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Summary 

Invasive alien plants (IAP) pose a direct threat to the biodiversity of South Africa. Extensive 

invasion has occurred in many of the country’s protected areas, requiring direct management. 

In many protected areas, including Table Mountain National Park, the selected study area for 

this investigation, IAP control programmes were established more than 20 years ago and are 

well resourced. However, limited tangible success, in terms of reduction of overall alien 

distribution and density has been achieved. It therefore became necessary, both from an 

economic and conservation perspective, to investigate the likely future trajectory of control 

programmes and to determine the main drivers of management success. 

 

This dissertation aims to provide a scientific rationale for improving management of IAP 

programmes in four key management areas. Firstly, the current accuracy of distribution and 

abundance data that is used in management decision making, is determined (Chapter 2). This 

is an important starting point for understanding management effectiveness as decisions to 

assign resources and treat areas are based on knowledge of IAP species presence and their 

associated densities in an area. Secondly, the long-term implications of suboptimal treatment 

quality is examined through modelling the expected density of IAP invasion after 50 years of 

treatment at 38 levels of clearing efficacy (Chapter 3). Thirdly, the choice of management 

clearing strategy is thought to play an important role in determining clearing success. Although 

a number of clearing strategies have been postulated by management and documented in 

literature, the potential outcomes of these strategies have not been formally tested. These 

proposed management strategies are modelled to provide insight into the performance of each 

strategy, also considering the mediating impact of clearing quality (Chapter 4). Last, there 

exists a management dichotomy between area-based and species-based planning. The 

shortcomings of these approaches are identified with an alternative invasion-stage-based 

planning approach that considers a number of scale dependent range properties offered 

(Chapter 5). To assess these factors, the presence and absence of all identified alien species 

were mapped at a fine-scale across the Table Mountain National park, producing a systematic 

sample of species from a total of 10,057 plots. 

 

Results indicated that management data used in decision making largely over estimate IAP 

distribution and abundance, while under estimating IAP species richness. Fine-scale sampling 

provided estimates of species richness and abundance that differed in many cases by orders 

of magnitude from the data that are used by managers. Currently there are adequate 

resources to deal with the IAP problem, but quality of work is identified as the primary driver 
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failure to reduce alien species densities over the long-term. The modelling of treatment quality 

revealed that small increases in clearing efficacy above 80% result in increasingly large gains 

in the areas that can be covered for the same amount of resources. Conversely, any decrease 

in clearing efficacy below 80% results in rapidly diminishing areas that can be treated annually 

with the same resources. A key consequence of the current efficacy levels observed in the 

clearing programme, is that up to 75% of the future resource costs will be required to treat 

new infestations resulting from re-seeding of the current standing infestations. With increased 

efficacy, this future cost can be greatly reduced. The quality of clearing also mediates the 

choice of clearing strategy. As clearing quality increased or decreased above or below 75%, 

the best performing strategy changed. This highlights treatment quality as a primary driver of 

long-term clearing success, while the choice of implementation strategy is a secondary factor. 

One of the key factors identified for management improvement was the frequency for revisiting 

previously cleared management units for follow-up treatment. It was found that historical re-

visitation to management units has been greater than two years. As many of the targeted 

species are able to produce seeds within two years, the invasion of such species has been 

allowed to perpetuate. The last key finding was that through spatial analysis of population data 

the same species could be at different stages of invasion at different sites with the park. This 

result suggests that a single management approach for a species is not warranted. The choice 

of management approach for a species should consider range properties of occupancy, 

population density and spatial pattern of the species at different sites and scales. 

 

In conclusion, key improvements can be readily integrated into the IAP programme that will 

lead to substantive improvements in the outcomes of IAP programmes. These include 

improving the quality data on distribution and abundance IAP and implementing rigorous 

quality control. Some of the suggested interventions from this work are already being trialled, 

with marked improvements already visible. Through these improvements, eradication of target 

species by organised local scale extirpation, is possible.  
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Opsomming 

Indringer uitheemse plante (IUP) hou 'n direkte bedreiging vir die biodiversiteit van Suid-Afrika 

in. Uitgebreide indringing het plaasgevind in baie van die land se beskermde gebiede, wat 

direkte bestuur vereis. In baie beskermde gebiede, insluitend Tafelberg Nasionale Park, die 

geselekteerde studiegebied vir hierdie ondersoek, is IUP beheerprogramme meer as twintig 

jaar gelede gestig en is dit goed befonds. Beperkte tasbare sukses, in terme van die 

vermindering van algehele indringer verspreiding en digtheid, is egter behaal. Dit was dus 

nodig om, vanuit 'n ekonomiese en bewaringsperspektief, die moontlike toekomstige trajek 

van beheerprogramme te ondersoek en die belangrikste dryfvere van bestuursukses te 

bepaal. 

 

Hierdie proefskrif poog om 'n wetenskaplike beweegrede te verskaf vir die verbetering van die 

bestuur van IUP programme in vier sleutel bestuursgebiede. Eerstens word die huidige 

akkuraatheid van verspreidings- en oorvloeddata wat in bestuursbesluitneming gebruik word, 

bepaal (Hoofstuk 2). Dit is 'n belangrike vertrekpunt om bestuur doeltreffendheid te verstaan, 

aangesien besluite om hulpbronne toe te ken en werksareas aan te wys, gebaseer is op 

kennis van die teenwoordigheid van IUP spesies en hul gepaardgaande digtheid in 'n gebied. 

Tweedens word die langtermyn implikasies van suboptimale behandelingskwaliteit ondersoek 

deur die verwagte digtheid van IUP indringing na 50 jaar se behandeling op 38 vlakke van 

doeltreffendheid skoon te maak (Hoofstuk 3). Derdens word daar gedink dat die keuse van 

skoonmaakstrategie deur bestuur ‘n belangrike rol speel in die bepaling van die sukses van 

skoonmaak. Alhoewel 'n aantal skoonmaakstrategieë deur die bestuur voorgestel en in die 

literatuur gedokumenteer is, is die potensiële uitkomste van hierdie strategieë nie formeel 

getoets nie. Hierdie voorgestelde bestuurstrategieë word gemodelleer om insig te verskaf in 

die prestasie van elke strategie, met inagneming van die bemiddelende impak van skoonmaak 

kwaliteit (Hoofstuk 4). Laastens bestaan daar 'n bestuursdigotomie tussen areagebaseerde 

en spesiegebaseerde beplanning. Die tekortkominge van hierdie benaderings word 

geïdentifiseer met 'n alternatiewe indringer-stadium-gebaseerde beplanningsbenadering wat 

'n aantal skaalafhanklike omvangseienskappe oorweeg (Hoofstuk 5). Om hierdie faktore te 

evalueer, is die teenwoordigheid en afwesigheid van alle geïdentifiseerde uitheemse spesies 

op 'n fynskaal regoor Tafelberg Nasionale Park gekarteer, wat ‘n sistematiese steekproef van 

spesies uit ‘n total van 10,057 plotte gelewer het. 

 

Resultate het aangedui dat bestuursdata wat in besluitneming gebruik word, IUP verspreiding 

en oorvloedighed oorskat, terwyl dit die rykdom van IUP spesies onderskat. Fynskaalse 

steekproefneming het skattings van spesiesrykheid en oorvloed gegee wat in baie gevalle van 
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grootteorde verskil van die data wat deur bestuurders gebruik word. Tans is daar voldoende 

hulpbronne om die IUP probleem te hanteer, maar die kwaliteit van werk word geïdentifiseer 

as die primêre rede hoekom daar gefaal word om die uitheemse spesies digthede oor die 

langtermyn te verminder. Die modellering van behandelingskwaliteit het aan die lig gebring 

dat klein toenames in die doeltreffendheid van skoonmaak bo 80% tot toenemende groot 

winste lei in die gebiede wat vir dieselfde hoeveelheid hulpbronne gedek kan word. 

Omgekeerd, lei enige afname in effektiwiteit onder 80% in vinnig afnemende areas wat jaarliks 

met dieselfde hulpbronne behandel kan word. 'n Belangrike gevolg van die huidige 

doeltreffendheidsvlakke waargeneem in die skoonmaakprogram, is dat tot 75% van die 

toekomstige hulpbron koste nodig sal wees om nuwe infestasies te hanteer as gevolg van 

saadskiet van die huidige staande infestasies. Met verhoogde doeltreffendheid, kan hierdie 

toekomstige koste aansienlik verminder word. Die kwaliteit van skoonmaak bepaal ook die 

keuse van die skoonmaakstrategie. Aangesien die skoonmaakkwaliteit gestyg of verlaag het 

bo of onder 75%, het die beste presterende strategie verander. Dit beklemtoon die kwaliteit 

van behandeling as 'n primêre dryfveer vir die sukses van skoonmaak oor die langtermyn, 

terwyl die keuse van implementeringstrategie 'n sekondêre faktor is. Een van die sleutelfaktore 

wat vir bestuursverbetering geïdentifiseer is, was die frekwensie vir herbesoeke van voorheen 

skoongemaakte bestuurseenhede vir opvolgbehandeling. Daar is bevind dat historiese 

herbesoek aan bestuurseenhede langer as twee jaar was. Aangesien baie van die geteikende 

spesies binne twee jaar saad kan produseer, is die indringing van sulke spesies toegelaat om 

voort te duur. Die laaste sleutelbevinding was dat, deur middel van ruimtelike analise van 

bevolkingsdata, dieselfde spesie op verskillende stadiums van indringing op verskillende 

plekke binne-in die park kan wees. Hierdie resultaat dui daarop dat 'n enkele 

bestuursbenadering vir 'n spesie nie geregverdig is nie. Die keuse van bestuursbenadering vir 

'n spesie moet die eienskappe van besetting, bevolkingsdigtheid en ruimtelike patroon van die 

spesies op verskillende terreine en skale oorweeg. 

 

Ten slotte, kan sleutelverbeterings maklik geïntegreer word in die IUP program wat tot 

wesenlike verbeterings in die uitkomste van die IUP programme sal lei. Dit sluit in die 

verbetering van die kwaliteit data oor verspreiding en oorvloed van IUP en die uitvoering van 

streng gehaltebeheer. Sekere van die voorgestelde ingrypings van hierdie werk word alreeds 

beproef, met beduidende verbeterings wat reeds sigbaar is. Deur hierdie verbeteringe, is die 

uitroeiing van teikenspesies deur georganiseerde plaaslike skaaluitsterving moontlik. 
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Chapter 1. Introduction 

1.1 Background 

Invasion biology encompasses the study of the causes and consequences of introducing 

organisms to areas outside of their native range (Richardson & Pyšek 2008; Richardson & 

Ricciardi 2013), and the assessment of risks, costs, benefits and human value perspectives 

relating to the introduction and management of such species  (de Wit et al. 2001; van Wilgen 

et al. 2001; Shackleton et al. 2018a). The interest in invasion biology has grown substantially 

over the past 25 years (Pyšek & Richardson 2010), largely driven by a rapid increase in travel 

and trade, including human-assisted transport at a global scale (Hulme 2009). Introduction 

pathways for taxa outside their native ranges are numerous and include a variety of intentional 

and unintentional human-related activities such as direct trade, agriculture and forestry, all of 

which are capable of moving species from a broad range of taxa (McGeoch et al. 2010; 

Seebens et al. 2017).  

 

The small portion of alien species that are able to disperse, survive and reproduce at multiple 

sites away from the original site are termed invasive alien species (IAS). Introduced species 

are classified as invasive when multiple individuals of the species disperse and establish 

multiple populations across habitats (Blackburn et al. 2011). Although numerous species are 

being transported globally, not all introduced species become invasive or cause significant 

impacts in their new location (Williamson & Fitter 1996; Blackburn et al. 2011). Newly 

introduced species need to overcome several invasion barriers that may restrict individuals 

from multiplying or moving beyond the site of introduction (Richardson et al. 2000b; 

Theoharides & Dukes 2007; Blackburn et al. 2011). In addition, the ecosystem dynamics in 

the new environment maybe vary, so the arriving species might only be supported for a finite 

period of time (Simberloff & Gibbons 2004). Much effort has gone into understanding the traits 

that make a species become invasive. These include genetic variability, population biology, 

physical morphology and behavioural adaptations (Nel et al. 2004; Conser et al. 2015; Roger 

et al. 2015). Complementing the species studies are a range of ecosystem studies that attempt 

to explain invasion dynamics, including  biotic resistance from native communities, 

disturbance, and the role of lag phases, propagule pressure and species interactions 

(Simberloff & Von Holle 1999; Richardson et al. 2000a; Crooks 2005; Lockwood et al. 2005). 

 

Invasive alien species can cause a variety of changes in the receiving environment that can 

result in range of possible impacts (Foxcroft et al. 2013; Blackburn et al. 2014). These impacts 

have been widely assessed and include impacts on species and communities (McGeoch et 
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al. 2010; Pyšek et al. 2012), ecosystem properties, for example fire regimes (Brooks et al. 

2004; Rahlao et al. 2009; Alba et al. 2015); biogeochemistry, such as altering nitrogen and 

carbon levels (Ehrenfeld 2003, 2010), ecosystem services, for example water resources (Le 

Maitre et al. 1996; Le Maitre et al. 2002) and direct economic costs (van Wilgen et al. 2012; 

van Wilgen et al. 2016b). Due to the global nature of assisted species movement, invasive 

species are one of the primary threats to local biodiversity at a global scale (McGeoch et al. 

2010). 

 

In order to mitigate the impacts of IAS, deliver ecosystem services and meet biodiversity 

targets, a number of IAS management programmes have been established globally (Marais 

et al. 2004, Downey 2010). Purposeful management of IAS requires combining invasion theory 

(species attributes that predict invasiveness and the ecosystem dynamics that make native 

populations and communities vulnerable or resilient to invasion), with management aspects 

(strategy, measures, targets and evaluation of outcomes). Management approaches that 

integrate these factors are in relatively early development (Shea et al. 2002; Foxcroft 2009; 

Downey 2010). The resources and associated costs required for management of IAS is 

substantial. For example, estimated costs to increase water security in the water catchment 

areas of the Western Cape, South Africa, could reach about ZAR2436 million over the next 

10 years (van Wilgen et al. 2016b), while control of alien plants in the iconic Kruger National 

Park has cost ZAR378 million over a 20 year period (van Wilgen et al. 2017). 

 

Due to the high management costs and limited management successes globally, IAS 

management has drawn a range of scepticism where some have questioned whether the 

global movement of species is a real ecological problem that warrants investigation (Briggs 

2017; Crowley et al. 2017; Russell & Blackburn 2017). Contenders argue that as new species 

are added to ecosystems, they result in new novel systems and can even increase local 

biodiversity where it has been lost. These novel ecosystems are themselves worthy of study 

in an increasingly modified world, where altered systems are likely the future norm (Hobbs et 

al. 2006; Hobbs et al. 2009; Carroll 2011). Arguments have been put forward that due to the 

high costs of preventing, controlling and reversing the impacts of alien invasive species, and 

with many management interventions failing, limited conservation funds should be diverted 

elsewhere (Davis et al. 2011; Vince 2011). In addition, alien species can have a number of 

positive societal benefits that can improve people’s livelihoods, thus resulting in diverse public 

perceptions towards invasive species (Tassin & Kull 2015; Shackleton et al. 2018b). 

 

In South Africa, the national Working for Water (WfW) programme is one such conservation 

programme that aims to control IAS, mainly invasive alien plants (IAP). The programme 
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commenced in 1996 as a government benefit scheme that focused on addressing the long 

history of invasion by IAP’s that were driven by a range of complex global, local, social and 

ecological interactions (Le Maitre et al. 2004; Koenig 2009). Many of the IAPs are well-

established, with extensive, well-documented negative impacts on biodiversity and ecosystem 

services (Nel et al. 2004; Kotzé et al. 2010). Unfortunately many of the heavily invaded areas 

fall within South Africa’s protected area (PA) network, on land that has been set aside for the 

protection of native biodiversity (Spear et al. 2011; Foxcroft et al. 2017). Although the WfW 

programme has been active for more than 20 years in some areas, the rates of control and 

removal of invasive alien plants have been lower than expected (McConnachie et al. 2012; 

van Wilgen et al. 2012; Kraaij et al. 2017). This has prompted questions into the probable 

causes of the perceived under-performance of the programme and was a major incentive for 

this study. 

 

The central concept for the dissertation rests in supporting an evidence based management 

approach to IAPs in protected areas that are experiencing low rates of control and removal. 

Currently management based research on aliens forms less than 10% of research articles 

pertaining to the WfW programme (Abrahams et al. 2018) with an awareness that evidence-

based management is often lacking (Legge 2015). This work aims at strengthening the 

science-management interface, with each chapter providing scientific evidence for particular 

management applications to ensure an evidence based approach to WfW management. This 

would provide insights for potential local programme improvements to be implemented and 

the lessons learnt to be carried forward into the larger WfW programme nationally and further 

afield.  

 

In order to understand the drivers of invasive alien plant management, the dissertation adopts 

a simulation model approach as a means to understand the potential outcomes of various 

management interventions. Simulation models have been widely used to understand the 

expected outcomes of management intervention, or the lack thereof. Economic models 

(Higgins et al. 1997, de Wit 2001) showed the cost-benefits of area under alien invasion 

compared to natural systems. Ecosystem services models (mainly relating to water security) 

have demonstrated the diminishing availability of water and the long-term costs of not treating 

alien plants in catchment areas of South Africa (Le Maitre et al. 1996, 2002). The long-term 

budgets to undertake clearing have been assessed (Krug et al 2010, van Wilgen 2016). The 

simulation models developed in chapters 2 and 4 of the dissertation (see section 1.3) align 

well and follow a similar approach to previous modelling work by making use of published data 

for the model parameters used for the model variables.  
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The primary focus of the dissertation is to understand management of invasive alien plants 

within biodiversity rich areas. Within the species rich fynbos biome of South Africa (Kotzé 

2010) (Sup. Mat. Figure 1.1) IAP’s have become well established and pose a direct local threat 

to native biodiversity. The study focuses on the management of a single Protected Area, the 

Table Mountain National Park that covers an area of exceptional biodiversity across several 

taxonomic groups (Cowling et al. 1996). Along with the importance of biodiversity of the area, 

the park has collated a number of long-term datasets. This allows for the incorporation of these 

datasets into the management decision-making environment.  

 

1.2 Table Mountain National Park as a case study 

Table Mountain National Park (TMNP) (Fig. 1.1) is a PA where managers have struggled to 

bring alien plant populations under control. The TMNP was established in 1998 to protect a 

‘biodiversity hot-spot’ on the Cape Peninsula (Cowling et al. 1996; Trinder-Smith et al. 1996; 

SANParks 2016). One of the key threats to the biodiversity of the area is the long history of 

IAS, particularly alien plants (Richardson et al. 1996; Higgins et al. 1999). The WfW 

programme in TMNP has been in place for more than 15 years, with a current annual budget 

up to ZAR20 million (Fig. 1.2). This expenditure has resulted in the TMNP receiving the most 

funding of all the national protected areas in South Africa with a cumulative investment of 

ZAR103 million from WfW and ZAR67 million form other funders (SANParks 2015, Foxcroft el 

al. 2017). However despite increased resources into the programme over the years, there has 

been limited success. (Fig.1.3, Sup. Mat. Table 1.1). This paradox of increasing resources 

with decreasing returns makes TMNP an attractive case study. Further, TMNP has good IAP 

distribution and historic clearing data (since 1998), fire history records, climate data and active 

science-management engagement.  

 

1.2.1 Table Mountain National Park history 

Table Mountain National Park is located in Cape Town, on the Cape Peninsula (Fig. 1.1). The 

park extends from Signal Hill in the north (33° 54’ S, 18° 24’ E) to Cape Point in the south (34° 

21’ S, 18° 29’ E) and includes international icons such as Table Mountain. The origins of the 

park can be traced back to the establishment the Tokai, Devils Peak, and Cecilia State Forests 

in the late 1800s and early 1900s while the Rhodes Will Act (1910) protected the eastern 

slopes of Table Mountain. This was followed by the declaration of Table Mountain as both a 

National Monument in 1958 and a Nature Reserve in 1964.  
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Fig. 1.1 Location of Table Mountain National Park on the Cape Peninsula, South Africa. The 

Park covers about 250km2 (25,000 ha) of the Cape Peninsula. Modified from SANParks 2016. 

Stellenbosch University  https://scholar.sun.ac.za



introduction 

 
- 6 - 

 

 

Fig. 1.2 Funding (ZAR) spent in the WfW project between 2002 and 2018* for the control of 

invasive alien plants in Table Mountain National Park. Expenditure between 2002 and 2017 

has been adjusted by the annual Consumer Price Index (CPI) to 2018 values, with a total 

ZAR219 million spent for the period. CPI sourced from www.statssa.gov.za. (*planned budget) 

 

 

Fig. 1.3 The percentage of the Table Mountain National Park (TMNP) falling into the standard 

Working for Water alien plant cover classes as measured in 1998, 2007 and 2015. 
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The greater central area known as Silvermine was declared as a Nature Reserve in 1965, 

while the southern section of the park, including the areas around Cape Point, was declared 

under provincial legislation between 1938 and 1964. These original conservation areas were 

consolidated into the Cape Peninsula Nature Area in terms of the Physical Planning Act in 

1983. This was superseded by the Cape Peninsula Protected Natural Environment (CPPNE) 

in terms of the Environmental Conservation Act in 1989, which in turn has been superseded 

by the National Environmental Management: Protected Areas Act in 2004 (Act 57 of 2003). 

 

Although the land was protected by conservation legislation, there were 14 different 

management authorities responsible for the area, resulting in difficult and conflicting land 

management practices, especially with regard to the management of invasive and alien plants. 

In 1994, the Kahn Working Group (“Working group to rationalise the management and control 

of the CPPNE”) recommended that a single statutory managing authority be established for 

the future management of the area (SANParks 2016). The working group recommended that 

all responsibilities of the existing different management authorities be reassigned and that the 

land be reallocated for the establishment of a consolidated National Park. In 1996, following a 

national cabinet decision, the various management authorities (national, provincial and local) 

undertook to reallocate the available land in the CPPNE for the establishment of the Table 

Mountain National Park in 1998. In 2004, the area received further recognition of its 

conservation importance and was inscribed as a natural site of outstanding universal value by 

UNESCO as part of the Cape Floral Region Protected Area World Heritage Site.  

 

1.2.2 Table Mountain National Park biodiversity 

Table Mountain National Park falls within the Cape Floristic Region (CFR) which is the 

smallest in size of the world’s six floral regions, but contains approximately 9,600 plant species 

of which some 70% (6,200) are endemic to the region (Cowling 1995; Cowling et al. 1996). 

Within the Cape Peninsula (c.a. 471 km2), 2285 indigenous plant species occur, making the 

area one of the richest in flora for any similar sized area, both in the Cape Floristic Region and 

the world.  Biogeographically, the flora is unusual in that species typical of the winter-rainfall 

portions of the CFR as well as species whose ranges extend eastwards into summer rain-fall 

regions (Simmons & Cowling 1996). This biogeographical mixing probably contributes to the 

very high floral species richness. As is typical of other areas of the CFR, three major vegetation 

types are represented on the Cape Peninsula: Cape Fynbos shrubland; Renosterveld 

shrubland and associated grasslands; with patches of Forest and Thicket (Rebelo et al. 2006).  

 

Six nationally threatened ecosystems, as listed in National Environmental Biodiversity Act 

(NEM:BA 2004), are found within the park, namely, i) Cape Flats Sand Fynbos (Critically 
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Endangered) occurring on the lowlands in Tokai, ii) Peninsula Granite Fynbos (Critically 

Endangered) occurring across the Northern, Central and Southern sections of the park, on 

middle to upper mountain slopes, iii) Peninsula Shale Renosterveld (Critically Endangered) 

occurring on the lower slopes of Devils Peak and Signal Hill, iv) Elgin Shale Fynbos (Critically 

Endangered) occurring in small fragments on lower slopes of Newlands and Devils Peak, v) 

Hangklip Sand Fynbos (Endangered) which occurs in the Fish Hoek and Hout Bay Valleys, 

and vi) Peninsula Sandstone Fynbos (Endangered) occurring throughout the Park on upper 

slopes and peaks.  

 

1.2.3 Invasive alien plant management 

The unique biodiversity of the TMNP, although largely secure in terms of conservation 

legalisation, has historically been threatened by IAPs. In the northern section of TMNP, Pinus 

was reported as a problem on Table Mountain as early as the 1930’s (Sim 1927 as cited in 

(van Wilgen et al. 2016a). Area-wide surveys between 1961 and 1992 highlighted a constant 

invasion pressure from a number of species from the genera Pinus, Hakea and Acacia (Hall 

1961; McLachlan et al. 1980; Moll & Trinder-Smith 1992). Early studies between 1960 and 

1980 (Taylor & Macdonald 1985; Taylor et al. 1985), already highlighted wide infestation of 

Acacias in the Cape of Good Hope area. Many of the IAP introductions into the TMNP were 

deliberate (Shaughnessy 1980, MacDonald et al. 1987). Pine species were planted in water 

catchment and recreational areas, while Acacias were introduced as part of dune stabilisation 

schemes. Assessments of IAP distribution modelling for the TMNP of Acacia and Pinus 

species and the impact on local biodiversity that these species would have (Higgins et al. 

1999) concluded that, “The threat posed by alien plants to the plant biodiversity of the Cape 

Peninsula is severe.”. 

 

Alien species control efforts were established in the early 1970’s. The effort was focused on 

the nature areas of Table Mountain, Silvermine and Cape of Good Hope (Macdonald et al. 

1985). The control programmes were largely implemented by the various management 

authorities at the time with un-skilled and semi-skilled labour, with significant support from 

volunteer groups. With the establishment of the national park the various control programmes 

were consolidated through the direction of the Global Environmental Facility (GEF) in 1998. 

This is was followed by commencement of the national Working for Water (WfW) control 

programme in 2002 with an annual starting budget of ZAR5.6 million (CPI adjusted, SARS 

2018). This budget has grown steadily to a current budget of around ZAR18 million per annum 

(2018 net present value), with the total allocation of funding between 2002 and 2018 reaching 

ZAR219 million (CPI adjusted) (Fig. 1.2). However, this sizeable investment has not resulted 

in substantive gains in IAP reduction over 15 years of continuous clearing (Fig. 1.3). Although 
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was a significant reduction in the denser WfW density classes (closed, dense and medium) of 

1570 hectares from 5161ha in 1998 to 3591ha in 2015, there has also been a 505 hectare 

drop in areas that were in a maintenance state (i.e. WfW density class of rare 9620ha in 1988 

and 9096ha in 2015) (Sup. Mat. Table 1.1). Of interest is that while management interventions 

have kept alien density to relatively low levels across most of the park, the relative density of 

IAPs has shifted around the Park, with peak densities occurring in different areas over time. 

This reflects an outcome associated with a combination of fire occurrence and management 

clearing history (Fig. 1.4). The distribution of IAPs in the TMNP is therefore quite dynamic and 

is determined by ecological drivers and management interventions.  

 

1.3 Dissertation aims and objectives 

This dissertation was born out of need to improve the outcome of the alien clearing programme 

by assessing factors that could enhance the impact of funding spent. Currently, with no 

definitive management wins, the progress of the IAP control programme has understandably 

caused some managers to become disheartened. It therefore became necessary, both from 

an economic and conservation perspective, to investigate the likely future trajectory of alien 

control and to determine the main drivers of management success (or failure). The idea was 

to strengthen the science-management interface, with each dissertation chapter providing 

scientific evidence for particular management applications to ensure an evidence based 

approach to management. A brief synopsis of the aims and objectives of each of the research 

chapters is provided below, along with a dissertation roadmap. 

 

Chapter 2: Data quality underpinning management decisions   

Managers are required to make decisions, first and foremost of which is the determination of 

priorities. Decisions about prioritisation include which species and areas to treat, and which 

pathways to manage given the limited resources available (McGeoch et al. 2016). These 

decisions are frequently, and preferentially, experienced based, rather than evidence based 

(Cook et al. 2009), driven by the urgency for action that supersedes collection of detailed 

information (Simberloff 2003). However, a balance between conservation action and data 

gathering is required, with recognition of the shortfalls of the long-term impact of poor 

information on control programmes. Chapter two assesses the extent of this problem in 

relation to species occurrence data by generating a fine-scale, comprehensive IAP dataset for 

the TMNP. This entailed systematically sampling 10,057 plots across the park and counting 

all alien species falling within the plots. This dataset was then compared with the current 

management datasets to determine the differences in species listed, distribution estimates, 

abundance quantification and associated discrepancies in allocation of resources for clearing. 

Published: Biological Invasions. 
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Fig. 1.4 The change in distribution of invasive alien vegetation of specified Working for Water density classes on the Cape Peninsula between 1998 and 

2015. Modified from SANParks (2016) 

Stellenbosch University  https://scholar.sun.ac.za

Stellenbosch University  https://scholar.sun.ac.za



chapter one 

 
- 11 - 

- 

Fig. 1.5 Conceptual roadmap of research chapters (Chapters 2-5) of the dissertation, where: 

Chapter 2 investigates data quality issues underpinning management decisions. A high quality 

dataset of 10,057 infield plots was used to determine the differences from current 

management datasets in species listed, distribution estimates, abundance quantification 

and associated allocation of resources for clearing; 

Chapter 3 explores the impact that clearing quality has on control programmes. Using the fine-

scale alien plant distribution data, a simulation model assed clearing efficacy at 38 

incremental levels between 5-100% over a period of 50 years; 

Chapter 4 considers the possible long-term outcomes in the choice of management strategy 

selected for implementation. A simulation model is used to test the performance of five 

different management strategies against a random selection of treatments, in relation to 20 

levels of work quality; and 

Chapter 5 presents a novel approach that considers incorporating species range properties 

into management strategies. The method considers how the range structure (landscape 

occupancy and population parameters) of invading species can be align with generalised 

treatment strategies available to management. 

  

  

Chapter 2: 
Data quality underpinning 

management decisions   

Chapter 3: Quality of 
control programmes 

Chapter 4: Choice of 
management strategy 

Chapter 5: Species range properties 

in relation to management strategy 
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Chapter 3: Quality of control programmes 

There is increasing evidence that IAP control programmes are ‘suffering’ the effects of poor 

implementation quality (McConnachie et al. 2012; Kraaij et al. 2017). Chapter three assesses 

programme efficiency, focusing on the quality of work, and the implications poor quality 

implementation for the long-term outcomes of alien plant control programmes. Using the fine-

scale alien plant distribution data generated in Chapter two, a simulation model was developed 

and used to assess the role of suboptimal clearing efficacy on the long-term potential for 

success of the clearing programme, focussed on Acacia species. In the simulation model, 

clearing efficacy was set at each of 38 incremental levels between 5-100% over a period of 

50 years. The number of hectares and management units treated, the number of these which 

achieved low alien plant densities, and the associated resource requirements, were assessed 

for each efficacy level. The model was also run with and without certain ecological processes 

such as fire and natural seedbank replenishment to assess the main ecological drivers that 

interact with clearing efficacy to determine programme outcomes. This chapter provides 

insight into the management effort required to solve the IAP problem going forward. The 

manipulation of ecological variables in the model also highlights the importance of follow-up 

clearing to prevent seedlings from reaching maturity in relation to clearing recently burned 

areas, providing important information for clearing plan prioritization. 

Under Review: Journal of Environmental Management. 

 

Chapter 4: Choice of management strategy 

Although several management strategies have be adopted by conservation managers, 

published assessments show that these strategies can be divergent in the spatial areas 

selected for prioritisation. This results in the prioritisation strategies not converging to meet an 

overall conservation objective across the landscape (Roura-Pascual et al. 2010). Building on 

chapter three, and the effects of implementation quality on IAP clearing programmes, chapter 

four looks at how quality issues impact on the choice of clearing strategies available to 

conservation managers. This chapter assesses the implications of adopting a particular 

management strategy with respect to determining the spatial prioritisation of treatments. A 

simulation model is used to test the long-term performance of five different management 

strategies against a random selection of treatment areas, in relation to varying work quality at 

20 levels between 5-100%.  

 

Chapter 5: Species range properties in relation to management strategy 

Having evaluated a number of invasion management options, and being aware of the current 

limitations of treatment prioritisation, a novel method of integrating management approaches 

is presented in chapter five. The method considers how the range structure (landscape 
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occupancy and population parameters) of invading species can be align with generalised 

treatment strategies available to management. The approach builds on previous work that 

considered invasive species as being on a trajectory from being uncommon to becoming 

common (McGeoch & Latombe 2016). The classification method also considered that 

management interventions might push the trajectory of populations in the opposite direction, 

reducing common invasive species towards becoming uncommon. The approach seeks to 

understand the observed range characteristic spatially across the invasion landscape. Using 

a combination of local abundance, occupancy and spatial pattern to allow the most appropriate 

site-specific management interventions to be identified. For example, the application provides 

insight into whether management should aim to eradicate, control or contain a species in a 

particular area or at a particular scale, thereby enabling appropriate resource allocation. The 

approach also allows for the identification of source populations that are isolated within a 

landscape, that if cleared, could reduce the invasion potential of a species in that area. 

 

Chapter 6: Synthesis 

In the synthesis chapter the main findings and conclusions of the research are drawn together. 

The chapter highlights where park management have adopted already recommendations from 

the research and outlines the opportunities for future research. 
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The following supplementary Information may be found in the supplementary section 

accompanying this thesis. 

 

Sup. Mat. Figure 1.1 Number of alien species across South Africa per Quarter Degree square 

in relation to the National Protected Areas. 

 

Sup. Mat. Table 1.1 The number of hectares and percentage of the Table Mountain National 

Park falling into the Working for Water alien plant cover classes. 
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Chapter 2.  

The impact of data precision on the effectiveness of alien plant 

control programmes: a case study from a protected area 

This chapter was published in Biological Invasions. 

https://doi.org/10.1007/s10530-018-1770-8 

Cheney C., Esler K.J., Foxcroft L.C., van Wilgen N.J. & McGeoch M.A. (2018). The impact of 

data precision on the effectiveness of alien plant control programmes: a case study from a 

protected area. Biological Invasions, 20 11, 3227–3243. 

 

Abstract 

Successful long-term invasive alien plant control programmes rely on alien plant distribution 

and abundance data to assess, prioritise, implement and monitor the efficacy of the 

programme. Here we assess the impact of data accuracy using the alien plant programme in 

Table Mountain National Park, South Africa. A systematic plot-based survey method was 

carried out to assess the distribution of alien plants in the park at a fine scale (systematic 

sampling). Alien plant richness, total area invaded and the degree of spatial overlap in species’ 

presence were compared between the systematic sample and a protected area (PA) 

managers’ dataset (collated from collective observations by park visitors, rangers and 

managers) and Working for Water (WfW) project data (data collected for the planning and 

implementation of the alien plant clearing programme) using a range of confusion matrix-

based statistics to assess similarity and error rates between the datasets. A total of 106 alien 

plant taxa were detected across the three datasets, 12 in PA manager’s data, 23 in WfW data 

and 101 in the systematic survey. Overall, there was substantive disagreement between the 

datasets on the distribution of alien plants. For example both management datasets estimated 

species’ hectare coverage at orders of magnitude greater than indicated by systematic 

sampling. The inaccuracy of manager data has direct negative implications for funding 

allocation, which currently appears to be in excess of what is required. We recommend that 

contrary to perception, fine-scale surveys are a cost-effective way to inform long-term 

monitoring programmes and improve programme effectiveness. 

 

Keywords: control programme, confusion matrix, invasive species, protected area 

management, systematic distribution sampling 
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2.1 Introduction 

Protected areas (PAs) have been established as part of a core approach to biodiversity 

conservation and the maintenance of functional ecosystem processes (Barr et al. 2016; 

Dudley and Parish 2006; Watson et al. 2014). PAs are complex ecological systems and PA 

managers require high quality and up-to-date information to effectively manage these areas 

for their intended conservation mandates and objectives (Biggs et al. 2003; Pressey et al. 

2015). One of the primary threats to biodiversity in PAs is the invasion and persistence of 

invasive alien plants (Foxcroft et al. 2013a, b; Spear et al. 2011). For example, invasive alien 

plants can change community structure (Holmes and Cowling 1997), alter energy, nutrient and 

water flows (Ehrenfeld 2010; Le Maitre et al. 2002) and modify disturbance regimes, especially 

fire (Alba et al. 2015; Brooks et al. 2004). In most cases, once an invasive alien plant has 

established, it cannot be removed unless through large control efforts or only at substantial 

cost (Foxcroft et al. 2013a; McConnachie et al. 2012; van Wilgen et al. 2012b), resulting in 

permanent effects on native biodiversity (Kettenring and Adams 2011). 

 

There are many potential pathways by which alien and invasive alien plants can be introduced 

into PAs (Foxcroft et al. 2008). PAs have to contend with a legacy of deliberate alien species 

introductions prior to PA proclamation or as part of the current management practices of a PA 

in the form of forestry plantation or at tourism facilities (Kueffer et al. 2013). Protected area 

managers are therefore required to continually detect, control or eradicate a range of existing 

alien plants, and develop strategies to prevent or appropriately respond to the arrival of new 

alien species that could exacerbate current threats (Pyšek and Richardson 2010). 

 

An invasive alien plant control programme typically comprises a set of actions to achieve 

objectives that are guided by the strategic aims or goals of the programme (Foxcroft 2009; Tu 

2009; Wittenberg and Cock 2001). To implement an effective control programme, PA 

managers need to consider the achievability of specific objectives, goals and outcomes. Often 

compromises and prioritization of objectives and goals are required due to constraints on time, 

financial and other resources, lost opportunity costs and conflicting priorities (Donlan et al. 

2015; Roura-Pascual et al. 2011; Roura-Pascual et al. 2009). However, the type and quality 

of information used to guide prioritization, decision-making and monitoring is an integral, yet 

often overlooked, component of control programmes (Foxcroft 2009; Gardener et al. 2010; 

McConnachie et al. 2012; van Wilgen et al. 2012b). 

 

South Africa has a long history of invasion by alien plant species, driven by a range of complex 

global, local, social and ecological interactions (Le Maitre et al. 2004). Many introduced 

species are well established and substantial negative impacts on biodiversity and ecosystem 
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services have been documented (Kotzé et al. 2010; Nel et al. 2004). ‘Working for Water’ (WfW) 

is a nationally funded invasive alien control programme that aims to restore and maintain 

habitat structure and function to mitigate the loss of ecosystem services, especially water 

production through creating employment opportunities and facilitating skills development that 

contribute to poverty alleviation (van Wilgen et al. 2012a).  

 

WfW has historically invested (1995–2015) approximately ZAR 564 million (1 US$ ~ 15 ZAR 

in 2015) in South Africa’s PAs (van Wilgen et al. 2012a, 2016). Despite the substantive 

investment in the programme, annual estimates of the clearing work required remain high, 

necessitating sustained large or increasing budgets. In PAs, the WfW programme is 

implemented through projects undertaken as partnerships between PA managers and WfW 

project teams. For PA clearing projects to be efficient, data on alien plant species richness 

(McGeoch et al. 2012), the distribution of target species across the entire treatment area 

(Gardener et al. 2010; Pyšek and Richardson 2010; Wittenberg and Cock 2001), and a 

measure of the abundance of the populations are required (Dewey and Andersen 2004). Given 

the fundamental importance of spatial data for alien plant management, a variety of methods 

of data collection have been developed and are currently being implemented in the WfW alien 

control programme. However, there has been no assessment of the best approach for data 

collection or the effects the various collection methods have. Given the large monetary 

investment, it is important to determine the role and effectiveness of various types of data in 

informing alien plant management programme efficacy. 

 

Here, Table Mountain National Park (TMNP) is used as a case study to quantify the adequacy 

of datasets used in PAs for the management of invasive alien plants. Alien plant species 

richness, distribution and abundance data from three sources, (i) WfW project managers, (ii) 

invasions recorded by PA managers and (iii) a fine-scale, in-field systematic survey of alien 

plant species, were assessed. The assessment aimed to determine the relative error in 

estimates of the extent of invasion across TMNP from each of the different data sources and 

the possible role of this information in misinforming management plans and reducing clearing 

efficiency. The implications of discrepancies between the datasets are discussed and 

recommendations provided to improve data collection methods and the evidence base used 

for alien plant species management. 
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2.2 Materials and methods 

2.2.1 Study area 

The Cape Peninsula, on the south western tip of South Africa, is a mountainous, 

topographically diverse area, generally nutrient poor soils, with high levels of species 

endemism of both plants and invertebrates (Cowling et al. 1996). About 2285 plant species 

have been recorded, with 158 species being endemic (Helme and Trinder-Smith 2006). The 

Cape Peninsula has experienced a long history of human settlement with the establishment 

of the City of Cape Town, which has a population of over 3.7 million people (Statistics South 

Africa 2011). The TMNP was established within the urban matrix in 1998 to consolidate the 

management of remaining conservation- worthy land on the Cape Peninsula and currently 

covers about 250 km2. For over a century the historical land-use and proximity to urbanization 

has facilitated the introduction and spread of numerous alien plant species into TMNP (Alston 

and Richardson 2006; Macdonald et al. 1985; Shaughnessy 1980; Spear et al. 2013). 

 

The TMNP has an intensive long-term alien plant clearing programme in place that is currently 

implemented through the WfW Programme, and was previously implemented as part of the 

management function of the PA, employing semi-skilled labour, skilled private contractors and 

civil society volunteer groups (Macdonald et al. 1985). The current alien plant clearing 

programme is divided into three operational projects covering the northern, central and 

southern sections of TMNP. This study focused on the southern section of the PA which is the 

largest in both area, covering approximately 130 km2, and in funding allocated for alien plant 

control, which was ZAR R8.7 million for the 2013 financial year (Working for Water 2013). This 

section of TMNP has a history of woody alien plant species invasion spanning at least 70 

years and has had management control programmes in place since the late 1980s (Macdonald 

et al. 1985; Taylor and Macdonald 1985; Taylor et al. 1985). Despite these programmes, 

annual estimates of the clearing work required remain high, necessitating sustained large 

budgets. 

 

2.2.2 Alien plant management datasets 

The implementation of the TMNP alien plant management programme is based on data from 

two main sources: data collated by the PA managers who maintain records of alien species 

reported by park rangers and park visitors (hereafter the ‘Management’ data) and WfW project 

information, which includes a database of spatially linked historic clearing information 

(hereafter ‘WfW’ data). We generated a third dataset using a fine-scale systematic sampling 

approach to map the richness, distribution and density of all alien species in TMNP (hereafter 

the ‘Systematic’ data). 
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2.2.2.1 PA Managers dataset – ‘Management dataset’ 

Protected area managers are collectively responsible for implementing the daily operations of 

the park. While the implementation of alien plant control in the PA is undertaken by WfW (see 

below), the PA managers and rangers collect and collate their own alien plant occurrence 

data. The dataset is maintained largely as a paper-based file consisting of grid-based area 

maps where historical records, reports from park visitors and personal observations are 

recorded on an ad hoc basis. At a group workshop in 2013, 11 managers from the park, were 

asked to consolidate the alien species and taxa distribution records from this dataset and to 

add current expert knowledge to these distribution maps for all alien plant species that were 

common, or considered important for direct control or monitoring. The distribution of the alien 

plant species was delineated on a colour aerial map (scale 1:20,000) divided into the 0.70 km2
 

polygons used for conservation management purposes. Where required, these management 

units were sub-divided to allow for finer scale delineation per alien plant species or abundance 

variations. Protected area managers used three measures to estimate alien species 

abundance, resulting in a combination of percentage cover, density per hectare and 

descriptive measures (Sup. Mat Table 2.1). The final map was divided into 297 polygons that 

ranged in size from a relatively fine grain of 0.02 km2
 to a coarse grain of 0.71 km2

 (mean of 

0.44 km2), covering a total area of 130.75 km2. The data were captured in ArcGIS 10.x (ESRI 

2014) (Fig. 2.1a). 

 

2.2.2.2 Working for Water dataset – ‘WfW dataset’ 

Working for Water managers rely on a database of alien distribution information known as 

WIMS (Working for Water Information Management System) to guide the programmes’ 

implementation. A key component of the WIMS system is the development of an annual plan 

of operations (APO). These APOs contain a detailed list of all alien plant species and their 

percentage cover that occur within a project area for a particular year. The project area is 

further divided into management clearing units known as nBals (National Biological Alien 

data). The alien species composition and cover for each nBal is updated annually through a 

combination of in-field visual assessments and rapid plot-based assessments. The WfW 

dataset for the area comprised 182 nBals which ranged from a relatively fine grain of 0.02 km2
 

to a very coarse grain of 12.57 km2
 (mean of 0.71 km2) and covered a total area of 125.50 km2

 

(Fig. 2.1b). Alien species distribution data (species presence and percentage cover; Sup. Mat. 

Table 2.1) were obtained for each of these nBals for the 2013 project year. 
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2.2.2.3 Systematic Survey dataset - ‘Systematic dataset’ 

A dedicated survey team systematically sampled the southern section of the PA between April 

and November 2013. The survey was designed by overlaying the study area with a fine grain 

(0.02 km2) sampling grid. A 500 m2
 circular sampling plot was placed at the centre of each grid 

cell resulting in 5276 plots, evenly distributed across the study area. Within each plot all alien 

plant species were identified, and richness and abundance quantified. Where the number of 

individuals for a given species was less than 100, all individuals were counted; where the 

number of individuals was likely to exceed 100, three randomly placed sub-plots totalling 10 

m2
 were sampled. All individuals within the sub-plots were counted and extrapolated by 

multiplying the mean to a full plot estimate. Where the growth form of the plants did not allow 

for individual counts (e.g. grasses and creepers), a percentage cover of the full plot was 

determined using six cover classes (Sup. Mat. Table 2.1). All counts and cover estimates from 

each sample plot (0.0005 km2) were extrapolated to the size of the full 0.02 km2
 grid cell for 

analysis to provide for density estimates across the entire study area of 126.40 km2 (Fig. 2.1c). 

 

 

Figure 2.1 Maps depicting the size and distribution of the management/sampling units used a 

in the Protected Area Manager Dataset (n = 297), b by Working for Water (n = 182), and c for 

systematic sampling (n = 5276) 
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2.2.3 Dataset Comparisons 

The three datasets had slightly different spatial extents and only the overlapping areas, which 

covered 125.15 km2, were included in analyses. These included 295 of the 297 Management 

polygons and 176 of the 182 WfW nBals. The Management and WfW datasets were compared 

to the Systematic data in terms of i) the alien plant species richness, ii) the degree of spatial 

overlap in alien plant species presence and iii) the recorded abundance and area invaded by 

selected alien plant species. 

 

2.2.3.1 Species Richness within datasets 

Species listed within each dataset were checked and verified for taxonomic accuracy and 

known presence (Spear et al. 2011). While most records contained species level information, 

some records were only identified to genus level (e.g. Eucalyptus spp.). For these cases, the 

records were grouped and treated as a single taxon (e.g. Eucalyptus spp.). The Systematic 

dataset included 12 extralimital species (i.e. a species native to South Africa but outside of its 

natural distribution range, e.g. Afrocarpus falcatus and Aloe arborescens) that were excluded 

from the analysis as they were not specifically recorded in the other datasets. To determine 

the accumulation rates of alien plants within the three datasets, the mean species 

accumulation curves, with 95% confidence limits, were plotted based on 100 randomisations 

using Estimate-S v 9.1 (Colwell 2013). Although not directly comparable due to the different 

sizes of the individual sample units, the mean, minimum and maximum species richness was 

calculated for each dataset to allow for overall comparison of the data for the study area. 

 

2.2.3.2 Selection of taxa for comparison 

The datasets were checked for species that were common to all three datasets. All records 

belonging to Hakea spp., Pinus spp. and Eucalyptus spp. in the Management and the WfW 

datasets were not consistently identified to the species level within these genera and as such 

were analysed at genus level. The datasets had five species in common identified to species 

level (Acacia cyclops, Acacia longifolia, Acacia saligna, Leptospermum laevigatum and 

Paraserianthes lophantha) which together provided eight taxa (species or genera) for 

comparative analysis. This selection included the taxa that are the primary focus of the alien 

plant control programme. 

 

2.2.3.3 Degree of spatial agreement in taxa presence/absence between datasets 

Taxa within each sampling unit were scored as present or absent. The degree of spatial 

matching in taxa presence was assessed between the Systematic data and i) Management 

and ii) WfW datasets. As the PA managers and WfW data are captured in large polygons (Fig. 

2.1), the data from the small plots of the Systematic data that fell within the polygon were 
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pooled for analysis. To determine which plots from the Systematic dataset fell within each 

polygon, a standard spatial query was performed in ArcGIS (10x). 

 

The data were summarised as cross-tabulates where the Systematic data are regarded as the 

observed class and either the WfW or Management data the predicted class (Sup. Mat. Table 

2.2). The cross tabulates were treated as a confusion-matrix (Fielding and Bell 1997) where a 

is the number of sampling units in which the taxa were recorded in both datasets (true 

presence), b where only the Management data or WfW dataset recorded the taxa (false 

presence), c where only the Systematic dataset recorded the taxa (false absence) and d where 

the taxa was not recorded in either dataset (true absence). A range of confusion matrix-based 

statistics (Accuracy, Prevalence, Sensitivity Specificity and Odds Ratio; see Sup. Mat. Table 

2.3 for definition and formulas) were used to assess the degree of similarity and error rates 

between the datasets (Fielding 2007; Fielding and Bell 1997). In addition two measures of 

classification accuracy, Kappa (K), and the True Skill Statistic (TSS) (Allouche et al. 2006) 

were calculated to determine the proportion of specific agreement between the Systematic 

data and WfW data, and the Systematic data and Management data. 

 

2.2.3.4 Total area invaded by taxa and baseline clearing costs 

For each dataset the total condensed area covered was calculated by multiplying the taxon 

percentage cover in each base mapping unit by the area of that mapped unit (Marais and 

Wannenburgh 2008), which then expresses the area invaded as an equivalent of 100% cover. 

Where Management data were expressed using a descriptive value, these abundance classes 

were converted to cover estimates by using the mid-value of the cover class (Sup. Mat. Table 

2.1). These mid-point cover estimates have the potential to over or under estimate the cover 

values and thus the total condensed area. The effect of this was minimised by having a narrow 

range of cover values available within a class (e.g. 1–10% for low density classes while for 

higher density sites the over or under estimate is limited by the small size of sample units 

(0.02–0.03 km2). 

 

The WfW data are recorded as percentage cover per taxon and therefore these values were 

used as recorded. The Systematic data density counts were converted to cover values using 

the WfW Norms and Standards tables (Le Maitre and Versfeld 1994). Each sample unit from 

the Management dataset and WfW dataset was paired with the Systematic dataset and the 

total condensed area calculated for the Systematic dataset. The differences between the 

datasets were tested using a Wilcoxon Signed-Rank Test for paired samples, with the pairs 

being the sample units. For each dataset the condensed areas were calculated for each taxon 

and for all taxa together to compare the estimated clearing costs that would be estimated from 
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each dataset. Estimations were based on the WfW norms and standards of 24.65 person days 

per hectare (0.01 km2) required to clear adult alien plants at 100% cover (Neethling and 

Shuttleworth 2013) multiplied by the daily WfW programme’s person-day cost of R250 per 

person per day. This cost is based only on the estimated density and abundance of species 

to be cleared. It does not consider additional costs incurred though, for example, transport, 

equipment or herbicide requirements, which vary according to site topography, species 

presence and distribution of species within the landscape. 

 

2.3 Results 

2.3.1 Alien plant species richness  

A total of 106 alien plant taxa from 71 genera were recorded from all three datasets (Fig. 2.2, 

Sup. Mat. Table 2.4). The most taxa (101 taxa, 95% of the total) were recorded through 

systematic sampling, followed by the WfW dataset (23 taxa, 22%). The Management dataset 

had the fewest taxa (12 taxa, 11%). The Management and WfW datasets comprised mainly 

woody species (9 out of 12, and 15 out of 23 taxa respectively), while woody species 

accounted for only 38 of the 101 taxa in the Systematic dataset. Only nine taxa (8% of the 

total) were recorded in all three datasets (Fig. 2.2). 

 

The Systematic dataset had more species in common with the WfW data than the 

Management data, with 19 (including 14 woody species) of the 106 species in common, but 

81 (76%) of the alien plant taxa in the systematic sampling dataset were not recorded in either 

the WfW or the Management data. The five species recorded in the WfW and Management 

datasets, but not in the Systematic dataset, comprised taxa only identified to genus level (e.g. 

Pinus sp. which were all identified to species level in the systematic sample) or Metrosideros 

excelsa which only had a single location record.  

 

The rate that taxa were recorded within the datasets was greatest in the Systematic dataset 

(Fig. 2.3). After reaching a cumulative area of 2.5 km2
 there was no overlap in taxa richness 

between the Systematic dataset and either the WfW or Management datasets.  The alien plant 

taxa accumulation curve approached an asymptote at approximately 10 km2
 (12% of the total 

study area) for the Management data, while the WfW dataset continued to accumulate taxa 

until 120 km2
 (95% of the study area) and the Systematic dataset did not reach an asymptote 

for the study area. 
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Fig. 2.2 The number of alien taxa unique to and shared between the three datasets: Systematic 

sampling (101 taxa in total), WfW (23 taxa) and Management Data (12 taxa) with a total of 106 

taxa across all datasets. See Sup. Mat. Table 2.4 for full taxa list. Note: for the purposes of 

this figure data are scored as different between datasets where records are less specifically 

identified (e.g. Hakea gibbosa is different to Hakea spp.) 

 

2.3.2 Degree of spatial agreement in taxa presence/absences between datasets 

2.3.2.1 Management and Systematic dataset 

In the Management dataset, at least one alien taxon was recorded in each of the 295 polygons 

while the Systematic dataset recorded at least one alien taxon in 266 of the 295 polygons 

(90%, Tables 2.1, 2.2). According to the Management dataset, Acacia cyclops and Acacia 

saligna were widespread in the study area (recorded in 282 and 285 of the 295 polygons 

respectively), while the Systematic dataset recorded these two species as being scattered in 

the study area (recorded in 195 and 198 of the 295 polygons respectively). 

 

The overall agreement on alien plant spatial distribution for seven of the eight compared taxa 

was poor between the Systematic and Management datasets (Table 2.2), with the Kappa and 

TSS statistics less than 0.4, which is considered to be a minimum threshold designating good 

agreement (Landis and Koch 1977). Although there was agreement on spatial presence 

(sensitivity scores >0.9; Table 2.2) for widespread taxa (e.g. A. cyclops and A. saligna), there 

was low agreement on absence (specificity scores = 0.06) for these taxa. Localised taxa (e.g. 

Acacia longifolia, Leptospermum laevigatum) showed opposite trends with high agreement of 
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absence (specificity scores >0.8; Table 2.2) and fair agreement of presence (sensitivity scores 

>0.4; Table 2.2). 

 

2.3.2.2 WfW and Systematic dataset 

When comparing the WfW and Systematic datasets, at least one alien taxon was recorded in 

each of the 176 WfW sample units compared to 174 of the 176 WfW nBals for systematic data 

(Table 2.1 and Table 2.3). In the WfW dataset, only A. saligna was recorded as widespread, 

with A. cyclops and A. longifolia recorded as scattered within the study area and the remaining 

five taxa having localised distributions. Overall, the agreement between the Systematic and 

WfW datasets for all eight compared taxa was very poor (Table 2.3), with the kappa and TSS 

statistics for all eight taxa lower than 0.4. The WfW dataset was similar to the Management 

dataset, where widespread species had agreement on presence (sensitivity scores >0.9; 

Table 2.3), while the agreement on absence was variable (specificity scores 0.37-0.69; Table 

3). For localised taxa, the WfW dataset recorded generally good agreement of absence 

(specificity scores >0.8) while the agreement of presences was generally low (sensitivity 

scores <0.25). Overall the dataset recorded a mismatch in the distribution of the taxa analysed. 

