. Model 4.5 explained 77.8% of biomass variation and all its 

parameters were significant (p < 0.001).  

Figure 4.3 shows the relationship between branch diameter and branch mass. Removing  

the branch sample denoted by the point in Figure 4.3 (with metrics - 10 cm branch 

diameter, branch length 600cm, mass of 6.146kg) did not have any significant change in 

slope as shown by the model p-value (< 0.0001). The homoscedasticity assumption was 

considered by plotting the fitted values against the residuals. Figure 4.3 also shows the 

residuals plots of the branch biomass model. From the residual vs. fitted plot, it can be 

observed that observation 125, 136, and 201 as possibly problematic to the model.  

However, 77.7% of the branch biomass variability could still be explained by Model 4.5.  

4.3.2.2 Pooled needle model 

Of the models of branch-level foliage biomass, Model 4.9, with branch diameter (d) as 

predictor, fitted the data equivalently (Table 4.4) to the more complex Model 4.12. 

Therefore, it was selected for upscaling to tree level. 

Figure 4.3: (a) Branch biomass and branch diameter relationship (b) model fitted vs. 

residual plot. 
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The plots for the residual against fitted values had no visible pattern, indicating that the 

homoscedasticity assumption was satisfied (Figure 4.4). 

4.3.3 Stemwood 

4.3.3.1 Wood density  

The basic density is reported for the section of the stem directly above the felling cut, right 

where the disc was cut.  Figure 4.5 shows the vertical density distribution of the 20 

destructively sampled trees. Typical of most pine species, position of sample had an 

influence on wood density (p = 0.0007). Thus, a gradual drop in density was observed 

(see trend lines in Figure 6) from the thick end (0 m) right to the tip of the stem (27 m). 

Furthermore, variability in density was observed across the three sites - illustrated by the 

three trend lines for each of the sites, especially Site 2 and 3. The lowest recorded density 

was in Site 3, where density ranged from 187 kg m-3 to 676 kg m-3. The mean wood 

density of site 1, 2 and 3 were 420 kg m-3, 364.7 kg m-3, and 412.4 kg m-3 respectively. 

After testing the effect of site on wood density there was no significant difference (p = 

0.4345). 

Figure 4.4: (a) Needle biomass and branch diameter relationship and (b) model 

fitted vs. residual plot. 
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A summary of the goodness-of-fit and parameter estimates for a variety of candidate 

models (see Materials and Methods and Literature Review) is presented in Table 4.4.

 

Figure 4.5: Vertical density distribution of sampled wood discs from sites. Trend 

lines of the three sites are represented by slanting horizontal lines. 
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Table 4.5: Summary of stemwood model performance. 

Models Predictors Parameter  Estimate SE P R2 VIF AIC RSE RMSE 

S
te

m
w

o
o

d
 b

io
m

a
s
s
 

4.13 Intercept β0 -3.410 1.132 <0.001 78.61 
 

10.695 0.287 0.272 

  ln(DBH) β1 2.634 0.313 <0.001           

4.14 Intercept β0 -3.321 1.249 0.016 74.71 
 

14.044 0.312 0.296 

  ln(H) β1 2.899 0.384 <0.001           

4.15 Intercept β0 -4.717 0.868 <0.001 89.06 
 

-2.722 0.205 0.195 

  ln(DBH2H) β1 1.033 0.083 <0.001           

4.16 Intercept β0 4.9E+00 0.135 <0.001 83.31 
 

5.731 0.253 0.240 

  DBH2H β1 3.0E-05 0.000 <0.001           

4.17 Intercept β0 -4.964 0.839 <0.001 90.09 
 

-3.840 0.195 0.180 

 
ln(DBH) β1 1.629 0.303 <0.001 

 
 

   
  ln(H) β2 1.595 0.341 <0.001          

4.18 Intercept β0 -3.551 1.089 0.005 80.33  9.870 0.275  0.254 

 
ln(DBH) β1 2.814 0.321 <0.001 

 
 

   
   ln(ƿ) β2 0.552 0.343 0.127          

4.19 Intercept β0 -5.510 0.314 <0.001 83.74  4.824 0.243 0.222 

 
ln(DBH) β1 2.459 0.285 <0.001 

 
 

   
   ln(CBH) β2 1.009 0.338 0.009          

4.20 Intercept β0 -5.074 0.743 <0.001 92.26 
 

-14.146 0.173 0.132 

 
ln(DBH) β1 1.812 0.278 <0.001 

 
2.183 

   

 
ln(H) β2 1.573 0.302 <0.001 

 
2.021 

   
   ln(ƿ) β3 0.517 0.216 0.029   1.141       

Note: independent variables used in the models are; DBH (diameter at 1.3 m from ground level), H represents tree height (m), (DBH2H) is a combined variable, ρ is 

basic wood density and CBH is crown base height (m). 
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As for branch and foliage biomass, several models for stem wood prediction were tested, 

based on findings from the literature. Models with the smallest or negative AIC values 

were sought. Of the models listed in Table 4.5, Model 4.20, which incorporated DBH, tree 

height and wood density, fitted the data best. Low variance inflation factors (VIFs), for the 

correlated variables such as DBH, tree height and wood density were observed in Model 

4.20. The study, opted to use variable DBH (Model 4.13) for upscaling because it was 

capable of predicting stemwood biomass while meeting the parsimoniousness and 

additivity requirements outlined in Chapter 3, section 3.8. 

 

A strong positive correlation between stemwood biomass and DBH was observed with the 

R2 and p-value (Table 4.5). Homoscedasticity was assessed by fitting the residuals against 

the predicted values. Figure 4.6 had no visible pattern demonstrating that the residuals 

were similar the same across the data. 

 

4.3.4 Bark 

A summary of candidate models are given in Table 4.6. 

 

 

 

 

Figure 4.6:  (a) Stemwood biomass and DBH and height combined variable (b) model 

fitted vs. residual plot. 
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Table 4.6: Summary of bark model performance. 

Model Predictors Parameter  Estimate SE P R2 AIC RSE RMSE 

4.21 Intercept β0 -4.072 1.069 0.00128 74.47 8.3904 0.271 0.257 

  ln(DBH) β1 2.2196 0.296 <0.001         

4.22 Intercept β0 -3.564 1.311 0.014 62.67 15.991 0.327 0.311 

  ln(H) β1 2.310 0.403 <0.001         

4.23 Intercept β0 -4.717 0.868 <0.001 89.06 -2.722 0.205 0.195 

  ln(DBH2H) β1 1.033 0.083 <0.001         

4.24 Intercept β0 3.0E+00 0.146 <0.001 73.95 8.796 0.274 0.259 

  DBH2H β1 2.4E-05 0.000 <0.001         

4.25 Intercept β0 -5.860 1.384 <0.001 76.85 6.677 0.256 0.233 

 

ln(DBH) β1 2.110 0.300 <0.001 

 

 

    ln(CBH) β2 0.803 0.356 0.01811        

Note: independent variables used in the models are; DBH (diameter at 1.3 m from ground level), H represent
s tree height (m), (DBH2H) is a combined variable and CBH is crown base height (m). 

 

Though models using different predictors (Model 4.23 and Model 4.25) performed 

substantially better than the rest of the models as evidenced by its goodness of fit criteria. 

