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Summary 

Water is one of the world’s most crucial resources as it is an essential component of all life 

forms. Although water covers 70% of the world's surface, freshwater is still a rare find. 

Freshwater makes up only 3% of the water found on earth, but two-thirds are either 

unavailable for use or are in the form of glaciers. Water scarcity and quality degradation 

present a major challenge to both developed and developing countries, as it poses a risk to 

both the environment and human health. With the increasing global population, water 

resources have been exposed to a variety of pollutants as a result of anthropogenic 

activities. This study aimed to investigate the use of near-infrared spectroscopy combined 

with the aquaphotomics approach as a screening method for water quality.  

NIR spectroscopy combined with the aquaphotomics approach was used to 

differentiate between spring water from different sources and types of bottled water. Due to 

the variation in mineral content of the three sources, it was possible to differentiate between 

the sources. This resulted in differences in the water spectral patterns of the different 

sources. NIR spectroscopy combined with the aquaphotomics approach could distinguish 

between the three spring water sources.  

With the use of the aquaphotomics approach, it was possible to distinguish between 

mineral and spring water. The two water types produced two completely different water 

spectral patterns, indicating that each water type had a different configuration of water 

species.  

The water spectral pattern of river water filtered using different filter media was 

investigated. The effect of different filtration material can be monitored with aquaphotomics 

since the filtration process alters the hydrogen bonding and water molecular species within 

the water. With the use of the aquaphotomics approach, it is easy to track changes in water 

with respect to changes in the water clustering. Furthermore, river water monitored over a 

ten-day period, indicated that the water molecular species distribution changed each day. 

This was due to changes in the physico-chemical parameters of the river water.  

NIR spectroscopy combined with the aquaphotomics approach can be used to 

monitor water changes. As the technique is able to differentiate between water types and 

the source of origin. This method can also to monitor variations in the water spectral patterns 

due to changes in the water spectral pattern as a result of filtration treatment and changes 

in water quality. 
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Opsomming 

Water is een van die belangrikste middele ter wêreld, aangesien dit 'n noodsaaklike 

komponent van alle lewensvorme is. Alhoewel water 70% van die wêreld se oppervlak 

bedek, is vars water steeds 'n seldsame hulpbron. Varswater vorm slegs 3% van die water 

wat op aarde aangetref word, maar twee derdes is óf nie beskikbaar vir gebruik nie óf in die 

vorm van gletsers. Water skaarsheid en kwaliteit agteruitgang verteenwoordig 'n groot 

uitdaging vir beide ontwikkelde en ontwikkelende lande, soos dit 'n risiko vir beide die 

omgewing en menslike gesondheid inhou. Met die snellende groei in die wêreldbevolking is 

waterbronne blootgestel aan 'n verskeidenheid besoedelende stowwe as gevolg van 

antropogene aktiwiteite. Hierdie studie het ten doel gehad om die gebruik van naby-infrarooi 

spektroskopie, gekombineer met die “aquaphotomics” benadering, as 'n metode vir 

waterkwaliteit bepaling toe te pas. 

NIR spektroskopie gekombineer met die “aquaphotomics” benadering is gebruik om 

te onderskei tussen fonteinwater uit verskillende bronne en tiepes gebottelde water. Die 

variasie in mineraalinhoud van die drie bronne, het dit moontlik gemaak om tussen die 

bronne te kan onderskei. Dit het gelei tot verskille in die water spektrale patrone van die 

verskillende bronne. NIR-spektroskopie, gekombineer met die “aquaphotomics” benadering 

kan onderskei tussen die drie waterbronne. 

Met die gebruik van die “aquaphotomics” benadering was dit moontlik om tussen 

mineraal- en fonteinwater te onderskei. Die twee tipes water het twee heeltemal verskillende 

water spektrale patrone geproduseer, wat aandui dat elke tipe water 'n ander rangskinking 

van water spesies het. 

Die water spektrale patroon van rivierwater wat met verskillende fmedia gefiltreer is, 

is ondersoek. Die effek van verskillende filtrasiemateriaal kan met “aquaphotomics” 

gemonitor word, aangesien die filtrasieproses die waterstofbinding en waterklasse verander 

in die water. Met die gebruik van die “aquaphotomics” benadering, is dit maklik om 

veranderinge in water op te spoor weens die veranderinge in die water spesies. Rivier water 

was ook gemonitor oor 'n tydperk van tien dae en het aangedui dat die verspreiding van 

water spesies verander elke dag. Dit was as gevolg van die veranderinge in die fisies-

chemiese eienskappe van die rivierwater. 

NIR-spektroskopie gekombineer met die “aquaphotomics” benadering kan gebruik 

word om veranderings in water te monitor. Aangesien die tegniek in staat is om tussen 

watertiepes en die oorsprong daarvan te kan onderskei. Hierdie metode kan ook 
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veranderings in die water spektrale patrone monitor as gevolg van veranderinge in die 

filtrasiebehandeling en veranderinge in die waterkwaliteit. 
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Chapter 1 

Introduction 

Water is one of the world’s most crucial resources as it is an essential component of 

all life forms. Although water covers 70% of the world's surface, freshwater is still a 

rare find (WWF, 2017). Freshwater makes up only 3% of the water found on earth, but 

two-thirds are either unavailable for use or are in the form of glaciers (WWF, 2017). 

Globally, it is estimated that 1.1 billion people do not have access to water and another 

1.8 billion people only have access to water contaminated with faecal matter (WHO, 

2016; WWF, 2017). According to the current water usage and rainfall trends it has 

been estimated that half of the world’s population will be living in water-scarce areas 

within the next 10 years (WHO, 2016). 

The scarcity of freshwater is a growing concern due to the increased demand 

for water for human consumption and agricultural uses (Hoekstra et al., 2012). Water 

scarcity and water quality degradation present a major challenge to both developed 

and developing countries as it is a risk to both humans and the environment (Kirby et 

al., 2003). Water is not only a major constituent in biological systems, but it also plays 

a vital role in various processes ranging from agricultural to industrial activities. 

Approximately 40% of the food demand is supplied by 19% of the irrigated croplands 

(Molden, 2007). The increasing demand for water as a result of urbanisation, 

industrialisation and other non-agricultural activities are overshadowing the 

importance of water required for agricultural purposes, which poses a threat to food 

security (Hanjra & Qureshi, 2010; Molden et al., 2010). 

Food production and energy production industries compete for the demand for 

freshwater, and each year their demand increases (Kirby et al., 2003). This increased 

requirement and decreased availability of freshwater certainly affect water quality. The 

increasing scarcity of water is forcing food manufacturing companies to attempt to 

optimise the use of water currently available. The waste products of food production 

and processing industries are a major consideration in the water cycle as it negatively 

influences the water quality (Kirby et al., 2003).  

Water quality is a complex problem since numerous chemical and 

microbiological analyses are required to provide an indication of the overall water 

quality (Gowen et al., 2015).  Currently, water resources are greatly contaminated due 
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to natural effects, such as algal blooms, decomposing organic matter and contact with 

toxic minerals (arsenic, mercury, lead), as well as large-scale human activities (Kovacs 

et al., 2016). Water is characterised by different quality parameters, such as the 

concentration of microbiological, organic and inorganic contamination as well as 

indicators which include pH, total dissolved solids (TDS) and conductivity (Gowen et 

al., 2012).  

The biological and physico-chemical characteristics of water are used to 

classify water according to its intended use or purpose, such as drinking, food 

preparation, irrigation and industrial uses (Flörke et al., 2013; Velíšek, 2014). Water 

quality guidelines have been set by the World Health Organization (WHO), outlining 

the quality parameters that are required to ensure that the water is safe for human and 

animal consumption (WHO, 2011). However, water quality standards differ from 

country to country.  

Water quality is the result of the combination of chemical, physical and 

biological properties of the water (Adu-Manu et al., 2017). Studies by Olivier (2015) 

and Britz et al. (2013) showed that the quality of rivers in the Western Cape has 

become a rising concern. The increase in river pollution is mainly due to inadequate 

sanitation amenities and insufficient sewage treatment services throughout South 

Africa (Olivier, 2015). If polluted water is used for irrigation of fresh produce, it can 

have a negative effect on food safety (Gulati et al., 2013). With the increasing scarcity 

of water and increasing demand for safe water, alternative methods for rapid 

intervention, continuous monitoring and sanitation are required. Conventional 

methods require intensive sampling systems, multistep sample preparation and 

manual input, limiting their incorporation into continuous monitoring systems. 

Therefore, there is a need for a rapid screening method for water quality such as near-

infrared spectroscopy. 

Near-infrared (NIR) spectroscopy is a non-destructive analytical method, which 

enables the simultaneous measurement of qualitative and quantitative parameters of 

a range of different products. NIR spectroscopy is a vibrational spectroscopy 

technique, which forms part of the electromagnetic range of 800 -2500 nm (Burns & 

Ciurczak, 2007; Siesler, 2006). The absorption bands in the NIR spectrum 

corresponds with the overtones and combinations of the carbon-hydrogen (C-H), 

oxygen-hydrogen (O-H) and nitrogen-hydrogen (N-H) vibrations of molecules (Siesler, 

2006).  NIR spectroscopy has the potential to become a rapid water screening method 
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which is cost-effective and improves the speed of water quality testing (Gowen et al., 

2012).  

Water is considered a hindrance in infrared spectroscopy since water absorbs 

across the entire frequency range (Tsenkova & Gowen, 2011). However, 

aquaphotomics is a field of study which uses NIR spectroscopy as a tool to better 

understand the association between light and water (Gowen et al., 2015; Kovacs et 

al., 2016). NIR spectroscopy combined with multivariate data analysis forms the basis 

for aquaphotomics (Tsenkova & Gowen, 2011). Aquaphotomics studies the interaction 

between water and light, providing information about aqueous and biological systems. 

Aquaphotomics studies have shown that it is possible to differentiate between 

water with different sugar and salt concentrations (Bázár et al., 2015; Gowen et al., 

2015), different types of mineral water (Munćan et al., 2014) and pesticides in water 

(Gowen et al., 2011). Thus, there is a need to investigate the effect water quality 

differences will have on the spectra. This study aimed at investigating the potential of 

using aquaphotomics as a rapid screening method for water quality determination. 

Specific objectives were established to study the effect of different perturbations on 

the water spectrum. These objectives are as follows: 

• Investigate the effect of temperature (20˚C, 25˚C and 30˚C) on the water 

spectrum 

• Differentiate between spring water originating from different sources 

• Differentiate between bottled mineral and spring water 

• Investigate the effect of filtration media and changes in water quality will have 

on the spectrum of river water. 
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Chapter 2 

Literature review 

2.1 Introduction 

Water is a primary constituent of all life forms on earth and is used in a variety of 

human activities such as agriculture, industrial, household and recreational activities. 

The overall volume of water on Earth is approximately 1.4 billion km3, of which only 35 

million km3 is freshwater (Dijkstra & de Roda Husman, 2014). Of this portion of 

freshwater, only 200 000 km3 is available for human use and ecosystems (Robertson 

et al., 2003; UNU-INWEH, 2013). 

By the year 2050, it is expected that the population will increase by 

approximately 1.5 billion people, resulting in a global population of about 9 billion 

people (Hanjra & Qureshi, 2010). This increase in population will result in an 

increasing demand for water for agriculture, to meet the food production requirements. 

Globally, agriculture is one of the activities that require large quantities of water and 

uses approximately 80% of the available water (Molden, 2007). The demand for water 

is divided into different sectors, which includes agricultural, municipal and industrial 

uses. In South Africa, the total amount of water withdrawn per year is approximately 

15.5 km3, of which 62.5% is used for agricultural purposes, 27% is used for municipal 

use and 10.5% for industrial use (FAO, 2016). 

Industrial activities, including food and energy production, compete for the 

requirement of freshwater, and each year their demand increases (Kirby et al., 2003). 

The growing demand and decreasing availability of freshwater have a negative impact 

on its quality. Water scarcity is forcing manufacturing companies to attempt to optimise 

the use of water currently available. The waste products of food production and 

processing industries are an important factor in the water cycle since it reduces the 

water quality (Kirby et al., 2003). 

The quality of water is influenced by a variety of factors such as its biological 

and chemical composition (Gowen et al., 2012). The intended use is determined by 

the water quality, which is monitored and undergoes various treatment processes to 

ensure that the quality meets the required standards and regulations. Water quality is 

a complex problem since numerous chemical and microbiological analyses are 
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required to provide an indication of the overall quality (Gowen et al., 2015). Currently, 

water resources are greatly contaminated because of anthropogenic activities such as 

deforestation, pollution and overexploitation of natural resources (Gowen et al., 2012). 

Natural effects such as algal blooms, decomposing organic matter and contact with 

toxic minerals (arsenic, mercury, lead) also have an impact on water quality. 

Water quality is characterised by different parameters such as the 

concentration of bacteria, organic and inorganic pollution as well as indicators which 

include pH, total dissolved solids (TDS) and conductivity (Gowen et al., 2012). The 

biological and physico-chemical characteristics of water are used to classify it 

according to its intended use or purpose, such as drinking water, irrigation and 

industrial uses (Flörke et al., 2013; Velíšek, 2014). The World Health Organisation has 

established guidelines, indicating the quality parameters required for water to be 

considered safe for human consumption and food production (WHO, 2011). However, 

drinking water quality standards differ from country to country.  

Aquaphotomics is a field of study based on the interaction of water and light 

(Tsenkova, 2009). This interaction provides information about how water interacts with 

other molecules within biological systems (Gowen et al., 2015; Headrick et al., 2005; 

Kovacs et al., 2016). The absorbance pattern of water changes depending on the 

physical or chemical variations in the environment such as temperature changes. 

These changes also result in changes in the vibrations of water molecules, which can 

be detected with near-infrared spectroscopy. 

Near-infrared (NIR) spectroscopy is a non-destructive analytical technique, 

which enables the simultaneous measurement of qualitative and quantitative 

parameters of a range of different products (Pasquini, 2018). The NIR region of the 

electromagnetic spectrum (780 nm – 2500 nm) is widely used to detect compounds, 

predict concentrations of solutions and monitor molecular shifts in biological 

environments (Segtnan et al., 2001; Siesler, 2006; Tsenkova, 2005). NIR 

spectroscopy has shown that it has the potential to be a cost-effective and faster 

screening technique for water quality (Gowen et al., 2012). 

This literature review addresses the use of near-infrared spectroscopy 

combined with aquaphotomics as a screening method for water quality. The following 

topics will be addressed: water resources, water quality, the structure of liquid water, 

near-infrared spectroscopy, aquaphotomics and the analysis of spectral data. 
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2.2 Water resources 

South Africa has a typical rainfall of around 450 mm per year (DEAT, 2006). This 

indicates that South Africa is water-stressed since the typical rainfall is well below the 

global average per year of approximately 860 mm (DWA, 2013; Pitman, 2011). South 

Africa’s water availability faces three main challenges; (1) the spatial and seasonal 

rainfall patterns, (2) relatively low water levels in rivers most of the time and (3) the 

location of major urban and industrial developments (DEAT, 2006).  

