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ABSTRACT 

 

Left ventricular hypertrophy (LVH) is a strong independent predictor of cardiovascular 

morbidity and mortality, while its regression is associated with an improved clinical prognosis. 

It is, therefore, vital to elucidate and fully comprehend the mechanisms that contribute to LVH 

development and to identify markers that indicate a strong predisposition to the development 

of severe cardiac hypertrophy, before its occurrence.  

 

Hypertrophic cardiomyopathy (HCM) serves as a model to investigate LVH development. This 

primary cardiac disease is characterised by LVH in the absence of increased external loading 

conditions and is caused by defective sarcomeric proteins, as a result of mutations within the 

genes encoding these proteins. However, the hypertrophic phenotype of HCM is largely 

complex, as we see strong variability in the extent and distribution of LVH in HCM, even in 

individuals with the same disease-causing mutation from the same family; this points toward 

the involvement of additional genetic and environmental modifiers.  

 

Components of the renin-angiotensin-aldosterone system (RAAS) influence LVH indirectly, 

through their key role in blood pressure regulation, but also directly, due to the direct cellular 

hypertrophic effects of some RAAS components. Previous genetic association studies aimed at 

investigating the contribution of RAAS variants to LVH were largely centred on a subset of 

polymorphisms within the genes encoding the angiotensin converting enzyme (ACE) and 

angiotensin II type 1 receptor genes, while the renin section and RAAS components downstream 

from ACE remained largely neglected. In addition, most previous studies have reported 

relatively small individual effects for a small subset of RAAS variants on LVH.  

 

In the present study we, therefore, employ a family-based genetic association analysis approach 

to investigate the contribution of the entire RAAS to this complex hypertrophic phenotype by 

exploring both the individual as well as the compound effects of 84 variants within 22 RAAS 

genes, in a cohort of 388 individuals from 27 HCM families, in which either of three HCM-

founder mutations segregate. 

 

During the course of this explorative study, we identified a number of RAAS variants that had 

significant effects on hypertrophy in HCM, whether alone or within the context of a multi-

variant haplotype. Through single variant association analyses, we identified variants within the 

genes encoding angiotensinogen, renin-binding protein, the mannose-6-phosphate receptor, 

ACE, ACE2, angiotensin receptors 1 and 2, the mineralocorticoid receptor, as well as the 
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epithelial sodium channel and the Na+/K+-ATPase β-subunits, that contribute to hypertrophy in 

HCM. Using haplotype-based association analyses, we were able to identify haplotypes within 

the genes encoding for renin, the mannose-6-phosphate receptor, angiotensin receptor 1, the 

mineralocorticoid receptor, epithelial sodium channel and Na+/K+-ATPase α- and β subunits, as 

well as the CYP11B1/B2 locus, that contribute significantly to LVH. In addition, we found that 

some RAAS variants and haplotypes had statistically significantly different effects in the three 

HCM founder mutation groups.  

 

Finally, we used stepwise selection to identify a set of nine risk-alleles that together predicted a 

127.80 g increase in left ventricular mass, as well as a 13.97 mm increase in maximum 

interventricular septal thickness and a 14.67 mm increase in maximum left ventricular wall 

thickness in the present cohort. In contrast, we show that a set of previously identified “pro-

LVH” polymorphisms rather poorly predicted LVH in the present South African cohort. 

 

This is the first RAAS investigation, to our knowledge, to provide clear quantitative effects for a 

subset of RAAS variants indicative of a risk for LVH development that are representative of the 

entire pathway. Our findings suggest that the eventual hypertrophic phenotype of HCM is 

modulated by the compound effect of a number of RAAS modifier loci, where each 

polymorphism makes a modest contribution towards the eventual phenotype. Research such as 

that presented here provides a basis on which future studies can build improved risk profiles 

for LVH development within the context of HCM, and ultimately in all patients with a risk of 

cardiac hypertrophy.  
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  OPSOMMING 

 

Linker ventrikulêre hipertrofie (LVH) is 'n sterk onafhanklike voorspeller van kardiovaskulêre 

morbiditeit en mortaliteit, terwyl LVH regressie verband hou met ‘n verbeterde kliniese 

voorspelling. Dit is dus noodsaaklik om die meganismes wat bydra to LVH ontwikkeling ten 

volle te verstaan en merkers wat 'n sterk geneigdheid tot die ontwikkeling van ernstige kardiale 

hipertrofie te identifiseer, voordat dit voorkom. 

 

Hipertrofiese kardiomiopatie (HKM) dien as 'n model om LVH ontwikkeling te ondersoek. 

Hierdie primêre hartsiekte word gekenmerk deur LVH en word meestal veroorsaak deur 

foutiewe sarkomeer proteïene as gevolg van mutasies binne die gene wat kodeer vir hierdie 

proteïene. Die hipertrofiese fenotipe van HKM is egter grootliks kompleks; ons sien, by 

voorbeeld, sterk veranderlikheid in die omvang en die verspreiding van LVH in HKM, selfs in 

individue met dieselfde siekte-veroorsakende mutasie binne dieselfde gesin, wat dui op die 

betrokkenheid van addisionele genetiese en omgewing modifiseerders. 

 

Komponente van die renien-angiotensien-aldosteroon sisteem (RAAS) beïnvloed LVH indirek, 

deur middel van hul belangrike rol in bloeddruk regulasie, maar ook direk, as gevolg van die 

direkte sellulêre hipertrofiese gevolge van sommige RAAS komponente. Vorige genetiese 

assosiasie studies wat daarop gemik was om die bydrae van RAAS variante LVH te ondersoek, 

was hoofsaaklik gesentreer op 'n groepie polimorfismes binne die gene wat kodeer vir die 

“angiotensin converting enzyme” (ACE) en angiotensien II tipe 1-reseptor gene, terwyl die 

renien gedeelte en RAAS komponente stroomaf van ACE meestal nie ondersoek was nie. 

Daarbenewens het die meeste vorige studies relatief klein individuele gevolge gerapporteer vir 

'n klein groepie RAAS variante op LVH. 

 

In die huidige studie het ons dus 'n familie-gebaseerde genetiese assosiasie-analise benadering 

gebruik om die bydrae van die hele RAAS tot hierdie komplekse hipertrofiese fenotipe te 

ondersoek deur 'n studie van die individuele-, sowel as die saamgestelde effekte van 84 variante 

binne 22 RAAS gene, in 'n groep van 388 individue vanaf 27 HKM families, waarin een van drie 

HCM-stigter mutasies seggregeer. 

  

Gedurende die loop van hierdie studie het ons 'n aantal RAAS variante wat ‘n beduidende 

uitwerking op HKM hipertrofie geïdentifiseer, hetsy alleen of binne die konteks van' n multi-

variant haplotipe. Deur middel van enkele variant assosiasie toetsing het ons variante 

geïdentifiseer binne die gene wat kodeer vir angiotensinogen, renien-bindende proteïen, die 
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mannose-6-fosfaat reseptor, ACE, ACE2, angiotensien reseptore 1 en 2, die mineralokortikoïd 

reseptor, sowel as die epiteel natrium kanaal en Na+/ K+-ATPase β-subeenhede, wat bydra tot 

HKM hipertrofie. Deur die gebruik van haplotipe-gebaseerde assosiasie ontleding was ons in 

staat om haplotipes te identifiseer binne die gene wat kodeer vir renien, die mannose-6-fosfaat 

reseptor angiotensien reseptor 1, die mineralokortikoïd reseptor, epiteel natrium kanaal en die 

Na+/ K+-ATPase α-en β subeenhede, sowel as die CYP11B1/B2 lokus, wat aansienlik bydra tot 

LVH. Verder het ons bevind dat sommige RAAS variante en haplotipes statisties beduidende 

verskillende effekte gehad het in die drie HKM stigter mutasie groepe. 

 

Laastens, het ons stapsgewyse seleksie gebruik om 'n stel van nege risiko-allele wat saam' n 

toename van 127.80 g in linker ventrikulêre massa, sowel as 'n 13.97 mm toename in 

maksimum ventrikulêre septale dikte, en' n 14.67 mm verhoging in maksimum linker 

ventrikulêre wanddikte voorspel, te identifiseer in die huidige kohort. In teenstelling hiermee 

wys ons dat 'n stel van voorheen geïdentifiseerde "pro-LVH" polimorfismes swakker gevaar het 

as  LVH-voorspellers in die huidige Suid-Afrikaanse kohort. 

 

Hierdie is die eerste RAAS ondersoek, tot ons kennis, wat ‘n duidelike kwantitatiewe gevolge vir 

'n stel RAAS variante wat ‘n verhoogde risiko tot LVH ontwikkeling aandui, wat 

verteenwoordigend is van die hele RAAS. Ons bevindinge dui daarop dat die uiteindelike 

hipertrofiese fenotipe van HKM gemoduleer word deur die saamgestelde effek van 'n aantal 

RAAS wysiger loki, waar elke polimorfisme ' n beskeie bydrae maak tot die uiteindelike 

fenotipe. Navorsing soos dié wat hier aangebied word dien as 'n basis waarop toekomstige 

studies kan bou vir ‘n verbeterde risiko-profiel vir LVH ontwikkeling binne die konteks van die 

HKM, en uiteindelik in alle pasiënte met' n verhoogde risiko vir kardiale hipertrofie. 
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CHAPTER 1: Introduction1 

 

1.1 Left ventricular hypertrophy (LVH) 

Left ventricular hypertrophy (LVH) is acknowledged as a major risk factor for cardiovascular 

morbidity and mortality (Frey and Olson, 2003; Lorell and Carabello, 2000). More specifically, 

increased LVH has been shown to predict the development of congestive heart failure (Mathew 

et al., 2001), coronary heart disease (Devereux and Roman, 1993), stroke (Verdecchia et al., 

2001), cardiac arrhythmias (McLenachan et al., 1987) and sudden cardiac death (SCD) (Haider 

et al., 1998). Regression of LVH, on the other hand, is associated with a higher life expectancy 

(Sharp and Mayet, 2002) and improved clinical prognosis (Muiesan et al., 1995; Verdecchia et 

al., 1998). It is, therefore, vital to understand the underlying determinants of LVH to eventually 

facilitate more effective therapeutic intervention; in the meantime, the identification of 

molecular markers associated with LVH would enable improved risk stratification for cardiac 

morbidity in susceptible individuals.  

 

Previous studies have shown that LVH is the most common cardiac complication of 

hypertension (Levy et al., 1990a). The effect of hypertension-control has been evident from 

studies such as the Heart Outcomes Prevention Evaluation (HOPE) and Losartan Intervention 

for Endpoint reduction (LIFE) clinical trials that investigated the effect of renin-angiotensin-

aldosterone system (RAAS) inhibitors on cardiac hypertrophy in hypertensive cohorts.  In the 

HOPE trial, cardiovascular morbidity and mortality was significantly reduced by regression of 

LVH with the angiotensin-converting enzyme (ACE) inhibitor ramipril (Mathew et al., 2001). 

Similarly, the LIFE study reported that the angiotensin receptor-blocker losartan was able to 

reduce left ventricular mass (LVM), an indicator of LVH, which, in turn, reduced the risk for SCD, 

myocardial infarction and stroke, independent of systolic blood pressure or other treatment 

administered (Dahlof et al., 2002a; Devereux et al., 2004). However, antihypertensive treatment 

has not reduced morbidity and mortality from cardiovascular disease associated with LVH as 

would be expected by the degree of blood pressure reduction (Koren et al., 1991); furthermore, 

LVH has also been observed in normotensive subjects (Levy et al., 1990a; Schunkert et al., 

1999a). Consequently, LVH is not only attributable to pressure overload, but also to other, non-

hemodynamic effects, some of which pertain to direct effects of RAAS components (Barry et al., 

2008; Lijnen and Petrov, 1999). 

 

                                                           
1 This chapter was accepted in part for publication as a chapter in Angiotensin: New Research (see 
Appendix I)  
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Various RAAS components have been shown to individually and collectively influence 

hypertrophy development (Kim and Iwao, 2000; Yamazaki et al., 1999). For instance, the main 

effector molecule of the RAAS, Angiotensin (Ang) II, is known to exert hypertrophic effects on 

neonatal (Baker and Aceto, 1990; Sadoshima and Izumo, 1993) and adult (Ritchie et al., 1998; 

Schunkert et al., 1995; Wada et al., 1996) cardiomyocytes and has been implicated in numerous 

pro-hypertrophic cardiac networks (Schluter and Wenzel, 2008). Schunkert et al. found that 

Ang I to Ang II conversion is increased in rat hearts with adaptive LVH, indicating an 

involvement of RAAS components in cardiac hypertrophy (Schunkert et al., 1990).  

 

A study by Griffin et al. that showed that Ang II causes vascular hypertrophy in rats, partly by a 

non-hemodynamic mechanism (Griffin et al., 1991). In addition, Dostal and Baker demonstrated 

that Ang II-induced cardiac hypertrophy was prevented when an Ang II type 1 receptor (AT1R)-

antagonist was administered, an effect that was not achieved with a reduction in blood 

pressure, leading the authors to conclude that this effect was blood pressure-independent 

(Dostal and Baker, 1992). This was later confirmed in double transgenic rats harbouring human 

renin and human angiotensinogen genes in which end-organ damage can be ascribed to human 

RAAS components (Luft et al., 1999; Mervaala et al., 2000). These rats were treated with a 

simultaneous dose of three RAAS-independent drugs, which normalised blood pressure, but 

only partially prevented cardiac hypertrophy. This blood pressure-independent cardiac 

hypertrophy was attributed to increased plasma Ang II as plasma Ang II is increased up to 5-

fold in these animals, compared with Sprague-Dawley rats, while a human renin inhibitor 

significantly reduced plasma Ang II concentrations and prevented cardiac hypertrophy 

(Mervaala et al., 2000). 

 

However, Ang II is involved in complex pathways that influence LVH in a manner that is not yet 

completely understood, and the full contribution of the different RAAS components to 

hypertrophy development remains to be elucidated. Such analyses are quite tricky in complex 

conditions where hypertrophy is but one of the features of the disease, such as hypertension, 

but slightly easier in more simple conditions. 

 

One such condition is hypertrophic cardiomyopathy (HCM), an inherited condition that is 

caused primarily by defective sarcomeric proteins, and which is characterised by highly variable 

extent and distribution of LVH. In this disorder, RAAS gene variants, possibly amongst others, 

appear to modulate the extent of hypertrophy development (Carstens et al., 2011; Ortlepp et al., 

2002; Perkins et al., 2005; Van der Merwe et al., 2008). This disease has proven to be a valuable 
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model to investigate the molecular mechanisms involved in hypertrophy development, as its 

strong familial nature makes it amenable to the use of powerful molecular genetic techniques, 

while its autosomal dominant inheritance pattern ensures at least somewhat larger cohorts of 

study subjects than some of the other, rarer, genetic disorders in which cardiac hypertrophy is a 

feature (Watkins et al., 1995b).  

 

1.2. Hypertrophic cardiomyopathy (HCM) 

HCM is a primary cardiac disorder characterized clinically by LVH occurring in the absence of 

increased external loading conditions (Marian, 2002), as well as by diastolic dysfunction, 

arrhythmias and sudden death (Seidman and Seidman, 2001; Wigle et al., 1995). The prevalence 

of HCM has been shown to be approximately 1 in 500 in young adults through population-based 

clinical studies (Maron et al., 1995), although a much higher prevalence is expected in older 

individuals, based on the fact that HCM penetrance is age-dependent (Niimura et al., 2002). 

 

In HCM, cardiac mass is increased due to left ventricular wall thickening that is frequently 

asymmetric and most often involves thickening of the interventricular septum (Seidman and 

Seidman, 2001) (Figure 1.1). Clinical diagnosis of HCM is established most easily with two-

dimensional (2D) echocardiography by imaging the hypertrophied, but non-dilated, left 

ventricular chamber (Maron et al., 2003). However, clinical presentation in patients with HCM 

varies greatly, some patients present with minimal or no symptoms and have a benign, 

asymptomatic course, while others develop more serious complications, such as cardiac 

arrhythmias and heart failure, with one of the most severe endpoints being sudden cardiac 

death (Seidman and Seidman, 2001; Tsoutsman et al., 2006). This clinical variability is further 

observed in the extent and distribution of hypertrophy, which ranges from extensive and diffuse 

to mild and segmental, with no particular pattern considered typical (Klues et al., 1995). 