Model 4.21 was regarded as the best because of additivity reasons, and the preferable 

one for the prediction of bark biomass. This is consistent with the criteria stated for 

selecting models for biomass components in this study. For instance, stemwood biomass 

(Model 4.13 in Table 4.5). Homoscedasticity for the model was verified by plotting the 

residuals against predicted values. There was no clear evidence of homoscedasticity in 

the modelled data (Figure 4.7). Signs of outliers were observed in the bark biomass data; 

observation 2, 11 and 14. 
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4.3.5 Tree biomass model  
 
A summary of the goodness-of-fit and parameter estimates for a variety of candidate 

models for estimating tree biomass is presented in Table 4.7. 

 

Table 4.7: Summary of tree model performance. 

Models Predictors Parameter  Estimate SE P R2 AIC RSE RMSE 

T
re

e
 b

io
m

a
s
s
 

4.26 Intercept β0 -2.684 0.877 0.007 84.8 0.552 0.222 0.221 

  ln(DBH) β1 2.514 0.243 <0.001         

4.27 Intercept β0 -2.063 1.238 0.113 70.7 13.707 0.309 0.293 

  ln(H) β1 2.602 0.380 <0.001         

4.28 Intercept β0 -3.847 0.681 <0.001 92.3 
-

12.187 0.158 0.146 

 
ln(DBH) β1 1.764 0.246 <0.001 

      ln(H) β2 1.190 0.277 <0.001         

4.29 Intercept β0 -3.745 0.665 <0.001 92.4 
-

13.409 0.157 0.149 

  ln(DBH2H) β1 0.968 0.063 <0.001         

4.30 Intercept β0 5E+00 1E-01 <0.001 87.6 -3.515 0.201 0.191 

  DBH2H β1 3E-05 2E-06 <0.001         
Note: independent variables used in the models are; DBH (diameter at 1.3 m), H represents tree height (m) 

and D2H is a combined variable. 

 

Though the combined variable model (DBH2H) was best model based of the goodness-of-

fit statistics, the parsimonious Model 4.26, with DBH as a predictor was used to upscale 

total tree to plot level. Homoscedasticity was evaluated by plotting the residuals against 

 

Figure 4.7: (a) Bark biomass and DBH (b) model fitted vs. residual plot. 
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the fitted values. The plot showed that Figure 4.8 had no visible pattern demonstrating that 

the residuals were almost the same across the data. 

 

4.4 UPSCALING II 

 

As discussed in the literature review and material and methods chapters, the conventional 

method used in this study entails employing uniform independent variables and the same 

weight functions for all tree component models and the total tree model thereby achieving 

additivity automatically.  

4.4.1 Biomass components 

 

To satisfy the requirements of conventional additivity, models with the same predictor 

ln(DBH) were used. These are presented in Table 4.7 and Figure 4.10. 

 

 

 

 

 

 

 

 

 

Figure 4.8: (a) Tree biomass and DBH and height combined variable (b) model fitted 

vs. residual plot. 
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Table 4.8: Summary of models for upscaling. 

Model  Component Predictors Parameter  Estimate SE P R2 RSE RMSE 

4.31 
Needles Intercept β0 -1.475 1.328 0.281 38.6 0.337 0.319 

 ln(DBH) β1 1.321 0.367 0.002    

4.32 
Branches Intercept β0 -4.791 1.548 0.006 63.3 0.390 0.370 

 
ln(DBH) β1 2.486 0.428 <0.001 

   
4.33 

Bark Intercept β0 -4.072 1.069 0.00128 74.5 0.271 0.257 
 

 
 ln(DBH) β1 2.2196 0.296 <0,001       

  

4.34 Stemwood Intercept β0 -3,410 1,132 <0.001 78.6 0,287 0,272 

   ln(DBH) β1 2,634 0,313 <0.001    

4.35 Total tree  Intercept β0 -2.684 0.878 0.006 84.8 0.222 0.211 

   ln(DBH) β1 2.514 0.243 <0.001    
Note: independent variables used in the models are; DBH (diameter at 1.3 m from ground level). 

 

Logarithmic transformed models selected from the above tables for upscaling the biomass 

of each component to stand level are summarised in Table 4.8 (Models 4.33, 4.34 and 

4.35 from Table 4.4, 4.5 and 4.6). Figure 4.9 shows transformed DBH models and their 

confidence levels. 

 

4.4.2 Model predictions 

 

Figure 4.9: Models for estimating tree and biomass components DBH (diameter at 

1.3 m from ground level) as the predictor. 95% confidence interval was computed 

for each sample to observe if 95% of the intervals would contain the population 

mean. Note: stemwood (a), branch (b), needle (c) and total tree (d). 
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4.4.3 Predicted biomass  

 

Closeness to the 1-1 line was assessed by plotting the observed values of the biomass 

components against the predicted values (Figure 4.10). The R2 coefficient of determination 

for stemwood, branches, needles and total tree was 70.32, 52.06, 39.04 and 76.73 

respectively. 

 

Figure 4.10: Observed versus predicted needle biomass with a 1:1 line (as 

reference). Stemwood (a), branch (b), needle (c) and total tree (d). Note the point 

shown on the branch. 

 

Model performance tests indicated that the stemwood and total tree estimates agreed 

better with observed values. The models were markedly closer to the 1-1 line compared to 

the branch and needle models. Relationship between predicted and observed values for 

branch and needle components showed no tendency to over or under estimate the results 

except for the large branches denoted in red in Figure 4.10.  As shown previously in Table 

4.2, branch length of the trees sampled across the younger (Site 1) and older sites (Site 2 

and 3) ranged from 7 cm to 710 cm while branch diameter ranged from 0.6 cm to 10 cm.  
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4.5 VOLUME UPSCALING 

 

To upscale volume to plot level, the actual volume measurements used both Smalian and 

Huber’s volume formula to improve the accuracy of the volume measurement of sampled 

tree sections. It is important to note that the Smalian formula requires two diameter 

measurements for volume calculation; that is the thick end side (base) and thin end side 

(tip) while the Huber’s formula consider the mid-point diameter. Therefore, to be consistent 

with the requirements of the volume formulas and the weighting approach discussed in the 

methodology section, the study used the Smalian formula to calculate volume for the first 

section at the thick end section of the stem with no measurement at mid-point diameter (0 

m to 1.3 m) while the Huber’s formula was used for the rest of the stem sections (with a 

measured mid-point diameter). Predictor variables were transformed; DBH, H, DBH2Ht 

and CBH. Table 4.9 provides more detail of the considered models.   

 

Table 4.9: Stem volume model performance.  

Models Predictors Parameter  Estimate SE P R2 RSE RMSE 

S
te

m
 v

o
lu

m
e
 

4.30 Intercept β0 -10.652 0.795 <0.001 90.98 0.189 0.179 

  ln(DBH) β1 2.983 0.221 <0.001       

4.31 Intercept β0 -9.189 1.299 0.016 73.51 0.324 0.306 

  ln(H) β1 2.851 0.400 <0.001       

4.32 Intercept β0 -11.539 0.453 <0.001 97.34 0.103 0.097 

  ln(DBH2H) β1 1.112 0.043 <0.001       

4.33 Intercept β0 -0.154 0.092 0.113 94.06 0.166 0.157 

  DBH2H β1 0.000 0.000 <0.001       

4.34 Intercept β0 -12.397 0.820 <0.001 94.55 0.144 0.131 

 
ln(DBH) β1 2.887 0.181 <0.001 

     ln(CBH) β2 0.769 0.201 0.002       

4.35 Intercept β0 -11.554 0.466 <0.001 97.19 0.105 0.097 

 
ln(DBH) β1 2.165 0.180 <0.001 

     ln(H) β2 1.183 0.190 <0.001       
Note: independent variables used in the models are; DBH (diameter at 1.3 m from ground level), H 

represents tree height (m), DBH2H is a combined variable and CBH is crown base height (m). 