In South Africa, the water requirements of most of the urban areas are met 

using water from surface resources, such as dams and rivers (DEAT, 2006). Some 

rural and most arid areas’ water requirements are met using groundwater sources 

(DEAT, 2006). Groundwater is also an important water source in Africa since it makes 

up the majority of the water supplies (MacDonald et al., 2012). Pollution and 

exploitation of groundwater sources are major problems in South Africa (DEAT, 2006). 

In agriculture, water is important in the production of fresh produce that is 

nutritious and safe for human consumption. Almost 40 % of the food demands are 

supplied by irrigated agriculture, which accounts for only 19 % of available cropland 

(Molden, 2007). The increasing demand for water for non-agricultural uses are 

threatening food security since the importance of water for agricultural uses are 

overlooked (Hanjra & Qureshi, 2010; Molden et al., 2010).  

2.3 Water quality 

Water quality can be described by a variety of factors, which is separated into the 

subsequent groups: an indicator, microorganisms, organic and inorganic. Indicator 

factors are colour, conductivity, pH, odour and taste (Gowen et al., 2012). Chemicals 

such as chlorinated alkanes, benzenes and ethenes are classified as organic 

parameters, while heavy metals are classified as an inorganic parameter. The major 

pollutants in water sources, which pose a health risk to humans, are microorganisms 

and excess dissolved solids (Sampathkumar et al., 2010).  

The standard analysis techniques of water quality require intensive sampling 

plans, sample preparation and require manual inputs which prohibit their integration 

into continuous screening techniques (Gowen et al., 2015). The turnaround times for 

standard analysis methods are so slow that most water is consumed or used before 

the results are available (Gowen et al., 2012). 
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The physico-chemical characteristics of water affect the functioning of an 

aquatic environment and its capability to support life forms. When treating water for 

human consumption and agricultural uses, colour, pH, total dissolved solids and 

electrical conductivity are parameters used as an indicator of the quality. In terms of 

aesthetic consideration, the colour of the water is a key aspect of drinking water quality 

(Sampathkumar et al., 2010). The clarity of the water is an important parameter when 

treating water for human consumption (Rice et al., 2012). Cloudiness is caused by a 

variety of particles and is referred to as turbidity (Rahmanian et al., 2015). Water 

turbidity is associated with the amount of disease-causing microorganisms and the 

presence of inorganic ions like manganese (DWAF, 1996b; Rahmanian et al., 2015).   

The pH of water not only affects the aquatic life of water, but also the physico-

chemical properties (Morrison et al., 2001). The solubility and bio-availability of many 

plant nutrients are dependent on the pH of water (DWAF, 1996a). The toxicity of water 

is related to the pH, as a decrease in the pH levels can result in an increase in the 

solubility of elements such as lead, aluminium, boron, copper, cadmium, manganese 

and iron (Morrison et al., 2001). Water with a low pH can be detrimental to metal pipes 

and pumping systems as it is corrosive (Rahmanian et al., 2015).   

Solids, both dissolved and suspended, can affect the quality of the water 

unfavourably (APHA, 2012). Dissolved solids refer to the portion of solids which 

passes through a 2.0 µm filter under specified conditions, while suspended solids are 

the portion that remains on the filter (APHA, 2012). Total dissolved solids are an 

indicator of the amount of organic and inorganic matter found in water (Rahmanian et 

al., 2015). Water with high dissolved solids content is usually of inferior palatability and 

is unfavourable to the consumer. Domestic sewage can increase the concentration of 

dissolved salts, which is used as an indicator of the electrical conductivity of the water 

(Morrison et al., 2001).  

The ability of water to carry an electric current is referred to as electrical 

conductivity, which relies on the concentration, mobility and valence of ions found in 

the water (DWAF, 1996a; Rice et al., 2012). Dissolved solids such as calcium, 

magnesium and chloride carry electrical current through water, therefore the mineral 

content of the water will influence the electrical conductivity (Rahmanian et al., 2015). 

The concentration of total dissolved solids is directly proportional to the electrical 

conductivity of the water. 

Stellenbosch University https://scholar.sun.ac.za



10 
 

2.3.1 Drinking and irrigation water quality 

Potable or drinking water is deemed safe for human consumption and should not pose 

a risk to human health (Storey et al., 2011). A variety of water types is categorised 

under potable water. These include bottled water and tap water. In South Africa, 

bottled water is divided into three categories: natural water, water defined by the origin, 

and prepared water.  

Natural water originates from underground aquifers and is bottled at the source 

(Dijkstra & de Roda Husman, 2014). Natural water is not allowed to undergo any 

treatment that will alter the mineral composition. However, natural water can be 

decanted or filtered to remove unstable constituents (Dijkstra & de Roda Husman, 

2014). Spring and mineral water are classified as natural water. Rain, river, stream, 

snow, mist, glacier and seawater is classified as water defined by origin (Foodstuffs, 

2010). These types of water require antimicrobial treatments to ensure that it is fit for 

human consumption and unsuitable constituents such as iron and manganese can be 

removed from (Foodstuffs, 2010). Prepared water is from sources such as municipal 

surface and groundwater. Prepared water requires purification treatments to ensure 

that the water is safe for human consumption and to meet the standards set for bottled 

water (Foodstuffs, 2010). 

Water used in agricultural practices is sourced from a variety of sources such 

as large reservoirs, farm dams, rivers, groundwater, municipal supplies and industrial 

effluent (DWAF, 1996a). The quality of water sourced from ground and surface water 

sources may vary depending on seasonal conditions such as floods or droughts 

(DWAF, 1996a). A growing concern in developing countries is the contamination of 

water sources with human faecal matter (Barnes & Taylor, 2004). Inadequate sewage 

treatment systems, the release of unprocessed water and informal settlements close 

to rivers are the main sources of contamination of surface water sources (Barnes & 

Taylor, 2004). 

2.4 The structure of liquid water  

Despite the significance and abundance of water in the environment, its structure is 

still not fully understood (Gowen et al., 2013). At a molecular level, the structure of 

water is not homogenous but consists of different configurations of water clusters 

(dimers, trimers, solvation shells) of varying concentrations (Munćan, 2012). Water 
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molecules cluster together and are held together by hydrogen bonds. These clusters 

can range in size (Figure 2.1) and the simplest water molecular species is a dimer, 

which consists of two water molecules (Pang, 2014). Solvation shells occur when 

water molecules cluster around another molecule to which it is attracted to, such as 

sodium ions. The structure of liquid water is due to the hydrogen bonding network 

formed between water clusters and the relative orientation and mobility of water 

molecules are influenced by the neighbouring water molecules (Damodaran & Parkin, 

2017).  

 

 

Figure 2.1 Water clusters with different numbers of water molecules and 

conformational structures (Segarra-Martí et al., 2012). 

Over the years, water has been the focus of many studies due to its unusual 

behaviour and role in many biological and chemical processes (Giangiacomo, 2006; 

Gowen et al., 2013; Munćan, 2012; Tanaka et al., 1997; Xantheas, 2000). However, 

these studies have not been able to provide a comprehensive model that can describe 

the unusual behaviour of water (Xantheas, 2000). The unique behaviour of water, the 

unusually high boiling and melting point temperatures, is mainly as a result of the 

hydrogen-bonded (H-bond) network of water molecules (Hasted, 1972; Myneni et al., 

2002). Hydrogen bonds occur when a hydrogen atom is bonded to two or more atoms 
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and acts as a bridge between atoms (Chalmers & Griffiths, 2002). Two types of 

hydrogen bonds, intermolecular and intramolecular hydrogen bonds, can occur in 

water (Chalmers & Griffiths, 2002). Hydrogen-bonding occurring between different 

molecules are referred to as intermolecular, while intramolecular hydrogen-bonding 

occurs within a molecule between one proton donor and a proton acceptor (Chalmers 

& Griffiths, 2002). The dipole nature of water molecules results in interactions with 

other molecules through hydrogen bonds (Velíšek, 2014). 

The structure of pure water is a multifaceted and challenging problem, with 

many theories being suggested (Reid & Fennema, 2007). These theories are 

incomplete and oversimplified. However, two general structural models, mixture and 

continuum, have been used to explain the unique behaviour of water (Falk & Ford, 

1966; Libnau et al., 1994; Segtnan et al., 2001). The mixture model can be described 

by an equilibrium mixture of distinct water species with intermolecular hydrogen-bonds 

being temporarily concentrated in large clusters of water molecules, which occur in a 

dynamic equilibrium with other more complex species (Reid & Fennema, 2007; 

Segtnan et al., 2001). The continuum model consists of water molecules which are 

involved in nearly complete hydrogen bonds (Segtnan et al., 2001). The hydrogen 

bonds are uniformly distributed throughout the water (Segtnan et al., 2001). 

Ions present in a solution alters the hydrogen bonding of water, which can be 

detected with NIR spectroscopy (Gowen et al., 2013). The hydrogen bond network of 

the water matrix is influenced by the addition of cations and anions (Vero et al., 2010). 

This is a result of the charge-dipole interaction between the water molecules and the 

ions. The effect of the ion depends on the type of ion (Omta et al., 2003). Structure-

maker ions increase the strength of the hydrogen bond network, while structure-

breaker ions weaken the hydrogen bond network (Omta et al., 2003) The effects of a 

mixture of inorganic binary salts on the spectra of water can be seen with NIR 

spectroscopy, due to the specific effect of the cation/anion O-H interactions (Frost & 

Molt, 1997). It is believed that when a water molecule is positioned next to a cation, it 

would attract the oxygen atom while repelling the hydrogen atoms within the molecule 

(Gowen et al., 2013). This results in the weakening of the O-H bond and these changes 

can be seen in the spectrum of water (Gowen et al., 2013). A similar reaction will occur 

if an anion is next to a water molecule. However, the anion will attract the hydrogen 

atoms instead of the oxygen atom.  
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Changes in spectra due to ions are different from structurally induced changes 

(Bunzl, 1967). Structurally related variations in the spectra are primarily due to the 

valance and charge distribution, electron attraction and the ion sizes in the solution 

(Gowen et al., 2013). These can be observed with a change in the pH of identical ionic 

salt solutions at different concentrations (Gowen et al., 2013). The changes in the 

water spectrum can be analysed using aquaphotomics, a method that identifies the 

unique fingerprint of water bands due to specific perturbations (Tsenkova et al., 2018). 

2.5 Near Infrared spectroscopy 

Near-infrared (NIR) spectroscopy is a vibrational spectroscopy technique that is based 

on the interaction of electromagnetic radiation and the different vibrational modes of 

the covalent bonds in a molecule (Gowen et al., 2012; Osborne et al., 1993) The NIR 

electromagnetic spectrum covers the range from 780 - 2500 nm. The overtones and 

combination bands of the fundamental C-H, O-H, and N-H vibrations are found in this 

wavelength range (Gowen et al., 2012; Lin et al., 2009; Siesler et al., 2008). Overtones 

are a result of a molecule being excited from the ground state, lowest energy state, to 

the second or higher vibrational energy level (Burns & Ciurczak, 2007). Combination 

bands occur when more than one vibrational mode is excited at once (Siesler et al., 

2008).   

Vibrational energy influences the C-H, O-H and N-H when irradiated by the NIR 

frequencies (Burns & Ciurczak, 2007; Siesler, 2006). The energy changes result in 

stretching and bending vibrations of the bonds within molecules. A continuous change 

in the bond length between two atoms is referred to as stretching vibrations while 

bending vibrations are due to the change in bond angles between two atoms. The 

absorption of NIR energy occurs when the vibration of the frequency matches that of 

the molecular bond within the sample being scanned (Burns & Ciurczak, 2007).  

Due to NIR spectral bands consisting of overlapping combination and overtone 

bands, it can sometimes be difficult to identify chemical species (Burns & Ciurczak, 

2007; Siesler, 2006). Since numerous compounds absorb NIR energy, extracting 

usable information from the spectra for quantitative methods are complicated. Thus, 

multivariate data analysis methods are required to extract the appropriate information 

from spectra.  
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2.5.1 Instrumentation 

A NIR spectrophotometer has three main components, a light source, a wavelength 

isolator and a detector (Ozaki et al., 2006). Fourier transform near-infrared (FT-NIR) 

spectrophotometers contain an interferometer and are categorised as a multiplex 

instrument (Pierna et al., 2018).  An FT-NIR spectrophotometer produces an 

interferogram, which is a complex signal that contains all the frequencies that make 

up the infrared spectrum (Pavia et al., 2008). A graphic illustration of an FT-NIR 

instrument is shown in Figure 2.2. A tungsten halogen lamp (1) produces light that is 

directed to the first polarizer (2). The polarised light then passes through a double 

refracting block (3), which splits the light into two orthogonally polarised components 

with a static phase shift. Two double refracting wedges are placed after the refracting 

block, the first refracting wedge is stationary (4), while the second refracting wedge (5) 

constantly moves backwards and forwards. This results in an ongoing phase shift 

between the light beams. The phase-shifted beams are merged back into one light 

beam with intensity variation at the second polarizer (6). The light beam then passes 

through the sample (7) and is detected by the interferogram detector (8), producing an 

interferogram (9) which is converted to a spectrum by Fourier transforms (Siesler et 

al., 2008)  

 

 

 

Figure 2.2 Schematic diagram of an FT-NIR instrument with a polarisation 

interferometer (BÜCHI Labortechnik AG, 2018). 
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2.6 Aquaphotomics  

Aquaphotomics is a scientific field introduced by Professor Roumiana Tsenkova in 

2005. This novel method describes the interaction between water and light at each 

frequency of the NIR electromagnetic spectrum (Kinoshita et al., 2012b; Tsenkova, 

2009; Tsenkova & Gowen, 2011). The NIR spectrum is considered an excellent 

technique for the observation of water, providing information about the molecular 

structure of water molecules (Tsenkova, 2009). Aquaphotomics provides the 

possibility for the extraction of information hidden within the NIR spectrum of water, 

which is not possible with other methods (Bázár et al., 2015).  

Over the years, numerous bands of water species have been identified in the 

infrared range by various studies (Chandler, 2002; Czarnik-Matusewicz et al., 1999; 

Luck & Schiöberg, 1979; Šašić et al., 2002; Segtnan et al., 2001). In aquaphotomics, 

these bands are referred to as water absorbance bands (WABS). The spectral 

database of water absorbance bands of the first (1300-1600 nm), second (610 – 870 

nm) and third overtones (870 – 1070 nm) of water consists of more than 500 bands 

(Tsenkova, 2009; Tsenkova et al., 2015). To date, 12 characteristic water absorbance 

bands have been identified that occurs in the first overtone of water, regardless of the 

perturbation observed. These wavelength ranges are referred to as Water matrix 

coordinates (WAMACS) and are shown in Table 2.1 with their corresponding 

assignments for each water matrix coordinate. 