 

 

Fig. 2.3 Mean alien plant taxa accumulation curves (100 randomisations) for the Management, 

Working for Water (WfW) and Systematic datasets plotted on a log scale (base 2; x-axis), with 

error bars indicating 95% confidence intervals as calculated with EstimateS (Colwell R.K., 

2013) 
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Table 2.1 Dataset summary for the Management, Working for Water (WfW) and the Systematic 

datasets 

 Management WfW Systematic 

Total extent of survey area 130.75 km2 125.50 km2 126.40 km2 

Number of polygons 297  182 5,276 

Polygon size range  0.02 km2 - 0.71 km2 
(mean 0.44 km2) 

0.02 km2 - 12.57 km2 
(mean of 0.71 km2) 

0.02 km2 

Taxa in dataset Total: 12 
 

Total: 23 Total: 101 
 

Range of Taxa identified per 
polygon 

Min: 1 
Max: 7 
Mean: 3.0 (SD=1.40) 

Min: 1 
Max: 6 
Mean: 2.2 (SD=1.37) 

Min: 0 
Max: 16 
Mean: 0.79 (SD=1.51) 

Number of polygons occupied by 
alien plants out of the total 
polygons for that dataset   

297 (100%) 182 (100%) 2,151 (41%) 

Range occupied (all species) 130.75 km2 125.50 km2 43.02 km2 

Time period collected All records known by 
PA managers as at July 
2013 

January – March 2013 April to November 2013 

 

2.3.2.3 Total invaded area by taxon and baseline clearing costs 

In the Management dataset the total condensed area invaded by all alien plant taxa was 28.44 

km2
 (equivalent to 22.7% of the study area; Table 2.4). This was significantly more than the 

total condensed area of 2.43 km2
 measured in the Systematic dataset (equivalent to 1.9% of 

the study area; Table 2.4: Z = -14.711, p<0.001, r =0.606). All taxa, both widespread species 

such as A. cyclops, A. saligna, and localised species such as A. longifolia and Pinus spp., 

showed marked, highly significant differences (Table 2.4; p<0.001) in total condensed area 

invaded, with the Management dataset consistently reporting higher condensed area across 

all taxa (Fig. 2.4). 

 

The condensed area of all alien plants in the WfW data totalled 15.84 km2
 (equivalent to 12.6% 

of the study area), which despite being 45% less than the Management dataset, was still 

significantly greater than the condensed area recorded in the Systematic dataset (Z = - 9.622, 

p<0.001, r = 0.513, Table 2.5). Like the Management dataset, the WfW data recorded 

widespread taxa such as A. cyclops and A. saligna as having significantly greater condensed 

areas (p<0.001, Table 2.5) compared to the Systematic data. The majority of localised taxa 

(e.g. A. longifolia, L. laevigatum and Paraserianthes lophantha) had similar condensed density 

estimates in the two datasets (Table 2.5; Fig. 2.4), but their spatial locations were poorly 

matched. 
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Table 2.2 Presence and absence of selected taxa recorded in the Systematic and Management 

datasets (n= 295). S+ indicates presence in the Systematic data; S- indicates absence in the 

Systematic data; M+ denotes presence in the Management data and M- denotes an absence 

from the Management data, with the resulting confusion matrix measures (defined in Sup. Mat. 

Table 2.3). 

Taxa M+ 
S+ 
(a) 

M+ 
S- 
(b) 

M-S+ 
(c) 

M-S- 
(d) 

Accur-
acy 

Prevale-
nce 

Sensit
-ivity 

Specifi-
city 

Odds 
Ratio 

Kappa 
(K) 

TSS 

All taxa 
266 
90% 

29 
10% 

0 
0% 

0 
0% 

0.90 0.90 1.00 0.00 NS 0.00 0.00 

Acacia cyclops 
188 
64% 

94 
32% 

7 
2% 

6 
2% 

0.66 0.66 0.96 0.06 1.71 0.03 0.02 

Acacia longifolia 
43 

15% 
38 

13% 
41 

14% 
173 
58% 

0.73 0.28 0.51 0.82 4.77 0.34 0.33 

Acacia saligna 
194 
66% 

91 
31% 

4 
1% 

6 
2% 

0.68 0.67 0.98 0.06 3.20 0.05 0.04 

Eucalyptus spp. 
9 

3% 
19 
6% 

21 
7% 

246 
84% 

0.86 0.10 0.30 0.93 5.55 0.24 0.23 

Hakea spp. 
 

0 
0% 

2 
1% 

37 
12% 

256 
87% 

0.87 0.13 0.00 0.99 0.00 -0.01 -0.01 

Leptospermum 
laevigatum 

15 
5% 

32 
11% 

20 
7% 

228 
77% 

0.82 0.12 0.43 0.88 5.34 0.27 0.31 

Paraserianthes 
lophantha 

19 
6% 

47 
16% 

27 
9% 

202 
69% 

0.75 0.16 0.41 0.81 3.02 0.19 0.22 

Pinus spp. 
55 

19% 
31 

11% 
30 

10% 
179 
60% 

0.79 0.29 0.65 0.85 10.59 0.50 0.50 

 

 

Overall there was a large discrepancy between the Systematic and WfW data in the estimated 

budget required to control all invasive alien plants. The Systematic data estimated a person 

day requirement of ZAR 1.5 million while the WfW data produced a budget estimate of ZAR 

9.8 million (Fig. 2.5; recognizing that additional travel and treatment costs are not included in 

these estimates). The discrepancy in required person day budget to treat invasive alien plants 

was similar for individual taxa. For example, A. saligna in the Management dataset had a total 

condensed area of 10.78 km2
 and the WfW dataset had a total condensed area 12.85 km2, 

while the Systematic dataset recorded only 1.36 km2
 total condensed area (Tables 2.4 & 2.5). 

Cost estimates to treat A. saligna derived from the Management data would be ZAR 6.64 

million and ZAR 7.92 million from the WfW data (Fig. 2.5). A person day costing based on the 

Systematic data indicates that a reduced budget of ZAR 0.84 million would be adequate to 

treat this species.  
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Table 2.3 Presence and absence of selected taxa recorded in the Systematic and WfW datasets 

(n = 176). S+ is presence in the Systematic data; S- is absence in the Systematic data; W+ is 

presence in the WfW dataset and W- is the absence in the WfW dataset with the resulting 

confusion matrix measures (defined in Sup. Mat. Table 2.3). 

Taxa W+ 
S+ 
(a) 

W+ 
S- 
(b) 

W- 
S+ 
(c) 

W- 
S- 
(d) 

Acc-
uracy 

Preva-
lence 

Sensi-
tivity 

Speci-
ficity 

Odds 
Ratio 

Kappa 
(K) 

TSS 

All taxa 
 

174 
99% 

2 
1% 

0 
0% 

0 
0% 

0.99 0.99 1.00 0.00 NS 0.00 0.00 

Acacia cyclops 
 

61 
35% 

19 
11% 

54 
30% 

42 
24% 

0.59 0.65 0.53 0.69 2.50 0.19 0.22 

Acacia longifolia 
24 

13% 
12 
7% 

61 
35% 

79 
45% 

0.59 0.48 0.28 0.87 2.59 0.15 0.15 

Acacia saligna 
142 
81% 

17 
10% 

7 
4% 

10 
5% 

0.86 0.85 0.95 0.37 11.93 0.38 0.32 

Eucalyptus spp. 
7 

4% 
10 
5% 

29 
17% 

130 
74% 

0.78 0.20 0.19 0.93 3.14 0.15 0.12 

Hakea spp. 
 

6 
3% 

5 
3% 

34 
19% 

131 
75% 

0.78 0.23 0.15 0.96 4.62 0.15 0.11 

Leptospermum 
laevigatum 

6 
3% 

8 
5% 

31 
17% 

131 
75% 

0.78 0.21 0.16 0.94 3.17 0.14 0.10 

Paraserianthes 
lophantha 

12 
7% 

16 
9% 

46 
26% 

102 
58% 

0.65 0.33 0.21 0.86 1.66 0.08 0.07 

Pinus spp. 
15 
8% 

7 
4% 

48 
28% 

106 
60% 

0.69 0.36 0.24 0.94 4.73 0.21 0.18 

 

2.4 Discussion 

Understanding the inherent strengths and weaknesses in data that are used to inform decision 

making will influence the long-term outcomes and sustainability of invasive alien plant 

management programmes (Cook et al. 2009) as data accuracy has a direct effect on the 

quality of management decisions made for control programmes. Although the accuracy of data 

collection is consistently emphasised in invasive alien plant control programmes globally 

(McNaught et al. 2008; Rew and Pokorny 2006), these data do not often meet the specific 

needs for which they are collected (Cook et al. 2009) or are inappropriately applied to multiple 

objectives due to budget and time constraints. However there are seldom multiple datasets 

available for PA managers to assess the extent to which data types and sources impact on 

achieving the desired outcome. In this study, the data compiled from three sources in TMNP 

allow for such detailed analysis.  

 

The positive relationship between grain (size of the minimum mapping unit) and resultant 

species distribution (area of occupancy) (Foxcroft et al. 2009; McGeoch and Gaston 2002) 

was not properly considered in the Management and WfW datasets. While the datasets 

agreed on the occurrence of the most common invasive species at a landscape or PA scale 

(coarse grain), at a finer grain, the systematic sampling approach listed significantly more alien 

species, smaller distribution ranges of species and lower abundance of the common, wide-
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spread species. Not accounting for coarse grain of mapping when estimating area occupied 

by alien species has significant consequences for the management of alien species in terms 

of resource allocation and budget and can lead to the failure or delayed success of a control 

programme (Rejmánek and Pitcairn 2002; Wilson et al. 2013). 

 

Table 2.4 Comparison of the total condensed area for selected taxa in the Management data 

(MD) and the Systematic data (SD). All differences are significant. 

Taxa Mapping 
units (n) 

Data- 
set 

Total 
Condensed 
Area (km2) 

Mean 
(km2) 

Median 
(km2) 

z p r 

All taxa 295 
MD 28.44 9.64 4.26 

-14.711 <0.001 0.606 
SD 2.43 0.82 0.13 

Acacia cyclops 295 
MD 8.94 3.03 1.78 

-14.504 <0.001 0.597 
SD 0.32 0.11 0.02 

Acacia longifolia 295 
MD 3.19 1.08 0.00 

-6.964 <0.001 0.287 
SD 0.52 0.17 0.00 

Acacia saligna 295 
MD 10.78 3.65 0.71 

-13.204 <0.001 0.544 
SD 1.36 0.46 0.02 

Eucalyptus spp. 295 
MD 1.06 0.36 0.00 

-3.437 <0.001 0.141 
SD 0.02 0.01 0.00 

Hakea spp. 295 
MD <0.01 <0.01 0.00 

-4.521 <0.001 0.186 
SD 0.02 0.01 0.00 

Leptospermum 
laevigatum 

295 
MD 0.44 0.15 0.00 

-4.616 <0.001 0.190 
SD 0.07 0.02 0.00 

Paraserianthes 
lophantha 

295 
MD 0.80 0.27 0.00 

-6.228 <0.001 0.256 
SD 0.08 0.03 0.00 

Pinus spp. 295 
MD 3.24 1.10 0.00 

-7.962 <0.001 0.328 
SD 0.06 0.02 0.00 

 

 

The similarity in the species and their abundance collected by PA managers and WfW project 

managers is not unexpected. The WfW programme prioritises the control of the most 

abundant, widespread and thus visible species in the PA, which would also be known to the 

PA managers. However, the long-term success in controlling or eradicating invasive plant 

species requires an integrated approach (Foxcroft and McGeoch 2011). This includes 

prevention, early detection and rapid response being implemented in conjunction with on-

going control efforts to enable a cost-effective and long-term viable approach (Hulme 2006; 

Simberloff 2009; Tu 2009; van Wilgen et al. 2011). Investing in fine scale and accurate data 

on alien species within PA’s would inform all of these objectives. However, PA managers often 

prefer experience- based information for decision making (Cook et al. 2009; Pullin et al. 2004), 

and even when presented with evidence-based data are reluctant to alter their decisions 

(McConnachie and Cowling 2013). The inherently social context of the PA decision making 

environment (including PA policies, management structure, stakeholder base, priorities and 
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capacity) is one of the main reasons given for not implementing evidence-based actions 

(Ntshotsho et al. 2015). In addition, the over-prediction of species presence in control 

programme plans may appear beneficial to a risk averse manager, who perceives inclusion of 

false presences as preferable to missing invasion sites (false absences), though we show the 

latter also has associated risks. Shortfalls in the current PA manager and WfW datasets and 

their consequences for effective and efficient alien management are discussed below.  

 

 

Fig. 2.4 Total condensed area (km2) for taxa in the Management (MD), Working for Water (WfW) 

and Systematic (SD) datasets where (α) indicates a significant difference between the 

Systematic data and the Management data (p<0.01; Table 2.4) and (φ) a significant difference 

between the Systematic data and the WfW data (p<0.01; Table 2.5) 

 

2.4.1 Incomplete species lists  

Large scale alien control programmes typically target common species due to information 

available to inform programme development and control plans. Incomplete alien plant species 

lists however, may result in less common species being undetected within a PA (McGeoch et 

al. 2012), losing opportunities for eradication of small populations before they become 

widespread (Leung et al. 2002; Rejmánek and Pitcairn 2002). For example, the systematic 

sampling detected Callistemon salignus (white bottlebrush) and Centranthus ruber (red 

valerian) at a few sites, totalling around 0.01 km2 that could be targeted for eradication. As 
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urban development and human populations increase around parks, adding to the pathways 

for alien species, the importance of accurate alien species listing is heightened (Alston and 

Richardson 2006; Spear et al. 2013). The systematic sampling recorded nine species of 

ornamental garden plants occurring in the PA, along its urban boundary, that were not listed 

in the WfW or PA mangers datasets (Sup. Mat. Table 2.4). Species accumulation curves 

indicate that there are likely even more species than indicated by the systematic sample (no 

asymptote reached, Fig. 2.3), highlighting the need for continued systematic monitoring to 

detect new invasions. In contrast, both management datasets reached their total species 

complement after inclusion of few sites (Fig. 2.3), indicating poor ability to identify rarer 

species. 

 

Table 2.5 Comparison of the total condensed area for selected taxa in the WfW dataset (WfW) 

and Systematic data (SD). Species where significant differences were detected are indicated in 

bold. 

Taxa Mapping 
units (n) 

Data- 
set 

Total 
Condensed 
Area (km2) 

Mean 
(km2) 

Median 
(km2) 

z p r 

All taxa 176 
WfW  15.83 9.00 3.80 

-9.622 <0.001 0.513 
SD 2.43 1.38 0.56 

Acacia cyclops 176 
WfW  2.00 1.14 0.00 

-4.882 <0.001 0.260 
SD 0.32 0.18 0.02 

Acacia longifolia 176 
WfW  0.54 0.30 0.00 

-0.822 0.411 0.044 
SD 0.52 0.29 0.00 

Acacia saligna 176 
WfW  12.85 7.30 2.24 

-9.495 <0.001 0.506 
SD 1.36 0.77 0.10 

Eucalyptus spp. 176 
WfW  0.18 0.10 0.00 

-0.191 0.848 0.010 
SD 0.02 0.01 0.00 

Hakea spp. 176 
WfW  0.03 0.02 0.00 

-2.940 <0.01 0.157 
SD 0.02 0.01 0.00 

Leptospermum 
laevigatum 

176 
WfW  0.11 0.06 0.00 

-1.213 0.225 0.065 
SD 0.07 0.04 0.00 

Paraserianthes 
lophantha 

176 
WfW  0.08 0.04 0.00 

-1.344 0.179 0.072 
SD 0.08 0.04 0.00 

Pinus spp. 176 
WfW  0.05 0.03 0.00 

-3.643 <0.001 0.194 
SD 0.06 0.03 0.00 

 

Complete species lists are also important to enable prioritisation and risk assessment 

(McGeoch et al. 2012). Currently the data from the PA managers or WfW cannot be scaled 

up to the organisational level to accurately inform national and international indicators relating 

to species richness and rates of new species arrival1. This results in a missed opportunity that 

the WfW project can play in the global management of alien species and responses to national 

and global targets (McGeoch et al. 2010). Due to the strength of the systematic sampling 
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approach, the Systematic data can readily be integrated with existing alien species lists at a 

national and international level (Foxcroft et al. 2017; Spear et al. 2011).  

 

2.4.2 Species distribution and grain of data collection 

Common pitfalls of control programmes include the ability to adequately detect target species 

prior to treatment and the lack of detection when re-infestation of the treated area from 

adjacent non-treated areas occurs (Rejmánek and Pitcairn 2002). The coarse grain of the 

Management and WfW data that are currently used in the PA’s alien plant control programme 

suffer from both these deficiencies. Inadequate detection of the spread of a species across 

the PA in these management datasets means that new or expanding populations will go 

undetected. For example, the systematic sampling recorded 41 additional sites for A. longifolia 

where the species had not historically been recorded. Coarse (large) grained data tended to 

overestimate the occupancy of taxa in this study. Consistent over-estimation of occurrence of 

widespread species such as A. cyclops and A. saligna in the management datasets can result 

in overstating the core invaded area while inadequately delineating outlying satellite areas (He 

and Gaston 2000; McGeoch and Gaston 2002). Data used by WfW and PA managers to direct 

the control of alien invasive plants therefore cannot be used to monitor and evaluate the 

effectiveness of control within monitoring frameworks, for example the Thresholds of Potential 

Concern Adaptive Management framework (Foxcroft 2009).  

 

2.4.3 Inaccuracy in estimation of species abundance 

Measures of abundance (number of individual plants per unit area) are important for 

developing and monitoring the strategic goals of invasive plant control programmes through 

understanding the nature and scope of management interventions relative to the impact that 

the species will have (Latombe et al. 2016). In particular, WfW funding is allocated to areas in 

relation to WfW-estimated alien density data, and until funds are exhausted. This use of funds, 

in combination with inaccurate data, means that funding may be exhausted before the real 

priorities have been allocated sufficient funding. For example A. longifolia was found to occur 

in 61 more management units than recorded in the WfW dataset (Table 2.3), meaning these 

areas would not have been allocated sufficient funding. Key actions recommended for alien 

plant control programmes include i) reducing the residency time of new invaders, ii) identifying, 

and focusing on areas of high propagule pressure and iii) maintaining or locally eradicating 

invaders from lightly invaded areas (Tu 2009). Due to the incorrect abundance estimates in 

the WfW and Management data, inefficient application of control methods, and improper 

prioritisation of target areas, misallocation of resources can be expected. The substantial 

overestimate of costs resulting from WfW data, when compared to systematic sampling data, 

illustrates the potential extent of the problem. One might expect that a risk adverse approach 
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of overestimating the workload would ensure that areas are completely cleared of alien 

species. However, the project area still has a wide occurrence of alien species present which 

means that the currently inflated budget maybe obscuring the appropriate or more effective 

control methodologies. The misalignment of resource allocation can have long-term negative 

implications for a control programme where budgets and resources are often limited (Krug et 

al. 2010; Moore et al. 2011).  

 

 

Fig. 2.5 Calculated total clearing cost form the Systematic data and (a) the Management data 

and (b) the Working for Water (WfW) data. At-All selected taxa (combined); Ac-Acacia cyclops; 

Al-Acacia longifolia; As-Acacia saligna; Es-Eucalyptus spp.; Hs-Hakea spp.; Ll-Leptospermum 

laevigatum; Pl-Paraserianthes lophantha; Ps-Pinus spp. 

 

Benefits of Systematic Sampling  

In managing alien control programmes there is often a budget trade-off between funds 

available for field sampling and control operations, with intensive sampling being avoided due 

to the time constraints, costs, and resources required (Hauser and McCarthy 2009). While a 

variety of invasive alien plant surveys are warranted depending on the management objectives 

(Dewey and Andersen 2004), survey approaches for alien plant programmes covering large 

areas should emphasise accurate, consistent and repeatable methodologies (McNaught et al. 

2008). Currently both the WfW and PA managers approaches fall short of these requirements 

and produce a skewed picture of the clearing effort and resources required. The poor 

distribution and abundance records from the WfW and PA manager data commits funding to 

low priority areas, resulting in inefficient spending. This limits opportunities to expand clearing 

to additional species, areas, early detection and rapid response (EDRR) programmes and 

ironically the monitoring that would enable this. Candidate EDRR not recorded by managers 
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in this study would include for example Acacia pycnantha, Centranthus ruber and Callistemon 

salignus. Using the systematic data it would be possible to cover more management units per 

year, potentially enabling the achievement of a long-term management goal where every area 

is treated at least once in a two year cycle. This goal was not being achieved using the 

management data described.  

 

In addition to the systematic sampling addressing shortfalls in accuracy, this approach enables 

comparisons to be made across time and as needed through repeated data collection. This 

will allow for better understanding and management of alien plant species, as the systematic 

sampling accurately determines where alien plant species are not present in the PA, either 

though successful control over time or delineation of areas that have not yet been invaded. 

The systematic mapping exercise cost approximately ZAR 100,000 (<0.1% of the control 

budget at the time, although this could increase in areas of higher alien density and more 

mountainous terrain). We propose that when viewed in comparison with the potential budget 

savings enabled by more accurate plans, the systematic sampling approach is a cost effective 

addition to the current management approach, providing data that can readily feed into local, 

national and international monitoring programmes.  

 

2.5 Conclusion 

Differences in alien species datasets are expected due to differences in the purpose for and 

scales at which data are collected. However, as we illustrate here, the urgency of required 

management actions often results in implementation prior to gaining a full understanding of 

the problem. Our systematic sampling provided estimates of species richness and abundance 

that differed by orders of magnitude from the data that are used to make management 

decisions. While managers may perceive the time and cost required to undertake detailed 

landscape-scale surveys as wasteful when something could be done about the problem in the 

interim, we argue that properly assessing the true scope of the problem is critical to optimizing 

the impact of control work and outputs for budgets spent. Fine-scale alien plant surveys can 

be used to establish baseline alien plant species information that is suitable for implementing 

long-term monitoring programmes to assess change as a result of management interventions 

and environmental factors. This would overcome the current situation where existing 

management datasets do not allow for the determination of the source, extent, dynamics and 

realistic clearing costs of alien plants.  
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2.8 Supplementary material 

The following supplementary Information may be found in the supplementary section 

accompanying this thesis or along with the online version of the published article. 

 

Sup. Mat. Table 2.1. Standardised classes used to group the relative measures of abundance 

(percentage cover, density and descriptive) for invasive alien plants invasions from the 

Management, Working for Water (WfW) and Systematic datasets 

 

Sup. Mat. Table 2.2. Confusion matrix (sensu – Fielding and Bell 1997) for comparing 

presence and absence data from the Management or WfW datasets to the Systematic dataset. 

 

Sup. Mat. Table 2.3. Confusion matrix measures derived from the confusion matrix for the 

presence and absence data from the Management or WfW datasets and the Systematic 

dataset. Notation as per Table 2.2. 

 

Sup. Mat. Table 2.4. Alien Species list: Comparison of Alien Plant Species presents between 

the Systematic Mapping, Working For Water and Management Data, where '1' denotes the 

presents of that species in the data set and '*' is where data at a Genera level was been 

collected. 

Stellenbosch University  https://scholar.sun.ac.za



chapter three 

 
 - 45 -  

Chapter 3. 

Scenarios for the management of invasive Acacia species in a 

protected area: implications of clearing efficacy 
 

This chapter is under review in the Journal of Environmental Management. 

Cheney C., Esler K.J., Foxcroft L.C. & van Wilgen N.J. (2019). Scenarios for the management 

of invasive Acacia species in a protected area: implications of clearing efficacy. Journal of 

Environmental Management. Under review. 

 

Abstract 

In many protected areas in South Africa, invasive Australian Acacia species pose on-going 

management challenges, perpetuating high long-term management costs. Due to limited 

availability of resources, conservation actions need to be prioritised within and across 

Protected Areas (PA). Comprehensive datasets spanning over 20 years from the Table 

Mountain National Park are used to model long-term outcomes of clearing Acacia species at 

different levels of management clearing efficacy. We test a 50 year outlook based on current 

and 38 incremental levels of management efficacy, ranging from 5-100%, to assess under 

which scenarios a management goal of reducing Acacia density to below 1 plant per hectare 

for the 22,671 hectare protected area is achieved. With the current clearing resources and 

maximum clearing efficacy (100% control), it would take between 32 to 42 years to attain the 

management goal.  The modelling revealed two main drivers of Acacia persistence. Firstly, 

germination of seeds added to the seedbank from standing plants made a significantly larger 

contribution to future clearing requirements than fire stimulated seed germination or the 

existing (pre-management) seedbank. Secondly the relationship between the number of 

hectares and management units that could be treated and the efficacy of the treatment was 

non-linear. When clearing efficacy was decreased from 100%  to the current project minimum 

target of 80% efficacy, the goal was not achieved in all areas, but the area that reached a 

density of <1 plant per hectare was significantly reduced to 53% of the PA for the simulated 

50 years. Results emphasize the need to differentiate between increasing financial resources 

and increasing efficacy. While increasing financial resources allows for increased effort, this 

is of little value for Acacia management in the absence of an increase in clearing efficacy, as 

low quality implementation perpetuates the need for large budgets over time. Conversely, 

improving efficacy allows for decreased budget requirements over time, allowing fund re-

direction to additional areas of alien species management such as the early detection and 

rapid control of newly introduced species.  
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Keywords: 
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3.1 Introduction 

Protected area (PA) managers are required to respond to a range of biodiversity threats and 

pressures, including legal and illegal harvesting of resources, pollution and invasion by alien 

species (Wilson et al. 2007; Schulze et al. 2018). Conservation targets for managing these 

threats and pressures are often set through a range of objectives with measureable thresholds 

(Biggs et al. 2003; Foxcroft 2009). The degree to which the specific targets and desired 

outcomes are achieved influences the overall management effectiveness of the PA (Watson 

et al. 2014). A frequent argument for not meeting conservation objectives is the limited 

availability of resources or funding (Frazee et al. 2003; Bruner et al. 2004; van Wilgen et al. 

2016a). This results in the need to prioritise conservation actions within and across PAs, or to 

confine actions to particular or vulnerable sections alone. For example, ‘conservation triage’ 

(accepting biodiversity loss in lower priority areas over gains or sustained benefits in higher 

priority areas) has been proposed as an appropriate strategy for apportioning conservation 

budgets where funds are limited (Downey et al. 2010; van Wilgen et al. 2016a).  

 

Within South Africa’s Cape Floristic Region (CFR), invasive alien plants (IAP) pose one of the 

largest direct threats to biodiversity and ecosystem services (Richardson et al. 1996; Gaertner 

et al. 2009; Le Maitre et al. 2011). For example, a conservation status assessment of the 

region’s flora in 2009 found more than 1,000 native plant species were threatened by IAPs 

(Raimondo et al. 2009). To address the negative impact of IAPs, the South African government 

has for more than 20 years, funded a national invasive alien plant control programme, 

‘Working for Water’ (WfW). A main aim of the programme is to restore and maintain habitat 

structure and function to mitigate the loss of ecosystem services, especially water, through 

the control of invasive alien plants (van Wilgen et al. 2012). Depending on the implemented 

management approach, high level budget estimates for IAP control in the CFR are projected 

to be in excess of ZAR 900 million (1 US$ ~ 16 ZAR in 2017) over the next 20 years (van 

Wilgen et al. 2016a). 

 

Specific IAP genera pose on-going management challenges, perpetuating these high long-

term management costs (McConnachie et al. 2012), including Australian Acacia species which 

are particularly difficult to control. Acacia is a highly diverse genus (~1012 species, Richardson 
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et al. 2011), over 20 of which are highly invasive globally (Richardson & Rejmánek 2011). 

These plants tend to dominate interspecific interactions, having profound impacts on 

ecosystem processes (e.g. altered community dynamics though changed fire regimes and 

altered nutrient cycling though changed soil properties) (Le Maitre et al. 2011). The genus is 

a model group for studying many facets of alien plant invasions (Richardson et al. 2011; van 

Wilgen et al. 2011). The successful establishment and long-term persistent invasion of Acacia 

species has been attributed to several factors, including early maturity (<2 years), prolific 

production of long-lived seed (up to 12,000 seeds/m2/annum) and prolific post-fire germination 

(Marchante et al. 2010; Souza-Alonso et al. 2017; Strydom et al. 2017). 

 

The Table Mountain National Park (hereafter TMNP or the park) is a well-known protected 

area in the CFR biodiversity ‘hot spot’ (Cowling et al. 1996), with 158 endemic plant species 

(Helme & Trinder-Smith 2006). However, the park is facing severe pressure from the invasion 

of many alien species from the surrounding landscape (Spear et al. 2013). Despite a well-

established IAP control plan, with over 20 years of continuous implementation, supported by 

extensive resources, the programme goal of achieving a ‘maintenance level’ of control, where 

plants occur at a density of less than one plant per hectare (10,000m2) (Le Maitre & Versfeld 

1994) has yet to be reached (Cheney et al. 2018, Chapter 2). This goal, which essentially 

seeks to reduce Acacias to being ‘rare’ in the landscape (Le Maitre & Versfeld 1994), is 

considered feasible within current management time frames and will ensure significant 

reduction in ecological impact. A common management reaction is to seek additional funding 

to achieve this maintenance control level, but with studies suggesting that clearing 

implementation is sub-optimal (McConnachie et al. 2012; van Wilgen et al. 2016a; Kraaij et al. 

2017), it is uncertain to what extent larger budgets will address the problem. 

 

We develop a spatio-temporal population model to investigate clearing scenarios for Acacia 

species in TMNP. We assess the potential impact of the currently-available resources under 

current and incremental levels of management clearing efficacy and determine the long-term 

resource requirements for optimal management and return on investment. Specifically, we 

aimed to:  

 Assess whether the available resources are adequate to successfully control Acacia 

species in the long-term; 

 Determine the extent to which present resources impact current standing plants versus 

reducing the potential for future invasions (i.e. plants and seedbank increases that 

result from uncleared plants or remnant seedbanks) 

 Determine the optimal clearing efficacy thresholds that achieve the conservation target 

of reducing invasions to a maintenance level of less than one plant per hectare. 
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3.2 Materials and methods 

3.2.1 Study area  

Table Mountain National Park is located on the Cape Peninsula, South Africa, and covers 

approximately 25,000 ha. For model simulation and analysis we considered 809 management 

units (Working for Water nBal polygons, Chapter 2) that cover 91% (22,671 ha) of the PA with 

only the very steep, largely inaccessible areas not included. Each management unit (WfW 

nBal) currently has, or historically had, different levels of invasion by a range of alien plant 

species. The dominant alien taxa in TMNP comprise woody alien species from the genera 

Acacia, Pinus and Hakea. For the purpose of this model only Acacia species are considered 

as they are the most common alien plants in the PA (Cheney et al. 2018, Chapter 2) and have 

been suggested to pose the greatest threat to TMNP’s biodiversity (Richardson et al. 1996; 

Higgins et al. 1999). 

 

 

2.2 Model description 

A spatio-temporal, polygon-based, population model was developed for the park using Visual 

Basic in MS Excel (2013 v15.0). The model simulates Acacia population size, age structure 

and area invaded within each management unit. The model’s purpose is to estimate the 

potential future outcomes of the alien plant control programme by varying clearing efficacy 

(effective permanent removal of alien plants) in relation to two drivers of Acacia persistence, 

namely, ecosystem processes (fire) and plant population dynamics (age, density dependence 

and seedbank dynamics) (Le Maitre et al. 1996; Krug et al. 2010). Twelve model scenarios 

were simulated based on the current levels of Acacia abundance as determined by fine scale 

population data (Cheney et al. 2018, Chapter 2), historic fire records spanning 35 years 

(Forsyth & van Wilgen 2008), and 20 years of alien plant control history for TMNP (van Wilgen 

et al. 2016a).  

 

As a model starting point, population data on Acacia species were collected for each 

management unit as part of a fine scale systematic monitoring programme (Cheney et al. 

2018, Chapter 2). This entailed sampling 10,057 plots and counting the number of individuals 

present per alien plant species. The Acacia species included in the model were clustered into 

two groups based on their response to management, i) species that readily coppice if not 

treated correctly (e.g. through the incorrect clearing method or application of herbicides), such 

as Acacia saligna, A. mearnsii, A. melanoxylon and ii) species that do not readily coppice, 

namely Acacia cyclops and A. longifolia.  
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The simulation model comprised six time-based modules relating to the management, 

population dynamics and ecology of Acacia species (Fig. 3.1). The population parameters 

(growth rates, seed production and seed germination) for the coppicing or non-coppicing 

species were modelled primarily on A. saligna for coppicing species and on A. cyclops for non-

coppicing species. Each module simulated the population dynamics, clearing efficacy and 

ecological processes influencing the clearing of Acacia and each could be included (turned-

on) or excluded (turned-off) in a simulation run. For example, the fire module or the seed 

production module could be turned on or off to test the incremental effect that these processes 

have on the overall model outputs. 

 

 

 

Fig. 3.1 Overview of the modules in the simulation model and the equivalent calendar quarter in 

which they are called. The growing season is approximated as April to September, during the 

peak rainfall period. Acacia plants flower at the end of the growing season and release seed 

during October to December. Most natural fires occur in the summer to early Autumn (January 

to March) which stimulate seeds to germinate from the soil seedbanks following the first rains in 

April. Numbering [1-4] denote model scenarios described in section 3.2.4 and Figure 3.2. 

 

The model was run for the equivalent of 50 simulation years. Within a simulation year, the 

model incremented quarterly, in alignment with current IAP clearing operations, Acacia 

population dynamics and ecological processes (Fig. 3.1). Quarter 1 spanned from April to 

June, with the relevant modules of alien clearing, plant population dynamics and seed 

germination called within this timeframe. Similarly the modules called in quarter 2 aligned with 

the alien clearing and plant population dynamics that would occur between July and 

September.  
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3.2.3 Module descriptions 

3.2.3.1 Alien plant clearing module 

The clearing module (Sup. Mat. Fig. 3.1) simulated the control of Acacia based on WfW 

clearing norms and standards (Neethling & Shuttleworth 2013). The standard resource unit 

for alien plant control is based on the number of person days required to treat an invaded area. 

The TMNP’s 2017 annual allocation of 40,128 person days (ZAR35.4 million, 1 person day = 

ZAR350) was used as the available resource with which to undertake clearing (Working for 

Water 2017). The allocation of person days to each management unit was calculated based 

on the recorded Acacia abundance and age class of individuals in each management unit 

(Neethling & Shuttleworth 2013). The management units for clearing were randomly selected 

at the beginning of the simulated year. This random selection removes any management bias 

and allows for the generation of baseline clearing success. The project person days were 

divided per quarter until the total available person days of 40,128 was reached. Any unused 

person days in a simulation year were not carried over to the next simulation year. The random 

selection of management units held ‘no memory’ of clearing history and each management 

unit was available for selection at the start of each simulation year. Clearing efficacy was 

varied for 38 incremental levels of efficacy, from 5-100%, which was taken as the probability 

that each plant present in a management unit would be treated correctly (i.e. killed via the 

correct treatment methodology) (Sup. Mat. Fig. 3.1), to test the effect that clearing efficacy 

would have on achieving management outcomes. 

3.2.3.2 Fire simulation module 

The fire module (Sup. Mat. Fig. 3.2 and Sup. Mat. Table 3.2) determined i) the number of fire 

ignition points, ii) the size of individual fires and iii) the total area to be burnt per fire season 

(quarter 4, January to March). At the beginning of the fire season, the number of fire ignition 

points and the total area expected to be burnt was determined as a function of the Normal 

distribution of the fire history dataset of TMNP between 1980 and 2016 (Table Mountain 

National Park Fire history records 2008-2016, unpublished data). Because certain areas are 

more prone to frequent burning, management units were assigned to one of five fire frequency 

classes based on the number of ignitions recorded in the management unit’s fire history (Sup. 

Mat. Table 3.1). For each fire ignition, a fire frequency class was selected at random, adjusted 

for the probability of each class burning. The management unit within the selected fire 

frequency class was then randomly selected. To determine if fire ignition would result in the 

management unit burning, a probability function based on vegetation age was calculated (Sup. 

Mat. Table 3.2), where vegetation 25 years and older had a probability of 1 (would always 

burn) and vegetation less than 5 years old would have a probability of 0 (Forsyth & van Wilgen 
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2008; Van Wilgen et al. 2010). Once burning was initiated, additional management units 

directly adjacent to the source management unit with a vegetation age of 5 years and older 

burned until the expected size of the individual fire had been reached. 

 

Fire intensity for the individual fires was varied by equating the burn intensity to Fire Danger 

Index (FDI; South African Government Gazette 37014 No. 1099 of 2013; Sup. Mat. Table 3.3). 

The FDI, was calculated based on available summer climate data between 1990 and 2008 

(2,296 days) from the South African Weather Services’ Cape Point weather station. The fire 

intensity for an individual fire was assigned by selecting one of the days at random. The 

intensity of the fire effects the proportion of plant mortality between 0.1 (Low fire intensity) to 

1.0 (Extreme fire intensity), (Sup. Mat. Table 3.3) as well as seed bank dynamics (see 3.2.3.4). 

Mortality is assumed to be constant across tree age classes. 

 

3.2.3.3 Seed production and dispersal module 

This module simulated the annual rate of seed accumulation within and dispersal to adjacent 

management units. For plants between the age of 8 and 30 years old, the annual accumulation 

rate was set to 360 seeds/m2 (range: 340-380 seeds/m2) for non-coppicing Acacia and 4,250 

seed/m2 (range: 4,040-4,460 seeds/m2) for coppicing trees (Holmes et al. 1987; Correia et al. 

2014; Strydom et al. 2017). For trees younger than 8 and older than 35 years, seed 

accumulation was reduced using logistic equations (Sup. Mat. Table 3.4). Acacia seed 

dispersal is largely localised, with up to 5% of the annual seed production available to disperse 

to adjacent areas (Rebelo et al. 2013; van Wilgen et al. 2016a). Five percent of seeds were 

made available to disperse to adjacent management units and allocated based on the 

percentage of common boundary between the seed source and other units.  

 

3.2.3.4 Seed bank dynamics 

This module accounted for the seeds in the soil profile, i.e. litter, top soil layers (generally up 

to 10cm deep) and deep soil layers (greater than 10cm deep). Initial seedbank size was 

estimated for each management unit by reviewing both clearing and fire history of the 

management unit. The post-fire residual seed bank of each management unit was taken as 

between 5-15% of the density of plants that had germinated as a result of the last fire in the 

management unit (Holmes et al. 1987). This seedbank was then adjusted based on the 

clearing history of the management unit, where additional seed was added to the seedbank in 

areas where no clearing had taken place within a two year period, because adult plants 

produce seed and replenish seedbanks. These initial starting seedbank sizes were randomly 

varied by 5% at the start of each model simulation. 
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Seeds are deposited through seed production and seed dispersal into the litter layer, where 

they are held for a year (Milton & Hall 1981; Richardson & Kluge 2008; Strydom et al. 2012). 

Seeds move into deeper soil layers at rate of 10% per year until they reach deep storage after 

10 years and are unavailable for germination, except in extreme fire conditions (Holmes 1990; 

Richardson & Kluge 2008; see Sup. Mat. Table 3.3). An upper limit of seedbank density (seed 

saturation) of 12,000 seeds /m2 was set for each management unit (Milton & Hall 1981; 

Strydom et al. 2012; Strydom et al. 2017; Sup. Mat. Table 3.5). Within the model, seeds 

undergo natural decay from the seedbank at a rate of between 10-17%. (Higgins et al. 1997; 

Richardson & Kluge 2008). The model varied fire intensity which removed seeds from the 

seedbank at differing rates (due to incineration, Richardson & Kluge 2008), for example low 

intensity fires (FDI<20) only affected the upper soil layers, while extreme fires (FDI>75) 

affected both the upper and deeper seedbank layers (Sup. Mat. Table 3.6).  

 

3.2.3.5 Seed germination 

This module simulated seed germination. A small percentage (up to 3%) of non-coppicing 

Acacia seeds germinate after two years in the seedbank (Holmes et al. 1987). Clearing of 

dense stands of aliens can trigger larger recruitment of seedlings (75-95% of the seedbank) 

for non-coppicing Acacia species and a small proportion of seedling recruitment (1-5% of 

seedbank) for coppicing Acacia species (Holmes et al. 1987).  The majority of seeds germinate 

in the winter rainy season (quarter 1 and 2 in the simulation model), following a fire event 

where up to 95% of the seedbank in the top soil layers and up to 10% of the seedbank in the 

deep soil layers can germinate depending on the intensity of the fire (see Sup. Mat. Table 3.6 

for the effect of fire intensity, as measured by the FDI, on post-fire seedbank mortality and 

germination rates). 

 

3.2.3.6 Plant population dynamics 

The population dynamics module accounted for the mixed age plant population within each 

management unit and set population parameters that bound the population within observed 

limits from published sources (Sup. Mat. Table 3.5). These dynamics included maximum seed 

bank and seedling density (Milton & Hall 1981; Holmes et al. 1987; Strydom et al. 2017), 

density dependent competition (Le Maitre & Versfeld 1994), age specific mortality, age 

dependent seed production (Holmes 1990; Strydom et al. 2017), rates of increasing or 

decreasing invasion and regrowth from ineffective alien clearing (van Wilgen et al. 2016a), as 

determined by the efficacy level set for the particular model. 

 

  

Stellenbosch University  https://scholar.sun.ac.za



chapter three 

 
 - 53 -  

3.2.4 Simulation Scenarios 

To determine the effect of different ecological parameters (as determined by the key model 

components) and clearing efficacy on Acacia population outcomes, four simulation scenarios 

were run on each of three clearing efficacy levels (varied within the Alien plant clearing 

module), resulting in twelve simulation outputs. Each scenario included sequential addition of 

key ecological processes (scenario 1: impact of clearing only, scenario 2: scenario 1 + seed 

germination, scenario 3: scenario 1 & 2 + fire and scenario 4: scenario 1 to 3 + seedbank 

replenishment by mature plants; Fig. 3.1). While biologically unrealistic, separating these 

biological processes can pinpoint the most influential drivers that determine management 

success or failure. The three levels of clearing efficacy for each scenario were (i) 1.0 for all 

Acacias (i.e. all plants present in a managed unit were treated 100% correctly); (ii) a mean of 

0.8 (Range: 0.6-1.0) across species, which is considered the minimum quality standard for the 

PA ( Working for Water 2015), and (iii) a mean of 0.77 (SD: 0.08) for non-coppicing taxa and 

0.54 (SD: 0.15) for coppicing taxa, which is the mean project efficacy (MPE) currently 

observed for the clearing programme (Working for Water 2018). 

 

Due to the stochastic nature of some of the model variables, the four different scenarios were 

run for 25 iterations at each of the three efficacy levels. The mean number of person days 

required by each scenario was considered as the requirement to manage the sub-set of model 

conditions. The expected change in person days required between two successive simulation 

scenarios would be the result of the additional conditions added by each scenario. 

 

3.2.5 Clearing efficacy thresholds 

The management goal was set to have all management units in TMNP in a maintenance state, 

where Acacia density is <1 plant per hectare, thus classing Acacia species as ‘rare’ in the 

landscape according to the WfW standards (Le Maitre & Versfeld 1994). Fine-scale population 

data for the park (Cheney et al. 2018) found 161 (20%) of the management units and 5,646 

hectares (25%) in a maintenance state. Clearing efficacy is expected to impact on the 

likelihood of achieving this goal, but the relative impact of a given reduction in efficacy on 

management ability to clear areas is unknown. To test the relationship between clearing 

efficacy and the extent of Acacia invasion, 15 iterations of the fourth simulation model 

(including all modules) were run at 38 incremental levels of efficacy, from 5-100%. The mean 

number of years and the cumulative number of person days taken to reach the management 

goal was calculated at each level of efficacy. Where the management goal was not obtained 

for a model-run within the 50-year period, the number of management units that had reached 

the target and the cumulative number of person days used by the end of year 50 was 

calculated. Model outputs were regressed against each clearing efficacy level. Regression 

Stellenbosch University  https://scholar.sun.ac.za



implications of clearing efficacy 

 
 - 54 -  

models were fitted to the resultant curve to assess the nature of the relationship between 

efficacy and clearing outcomes, with the best fit relationship chosen using the Akaike 

information criterion (AIC). 

 

3.3 Results 

3.3.1 Current and Future Resource Allocation 

At 100% clearing efficacy, clearing only the current distribution of standing Acacias (Scenario 

1) to below <1 plant per hectare across all management units would take only 1.8 years 

(SD=0.4), using 48,590 (SD=5,296) person days (Fig. 3.2a; Sup. Mat. Table 3.7). When 

clearing efficacy was lowered to 80%, both the time taken (19.1 years, SD=0.4) and the person 

days required (292,370, SD=4,512) to reach the management goal increased significantly. At 

current project efficacy rates (approximated across the groups at 66%), clearing only the 

standing plants would take 25.2 years (SD=0.4), requiring 377,205 person days (SD=5,388). 

 

 

Fig. 3.2 The person days utilised after 50 simulation years to clear: (a) Scenario 1: current 

standing plants; (b) Scenario 2: current standing plants (a) plus seedlings germinating from 

non-dormant and post clearing operations; (c) Scenario 3: current standing plants and 

seedlings germinating from non-dormant post clearing operations (a & b) plus seedlings 

geminating post-fire; (d) Scenario 4: all propagules considered in a-c, plus plants resulting from 

additional seed being added to the seedbank from the current population; under 100%, 80% 

and the mean project efficacy (MPE, approximated across coppicing and non-coppicing 

species as 66%). For all scenarios, MPE levels required significantly more person days than 

higher efficacy scenarios, p < 0001. 

 

Clearing the seedlings that germinate post-clearing (Scenario 2, Fig. 3.1) required an 

additional 23 years (in total 24.7 years, SD=2.5, requiring 344,462 person days, SD=13,231) 
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when clearing was 100% effective (Fig. 3.2b, Sup. Mat. Table 3.7). A reduction in efficacy to 

current implementation levels would require 42.2 years (SD=2.4) and 706,235 person days 

(SD=31,152). The addition of clearing requirements from seed germination following fire 

events (Scenario 3) would require an additional 12 years (36.6 years, SD=4.2,  and 482,496 

person days, SD=36,642.0, in total) at 100% efficacy (Fig. 3.2c, Sup. Mat. Table 3.7). With the 

addition of fire-induced seedling germination, the management goal was not achievable in all 

areas with efficacy below 100%. At 80% efficacy, the time taken to achieve the desired target 

approached 50 years, with an average of only 804.6 (SD=3.5) of a possible 809 management 

units (mean area of 22,645 hectares, SD=18.8) reaching the goal of < 1 plant per hectare. 

Similarly, at the current level of efficacy, the management target was only met within a mean 

of 798.5 management units (SD=8.4), by the end of the 50 years simulation, utilising 

approximately 957,883 person days (SD= 22,345.5). 

 

When implementing the full model (Scenario 4), the first year in which invasions across all 

management units reached the desired level of < 1 plant per hectare was 37.2 years (SD=5.3) 

at a clearing efficacy of 100%. This clearing required a mean of 507,475 person days 

(SD=50,163) (Fig. 3.2d; Sup. Mat. Table 3.7). Neither the 80% nor current project efficacy 

levels resulted in a long-term reduction of Acacia abundance. At 80% efficacy, after 50 

simulation years, 344.1 (43%) management units (SD=54.7) and 58% of hectares achieved < 

1 plant per hectare, but required a mean of 1,992,947 person days (SD=16,203). The number 

of management units reaching the maintenance goal was reduced to 285.4 (SD=53.9, 35%) 

covering 55% of hectares at current mean management efficacy requiring a mean of 

2,000,082 person days (SD=10,366) over 50 years. 

 

For the full model (Scenario 4) at 100% effective control, the current standing alien plants 

required 9.6% of the utilised resource allocation, while post-clearing seed germination from 

current seedbanks required the majority with 58.3% (295,872 person days). Post-fire seed 

germination from current seed banks required 27.2% and clearing plants from future seed 

banks, the smallest portion of the available effort (4.9%  or 24,979 person days). The allocation 

of resources was significantly different when the clearing efficacy decreased to 80% and lower 

(p<0.0001). At 80% efficacy, 55.1% (1,099,026 person days) of the utilised person days went 

to clearing plants from future seedbanks, while current seedbanks collectively accounted for 

30.2% (602,046 person days). This outcome was similar to the current project clearing efficacy 

where 52.1% of the 2,000,082 utilised person days were required for treatment of plants from 

future seedbanks and 29.0% (580,679 person days) was used for plants from current 

seedbanks, resulting in the continued need for clearing over time.     
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3.3.2 Clearing efficacy thresholds 

While linear models provided a good fit to the data (Adjusted R-squared > 0.8 in all instances), 

the best fit models (Adjusted R-squared > 0.95 and ΔAIC in excess of 40) indicated a non-

linear, polynomial relationship between the number of hectares and management units treated 

and the efficacy of the treatment (Fig. 3.3). Below 25% clearing efficacy, there was little 

difference in the number of hectares or management units achieving a maintenance state in 

year 50. The achievement of this goal increases steadily to around 80% clearing efficacy, 

followed by a sharp increase in the impact of increasing clearing efficiency between 80 and 

100% (Fig. 3.3 a, c). A similar pattern was observed for the cumulative number of hectares 

and management units cleared over time (Fig. 3.3 b, d).  

 

 

Fig. 3.3. The relationship between clearing efficacy and (a) management units (MU) and (c) 

hectares, cleared at year 50 and (e) the associated person days required and the respective 

total cumulative MU (b) and hectares (d) treated over the 50 years with the total cumulative 

person days (f). Vertical gridlines have been added at 66% and 80% to indicate the current 

mean project efficacy (MPE) and required minimum project standard (MPS) for clearing. 

Dotted lines indicate a 4th order polynomial, used to describe the nature of the relationship 

between management efficacy and measured response: (a) Adjusted R2:  0.9772, F-statistic: 

501.7, p < 0.001, (b) Adjusted R2:  0.9892, F-statistic: 804.8, p < 0.001, (c) Adjusted R2:  

0.9793, F-statistic: 415.7, p < 0.001, (d) Adjusted R2: 0.9796, F-statistic: 421.1, p < 0.001. The 

number of model iterations for each of the clearing efficacy levels was 15. 

 

Due to this non-linear relationship, even a small reduction or increase in clearing efficacy 

between 80-100% had large effects on the number of hectares and management units that 

could be treated (Fig. 3.3 a-d; Sup. Mat. Table 3.8). At 90% clearing efficacy, a mean of 527.1 
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(65%) (SD=53.5) of the 809 management units and a mean of 16,840.7 ha (74%) (SD=1296.3) 

would be in a maintenance state after 50 years, compared to 99% of management units and 

99% of hectares when efficacy is 100% (Sup. Mat. Table 3.8). The model showed that even 

at 100% efficacy, fire events would stimulate seedbanks in certain management areas that 

would require continued follow-up work.  

 

 

Fig. 3.4 Annual clearing outcomes over time in terms of hectares (a) and management units 

(d) treated annually and the cumulatively over time (b, d) as well as the number of person days 

used per year (g) and cumulatively (h) and the resulting number of hectares (c) and 

management units (f) that achieved a maintenance level (<1 plant /ha) over time at four 

management efficacy levels (mean project efficacy (MPE, approximated across coppicing and 

non-coppicing species as 66%), 0.8, 0.9 and 1.0). The number of model iterations for each of 

the four efficacy levels was 25. 

 

The relationship between the number of person days required and clearing efficacy showed 

that for the long-term, clearing efficacy below 83% would require all the available annual 

person days (40,128 person days) for the foreseeable future (Sup. Mat.Table 3.8). Above 83% 

clearing efficacy, the required person days dropped sharply until 100% clearing efficacy where 
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9,491.5 person days (SD=7.2; 24% of current annual allocation) would be required from 

around year 20 to maintain the maintenance state (Fig. 3.3 e-f; Fig. 3.4g). Over the long-term, 

a decline in clearing efficacy is costly, with a decreasing number of outputs (management units 

and hectares treated annually), for continued maximum input (Fig. 3.4). Even a clearing 

efficacy of 90% required sustained high person day use (mean 38,582; SD=2,299.9, Fig. 4g), 

at levels close to the maximum annual person day allocation of 40,128 for the duration of the 

model simulation.  

 

3.4 Discussion 

Several studies have highlighted that IAP control programmes targeting Acacia species can 

be ineffective (van Wilgen et al. 2012; McConnachie & Cowling 2013; Kraaij et al. 2017). 

Studies point to poor treatment of management units where in some instances less than 25% 

of the treated areas met minimum clearing standards. The long-term implications of clearing 

inefficiency (e.g. resource allocation, timeliness of clearing, correct treatment and 

effectiveness of minimum standards) had not yet been quantified, which we set out to do here. 

We found that the resource allocation of 40,000 person days was adequate to bring the park 

to a maintenance level (i.e. <1 plant per ha), within 37 years, if clearing was completely 

effective. There was a positive non-linear relationship between treatment efficacy and the area 

that could be treated for Acacia species in the long-term, with the chance of reaching a 

maintenance level within 50 years declining significantly at efficacies below 100%. The current 

minimum clearing standard of 80% efficacy as determined in the WFW norms (Neethling & 

Shuttleworth 2013), therefore realises slow progress towards the goal of achieving 

maintenance levels for Acacias, despite using the maximum allowable resources.  

 

In approaching the management of Acacias, the drivers that facilitate successful invaders in 

many Mediterranean type habitats and climates require consideration (Richardson et al. 

2011). Much of the invasion success is due to their rapid growth rates, prolific seed production, 

and persistent seed banks (Milton & Hall 1981; Strydom et al. 2012; Souza-Alonso et al. 2017). 

As evidenced by comparison of scenarios, seedbank dynamics played an important role in 

perpetuating Acacia persistence and were the key driver of management resource 

requirements. Due to the prolific post-fire seed germination by Acacias, stimulating up to 90% 

of the available seedbanks to germinate (Holmes et al. 1987), many management control 

strategies focus on treating burnt areas within 24 months after fire (Roura-Pascual et al. 2010). 

However, the simulation model showed that for all clearing efficacy levels, more clearing effort 

would be needed annually in areas that did not burn, due to constant low rates of germination 

from non-dormant seedbanks, particularly at recently cleared sites (Holmes et al. 1987). 
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Although post-fire germination may be very notable, the actual extent of annual fire events 

covered <5% of the park (Forsyth & van Wilgen 2008).  

 

The simulation model showed that the potential seedbank contribution from a single mature 

individual into the population is considerable. This is key for the management of Acacias, as 

the potential propagule pressure from seedlings and dispersal is pronounced (Rouget & 

Richardson 2003; Lockwood et al. 2005). While areas of low invasion density are often 

considered lower priority (Roura-Pascual et al. 2010), the consequence of not clearing 

effectively and not reducing propagule pressure increased long-term future resource 

requirements. In the simulation model as much as 55% of future management resources 

(effort and costs) would be directed to treating plants that result from seedbank replenishment. 

This long-term future resource requirement has been observed in rehabilitation of river 

catchments and headwaters where re-invasion by Acacias is prominent in the absence of 

follow-up treatment (Galatowitsch & Richardson 2005; Le Maitre et al. 2011).  