 

After considering the parsimoniousness of the Model 4.35 and its goodness of fit. Model 

4.32 (Combined Variable) was selected as the best model for upscaling stem volume to 

plot and stand level.  

 

4.5.1 Volume-DBH relationship  
 

The relationship of the measured volume against DBH of the trees is shown in Figure 4.11. 
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The residual against predicted (fitted) values plots for volume was consistent on a range  

of predicted values indicating homoscedasticity of residuals.  

 

4.5.2 Parameterising for volume prediction 

 

The widely-used volume models were parameterised for volume prediction (Figure 4.12). 

These were: Combined Variable, Standard Form Factor Model (based on the Max and 

Burkhart taper function) and Schumacher and Hall. 

 

Observed volume Vs predicted volume 

 

Figure 4.12: Comparison of the three volume models considered with a 1:1 line. 

 

For comparison purposes, widely used Schumacher and Hall and Standard Form Factor 

Model published volume parameter estimates were used for estimating P. elliottii.  

 

Figure 4.11: (a) Volume and DBH (b) model fitted vs. residual plot. 
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However, the Combined Variable Model was the only model fitted with coefficients for 

estimation that were generated from the data of this study. The Combined Variable Model 

was selected because it had the highest R2 value of 94.43 and a markedly significant 

model p-value (p < 0.0001). The Standard Form Factor Model also fitted well, with an R2 

value of 94.08, followed by the Schumacher and Hall which had a lower R2 value of 93.90.  

 

4.6 ABOVEGROUND BIOMASS ESTIMATION 

 

Table 4.10: Summary of the AGB biomass at stand level.  

AGB is reported in Mg ha-1, stand age given in years and stand volume (m-3 ha-1). 

Stand age 

(years) 
BEF 

Stand volume  

(m-3 ha-1) 

Stand biomass 

 (Mg ha-1) 

16 0.81 289 98.8 

28 1.06 581 253.9 

33 0.96 585 204.5 

The range in AGB (98 – 253.9 Mg ha-1) varied with stand age.  

 

4.6.1 Biomass allocation  

Table 4.11: Summary of the AGB components in kg ha-1. Biomass is reported for 

each component (needles, bark, branch and stemwood). Percentage (%) of the 

components to the total AGB are also given. 

Stand age 
(years) 

  Biomass (Kg ha-1) (%) 

16 

N
e

e
d

le
 11542.382   

28 11374.660 
 33 12106.606 
 Total 35023.648 6.7% 

16 

B
a

rk
 

27964.524 
 28 35475.526 
 33 35874.041 
 Total 25021.220 4.8% 

16 

B
ra

n
c
h
 23646.622   

28 33308.315 
 33 33416.562 
 Total 90371.498 17.2% 

16 

S
te

m
w

o
o

d
 

148916.481 
 28 225809.535 
 33 222604.340 
 Total 374726.016 71.4% 
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Overall, stemwood had the highest percentage of biomass followed by bark, branch and 

needles (Table 4.11).  

 

4.7 ESTIMATION OF NUTRIENT CONCENTRATION 

 

Table 4.12 and 4.13 shows a summary of estimated macro and micro nutrient 

concentration of Site 1 (younger stand), and Site 2 and 3 combined (older stands) in mg 

kg-1 and %. Laboratory results of the concentration are shown in Appendix VII. The 

variability in nutrient concentrations was relatively small for most nutrients. The highest 

nitrogen (N) concentration was found in needles, while the stemwood had the lowest 

concentration. The younger stand had lower concentrations than the older stands.
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Table 4.12: Site 1 summary of estimation of nutrient concentration. 

Site 1 
 

N  P  K  Ca  Mg  Mn  Fe  Cu  Zn  B  

Component   (%) (%) (%) (%) (%) (mg kg-1) (mg kg-1) (mg kg-1) (mg kg-1) (mg kg-1) 

Stemwood 

Mean 0.23 0.01 0.13 0.07 0.03 4.40 22.40 1.40 2.00 2.20 

SD 0.04 0.00 0.03 0.01 0.01 2.19 6.54 0.55 0.71 0.45 

Branches 

Mean 0.27 0.02 0.17 0.20 0.07 12.20 34.60 2.20 3.80 5.20 

SD 0.03 0.00 0.02 0.02 0.02 2.17 5.13 0.45 0.84 0.84 

Needles 

Mean 0.76 0.07 0.53 0.24 0.11 27.75 125.25 3.00 11.50 15.25 

SD 0.34 0.01 0.13 0.03 0.01 6.40 28.79 0.00 2.65 0.50 

Bark 

Mean 0.24 0.01 0.13 0.10 0.04 4.24 23.50 1.60 4.86 5.85 

SD 0.09 0.01 0.08 0.08 0.04 2.38 4.12 0.00 4.19 2.50 
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Table 4.13: Site 2 and 3 summary of estimation of nutrient concentration. 

Site 2 & 3 
 

N  P  K  Ca  Mg  Mn  Fe  Cu  Zn  B  

Component   (%) (%) (%) (%) (%) (mg kg-1) (mg kg-1) (mg kg-1) (mg kg-1) (mg kg-1) 

Stemwood 

Mean 0.26 < 0 0.06 0.09 0.02 6.93 24.07 0.87 2.27 1.13 

SD 0.05 0.00 0.01 0.02 0.01 3.01 13.01 0.35 0.96 0.64 

Branches 

Mean 0.31 0.01 0.10 0.28 0.06 13.73 37.00 1.53 5.27 7.07 

SD 0.04 0.01 0.03 0.07 0.01 4.37 34.08 0.52 2.84 3.88 

Needles 

Mean 0.89 0.06 0.38 0.58 0.15 119.07 77.57 2.18 18.68 21.14 

SD 0.18 0.01 0.09 0.19 0.04 85.37 23.26 0.46 11.78 5.41 

Bark 

Mean 0.30 0.02 0.11 0.12 0.03 5.33 27.40 1.73 8.33 5.60 

SD 0.10 0.01 0.05 0.05 0.01 2.19 10.25 0.46 4.01 1.30 
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Table 4.14: Summary of measured nutrient export of biomass components. 

Site Components N P K Ca Mg Mn  Fe Cu Zn B 

    (kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1) (kg ha-1) 

1 Bark 70.15 124.70 43.82 119.03 21.34 0.49 0.61 0.06 0.54 0.23 

1 Branch 66.77 42.73 29.96 95.09 13.75 0.63 1.26 0.06 0.18 0.39 

1 Needles 107.30 7.91 48.19 89.84 17.19 1.52 1.47 0.03 0.99 0.24 

1 Stemwood 317.95 137.06 115.41 128.53 25.85 1.30 3.08 0.16 0.60 0.22 

1 Total Tree 562.17 312.40 237.38 432.49 78.14 3.94 6.42 0.31 2.32 1.09 

2 Bark 113.13 131.12 52.07 125.44 23.30 0.51 0.76 0.08 0.55 0.28 

2 Branch 103.70 50.55 38.01 121.07 18.11 0.78 1.56 0.07 0.23 0.45 

2 Needles 106.26 7.61 49.16 89.11 16.96 1.48 1.44 0.03 0.91 0.25 

2 Stemwood 596.89 168.29 118.27 184.92 25.67 1.75 4.53 0.23 0.78 0.25 

2 Total Tree 919.98 357.58 257.52 520.55 84.04 4.52 8.29 0.41 2.47 1.23 

3 Bark 114.18 126.80 51.08 121.34 22.63 0.49 0.74 0.07 0.53 0.27 

3 Branch 104.19 49.51 37.51 119.50 17.94 0.77 1.54 0.07 0.22 0.44 

3 Needles 99.46 75.57 46.10 83.42 15.87 1.38 1.35 0.03 0.85 0.23 

3 Stemwood 617.17 167.20 114.76 186.89 24.79 1.75 4.59 0.24 0.78 0.25 

3 Total Tree 935.00 419.09 249.45 511.15 81.23 4.40 8.22 0.41 2.38 1.19 
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4.8 ESTIMATION OF NUTRIENT EXPORT 

 

The nutrient export potential associated with AGB for all the three sites are summarised in 

Table 4.14. As trees are always debarked off-site, nutrients in bark is always added to 

stemwood loss. In all sites, stemwood exported more nutrients per kg ha-1 than any 

biomass component. Stand age also influenced the overall nutrient export. Older stands 

(28 and 33 years) exports more nutrients than the younger stand (16 years).  