Changes at specific water absorbance bands, due to a perturbation, occurring 

repeatedly throughout the data analysis process, are referred to as activated water 

absorbance bands (Tsenkova et al., 2018). Activated water absorbance bands are 

used to describe the water spectral pattern of a system. Water is easily influenced by 

various factors, resulting in spectral changes. The changes in the water spectral 

patterns provide information related to the structure and dynamics of the molecular 

structure of the respective system (Tsenkova, 2009). 
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Table 2.1 Characteristic water absorbance bands identified  

WAMACS Wavelength 
range (nm) 

Assignment Reference  

C 1 1336 – 1348  v3 (Siesler et al., 2008) 

C 2 1360 – 1366 O-H  stretch (Xantheas, 1995) 

C 3 1370 – 1376 v1 + v2  (Siesler, 2006) 

C 4 1380 – 1388   O-H  stretch (Xantheas, 1995) 

C 5 1398 – 1418 S0 (Segtnan et al., 2001) 

C 6 1421 – 1430  Water 
hydration 

(Tsenkova, 2009; Williams, 2009) 

C 7 1432 – 1444 S1 (Cattaneo et al., 2009; Siesler, 2006),  

C 8  1448 – 1454  v2 + v3 (Cattaneo et al., 2009; Siesler, 2006)  

C 9 1458 – 1468  S2 (Franks, 1973) 

C 10 1472 – 1482  S3 (Franks, 1973; Siesler, 2006) 

C 11  1482 – 1495 S4 (Tsenkova, 2009) 

C 12 1506 - 1516 v2 (Siesler, 2006)  

v1 - symmetric stretching of the first overtone of water, v2 - bending of the first overtone 

of water, v3 - asymmetric stretching of the first overtone of water, S0 - free water and 

free OH or trapped water, S1 - water molecules with one intermolecular hydrogen bond 

(dimer), S2 - water molecules with two intermolecular hydrogen bonds (trimer), S3 - 

water molecules with three intermolecular hydrogen bonds (tetramer), S4 - water 

molecules with four intermolecular hydrogen bonds (pentamer). 

 

Water spectral patterns are visualised in the form of radar plots, which are 

referred to as aquagrams. The axes originating from the centre of the aquagram 

displays the averaged normalised absorbance values at numerous water bands and 

the absorbance values of the WAMAC’s are placed on the relevant radial axes (Bázár 

et al., 2016). An example of an aquagram displaying water spectral patterns of 

different types of honey and high fructose corn syrup are shown in Figure 2.3. 
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Figure 2.3 Aquagram of pure honey and high fructose corn syrup (Bázár et al., 2016). 

 

The effect of temperature on the water spectrum has been the focus of many studies 

over the years. The relationship between the hydrogen bonding and spectral changes 

as a result temperature was investigated by Maeda et al. (1997). The study focused 

on the temperature-dependent spectral variations in the 1100 – 1800 nm wavelength 

range. Spectra were acquired by scanning water at temperatures ranging from 5 – 85 

˚C.  Spectral changes were identified using principal component regression and partial 

least squares. The study indicated is a relationship between the temperature and 

hydrogen bonding of water. The differences in the spectra are due to the size of the 

different water molecule clusters. As the temperature was increased or decreased, 

changes in the water clusters were observed as spectral changes. 

Munćan et al. (2014) used aquaphotomics to differentiate between brands of 

mineral water. The samples were obtained from commercial outlets and the mineral 

content data was obtained either from the label or the manufacturer. Each sample 

contained sodium, potassium, calcium, magnesium, chlorine and sulphate ions of 

varying concentrations. The different mineral water samples each had a unique WASP 

as a result of the differences in the mineral composition and water molecular species 

confirmation (Munćan et al., 2014). The differences in the WASPs were used to 

distinguish between the water samples.  
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Gowen et al. (2015) investigated the use of aquaphotomics as a possible 

detection method for low concentration contaminants. The authors used a 

concentration range of 0.002 – 0.1 mol L-1 of sodium chloride, potassium chloride, 

magnesium chloride and aluminium chloride to determine the effect that different salts 

will have on the spectral pattern of water. They showed that it is possible to predict 

salt concentration using partial PLS regression. This indicates that aquaphotomics has 

the potential to be used as a method for the detection of water contamination. In a 

similar study, Bázár et al. (2015) investigated millimolar concentration (0.02 – 100 mM) 

solutions of mono- and disaccharides to determine the effect of a range of 

concentrations will have on the water spectrum. The type and concentration of solute 

will affect the hydrogen bonding of water differently, and these differences can be seen 

in the NIR spectrum. Glucose, fructose, sucrose and lactose solutions with 

concentration ranges of 0.02 – 100 mM were analysed to determine the limit of 

detection of each sugar. The study concluded that it is possible to quantify the mono- 

and disaccharide solutions at millimolar concentrations.  

A study by Kovacs et al. (2016) monitored the changes in the water spectral 

pattern with the addition of sodium chloride, lactose monohydrate and acetic acid 

solutions at millimolar concentrations (1mM – 100 mM) as possible water 

contaminants. The structural changes of the water clusters were monitored to 

determine the lowest level of detection of the three contaminants.  The study proved 

that changes in the water molecular structure as a result of variation in the millimolar 

concentration of acetic acid, lactose monohydrate and sodium chloride can be 

detected with near-infrared spectroscopy.  

Cattaneo et al. (2011) studied the influence of filtration processes on the 

structure of water. Pure water samples were analysed before and after the filtration 

process. Spectral variation was detected in the 1333 – 1538 nm wavelength range. 

These variations are due to changes in the water clusters during the filtration process. 

The authors concluded that filtration processes influence the hydrogen bond network 

of water. However further research is required to determine how the different variables 

in the filtration process influence the hydrogen bond network of water. A summary of 

aquaphotomics applications is presented in Table 2.2. 
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Table 2.2 Summary of aquaphotomics applications  

Application of 

aquaphotomics 

approaches 

Perturbation Chemometric 

techniques 

Wavelength range 

(nm) 

References 

Sugar detection  Concentration of different sugars PCA, LDA, PLS 1100 – 1800 (Bázár et al., 2015) 

Salts detection Temperature and inorganic salts PCA, EFA, MCR-

ALS 

1300 – 1600 (Gowen et al., 2013) 

Heavy metal detection  Metal ions PLS 680 – 1090, 1110 – 

1800 

(Putra et al., 2012) 

Water filtration system Filtration process PCA 1100 – 1800  (Cattaneo et al., 2011) 

Pesticide detection pesticides  PCA, PLS, PLS-DA 400 – 2500  (Gowen et al., 2011) 

Mineral water 

differentiation 

Different brands of mineral waters HCA, SIMCA 1300 – 1600 (Munćan et al., 2014) 

Water Monitoring The concentration of acetic acid, 

Lactose monohydrate, sodium 

chloride 

PCA-QCC 600 – 1000, 1300 – 

1600 

(Kovacs et al., 2016) 

Honey Adulteration with high fructose 

corn syrup  

PCA, PCR, PLS 1300 – 1800 (Bázár et al., 2016) 

Soybean virus 

detection 

Soybean mosaic virus PCA, SIMCA 730 – 1025 (Jinendra et al., 2010) 
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Application of 

aquaphotomics 

approaches 

Perturbation Chemometric 

techniques 

Wavelength range 

(nm) 

References 

Panda urine  Oestrus concentration  PLS, HCA 1300 – 1600 (Kinoshita et al., 

2012a) 

Detection of bacteria 

and extracellular 

metabolites 

Escherichia coli and 

Staphylococcus aureus 

PLS 680 – 1090, 1100 – 

1800 

(Nakakimura et al., 

2012) 

Milk Somatic cell count PCA, PLS, SIMCA 1100 – 2500 (Tsenkova, 2006) 

Bacteria growth 

monitoring 

The growth of Lactobacillus spp PCA, LDA, PLS, 

SIMCA 

1100 – 1300 (Slavchev et al., 2017) 

Salt Salt concentration  PLS, PCA 1000 – 2500  (Gowen et al., 2015) 

Soil quality Carbon and nitrogen content 

determination 

PCA, PLS 908 – 1676  (Mura et al., 2019) 

Effect of glucose on 

water structure 

Addition of glucose CWT 850 – 2500 nm (Cui et al., 2016) 

PCA – Principal Component Analysis, LDA – Linear Discriminant Analysis, PLS – Partial Least Squares, EFA – Evolving Factor 

Analysis, MCR-ALS – Multivariate Curve Resolution – Alternating Least Squares, SIMCA – Soft Independent Modelling of Class 

Analogy, HCA – Hierarchical Cluster Analysis, PCR – Principal Component Regression, PLS-DA - Partial Least Square – Discriminant 

Analysis, PCA-QCC – Principal Component Analysis – Quality Control Chart, CWT – Continuous wavelet transform 
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2.7 Near-infrared spectral data analysis 

The water spectrum is very complex, and some perturbations cause subtle changes in the 

spectra, which can easily go unnoticed (Tsenkova et al., 2018). Therefore, aquaphotomics 

requires multiple data analysis steps to identify activated water absorbance bands, which 

are used to explain differences between aqueous systems (Tsenkova et al., 2018). 

Consequently, pre-processing and multivariate data analysis is essential for the extraction 

of information from spectral data.  

2.7.1 Pre-processing 

Pre-processing aims to enhance relevant information and reduce or remove the unwanted 

influences in the spectral data (Rinnan et al., 2009b; Tsenkova et al., 2018). Pre-processing 

techniques include mean centering, smoothing, derivatives and scatter correction. Mean 

centering is a technique that involves the subtraction of the mean spectrum from the entire 

database (Agelet & Hurburgh Jr, 2010; Beebe, 1998). This technique is a pre-processing 

method most commonly used with principal component analysis (Agelet & Hurburgh Jr, 

2010).  

Smoothing techniques are used for the removal of noise or background information 

from spectra, while also increasing the signal-to-noise ratio (Agelet & Hurburgh Jr, 2010; 

Beebe, 1998). In aquaphotomics, the most common technique to reduce noise is the 

Savitzky-Golay smoothing filter (Savitzky & Golay, 1964). Smoothing techniques produce 

an optimum signal-to-noise ratio for spectral data when combined with other pre-processing 

techniques (Wang et al., 2006). Equation 2.1 presents the Savitzky-Golay smoothing filter 

algorithm 

𝑥𝑗
∗ =

1

𝑁
∑ 𝑐ℎ𝑥𝑗 + ℎ𝑘

ℎ=−𝑘       (eq. 2.1) 

Where: 

𝑥𝑗
∗- the new value of the smoothed curve or derivative 

𝑁 – the normalising constant 

𝑘 – the number of adjacent values at each side of j  

𝑐𝑗 – the coefficient that depends on the polynomial degree used  

 

Spectral derivatives are used to extract relevant information by removing the additive and 

multiplicative effects from the data (Rinnan et al., 2009a). The first derivative removes only 
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the baseline, while the second derivative removes the baseline and the linear trend (Rinnan 

et al., 2009a). In the NIR spectra of aqueous solutions, derivatives can separate overlapping 

bands and remove baseline variations (Tsenkova et al., 2018). Derivatives also have a 

downside, it may result in the loss of the original shape of the spectral data and a reduction 

in the signal-to-noise ratio (Tsenkova et al., 2018). 

Scatter correction was designed to reduce any variability between samples due to 

multiplicative scatter (Rinnan et al., 2009a). Standard normal variant (SNV) and 

Multiplicative scatter correction (MSC) are the most widely used scatter correction methods 

(Agelet & Hurburgh Jr, 2010). Multiplicative interferences and particle size scattering are 

removed with the use of SNV (Barnes et al., 1989). MSC creates a line of best fit for each 

spectrum to a reference spectrum and then the slope of best fit is used to adjust the spectra 

(Geladi et al., 1985). This process removes additive and multiplicative differences. The 

algorithms for SNV and MSC is as follows (Varmuza & Filzmoser, 2011), equations 2.2 – 

2.4. 

 

SNV: 

 𝑥𝑐𝑜𝑟𝑟 =
𝑥𝑜𝑟𝑔−𝑎0

𝑎1
         (eq. 2.2) 

 

MSC: 

𝑥𝑜𝑟𝑔 = 𝑏0 +  𝑏𝑟𝑒𝑓,1. 𝑥𝑟𝑒𝑓 + 𝑒          (eq. 2.3) 

𝑥𝑐𝑜𝑟𝑟 =  
𝑥𝑜𝑟𝑔− 𝑏0

𝑏𝑟𝑒𝑓,1
          (eq. 2.4) 

Where: 

xcorr = corrected spectra 

xorg = original spectra 

xref = reference spectra 

a0 = the average spectrum  

a1 = Standard deviation spectrum  

b0, bref,1 = scalar parameters 

e = un-modelled part of xorg 
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2.7.2 Multivariate data analysis  

Multivariate data analysis is used to extract meaningful information from the spectral data 

(Wold, 1995). The extraction of relevant information from spectral data for the development 

of models and prediction of specific properties of unknown samples can be achieved by a 

number of multivariate data analysis techniques (Manley & Baeten, 2018). Principal 

component analysis, partial least squares and partial least squares are just three of the 

many multivariate data analysis techniques existing.  

Principal component analysis (PCA) is one of the most popular unsupervised 

techniques (Cowe & McNicol, 1985). PCA is usually applied before any other multivariate 

data analysis technique, to identify the main sources of variability and distribution of 

elements. The variables in a dataset are reduced to principal components (PC), composed 

of scores and loadings using equation 2.5. Each PC explains a specific amount of the total 

variance within the dataset, in decreasing order. 

𝑋 = 𝑇𝑃′ + 𝐸         (eq. 2.5) 

Where:  

X – represents a matrix 

𝑇 - Score matrix 

𝑃 - loadings matrix 

𝐸 - residual matrix  

 

Partial least squares (PLS) is a linear regression method, which takes into 

consideration the explanatory and dependent variables (Varmuza & Filzmoser, 2011). This 

method aims to find a set of components which provides good linear models for all the Y 

variables (Garthwaite, 1994). PLS decomposes the X and Y matrices into latent structures 

in an iterative process (Brereton, 2007). The PLS algorithms are presented in equations 2.6 

and 2.7. 

𝑋 = 𝑇𝑃𝑇 + 𝐸         (eq. 2.6) 

𝑌 = 𝑈𝑄𝑇 + 𝐹         (eq. 2.7) 

X – predictor variables matrix 

Y – response variable matrix 

𝑇 , 𝑈 – the score matrices of X and Y, respectively 
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𝑃 , 𝑄 – the loading matrices of X and Y, respectively 

𝐸 , 𝐹 – The residual matrices 

 

Partial least squares discriminant analysis (PLS-DA) is a technique that is a 

combination between the properties of PLS regression and the discrimination power of a 

classification method (Ballabio & Consonni, 2013). This technique uses dummy variables, 

equal to one or zero, instead of measured y-data (Ballabio & Todeschini, 2009; Manley & 

Baeten, 2018). PLS-DA aims to classify spectra based on its group membership. The PLS-

DA algorithm is presented in equation 2.8. 