 

3.4.1 Management implications 

Previous models making use of high clearing efficacy parameters have shown a significant 

reduction in Acacia invasion within 20 years (Krug et al. 2010; Le Maitre et al. 1996). Our 

models produced similar results at maximum efficiency (Fig. 3.4). However, the modelling 

scenarios here showed that the long-term resource requirements for the control of Acacias 

are also directly dependent on the clearing efficacy of current clearing programmes. Although 

efficacy in this study has largely focused on the treatment of plants, management efficacy can 

be extended to include several additional management aspects such as area-based, time-

based and detection efficacy in the control programme for a protected area.   

 

Area-based efficacy would consider if 100% of the treatment area was actually treated. To 

adequately manage Acacias, the entire population should be treated, however this is not 

always the case. In certain control programmes up to 60% of treatment areas did not have full 

coverage (McConnachie et al. 2012; Kraaij et al. 2017). Time-based efficacy considers i) when 

the treatment is scheduled for each area and ii) how much time has been allocated to 

undertake the clearing. Although considerable effort has gone into IAP planning, the 

implementation is not always satisfactory (Forsyth et al. 2012; McConnachie & Cowling 2013; 

Kraaij et al. 2017). Longer-than-optimal return treatment intervals, allow plants to replenish 

seedbanks before the follow-up treatment is applied. The amount of time allocated to treat an 

area has compounding effects on clearing efficacy. Over-allocation of time impacts the total 

available area that can be cleared with the available budget. This results in areas not being 

Stellenbosch University  https://scholar.sun.ac.za



implications of clearing efficacy 

 
 - 60 -  

cleared because budgets are depleted before all areas can be scheduled. Under-allocation of 

time results in ‘fast-pace’ work and treatment quality deteriorates.  

 

The implications of these sources of management inefficacy are important for control 

programmes. Currently WfW only records work as completed in terms of area covered and 

person days used (Marais & Wannenburgh 2008). However, from the simulation models, both 

the area covered and efficacy should determine if work is considered correctly completed. Red 

flags should be raised if the follow-up treatment cycle extends beyond two years, since 

covering the area alone is insufficient for IAP programmes, given seedbank replenishment. A 

common fall back option for managers is to increase financial resources to allow for more 

areas to be treated. While increasing financial resources allows for more effort, in the case of 

poor treatment effectiveness, this works only up to a point. Once an area is ineffectively 

cleared, it is physically impossible to immediately re-clear the area, as the plants need time to 

re-grow. Therefore, where funding is available to do the clearing, it is not a budget problem, 

but a lack of quality that necessitates repeat spending on the same area. 

 

In reality, complete eradication of Acacias is unlikely within in the next 50 years, requiring 

control programmes to have a very long-term outlook (Rejmánek & Pitcairn 2002; 

McConnachie & Cowling 2013). This long-term view is not unreasonable when viewed against 

a lengthy, multi-event invasion history spanning more than 200 years (Shaughnessy 1980). 

Although managers of control programmes may become disheartened by seemingly slow 

progress and consider the control efforts a failure (Davis et al. 2011; Vince 2011), even at the 

current levels of efficacy, simulations do predict an increase in the percentage of hectares and 

units in a maintenance state 50 years from now. Management priorities going forward will 

include minimizing dispersal into uninvaded and low density sites, through early detection and 

rapid response as well as focussed clearing of isolated or satellite populations (Zenni et al. 

2009; Kaplan et al. 2012). Managers should further be encouraged by the non-linear 

relationship between efficacy and clearing effort whereby even small increases in efficacy 

above 80% result in significant positive long-term improvements. For example improving the 

efficacy target to 90% would enable 74% of hectares and 65% of management units to reach 

maintenance levels in 50 years, compared to the current situation of 25% of hectares and 20% 

of management units.  

 

Even reducing plants to <1 plant per hectare would leave a few scattered plants capable of 

seeding on the landscape, which could lead to problematic regeneration relatively quickly. 

Long-term budgets, for at least for the next 100 years, are required for PAs to control IAPs 

due to incomplete clearing (van Wilgen et al. 2016a). The notion that the resources from 

Stellenbosch University  https://scholar.sun.ac.za



chapter three 

 
 - 61 -  

treated areas can be entirely shifted to other conservation areas is not supported by the model 

output. Even where clearing efficacy is 100%, about 25% (10,000 person days) of the current 

person day allocation would be required for maintenance control, due to continual recruitment 

from the existing seedbank. Instead of reducing budget requirements as programme efficacy 

improves, resources may be redeployed to other control tasks. For example, if efficacy was 

improved above 80%, the small unused person day allocation could be redirected to an early 

detection programme that seeks to ensure rapid control of new arriving species, as such 

working towards preventing future invasions (Leung et al. 2002). This extension of clearing 

programmes is important to tackle the global challenge of increasing numbers of alien species 

arriving at a site each year (Seebens et al. 2017), coupled with unpredictable responses to 

climate change (van Wilgen et al. 2016b; Slingsby et al. 2017) and other global change drivers 

(van Wilgen & Herbst 2017). Such expansion in the scope of clearing projects without 

increased budgets is however only possible if the long-term efficacy of current control 

programmes is improved.  

 

3. 5 Conclusions 

Quality of work is a primary driver of control success for invasive alien Acacias. Our model 

found that incremental improvements in efficacy above 80%, with a key focus on limiting 

seedbank replenishment, can result in large gains in the realisation of adequate control of 

Acacias in TMNP.  Managers should not see slow progress as control failure as a long-term 

view of the problem is required. PA managers should undertake regular reviews that can 

readily identify where short terms gains can be made and where long-term interventions are 

needed. Going forward, there are already plans in place in Table Mountain National Park to 

focus on improving quality of work. A new monitoring and evaluation programme now provides 

an improved focus on quality of work rather than amount of work completed or person days 

delivered. 
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3.8 Supplementary material 

The following supplementary Information may be found in the supplementary section 

accompanying this thesis: 

 

Sup. Mat. Figure 3.1 Clearing module where management units (MU) are selected at random 

and person days (PD) are allocated for treatment based on the abundance and age class of 

Acacia species where the probability of effective treatment is varied for 1 of 38 efficacy levels. 

The process is repeated until the allocation of person days are exhausted with output data 

supplied to other modules, for example Seed Germination.  

 

Sup. Mat. Figure 3.2 Fire module where the number of fire ignition points and the total 

expected area to be burnt in a year is determined from the 1980-2016 fire database. For each 

fire ignition point, the management unit to be burnt is selected and if the management unit 

(MU) is able to be burnt, the expected size of the individual fire is calculated from the fire 

history database and additional adjacent MUs are burnt until this value is reached. Fire 

intensity for the burn is varied by use of a Fire Danger Index (FDI) and output data is fed to 

other modules for example, Seed Mortality. 

 

Sup. Mat. Table 3.1. Assignment of each management unit to a fire ignition class based on 

the number of ignitions recorded for the management unit in the TMNP fire history database. 

Ignition classes were then assigned a probability of being an ignition source in the fire module.  

 

Sup. Mat. Table 3.2. Probability that a Fire Ignition event would result in the entire 

management unit burning based on vegetation age (Van Wilgen et al. 2010). Although 

ignitions are possible at all vegetation ages, significant portion of the management unit <5 

years will not burn given the small fuel loads of young vegetation. 

 

Sup. Mat. Table 3.3. Fire Danger Index (FDI) and Plant mortality where the fire danger rating 

system is used to provide a measure of the relative seriousness of burning conditions and 

threat of fire by providing an accurate measure as possible of the relative seriousness of 

burning conditions by making use of daily maximum temperature, relative humidity, wind 

speed and recent rainfall (South African Government Gazette 37014 No. 1099 of 2013) 

 

Sup. Mat. Table 3.4. Logistic equations used for annual seed production per m2 for coppicing 

and non- coppicing Acacia species (Milton & Hall 1981; Holmes et al. 1987; Strydom et al. 

2017)  
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Sup. Mat. Table 3.5. Fire Intensity as measured by the Fire Danger Index (FDI) effect on 

proportion of seedbank mortality / seedbank germination. Where cells are blank or ‘-‘ indicates 

no effect by the fire 

 

Sup. Mat. Table 3.6. Plant population parameters that bound the population within observed 

limits 

 

Sup. Mat. Table 3.7. Mean time (Years) and Person Days required to reach a maintenance 

level (<1 plant per ha) for the 809 management units before or at 50 years based on model 

25 iterations. * indicate that a maintenance level for the 809 management units (MU) was not 

reached by year 50.   

 

Sup. Mat. Table 3.8. The mean number of Management Units (MU), hectares (Ha) that 

reached a maintenance level (< 1 plant per Ha) at Year 50, and the number of Person days 

required at Year 50, for 38 levels of simulated efficacy. n=25 for 1.00, 0.90 and 0.8, n= 15 for 

all other. 

 

Appendix 1. Visual Basic code of the model 
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Chapter 4. 

Future outcomes of alien plant clearing strategies: Where to from 

here? 
 

Abstract 

Conservation managers are required to make decisions and take action in complex and 

uncertain systems. To strengthen the robustness of conservation decisions, several 

approaches have been proposed. These processes involve stakeholder engagement in the 

setting of conservation management objectives and priority actions. The overall aim of the 

decision making process should be to encourage participation, accommodate stakeholder 

differences, allow for the formulation of common values and to incorporate complexity in 

defining the conservation problems at hand. A number of strategies linked to invasive alien 

plant management objectives have been formulated in the literature that appear to address 

management of these species in protected areas. The long-term performance of five of these 

strategies was tested using empirical data from Table Mountain National Park. A simulation 

model based on data for Acacia species focused on the interaction between strategy 

performance and clearing efficacy in achieving a management goal or reducing Acacia density 

to below 1 plant per hectare. Results show that at near perfect levels of clearing efficacy, all 

management strategies converged towards reaching the overall management goal, while at 

lower efficacy levels the strategies diverged from each other in terms of their ability to achieve 

desired outcomes. Strategies that focussed on clearing low density invasions managed to 

clear the most hectares, but maintained the least area in a maintenance state over time. In 

contrast, strategies that focussed on a mix of post-fire, low density areas and high altitude 

areas cleared less area annually, but maintained a much greater area in a maintenance state. 

At higher levels of efficacy, follow-up strategies were even more successful than the 

consensus strategy. Strategies that focused solely on securing water, performed poorly in 

maintaining low overall density of aliens. The short falls of the objectives, the importance of 

improving efficacy and allowing proactive flexible implementation is discussed. 
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4.1 Introduction 

Conservation managers are required to make decisions and take action in complex and 

uncertain systems (Regan et al. 2005; Game et al. 2014). These management decisions often 

have to accommodate biodiversity needs, socio-economic trade‐offs, political agendas and 

conflicting, often diverse interest groups, in the midst of limited resources and data deficiencies 

(Reed 2008). Many conservation issues can therefore be seen as ‘wicked problems’ where 

the real underlying problem is difficult to define and authorities and stakeholders may not 

agree on the proposed solution (Game et al. 2014). The management of invasive alien plants 

(IAP) is one such wicked conservation problem (Head et al. 2015; Seastedt 2015; Woodford 

et al. 2016), which has been widely documented in protected areas (Downey 2013; McNeely 

2013). 

 

Several approaches have been proposed to improve the robustness of conservation decision 

making (Bower et al. 2017; Schwartz et al. 2018). These processes, such as Structured 

Decision Making and Systematic Conservation Prioritisation (Bower et al. 2017; Schwartz et 

al. 2018), entail inclusive stakeholder engagement in the setting of conservation management 

objectives and priority actions. The overall aim of the decision making process is to encourage 

participation, accommodate stakeholder differences, allow for the formulation of common 

values and to incorporate complexity in defining the conservation problems at hand. In this 

way, multiple management actions can be prioritized and the required levels of management 

effort determined. One of the benefits of transparent objective setting is that where conditions 

fluctuate or have high levels of uncertainty (Regan et al. 2005), objectives can be modified 

through processes such as adaptive management where the focus is on the monitoring and 

review of conservation actions (Shea et al. 2002; Foxcroft & Downey 2008; Foxcroft & 

McGeoch 2011).  

 

However, the wide range of inputs arising from the inclusion of scientific, political, social and 

economic stakeholder perspectives may lead to the formulation of excess or conflicting 

management objectives (Roper et al. 2018). This can reduce clarity and obscure the intent of 

the original conservation intervention. As conservation decision making and objective setting 

is not an ‘exact science’, it is possible that convoluted problems result in no clear agreeable 

solution, or any agreeable solution being deemed better than no solution at all (Saaty 1990). 

Where management objectives that attempt to reconcile multiple views and agendas are 

adopted in the absence of better ones (Game et al. 2013), the objectives still lead to 

management actions and resource-allocation decisions that require framing of the  ‘where, 

when and what’ aspects of the management actions to be carried out (Epanchin-Niell & 

Hastings 2010). This acceptance by managers of sub-optimal objectives can undermine the 
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effective use of the limited available conservation funding and resources (James et al. 1999; 

Bruner et al. 2004; Emerton et al. 2006; Ferraro & Pattanayak 2006). The management of 

invasive alien plants (IAP) is one area of conservation management that requires clear 

objectives, adaptive planning, adequate resources and budgets for long-term implementation 

(Esler et al. 2010; Foxcroft & McGeoch 2011; van Wilgen et al. 2016; Chapter 3). Determining 

priorities for IAP management requires prediction of the proposed outcomes of management 

control efforts on the extent of the invasion over time, while accommodating system 

uncertainty (Epanchin-Niell & Hastings 2010; Regan et al. 2011). 

 

Insight into the requirements and expected outcomes of management actions as defined by 

conservation objectives can be provided by predictive IAP models. These models consider 

dynamic ecological drivers, for example, fire, rate of invasion, ecological impact and factors 

that increase uncertainty such as clearing efficiency (Le Maitre et al. 1996; Krug et al. 2010; 

Chapter 3). Management prioritisation models for IAPs have been developed for a number of 

scenarios and include water catchment areas (van Wilgen et al. 2007; Forsyth et al. 2012), 

PA management (Forsyth & Le Maitre 2011; van Wilgen et al. 2016) and the need to maximise 

economic cost-benefit ratios (Higgins et al. 1997; de Wit et al. 2001). However, the 

prioritisation of areas for management intervention in these predictive models has been shown 

to be very sensitive to selection criteria, the availability of information and the primary 

conservation objective that was set (Roura-Pascual et al. 2010).  

 

Specific IAP genera pose on-going management challenges, perpetuating high long-term 

management costs (McConnachie et al. 2012). One such group is the Australian Acacia 

species which are particularly difficult to control despite intensive management effort. Acacias 

are highly invasive globally (Richardson & Rejmánek 2011) and have been considered a 

model group for studying many facets of alien plant invasions (Richardson et al. 2011; van 

Wilgen et al. 2011). The successful establishment and long-term persistent invasion of Acacia 

species has been attributed to a number of factors, including early maturity (<2 years), prolific 

production of long-lived seed (up to 12000 seeds/m2/annum) and prolific post-fire germination 

(Marchante et al. 2010; Souza-Alonso et al. 2017; Strydom et al. 2017). This has resulted in 

the need for clear objectives that address the management of persistent invasions by Acacia 

species.  

 

Current IAP management strategies applied in the majority of South African protected areas 

(PA) follow the nationally funded invasive alien control programme, ‘Working for Water’ (WfW). 

This programme aims to restore and maintain habitat structure and function to mitigate the 

loss of ecosystem services, especially water production through creating employment 
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opportunities and facilitating skills development that contribute to poverty alleviation (van 

Wilgen et al. 2012a). The overall management goal of WfW is to reduce the occurrence of 

these IAPs to densities that have no negative impact on native biodiversity. In trying to reach 

this management goal, a number of area-based prioritization strategies have been employed 

in PAs, but their long-term outcomes and suitability for reaching the management target have 

not been evaluated. 

 

Using four major clearing strategies formulated on priorities set by conservation managers 

and expert information (Roura-Pascual et al. 2010), together with a triage strategy the 

prospects of each strategy for achieving the target alien density for Acacia species was tested. 

In particular the performance of each strategy was assessed at several levels of clearing 

efficacy in terms of:  

i. the number of management units and hectares treated over a 50 year period, 

ii. the number of management units and hectares in which the management maintenance 

goal was achieved over the long-term, 

iii. the effect of clearing efficacy on each strategy over 50 years, 

iv. changes in the spatial distribution of areas deemed to have reached the management 

goal under different strategies and clearing efficiencies, 

v. the effort (resources) required to implement each strategy, versus alternate strategies, 

including allowances for variability in implementation. 

 

4.2 Materials and methods 

4.2.1 Study area  

Table Mountain National Park (TMNP) is located on the Cape Peninsula, South Africa, and 

covers approximately 25,000 ha. Historical land-use and proximity to the city of Cape Town, 

has facilitated the arrival and spread of over 200 alien plant species into the park 

(Shaughnessy 1980; Macdonald et al. 1985; Alston & Richardson 2006; Spear et al. 2011). 

Formalised control of IAPs commenced in the late 1980s, employing semi-skilled labour, 

skilled private contractors and civil society volunteer groups (Macdonald et al. 1985; Taylor et 

al. 1985; Moll & Trinder-Smith 1992). Current IAP management is implemented through the 

WfW programme, which has been in place since 1998. Despite the long history of the control 

programme, aliens persist in the landscape at densities that require large, long-term budgets 

(van Wilgen et al. 2016).  

 

For model simulation and analysis we considered fine-scale data from 809 Working for Water 

management units (spatially mapped as GIS polygons) that cover 91% (22,671 ha) of the park 

(Cheney et al. 2018; Chapter 2), excluding only very steep areas that would require rope 
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access. Each management unit currently has, or historically had, different levels of invasion 

by a range of alien plant species. The dominant taxa in TMNP comprise of woody alien species 

from the genera Acacia, Pinus and Hakea. For the purpose of this simulation model only 

Acacia species are considered as they are the most common alien plants in the PA (Cheney 

et al. 2018) and have been suggested to pose the greatest threat to TMNP’s biodiversity 

(Richardson et al. 1996; Higgins et al. 1999).  

 

4.2.2 Setting a management goal for clearing 

Since 1998, the park has used a multi-priority management approach, focusing on i) recently 

burnt areas, thereby targeting young plants, ii) maintenance clearing of lightly invaded areas, 

to maintain gains of past work, iii) control in areas of medium invasion, iv) removal of pockets 

of very dense invasions, and v) trying to ensure a 18-24 month return interval to each 

management unit (i.e. before coppicing/germinated plants produce new seeds). These area-

based priorities have the overall objective of long-term IAP eradication or where eradication is 

not possible, ensuring that the IAP present have no negative effects on native biodiversity.  

 

Due to germination from long-lived, persistent seedbanks and variable clearing quality, it is 

currently accepted that complete eradication of Acacia species within the model period of 50 

years is unlikely (Chapter 3). Given the current prevalence of Acacia and resources available 

to conservation managers a realistic management goal needed to be set. Within the current 

WfW clearing programme three main measures are monitored, based on the programme’s 

objectives that determine successful implementation i.e. person day utilised, hectares treated 

and IAP density reduction (van Wilgen et al. 2017). The WfW programme aims to maximize 

the number of job opportunities provided by allocating work in terms of person days required 

as a resource input (van Wilgen et al. 2012a). Using these available person day allocations, 

the total number of hectares that can be treated is determined with due consideration of 

opportunities for reducing alien plant density. Failing eradication of IAPs, the best possible 

management outcome would be to reduce the target alien species to levels that require only 

maintenance clearing across the entire park. Thus, for each management unit, the 

management goal was set for Acacias to have a density of less than 1 plant per hectare, and 

as such being considered ‘rare’ in in the landscape (Le Maitre & Versfeld 1994).  

 

4.2.3 Simulated IAP management strategies 

Four IAP management clearing strategies that were developed through a participatory process 

with managers, researchers and experts are considered for analysis (Roura-Pascual et al. 

2009). These are i) follow-up clearing, ii) keep areas clean, iii) water production and iv) 

management consensus (see Table 4.1, Box 4.1 and Sup. Mat Fig. 4.2 for details). The 
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Analytical Hierarchy Process (AHP) that was followed in the development of these strategies 

entailed determining main factors and sub-factors to be considered in the management of 

IAPs, each of which is assigned a relative importance and weighting (Saaty 1990). In terms of 

the simulation models the main factors in the AHP are seen as a particular management 

objective that needs to be attained. Importance weightings for each of the seven main factors 

(management objectives) summed to 1. Each main factor was further divided into sub-factors, 

and assigned a weighting that summed to 1 (100% of the main factor). The data used by the 

main and sub-factors was sourced from existing data, for example the fire history of the PA 

for vegetation age, DEM modelling of topography (detailed in Table 4.1). In addition to the four 

management strategies, we considered a Triage management strategy, based on securing a 

core conservation area of the park and clearing additional areas if resources area available 

(Box 4.1).  

 

Box 4.1. Description of strategies tested. Refer to Table 4.1 for parameter settings used for 

each strategy. 

 

Maintain follow-ups: Focus is on follow-up clearing in areas previously treated so that gains made 

through previous clearing efforts and financial investment are not foregone. Areas are primarily 

selected for treatment if they have been cleared within the last 6 years (50% of total weight) or have 

had a recent fire (20% of total weight). 

 

Keep-it Clean: Focus is on areas that are currently lightly invaded with the aim preventing these 

areas from becoming further invaded. Areas are primarily selected for treatment on IAP density 

(50% of total weight) with emphasis for selection on low to very low IAP densities (89% of IAP sub-

factor weight). The second most important factor is topographic position where high lying areas are 

selected (31% of total weight). 

 

Water production: One of the main aims for the IAP programme is securing water resources. Focal 

areas for treatment were prioritized based on the river channel topographic type (44% of total 

weight; 65% of sub-factor weight), considering IAP density (26% of total weight) with emphasis on 

densely invaded areas (71% of sub-factor weight). 

 

Management consensus: This strategy reflects the view shared by conservation managers on 

which areas should be selected for treatment. Focus is primarily on post-fire clearing (40% of total 

weight), IAP density (17% of total weight) with emphasis on lightly infested areas (87% of sub-factor 

weight) and topographic position (17% of total weight), with high lying area being most important 

(65% of sub-factor weight). 

 

Triage: A contiguous core conservation area, of high biodiversity value, was delineated. The 

strategy entailed repeated clearing of this core area. Any remaining resources following clearing of 

the core area were used to clear areas directly adjacent to the core area.  

 

Random: Management units were selected at random at the beginning of each model year until 

allocated person days had been depleted with no memory or influence on the units that were 

selected from year to year. 
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Table 4.1 Main factors (management objective) (bold) and sub-factor (italic) weights applied in each 

of the strategies (modified from Roura-Pascual et al. 2010). Main factors for a strategy sum to 1.0, 

with each sub-factor summing to 1.0. The main aims of each strategy are detailed in Box 4.1.  

Management 

Strategy  

Maintain 

follow-ups 

Keep-it-

Clean 

Water 

production 

Management 

Consensus 

Data source and 

comments 

Recently burnt 

areas 
0.2 0 0.04 0.4 

 

Yes  0.9 0 0.9 0.9 Age <= 3 Years 

No  0.1 0 0.1 0.1 Age > 3 Years 

Topography 0.09 0.31 0.44 0.17  

Planar, flat & pit 0.07 0.07 0.07 0.07 (Wood 1996; Neteler 

et al. 2008)  
Channel 0.28 0.28 0.65 0.28 

Pass, ridge & 

peak 
0.65 0.65 0.28 0.65 

Density of IAPs 0.09 0.5 0.26 0.17  

Closed 0.03 0.03 0.45 0.03 Density of IAPs within 

each management unit 

(Working for Water 

Program 2003) 

Dense 0.04 0.04 0.26 0.04 

Medium 0.06 0.06 0.15 0.06 

Scattered 0.11 0.11 0.07 0.1 

Very scattered 0.2 0.2 0.03 0.2 

Occasional 0.39 0.39 0.02 0.38 

Rare 0.19 0.19 0.02 0.19 

Fire risk 0.07 0.04 0.03 0.13 Vegetation type: 

(Cowling et al. 1996) 

Vegetation Age:  

(Forsyth & van Wilgen 

2008) (Chapter 3) 

Low 0.07 0.07 0.07 0.07 

Medium 0.28 0.28 0.28 0.28 

High 0.65 0.65 0.65 0.65 

*IAP Age 0.03 0.09 0.1 0.06 * Acacia only 

Adult 0.11 0.11 0.74 0.11 Age: >3.0 years 

Sapling 0.64 0.64 0.21 0.64 0.5-3.0 years 

Seedling 0.26 0.26 0.06 0.26 0-0.5 years 
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Table 4.1: Continued 

Management 

Strategy  

Maintain 

follow-ups 

Keep-it-

Clean 

Water 

production 

Management 

Consensus 

Data source and 

comments 

** IAP Identity 0.03 0.06 0.1 0.05  

Hakea 0.1 0.1 0.07 0.1 ** Only Acacia species 

modelled 
Acacia 0.26 0.26 0.65 0.26 

Pinus 0.64 0.64 0.28 0.64 

Last clearing  0.5 0 0.04 0.03  

No treatment 0.05 0 0.05 0.05 Never cleared 

Initial 

0.3 0 0.3 0.3 

Previously cleared but 

not treated for > 6 

years 

Follow-up 
0.55 0 0.55 0.55 

Cleared within last 6 

years 

Maintenance 
0.1 0 0.1 0.1 

Cleared within last 6 

years  

 

4.2.4 Model description 

A spatio-temporal, polygon-based, population model was developed for the park using Visual 

Basic in MS Excel (2013 v15.0) (Sup. Mat. Figure 1, Chapter 3). The model simulates Acacia 

population size, age structure and area invaded, within each of the 809 management units, 

based on two key drivers of Acacia persistence, namely fire dynamics and plant population 

dynamics (growth and seedbank dynamics) (Le Maitre et al. 1996; Krug et al. 2010). Fire 

dynamics were based on the fire history of TMNP in combination with vegetation age 

characteristics and fire intensity as determined by the Fire Danger Index based on daily 

weather recordings, while seed dynamics were based on current literature that assessed seed 

accumulation rates, vertical movements of seed in the soil, germination rates and dispersal in 

the landscape (see Chapter 3 for details on model parameters). The purpose of the model is 

to test the performance of each strategy against its potential future outcomes at different levels 

of clearing efficacy.  

 

Starting population data for the model (year 0) were based on fine-scale data collected from 

a systematic survey in-field from 10,057 plots that covered all management units (Cheney et 

al. 2018; Chapter 2). The Acacia species included in the model were grouped based on their 

response to management i.e. those that, i) readily coppice if not treated correctly (e.g. through 

the incorrect clearing method or application of herbicides), such as Acacia saligna, A. 

mearnsii, A. melanoxylon and ii) species that do not readily coppice, namely Acacia cyclops 
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and A. longifolia. The model was run for the equivalent of 50 simulation years for each 

management strategy. Within a model simulation year, the model time interval was set to 

quarterly calendar increments, aligned with current IAP clearing operations (Chapter 3 Figure 

3.1). Available resources were divided per quarter until the total available resource allocation 

for the year was reached. The standard resource unit for alien plant control in the park is based 

on the number of person days required to treat an invaded area. The TMNP’s 2017 allocation 

of 40,128 person days was used as the available resource with which to undertake clearing 

each year. Any unused person days in a simulation year were not carried over to the next 

simulation year. 

 

At the start of each year, the model assessed the value of each factor and sub-factor relevant 

to each strategy within management units. Management units were prioritised for clearing 

based on scores for the factors and sub-factors for each of the four scoring strategies (Table 

4.1). The scoring was done at the beginning of each simulation year so as to enable the effects 

of the model variables, such as fire, clearing success, seed germination, to be ‘fed-back’ into 

the model and inform the that year’s prioritisation scoring. For the Triage strategy, factor 

weights were ignored and the management units were pre-scored based on biodiversity value 

and repetitive selection of the same ordered management units occurred. For the Triage 

strategy this resulted in management resources being directed primarily into the high value 

conservation areas with secondary areas being treated as resources became available. For 

purposes of comparison, a Random strategy was introduced as a null strategy where 

management units were selected at random at the beginning of each model year until 

allocated person days had been depleted, with factor weights ignored.  

 

Due to the stochastic nature of some of the model variables, the management strategies (see 

4.2.5) were run for 15 iterations of each strategy at 20 incremental levels of clearing efficacy 

from 5-100% for 50 years. 

 

4.2.5 Management strategy comparison  

To compare the long-term outcome of the six strategies (five management and one random), 

specific areas of interest for analysis included of hectares cleared and management units that 

reach a maintenance state, at different levels of implementation success. Sections 4.2.5.1 - 

4.2.5.3 below describe the metrics determined and analysed for each strategy. 

 

4.2.5.1 Hectares and Management Units treated 

Firstly, the performance of each management strategy was assessed at 20 efficacy levels 

between 5-100% effective (also noted as efficacy between 0.05 to 1.0) for the duration of the 
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model between years 10 to 50 in terms of i) the number of hectares and ii) management units 

that were treated each year, iii) the total hectares and, iv) management units treated by the 

endpoint of the model in year 50. The first nine years were excluded from the analysis to allow 

the models to stabilize and reduce the influence of the starting parameters on model 

performance, especially initial plant population parameters. To simplify reporting, focus was 

on very high (0.95), high (0.9), medium (0.75), low (0.5) and very low (0.25) levels of 

implementation efficacy with details of additional efficacy levels supplied as Supplementary 

Material. The amount of clearing effort (as measured in person days) required by each strategy 

at each level of efficacy was calculated annually.  

 

4.2.5.2 Hectares and Management Units achieving the management goal 

Secondly, management strategy performance was compared using the number of hectares 

and management units that realised the set management goal of less than 1 plant per hectare 

at relevant levels of clearing efficacy for each strategy in each year and at the end of 50 years. 

 

4.2.5.3 Hectares and Management Units sustained in maintenance 

Third, 161 management units (20%) and 5,646 hectares (25%) were in a maintenance state 

at the start of the model (year 0), i.e. in-field sampling recorded Acacia density at <1 plant per 

hectare. This analysis evaluated the number of these hectares and management units that 

were sustained in a maintenance state for the duration of the model as well as at the end of 

the model period. This enabled assessment of the potential shift away from areas currently 

under maintenance to new maintenance areas for each strategy at varying efficacy levels.  

 

Differences in the outcome of each strategy (hectares and management units cleared, 

reaching maintenance and sustained in a maintenance state) were compared pairwise using 

the Wilcox non-parametric test. To reduce the number of comparisons for reporting, we focus 

on comparisons of each strategy to the random model, with additional results available in the 

supplementary material. Data analyses were conducted in R (Team 2013), with plots drawn 

using ggplot2 (Wickham 2016). 

 

4.2.5.4 Strategies frequency histograms 

Each strategy was expected to select different management units for clearing at a specified 

level of efficacy. Over time, some management units may be selected more frequently under 

one strategy, but less frequently or not at all under others. Under each strategy, each 

management unit had 50 opportunities to be selected (one per year). Given 15 iterations per 

year over 50 years, each management unit could be selected maximum of 750 times (i.e. 50 

years x 15 iterations) across model runs. For each of the 809 management units, the total 
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number of treatments received out of the possible 750 was calculated per strategy at a given 

efficacy level and plotted as a kernel density histogram (Wickham 2016). In addition, a kernel 

density histogram based on the actual number of times each management unit was treated in 

the history of the clearing programme was plotted using the parks’ clearing database which 

covers 1998-2017 (20 years of actual treatments) (Working for Water 2017). A normal 

distribution would be expected under a random strategy, whereas a uniform distribution of 

treatments would indicate a biased prioritisation where specific areas are constantly selected 

and others are consistently not selected, while remaining areas receive an even spread of 

clearing work. A left-skewed distribution would indicate the presence of the majority of 

management units receiving very few or no treatments, while a right skewed distribution would 

indicate most management units receiving a high number of treatments. For example, the 

water strategy is expected to produce a skewed distribution based on repeat selection of 

management units important for water production. Differences in the mean of the frequency 

were tested with a Wilcox test at different levels of efficacy. 

 

4.3 Results 

4.3.1 Overview of results 

The output from the simulation models generated a large number of results and comparisons. 

The key highlights are presented in sections 4.3.1 to 4.3.4, with additional detail provided in 

supplementary tables. The core results relate to three aspects of model output, i.e. i) the 

number of hectares and management units treated, ii) the number of hectares and 

management units that achieved a maintenance level and iii) the number of hectares and 

management units that were sustained in a maintenance state. A summary of the ‘best’ and 

‘worst’ performing management strategies for each of these indicators is provided in Table 

4.2. Although there is a fair degree of variation in the performance of management strategies, 

there are a few consistent trends. Firstly, the Keep-it-Clean strategy was able to treat the most 

hectares, while the Water production strategy was largely the worst performer across 

indicators in terms of the number of hectares treated. The Follow-up strategy performed best 

in relation to achieving the management goal of reducing areas to a maintenance state, while 

the Keep-it-Clean strategy was largely the worst in this regard, despite its hectare coverage. 

The strategy that sustained the most current maintenance hectares in a maintenance state 

was the Triage strategy, while the Keep-it-Clean strategy sustained the least. The 

Management Consensus strategy consistently fared well across most indicators.  

 

4.3.2 Management units and ha treated 

4.3.2.1 Overall strategy performance  
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Strategy performance was assessed by averaging model results across clearing efficacy 

levels between 0.05-0.90 over the combined model period of 10 to 50 years (Fig 4.1, Table 

4.3). The Keep-it-Clean strategy (i.e. the strategy focussed on maintaining the currently large 

areas of very low Acacia density in this state, Box 4.1) treated the highest mean number of 

hectares (16,135 ± 4,428SD, Table 4.3) and management units (593 ±136SD, Table 4.3) per 

year followed by the Triage strategy (14,471ha ± 4,910SD, 354MU ±253SD) with both 

strategies performing significantly better than the Random strategy in this regard (p<0.001).  

 

Table 4.2: Management strategies that performed best and worst in terms of hectare-based outcomes. 

The random strategy is not considered as a contender for best or worst strategy and strategies performing 

better than random are denoted (+) and worse than random (-). Significant differences (in comparison with 

the random model as tested with a Wilcox test) appear in bold with a double symbol (++ or - -). Detailed 

comparisons are presented in Tables 4.3 to 4.5 and Supplementary Material Tables 4.1 to 4.6 as indicated 

in [square brackets]. 

    

Clearing 
efficacy 

averaged 
over 0.05-

0.9 

0.95 
Clearing 
efficacy 

0.9 
Clearing 
efficacy 

0.75 
Clearing 
efficacy 

0.5 
Clearing 
efficacy 

0.25 
Clearing 
efficacy 

Hectares Treated over model 
years 10-50 [Table 4.3, Sup. 
Mat. Table 4.1] 

Best 

Keep-it-
Clean  

++ 

Keep-it-
Clean  

++ 

Keep-it-
Clean  

++ 

Keep-it-
Clean  

++ 

Keep-it-
Clean  

++ 

Keep-it-
Clean  

++ 

Hectares Treated in year 50 
[Table 4.3, Sup. Mat. Table 4.2] 

Keep-it-
Clean  

+ 

Keep-it-
Clean  

++ 

Keep-it-
Clean  

++ 

Keep-it-
Clean  

++ 

Keep-it-
Clean  

++ 

Keep-it-
Clean  

++ 

Hectares Maintained over 
model years 10-50 [Table 4.4, 
Sup. Mat. Table 4.3] 

Follow-up 
++ 

Follow-up 
++ 

Follow-up 
++ 

Consensus 
++ 

Triage 
++ 

Water  
++ 

Hectares Maintained at year 50 
[Table 4.4, Sup. Mat. Table 4.4] 

Follow-up 
++ 

Triage  
+ 

Follow-up 
++ 

Consensus 
++ 

Follow-up 
++ 

Follow-up 
++ 

Hectares Sustained over model 
years 10-50 [Table 4.5, Sup. 
Mat. Table 4.5] 

Triage  
++ 

Triage  
++ 

Follow-up 
++ 

Triage  
++ 

Triage  
++ 

Triage  
++ 

Hectares Sustained in year 50 
[Table 4.5, Sup. Mat. Table 4.6] 

Follow-up 
++ 

Triage  
+ 

Triage  
+ 

Consensus 
++ 

Consensus 
++ 

Follow-up 
++ 

Hectares Treated over model 
years 10-50 [Table 4.3, Sup. 
Mat. Table 4.1] 

Worst 

Water  
- - 

Follow-up  
+ 

Water  
- - 

Water  
- - 

Water  
- - 

Water  
- - 

Hectares Treated in year 50 
[Table 4.3, Sup. Mat. Table 4.2] 

Consensus - 
Water  

- - 
Water  

- - 
Water  

- - 
Water  

- - 
Water  

- - 

Hectares Maintained over 
model years 10-50 [Table 4.4, 
Sup. Mat. Table 4.3] 

Keep-it-
Clean  

++ 

Keep-it-
Clean 

- - 

Keep-it-
Clean  

- - 

Keep-it-
Clean  

- - 

Keep-it-
Clean  

- 

Triage  
++ 

Hectares Maintained at year 50 
[Table 4.4, Sup. Mat. Table 4.4] 

Keep-it-
Clean  

++ 

Keep-it-
Clean  

+ 

Water  
- - 

Water  
- - 

Keep-it-
Clean  

+ 

Triage  
++ 
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Hectares Sustained over model 
years 10-50 [Table 4.5, Sup. 
Mat. Table 4.5] 

Keep-it-
Clean  

- - 

Keep-it-
Clean  

- - 

Keep-it-
Clean  

- - 

Keep-it-
Clean  

- - 

Keep-it-
Clean  

- 

Keep-it-
Clean  

++ 

Hectares Sustained in year 50 
[Table 4.5, Sup. Mat. Table 4.6] 

Keep-it-
Clean  

- 

Keep-it-
Clean  

- 

Water  
- - 

Keep-it-
Clean  

- - 

Water  
+ 

Keep-it-
Clean  

+ 

 

All the other management strategies treated significantly less hectares and management units 

per year than the Random strategy (Random strategy: mean 10,802ha, ±4,928SD, and mean 

397 MU ±173SD; p<0.001), with the Water production strategy (i.e. prioritizing clearing of 

riparian zones and wetlands, Box 4.1) treating the least mean hectares (4,549 ±4,869SD) and 

management units (256, ±160SD) annually. Annually, the Consensus and Follow-up 

strategies treated about half the hectares and management units compared to the Keep-it-

Clean strategy (Consensus: mean 8,912 ha ±7,655SD and 342 ±262SD management units; 

Follow-up: mean 7,942 ha ±6,047SD and 327 ±208SD management units). At the end of the 

model run at year 50, a similar outcome was observed with the Keep-it clear strategy clearing 

significantly more hectares and management units (mean 15,529ha, ±4,537SD, and 575 MU, 

±143SD; p<0.001, Table 4.3) than the other management strategies. 

 

Table 4.3. The number of hectares (ha) and management units (MU) treated per year averaged over clearing 

efficacies of 0.05-0.9 and 15 model runs, for model years 10 to 50 and for year 50. 

Strategy  Clearing 

efficacy 

Model 

Year 

Mean 

(ha) 

SD Min 

(ha) 

Max 

(ha) 

p to 

Random 

Mean 

(MU) 

SD Min 

(MU) 

Max 

(MU) 

p to 

Random 

Consensus 0.05-0.90 10-50 8912 7655 830 22669 p<0.001 342 262 29 809 p<0.001 

Follow-up 0.05-0.90 10-50 7942 6047 836 22669 p<0.001 327 208 30 809 p<0.001 

Keep-it-
Clean  

0.05-0.90 10-50 16135 4428 5606 22668 p<0.001 593 136 254 809 p<0.001 

Random 0.05-0.90 10-50 10802 4928 1861 22668 N.A. 397 173 67 809 N.A. 

Water 0.05-0.90 10-50 4549 4869 972 22669 p<0.001 256 160 68 809 p<0.001 

Triage 0.05-0.90 10-50 14471 4910 2076 22669 p<0.001 354 253 24 809 p<0.001 

             

Consensus 0.05-0.90 50 7719 7249 984 22667 p<0.001 302 249 45 809 p<0.001 

Follow-up 0.05-0.90 50 6606 5453 1125 22668 p<0.001 285 189 50 809 p<0.001 

Keep-it-
Clean 

0.05-0.90 50 15529 4537 6050 22667 p<0.001 575 143 270 809 p<0.001 

Random 0.05-0.90 50 9877 4434 2035 22665 p<0.001 365 156 74 809 p<0.001 

Water 0.05-0.90 50 3518 3719 1095 22665 p<0.001 223 127 88 809 p<0.001 

Triage 0.05-0.90 50 13041 5138 2076 22666 p<0.001 294 244 24 809 p<0.001 

 

4.3.2.2 The impact of clearing efficacy on hectares and management units treated 
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Clearing efficacy had a significant effect on the mean hectares and management units that 

could be treated, for all strategies tested (Fig. 4.1, Sup. Mat. Table 4.1). At 100% efficacy all 

management strategies were able to clear all hectares, indicating that the choice of a specific 

strategy becomes irrelevant at this level of efficacy. At very high efficacy levels (0.95), all 

management strategies were able to treat a mean of >21,200 ha (94%) and 760 (94%) 

management units (Sup. Mat. Table 4.1) each year, from years 10-50, with no significant 

difference between the management strategies and the Random strategy (p>0.05). The 

general trend for all management strategies was a sharp decline in the number of hectares 

and management units being cleared annually as efficacy levels decreased. For example the 

mean number of hectares treated by the Consensus strategy (i.e. the shared view of 

conservation managers, Box 4.1) decreased to a mean of 18,069ha ±6,629SD at 0.90 clearing 

efficacy, 11,931ha ±7,928SD at 0.75, 8,882ha ±7354SD at 0.50 and 5,347ha ±5056SD at 0.25 

clearing efficacy (Sup. Mat. Table 4.1). Only the Keep-it-Clean and Triage strategies treated 

significantly more hectares (p<0.001, Fig 4.2, Sup. Mat. Table 4.1) than the Random strategy 

at all efficacy levels, while all the other strategies consistently treated significantly less 

hectares (p<0.001, Fig 4.2, Sup. Mat. Table 4.1).  

 

 

Fig. 4.1 : Effect of clearing efficacy on the number of hectares (a) and management units (b) 

treated per year over 50 years for each of the management strategies. Mean and 95 % 
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confidence over 15 model runs are shown for selected levels of clearing efficacy. 

Supplementary Material Fig. 4.3 shows all 20 tested levels of efficacy. 

 

4.3.2.3 Strategy outcomes 

At model endpoints (year 50), the overall trend was for the Keep-it-Clean and Triage strategies 

to treat significantly more hectares (p<0.001, Fig 4.2, Sup. Mat. Table 4.2) than the Random 

strategy. The other management strategies constantly treated significantly less hectares 

(p<0.001, Sup. Mat. Table 4.2) than the Random strategy, expect for the Consensus strategy 

which was not significantly different to the Random strategy at 0.90 and 0.75 clearing efficacy 

levels. In terms of the management strategies, the Water production strategy treated the least 

number of hectares at all efficacy levels. 

 

 

Fig. 4.2 Relative performance of the strategies in the number of hectares (a) and management 

units (b) treated per ha per year over 50 years for each of the management strategies in 

comparison to the random strategy at four management efficacy levels (0.25, 0.50, 0.75 and 

0.90), represented by the mean 95% CI of 15 model runs per efficacy level. 

 

4.3.2.4 Resource effort used 

The number of person days required by all management strategies was similar. At 100% 

efficacy the number of person days required declined to below 10,000 from year 20 onwards 

(Fig. 4.3). As clearing efficacy decreased, the number of person days utilised annually 
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remained high and near the maximum possible allocation. The Consensus and Follow-up 

strategies required around 38,000 person days for clearing efficacy levels between 0.75 and 

0.90. For the Water production and Keep-it-Clean strategies, the full person days were utilised 

in all years where clearing efficacy levels dropped below 0.9 (Fig. 4.3). The impact of efficacy 

had a much greater effect on cumulative costs than the particular strategy applied selected 

(Fig. 4.3b). For example the cumulative mean person days used after 50 years at 0.95 efficacy 

for all strategies was 1.4 million person days, compared to 2.0 million person days at efficacy 

levels of 0.50. This difference amounts to the equivalent person days of 15 years of clearing, 

which in current project budgets amounts to ZAR300 million.  

 

 

Fig. 4.3: The number of person days used annually (a) and the cumulative person days used 

over 50 years (b) for each of the management strategies at given levels of efficacy, represented 

by the mean 95% CI of 15 model runs per efficacy level.  

 

 

4.3.3 Achieving management goal 

The management goal set was to achieve an Acacia density of lower than 1 plant/ha in a given 

management unit, with the area thus being considered in a maintenance state. All 

management strategies achieved a minimum average of 8400 ha (37%) and 100 (12%) 

management units in a maintenance state from year 10 onwards at averaged levels of efficacy 

(Fig. 4.4, Table 4.4). Although the Keep-it-Clean strategy treated the most hectares (Table 
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4.3), this management strategy achieved the lowest number of hectares per year in a 

maintenance state across all years and efficacy levels (mean= 8,462ha ±3064SD, Table 4.4, 

Fig. 4.4). All management strategies realised significantly more hectares in a maintenance 

state than the Random strategy (p<0.001, Table 4.4, Fig 4.4). The Follow-up strategy realised 

the greatest mean number of hectares (10,296 ±3708SD; p<0.001, Table 4.4) in a 

maintenance state, which was significant more than all the other management strategies. The 

trend remained the same at the model end (following 50 years of implementation) with the 

Follow-up strategy attaining more mean hectares in a maintenance state (10,707 ±3381SD, 

Table 4.4) across all levels of clearing efficacy. All the management strategies performing 

better than the Random strategy (p<0.05). In addition, all strategies were able to increase the 

total number of hectares in a maintenance state from the starting value of 5,646 hectares to 

at least 8,000ha under averaged efficacy (Table 4.4). 

 

Table 4.4. The number of hectares (ha) and management units (MU) that reached a maintenance state of < 1 

plant/ha, per averaged over years 10 to 50, all levels of clearing efficacy, and 15 model runs. The starting value 

for the number of hectares in a maintenance state was 5,646 hectares and 161 management units. 

Strategy  Clearing 

efficacy 

Model 

Year 

Mean 

(ha) 

SD Min 

(ha) 

Max 

(ha) 

p to 

Random 

Mean 

(MU) 

SD Min 

(MU) 

Max 

(MU) 

p to 

Random 

Consensus 0.05-0.90 10-50 10026 3834 1911 20092 p<0.001 224 158 34 699 p<0.001 

Follow-up 0.05-0.90 10-50 10296 3708 2508 20317 p<0.001 232 158 37 673 p<0.001 

Keep-it 
Clean 

0.05-0.90 10-50 8462 3064 1601 18608 p<0.001 164 105 23 579 p<0.001 

Random 0.05-0.90 10-50 8333 4149 440 20061 NA 185 139 14 673 NA 

Water 0.05-0.90 10-50 9442 2830 3440 20192 p<0.001 162 124 41 690 p<0.001 

Triage 0.05-0.90 10-50 9513 4398 1382 20572 p<0.001 223 158 28 709 p<0.001 

             

Consensus 0.05-0.90 50 10161 3598 3857 20092 p<0.001 216 156 34 664 p<0.001 

Follow-up 0.05-0.90 50 10707 3381 5474 19335 p<0.001 235 162 50 659 p<0.001 

Keep-it 
Clean 

0.05-0.90 50 8091 3336 1601 17608 p<0.05 150 111 23 527 NS 

Random 0.05-0.90 50 7581 4512 844 19161 NA 170 144 16 611 NA 

Water 0.05-0.90 50 9501 2359 5193 18433 p<0.001 155 106 50 592 NS 

Triage 0.05-0.90 50 9314 4395 2416 19989 p<0.001 216 158 36 677 p<0.001 

 

At 95% efficacy levels, over the model period 10 to 50 years, all the management strategies 

achieved a mean of at least 18,200ha (88%) and 590 (73%) management units in a 

maintenance state from a starting point of 5,646ha and 161 management units (Sup. Mat. 

Table 4.3). Again, the Keep-it-Clean strategy achieved significantly less hectares in a 

maintenance state (p<0.001, Sup. Mat. Table 4.3) than the Random strategy, while the 
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remaining management strategies achieved significantly more (p<0.001, Sup. Mat. Table 4.3). 

The Follow-up strategy attained the highest mean number of hectares annually in a 

maintenance state at high efficacy levels, maintaining significantly more area (19,633ha 

±894SD) than all strategies besides the Water production strategy (Sup. Mat. Table 4.3). 

 

 

Figure 4.4: Effect of clearing efficacy on the number of hectares (a) and management units (b) 

that reached a maintenance state of 1 plant per ha over 50 years for each of the management 

strategies. Mean and 95 % confidence over 15 model runs are shown for selected levels of 

clearing efficacy.  Supplementary Material Fig. 4.4 shows all 20 levels of efficacy tested. 

 

The general trend observed at lower clearing efficacies was a sharp decline in the annual 

achievement of the management goal (Fig. 4.4). For example, at a 90% clearing efficacy, the 

Consensus strategy maintained a mean of 17,629 ha (±1,204SD) annually, compared to 

13,575ha (±1,544SD) at 0.75, 9,826ha (±1,492SD) at 0.50 and 6,488ha (±1,005SD) at 0.25 

clearing efficacy level (Fig. 4.4, Sup. Mat. Table 4.3), with a similar trend for the management 

units. The Keep-it-Clean strategy only outperformed the Random strategy at low (0.50) to very 

low (0.25) clearing efficacy levels (Fig. 4.4, Sup. Mat. Table 4.3). By year 50, all management 

strategies achieved a similar high number of hectares in a maintenance state at very high 

clearing efficacies (0.95) (Sup. Mat. Table 4.4). Results were however variable at lower levels 

of clearing efficacy. The Follow-up strategy was able to achieve significantly more hectares 

(mean=18,169ha ±886SD; p<0.05, Sup. Mat. Table 4.4, Fig 4.5) in a maintenance state than 
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the Random strategy at 90% clearing efficacy after 50 years of implementation. There was no 

significant difference between the Consensus and the Random strategies. However, at a 75% 

clearing efficacy, the Consensus strategy maintained significantly more hectares 

(mean=13,230ha ±1,333SD; p<0.01, Sup. Mat. Table 4.4, Fig 4.5) than the Random strategy, 

while there was no significant difference between the Follow-up and the Random strategies. 

The Keep-it-Clean and Water production strategies only maintained significantly more 

(p<0.001) hectares than the Random strategy at low levels of clearing efficacy, otherwise 

achieving significantly less than a random application (Fig. 4.5, Sup. Mat. Table 4.4).  

 

 

Fig. 4.5 Relative performance of the strategies in the number of hectares (a) and management 

units (b) that reached a maintenance state of 1 plant per ha per year over 50 years for each of 

the management strategies in comparison to the random strategy at four management efficacy 

levels (0.25, 0.50, 0.75 and 0.90), represented by the mean 95% CI of 15 model runs per 

efficacy level. 

 

4.3.4 Maintenance areas sustained 

The park had 5,646 hectares (25%) and 161 (20%) management units in a maintenance state 

at the start of the model (i.e. year 0). At 100% clearing efficacy, these areas remain in this 

maintenance state under all management strategies. When clearing efficacy decreased below 

this level, there was a shift away from the current areas under maintenance to new areas, for 

all management strategies. Overall, management strategies retained a mean of 2,700 (48%) 

hectares and 44 (27%) of the managements units in a continued maintenance state across all 

Stellenbosch University  https://scholar.sun.ac.za



testing clearing strategies 

 
 - 88 -  

levels of clearing efficacy and years (Fig. 4.6, Table 4.5). Of the management strategies, the 

Triage and then Follow-up strategies sustained the largest portion of the starting maintenance 

areas in a continued maintenance state per year over the model years 10 to 50 (Triage 58%, 

mean = 3,275ha ±795SD; Follow-up 57%, mean = 3,208ha ±753SD, Table 4.5, Fig. 4.6). The 

Keep-it-Clean and Water production strategies both kept significantly fewer of the starting 

maintenance hectares in a continual maintenance state than the Random strategy (p<0.001, 

Table 4.5, Fig. 4.6). 

 

Table 4.5. The number of hectares (ha) and management units (MU) that were sustained in a maintenance state 

of < 1 plant/ha, per year during the model run between years 10 to 50 and efficacy 0.05-0.9 (n=15), based on 

the starting 5,646 hectares and 161 management units that were in a maintenance state at the start of the model. 

Strategy  Clearing 

efficacy 

Model 

Yr 

Mean 

(ha) 

SD Min 

(ha) 

Max 

(ha) 

p to 

Random 

Mean 

(MU) 

SD Min 

(MU) 

Max 

(MU) 

p to 

Random 

Consensus 0.05-0.90 10-50 3184 762 740 5405 p<0.001 55 25 13 55 p<0.001 

Follow-up 0.05-0.90 10-50 3208 753 520 5320 p<0.001 56 25 13 56 p<0.001 

Keep-it 
Clean 

0.05-0.90 10-50 2773 620 598 4963 p<0.001 44 19 11 44 p<0.001 

Random 0.05-0.90 10-50 2819 982 99 5353 NA 49 24 7 49 NA 

Water 0.05-0.90 10-50 3125 644 792 5411 p<0.001 47 23 12 47 p<0.001 

Triage 0.05-0.90 10-50 3275 795 518 5351 p<0.001 54 24 12 141 p<0.001 

             

Consensus 0.05-0.90 50 2989 818 844 5244 p<0.001 44 25 13 44 p<0.001 

Follow-up 0.05-0.90 50 3078 750 1173 4879 p<0.001 47 26 14 47 p<0.001 

Keep-it 
Clean 

0.05-0.90 50 2551 737 638 4681 NS 35 20 11 35 NS 

Random 0.05-0.90 50 2415 1139 237 4770 NA 38 24 8 38 NA 

Water 0.05-0.90 50 2904 633 792 5095 p<0.001 35 18 12 35 NS 

Triage 0.05-0.90 50 2991 885 853 5195 p<0.001 43 25 14 139 p<0.001 

 

By year 50, all management strategies sustained more than 2,500 (44%) hectares and 35 

(22%) of the managements units in a continued maintenance state (Fig. 4.6, Table 4.5) across 

efficacy levels. All but the Keep-it-clean management strategy sustained significantly more 

hectares in a continued maintenance state than the Random strategy (Fig. 4.6, Table 4.5). 

The Follow-up and then Triage strategy scored highest in continued maintenance of areas at 

year 50 (Follow-up 55%, mean = 3,078±750SD, Triage 53%, mean = 2,991ha ±885SD, Fig. 

4.6, Table 4.5). 

 

As clearing efficacy levels decreased, there was a steady decline in continued maintenance 

of areas at the start of the model from all management strategies (Fig. 4.6, Sup. Mat. Table 
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4.5). At 90% clearing efficacy levels the Follow-up and Triage strategy continually maintained 

starting maintenance areas at higher levels than the Random strategy (Follow-up 80%, mean= 

4,533ha ±350SD; Triage 80%, mean= 4,528 ±342SD, p>0.001), while the other management 

strategies performed no different or significantly worse than the Random strategy (Fig. 4.7, 

Sup. Mat. Table 4.5). Only at 25% clearing efficacy levels did all the management strategies 

perform better than the Random strategy (Fig. 4.7, Sup. Mat. Table 4.5) in retaining hectares 

in a maintenance state. 