 

 

 

Figure 4.13: Calculated macro-nutrient mass contained in P. elliottii biomass 

components from Site 1 (younger stand) and Site 2 and 3 combined (older stands). 
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Figure 4.14: Calculated micro-nutrient mass contained in P. elliottii biomass 

components from Site 1 (younger stand) and Site 2 and 3 combined (older stands). 

 

A general increase in nutrients export in the older stands was observed. Macro-nutrient 

such as N, Ca and P were exported more in older stands than in the younger stand. 

However, P and Mg loss was constant across all stand ages. A larger export of micro-

nutrients which include Mn, Fe and Zn was also noted. It is important to highlight that as 

trees are always debarked off-site, nutrients in bark are always added to stemwood loss.  
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Chapter 5: Discussion 
 

5.1 DBH-Height models  
 

Site-specific height models with independent variables such as ln(DBH) and 1/DBH were 

practical inputs in biomass modelling (Brown et al. 1989; Chave et al. 2015). Model 4.2 

with 1/DBH exhibited a better fit than Model 4.1 (DBH) in predicting height of the Site 1 

(younger trees).  Model 4.2 explained 66.9% of height variation. As for the older stand, 

both Model 4.3 and Model 4.4 did not predict well tree heights. Model 4.4 showed less 

good fits (R2 = 21.71%) likely because of variation in tree height among sampled trees with 

the same DBH (Picard et al. 2012). The variation could have also been caused by 

measurement and recording errors. 

 

5.2 UPSCALING I 

 

5.2.1 Crown  
 

Logarithmic transformed models with variables; d, l, dl and d2l were explored in the 

estimation of needle biomass (Table 4.3). Combined variable (d2l) with R2 of 83.20% 

proved to be the best model. Comparing the selected models (Model 4.5 and Model 4.9), 

for needle and branch biomass, the R2 (72.59%) of needle biomass was lower than that of 

branch biomass (77.8%). According to Nemeth (1973), this is because of the relatively 

shallow regression slope. This shows that there is a strong relationship between DBH and 

branch biomass than DBH and needles (Figure 4.4). Unlike the branch biomass, the 

needle biomass has a lower R2 because of the disproportion in quantity of needles within 

live crown branches (Saint-André et al. 2004). The general variability in crown material 

was also proved by the findings of Pienaar (2016), van Zyl (2015) and Mensah et al. 

(2016). In other studies, the weak relationship between branch dimeter and needles mass 

was attributed to change of season, diseases, and defoliating events such as fire (Ryan et 

al. 2006; Gonzalez-Benecke et al. 2014). In this study, Site 1 with the younger trees had 

lower crown biomass possibly due to late pruning and a fire event which occurred prior to 

the biomass sampling in 2014.  

 

5.2.2 Stemwood biomass 

The combined variable model ln(DBH2H) was a significant predictor of stemwood as it 
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exhibited the best fit. However, authors such as Sileshi (2014) caution against employing 

of compound models with multiple independent variables. Collinearity between DBH, H 

and density had low VIF values ranging from 1.141 to 2.183 (Table 4.4). This means 

standard error of the variable may be 2.18 times higher than it would have been if not 

correlated with others predicting variables. The VIF value has a lower bound of 1 but no 

upper bound. Studies differ on how high the VIF must be to constitute a problem. 

Recommendations for acceptable levels of VIF have reported the maximum level of VIF to 

be 10, 5 and 4 (Neter et al. 1989). Therefore, it seems, that most studies can use 

whichever maximum VIF limit to help augment their understanding about the predicting 

variables. On the other hand, Picard et al. (2012) believes that additional variables (such 

as height and density) have no influence on the predictability of a model and its statistical 

precision. Nevertheless, it must be specified in this perspective that collinearity 

overstatedly increase the model p-values and R² values, which may mislead interpretation 

of the predicting variable of the model.  

 

5.2.3 Bark 

Amongst the predicting variables explored in this study, DBH2H performed markedly better 

(R2 = 73.95) than the rest of the bark predictors as evidenced by the goodness of fit 

criteria of Model 4.23. The results of the study showed that ln(H) is not comparable to 

ln(DBH) in predicting biomass components. Other P. elliotttii studies have used combined 

predicting variables with logarithmically transformed DBH2 and H (Nemeth 1973; Jokela 

and Martin 2000).  

 

5.3 WOOD DENSITY 

 

Considering the growing environments of the specific sites (Tsitsikamma region), the mean 

wood densities were anticipated to be lower as compared to the trees growing in P. patula 

environments (Poynton, 1979; du Toit et al. 2012). A study reported by Stöhr (1980) on 13 

year old South African P. elliottii trees, density ranged from 315 – 615 kg m-3 with a mean 

density of 420 kg m-3. Therefore, since sampled trees are constituted of low density wood, 

estimated biomass will be low than when the wood has higher density values. 
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5.4 UPSCALING II 

 

ln(DBH) was not comparable to ln(DBH2H) in the general performance of all upscaling 

models.  However, ln(DBH) was used to upscale all biomass components (Table 4.8). 

ln(DBH) met the desired requirements of parsimony and additivity. To attain additivity, a 

consistent model was selected in which the sum of the components matched the predicted 

whole (Parresol 1999). Though it was practical to use ln(DBH2H), as it performed better 

than ln(DBH) in upscaling biomass components. This study, opted to use variable ln(DBH) 

because of its simplicity. Parsimony was a wanted property since it minimised propagation 

error, especially when a height model was initially employed to predict another variable 

(H).  

 

5.5 ABOVEGROUND BIOMASS 

 

The allometric relationship established in this study could predict AGB of 20 trees across 

the three sampled sites. The older trees (28 and 33 years) had significantly more biomass 

than the younger trees (16 years). Total AGB for the 28 and 33-year-old P. elliottii stands 

was 253.9 Mg ha-1 and 204.5 Mg ha-1, respectively. As Gower et al. (1994) notes, there is 

a strong relation between stand age and biomass growth. The estimated AGB per ha 

calculated within the present study is different from the findings of Gholz and Fisher (1982) 

which ranged from 98.3 Mg ha-1 to 192.3 Mg ha-1 for 33-year-old P. elliottii. The estimated 

total biomass for the 16-year-old stand was 98.9 Mg ha-1. This is in line with Gonzalez-

Benecke et al. (2010a) and Shan et al. (2001) studies, who reported a range from 86 to 

143 Mg ha-1 for a stand with 16 and 17-year-old trees in USA. The results of this study 

concur with local biomass studies on P. radiata done by van Laar and van Lill (1978) and 

van Zyl (2015). van Laar and van Lill reported AGB of 184.86 Mg ha-1 and van Zyl 

published an AGB which ranged from 63.2 to 255.2 Mg ha-1. The low SPH (347 SPH) due 

to thinning of the 28-year-old trees in 2014 likely eased resource competition thereby 

leading to abnormally big branches prone to the natural pruning effect associated with P. 

elliottii. The ripple effect was likely increase in crown growth as evidenced by the branch 

metrics in Table 4.2.  
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5.6 BIOMASS EXPANSION FACTORS  

 

The BEF values of 0.81, 0.96 and 1.37 for Site 1, 2 and 3 were within the BEF range 

reported by FAO (2012) and IPCC (2003) which have a maximum value of 1.3. The BEF 

results of this study show that they were stand age dependent. The older stands tended to 

have higher BEF values (0.96 – 1.37) than the younger stand.  