 

HCM is classically described as a disease of the sarcomere (Thierfelder et al., 1994). Primary 

HCM is inherited as an autosomal dominant trait, and to date more than a thousand different 

causal mutations have been identified within 13 functional and structural proteins in the 

sarcomere and myofilament-related genes, which contribute in part to the heterogeneity of the 

disease (Ho, 2010a; Seidman and Seidman, 2011). The majority of these mutations are missense 

mutations that reside in genes encoding regulatory sarcomeric proteins, such as β-myosin 

heavy chain (β-MHC), actin, cardiac troponin T and I, and tropomyosin, as well as structural 

proteins, viz. myosin binding protein C (MYBPC) and titin (Alcalai et al., 2008) (Figure 1.2).  
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Figure 1.1 Illustration of hypertrophic cardiomyopathy. Note the severe thickening of the 

interventricular septum and left ventricular wall as indicated by the red arrow. (Modified 

from http://cardiology.wustl.edu/details.aspx?NavID=638)  

 

It has been suggested that the prognostic significance of a given causal mutation is related to its 

influence on the magnitude of hypertrophy (Spirito et al., 2000; Spirito and Maron, 1990): some 

mutations are associated with severe hypertrophy, an early onset of disease and higher 

susceptibility to SCD, while others are associated with a relatively benign outcome (Charron et 

al., 1998; Erdmann et al., 2001). Furthermore, the dose of these mutant proteins in an individual 

has been shown to have a strong impact on the clinical course of HCM: individuals with 

homozygous or compound heterozygous mutations in sarcomere protein genes exhibit more 

severe clinical phenotypes (Lekanne Deprez et al., 2006; Mohiddin et al., 2003). Even so, the 

clinical presentation varies even between individuals from the same family with identical causal 

mutations (Keller et al., 2009), as well as between different families, with intrafamilial and 

interfamilial variability reaching similar levels (Epstein et al., 1992; Fananapazir and Epstein, 

1994; Posen et al., 1995). Thus, sarcomeric mutations account for but a fraction of the diversity 

of hypertrophic phenotypes seen in HCM (Marian, 2002), suggesting that the clinical 

heterogeneity of HCM can be viewed as a product of the causal sarcomeric mutation, as well as 

additional genetic and environmental factors.  
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Figure 1.2 Schematic diagram of the cardiac sarcomere, indicating the main causal mutations 

for HCM. (Taken from Keren et al., 2008) 

 

The case for genetic modifiers of HCM is predicated on the fact that a discrepancy exists 

between sarcomere-related mutations and the resulting cardiac phenotype. For instance, 

Fananapazir and Epstein (Fananapazir and Epstein, 1994) provided evidence for modifier genes 

in HCM when they described a Caucasian, as well as a Korean kindred with an identical disease 

causing mutation (R403Q) in the MYH7 gene. The R403Q mutation was associated with 100% 

disease penetrance and a high incidence of SCD in the Caucasian kindred, while no SCD was 

observed in the Korean kindred; because of the significantly different clinical presentation of 

HCM between the two families, the authors concluded that the genetic background of the 

individuals along with environmental factors are responsible for the phenotypic diversity. This 

was later corroborated by other studies (Epstein et al., 1992; Marian et al., 1995; Marian, 2001; 

Solomon et al., 1993).  

 

Transgenic animal models have also proven valuable in confirming a role for genetic modifiers 

on the cardiac phenotype in HCM, aided by the ability to control environmental influences and 

the genetic background of inbred strains of animals (Geisterfer-Lowrance et al., 1996). 

Semsarian and co-workers (Semsarian et al., 2001) studied a mouse model of HCM, α-

MHC403/+; the α-MHC403/+ missense mutation in mice is equivalent to the human β-MHC gene 

(MYH7) R403Q mutation. By breeding the α-MHC403/+ mice into different genetic backgrounds of 
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two distinct inbred mouse strains, a range of phenotypic differences in terms of hypertrophy, 

histopathology and exercise capacity could be identified. Given that the mice strains were 

housed under the same environmental conditions, the study provided confirmation of the role 

of genetic modifiers in HCM.  

 

Interestingly, founding mutations have been reported in populations from Europe, the United 

States of America and South Africa (Moolman-Smook et al., 1999; Seidman and Seidman, 2011). 

Such populations, in which apparently unrelated families share causal mutations, are 

particularly valuable for genetic studies, as they offer a more homogeneous population in which 

to assess the role of additional genes in a clinical phenotype, which, as modifiers, are neither 

necessary nor sufficient to cause the condition. Thus, although HCM is regarded as a monogenic 

disease due to the prerequisite for a causative mutation to trigger the development of the 

phenotype, it can also be regarded as a complex trait due to the variability introduced by the 

involvement of additional genetic loci and environmental factors, each probably contributing to 

the phenotype to varying extents.  

 

Various genetic mapping approaches have been employed to identify quantitative trait loci 

(QTLs) that alter the hypertrophic phenotype of HCM, the most common being candidate gene 

association analysis. Components of the RAAS are particularly plausible candidate modifiers of 

LVH in HCM, not only due to their effect on blood pressure, and thus an indirect effect on LVM, 

but also due to their direct hypertrophic effect on cardiomyocytes (Griendling et al., 1993; 

Ortlepp et al., 2002; Perkins et al., 2005). 

 

1.3 Renin-angiotensin-aldosterone system (RAAS) 

The RAAS exerts its main effect through Ang II, which has the ability to act as a systemic 

hormone (circulating RAAS) and as a local factor (tissue RAAS) (Paul et al., 2006). A schematic 

overview of the RAAS is given in Figure 1.3. Briefly, the biologically inert decapeptide Ang I is 

cleaved from angiotensinogen by the aspartyl-protease, renin, and subsequently hydrolyzed to 

the active octapeptide Ang II by ACE1 within the circulation, or by ACE1-independent 

mechanisms, involving, for instance, chymase. A second ACE, ACE2, has also been discovered, 

which converts Ang I to Ang-(1-7), which has been shown to counteract the vasoconstrictive 

effects of ACE. 
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Figure 1.3 Schematic representation of the renin-angiotensin-aldosterone system (RAAS) 

 

Ang II exerts its main biological effects by binding to highly specific Ang II receptors. To date, 

two main receptors have been characterized in humans: the Ang II type I (AT1R) and Ang II type 

II (AT2R), each with their own signalling cascade and physiological function (Chai and Danser, 

2006; De Gasparo et al., 2000). Binding of Ang II to the AT1R, triggers the synthesis of 

aldosterone via aldosterone synthase (CYP11B2). Aldosterone is a mineralocorticoid that exerts 

its function by, in turn, binding to the mineralocorticoid receptor (MR), which increases the 

transcription of MR-responsive genes (Lemarie et al., 2008). The MR binds both aldosterone and 

glucocorticoids, such as cortisol, with equal affinity. However, the enzyme 11 β-hydroxysteroid-

dehydrogenase type 2 (11β-HSD2) increases the MR specificity for aldosterone by inactivating 
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the glucocorticoids (Tannin et al., 1991). The MR/aldosterone complex then exerts its Na+-

regulating effects in three phases (Eaton et al., 2001; Kamynina and Staub, 2002). The first is a 

latent period that lasts for about an hour, during which aldosterone-induced transcription and 

translation takes place. The second is an “early response” phase, lasting up to three hours, 

during which Na+ transport is increased, mainly by increasing the open probability and number 

of active epithelial Na+ channels (ENaC). A further increase in Na+ transport is observed during 

the “late response”, that lasts for about 24 hours, and during which expression of ENaC, as well 

as Na+/K+-ATPase subunits are increased (Rossier et al., 2002; Stockand, 2002). 

 

Early investigations of the role of the RAAS pathway in hypertrophy development, in the context 

of HCM, were largely centred on the genes encoding ACE and the AT1R, while downstream RAAS 

genes remained largely neglected. Recent association studies have, however, identified variants 

in additional RAAS genes that individually and collectively influence the penetrance and extent 

of LVH in HCM (Carstens et al., 2011; Van der Merwe et al., 2008). Other investigations have 

provided evidence that local Ang II generation in the myocardium, alternatively named tissue 

RAAS, is closely linked to the development of cardiac hypertrophy (Bader and Ganten, 2008). 

Recent studies have identified additional RAAS proteins that impact on hypertrophy 

development in a blood pressure-dependent, as well as Ang II-independent manner. This calls 

for an expansion of the “classical” RAAS to include these newly identified RAAS components, as 

well as a re-evaluation of our current knowledge of the role of RAAS components in the 

hypertrophic phenotype of HCM.  Furthermore, pharmacological inhibition of RAAS in HCM as 

anti-hypertrophic therapy has recently gained renewed interest with the development of a 

direct renin inhibitor (Sever et al., 2009; Solomon et al., 2009). Taken together, these studies 

justify a renewed look at the individual and compound effects of RAAS components on 

hypertrophy within the context of HCM.  

 

The involvement of specific RAAS components in hypertrophy development will now be 

discussed, and their hypertrophy-modifying role in HCM further highlighted, with special 

emphasis on knowledge gained from association studies.  

 

1.4 Angiotensinogen (AGT) 

Angiotensinogen, which is the first component of the RAAS, is encoded by the AGT gene. This 

gene consists of five exons and four introns and spans 12 kb on chromosome 1q42-43. 

Angiotensinogen remains a popular candidate modifier for essential hypertension and -

asociated end-organ damage, as there exists a significant correlation between plasma AGT 

concentration and blood pressure in humans (Watt et al., 1992). Additionally, mice 
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overexpressing the AGT gene exhibit elevated blood pressure in a dose-dependent manner (Kim 

et al., 1995; Kimura et al., 1992), while AGT gene-knockout mice show reduced blood pressure 

levels (Tanimoto et al., 1994). 

 

Xu et al. (Xu et al., 2009) reported that transgenic mice overexpressing the rat angiotensinogen 

gene developed severe chronic hypertension coupled with cardiac hypertrophy and impaired 

cardiac function. Single nucleotide polymorphisms (SNPs) and related haplotypes in this gene 

have additionally been associated with essential hypertension and elevated blood pressure in 

some populations (Brand-Herrmann et al., 2004; Jain et al., 2005; Jeunemaitre et al., 1999; 

Kumar et al., 2005), but not all (Dickson and Sigmund, 2006). However, two SNPs in AGT, 

T174M and M235T, were related to blood pressure-independent LVM-reductions in 

hypertensive patients with echocardiographically-diagnosed LVH who were treated with the 

AT1R-antagonist irbesartan, but not in such patients treated with the beta-1 adrenergic 

receptor-blocker atenolol (data from the Swedish Irbesartan Left Ventricular Hypertrophy 

Investigation versus Atenolol (SILVHIA) trial) (Kurland et al., 2002).   

 

The involvement of AGT polymorphisms in LVH development remains controversial, as some 

studies report significant associations between AGT variants and LVH, while other studies fail to 

replicate these results (Iwai et al., 1995; Jeng, 1999; Karjalainen et al., 1999; Kauma et al., 1998). 

One explanation for this discrepancy relates to the great variation of AGT polymorphism 

frequencies according to ethnic origin (Staessen et al., 1997a), which makes association studies 

on these polymorphisms sensitive to false-positive results due to population stratification. In 

such studies, false-negative results often occur in populations where one allele is largely 

predominant, due to the limited statistical power of the resultant associations studies 

(Jeunemaitre et al., 1999). For instance, in a meta-analysis of 69 studies with a combined sample 

size of 27 906, the overall prevalence of the M235-T allele was 52.1%. The prevalence of the 

M235-T allele was, however, significantly dependent on race, being 78.0% in Asians, 77% in 

blacks and only 42.2 % in Caucasians (Staessen et al., 1999). 

 

Kuznetsova et al. (Kuznetsova et al., 2005) studied the European Project On Genes in 

Hypertension (EPOGH) cohort, which consisted of 221 nuclear families from three Caucasian 

populations, respectively from Poland, Russia and Italy, to investigate to what extent LVM was 

associated with the M235T and -6 G/A polymorphisms in the AGT gene. They reported that the 

significant association that they observed between these polymorphisms and LVM were 

dependent on age, gender, ecogenetic context, and appeared to be modulated by the trophic 
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effects of salt intake on LVM. These observations point towards the importance of adjusting for 

relevant confounders in AGT association studies to avoid spurious significance of results.   

 

These factors were taken into consideration when Tang et al. investigated the effect of the above 

polymorphisms in a cohort of 605 predominantly Caucasian patients obtained from the 

Hypertension Genetic Epidemiology Network (HyperGEN) (Tang et al., 2002). The authors 

reported that LVM, as well as LVMindex, and the M235-T allele were negatively associated in 

hypertensive patients, but positively associated in normotensive patients, in a model adjusted 

for the potential confounding effect of weight, height, age, sex, systolic blood pressure, diastolic 

blood pressure, presence of diabetes, and antihypertensive medication use. The link between 

hypertrophy and AGT, therefore, extends beyond the known impact of angiotensinogen on 

blood pressure. This concept is also borne out biologically, as angiotensinogen has been shown 

to be expressed in myocardial tissue, where it is able to induce cardiac hypertrophy, 

independent of systemic blood pressure (Bader, 2002; Mazzolai et al., 1998; Reudelhuber et al., 

2007). Moreover, mice expressing AGT exclusively in the liver and brain, showed reduced 

cardiac hypertrophy when compared to mice expressing AGT in the liver, brain and heart with a 

similar blood pressure (Kang et al., 2002).  

 

Three AGT SNPs have been investigated for their role in hypertrophy development in HCM, in 

particular. These include a threonine to methionine substitution in exon 2 at position 174 of 

mature angiotensinogen (T174M), a 704 T>C substitution, which results in a methionine to 

threonine substitution at position 235 (M235T) in the same exon, as well as a promoter variant 

6 bp upstream from the transcription initiation site (-6 G/A). Most of the HCM studies focussed 

on the M235T variant.  

 

Just as in hypertension studies, the involvement of the M235T variant in HCM is controversial, 

as some studies report a correlation between this polymorphism and HCM (Cai et al., 2004; 

Ishanov et al., 1997; Kawaguchi, 2003; Manohar Rao et al., 2010), whereas other studies do not 

(Lopez-Haldon et al., 1999; Perkins et al., 2005; Yamada et al., 1997). Ishanov et al. (Ishanov et 

al., 1997) revealed that the M235-T allele frequency was higher in Japanese patients with 

sporadic HCM, than in their unaffected siblings and offspring. These findings were replicated in 

a study on 96 Japanese HCM patients (43 with familial HCM and 53 with sporadic HCM) and 105 

of their unaffected siblings and children (Kawaguchi, 2003).  Another study (Manohar Rao et al., 

2010) reported similar results from an investigation of 150 South Indian HCM (90 sporadic 

HCM and 60 familial HCM) patients and 165 age- and sex-matched healthy controls, without 

known hypertension or LVH. Significant differences were detected in genotypic distribution, as 
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well as the allelic frequencies of the M235T polymorphism between patients with sporadic HCM 

and controls, although these findings were not replicated in patients with familial HCM 

(Manohar Rao et al., 2010).  

 

In contrast, Yamada et al. found no significant association between this variant and non-familial 

HCM in a Japanese cohort (Yamada et al., 1997). No significant association was found between 

M235T and cardiac hypertrophy indices in a cohort of 389 unrelated patients with HCM 

(Perkins et al., 2005). Similarly, Coto et al. reported no significant association between the 

M235T variant and cardiac hypertrophy in a study on 245 echocardiographically-diagnosed 

HCM-patients and 300 healthy controls (Coto et al., 2010). Furthermore, none of the most 

commonly studied AGT SNPs (M235T, T174M, and -6 G/A) had a significant influence on a 

composite LVH score or LVM in a cohort of 108 genetically independent HCM patients (Brugada 

et al., 1997).  

 

In addition to relatively small sample sizes, none on these studies accounted for the 

confounding effects of the primary HCM causal mutation or any other known hypertrophy 

covariates in their analyses.  

 

Furthermore, the question regarding the functionality of the M235T SNP remains. This 

polymorphism was associated with a stepwise-increase in angiotensinogen levels in Caucasian 

subjects, as well as a corresponding moderate increase in risk of hypertension in both Caucasian 

and Asian subjects in a meta-analysis of 127 publications (Sethi et al., 2003). However, the 

M235-T genotype did not predict plasma angiotensinogen levels, or blood pressure, risk of 

ischemic heart disease, or myocardial infarction in either Asian or black subjects (Sethi et al., 

2003). 

 

The M235T variant is in tight linkage disequilibrium (LD) with the -6G/A variant in the 

proximal promoter of the AGT gene (Inoue et al., 1997; Tang et al., 2002). This substitution 

affects specific interactions between at least one trans-acting nuclear factor and the promoter of 

AGT, thereby influencing the basal rate of transcription of the gene, which was initially thought 

to explain why T235-homozygotes have plasma angiotensinogen levels that are 10–20% higher 

than M235-homozygotes (Danser and Schunkert, 2000).  

 

However, later analyses of transgenic mice expressing either the -6G/235M or the -6A/235T 

haplotype in the 13.5-kb human AGT gene showed that both transgenes exhibited the same 

transcriptional activity and produced similar plasma levels of human angiotensinogen 
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(Cvetkovic et al., 2002). These results suggest that variation at the -6-position may only be a 

marker, and may not, in itself, be functional. However, mice carrying the -6G/235M haplotype 

showed a slight but significant increase in blood pressure and relative heart weight, as well as 

compensatory downregulation of endogenous renin expression, which led the authors to 

speculate that these haplotypes might affect the cardiovascular system and the regulation of 

blood pressure differently (Cvetkovic et al., 2002).  