 

 

Figure 4.6 Effect of clearing efficacy on the number of hectares (a) and management units (b) 

that were sustained in a maintenance state of 1 plant per ha over 50 years for each of the 

management strategies. Mean and 95 % confidence over 15 model runs are shown for 

selected levels of clearing efficacy. Supplementary Material Fig. 4.5 shows all 20 levels of 

efficacy tested. 

 

In areas maintained at the end of the model (year 50), at 95% clearing efficacy there was no 

significant difference between the management and the Random strategies for both hectares 

and management units (Sup. Mat. Table 4.6). At 90% efficacy levels only the Water production 

strategy had significantly less hectares continually maintained than the Random strategy 

(69%, mean= 3,898ha ±731SD, p<0.05) while the other management strategies showed no 

significant difference from the Random strategy (Fig. 4.7, Sup. Mat. Table 4.6). The strategies 

showed a mixed performance at 75% and 50% clearing efficacy levels. The Consensus and 

Triage strategies performed significantly better in terms of the hectares sustained than the 
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Random strategy at medium clearing efficacy levels (p<0.05, Sup. Mat. Table 4.6, Fig. 4.7), 

while the Consensus and Follow-up strategies showed significantly better results than the 

Random strategy at low clearing efficacy levels (p<0.05, Sup. Mat. Table 4.6, Fig. 4.7).  

 

 

Fig. 4.7 Relative performance of the strategies in the number of hectares (a) and management 

units (b) sustained in a maintenance state of 1 plant per ha per year over 50 years for each of 

the management strategies in comparison to the random strategy at four management efficacy 

levels (0.25, 0.50, 0.75 and 0.90), represented by the mean 95% CI of 15 model runs per 

efficacy level. 

 

4.3.5 Treatment frequency distribution under different strategies 

Treatment frequency per management unit (i.e. the number of times a particular management 

unit is selected for treatment over the full model implementation) declined for all strategies 

with a reduction in clearing efficacy, as indicated by a left-shift in peak kernel density of 

treatment frequency (Fig. 4.8, Sup. Mat. Figure 4.6). In other words, a smaller number of 

management units were repeatedly selected over the model period at lower clearing efficacy 

(Fig 4.8). For example, the Consensus strategy had its highest kernel density at a treatment 

frequency of 0.7 when clearing efficacy was 0.75, whereas the peak frequency decreased to 

0.55 and 0.35 at clearing efficacies of 0.5 and 0.25 respectively. Historical clearing 

implementation has its peak treatment frequency at roughly 0.45 which was found to be a 

significantly lower repeat frequency (p<0.001) than was achieved by all the models expect the 
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Water production model (p=NS) at an efficacy comparable to that estimated for historical 

implementation (~0.75). At 50% clearing efficacy levels, the Management consensus, Follow-

up clearing and Keep-it-Clean strategies still maintained the peak cluster densities at a 

treatment frequency of >0.50, implying that the majority of the management units would 

receive a treatment at least once every two years. This treatment frequency was still 

significantly (p<0.01) better than the current observed park treatment frequency of 0.45. 

 

 

Fig. 4.8. Kernel density of treatment frequency per management unit for each management 

strategy over 50 years and 15 model runs, as well as the actual frequency of treatments 

received per unit in the park to between 1998 and 2017(Historical park data). Management 

strategies are shown for three efficacy levels (0.25, 0.50 and 0.75). 

 

 

4.4 Discussion 

The long-term performance and outcomes of five strategies that have been suggested and 

applied to alien invasive plant management were tested over a 50 year simulation based on 

data for Acacia species in Table Mountain National Park. The assessment focused on the 

interaction between strategy performance and clearing efficacy in achieving the management 

goal of reducing Acacia density to below 1 plant per hectare. At near perfect levels of clearing 

efficacy, all strategies converged towards reaching the management goal for the entire 
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protected area. At lower efficacy levels, the strategies diverged from each other in their ability 

to achieve desired outcomes. The Keep-it-Clean strategy (focusing on large areas of very low 

Acacia density) was able to treat the greatest number of hectares and management units at 

all efficacy levels. However, the models showed that treating large areas did not necessarily 

translate into the achievement of low IAP density across the PA, predominantly as this strategy 

focused on sites of already low alien density. So, while the Keep-it-Clean strategy covered the 

widest area, it produced the least hectares in a maintenance state across strategies for the 

PA. The Consensus strategy achieved the highest number of hectares in a maintenance state 

and the highest retention of current hectares in a maintenance state at efficacy levels 

approximating those of current WfW programme implementation (~75% efficacy, Chapter 3). 

While this finding suggests that the Consensus is strategy the most fitting for the observed 

levels of efficacy, the models also indicate that a Follow-up strategy becomes more 

appropriate at higher implementation efficacy. The Triage strategy was the most effective 

strategy at retaining area of high biodiversity value in a maintenance state, while overall, 

across all efficacy levels, the Water Production strategy performed consistently poorly. 

 

To assist conservation managers with complex decision making, Structured Decision Making 

processes are able to present a range of objectives for alien plant clearing programmes 

(Bower et al. 2017; Schwartz et al. 2018). Although the range of objectives can allow for 

stakeholder insight and buy-in, the formulation of too many objectives may not benefit or 

support the underlying desired conservation outcome. That is, the proliferation of objective 

setting may actually obscure, undermine or conflict with the real conservation objective 

(Carrigan 2018; Roper et al. 2018). Despite IAP strategies and objectives having been in place 

for more than 30 years (Macdonald et al. 1985), formal assessment of their shortcomings has 

not been undertaken even though these assessments can provide significant insights for 

managers. Some of the limitations identified here to potentially relevant to particular objectives 

are unpacked below. 

 

Not all objectives deliver the desired conservation outcome. 

Modelling showed that over time, strategies were divergent in the areas that were selected for 

clearing. This finding was consistent with previous work that tested management strategies 

for sensitivity in area selection (Roura-Pascual et al. 2010). Divergent area selection results 

in each strategy setting a different management trajectory which did not converge over the 50 

years modelled. For example, the Water production strategy achieved the least number of 

hectares maintenance in across the PA. While the important and direct ecosystem services 

benefit of water security is enhanced, following this objective alone puts the programme on a 

different trajectory, ultimately not serving the overall conservation goal. Over time, this 
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undermines the sustainability of the strategy as eventually the surrounding landscape would 

be lost to invasion, while the waterways are kept clear. 

 

Not all objectives are good objectives.  

Conservation agencies recognise that ecosystems are in a constant state of flux and 

management is often implemented via a learning approach for example through adaptive 

management (Biggs et al. 2003; Roux & Foxcroft 2011). In the adaptive management 

approach, learning from management action via monitoring the outcomes is emphasised 

(Shea et al. 2002; Levendal et al. 2008; Downey 2013). However, at least for the WfW 

programme, the monitoring of outcomes is largely absent (Blossey 1999; Marais et al. 2004; 

McConnachie et al. 2012; van Wilgen et al. 2012b; van Wilgen & Wannenburgh 2016; Fill et 

al. 2017), with the implementation focus of expedited delivery on employment targets and 

areas treated. Without, the formal monitoring of the programme’s outcomes, the programme 

objectives have been adopted and have become entrenched as plausible solutions to the 

complex problem without systematic review. Without monitoring, there is a break in the 

management process where the much needed forward planning is compromised. The 

reduction in sound forward planning in favour of increased focus on management action can 

change the maxim ‘Ready, Aim, Fire’ to ‘Ready, Fire, Aim, Fire, Aim, Fire…’ (Game et al. 

2014). The associated lack of monitoring and focus on management action has two major 

drawbacks.  

 

First, resources and effort are committed and spent on management actions, with no 

guarantee that the actions will result in tangible progress towards desired objective. The model 

analysis showed that a set of management actions can perform worse than a random selection 

of actions in achieving management goals. For example, the Keep-it-Clean strategy performed 

significantly worse than a Random strategy in terms of the number of hectares that achieved 

maintenance. Second, the models showed that a random prioritization of actions can fare 

reasonably well under certain conditions. This advocates that unless actions are rigorously 

implemented within the adaptive learning framework, it will be almost impossible to learn and 

move in the correct management direction (Biggs et al. 2003; Roux & Foxcroft 2011).  

 

Not all objectives are complimentary.  

A challenge that may stem from collective objective setting that aims to accommodate 

differences’ in stakeholder views (Reed 2008), is that the resulting objectives may not be 

complementary. This could hinder implementation, resulting in no resolution of the original 

stakeholder divergence. For example, at 75% efficacy levels the Management consensus 

strategy achieved the highest hectares in a maintenance state while utilising the least number 
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of person days. Although lower resource requirements may be seen as a positive, diminishing 

workloads is in direct conflict with the job creation objective of the programme, which seeks to 

maximise employment (Koenig 2009; van Wilgen et al. 2017). In contrast, less efficient 

strategies that maximise resource requirements such as the Keep-it-Clean strategy would 

better realize the employment objective, while failing to achieve the desired conservation 

outcome. As such, there is a need to constantly engage with funders to ensure that 

conservation objectives are not compromised by funder-driven objectives. 

 

Not all objectives are popular and so may not be adopted.  

Conservation triage has been proposed to focus management on core areas of high 

importance in times of limited resources (Bottrill et al. 2008, 2009; van Wilgen et al. 2016). 

Although conservation triage has drawn both positive and negative views as a viable 

conservation strategy, the strategy of ‘abandoning’ lower priority sites sits uneasy as a 

plausible management approach (Jachowski & Kesler 2009; Parr et al. 2009; Gerber 2016). 

In the range of simulation models tested, a Triage strategy that focused primarily on repeatedly 

treating a core conservation area and, when possible, treating additional secondary areas was 

tested. This strategy performed very well in terms of retaining current areas in a maintenance 

state as well as being the second best preforming strategy in achievement of additional 

hectares in a maintenance state. However, adoption of a Triage strategy would be met with 

resistance by conservation managers as it conflicts directly with the park’s mandate for 

managing all biodiversity and not smaller sub-sections (SANParks 2016). 

 

When adopting new or changing management approaches, conservation managers have 

been resistant to change (Cook et al. 2009; Cook et al. 2012; McConnachie & Cowling 2013). 

Simulation models indicated that there would be a shift away from areas that were currently 

in a maintenance state if an alternate management strategy were to be rigorously adopted. As 

decades of management time and resources have been invested into the maintenance state 

of these areas, there would be a natural tendency by management to ‘maintain gains’ of these 

areas and not permit them to become re-invaded.  

 

A single IAP objective that allows for efficacy improvement. 

In IAP management there has been emphasis on management objectives that reduce impact 

and risks or securing ecosystem services for protected areas. As such, protected areas as 

important biodiversity that can deliver ecosystem services have already been prioritised as 

requiring immediate conservation action. A further prioritisation with additional objectives 

could be seen as self-defeating (Game et al. 2013). From the variation in model results 

between strategies, it would be prudent for conservation managers to adopt a single IAP 
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objective for the PA and then focus on improving efficacy. Although widely debated, there are 

very few proposals for landscape eradication of invasive plants from PAs (Moore et al. 2011). 

The adoption of management strategies that focus only on the short-term impacts and risks, 

and not long-term solutions are by default conceding that conservation managers will be 

controlling IAP in PAs for perpetuity. None of the current management strategies tested 

achieved a total reduction across the landscape of IAP, indicating that alien Acacias are likely 

to persist. To some extent this is ironic given that conservation resources are limited and need 

to be used effectively (Bruner et al. 2004; Emerton et al. 2006; Ferraro & Pattanayak 2006) 

The analysis indicated that the quality of the implementation was the principle driver of 

achieving the management goal, not the individual strategies per se. Higher efficacy levels, 

i.e. moving towards high quality and complete treatment of IAP’s, not only reduced the 

required resources, but also the difference in the achieved outcomes between the strategies. 

Given the persistent nature of Acacias (Richardson et al. 2011; Fill et al. 2017), there may only 

be a single objective for IAP’s in PA’s, that of planning for long-term eradication. Currently all 

management strategies require repeated and potentially endless cycles of management, 

without the guarantee of endless supply of funding for the task. By increasing programme 

quality alone, all current strategies will converge to a point of low cost maintenance.  

 

A way forward 

Due to the variability of clearing efficacy levels achieved by the WfW programme annually, the 

best performing management strategy for implementation will change annually. This, along 

with the result that strategies have different prospects for achieving the management goal, 

suggests that allowing flexibility in decision making , as opposed to applying a rigid strategy, 

is likely more appropriate (Knight et al. 2011; Cook et al. 2012). In the case of Acacias, placing 

the emphasis on prevention of reseeding, through timely follow-up, rather than strategy per 

se, the management actions required annually could be adapted as necessary.  However, this 

flexibility of management actions would require active and regular monitoring as the models 

have shown that implementation of the incorrect actions, at the low efficacy levels, would be 

costly.  

 

The intended purpose of monitoring in IAP programmes is to measure the progress towards 

management objectives (Dewey & Andersen 2004). Without monitoring there is no way to 

determine if the conservation actions were effective or if the set objective was reached. 

Although IAP programmes are designed with intended feedback loops (Foxcroft & McGeoch 

2011), monitoring appears to be inadequately implemented (van Wilgen et al. 2012b; Fill et al. 

2017; van Wilgen et al. 2017). The lack of feedback monitoring may be a contributing factor 

to landscape-wide poor implementation in some IAP programmes (McConnachie et al. 2012; 
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van Wilgen & Wannenburgh 2016; Kraaij et al. 2017). Given that the monitoring requirements 

for adaptive learning are inadequate in terms of IAP management, there could be an argument 

for rationalising IAP objectives in-line with the core intent of PA management. That is, setting 

a simple and unchanging goal (e.g. the eradication of species, or reduction below key 

thresholds that minimize impact). With a single goal in mind, the programme could shift focus 

towards improved implementation efficacy.  

 

The task of improving programme quality would have to be implemented over a period of time 

as there needs to be additional awareness and training of WfW staff to meet the required 

quality levels. Due to the reality that there will be varying levels of efficacy in programme 

implementation, it would be reasonable that current management approach would require 

modification. The model outputs suggest a pragmatic management approach that could be 

adopted that provides managers with a group of strategies which can be implemented at 

different sites over the PA rather than a single one fits all approach. This flexibility could be 

proactivity implemented, for example in important water areas, the water production strategy 

could be applied locally, while post-fire sites are grouped for the Follow-up or Consensus 

strategy. This flexible implementation would consider the most appropriate strategy for an area 

based on the population and spatial parameters of the site with the single long-term aim of 

IAP eradication as opposed to a ‘stale-mate’ of only reducing IAP impact, while the invasive 

species persist in the PA landscape. 
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4.6 Supplementary material 

The following supplementary Information may be found in the supplementary section 

accompanying this thesis: 

 

Sup. Mat. Figure 4.1 Overview of the modules in the spatio-temporal simulation model that 

the management strategy and units (MU) were modelled and the calendar quarter within a 

simulation year in which they are called. 

 

Sup. Mat. Figure 4.2 Link between protected area (PA) vision, objectives and management 

actions flowing to 1 of 4 management strategies. Weightings (Wt) for each objective/factor that 

determine a strategy was determined through the Analytical Hierarchy process (Roura-

Pascual et al. 2010). 

 

Sup. Mat. Figure 4.3 The number of hectares (a) and management units (b) treated per year 

over 50 years for each of the management strategies tested at 20 management efficacy levels 

between 0.05 and 1.0, represented by the mean and 95% CI, over 15 model runs. 

 

Sup. Mat. Figure 4.4 The number of hectares (a) and management units (b) that reached a 

maintenance state of 1 plant per ha over 50 years for each of the management strategies at 

given levels of efficacy, represented by the mean and 95% CI over 15 model runs per efficacy 

level. 

 

Sup. Mat. Figure 4.5 The number of hectares (a) and management units (b) that were 

sustained in a maintenance state of 1 plant per ha over 50 years for each of the management 

strategies at given levels of efficacy, represented by the mean and 95% CI over 15 model runs 

per efficacy level. 

 

Sup. Mat. Figure 4.6 The frequency that management units were selected by different 

management strategies at three levels of clearing efficacy. Areas with a frequency of treatment 

> 50% approximates to a treatment frequency of < 2 years. 

 

Sup. Mat. Table 4.1. The number of hectares (ha) and management units (MU) treated per 

year averaged over model years 10 to 50 and 15 model runs, at set levels of clearing efficacy. 

 

Sup. Mat. Table 4.2. The number of hectares (ha) and management units (MU) treated in 

year 50 averaged over 15 model runs 
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Sup. Mat. Table 4.3. The number of hectares (ha) and management units (MU) that attained 

the management goal of < 1 plant/ha, per year, averaged over model years 10 to 50 and 15 

model runs, at set various efficacy levels. 

Sup. Mat. Table 4.4. The number of hectares (ha) and management units (MU) that attained 

the management goal of < 1 plant/ha, per year, averaged in year 50 and 15 model runs, at set 

various efficacy levels. 

 

Sup. Mat. Table 4.5. The number of hectares (ha) and management units (MU) that were 

sustained in a maintenance state of <1 plant/ha, per year for years 10 to 50 and efficacy at 

various levels (n=15), with a starting maintenance state of 5,646 hectares and 161 

management units. 

 

Sup. Mat. Table 4.6. The number of hectares (ha) and management units (MU) that were 

retained in a maintenance state of <1 plant/ha, at the end of the model run at year 50 and 

efficacy at various levels (n=15), with a starting maintenance state of 5,646 ha and 161 MU 

units. 
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Chapter 5. 

Quantifying range structure to inform management in invaded 

landscapes  
 

Abstract  

Invasive alien plants (IAPs) pose a current and future potential threat in many Protected Areas 

(PAs). To mitigate the impacts of these IAPs, control programmes have been put in place to 

manage a wide range of invading species in PAs. The implementation of IAP control is mostly 

undertaken through area-based management where the PA is divided into management units 

and all the IAPs identified within each management unit are controlled simultaneously. 

However this approach has several shortfalls including the methods to prioritise management 

units, spatial grain dependence and spatial interdependence of management units which allow 

for the continued persistence of IAP’s in PAs. Although implemented less frequently, PAs also 

use a species-based approach to target a single or few invasive species where ongoing 

focussed efforts can result in the eradication of the target species. Here I propose using a 

Commonness framework, to reconcile the dichotomy between area-based and species-based 

management approaches. Biological invasions can be viewed as invading species on a 

trajectory from being uncommon to becoming common. The Commonness framework 

comprises eight commonness types based on three species characteristics of local population 

size (small or large), geographic range (wide or narrow) and spatial pattern (even or clumped). 

Comprehensive fine-scale alien plant species dataset from Table Mountain National Park is 

used for a case study to test if the Commonness typology can be employed to align alien 

species management strategies across IAP invasion phases within a PA. When IAPs were 

mapped to the commonness framework, most species fell into the Newly Established 

commonness type at fine spatial grains. At coarser grains, the overall trend was for species to 

be classed within wide occupancy ranges, but with small population sizes as mainly Dispersed 

and Sparse types. The most appropriate management strategies for all species at fine grains 

were a rapid response, reconnaissance or sweeping approach. This showed misalignment 

with the current IAP Control strategy which was aligned to the Incipient or Constrained 

commonness types. Use of a ‘phylo-tree’ is made to map the spatial hierarchy of areas at six 

spatial grains, which allows for visual interpretation of sites that require species-specific goals 

(for example eradication though rapid response), while allowing other sites to have a more 

conventional area-based goals. The continued collection of presence-absence data and range 

data is essential to support the goal to manage and reverse the negative impacts on IAPs. 
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5.1 Introduction 

Movement of plant species by trade, forestry and a variety of other human endeavours has 

resulted in novel distribution ranges for numerous species (Hulme 2009; Lockwood et al. 

2013).  Many of these species thrive in their new ranges, and expand populations to cover 

large areas. Known as invasive alien plants (IAP), these species are characterised by range 

expansion properties and increased local population densities (Blackburn et al. 2011). These 

expansion and densification processes, where species move from being uncommon to 

becoming common in the landscape, do materialise in the same manner for all species and 

involve a number of interacting mechanisms. Some species follow slow diffusive dispersal, 

while others have both diffusive and long range dispersal characteristics (Pauchard & Shea 

2006; Wilson et al. 2009). The range occupancy and the local population densities within 

invaded landscapes will therefore likely differ for different range expanding species, and this 

information is key for informing invasive species management. For example, the relative 

position of a species on a commonness trajectory can inform the potential risk it poses, while 

intraspecific comparisons of populations over different parts of their range may provide early 

warning of emerging range expansion (Veldtman et al. 2010; Donaldson et al. 2014).  

 

Invasive alien plants pose a current and future potential threat in many areas, including those 

designated for the protection of biodiversity (Foxcroft et al. 2013; Foxcroft et al. 2017).  

Frequently these protected areas (PAs) have had long histories of invasion by multiple species 

(Spear et al. 2011) that have resulted in significant negative impacts on native biodiversity and 

ecosystem structure and function (Richardson et al. 2007; Gaertner et al. 2009; Le Maitre et 

al. 2011; Blackburn et al. 2014). To mitigate the impacts of IAP, control programmes have 

been established to deal with a wide range of invading species in PAs (van Wilgen et al. 

2012b). Despite substantial investment, long-term control of IAP has been varying and 

generally limited in success (Gardener et al. 2010; Vince 2011; McConnachie et al. 2012; 

Kraaij et al. 2017), with the outlook for control requiring increased funding and resources. 

 

The implementation of IAP control programmes is typically undertaken through area-based 

management where an area is divided into management units and all the identified IAPs within 

each management unit are controlled simultaneously (Wittenberg & Cock 2001; Working for 

Water 2003; Tu 2009). The overall aim of the area-based approach is to achieve ecological 

integrity or restoration goals at particular sites. However, the area-based approach has several 

shortcomings that limit its intended outcome. First is related to the implicit attribute of spatial 

grain (Dungan et al. 2002; Pauchard & Shea 2006; Hui et al. 2010). Management strategies 

and objectives are based on grain-dependent range characteristics of population extent and 

abundance as well as management attributes such as treatment success. For example, the 
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selection of rapid response versus a control strategy is determined by both the abundance of 

the species and the area that it occupies (Wittenberg & Cock 2001; Tu 2009). Range 

characteristics such as population density and extent are typically measured at the single grain 

of the management units to be treated. However, these measures are likely to change at 

different grains and the relative change in value of these attributes, in terms of a hierarchy of 

grains, is often overlooked. For example, a species with high abundance at a fine grain may 

have relatively low abundance at a coarser grain sizes and vice versa. Similarly species 

occupancy can also vary widely over a number of grains where occupancy can have varying 

rates of increase depending on the patchiness of the distribution and the grain of measurement 

(He & Gaston 2000; Veldtman et al. 2010). Understanding variation in occupancy values can 

give insight into the overall population dynamics of a species (areas of saturation and possible 

expansion) from a site to a landscape and even a regional level (Kunin 1998; Wilson et al. 

2004; Donaldson et al. 2014). The use of a single grain for deriving and implementing 

management strategies is a limitation for strategy and objective setting as the true picture can 

be obscured (like looking at a 3 dimensional object in 1 dimensional space), potentially 

resulting in inappropriate application of clearing strategies. 

 

A second constraint of area-based management is that due to finite budgets for PA 

management (Frazee et al. 2003; Bruner et al. 2004), management units that require 

treatment have to be prioritised. A number of Structured Decision Making frameworks have 

been employed to assist prioritisation of conservation actions in PAs (Bower et al. 2017; 

Schwartz et al. 2018). These include, for example, Analytical Hierarchy Process (Forsyth et 

al. 2012), Adaptive Management objective setting (Foxcroft & McGeoch 2011) and Risk and 

Threat Analysis (Downey 2010; McGeoch et al. 2016). In each approach, the perceived 

ecological function or management focus is determined through the setting of specific 

management objectives that seek to retain or restore natural ecosystem structure and 

functions (Bower et al. 2017). Management focal areas often include river systems, wetlands, 

high fire risk areas, or areas where endangered or keystone species are found (Roura-Pascual 

et al. 2009). Irrespective of the prioritisation methodology, certain areas are ranked above or 

below others, meaning some areas would not be treated or only receive treatment as budgets 

become available. The outcome of not treating the target IAPs, at all sites in a management 

area, results in a decreased probability of species being eradicated, allowing for the 

persistence of IAP in the landscape. 

 

A third limitation of the area-based approach is the frequent failure to consider spatial 

interdependence of management units in the range of the IAPs, in other words, what is 

happening in directly adjacent areas. This occurs as a result of the prioritisation process that 

Stellenbosch University  https://scholar.sun.ac.za



quantifying range structure 

 

 
 - 108 - 

scores treatment areas independently of one-another based on pre-set objectives (Forsyth et 

al. 2012). For example, river systems may receive a particular priority score, which is different 

to post-fire areas, yet these areas are ecologically interdependent: for many wattle species 

(Acacia spp.), waterways are an important dispersal pathway, while post-fire areas are 

important recruitment sites. Although there is a clear ecological link, failure to consider spatial 

interdependence could result in areas being selected and prioritised very differently depending 

on management priorities, allowing for the invasion process to perpetuate in the landscape. 

 

Although implemented less frequently, species-based approaches to IAP control have also 

been implemented (Nel et al. 2004; Blackburn et al. 2014). A species-based approach is 

typically applied where single or few invasive species are present, over a narrow or restricted 

geographic range, with a short invasion history that have high potential impacts (Downey et 

al. 2010). The management approach is to deal primarily with the target species and ignore 

non-target species. Target species may be selected on the basis of particular traits, impacts 

or opportunity for a rapid response approach (Wittenberg & Cock 2001; Hulme 2006; 

Simberloff et al. 2013) with the primary aim in these types of programmes being the eradication 

of the target species. Budget requirements are less onerous than area-based management, 

and continual focussed effort can result in the eradication of the target species. The drawback 

of this approach is that the ecological integrity of an area or landscape may still remain 

degraded due to the presence of other non-target alien species.  

 

The dichotomy between area-based and species-based management approaches can be 

reconciled by viewing species invasions as a continual process of invasion at different stages 

at varying landscape (Hobbs & Humphries 1995; Tu 2009; Blackburn et al. 2014, DEA 2014). 

As a species moves through the stages of arrival, establishment, range expansion and 

domination of the landscape (which can occur simultaneously in different parts of the PA), it 

moves along a trajectory from being uncommon to becoming common in the landscape 

(McGeoch & Latombe 2016). Where management pressure is employed, the trajectory applies 

in the opposite direction, seeking to move invading species from being common to uncommon 

and if possible, to remove them from the landscape. Depending on the species position on an 

invasion trajectory, the species can be classed into one of eight commonness types. This 

classification is based on the species range properties of population size, area occupied and 

time since establishment into a commonness type (McGeoch & Latombe 2016). The 

classification of invading species into a commonness type can provide a useful basis to 

understand observed range and population expansions and contractions within managed 

areas. 
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At each stage of invasion there are a variety of management strategies available to treat IAPs 

which differ substantially in terms of the time, costs, resource requirements and 

implementation methods (Simberloff et al. 2013). Strategies include i) area reconnaissance, 

ii) rapid response, iii) low density sweeping, iv) control, and v) containment (Table 5.1) 

(Wittenberg & Cock 2001; Tu 2009; Simberloff 2014). As species range properties are 

inherently scale dependent (Hartley & Kunin 2003; Hartley et al. 2004), the relationship 

between IAP range properties and the spatial grain of measurement has to be considered 

when aligning species range structure with management alternatives.  

 

In this chapter the approach used to discern multiple types of ‘commonness’ is extended by 

aligning IAP management strategies with the commonness framework (sensu McGeoch & 

Latombe, 2016, Fig. 5.1).  Fine-scale, spatially explicit alien species presence-absence data 

on the extent, occupancy, aggregation and abundance of several species (Cheney et al. 2018, 

Chapter 2) are used to assign species to one of nine commonness types at six hierarchical 

spatial grains. The usefulness of this classification for understanding how species 

commonness changes across spatial grains in different parts of the landscape and how this 

informs the most appropriate management clearing strategy, integrating both species-specific 

and area-based management approaches is assessed. 

 

 

Fig. 5.1 Commonness framework (modified from McGeoch & Latombe 2016) based on three 

population properties; novel geographic range (wide or narrow), local population size (small or 

large) and spatial pattern. Population size is measured in absolute terms, with a cut-off of 2500 

plants per hectare; range is measured with the box counting fractal D where the cut-off is 

determined by Dij <1 or Dij > 1; and spatial pattern is measure by the distance to regularity Ia 

with the cut-off as Ia <1 or Ia >1. The ninth category, ‘not present’, is used for where a species 

is absent from a site. 
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Table 5.1 Potential scale-relevant management strategies for invasive alien species based on 

properties associated with range structure categorizations (sensu McGeoch & Latombe 2016). The 

primary determinants of a management clearing strategy is determined by local population size 

(plants/ha) and the extent of the population (AOO or D). The local spatial aggregation is seen as 

‘chance of management success’ where the likelihood of successful treatment increase where 

species are more aggregated. 

Commonness 

Type 

Range 

(Narrow 

/ Wide) 

Local 

Population 

(Small / 

Large) 

Spatial 

patterns 

(Clumped / 

dispersed) 

Management 

Strategy 

(Goal) 

Definition Comment on required 

resources 

*Not present NA 0 0 Reconnaissance 

Goal: prevent 

establishment of 

new populations 

Looking for 

individuals in areas 

where they have 

yet to occur or have 

been previously 

removed 

Very high search cost, 

very low treatment cost 

Newly 

established 

Narrow Small Clumped Rapid Response 

(EDRR) 

Goal: Eradication 

Total removal of 

very small 

populations that 

have been detected 

Requires relatively high 

search effort, high cost 

per individual and low 

cost per ha Not common Narrow Small Dispersed 

Incipient Narrow Large Clumped Control1 

Goal: Reduce 

population size 

Clearing medium 

size areas of 

medium-density 

IAP 

Requires relatively low 

search and low per 

individual cost, but 

medium cost per ha 
Constrained Narrow Large Dispersed 

Dispersed Wide Small Clumped Maintenance / 

Sweeping 

Goal: Reduce 

geographic range  

Clearing large 

areas of low-

density IAP 

Requires high search 

and high cost per 

individual and very low 

cost per ha Sparse Wide Small Dispersed 

Highly 

successful 

Wide Large Clumped Containment 

Goal: Limit 

expansion. 

Preventing further 

spread of IAP in 

areas of the 

landscape where 

they dominate  

Requires low search 

cost, medium cost per 

individual, very high 

cost per ha 
Successful Wide Large Dispersed 

1 Control has been the core management focus in the PA 

 

5.2 Materials and methods 

5.2.1 Study area 

Table Mountain National Park (TMNP) is located on the Cape Peninsula, South Africa, and 

covers approximately 25,000 ha. The PA is a well-known biodiversity ‘Hot Spot’ in the Cape 

Floristic Region (Cowling et al. 1996), with 158 endemic plant species occurring on the 

peninsula (Helme & Trinder-Smith 2006). However, the region also has a long history of plant 

invasion, with the dominant taxa comprising woody alien species from the genera Acacia, 

Pinus and Hakea (Shaughnessy 1980; Spear et al. 2013). A national response in the form of 
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the Working for Water (WfW) programme was set up in 1996 to control IAPs, with the aim of 

restoring and maintaining habitat structure and function to mitigate the loss of ecosystem 

services, especially water production (van Wilgen et al. 2012a). Working for Water has 

historically invested (1995 – 2015) approximately ZAR 564 million (1 US$ ~ 16 ZAR in 2017) 

in South Africa’s PA’s (van Wilgen et al. 2012a; van Wilgen et al. 2016). Despite the TMNP 

having a well-established IAP control strategy as part of the WfW programme, with over 20 

years of continuous clearing, and supported by extensive resources, the TMNP still requires 

substantive annual budgets of around ZAR 20 million for the implementation of the control 

strategy (Chapter 1). 

 

5.2.2 Sampling and analysis grids 

The commonness framework proposed by McGeoch & Latombe (2016) has eight 

commonness types based on three species population characteristics of i) local population 

size (small or large), ii) geographic range (wide or narrow) and iii) time since establishment 

(long or short). For this study spatial pattern of invasion (aggregation) is substituted in place 

of time since invasion, as data on spatially explicit invasion trends are seldom available and 

current range structure may be used to infer future range dynamics. A ninth type ‘not present 

/ absent’ is introduced for a site where a species is absent or has not been recorded after the 

site was surveyed.  

 

To quantify each of these three characteristics, a fine-grain 150m sampling grid was 

established over the PA, resulting in 10,057 sample cells. At the centroid of each sample cell, 

a 500m2 plot was established and the number of individuals of each alien species present was 

counted (Cheney et al. 2018, Chapter 2). To analyse the relationship between grain and 

species commonness characteristics, data were aggregated for each alien species using 

fractal analysis grids (constructed in ArcGIS 10.x, ESRI) at grains of 150m (n = 10,057), 300m 

(n = 2,841), 600m (n = 845), 1200m (n = 258), 2400m (n = 84) and 4800m (n = 30) (Fig. 5.2a). 

 

To account for population variation across the PA, the grid cells were grouped into analysis 

units based on topography, vegetation type, fire history and invasive species clearing history 

(Fig. 5.2b). Starting with the 30 cells at the 4800m grain, these were grouped into a single 

park level analysis unit, while the 84 cells at the 2400m grain were grouped into two analysis 

units, the 258 cells at the 1200m grain into eight analysis units, until the 10,057 cells at the 

150m grain were grouped into 127 analysis units. 
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Fig. 5.2 Precursor steps for data analysis.   

a) Fine scale occurrence data (plot size – 500m2)  was aggregated fractal grid cells with dimensions 150m, 300m, 600m, 1200m, 2400m and 4800m.   

b) Grid cells were clustered into analysis units based on topography, vegetation type, fire history and invasive species clearing history.  

c) The commonness type was calculated from the following three metrics: population size (plants per hectare), geographic range (Dij) and aggregation (SADIE Ia) for each analysis unit. 

d) The analysis units were created to nest within each other at each grain to form a hierarchy. 
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To view how the relationship between commonness types and grain changed between two 

grains (for example the 150m and 300m grids), the analysis units followed a nested layout 

where units at a finer grain were nested within the units of the next higher grain to form a non-

overlapping hierarchy relationship (Fig. 5.2d).  For example, analysis units 1, 2 and 3 at grain 

150m, were nested into analysis unit 1 at grain 300m. Similarly analysis units 1 and 2 at scale 

300m were nested within analysis unit 1 of scale 600m, until there was only one analysis unit 

the PA with a grain of 4800m. This non-overlapping hierarchical nesting is required to 

undertake range analysis and compose the commonness phylo-tree for spatial analysis 

(Section 5.2.6). 

 

5.2.3 Selection of species and species groups for analysis  

Invasive species and taxa that had a long history of invasion and that were the current focus 

of the alien plant control programme were selected for analysis. These included seven species 

(Acacia cyclops, Acacia longifolia, Acacia saligna, Leptospermum laevigatum, Paraserianthes 

lophantha, Pinus pinaster and Pinus radiata). Patterns at genus levels for four genera (all 

Acacia species, all Eucalyptus species, all Hakea species and all Pinus species) were 

analysed. 

 

5.2.4 Species mapping to the commonness framework 

Species could be classified within one of nine commonness types based on their geographic 

range, local population size and time since establishment within a defined geographic area 

and spatial grain (Fig. 5.1). In the context of this study ‘time since establishment’ (McGeoch & 

Latombe 2016) was replaced as the PA has a long-history of invasion by all the species of 

interest. In addition, the continued management control of IAP would have altered species 

invasion patterns. Therefore ‘time since invasion’ is substituted with a metric of spatial 

aggregation pattern. This is important for management because species with different spatial 

aggregations have different management success prospects, in that clumped populations are 

much easier to treat (similar to a newly established populations), while populations that are 

dispersed in the landscape (similar to a long-established population) are more difficult 

manage. For the purposes of this study, a ninth type ‘not present / absent’ is also considered 

in the analysis as a site where a species is not recorded. 

 

The three metrics for local population size, geographic range and spatial pattern (all described 

below), were calculated for each analysis unit, for each species at each of the six fractal grid 

grains. For each species, the three metrics were used in conjunction to assign each analysis 

unit to one of the nine commonness types at each of six spatial scales (Fig. 5.1, Table 5.1). It 
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was therefore possible to calculate the total number and spatial distribution of analysis units 

with each commonness type at each spatial scale. 

  

5.2.4.1 Local population size 

Local abundance as measured by the number of plants/ha was chosen as the metric for local 

population size. For each analysis unit, the total number of individuals counted within the grid 

cells was divided by the size (in hectares) of the grid cells to produce the number of plants/ha 

(Fig. 5.2c). For purposes of commonness framework, populations are considered as either 

small (<2,500 plants/ha) or large (≥2,500 plants/ha). This classification cut-off value of 2,500 

plants/ha was chosen as it is equivalent to the WfW mapping standard of 15% plant cover 

(Neethling & Shuttleworth 2013) and the IUCN guideline for population size of endangered 

plant species criteria (Mace et al. 2008; IUCN 2012).  

 

5.2.4.2 Geographic range 

The geographic range of a species is typically measured by either or both its Area of 

Occupancy (AoO, the actual area in which the species is found) or Extent of Occurrence (EoO) 

(Gaston 1991, 1994). The relationship between EoO and AoO describes the degree to which 

space within the extent is filled and can be measured using D, the box counting fractal 

dimension. AoO is inherently scale dependant as it entails multiplying the number of occupied 

grid cells by the size of the cell (Hartley et al. 2004). As a starting point to determining the 

geographic metric for the commonness topology, the AoO (km2) for each species was 

calculated at each of the six spatial grains from the fine scale presence-absence data (Cheney 

et al. 2018, Chapter 2). The emerging statistic D was calculated by comparing AoO (km2) and 

linear resolution (km) between two grains (Wilson et al. 2004; Veldtman et al. 2010; Donaldson 

et al. 2014) for each incremental reduction in grain resolution, thus describing the ‘space-filling 

property’ of each species (Fig. 5.2c). The statistic is calculated by using the equation Dij = 2 - 

bij where bij is the slope of the regression between log area occupancy (km2) and log linear 

dimension (km). Dij values can range from 0 to 2 where a value of 0 indicates the occupancy 

of a coarse-grain cell by a single occupied fine-grain cell, corresponding to a very narrow 

geographic distribution range, while a value of 2 indicates that all fine-grain cells within a 

coarser-scale cell are occupied, indicating a wide range of distribution (Kunin 1998). When 

categorising species having a wide or narrow distribution for the commonness framework, 

species with Dij <1 were considered as having a narrow distribution and those with Dij ≥1 as 

having wide distributions. The direct relationship between AoO at different spatial grains is 

plotted for each species (Sup. Mat. Fig. 5.1). 
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5.2.4.3 Spatial aggregation 

Species spatial aggregation patterns were determined using the SADIE (spatial analysis by 

distance indices) aggregation index (Perry 1998; Perry et al. 1999). This method uses count-

based data and compares the spatial arrangement of the observed distance to regularity (the 

total number of moves which individuals in each grid cell must move so that all grid cells have 

the same number of individuals) with the permuted distances to regularity derived from a 

randomization procedure. The index of aggregation (Ia) and associated randomization test is 

calculated with Ia =1 indicating a random distribution, Ia >1 an aggregated distribution, and Ia 

<1, a regular/uniform distribution. It follows that grid cells with Ia >1 were classed as clumped 

and in terms of the commonness framework and Ia <1, as even. 

 

5.2.5 Clearing strategies 

Five broad clearing strategies are available to managers depending on the stage of invasion 

(Wittenberg & Cock 2001; Hulme 2006; Tu 2009; Simberloff 2014) (Table 5.1). These clearing 

strategies range from i) site reconnaissance, i.e. checking that an area has not been invaded 

or a previously cleared area has not been reinvaded, ii) to a rapid response approach, where 

new or very small populations have been detected, iii) sweeping, which entails continual 

treatment of large area of low density, iv) control, using a variety of methods on medium to 

dense infestations and v) containment, where IAP dominate the landscape and the most 

pragmatic approach is to stop further spread in the landscape. Each commonness type has a 

best approach management strategy related to clearing. The expected strategy was 

calculated based on the proportion of analysis units that fell into the associated commonness 

type (Table 5.1). The primary determinants of which management clearing strategy to deploy 

is determined by local population size (plants/ha) and the extent of the population (AoO or D). 

The local spatial aggregation of a species is seen as a ‘chance of management success’ 

where chances of successful treatment increase where species are more aggregated. 

 

5.2.6 Spatial hierarchy analysis 

The metric values calculated for the commonness framework were expected to change with 

spatial grain (Hui et al. 2010). The extent to which they changed and the impact on the 

appropriate management strategy was unknown. The spatial relationship between each 

analysis unit was therefore mapped to a phylo-tree (Yu et al. 2017) where the analysis units 

at grain 150m were considered as the tree tips and the other grains as tree nodes and the 

single analysis unit of the PA as the first node (Fig. 5.2d). The commonness type of a given 

species or species group, as measured at the relevant spatial grain, was plotted using one of 

the specified nine colours at each node or tip (Fig. 5.1). This allowed for visual interpretation 

of changes in commonness across scales and identification of areas requiring particular 
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strategies, as well as the influence of specific invaded sites at successively courser or finer 

spatial grains. 

 

5.3 Results 

5.3.1 Local population size 

At fine grains (150m and 300m), Acacia species showed wide variation in local population 

size, where Acacia cyclops density ranged from 0 to 8111 plants/ha; Acacia longifolia ranged 

from 0 to 21,846; and Acacia saligna ranged from 0 to 67,572 plants/ha (Fig. 5.3). Of the other 

species, only Paraserianthes lophantha had density ranges comparable to Acacia species 

with local population sizes from 0 to 8602 plants/ha. Although species showed wide ranges of 

local population density, mean local population size at fine grains (150m and 300m) was much 

lower with Acacia cyclops at 510 plants/ha across all analysis units; Acacia longifolia, 584 

plants/ha); and Acacia saligna, 2490 plants/ha. For the majority of species, for example 

Leptospermum laevigatum, Hakea species and Pinus species, mean plant density was <100 

plants/ha. At courser scales (2400m and 4800m) the mean plant density decreased further 

(e.g. Acacia cyclops: 160 plants/ha; Acacia longifolia: 197 plants/ha; and Acacia saligna: 788 

plants/ha). For the majority of species, for example Leptospermum laevigatum, Hakea species 

and Pinus species, mean plant density was <50 plants/ha. 

 

5.3.2 Geographic range 

As expected the ‘raw’ AoO values were very scale dependant with AoO (km2) varying from 

0km2 (totally absent) at fine grains (150m and 300m) up to 691km2 at the coarsest grain 

(4800m) for species (Sup. Mat. Fig. 5.1). Leptospermum laevigatum had the smallest mean 

AoO at fine grain of 150m (0.03 km2; ±0.04SD) with a total AoO across the PA of 3.67 km2 

(Sup. Mat. Table 5.1). Acacia cyclops had the highest mean AoO at the 150m grain (0.41 km2; 

±0.37SD) with a total AoO of 51.91 km2 across the PA.  

 

The general trend was for taxa to have narrow geographic ranges at fine grains (150m and 

300m), with the box counting fractal dimension (Dij) <1 (Fig. 5.4).  As the spatial grain 

increased to above 1200m, there was a general increase to higher Dij values of between 1 

and 1.5, indicating wide geographic ranges, except for Leptospermum laevigatum (Fig. 5.4) 

which only showed an increase to Dij >1 at scales of 2400m and above. At the largest scale 

analysed (4800m), only Pinus radiata measured Dij values <1, indicating that even at the scale 

of the entire PA, this species had a fairly narrow geographic distribution (Fig. 5.4).  
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Fig. 5.3 Population density (Log10 plants per ha) of species and species groups. Population 

density is used as the metric for Local Population Size in the Commonness Typology (Fig. 5.1) 

where plants/ha <2500 indicate small local populations and plants/ha ≥2500 indicate large local 

populations denoted by the blue dashed line. Boxes represent the 25th and 75th quantiles, while 

the whiskers values 1.5 times the inter quartile range. Solid dots represent outliers beyond this 

range. 

 

5.3.3 Species spatial aggregation 

Taxa spatial patterning in terms of the SADIE Ia tended to be random (Ia 1) to clumped (Ia 

>1) at all grains (Fig. 5.5). All the Acacia species, Pinus species and Leptospermum 

laevigatum also had outlier populations with highly clumped distributions (SADIE Ia >2) at fine 

grains of 150m and 300m. At the Park scale, only Pinus species and Eucalyptus species had 

very clumped distributions with Ia >2. 
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Fig. 5.4 Spatially semi-explicit range structure (measured using Box counting fractal Dij of species 

and species groups). Dij is used as the metric for Local Population Size in the Commonness 

Typology (Fig. 5.1) with Dij <1 indicating narrow novel range and >1 wide novel range. 

 

5.3.4 Management strategies and influence of scale on commonness  

At fine grains, the majority of analysis units for all species fell into the ‘Newly Established’ 

commonness type, except for Leptospermum laevigatum, which was classified as being ‘Not 

Common’ (Sup. Mat. Fig. 5.2a and b). The commonness type with the second highest 

frequency was ‘Not Common’ for all species, indicating that species had small, but evenly 

spaced, populations in the landscape. For example Acacia saligna and Acacia longifolia had 

59 (46%) and 47 (37%) of the analysis units falling into the ‘Newly Established’ commonness 

type, respectively (Fig. 5.6a and c). At the medium grain of 600m, only Acacia saligna and 
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Acacia longifolia had more than one analysis unit in the large population typologies of either 

‘Constrained’, ‘Insipient’ or ‘Successful’ (Fig. 5.6b and d, Sup. Mat. Fig. 5.2d-e). At courser 

grains, the overall trend was for sites to be classed within the wide occupancy ranges, but with 

small population sizes as mainly ‘Dispersed’ and ‘Sparse’ typologies. At the scale of the PA 

(4800m grain) all species fell into the ‘Sparse’ commonness type, except for Acacia longifolia 

and Leptospermum laevigatum, which classed as ‘Dispersed’ and Pinus radiata which was 

classed as ‘Newly Established’ (Sup. Mat. Fig. 5.2f-g). 

 

 

Fig. 5.5 Spatially explicit metric used to quantify range structure (summary statics shown here, 

Spatial analysis by distance indices (SADIE, Cluster index (Ia)) for species and species groups, Ia 

< 1 indicated even spatial pattern and > 1 clumped spatial pattern. 
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Due to the high frequency of analysis units falling within the ‘Newly Established’ and ‘Not 

Common’ categories at fine grain (150m) for all species, a rapid response or reconnaissance 

management strategy would be the most appropriate strategy to deal with them. For example 

Acacia saligna and Acacia longifolia have 93 (73%) and 80 (63%) of the analysis units best 

suited a rapid response approach respectively (Fig. 5.6e and g, Sup. Mat. Fig. 5.3a-b). At this 

fine scale, very few analysis units fell into the commonness type of ‘Incipient’ or ‘Constrained’, 

which are implicit to the management strategy that is currently implemented in the PA, namely 

‘Control’. At medium grains (600-1200m), the trend was for species either to remain 

predominantly in the rapid response strategy for example Acacia longifolia (Fig. 5.6h) or a 

combination of rapid response and sweeping strategies, for example Acacia saligna (Fig. 5.6f, 

Sup. Mat. Fig. 5.3c-d). At the overall PA level (grain 4800m), a sweeping strategy would be 

appropriate for all species except for Pinus radiata, for which a rapid response strategy would 

be optimal (Sup. Mat. Fig. 5.3e-g).  

 

5.3.5 Spatial hierarchy analysis 

Visual inspection of the ‘commonness phylo-trees’ showed a range of species invasion stages 

occur in very close proximity to each other at a given spatial grain (Fig. 5.6 i-l, Sup. Mat. Fig. 

5.4). Visual inspection of the trees allowed for the identification of three important patterns of 

potential management relevance. This includes instances of isolated populations of ‘Newly 

Established’ or ‘Not Common’ type (where a single analysis unit is adjacent to management 

units that do not have the species present. For example Paraserianthes lophantha, (Fig. 5.7a, 

highlighting a portion of the phylo-tree) has two management units classed as ‘Newly 

Established’ adjacent to a number of sites where the species was not recorded. Other species 

that have braches with only a single invaded unit, surrounded by several analysis units with 

no alien presence include: Hakea species, Pinus radiata, and Leptospermum laevigatum. A 

second pattern was the occurrence of areas with very high density invasions adjacent to very 

low density sites Acacia cyclops, Acacia longifolia and Paraserianthes lophantha have branch 

tips (grain 150m) that were classed as ‘Successful’ and ‘Highly Successful’, adjacent to areas 

that were classed as ‘Newly Established’ (Fig. 5.7b). The third significant pattern was identified 

in species for which medium-grain areas require heterogeneous management interventions at 

a finer scale, i.e. species have a wide range of very different commonness types in close 

proximity. For example Acacia saligna and to a lesser degree Acacia longifolia and Acacia 

cyclops have up to six of the commonness types as branch tips, on the same branch (Fig. 

5.7b and c).  
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Fig. 5.6 (a-d) The number of analysis units with a particular commonness type (see Fig. 5.1.), and (e-h)  

the associated proportion of analysis units requiring a particular management strategy (Re-

reconnaissance; RR-rapid response; Sw-sweeping; Cl-control; Cn-containment) and (i-l) the hierarchical 

mapping at 150m and 600m spatial grains for Acacia saligna and Acacia longifolia. The nine colours 

specified in a-d are replotted for e-h and each phylo-tree node at the specified grain. The detailed 

information for all species at all grains is available in supplementary material figures 5.2, 5.3 and 5.4. 
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Fig. 5.7 Tree segments showing various types of invasion where there are (a) isolated 

populations of Newly Established or Not Common types, (b) Successful and Highly Successful 

typologies adjacent to very low density sites of Newly Established, Not Common and Not 

Present, (c) a number of very different typologies in close proximity. The nine colours specified 

are the commonness types as per Fig. 5.1. 

 

5.4 Discussion 

Aligning IAP management strategies with their range characteristics, through the use of a 

commonness framework, represents a novel approach to planning and implementation of IAP 

programmes. This is achieved by viewing invading species as being on a trajectory from being 

uncommon to becoming common (McGeoch & Latombe 2016), resulting in the same IAP 

having a variety of commonness types, at multiple sites within the landscape. The recognition 

that invasive species can be at different invasion stages, as measured by a variety of scales, 

in a landscape is important for the correct application for treatment strategies or conservation 

objectives (Crooks 2005; Panetta et al. 2011; Pluess et al. 2012). The analysis conducted in 

this study emphasises that management of IAPs should account for site variability at multi-

scales. The approach presented here can be used to reconcile differences in species-based 

and area-based approaches to IAP management.   

 

Analysis of fine-grain IAP data in terms of a commonness framework showed that the same 

species can have a variety of commonness types at multiple sites in the PA. This can be 

interpreted as the same species being in different invasion stages across the landscape.  The 

most frequent commonness type for taxa at fine grain (150m) was ‘Newly Established’ and 
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‘Not Common’. This indicates that species historically considered as highly invasive and 

problematic species such as the Acacias (Le Maitre et al. 2011; Richardson et al. 2011) are 

under relatively good management control. For example, Acacia saligna, which is a potential 

ecosystem transformer (Holmes & Cowling 1997), currently had 73% of the analysis units 

falling within either the ‘Newly Established’ or ‘Not Common’ commonness types indicating 

that the control programme over the past 20 years has made good progress for this species. 

 

The finding of such highly invasive species in the low population (<2500 plants/ha) and narrow 

geographic range commonness types is important for future invasion trajectories as three 

future trajectory possibilities exist. Firstly, optimistically, management pressure will continue 

and local extinction of IAP from the sites will occur (Simberloff 2009). Secondly, management 

pressure is weakened allowing the increase in local IAP population density and/or local range 

resulting in a reinvasion (Gardener et al. 2010; McGeoch & Latombe 2016). The third option 

is for the species is remain in their observed commonness type as the management pressure 

is not enough to result in the local removal from the landscape and a continued ‘stale-mate’ 

between management control pressure and invasion expansion results (Moore et al. 2011; 

Richardson et al. 2011; Souza-Alonso et al. 2017). This third option currently seems the most 

likely outcome as the required Rapid Response strategy, that necessitates higher search time 

cost and more flexible treatment methods, is not undertaken as part of the clearing programme 

for common species like the Acacias. 

 

The incorporation of multi-scale approach to the control programmes is important. For 

example understanding the underlying drivers of invasion at different scale, for example 

dispersal mechanisms (Lockwood et al. 2005; Wilson et al. 2009) can determine management 

success. These drivers can be different at various scales and addressing the management of 

an IAP at a single scale alone may only reveal a sub-set of required actions. Unfortunately 

most strategies for controlling IAP in PAs are developed from information collected at the scale 

of the management units to be treated (Working for Water 2003). As the size of the 

management units fall within the medium grains of analysis (600m-1200m), population 

parameters are likely to be over-estimated. For example, as AoO is inherently scale dependant 

where the relationship between AoO and grain usually approximates a power law, abundance 

values in the management units are likely to be over-estimated (He & Gaston 2000; He & 

Gaston 2003).   

 

Although the over estimation of population parameters can be seen as a precautionary 

management approach, it has disadvantages, notably the choice of a correct treatment 

strategy. For example Acacia cyclops had more than 75% of the sites suited to a Rapid 
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Response approach at a fine grain (150m) while at the grain on the management units (600m) 

more than 90% of the sites would require a Sweeping strategy. A further strategy mismatch is 

the under-use of the Reconnaissance strategy. Although invasion prevention is widely 

accepted as the most cost effective and efficient approach to manage IAP (Pluess et al. 2012; 

Souza-Alonso et al. 2017), the potential use of Reconnaissance strategy diminishes with 

increasing grain size. For example, Acacia longifolia had 31% of the sites suited to a 

Reconnaissance strategy, while at courser grains, this strategy was absent. 

 

Categorisation of the commonness types with spatial scales into ‘commonness phylo-trees’ 

showed a range of species invasion stages occurring in very close proximity to each other at 

a given grain. This emphasises that the invasion landscape to be managed is relatively 

complex because of possible multiple invasion events and a series of historical management 

actions. However these management complexities in invasion processes, invasability and 

management history are not readily integrated into current management strategies and 

approaches. This is due to emphasis of management being an area-based approach. The 

focus of the IAP programme in the PA is fixed on a Control strategy, which aligns with the 

commonness typologies Incipient and Constrained, however these two typologies had the 

lowest frequency in the PA. These low frequencies could be an indication that the Control 

strategy has been well implemented over the past 20 years, showing success. However in this 

study, the Control strategy was, found not to be the most appropriate strategy to deal with the 

current state or future states of invasion in the PA.  

 

Implications for management 

IAP management approaches are primarily area-based (treating all IAPs in a defined area) 

and to a lesser extent species-based (targeting specific IAPs or group of plants). Through the 

application of a commonness framework, and realising that species are on a trajectory from 

being uncommon to becoming common, a third ‘invasion-based’ approach is warranted. This 

approach accounts for the same species being in different stages of invasion in sometimes 

distant locations in the landscape. As single management strategy (either area or species 

based) is limiting, a combination of strategies, informed by the range properties of the species 

at the site, is be more applicable. Through an appreciation of the dynamic range properties of 

IAPs, managers would be able to move away from area-based strategies or species-based 

strategies to a choice of invasion-state strategies (Table 5.1).  