5.7 OPTIMUM NUTRIENT RATIOS  

 

Results of this study were compared to international studies by Linder (1995) in Sweden 

and Hockman and Allen (1990) in USA which reported ideal ratios of nutrient to nitrogen. 

 

Table 5.1: Optimum nutrient ratios expressed as percentage of nitrogen. 

Comparison of the optimum nutrient ratios for Site 1 and Site 2 and 3 was done 

against Linder (1995) and Hockman and Allen (1990) for Pinea abies and Eucalyptus. 

Nutrient Site 1 Site 2 & 3 Linder (1995) Hockman & Allen (1990) 

N 100 100 100 100 

P 9.5 7.2 10 8.3 

K 68.9 42.3 35 37.1 

Ca 31.0 64.4 2.5 32.7 

Mg 13.9 16.7 4 11.8 

Mn 0.9 4.8 0.05 - 

Fe 4.1 3.1 0.2 - 

Cu 0.1 0.1 0.03 - 

Zn 0.4 0.8 0.05 - 

B 0.5 0.9 0.05 - 

 

N and P content in younger trees (Site 1) was within the ratio recommended by Linder 

(1995). However, Site 2 and 3 (older trees) were not within the reported P ratios. The 

values of the rest of the nutrients were parallel with published results on other commercial 

species reported by Linder (1995) and Hockman and Allen (1990). 
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5.8 NUTRIENTS  
 

5.8.1.1 Nitrogen (N) 

 

Site 1 and Site 2 and 3 (combined) reported N concentration of 0.61% and 0.89%, 

respectively. The results of this study indicate deficiency of N content when compared to 

other pine species is comparable. Boardman et al. (1997) indicate that the ideal foliage N 

concentration range for other mature pine species such as P. radiata and P. taeda is 

<1.0% and juvenile (<1.0 to 1.2%). Also, the amount of N that is exported with the biomass 

components other than the merchantable stems is proportionally lower than the amount 

that is exported in the merchantable stems. According to the study results, potential for N 

export in Site 1 is lower (562.2 kg ha-1) than Site 2 with mature trees (920 kg ha-1 and 935 

kg ha-1). 

5.8.1.2 Phosphorus (P) 

 

For both younger (Site 1) and older trees (Site 2 and 3), P concentration of foliage was 

0.06 mg kg-1. This value falls short of the marginal (0.75 to 0.08 mg kg-1) reported in 

Australia by Boardman et al. (1997). However, results of this study are somewhat similar 

to those reported by van Zyl (2015) in South Africa of a P. radiata stand (0.05 mg kg-1). 

The stemwood and the bark biomass components had the highest P export in both young 

and mature sites. The amount of P that is removed with the biomass components other 

than the stem is proportionally greater than the amount that is exported via stemwood.  

5.8.1.3 Potassium (K) 

 

Studies is USA and Australia reported that adequate K concentration in P. elliotti should be 

within the range of 0.35 to 0.4% and <0.3% indicate deficiency (Boardman et al. 1997). 

Results for younger trees (0.42%) and older trees (0.38%) are parallel with the proposed 

adequate range. Younger trees had the lowest K total export potential (237.38 kg ha-1) 

than the older trees. This was greater than the highest nutrient loss predicted in P. radiata 

(208.30 kg ha-1) by van Zyl (2015).  

5.8.1.4 Calcium (Ca) 

 

Site 1 with younger trees had a Ca concentration of 0.19% and Site 2 and 3 were within 

the expected range (0.58%). There was a relatively similar pattern in Ca loss between the 
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younger and older trees. Using results from Australia, Spain and Turkey, Boardman et al. 

(1997) indicated that the adequate foliage Ca concentration range for P. elliotti is between 

0.33 to 0.74%. Ca concentration in needles of younger trees was below the published 

range. However, comparing younger trees to older trees, nutrient export in younger trees 

was slightly lower (432.49 kg ha-1) when all the biomass components were summed. The 

amount of Ca that is removed with the biomass components other than the stem is greater 

than the amount that is contained in the stemwood. It has been reported that commercial 

forestry plantations on base-rich soils accumulate more Ca and Mg in the biomass than 

plantations on leached soils such as those in the Tsitsikamma region (Herbert 2003; 

Dovey 2009).  

5.8.1.5 Magnesium (Mg) 

 

Nutrient concentration results of Mg show that both young trees (0.09%) and older trees 

(0.15%) were deficient of Mg. For studies done in Australia, Boardman et al. (1997) 

reported values less than 0.80%. Mg accumulation was similar across older sites (Site 2 

and 3), with the younger trees had a marginally lower export potential (78.14 kg ha-1). The 

Mg export was greater in stemwood and bark components and relatively lower in the 

branches of younger trees and needles in general.  

5.8.1.6 Copper (Cu) 

 

As per the results of the studies done in South Africa and Australia, Cu deficiency is 

pegged at < 2 mg kg-1 and the adequate range lie between 2 to 18 mg kg-1 (Boardman et 

al. 1997). Results of this study show that Cu is within the adequate range for both younger 

and older trees. The mean Cu concentration of younger trees was 9.27 mg kg-1 and 21.14 

mg kg-1 for older trees. The amount of Cu that is removed with the stemwood is more than 

50% of the Cu nutrient exported. This implies a great proportion of the Cu is exported 

through stemwood than in biomass components such as needles. 

5.8.1.7 Iron (Fe) 

 

Boardman et al. (1997) recommended that the ideal foliage Fe content range for P. elliotii 

between is 65 mg kg-1 and 404 mg kg-1. All sites of this study were within this range. The 

Fe concentration in younger trees was higher (100.66 mg kg-1) than in older trees (77.57 

mg kg-1). It important to point out that Fe concentration in the younger site was by far the 
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highest observed nutrient as compared to other micro-nutrients analysed. Also, Fe export 

declined with stand age. The highest export potential was in Site 3 stemwood (4.59 kg ha-

1) and the lowest was in the bark of younger trees in site (0.61 kg ha-1).  

5.8.1.8 Manganese (Mn) 

 

Mn content for P. elliottii in Australia ranged from 284 mg kg-1 and the marginal is 21 mg 

kg-1 (Boardman et al. 1997); the sites reported in this study were below the adequate 

range but within the marginal. The Mn content ranged from 22.39 mg kg-1 to 119.07 mg kg-

1 in the older trees of this study (28 and 33 years). In all the three sites, the highest Mn 

export was recorded in the stemwood component of the tree. While Mn export of needles 

decreased with stand age, Mn export in branch and bark components stabilised with age.  

5.8.1.9 Boron (B) 

 

B concentration in the needles increased with stand age. Site 1 with younger trees had 

12.27 mg kg-1 B concentration, while the mean of Site 2 and 3 was 21.14 mg kg-1. 