 

Jain et al. found that -6G/A can act as a marker for three other promoter SNPs, as well as for 

three additional intragenic SNPs, where the -6G and -6A variants each tag a different haplotype 

of these polymorphisms. To inspect the physiological effect of these haplotypes, they generated 

double transgenic mice containing either the -6A or -6G haplotype of the human AGT gene, and 

also the human renin gene (REN). Transgenic mice containing -6A haplotype had increased 

plasma AGT levels and increased blood pressure, compared with those with the -6G haplotype 

(Jain et al., 2010).  

 

Grobe et al. developed triple-transgenic mice carrying a null mutation in the endogenous 

murine angiotensinogen gene, while expressing either the -6G/235M or -6A/235T haplotype of 

the human AGT gene, and either an overexpressed and poorly regulated, or a tightly regulated 

human REN gene. Mice expressing the -6G/235M haplotype on the well-controlled renin 

background exhibited increased blood pressure and cardiac hypertrophy. In contrast, mice with 

the -6A/235T haplotype in a poorly regulated renin background exhibited increased cardiac 

and renal growth and increased blood pressure sensitivity to a high-salt diet, leading the 

authors to conclude that the differential effects of these haplotypes on cardiovascular end-

points are context dependent and sensitive to genetic background and environmental influences 

(Grobe et al., 2010).  

 

There is, however, a lack of studies that explore the physiological effects of AGT variants on 

hypertrophy development specifically in HCM. 

 

1.5 Renin and renin-associated genes 

Renin is a rate-limiting component of the RAAS, as it controls the initial conversion of 

angiotensinogen to Ang I. While there is a paucity of research on the role of renin and its 

associated proteins in hypertrophy development in HCM, it remains an exciting and promising 

field of research, which is currently offering promising prospects for hypertrophy research that 

might be transferable to hypertrophy in HCM. In addition, the recent development of a direct 

renin inhibitor, aliskiren, renewed interest in renin as a potential therapeutic target in cardiac 
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hypertrophy management (Sever et al., 2009; Verdecchia et al., 2008). As this direct renin 

inhibitor controls the rate-limiting step of the RAAS and decreases plasma renin activity (PRA), 

it is thought to offer superior benefits to ACE- and AT1R blockers in treating cardiovascular 

disorders. These latter blockers interfere with the negative feedback loop exerted by Ang II on 

renin formation that elicits a rise in plasma renin concentration (Balakumar and Jagadeesh, 

2010a).  

 

Aliskiren ameliorated cardiac hypertrophy in rats expressing both human renin and 

angiotensinogen (Pilz et al., 2005) and was proven to be at least as effective as ACE inhibition 

and Ang receptor blockade in LVH reduction in spontaneously hypertensive rats (Van Esch et 

al., 2010). Aliskiren was also shown to ameliorate cardiac remodelling and hypertrophy after 

myocardial infarction with doses that did not affect blood pressure in mice (Westermann et al., 

2008a). The recent Aliskiren in Left Ventricular Hypertrophy (ALLAY) study reported that 

aliskiren was as effective as the Ang-receptor blocker losartan in LVM regression, making 

aliskiren a potential treatment option in patients with LVH (Solomon et al., 2009). 

 

Renin is generated from preprorenin in a number of steps: prorenin is generated from 

preprorenin in the juxtaglomerular cells of the kidney by the removal of 23 amino acids, and is 

later converted into mature renin. Recent research has identified three additional proteins that 

associate with renin and prorenin in vivo. This includes a protein that is able to inhibit renin 

upon binding to it, namely the renin-binding protein (RnBP), as well as two receptors for renin. 

The mannose-6-phosphate/insulin-like growth factor II receptor (M6PR/IGFII) has been 

suggested as a clearance receptor in cardiomyocytes, as it only binds glycosylated forms of 

prorenin and facilitates its subsequent internalisation and degradation (Saris et al., 2001b). The 

(pro)renin receptor (PRR), on the other hand, is a promising candidate for tissue uptake of 

renin, as it binds both renin and prorenin and activates prorenin non-proteolytically (Nguyen 

and Muller, 2010).  

 

The presence of renin in the heart is a matter of great controversy, as evidence for local renin 

synthesis has not been conclusive. It is now widely accepted that cardiac renin is taken up from 

the circulation, either due to diffusion into the interstitium (Danser and Saris, 2002; De Lannoy 

et al., 1997), or through specific functional binding sites and renin receptors (Catanzaro, 2005; 

Nguyen et al., 2004). In addition, the heart can generate renin locally from circulating prorenin 

by proteolytic cleavage and non-proteolytic activation through the PRRs in myocardial tissues 

(Nguyen et al., 2002; Nguyen and Danser, 2008; Reudelhuber et al., 1994). Interestingly, the 

plasma concentration of prorenin is ten times greater than that of renin (Danser et al., 1998) 
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and circulating prorenin levels may reach as high as 100 times the level of renin under 

conditions of renal damage and cardiac hypertrophy (Susic et al., 2008). 

 

Veniant and colleagues developed a transgenic rat line that expresses prorenin exclusively in 

the liver. These rats demonstrated a 400-fold increase in plasma prorenin, but exhibited normal 

plasma renin levels and blood pressure. However, these animals developed severe liver fibrosis, 

as well as cardiac and aortic hypertrophy (Veniant et al., 1996). This study gained more 

attention with the cloning of the PRR (Nguyen et al., 2002). When renin and prorenin are bound 

to this receptor, a five-fold increase in angiotensinogen to Ang I conversion is noted, and these 

physiological effects are exerted in a manner completely independent of Ang II generation 

(Nguyen et al., 2003; Oliver, 2006). In a study on neonatal rat cardiomyocytes, Saris et al. (Saris 

et al., 2006) demonstrated that prorenin bound to the PRR activated the p38 MAPK/HSP27 

pathway; they postulated that this activation is responsible for the severe hypertrophy 

observed by Veniant et al. Similarly, renin and prorenin have been proven to induce DNA 

synthesis and to activate the p42/p44 MAPK intracellular pathways and stimulate the release of 

plasminogen activator inhibitor (PAI)-1, as well as transforming growth factor-β1 (TGF-β1), 

through binding with the PRR (Cousin et al., 2010). These are profibrotic, inflammatory and 

hypertrophic signalling pathways that function independent of Ang II generation (Huang et al., 

2006; Huang et al., 2007b; Ichihara et al., 2006; Nguyen and Muller, 2010). These pro-

hypertrophic signalling cascades are not inhibited by ACE inhibitors, aliskiren or AT1R blockers 

(Balakumar and Jagadeesh, 2010a). This and other studies (Methot et al., 1999; Nguyen et al., 

1996; Prescott et al., 2002) supports growing evidence that renin and prorenin per se exerts 

hypertrophic cellular effects, independent of Ang II generation, at least some of which involve 

the PRR.  

  

Furthermore, the “handle region peptide (HRP)”, a protein that corresponds to the “handle” 

region of prorenin, which inhibits the binding of prorenin to the PRR (Paulis and Unger, 2010), 

has been shown to reduce cardiac hypertrophy and improve left ventricular function in 

spontaneously hypertensive rats on a high salt diet (Susic et al., 2008). This effect was, however, 

not replicated in high renin conditions (Ichihara et al., 2010).  

 

The PRR is identical to ATPase-associated protein 2 (encoded by the ATP6AP2 gene), an 

accessory protein to a vacuolar proton-transporting ATPase (v-H+-ATPase). In a study using 

Xenopus embryos, as well as human cultured cells, Cruciat et al. showed that ATP6AP2 

functions in a renin-independent manner as an adaptor between Wnt receptors and the v-H+-
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ATPase complex (Cruciat et al., 2010). Aberrant Wnt signalling has previously been linked to 

cardiovascular hypertrophy (Balakumar and Jagadeesh, 2010b).  

 

Recently, Connelly et al. corroborated the co-localization of PRR with v-H+-ATPase in the heart 

and reported an increased expression of PRR in the hearts of transgenic animals with diabetic 

cardiomyopathy (Connelly et al., 2011). This increased expression of PRR was associated with 

diastolic dysfunction, interstitial fibrosis, as well as cardiomyocyte hypertrophy. Direct renin 

inhibition then reduced cardiac PRR expression in these animals, in association with improved 

cardiac structure and function (Connelly et al., 2011).  

 

The PRR is, therefore, able to influence hypertrophy development through local RAAS 

activation, as well as through Wnt signalling, making it an attractive target for antihypertrophic 

treatment (Finckenberg and Mervaala, 2010). More research is, however, needed to fully 

elucidate the contribution of the PRR to cardiac hypertrophy in general, as well as to the role of 

PRR in HCM (Reudelhuber, 2010). 

 

Furthermore, previous studies have shown that M6PR/IGFII is also able to bind prorenin and 

renin on cardiomyocytes (Van den Eijnden et al., 2001; Van Kesteren et al., 1997a), and to 

generate renin from prorenin through proteolytic cleavage (Saris et al., 2001a). This binding 

and activation did not result in Ang II generation in cardiomyocytes (Saris et al., 2002). 

 

Takahashi et al. reported another protein that was capable of forming a complex with renin, 

which they named RnBP (Takahashi et al., 1983). Further in vitro studies showed that this 

protein is able to form a heterodimer with renin and subsequently to inhibit its activity 

(Takahashi et al., 1994). This protein was later found to be identical to the enzyme N-acetyl-D-

glucosamine 2-epimerase (NAGE) (Takahashi et al., 1999). In a study of RnBP-knockout mice, 

Schmitz et al. were unable to detect any effect of RnBP-deficiency on renal and circulating RAAS 

or on blood pressure, leading the authors to speculate that RnBP does not play a role in the 

regulation of plasma renin and RAAS activity (Schmitz et al., 2000). However, Bohlmeyer and 

colleagues investigated the expression of RnBP in failing human hearts, with end-stage 

idiopathic dilated cardiomyopathy. They found that RnBP expression was restricted to 

endothelial cells in non-failing hearts, while RnBP gene and protein expression was selectively 

activated in the ventricular cardiomyocytes of failing hearts (Bohlmeyer et al., 2003). 

Interestingly, they reported that the highest RnBP mRNA levels were detected in a subject with 

significant LVH. Additionally, RnBP was redistributed from a cytosolic to a 
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sarcolemmal/sarcomeric fraction, which led the authors to conclude that RnBP may be involved 

in the modification of cardiac cytoskeletal proteins.  

 

Knoll et al. investigated the effect of a RnBP gene (RENBP) T61C variant on several 

cardiovascular parameters in 505 randomly selected Caucasian individuals (Knoll et al., 1997). 

Males (n = 293) and females (n = 212) were analysed separately, as the RnBP gene is X-linked, 

and individuals on antihypertensive medication were excluded. The authors reported an 

association between this variant and plasma prorenin, as well as the renin/prorenin ratio, but 

found no significant association with circulating renin, blood pressure, heart rate or LVM in 

men. These findings were not replicated in females (Knoll et al., 1997).  In contrast, Gu et al. 

reported a strong association between markers rs1557501 and rs2269372 in RENBP and 

systolic blood pressure responses to low-sodium diets in a cohort of 1906 individuals from Han 

Chinese families who took part in the Genetic Epidemiology Network of Salt Sensitivity 

(GenSalt) (Gu et al., 2010). 

 

Research on renin and renin-related proteins largely focussed on identifying these proteins in 

different in vivo settings, to pinpoint their physiological function. While association has been 

detected between REN (Ahmad et al., 2005a), RENBP (Gu et al., 2010) and the PRR gene, 

ATP6AP2, (Ichihara et al., 2010) variants and blood pressure regulation, to date, no study has 

detected an effect of polymorphisms in these genes on hypertrophy per se or within the context 

of HCM.  

 

1.6 Angiotensin converting enzyme (ACE) 

ACE, encoded by the ACE gene, is a transmembrane-ectopeptidase that is responsible for the 

conversion of Ang I to the active Ang II and the inactivation of bradykinin. This gene remains the 

most commonly studied candidate modifier gene for HCM, as Ang II and bradykinin exert strong 

cardiovascular effects in opposing directions. While Ang II promotes hypertension and cardiac 

hypertrophy, bradykinin exerts cardioprotective effects.  

 

ACE expression is increased in many forms of cardiovascular hypertrophy (Fleming, 2006; 

Schunkert et al., 1990), while serum ACE activity is significantly related to LVM, independent of 

systemic blood pressure (Schunkert et al., 1997). ACE inhibitors, together with AT1R blockers, 

are currently the gold standard for antihypertensive therapy (Paulis and Unger, 2010). 

Furthermore, inhibition of ACE with ramipril is associated with LVH regression, independent of 

its effect on blood pressure (Mathew et al., 2001), while ACE inhibition improved left 

ventricular function in patients with hypertrophic obstructive cardiomyopathy (Kyriakidis et al., 
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1998). These data are complemented by meta-analyses of clinical trials that suggest that ACE 

inhibitors are effective in causing LVH regression, even after adjustment for treatment duration 

and change in blood pressure (Dahlof et al., 1992; Klingbeil et al., 2003; Schmieder et al., 1996). 

 

An insertion/deletion (I/D) polymorphism, involving the presence (I) or absence (D) of 287 bp 

Alu repeats in intron 16 of ACE, accounts for 47% of the total variability in serum ACE levels 

(Rigat et al., 1990). Circulating ACE levels in plasma were nearly 60% higher in DD-

homozygotes, compared with II-homozygotes (Rigat et al., 1990). This polymorphism is 

consequently thought to be functional as it exerts and incremental effect on plasma and tissue 

ACE levels, where II-homozygotes exhibit the lowest levels of plasma and tissue ACE, 

heterozygotes the intermediate and DD-homozygotes the highest (Marian, 2002; Tiret et al., 

1992).  

 

However, in a meta-analysis of 49 959 individuals (Staessen et al., 1997b), the prevalence of the 

D-allele was significantly influenced by ethnicity, as the D-allele prevalence was 56.2% in 

Caucasians, 60.3 % in blacks and 39.1% in Asians. This group added to these findings in a more 

recent meta-analysis on echocardiographic phenotypes across 38 studies (Jin et al., 2011b) by 

reporting that both DD-homozygotes and ID-heterozygotes had elevated LVM and an increased 

mean wall thickness when compared to II-homozygotes. The authors did, however, mention 

that these results should be interpreted with caution as adjustments for environmental and 

lifestyle confounders of LVM were inconsistent across studies and they observed a significant 

publication bias for studies reporting an association between LVM and the I/D polymorphism, 

which may have lead to an overestimation of the pooled association (Jin et al., 2011b). In 

contrast, a study on 2439 subjects from the Framingham Heart study did not find a significant 

association between ACE DD-genotypes and echocardiographically-determined LVM 

(Lindpaintner et al., 1996). 

 

In the first study of this polymorphism in HCM, Marian et al. reported a significant association 

between the DD-genotype and an increased risk of sudden cardiac death in HCM patients 

(Marian et al., 1993). Later, other studies reported a significant association between the D-allele 

and increased LVH indices, but this association was not replicated in all studies (Table 1).   
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Table 1.1 Summary of association studies on the influence of ACE I/D polymorphism on HCM 

phenotypes 

Study Cohort Results 
389 unrelated HCM patients DD-genotype associated with increased left 

ventricular wall thickness in MYBPC3 carriers, but 
not MYH7 carriers (Perkins et al., 2005) 

100 HCM patients and 106 of their 
unaffected siblings and offspring 

DD-genotype associated with increased risk of SCD in 
HCM (Marian et al., 1993) 

114 genetically affected HCM patients  Significant association between D-allele and 
hypertrophy, which is influenced by HCM-causal 
mutation (Tesson et al., 1997) 

118 Indian HCM Patients and 164 
ethnically, age- and gender-matched 
controls 

Prevalence of DD-genotype significantly higher in 
patients compared to controls and was associated 
with increased risk of HCM, after adjustment for age, 
sex, body mass and smoking (Rai et al., 2008) 

62 Australian HCM patients 
 

DD-genotype associated with greater progression of 
LVH, independent of age, body mass and blood 
pressure (Doolan et al., 2004) 

183 Caucasian HCM patients DD-genotype significantly associated with LVH, 
independent of age, sex, weight and body surface 
area (Lechin et al., 1995) 

50 unrelated HCM patients and 50 
healthy controls 

DD-genotype more prevalent in HCM patients 
(Pfeufer et al., 1996) 

80 Japanese HCM patients and 88 of 
their unaffected children and siblings 

DD-genotype more prevalent in HCM patients 
(Yoneya et al., 1995) 

71 Japanese patients with nonfamilial 
HCM and 122 healthy controls 

No association between DD-genotype and indices of 
hypertrophy (Yamada et al., 1997) 

136 Brazilian HCM patients Serum ACE activity, but not I/D polymorphism 
affected LVH in HCM (Buck et al., 2009) 

104 unrelated Caucasian HCM patients No association between D-allele and LVM, but variant 
affected plasma ACE levels (Osterop et al., 1998) 

126 genetically diagnosed Japanese 
HCM patients 

D-allele associated with decreased posterior wall 
thickness, decreased ejection fraction and increased 
left ventricular end-systolic dimension; no 
association with septal thickness or maximal left 
ventricular wall thickness (Funada et al., 2010) 

63 HCM patients and 20 healthy 
controls, all Caucasian 

Increased QT dispersion in HCM patients with DD-
genotype (Kaya et al., 2010) 

245 unrelated HCM patients and 300 
healthy controls, all Spanish Caucasians 

No association between I/D polymorphism and risk 
of cardiac hypertrophy (Coto et al., 2010) 
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One explanation for this discrepancy could be that association between the I/D polymorphism 

and hypertrophy indices is context-dependent and sensitive to hypertrophy- and environmental 

confounders in HCM (Sayed-Tabatabaei et al., 2006). 