𝑦 = 𝑥𝑏 + 𝑓        (eq. 2.8) 

Where: 

y = dummy matrix  

x = data matrix 

b = regression coefficient matrix 

f = residual matrix 

 

The loading plots of a PCA and regression vectors of PLS are used to identify any 

activated water absorbance bands in the observed system (Tsenkova, 2009). The activated 

water absorbance bands, which occur repeatedly throughout all the data analysis 

techniques are used to construct the aquagram (Tsenkova et al., 2018).  

An aquagram is a way of visualising and comparing the water spectral pattern of a 

system (Tsenkova et al., 2018). The activated water absorbance bands identified through 

the data analysis steps are used to construct the aquagram. SNV or MSC is applied to the 

raw spectral data of the water absorbance bands identified, producing normalised 

absorbance values that are plotted on the axes originating from the centre. The wavelength 

of the specific water absorbance bands (or WAMACS) is plotted on the radial axes. The 

normalisation of an aquagram is computed using equation 2.9. 

 

𝐴𝜆
′ =

𝐴𝜆−𝜇𝜆

𝜎𝜆
         (eq. 2.9) 

Where: 

Aλ
′ - The normalised absorbance values displayed on the aquagram  

Aλ- The absorbance values after SNV or MSC 
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μλ- The average spectra of all the samples examined 

𝜎𝜆- The standard deviation of all the spectra of the samples  

 

The number of axes originating from the centre of the aquagram depends on the system 

observed and the number of activated water absorbance bands identified during the data 

analysis process. The WAMACs of the specific system is placed on the angular axis of the 

aquagram at each spoke originating from the centre. The radial axis of the aquagram 

presents the absorbance range of the specific set of WAMACs.  

2.8 Conclusion  

With the increasing demand for water and water shortages in South Africa, the water 

treatment industry would benefit from a rapid non-destructive method for water quality 

determination. As water forms the basis of aquaphotomics, it has the potential to be a 

technique suited for water quality analysis. However, very little work has been done on water 

quality using aquaphotomics. Aquaphotomics provides information which usually remains 

hidden with conventional data analysis techniques.  

The water spectrum provides a large amount of information about the water clusters 

and the effect of different solutes on the water molecules. However, more research is 

needed to understand how the combination of different physico-chemical parameters such 

as pH, TDS, TSS and turbidity will have on the water spectrum. With a better understanding 

of how physico-chemical properties of water influence the water spectrum, aquaphotomics 

has the potential to be applied in developing a rapid and accurate screening method for 

water quality.  
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Segtnan, V. H., Šašić, Š., Isaksson, T. & Ozaki, Y. (2001). Studies on the structure of water 

using two-dimensional near-infrared correlation spectroscopy and principal 

component analysis. Analytical Chemistry, 73, 3153-3161. 

Siesler, H. W. (2006). Near-infrared spectroscopy : principles, instruments, applications. 

Weinheim, Weinheim : Wiley-VCH. 

Siesler, H. W., Ozaki, Y., Kawata, S. & Heise, H. M. (2008). Near-infrared spectroscopy: 

principles, instruments, applications. John Wiley & Sons. 

Slavchev, A., Kovacs, Z., Koshiba, H., Bazar, G., Pollner, B., Krastanov, A. & Tsenkova, R. 

(2017). Monitoring of water spectral patterns of lactobacilli development as a tool for 

Stellenbosch University https://scholar.sun.ac.za



 

32 
 

rapid selection of probiotic candidates. Journal of Near Infrared Spectroscopy, 25, 

423-431. 

Storey, M. V., van der Gaag, B. & Burns, B. P. (2011). Advances in on-line drinking water 

quality monitoring and early warning systems. Water Res, 45, 741-747. 

Tanaka, M., Shibata, A., Hayashi, N., Kojima, T., Maeda, H. & Ozaki, Y. (1997). 

Discrimination of commercial natural mineral waters using near infrared spectroscopy 

and principal component analysis. Journal of Near Infrared Spectroscopy, 3, 203-

210. 

Tsenkova, R. (2005). Visible-near infrared perturbation spectroscopy: Water in action seen 

as a source of information.  . In: 12th International Conference on Near-infrared 

Spectroscopy. Pp. 607-612. New Zealand. 

Tsenkova, R. (2006). Disease Diagnosis Related to Food Safety in Dairy. Near-Infrared 

Spectroscopy in Food Science and Technology, 379. 

Tsenkova, R. (2009). Introduction: Aquaphotomics: dynamic spectroscopy of aqueous and 

biological systems describes peculiarities of water. Journal of Near Infrared 

Spectroscopy, 17, 303. 

Tsenkova, R. & Gowen, A. (2011). NIR Spectroscopy: a tool for aquaphotomics. In: Pre-

conference course, 15th International Conference on Near Infrared Spectroscopy. 

Pp. 1-22. Cape Town, South Africa. 

Tsenkova, R., Kovacs, Z. & Kubota, Y. (2015). Aquaphotomics: near infrared spectroscopy 

and water states in biological systems. In: Membrane Hydration. Pp. 189-211. 

Springer. 

Tsenkova, R., Muncan, J., Kovacs, Z. & Pollner, B. (2018). Essentials of Aquaphotomics 

and its Chemometrics Approaches. Frontiers in Chemistry, 6, 363. 

UNU-INWEH (2013). Water Security and the Global Water Agenda: A UN-Water Analytical 

Brief. Ontario, Canada: United Nations University. 

Varmuza, K. & Filzmoser, P. (2011). Introduction to multivariate statistical analysis in 

chemometrics. CRC press. 
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Chapter 3 

Materials and methods 

The experimental work of this project was divided into four separate studies with each 

focusing on one of the four objectives. These included the effect of different temperatures, 

water sources, types of water and filter materials on the water spectrum. 

3.1 Influence of temperature 

3.1.1 Samples 

Deionised water was obtained at the start of each experiment using an Elgastat B114 

deioniser (Veolia Water, France). Mineral water was sourced from different local retailers 

the day prior to each experiment and stored at an ambient temperature of 22-23˚C for 24h. 

Stellenbosch municipal tap water was acquired in the laboratory at the start of each 

experiment.  

3.1.2 Spectral acquisition  

From each sample, 850 µL was pipetted into a 1.0 mm quartz cuvette (Hellma Analytics, 

Germany) and scanned. The water samples (deionised, mineral and tap water) were each 

scanned in triplicate at the following temperatures: 20˚ C, 25˚ C and 30˚ C.   

3.2 Spring water from different sources 

3.2.1 Samples 

Bottled spring water was sourced from a manufacturer that bottles at three different 

locations, sources A, B and C. The water samples were stored at ambient temperatures (22 

– 23˚C) out of direct sunlight until analysis. An Elgastat B114 deioniser (Veolia Water, 

France) was used to produce deionised water for each day of scanning. Three samples from 

each of the three different geographical sources were scanned each day, for a consecutive 

period of four days. The deionised water was scanned as a control sample between every 

third sample and used to rinse the cuvettes between samples. 
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3.2.2 Spectral acquisition  

Scanning was done at a temperature of 32 ˚C using the 0.2 mm quartz cuvette (Hellma 

Analytics, Germany) filled with 80 µL of sample. Each sample was scanned five consecutive 

times. Deionised water was scanned before the first sample and then again after every fifth 

sample.  

3.3 Different types of bottled water 

3.3.1 Samples 

A total of 120 bottled water of different brands of mineral (60) and spring (60) water were 

sourced from a variety of retailers in the Western Cape area. The water bottles were stored 

at ambient temperature until analysis. Deionised water was obtained at the start of each 

scanning day using an Elgastat B114 deioniser (Veolia Water, France), which was used as 

a control sample and to rinse the cuvettes between samples. Sample scanning took place 

over a period of 19 days.  

3.3.2 Spectral acquisition  

The water samples were scanned using quartz cuvette (Hellma Analytics, Germany) with a 

path length of 0.2 mm at a temperature of 32˚C. The cuvette was filled with 80 µL of sample 

and scanned five consecutive times. Deionised water was scanned before the first sample 

and then again after every fifth sample. 

3.4 River water and different filtration materials  

3.4.1 Samples and sample preparation 

Water was collected from the Plankenburg River (33˚55’58.6 S, 18˚51’05.4 E) and sampling 

was done according to the process described by the South African National Standards 

(SANS) 5667-6 method (SANS, 2006). Sterilised 5 L bottles were used to collect water from 

the river and were transported back to the department in insulated cooler boxes.  

Six filtration columns were constructed containing different filtration material, four 

columns were constructed with two columns containing 2 L of experimental pine biochar and 

the other two columns contained 2 L of experimental black wattle biochar. Another two 

column were constructed containing 2 L of granulated activated charcoal and 300 g of silica 
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sand, respectively. A schematic of the columns constructed using the different filtration 

materials is shown in figure 3.1. 

 

Figure 3.1 Basic schematic of the columns constructed with the different filtration material. 

Every 3rd day over a period of 30 days, 2 L of river water was filtered through the six 

columns and collected. Deionised water was used as a reference sample (used to 

synchronise the spectra to reduce the effect the day of scanning will have on the water 

spectrum) and was produced using an Elgastat B114 deioniser (Veolia Water, France). The 

river water and filtrates were stored at 4˚C and were analysed to determine the physico-

chemical properties.  

3.4.2 Spectral acquisition  

Each sample was scanned at 32˚C using a quartz cuvette (Hellma Analytics, Germany) with 

a path length of 0.2 mm. From each column 250 ml was collected. The 250 ml river water 

and filtrate samples were each divided into 10 sub-samples of 25 ml each. From each 

subsample 80 µL was transferred into the cuvette and scanned five consecutive times. 

Scanning was done in a randomised order and deionised water was scanned before the first 

sample, and then scanned again after every 5th sample.  

3.5 Physico-chemical analyses 

The physico-chemical parameters of the river water samples were determined (in duplicate) 

using the following methods. 
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Ultraviolet transmission percentage, turbidity, and electrical conductivity 

A hand-held Sense T254 UV-Transmittance Monitor (Berson, The Netherlands) was used 

to determine the ultraviolet transmission percentage (UVT %) of the river water. A portable 

Orion AQ3010 Turbidity Meter (Thermo Scientific, USA) was used to determine the turbidity. 

A portable HI 8733 conductivity meter (Hanna Instruments, USA) was used to determine 

electrical conductivity (EC) and the total amount of dissolved salts in the water samples. All 

the instruments were operated according to the manufacturer’s instructions and were 

calibrated using the appropriate standards or deionised water. 

Alkalinity and pH 

Alkalinity was determined according to Standard Methods (APHA, 2012). Twenty millilitres 

of sample was titrated with 0.1 N H2SO4 until a pH of 4.3 was reached. The alkalinity of each 

sample was calculated using the standard method. The pH of the river water samples was 

determined using a pH meter (WTW, Germany). The pH meter was calibrated with the 

appropriate pH buffers and was operated according to the manufacturer's manual.  

Total suspended solids (TSS), volatile suspended solids (VSS) and total dissolved solids 

(TDS) 

The amount of organic and inorganic matter present in water was determined using TSS, 

TDS and VSS. These methods were done according to the instructions provided by 

Standard Methods (APHA, 2012). The TDS was determined with the use of a TDS-3 meter 

(HM Digital), the meter was calibrated according to the manufacturer’s manual using a 1000 

ppm NaCl solution. 

3.6 NIR Instrumentation  

All spectra were obtained in the wavelength range of 1000-2500 nm using a Buchi NIRFlex 

N-500 Fourier transform NIR spectrophotometer (BÜCHI Labortechnik AG, Flawil, 

Switzerland). The instrument was fitted with a tungsten halogen lamp, a temperature-

controlled Indium Gallium Arsenide (InGaAs) detector and a temperature-controlled cuvette 

holder and was operated using NIRWare software suite. The instrument performed 32 

successive scans per sample, at a signal-to-noise ratio of 10 000 and a resolution of 8 cm-1 

with a data point every 4 cm-1 which result in 1501 data points. 
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3.7 Spectral data analysis  

Data analysis was performed using the 1300 – 1600 nm wavelength range, the first overtone 

of O-H. Spectral data were processed using Unscrambler software v.10.1 (Camo Inc., 

OSLO, Norway) and MATLAB v 9.2.0.538062 (2017a) (MathWorks, Massachusetts, USA). 

The effect of scanning over a number of days was eliminated by synchronising the 

spectra (Kovacs et al., 2016). This was done by subtracting the average spectrum of the 

daily deionised water from each spectrum of the same day, and the total average spectrum 

of all the deionised water scanned was added back to all the sample spectra (Kovacs et al., 

2016). Spectra were smoothed and the second derivative calculated using Savitzky-Golay 

2nd order polynomial and 21 points (Savitzky & Golay, 1964). Standard normal variate (SNV) 

(Barnes et al., 1989) was applied to the smoothed data. 

Principal component analysis (PCA) was used to identify patterns and visualise the 

information present in the spectral data set and to identify outliers (Cowe & McNicol, 1985). 

Partial least squares discriminant analysis was used to classify the spectra into classes 

based on their class membership. Partial least squares (PLS) regression was used to predict 

a set of dependent variables from a large set of independent variables (Wold, 1975). 

Regression was performed using smoothed and SNV transformed data. Activated water 

absorbance bands were identified using these data analysis techniques. The activated water 

absorbance bands, which repeatedly occurred throughout the data analysis process were 

used to describe the water spectral patterns and construct the aquagrams according to the 

method of Tsenkova et al. (2018).  

PLS-DA models were developed to differentiate between the different types of water 

samples. Each data set was spilt into a calibration (70%) and validation (30 %) sets using 

the Duplex algorithm. The overall performance of the models were validated by calculating 

the performance measures using the equation 3.1 – 3.8. The classification accuracy was 

used to prove the effectiveness of the overall model. The probability of a positive response 

being correctly classified is referred to as sensitivity. While specificity is referred to as the 

probability of a negative response being correctly classified. Sensitivity and specificity is 

used together to evaluate the classification algorithm’s performance for a single class. The 

rate of values that measure the accuracy of positive predictions of the model is referred to 

as precision. The F1 score is used as an overall measure of the accuracy of a model that 

combines precision and sensitivity.  