Boardman et al. (1997) reports that concentration range of B within the range of 8 to 10 

mg kg-1 is considered as deficiency. It is important to note that the highest B accumulation 

in both young and old sites in this study was observed in the branches. The amount of B 

that is lost with the biomass components other than the stemwood is greater than the 

amount that is exported in stemwood biomass. Therefore, whole tree biomass harvesting 

poses a significant threat to B cycling.  

5.8.1.10 Zinc (Zn) 

 

Studies have reported that the adequate concentration range of Zn in P. elliottii foliage 

should be between 10 to 68 mg kg-1 and deficiency is between 6-10 mg kg-1 (Boardman et 

al. 1997). In the two main stand ages (younger and older) of this study, the Zn 

concentration was 12.27 mg kg-1 and 21.14 mg kg-1. The results show that the sites are 

not Zn deficient. Zn export results indicate a decrease in accumulation with stand age. For 

instance, in younger trees the Zn export potential is 0.99 kg ha-1 and in older trees it is 

0.91 kg ha-1. It is important to note that Zn export is greater in needle, followed by the 

stemwood, bark and branch components.  
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Chapter 6: Conclusion and Recommendations 

 

In conclusion, this study has generated allometric models that allow us to accurately 

estimate AGB and nutrient export of P. elliottii based on measurable predictors derived 

from a destructive sampling approach. Wood basic density equations can be improved 

upon, should more tree samples be collected across geographical regions and forest 

sites. 

 

As the P. elliottii resource in South Africa represent a far larger portion in terms of 

plantation ha, the results of this study need to by including different sites. To minimise 

bias in AGB estimations, the study recommends that the developed allometry model be 

applied within its valid diameter range as indicated by the inventory data (Table 3.1). 

Further sampling is essential because it will extend the diameter range of the allometric 

model thereby increasing the replication and confidence of prediction the entire P. 

elliottii resource which is comprised of; pulp wood, saw-log and peeler logs (> 55 cm). 

 

The IPCC default over-bark BEFs ranging between 1.15 and 3.4 (IPCC (2006) 

provided for temperate broad leaf and pine plantation trees overestimate total AGB 

compared to the BEF values of this study which were 0.81, 0.96 and 1.37 for Site 1, 2 

and 3. 

 

The results of this study show that harvesting stemwood and bark accentuates the 

export of nutrients from forest sites by almost two-fold. It is also apparent that the shift 

to whole tree biomass increase harvestable biomass per hectare and the export of 

nutrients.  To comprehensively appreciate the impacts of the nutrient losses reported in 

this study, it would be critical to define the nutrient budget of each site against nutrient 

cycle system as suggested by Payn & Clinton (2005).  

 

The study recommends that future allometry studies on P. elliottii should possibly 

consider increasing study sites and incorporating other significant related variables 

such as MAP, stand age and site index (productivity) in P. elliottii allometric models to 

determine if they provide more accurate AGB predictions.  
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APPENDIX I 

 

INSTRUCTIONS FOR ALLOMETRIC MEAUSUREMENTS 

 

Field Work 

Note: All samples earmarked for drying goes into paper bags.  

bottom dics goes into plastic bags. 

Before field trip: measure 10 paper bags of each size and record their weight. 

NB!!! Each sample has to be labelled otherwise valuable data is lost.  Always label packet 

before you put anything into it.  

 

Stand Measurements 

 

100 trees will be counted and their diameters recorded on the field form. Determine 

distribution of diameter / average diameter (compartment estimate). Record stems 

per hectare against compartment records (Microforest). Measure heights (30 trees) 

from a subset of the 100 trees. Determine sample trees which represent the 

distribution of the plot and mark for destructive sampling.  

 

Tree measurements 

Mark North direction and DBH on the standing tree 

Record basic tree measurements  (DBH ) 

Cut tree down, measure height (length), live crown base (to lowest live branch), 

dead crown base (to lowest dead branch) and pruning height (highest remains of 

pruning scars). 

Measure height of whorls (cluster of branches within a 0.5m stem length) from tip 

(whorl 0) to live crown base and mark and number them (blue). 

Make 3m sections, and mark them on the stem (black or red) acc. illustration with 

height in m (0, 3, 6,…) beginning from tree base 

Take a handful of mature needle samples from branches in each section (0, 3, 6, 9 

etc. not sample branch) for determination of specific leaf area (SLA), put in separate 

plastic bags and label and place in the cooling box. 

Mark 2 adjacent discs at the lower end of each 3m section and at 1.3m, mark 

NORTH direction per disk!! 

All branches 
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Record all live branch diameters per whorl on the measurement sheet. 

Select 1 branch every 2nd whorl as a sample for detailed measurements, use a 

random number table to select the sample branch. Work from the bottom to top and 

from north and clockwise from the north mark. Select additional representative 

branches, if necessary to collect a minimum of 15 live crown sample branches per 

tree   

Label the sample branch with masking tape and identify it on the field form by 

circling it. 

Measure 2 diameters (Vert/hor) on the sample branch 

Measure and record the sample branch length and the horizontal length (90° to the 

stem), then cut it off and put on sample branch heap. 

Select three representative dead branches from the top middle and bottom of the 

dead crown. Label all three branches with masking tape as “dead crown sample 

branches” 

Cut the dead crown sample branches and bulk it in short pierces in labelled paper 

bags 

Cut and remove rest of branches, stack all dead branches on a plastic sheet for 

weighing in field and stack the rest of the live branches separately from sample 

branches 

Weigh all the dead crown branches including the dead crown sample branches bag 

with a hand scale in field  

Strip all leaves from sample branches and pack into labelled paper packets for each 

sample branch. 

Cut all cones from sample branches and pack into labelled paper packets for each 

sample branch 

Cut all remaining wood of sample branch and pack in labelled paper packets for 

each branch. 

 

Stem needles and cone measurements 

Strip needles from stem and pack separately in paper bag, label for drying in lab 

Strip cones from stem and put in paper bags per 3m section. Label bags 

accordingly. 

Sample disks 

Cut 2 disks of 2.5 cm thick at the base of each 3m section and at DBH mark. We 

will call them top disk (T) and bottom disk (B).   
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Mark cut disks on top side, mark North direction on disks, write tree number and 

disk height beginning from base to tip, e.g. 3m, 6m 9m etc. 

Paint the top side of the base disk (0m) of the top disks with 2,3,5-

Triphnyltetrazodium chloride  

Separate bottom disks (place in plastic bags) and top disks (place in paper packet) 

 

Checklist 

You should have the following sample sets once your tree has been processed: 

A set of Top-disks compiled from each stem section plus the dbh disk 

A corresponding set of Bottom-disks 

A set of SLA needle samples in plastic packets 

A set of three packets containing needles, cones and branch-wood from each sample 

branch 

Cone samples and needle samples from the main stem 

One bulk sample of representative branches from dead crown 

You should also have the following data sets recorded: 

Tree dbh, length, crown height and pruning height  

Tree whorl heights  

Branch diameters (measured in the vertical plane) of all branches per whorl 

Branch diameters (measured hor. and vert.) for the sample branches 

 

Laboratory Work 

Leaves 

Dry all leaf samples from the sample branches (stored in paper packets) to 65°C and 

record mass on a daily basis until a constant reading is obtained.  

 

Branches 

Weigh and record the lab mass (fresh mass, but after transport to lab) of all sample 

branches including the bulked dead crown sample branches as a first priority in the 

laboratory.  

Remove sub-samples for nutrient analysis (one sub-sample per sample branch): 

Use all sample branches for the sub-sample 

Cut one thin-, medium- and thick- 5cm long pierces from each sample branch 

Record the lab mass of the sub-sample per sample branch. 