 

Benefit of the approach 

The application of the commonness framework to IAP data clearly shows the underlying 

invasion stage in which a species finds itself at a particular site. The commonness framework 
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is useful to identify the particular management strategy required for a species at a site. For 

example, Pinus species can occur at low to very low population densities, but have very high 

occupancy rates and therefore require a different management strategy to Acacia species that 

generally have very high site population densities over narrow ranges. Assignment of 

particular management strategies to sites allows for better site planning and overall a more 

efficient clearing programme. 

 

The introduction of hierarchical grain analysis showed how commonness types change with 

grain. For most species analysed there was a shift from narrow occupancy typologies (Newly 

Established and Not Common) to wide occupancy typologies (Dispersed and Sparse) as grain 

size increased. As grain size increased, high local population densities were also less 

common, shifting away from Highly Successful and Successful types to Dispersed and Sparse 

typologies. These shifts in commonness type have important implications for management 

priority setting. A high-level overview (course grain) of species invasion at the landscape level, 

does not indicate fine-grain reality at a site, which can be very different. This can result in both 

the incorrect conservation objectives being set, as well as the incorrect strategy being applied.  

 

5.5 Conclusion 

Through the use of the commonness framework, it has been demonstrated that even for a 

single species a number of management strategies will be applicable depending on the area 

to be treated. Measures of range size and population are essential for informing a correct 

conservation response and management practice for the management of IAPs. Though the 

use of a commonness framework, there can be refinement and flexible implementation of 

clearing strategies. This allows for sites to be identified for species-specific goals, for example 

eradication though rapid response, while allowing for other sites to have to have a more 

conventional area-based goals to increase clearing and programme effectiveness. The 

incorporation of range dynamics can assist in the improving management interventions aim to 

manage and reverse the negative impacts on IAP’s. 
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5.7 Supplementary material 

The following supplementary Information may be found in the supplementary section 

accompanying this dissertation. 

 

Sup. Mat. Figure 5.1. Area of Occupancy (Log2 km2) of species and species groups. Area of 

Occupancy is used as an intermediate step to calculating D, the box counting fractal 

dimension. 

 

Sup. Mat. Figure 5.2. The number of analysis units for species and species groups falling 

within each commonness type at analysis grains of 150m, 300m, 600m, 1200m, 2400m and 

4800m. 

 

Sup. Mat. Figure 5.3. The proportion of analysis units for species and species groups falling 

within each management strategy at analysis grains of 150m, 300m, 600m, 1200m, 2400m 

and 4800m. (Re-reconnaissance; RR-rapid response; Sw-sweeping; Cl-control; Cn-

containment). 

 

Sup. Mat. Figure 5.4. Hierarchical mapping of analysis units into a ‘phylo-tree’ at six spatial 

grains for species and species groups with the commonness type indicates as 1 of 9 colours. 

 

Sup. Mat. Table 5.1 Mean and total area of occupancy (AOO) for selected species and 

species groups at six grains analysed. 
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Chapter 6.  

Synthesis   

6.1. Introduction 

The aim of this dissertation was to develop an understanding of how outcomes of invasive 

alien plant (IAP) clearing programmes could be improved upon, using Table Mountain National 

Park (TMNP) as a case study. The ideas presented here are intended to strengthen the 

science-management interface, which is a research area identified as requiring further study 

(Esler et al. 2010; Legge 2015; Abrahams et al. 2018). Each chapter in the dissertation 

focused on providing a scientific rationale for improving management of IAP programmes in 

terms of data used for management decision making, treatment quality, strategy selection and 

addressing issues of spatial scale in planning. While the IAP problem in TMNP has not 

worsened at a course scale over the last 20 years, it has achieved limited tangible success, 

in terms of reduction of overall alien cover despite a large resource investment (Chapter 1 Fig. 

1.3; Table 1.1). As such demonstrating value of money spent and improving management 

outcomes was important. Complementary studies on management effectiveness of landscape 

control programmes in the region highlighted that areas were treated sub-optimally, resulting 

in very long time-frames to treat areas with long-term budget implications (McConnachie et al. 

2012; van Wilgen et al. 2016; Fill et al. 2017; Kraaij et al. 2017). It therefore became necessary, 

both from an economic and conservation perspective, to investigate the likely future trajectory 

of the IAP control programme and to determine the main drivers of management success.  

 

The dissertation considers four management-related aspects of the clearing programme that 

could potentially be improved. Firstly, as management decisions to treat areas are based on 

knowledge of IAP species presence and their densities in an area. Chapter 2 set out to test 

the accuracy of data used in this management decision making process. Secondly, while the 

quality of treatment of an area is known to be important (McConnachie et al. 2012; Fill et al. 

2017; Kraaij et al. 2017), the long-term implications of poor treatment have not been quantified. 

In Chapter 3 this issue is investigated and the expected levels of future IAP invasion are 

quantified at 38 levels (between 5%-80% at 5% incremental increases, and between 80% and 

100% at 1% incremental increases) of clearing efficacy, where efficacy is defined as the 

probability that all plants in an area will be treated and killed using the correct chemicals and 

techniques. Thirdly, although a number of clearing strategies have been proposed by 

management and documented in literature (Roura-Pascual et al. 2009; Roura-Pascual et al. 

2010; Forsyth et al. 2012), the potential outcomes of these strategies had not been formally 
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tested. In Chapter 4, these proposed management strategies are modelled to provide insight 

into the performance of each management strategy. Lastly, in Chapter 5, a planning approach 

is presented that re-examines the concepts of area-based and species-based planning. 

Through the examination of the range metrics of population size, invasion extent and spatial 

pattern, the invasion stage of a species could be quantified. When coupled with the effect of 

spatial grain planning methods based on the invasion stage of IAP in an area can be 

considered. 

 

In this synthesis chapter I draw together the main findings and conclusions of this research, 

highlight where park management have adopted recommendations and outline the 

opportunities for future research. 

 

6.2 Data quality underpinning management decisions: what have we learnt? 

Conservation managers often rely on several sources of information before decisions can be 

made and actions taken (Knight et al. 2011; Cook et al. 2012; Ntshotsho et al. 2015). In IAP 

programmes, key data requirements include a list of known alien plant species, together with 

their distribution and abundance (Wittenberg & Cock 2001; Tu 2009; McGeoch et al. 2012). 

Given the importance of management data and its use in decision making, an analysis of two 

management data sets, obtained from conservation managers via workshops and from 

Working for Water (WfW) programme managers (Chapter 2). In order to compare these 

datasets, a fine-scale systematic dataset comprising 10,057 sample plots was produced. 

Within in each sample plot, each individual that was alien was counted give a comprehensive 

count data was well as a true account of species presents and absents across the study area.  

Comparing the datasets illustrated the extent of the inaccuracy of the data used in the IAP 

control programme. Analyses suggested that the data used in the WfW programme to date 

were collected in a non-standardised and non-rigorous manner. Further analysis revealed that 

inaccurate data resulted in skewed species distributions and workload quantification that 

influencing management decision making such as the prioritisation of areas to work (Chapter 

2). 

 

6.2.1 Alien species richness and abundance 

Variations in alien species datasets are expected due to differences in the purpose for and 

scales at which data are collected (Foxcroft et al. 2009). The fine-scale systematic sampling 

from this dissertation provided estimates of species richness and abundance that differed by 

orders of magnitude from the data that are used by managers (Cheney et al. 2018). The 

clearing programme has historically included work on a subset of approximately 25 species, 

whereas the infield sampling detected 106 species, of which over 70 require control under 
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national legislation. While the alien species was underestimated, the abundance of species 

was greatly overestimated. For example Acacia cyclops, a key targeted species in the clearing 

programme was estimated by managers to occupy 8.94 km2 (condensed area), while the 

ground-truthing in this study suggested an estimate of closer to 0.32 km2 (condensed area, 

Chapter 2; Cheney et al. 2018). The over-estimation of invasion extent by managers was a 

key finding that allowed for better understanding the true scope of the invasion problem, thus 

allowing for direct improvements to the IAP control programme at TNMP 

 

6.2.2 IAP programme improvements from improved data collection   

After presenting findings of this PhD work to park management on the differences in species 

richness and abundance, the WfW programme undertook to adopted the survey methods used 

in this dissertation to improve the accuracy of field data collected. The adoption of a 

standardised and repeatable in-field data collection methodology of for planning purposes and 

implementation purposes allows for three key interventions that will improve the programme. 

These are i) accurate workload quantification, ii) undertaking early detection and rapid 

response (EDRR) and, iii) undertaking formalised monitoring, which are outlined below.  

 

Workload quantification 

Accurate field data allows for better quantification of the number of species to be treated and 

the required workload (i.e. the number of alien plants to be treated) with the corresponding 

resource effort (i.e. the number of person days required) to undertake the work. As such the 

in-field measure of species richness and abundance directly impacts on the overall cost of 

clearing operations and the required budget to undertake the clearing as per the WfW norms 

and standards (Neethling & Shuttleworth 2013). Through the standardisation of data collection 

it was possible to provide accurate data for the annual plan of operations (APO) to the WfW 

programme. The APO comprises a database of management units where the abundance of 

each alien species can be updated (Fig. 6.1).  The standard data collection of alien species 

richness and abundance results in realistic workload quantification and person day allocation 

to WfW clearing contracts. By increasing the species listed in the WfW contracts, a complete 

assessment of required resources for the targeted species to be treated on site can be made. 

This is seen as a programme improvement as previously, species not listed on the clearing 

contract were either ignored or had to be cleared by the contractor at their own cost. Contrary 

to concerns that the reduction in perceived alien plant density would decrease the allocated 

person days to a clearing contract, and impact on the job creation component of the clearing 

programme, the contract person days have remained stable due to the more comprehensive 

listing of alien taxa that need to be treated at a site. 
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Fig. 6.1 Schematic outline of the process from data collection to implementation. Where data 

from (a) systematic field surveys (Chapter 2) is used to (b) update species richness and 

abundance data tables in the Working for Water Information System (WIMS). This data is used 

(c) to calculate the resource requirements for the WfW clearing contract. 

 

Early detection and rapid response capacity 

Although comprehensive lists were readily available through formal (Spear et al. 2011; 

Foxcroft et al. 2017) and grey literature for the TMNP, these listings had neither been adopted 

nor integrated into the IAP programme. Key information for a holistic control programme was 

therefore absent in that prioritisation of species for the TMNP could not be completed (Pyšek 

et al. 2009; Downey et al. 2010a; McGeoch et al. 2016). An important function of management 

prioritisation is the ability to identify new or emerging invasive species within the PA that may 

need immediate treatment (Foxcroft et al. 2011; Jarošík et al. 2011). Many of the alien species 

highlighted by fine-scale mapping were not listed by the park management, however, these 

species are listed in the National Biodiversity Act (10 of 2004) as alien species requiring direct 

control. Although treatment of new arriving alien species, with small populations is widely 

accepted as the most cost effective approach with the highest chance of eradication success 

(Hobbs & Humphries 1995; Wittenberg & Cock 2001; Tu 2009), this aspect of the WfW 

programme was absent in the TMNP. 

 

After presenting findings of this PhD work to park management, a specialised Early Detection 

and Rapid Response (EDRR) component to the clearing programme was approved. The 

a 

b 

c 
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EDRR teams were piloted in 2016, and the programme was formalised in 2017, with the 

inclusion of three other National Parks. Due to the success of the teams targeting emerging 

species that would were not not falling within the main programme, the initial allocation of 

1,500 person days in 2016 has more than doubled to 3,987 person days in 2018. The EDRR 

component of the park’s IAP programme is set to increase steadily to around 10,000 person 

days per year by 2021 with budget of R2.5 million.   

 

Formalised monitoring 

The absence of formalised monitoring, within the WfW programme in particular, has been a 

long-standing and on-going short-coming of programme implementation (Blossey 1999; 

Marais et al. 2004; McConnachie et al. 2012; van Wilgen et al. 2012; van Wilgen & 

Wannenburgh 2016; Fill et al. 2017). Without a structured monitoring approach there can be 

only limited evaluation of the effectiveness of the programme, management goals and strategy 

adjustments. All sound management practices involve learning from the actions implemented 

(Shea et al. 2002; Levendal et al. 2008). Comprehensive analysis of trends in indicators or 

response variables require standardised continuous monitoring. Although comprehensive 

indicators and thresholds have been formulated for PAs in South Africa (Foxcroft & Downey 

2008; Foxcroft 2009; Foxcroft & McGeoch 2011), the formalised monitoring of these has yet 

to undertaken. The complete fine-scale mapping of the PA enabled a first comprehensive IAP 

baseline dataset to be complied for the TMNP. The repeat sampling of sites allowed for the 

establishment of a structured monitoring programme (Dewey & Andersen 2004), which had 

been lacking for the park. The TMNP is likely to be one of the first places where detailed 

monitoring for the WfW programme can be applied through the repeat sampling of plots based 

on cost efficient fine-scale, high quality surveys. 

 

6.3 Primary drivers of long-term outcomes: what have we learnt? 

6.3.1 The role of treatment quality 

The quality of IAP clearing treatments in field is known to be an important driver of clearing 

success (McConnachie et al. 2012; Fill et al. 2017; Kraaij et al. 2017). In Chapters 3 and 4 the 

modelling of Acacia population dynamics, demonstrate how dramatic the impacts of work 

quality can be on IAP programme outcomes. Previous alien plant treatment models implicitly 

assumed set rates of clearing quality and success that would lead to outputs of achievable 

programme targets (Le Maitre et al. 2002; Krug et al. 2010; van Wilgen et al. 2016). Through 

the modelling of 38 levels of clearing efficacy between 5 and 100%, over a 50 year period, the 

effect on clearing outcomes was illustrated. The models made use of accurate species 

distribution data (derived in Chapter 2), supported by a collation of published information on 

for example seed accumulation rates. The models showed large variations in the number of 
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hectares treated, maintained or sustained in a maintenance state as clearing efficacy 

improved from poor to good. Analysis of the model results showed a non-linear relationship 

between the level of clearing efficacy and the area that could be treated annually, which has 

important implications for clearing programmes (Chapter 3). The modelling revealed that small 

increases in clearing efficacy above 80% result in increasingly large gains in the areas that 

can be covered for the same amount of resources. Conversely, any decrease in clearing 

efficacy below the 80% results in rapidly diminishing areas that can be treated annually with 

the same resources. A key consequence of the efficacy levels currently observed in the 

clearing programme, is that up to 75% of the future resource costs will be required to treat 

new infestations resulting from re-seeding of the current standing infestations. With increased 

efficacy, in particular removing adult plants before they can produce seeds, this future cost 

can be greatly reduced. A critical insight from Chapter 3 is that IAP programmes can increase 

the overall areas that can be treated, while reducing the funding requirements, if in-field quality 

is improved. This is in direct contradiction to the trend of asking for more funding to treat 

additional areas (Krug et al. 2010; van Wilgen et al. 2016). In addition the focus on quality 

provides an alternative management option to the promotion of ‘triage’ in areas that cannot be 

reached for clearing due to limited budgets (Bottrill et al. 2009; Downey et al. 2010b). 

 

After presenting findings of Chapter 3 to WfW project managers, their intervention was to 

increase allocation of person days for training interventions. The number of allocated training 

days has more than doubled from 4,174 days in 2016 to 8,670 days for 2018. The focus on 

training is a step in the right direction to improve the quality of work in-field. 

  

6.3.2 The role of IAP strategy selection 

The planning terms ‘goal’, ‘strategy’, ‘objectives’ and  ‘action’ are not used in a standardised 

manner in the literature and can have many different meanings within the context of 

conservation and alien species management. Important IAP management strategies that 

constitute a prioritization of complementary management objectives such as water production, 

fire management and invasive species type, are defined in the literature (Roura-Pascual et al. 

2009; Roura-Pascual et al. 2010) (Table 4.1). For each IAP management strategy, a range of 

management objectives had previously been weighted through an interactive Analytical 

Hierarchy Process based on management and expert opinion (Roura-Pascual et al. 2009; 

Roura-Pascual et al. 2010). For example, the management objective to treat areas that had 

recently burnt would have a different weighting depending on the overall strategy that was 

chosen for implementation (Table 4.1). Four of these strategies (management consensus, 

maintain follow-up area, keep areas clean, water production)  were tested along with area 
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based triage in a modelling environment to determine which strategy would perform best over 

time in terms of reducing alien density to below 1 plant per hectare.  

 

The results showed that under the currently-achieved clearing efficacy (~75%), a shared 

Management Consensus approach attained the highest number of hectares in a maintenance 

state. However, the results also showed that the choice of strategy is highly dependent on the 

efficacy level of the clearing. As clearing quality increased or decreased above or below 75%, 

the best performing strategy changed. An interesting finding was high level of support for the 

triage strategy which repeatedly cleared aliens from the core conservation area, before 

clearing other areas. A similarities of this outcome could be drawn between setting priorities 

for clearing of buffer areas surrounding protected areas (Foxcroft et al. 2011; Jarošík et al. 

2011). Although clearing the buffer areas around PA’s is important, the core biodiversity areas 

should be the priority. A second interesting result was that focussing on lightly infested areas 

only as a priority proved to be a poor overall strategy and achieved the lowest levels of the 

desired outcome. Although the debate on the preferred management strategy is likely to 

continue, the findings of Chapter 4 re-emphasise the results of Chapter 3, highlighting 

treatment quality as a primary driver of long-term clearing success, while the choice of 

implementation strategy is a secondary factor.  

 

A key finding from Chapter 4 was that the frequency at which the majority of management 

units were historically revisited for follow-up treatment is greater than two years. However, as 

many of the targeted species in the park are able to produce seeds within two years 

(Marchante et al. 2010; Souza-Alonso et al. 2017), these species are likely to germinate or 

coppice and set seed before the area is re-treated. Long periods between follow-up clearing 

greatly increase the cost and duration of future control, since propagule pressure, which is 

one of the primary drivers of IAP persistence, is not managed adequately (Lockwood et al. 

2005; Lockwood et al. 2009; Simberloff 2009; Meyerson & Pyšek 2013). This lack of prompt 

follow-up of sites to treat newly germinated or missed plants has been noted in other studies 

in the region and suggests a systemic problem for WfW of inadequate forward planning and 

implementation (McConnachie et al. 2012; Fill et al. 2017; Kraaij et al. 2017). Science 

management engagement around the results in Chapter 4, reiterated the importance of the 

frequency of treatment return interval to park management, who endeavoured to improve 

return time to under two years. The project planning for 2017 and 2018 project years therefore 

evolved to 100% coverage of the project area within a 21 month return cycle to focus primarily 

on prevention of adult plants seeding and thus directly reducing current and future propagule 

pressure. Project feedback reflects that this was achieved, suggesting that decreasing the 

revisiting time is an achievable target 

Stellenbosch University  https://scholar.sun.ac.za



synthesis 

 

 
- 138 - 

6.4 Approaches to alien species management 

The expected positive outcomes of IAP removal programmes have been questioned (Hobbs 

et al. 2009; Gardener et al. 2010; Davis et al. 2011). With perceived high management costs 

and limited successes globally, questions have been raised as to the long-term viability of 

reversing the current trend of species invasions. Suggestions in the literature have been made 

to divert limited conservation funds away from alien species management or focus on a few 

selected areas (Downey et al. 2010b; Vince 2011; van Wilgen et al. 2016). In Chapter 4, the 

modelling of expected management outcomes shows that current management strategies and 

efficacy levels will only achieve a long-term ‘stale-mate’ between management control and 

IAP invasion, primarily due to constant seedbank replenishment in the case of Acacias.  

 

Studies have, however, shown that eradication is feasible for plant populations, (Moore et al. 

2011; Panetta et al. 2011; Kaplan et al. 2012). Where invasive species have been confined to 

small geographic ranges and can be described as being newly established, successive local 

eradication (extirpation) has resulted in eradication of invasive species (Simberloff 2013). 

Chapter 5 builds on a commonness framework which highlights that species are on a trajectory 

from being uncommon (newly established) to dominating the landscape (successful invasion) 

(McGeoch & Latombe 2016). Three metrics of population size, invasion extent and spatial 

pattern were used to determine a species range properties at several grains of analysis. By 

determining the range properties, a species could be defined in terms of its invasion trajectory.  

 

An important finding in this chapter was that the same species could be at different stages of 

invasion in different areas of the park. The consequence of this is that a single management 

approach for a species is not warranted. A second finding is that commonness type changes 

with spatial grain that can result in different approaches as different grains. By incorporating 

information on the range properties of occupancy, population density and spatial pattern, IAP 

populations that fitted the newly established criteria could be readily identified. This opens the 

way for areas to be identified for local eradication (extirpation) of IAP (Simberloff 2013), 

importantly with the correct management approach applied. Through the systematic 

extirpation of identified local populations across the landscape, while controlling areas with 

higher invasion levels, park-wide eradication of IAP would be possible.  

 

6.5 Opportunities for future research 

A logical next step for future research would be to understand the factors affecting in-field 

productivity of the IAP teams in treating areas. As the task of clearing IAP is very labour 

intensive (Koenig 2009; van Wilgen & Wannenburgh 2016), both the clearing quality and the 
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productivity of clearing teams needs to be considered, to improve efficacy and meet clearing 

and biodiversity targets. Understanding in-field productivity of government-led employment 

programmes is challenging and has many facets including economic (e.g. contractor financial 

management), technical (e.g. tools and skills), social (e.g. living conditions, job security) and 

even political ones (Hough & Prozesky 2012).  

 

Working for Water implements a contract based model that sets the maximum price that will 

be accepted for an area to be cleared. This ceiling price is set primarily via the number of 

person days allocated to the contract at predetermined wage rates by the Working for Water 

Information System (WIMS). Chapter 2 showed that a significant over-estimation of species 

cover allowed for an over allocation of resources, thereby inflating the budgets available per 

contract. This resulted in a greater number of person days being generated and paid for by 

the project, compared to the number of person days actually used on site during 2014 and 

2015 (Fig. 6.2, Year 2014, 2015). That is, the majority of contracts had too many person days 

allocated for the amount of work required, with the contractor and teams reaping the direct 

benefit.  

 

The adoption of more rigorous density estimates in the 2016 project year, via a systematic 

sampling approach, resulted in a more accurate workload quantification and associated 

person day allocation (Fig 6.1). However, instead of a perfect balance between person days 

budgeted and days used in the field, the clearing teams took longer than expected to complete 

the contracts. In the 2016 project year 38,782 person days were allocated to clearing 

contracts, while the clearing teams unitised  44,489 person days to complete the work (15% 

extra person days required) (Fig. 6.2, Year 2016). The trend of clearing teams taking longer 

than expected to clear sites continued into the 2017 project year. Where WIMS generated 

43,541 person days while 63,068 were actually used in-field (44% extra person days required) 

(Fig.6.2, Year 2017). The shift in 2016 and 2017 to contracts taking longer than expected is 

currently thought to be linked to the productivity of the clearing teams. With the previous over 

allocation of person days before 2016, clearing teams had little need to be productive due to 

an over allocation of person days. However, with better workload quantification, if productivity 

is below the expected WfW standard, the number of days on-site will overshoot the number of 

days allocated. Payment however, does not proceed until the work in an area is completed as 

per the contract. This means that extra un-paid person days are required by the teams to 

complete the contract, at direct cost to the contractors.  
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Fig. 6.2 The number of person days generated by the Working for Water Information System 

(WIMS) and the actual number of person days used by clearing teams. Previous to 2016 

methods for collecting data used to generate contracts was ad-hoc and haphazard. From 2016 

and 2017 data collected by systematic sampling methodology (Chapter 2). 

 

The situation of improving workload quantification but teams not being able to completed tasks 

within the allocated is of concern to the WfW project. Initial investigations into possible reasons 

for the non-achievement of targets pointed to productivity the clearing teams productivity 

where some teams were less than 50% productive when measured against the WfW norms 

and standards. The productivity levels of the clearing teams directly impact on the ability of 

IAP programmes to deliver on required targets which in turn impacts on the organisations’ 

biodiversity management mandate. A frequently cited explanation for the measured low rates 

of productivity is that WfW targets, set through the norms and standards, are too high. 

Alternatively the social dimensions, amongst others, financial stability, team dynamics and 

composition, domestic living conditions, team experience and training, social-protection and 

relationship with project managers could be important factors. Along with the investigation into 

what are the causes of low productivity, would be the recommendations to address the issue.   

 

6.6 Conclusion 

Through this thesis the demonstrated the cost-effective value of fine-scale data collected in-

field. Empirically estimates of the impact of poor clearing quality on long-term prospects of 

clearing programmes and the implications of this for the choice of clearing strategy have been 

made. While the clearing programme in Table Mountain has not made many gains despite 20 

years of avid application, improvements in species listing, work-load quantification, return-

interval for site follow-up, and application of scale-relevant strategies to promote local and 
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broader eradication of targeted species enabled through this thesis have paved the way for 

improved results in the future. I believe that the application of these results are applicable to 

other IAP programmes and will go a far way in ‘turning the tide’ on invasive plants. 
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Supplementary Material 

Chapter 1. 

 

Supplementary Figure 1.1 Number of alien species across South Africa per Quarter Degree 

square in relation to the National Protected Areas. Alien species area courtesy of SANBI 

(2018) 

 

Supplementary Table 1.1. The number of hectares and percentage of the Table Mountain 

National Park falling into the Working for Water alien plant cover classes. Gains have been 

made in the denser classes (closed, dense and medium, i.e. the cover of these classes has 

been reduced), while some losses have occurred in the very low density class (rare, i.e. cover 

of this class has also been reduced) between 1998 and 2015. 

Density 
Class 

1998 2007 2015 Change 1998-2015 

 Hectares % Hectares % Hectares % Hectares % 

closed 1182 4.7 1049 4.1 360 1.4 -1570 -6.2 

dense 2260 8.9 1187 4.7 1009 4.0   

medium 1719 6.8 1481 5.8 2222 8.8   

scattered 1262 5.0 1871 7.4 3186 12.6  8.2 

very 
scattered 

1716 6.8 1902 7.5 3677 14.5   

occasional 7626 30.1 6467 25.5 5816 22.9 2075  

rare 9602 37.9 11408 45.0 9096 35.9 -505 -2.0 

Total 25366 100 25366 100 25366 100   
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Chapter 2.  

 

Supplementary Table 2.1. Standardised classes used to group the relative measures of 

abundance (percentage cover, density and descriptive) for invasive alien plants invasions from 

the Management, Working for Water (WfW) and Systematic datasets  

Standardized 
Abundance  
Class 

Management:  
Descriptive 

Management, WfW and 
Systematic: species 
cover (%)  

Management:  
density (plants/ha) 

0 Un-invaded 0 0 

1 Rare > 1% <6  

2 Occasional 1-10% 6 - 800 

3 Scattered 11-25% 800 - 2,200 

4 Medium 26-50% 2,200 – 7,600 

5 Dense 51-75% 7,600 – 10,000 

6 Closed > 75% > 10,000 

 

Supplementary Table 2.2. Confusion matrix (sensu – (Fielding and Bell 1997)) for comparing 

presence and absence data from the Management or WfW datasets to the Systematic dataset.  

Taxa x Systematic Dataset 

  Presence Absence 

Management or 

WfW dataset 

Presence a b 

Absence c d 

a, is the number of polygons where both datasets recorded a presence value (true presence); 

b, is the number of polygons where the Management or WfW datasets did record a presence value 

(false presence); 

c, is the number of polygons where the Management or WfW datasets did not record a presence 

value (false absence);  

d, is the number of polygons where both datasets did not record a presence value (true absence); 

and 

n = a + b + c + d 
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Supplementary Table 2.3. Confusion matrix measures derived from the confusion matrix for the 

presence and absence data from the Management or WfW datasets and the Systematic 

dataset. Notation as per Table 2. 

Measures Formula Description  

Accuracy 
(a+d)/n 

proportion of correctly predicted 

polygons 

Prevalence  (a+c)/n proportion of presence records 

Sensitivity 

a/(a+c) 

probability that the Management or 

WfW datasets will correctly classify a 

presence 

Specificity 

d/(b+d) 

probability that the Management or 

WfW datasets will correctly classify 

an absence 

Odds Ratio 
ad/cb 

ratio of correctly assigned polygons 

to incorrectly assigned polygons 

Kappa (K) 

 

specific agreement greater that 

chance (Fielding 2007) 

True Skill 

Statistic (TSS) (sensitivity + specificity) – 1 
specific agreement greater that 

chance (Allouche et al. 2006) 

 

Supplementary Table 2.4. Comparison of Alien Plant Species presents between the Systematic 

Mapping, Working For Water and Management Data, where '1' denotes the presents of that 

species in the data set and '*' is where data at a Genera level was been collected 

Species Systematic Survey 

Dataset 

Working For Water 

Dataset 

Protected Areas 

Managers Dataset 

Acacia cyclops 1 1 1 

Acacia longifolia 1 1 1 

Acacia mearnsii 1 1 0 

Acacia melanoxylon 1 0 0 

Acacia pycnantha 1 0 0 

Acacia saligna 1 1 1 

Agave americana 1 0 0 

Agave sisalana 1 0 0 

Anagallis arvensis 1 0 0 

Arundo donax 1 1 1 

Avena fatua 1 0 0 

Bidens pilosa 1 0 0 

Briza maxima 1 0 0 

Briza minor 1 0 0 

Bromus diandrus 1 0 0 

Callistemon salignus 1 0 0 
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Species Systematic Survey 

Dataset 

Working For Water 

Dataset 

Protected Areas 

Managers Dataset 

Centranthus ruber 1 0 0 

Cereus jamacaru 1 0 0 

Cestrum laevigatum 1 1 0 

Chenopodium murale 1 0 0 

Cirsium vulgare 1 0 0 

Conyza albida 1 0 0 

Conyza canadensis 1 0 0 

Cortaderia jubata 0 1 0 

Cortaderia selloana 1 1 0 

Cyperus involucratus 1 0 0 

Datura stramonium 1 0 0 

Daucus carota 1 0 0 

Echium plantagineum 1 0 0 

Erodium moschatum 1 0 0 

Eucalyptus spp* 1 1 1 

Eucalyptus cladocalyx  1 0 0 

Eucalyptus diversicolor 1 0 0 

Eucalyptus lehmannii 1 0 0 

Euphorbia peplus 1 0 0 

Ficus carica  1 0 0 

Flaveria bidentis 1 0 0 

Fumaria muralis 1 0 0 

Fumaria officinalis 1 0 0 

Geranium molle 1 0 0 

Glechoma hederacea 1 0 0 

Hakea spp* 0 0 1 

Hakea drupacea 1 0 0 

Hakea gibbosa 1 1 0 

Hakea salicifolia 1 1 0 

Hakea sericea 1 1 0 

Hedera helix  1 0 0 

Hypericum perforatum 1 0 0 

Hypochaeris radicata 1 0 0 

Ipomoea cairica 1 0 0 
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Species Systematic Survey 

Dataset 

Working For Water 

Dataset 

Protected Areas 

Managers Dataset 

Lagurus ovatus 1 0 0 

Lantana camara 1 1 1 

Leptospermum 

laevigatum 

1 1 1 

Leucojum vernum 1 0 0 

Lupinus angustifolius 1 0 0 

Lupinus luteus 1 0 0 

Malva parviflora 1 0 0 

Medicago polymorpha 1 0 0 

Melilotus indicus 1 0 0 

Metrosideros excelsa 0 1 0 

Myoporum tenuifolium 1 0 1 

Oenothera biennis 1 0 0 

Opuntia spp* 0 1 0 

Opuntia ficus-indica  1 0 0 

Paraserianthes lophantha 1 1 1 

Pennisetum clandestinum 1 0 0 

Pennisetum purpureum  1 0 0 

Pennisetum setaceum 1 1 1 

Phoenix canariensis 1 0 0 

Phoenix dactylifera 1 0 0 

Phormium tenax 1 0 0 

Phytolacca octandra 1 0 0 

Picris echioides 1 0 0 

Pinus spp* 0 1 1 

Pinus canariensis  1 0 0 

Pinus halepensis 1 0 0 

Pinus pinaster 1 0 0 

Pinus pinea 1 0 0 

Pinus radiata 1 0 0 

Pittosporum undulatum 1 0 0 

Plantago lanceolata 1 1 0 

Plantago major 1 0 0 

Poa annua 1 0 0 

Populus x canescens  1 1 0 
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Species Systematic Survey 

Dataset 

Working For Water 

Dataset 

Protected Areas 

Managers Dataset 

Quercus robur 1 0 0 

Raphanus raphanistrum 1 0 0 

Rapistrum rugosum 1 0 0 

Ricinus communis 1 0 0 

Rubus cuneifolius 1 0 0 

Rubus fruticosus 1 0 0 

Rumex acetosella 1 0 0 

Schinus molle 1 0 0 

Sesbania punicea 1 1 0 

Solanum incanum 1 0 0 

Solanum mauritianum 1 0 0 

Solanum nigrum 1 0 0 

Sonchus asper 1 0 0 

Sonchus oleraceus 1 0 0 

Spartium junceum 1 1 0 

Taraxacum officinale 1 0 0 

Tradescantia fluminensis 1 0 0 

Trifolium angustifolium 1 0 0 

Tropaeolum majus 1 0 0 

Vicia benghalensis 1 0 0 

Vicia sativa 1 0 0 

Vinca major 1 0 0 
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Chapter 3.  

 

 
Supplementary Figure 3.1 Clearing module where management units (MU) are selected at 

random and person days (PD) are allocated for treatment based on the abundance and age 

class of Acacia species where the probability of effective treatment is varied for 1 of 38 efficacy 

levels. The process is repeated until the allocation of person days are exhausted with output 

data supplied to other modules, for example Seed Germination.  

 
 

 
Supplementary Figure 3.2 Fire module where the number of fire ignition points and the total 

expected area to be burnt in a year is determined from the 1980-2016 fire database. For each 

fire ignition point, the management unit to be burnt is selected and if the management unit 

(MU) is able to be burnt, the expected size of the individual fire is calculated from the fire 

history database and additional adjacent MUs are burnt until this value is reached. Fire 

intensity for the burn is varied by use of a Fire Danger Index (FDI) and output data is fed to 

other modules for example, Seed Mortality. 
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Supplementary Table 3.1. Assignment of each management unit to a fire ignition class based on 

the number of ignitions recorded for the management unit in the TMNP fire history database. 

Ignition classes were then assigned a probability of being an ignition source in the fire module.  

Number of ignition points 
recorded in database* 
for a Management unit 

Fire ignition class Probability of Management Unit 
being selected as an ignition source 

0 1 0.050 

1-6 2 0.125 

7-12 3 0.200 

13-16 4 0.275 

>16 5 0.350 

* Database: fire history of the TMNP between 1980 and 2016 

 

Supplementary Table 3.2. Probability that a Fire Ignition event would result in the entire 

management unit burning based on vegetation age (Van Wilgen et al. 2010). Although ignitions 

are possible at all vegetation ages, significant portion of the management unit <5 years will not 

burn given the small fuel loads of young vegetation. 

Veld Age (years) Probability of Management Unit 

burning 

0-4 0.0 

5-9 0.2 

10-14 0.4 

15-19 0.6 

20-24 0.8 

> 24 1.0 

 

Supplementary Table 3.3. Fire Danger Index (FDI) and Plant mortality where the fire danger 

rating system is used to provide a measure of the relative seriousness of burning conditions and 

threat of fire by providing an accurate measure as possible of the relative seriousness of burning 

conditions by making use of daily maximum temperature, relative humidity, wind speed and 

recent rainfall (South African Government Gazette 37014 No. 1099 of 2013) 

FDI Alert Stage FDI Calculation Fire Intensity Proportion plant 

mortality 

Blue 0-20 Low 0.0-0.20 

Green 21-45 Moderate 0.21-0.45 

Yellow 46-60 Dangerous 0.46-.60 

Orange 61-75 Very Dangerous 0.61-0.75 

Red 76-100 Extreme 0.75-1.00 
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Supplementary Table 3.4. Logistic equations used for annual seed production per m2 for 

coppicing and non- coppicing Acacia species (Milton & Hall 1981; Holmes et al. 1987; Strydom 

et al. 2017) where the general form of the equation is 𝑓(𝑥) =
𝐿

1+𝑒−𝑘(𝑥−𝑥0) 

Annual Seed production Logistic equations parameters 

Non- coppicing < 35 years old  𝐿=360 (rate of annual seed accumulation), 𝑘=2, 𝑥=age 

class, 𝑥0=age class ‘6’ (when seed accumulation reaches 

maximum) 

Non- coppicing > 36 years old 𝐿=360 (rate of annual seed accumulation), 𝑘=-0.4, 𝑥=age 

class, 𝑥0=age class ‘42’ (when seed accumulation 

reaches minimum) 

Coppicing < 35 years old 𝐿=4250 (rate of annual seed accumulation), 𝑘=2, 𝑥=age 

class, 𝑥0=age class ‘6’ (when seed accumulation reaches 

maximum) 

Coppicing > 36 years old 𝐿=4250 (rate of annual seed accumulation), 𝑘=-0.4, 

𝑥=age class, 𝑥0=age class ‘55’ (when seed accumulation 

reaches minimum) 

 

Supplementary Table 3.5. Fire Intensity as measured by the Fire Danger Index (FDI) effect on 

proportion of seedbank mortality / seedbank germination. Where cells are blank or ‘-‘ indicates 

no effect by the fire  
Fire FDI Mortality / Post fire germination (mean) 

FDI Alert 

Stage 

Leaf 

Litter 

Depth 

1 

Depth 

2 

Depth 

3 

Depth 

4 

Depth 

5 

Depth 

6 

Depth 

7 

Depth 

8 

Deep 

Blue 0.0-

0.5 / 1 

- / 0.9 - / 0.7 
       

Green 0.5-

1.0 / 1 

- / 0.9 - / 0.7 - / 0.6 
      

Yellow 1 / 1 0.0-

1.0 / 1 

- / 0.9 - / 0.8 - / 0.7 - / 0.6 
    

Orange 1 / 1 1 / 1 0.0-

1.0 / 1 

- / 0.9 - / 0.8 - / 0.7 - / 0.6 - / 0.5 
  

Red 1 / 1 1 / 1 1 / 1 0.0-

1.0 / 1 

- / 0.9 - / 0.8 - / 0.7 - / 0.6 - / 0.5 - / 0.4 
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Supplementary Table 3.6. Plant population parameters that bound the population within observed 

limits 

Variable Parameter Source 

Maximum seed bank 

density 

Acacia non-coppice: 2,000 seeds per m2  

Acacia coppice: 12,000 seeds per m2 

(Milton & Hall 1981; 

Holmes et al. 1987; 

Strydom et al. 2017) 

Maximum seedling density 1,200,000 plants per ha 

 

TMNP Management 

Records 

Density dependent 

competition 

Seedlings (Max) 150,000 per ha 

Young (Max) 50,000 per ha 

Adult (Max) 35,000 per ha 

(Le Maitre & Versfeld 

1994) 

Age dependent seed 

production 

Acacia non-coppice: 2 – 50 years  

Acacia coppice: 2 - 35 years  

 

Rates of increasing or 

decreasing invasion 

5% per year (van Wilgen et al. 2016) 

. 

 

Supplementary Table 3.7. Mean time (Years) and Person Days required to reach a maintenance level (<1 

plant per ha) for the 809 management units before or at 50 years based on model 25 iterations. * indicate 

that a maintenance level for the 809 management units (MU) was not reached by year 50.   

Scenario 1: Treating only the current standing Acacia population 

  100% Efficacy WfW Min Standard (80% 
Efficacy) 

Current Mean Project Efficacy 

 # MU 809  809 809 

 Hectares 22,671 22,671 22,671 

 Years 1.8 (SD=0.4)  19.1 (SD=0.4) 25.2 (SD=0.4) 

 Person Days 48,590.4 (SD=5,296.1) 292,369.8  (SD=4,512.4) 377,204.5 (SD= 5,387.9) 

 
Scenario 2: Treatment of current plant population and post-clearing seedling germination 

  100% Efficacy 80% Efficacy Current Project 

 # MU 809 809 809 

 Hectares 22,671 22,671 22,671 

 Years 24.7 (SD=2.5) 39.0 (SD=1.4) 42.2 (SD= 2.4) 

 Person Days 344,462.3 (SD=13,231.1) 645,036.4 (SD=23,606.4) 706,235.3 (SD= 31,152.7) 

 
Scenario 3: Treatment of current plant population, post-clearing and post-fire seedling germination 

  100% Efficacy 80% Efficacy Current Project 

 # MU 809 804.6 (SD=3.5) 798.5 (SD=8.4) 

 Hectares 22,671 22,644.8 (SD=18.8) 22,575.7  (SD=74.0) 

 Years 36.6 (SD=4.2) 50* 50* 

 Person Days 482,496.4 (SD=36,641.8) 894,415.4 (SD= 35,820.7) 957,883.1 (SD= 22,345.5) 

 

Scenario 4: Current standing acacia infestation, post clearing & post fire seed germination, reseeding 

  100% Efficacy 80% Efficacy Current Project 

 # MU 809 344.1 (SD=54.7) 285.4 (SD=53.9) 

 Hectares 22,671 13,246.9 (SD= 1,459.1) 11,937.9 (SD=1,451.6) 

 Years 37.2 (SD= 5.3) 50* 50* 

 Person Days 507,475.1 (SD= 50,162.7) 1,992,947.1 (SD= 16,203.0) 2,000,081.6  (SD= 10,366.2) 
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Supplementary Table 3.8. The mean number of Management Units (MU), hectares (Ha) that 

reached a maintenance level (< 1 plant/ha) at Year 50, and the number of Person days required 

at Year 50, for 36 levels of simulated efficacy. n=25 for 1.00, 0.90 and 0.8, n= 15 for all other. 

Efficacy level MU (mean) MU (SD)  Ha (mean)  HA (SD) PD (mean) PD (SD)  

1.00 803.9 6.1 22620.6 79.7 9491.5 7.2 

0.99 793.1 10.5 22391.8 199.0 9742.7 356.6 

0.98 755.2 25.3 21657.8 445.9 12863.6 3025.2 

0.97 725.3 28.9 20981.9 523.8 20781.9 7148.1 

0.96 706.6 38.9 20371.4 652.5 23274.7 7156.7 

0.95 659.1 34.0 19732.7 876.3 30849.1 8755.5 

0.94 663.4 62.3 19704.4 1140.2 28753.3 10820.5 

0.93 616.1 60.3 18819.7 1061.5 30397.1 9065.4 

0.92 578.1 77.9 17948.5 1422.4 34865.1 7959.8 

0.91 570.9 60.9 17697.1 1354.3 35869.3 6691.1 

0.90 527.1 53.5 16840.7 1296.3 38582.1 2299.9 

0.89 488.5 65.0 16123.9 1289.4 38693.6 3007.8 

0.88 485.2 72.3 15600.7 1409.9 39098.7 2188.6 

0.87 482.9 50.5 16362.5 1108.6 39799.5 908.5 

0.86 420.0 69.0 14857.2 1293.4 40037.2 295.3 

0.85 425.1 61.7 14694.2 1409.9 40022.3 328.2 

0.84 382.3 63.8 13710.6 1694.6 39157.4 3675.3 

0.83 350.9 52.2 13308.0 1072.4 39229.3 3415.2 

0.82 358.2 83.0 13119.4 2058.8 40109.7 13.8 

0.81 375.3 67.4 13620.0 1771.9 40110.9 17.4 

0.80 344.1 54.7 13246.9 1459.1 40112.3 12.0 

0.75 293.9 36.7 12050.0 1078.0 40105.9 15.6 

0.70 286.3 39.2 11660.5 923.9 40104.3 11.5 

0.65 280.5 59.7 11730.1 1065.8 40108.0 14.1 

0.60 250.0 51.4 11133.4 1830.6 40107.5 13.3 

0.55 217.3 40.1 10809.3 1248.1 40108.6 12.4 

0.50 215.3 38.3 10527.1 1489.6 40113.0 12.2 

0.45 168.1 25.3 9413.6 691.6 40111.3 16.7 

0.40 132.4 23.1 8571.6 1166.7 40110.1 12.3 

0.35 98.6 19.6 7097.3 1079.4 40110.7 14.4 

0.30 82.2 11.9 7349.7 870.6 40107.0 14.3 

0.25 78.9 8.1 7288.8 801.9 40110.5 16.8 

0.20 72.2 8.0 7083.8 933.3 40113.9 11.4 

0.15 65.3 8.9 7017.5 1376.8 40105.1 15.5 

0.10 69.2 5.5 7735.7 869.8 40108.1 12.7 

0.05 66.3 7.0 7316.8 417.8 40105.9 13.5 

 
 

Visual Basic Code Sample, See Appendix 1 

Attribute VB_Name = "Run_Model_Main" 

' Step 4 

' Main code block that uses the inputdata formatted in steps 1, 2 & 3 

' into the I_Pop_x Sheets as the data that will be used in the model. 

 

' Start  Date : 05-10-2016 

' End Development Date : 01-07-2017 

' Coded by: Chad Cheney 

' To be run from within MS.Excel as part of a workbook set. 

Stellenbosch University  https://scholar.sun.ac.za



chapter 3 

 
 - 156 - 

'_____________________________________________==___________________________

__________________________ 

 

' Common Variables 

Dim mTimeStart As Date 

Dim mTimeQStart As Date 

Dim mTimeQEnd As Date 

Dim iModelSimulate As Integer   'Stores the current model simulation (1-50) 

Dim iModelYear As Integer       'Stores the current model Year (0-49) 

Dim cQuarter As String          'Stores the current model Quarter (Q1, Q2, 

Q3, Q4) 

Dim QAvailDays As Double       'Stores the current number of PD available 

for a Quarter 

Dim mnBal_PdNeed As Single      'Stores the Person Days Needed of the 

current nBal 

Dim nBal_Ha As Single           'Stores the current Hectares of the treated 

nBal 

Dim mPlant_Ha As Single         'Stores the current plants per Ha of the 

treated nBal 

Dim mPlot_Count As Single       'Stores the current plot (row in sheet) 

that needs to be carried over between Quarters 

Dim mFileLoc As String          'Stores the folder path for the text files 

'__________________________________________________________________________

__ 

'Start Here...... 
'__________________________________________________________________________

__ 

 

Sub Model_Main_1() 

    Application.ScreenUpdating = False 

    Application.Calculation = xlCalculationManual 

    mTimeStart = Now() 

    ActiveWorkbook.Save 

     

    mYears = Worksheets("Model Parameters").Range("Model_Years") 

    mSimulate = Worksheets("Model Parameters").Range("Model_Simulate") 

    iQuater0 True          ' Setup 

     

    For iModelSimulate = 1 To mSimulate   'Model Iterations are by Quarter 

over 50 years i.e. 50 x 4 

        ' reset the model for the next iteration 

        For iModelYear = 0 To mYears - 1 

            mTimeQStart = Now 

            nBal_ScheduleSort "Systematic"      'Keep It Clean '"Maintain 

follow-ups"     '"Water production" '"Random"   '"Consensus" '.... nBals 

priorities at beginning of each year 

            iQuater1 

            iQuater2 

            iQuater3 

            iQuater4 

            mTimeQEnd = Now 

            iQuater5 

        Next iModelYear 

        'Write the dataout 

            Write_SimulationData 

            If iModelSimulate <> mSimulate Then Model_ResetNextSimulate 

'does not delete the last dataset 

 

    Next iModelSimulate 

    Application.ScreenUpdating = True 

    Application.Calculation = xlCalculationAutomatic 
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    MsgBox "Complete" 

 

End Sub 

 

 

References (Supplementary Material Chapter 3) 

Holmes P.M., MacDonald I.A.W. & Juritz J. (1987). Effects of Clearing Treatment on Seed Banks of the 
Alien Invasive Shrubs Acacia saligna and Acacia cyclops in the Southern and South-Western 
Cape, South Africa. Journal of Applied Ecology, 24, 1045-1051. 

Le Maitre D.C. & Versfeld D.B. (1994). Field Manual for Mapping Populations of Invasive Plants for Use 
with the Catchment Management System. In. Department of Environment Affairs Pretoria, 
South Africa. 

Milton S.J. & Hall A.V. (1981). REPRODUCTIVE BIOLOGY OF AUSTRALIAN ACACIAS IN THE SOUTH-
WESTERN CAPE PROVINCE, SOUTH AFRICA. Transactions of the Royal Society of South Africa, 
44, 465-487. 

Strydom M., Veldtman R., Ngwenya M.Z. & Esler K.J. (2017). Invasive Australian Acacia seed banks: 
Size and relationship with stem diameter in the presence of gall-forming biological control 
agents. PLOS ONE, 12, e0181763. 

van Wilgen B.W., Fill J.M., Baard J., Cheney C., Forsyth A.T. & Kraaij T. (2016). Historical costs and 
projected future scenarios for the management of invasive alien plants in protected areas in 
the Cape Floristic Region. Biological Conservation, 200, 168-177. 

Van Wilgen B.W., Forsyth G.G., De Klerk H., Das S., Khuluse S. & Schmitz P. (2010). Fire management 
in Mediterranean-climate shrublands: a case study from the Cape fynbos, South Africa. Journal 
of Applied Ecology, 47, 631-638. 

 

Stellenbosch University  https://scholar.sun.ac.za



chapter 4 

 
 - 158 - 

Chapter 4. 

 

Supplementary Figure 4.1 Overview of the modules in the spatio-temporal simulation model that the 

management strategy and units (MU) were modelled and the calendar quarter within a simulation year 

in which they are called.  

 

 

Supplementary Figure 4.2 Link between protected area (PA) vision, objectives and management actions 

flowing to 1 of 4 management strategies. Weightings (Wt) for each objective/factor that determine a 

strategy was determined through the Analytical Hierarchy process (Roura-Pascual et al. 2010). 
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Supplementary Figure. 4.3 The number of hectares (a) and management units (b) treated per year over 

50 years for each of the management strategies tested at 20 management efficacy levels between 0.05 

and 1.0, represented by the mean and 95% CI, over 15 model runs. 
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Supplementary Figure 4.4 The number of hectares (a) and management units (b) that reached a 

maintenance state of 1 plant per ha over 50 years for each of the management strategies at given 

levels of efficacy, represented by the mean and 95% CI over 15 model runs per efficacy level.  
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Supplementary Figure 4.5 The number of hectares (a) and management units (b) that were 

sustained in a maintenance state of 1 plant per ha over 50 years for each of the management 

strategies at given levels of efficacy, represented by the mean and 95% CI over 15 model runs 

per efficacy level. 
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Consensus 0.25 Consensus 0.50 Consensus 0.75 

   

Follow-up 0.25 Follow-up 0.50 Follow-up 0.75 

   

 

Supplementary Figure 4.6. The frequency that management units were selected by different 

management strategies at three levels of clearing efficacy. Areas with a frequency of treatment 

> 50% equates to a treatment frequency of < 2 years.  
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Keep it clean 0.25 Keep it clean 0.50 Keep it clean 0.75 

   

Random 0.25 Random 0.50 Random 0.75 

   

 

Supplementary Figure 4.6 (cont.). The frequency that management units were selected by 

different management strategies at three levels of clearing efficacy. Areas with a frequency of 

treatment > 50% equates to a treatment frequency of < 2 years.  
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Triage 0.25 Triage 0.50 Triage 0.75 

   

Water 0.25 Water 0.50 Water 0.75 

   

 

Supplementary Figure 4.6 (cont.). The frequency that management units were selected by 

different management strategies at three levels of clearing efficacy. Areas with a frequency of 

treatment > 50% equates to a treatment frequency of < 2 years.  
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Historical Park Data 

 

 

Supplementary Figure 4.6 (cont.). The frequency that management units were selected by 

different management strategies at three levels of clearing efficacy. Areas with a frequency of 

treatment > 50% equates to a treatment frequency of < 2 years.  
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Supplementary Table 4.1. The number of hectares (ha) and management units (MU) treated per 

year averaged over model years 10 to 50 and 15 model runs, at set levels of clearing efficacy. 

Strategy  Clearing 
efficacy 

Model 
Year 

Mean 
(ha) 

SD Min 
(ha) 

Max 
(ha) 

p to 
Random 

Mean 
(MU) 

SD Min 
(MU) 

Max 
(MU) 

p to 
Random 

Consensus 0.95 10-50 21586 3409 2805 22668 NS 774 108 131 809 p<0.001 

Follow-up 0.95 10-50 21233 4139 3751 22667 NS 765 128 175 809 p<0.001 

Keep-it Clean 0.95 10-50 22652 150 19324 22666 p<0.001 808 6 693 809 p<0.001 

Random 0.95 10-50 22170 1585 10012 22666 NA 792 54 373 809 NA 

Water 0.95 10-50 21694 2914 6891 22667 p<0.05 780 83 354 809 p<0.001 

Triage 0.95 10-50 22547 601 15225 22666 p<0.001 803 35 351 809 p<0.001 

             

Consensus 0.90 10-50 18069 6629 2088 22667 NS 656 221 76 809 NS 

Follow-up 0.90 10-50 15332 7073 2009 22667 p<0.001 582 226 87 809 p<0.001 

Keep-it Clean 0.90 10-50 22149 1163 13825 22666 p<0.001 785 45 538 809 p<0.001 

Random 0.90 10-50 19304 3909 7088 22667 NA 695 134 191 809 NA 

Water 0.90 10-50 12445 8063 1401 22667 p<0.001 509 242 114 809 p<0.001 

Triage 0.90 10-50 21461 1936 13855 22668 p<0.001 739 116 295 809 p<0.001 

             

Consensus 0.75 10-50 11931 7928 1431 22669 p<0.05 447 269 50 809 NS 

Follow-up 0.75 10-50 9695 6175 1252 22668 p<0.001 387 219 59 809 p<0.001 

Keep-it Clean 0.75 10-50 19057 2744 10690 22667 p<0.001 689 78 474 809 p<0.001 

Random 0.75 10-50 13177 4132 3471 22667 NA 483 146 154 809 NA 

Water 0.75 10-50 5835 5182 1242 22667 p<0.001 305 165 93 809 p<0.001 

Triage 0.75 10-50 17790 3542 8673 22668 p<0.001 521 210 76 809 p<0.001 

             

Consensus 0.50 10-50 8882 7354 1103 22669 p<0.001 342 252 54 809 p<0.001 

Follow-up 0.50 10-50 8721 5940 1202 22666 p<0.001 345 208 47 809 p<0.001 

Keep-it Clean 0.50 10-50 17701 2898 9761 22668 p<0.001 628 95 408 809 p<0.001 

Random 0.50 10-50 11675 4056 2988 22666 NA 426 144 114 809 NA 

Water 0.50 10-50 4558 4326 1117 22669 p<0.001 259 144 84 809 p<0.001 

Triage 0.50 10-50 15291 3719 6496 22668 p<0.001 378 211 54 809 p<0.001 

             

Consensus 0.25 10-50 5347 5056 921 22669 p<0.001 219 171 40 809 p<0.001 

Follow-up 0.25 10-50 5119 3214 994 20599 p<0.001 230 117 41 720 p<0.001 

Keep-it Clean 0.25 10-50 12766 2591 6448 19824 p<0.001 493 87 297 755 p<0.001 

Random 0.25 10-50 7714 2213 2789 15632 NA 285 78 79 564 NA 

Water 0.25 10-50 2543 1478 1057 16670 p<0.001 190 67 88 588 p<0.001 

Triage 0.25 10-50 10755 2752 2334 19379 p<0.001 161 104 28 651 p<0.001 
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Supplementary Table 4.2. The number of hectares (ha) and management units (MU) treated in 

year 50 averaged over 15 model runs 

Strategy  Clearing 
efficacy 

Model 
Year 

Mean 
(ha) 

SD Min 
(ha) 

Max 
(ha) 

p to 
Random 

Mean 
(MU) 

SD Min 
(MU) 

Max 
(MU) 

p to 
Random 

Consensus 0.95 50 19570 6127 2805 22664 NS 712 198 131 809 NS 

Follow-up 0.95 50 20517 5124 4314 22664 NS 746 160 218 809 NS 

Keep-it Clean 0.95 50 22664 1 22663 22665 NS 809 0 809 809 NS 

Random 0.95 50 22553 389 21155 22664 NA 806 10 770 809 NA 

Water 0.95 50 22570 283 21600 22666 NS 804 19 737 809 NS 

Triage 0.95 50 22626 146 22097 22665 NS 807 7 781 809 NS 

             

Consensus 0.90 50 18445 7353 2610 22665 NS 661 241 128 809 NS 

Follow-up 0.90 50 11836 6341 2226 22664 p<0.05 473 217 105 809 NS 

Keep-it Clean 0.90 50 22469 346 21764 22665 p<0.01 799 22 746 809 p<0.001 

Random 0.90 50 16735 4237 10549 22665 NA 608 155 398 809 NA 

Water 0.90 50 6803 6682 1478 21739 p<0.001 330 202 125 779 p<0.001 

Triage 0.90 50 21460 1824 17581 22664 p<0.01 742 105 495 809 p<0.05 

             

Consensus 0.75 50 9533 8059 1996 22667 NS 386 274 109 809 NS 

Follow-up 0.75 50 6803 5198 2480 22298 p<0.001 289 185 110 808 p<0.01 

Keep-it Clean 0.75 50 19284 2682 13903 22667 p<0.001 695 72 570 809 p<0.001 

Random 0.75 50 11647 3943 6713 20262 NA 433 136 223 720 NA 

Water 0.75 50 2633 1449 1399 7435 p<0.001 201 61 136 378 p<0.001 

Triage 0.75 50 17500 4131 11403 21839 p<0.05 502 247 149 767 NS 

             

Consensus 0.50 50 6757 6666 1544 22667 p<0.01 264 234 70 809 p<0.01 

Follow-up 0.50 50 7096 5215 1942 22664 p<0.001 294 174 91 809 p<0.01 

Keep-it Clean 0.50 50 16386 2074 12897 19671 p<0.001 589 64 465 692 p<0.001 

Random 0.50 50 11584 2587 7552 15918 NA 417 90 234 542 NA 

Water 0.50 50 3334 2883 1253 10292 p<0.001 210 103 105 432 p<0.001 

Triage 0.50 50 14307 2936 10693 21298 p<0.05 316 166 133 727 p<0.05 

             

Consensus 0.25 50 4416 5036 1163 18484 p<0.01 183 177 61 682 p<0.01 

Follow-up 0.25 50 3386 1959 1125 7118 p<0.001 173 75 81 311 p<0.001 

Keep-it Clean 0.25 50 12298 2730 7306 17818 p<0.001 487 96 321 657 p<0.001 

Random 0.25 50 7380 1951 4644 11443 NA 287 70 205 454 NA 

Water 0.25 50 2109 943 1163 4803 p<0.001 178 52 88 306 p<0.001 

Triage 0.25 50 8980 2775 3092 12977 NS 117 76 30 278 p<0.001 
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Supplementary Table 4.3. The number of hectares (ha) and management units (MU) that attained 

the management goal of < 1 plant/ha, per year, averaged over model years 10 to 50 and 15 

model runs, at set various efficacy levels. 