 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) =
𝑇𝑃+𝑇𝑁

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
× 100%    (eq. 3.1) 
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𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 (%) =
𝐹𝑃

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
× 100%   (eq. 3.2) 

𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 (%) =
𝐹𝑁

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
× 100%   (eq. 3.3) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦/ 𝑟𝑒𝑐𝑎𝑙𝑙 (%) =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
× 100%     (eq. 3.4) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (%) =
𝑇𝑁

(𝑇𝑁+𝐹𝑃)
× 100%      (eq. 3.5) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (%) =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
× 100%       (eq. 3.6) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 (%) =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
      (eq. 3.7) 

𝑀𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 (%) =
𝐹𝑃+𝐹𝑁

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
× 100%     (eq. 3.8) 

 

Where:  

True positives (TP) = positive responses classified as positive responses  

True negatives (TN) = negative responses classified as negative responses  

False positives (FP) = negative responses classified as positive responses  

False negatives (FN) = positive responses classified as negative responses  
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Chapter 4 

Results and Discussion 

4.1 The effect of temperature 

Water samples were investigated to determine the effect of three temperatures, 20˚C, 25˚C 

and 30˚C on the NIR spectra.  

4.1.1 Spectral analysis  

The mean and second derivative spectra of water at the three temperatures are presented 

in Figure 4.1 – 4.2. A broad band is observed in Figure 4.1 and is due to the overlapping of 

the absorption related to the different hydrogen-bonded structures at 1450 nm. The 

overlapping is due to the OH stretching combination of the symmetric stretching and 

asymmetric stretching modes (v1+v3) (Tsenkova, 2009).  

 

Figure 4.1 Mean spectra obtained at the three different temperatures for the first overtone 

of water (1300 – 1600 nm). 
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Figure 4.2  Second derivative spectra (calculated with a Savitzky-Golay filter using 2nd 

order polynomial and 21 points) in the first overtone of water (1300 – 1600 nm) of the water 

scanned at the three different temperatures. 

 

The 2nd derivative (Figure 4.2) of the first overtone indicated four water absorbance 

bands at 1348 nm, 1412 nm, 1434 nm and 1462 nm. The band at 1348 nm is linked to the 

asymmetric stretching of the water molecule (Siesler, 2006). Water molecules with different 

numbers of hydrogen bonds have been assigned to the absorbance bands of 1412 nm, 1434 

nm and 1462 nm. The region at 1412 nm is associated with water molecules with little or no 

intermolecular hydrogen bonds (S0) (Segtnan et al., 2001), while water molecules with one 

(S1) and two (S2) hydrogen bonds are assigned to the 1434 nm and 1462 nm bands, 

respectively (Cattaneo et al., 2009; Siesler, 2006). The water absorbance band, 1462 nm, 

has been assigned to water molecules with two hydrogen bonds (S2). Changes in intensity 

are observed at the 1412 nm and 1462 nm band. These changes are due to temperature 

(Segtnan et al., 2001), with the greatest increase in intensity observed at 1412 nm. This 

indicates that temperature does have an effect on the spectra, as the increase in 

temperature weakens the hydrogen bonds resulting in changes in water molecular species 

sizes (Cui et al., 2016). 

4.1.2 Principal component analysis (PCA) 

The Savitzky – Golay smoothed and standard normal variant (SNV) corrected data was used 

to calculate PCA score and loading plots, as seen in Figure 4.3 – 4.5. PC 1 and PC 2 

describe 98% and 2% of the variation in the data set, respectively. Separation can be seen 
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in the direction of PC 2 (Figure 4.3) and can be attributed to the increase in temperature 

from 20 to 30˚C.  

 

Figure 4.3 Principal component score plot (PC1 (98 %) vs. PC2 (2 %)) of the water scanned 

at the three different temperatures. 

 

A single band at 1450 nm is observed in loadings plot of PC 1 (Figure 4.4) and this 

band is attributed to the combination of the first overtone of the OH bending and the 

fundamental OH asymmetric stretching vibration. The 1412 nm band is attributed to water 

molecules with little or no intermolecular hydrogen bonds (S0) weakly bonded water 

molecules and a decrease in strong hydrogen-bonded water molecules.  

 

Figure 4.4 First principal component (PC 1) loadings plot for the water scanned at the three 

different temperatures.  
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Figure 4.5 Second principal component (PC 2) loadings plot for the water scanned at the 

three different temperatures. 

 

Two bands are observed in the second principal component loadings plot (Figure 

4.5), a positive peak at 1412 nm and a negative peak at 1492 nm. (Segtnan et al., 2001). 

Water molecules with three intermolecular hydrogen bonds or trimers are attributed to the 

1492 nm wavelength (Franks, 1973; Siesler, 2006). The positive and negative bands of PC2 

indicates that there is a change in hydrogen bonding with an increase in temperature. This 

is due to the weakening of hydrogen bonds with the increase in temperature, resulting in an 

increase of weakly bonded water molecules and a decrease in strong hydrogen-bonded 

water molecules. 

These findings are comparable to the results reported in literature (Gowen et al., 

2013; Maeda et al., 1997; Segtnan et al., 2001). These studies indicated that in the 1300 

nm – 1600 nm region, the variation is predominately described by two bands, 1412 nm and 

1492 nm. These two bands represent two types of water clusters which are linked, resulting 

in a two-state mixture model. 

4.1.3 Conclusion  

The PCA analysis of the water spectra in the first overtone (1300 – 1600 nm) region at 

temperatures of 20, 25 and 30˚C showed spectral variation mainly due to two bands at 1412 

nm and 1492 nm. These bands arise from weakly and strongly bound hydrogen-bonded 

water molecules, respectively. Variation in temperature causes changes in the concentration 

of free and bonded OH groups (Chalmers & Griffiths, 2002). Changes in temperature alter 

the strength of the hydrogen bonds, which results in spectral changes seen in the water 
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spectrum (Maeda et al., 1997). An increase in temperature leads to a reduction in water 

clusters, due to the weakening of hydrogen-bonding (Cui et al., 2016).  

4.2 Spring water from different sources 

Spring water bottled at three different geographical locations was scanned to determine if it 

is possible to differentiate between the three sources.  

4.2.1 Spectral analysis 

The mean spectra of each spring water source, in the 1300 – 1600 nm range, is shown in 

Figure 4.6. The mean spectra of the three water sources are overlapping and appear to be 

identical, with one dominant band at 1450 nm. This absorbance band, 1450 nm, is attributed 

to the first overtone of the OH stretching vibration (Luck, 1974). Spectral subtraction was 

performed by subtracting the average spectrum of deionised water from the mean spectra 

of each of the spring water sources. This was done to highlight any subtle differences in the 

spectra. The resulting difference spectra is presented in Figure 4.7.  

 

Figure 4.6 Mean (unprocessed) spectra of spring water from three different sources.  
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Figure 4.7 Difference spectra (Savitzky-Golay smoothing with 2nd order polynomial and 21 

points) of the three different sources. 

 

The difference spectra (Figure 4.7) of the three sources revealed water absorbance 

bands at 1362 nm, 1382 nm and 1462 nm. The bands at 1362 nm and 1382 nm are assigned 

to the OH stretching in water molecules (Xantheas, 1995). While the band at 1462 nm is 

assigned to water molecules with two intermolecular hydrogen bonds (S2) (Franks, 1973). 

 

Figure 4.8 Second derivative (calculated with a Savitzky-Golay filter using 2nd order 

polynomial and 21 points) spectra in the first overtone of water (1300 – 1600 nm) of the 

three different spring water sources. 

 

The 2nd derivative (Figure 4.8) of the first overtone indicated three water absorbance bands 

at 1349 nm, 1412 nm and 1463 nm. The band at 1349 nm is linked to the asymmetric 
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stretching of the water molecule (Siesler, 2006). The bands at 1412 nm and 1463 nm have 

been assigned to water molecules with different numbers of hydrogen bonds. The region of 

1412 nm is associated with water molecules with little or no intermolecular hydrogen bonds 

(S0) (Segtnan et al., 2001). The water absorbance band, 1463 nm, has been assigned to 

water molecules with two hydrogen bonds (S2) (Franks, 1973; Siesler, 2006).  

4.2.2 Multivariate data analysis 

4.2.2.1 Principal component analysis 

Principal component analysis was performed to explore the data by examining the 

differences between the three sources of spring water. The resulting score and loading plots 

are presented in Figure 4.9 – 4.15.  

The score plots (Figure 4.9 – 4.11) showed minimal separation between the different 

spring water sources. PC 1 accounted for 62% of the variance in the data, whereas PC2, 

PC3 and PC4 accounted for 26%, 7% and 3%, respectively. This indicates that most of the 

variance in the data set is explained by the first two principal components.  

  

 

Figure 4.9 Principal component analysis score plot (PC1 (62 %) vs. PC2 (26 %)) of spring 

water sourced from three different sources.  
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Figure 4.10 Principal component analysis score plot (PC2 (26 %) vs. PC3 (7 %)) of spring 

water sourced from three different sources. 

 

 

Figure 4.11 Principal component analysis score plot (PC3 (7 %) vs. PC4 (3 %)) of spring 

water sourced from three different sources. 

 

The variance seen in the direction of PC 1 (Figure 4.9) may be attributed to the OH 

stretching and bending (v2) of the first overtone of water, while the different water clusters 

can be the result of the variance in the direction of PC 2 (Figure 4.10). The score plots of 
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PC 2 vs PC 3 (Figure 4.10) and PC 3 vs PC 4 (Figure 4.11) showed no separation between 

the three different water sources. The minimal separation between the water sources 

indicates that there are similarities in their water spectral pattern. 

 

Figure 4.12 PCA loadings line plot for PC 1(62%) 

. 

 

Figure 4.13 PCA loadings line plot for PC 2 (26%) 

. 
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Figure 4.14 PCA loadings line plot for PC 3 (7%) 

. 

 

Figure 4.15 PCA loadings line plot for PC 4 (3%). 

 

The loadings plot (Figure 4.12) of PC1 indicates three water absorbance bands at 

1364 nm, 1382 nm and 1515 nm. The water band 1364 nm has been assigned to stretching 

of the hydrogen bond in water molecules (Xantheas, 1995). The water band at 1382 nm 

represents OH stretching (Xantheas, 1995). The 1515 nm water band has been assigned to 

bending vibration mode of the first overtone of water (Siesler, 2006). The PC2 loadings 

(Figure 4.13) plot revealed water absorbance bands at 1410 nm and 1458 nm. The 1410 

nm water band is linked to water molecules with little or no intermolecular hydrogen 

bonds(S0) (Segtnan et al., 2001). Water molecules with two hydrogen bonds (S2) have been 

assigned to the 1458 nm wavelength (Franks, 1973). 
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Three water absorbance bands, 1340 nm, 1374 nm and 1478 nm were highlighted in 

the loadings plot of PC3 (Figure 4.14) and PC 4 (Figure 4.15). The 1340 nm band is linked 

to the asymmetric stretching of the water molecule (Siesler, 2006). The 1374 nm band is 

linked to the symmetrical and asymmetrical stretching of water molecules (Siesler, 2006). 

Water molecules with three hydrogen bonds (S3) are assigned to the 1478 nm band (Franks 

1973, Siesler, 2006). 

 

4.2.2.2 Partial least squares discriminant analysis (PLS-DA) 

The PLS-DA model of the three spring water sources provided satisfactory discrimination 

results, with an overall classification accuracy and misclassification rate of 89.6 % and 

10.32%, respectively. The overall performance measures of the PLS-DA models are given 

in Table 4.1. For the source A class, 38 of the 40 samples were correctly classified, while 

one sample of source B was misclassified as source A. Forty-one (41) of the 45 source B 

samples were correctly classified. For source C, 34 of 41 samples were correctly classified 

and four samples of source B were misclassified as source C.  

Table 4.1 The overall performance measures of the calibration, cross-validation and 

validation PLS-DA models 

Model Number of 
latent variables 

Classification 
accuracy (%) 

Misclassification rate 
(%) 

Calibration 

8 

89.68 10.32 

Cross-validation 86.51 13.49 

Validation 81.48 18.52 

 

The score plot of LV1 vs LV2 vs LV3 accounted for 34.23%, 26.89% and 26.10% of 

the variance, respectively (Figure 4.16). The plot shows slight overlapping between the 

classes. Separation was observed in the direction of LV1 (Figure 4.17), where source A is 

associated with the negative scores and source C with the positive scores.  
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Figure 4.16 3D PLS-DA score plot (LV1 (37.01 %) vs LV2 (28.91 %) vs LV3 (21.60 %)) of 

source A (red), B (green) and C (blue). 

 

Figure 4.17 PLS-DA score plot (LV1 (34.23 %) vs LV2 (26.89 %)) of source A (red), B 

(green) and C (blue). 

 

The PLS-DA prediction score plots (Figure 4.18 – 4.20) illustrated that nearly all three 

sources were predicted correctly. The source A (98.26 %) class had the highest 

classification accuracy, followed by sources C (94.17 %) and B (92.62 %). The model of 

source A has a sensitivity, specificity and F1 score above 97% (Table 4.2). Source B has a 

sensitivity of 82%, a specificity of 100% and F1 score of 90.11% (Table 4.2). Source C 

Stellenbosch University https://scholar.sun.ac.za



 

53 
 

sensitivity of 91.89%, a specificity of 95.18% and F1 score of 90.67%. This confirm that the 

model is able to classify the water samples correctly.  

 

Figure 4.18 PLS-DA prediction score plot of source A (red) showing the predicted objects. 

 

Figure 4.19 PLS-DA prediction score plot of source B (green) showing the predicted objects 

Stellenbosch University https://scholar.sun.ac.za



 

54 
 

 

Figure 4.20 PLS-DA prediction score plot of source C (blue) showing the predicted objects 

 

Table 4.2 Performance measures used to evaluate the PLS-DA models of the three spring 

water sources 

Source Classification 
accuracy (%) 

Sensitivity 
(%) 

Specificity 
(%) 

Precision 
(%) 

F1 
score 

(%) 

Misclassification 
rate (%) 

A 97.44 97.44 98.68 97.44 97.44 1.74 

B 92.62 82 100 100 90.11 7.38 

C 94.17 91.89 95.18 89.47 90.67 5.83 

 

The regression vector of source A (Figure 4.21) indicates three water absorbance 

bands at 1362 nm, 1382 nm and 1486 nm. The water band 1362 nm has been assigned to 

stretching of the hydrogen bond in water molecules, while the band at 1382 nm represents 

OH stretching (Xantheas, 1995). Water molecules with four intermolecular hydrogen bonds 

(S4) are associated with the 1486 nm band (Tsenkova, 2009). Three water absorbance 

bands, 1382 nm, 1412 nm and 1461 nm, were exhibited by the regression vector of source 

B (Figure 4.22). The 1382 nm band is related to the OH stretch of the first overtone of water 

(Xantheas, 1995). Free water (S0) and trimer (S2) molecules are linked to the 1412 nm and 

1461 nm bands, respectively (Franks, 1973; Segtnan et al., 2001). The regression vector of 

source C (Figure 4.23) exhibited two bands at 1380 nm and 1462 nm. These bands have 
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been assigned to the OH stretch of the first overtone of water and water trimers (S2), 

respectively (Franks, 1973; Xantheas, 1995).  