Bulk all sub-samples into one sample bag.  
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Place sub-sample in oven to dry at 65 °C and record dry mass daily until constant 

readings are obtained.   

Remove sub-samples for drying to 105°C: 

Select three sample branches from the top, middle and bottom of the crown for the 

sub-sample for drying to 105°C. 

Place sub-samples in oven to dry at 105 °C and record dry mass daily until constant 

readings are obtained. 

Calculate the moisture loss % from the lab mass to the dry mass at 105 °C. 

On the spreadsheet, convert the total lab mass of all sample branches (including the sub-

samples) to total dry mass (at 105 °C) per sample branch. 

Dry the bulked dead crown sample branches in oven at 105 °C and record dry mass daily 

until constant readings are obtained. 

 

Top disks 

Measure diameter of disk over- and under bark  

Measure diameter of stained heartwood on the base disk (0m) in the N-S and E-W 

direction 

Debark disks, mark new paper bags with disk numbers for bark per disk in separate bags. 

Dry bark and debarked disks at 105°C until mass reading is constant. 

Weigh and record dry mass. 

 

Bottom disks 

Duplicate disk number on two halves. 

Split wet disk with bark in 2 halves. 

 

Half bottom disk for water displacement. 

Debark disk and discard bark. 

Place under water until saturated (for 7 - 14 days) 

Measure water displacement with Archimedean principle 

Dry half disk to 105°C and record mass until reading is constant. 

 

Sub-samples for Nutrition analysis 

Leaves 

Within each tree, bulk together all the oven-dry leaf sub-samples per tree  
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Send one bulked sample per tree to laboratory for chemical analysis of essential 

nutrients.  

Branches  

Use branch sub-samples that had been dried at 65 °C.  

Grind each sub-sample into powder using the coarse mill. 

 Send to laboratory for chemical analysis of essential nutrients. 

 

Half bottom disk for nutrition analysis 

Mark, and then cut out a wedge (including the bark) with 10 degree angle from each half 

disk (Mark February).  

Debark the wedges and keep all the bark samples together for the whole tree in a paper 

packet. 

Bulk all wedges from one tree together in a paper packet. 

Dry the bulked wedges and bark sample in separate paper bags to 65°C until reading is 

constant. 

Mark sample bags for chemical analysis and send to laboratory for chemical analysis of 

essential nutrients. 

 

Checklist  

You should have the following data sets at the end of the lab work sessions: 

Dry mass of needles (dried at 65 °C), wood (dried at 105 °C and corrected for sub-sample 

taken at 65 °C) and cones (dried at 65 °C ) from each sample branch 

Dry mass and surface area of each SLA sample.  

Paired data for water displacement  and corresponding dry mass of half-disks – we will 

use this to determine wood density 

Woody mass: bark mass ratio of all top disks dried at 105 °C – we will use this to estimate 

bark mass per tree. 

Fresh cone mass of sample branches and stem cones plus the moisture content of a cone 

sub-sample 

Dry mass of stem needles 

Dry mass (dried at 105 °C ) of dead crown sample 

You should also have the following sub-samples per tree that have been prepared for lab 

analyses:  

One bulked leaf sample 

One bulked stem wood sample compiled from disk wedges 
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One bulked branch sample compiled from several small, medium and large branches 

taken from individual sample  branches 

One bulked bark sample compiled from the bark of several disk wedges 

One cone sub-sample 
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APPENDIX II 
 

EQUIPMENT AND MATERIAL FOR FIELD AND LAB WORK 

 

 DBH tapes  

 20 m tape (or longer)  

 hand held pruning scissors  

 large pruning scissors  

 clipboards  

 pen, pencil and calculator 

 small Calipers for branch diameters   

 bow-saws  

 score sheets  

 camera 

 first aid kit 

 water, soap and paper towels, hand cleaner 

 plastic bags  

 paper bags with folded sides  

 blue refuse bags  

 cool box for sample storage and frozen ice bricks 

 large plastic sheets 

 large cardboard boxes  

 box tape rolls  

 masking tape rolls  

 koki pens (red, blue and black)  

 tree crayons  

 danger tape 

 onion bags 

 2 Chainsaws, serviced. 
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 chainsaw clothes  

 hang scales 

 gloves  

 hard hats  

 safety jackets  

 vertex 

 spray paint cans 

 vessels for wood density determination 

 small scales with large plastic weighing bowls    

 Kiefer and Forestry lab oven-drying kilns  
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APPENDIX III 
 

DBH AND HEIGHT MEASUREMENTS (preliminary plot sampling) 

Compartment             

age             

Site             

HGT comp             

Vol/tr comp             

Plot 

length+width             

Site DBH HGT(30)  DBH HGT(30)  DBH HGT(30)  

Tree Number             

1             

2             

3             

4             

5             

6             

7             

8             

9             

10             

.             

.             

.             

.             

.             

.             

90             

91             

92             

93             

94             

95             

96             

97             

98             

99             

100             
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APPENDIX IV 

 

MEASUREMENT OF TREE METRICS FORM A 

Tree No       Compartment     Date     

Age (yr)       Spacing (m x m)   
    

  

DBH (cm)       Height (m)     
    

  

Prune height 
(m) 

      
Dead Crown base 
(m) 

  Live Crown base (m)   

Student names:                         

Section Height 
(m) 

  0m 1.3m 3m 6m 9m 12m 15m 18m 21m 24m 27m 

Sub-sample Disk bottom(B) measurements: 

whole disk fresh mass 
(g) 

                      

Sub-sample fresh mass 
(g) 

                      

bark whole disk fresh 
mass (g) 

                      

Sub-sample dry mass (g)                       

Density disk 
displacement (g) 

                      

Density disk dry mass (g)                       

Bark whole disk dry 
mass (g) 

                      

Sub-sample Disk top(T) 

Diameter with 
bark (cm) 

N-S                            

E-W                       

Diameter under 
bark (cm) 

N-S                       

E-W                       

Circumference 
of missing bark 
(cm) 

 

                      

Diameter 
heartwood (cm) 

N-S                       

E-W                       

Average of 10 paper 
bags (g) 

    
  

    
     

  

Dry mass needles on 
stem (g) 

    
           

  

Field mass Dead crown all branches (g)                   
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APPENDIX V 

 
 

MEASUREMENT OF BRANCH WHORL METRICS FORM  

Tree       
 

          

 
            

    Branch diam.(m)       Sample branches       Fresh mass (g) 

Whorl 

ht 

(m) 

Ф 

1 

Ф 

2 

Ф 

3 

Ф 

4 

Ф 

5 

Ф 

6 

Ф 

7 

Ф 

8 

L 

(cm) 

hor 

dist 

to 

stem 

(cm) 

Ф 

vert 

(mm) 

Ф hor 

(mm) 

Needle 

mass 

Cone 

mass 

Woody 

mass 

1                                 

2                                 

3                                 

4                                 

5                                 

6                                 

7                                 

.                                 

.                                 

.                                 