Strategy  Clearing 
efficacy 

Model 
Year 

Mean 
(ha) 

SD Min 
(ha) 

Max 
(ha) 

p to 
Random 

Mean 
(MU) 

SD Min 
(MU) 

Max 
(MU) 

p to 
Random 

Consensus 0.95 10-50 19465 952 16549 22075 p<0.001 650 48 471 782 p<0.001 

Follow-up 0.95 10-50 19633 894 16184 21748 p<0.001 657 45 517 759 p<0.001 

Keep-it Clean 0.95 10-50 18210 1569 13598 21668 p<0.001 590 77 396 754 p<0.001 

Random 0.95 10-50 19171 1026 16164 22112 NA 638 48 486 771 NA 

Water 0.95 10-50 19553 937 16596 22093 p<0.001 650 46 489 775 p<0.001 

Triage 0.95 10-50 19569 950 15902 21867 p<0.001 657 46 503 758 p<0.001 

             

Consensus 0.90 10-50 17629 1204 13505 20092 p<0.001 563 62 397 699 p<0.001 

Follow-up 0.90 10-50 17832 1064 12289 20317 p<0.001 573 49 345 673 p<0.001 

Keep-it Clean 0.90 10-50 15243 1044 12558 18608 p<0.001 427 49 298 579 p<0.001 

Random 0.90 10-50 17117 1348 11847 20061 NA 527 60 375 673 NA 

Water 0.90 10-50 15917 2429 10397 20192 p<0.001 479 97 260 690 p<0.001 

Triage 0.90 10-50 17651 1016 14040 20572 p<0.001 551 55 375 709 p<0.001 

             

Consensus 0.75 10-50 13575 1544 8270 17640 p<0.001 369 66 189 582 p<0.001 

Follow-up 0.75 10-50 13351 1742 7465 17423 p<0.001 362 67 201 540 p<0.001 

Keep-it Clean 0.75 10-50 10830 1091 6411 13759 p<0.001 252 28 165 325 p<0.001 

Random 0.75 10-50 11877 1190 8437 14963 NA 296 44 188 421 NA 

Water 0.75 10-50 11659 1666 6683 16414 p<0.01 257 56 138 467 p<0.001 

Triage 0.75 10-50 13573 1447 9467 17251 p<0.001 366 61 203 586 p<0.001 

             

Consensus 0.50 10-50 9826 1492 5125 14157 p<0.001 203 48 111 336 p<0.001 

Follow-up 0.50 10-50 10116 1205 6750 13920 p<0.001 218 39 117 335 p<0.001 

Keep-it Clean 0.50 10-50 8402 1066 4605 10738 NS 147 22 90 208 p<0.001 

Random 0.50 10-50 8508 1124 5220 11257 NA 164 29 94 259 NA 

Water 0.50 10-50 8623 1281 4890 12523 NS 125 32 67 243 p<0.001 

Triage 0.50 10-50 10121 1260 6671 14756 p<0.001 212 42 124 348 p<0.001 

             

Consensus 0.25 10-50 6488 1005 2908 9229 p<0.001 83 19 44 144 p<0.001 

Follow-up 0.25 10-50 7050 1025 3651 9638 p<0.001 98 19 54 152 p<0.001 

Keep-it Clean 0.25 10-50 6463 968 3963 8477 p<0.001 83 15 44 132 p<0.001 

Random 0.25 10-50 4988 1402 1391 8098 NA 69 17 34 118 NA 

Water 0.25 10-50 7386 760 4459 10224 p<0.001 72 9 53 109 p<0.001 

Triage 0.25 10-50 5929 1226 2275 9067 p<0.001 77 18 45 143 p<0.001 
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Supplementary Table 4.4. The number of hectares (ha) and management units (MU) that attained 

the management goal of < 1 plant/ha, per year, averaged in year 50 and 15 model runs, at set 

various efficacy levels. 

Strategy  
Clearing 
efficacy 

Model 
Year 

Mean 
(ha) 

SD 
Min 
(ha) 

Max 
(ha) 

p to 
Random 

Mean 
(MU) 

SD 
Min 

(MU) 
Max 
(MU) 

p to 
Random 

Consensus 0.95 50 19731 1080 18146 21324 NS 669 37 618 738 NS 

Follow-up 0.95 50 19864 948 17927 21189 NS 675 36 593 738 NS 

Keep-it Clean 0.95 50 19636 808 18071 20760 NS 654 38 583 714 NS 

Random 0.95 50 19565 968 17492 21599 NA 659 41 582 754 NA 

Water 0.95 50 20059 966 18704 21369 NS 664 45 570 722 NS 

Triage 0.95 50 20220 976 18201 21600 NS 697 40 629 757 NS 

             

Consensus 0.90 50 17234 1578 14536 20092 NS 546 79 400 664 NS 

Follow-up 0.90 50 18169 886 16599 19335 p<0.05 602 39 527 659 p<0.001 

Keep-it Clean 0.90 50 16067 913 14437 17608 p<0.01 451 42 372 527 p<0.001 

Random 0.90 50 17249 1122 15075 19161 NA 537 48 432 611 NA 

Water 0.90 50 14856 2360 11855 18433 p<0.01 432 93 303 592 p<0.01 

Triage 0.90 50 17867 1171 15861 19989 NS 551 81 427 677 NS 

             

Consensus 0.75 50 13230 1333 11099 15748 p<0.01 347 61 264 461 p<0.01 

Follow-up 0.75 50 12788 2335 8797 16734 NS 349 95 210 540 p<0.05 

Keep-it Clean 0.75 50 10308 839 8297 11424 p<0.01 233 23 192 271 p<0.001 

Random 0.75 50 11401 1107 8941 12898 NA 277 37 194 346 NA 

Water 0.75 50 10070 1376 6683 11947 p<0.01 211 42 138 295 p<0.001 

Triage 0.75 50 13135 1455 10302 15908 p<0.001 345 62 258 452 p<0.01 

             

Consensus 0.50 50 10196 1603 7651 12659 p<0.001 213 48 117 296 p<0.001 

Follow-up 0.50 50 10622 993 8826 12726 p<0.001 230 43 180 328 p<0.001 

Keep-it Clean 0.50 50 7875 1272 5169 10099 NS 129 19 96 166 p<0.05 

Random 0.50 50 7827 1316 5443 9285 NA 150 22 102 196 NA 

Water 0.50 50 8532 1294 6648 10508 NS 124 24 91 166 p<0.05 

Triage 0.50 50 10257 1103 8151 11609 p<0.001 214 43 140 284 p<0.001 

             

Consensus 0.25 50 6972 817 5716 8198 p<0.001 68 12 53 101 p<0.001 

Follow-up 0.25 50 7391 828 6510 9168 p<0.001 94 16 69 116 p<0.001 

Keep-it Clean 0.25 50 5532 954 3963 7167 p<0.001 66 12 44 85 p<0.01 

Random 0.25 50 3544 1040 1679 5854 NA 51 9 35 66 NA 

Water 0.25 50 7686 1128 5193 9686 p<0.001 74 6 67 84 p<0.001 

Triage 0.25 50 5108 1053 2915 6833 p<0.001 62 8 50 73 p<0.01 

Stellenbosch University  https://scholar.sun.ac.za



chapter 4 

 
 - 170 - 

Supplementary Table 4.5. The number of hectares (ha) and management units (MU) that were 

sustained in a maintenance state of <1 plant/ha, per year for years 10 to 50 and efficacy at various 

levels (n=15), with a starting maintenance state of 5,646 hectares and 161 management units. 

Strategy  
Clearing 
efficacy 

Model 
Year 

Mean 
(ha) 

SD 
Min 
(ha) 

Max 
(ha) 

p to 
Random 

Mean 
(MU) 

SD 
Min 

(MU) 
Max) 
(MU 

p to 
Random 

Consensus 0.95 10-50 4915 300 3722 5610 NS 125 13 87 156 NS 

Follow-up 0.95 10-50 5017 276 3783 5570 p<0.001 129 11 91 155 p<0.001 

Keep-it Clean 0.95 10-50 4675 477 2542 5624 p<0.001 119 17 66 155 p<0.001 

Random 0.95 10-50 4874 358 3092 5632 NA 126 13 84 159 NA 

Water 0.95 10-50 5003 323 2818 5644 p<0.001 128 12 90 160 p<0.001 

Triage 0.95 10-50 5018 301 3577 5567 p<0.001 129 12 87 156 p<0.001 

             

Consensus 0.90 10-50 4468 385 2953 5405 NS 105 15 64 146 NS 

Follow-up 0.90 10-50 4533 350 2784 5300 p<0.01 109 12 58 142 p<0.001 

Keep-it Clean 0.90 10-50 3960 375 2823 4963 p<0.001 88 13 56 130 p<0.001 

Random 0.90 10-50 4471 392 2249 5353 NA 104 14 66 139 NA 

Water 0.90 10-50 4139 735 1957 5411 p<0.001 95 23 43 147 p<0.001 

Triage 0.90 10-50 4528 342 3429 5351 p<0.01 104 15 53 141 NS 

             

Consensus 0.75 10-50 3703 490 1549 5025 p<0.001 72 15 39 124 p<0.001 

Follow-up 0.75 10-50 3626 569 1601 4882 p<0.001 70 15 35 123 p<0.001 

Keep-it Clean 0.75 10-50 3059 391 1758 4017 p<0.001 57 11 31 83 p<0.001 

Random 0.75 10-50 3403 553 1211 4440 NA 61 15 32 105 NA 

Water 0.75 10-50 3375 630 1312 4847 NS 60 17 29 118 p<0.05 

Triage 0.75 10-50 3723 537 1967 4962 p<0.001 67 15 38 111 p<0.001 

             

Consensus 0.50 10-50 3072 624 1045 4609 p<0.001 51 15 23 103 p<0.001 

Follow-up 0.50 10-50 3093 528 952 4542 p<0.001 52 15 25 113 p<0.001 

Keep-it Clean 0.50 10-50 2783 427 1097 3665 NS 41 12 18 76 p<0.001 

Random 0.50 10-50 2801 550 766 4111 NA 46 16 21 112 NA 

Water 0.50 10-50 2991 549 1107 4660 p<0.001 42 17 16 106 p<0.001 

Triage 0.50 10-50 3341 503 1577 4567 p<0.001 51 16 26 103 p<0.001 

             

Consensus 0.25 10-50 2638 535 864 4356 p<0.001 37 14 13 85 p<0.05 

Follow-up 0.25 10-50 2705 593 863 4581 p<0.001 39 14 17 80 p<0.001 

Keep-it Clean 0.25 10-50 2513 466 598 3519 p<0.01 34 12 12 73 NS 

Random 0.25 10-50 2274 856 461 3861 NA 34 13 11 73 NA 

Water 0.25 10-50 2855 513 792 4318 p<0.001 34 13 16 78 NS 

Triage 0.25 10-50 2738 689 627 4471 p<0.001 38 14 13 78 p<0.001 
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Supplementary Table 4.6. The number of hectares (ha) and management units (MU) that were 

retained in a maintenance state of <1 plant/ha, at the end of the model run at year 50 and efficacy 

at various levels (n=15), with a starting maintenance state of 5,646 ha and 161 MU units. 

Strategy  
Clearing 
efficacy 

Model 
Year 

Mean 
(ha) 

SD 
Min 
(ha) 

Max 
(ha) 

p to 
Random 

Mean 
(MU) 

SD 
Min 

(MU) 
Max) 
(MU 

p to 
Random 

Consensus 0.95 50 4957 308 4440 5429 NS 126 12 108 150 NS 

Follow-up 0.95 50 4956 339 4404 5444 NS 128 10 115 145 NS 

Keep-it Clean 0.95 50 4892 347 4301 5398 NS 128 13 104 146 NS 

Random 0.95 50 4940 390 4240 5498 NA 128 14 108 157 NA 

Water 0.95 50 5011 332 4406 5501 NS 126 13 100 149 NS 

Triage 0.95 50 5130 242 4576 5453 NS 133 11 110 150 NS 
             

Consensus 0.90 50 4274 577 3045 5244 NS 101 22 64 140 NS 

Follow-up 0.90 50 4509 341 3882 4874 NS 108 11 83 125 NS 

Keep-it Clean 0.90 50 4200 334 3519 4681 NS 89 11 66 108 p<0.05 

Random 0.90 50 4361 217 4059 4770 NA 101 11 82 115 NA 

Water 0.90 50 3898 731 2294 5095 p<0.05 83 21 43 114 p<0.01 

Triage 0.90 50 4576 381 3818 5195 NS 105 19 79 139 NS 
             

Consensus 0.75 50 3641 314 3007 4110 p<0.01 64 9 48 75 
p<0.05 

Follow-up 0.75 50 3609 647 2247 4494 NS 68 18 35 94 
p<0.05 

Keep-it Clean 0.75 50 2898 396 2041 3582 p<0.05 50 7 42 64 NS 

Random 0.75 50 3230 442 2139 3872 NA 53 11 38 76 NA 

Water 0.75 50 3014 539 2053 4053 NS 44 7 31 54 p<0.05 

Triage 0.75 50 3618 410 2890 4386 p<0.05 58 12 42 86 NS 

             

Consensus 0.50 50 2946 348 2508 3529 
p<0.05 

41 8 31 64 p<0.01 

Follow-up 0.50 50 2897 368 2347 3709 
p<0.05 

43 8 36 60 p<0.001 

Keep-it Clean 0.50 50 2632 400 2226 3665 NS 30 6 23 49 NS 

Random 0.50 50 2492 461 974 2904 NA 31 6 23 43 NA 

Water 0.50 50 2585 665 1199 3479 NS 30 7 17 41 NS 

Triage 0.50 50 2896 461 1780 3630 p<0.05 37 7 26 50 p<0.05 

             

Consensus 0.25 50 2416 426 1225 3076 p<0.01 
23 3 18 28 

NS 

Follow-up 0.25 50 2503 311 1803 2981 p<0.05 
27 5 21 36 

p<0.01 

Keep-it Clean 0.25 50 2194 210 1836 2715 NS 
21 5 12 29 

NS 

Random 0.25 50 1647 813 461 2670 NA 
21 5 12 31 

NA 

Water 0.25 50 2454 722 792 3262 p<0.05 
22 2 18 26 

NS 

Triage 0.25 50 2364 725 883 3168 p<0.05 23 4 14 28 NS 
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Chapter 5 

 

Supplementary Figure 5.1 Area of Occupancy (Log2 km2) of species and species groups. Area of Occupancy is used as an intermediate step to 

calculating D, the box counting fractal dimension. 
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Supplementary Figure 5.2a The number of analysis units for species and species groups falling within each commonness type at a fine analysis grain 

of 150m 
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Supplementary Figure 5.2b The number of analysis units for species and species groups falling within each commonness type at a fine analysis grain 

of 300m 
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Supplementary Figure 5.2c The number of analysis units for species and species groups falling within each commonness type at a medium analysis 

grain of 600m 
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Supplementary Figure 5.2d The number of analysis units for species and species groups falling within each commonness type at a medium analysis 

grain of 1200m 
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Supplementary Figure 5.2e The number of analysis units for species and species groups falling within each commonness type at a course analysis 

grain of 2400m 
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Supplementary Figure 5.2f The number of analysis units for species and species groups falling within each commonness type at a course analysis 

grain of 4800m 
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Supplementary Figure 5.3a The proportion of analysis units for species and species groups falling within each management strategy at a fine analysis 

grain of 150m. (Re-reconnaissance; RR-rapid response; Sw-sweeping; Cl-control; Cn-containment). 
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Supplementary Figure 5.3b The proportion of analysis units for species and species groups falling within each management strategy at a fine analysis 

grain of 300m. (Re-reconnaissance; RR-rapid response; Sw-sweeping; Cl-control; Cn-containment). 
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Supplementary Figure 5.3c The proportion of analysis units for species and species groups falling within each management strategy at a medium 

analysis grain of 600m. (Re-reconnaissance; RR-rapid response; Sw-sweeping; Cl-control; Cn-containment). 
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Supplementary Figure 5.3d The proportion of analysis units for species and species groups falling within each management strategy at a medium 

analysis grain of 1200m. (Re-reconnaissance; RR-rapid response; Sw-sweeping; Cl-control; Cn-containment). 
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Supplementary Figure 5.3e The proportion of analysis units for species and species groups falling within each management strategy at a coarse 

analysis grain of 2400m. (Re-reconnaissance; RR-rapid response; Sw-sweeping; Cl-control; Cn-containment). 
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Supplementary Figure 5.3f The proportion of analysis units for species and species groups falling within each management strategy at a coarse 

analysis grain of 4800m. (Re-reconnaissance; RR-rapid response; Sw-sweeping; Cl-control; Cn-containment). 
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Supplementary Figure 5.4a Hierarchical mapping of analysis units into a ‘phylo-tree’ at six 

spatial grains for species and species groups with the commonness type indicates as 1 of 9 

colours. 
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Supplementary Figure 5.4b Hierarchical mapping of analysis units into a ‘phylo-tree’ at six 

spatial grains for species and species groups with the commonness type indicates as 1 of 9 

colours. 
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Supplementary Table 5.1 Mean and total area of occupancy (AOO) for selected species and 

species groups at six grains analysed. 

Grain Species 

Mean 

AOO 
(km2) 

SD  

Total 

AOO 
(km2) 

 Grain Species 

Mean 

AOO 
(km2) 

SD  

Total 

AOO 
(km2) 

150m Acacia cyclops 0.41 0.37 51.91  300m Acacia cyclops 1.83 1.16 115.47 

150m Acacia longifolia 0.14 0.20 17.37  300m Acacia longifolia 0.73 0.75 45.72 

150m Acacia saligna 0.34 0.32 42.71  300m Acacia saligna 1.61 1.05 101.70 

150m Acacia spp 0.76 0.45 96.95  300m Acacia spp 2.90 1.04 182.97 

150m Eucalyptus spp 0.08 0.18 10.78  300m Eucalyptus spp 0.50 0.81 31.23 

150m Hakea spp 0.08 0.13 10.04  300m Hakea spp 0.46 0.62 29.16 

150m Leptospermum 0.03 0.05 3.67  300m Leptospermum 0.19 0.21 11.88 

150m Paraserianthes 0.13 0.21 16.09  300m Paraserianthes 0.68 0.85 42.84 

150m Pinus pinaster 0.28 0.39 35.19  300m Pinus pinaster 1.22 1.23 76.68 

150m Pinus radiata 0.11 0.19 14.45  300m Pinus radiata 0.59 0.82 37.35 

150m Pinus spp 0.38 0.49 48.53  300m Pinus spp 1.52 1.47 95.67 

           

600m Acacia cyclops 9.31 2.79 214.20  1200m Acacia cyclops 43.20 7.05 345.60 

600m Acacia longifolia 4.52 3.48 104.04  1200m Acacia longifolia 24.84 5.95 198.72 

600m Acacia saligna 8.83 3.24 203.04  1200m Acacia saligna 40.86 5.60 326.88 

600m Acacia spp 12.05 2.07 277.20  1200m Acacia spp 46.08 4.35 368.64 

600m Eucalyptus spp 3.24 3.52 74.52  1200m Eucalyptus spp 20.52 14.42 164.16 

600m Hakea spp 3.15 3.25 72.36  1200m Hakea spp 19.26 12.58 154.08 

600m Leptospermum 1.64 1.22 37.80  1200m Leptospermum 13.68 8.07 109.44 

600m Paraserianthes 4.19 3.77 96.48  1200m Paraserianthes 21.78 14.79 174.24 

600m Pinus pinaster 6.20 4.33 142.56  1200m Pinus pinaster 29.34 15.39 234.72 

600m Pinus radiata 3.46 3.80 79.56  1200m Pinus radiata 18.54 18.48 148.32 

600m Pinus spp 7.06 4.64 162.36  1200m Pinus spp 31.86 16.10 254.88 

           

2400m Acacia cyclops 236.16 8.15 472.32  4800m Acacia cyclops 691.20 Na 691.20 

2400m Acacia longifolia 172.80 0.00 345.60  4800m Acacia longifolia 599.04 Na 599.04 

2400m Acacia saligna 227.52 20.36 455.04  4800m Acacia saligna 668.16 Na 668.16 

2400m Acacia spp 241.92 16.29 483.84  4800m Acacia spp 691.20 Na 691.20 

2400m Eucalyptus spp 144.00 65.17 288.00  4800m Eucalyptus spp 529.92 Na 529.92 

2400m Hakea spp 155.52 65.17 311.04  4800m Hakea spp 529.92 Na 529.92 

2400m Leptospermum 135.36 20.36 270.72  4800m Leptospermum 506.88 Na 506.88 

2400m Paraserianthes 152.64 77.39 305.28  4800m Paraserianthes 529.92 Na 529.92 

2400m Pinus pinaster 175.68 61.09 351.36  4800m Pinus pinaster 599.04 Na 599.04 

2400m Pinus radiata 112.32 118.12 224.64  4800m Pinus radiata 414.72 Na 414.72 

2400m Pinus spp 187.20 61.09 374.40  4800m Pinus spp 599.04 Na 599.04 

 

 

Ends.  
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Appendix 1 

Visual Basic Code for the Alien Clearing Model used in Chapter 3 and Chapter 4. 

 
Attribute VB_Name = "Run_Model_Main" 
' Step 4 
' Main code block that uses the input data formatted in steps 1, 2 & 3 
' into the I_Pop_x Sheets as the data that will be used in the model. 
 
' Start  Date : 05-10-2016 
' End Development Date : 01-07-2017 
' Coded by: Chad Cheney 
' To be run from within MS.Excel as part of a workbook set. 
'_____________________________________________==___________________________________________ 
 
' Common Variables 
Dim mTimeStart As Date 
Dim mTimeQStart As Date 
Dim mTimeQEnd As Date 
Dim iModelSimulate As Integer   'Stores the current model simulation (1-50) 
Dim iModelYear As Integer       'Stores the current model Year (0-49) 
Dim cQuarter As String          'Stores the current model Quarter (Q1, Q2, Q3, Q4) 
Dim QAvailDays As Double       'Stores the current number of PD available for a Quarter 
Dim mnBal_PdNeed As Single      'Stores the Person Days Needed of the current nBal 
Dim nBal_Ha As Single           'Stores the current Hectares of the treated nBal 
Dim mPlant_Ha As Single         'Stores the current plants per Ha of the treated nBal 
Dim mPlot_Count As Single       'Stores the current plot (row in sheet) that needs to be carried over between 
Quarters 
Dim mFileLoc As String          'Stores the folder path for the text files 
'____________________________________________________________________________ 
'Start Here...... 
'____________________________________________________________________________ 
 
Sub Model_Main_1() 
    'Model_Setup (moved to "Pre_Run...") 
    Application.ScreenUpdating = False 
    Application.Calculation = xlCalculationManual 
    mTimeStart = Now() 
    ActiveWorkbook.Save 
     
    mYears = Worksheets("Model Parameters").Range("Model_Years") 
    mSimulate = Worksheets("Model Parameters").Range("Model_Simulate") 
    iQuater0 True          ' Setup 
     
    For iModelSimulate = 1 To mSimulate         'Model Iterations are by Quarter over 50 years i.e. 50 x 4 
        ' reset the model for the next iteration 
        For iModelYear = 0 To mYears - 1 
            mTimeQStart = Now 
            nBal_ScheduleSort "Systematic"      'Keep It Clean '"Maintain follow-ups"     '"Water production" 
'"Random"   '"Consensus" '.... nBals prioritised at beginning of each year 
            iQuater1 
            iQuater2 
            iQuater3 
            iQuater4 
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            mTimeQEnd = Now 
            iQuater5 
        Next iModelYear 
        'Write the dataout 
            Write_SimulationData 
            If iModelSimulate <> mSimulate Then Model_ResetNextSimulate 'does not delete the last dataset 
 
    Next iModelSimulate 
    Application.ScreenUpdating = True 
    Application.Calculation = xlCalculationAutomatic 
    MsgBox "Complete" 
 
End Sub 
 
Sub iQuater0(ByVal iCreateFiles As Boolean) 
    Application.StatusBar = "Q0 Set-up" 
    iQuater0_CleanSheets 
    iQuater0_ReloadSheets 
    If iCreateFiles = True Then iQuater0_ResetDataFiles 
     
End Sub 
 
Sub iQuater0_CleanSheets() 
 
    'nBals_DynamicData 
    d = 2 
    Sheets("nBals_DynamicData").Select 
    Do Until Sheets("nBals_DynamicData").Cells(d, 1) = "" 
        Range(Cells(d, 2), Cells(d, 13)) = "" 
        d = d + 1 
    Loop 
    'Reset: DataOut_Plants 
        Sheets("DataOut_Plants").Select 
        c = 3 
        For r = 2 To 4 
            Do Until Cells(r, c) = "" And c > 5 
                Cells(r, c) = "" 
                c = c + 1 
            Loop 
            c = 3 
        Next r 
        r = 6: c = 1 
        Do Until Cells(r, c) = "" 
            Do Until Cells(r, c) = "" 
                Cells(r, c) = "" 
                c = c + 1 
            Loop 
            c = 1 
            r = r + 1 
        Loop 
    'Reset: DataOut_PD 
        Sheets("DataOut_PD").Select 
        c = 4 
        For r = 2 To 5 
            Do Until Cells(r, c) = "" 
                Cells(r, c) = "" 
                c = c + 1 
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            Loop 
            c = 4 
        Next r 
        r = 7: c = 1 
        Do Until Cells(r, c) = "" 
            Do Until Cells(r, c) = "" And c > 4 
                Cells(r, c) = "" 
                c = c + 1 
            Loop 
            c = 1 
            r = r + 1 
        Loop 
     
    'Reset: DataOut_Seeds 
        Sheets("DataOut_Seeds").Select 
        c = 3 
        For r = 2 To 4 
            Do Until Cells(r, c) = "" And c > 5 
                Cells(r, c) = "" 
                c = c + 1 
            Loop 
            c = 3 
        Next r 
        r = 6: c = 1 
        Do Until Cells(r, c) = "" 
            Do Until Cells(r, c) = "" 
                Cells(r, c) = "" 
                c = c + 1 
            Loop 
            c = 1 
            r = r + 1 
        Loop 
 
    'Reset: nBals_DynamicData 
        Sheets("nBals_DynamicData").Select 
        r = 2: c = 1 
        Do Until Cells(r, c) = "" 
            Range(Cells(r, 2), Cells(r, 12)) = "" 
            r = r + 1 
        Loop 
     
    ' Reset: DataOut_FireHA 
        Sheets("DataOut_FireHA").Select 
        Range(Cells(2, 2), Cells(200, 200)) = "" 
     
  End Sub 
   
  Sub iQuater0_ReloadSheets() 
   
    Sheets("DataOut_Plants").Cells(1, 2) = Format(mTimeStart, "DD-MM-YYYY HH:MM AM/PM") 
    Sheets("DataOut_Seeds").Cells(1, 2) = Format(mTimeStart, "DD-MM-YYYY HH:MM AM/PM") 
     
    ' M_nBal_Schedule 
    Sheets("I_nBal_Schedule").Select 
    Cells.Select 
    Selection.Copy 
    Sheets("M_nBal_Schedule").Select: Range("A1").Select: ActiveSheet.Paste: Cells(1, 1).Select 
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    'M_Pop_All 
    Sheets("M_Pop_All").Select 
    Cells.Delete 
    r = 1 
    Do Until Sheets("M_Pop_All").Cells(r, 1) = "" And Sheets("I_Pop_All").Cells(r, 1) = "" 
        'Application.StatusBar = "Q0 Set-up " & r 
        For c = 1 To 75 
            Sheets("M_Pop_All").Cells(r, c) = Sheets("I_Pop_All").Cells(r, c) 
            Sheets("M_Pop_All").Cells(r, c).Interior.Pattern = xlNone 
        Next c 
        r = r + 1 
    Loop   'r 
     
    'Vary the seed allocation due to the natural variability of seed distribution by SD20 
    nBal = 2 
    Do Until Cells(nBal, 1) = "" 
        'Application.StatusBar = "Q0 Set-up: Seed Loading " & nBal 
        For SeedCo = 64 To 72 
            mRndSeed = Application.WorksheetFunction.RandBetween(800, 1200) / 1000 
            Cells(nBal, SeedCo) = Cells(nBal, SeedCo) * mRndSeed 
        Next SeedCo 
        Cells(nBal, 76) = Application.WorksheetFunction.Sum(Range(Cells(nBal, 64), Cells(nBal, 72))) 
         
        'Set a level of Available Invaded Area (AIA) based on  Canopy Cover 
        PlantsHaA = Application.WorksheetFunction.Sum(Range(Cells(nBal, 12), Cells(nBal, 61))) 
        a = 3.3222:    b = 155.02:   cp = PlantsHaA * -1 
        d = b ^ 2 - 4 * a * cp 
        mCoverA = ((-b + Sqr(d)) / (2 * a)) / 100 
         
        PlantsHaY = Application.WorksheetFunction.Sum(Range(Cells(nBal, c + 1), Cells(nBal, 11))) 
        a = 12.651:    b = 672.36:   cp = PlantsHaY * -1 
        d = b ^ 2 - 4 * a * cp 
        mCoverY = ((-b + Sqr(d)) / (2 * a)) / 100 
        mCover = mCoverA + mCoverY 
         
        If mCover = 0 Then mCover = 0.0001 
        If mCover > 1 Then mCover = 1 
         
        Cells(nBal, 74) = mCover 
        If Cells(nBal, 2) = "Acacia non-resprouter" Then 
            mSeedSatR = Application.WorksheetFunction.RandBetween(950, 1050) / 1000 
            mSeedSat = mCover * (2000 * mSeedSatR) * 10000       '2000 seed per m2 *10,000 meters 
            Cells(nBal, 75) = mSeedSat 
        End If 
        If Cells(nBal, 2) = "Acacia resprouter" Then 
            mSeedSatR = Application.WorksheetFunction.RandBetween(950, 1050) / 1000 
            mSeedSat = mCover * (12000 * mSeedSatR) * 10000       '12000 seed per m2 *10,000 meters 
            Cells(nBal, 75) = mSeedSat 
        End If 
        nBal = nBal + 1 
    Loop 
     
    ' Write some Start Output Numbers 
    '1. Starting nBals and the plants per ha in the nBals 
    nBal = 2: pTot = 0: pHa = 0: sTot = 0 
    Do Until Sheets("nBals_StaticData").Cells(nBal, 1) = "" 
        nBal_ID = Sheets("nBals_StaticData").Cells(nBal, 1) 
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        nBal_Ha = Sheets("nBals_StaticData").Cells(nBal, 3) 
        nBal_Age = Sheets("nBals_StaticData").Cells(nBal, 9) 
        nWasTreat = Sheets("nBals_StaticData").Cells(nBal, 8) 
        nClearYear = Sheets("nBals_StaticData").Cells(nBal, 11) 
         
        'Plants 
        Sheets("DataOut_Plants").Cells(nBal + 4, 1) = nBal_ID 
        Sheets("DataOut_Plants").Cells(nBal + 4, 2) = nBal_Ha 
        mPlantsHA = GetnBal_PlantsHa(nBal_ID) 
        Sheets("DataOut_Plants").Cells(nBal + 4, 3) = mPlantsHA 
         
        pHa = pHa + nBal_Ha 
        pTot = pTot + (Sheets("DataOut_Plants").Cells(nBal + 4, 3) * nBal_Ha) 
                 
        'Person Days 
        Sheets("DataOut_PD").Cells(nBal + 5, 1) = nBal_ID 
        Sheets("DataOut_PD").Cells(nBal + 5, 2) = nBal_Ha 
                 
        'Seeds 
        Sheets("DataOut_Seeds").Cells(nBal + 4, 1) = nBal_ID 
        Sheets("DataOut_Seeds").Cells(nBal + 4, 2) = nBal_Ha 
        Sheets("DataOut_Seeds").Cells(nBal + 4, 3) = GetnBal_SeedsHa(nBal_ID) 
        sTot = sTot + (Sheets("DataOut_Seeds").Cells(nBal + 4, 3) * nBal_Ha) 
                 
        'Veld Age 
        Sheets("nBals_DynamicData").Cells(nBal, 1) = nBal_ID 
        Sheets("nBals_DynamicData").Cells(nBal, 8) = nBal_Age 
        If nBal_Age = 0 Then 
            'Calc Fire Severity for previous fire year. 
             iFire_Severity = Fire_Severity(Application.WorksheetFunction.RandBetween(2, 2297)) 
             Sheets("nBals_DynamicData").Cells(nBal, 10) = iFire_Severity 
             Fire_RemoveVegandSeed nBal_ID, iFire_Severity, 0 
             'Set Effective Invaded Area to -ve so to allow for reduction in size 
             Sheets("nBals_DynamicData").Cells(nBal, 11) = -1 
        End If 
         
        'Pre-treatment for post clearing seed germination Q3 routine 
        If nWasTreat = 1 Then 
            Sheets("nBals_DynamicData").Cells(nBal, 2) = "Y" 
            OrigPlantEst = (1 + (Application.WorksheetFunction.RandBetween(1, 100) / 100)) * mPlantsHA 
            Sheets("nBals_DynamicData").Cells(nBal, 3) = OrigPlantEst 
            Sheets("nBals_DynamicData").Cells(nBal, 4) = OrigPlantEst - mPlantsHA 
            Sheets("nBals_DynamicData").Cells(nBal, 5) = 3 
        End If 
         
        'Time Since nBal was Cleared: for Prioritisation 
            Sheets("nBals_DynamicData").Cells(nBal, 12) = nClearYear 
         
        nBal = nBal + 1 
    Loop 
     
    'Add the Totals 
        Sheets("DataOut_Plants").Cells(2, 3) = pTot             'Total Plants 
        Sheets("DataOut_Plants").Cells(3, 3) = pTot / pHa       'Plants / Ha 
        Sheets("DataOut_Plants").Cells(4, 3) = 1 
        Sheets("DataOut_Seeds").Cells(2, 3) = sTot             'Total Seeds 
        Sheets("DataOut_Seeds").Cells(3, 3) = sTot / pHa       'Plants / Ha 
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        Sheets("DataOut_Seeds").Cells(4, 3) = 1 
                 
    'Add timestamp 
        mTime = Now() - CDate(Sheets("DataOut_Plants").Cells(1, 2)) 
        mTime = Right(CStr(Format(mTime, "hh mm ss")), 5) 
        Sheets("DataOut_Plants").Cells(1, 3) = mTime 
        Sheets("DataOut_Seeds").Cells(1, 3) = mTime 
         
   '2. FireData Sheet 
    Sheets("DataOut_FireHA").Cells(5, 1) = "Year " 
    For yr = 0 To iModelYear 
        Sheets("DataOut_FireHA").Cells(5, yr + 2) = "Year " & yr + 1 
    Next yr 
         
End Sub 
  
 Sub iQuater0_ResetDataFiles() 
  
    mFileLoc = "C:\Users\Chad.Cheney\Documents\Model\Chapter III\" 
     
    ' Delete the old output datafiles (these are the ones used for further Stats Analysis) 
    Dim fso As New FileSystemObject 
    Dim mTextStream As TextStream 
    Dim mText As String 
 
    Dim mFileName(1 To 5) As String 
    mFileName(1) = mFileLoc & "Plants.txt" 
    mFileName(2) = mFileLoc & "Seeds.txt" 
    mFileName(3) = mFileLoc & "PersonDays.txt" 
    mFileName(4) = mFileLoc & "HaCleared.txt" 
    mFileName(5) = mFileLoc & "HaBurnt.txt" 
    mFileNameStart = mFileLoc & "ModelStart.txt" 
    Set nF = fso.CreateTextFile(mFileNameStart, True) 
        nF.Close 
         
    For f = 1 To 5 
        Set nF = fso.CreateTextFile(mFileName(f), True) 
        nF.Close 
        'Add the Headings 
        Set mTextStream = fso.OpenTextFile(mFileName(f), ForAppending, True) 
        mText = "Sim" & vbTab 
        Y = Worksheets("Model Parameters").Range("Model_Years") 
        For t = 0 To Y 
            mText = mText & "Y" & t & vbTab 
        Next t 
        mTextStream.WriteLine (mText)               'Write the Data 
        mTextStream.Close 
    Next f 
     
End Sub 
     
Sub iQuater1() 
    'In Q1 (April, May, June) 
    cQuarter = "Q1" 
     
    'MANAGEMENT 
    'Clear nBals 
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    Application.StatusBar = "S:" & iModelSimulate & " Y:" & iModelYear + 1 & " Clear nBals Q1" 
    nBals_Clear "Q1" 
     
    'ECOLOGICAL 
    'Grow all Alien that are in the seedlings and young 
    Application.StatusBar = "S:" & iModelSimulate & " Y:" & iModelYear + 1 & " Grow Alien Q1" 
    nBal_GrowAliens_1 "Q1 Grow Alien" 
     
    'MODEL 
    'Update Clearing Tags 
    Application.StatusBar = "S:" & iModelSimulate & " Y:" & iModelYear + 1 & " Update Clearing Tags Q1" 
    nBal_UpdateTags 
         
End Sub 
 
Sub iQuater2() 
    'In Q2 (July, Aug, Sept) 
    cQuarter = "Q2" 
     
    'ECOLOGICAL 
    'Grow all Alien that are in the seedlings and young 
    Application.StatusBar = "S:" & iModelSimulate & " Y:" & iModelYear + 1 & " Grow Alien Q2" 
    nBal_GrowAliens_1 "Q2 Grow Alien" 
     
    'Germinate Seedlings from Seedbanks 
    Application.StatusBar = "S:" & iModelSimulate & " Y:" & iModelYear + 1 & " Germinate Seedlngs Q2" 
    nBal_GerminateSeedlings 
     
    'MANAGEMENT 
    'Clear nBals 
    Application.StatusBar = "S:" & iModelSimulate & " Y:" & iModelYear + 1 & " Clear nBals Q2" 
    nBals_Clear "Q2" 
     
    'MODEL 
    'Update Clearing Tags 
    Application.StatusBar = "S:" & iModelSimulate & " Y:" & iModelYear + 1 & " Update Clearing Tags Q2" 
    nBal_UpdateTags 
 
End Sub 
 
Sub iQuater3() 
    'In Q3 (Oct, Nov, Dec) 
    cQuarter = "Q3" 
     
    'MANAGEMENT 
    'Clear nBals 
    Application.StatusBar = "S:" & iModelSimulate & " Y:" & iModelYear + 1 & "Clear nBals Q3" 
    nBals_Clear "Q3" 
     
    'ECOLOGICAL 
    'Grow all Alien that are in the seedlings and young and all other cohorts too. 
    Application.StatusBar = "S:" & iModelSimulate & " Y:" & iModelYear + 1 & " Grow Alien 2 Q3" 
    nBal_GrowAliens_2 "Q3 Grow Alien 2" 
    Application.StatusBar = "S:" & iModelSimulate & " Y:" & iModelYear + 1 & " Grow Alien 1 Q3" 
    nBal_GrowAliens_1 "Q3 Grow Alien 1" 
     
    'Seedbank movement (vertically) first and then add new seeds 
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    Application.StatusBar = "S:" & iModelSimulate & " Y:" & iModelYear + 1 & " Update Seed Cohort Q3" 
    Seed_AgeCohort "Q3 Update Seed Cohort" 
     
    'Seed Aliens and Disperse to Seedbanks (Model Notation of this is 'S3') 
    Application.StatusBar = "S:" & iModelSimulate & " Y:" & iModelYear + 1 & " Seeding and Dispursal Q3" 
    nBal_Plants_Seed 
     
    'MODEL 
    'Update Clearing Tags 
    Application.StatusBar = "S:" & iModelSimulate & " Y:" & iModelYear + 1 & " Update Clearing Tags Q3" 
    nBal_UpdateTags 
 
End Sub 
 
Sub iQuater4() 
    'In Q4 (Jan, Feb, March) 
    cQuarter = "Q4" 
     
    'Fire Season 
    Application.StatusBar = "S:" & iModelSimulate & " Y:" & iModelYear + 1 & " nBals Burning Q4" 
    nBal_Burn 
         
    'MANAGEMENT 
    'Clear nBals 
    Application.StatusBar = "S:" & iModelSimulate & " Y:" & iModelYear + 1 & "Clear nBals Q4" 
    nBals_Clear "Q4" 
     
    'ECOLOGICAL 
    'Grow all Alien that are in the seedlings and young 
    Application.StatusBar = "S:" & iModelSimulate & " Y:" & iModelYear + 1 & " Grow Alien Q4" 
    nBal_GrowAliens_1 "Q4 Grow Alien" 
         
    'Increase Veld Age at the end of the Model Year 
    Application.StatusBar = "S:" & iModelSimulate & " Y:" & iModelYear + 1 & " Updage Veld Age Q4" 
    nBal_VeldAge 
     
    'MODEL 
    'Update Clearing Tags 
    Application.StatusBar = "S:" & iModelSimulate & " Y:" & iModelYear + 1 & " Update Clearing Tags Q4" 
    nBal_UpdateTags 
 
End Sub 
 
Sub nBals_Clear(ByVal iQuarter As String) 
' The Main Management routine to clear nBals for a Quater 
 
    'Set some Variables 
    Dim nBalToClear As Boolean 
    'Assign the number of clearing days avaiable. QAvailDays holds the days that are carried over between 
Quarters 
    If iQuarter = "Q1" Then QAvailDays = Sheets("Model Parameters").Range("Avail_Days_Q1"): mplot = 2 
    If iQuarter = "Q2" Then QAvailDays = QAvailDays + Sheets("Model Parameters").Range("Avail_Days_Q2"): 
mplot = mPlot_Count 
    If iQuarter = "Q3" Then QAvailDays = QAvailDays + Sheets("Model Parameters").Range("Avail_Days_Q3"): 
mplot = mPlot_Count 
    If iQuarter = "Q4" Then QAvailDays = QAvailDays + Sheets("Model Parameters").Range("Avail_Days_Q4"): 
mplot = mPlot_Count 
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    Dim PDavailable As Boolean 
    PDavailable = False 
     
    If QAvailDays > 0 Then PDavailable = True 
    nBalToClear = True 
     
    iBal = Sheets("M_nBal_Schedule").Cells(mplot, 1) 
    If iBal = "" Then 
        nBalToClear = False 
    End If 
     
    'Application.StatusBar = "S:" & iModelSimulate & " Y:" & iModelYear + 1 & " " & cQuarter & " " & QAvailDays 
     
    Do Until PDavailable = False Or nBalToClear = False 
        iBal = Sheets("M_nBal_Schedule").Cells(mplot, 1) 
        'Catch if all nBals have been done for the Year...... 
        If iBal = "" Then 
        nBalToClear = False 
            Exit Do 
        End If 
        If PDCheck(iBal, QAvailDays) = True Then    ' then there are days avaiable to clear 
            'Application.StatusBar = "S:" & iModelSimulate & " Y:" & iModelYear + 1 & " " & cQuarter & " " & 
QAvailDays 
            nBal_ClearAliens iBal 
            '**** Update nBal Clear status re LastCleard, number of TimesCleared & Current Plants per ha 
            mRow = GetnBal_Row(iBal, "Dynamic") 
            Sheets("nBals_DynamicData").Cells(mRow, 3) = mPlant_Ha 
            Sheets("nBals_DynamicData").Cells(mRow, 5) = 4      ' a Tag for: The number of quaters (i.e. within a 
year) that seedlings can germinate 
            Sheets("nBals_DynamicData").Cells(mRow, 6) = Sheets("nBals_DynamicData").Cells(mRow, 6) + 1 ' 
Number of Treatments for a nBal 
            Sheets("nBals_DynamicData").Cells(mRow, 7) = Sheets("nBals_DynamicData").Cells(mRow, 7) + 
mnBal_PdNeed ' The number of pd Used for the year 
            Sheets("nBals_DynamicData").Cells(mRow, 12) = -1 
                         
            QAvailDays = QAvailDays - mnBal_PdNeed    ' Subtract the pd used to clear the nBal above: 
mnBal_PdNeed is a Common Variable 
            mplot = mplot + 1 
        Else 
            PDavailable = False 
            'Need to move to the next Q for Q1, Q2, Q3. While Q4 move to the next nBal to see if that one can be 
done 
            If iQuarter <> "Q4" Then 
                Exit Do 
            Else 
                If QAvailDays >= 50 Then            'the smallest amount needed to make one WIMS Contract 
                    PDavailable = True 
                    mRow = GetnBal_Row(iBal, "Dynamic") 
                    Sheets("nBals_DynamicData").Cells(mRow, 2) = "SNC"          ' Tagged as "Sceduled Not Cleared" 
                    mplot = mplot + 1               ' move to the next Plot 
                End If 
            End If 
        End If 
    Loop 
     
    'Store the last nBal that was attempted to be treated 
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    mPlot_Count = 0 
    mPlot_Count = mplot 
 
End Sub 
 
Sub nBal_ClearAliens(ByVal inBalName As String) 
    Dim TreatedSucess() As Double                 'To hold the return values 
    Dim FoundnBal As Boolean                       ' Need to catch for nBals with no aliens and no Seeds (i.e. 
uninvaded) 
     
    Sheets("M_Pop_All").Select 
    ' Clearing has two parts 
    ' plants within the nBal need to be found. This is probability density and size 
    ' if a plant is found, there is a probability that it will be treated correctly. 
     