 

Tesson et al. assessed the effect of the I/D polymorphism in families that harbour HCM causal 

genes in the cardiac myosin binding protein C (MYBPC) or β-myosin heavy chain (MYH7) genes 

and found that the association between this polymorphism and LVH was dependent on the 

specific HCM mutation (Tesson et al., 1997). When all genetically-affected individuals were 

analysed together, they found no significant association. A significant association was, however, 

reported between the ACE D-allele and interventricular septal thickness in individuals with the 

R403Q mutation in MYH7 (Tesson et al., 1997). Different HCM mutations show definite 

variability in phenotypic expression, as some are associated with severe cardiac hypertrophy, 

while others offer more benign outcomes (Charron et al., 1998; Erdmann et al., 2001). It is, 

therefore, conceivable that the effect of primary HCM causal mutation cannot be discounted in 

HCM association studies. Most of the studies in Table 1 did, however, not account for this effect.  

 

Another general difficulty for HCM association studies is shown by the study of Lechin et al. 

(Lechin et al., 1995). This group used regression analysis to show that ACE I/D genotypes only 

accounted for 3.7% of the variability in LVM index and 6.5% of a LVH score used to quantify the 

extent of hypertrophy in unrelated HCM patients (Lechin et al., 1995). This allows for the 

possibility that ACE variants only make a modest contribution towards hypertrophy in HCM and 

speaks to the possibility that there might be a number of modifying variants and genes that 

affect the HCM phenotype.  

 

Buck et al. reported that ACE activity, rather than ACE polymorphisms, affected LVH in HCM, 

although this study is somewhat hampered by the small sample size (Buck et al., 2009), 

however, ACE activity is obviously determined by genetic variation within the ACE gene. Thus, it 

remains puzzling that the I/D variant is not located in a coding region and does not exert any 

clear effect on gene transcription, which points to a very real possibility that it might only be a 

marker for a functional variant in close proximity (Cox et al., 2002; Keavney et al., 1998). The 

precise location of this proposed functional variant is still uncertain, although it is thought to be 

most likely located between intron 18 and the 3’ UTR (Sayed-Tabatabaei et al., 2006; Zhu et al., 

2000). On the other hand, Kammerer and co-workers recently suggested a QTL on chromosome 

4 that impacts on ACE activity (Kammerer et al., 2004), and a yet another possibility for a 

functional variant exists in the 5’ gene region (McKenzie et al., 2005; Villard et al., 1996). 
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1.7 Angiotensin converting enzyme 2 (ACE2) 

A second ACE, ACE2, which is thought to be an essential regulator of cardiovascular function 

(Crackower et al., 2002) was recently reported. This homologue of ACE removes the C-terminal 

phenylalanine from Ang II, to form Ang-(1-7), which is a ligand of the G-protein-coupled 

receptor Mas. ACE2-null mice develop progressive Ang II-mediated age-dependent 

cardiomyopathy, which is associated with increased oxidative stress, as well as pathological 

hypertrophy (Oudit et al., 2007). ACE2-deficiency also exacerbated adverse cardiovascular 

remodelling in mice with Ang II-induced hypertrophy, whereas recombinant human ACE2 

reduced Ang II-induced hypertrophy in wild type mice and partially prevented the development 

of dilated cardiomyopathy in pressure-overloaded mice (Zhong et al., 2010). The beneficial 

effect of ACE2 on adverse cardiac remodelling is further evident from a number of animal 

models (Huentelman et al., 2005; Tikellis et al., 2011; Trask et al., 2007). In addition, Ang-(1-7) 

has been shown to attenuate cardiac hypertrophy and dysfunction through a direct local effect 

in transgenic animal models (Finckenberg and Mervaala, 2010). 

 

Lieb et al. previously reported that the minor alleles of four SNPs in the X-linked ACE2 gene 

were associated with LVMindex as well as interventricular septal thickness in males (but not 

females) from the general population in the MONICA (MONitoring trends and determinants in 

CArdiovascular disease) Augsburg survey (Lieb et al., 2006). These four SNPs (rs4646156, 

rs879922, rs4240157 and rs233575) showed high pairwise LD and a common haplotype, 

consisting of the minor alleles of these SNPs, was associated with an increased odds-ratio (OR) 

for LVH (OR 3.10, p=0.006) in a model adjusted for age, body mass, antihypertensive 

medications and systolic blood pressure. Males carrying this haplotype displayed modestly 

increased LVMindex and interventricular septal thickness (Lieb et al., 2006).  

 

Subsequently, Wang and co-workers investigated the effect of two other SNPS on HCM in a 

Chinese population, as the minor alleles of rs879922 and rs4240157 were present at too low 

frequency, and rs4646156 and rs233575 were not polymorphic, in the Chinese population. 

They reported that the T-allele of rs2106809 and C-allele of rs6632677 conferred an increased 

risk for HCM in males, from a study of 261 HCM patients and 600 healthy controls (Wang et al., 

2008). These SNPs were in strong LD with each other, and the TC haplotype was associated with 

an increased risk for HCM and modestly increased interventricular septal thickness, 

independent of age, body mass and blood pressure. The primary disease-causing HCM 

mutations of these patients were, however, unidentified and were therefore not adjusted for in 

the analyses. These findings could also not be replicated in females.  
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The G-allele of rs879922 was recently reported to be significantly associated with cardiac 

hypertrophy in a South African HCM family cohort, independent of the primary HCM causal 

mutation and known hypertrophy covariates, viz. blood pressure, age, sex, body surface area 

(BSA), heart rate and hypertension diagnosis (Van der Merwe et al., 2008). After adjustment for 

known hypertrophy covariates, the G-allele significantly increased LVM by 18.7 g, maximum 

interventricular septal thickness by 1.9 mm and maximum posterior wall thickness by 0.7 mm 

(van der Merwe et al., 2008b).  

 

Although ACE2 is clearly a plausible hypertrophy modifier in HCM, more studies are needed to 

fully elucidate the contribution of ACE2 variants to hypertrophy in HCM as none of these 

variants have any obvious functional roles.  

 

1.8 Cardiac chymase (CMA) 

Ang II production in the heart can also be attributed to a serine protease named cardiac 

chymase (CMA). Indeed, Urata et al. showed that CMA accounts for 80% of the Ang II generated 

in the human ventricle (Urata et al., 1993). Chymase is produced from mast cells in the heart 

and is not inhibited by ACE inhibitors (Guo et al., 2001). Transgenic mice expressing human 

CMA showed elevated blood pressure and increased LVM (Koga et al., 2003), while cardiac 

chymase activity was increased in the hearts of naturally-occurring cardiomyopathic hamsters 

(Shiota et al., 1997; Shiota et al., 1998). Hoshino et al. showed that a CMA-inhibitor significantly 

increased survival rate, while attenuating cardiac hypertrophy and end-diastolic left ventricular 

pressure, in a hamster model of myocardial infarction (Hoshino et al., 2003).  

 

Two bi-allelic markers of the cardiac chymase A gene (CMA) on chromosome 14q11 have been 

studied in hypertrophy association studies: a 1625 G/A transition in intron 2, termed CMA/A, 

and a -1903 G/A transition in the 5’ untranslated region, termed CMA/B (He et al., 2005; Pfeufer 

et al., 1996).  He et al. investigated the antihypertrophic properties of the ACE I/D and the 

CMA/B polymorphisms in a clinical trial on the effect of the ACE inhibitor benazepril on 157 

Chinese patients with essential hypertension (He et al., 2005). Benazepril significantly reduced 

blood pressure and LVH in these patients. Patients treated with benazepril that harboured the 

ACE DD genotype showed a significantly higher reduction in echocardiographically determined 

LVM and LVMindex when compared to II and ID genotypes. No association was, however, found 

between the CMA polymorphism and regression of LVH in these patients (He et al., 2005).  
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Conversely, Gumprecht et al. reported that the CMA/B polymorphism, together with the ACE 

I/D polymorphism, conferred a genetic predisposition to increased risk of the development of 

LVH in Caucasian type-2 diabetics (Gumprecht et al., 2002). 

 

The CMA/B was not associated with the extent of LVH in one study of a cohort of 50 unrelated 

HCM patients and 50 healthy controls (Pfeufer et al., 1996). In a later study, the same group 

reported that CMA polymorphisms did not affect blood pressure, posterior- or interventricular 

septal thickness in patients with acute myocardial infarction (Pfeufer et al., 1998). In a family-

based association study, the CMA/B polymorphism showed a significant association with LVM 

in an unadjusted analysis, but the same SNP did not show a significant association with LVM or 

interventricular septal thickness in a multivariate analysis in which age, sex and the presence of 

hypertension were adjusted for (p = 0.06) (Ortlepp et al., 2002).  

 

1.9 Angiotensin II type 1 Receptor (AT1R) 

The main effector molecule of the RAAS, Ang II, when bound to the AT1 and AT2 receptors, 

influences cardiac hypertrophy, remodelling and contraction in multiple blood pressure 

independent ways. Binding of Ang II to the AT1R activates multiple intracellular pathways that 

involve phospholipids, calcium, reactive oxygen species (ROS) and kinases (Booz, 2004). These 

AT1R-mediated pathways elicit cardiovascular hypertrophic effects that are well-documented, 

which includes vasoconstriction, aldosterone release and growth stimulation (Dostal and Baker, 

1992; Hoffmann et al., 2001).  

 

Moreover, overexpression of the AT1R leads to increased cardiac mass and cardiomyocyte 

hypertrophy in mice (Hein et al., 1997). It was recently shown that increased cardiac expression 

of the AT1R gene (AGTR1) in cardiomyocytes of adult transgenic mice caused blood pressure-

independent hypertrophy by promoting cardiomyocyte growth, which progressed to 

pathological remodelling upon further stimulation (Ainscough et al., 2009). Moreover, large 

clinical trials have concluded that AT1R antagonists reduce LVH and other cardiac morbidities 

in humans (Dahlof et al., 2002b; Okin et al., 2003).  

 

AT1R-antagonists are currently being explored as potential therapeutic options for hypertrophy 

and associated morbidities in HCM (Force et al., 2010). Four small pilot studies in patients with 

non-obstructive HCM showed slight improvements in cardiovascular morphology and function 

(Araujo et al., 2005; Kawano et al., 2005; Penicka et al., 2009; Yamazaki et al., 2007). The most 

recent of these studies reported that the long-term administration of the AT1R-antagonist 

candesartan in HCM patients was associated with significant regression of LVH, improvement of 
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left ventricular function, and exercise tolerance. This effect was dependent on the specific HCM 

causal mutation (Penicka et al., 2009). These studies are, however, still too small to allow 

definitive conclusions to be drawn and more research is needed in this regard.  

 

Castellano et al. studied the effects of an A/C transversion at position 1166 in the 3’ 

untranslated region of AGTR1 (rs5186) on the regulation of blood pressure and cardiovascular 

structure in 212 subjects randomly selected from a general population in northern Italy 

(Castellano et al., 1996). They reported that blood pressure levels were significantly lower in 

CC-homozygotes, but no association was found with echocardiographically determined LVM 

after adjustment for potentially confounding variables (age, sex, height, weight, blood pressure 

and smoking) (Castellano et al., 1996). Similarly, a study on 141 Caucasian patients with normal 

coronary arteries did not find association between the A1166C, or the ACE I/D polymorphism, 

and left ventricular function or LVM (Hamon et al., 1997). 

 

Wang et al. studied the effects of AGTR1 C-512T, A1166C and L191L polymorphisms on the 

progression of blood pressure and LVM in a longitudinal study involving 581 European 

American and African American youths (Wang et al., 2006). When analysed as a single variant, 

the L191L polymorphism showed a significant systolic blood pressure-lowering effect in youths 

with a high socioeconomic status, and a diastolic blood pressure-lowering effect in African 

American youths. However, haplotype analysis identified a protective haplotype (C-521, 191L 

and A1166) for LVM in the entire cohort. Individuals homozygous for this haplotype showed a 

significant decrease of 12.9 g in LVM when compared to the most common reference haplotype 

(–521T, 191L and A1166) (Wang et al., 2006).  

 

Ishahov et al. reported that this polymorphism did not contribute significantly to hypertrophy 

development in hypertensive (n = 53) or HCM (n = 96) patients (Ishanov et al., 1998). However, 

subjects with a family history of HCM, but who did not manifest the disease clinically, had a 

four-fold increase in C-allele carrier status compared to patients without a family history of 

HCM (Ishanov et al., 1998). Conversely, the 1166C-allele was associated with increased LVM in 

104 unrelated HCM patients, independent of age, gender, peak left ventricular outflow gradient, 

plasma renin, and the ACE I/D polymorphism (Osterop et al., 1998). Coto et al. reported a 

significantly higher frequency of 1166C-allele carriers among echocardiographically-diagnosed 

HCM patients compared to controls (OR = 1.56; 95%CI = 1.09-2.23) (Coto et al., 2010). This 

allele was also associated with higher left ventricular wall thickness in HCM patients (Coto et al., 

2010). 
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In contrast to these studies, in which only echocardiographic criteria were used to diagnose 

HCM, Funada et al. studied the effect of this polymorphism in 126 genotype-identified HCM 

patients from 49 Japanese families (Funada et al., 2010). These patients were diagnosed with 

HCM through standard echocardiographic criteria and the diagnosis was confirmed with genetic 

testing for sarcomeric gene mutations. While this resulted in an improved diagnosis, the authors 

did unfortunately not adjust the subsequent association analyses for these sarcomeric 

mutations, which may have yielded more informative results. They reported that the A1166C 

alone did not influence LVH, but when analysed in combination with the ACE I/D polymorphism, 

the two SNPs significantly affected adverse cardiac remodelling (Funada et al., 2010). This SNP 

was additionally found to associate with LVH in a study on 26 individuals from a single family 

with HCM caused by a previously identified myosin binding protein C mutation (Ortlepp et al., 

2002).  

 

A recent study (Sethupathy et al., 2007) proposed a biochemical mechanism of action for the 

A1166C polymorphism. This SNP is located in the 3’ untranslated region in a target site for the 

hsa-miR-155 micro-RNA, which is able to bind to 3’ untranslated regions through 

complementary base-pairing and thus to repress mRNA expression post-transcriptionally. Using 

reporter silencing assays, Sethupathy et al. showed that hsa-miR-155 downregulates the 

expression of only the 1166A, and not the 1166C-allele, which results in increased translation of 

AGTR1 in C-allele carriers (Sethupathy et al., 2007). It is, however, unsure at this stage whether 

AGTR1 and hsa-miR-155 is concomitantly expressed in the heart and more studies are, 

therefore, needed to fully explore the functionality of this SNP, while the possibility still exist 

that it might be in LD with a truly functional mutation. However, this highlights a mechanism by 

which apparently non-functional polymorphisms can have effects on expression of genes, and 

thereby may affect biochemical pathways and physiological systems. 

 

1.10 Angiotensin II type 2 Receptor (AT2 R) 

Cardiac expression of the AT2R is upregulated in heart failure, myocardial infarction and cardiac 

remodelling (Nio et al., 1995; Ohkubo et al., 1997; Van Kesteren et al., 1997b). Previous studies 

in adult rat hearts have suggested that AT2Rs have antihypertrophic effects on the heart that 

counterbalance the hypertrophic effects of the AT1Rs (Booz and Baker, 1996; Mukawa et al., 

2003). In a study on adult rat hearts, Bartunek et al. demonstrated that AT2R inhibition 

amplifies LVH in response to Ang II. They perfused normal and hypertrophied hearts either with 

only Ang II, or with Ang II together with an AT2R blocker and measured new protein synthesis 

within the left ventricles of these hearts. AT2R blockade in Ang II-treated rats resulted in an 

amplified left ventricular growth response to Ang II, which was coupled with reduced left 
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ventricular cGMP content, and enhanced membrane protein kinase C translocation (Bartunek et 

al., 1999).  