76                                 

77                                 

78                                 

79                                 

80                                 

81                                 

82                                 

83                                 

.                                 
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APPENDIX VI 
 

Whorl RANDOM NUMBER TABLE 

1 6 9 2 3 4 1 0 6 4 5 3 0 4 9 8 2 

2 6 1 2 9 9 2 0 9 10 3 1 4 6 4 2 3 

3 7 1 3 0 7 3 6 3 8 4 9 4 5 3 4 7 

4 6 3 2 6 3 2 2 5 5 5 8 7 0 2 8 2 

5 4 0 7 4 7 9 4 9 2 2 8 4 6 3 10 7 

6 5 0 1 6 5 3 0 4 5 4 1 2 8 7 0 3 

7 9 5 3 7 9 0 4 1 4 4 8 8 2 6 5 3 

8 1 2 2 2 8 0 5 0 6 7 4 6 6 8 6 3 

9 6 10 7 7 2 10 3 2 4 9 5 2 10 4 6 1 

10 2 6 3 6 9 9 1 0 5 6 5 5 5 8 4 7 

11 3 7 4 5 7 8 6 4 1 10 1 9 3 4 9 6 

12 2 9 4 3 10 2 6 4 7 2 7 10 9 2 0 6 

13 9 8 5 9 5 6 9 3 1 1 9 5 1 2 9 1 

14 6 5 9 5 7 3 8 3 7 6 2 2 7 4 7 5 

15 9 6 2 8 1 10 2 3 6 3 2 5 9 0 4 3 

16 6 2 5 7 6 3 6 7 0 1 2 8 7 6 3 7 

17 9 8 8 6 5 1 10 9 5 5 8 6 8 6 6 1 

18 9 7 2 10 8 8 2 0 2 1 3 1 1 7 8 2 

19 7 3 8 6 10 6 1 6 6 4 9 5 6 4 4 3 

20 2 6 10 3 3 1 5 9 6 0 4 3 0 7 8 7 

21 1 5 2 1 6 4 8 5 2 3 9 6 3 9 8 6 

22 8 2 4 8 6 2 4 1 2 1 9 9 1 6 2 4 

23 3 10 6 7 2 9 6 8 1 1 9 1 5 7 6 6 

24 3 6 1 7 0 6 2 6 5 2 8 5 9 5 0 4 

25 6 7 3 6 5 0 1 1 2 8 6 0 2 8 4 5 

26 0 6 8 0 1 5 6 1 5 6 8 9 5 4 6 2 

27 2 7 8 9 6 5 8 4 8 10 10 0 2 8 10 1 

28 2 9 5 9 1 4 9 7 4 0 7 7 2 6 4 1 

29 4 4 7 4 1 5 8 7 7 1 9 8 7 6 5 3 

30 7 4 2 2 0 1 1 0 10 3 6 6 5 0 8 8 

31 5 4 1 6 3 5 8 6 2 0 8 9 5 9 3 6 

32 1 6 0 2 4 6 5 4 5 8 1 2 2 1 1 9 

33 1 4 10 5 2 1 3 7 3 4 6 2 7 7 6 5 

34 10 7 6 2 6 7 1 2 2 8 8 5 5 4 5 3 

35 10 1 1 9 6 5 6 0 2 3 2 3 8 1 7 6 

36 1 4 6 0 7 3 6 9 1 1 6 7 2 7 7 7 

37 6 10 7 1 7 4 6 6 1 7 6 1 3 9 0 5 

38 9 6 2 3 7 3 9 8 5 8 0 4 8 8 5 0 

39 1 1 2 2 1 7 4 3 3 6 2 2 3 2 0 7 

40 4 1 4 5 8 3 4 3 6 1 8 4 1 10 1 0 

41 7 0 9 3 0 2 9 8 7 6 6 2 2 4 10 3 

42 1 10 7 0 8 5 5 5 3 9 7 6 1 3 0 9 

43 2 5 9 2 6 0 7 9 9 5 3 9 3 6 7 4 

44 7 2 10 3 9 4 7 0 6 5 6 4 0 8 0 6 

45 2 3 1 6 4 8 5 4 5 4 0 4 1 3 7 1 

46 8 9 1 9 2 1 6 7 0 6 7 8 6 1 4 0 

47 7 1 7 6 5 6 6 6 3 3 9 1 0 5 2 1 

48 2 3 0 7 0 8 0 4 0 5 5 8 7 5 8 5 

49 10 8 8 4 5 6 9 4 6 1 7 1 9 0 6 8 

50 4 5 1 3 0 5 1 8 9 6 7 8 8 7 4 4 
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APPENDIX VIl 
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APPENDIX VIII 

 

Parameter Estimate SE R2 (%) Parameter Estimate SE R2 (%)

N β0 -0.3038 0.096 95.46 Mn β0 -5E-04 5E-04 81.04

β1 0.0032 0.000 β1 7E-06 9E-07
P β0 -0.0914 0.045 80.46 Fe β0 -2E-04 2E-03 75.83

β1 0.0006 0.000 β1 2E-05 3E-06

K β0 0.1355 0.028 75.03 Cu β0 3E-05 2E-05 98.28

β1 0.0003 0.000 β1 1E-06 3E-08

Ca β0 0.0180 0.001 77.86 Zn β0 -3E-04 2E-04 83.54

β1 0.0008 0.001 β1 3E-06 3E-07

Mg β0 0.0324 0.006 76.21 B β0 2E-04 4E-05 89.97

β1 0.0001 0.300 β1 8E-07 7E-08

St
em

w
oo

d

N β0 0.0375 0.028 82.74 Mn β0 -7E-04 4E-04 85.29

β1 0.0076 0.001 β1 1E-04 1E-05

P β0 0.0041 0.003 81.03 Fe β0 -6E-04 1E-04 69.47

1_2 β1 0.0005 0.000 β1 1E-04 2E-05

P β0 0.0080 0.006 92 Cu β0 1E-05 6E-06 84.82

2_3 β1 0.0064 0.001 β1 2E-06 2E-07

K β0 0.0083 0.021 69.94 Zn β0 -8E-04 2E-04 75.23

β1 0.0038 0.001 β1 5E-05 7E-06

Ca β0 -0.0306 0.034 66.08 B β0 2E-05 8E-05 78.54

β1 0.0064 0.001 β1 2E-05 2E-06

Mg β0 0.0064 0.007 60.1

β1 0.0012 0.000

N
ee

dl
es

N β0 -0.0261 0.011 97.75 Mn β0 -3E-04 1E-04 86.09

β1 0.0034 0.000 β1 2E-05 2E-06

P β0 -0.0275 0.019 68.48 Fe β0 -6E-04 3E-04 91.37

β1 0.0012 0.000 β1 4E-05 3E-06

K β0 0.0121 0.013 70.46 Cu β0 -2E-05 1E-05 90.48

β1 0.0010 0.000 β1 2E-06 2E-07

Ca β0 -0.0372 0.025 88.34 Zn β0 -7E-05 6E-05 81.11

β1 0.0032 0.025 β1 6E-06 7E-07

Mg β0 0.0037 0.004 88.28 B β0 -3E-04 8E-05 93.18

β1 0.0005 0.000 β1 1E-05 8E-07

Br
an

ch
es

N β0 -0.0799 0.047 79.15 Mn β0 -4E-04 1E-04 83.13

β1 0.0040 0.000 β1 1E-05 1E-06

P β0 -0.0956 0.023 89.66 Fe β0 1E-04 3E-04 74.44

β1 0.0026 0.000 β1 2E-05 3E-06

K β0 -0.0143 0.021 67.23 Cu β0 -1E-05 1E-05 92.03

β1 0.0214 0.000 β1 2E-06 2E-07

Ca β0 -0.0941 0.031 77.88 Zn β0 -5E-04 2E-04 74.56

β1 0.0025 0.000 β1 1E-05 2E-06

Mg β0 -0.0141 0.005 84.72 B β0 -7E-05 7E-05 82.19

β1 0.0005 0.000 β1 7E-06 7E-07

Ba
rk
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