 

Figure 4.21 PLS-DA regression vector of source A in the 1300 – 1600 nm wavelength range. 

 

Figure 4.22 PLS-DA regression vector of source B in the 1300 – 1600 nm wavelength range. 
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Figure 4.23 PLS-DA regression vector of source C in the 1300 – 1600 nm wavelength range 

4.2.3 Aquagrams 

The difference in the water spectral patterns of the three sources was visually interpreted 

with the use of an aquagram (Figure 4.24). The aquagram was constructed with the water 

absorbance bands identified in sections 4.2.1 and 4.2.2. 

Typically, the right-hand side of the aquagram (1342 nm - 1426 nm) represents water 

with weak hydrogen bonds and free water molecules, which can take part in the hydration 

of solutes (Muncan et al., 2020). The left-hand side of the aquagram (1438 nm – 1515 nm) 

refers to the different hydrogen-bonded water clusters (S1, S2, S3, S4) and strongly bound 

water molecules (Muncan et al., 2020).  
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Figure 4.24 Aquagrams visualising the spectral patterns of source A (blue), B (red) and C 

(green). 

 

The spectral pattern of source A is characterised by the high absorbances at 1452 

nm, 1462 nm, 1478 nm and 1488 nm. These wavelengths have been assigned to water 

dimers (S1), trimers (S2), tetramer (S3) and pentamers (S4), respectively. This indicates that 

the water molecules present are strongly bonded to each other.  

The spectral pattern of source B is similar to that of source A. However, it has lower 

absorbance values at 1452 nm, 1462 nm, 1478 nm, 1488 nm and a higher absorbance value 

at 1412 nm. These wavelengths have been assigned to dimers (S1), trimers (S2), tetramer 

(S3), pentamers (S4) and water molecules with no intermolecular hydrogen bonds (S0), 

respectively. Indicating source B contains moderate concentrations of both strongly and 

weakly bound water.  

Source C is characterised by high absorbances at 1342 nm (v3), 1364 nm (OH 

stretch), 1374 nm (v1 + v2), 1382 nm (OH stretch) and 1412 nm (S0). These wavelengths 

correspond to free water and molecules with no hydrogen bonds to other molecules. 

Indicating that source C contains water molecules that are weakly bonded and free to 

interact with solutes present in the water. 

The difference between the three sources can also be explained by the variation in 

the mineral content of the sources (Table 4.3). Source C has a high mineral content, 

whereas sources A and B have lower mineral contents. Ions present in the water will have 

an influence on the hydrogen-bonded network of the water (Gowen et al., 2013). Inorganic 

salts such as NaCl, KCl, MgCl2 and AlCl3 are known to weaken or strengthen the hydrogen-
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bond network influence the hydrogen-bond network and are referred to as structure makers 

or breakers (Gowen et al., 2013). The variations in the concentration of ions present in water 

will have an influence on the water spectrum (Kovacs et al., 2016).  

Table 4.3 Typical mineral content, pH, alkalinity and TDS of the three different sources 

provided on the labels (mg/L) 

 Source A B C 

Calcium 2 0.4 5.9 

Magnesium 1 0.2 2.4 

Sodium 8 3.3 46.2 

Potassium 1 <0.1  0.5 

chloride 13.2 6.5 <5 

sulphate 4.4 1.4 10.8 

Alkalinity 5.4 3.4 104 

Nitrate 0.2 <0.1  <0.1  

Fluoride <1  <0.1  1 

TDS 48 19 193 

pH 6 5.1 8.5 

 

The results reported were similar to a study by Munćan et al. (2014), who applied 

aquaphotomics to discriminate between mineral waters. The authors indicated that each 

mineral water sample produced a unique water spectral pattern and that the differences 

were likely due to the variations in their mineral composition.  

4.2.4 Conclusion 

It is evident from the water spectral patterns of the three sources, that each water source 

has a unique arrangement of water species. The differences in the water spectral patterns 

of the different sources are most likely due to variation in the mineral composition of the 

three different water sources. Further analysis is however required to determine the effect 

that the combination of mineral salts and their concentrations will have on the water 

spectrum, as to date only single salt solutions have been investigated. These studies have 

proved that it is possible to detect changes in concentrations of the single solutes (Gowen 

et al., 2013; Gowen et al., 2015; Kovacs et al., 2016).  

NIR spectroscopy combined with the aquaphotomics approach could distinguish 

between the three spring water sources. Each water source had a unique combination of 

different water clusters. This resulted in each spring water source having a unique water 

spectral pattern. 
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4.3 Different types of bottled water 

This data set consisted of different mineral and spring water samples, which were bottled at 

different sources. The aim of this section was to differentiate between mineral and spring 

water, irrespective of the source.  

4.3.1 Spectral analysis 

The mean spectrum of each spring water source, in the 1300 – 1600 nm range, is shown in 

Figure 4.25. The mean spectra of the three water sources appear to be identical, with one 

dominant band at 1450 nm. This absorbance band, 1450 nm, was attributed to the first 

overtone of the OH stretching vibration (Luck, 1974). Spectral subtraction was performed, 

by subtracting the average spectrum of deionised water from the average spectra of the 

spring and mineral water. The resulting difference spectra are shown in Figure 4.26.  

 

Figure 4.25 Mean spectra of the different brands of bottled water samples. 

 

The difference spectra (Figure 4.26) of the spring and mineral water exhibited water 

absorbance bands at 1373 nm, 1452 nm, 1462 nm and 1472 nm. The water band 1373 nm 

has been assigned to symmetric stretching and bending vibrational modes of the first 

overtone of water (v1+v2) (Siesler, 2006). While the bending and asymmetric stretching 

vibrational (v2+v3) modes of the first overtone of water has been assigned to 1452 nm 

(Cattaneo et al., 2009; Siesler, 2006). Water molecules with two (S2) and three (S3) 

hydrogen bonds have been linked to the bands at 1462 nm and 1472 nm, respectively 

(Franks, 1973; Siesler, 2006). 
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Figure 4.26 Difference spectra (Savitzky-Golay smoothing with 2nd order polynomial and 21 

points) of the different brands of bottled water samples.  

 

 

Figure 4.27 Second derivative (calculated with a Savitzky-Golay filter using 2nd order 

polynomial and 21 points) spectra in the first overtone of water (1300 – 1600 nm) of the 

different bottled water samples. 

 

The 2nd derivative spectra (Figure 4.27) of the spring and mineral water indicated 

three water absorbance bands at 1348 nm, 1412 nm and 1462 nm. The band at 1348 nm is 

linked to the asymmetric stretching of the water molecule (Siesler, 2006). The bands at 1412 

nm and 1462 nm have been assigned to water molecules with different numbers of hydrogen 

bonds. The region of 1412 nm is associated with water molecules with little or no 
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intermolecular hydrogen bonds (S0) (Segtnan et al., 2001). The water absorbance band, 

1462 nm, has been assigned to water molecules with two hydrogen bonds (S2).  

4.3.2 Multivariate data analysis 

4.3.2.1  Principal component analysis 

Principal component analysis was performed to explore the data by examining the 

differences between mineral and spring water. The resulting score and loading plots are 

shown in Figures 4.28 – 4.35.  

The score plots (Figures 4.28 – 4.31) showed no separation between the different 

spring water sources. PC 1 accounted for 68% of the variance in the data, whereas PC2, 

PC3, PC4 and PC5 accounted for 20%, 7%, 3% and 1%, respectively. This indicates that 

most of the variance in the data set is explained by the first two principal components. 

The lack of separation between the water sources indicates that there are similarities 

in their spectral pattern. However, variation in the chemical composition of the water sources 

can lead to small spectral differences.  

 

  

Figure 4.28 Principal component analysis score plot (PC1 (68 %) vs. PC2 (20 %)) of 

bottled water. 
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Figure 4.29 Principal component analysis score plot (PC2 (20 %) vs. PC3 (7 %)) of bottled 

water. 

 

Figure 4.30 Principal component analysis score plot (PC3 (7 %) vs. PC4 (3 %)) of bottled 

water. 
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Figure 4.31 Principal component analysis score plot (PC4 (3 %) vs. PC5 (1 %)) of bottled 

water. 

 

The variance seen in the direction of PC 1 (Figure 4.28) may be attributed to the OH 

stretching and bending (v2) of the first overtone of water, while the different water clusters 

can be the result of the variance in the direction of PC 2 (Figure 4.29). The score plots of 

PC 2 vs PC 3 (Figure 4.30) and PC 3 vs PC 4 (Figure 4.31) showed no separation between 

the three different water sources. The minimal separation between the water sources 

indicates that there are similarities between the mineral and spring water samples. 

 

Figure 4.32 PCA loadings line plot for PC 1 (68%). 

Stellenbosch University https://scholar.sun.ac.za



 

64 
 

 

Figure 4.33 PCA loadings line plot for PC 2 (20%). 

 

 

Figure 4.34 PCA loadings line plot for PC 3 (7%). 

 

Figure 4.35 PCA loadings line plot for PC 4 (3%). 
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The PC 1 loadings plot (Figure 4.32) exhibited two bands at 1365 nm and 1518 nm. 

The water band 1365 nm has been assigned to stretching of the hydrogen bond in water 

molecules (Xantheas, 1995). The 1518 nm water band has been assigned to bending (v2) 

vibration mode of the first overtone of water (Siesler, 2006). The loadings plot of PC 2 

(Figure 4.33) exhibited bands at 1366 nm and 1410 nm. The water band 1366 nm has been 

assigned to stretching of the hydrogen bond in water molecules (Xantheas, 1995). Water 

molecules with little or no intermolecular hydrogen bonds (S0) are linked to the 1410 nm 

band (Segtnan et al., 2001). 

The third PC loadings plot (Figure 4.34) exhibited three bands at 1364 nm, 1410 nm 

and 1476 nm. The band at 1364 nm has been assigned to stretching of the hydrogen bond 

in water molecules (Xantheas, 1995). The 1412 nm water band is linked to water molecules 

with little or no intermolecular hydrogen bonds(S0) (Segtnan et al., 2001). The loadings plot 

of PC 4 (Figure 4.35) exhibited bands at 1341 nm, 1372 nm, 1438 nm, 1467 nm and 1518 

nm. The band at 1341 nm is linked to the asymmetric stretching of the water molecule 

(Siesler, 2006). The band at 1374 nm is linked to the symmetrical and asymmetrical 

stretching of water molecules (Siesler, 2006). The 1438 nm and 1467 nm bands are 

assigned to water molecules with one hydrogen bonds (S1) and two hydrogen bonds (S2), 

respectively (Cattaneo et al., 2009; Franks, 1973; Siesler, 2006). The 1518 nm water band 

has been assigned to bending vibration mode of the first overtone of water (Siesler, 2006). 

The loadings plot of PC 5 (Figure 4.36) exhibited bands at 1343 nm, 1363nm, 1384 

nm, 1422 nm, 1488 nm and 1518 nm. The band at 1343 nm is linked to the asymmetric 

stretching of the water molecule (Siesler, 2006). The water band 1363 nm has been 

assigned to stretching of the hydrogen bond in water molecules (Xantheas, 1995). The 1384 

nm band corresponds to the OH stretching of molecules in the first overtone of water 

(Xantheas, 1995). The 1422 nm band is referred to as the water hydration band (Tsenkova, 

2009; Williams, 2009). Water molecules with four hydrogen bonds have been assigned to 

the 1488 nm band (S2) (Franks, 1973). The 1518 nm water band has been assigned to 

bending vibration mode of the first overtone of water (Siesler, 2006). 

 

Stellenbosch University https://scholar.sun.ac.za



 

66 
 

 

Figure 4.36 PCA loadings line plot for PC 5 (1%). 

4.3.2.2  Partial least squares discriminant analysis (PLS – DA) 

The PLS-DA model of mineral and spring water provided acceptable discrimination results, 

with an overall classification accuracy and misclassification rate of 72.62 % and 27.38 %, 

respectively. The overall performance measures of the PLS-DA models are presented in 

Table 4.4. For the mineral water class, 150 of the 208 samples were correctly classified and 

57 of the spring water class was misclassified as mineral water. Out of the 212 spring water 

samples, 155 samples were correctly classified and 57 samples were misclassified as 

mineral water.  

Table 4.4 The overall performance measures of the calibration, cross-validation and 

validation PLS-DA models of mineral and spring water 

Model Classification accuracy 
(%) 

Misclassification rate (%) 

Calibration 72.62 27.38 

Cross – validation 70.48 29.52 

Validation 74.44 25.56 

 

The PLS-DA 3D score plot of LV1 vs LV2 vs LV3 accounted for 45.36 %, 22.29 % 

and 19.63 of the variance, respectively. A large amount of overlap between the classes is 

observed in Figures 4.37 – 4.38, which is accompanied by a large number of samples being 

incorrectly classified. The lack of separation between the mineral and spring water is likely 

due to the similarities in the physico-chemical properties of the samples.  
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Figure 4.37 3D score plot (LV1 (45.36 %) vs LV2 (22.29 %) vs LV3 (19.63 %)) of mineral 

(red) and spring (green) water. 

 

Figure 4.38 PLS-DA score plot (LV1 (45.36%) vs LV2 (22.29%)) of mineral (red) and spring 

water (green). 

 

The PLS-DA prediction score plots (Figure 4.39 – 4.40) illustrated that most of the 

mineral and spring water samples were correctly predicted. The classification accuracy of 

the mineral and spring water models was both 72.66 %. The sensitivity, specificity and F1 

scores for both mineral and spring water is above 72 % (Table 4.5). This indicates that the 

ability of the model to classify the water types is acceptable. The spectral classification of 

the water types can be attributed to the variation in mineral content of the water. The 
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misclassification of the water types is likely due to the mineral content of the water types 

being similar (Table 4.6). 

Figure 4.39 PLS-DA prediction score plot of mineral water (red) showing the predicted 

samples. 

Figure 4.40 PLS-DA prediction score plot of spring water (green) showing the predicted 

samples. 

The PLS-DA regression vectors (Figure 4.41-4.42) of mineral and spring water 

exhibited four bands at 1364 nm, 1384 nm, 1429nm and 1484 nm. The 1364 nm and 1384 

nm bands are linked to the OH stretch of water in the first overtone (Xantheas, 1995). The 

1429 nm band is referred to as the water hydration band (Tsenkova, 2009; Williams, 2009). 

Water molecules with four intermolecular hydrogen bonds correspond to the 1484 nm band 

(Tsenkova, 2009). 
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Figure 4.41 PLS-DA regression vector of mineral water in the 1300 – 1600 nm wavelength 

range. 

 

Figure 4.42 PLS-DA regression vector of spring water in the 1300 – 1600 nm wavelength 

range. 