    ' Find and loop through the nBals to clear 
        nB = 2 
        FoundnBal = False 
        Do Until Cells(nB, 1) = "" 
            If Cells(nB, 1) = inBalName Then 
                Cells(nB, 1).Interior.ColorIndex = 4 
                FoundnBal = True 
                nBalRow = nB 
                YoungCoppice = 0: AdultCoppice = 0: mTreatSucc = 0 
                PlantForm = Cells(nBalRow, 2)  ' e.g. Resprouter which determines treatment sucess 
                For AC = 5 To 61 ' the number of possible age cohorts (columns) 
                    If Cells(nBalRow, AC) <> "" And Cells(nBalRow, AC) > 0 Then 
                        'Calculate the total number of plants in that cohort (= plants per ha * nBal Size) 
                        'for each plant 
                        PlantHaCohort = Cells(nBalRow, AC).Value ' the number of plants to be treated / ha 
                        If AC < 9 Then PlantCohort = 1 
                        If AC >= 9 And AC < 12 Then PlantCohort = 2 
                        If AC >= 12 Then PlantCohort = AC - 9           'age in the population matrix column 
                         
                        If PlantHaCohort < 50 Then 
                        CalcType = 1 
                            PlantTot = Round(PlantHaCohort * nBal_Ha, 0)   ' number of plants to treat 
                        Else 
                            CalcType = 2 
                            PlantTot = Application.WorksheetFunction.Log10(PlantHaCohort) 
                            PlantTot = Round(PlantTot * 100, 0)       'keep 2 significant places (by x 100) 
                        End If 
                         
                        'Call the subroutine 
                        TreatedSucess = iTreat(PlantHa, PlantTot, PlantForm, PlantCohort) 
                         
                        'Process values that are returned 
                        If CalcType = 1 Then 
                            ' Population Matrix in plant / ha, so divide by nBal Size 
                            YoungCoppice = Round((TreatedSucess(2) / nBal_Ha), 2) + YoungCoppice    ' regrowth of young 
plants ' Should be added at the end of the cycle 
                            AdultCoppice = Round((TreatedSucess(3) / nBal_Ha), 2) + AdultCoppice  ' regrowth of old plants 
                            mTreatSucc = Round(TreatedSucess(1) / nBal_Ha, 2) + mTreatSucc 
                             
                            iPlantTot = PlantTot - (TreatedSucess(1) + TreatedSucess(2) + TreatedSucess(3)) 
                            iPlantTot = Round((iPlantTot / nBal_Ha), 2) 
                            Cells(nBalRow, AC) = iPlantTot                    'ha new cohort value written back to matrix 
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                        Else 
                            YCo = 0: ACo = 0: TS = 0 
                            If TreatedSucess(2) > 0 Then YCo = Application.WorksheetFunction.Power(10, 
(TreatedSucess(2) / 100)) 
                            YoungCoppice = Round(YCo, 2) + YoungCoppice    ' regrowth of young plants ' Should be added 
at the end of the cycle 
                            If TreatedSucess(3) > 0 Then ACo = Application.WorksheetFunction.Power(10, 
(TreatedSucess(3) / 100)) 
                            AdultCoppice = Round(ACo, 2) + AdultCoppice  ' regrowth of old plants 
                            If TreatedSucess(1) > 0 Then TS = Application.WorksheetFunction.Power(10, (TreatedSucess(1) 
/ 100)) 
                            mTreatSucc = Round(TS, 2) + mTreatSucc 
                            PlantTot = Application.WorksheetFunction.Power(10, PlantTot / 100) 
                            iPlantTot = PlantTot - (TS + YCo + ACo) 
                            Cells(nBalRow, AC) = Round(iPlantTot, 2)                   'ha new cohort value written back to matrix 
                        End If 
                    End If 
                Next AC 'AgeCohort' 
                'Add in the coppice / regrowth plants back in, 
                Cells(nBalRow, 5) = Cells(nBalRow, 5) + YoungCoppice 
                Cells(nBalRow, 7) = Cells(nBalRow, 7) + AdultCoppice 
                 
                'Need to Tag that the nBal was cleared and the percentage cover that was removed. 
                'This will be used in the Post Clearing seed germination routine. 
                mRow = GetnBal_Row(inBalName, "Dynamic") 
                Sheets("nBals_DynamicData").Cells(mRow, 2) = "Y" 
                'Tag the number that were treated per the plant type. 
                Worksheets("nBals_DynamicData").Cells(mRow, 4) = Worksheets("nBals_DynamicData").Cells(mRow, 
4) + mTreatSucc + YoungCoppice + AdultCoppice 
                Write_PDused inBalName, nBal_Ha 
                'If nBal is post fire and has not seeded the decrease EIA by 4-8% 
                If Worksheets("nBals_DynamicData").Cells(mRow, 11) <> "" And 
Worksheets("nBals_DynamicData").Cells(mRow, 11) < 0 Then 
                    mRow = GetnBal_Row(Cells(nB, 1), "Dynamic") 
                    mEIAincreaseR = Application.WorksheetFunction.RandBetween(4000, 8000) / 100000 
                    mEIAincrease = Cells(nB, 74) - (mEIAincreaseR * Cells(nB, 74)) 
                    If mEIAincrease < 0 Then mEIAincrease = 0 
                    Cells(nB, 74) = mEIAincrease 
                End If 
            End If 
            nB = nB + 1 
        Loop 
 
        If FoundnBal = False Then       'nBal has no Plants nor no Seed, but was swept 
            mRow = GetnBal_Row(inBalName, "Dynamic") 
            Sheets("nBals_DynamicData").Cells(mRow, 2) = "Y" 
            Worksheets("nBals_DynamicData").Cells(mRow, 4) = 0 
            'need to calc the min pd needed and log those 
            Write_PDused inBalName, nBal_Ha 
        End If 
     
End Sub 
 
Private Function PDCheck(ByVal inBalName As String, ByVal iAvailDays As Single) As Boolean 
    mBal = inBalName 
    mPlant_Ha = GetnBal_PlantsHa(mBal) 
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    PDCheck = False 
    mnBal_PdNeedAdult = 0 
    mnBal_PdNeedYoung = 0 
          
        mnBal_PdNeedAdult = GetnBal_pdAdult(mBal)       ' Returned as pd / ha 
        mnBal_PdNeedYoung = GetnBal_pdYoung(mBal)       ' Returned as pd / ha 
        mnBal_PdNeed = 0            'NOTE: This is a Global Variable 
        'find the Hectares of the nBal 
        mRow = GetnBal_Row(mBal, "Static") 
        nBal_Ha = Sheets("nBals_StaticData").Cells(mRow, 3)             ' Global Variable Set 
        mnBal_PdNeed = (mnBal_PdNeedAdult + mnBal_PdNeedYoung) 
        If mnBal_PdNeed > 110 Then mnBal_PdNeed = 110                   ' upper limit of pd/ha in the TMNP 
        mnBal_PdNeed = (mnBal_PdNeedAdult + mnBal_PdNeedYoung) * nBal_Ha 
        pdModelled = Application.WorksheetFunction.RoundUp(nBal_Ha * 0.4, 2)          '0.4 is the pd per ha set for 
'sweeping' a nBal by the Park 
        If pdModelled > mnBal_PdNeed Then mnBal_PdNeed = pdModelled 
         
        nBal_Drive = 0      'Additional PD to allow for Drive Time to far sites 
        nBal_Site = 0       'Additional PD to allow for Walk In time to far sites 
        nBal_Slope = 0     'Additional Ha added to base Ha due to slope of the nBal 
         
        'Adjust Pd for drive and slope 
        nBal_Drive = Sheets("nBals_StaticData").Cells(mRow, 4)  ' in minutes 
        nBal_Site = Sheets("nBals_StaticData").Cells(mRow, 5)   ' in minutes 
        nBal_Slope = Sheets("nBals_StaticData").Cells(mRow, 7) 
         
        pd_Adjust = (((nBal_Drive + nBal_Site) / 60) / 8) * mnBal_PdNeed        ' Drive Time + Site Time / 60 minutes 
/ 8 hours in the work day 8 the pd needed 
        pd_Adjust = pd_Adjust * nBal_Slope                                      ' Slope factor is in format 1.xxxx so just multiply 
         
        mnBal_PdNeed = Round(mnBal_PdNeed + pd_Adjust, 0) 
         
        If iAvailDays - mnBal_PdNeed > 0 Then 
            PDCheck = True ' Days are avaiable to clear the nBal 
        End If 
         
        If PDCheck = False Then 
            a = a 
        End If 
         
End Function 
 
Private Function GetnBal_PlantsHa(ByVal inBal As String) As Double 
GetnBal_PlantsHa = 0 
GetnBal_PlantsHa = Application.WorksheetFunction.SumIf(Sheets("M_Pop_All").Range("A2:A2000"), _ 
            inBal, Sheets("M_Pop_All").Range("C2:C2000")) 
End Function 
 
Private Function GetnBal_pdAdult(ByVal inBal As String) As Double ' Value is returned as pd / ha 
GetnBal_pdAdult = 0 
    ' Calculate the number PD required to treat the nBal 
    'Step 1. Convert density to Cover (Le Mat 1994) 
    ' 100% plants per ha : y = 3.3222x2 + 155.02x solved via quadratic equation of 
    ' y = ax2 + bx + c 
    'Step 2. Convert Cover to Pd (WIMS NORMs Table 2014) 
    ' by calculating Condensed Ha and multiply by 100% norm 
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    ' Find Total Stems for nBal her Ha 
    nBalC = 2 
    PlantsHaA = 0 
    Do Until Sheets("M_Pop_All").Cells(nBalC, 1) = "" 
        If Sheets("M_Pop_All").Cells(nBalC, 1) = inBal Then 
            For CohortA = 12 To 61 
               PlantsHaA = PlantsHaA + Sheets("M_Pop_All").Cells(nBalC, CohortA) 
            Next 
        End If 
     nBalC = nBalC + 1 
    Loop 
     
        a = 3.3222:    b = 155.02:   c = PlantsHaA * -1 
        d = b ^ 2 - 4 * a * c 
        mCover = (-b + Sqr(d)) / (2 * a) 
     
        PdNeedHa = (mCover / 100) * Worksheets("Model Parameters").Range("PD_Norm") 
         
        GetnBal_pdAdult = PdNeedHa 
 
End Function 
 
Private Function GetnBal_CoverAdult(ByVal inBal As String) As Double ' Value is returned as Percentage Cover 
GetnBal_CoverAdult = 0 
    ' Calculate the number PD required to treat the nBal 
    'Step 1. Convert density to Cover (Le Mat 1994) 
    ' 100% plants per ha : y = 3.3222x2 + 155.02x solved via quadratic equation of 
    ' y = ax2 + bx + c 
    ' Find Total Stems for nBal her Ha 
    nBalC = 2 
    PlantsHaA = 0 
    Do Until Sheets("M_Pop_All").Cells(nBalC, 1) = "" 
        If Sheets("M_Pop_All").Cells(nBalC, 1) = inBal Then 
            For CohortA = 12 To 61 
               PlantsHaA = PlantsHaA + Sheets("M_Pop_All").Cells(nBalC, CohortA) 
            Next 
        End If 
     nBalC = nBalC + 1 
    Loop 
     
    a = 3.3222:    b = 155.02:   c = PlantsHaA * -1 
    d = b ^ 2 - 4 * a * c 
    mCover = (-b + Sqr(d)) / (2 * a) 
    GetnBal_CoverAdult = mCover 
 
End Function 
 
Private Function GetnBal_pdYoung(ByVal inBal As String) As Double ' Value is returned as pd / ha 
GetnBal_pdYoung = 0 
    ' Calculate the number PD required to treat the nBal 
    'Step 1. Convert density to Cover (Le Mat 1994) 
    ' 100% plants per ha : y = 12.651x2 + 672.36x solved via quadratic equation of 
    ' y = ax2 + bx + c 
    'Step 2. Convert Cover to Pd (WIMS NORMs Table 2014) 
    ' by calculating Condensed Ha and multiply by 100% norm 
 
    ' Find Total Stems for nBal her Ha 
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    nBalC = 2 
    PlantsHaY = 0 
    Do Until Sheets("M_Pop_All").Cells(nBalC, 1) = "" 
        If Sheets("M_Pop_All").Cells(nBalC, 1) = inBal Then 
            For CohortY = 5 To 11 
               PlantsHaY = PlantsHaY + Sheets("M_Pop_All").Cells(nBalC, CohortY) 
            Next 
        End If 
     nBalC = nBalC + 1 
    Loop 
         
        a = 12.651:    b = 672.36:   c = PlantsHaY * -1 
        d = b ^ 2 - 4 * a * c 
        mCover = (-b + Sqr(d)) / (2 * a) 
     
        PdNeedHa = (mCover / 100) * Worksheets("Model Parameters").Range("PD_Norm") 
         
        GetnBal_pdYoung = PdNeedHa 
 
End Function 
 
Private Function GetnBal_CoverYoung(ByVal inBal As String) As Double  ' Value is returned as Percentage 
Cover 
GetnBal_CoverYoung = 0 
    ' Calculate the number PD required to treat the nBal 
    'Step 1. Convert density to Cover (Le Mat 1994) 
    ' 100% plants per ha : y = 12.651x2 + 672.36x solved via quadratic equation of 
    ' y = ax2 + bx + c 
    'Step 2. Convert Cover to Pd (WIMS NORMs Table 2014) 
    ' by calculating Condensed Ha and multiply by 100% norm 
 
    ' Find Total Stems for nBal her Ha 
     
    nBalC = 2 
    PlantsHaY = 0 
    Do Until Sheets("M_Pop_All").Cells(nBalC, 1) = "" 
        If Sheets("M_Pop_All").Cells(nBalC, 1) = inBal Then 
            For CohortY = 8 To 11 
               PlantsHaY = PlantsHaY + Sheets("M_Pop_All").Cells(nBalC, CohortY) 
            Next 
        End If 
     nBalC = nBalC + 1 
    Loop 
         
        a = 12.651:    b = 672.36:   c = PlantsHaY * -1 
        d = b ^ 2 - 4 * a * c 
        mCover = (-b + Sqr(d)) / (2 * a) 
        GetnBal_CoverYoung = mCover 
 
End Function 
 
Private Function GetnBal_CoverSeedlings(ByVal inBal As String) As Double  ' Value is returned as Percentage 
Cover 
GetnBal_CoverSeedlings = 0 
    ' Calculate the number PD required to treat the nBal 
    'Step 1. Convert density to Cover (Le Mat 1994) 
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    ' 100% plants per ha : y = 12.651x2 + 672.36x solved via quadratic equation of 
    ' y = ax2 + bx + c 
    ' Find Total Stems for nBal her Ha 
     
    nBalC = 2 
    PlantsHaS = 0 
    Do Until Sheets("M_Pop_All").Cells(nBalC, 1) = "" 
        If Sheets("M_Pop_All").Cells(nBalC, 1) = inBal Then 
            For CohortS = 5 To 7 
               PlantsHaS = PlantsHaS + Sheets("M_Pop_All").Cells(nBalC, CohortS) 
            Next 
        End If 
     nBalC = nBalC + 1 
    Loop 
         
        a = 12.651:    b = 672.36:   c = PlantsHaS * -1 
        d = b ^ 2 - 4 * a * c 
        mCover = (-b + Sqr(d)) / (2 * a) 
        GetnBal_CoverSeedlings = mCover 
 
End Function 
 
Private Function GetnBal_SeedsHa(ByVal inBal As String) As Double 
GetnBal_SeedsHa = 0 
GetnBal_SeedsHa = Application.WorksheetFunction.SumIf(Sheets("M_Pop_All").Range("A2:A2000"), _ 
            inBal, Sheets("M_Pop_All").Range("BX2:BX2000")) 
End Function 
 
Private Function GetnBal_VeldAge(ByVal inBal As String) As Single 
GetnBal_VeldAge = 0 
GetnBal_VeldAge = Application.WorksheetFunction.SumIf(Sheets("nBals_DynamicData").Range("A2:A900"), _ 
            inBal, Sheets("nBals_DynamicData").Range("H2:H900")) 
End Function 
 
Private Function GetnBal_Row(ByVal inBal As String, ByVal mDataSheet As String) As Double 
GetnBal_Row = 0 
        Dim mRange1 As Range 
        Dim mRange2 As Range 
         
        If mDataSheet = "Static" Then mDataSheet = "nBals_StaticData" 
        If mDataSheet = "Dynamic" Then mDataSheet = "nBals_DynamicData" 
         
        Set mRange2 = Sheets(mDataSheet).Range("A1:A1000") 
        Set mRange1 = mRange2.Cells.Find(inBal, LookAt:=xlWhole) 
        If mRange1 Is Nothing = False Then 
            GetnBal_Row = mRange1.Row 
        End If 
End Function 
 
Private Function GetnBal_Ha(ByVal inBal As String) As Single 
GetnBal_Ha = 0 
        Dim mRange1 As Range 
        Dim mRange2 As Range 
        Set mRange2 = Sheets("nBals_StaticData").Range("A1:A1000") 
        Set mRange1 = mRange2.Cells.Find(inBal, LookAt:=xlWhole) 
        If mRange1 Is Nothing = False Then 
            GetnBal_Ha = Sheets("nBals_StaticData").Cells(mRange1.Row, 3) 
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        End If 
End Function 
 
Private Function GetnBal_Topo1(ByVal inBal As String) As Double 
GetnBal_Topo1 = 0 
GetnBal_Topo1 = Application.WorksheetFunction.SumIf(Sheets("nBals_StaticData").Range("A2:A2000"), _ 
            inBal, Sheets("nBals_StaticData").Range("O2:O2000")) 
End Function 
 
Private Function GetnBal_Topo2(ByVal inBal As String) As Double 
GetnBal_Topo2 = 0 
GetnBal_Topo2 = Application.WorksheetFunction.SumIf(Sheets("nBals_StaticData").Range("A2:A2000"), _ 
            inBal, Sheets("nBals_StaticData").Range("P2:P2000")) 
End Function 
 
Private Function GetnBal_ClearTime(ByVal inBal As String) As Double 
    GetnBal_ClearTime = 0 
    GetnBal_ClearTime = 
Application.WorksheetFunction.SumIf(Sheets("nBals_DynamicData").Range("A2:A2000"), _ 
            inBal, Sheets("nBals_DynamicData").Range("L2:L2000")) 
End Function 
 
Private Function iTreat(ByVal iPlantHa As Single, ByVal iPlantTot As Single, ByVal iPlantForm As String, ByVal 
iPlantCohort As Single) As Double() 
'   1. Attempt to find it 
'   if Found, 2. Attempt to correctly treat it 
'   if treated, then subtract from cohort total 
'Returns the number of successfully treated plants 
    'iTreat is an Array(1-3) to hold the values 
    Dim iTreatArr(1 To 3) As Double 
        iTreatArr(1) = 0: iTreatArr(2) = 0: iTreatArr(3) = 0: 
     
    'LIKELYHOOD of finding a plant to treat 
    'Calc plant cover value for all individuals of all spp in the nBal. 
    'The higher the total cover value the greater the chance that alien plants will be seen 
    'Quadratic Equation derived from Le Matrae Table of Density to Cover 
        a = 3.3222:    b = 155.02:   c = iPlantHa * -1: d = b ^ 2 - 4 * a * c 
        mCover = (-b + Sqr(d)) / (2 * a)    'Solve the Quadratic Equation 
         
    ' RELATE cover to logistic curve of probability of seeing plants at a given cover 
        L = 0.5 
        k = 0.1 
        X0 = 20 
         
        probCover = L / (1 + Exp(-k * (mCover - X0))) 'Solve the Logistic Equation' value 0-1 where 1 is 100% 
         
     ' ACCOUNT for plant age (i.e. height), taller plants are easier to spot even at low density, via 
     ' logistic curve of probability of seeing plants at a given age 
      
        X0 = 1.5                        ' age in plant years 
        k = 1 
        probAge = L / (1 + Exp(-k * (iPlantCohort - X0))) 
         
        'The probability if cover and the probability of age are added 
        probSearch = Round(probCover + probAge, 5) 
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        For pl_Cor = 1 To iPlantTot 
            'For each Plant in a cohort, test the probability of being found and treated correctly 
            ' i.e. pFound and pTreatment 
            pFound = 0  'Used to turn off variable contractor search ability 
            'pFound = Round((Application.WorksheetFunction.RandBetween(1, 10000) / 10000), 5) 
             
            If pFound <= probSearch Then      ' the random value falls within the curve thus the plant is seen 
                pTreatment = Round((Application.WorksheetFunction.RandBetween(1, 10000) / 10000), 5)   ' the 
chance that the plant will be treated (killed) 
                pTreatmentR = 0 
                Select Case iPlantForm 
                    Case Is = "Acacia non-resprouter" 
                        'pTreatmentR = Application.WorksheetFunction.RandBetween(1, 999) / 1000 
                        'pTreatmentR = Application.WorksheetFunction.Norm_Inv(pTreatmentR, 80, 5) / 100     'mean 
80% 
                        'pTreatmentR = Application.WorksheetFunction.Norm_Inv(pTreatmentR, 95, 1.25) / 100     'mean 
95% 
                        'pTreatmentR = Application.WorksheetFunction.Norm_Inv(pTreatmentR, 77, 7.53) / 100       
'mean project 
                        pTreatmentR = 2                                                                         'Used to turn off variable contractor 
effectiveness 
                        'pTreatmentR = Application.WorksheetFunction.Norm_Inv(pTreatmentR, 65, 8.75) / 100       
'Incremtal Analysys 
 
                        If pTreatment <= pTreatmentR Then 
                            'The plant is killed 
                            iTreatArr(1) = iTreatArr(1) + 1 
                        Else 
                            'Plant is cut but will grow again 
                            If iPlantCohort < 8 Then        ' plant is 'young' 
                                iTreatArr(2) = iTreatArr(2) + 1 
                            Else 
                                iTreatArr(3) = iTreatArr(3) + 1 
                            End If 
                        End If 
                     
                    Case Is = "Acacia resprouter" 
                        'pTreatmentR = Application.WorksheetFunction.RandBetween(1, 999) / 1000 
                        'pTreatmentR = Application.WorksheetFunction.Norm_Inv(pTreatmentR, 80, 5) / 100     'mean 
80% 
                        'pTreatmentR = Application.WorksheetFunction.Norm_Inv(pTreatmentR, 95, 1.25) / 100     'mean 
95% 
                        'pTreatmentR = Application.WorksheetFunction.Norm_Inv(pTreatmentR, 53.93, 14.98) / 100   
'mean project 
                        pTreatmentR = 2                                                                         'Used to turn off variable contractor 
effectiveness 
                        'pTreatmentR = Application.WorksheetFunction.Norm_Inv(pTreatmentR, 65, 8.75) / 100       
''Incremtal Analysys 
                         
                        If pTreatment <= pTreatmentR Then        ' consider this a model parameter, Done 
                            'The plant is killed 
                            iTreatArr(1) = iTreatArr(1) + 1 
                        Else 
                            'Plant is cut but will grow again 
                            If iPlantCohort < 8 Then        ' plant is 'young' 
                                iTreatArr(2) = iTreatArr(2) + 1 
                            Else 
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                                iTreatArr(3) = iTreatArr(3) + 1 
                            End If 
                        End If 
         
                    Case Else 
                End Select 
             
            End If 
        Next pl_Cor 
    iTreat = iTreatArr() 
End Function 
 
Sub nBal_GrowAliens_1(ByVal iQuarter As String) 
    ' Grow those co-horts within a quater i.e. between seedlings and young 
    Sheets("M_Pop_All").Select 
    nBal = 2 
     
    Do Until Cells(nBal, 1) = "" 
        ' Application.StatusBar = iQuarter & " - " & Cells(nBal, 1) 
        For c = 11 To 5 Step -1 
            cCohort = Cells(nBal, c) 
            If cCohort > 0 Then 
                mCoverA = 0 
                x = ((c - 1) / 4) + 0.25 
                CohortLimit = x ^ -3.761 
                CohortLimit = CohortLimit * 5000000  'Power Curve of cohort max 
                'Adjust buy the Avaiable Invaded Area (AIA) 
                PlantsHaA = Application.WorksheetFunction.Sum(Range(Cells(nBal, 12), Cells(nBal, 61))) 
                a = 3.3222:    b = 155.02:   cp = PlantsHaA * -1 
                d = b ^ 2 - 4 * a * cp 
                mCoverA = ((-b + Sqr(d)) / (2 * a)) / 100 
                 
                mCountPlanstY = 11 - c 
                mCoverY = 0 
                If mCountPlanstY > 0 Then 
                    PlantsHaY = Application.WorksheetFunction.Sum(Range(Cells(nBal, c + 1), Cells(nBal, 11))) 
                    a = 12.651:    b = 672.36:   cp = PlantsHaY * -1 
                    d = b ^ 2 - 4 * a * cp 
                    mCoverY = ((-b + Sqr(d)) / (2 * a)) / 100 
                End If 
                 
                mAIA = Cells(nBal, 74) - mCoverA - mCoverY 
                If mAIA < 0 Then mAIA = 0 
                If mAIA > 1 Then mAIA = 1 
                CohortLimit = CohortLimit * mAIA 
                 
                If cCohort > CohortLimit Then 
                    cCohort = CohortLimit 
                    cCohortR = Application.WorksheetFunction.RandBetween(9500, 10500) / 10000 
                    cCohort = cCohort * cCohortR 
                End If 
            End If 
            Cells(nBal, c + 1) = Cells(nBal, c + 1) + cCohort 
            Cells(nBal, c) = 0 
        Next c 
        nBal = nBal + 1 
    Loop 
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End Sub 
 
Sub nBal_GrowAliens_2(ByVal iQuarter As String) 
    ' Grow those co-horts at the end of a grow season (Q3) 
     
    Sheets("M_Pop_All").Select 
    nBal = 2 
    Do Until Cells(nBal, 1) = "" 
        ' Application.StatusBar = iQuarter & " - " & Cells(nBal, 1) 
        Cells(nBal, 61) = 0 
        If Application.WorksheetFunction.Sum(Range(Cells(nBal, 12), Cells(nBal, 61))) > 0 Then 
            For c = 60 To 12 Step -1 
                cCohort = Cells(nBal, c) 
                If cCohort > 0 Then 
                    mCoverA = 0 
                    x = c - 10 + 1 
                    CohortLimit = x ^ -3.761 
                    CohortLimit = CohortLimit * 5000000  'Power Curve of cohort max 
                    'Adjust buy the Available Invaded Area (AIA) 
                    PlantsHaA = Application.WorksheetFunction.Sum(Range(Cells(nBal, c), Cells(nBal, 61))) 
                    a = 3.3222:    b = 155.02:   cp = PlantsHaA * -1 
                    d = b ^ 2 - 4 * a * cp 
                    mCoverA = ((-b + Sqr(d)) / (2 * a)) / 100 
                     
                    mAIA = Cells(nBal, 74) - mCoverA 
                    If mAIA < 0 Then mAIA = 0 
                    If mAIA > 1 Then mAIA = 1 
                    CohortLimit = CohortLimit * mAIA 
                     
                    If cCohort > CohortLimit Then 
                        cCohort = CohortLimit 
                        cCohortR = Application.WorksheetFunction.RandBetween(9500, 10500) / 10000 
                        cCohort = cCohort * cCohortR 
                    End If 
                End If 
                Cells(nBal, c + 1) = Cells(nBal, c + 1) + cCohort 
                Cells(nBal, c) = 0 
            Next c 
        End If 
        nBal = nBal + 1 
    Loop 
     
End Sub 
 
Private Sub nBal_VeldAge() 
    Sheets("nBals_DynamicData").Select 
    nBal = 2 
    Do Until Cells(nBal, 1) = "" 
        Cells(nBal, 8) = Cells(nBal, 8) + 1 
        nBal = nBal + 1 
    Loop 
End Sub 
 
Sub nBal_Plants_Seed() 
    'Determine the amount of seed will contribute to the seed bank 
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    'Acacia resprouters about 4250 per m2 at about 8 years seeds after Year 8, as determined by logistic 
equation 
    'Trees slow down production after about 40 years, also a logistic equation used 
         
    Sheets("M_Pop_All").Select 
    nBal = 2 
    SeedTotal = 0 
    SeedProduce = 0 
     
    Do Until Cells(nBal, 1) = "" 
        mRow = GetnBal_Row(Cells(nBal, 1), "Static") 
        nBal_Ha = Sheets("nBals_StaticData").Cells(mRow, 3) 
        nBal_ID = Sheets("nBals_StaticData").Cells(mRow, 1) 
        ' Application.StatusBar = "nBal Flower and Seed " & nBal_ID 
        nBal_PlantType = Cells(nBal, 2)         ' Used to differentate seed production 
        SeedTotal = 0 
        cAdult = Application.WorksheetFunction.Sum(Range(Cells(nBal, 12), Cells(nBal, 61))) 
        If cAdult > 0 Then 
            SeedProduce = 0         'The rate of accumilation into seed bank (Miltion et al) per ha 
            For c = 12 To 61  'Seed co-horts 
                    cPlantTot = Cells(nBal, c) 
                    If cPlantTot > 0 And Cells(nBal, c) <> "" Then 
                    'Calc % Cover of the Cohort 
                    a = 3.3222:    b = 155.02:   cp = cPlantTot * -1 
                    d = b ^ 2 - 4 * a * cp 
                    mCover = ((-b + Sqr(d)) / (2 * a)) / 100 
                    If mCover > 1 Then mCover = 1 
                    plantAge = c - 11 
                    If plantAge <= 8 Then 
                        If nBal_PlantType = "Acacia non-resprouter" Then 
                            SeedProducem2 = (50.814 * plantAge) - 46.514 
                            SeedProducem2R = Application.WorksheetFunction.RandBetween(95, 105) / 100 
                            SeedProducem2 = (SeedProducem2 * SeedProducem2R) * mCover 
                            SeedProduce = SeedProduce + (SeedProducem2 * 10000) 
                        End If 
                        If nBal_PlantType = "Acacia resprouter" Then 
                            SeedProducem2 = (531.43 * plantAge) - 1.4286 
                            SeedProducem2R = Application.WorksheetFunction.RandBetween(95, 105) / 100 
                            SeedProducem2 = (SeedProducem2 * SeedProducem2R) * mCover 
                            SeedProduce = SeedProduce + (SeedProducem2 * 10000) 
                        End If 
                    End If      'plantAge <= 8 
                    If plantAge > 8 And plantAge <= 30 Then 
                        If nBal_PlantType = "Acacia non-resprouter" Then 
                            SeedProducem2 = 360 
                            SeedProducem2R = Application.WorksheetFunction.RandBetween(95, 105) / 100 
                            SeedProducem2 = (SeedProducem2 * SeedProducem2R) * mCover 
                            SeedProduce = SeedProduce + (SeedProducem2 * 10000) 
                        End If 
                        If nBal_PlantType = "Acacia resprouter" Then 
                            SeedProducem2 = 4250 
                            SeedProducem2R = Application.WorksheetFunction.RandBetween(95, 105) / 100 
                            SeedProducem2 = (SeedProducem2 * SeedProducem2R) * mCover 
                            SeedProduce = SeedProduce + (SeedProducem2 * 10000) 
                        End If 
                    End If      'plantAge >8 <=30 
                    If plantAge > 30 Then 
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                        If nBal_PlantType = "Acacia non-resprouter" Then L = 360           ' Peak Seed production, This will a 
variable based on Growth form 
                        If nBal_PlantType = "Acacia resprouter" Then L = 4250           ' Peak Seed production, This will a 
variable based on Growth form 
                        k = -0.4             ' Slope of the Curve (also call r sometimes) 
                        X0 = 55             ' point on the x-axis that will have the steepest curve 
                        SeedProducem2 = L / (1 + Exp(-k * (plantAge - X0))) 'Solve the Logistic Equation for the cohourt 
                        SeedProducem2R = Application.WorksheetFunction.RandBetween(95, 105) / 100 
                        SeedProducem2 = (SeedProducem2 * SeedProducem2R) * mCover 
                        SeedProduce = SeedProduce + (SeedProducem2 * 10000) 
                    End If 
                End If 
            Next c  'cohort 
             
            SeedTotal = SeedProduce 
            ' Tag Effective Invaded Area to increase and increase by 4-8% 
            mRow = GetnBal_Row(Cells(nBal, 1), "Dynamic") 
            Sheets("nBals_DynamicData").Cells(mRow, 11) = 1 
            mEIAincreaseR = Application.WorksheetFunction.RandBetween(4000, 8000) / 100000 
            mEIAincrease = (mEIAincreaseR * Cells(nBal, 74)) + Cells(nBal, 74) 
            If mEIAincrease < 0 Then mEIAincrease = 0 
            Cells(nBal, 74) = mEIAincrease 
            'For a nBal disperse upto 5% to neighbouring nBals 
            ' Determine the number of seeds available to be dispersed, up to 5% 
            mRseed = (Application.WorksheetFunction.RandBetween(1, 500) / 100) / 100 
            rSeedDispersal = Round(SeedTotal * mRseed, 0) 
            SeedRemainPostDispersal = SeedDispersal(nBal_ID, rSeedDispersal, nBal_PlantType) 
            SeedTotal = (SeedTotal - rSeedDispersal) + SeedRemainPostDispersal 
            'Add the Remainder of Seed to the Litter Fall 
                Cells(nBal, 63) = Round(Cells(nBal, 63) + (SeedTotal), 2)  ' Data Stored as seeds per Ha and to 2 
Decimal Places 
            'Move to next nBal 
        End If 
        nBal = nBal + 1 
    Loop 
     
End Sub 
 
Private Function SeedDispersal(ByVal inBalName As String, ByVal iSeeds As Double, ByVal inBal_PlantType As 
String) As Double 
    SeedDispersal = iSeeds 
    ' Find and loop through the nBals list to Spread seed 
        nB = 2 
        Do Until Sheets("nBal_Neighbours").Cells(nB, 1) = "" 
            If Sheets("nBal_Neighbours").Cells(nB, 1) = inBalName Then 
                nBalRow = nB 
                'Allocate seeds based in the percentage of common boundary 
                cBoundary = Sheets("nBal_Neighbours").Cells(nBalRow, 3) / 
Sheets("nBal_Neighbours").Cells(nBalRow, 4) 
                SeedsAllocated = Round(iSeeds * cBoundary, 0) 
                DestnBal = Sheets("nBal_Neighbours").Cells(nBalRow, 2) 
                SeedsSend DestnBal, SeedsAllocated, inBal_PlantType 
                SeedDispersal = SeedDispersal - SeedsAllocated 
            End If 
            nB = nB + 1 
        Loop 
End Function 
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Sub SeedsSend(ByVal iDestnBal As String, ByVal iSeedsAllocated As Double, ByVal inBal_PlantType As String) 
' Write the values of the seeds to the adjaicent nBal 
     
        nB = 2 
        FoundnBal = False 
        Do Until Sheets("M_Pop_All").Cells(nB, 1) = "" 
            If Sheets("M_Pop_All").Cells(nB, 1) = iDestnBal And Sheets("M_Pop_All").Cells(nB, 2) = inBal_PlantType 
Then 
                nBalRow = nB 
                Sheets("M_Pop_All").Cells(nBalRow, 63) = Sheets("M_Pop_All").Cells(nBalRow, 63) + 
Round(iSeedsAllocated, 2) 
                mEIAincrease = Cells(nB, 74) + 0.01   '1%increase to the receving EAI 
                If mEIAincrease > 1 Then mEIAincrease = 1 
                If mEIAincrease < 0 Then mEIAincrease = 0 
                Cells(nB, 74) = mEIAincrease 
                FoundnBal = True 
                Exit Sub 
            End If 
            nB = nB + 1 
        Loop 
     
    'Need to catch if nBal does not have plant type already... if so add to the end. 
     
    If FoundnBal = False Then 
        DestHa = GetnBal_Ha(iDestnBal) 
        Sheets("M_Pop_All").Cells(nB, 1) = iDestnBal 
        Sheets("M_Pop_All").Cells(nB, 2) = inBal_PlantType 
        Sheets("M_Pop_All").Cells(nB, 63) = Round(iSeedsAllocated, 2)  ' Values stored as seeds per ha and to 2 
Decimal places 
        mEIAincrease = Cells(nB, 74) + 0.01   '1%increase to the receiving EAI 
        If mEIAincrease > 1 Then mEIAincrease = 1 
        If mEIAincrease < 0 Then mEIAincrease = 0 
        Cells(nB, 74) = mEIAincrease 
    End If 
     
    If Sheets("M_Pop_All").Cells(nB, 63) < 0 Then 
        a = a 
    End If 
     
End Sub 
 
Sub nBal_GerminateSeedlings() 
    ' There are 3 types of germination 
    '1. A small %, up to 3% of small scale germination of non- resprouters after 2 years in the soil 
    '2. A significant portion of non-resprouters after clearing (Holmes 1987) 
    '3. Major recruitment of up to 95% in top seed back and 10% from deep bank based on the intensity of the 
fire 
    'Note Seed germination is spread over 2 quarters i.e. Q2 and Q3 
      
    nBal = 2 
    Do Until Sheets("M_Pop_All").Cells(nBal, 1) = "" 
    ' Application.StatusBar = "S:" & iModelSimulate & " Y:" & iModelYear + 1 & " " & cQuarter & " Seedling 
Germinate " & Sheets("M_Pop_All").Cells(nBal, 1) 
    'Determine the pre germination cover 
        mPlantsHA = Application.WorksheetFunction.Sum(Range(Cells(nBal, 5), Cells(nBal, 61))) 
        a = 3.3222:    b = 155.02:   c = mPlantsHA * -1 
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        d = b ^ 2 - 4 * a * c 
        mCover = (-b + Sqr(d)) / (2 * a) 
        mCover = mCover / 100 
         
        If nBal_WasBurnt(Sheets("M_Pop_All").Cells(nBal, 1)) = False Then 
            Germinate_NonDormant nBal           ' This is the small amount of non- resprouters after 2 years 
            If (nBal_WasCleared(Cells(nBal, 1)) = True) Then 
                Germinate_ClearedDormant nBal       ' This is the amount of seedling that germinate post clearing 
            End If 
        Else 
            Germinate_PostFire nBal 
        End If 
        'Density limit of seedlings per Ha (esp for post fire Germination) 
        SeedlingTotal = Cells(nBal, 5) + Cells(nBal, 6) 
        mAIA = Cells(nBal, 74) - mCover 
        If mAIA < 0 Then mAIA = 0: If mAIA > 1 Then mAIA = 1 
        SeedlingSat = Cells(nBal, 74) * 1200000 
         
        If SeedlingTotal > SeedlingSat Then 
           SeedlingTotal_1 = Cells(nBal, 5) / SeedlingTotal 
           SeedlingTotal_2 = Cells(nBal, 6) / SeedlingTotal 
            mDenRnd = (Application.WorksheetFunction.RandBetween(95000, 105000) / 100000) 
            SeedlingTotal = SeedlingSat * mDenRnd 
            Cells(nBal, 5) = SeedlingTotal * SeedlingTotal_1 
            Cells(nBal, 6) = SeedlingTotal * SeedlingTotal_2 
        End If 
        Cells(nBal, 76) = Application.WorksheetFunction.Sum(Range(Cells(nBal, 64), Cells(nBal, 72))) 
        nBal = nBal + 1 
    Loop 
 
End Sub 
 
Sub Germinate_NonDormant(ByVal iBal As Integer) 
' This is the small amount of non- resprouters seed germination after 2 years in the soil 
' Only the top/upper seed back is affected 
 
    Sheets("M_Pop_All").Select 
    mSeedTotoTest = Cells(8, 80) 
    nBal = iBal 
    SeedGerminate = 0 
     
    mRow = GetnBal_Row(Cells(nBal, 1), "Static") 
    nBal_Ha = Sheets("nBals_StaticData").Cells(mRow, 3) 
    nBal_ID = Sheets("nBals_StaticData").Cells(mRow, 1) 
    mVeldAge = GetnBal_VeldAge(nBal_ID) 
    nBal_PlantType = Cells(nBal, 2)         ' Used to differentiate seed type 
     
    If mVeldAge > 2 Then 
        If Cells(nBal, 2) = "Acacia non-resprouter" Then 
            'Determine if the germinated seed will survive into a seedling based on current veg age 
            ' RELATE cover to logistic curve of probability of seeing plants at a given cover 
                L = 1 
                k = -0.4 
                X0 = 2      ' 2 years old , so buy year 4 very low rate of survival 
                probSurvive = L / (1 + Exp(-k * (mVeldAge - X0))) 'Solve the Logistic Equation 
             
            For sc = 66 To 69       ' Top layers of seed bank 
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                SeedlingTotal = 0 
                'Determine the amount of seed to germinate 
                If Cells(nBal, sc) <> "" And Cells(nBal, sc) < 0 Then Cells(nBal, sc) = 0 
                If Cells(nBal, sc) <> "" And Cells(nBal, sc) > 0 Then 
                    mRseed = ((Application.WorksheetFunction.RandBetween(1, 300) / 100) / 100)   'up to 3% 
                    nBal_Seeds = Round(Cells(nBal, sc) * mRseed, 0) 
                    Cells(nBal, sc) = Cells(nBal, sc) - nBal_Seeds      'Remove from Seed Bank 
                     
                    CalcType = 0 
                    If nBal_Seeds > 250 Then 
                        'adjust to log of base 10 
                        sdLog = Application.WorksheetFunction.Log10(nBal_Seeds) 
                        ToTsd = Round(sdLog * 100, 0)       'keep 2 signifcant places (by x 100) 
                        nBal_Seeds = ToTsd 
                        CalcType = 1 
                    End If 
 
                    For g = 1 To nBal_Seeds 
                            'Apply a Random survival test 
                            mRsurvive = Application.WorksheetFunction.RandBetween(0, 1000) / 1000 
                            If mRsurvive < probSurvive Then ' the Seedling survives, i.e underneath the logistic curve 
                                SeedlingTotal = SeedlingTotal + 1 
                            End If 
                    Next g      'Germinate 
                     
                    'adjust for the Log Calc 
                    If CalcType = 1 Then 
                        SeedlingTotal = SeedlingTotal / 100 
                        nBal_Seeds = nBal_Seeds / 100 
                        If SeedlingTotal > 0 Then SeedlingTotal = Application.WorksheetFunction.Power(10, 
SeedlingTotal) 
                        nBal_Seeds = Application.WorksheetFunction.Power(10, nBal_Seeds) 
                    End If 
                    'Add the seedlings to the Seedling cohort & Y_1 as the routine is now only called once in Q3 
                    If SeedlingTotal > 0 Then 
                        SeedlingAllocateR = (Application.WorksheetFunction.RandBetween(1, 3000) / 100) / 100 
                        SeedlingAllocateA = SeedlingAllocateR * SeedlingTotal 
                        SeedlingTotal_1 = SeedlingTotal + SeedlingAllocateA 
                        SeedlingTotal_2 = SeedlingTotal - SeedlingAllocateA 
                         
                        SeedlingAllocateR = Application.WorksheetFunction.RandBetween(0, 100) 
                        If SeedlingAllocateR > 49 Then 
                            Cells(nBal, 5) = Cells(nBal, 5) + Round(SeedlingTotal_1, 2) 
                            Cells(nBal, 6) = Cells(nBal, 6) + Round(SeedlingTotal_2, 2) 
                        Else 
                            Cells(nBal, 5) = Cells(nBal, 5) + Round(SeedlingTotal_2, 2) 
                            Cells(nBal, 6) = Cells(nBal, 6) + Round(SeedlingTotal_1, 2) 
                        End If 
                    End If 
                End If 
            Next sc         ' seed cohort 
         
        End If 
    End If  ' nBal_VeldAge > 2 
     
End Sub 
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Sub Germinate_ClearedDormant(ByVal iBal As Integer) 
' Holmes et al Non- resprouters between 70% to 90% seeds can germinate post clearing while resprouters only 
5% 
' This is clearing without fire treatment. 
' The model only considers the first year post felling which has the significant direct effect. 
 
    Sheets("M_Pop_All").Select 
    mSeedTotoTest = Cells(8, 80) 
    nBal = iBal 
    SeedGerminate = 0 
     
    ' Test to see if the nBal was cleared 
    If nBal_WasCleared(Cells(nBal, 1)) = True Then 
        mRow = GetnBal_Row(Cells(nBal, 1), "Static") 
        nBal_Ha = Sheets("nBals_StaticData").Cells(mRow, 3) 
        nBal_ID = Sheets("nBals_StaticData").Cells(mRow, 1) 
         
        nBal_PlantType = Cells(nBal, 2)         ' Used to differentiate seed production 
        mRow = GetnBal_Row(Cells(nBal, 1), "Dynamic") 
         
        ' Quadratic Equation to convert Density to Cover 
        a = 3.3222:    b = 155.02:   c = Sheets("nBals_DynamicData").Cells(mRow, 4) * -1 
        d = b ^ 2 - 4 * a * c 
        mCover = (-b + Sqr(d)) / (2 * a) 
 
        nBal_ClearedPrecent = mCover / 100 
        If nBal_ClearedPrecent > 1 Then nBal_ClearedPrecent = 1 
         
            For sc = 66 To 72       ' Top layers of seed bank older than 2 years 
            SeedlingTotal = 0 
                'Determine the amount of seed to germinate 
                If Cells(nBal, sc) <> "" And Cells(nBal, sc) < 0 Then Cells(nBal, sc) = 0 
                If Cells(nBal, sc) <> "" And Cells(nBal, sc) > 0 Then 
                    'Different Plants have different germination % (See Holmes 1987) 
                    mRseed = 0 
                    If nBal_PlantType = "Acacia non-resprouter" Then mRseed = 
(Application.WorksheetFunction.RandBetween(7000, 9500) / 10000)  'between 70 and 95% germinate 
                    If nBal_PlantType = "Acacia resprouter" Then mRseed = 
(Application.WorksheetFunction.RandBetween(1, 500) / 10000)  'between 1 and 5% germinate 
                    nBal_Seeds = Cells(nBal, sc) * mRseed 
                    'Adjust for % of cover that was actually aliens. These germination rates are for 100% Alien Cover pre 
clearing 
                    nBal_Seeds = Round(nBal_Seeds * nBal_ClearedPrecent, 0) 
                    Cells(nBal, sc) = Cells(nBal, sc) - nBal_Seeds 
                     
                    CalcType = 0 
                    If nBal_Seeds > 250 Then 
                        'adjust to log of base 10 calculation 
                        sdLog = Application.WorksheetFunction.Log10(nBal_Seeds) 
                        ToTsd = Round(sdLog * 100, 0)       'keep 2 significant places (by x 100) 
                        nBal_Seeds = ToTsd 
                        CalcType = 1 
                    End If 
                     
                    For g = 1 To nBal_Seeds 
                        ' Seeds have a high probability of making it to a seedling (90%) 
                        probSurvive = 0.9 
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                        'Apply a Random survival test 
                        mRsurvive = Application.WorksheetFunction.RandBetween(0, 1000) / 1000 
                        If mRsurvive < probSurvive Then ' the Seedling survives, i.e underneath the logistic curve 
                            SeedlingTotal = SeedlingTotal + 1 
                        End If 
                    Next g      'Germinate 
                     
                    'adjust for the Log Calc 
                    If CalcType = 1 Then 
                        SeedlingTotal = SeedlingTotal / 100 
                        nBal_Seeds = nBal_Seeds / 100 
                        If SeedlingTotal > 0 Then SeedlingTotal = Application.WorksheetFunction.Power(10, 
SeedlingTotal) 
                        nBal_Seeds = Application.WorksheetFunction.Power(10, nBal_Seeds) 
                    End If 
                     
                    'Add the seedlings to the Seedling cohort & Y_1 as the routine is now only called once in Q3 
                    If SeedlingTotal > 0 Then 
                        SeedlingAllocateR = (Application.WorksheetFunction.RandBetween(1, 3000) / 100) / 100 
                        SeedlingAllocateA = SeedlingAllocateR * SeedlingTotal 
                        SeedlingTotal_1 = SeedlingTotal + SeedlingAllocateA 
                        SeedlingTotal_2 = SeedlingTotal - SeedlingAllocateA 
                         
                        SeedlingAllocateR = Application.WorksheetFunction.RandBetween(0, 100) 
                        If SeedlingAllocateR > 49 Then 
                            Cells(nBal, 5) = Cells(nBal, 5) + Round(SeedlingTotal_1, 2) 
                            Cells(nBal, 6) = Cells(nBal, 6) + Round(SeedlingTotal_2, 2) 
                        Else 
                            Cells(nBal, 5) = Cells(nBal, 5) + Round(SeedlingTotal_2, 2) 
                            Cells(nBal, 6) = Cells(nBal, 6) + Round(SeedlingTotal_1, 2) 
                        End If 
                    End If 
                End If 
            Next sc         ' seed cohort 
    End If 
 
    'Debug check on total seed count 
    If mSeedTotoTest < Cells(80, 8) Then 
        a = a 
    End If 
End Sub 
 
Private Sub Germinate_PostFire(ByVal iBal As Integer) 
    Sheets("M_Pop_All").Select 
    mSeedTotoTest = Cells(8, 80) 
 
    nBal = iBal 
    SeedGerminate = 0 
     
    mRow = GetnBal_Row(Cells(nBal, 1), "Static") 
    mRowD = GetnBal_Row(Cells(nBal, 1), "Dynamic") 
    mFireSeverity = Sheets("nBals_DynamicData").Cells(mRowD, 10) 
     
    If mFireSeverity <= 20 Then 
        Seed0 = 1 
            SeedGerminate = SeedGerminate + Round((Cells(nBal, 63) * Seed0), 2) 
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            Cells(nBal, 63) = Cells(nBal, 63) - Round((Cells(nBal, 63) * Seed0), 2) 
        Seed1 = (Application.WorksheetFunction.NormInv(Rnd(), 90, 10) / 100) 
            SeedGerminate = SeedGerminate + Round((Cells(nBal, 64) * Seed1), 2) 
            Cells(nBal, 64) = Cells(nBal, 64) - Round((Cells(nBal, 64) * Seed1), 2) 
        Seed2 = (Application.WorksheetFunction.NormInv(Rnd(), 70, 10) / 100) 
            SeedGerminate = SeedGerminate + Round((Cells(nBal, 65) * Seed2), 2) 
            Cells(nBal, 65) = Cells(nBal, 65) - Round((Cells(nBal, 65) * Seed2), 2) 
    End If 
    If mFireSeverity > 20 And mFireSeverity <= 45 Then 
        Seed0 = 1 
            SeedGerminate = SeedGerminate + Round((Cells(nBal, 63) * Seed0), 2) 
            Cells(nBal, 63) = Cells(nBal, 63) - Round((Cells(nBal, 63) * Seed0), 2) 
        Seed1 = (Application.WorksheetFunction.NormInv(Rnd(), 90, 10) / 100) 
            SeedGerminate = SeedGerminate + Round((Cells(nBal, 64) * Seed1), 2) 
            Cells(nBal, 64) = Cells(nBal, 64) - Round((Cells(nBal, 64) * Seed1), 2) 
        Seed2 = (Application.WorksheetFunction.NormInv(Rnd(), 70, 10) / 100) 
            SeedGerminate = SeedGerminate + Round((Cells(nBal, 65) * Seed2), 2) 
            Cells(nBal, 65) = Cells(nBal, 65) - Round((Cells(nBal, 65) * Seed2), 2) 
        Seed3 = (Application.WorksheetFunction.NormInv(Rnd(), 60, 10) / 100) 
            SeedGerminate = SeedGerminate + Round((Cells(nBal, 66) * Seed3), 2) 
            Cells(nBal, 66) = Cells(nBal, 66) - Round((Cells(nBal, 66) * Seed3), 2) 
    End If 
    If mFireSeverity > 45 And mFireSeverity <= 60 Then 
        Seed0 = 1 
            SeedGerminate = SeedGerminate + Round((Cells(nBal, 63) * Seed0), 2) 
            Cells(nBal, 63) = Cells(nBal, 63) - Round((Cells(nBal, 63) * Seed0), 2) 
        Seed1 = 1 
            SeedGerminate = SeedGerminate + Round((Cells(nBal, 64) * Seed1), 2) 
            Cells(nBal, 64) = SeedGerminate - Round((Cells(nBal, 64) * Seed1), 2) 
        Seed2 = (Application.WorksheetFunction.NormInv(Rnd(), 90, 10) / 100) 
            SeedGerminate = SeedGerminate + Round((Cells(nBal, 65) * Seed2), 2) 
            Cells(nBal, 65) = Cells(nBal, 65) - Round((Cells(nBal, 65) * Seed2), 2) 
        Seed3 = (Application.WorksheetFunction.NormInv(Rnd(), 80, 10) / 100) 
            SeedGerminate = SeedGerminate + Round((Cells(nBal, 66) * Seed3), 2) 
            Cells(nBal, 66) = Cells(nBal, 66) - Round((Cells(nBal, 66) * Seed3), 2) 
        Seed4 = (Application.WorksheetFunction.NormInv(Rnd(), 70, 10) / 100) 
            SeedGerminate = SeedGerminate + Round((Cells(nBal, 67) * Seed4), 2) 
            Cells(nBal, 67) = Cells(nBal, 67) - Round((Cells(nBal, 67) * Seed4), 2) 
        Seed5 = (Application.WorksheetFunction.NormInv(Rnd(), 60, 10) / 100) 
            SeedGerminate = SeedGerminate + Round((Cells(nBal, 68) * Seed5), 2) 
            Cells(nBal, 68) = Cells(nBal, 68) - Round((Cells(nBal, 68) * Seed5 / 2), 2) 
    End If 
    If mFireSeverity > 60 And mFireSeverity <= 75 Then 
        Seed0 = 1 
            SeedGerminate = SeedGerminate + Round((Cells(nBal, 63) * Seed0), 2) 
            Cells(nBal, 63) = Cells(nBal, 63) - Round((Cells(nBal, 63) * Seed0), 2) 
        Seed1 = 1 
            SeedGerminate = SeedGerminate + Round((Cells(nBal, 64) * Seed1), 2) 
            Cells(nBal, 64) = SeedGerminate - Round((Cells(nBal, 64) * Seed1), 2) 
        Seed2 = 1 
            SeedGerminate = SeedGerminate + Round((Cells(nBal, 65) * Seed2), 2) 
            Cells(nBal, 65) = SeedGerminate - Round((Cells(nBal, 65) * Seed2), 2) 
        Seed3 = (Application.WorksheetFunction.NormInv(Rnd(), 90, 10) / 100) 
            SeedGerminate = SeedGerminate + Round((Cells(nBal, 66) * Seed3), 2) 
            Cells(nBal, 66) = Cells(nBal, 66) - Round((Cells(nBal, 66) * Seed3), 2) 
        Seed4 = (Application.WorksheetFunction.NormInv(Rnd(), 80, 10) / 100) 
            SeedGerminate = SeedGerminate + Round((Cells(nBal, 67) * Seed4), 2) 
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            Cells(nBal, 67) = Cells(nBal, 67) - Round((Cells(nBal, 67) * Seed4), 2) 
        Seed5 = (Application.WorksheetFunction.NormInv(Rnd(), 70, 10) / 100) 
            SeedGerminate = SeedGerminate + Round((Cells(nBal, 68) * Seed5), 2) 
            Cells(nBal, 68) = Cells(nBal, 68) - Round((Cells(nBal, 68) * Seed5), 2) 
        Seed6 = (Application.WorksheetFunction.NormInv(Rnd(), 60, 10) / 100) 
            SeedGerminate = SeedGerminate + Round((Cells(nBal, 69) * Seed6), 2) 
            Cells(nBal, 69) = Cells(nBal, 69) - Round((Cells(nBal, 69) * Seed6), 2) 
        Seed7 = (Application.WorksheetFunction.NormInv(Rnd(), 50, 10) / 100) 
            SeedGerminate = SeedGerminate + Round((Cells(nBal, 70) * Seed7), 2) 
            Cells(nBal, 70) = Cells(nBal, 70) - Round((Cells(nBal, 70) * Seed7), 2) 
    End If 
    If mFireSeverity > 75 Then 
        Seed0 = 1 
            SeedGerminate = SeedGerminate + Round((Cells(nBal, 63) * Seed0), 2) 
            Cells(nBal, 63) = Cells(nBal, 63) - Round((Cells(nBal, 63) * Seed0), 2) 
        Seed1 = 1 
            SeedGerminate = SeedGerminate + Round((Cells(nBal, 64) * Seed1), 2) 
            Cells(nBal, 64) = SeedGerminate - Round((Cells(nBal, 64) * Seed1), 2) 
        Seed2 = 1 
            SeedGerminate = SeedGerminate + Round((Cells(nBal, 65) * Seed2), 2) 
            Cells(nBal, 65) = SeedGerminate - Round((Cells(nBal, 65) * Seed2), 2) 
        Seed3 = 1 
            SeedGerminate = SeedGerminate + Round((Cells(nBal, 66) * Seed3), 2) 
            Cells(nBal, 66) = Cells(nBal, 66) - Round((Cells(nBal, 66) * Seed3), 2) 
        Seed4 = (Application.WorksheetFunction.NormInv(Rnd(), 90, 10) / 100) 
            SeedGerminate = SeedGerminate + Round((Cells(nBal, 67) * Seed4), 2) 
            Cells(nBal, 67) = Cells(nBal, 67) - Round((Cells(nBal, 67) * Seed4), 2) 
        Seed5 = (Application.WorksheetFunction.NormInv(Rnd(), 80, 10) / 100) 
            SeedGerminate = SeedGerminate + Round((Cells(nBal, 68) * Seed5), 2) 
            Cells(nBal, 68) = Cells(nBal, 68) - Round((Cells(nBal, 68) * Seed5), 2) 
        Seed6 = (Application.WorksheetFunction.NormInv(Rnd(), 70, 10) / 100) 
            SeedGerminate = SeedGerminate + Round((Cells(nBal, 69) * Seed6), 2) 
            Cells(nBal, 69) = Cells(nBal, 69) - Round((Cells(nBal, 69) * Seed6), 2) 
        Seed7 = (Application.WorksheetFunction.NormInv(Rnd(), 60, 10) / 100) 
            SeedGerminate = SeedGerminate + Round((Cells(nBal, 70) * Seed7), 2) 
            Cells(nBal, 70) = Cells(nBal, 70) - Round((Cells(nBal, 70) * Seed7), 2) 
        Seed8 = (Application.WorksheetFunction.NormInv(Rnd(), 50, 10) / 100) 
            SeedGerminate = SeedGerminate + Round((Cells(nBal, 71) * Seed8), 2) 
            Cells(nBal, 71) = Cells(nBal, 71) - Round((Cells(nBal, 71) * Seed8), 2) 
        Seed9 = (Application.WorksheetFunction.NormInv(Rnd(), 40, 10) / 100) 
            SeedGerminate = SeedGerminate + Round((Cells(nBal, 72) * Seed9), 2) 
            Cells(nBal, 72) = Cells(nBal, 72) - Round((Cells(nBal, 72) * Seed9), 2) 
    End If 
     
    'Write out the total for SeedGerminate 
    'As seed is aggregated so will be the seedlings. 
    'Max Seedling density is taken as 1,200,000 seedlings per ha. 
    SeedlingAggri = Cells(nBal, 74) * 1200000 
    SeedlingTotal = SeedGerminate 
    If SeedlingTotal > SeedlingAggri Then 
        SeedlingTotal = SeedlingAggri * (Application.WorksheetFunction.RandBetween(95, 105) / 100) 
    End If 
     
    If SeedlingTotal > 0 Then 
        SeedlingAllocateR = (Application.WorksheetFunction.RandBetween(1, 3000) / 100) / 100 
        SeedlingAllocateA = SeedlingAllocateR * SeedlingTotal 
        SeedlingTotal_1 = SeedlingTotal + SeedlingAllocateA 'allocation between the 2 seedling quarters 
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        SeedlingTotal_2 = SeedlingTotal - SeedlingAllocateA 
         
        SeedlingAllocateR = Application.WorksheetFunction.RandBetween(0, 100) 
        If SeedlingAllocateR > 49 Then 
            Cells(nBal, 5) = Cells(nBal, 5) + Round(SeedlingTotal_1, 2) 
            Cells(nBal, 6) = Cells(nBal, 6) + Round(SeedlingTotal_2, 2) 
        Else 
            Cells(nBal, 5) = Cells(nBal, 5) + Round(SeedlingTotal_2, 2) 
            Cells(nBal, 6) = Cells(nBal, 6) + Round(SeedlingTotal_1, 2) 
        End If 
    End If 
     
End Sub 
 
Private Sub Seed_AgeCohort(ByVal iQuater As String) 
    nBal = 2 
    Sheets("M_Pop_All").Select 
    nBal = 2 
    Do Until Cells(nBal, 1) = "" 
        nBalIDseed = Cells(nBal, 1) 
        ' Application.StatusBar = iQuater & " - " & nBalIDseed 
        mBalRowS = GetnBal_Row(nBalIDseed, "nBals_DynamicData") 
        For SeedCo = 72 To 63 Step -1 
            'decay seed in Bank between 0.1-0.17 
            mSeedRandom = 1 - (Application.WorksheetFunction.RandBetween(1000, 1700) / 10000) 
            Cells(nBal, SeedCo) = Cells(nBal, SeedCo) * mSeedRandom 
            If Cells(nBal, SeedCo) < 0 Then Cells(nBal, SeedCo) = 0 
            'Move the Seed deeper 
            mSeedRandom = Application.WorksheetFunction.RandBetween(5000, 15000) / 10000 
            cSeeds = Cells(nBal, SeedCo) 
            cSeeds = cSeeds * 0.1 
            cSeeds = cSeeds * mSeedRandom 
            Cells(nBal, SeedCo) = Cells(nBal, SeedCo) - cSeeds 
            If Cells(nBal, SeedCo) < 0 Then Cells(nBal, SeedCo) = 0 
            Cells(nBal, SeedCo + 1) = Cells(nBal, SeedCo + 1) + cSeeds 
            If Cells(nBal, SeedCo + 1) < 0 Then Cells(nBal, SeedCo + 1) = 0 
        Next SeedCo 
        'adjust for seed bank saturation 
        SeedTot = Application.WorksheetFunction.Sum(Range(Cells(nBal, 63), Cells(nBal, 72))) 
        SeedSaturate = Cells(nBal, 75) 
        If SeedTot > SeedSaturate Then 
            'determine the amount of seed over the saturation 
            SeedOver = (SeedTot - SeedSaturate) / SeedSaturate 
            SeedAdjust = 1 - SeedOver 
            For SeedCo = 63 To 75 
                Cells(nBal, SeedCo) = Cells(nBal, SeedCo) * SeedAdjust 
                If Cells(nBal, SeedCo) < 0 Then Cells(nBal, SeedCo) = 0 
            Next 
        End If 
        Cells(nBal, 76) = Application.WorksheetFunction.Sum(Range(Cells(nBal, 64), Cells(nBal, 72))) 
        nBal = nBal + 1 
    Loop 
End Sub 
 
Private Sub nBal_UpdateTags() 
    ' 1. The Status of nBal wrt Seed Germination 
    Sheets("nBals_DynamicData").Select 
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    nBal = 2 
    Do Until Cells(nBal, 1) = "" 
        If Cells(nBal, 5) > 0 Then 
            Cells(nBal, 5) = Cells(nBal, 5) - 1 
        End If 
        If Cells(nBal, 5) = 0 Then 
            Cells(nBal, 2) = "" 
            Cells(nBal, 3) = 0 
            Cells(nBal, 4) = 0 
        End If 
        nBal = nBal + 1 
    Loop 
 
End Sub 
 
Private Function nBal_WasCleared(inBalID As String) As Boolean 
    nBal_WasCleared = False 
    iBal = 2 
    Do Until Worksheets("nBals_DynamicData").Cells(iBal, 1) = "" 
        If Worksheets("nBals_DynamicData").Cells(iBal, 1) = inBalID Then 
            If Worksheets("nBals_DynamicData").Cells(iBal, 5) > 0 And 
Worksheets("nBals_DynamicData").Cells(iBal, 4) > 0 Then 
                nBal_WasCleared = True 
            End If 
            Exit Do 
        End If 
       iBal = iBal + 1 
    Loop 
End Function 
 
Sub nBal_Burn() 
' 1a. Determine the number of fires in a year. Mean =73.54545455 Stdev = 19.2229202 
' 1b. Determine the number of Ha that will be burnt in a year. Mean =  1,185 Ha StDev =  1,646 ha 
' 2. For each Fire Ignition assign a random number to a nbal Fire Probability Class (1 of 5 Classes based on Fire 
ignition database) 
' 2b. Once the nBal is selected determine if the ignition will turn into a fire 
' 3. If ignite then how much will burn depends on the mean of each fire year as un upper target, and the mean 
of each fire as a single fire target. 
' 4. The intensity of the fire depends on a weather selected randomly for the day.. 
     