 

The AT2R gene (AGTR2) is located on the X-chromosome and consists of three exons and two 

introns; the entire open reading frame of the gene is situated in the third exon. Zhang et al. 

reported that an rs5193/rs5194 haplotype in AGTR2 is associated with a cardioprotective role 

in Cantonese patients with essential hypertension (Zhang et al., 2006).  

 

A commonly occurring AT2R polymorphism, rs1403543, designated as either -1332 G/A or 

+1675 G/A (Alfakih et al., 2004; Erdmann et al., 2000) is, however, the most frequently studied 

SNP in hypertrophy association studies. This polymorphism is located at a lariat branch-point in 

the first intron, 29 bp before exon 2, in a region that is important for transcriptional activity 

(Erdmann et al., 2000; Warnecke et al., 2005). Nishimura et al. postulated that this 

polymorphism is functional and may affect pre-mRNA splicing (Nishimura et al., 1999), 

although a later study provided evidence that it modulates AT2R protein expression, but not 

mRNA splicing (Warnecke et al., 2005). Warnecke et al. concluded that +1675 G/A is associated 

with increased AT2R protein levels, which may be protective in LVH development (Warnecke et 

al., 2005). 

 

In a study of 60 normotensive and 60 untreated, mildly hypertensive students at a Bavarian 

university, Schmieder and colleagues found that the +1675 A-allele is significantly associated 

with an increase in echocardiographically determined LVM and relative left ventricular wall 

thickness in young, mildly hypertensive males (Schmieder et al., 2001). The +1675 A-allele was 

additionally associated with LVH in males aged 55–74 from the Glasgow Heart Scan Old 

(GLAEOLD) cohort (Herrmann et al., 2002). These findings were, however, not replicated in the 

similar, but larger Glasgow Heart Scan (GLAECO) cohort, and the authors subsequently 

concluded that further research into the role of AGTR2 in LVH was needed (Herrmann et al., 

2002).  

 

In contrast, Alfakih et al. reported an association between +1675 G-allele and LVMindex as 

determined with magnetic resonance imaging (MRI) in patients with systemic hypertension 

(Alfakih et al., 2004). MRI is credited with being a more reliable measure of cardiac hypertrophy 

than M-mode and 2D-echocardiography, even though echocardiography is still widely used to 

estimate LVM as it is more readily available as a clinical tool (Myerson et al., 2002).  
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Deinum et al. investigated the effect of an AGTR2 +3123 A/C polymorphism (rs11091046) on 

LVH in 103 unrelated HCM patients (Deinum et al., 2001). Multiple regression analysis showed 

that the AGTR2 +3123 C-allele decreased LVMindex in female subjects, independent of plasma 

renin, the +1166 A/C AGTR1 variant or the I/D ACE variant. However, this study of ungenotyped 

cases did not account for differences in the primary HCM causal mutation, which may have had 

confounding effects on the association. A later study reported a significant association between 

the +1675 A-allele and decreased LVH in a HCM family cohort, independent of the primary HCM 

causal mutation, blood pressure, age, sex, BSA, heart rate and hypertension diagnosis (Carstens 

et al., 2011).  

 

1.11 Aldosterone synthase (CYP11B2) 

Recent studies in perfused hearts and cultured cells reported increased cardiomyocyte 

contractile force and cardiomyocyte hypertrophy in response to aldosterone administration 

(Barbato et al., 2004; Okoshi et al., 2004; Sato and Funder, 1996). Serum aldosterone was, 

furthermore, significantly related to LVM, as well as septal and posterior wall thickness in a 

population based sample of 615 middle-age subjects (Schunkert et al., 1997). Tsybouleva and 

co-workers showed that myocardial aldosterone levels were increased by 4.5-fold in HCM 

hearts, when compared to healthy donor hearts, and that mRNA levels from the aldosterone 

synthase-encoding gene, CYP11B2, increased 7-fold in HCM (Tsybouleva et al., 2004).  

 

The -344T/C polymorphism in the 5’ promoter region of the CYP11B2 was significantly 

associated with levels of plasma aldosterone in a cohort of 216 patients with essential 

hypertension, after adjustment for age and 24-hour urine Na+-excretion (Pojoga et al., 1998). 

This polymorphism also predicted statistically significant variations in left ventricular diameter 

and LVM, independent of sex, body size, blood pressure, physical activity, smoking, and ethanol 

consumption in 84 healthy Caucasians (Kupari et al., 1998). The -344T/C polymorphism resides 

in a putative binding site for steroidogenic transcription factor-1 (SF-1); the -344 C-allele is 

associated with a four-fold increase in SF-1 binding and could, therefore, possibly influence 

gene expression (White et al., 1999). Bassett et al. confirmed that the C-allele binds SF-1 more 

strongly that the T-allele, but added that SF-1 failed to stimulate CYP11B2 expression in vivo 

(Bassett et al., 2002).  

 

A study on two larger cohorts from the MONICA study did, however, not replicate these 

associations (Schunkert et al., 1999b). A later meta-analysis (that included data from these, as 

well as a number of subsequent studies) investigated the effect of this polymorphism on left 

ventricular structure-related phenotypes (Sookoian et al., 2008). The -344T/C variant was not 
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significantly associated with LVM or interventricular septal wall thickness in a pooled sample of 

2157 unrelated subjects, although hypertensive subjects (n = 332) homozygous for the T-allele 

showed a 6.9% increase in LVM, compared to CC-homozygous subjects (Sookoian et al., 2008). 

Posterior wall thickness was 2.4% lower in homozygous CC individuals in a subject pool of 1994 

from 10 homogeneous studies; this effect was increased to 11% when only hypertensive 

individuals were analysed (Sookoian et al., 2008).  

 

While this meta-analysis only included data from unrelated people in case-control study 

designs, another study investigated the effect of this promoter variant, as well as five other 

CYP11B2 polymorphisms (singularly and in combined haplotypes) on heart size, in 955 

members from 229 British families (Mayosi et al., 2003). The additional five variants included 

an intron 2 conversion (I2C) polymorphism, in which intron 2 of the neighbouring 11 beta-

hydroxylase gene (CYP11B1) gene has been transferred to CYP11B2, as well as four other SNPs 

in the coding region (A2713G, A4550C, T4986C and G5937C). While the authors found no 

association with the -344T/C SNP, they reported a significant association between G5937C and 

interventricular septal thickness, whereas the I2C and A4550C polymorphisms associated with 

left ventricular cavity size. Measured haplotype analyses confirmed the association of I2C and 

G5937C polymorphisms with interventricular septal thickness, and alleles at the I2C 

polymorphism with left ventricular cavity size. These CYP11B2 polymorphisms contributed to 

2.4 and 2.0–3.4% of the variability in septal wall thickness and left ventricular cavity size, 

respectively (Mayosi et al., 2003).  

 

Two independent studies later reported strong LD between CYP11B2 polymorphisms and 

variants in the neighbouring CYP11B1 gene (Ganapathipillai et al., 2005; Keavney et al., 2005). 

The enzyme encoded by the latter gene catalyses the final step in cortisol biosynthesis. Studies 

later showed that aldosterone synthesis is highly heritable and is affected by genotypes at 

CYP11B2, as well as CYP11B1 (Imrie et al., 2006; Alvarez-Madrazo et al., 2009). The association 

found between CYP11B2 polymorphisms and cardiovascular phenotypes could, therefore, 

perhaps be explained (or influenced) by LD across the CYP11B1/B2 locus, but more studies are 

needed to fully explore this notion.  

 

Patel et al. reported that CYP11B2 −344T/C genotypes did not influence LVM or interventricular 

septal thickness in 142 genetically-independent echocardiographically-diagnosed HCM patients 

(Patel et al., 2000). However, Ortlepp et al. later found that this polymorphism significantly 

associated with both of these hypertrophy phenotypes after age, sex and the presence of 

hypertension was controlled for, in a single family with HCM caused by a previously identified 
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myosin binding protein C (MyBPC) mutation (Ortlepp et al., 2002). In contrast to the study by 

Tsybouleva et al., Chai et al. reported that plasma and left ventricular tissue levels of 

aldosterone in 79 genetically-independent subjects with HCM were not significantly different 

from those in age-matched controls (Chai et al., 2006). They reported a significant association 

between the CYP11B2 −344T-allele and LVMindex, as well as interventricular septal thickness in 

men, but not in women. Multiple regression analysis showed that the effect of the −344T-allele 

on interventricular septal thickness occurred independently of renin or the ACE I/D, AGTR1 

+1166 A/C or AGTR2 +3123 A/C polymorphisms (Chai et al., 2006).  

 

These studies did, however, not investigate the effect of the entire CYP11B1/B2 locus on 

hypertrophy indices in HCM and more research is thus needed to fully elucidate the 

contribution of CYP11B1/B2 variants to hypertrophy development in general, an in HCM in 

particular.  

 

1.12 Mineralocorticoid receptor (MR) 

The MR, encoded by NR3C2, is responsible for the downstream RAAS functions, as it binds to 

aldosterone to form an MR/aldosterone complex, which, in turn, activates aldosterone-induced 

early and late response gene transcription and signalling cascades to mediate cellular Na+ 

homeostasis via its downstream effectors. The MR is a member of the 

steroid/thyroid/retinoid/orphan receptor family of transcription factors and has been 

identified in cardiac tissue in previous studies (Lombes et al., 1995). Functional polymorphisms 

in NR3C2 have been shown to result in a rare condition called pseudohypoaldosteronism type I, 

which is characterized by unresponsiveness to aldosterone, severe salt wasting, extreme 

hyperkalaemia and elevated PRA (Edelheit et al., 2005; Geller et al., 1998). 

 

Interestingly, through its binding to the MR, aldosterone is able to directly induce 

cardiomyocyte hypertrophy (Le Menuet et al., 2004; Yoshida et al., 2010). Nagata et al. 

investigated the effect of MR-blockade on cardiac hypertrophy in rats with salt-sensitive 

hypertension and concluded that MR-blockade attenuates LVH, in the absence of an 

antihypertensive effect (Nagata et al., 2006). Correspondingly, the MR antagonist 

spironolactone attenuated LVH in uremic rats without a significant reduction in blood pressure 

(Michea et al., 2008). Several further animal studies, including some using HCM model animals, 

illustrated beneficial cardiovascular effects with cardiomyocyte-specific MR blockade 

(Fraccarollo et al., 2011; Lother et al., 2011).  
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Overexpression of the human MR in mice resulted in mild dilated cardiomyopathy in 

conjunction with a significant increase in heart rate, while blood pressure levels remained 

unchanged (Ouvrard-Pascaud et al., 2005). Tsybouleva and colleagues investigated the effect of 

MR blockade in a transgenic mouse model of human HCM (cTnT-Q92). They were able to 

demonstrate that MR blockade with spironolactone reduced myocyte disarray and interstitial 

fibrosis, and also improved diastolic function; they concluded that aldosterone, through the MR, 

significantly affects the relationship between sarcomeric dysfunction and the cardiac phenotype 

of HCM (Tsybouleva et al., 2004). Similar approaches were, however, not as effective in feline 

HCM models (Force et al., 2010; Taillefer and Di Fruscia, 2006). One study speculated that this 

might be due to inadequate dosage of RAAS inhibitors as more research is needed on the dosage 

required to adequately disrupt the RAAS in feline models (Taillefer and Di Fruscia, 2006).  

 

In another transgenic mouse model of cardiac hypertrophy, Zhang et al. show that conditional 

and cardiomyocyte-restricted overexpression of the human MR promoted LVH and diastolic, 

but not systolic, dysfunction through redox-dependent, blood pressure–independent effects in 

response to Ang II infusion (Di Zhang et al., 2008). MR blockade with canrenoate was shown to 

decrease the expression of TGF-β and significantly reduced LVH and cardiac fibrosis in these 

mice, which is consistent with earlier studies where MR blockade reduced hypertrophy indices 

determined with MRI in transgenic rats (Stas et al., 2007). 

 

In humans, MR antagonists were shown to reduce ventricular remodelling, sudden cardiac 

death and myocardial fibrosis in the randomized aldactone evaluation study (RALES) and in the 

eplerenone post-acute myocardial infarction efficacy and survival study (EPHESUS) clinical 

trials. These effects were also independent of the antagonist’s effect on blood pressure, 

providing evidence that MR blockade offers cardioprotective effects in patients with heart 

failure and systolic left ventricular dysfunction (Pitt et al., 1999; Pitt et al., 2003). The MR 

blocker spironolactone is currently still being investigated as an experimental therapy option in 

HCM, as small preliminary studies showed beneficial cardiovascular effects, but more research 

is essential in this regard (Marian, 2009).   

 

Previous reports show a significant association between NR3C2 polymorphisms and blood 

pressure control in hypertensive populations (Geller et al., 2000; Martinez et al., 2009; Van 

Leeuwen et al., 2010), but there is currently a lack of information on the involvement of NR3C2 

variants in both overload-induced and blood pressure-independent hypertrophy. One possible 

explanation for the lack of knowledge in this regard is the size of the MR gene, as it spans about 

360 kb and contains 10 exons. A minimum of about 20 SNPs is needed to at least capture the 
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main haplotypes for a given population in this gene through linkage disequilibrium unit (LDU)-

based density, as well as tag SNP selection.   

 

1.13 11β-HSD2 

The MR is able to bind both aldosterone and cortisol, but under normal circumstances it is 

protected from cortisol occupancy by the short-chain dehydrogenase/reductase 11β-HSD2, 

which degrades cortisol to corticosterone, which is then unable to bind to the MR (Farman and 

Bocchi, 2000). Null mutations in this gene causes apparent mineralocorticoid excess (AME), a 

rare form of congenital hypertension, characterised by severe hypertension, hyperkalaemia and 

low aldosterone levels, as well as associated end-organ complications such as renal or 

cardiovascular damage (Dave-Sharma et al., 1998).  

 

Transgenic mice overexpressing 11β-HSD2 in cardiomyocytes were normotensive, but 

spontaneously developed cardiac hypertrophy, fibrosis, and heart failure and died prematurely 

on a normal salt diet (Qin et al., 2003). In addition, the MR blocker spironolactone improved 

adverse left ventricular remodelling in rats by modulating MR and 11β-HSD2 expression levels 

(Takeda et al., 2007). Recently, Bailey et al. showed that HSD11B2-null heterozygote mice, which 

express only 50% of normal enzyme levels, develop salt-sensitive hypertension (Bailey et al., 

2011). These mice exhibited a salt-induced increase in heart:body weight ratio, which was 

partially reduced by spironolactone (Bailey et al., 2011). 

 

11β-HSD2 is consequently an attractive candidate gene for hypertension in humans and 

polymorphisms in this gene have been associated with blood pressure regulation in several 

populations (Ferrari, 2010). However, little is known about the role of this gene in hypertrophy 

development, although one study reported a correlation between urinary 11β-HSD2 activity 

and LVM in essential hypertension (Glorioso et al., 2005).  

 

1.14 Downstream RAAS effectors 

Various studies have implicated altered intracellular Na+ in cardiac hypertrophy (Gu et al., 1998; 

Verdonck et al., 2003). Thus far, we have discussed the indirect (blood pressure-dependent), as 

well as the direct hypertrophic effect of certain RAAS components on hypertrophy in HCM. 

Another potential mechanism whereby RAAS genes can alter the HCM hypertrophic phenotype 

is by altering the balance of intracellular Na+, which plays a crucial role in the structural, 

mechanical, and electrical properties of the myocardium. The MR/aldosterone complex exerts 

its effects on Na+ homeostasis via the ENaCs, as well as via Na+/K+-ATPase.  
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1.14.1 Na+/K+-ATPase 

The Na+/K+-ATPases catalyze the exchange of Na+ and K+ ions across plasma membranes and 

are  essential downstream effectors of the MR/aldosterone complex. The Na+/K+-ATPase is a 

heteromeric protein that consists of α- and β-subunits (Kaplan, 2002) (Figure 1.4). The α-

subunit is a polytopic membrane protein that confers the catalytic activity of the enzyme and 

contains binding sites for Na+, K+ and ATP (Shull et al., 1985). The β-subunit modulates the 

pump function and is important for the efficient translation of the α-subunit on the endoplasmic 

reticulum, membrane insertion and correct folding of the α-subunit, as well as the expression of 

the enzyme on the plasma membrane (Rajasekaran et al., 2005). 

 

 

  
 

Figure 1.4 Intracellular organisation of Na+/K+-ATPase subunits and function. A. Graphic 

illustration of Na+/K+-ATPase function (http://upload.media.org). B. Graphic illustration of Na+/K+-

ATPase subunits, indicating the intracellular organization of the α- and β-subunits 

(www.ttuhsc.edu/.../Pressley/Pressley.aspx). 