 

Table 4.5 Performance measures used to evaluate the PLS-DA models of mineral and 

spring water 

Type Classification 
accuracy (%) 

Sensitivity 
(%) 

Specificity 
(%) 

Precision 
(%) 

F1 
score 

(%) 

Misclassification 
rate (%) 

Mineral 72.62 72.46 72.77 72.12 72.29 27.38 

Spring 72.62 72.77 72.46 73.11 72.94 27.38 
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4.3.3 Aquagram 

The difference between the mineral and spring water was visualised with an aquagram 

(Figure 4.43). The aquagram was constructed with the water absorbance bands which 

consistently appeared in sections 4.3.1 and 4.3.2. A large difference between the mineral 

and spring water is observed based on their respective aquagrams. The water spectral 

pattern of the mineral water has normalised absorbance values which are below zero, while 

the spring waters’ spectral pattern has normalised absorbance values above zero.  

 

 

 

Figure 4.43 Aquagrams visualising the spectral patterns of the mineral (blue) and spring 

(red) water.  

 

The aquagram of the mineral water indicated high absorbance values at 1410 nm 

and 1422 nm, which correspond to water molecules with no intermolecular hydrogen 

bonding (Segtnan et al., 2001) and the water hydration band (Tsenkova, 2009; Williams, 

2009), respectively. A noticeable difference is seen between the water spectral patterns of 

the mineral and spring water. Mineral water has lower absorbance values at all the 

WAMACS compared to spring water.  

Spring water had high absorbance values at 1438nm, 1462 nm, 1472 nm and 1485. 

These WAMACS correspond to water molecules with one (S1), two (S2), three (S3) and four 

(S4) intermolecular hydrogen bonds. Therefore, the spring water can be considered strongly 

bound water. 

The main difference between mineral and spring water is that the mineral content of 

mineral water is required to remain constant, while variations in the mineral content of spring 
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water can occur (Ashurst et al., 2017). Therefore, variations in the mineral content of spring 

water could have resulted in the misclassification rate of spring water as mineral water. 

These results are similar to that found in literature, as previous studies indicated that 

it is possible to classify different water types (Munćan et al., 2014; Tanaka et al., 1997). The 

water spectrum is very sensitive, therefore, small variances between samples can be 

detected (Tanaka et al., 1997). These authors also indicated that further research is required 

to understand the influence the mineral content will have in the water spectral pattern.  

 

Table 4.6 Typical mineral content, pH, alkalinity and TDS of the different mineral and spring 

water samples 

 
M1 M2 M3 S1 S2 S3 

Calcium 41 41 0.7 0.5 <0.5 10 

Magnesium 25.5 25.5 2.7 1.2 <0.5 10 

Sodium 6.2 6.2 19.4 10.2 5 3 

Potassium 0.7 0.7 0.8 0.8 <1 1 

Chloride 7 7 42 19 9 2 

Sulphate 8 8 1.8 2 <5 4 

Alkalinity (CaCO3) 203 203 1 3 10 65 

Nitrate 7 7 0.7 <1 0.2 1 

Flouride <0.2 <0.2 0.2 <1 <0.05 <0.1 

TDS 225 225 117 61 <26 83 

pH 7.5 7.5 5.6 5 5.2 7.3 

 

4.3.4 Conclusion  

With the use of the aquaphotomics approach, it was possible to distinguish between mineral 

and spring water. The two water types produced two completely different water spectral 

patterns, indicating that each water type had a different configuration of water species.   

4.4 River water and different filtration materials  

This data set consisted of river water (RW) that had been collected on ten different days and 

filtered using different materials (pine biochar (PN), black wattle biochar (BW), activated 

charcoal (AC) and sand (SA)). The aim of this experiment was to determine whether it is 

possible to monitor changes in the water spectral patterns due to different filtration media. 

Furthermore, it was determined whether differences in river water quality over time could be 

observed through changes in the water spectral patterns. 
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4.4.1 Filtered river water  

4.4.1.1 Spectral analysis 

The mean spectrum of the river and filtered water, in the 1300 – 1600 nm range, is shown 

in Figure 4.44. The mean spectra of the river and filtered water appear to be identical, with 

one dominant band at 1450 nm. This absorbance band, 1450 nm, is attributed to the first 

overtone of the OH stretching vibration (Luck, 1974).  

 

Figure 4.44 Mean spectra for river water and the different filtrate samples. 

 

The difference spectra was calculated by subtracting the average spectrum of 

deionised water from the average spectra of the river and filtered water. The difference 

spectra (Figure 4.45) of the river and filtered water indicated water absorbance bands at 

1380 nm, 1426 nm and 1472 nm. The OH stretch in the first overtone of water is associated 

with the 1380 nm band (Xantheas, 1995). The 1426 nm band is referred to as the water 

hydration band (Tsenkova, 2009; Williams, 2009). Water molecules with three 

intermolecular hydrogen bonds are linked to the 1472 nm band (Franks, 1973; Siesler, 

2006).  
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Figure 4.45 Difference spectra (Savitzky-Golay smoothing with 2nd order polynomial and 21 

points) of filtered and unfiltered water. 

 

Three water absorbance bands at 1348 nm, 1412 nm and 1462 nm were exhibited 

by the second derivative spectra (Figure 4.45). The asymmetric stretching of the first 

overtone of water has been linked to the 1348 nm (Siesler, 2006). The 1412 nm and 1426 

nm bands have been assigned to water molecules with zero (S0) and two (S2) intermolecular 

hydrogen bonds, respectively (Franks, 1973; Segtnan et al., 2001). 

 

Figure 4.46 Second derivative (calculated with a Savitzky-Golay filter using 2nd order 

polynomial and 21 points) spectra in the first overtone of water (1300 – 1600 nm) of the river 

and filtered water samples. 
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4.4.1.2 Multivariate data analysis 

4.4.1.2.1 Principal component analysis 

Principal component analysis was performed to explore the data by examining the effect 

different filter material have on river water. The resulting score and loading plots are shown 

in Figure 4.47 -4.55.  

The score plots (Figure 4.47 – 4.50) showed no separation between the different 

river and filtered water samples. PC 1 accounted for 74% of the variance in the data, 

whereas PC2, PC3, PC4 and PC5 accounted for 14%, 8%, 2% and 1%, respectively. This 

indicates that most of the variance in the data set is explained by the first two principal 

components. 

The lack of separation between the river and filtered water samples indicates that 

there are similarities in their spectral patterns. However, variation in the chemical 

composition of the water sources can lead to small spectral differences.  

 

 

Figure 4.47 Principal component analysis score plot (PC1 (74 %) vs. PC2 (14 %)) of the 

river (RW)  and filtered water (activated (AC), black wattle biochar (BW), pine biochar (PN) 

and sand (SA)). 

 

Stellenbosch University https://scholar.sun.ac.za



 

75 
 

 

Figure 4.48 Principal component analysis score plot (PC2 (14 %) vs. PC3 (8 %)) of the river 

(RW)  and filtered water (activated (AC), black wattle biochar (BW), pine biochar (PN) and 

sand (SA)). 

 

Figure 4.49 Principal component analysis score plot (PC3 (8 %) vs. PC4 (2 %)) of the river 

(RW)  and filtered water (activated (AC), black wattle biochar (BW), pine biochar (PN) and 

sand (SA)). 
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Figure 4.50 Principal component analysis score plot (PC4 (2 %) vs. PC5 (1 %)) of the river 

(RW)  and filtered water (activated (AC), black wattle biochar (BW), pine biochar (PN) and 

sand (SA)). 

 

The loadings plot of PC 1 (Figure 4.51) exhibited a positive band at 1380 nm and a 

negative band at 1520 nm. The water band at 1380 nm represents OH stretching (Xantheas, 

1995). The band, 1380 nm, is associated with the OH stretching in the first overtone of water, 

while 1520 nm is linked with the bending vibration of the first overtone of water (Siesler, 

2006; Xantheas, 1995). The loadings plot of PC 2 (Figure 4.52) exhibited four positive bands 

at 1365 nm, 1383 nm, 1412 nm and 1474 nm. The water band 1365 nm has been assigned 

to stretching of the hydrogen bond in water molecules (Xantheas, 1995). The water band at 

1383 nm represents OH stretching (Xantheas, 1995). The 1412 nm water band is linked to 

water molecules with little or no intermolecular hydrogen bonds (S0) (Segtnan et al., 2001). 

The 1474 nm wavelength band has been assigned to water molecules with three hydrogen 

bonds (S3) (Franks, 1973; Siesler, 2006). 

The loadings plot of PC 3 (Figure 4.53) exhibited three positive bands, 1336 nm, 

1362 nm, 1476 nm, and one negative band at 1412 nm. The band at 1336 nm is linked to 

the asymmetric stretching of the water molecule (Siesler, 2006). The water band 1362 nm 

has been assigned to stretching of the hydrogen bond in water molecules (Xantheas, 1995). 

The 1412 nm water band is linked to water molecules with little or no intermolecular 

hydrogen bonds(S0) (Segtnan et al., 2001). The 1476 nm wavelength band has been 

assigned to water molecules with three hydrogen bonds (S3) (Franks, 1973; Siesler, 2006). 

Stellenbosch University https://scholar.sun.ac.za



 

77 
 

The PC 4 (Figure 4.54) loadings plot exhibited four bands, two positive and two negatives, 

at 1340 nm, 1374 nm, 1443 nm and 1475 nm. The band at 1340 nm is linked to the 

asymmetric stretching of the water molecule (Siesler, 2006). The band at 1374 nm is linked 

to the symmetrical and asymmetrical stretching of water molecules (Siesler, 2006) The 1443 

nm and 1475 nm bands has been assigned to water molecules with one (S1) and three (S3) 

hydrogen bonds (Cattaneo et al., 2009; Franks, 1973; Siesler, 2006). 

Six bands were identified in the PC 5 loadings plot (Figure 4.55), 1343 nm,1364 

nm,1383 nm, 1423 nm,1478 nm,1516 nm. The band at 1343 nm is linked to the asymmetric 

stretching of the water molecule (Siesler, 2006). The water band 1364 nm has been 

assigned to stretching of the hydrogen bond in water molecules (Xantheas, 1995). The water 

band at 1383 nm represents OH stretching (Xantheas, 1995). The band, 1423 nm, is referred 

to as the water hydration band (Tsenkova, 2009; Williams, 2009). The 1478 nm wavelength 

band has been assigned to water molecules with three hydrogen bonds (S3) (Franks, 1973; 

Siesler, 2006). The 1516 nm water band has been assigned to bending vibration mode of 

the first overtone of water (Siesler, 2006). 

 

Figure 4.51 PCA loadings line plot for PC 1 (74%). 
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Figure 4.52 PCA loadings line plot for PC 2 (14%). 

 

 

Figure 4.53 PCA loadings line plot for PC 3 (8%). 

 

Figure 4.54 PCA loadings line plot for PC 4 (2%). 
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Figure 4.55 PCA loadings line plot for PC 5 (1%). 

 

4.4.1.2.2 Partial least squares regression 

Separate PLS regression models were built using smoothed (Savitzky-Golay filter using 2nd 

order polynomial and 21 points) and SNV transformed spectra in the range of 1300 – 1600 

nm for the river (RW) and filtered (AC, BW, PN and SA) water. The relationship between the 

spectral data and TDS content samples were investigated with the PLS regression models. 

The accuracy of the models was evaluated with the use of their respective R2 and RMSECV 

values (Table 4.7). 

 

Table 4.7 PLS statistics of the models 

Sample R2 RMSECV 

AC 0.75 44.06  

BW 0.72 91.35 

PN 0.57 48.09 

RW 0.60 56.04 

SA 0.83 94.59 

 

The regression vectors for the river and filtered water is shown in Figures 4.56 – 4.60. The 

important water absorbance bands exhibited in the PLS regression vectors of the river and 

filtered water correspond with those identified in sections 4.4.1.1 and 4.4.1.2.1. The water 

absorbance bands exhibited in the regression vectors (Figures 4.56 – 4.60) with their 

respective band assignment is shown in Table 4.8. 
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Table 4.8 WAMACS of interest and their assignments for the regression vectors of AC, BW, 

PN, RW and SA 

 

 

 

Figure 4.56 PLS regression vector of the filtered river water using activated charcoal (AC) 

in the 1300 – 1600 nm wavelength range. 

Regression 
vector 

Wavelength 
(nm) 

Assignment Reference 

AC 1382 OH stretch (Xantheas, 1995) 

1415 S1 (Cattaneo et al., 2009; Siesler, 
2006) 

1484 S4 (Tsenkova, 2009) 

BW 1343 V3 (Siesler, 2006) 

1404 S0 (Segtnan et al., 2001) 

1428 Water hydration (Tsenkova, 2009; Williams, 
2009) 

1440 S1 (Cattaneo et al., 2009; Siesler, 
2006) 

1485 S4 (Tsenkova, 2009) 

PN 1336 V3 (Siesler, 2006) 

1365 OH Stretch (Xantheas, 1995) 

1384 OH Stretch (Xantheas, 1995) 

1408 S0 (Segtnan et al., 2001) 

1458 S2 (Franks, 1973) 

RW 1366 OH Stretch (Xantheas, 1995) 

1383 OH Stretch (Xantheas, 1995) 

SA 1340 V3 (Siesler, 2006) 

1366 OH Stretch (Xantheas, 1995) 

1382 OH Stretch (Xantheas, 1995) 

1413 S0 (Segtnan et al., 2001) 

1462 S2 (Franks, 1973) 
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Figure 4.57 PLS regression vector of the filtered river water using black wattle (BW) biochar 

in the 1300 – 1600 nm wavelength range. 

 

 

Figure 4.58 PLS regression vector of the filtered river water using pine (PN) biochar in the 

1300 – 1600 nm wavelength range. 
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Figure 4.59 PLS regression vector of unfiltered river water (RW) in the 1300 – 1600 nm 

wavelength range. 

 

 

Figure 4.60 PLS regression vector of the filtered river water using sand (SA) in the 1300 – 

1600 nm wavelength range. 

 

4.4.1.3 Aquagram 

The difference between the river and filtered water was visualised with aquagrams (Figure 

4.61). The aquagrams were constructed with the water absorbance bands identified in 

sections 4.4.1.1 and 4.4.1.2. 

The spectral pattern of AC and SA is characterised with high absorbance values at 

1458 nm, 1462 nm, 1472 and 1485 nm. These wavelengths have been assigned to water 

molecules with one, two, three and four hydrogen bonds, respectively. This indicates that 

the molecules have strong hydrogen bonds. The RW spectral pattern indicates that it 

contains weakly bound molecules. This is due to high absorbance values in the 1348 nm – 

1426 nm range and has been linked to free water and water solvation shells. The decrease 

in absorbance of weakly bonded hydrogen molecules in the spectral pattern of RW to that 

of AC and SA indicate that some solutes were removed during the filtration process.  

The spectral patterns of BW and PN indicate low absorbance values in the 1366 nm 

– 1426 nm range, which is linked to free and weakly bound water molecules. Compared to 

the spectral pattern of RW, BW and PN contain less free water molecules than RW. This 

shows that during the filtration process a rearrangement of water molecular species occurs. 