    '(1a & 1b) The number of fire for the FireSeason 
    mFireIgnition = Round(Application.WorksheetFunction.NormInv(Rnd(), 73.55, 19.22), 0) ' 73.55 the mean 
number of fire ignitions between 2006 and 2016 
    mFireYearHa = Round(Application.WorksheetFunction.NormInv(Rnd(), 1185, 1646), 0) ' 1,185 the mean area 
of fire ignitions between 1960 and 2016 
    If mFireYearHa < 1 Then mFireYearHa = 1     ' At least one Ha burns each year 
    mFireYearHaBurnt = 0           ' The counter for the total size of all fires for the year 
    mIgnition = 1 
    mFireCount = 0 
    Do Until (mIgnition = mFireIgnition) Or (mFireYearHaBurnt >= mFireYearHa) 
    'Two Counters Either the number of igntions has been reached or the total number of Ha has been reached 
     
        'Determine which fire frequency class the nBal will be drawn from that will have the ignition point 
        mFireRnd = Application.WorksheetFunction.RandBetween(1, 1000) 
        mFireClass = Fire_GetFireClass(mFireRnd)        'The class from where the nBal will be drawn 
        mFirenBal = Fire_GetFirenBal(mFireClass)        'Selects a nBal from the selected fire class 
        mFireIsBig = Fire_GetFireStatus(mFirenBal)      'tests to see if the nBal will burn or the ignition will die out 
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        If mFireIsBig = True Then 
            ' Set the size of the fire (min area to be burnt) : Mean = 92.22954654 Ha StDev = 359.1148 from fire 
database of indivulal fires 
            mFireArea = Round(Application.WorksheetFunction.NormInv(Rnd(), 92.2295, 359.1148), 0) 
            mFireSeverity = Fire_Severity(Application.WorksheetFunction.RandBetween(2, 2297))    'the number of 
FDI days that are in the Fire_FDI List 
            mFireAreaI = Fire_BurnIndFire(mFireArea, mFirenBal, mFireSeverity) ' Exact area burnt based on the 
nBals in the area 
            mFireYearHaBurnt = mFireYearHaBurnt + mFireAreaI 
            mFireCount = mFireCount + 1 
            Sheets("DataOut_FireHA").Cells(mFireCount + 5, 1) = mFireCount 
            Sheets("DataOut_FireHA").Cells(mFireCount + 5, iModelYear + 2) = mFireAreaI 
        End If 
        mIgnition = mIgnition + 1 
    Loop 'mIgnition 
     
    Sheets("DataOut_FireHA").Cells(2, iModelYear + 2) = mFireYearHaBurnt 
    Sheets("DataOut_FireHA").Cells(3, iModelYear + 2) = mFireCount 
     
End Sub 
 
Private Function Fire_GetFireClass(ByVal mFireRnd As Single) As Single 
    'nBals_StaticData column 10 holds the fire classes where class 1 has the lowest proablity of being a fire 
source 
    ' mFireRnd will be a vaslue between 1-1000 thus 5% will = 50 
    Fire_GetFireClass = 0 
    If mFireRnd > 0 And mFireRnd <= 50 Then Fire_GetFireClass = 1       ' 5% Chance 
    If mFireRnd > 50 And mFireRnd <= 175 Then Fire_GetFireClass = 2     ' 12.5% 
    If mFireRnd > 175 And mFireRnd <= 375 Then Fire_GetFireClass = 3    ' 20 % 
    If mFireRnd > 375 And mFireRnd <= 650 Then Fire_GetFireClass = 4    ' 27.5% 
    If mFireRnd > 650 And mFireRnd <= 1000 Then Fire_GetFireClass = 5   ' 35% 
End Function 
 
Private Function Fire_GetFirenBal(ByVal mFireClass As Single) As String 
    Fire_GetFirenBal = "" 
    '1 Clear out any current values 
    FirePValue = 2 
    Do Until Sheets("nBals_DynamicData").Cells(FirePValue, 1) = "" 
        Sheets("nBals_DynamicData").Cells(FirePValue, 9) = "" 
        FirePValue = FirePValue + 1 
    Loop 
     
    'Load in a new random ProbValue for the class selected of prob Fire Class (See "Fire_GetFireClass") 
    'The highest value will be the 'seed' nbal for the ignition 
    FirePValue = 2 
    Do Until Sheets("nBals_StaticData").Cells(FirePValue, 1) = "" 
        If Sheets("nBals_StaticData").Cells(FirePValue, 10) = mFireClass Then 
            mFireProb = Application.WorksheetFunction.RandBetween(0, 1000) / 1000 
            mBalRow = GetnBal_Row(Sheets("nBals_StaticData").Cells(FirePValue, 1), "nBals_DynamicData") 
            Sheets("nBals_DynamicData").Cells(FirePValue, 9) = mFireProb 
        End If 
        FirePValue = FirePValue + 1 
    Loop 
     
    'Find the nBal the scored the Max Fire Probability 
    mFireMax = Application.WorksheetFunction.Max(Sheets("nBals_DynamicData").Range("I2:I810")) 
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    FirePValue = 2 
    Do Until Sheets("nBals_DynamicData").Cells(FirePValue, 1) = "" 
        If Sheets("nBals_DynamicData").Cells(FirePValue, 9) = mFireMax Then 
            Fire_GetFirenBal = Sheets("nBals_DynamicData").Cells(FirePValue, 1) 
            Exit Do 
        End If 
        FirePValue = FirePValue + 1 
    Loop 
End Function 
 
Private Function Fire_GetFireStatus(ByVal mFirenBal As String) As Boolean 
    ' the Ignition will turn into a fire if: 
    '1 Veld Age 
     
    Fire_GetFireStatus = False 
    'Set a random Variable for Veld Age Probability 
    veldAgeP = Application.WorksheetFunction.RandBetween(0, 100) 
    mVeldAge = Sheets("nBals_DynamicData").Cells(GetnBal_Row(mFirenBal, "nBals_DynamicData"), 8) 
     
    If mVeldAge >= 25 Then Fire_GetFireStatus = True: Exit Function 
    If mVeldAge >= 20 And veldAgeP >= 20 Then Fire_GetFireStatus = True: Exit Function 
    If mVeldAge >= 15 And veldAgeP >= 40 Then Fire_GetFireStatus = True: Exit Function 
    If mVeldAge >= 10 And veldAgeP >= 60 Then Fire_GetFireStatus = True: Exit Function 
    If mVeldAge >= 5 And veldAgeP >= 80 Then Fire_GetFireStatus = True: Exit Function 
End Function 
 
Private Function Fire_Severity(ByVal iRndNum As Single) As Double 
    Fire_Severity = 0 
    Fire_Severity = Round(Sheets("Fire_FDI").Cells(iRndNum, 13), 2) 
End Function 
 
Private Function Fire_BurnIndFire(ByVal mFireArea As Double, ByVal inBal As String, ByVal iFire_Severity As 
Double) As Double 
    Fire_BurnIndFire = 0 
    'Clear out the previous fire List 
    Sheets("nBal_FireList").Range("A2:A500") = "" 
    ' Application.StatusBar = "nBals Burning:" & inBal 
    mAreaBurnt = 0 
    mBalRowD = GetnBal_Row(inBal, "nBals_DynamicData") 
    mBalRowS = GetnBal_Row(inBal, "nBals_StaticData") 
    mAreaBurnt = mAreaBurnt + Sheets("nBals_StaticData").Cells(mBalRowS, 3)     'The Area Burnt in the 
Individual Fire 
    Sheets("nBals_DynamicData").Cells(mBalRowD, 8) = -1                         'VeldAge 
    Sheets("nBals_DynamicData").Cells(mBalRowD, 10) = iFire_Severity 
    Sheets("nBals_DynamicData").Cells(mBalRowD, 11) = -1                        'Tag to Allow AIA to decrease 
    Fire_RemoveVegandSeed inBal, iFire_Severity, 1 
     
    sCount = 2 
    tCount = 1 
    Sheets("nBal_FireList").Cells(sCount, 1) = inBal 
    Do Until mAreaBurnt >= mFireArea Or Sheets("nBal_FireList").Cells(sCount, 1) = ""   'Fire larger than 
expected area or no more nBals to burn 
        ScnBal = Sheets("nBal_FireList").Cells(sCount, 1) 
        'Find Target nBal, If Target is greater than 5 Years, The add to source list, get nBal ha and add to 
mAreaBurnt 
        fTgnBal = 2 
        Do Until Sheets("nBal_Neighbours").Cells(fTgnBal, 1) = "" 
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            If Sheets("nBal_Neighbours").Cells(fTgnBal, 1) = ScnBal Then 
                'Get nBal Size,  Tag Veld Age, Tag burn severity and Remove Plants and Seeds 
                TgnBal = Sheets("nBal_Neighbours").Cells(fTgnBal, 2) 
                mBalRowD = GetnBal_Row(TgnBal, "nBals_DynamicData") 
                mBalRowS = GetnBal_Row(TgnBal, "nBals_StaticData") 
                mnBalAge = Sheets("nBals_DynamicData").Cells(mBalRowD, 8) 
                If mnBalAge > 5 Then 
                    ' Application.StatusBar = "nBals Burning:" & inBal & " - " & TgnBal 
                    mAreaBurnt = mAreaBurnt + Sheets("nBals_StaticData").Cells(mBalRowS, 3)     'The Area Burnt 
                    Sheets("nBals_DynamicData").Cells(mBalRowD, 8) = -1 
                    Sheets("nBals_DynamicData").Cells(mBalRowD, 10) = iFire_Severity 
                    Sheets("nBals_DynamicData").Cells(mBalRowD, 11) = -1                        'Tag for Available Invaded 
Area 
                    mBurntnBalID = Sheets("nBals_StaticData").Cells(mBalRowS, 1) 
                    'Fire_RemoveVegandSeed 
                    Fire_RemoveVegandSeed mBurntnBalID, iFire_Severity, 1 
                    'Add the TgnBal to the FireList 
                    Do Until Sheets("nBal_FireList").Cells(tCount, 1) = "" 
                        tCount = tCount + 1 
                    Loop 
                    Sheets("nBal_FireList").Cells(tCount, 1) = TgnBal 
                    If mAreaBurnt >= mFireArea Then Exit Do 
                End If  'mnBalAge > 5 
            End If  'Sheets("nBal_Neighbours") 
            fTgnBal = fTgnBal + 1 
        Loop 
        sCount = sCount + 1 
    Loop    'mAreaBurnt >= mFireArea 
     
    Fire_BurnIndFire = mAreaBurnt 
 
End Function 
 
Private Sub Fire_RemoveVegandSeed(ByVal iBal As String, ByVal mFireSeverity As Double, ByVal iCalcType As 
Integer) 
    'The servity (FDI Calc) of the fire determins how many plants and seeds are destroyed 
    'Alert Stages/ Colour codes, FDI, Fire Danger, Ratings 
    'BLUE, 0-20, Low, Insignificant 
    'GREEN, 21-45, Moderate, Low 
    'YELLOW, 46-60, dangerous, Medium 
    'ORANGE, 61-75, Very dangerous, high 
    'RED, 76-100, Extremely dangerous, Extremely high 
    FireBal = 2 
    Do Until Sheets("M_Pop_All").Cells(FireBal, 1) = "" 
        If Sheets("M_Pop_All").Cells(FireBal, 1) = iBal Then 
            Sheets("M_Pop_All").Cells(FireBal, 1).Interior.ColorIndex = 38 
            If mFireSeverity <= 45 Then 
                mFireSeverityA = 1 - (mFireSeverity / 45)       ' turned into a proportion of 1 
                'Litter Layer of Seeds 
                Sheets("M_Pop_All").Cells(FireBal, 63) = Sheets("M_Pop_All").Cells(FireBal, 63) * mFireSeverityA 
                mFireSeverityA = 1 - (mFireSeverity / 100) 
                If iCalcType = 1 Then 
                    For f = 6 To 61 
                        Sheets("M_Pop_All").Cells(FireBal, f) = Sheets("M_Pop_All").Cells(FireBal, f) * mFireSeverityA 
                    Next f 
                End If 
            End If 
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            If mFireSeverity > 45 And mFireSeverity <= 60 Then 
                mFireSeverityA = 1 - (mFireSeverity / 60)       ' turned into a proportion of 1 
                Sheets("M_Pop_All").Cells(FireBal, 63) = 0 
                Sheets("M_Pop_All").Cells(FireBal, 64) = Sheets("M_Pop_All").Cells(FireBal, 64) * mFireSeverityA 
                mFireSeverityA = 1 - (mFireSeverity / 100) 
                If iCalcType = 1 Then 
                    For f = 6 To 61 
                        Sheets("M_Pop_All").Cells(FireBal, f) = Sheets("M_Pop_All").Cells(FireBal, f) * mFireSeverityA 
                    Next f 
                End If 
            End If 
             
            If mFireSeverity > 60 And mFireSeverity <= 75 Then 
                mFireSeverityA = 1 - (mFireSeverity / 75)       ' turned into a proportion of 1 
                Sheets("M_Pop_All").Cells(FireBal, 63) = 0 
                Sheets("M_Pop_All").Cells(FireBal, 64) = 0 
                Sheets("M_Pop_All").Cells(FireBal, 65) = Sheets("M_Pop_All").Cells(FireBal, 65) * mFireSeverityA 
                mFireSeverityA = 1 - (mFireSeverity / 100) 
                If iCalcType = 1 Then 
                    For f = 6 To 61 
                        Sheets("M_Pop_All").Cells(FireBal, f) = Sheets("M_Pop_All").Cells(FireBal, f) * mFireSeverityA 
                    Next f 
                End If 
            End If 
             
            If mFireSeverity > 75 Then 
                mFireSeverityA = 1 - (mFireSeverity / 100)       ' turned into a proportion of 1 
                Sheets("M_Pop_All").Cells(FireBal, 63) = 0 
                Sheets("M_Pop_All").Cells(FireBal, 64) = 0 
                Sheets("M_Pop_All").Cells(FireBal, 65) = 0 
                Sheets("M_Pop_All").Cells(FireBal, 66) = Sheets("M_Pop_All").Cells(FireBal, 66) * mFireSeverityA 
                If iCalcType = 1 Then 
                    For f = 6 To 61 
                        Sheets("M_Pop_All").Cells(FireBal, f) = Sheets("M_Pop_All").Cells(FireBal, f) * mFireSeverityA 
                    Next f 
                End If 
            End If 
        End If 
        FireBal = FireBal + 1 
    Loop 
 
End Sub 
 
Private Function nBal_WasBurnt(inBalID As String) As Boolean 
    nBal_WasBurnt = False 
    iBal = 2 
    Do Until Worksheets("nBals_DynamicData").Cells(iBal, 1) = "" 
        If Worksheets("nBals_DynamicData").Cells(iBal, 1) = inBalID Then 
            If Worksheets("nBals_DynamicData").Cells(iBal, 8) = 0 Then 
                nBal_WasBurnt = True 
            End If 
            Exit Do 
        End If 
       iBal = iBal + 1 
    Loop 
End Function 
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Sub iQuater5() 
' Called at the end of each model year to write date to the output sheets 
    Application.StatusBar = "S:" & iModelSimulate & " Y:" & iModelYear + 1 & " Dat Output Q5" 
 
'1. Add the plants per Ha 
    mplot = 2 ' First row of the data 
    Do Until Sheets("M_Pop_All").Cells(mplot, 1) = "" 
        Sheets("M_Pop_All").Cells(mplot, 3) = 
Application.WorksheetFunction.Sum(Range(Sheets("M_Pop_All").Cells(mplot, 5), 
Sheets("M_Pop_All").Cells(mplot, 61))) 
        mplot = mplot + 1 
    Loop 
         
'Plants 
    nBal = 6: pTot = 0: pHa = 0: sTot = 0 
    Do Until Sheets("DataOut_Plants").Cells(nBal, 1) = "" 
        nBal_ID = Sheets("DataOut_Plants").Cells(nBal, 1) 
        nBal_Ha = Sheets("DataOut_Plants").Cells(nBal, 2) 
        Sheets("DataOut_Plants").Cells(nBal, iModelYear + 4) = GetnBal_PlantsHa(nBal_ID) 
        pTot = pTot + (Sheets("DataOut_Plants").Cells(nBal, iModelYear + 4) * nBal_Ha) 
        pHa = pHa + nBal_Ha 
        nBal = nBal + 1 
    Loop 
 
'Add Totals at top of sheet 
    mTime = mTimeQEnd - mTimeQStart 
    mTime = Right(CStr(Format(mTime, "hh mm ss")), 5) 
    Sheets("DataOut_Plants").Cells(1, iModelYear + 4) = mTime 
    Sheets("DataOut_Plants").Cells(2, iModelYear + 4) = pTot                ' Total Plants 
    Sheets("DataOut_Plants").Cells(3, iModelYear + 4) = pTot / pHa          ' Plants / ha 
    Sheets("DataOut_Plants").Cells(4, iModelYear + 4) = Round((pTot / Sheets("DataOut_Plants").Cells(2, 3)) * 
100, 2) ' Cumalitive Reduction % 
     
'2. Add the Person Days Used 
    pTot = 0: pHa = 0 
    nBal = 2    ' First Row of Data 
    Do Until Sheets("nBals_DynamicData").Cells(nBal, 1) = "" 
        Sheets("DataOut_PD").Cells(nBal + 5, iModelYear + 4) = Sheets("nBals_DynamicData").Cells(nBal, 7) 
        Sheets("nBals_DynamicData").Cells(nBal, 7) = 0                                          ' reset the value for the next year 
            pTot = pTot + Sheets("DataOut_PD").Cells(nBal + 5, iModelYear + 4)                ' Total pd 
            If Sheets("DataOut_PD").Cells(nBal + 5, iModelYear + 4) > 0 Then 
                pHa = pHa + Sheets("DataOut_PD").Cells(nBal + 5, 2) 
            End If 
         
        nBal = nBal + 1 
    Loop 
'Add Totals at top of sheet 
    Sheets("DataOut_PD").Cells(2, iModelYear + 4) = pTot                ' Total PD 
    Sheets("DataOut_PD").Cells(3, iModelYear + 4) = pHa                ' Total PD 
    Sheets("DataOut_PD").Cells(4, iModelYear + 4) = pTot / pHa          ' PD / ha 
    If iModelYear > 0 Then 
        Sheets("DataOut_PD").Cells(5, iModelYear + 4) = Round(((pTot / pHa) / Sheets("DataOut_PD").Cells(4, 4)) 
* 100, 2) ' % Cumalitive Reduction in PD/HA 
    Else 
        Sheets("DataOut_PD").Cells(5, iModelYear + 4) = 1 
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    End If 
       
'3. Add the Seeds per Ha 
    mplot = 2 ' First row of the data 
    Do Until Sheets("M_Pop_All").Cells(mplot, 1) = "" 
        Sheets("M_Pop_All").Cells(mplot, 75) = 
Application.WorksheetFunction.Sum(Range(Sheets("M_Pop_All").Cells(mplot, 63), 
Sheets("M_Pop_All").Cells(mplot, 72))) 
        mplot = mplot + 1 
    Loop 
 
    sTot = 0: sHa = 0 
    nBal = 6    ' First Row of Data 
    Do Until Sheets("DataOut_Seeds").Cells(nBal, 1) = "" 
        nBal_ID = Sheets("DataOut_Seeds").Cells(nBal, 1) 
        Sheets("DataOut_Seeds").Cells(nBal, iModelYear + 4) = GetnBal_SeedsHa(nBal_ID) 
        sTot = sTot + (Sheets("DataOut_Seeds").Cells(nBal, 2) * Sheets("DataOut_Seeds").Cells(nBal, iModelYear + 
4)) 
        sHa = sHa + Sheets("DataOut_Seeds").Cells(nBal, 2) 
        nBal = nBal + 1 
    Loop 
'Add Totals at top of sheet 
    mTime = mTimeQEnd - mTimeQStart 
    mTime = Right(CStr(Format(mTime, "hh mm ss")), 5) 
    Sheets("DataOut_Seeds").Cells(1, iModelYear + 4) = mTime 
    Sheets("DataOut_Seeds").Cells(2, iModelYear + 4) = sTot                ' Total Plants 
    Sheets("DataOut_Seeds").Cells(3, iModelYear + 4) = sTot / sHa          ' Seeds / ha 
    Sheets("DataOut_Seeds").Cells(4, iModelYear + 4) = Round((sTot / Sheets("DataOut_Seeds").Cells(2, 3)) * 
100, 2) ' Cumalive Reduction % 
     
'Reset the number of plants cleared & increment Time since Cleared 
    d = 2 
    Do Until Sheets("nBals_DynamicData").Cells(d, 1) = "" 
        Sheets("nBals_DynamicData").Cells(d, 4) = 0 
        Sheets("nBals_DynamicData").Cells(d, 12) = Sheets("nBals_DynamicData").Cells(d, 12) + 1 
        d = d + 1 
    Loop 
   
  ActiveWorkbook.Save 
     
End Sub 
 
Private Sub Write_PDused(ByVal iBal As String, ByVal iHa As Single) 
    fBal = 7 
    FoundBal = False 
     
    Do Until Sheets("DataOut_PD").Cells(fBal, 1) = "" Or FoundBal = True 
        If Sheets("DataOut_PD").Cells(fBal, 1) = iBal Then 
            Sheets("DataOut_PD").Cells(fBal, iModelYear + 4) = mnBal_PdNeed         ' From the Common Variable 
            FoundBal = True 
        End If 
        fBal = fBal + 1 
    Loop 
     
    If FoundBal = False Then 
            Sheets("DataOut_PD").Cells(fBal, 1) = iBal 
            Sheets("DataOut_PD").Cells(fBal, 2) = iHa 
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            Sheets("DataOut_PD").Cells(fBal, iModelYear + 4) = mnBal_PdNeed         ' From the Common Variable 
    End If 
     
End Sub 
 
Sub nBal_ScheduleSort(ByVal mSortType As String) 
     
    If mSortType = "Systematic" Then 
        'Do Nothing as the list is already set 
        Exit Sub 
    End If 
     
    If mSortType = "Random" Then 
        Schedule_MakeRandomList 
        Worksheets("M_nBal_Schedule").Sort.SortFields.Clear 
        Worksheets("M_nBal_Schedule").Sort.SortFields.Add _ 
            Key:=Range("J2:J1000"), SortOn:=xlSortOnValues, Order:=xlAscending, 
DataOption:=xlSortTextAsNumbers 
        With Worksheets("M_nBal_Schedule").Sort 
            .SetRange Range("A1:J1000"): .Header = xlYes: .MatchCase = False 
            .Orientation = xlTopToBottom: .SortMethod = xlPinYin 
            .Apply 
        End With 
        Exit Sub 
    End If 
      
    If mSortType = "Consensus" Then 
        Schedule_MakePriorityList 1 
    End If 
     
    If mSortType = "Water production" Then 
        Schedule_MakePriorityList 2 
    End If 
     
    If mSortType = "Maintain follow-ups" Then 
        Schedule_MakePriorityList 3 
    End If 
     
    If mSortType = "Keep It Clean" Then 
        Schedule_MakePriorityList 4 
    End If 
     
    Worksheets("M_nBal_Schedule").Sort.SortFields.Clear 
    Worksheets("M_nBal_Schedule").Sort.SortFields.Add _ 
        Key:=Range("I2:I1000"), SortOn:=xlSortOnValues, Order:=xlDescending, 
DataOption:=xlSortTextAsNumbers 
    With Worksheets("M_nBal_Schedule").Sort 
        .SetRange Range("A1:I1000"): .Header = xlYes: .MatchCase = False 
        .Orientation = xlTopToBottom: .SortMethod = xlPinYin 
        .Apply 
    End With 
 
End Sub 
 
Sub Schedule_MakeRandomList() 
    nBal = 2 
    Do Until Sheets("M_nBal_Schedule").Cells(nBal, 1) = "" 
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        Sheets("M_nBal_Schedule").Cells(nBal, 10) = Application.WorksheetFunction.RandBetween(0, 3000) 
        nBal = nBal + 1 
    Loop 
End Sub 
 
Sub Schedule_MakePriorityList(iSchedule As Integer) 
    mSchedule = iSchedule 
    nBal = 2 
    Do Until Sheets("M_nBal_Schedule").Cells(nBal, 1) = "" 
        mnBal = Sheets("M_nBal_Schedule").Cells(nBal, 1) 
        Sheets("M_nBal_Schedule").Cells(nBal, 2) = schLoad_AreaBurn(mnBal, mSchedule) 
        Sheets("M_nBal_Schedule").Cells(nBal, 3) = schLoad_IPDensity(mnBal, mSchedule) 
        Sheets("M_nBal_Schedule").Cells(nBal, 4) = schLoad_Topography(mnBal, mSchedule) 
        Sheets("M_nBal_Schedule").Cells(nBal, 5) = schLoad_FireRisk(mnBal, mSchedule) 
        Sheets("M_nBal_Schedule").Cells(nBal, 6) = schLoad_IPAgeClass(mnBal, mSchedule) 
        Sheets("M_nBal_Schedule").Cells(nBal, 7) = schLoad_IPType(mnBal, mSchedule) 
        Sheets("M_nBal_Schedule").Cells(nBal, 8) = schLoad_LastClear(mnBal, mSchedule) 
        Sheets("M_nBal_Schedule").Cells(nBal, 9) = _ 
        Application.WorksheetFunction.Sum(Range(Sheets("M_nBal_Schedule").Cells(nBal, 2), _ 
        Sheets("M_nBal_Schedule").Cells(nBal, 8))) 
        nBal = nBal + 1 
    Loop 
End Sub 
Private Function schLoad_AreaBurn(ByVal iBal As String, ByVal iSchedule As Integer) As Double 
    schLoad_AreaBurn = 0 
    mVeldAge = GetnBal_VeldAge(iBal) 
    If mVeldAge > 3 Then 
        mVeldI = Sheets("Strat_SelecWeights").Cells(6, iSchedule + 1) 
    Else 
        mVeldI = Sheets("Strat_SelecWeights").Cells(5, iSchedule + 1) 
    End If 
    schLoad_AreaBurn = mVeldI * Sheets("Strat_SelecWeights").Cells(4, iSchedule + 1) 
 
End Function 
 
Private Function schLoad_IPDensity(ByVal iBal As String, ByVal iSchedule As Integer) As Double 
    schLoad_IPDensity = 0 
    IPDensity = GetnBal_PlantsHa(iBal) 
        If IPDensity >= 56666 Then IPDensityI = Sheets("Strat_SelecWeights").Cells(9, iSchedule + 1) 'close 
        If IPDensity >= 31533 And IPDensity < 56666 Then IPDensityI = Sheets("Strat_SelecWeights").Cells(10, 
iSchedule + 1) 'dense 
        If IPDensity >= 90667 And IPDensity < 31533 Then IPDensityI = Sheets("Strat_SelecWeights").Cells(11, 
iSchedule + 1) 'medium 
        If IPDensity >= 1633 And IPDensity < 90667 Then IPDensityI = Sheets("Strat_SelecWeights").Cells(12, 
iSchedule + 1) 'scattered 
        If IPDensity >= 180 And IPDensity < 1633 Then IPDensityI = Sheets("Strat_SelecWeights").Cells(13, 
iSchedule + 1) ' very scattered 
        If IPDensity > 1 And IPDensity < 180 Then IPDensityI = Sheets("Strat_SelecWeights").Cells(14, iSchedule + 
1) ' occasional 
        If IPDensity <= 1 Then IPDensityI = Sheets("Strat_SelecWeights").Cells(15, iSchedule + 1)  ' Rare 
     
    schLoad_IPDensity = IPDensityI * Sheets("Strat_SelecWeights").Cells(8, iSchedule + 1) 
     
End Function 
 
Private Function schLoad_Topography(ByVal iBal As String, ByVal iSchedule As Integer) As Double 
    schLoad_Topography = 0 
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    If iSchedule <> 2 Then 
        TopographyI = GetnBal_Topo1(iBal) 
    Else 
        TopographyI = GetnBal_Topo2(iBal) 
    End If 
    schLoad_Topography = TopographyI * Sheets("Strat_SelecWeights").Cells(17, iSchedule + 1) 
End Function 
 
Private Function schLoad_FireRisk(ByVal iBal As String, ByVal iSchedule As Integer) As Double 
    schLoad_FireRisk = 0 
    mVeldAge = GetnBal_VeldAge(iBal) 
    mCoastal_Scree = fnCoastalScree(iBal, mVeldAge) 
    schLoad_FireRisk = schLoad_FireRisk + mCoastal_Scree 
     
    mDune_Asteraceous_Fynbos = fnDuneAsteraceousFynbos(iBal, mVeldAge) 
    schLoad_FireRisk = schLoad_FireRisk + mDune_Asteraceous_Fynbos 
     
    mEricaceous_Fynbos = fnEricaceousFynbos(iBal, mVeldAge) 
    schLoad_FireRisk = schLoad_FireRisk + mEricaceous_Fynbos 
     
    mForest_Thicket = fnForestThicket(iBal, mVeldAge) 
    schLoad_FireRisk = schLoad_FireRisk + mForest_Thicket 
     
    mMesic_Mesotrophic_Proteoid = fnMesicMesotrophicProteoid(iBal, mVeldAge) 
    schLoad_FireRisk = schLoad_FireRisk + mMesic_Mesotrophic_Proteoid 
     
    mMesic_Oligotrophic_Proteoid = fnMesicOligotrophicProteoid(iBal, mVeldAge) 
    schLoad_FireRisk = schLoad_FireRisk + mMesic_Oligotrophic_Proteoid 
     
    mRenosterveld = fnRenosterveld(iBal, mVeldAge) 
    schLoad_FireRisk = schLoad_FireRisk + mRenosterveld 
     
    mSandplain_Proteoid = fnSandplainProteoid(iBal, mVeldAge) 
    schLoad_FireRisk = schLoad_FireRisk + mSandplain_Proteoid 
     
    mCliff_Communities = fnCliffCommunities(iBal, mVeldAge) 
    schLoad_FireRisk = schLoad_FireRisk + mCliff_Communities 
         
    mUpland_Restioid = fnUplandRestioid(iBal, mVeldAge) 
    schLoad_FireRisk = schLoad_FireRisk + mUpland_Restioid 
     
    mVlei = fnVlei(iBal, mVeldAge) 
    schLoad_FireRisk = schLoad_FireRisk + mVlei 
     
    mWet_Mesotrophic_Proteoid = fnWetMesotrophicProteoid(iBal, mVeldAge) 
    schLoad_FireRisk = schLoad_FireRisk + mWet_Mesotrophic_Proteoid 
     
    mWet_Oligitrophic_Proteoid = fnWetOligitrophicProteoid(iBal, mVeldAge) 
    schLoad_FireRisk = schLoad_FireRisk + mWet_Oligitrophic_Proteoid 
     
    mWet_Restioid = fnWetRestioid(iBal, mVeldAge) 
    schLoad_FireRisk = schLoad_FireRisk + mWet_Restioid 
     
    mWetlands = fnWetlands(iBal, mVeldAge) 
    schLoad_FireRisk = schLoad_FireRisk + mWetlands 
     
    If schLoad_FireRisk <= 1.333 Then FireRiskCat = 0.07 
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    If schLoad_FireRisk > 1.333 And schLoad_FireRisk <= 2.666 Then FireRiskCat = 0.28 
    If schLoad_FireRisk > 2.666 Then FireRiskCat = 0.65 
     
    schLoad_FireRisk = FireRiskCat * Sheets("Strat_SelecWeights").Cells(22, iSchedule + 1) 
 
End Function 
 
Private Function schLoad_IPAgeClass(ByVal iBal As String, ByVal iSchedule As Integer) As Double 
    schLoad_IPAgeClass = 0 
        
    mCoverSeedling = GetnBal_CoverSeedlings(iBal) 
    mCoverYoung = GetnBal_CoverYoung(iBal) 
    mCoverAdult = GetnBal_CoverAdult(iBal) 
     
    mCoverMax = Application.WorksheetFunction.Max(mCoverSeedling, mCoverYoung, mCoverAdult) 
     
    If mCoverMax = mCoverSeedling Then IPDensityClass = Sheets("Strat_SelecWeights").Cells(30, iSchedule + 1) 
    If mCoverMax = mCoverYoung Then IPDensityClass = Sheets("Strat_SelecWeights").Cells(29, iSchedule + 1) 
    If mCoverMax = mCoverAdult Then IPDensityClass = Sheets("Strat_SelecWeights").Cells(28, iSchedule + 1) 
     
    schLoad_IPAgeClass = IPDensityClass * Sheets("Strat_SelecWeights").Cells(27, iSchedule + 1) 
         
End Function 
 
Private Function schLoad_IPType(ByVal iBal As String, ByVal iSchedule As Integer) As Double 
    schLoad_IPType = Sheets("Strat_SelecWeights").Cells(34, iSchedule + 1) 
    schLoad_IPType = schLoad_IPType * Sheets("Strat_SelecWeights").Cells(32, iSchedule + 1) 
End Function 
 
Private Function schLoad_LastClear(ByVal iBal As String, ByVal iSchedule As Integer) As Double 
    schLoad_LastClear = 0 
    mClearTime = GetnBal_ClearTime(iBal) 
    mPlantsHA = GetnBal_PlantsHa(iBal) 
    If mClearTime >= 99 Then mLastClear = Sheets("Strat_SelecWeights").Cells(38, iSchedule + 1) 
    If mClearTime >= 6 Then mLastClear = Sheets("Strat_SelecWeights").Cells(39, iSchedule + 1) 
    If mClearTime < 6 Then 
        If mPlantsHA > 1 Then 
            mLastClear = Sheets("Strat_SelecWeights").Cells(40, iSchedule + 1) 
        Else 
            mLastClear = Sheets("Strat_SelecWeights").Cells(41, iSchedule + 1) 
        End If 
    End If 
    schLoad_LastClear = mLastClear * Sheets("Strat_SelecWeights").Cells(37, iSchedule + 1) 
 
End Function 
 
Sub Write_SimulationData() 
    'This writes out the full files at the end of simulation 
    mFileName = mFileLoc & "SIM " & iModelSimulate & " DataOut_Plants.txt" 
    mSheet = "DataOut_Plants" 
    Write_FileData mFileName, mSheet 
     
    mFileName = mFileLoc & "SIM " & iModelSimulate & " DataOut_PD.txt" 
    mSheet = "DataOut_PD" 
    Write_FileData mFileName, mSheet 
     
    mFileName = mFileLoc & "SIM " & iModelSimulate & " DataOut_Seeds.txt" 
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    mSheet = "DataOut_Seeds" 
    Write_FileData mFileName, mSheet 
     
    mFileName = mFileLoc & "SIM " & iModelSimulate & " DataOut_Fire.txt" 
    mSheet = "DataOut_FireHA" 
    Write_FileData mFileName, mSheet 
     
    'This Writes out the Plant Totals 
    mFileName = mFileLoc & "Plants.txt" 
    mSheet = "DataOut_Plants" 
    Write_FileTotals mFileName, mSheet, 2 
     
       
    'This Writes out the PersonDays 
    mFileName = mFileLoc & "PersonDays.txt" 
    mSheet = "DataOut_PD" 
    Write_FileTotals mFileName, mSheet, 2 
     
    'This Writes out the Ha Cleared 
    mFileName = mFileLoc & "HaCleared.txt" 
    mSheet = "DataOut_PD" 
    Write_FileTotals mFileName, mSheet, 3 
 
    'This Writes out the Seeds Totals 
    mFileName = mFileLoc & "Seeds.txt" 
    mSheet = "DataOut_Seeds" 
    Write_FileTotals mFileName, mSheet, 2 
     
    'This Writes out the Ha Burnt Totals 
    mFileName = mFileLoc & "HaBurnt.txt" 
    mSheet = "DataOut_FireHA" 
    Write_FileTotals mFileName, mSheet, 2 
     
    'This makes a copy of the nBals Treated 
    For nB = 2 To 811 
        Sheets("DataOut_Treatements").Cells(nB, iModelSimulate + 1) = Sheets("nBals_DynamicData").Cells(nB - 
1, 6) 
    Next nB 
 
End Sub 
 
Sub Write_FileData(ByVal iFile As String, ByVal iSheet As String) 
 
    Dim fso As New FileSystemObject 
    Dim mTextStream As TextStream 
    Dim mText As String 
    'Create and Open the File (iFile) 
    mFileName = iFile 
     
    Set mTextStream = fso.OpenTextFile(mFileName, ForAppending, True) 
    mText = Sheets(iSheet).Cells(1, 1) & vbTab 
    mText = mText & Sheets(iSheet).Cells(1, 2) & vbTab 
     
    mTextStream.WriteLine (mText) 
     
        wrL = 2          'First Line of Real Data 
        Do Until Sheets(iSheet).Cells(wrL, 1) = "" 
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            mText = ""                                  ' Reset the Text 
            For wrC = 1 To iModelYear + 4 
              mText = mText & Sheets(iSheet).Cells(wrL, wrC) & vbTab 
            Next wrC 
            mTextStream.WriteLine (mText)               'Write the Data 
            wrL = wrL + 1 
        Loop 
        
    mTextStream.Close 
 
End Sub 
 
Sub Write_FileTotals(ByVal iFile As String, ByVal iSheet As String, ByVal tRow As Single) 
     
    Dim fso As New FileSystemObject 
    Dim mTextStream As TextStream 
    Dim mText As String 
    'Create and Open the File (iFile) 
    mFileName = iFile 
     
    Set mTextStream = fso.OpenTextFile(mFileName, ForAppending, False) 
    mText = "" 
    mText = iModelSimulate & vbTab 
     
    If iSheet = "DataOut_FireHA" Then 
        ds = 2 
    Else 
        ds = 3 
    End If 
        
    For dc = ds To iModelYear + 3 
       mText = mText & Sheets(iSheet).Cells(tRow, dc) & vbTab 
    Next dc 
    mTextStream.WriteLine (mText) 
 
End Sub 
 
Sub Model_ResetNextSimulate() 
     
    iQuater0 False 
 
End Sub 
 
Private Function fnCoastalScree(ByVal iBal As String, ByVal mVeldAge As Integer) As Double 
    fnCoastalScree = 0 
    fnCoastalScreeP = Application.WorksheetFunction.VLookup(iBal, 
Worksheets("nBal_VegTypes").Range("Veg_Types"), 2, False) 
    fnCoastalScreeHa = Application.WorksheetFunction.VLookup(iBal, 
Worksheets("nBal_VegTypes").Range("Veg_Types"), 18, False) 
    fnCoastalScreeP = fnCoastalScreeP / fnCoastalScreeHa 
    If fnCoastalScreeP > 0 Then 
        FireHaz = 0 
        If mVeldAge < 2.1 Then FireHaz = 1 
        If mVeldAge > 2.1 And mVeldAge < 5.1 Then FireHaz = 2 
        If mVeldAge > 5.1 And mVeldAge < 11.1 Then FireHaz = 3 
        If mVeldAge > 11.1 Then FireHaz = 4 
    End If 
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    fnCoastalScree = FireHaz * fnCoastalScreeP 
End Function 
 
Private Function fnDuneAsteraceousFynbos(ByVal iBal As String, ByVal mVeldAge As Integer) As Double 
    fnDuneAsteraceousFynbos = 0 
    fnDuneAsteraceousFynbosP = Application.WorksheetFunction.VLookup(iBal, 
Worksheets("nBal_VegTypes").Range("Veg_Types"), 3, False) 
    fnDuneAsteraceousFynbosHa = Application.WorksheetFunction.VLookup(iBal, 
Worksheets("nBal_VegTypes").Range("Veg_Types"), 18, False) 
    fnDuneAsteraceousFynbosP = fnDuneAsteraceousFynbosP / fnDuneAsteraceousFynbosHa 
    If fnDuneAsteraceousFynbosP > 0 Then 
        FireHaz = 0 
        If mVeldAge < 2.1 Then FireHaz = 1 
        If mVeldAge > 2.1 And mVeldAge < 5.1 Then FireHaz = 2 
        If mVeldAge > 5.1 And mVeldAge < 11.1 Then FireHaz = 3 
        If mVeldAge > 11.1 Then FireHaz = 4 
    End If 
    fnDuneAsteraceousFynbos = FireHaz * fnDuneAsteraceousFynbosP 
End Function 
 
Private Function fnEricaceousFynbos(ByVal iBal As String, ByVal mVeldAge As Integer) As Double 
    fnEricaceousFynbos = 0 
    fnEricaceousFynbosP = Application.WorksheetFunction.VLookup(iBal, 
Worksheets("nBal_VegTypes").Range("Veg_Types"), 4, False) 
    fnEricaceousFynbosHa = Application.WorksheetFunction.VLookup(iBal, 
Worksheets("nBal_VegTypes").Range("Veg_Types"), 18, False) 
    fnEricaceousFynbosP = fnEricaceousFynbosP / fnEricaceousFynbosHa 
    If fnEricaceousFynbosP > 0 Then 
        FireHaz = 0 
        If mVeldAge < 2.1 Then FireHaz = 1 
        If mVeldAge > 2.1 And mVeldAge < 5.1 Then FireHaz = 2 
        If mVeldAge > 5.1 And mVeldAge < 11.1 Then FireHaz = 3 
        If mVeldAge > 11.1 Then FireHaz = 4 
    End If 
    fnEricaceousFynbos = FireHaz * fnEricaceousFynbosP 
End Function 
 
Private Function fnForestThicket(ByVal iBal As String, ByVal mVeldAge As Integer) As Double 
    fnForestThicket = 0 
    fnForestThicketP = Application.WorksheetFunction.VLookup(iBal, 
Worksheets("nBal_VegTypes").Range("Veg_Types"), 5, False) 
    fnForestThicketHa = Application.WorksheetFunction.VLookup(iBal, 
Worksheets("nBal_VegTypes").Range("Veg_Types"), 18, False) 
    fnForestThicketP = fnForestThicketP / fnForestThicketHa 
    If fnForestThicketP > 0 Then 
        FireHaz = 0 
        If mVeldAge Then FireHaz = 1 
    End If 
    fnForestThicket = FireHaz * fnForestThicketP 
End Function 
 
Private Function fnMesicMesotrophicProteoid(ByVal iBal As String, ByVal mVeldAge As Integer) As Double 
    fnMesicMesotrophicProteoid = 0 
    fnMesicMesotrophicProteoidP = Application.WorksheetFunction.VLookup(iBal, 
Worksheets("nBal_VegTypes").Range("Veg_Types"), 6, False) 
    fnMesicMesotrophicProteoidHa = Application.WorksheetFunction.VLookup(iBal, 
Worksheets("nBal_VegTypes").Range("Veg_Types"), 18, False) 
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    fnMesicMesotrophicProteoidP = fnMesicMesotrophicProteoidP / fnMesicMesotrophicProteoidHa 
    If fnMesicMesotrophicProteoidP > 0 Then 
        FireHaz = 0 
        If mVeldAge < 5.1 Then FireHaz = 1 
        If mVeldAge > 5.1 And mVeldAge < 8.1 Then FireHaz = 2 
        If mVeldAge > 8.1 And mVeldAge < 11.1 Then FireHaz = 3 
        If mVeldAge > 11.1 Then FireHaz = 4 
    End If 
    fnMesicMesotrophicProteoid = FireHaz * fnMesicMesotrophicProteoidP 
End Function 
 
Private Function fnMesicOligotrophicProteoid(ByVal iBal As String, ByVal mVeldAge As Integer) As Double 
    fnMesicOligotrophicProteoid = 0 
    fnMesicOligotrophicProteoidP = Application.WorksheetFunction.VLookup(iBal, 
Worksheets("nBal_VegTypes").Range("Veg_Types"), 7, False) 
    fnMesicOligotrophicProteoidHa = Application.WorksheetFunction.VLookup(iBal, 
Worksheets("nBal_VegTypes").Range("Veg_Types"), 18, False) 
    fnMesicOligotrophicProteoidP = fnMesicOligotrophicProteoidP / fnMesicOligotrophicProteoidHa 
    If fnMesicOligotrophicProteoidP > 0 Then 
        FireHaz = 0 
        If mVeldAge < 5.1 Then FireHaz = 1 
        If mVeldAge > 5.1 And mVeldAge < 8.1 Then FireHaz = 2 
        If mVeldAge > 8.1 And mVeldAge < 11.1 Then FireHaz = 3 
        If mVeldAge > 11.1 Then FireHaz = 4 
    End If 
    fnMesicOligotrophicProteoid = FireHaz * fnMesicOligotrophicProteoidP 
End Function 
 
Private Function fnRenosterveld(ByVal iBal As String, ByVal mVeldAge As Integer) As Double 
    fnRenosterveld = 0 
    fnRenosterveldP = Application.WorksheetFunction.VLookup(iBal, 
Worksheets("nBal_VegTypes").Range("Veg_Types"), 8, False) 
    fnRenosterveldHa = Application.WorksheetFunction.VLookup(iBal, 
Worksheets("nBal_VegTypes").Range("Veg_Types"), 18, False) 
    fnRenosterveldP = fnRenosterveldP / fnRenosterveldHa 
    If fnRenosterveldP > 0 Then 
        FireHaz = 0 
        If mVeldAge < 2.1 Then FireHaz = 1 
        If mVeldAge > 2.1 And mVeldAge < 5.1 Then FireHaz = 3 
        If mVeldAge > 5.1 Then FireHaz = 4 
    End If 
    fnRenosterveld = FireHaz * fnRenosterveldP 
End Function 
 
Private Function fnSandplainProteoid(ByVal iBal As String, ByVal mVeldAge As Integer) As Double 
    fnSandplainProteoid = 0 
    fnSandplainProteoidP = Application.WorksheetFunction.VLookup(iBal, 
Worksheets("nBal_VegTypes").Range("Veg_Types"), 9, False) 
    fnSandplainProteoidHa = Application.WorksheetFunction.VLookup(iBal, 
Worksheets("nBal_VegTypes").Range("Veg_Types"), 18, False) 
    fnSandplainProteoidP = fnSandplainProteoidP / fnSandplainProteoidHa 
    If fnSandplainProteoidP > 0 Then 
        FireHaz = 0 
        If mVeldAge < 5.1 Then FireHaz = 1 
        If mVeldAge > 5.1 And mVeldAge < 8.1 Then FireHaz = 2 
        If mVeldAge > 8.1 And mVeldAge < 14.1 Then FireHaz = 3 
        If mVeldAge > 14.1 Then FireHaz = 4 
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    End If 
    fnSandplainProteoid = FireHaz * fnSandplainProteoidP 
End Function 
 
Private Function fnCliffCommunities(ByVal iBal As String, ByVal mVeldAge As Integer) As Double 
    fnCliffCommunities = 0 
    fnCliffCommunitiesP = Application.WorksheetFunction.VLookup(iBal, 
Worksheets("nBal_VegTypes").Range("Veg_Types"), 10, False) 
    fnCliffCommunitiesHa = Application.WorksheetFunction.VLookup(iBal, 
Worksheets("nBal_VegTypes").Range("Veg_Types"), 18, False) 
    fnCliffCommunitiesP = fnCliffCommunitiesP / fnCliffCommunitiesHa 
    If fnCliffCommunitiesP > 0 Then 
        FireHaz = 0 
        If mVeldAge < 5.1 Then FireHaz = 1 
        If mVeldAge > 5.1 And mVeldAge < 14.1 Then FireHaz = 2 
        If mVeldAge > 14.1 And mVeldAge < 24.1 Then FireHaz = 3 
        If mVeldAge > 24.1 Then FireHaz = 4 
    End If 
    fnCliffCommunities = FireHaz * fnCliffCommunitiesP 
End Function 
 
Private Function fnUplandRestioid(ByVal iBal As String, ByVal mVeldAge As Integer) As Double 
    fnUplandRestioid = 0 
    fnUplandRestioidP = Application.WorksheetFunction.VLookup(iBal, 
Worksheets("nBal_VegTypes").Range("Veg_Types"), 11, False) 
    fnUplandRestioidHa = Application.WorksheetFunction.VLookup(iBal, 
Worksheets("nBal_VegTypes").Range("Veg_Types"), 18, False) 
    fnUplandRestioidP = fnUplandRestioidP / fnUplandRestioidHa 
    If fnUplandRestioidP > 0 Then 
        FireHaz = 0 
        If mVeldAge < 2.1 Then FireHaz = 1 
        If mVeldAge > 2.1 And mVeldAge < 5.1 Then FireHaz = 2 
        If mVeldAge > 5.1 And mVeldAge < 8.1 Then FireHaz = 3 
        If mVeldAge > 8.1 Then FireHaz = 4 
    End If 
    fnUplandRestioid = FireHaz * fnUplandRestioidP 
End Function 
 
Private Function fnVlei(ByVal iBal As String, ByVal mVeldAge As Integer) As Double 
    fnVlei = 0 
    fnVleiP = Application.WorksheetFunction.VLookup(iBal, Worksheets("nBal_VegTypes").Range("Veg_Types"), 
12, False) 
    fnVleiHa = Application.WorksheetFunction.VLookup(iBal, 
Worksheets("nBal_VegTypes").Range("Veg_Types"), 18, False) 
    fnVleiP = fnVleiP / fnVleiHa 
    If fnVleiP > 0 Then 
        FireHaz = 0 
        If mVeldAge < 2.1 Then FireHaz = 1 
        If mVeldAge > 2.1 And mVeldAge < 5.1 Then FireHaz = 2 
        If mVeldAge > 5.1 Then FireHaz = 4 
    End If 
    fnVlei = FireHaz * fnVleiP 
End Function 
 
Private Function fnWetMesotrophicProteoid(ByVal iBal As String, ByVal mVeldAge As Integer) As Double 
    fnWetMesotrophicProteoid = 0 
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    fnWetMesotrophicProteoidP = Application.WorksheetFunction.VLookup(iBal, 
Worksheets("nBal_VegTypes").Range("Veg_Types"), 13, False) 
    fnWetMesotrophicProteoidHa = Application.WorksheetFunction.VLookup(iBal, 
Worksheets("nBal_VegTypes").Range("Veg_Types"), 18, False) 
    fnWetMesotrophicProteoidP = fnWetMesotrophicProteoidP / fnWetMesotrophicProteoidHa 
    If fnWetMesotrophicProteoidP > 0 Then 
        FireHaz = 0 
        If mVeldAge < 5.1 Then FireHaz = 1 
        If mVeldAge > 5.1 And mVeldAge < 8.1 Then FireHaz = 2 
        If mVeldAge > 8.1 And mVeldAge < 11.1 Then FireHaz = 3 
        If mVeldAge > 11.1 Then FireHaz = 4 
    End If 
    fnWetMesotrophicProteoid = FireHaz * fnWetMesotrophicProteoidP 
End Function 
 
Private Function fnWetOligitrophicProteoid(ByVal iBal As String, ByVal mVeldAge As Integer) As Double 
    fnWetOligitrophicProteoid = 0 
    fnWetOligitrophicProteoidP = Application.WorksheetFunction.VLookup(iBal, 
Worksheets("nBal_VegTypes").Range("Veg_Types"), 14, False) 
    fnWetOligitrophicProteoidHa = Application.WorksheetFunction.VLookup(iBal, 
Worksheets("nBal_VegTypes").Range("Veg_Types"), 18, False) 
    fnWetOligitrophicProteoidP = fnWetOligitrophicProteoidP / fnWetOligitrophicProteoidHa 
    If fnWetOligitrophicProteoidP > 0 Then 
        FireHaz = 0 
        If mVeldAge < 5.1 Then FireHaz = 1 
        If mVeldAge > 5.1 And mVeldAge < 8.1 Then FireHaz = 2 
        If mVeldAge > 8.1 And mVeldAge < 11.1 Then FireHaz = 3 
        If mVeldAge > 11.1 Then FireHaz = 4 
    End If 
    fnWetOligitrophicProteoid = FireHaz * fnWetOligitrophicProteoidP 
End Function 
 
Private Function fnWetRestioid(ByVal iBal As String, ByVal mVeldAge As Integer) As Double 
    fnWetRestioid = 0 
    fnWetRestioidP = Application.WorksheetFunction.VLookup(iBal, 
Worksheets("nBal_VegTypes").Range("Veg_Types"), 15, False) 
    fnWetRestioidHa = Application.WorksheetFunction.VLookup(iBal, 
Worksheets("nBal_VegTypes").Range("Veg_Types"), 18, False) 
    fnWetRestioidP = fnWetRestioidP / fnWetRestioidHa 
    If fnWetRestioidP > 0 Then 
        FireHaz = 0 
        If mVeldAge < 2.1 Then FireHaz = 1 
        If mVeldAge > 2.1 And mVeldAge < 5.1 Then FireHaz = 2 
        If mVeldAge > 5.1 And mVeldAge < 8.1 Then FireHaz = 3 
        If mVeldAge > 8.1 Then FireHaz = 4 
    End If 
    fnWetRestioid = FireHaz * fnWetRestioidP 
End Function 
 
Private Function fnWetlands(ByVal iBal As String, ByVal mVeldAge As Integer) As Double 
    fnWetlands = 0 
    fnWetlandsP = Application.WorksheetFunction.VLookup(iBal, 
Worksheets("nBal_VegTypes").Range("Veg_Types"), 16, False) 
    fnWetlandsHa = Application.WorksheetFunction.VLookup(iBal, 
Worksheets("nBal_VegTypes").Range("Veg_Types"), 18, False) 
    fnWetlandsP = fnWetlandsP / fnWetlandsHa 
    If fnWetlandsP > 0 Then 
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        FireHaz = 0 
        If mVeldAge < 2.1 Then FireHaz = 1 
        If mVeldAge > 2.1 And mVeldAge < 5.1 Then FireHaz = 2 
        If mVeldAge > 5.1 Then FireHaz = 4 
    End If 
    fnWetlands = FireHaz * fnWetlandsP 
End Function 
'The End... :) 
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