 

To date, four isoforms of the α-subunit (α1, α2, α3 and α4) and three isoforms of the β-subunit 

(β1, β2 and β3) have been described in mammals, which exhibit tissue-specific expression 

(Blanco and Mercer, 1998). Previous studies have confirmed the expression of the α1, α2, α3, 

β1, β2 and β3-subunits in human hearts (Malik et al., 1998; Schwinger et al., 1999; Wang et al., 

1996). Studies in animal hypertrophy models have additionally demonstrated that the 

expression of Na+/K+-ATPase α- and β-subunit isoforms are altered in hypertrophied ventricles 

(Baek and Weiss, 2005; Xie et al., 1999; Yamamoto et al., 2009; Zwadlo and Borlak, 2005). 

 

In the first report on Na+/K+-ATPase isoform expression in the myocardium of normal and 

failing human hearts, Allen et al. reported that none of the three α-subunits showed altered 

expression in the left ventricles of failing hearts (Allen et al., 1992). Later, Shamraj et al. 

reported that Na+/K+-ATPase isoform expression is indeed altered in failing compared to 

A. B. 
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nonfailing human hearts (Shamraj et al., 1993); this finding was subsequently corroborated by 

other groups (Muller-Ehmsen et al., 2001; Schwinger et al., 1999). 

 

The Na+/K+-ATPase also serves as a receptor for ouabain and other related cardiac glycosides. 

Previous investigations have established that the positive inotropic effects of cardiac glycosides 

on the myocardium is due to partial inhibition of the cardiac Na+/K+-ATPase, which causes a 

small increase in intracellular Na+ and, in turn, affects the Na+/Ca2+ exchanger, ultimately 

leading to increased intracellular Ca2+ and force of contraction (Akera and Ng, 1991; Huang et 

al., 1997). Fedorova et al. reported that the development of LVH and subsequent transition to 

heart failure in Dahl salt-sensitive rats on a high Na+ diet was associated with shifts in left 

ventricular Na+/K+-ATPase isoform composition and sensitivity to ouabain (Fedorova et al., 

2004). 

 

Huang et al. demonstrated that partial inhibition of the Na+/K+-ATPase by ouabain in cultured 

neonatal rat cardiomyocytes induced hypertrophic growth, which was coupled with increased 

expression of TGF-β and other late response markers indicative of cardiac hypertrophy (Huang 

et al., 1997). Subsequent studies by the same group revealed that the hypertrophic response 

that follows Na+/K+-ATPase inhibition was also associated with p42/44 MAPK and ROS-

dependent pathways (Kometiani et al., 1998; Xie et al., 1999). 

 

Animal knockout-models suggest differential roles for α- and β-subunits in the heart. The hearts 

of heterozygous Na+/K+-ATPase α1-knockout mice were hypocontractile, while the hearts of 

heterozygous α2-knockout mice were hypercontractile as a result of increased Ca2+ transients 

during the contractile cycle (James et al., 1999). In contrast, homozygous Na+/K+-ATPase β2-

knockout mice exhibited ventricular hypertrophy without any diminution of Na+/K+-ATPase 

enzymatic activity (Magyar et al., 1994). Homozygous knockout mice in which the Na+/K+-

ATPase β1 gene was inactivated exclusively in the ventricular cardiomyocytes exhibited mild 

hypertrophy, coupled with reduced contractility and ventricular function in aging mice (Barwe 

et al., 2009). 

 

Polymorphisms in the α1-subunit gene (ATP1A1) (Glorioso et al., 2007; Rice et al., 2000), as well 

as in the β1-subunit gene (ATP1B1) gene (Chang et al., 2007; Xiao et al., 2009), were previously 

associated with essential hypertension. ATP1B1 variants have also been associated with QT-

intervals in long-QT patients (Pfeufer et al., 2009). However, the effect of genetic variation in the 

Na+/K+-ATPase subunit isoforms on cardiovascular hypertrophy remains unclear.  
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1.14.2 Amiloride-sensitive epithelial sodium channels (ENaCs) 

The amiloride-sensitive epithelial sodium channels (ENaCs) are also important regulators of 

intracellular Na+, as they are responsible for the electrodiffusion of Na+ through epithelial cells. 

Each ENaC consists of three homologous subunits, i.e. an α-, β-, and a γ-subunit (Canessa et al., 

1994), encoded by the SCNN1A, SCNN1B, and SCNN1G genes, respectively (Figure 1.5).  

 
Figure 1.5 Structural features of the Epithelial Sodium Channel (ENaC). Illustration indicates the 

three homologous α-, β- and γ- protein subunits that cooperate to form the channel pore via the 

transmembrane domains. Each subunit has two membrane-spanning domains (M1 and M2) with 

intracellular N- and C-termini. From Bhalla and Hallows (2008). 

 

Gain-of-function mutations in ENaC subunit genes can cause a rare condition called Liddle 

syndrome. These mutations prevent the degradation of ENaCs, resulting in excessive Na+-

absorption, K+-wasting, systemic hypertension, as well as an elevated incidence of early 

cardiovascular disease and LVH (Hansson et al., 1995; Jeunemaitre et al., 1997; Rossi et al., 

2011). 

 

The association of the ubiquitin ligase Nedd4-2 with an ENaC leads to ubiquitination of the 

ENaC and its subsequent removal from the plasma membrane. Nedd4-2 is, therefore, vital to the 

activity and regulation of ENaCs. In a study on Nedd4-2-knockout mice, Shi and colleagues 

demonstrated that these mice had elevated blood pressure and impaired ENaC activity, which 

was aggravated by a high salt diet (Shi et al., 2008). Ultimately, these animals developed cardiac 

hypertrophy and systolic dysfunction (Shi et al., 2008). 
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The role of ENaC mutations in hypertension is well-documented and the antihypertensive 

properties of the ENaC inhibitor, amiloride, have long been known (Spence, 2010; Su and 

Menon, 2001). However, studies in animal models of hypertension have shown that low doses of 

amiloride can reduce LVH and other cardiovascular pathologies, despite the fact that blood 

pressure remained high (Ji et al., 2003; Mirkovic et al., 2002). These effects occurred 

independently of changes on serum K+. These and other studies highlight the potential 

cardiovascular benefit of ENaC inhibition (Teiwes and Toto, 2007).  

  

Interestingly, heterozygous α-ENaC-knockout mice appear to have an intact capacity to 

maintain blood pressure and Na+ balance despite varying salt diets (Wang et al., 2001). This 

ability to maintain normal blood pressure margins appears to be caused by increased RAAS 

activity through a compensatory upregulation of AT1Rs (Wang et al., 2001). In a study of rats on 

a salt-restricted diet, the AT1R antagonist candesartan markedly decreased the quantity of ENaC 

α-subunits, which have been shown to be rate-limiting for assembly of mature ENaC complexes 

(Beutler et al., 2003). Candesartan administration was also found to increase the abundance of 

ENaC β- and γ-subunits in these rats (Beutler et al., 2003).  

 

These studies point towards a definite interplay between the ENaCs and RAAS components. 

Further studies are, however, needed to fully explore the nature of this interaction in 

pathological hypertrophy per se, as well as within the context of HCM. Studies are additionally 

needed to investigate the effect of genetic variation in ENaC subunit genes on hypertrophy 

development. 

 

1.15 Complexity of the RAAS 

It is then evident that almost all RAAS components have a plausible impact on hypertrophy 

development, whether due to hemodynamic changes, or completely independent from systemic 

blood pressure. However, several gaps exist in our knowledge of the involvement of the RAAS in 

HCM hypertrophy. For now, HCM modifier studies appear to have converged on a very limited 

list of “pro-LVH” polymorphisms, however, renin and renin-associated genes, as well as 

downstream RAAS effectors such as the Na+/K+-ATPase and ENaCs, have plausible hypertrophic 

effects, but their contribution to modifying the hypertrophic phenotype in HCM has received 

little attention. Moreover, there exists a very real possibility that genetic variation in these 

genes might not contribute in an equal or even additive manner to hypertrophy in HCM; to 

complicate matters further, the functionality of most of these polymorphisms remains unclear.   
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Previous studies have reported modest effect sizes for RAAS variants on hypertrophy (Carstens 

et al., 2011; Lechin et al., 1995; Mayosi et al., 2003; Van der Merwe et al., 2008), while others 

reported that RAAS polymorphisms collectively influence the penetrance and extent of 

hypertrophy in HCM (Kaufman et al., 2007; Ortlepp et al., 2002; Perkins et al., 2005). This 

suggests that the hypertrophic phenotype of HCM is modulated by the compound effect of a 

number of hypertrophic RAAS modifier loci, where each polymorphism makes a modest 

contribution to the eventual phenotype.  

 

However, genes involved in other pathways such as Ca2+ dysregulation and myocardial 

energetics have also been shown to impact on the hypertrophic phenotype of HCM (Ho, 2010c; 

Tsoutsman et al., 2006), while the contribution of environmental factors to hypertrophy 

development cannot be ignored. When we consider all the potential hypertrophy modifiers, 

HCM falls in the region of complex diseases, despite its monogenic origin as shown in Figure 1.6.  

 

Complex phenotypes are the result of interplay between environmental factors and several loci 

of weak or moderate effect acting in an additive or interactive manner. Bearing in mind the 

multitude of possible HCM modifiers, the additional contribution of gene-gene and gene-

environment interactions to the complex HCM phenotype, single SNP and even single gene 

association studies that aim to elucidate RAAS involvement in HCM appear to be overly 

simplistic and difficult to interpret clinically. Considering that RAAS hypertrophy modifier loci 

probably do not act in isolation, while functional mechanisms are lacking for most variants and 

more importantly, the frequent lack of adjustment for known hypertrophy confounders in RAAS 

association results, the question simply remains: “how do we interpret this and what does it 

imply?”.  

 

However, the clinical relevance of this information might improve significantly if one considers 

the composite effect of a number of RAAS polymorphisms, where each contributes a modest 

amount to the eventual hypertrophic phenotype. On the other hand, the compound effect of 

these RAAS variants on the HCM phenotype might not necessarily be additive in nature due to 

the influence of epistasis where the effects of one locus is amplified, altered or masked by 

another locus (Cordell, 2002). It is conceivable that such an interaction should exist between 

RAAS variants due to their complex biological functions and such epistatic effects have been 

reported between RAAS variants in cardiovascular phenotypes such as atrial fibrillation (Tsai et 

al., 2004), coronary atherosclerosis (Ye et al., 2003), hypertension (Williams et al., 2004) and 

coronary artery disease (Tsai et al., 2007). 
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Figure 1.6 The spectrum along which genetic variation contributes to disease phenotypes. The 

majority of complex disease susceptibility and modifier loci are likely to be common variants with low 

impact, while Mendelian (monogenic) disorders are caused by rare variants with high phenotypic 

impact.  Redrawn with modifications from Manolio et al. (2009). 

 

As there is a complex biological interplay between the multiple components of the RAAS, there 

is a need for a comprehensive analysis that focuses on the compound effect of multiple 

hypertrophy modifier loci within the RAAS to gain the most accurate understanding of its role in 

hypertrophy development in HCM. Comprehensive studies are, furthermore, needed to pinpoint 

a subset of RAAS variants that confer a measurable biological effect on hypertrophy to improve 

risk stratification in HCM patients. The use of haplotypes offers an advantage over single SNP 

association approaches to elucidate the molecular underpinnings of complex phenotypes, such 

as cardiac hypertrophy, by providing additional power for mapping disease modifier genes 

while factoring in the interdependency among genetic markers studies as it considers the 

composite effect of a number of loci (Clark, 2004; Liu et al., 2008).  

 

In summary, it is now clear that there exists an important cross-talk between Ang II/AT1R and 

aldosterone/MR, which results in activation of signalling pathways involved in cell growth, 
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contraction, and collagen deposition (Montezano and Touyz, 2008). These processes are of 

particular interest in the heart where this interdependency significantly modulates hypertrophy 

and adverse cardiac remodelling. Considering that a number of RAAS variants contribute 

significantly to LVH indices, albeit each with modest effect sizes, and considering the growing 

evidence for epistasis among these variants, it becomes imperative to rethink the way we 

analyze the involvement of the RAAS in cardiac structure. Indeed, the contribution of all of the 

components of the RAAS, which often signal in opposite directions, rather than only selected 

components, should be considered if we want to understand the role of this complex system in 

cardiac remodelling, as otherwise there remains a risk of overstating, or indeed understating, 

the effect of this pathway on hypertrophy development. 

 

1.16 The present study 

This study constitutes the final component of a larger investigation in which the ultimate aim is 

to identify hypertrophy-modifying genes within the RAAS using South African HCM founder 

families. Two substudies were previously reported for this project (Cloete REA, M.Sc and 

Carstens N, M.Sc). Both these studies reported association between particular variants in RAAS 

genes and heritable hypertrophy traits in this cohort, while the second study (Carstens N, M.Sc) 

reported preliminary evidence for epistasis between a further subset of RAAS genes. Since then, 

five new families were added to the HCM founder cohort during the course of this study due to 

continued recruiting efforts.  

 

In addition, not all of the genes within the RAAS pathway were covered by these earlier studies. 

Specifically, the mannose-6-phosphate receptor (M6PR), MR (NR3C2) and 11-β-hydroxysteroid 

dehydrogenase (HSD11B2) remained to be investigated to ensure comprehensive coverage of 

the RAAS. The M6PR acts as a receptor for renin, which had been shown to be significantly 

associated with hypertrophy traits in this cohort in a previous study (Carstens N, M.Sc). The MR 

was previously implicated in hypertrophy development and acts as a receptor for aldosterone, 

while HSD11B2 ensures its specificity by inhibiting the binding of cortisol.  

 

Recent studies have reported strong evidence for LD between CYP11B2 polymorphisms and 

variants in the neighbouring CYP11B1 gene (Ganapathipillai et al., 2005; Keavney et al., 2005) 

and that aldosterone synthesis is influenced by genetic variants in both these genes, as 

explained in an earlier section. This allows for the possibility that the association previously 

found between CYP11B2 polymorphisms and cardiovascular phenotypes could be due to (or 

influenced by) LD across the CYP11B1/B2 locus (Cloete REA, M.Sc). This possibility was, 

however, not explored in our previous investigation (Cloete REA, M.Sc).  
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Moreover, the RAAS represents a perfect example of how the compound effect of genetic 

variations in each component of a complex enzymatic cascade could have a synergistic and 

dynamic effect on the eventual activity of a system. More to the point, a need exists for 

investigations that explore the individual, as well as the cumulative contribution of RAAS 

variants to hypertrophy in HCM, while adjusting for known hypertrophy confounders.  

 

The present study, therefore, aimed to contribute to the current knowledge of the involvement 

of RAAS genes in hypertrophy development by investigating the individual, as well as the 

compound effects of RAAS variants on hypertrophy in a family-based HCM cohort. To this end, 

we genotyped the entire HCM founder cohort for prioritised variants in the M6PR, NR3C2 and 

HSD11B2 genes, as well as additional variants to cover the CYP11B1/B2 locus. Moreover, the 35 

additional family members added to the cohort since the end of the previous studies were 

genotyped for all RAAS variants prioritised in the previous RAAS investigations. 

 

Quantitative measures of the hypertrophic phenotype, such as echocardiographically 

determined maximal left ventricular wall thickness, a variety of cardiac wall thickness indices 

and LVM, were tested for association with these single polymorphisms, with adjustment for 

known hypertrophy covariates and environmental and polygenic variance components. 

Thereafter, as it is not known what functional variants may exist within these genes in the study 

population, haplotypes were constructed from all these genotypes in order to capture 

variability across the genes. Linear mixed-effects models were subsequently used to assess 

association between these haplotypes and heritable hypertrophy traits at gene-level. Such 

models allow adjustment for the various known confounders, as well as for the specific 

relatedness between family members in estimating the various variance components 

(environment, polygenic, specific genes). 
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CHAPTER 2: Materials and Methods 

 

2.1 Study Subjects 

The University of Stellenbosch Ethics Committee reviewed and granted approval for the present 

study (N04/03/062). Subjects entered into the study gave written informed consent and blood 

samples were collected from each subject for molecular genetic testing. During routine mutation 

screening for HCM-causing mutations, a panel of HCM probands was screened for disease-

causing mutations in 11 sarcomeric genes that account for 95% of all HCM cases.  

 

In the process, 27 probands carrying one of three mutations that occur as founder mutations in 

South Africa, i.e. R92W in TNNT2, R403W in MYH7, and A797T in MYH7 were identified. These 

founder mutations have previously been described within a South African population 

(Moolman-Smook et al., 1999).  