The results reported are similar to the results reported by Muncan et al. (2020). The 

authors monitored the changes in the water spectral patterns due to different filtration steps. 
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This indicates that with aquaphoptomics it is possible to monitor changes in the water 

spectral patterns due to filtration steps as a perturbation. 

 

Figure 4.61 Aquagram visualising the spectral patterns of AC (yellow), BW (blue), PN 

(orange), RW (black) and SA (purple). 

 

4.4.2 Changes in river water over time 

4.4.2.1 Spectral analysis 

The difference spectra of the river water collected for ten days was calculated by subtracting 

the average spectra of all the river samples from the average spectra of each day. The 

resulting difference spectra plot is shown in Figure 4.62. The difference spectra exhibited 

water absorbance bands at 1382 nm, 1416 nm and 1454 nm. The 1382 nm band is linked 

to the O – H stretch and water solvation shells (Xantheas, 1995). Water molecules with two 

hydrogen bonds has been linked to the 1416 nm band (Franks, 1973). The bending and 

asymmetric stretch of the first overtone of water occur at 1454 nm (Siesler, 2006). 
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Figure 4.62 Difference spectra (Savitzky-Golay smoothing with 2nd order polynomial and 21 

points) of the river water collected for the 10 days. 

 

The 2nd derivative (Figure 4.63) of the first overtone indicated four water absorbance 

bands at 1348 nm, 1412 nm, and 1462 nm. The band at 1348 nm is linked to the asymmetric 

stretching of the water molecule (Siesler, 2006). Water molecules with different numbers of 

hydrogen bonds have been assigned to the absorbance bands of 1412 nm, 1434 nm and 

1462 nm. The region of 1412 nm is associated with water molecules with little or no 

intermolecular hydrogen bonds (S0) (Segtnan et al., 2001). The water absorbance band, 

1462 nm, has been assigned to water molecules with two hydrogen bonds (S2).  

 

Figure 4.63 Second derivative (calculated with a Savitzky-Golay filter using 2nd order 

polynomial and 21 points) spectra in the first overtone of water (1300 – 1600 nm) of the river 

water samples. 
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4.4.2.2 Multivariate data analysis 

4.4.2.1 Principal Component analysis 

Principal component analysis was performed to explore the data by examining the changes 

in the river water over a period of ten days. The resulting score and loading plots are shown 

in Figure 4.64 -4.73.  

Separation was observed between the different days in the score plots (Figure 4.64 

– 4.68). PC 1 accounted for 52% of the variance in the data, whereas PC2, PC3, PC4 and 

PC5 accounted for 26%, 10%, 6% and 3%, respectively. 

 

Figure 4.64 Principal component analysis score plot (PC1 (52 %) vs. PC2 (26 %)) of river 

water collected over a period of ten days. 
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Figure 4.65 Principal component analysis score plot (PC2 (26 %) vs. PC3 (10 %)) of river 

water collected over a period of ten days. 

 

Figure 4.66 Principal component analysis score plot (PC3 (10 %) vs. PC4 (6 %)) of river 

water collected over a period of ten days. 
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Figure 4.67 Principal component analysis score plot (PC4 (6 %) vs. PC5 (3 %)) of river 

water collected over a period of ten days. 

 

 

Figure 4.68 Principal component analysis score plot (PC5 (3 %) vs. PC6 (1 %)) of river 

water collected over a period of ten days. 

 

The loadings plot of PC 1 (Figure 4.69) exhibited two water absorbance bands at 

1375 nm and 1518 nm. The symmetric stretching and bending vibrational modes (v1 + v2) 

of the first overtone of water have been linked to the 1375 nm band (Siesler, 2006). The 
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1518 nm wavelength has been assigned to the bending vibrational mode (v2) of the first 

overtone of water (Siesler, 2006). 

Four absorbance bands, 1365 nm, 1423 nm, 1437 nm and 1484 nm were identified 

in the loadings plot of PC 2 (Figure 4.70). The water band 1365 nm has been assigned to 

stretching of the hydrogen bond in a water molecule (Xantheas, 1995). The 1423 nm band 

is linked to water hydration (Tsenkova, 2009; Williams, 2009). Water molecules with one 

(S1) and four (S4) hydrogen bonds have been assigned to the 1437 nm and 1484 nm bands, 

respectively (Cattaneo et al., 2009; Franks, 1973; Siesler, 2006).  

The loadings plot of PC 3 (Figure 4.71) and PC 4 (Figure 4.72) exhibited bands at 

1362 nm, 1366 nm, 1384 nm, 1385 nm, 1454 nm and 1518 nm. The water bands in the 

region of 1360 - 1366 nm and 1380 - 1384 nm has been assigned to stretching of the 

hydrogen bond in water molecules (Xantheas, 1995). The band 1454 nm is linked to the 

bending and asymmetric stretching vibrational modes (v2+v3) of the first overtone of water 

(Cattaneo et al., 2009; Siesler, 2006). The bending vibrational mode (v2) of the first overtone 

of water has been assigned to the 1518 nm band (Siesler, 2006). 

Four bands, 1338 nm, 1380 nm, 1415 nm and1472 nm, were identified in the loadings 

plot of PC 5 (Figure 4.73). The 1338 nm band is associated with the bending vibrational 

mode of the first overtone of water (Siesler, 2006). Water molecules with no (S0) and three 

(S3) hydrogen bonds correspond to 1415 nm and 1472 nm bands, respectively (Franks, 

1973; Segtnan et al., 2001; Siesler, 2006).  

 

 

Figure 4.69 PCA loadings line plot for PC 1 (52%). 
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Figure 4.70 PCA loadings line plot for PC 2 (26%). 

 

 

Figure 4.71 PCA loadings line plot for PC 3 (10%). 

 

Figure 4.72 PCA loadings line plot for PC 4 (6%). 

Stellenbosch University https://scholar.sun.ac.za



 

90 
 

 

Figure 4.73 PCA loadings line plot for PC 5 (3%). 

4.4.2.3 Aquagram 

The spectral patterns of the river water samples are shown in Figure 4.74. The water 

samples showed a wide range of variability in the physico-chemical characteristics which 

are due to the variations in climatic conditions on the different days of sample collection. 

From the aquagram (Figure 4.74), it can be seen that water collected from the same river 

on different days have different water spectral patterns.  

The water spectral patterns of day 1 – 4 is characterised by the presence of free 

water molecules that can interact with solutes present in the water. This is due to high 

absorbance values observed from 1348 nm – 1424 nm, indicating that the water molecules 

are loosely bound. On day 5 and 6, high absorbance values are observed in the 1454 nm – 

1518 nm range. This wavelength range is associated with different water molecular species 

sizes. This indicates that the water is strongly bound to other molecules. A shift back towards 

loosely bound water molecules is observed from day 7 – 9, with high absorbance values in 

the 1348 nm – 1424 nm range. An increase in different water clusters is seen on day 10, 

with high absorbance values in the 1454 nm – 1518 nm range. The differences in the water 

spectral patterns are likely due to the variation in the physico-chemical characteristics of the 

ten days.  
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Figure 4.74 Aquagrams visualisng the spectral patterns of river water for the ten days. 

The physico-chemical data of the river water for the ten days are shown in Table 4.9. 

River water is complex system, as the physico-chemical characteristics of the water does 

not remain constant but change continuously due to environmental and human effects. This 

makes it difficult to determine which parameter influenced the water matrix coordinates.  

Table 4.9 Physico-chemical data of the river water for the ten days 

 
EC 
(mS/cm) 

pH ALK 
(mg/l) 

TURB 
(NTU) 

TDS 
(ppm) 

TSS 
(mg) 

VSS 
(mg) 

UVT% 

D1 0.68 7.14 271.50 16.01 369.50 18.20 11.60 33.85 

D2 0.76 5.92 170.00 21.65 398.50 13.00 10.80 21.10 

D3 0.52 5.72 122.25 28.85 276.00 32.60 21.40 24.75 

D4 0.6 6.19 139.00 16.78 266.50 10.00 10.00 40.70 

D5 0.62 7.03 212.75 18.91 278.50 12.20 10.20 37.90 

D6 0.73 6.75 250.00 45.50 313.50 21.60 13.40 26.50 

D7 0.43 7.04 139.00 8.70 185.00 6.00 4.00 54.90 

D8 0.76 6.38 185.75 43.25 453.50 15.20 11.40 31.75 

D9 0.72 6.00 125.00 47.00 436.00 9.20 7.00 17.80 

D10 0.73 7.13 191.25 19.14 458.50 14.80 9.60 30.10 

TDS – Total dissolved solids, EC – Electrical conductivity, ALK – Alkalinity, TURB – Turbidity, TSS – 

Total suspended solids, VSS – Volatile suspended solids, UVT % – Ultraviolet transmission percentage  
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4.4.3 Conclusion  

With the use of the aquaphotomics approach, it is easy to track changes in water with 

respect to changes in the water clustering. The effect of different filtration material can be 

monitored with aquaphotomics since the filtration process alters the hydrogen bonding and 

water clusters within water. However, further research is required to determine how the 

different physico-chemical parameters influence the water spectral patterns of the samples. 

NIR spectroscopy combined with the aquaphotomics approach can monitor changes 

in the water spectral patterns of water due to different filtration media. It can also detect 

changes in the water spectral pattern due to quality changes. However, it is not completely 

understood how the different physico-chemical parameter influences the spectra of water. 
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Chapter 5 

General discussion and conclusion 

Water scarcity and quality degradation present a major challenge to both developed and 

developing countries, as it poses a risk to both the environment and human health (Kirby et 

al., 2003). With the increasing global population, water resources have been exposed to a 

variety of pollutants due to anthropogenic activities (Kovacs et al., 2016). Monitoring water 

quality is a complex problem, as numerous tests are required to provide an overall indication 

of the quality (Gowen et al., 2015). With the increasing scarcity of water and increasing 

demand for water, alternative methods for intervention, monitoring and sanitation are 

required. NIR spectroscopy combined with the aquaphotomics approach has shown that it 

has the potential to be used as a rapid screening method for water quality (Gowen et al., 

2012; Kovacs et al., 2016).  

This study aimed at investigating the use of NIR spectroscopy combined with the 

aquaphotomics approach as a potential screening method for water quality. This was 

achieved by investigating the effect temperature has on the water spectrum. In addition, 

bottled water was examined to determine if we could differentiate between various 

geographical sources and types of water (mineral or spring water). Finally, the effect of a 

filtration step and day of sample collection was investigated in the water spectral pattern of 

river water. 

The spectral analysis of water in the 1300 – 1600 nm range at the three (20˚C, 25˚C 

and 30˚C) temperatures indicated the 1412 nm and 1492 nm bands displayed the most 

variation. This was due to the change in the weakly and strongly hydrogen-bonded water 

molecules with an increase in temperature. Variations in temperature cause changes in the 

concentration of free and bonded OH groups (Chalmers & Griffiths, 2002). An increase in 

temperature leads to a reduction in water clusters, due to the weakening of hydrogen-

bonding (Cui et al., 2016).  

The PLS-DA model of the spring water could successfully differentiate between the 

three sources with a classification accuracy of 89.68%. The classification of the three 

sources was attributed to the variation in their mineral content. The aquagram of the spring 

water indicated that each source had a unique water spectral pattern. Due to water being a 

strong absorber in the NIR range, conventional data analysis can easily overlook any subtle 

changes in the water spectrum. Therefore, aquaphotomics is a good approach as it 
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highlights the specific wavelengths where changes occurred as a result of a perturbation. 

Source A was characterised by the large concentration of water clusters, resulting in strongly 

bonded water. While source C contains a higher concentration of weakly bonded water 

molecules which are free and able to interact with solutes present in the water. However, 

source B contains moderate concentrations of both strongly and weakly bound water. This 

confirms that with use of aquaphotomics it is possible to identify water originating from 

different sources. The approach can be further developed and implemented as a method to 

verify the source of origin and prevent fraudulent products from being sold. 

The result of the mineral and spring water study proved that it is possible to 

distinguish between the two types of water. Its PLS-DA model could classify the samples 

with an accuracy of 72.62 %. Both spring and mineral water is sourced from groundwater 

sources (Ashurst et al., 2017). However, the main difference between mineral and spring 

water is that the mineral content of mineral water is required to remain constant (Ashurst et 

al., 2017). Therefore, variations in the mineral content of spring water could have resulted 

in the misclassification of spring water as mineral water.  

These results are similar to that found in literature, as previous studies indicated that 

it is possible to classify different water types (Munćan et al., 2014; Tanaka et al., 1997). The 

water spectrum is very sensitive, therefore, small variances between samples can be 

detected (Tanaka et al., 1997). These authors also indicated that further research is required 

to understand the influence the mineral content will have in the water spectral pattern. In 

their ionic state, the minerals present in the water will either be a structure maker or breaker. 

Structure-maker ions increase the strength of the hydrogen bond network, while structure-

breaker ions weaken the hydrogen bond network (Omta et al., 2003). 

The final objective of this study consisted of two parts. The first part investigated the 

effect filter media have on the water spectral pattern of river water. The water spectral 

patterns of the filtered and unfiltered water indicated that the different filter material altered 

the distribution of water clusters. This indicated that it is possible to track variations in the 

water spectral patterns due to changes in the water clusters in the filtered water. Muncan et 

al. (2020) indicated that aquaphotomics can monitor water as it goes through different 

filtration steps. The researchers concluded that aquaphotomics can detect variations in the 

hydrogen-bond network of the water as a result of the different filtration steps. NIR 

spectroscopy combined with the aquaphotomics approach can be used to monitor the 

effectiveness of water treatment systems. 
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In the second part, changes in the physico-chemical changes of river water over a 

ten-day period were monitored. The water spectral patterns indicated differences, however, 

with river water being such a complex system, it was impossible to determine how the 

physico-chemical parameters influenced the water spectral pattern. This was likely due to 

the physico-chemical parameters not remaining constant and variation observed with each 

day. It is recommended that the influence of the physico-chemical parameters be studied 

individually to determine their effect on the water spectral pattern. Currently there is no 

published work that focuses on the monitoring of river water quality using aquaphotomics. 

These results indicate that the aquaphotomics approach has the potential to be used 

as a rapid screening method for water quality determination. However, this work could be 

furthered by investigating the effect the individual physico-chemical parameters will have on 

the water spectral pattern. A study done by Kovacs et al. (2016) has shown that the 

aquaphotomics approach can be used to monitor water quality changes. Aquaphotomics 

detects structural changes in the hydrogen bonding network of water due to a perturbation.  

To conclude, NIR spectroscopy combined with the aquaphotomics approach 

provides a method to distinguish between water types (mineral or spring) and different 

sources. With further research this technique has the potential to offer the water industry a 

rapid method to monitor water quality.  
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