 

Pedigree tracing was performed for these index individuals and all family members older than 

18 years were asked to participate in this modifier gene study. Thus, a panel of 388 individuals 

from 27 families, which included genetically and clinically affected and unaffected family 

members, was identified; these individuals were all screened for the presence or absence of all 

three founder mutations (Table 2.1). Of these, 22 families have been described previously 

(Carstens et al., 2011; Revera et al., 2008), while 5 new families were added to the cohort since 

the last report, due to continued recruiting efforts.  
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Table 2.1 South African HCM-affected families of Caucasian and Mixed Ancestry descent 

that were analysed in the present study 

Pedigree Ethnic group Gene Mutation 

HCM 

mutation-

carriers 

Non-

carriers 

Total 

number of 

individuals 

101 Caucasian MYH7 A797T 12 9 21 

104 Mixed Ancestry MYH7 A797T 7 7 14 

123 Mixed Ancestry MYH7 A797T 6 10 16 

124 Caucasian MYH7 A797T 1 4 5 

131   Caucasian MYH7 A797T 12 11 23 

138 Caucasian MYH7 A797T 13 17 30 

145 Mixed Ancestry MYH7 A797T 3 2 5 

147 Mixed Ancestry  MYH7 A797T 4 5 9 

158 Caucasian MYH7 A797T 2 3 5 

159 Mixed Ancestry MYH7 A797T 5 7 12 

163 Caucasian MYH7 A797T 6 3 9 

172 Caucasian MYH7 A797T 7 10 17 

177 Caucasian MYH7 A797T 3 1 4 

180 Caucasian MYH7 A797T 4 1 5 

190 Caucasian MYH7 A797T 2 1 3 

106 Mixed Ancestry MYH7 R403W 29 35 64 

134 Mixed Ancestry MYH7 R403W 4 7 11 

157 Mixed Ancestry MYH7 R403W 1 3 4 

100 Mixed Ancestry TNNT2 R92W 16 30 46 

103 Mixed Ancestry TNNT2 R92W 2 3 5 

109 Mixed Ancestry TNNT2 R92W 6 4 10 

139 Mixed Ancestry TNNT2 R92W 15 22 37 

137 Mixed Ancestry TNNT2 R92W 2 5 7 

149 Mixed Ancestry TNNT2 R92W 4 6 10 

173 Mixed Ancestry TNNT2 R92W 2 1 3 

179 Mixed Ancestry TNNT2 R92W 5 4 9 

188 Mixed Ancestry TNNT2 R92W 3 1 4 

      388 

Abbreviations: MYH7: myosin heavy chain gene 7; TNNT2: troponin T gene 2 
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2.2 Blood collection and DNA extraction 

Blood from each individual was collected in two 5 ml ethylene-diamine-tetra-acetic acid (EDTA) 

tubes (Vacutainer, RSA) for DNA extraction and in one 10ml heparin tube (Vacutainer, RSA) to 

establish permanent lymphoblastoid cell lines using the method described by Neitzel (1986), to 

ensure continuous DNA supply for this ongoing study. Blood that was drawn from patients at 

other centres in South Africa was couriered to the research laboratory within 24 hours of 

sampling. 

 

DNA was extracted from peripheral blood lymphocytes using the method described previously 

(Corfield et al., 1993) with minor modifications. The DNA extractions, cell transformations and 

maintenance were performed by Mrs Ina le Roux. A list of the solutions used for DNA 

extractions is provided in Appendix II.  

 

2.3 Clinical Investigations2 

All participating individuals were clinically characterised by an experienced echocardiographer 

who was blinded to the mutation status of each subject. A total of 16 2D-echocardiographic 

measurements of wall thickness were taken at the mitral valve, papillary muscle and apex 

levels, in accordance with the recommendations of the American Society of Echocardiography 

(Schiller et al., 1989), as described previously (Revera et al., 2008).  

 

The echocardiographic measurements for the majority of the cohort (353 individuals) were 

performed by Dr Miriam Revera from Pavia University (Italy) using a GE Healthcare Vivid7 

cardiovascular ultrasound system and echocardiographic measurements for the 35 newly 

recruited individuals were performed by Lenore Naidoo using a portable Siemens Acuson 

Cypress Ultrasound System. The inter-observer variability between the two echocardiographers 

was negligible. Analyses included echocardiographic recordings in M-mode, 2D and Doppler 

blood-flow imaging using a 2.5 Hz transducer in standard parasternal long-axis and short-axis, 

apical four- and two-chamber views. To determine the maximum LVWT, posterior wall 

thickness (mPWT) and interventricular septal thickness (mIVST), the heart muscle thickness 

was measured at three levels, namely, mitral valve, papillary muscle and supra-apex level 

(Figure 2.1). 2D-echocardiographic measurements were performed in six segments of the LV 

wall at the mitral valve and papillary muscle levels and in four segments at the smaller supra-

apex level, therefore, a total of 16 segments were measured. 

 

                                                           
2 These methods were also described in Carstens et al. (2011) 
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The six measurements at the mitral valve and papillary muscle levels were taken at the anterior 

IVS, posterior IVS and anterior wall (AW), lateral wall (LW), inferior wall (IW) and posterior 

wall (PW) of the left ventricle. Assessment of the supra-apex level consisted of segments IVS, 

AW, LW and PW as per four chamber view.  

 

 
Figure 2.1 Graphical representation of the three levels at which heart muscle thickness was 

assessed. A) Long-axis view of left ventricle, taken at level of mitral valve, papillary muscles, as well as 

just above apex (levels indicated by dotted lines). B) An example of a 2D echocardiographic ultrasound 

of the left ventricle. Abbreviations: AV: aortic valve; LA: left atrium; LV: left ventricle; LVOT: left 

ventricular outflow tract; MV: mitral valve; RVOT: right ventricular outflow tract. Taken 

from http://www.med.yale.edu/.../aortic_regurgitation.html with minor modifications by JC Moolman-

Smook. 

 

Blood pressure measurements were taken twice in the sitting position, after 5 min of rest, and 

the second measurement used. Subjects were identified as hypertensive if they were on anti-

hypertensive medication or if they had a systolic blood pressure of more than 140 mm Hg or 

diastolic blood pressure of more than 90 mm Hg. Resting heart rate was derived from standard 

electrocardiography performed on a MAC1200ST after 5 min of rest. In addition, we recorded 

medical history and additional covariates of cardiac structure (age, sex and body surface area 

[BSA]) for each participant. 

 

(A) 

(B) 
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As both the extent and distribution of hypertrophy in HCM varies greatly, we sought methods of 

capturing the full variation of LVH in the cohort for use in the association analyses. 

Echocardiographically determined LVM was calculated to better describe the extent of 

hypertrophy than single wall-thickness measurements. LVM was calculated using the formula 

for the estimation of LVM from 2D LV linear dimensions recommended by the American Society 

of Echocardiography: 

( )[( ( ) ] ) gLVIDdSWTdPWTdLVIDdLVM 6.004.18.0 33 +−++×= . 

A novel cumulative wall thickness (CWT) score was, furthermore, determined by adding the 16 

wall thickness measurements at all three levels of the heart. Furthermore, we used principal 

component analysis to statistically define a composite hypertrophy score that best described 

ventricle-wide hypertrophy in the present cohort. To this end, we used the 16 wall thickness 

measurements to generate the first principal component, which best represented the variability 

in hypertrophy seen in the present cohort.   

 

2.4 Candidate gene and SNP Selection 

SNPbrowser v 4.0.1 software was used to select SNPs to cover the M6PR, NR3C2 and HSD11B2 

genes. SNPs were selected to achieve an even spacing of 0.5 linkage disequilibrium units (LDUs) 

on the metric LD map for the HapMap CEU and YRI populations (Table 2.4), while prioritising 

markers with a MAF of at least 0.05 (De La Vega, 2007). LDUs define a metric coordinate system 

where locations are additive and distances are proportional to the allelic association between 

markers (Maniatis et al., 2004). These LD maps are analogous to the genetic map expressed in 

centi-Morgans and can be used to efficiently position markers for population-based disease 

association studies (Collins et al., 2004). 

 

SNPbrowser uses a set of metric LD maps build from the HapMap NCBI b36 assembly using the 

LDMAP software (Kuo et al., 2007). The LDMAP software places SNPs on an additive coordinate 

system, for instance, SNPs in perfect LD have no distance between them, while SNPs with no 

significant correlation are separated by over three LDUs on this map (De La Vega et al., 2006).  

 

Additional variants were also selected to ensure adequate coverage of REN, as well as of the 

CYP11B1/B2 locus, which had not been fully covered in the previous studies. Table 2.2 depicts 

the polymorphisms selected for investigation in the present study as well as the respective 

methods used to obtain genotype data for each variant. Table 2.3 depicts variants that were 

genotyped during previous studies (Cloete REA, M.Sc; Carstens N, M.Sc) in the HCM founder 

cohort. TaqMan assays indicated with an asterisk (*) depicts assays used to determine 

genotypes on the 5 families added during the course of the present study.  
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Table 2.2 Genetic variants selected for investigation in the present study, as well as the 

respective methods used to genotype each polymorphism.  

Gene Chromosome Chromosome 
position 

Polymorphism Genotyping method/ 
TaqMan assay ID 

NR3C2 4q31 149209810 rs906124 C___1180128_20 
  149216852 rs11933380 C___1180132_10 
  149233654 rs745019 C____562966_10 
  149261743 rs1403142 C___1796075_10 
  149284142 rs13150372 C__31208809_20 
  149302754 rs7694706 C__29125239_10 
  149309538 rs6535584 C__29125233_10 
  149352206 rs6535594 C__29125222_10 
  149354044 rs7699349 C__26453333_10 
  149357075 rs2883930 C__16145331_10 
  149365276 rs4835508 C___3203903_10 
  149383202 rs11945778 C___3203916_10 
  149430127 rs3910047 C___3203934_10 
  149448788 rs3846329 C___3203942_10 
  149484695 rs2137334 C___1594435_10 
  149565037 rs13118022 C__31208669_10 
  149569977 rs4635799 C___1594397_10 
REN 1q32 202391712 

202403564 
rs3795575 
rs6682082 

C__27517655_10  
C__30210733_10 

CYP11B2 8q21-q22 143993985 I2C (White and Slutsker, 1995) 
  143990317 rs3097 C__11446379_10 
CYP11B1 8q21-q22 143958007 rs6410 C__11609085_10 
  143955429 rs6387 Custom designed TaqMan 

assay 
  143953249 rs4310186 C__27915668_10 
M6PR 12p13 9097933 rs1805725 C___2665100_10 
  9102575 rs987917 C___7554849_10 
HSD11B2 16q22 67469733 rs5479 C__11934935_10 
Abbreviations: CYP11B1: 11 beta-hydroxylase gene; CYP11B2: aldosterone synthase gene; HSD11B2: 11 
β-hydroxysteroid-dehydrogenase type 2 gene; M6PR: mannose-6-phosphate receptor gene; NR3C2: 
nuclear receptor subfamily 3, group C, member 2 gene; REN: renin gene 
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Table 2.3 Genetic variants genotyped during previous studies (Cloete REA, M.Sc; Carstens N, 

M.Sc) in the HCM founder cohort, as well as in this study. TaqMan assays indicated with an 

asterisk (*) depicts assays used to determine genotypes on the 35 individuals added during the 

course of the present study. 

Gene Chromosome Chromosomal  
Position 

SNP Genotyping method/ 
TaqMan assay ID 

AGTR2i Xq22-q23 115216220 rs1403543 C___7481825_10* 
  115218858 rs5194 C___1841567_20* 
  115219154 rs11091046 C___1841568_10* 
RENBPi Xq28 152864846 

152860739 
rs762656 
rs2269372 

C_____13880_10* 
C__15876539_10* 

  152849623 rs2269370 C__15876550_10* 
ATP6AP2i Xp11.4 40324378 rs2968915 C__15881558_20* 
  40327762 rs2968917 C__15881550_10* 
  40350712 rs10536 C___8789353_10* 
ACE2ii Xp22 15527984 rs1978124 ASREA 
  15520269 rs2285666 ASREA 
  15500728 rs879922 ASREA 
  15494341 rs4646179 ASREA 
RENi 1q32 202398933 rs10900555 C__31567082_10* 
  202397809 rs5705 C__11451777_10* 
  202397654 rs11571082 C__31567075_10* 
  202395477 rs1464816 C___8687919_1_* 
AGTii 1q42-q43 228906719 rs1926723 SNaPshot 
  228906892 rs11122575 SNaPshot 
  228912417 rs699 SNaPshot 
  228912600 rs4762 SNaPshot 
  228916495 rs5051 SNaPshot 
ATP1A2i 1q21-q23 158361751 rs7548116 C___1843215_10* 
  158380967 rs11585375 C__31909450_10* 
ATP1B1i 1q24 167345196 rs1200130 C___8919154_10* 
  167346043 rs1358714 C___8919160_10* 
  167352845 rs1040503 C___8919179_10* 
ATP1A1i 1p21 116722542 rs10924074 C___3072256_10* 
  116734086 rs850609 C___8696039_10* 
ATP1B3i 3q23 143106062 rs2068230 C__15861969_10* 

AGTR1ii 3q21-q25 149899732 rs2640539 
rs3772627 
rs5182 

ASREA 
ASREA 
ASREA  

149912944 
149942085 

CYP11B2ii 8q21-q22 143996602 rs1799998 
rs4539 

ASREA 
ASREA  143993541 
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Table 2.3 continued  
 
Gene Chromosome Chromosomal  

Position 
SNP Genotyping method/ 

TaqMan assay ID 

SCNN1Ai 12p13 6334123 rs11614164 C___2981241_20* 
  6339932 rs3782726 C___2981240_10* 
  6346984 rs7973914 C__31787955_10* 
  6349553 rs10849446 C__31787949_10* 
  6353047 rs2286600 C___1249946_1_* 
CMA1ii 14q11.2 24045349 

24049178 
rs1885108 
rs1800875 

SNaPshot 
SNaPshot 

SCNN1Bi 16p12.2-p12.1 23231527 rs11074555 C___3188761_10* 
  23239801 rs9930640 C__30539119_10* 
  23253439 rs239345 C___2387896_30* 
  23267700 rs238547 C___2387909_1_* 
  23269331 rs8044970 C___3280856_10* 
  23276591 rs152740 C___2387921_10* 
  23286780 rs250563 C___2387939_10* 
  23297702 rs2303153 C__15971133_10* 
SCNN1Gi 16p12 23108349 rs5735 C__11894747_10* 
  23113158 rs4247210 C__11190190_10* 
ACEii 17q23.3 58919624 

58910932 
rs4340 
rs4298 

ASREA 
SNaPshot 

  58911555 
58925300 

rs4303 
rs4356 

SNaPshot 
ASREA 

i Carstens N, M.Sc; ii Cloete REA, M.Sc 
Abbreviations: ACE: Angiotensin converting enzyme 1 gene; ACE2: Angiotensin converting enzyme 2 
gene; AGT: Angiotensinogen gene; AGTR1: angiotensin II receptor, type 1 gene; AGTR2: angiotensin II 
receptor, type 2 gene; ASREA: allele-specific restriction enzyme analysis; ATP1A1: ATPase, Na+/K+ 
transporting, alpha 1 polypeptide gene; ATP1A2: ATPase, Na+/K+ transporting, alpha 2  polypeptide gene; 
ATP1B1: ATPase, Na+/K+ transporting, beta 1 polypeptide gene; ATP1B3: ATPase, Na+/K+ transporting, 
beta 3 polypeptide gene; ATP6AP2: ATPase, H+ transporting, lysosomal accessory protein 2 gene; CMA1: 
cardiac chymase gene; CYP11B2: aldosterone synthase gene; REN: renin gene; RENBP: renin binding 
protein gene; SCNN1A: sodium channel, non-voltage-gated 1 alpha gene; SCNN1B: sodium channel, non-
voltage-gated 1, beta gene; SCNN1G: sodium channel, non-voltage-gated 1, gamma gene; SNP: single 
nucleotide polymorphism  
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2.5 TaqMan SNP Genotyping 

Genotypes were determined on most DNA samples using TaqMan allelic discrimination 

technology with ABI TaqMan Validated SNP Genotyping Assays (Applied Biosystems, Foster City 

CA, USA). Each one of the SNP genotyping assays consist of two primers for amplification of the 

sequence of interest, as well as two TaqMan MGB probes for allele detection. Every TaqMan 

probe contains a reporter dye at the 5’ end of each allele specific probe (VIC for the Allele 1 

probe and FAM for the Allele 2 probe), a minor groove binder (MGB) and a nonfluorescent 

quencher (NFQ) at the 3’ end of each probe. The MGB increases the melting temperature of the 

probe (Tm) without increasing the length of the probe, which results in greater differences in Tm 

values between matched and mismatched probes, thus producing more exact allelic 

discrimination (Kutyavin et al., 2000). Detection is achieved with proven 5’ nuclease chemistry 

by means of exonuclease cleavage of a 5’ allele-specific dye label, which generates the 

permanent assay signal by removing the effect of the 3’ quencher (Figure 2.2). 

 

 

 
Figure 2.2 Overview of TaqMan allelic discrimination technology.  Allelic discrimination is 

achieved by the selective annealing of the TaqMan probes and exonuclease cleavage of a 5’ allele-

specific dye label, which generates the assay signal (Taken 

from www.servicexs.com/.../TaqMan_AD_SNP_assay.jpg ). 
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2.5.1. Real-time PCR amplification 

Polymerase chain reaction (PCR) amplification for each SNP was performed in a single reaction 

tube on a thermostable 384-well plate on a Perkin-Elmer 2700 thermal cycler (Applied 

Biosystems Inc, Foster City CA, USA) following the manufacturer’s instructions. All 384-well 

plates were prepared with an EpMotion pipetting robot (Eppendorf, Hambug, Germany). Figure 

2.3 shows a schematic overview of the TaqMan genotyping procedure.  

 

 
Figure 2.3 Overview of the TaqMan genotyping procedure. 

 

A 5 μl reaction, consisting of 2.5 μl ABI TaqMan Universal PCR Master Mix with the passive 

reference ROX (Perkin Elmer), 20 ng of genomic DNA, 0.25 μl TaqMan primer and probe dye 

mix and 1.25 μl DNase-free, sterile-filtered water, was used for all amplifications. At least 10% 

of all 384-well plates were occupied by non-template control reactions, which contained all the 

above-mentioned reagents except genomic DNA, to test for contamination. PCR conditions were 

2 min at 50˚C, 10 min at 95˚C, followed by 40 cycles of 15 sec at 92˚C and 1 min 30 sec at 60˚C.  
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2.5.2 Allelic discrimination 

Allele discrimination was accomplished by running end point-detection using an ABI Prism 

7900HT Sequence Detection System (Applied Biosystems Inc, Foster City CA, USA) and the 

Sequence Detection Systems (SDS) 2.3 software (autocaller confidence level 95%). The SDS 

software reads fluorescence and performs automatic allele-calling by generating allelic 

discrimination plots. A text file containing the genotyping results was then generated, which 

was directly incorporated into a database, minimizing errors associated with data transfer. 

Additionally, all results were confirmed by visual inspection of the real-time PCR 

multicomponent analysis plots. 

 

2.6 Allele-specific PCR 

White and Slutsker (1995) previously reported a conversion variant in intron 2 of the CYP11B2 

gene, where the second intron of the neighbouring CYP11B1 gene is transferred to CYP11B2. As 

it was not possible to genotype this polymorphism using TaqMan genotyping, we followed the 

allele-specific PCR genotyping method described by Davies et al. (1999). 

 

2.6.1. PCR amplification 

Two separate PCR reactions were used to genotype the I2C variant; the first amplifies the wild 

type (WT) gene, while the other amplifies the conversion. The two sets of primers, as well as the 

corresponding PCR conditions are shown in Table 2.4. Each reaction yielded an amplicon of 418 

bp. 

 

Table 2.4 Primer sets and PCR conditions used for genotyping the CYP11B2 I2C variant.  

Primer Sequence PCR Conditions 

WT intron 2 sense 5’ TGGAGAAAAGCCCTACCCTGT 3’ 2 min 94°C, (1min 94°C, 30 

sec 66°C, 30 sec 72°C, 30 

cycles) 72°C, 7 min 

WT intron 2 

antisense 

5’ AGGAACCTCTGCACGGCC 3’ 

Conversion sense 5’ CAGAAAATCCCTCCCCCCTA 3’ 2 min 94°C, (1 min 94°C, 30 

sec 66°C, 30 sec 72°C, 30 

cycles) 72°C, 7 min 

Conversion antisense 5’ AGGAACCTCTGCACGGCC 3’ 

Abbreviations: A: adenine; C: cytosine; G: guanine; min: minutes; sec: seconds; T: thymine; WT: wild type 
 

Each PCR amplification was performed in 25 μl reactions, which contained 2x KapaTaq 

ReadyMix (Kapa Biosystems Inc, RSA), 5 pmol of sense primer, 5 pmol of antisense primer and 

20 ng of genomic DNA. A non-template control reaction which contained all the above-

mentioned reagents except genomic DNA was included in each PCR amplification run to test for 
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possible contamination. PCR conditions are shown in Table 2.3. Amplification was performed in 

a Perkin-Elmer 2700 thermal cycler (Applied Biosystems Inc, Foster City CA, USA). The samples 

were subsequently analyzed on a 1% agarose gel to determine the presence of PCR product. 

 

2.6.2. Agarose gel electrophoresis 

Verification of the PCR-amplification was performed by gel electrophoresis, allowing 

visualisation of DNA bands on an agarose gel. The agarose gel was prepared by mixing 1 g of 

agarose powder (Whitehead Scientific, RSA) with 100 ml 1x di-sodium tetraborate-decahydrate 

buffer (SB) for a 1% agarose gel (Appendix I). The mixture was then heated until the agarose 

was completely dissolved and 5 μl of (10 mg/ml) ethidium bromide (Whitehead Scientific, RSA) 

was added to the agarose solution, which was subsequently poured into a casting tray 

containing a well-forming sample comb and allowed to solidify at room temperature. 

 

After solidification, the gel was placed horizontally into the electrophoresis chamber and 

covered with 1x SB buffer solution (Appendix I). Electrophoresis was performed as follows: 10 

μl of each amplification product was mixed with 3 μl of bromophenol blue loading dye 

(Appendix I) and then pipetted into the sample wells. A 100 bp DNA ladder (Promega Corp, 

Madison Wisconsin, USA) was co-electrophoresed with PCR products and used as a molecular 

size marker.  

 

Samples were electrophoresed at 200 V for 15-20 min in 1x SB buffer solution. 

Electrophoretically separated PCR samples were then visualised under ultra-violet (UV) light 

using the Syngene gel documentation G-box HR (Frederick, MD, USA). A permanent 

photographic record of the gel analysis was obtained using the Syngene gel documentation G-

box HR (Frederick, MD, USA).  

 

2.7 Statistical analyses 

Genotypic and phenotypic data were captured onto family trees using Cyrillic 2.1 (Cherwell 

Scientific, UK) and subsequently exported in MLINK format and combined with an Excel sheet 

containing the echocardiographic and covariate data to create a pedigree file for statistical 

analyses.  

 

2.7.1 Descriptive statistics and trait distribution 

Validation of input files and verification of Mendelian inheritance within families was assessed 

with Pedstats v. 6.11 (Wigginton and Abecasis, 2005) and genotyping inconsistencies were 

resolved by re-genotyping. X-chromosome settings were used for the analyses of X-linked genes. 
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Furthermore, Pedstats was used to test conformance of genotypes with Hardy-Weinberg 

equilibrium (HWE), as well as the distribution and familial correlations of quantitative traits 

and covariates. Pedstats selected unrelated individuals from the families for Hardy-Weinberg 

testing and only females were used to test Hardy-Weinberg equilibrium for the X-linked 

markers. 

 

Haploview v. 4.2 (Barrett et al., 2005) was used to determine the MAF, as well as the genotyping 

efficiency for the investigated polymorphisms in the present cohort using X-chromosome 

settings where appropriate. Haploview reports the genotyping efficiency for the entire cohort 

after individuals for whom no DNA was available was excluded, while the MAFs were 

determined on a set of unrelated individuals. 

 

Linear models and variance components analyses are sensitive to kurtosis and skewness in trait 

distribution and various trait values in the present study were positively skewed. Quantile 

normalization was therefore used to transform each trait to approximate normality (Pilia et al., 

2006) prior to association analysis.  

 

2.7.2 Linkage disequilibrium (LD) determination 

Haploview v. 4.2 (Barrett et al., 2005) was used to compute pairwise LD statistics for our study 

cohort using the genotype data generated in the present study. Haploview provides unique 

estimates with case-control data and family trios; however, in complex multigenerational family 

cohorts, such as the present, it attempts to identify a set of maximally informative unrelated 

individuals to use in subsequent analyses. This is due to the fact that a sample of related 

individuals will result in an incorrect estimate of LD, as variants in related individuals are in 

tight LD by definition. The program selects potentially different “informative subsets” with 

successive runs, but there are sometimes multiple, equally valid unrelated sample sets, which 

can result in different LD estimates from the same data. This could result in variable LD values 

when the same data is analysed a number of times. Although these differences are minor 

(Barrett JC, personal communication), we summarise 100 consecutive Haploview runs by 

reporting the most frequent, in other words the mode, of the normalised disequilibrium 

coefficient (D’) values.   

 

2.7.3 Principal component score  

Since not only the extent, but also the distribution of hypertrophy in HCM is highly variable, it is 

difficult to distinguish a single echocardiographic measure that accurately quantifies the extent 

of hypertrophy in all patients. Although echocardiographically derived LVM is most often used 

Stellenbosch University  http://scholar.sun.ac.za



Chapter II 

 

56 
 

to quantify hypertrophy in HCM, it is known to be an inaccurate measure due to the variable and 

asymmetric nature of hypertrophy in HCM. Principal component analysis provides a means to 

derive a single score that comprehensively describes the person-to-person variability in 

hypertrophy, regardless of the variability in the distribution of the hypertrophy. The outcome 

variable analysed here, PC1, is the first principal component. It is the linear combination, or in 

other words, the weighted sum, of the 16 quantile normalised wall thickness values, which 

explains the largest proportion of the variation in all 16 measurements combined. 

 

2.7.4 Confounders 

All analyses were adjusted for covariates that are known to modulate cardiac hypertrophy, 

namely, whether the individual carries a mutation or not, the identity of the primary HCM-

causing mutation (R92WTNNT2, R403WMYH7, or A797TMYH7), hypertension diagnosis and 

medication, mean arterial blood pressure, sex, age at clinical assessment, ethnicity (as proxy for 

recent population stratification), BSA and heart rate (as a proxy measure for tachycardia) (Saba 

et al., 2001)+. These known confounders were included in the models as fixed effects. Such 

modelling results in the effect of the variant being estimated after the effects of the covariates 

have been removed from the phenotype. 

 

All analyses were also adjusted for possible clustering of the phenotype in families, as well as 

the degree of relatedness and possible phenotype correlation between each pair of individuals, 

by including random effects for family and individual in the models. The coefficients of the 

random effects were an indicator of family-membership, and a function of the kinship 

coefficients, respectively. 

 

2.7.5 Heritability 

Heritability estimation separates the variability observed in the hypertrophy traits into two 

components; the contribution of the environment and the contribution of the genetic/inherited 

factors. The broad sense heritability is the ratio of the inherited variance component to the total 

variance. The QTDT package (Abecasis et al., 2000) was used to estimate the components of 

variance of the quantile normalised hypertrophy traits, after adjusting for hypertrophy 

confounders. 

 

2.7.6 Single polymorphism association 

Association between each variant and the six hypertrophy traits chosen to represent the HCM 

hypertrophic phenotype was assessed with a specialised mixed-effects model (R package 

kinship, function lmekin, www.r-project.org), which enabled us to adjust for per family, as well 
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as per individual random effects, so that they included environmental (individual and per 

family) and polygenic variance components. The genotypes were coded as number of minor 

alleles (0, 1 or 2) and the mutation groups as a factor with three levels (additive allelic models).  

For X-linked variants, the (hemizygous) men were coded as having 0 or 2 minor alleles. A 

significant additive allelic association between a bi-allelic variant and a phenotype means that 

the mean phenotype value differs significantly between those with no minor alleles (wild type 

homozygotes, 0 minor alleles) and heterozygotes (1 minor allele), and that the same significant 

difference exists between heterozygotes and minor homozygotes (2 minor alleles). This 

difference in the mean phenotype associated with a specific allele is the effect size (see section 

2.7.7). 

 

As previous studies reported HCM mutation-specific effects for RAAS variants (Tesson et al., 

1997), we also explored the differential effects of RAAS variants in the three HCM mutation 

groups, viz. A797TMYH7, R403WMYH7 and R92WTNNT2, by testing the statistical interaction 

between these HCM mutation groups and the genotyped RAAS variants. This means that each 

model yields three p-values and three effect sizes, one for comparison of each pair of HCM 

mutation groups. 

 

2.7.7 Effect sizes 

When a significant effect is detected (p-value < 0.05), we report the details of the separate 

effects. Modelling quantile normalised phenotypes are necessary and appropriate for statistical 

inference (i.e. they deliver valid p-values), but they provide effect estimates in terms of the 

change in quantile-normalised hypertrophy measures, which are not clinically meaningful. To 

provide effect estimates in the original units of measurement, we estimated effect sizes, by 

modelling the raw, untransformed, cardiac wall thickness measures in exactly the same way as 

described for quantile normalised phenotypes.  

 

A graphical representation and detailed discussion on the interpretation of a significant 

interaction is discussed in section 3.7. If the interaction was not significant, and the variant 

effect was significant, then this effect is reported.  

 

2.6.8 Haplotype association analysis 

We used Simwalk v. 2.91 (Sobel and Lange, 1996) to infer a most likely pair of haplotypes for 

each individual, for the genes in the autosomal chromosomes. This program uses so-called 

simulated annealing to estimate the most likely set of fully-typed maternal and paternal 

haplotypes of the marker loci at each individual in the pedigree. Simwalk v. 2.91 does not 
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necessarily converge to the best answer on the first run, but it provides the user with detailed 

information as to how to run it several times, with different (randomly selected) starting points, 

in order to be assured of finding the optimal haplotype configuration. The haplotype 

configuration for this particular cohort was, therefore, determined from multiple, successive 

Simwalk runs. Each haplotype was subsequently coded as number of that haplotype (0, 1 or 2) 

inferred for each individual. The haplotype-phenotype pairs were modelled with the R function 

lmekin in exactly the same way as described for genotypes. 

 

2.6.9 Optimal selection 

Finally, we attempted to identify a subset of RAAS variants that together explain most of the 

variation in hypertrophy traits in the present cohort. First, we used backwards stepwise-

selection on the models for 4 traits; LVM, mIVST, mLVWT and PC1, in an attempt to identify a 

subset of RAAS variants that significantly affected each of these hypertrophy traits, independent 

of the other variants in the model. We chose LVM as it is most commonly used in HCM modifier 

studies as an overall indication of the extent of hypertrophy, while PC1 best described the 

variability in the 16 cardiac wall thickness measurements in the present cohort. We also did 

these analyses for mIVST as this cardiac region was most commonly affected in this cohort, 

while mLVWT provides an appraisal of the extent of left ventricular wall thickening. 

 

Each of the four models initially included the eight hypertrophy covariates used for the 

association analyses, as well as the 12 RAAS polymorphisms that showed significant association 

with at least one hypertrophy trait. The other components were retained in the models 

throughout, while the least significant RAAS variants were removed in successive steps, until 

the final model only retained SNPs that impacted significantly on the respective hypertrophy 

traits. The backwards stepwise-selection yielded optimal models containing between 2 and 6 

variants each, and 9 variants were in at least one model.   

 

Secondly, we modelled the nine selected SNPs on the quantile normalised traits, to obtain p-

values, and on the untransformed traits to obtain estimated effect sizes, which are adjusted for 

the eight hypertrophy covariates and the eight other variants in each model. For discussion 

purposes, we also modelled the 5 “pro-LVH” polymorphisms (Kaufman et al., 2007; Ortlepp et 

al., 2002; Perkins et al., 2005) in the same way, even though these variants did not associate 

with hypertrophy traits in the present cohort. 
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CHAPTER 3: Results 

 

3.1 Basic characteristics of the HCM cohort 

The cohort consists of 353 individuals, described in two previous studies (Cloete REA, M.Sc and 

Carstens N, M.Sc), as well as 35 newly recruited individuals, which amounted to a total cohort 

size of 388. DNA was available for all 388 individuals, although only 256 consented to clinical 

evaluation. The basic characteristics of these individuals, as well as selected hypertrophy traits, 

stratified into mutation carrier (MC) and non-carrier (NC) groups for the three HCM causal 

mutations present in the study cohort, are presented in Table 3.1. Data are summarised here as 

median (interquartile range) due to the skewness of some of the trait distributions.  

 

3.2 Candidate gene selection and polymorphism prioritisation 

Candidate genes were selected to represent the different steps in the RAAS and polymorphisms 

were selected to cover these genes, as explained in section 2.3. A total of 84 polymorphisms 

from 20 RAAS genes were consequently prioritised for investigation.  

 

Diagrams to depict the chromosomal locations of these genes, as well as the intragenic location 

of the respective prioritised variants, were drawn to scale using the FancyGene v. 1.4 software 

(Rambaldi and Ciccarelli, 2009).  

 

3.3 Genotyping results 

3.3.1 TaqMan allelic discrimination 

All initial PCR amplification runs were completed successfully, while no amplification was 

observed in the non-template controls, ruling out the possibility of contamination. Figure 3.1 

depicts the allelic discrimination results for the rs4635799 polymorphism in NR3C2, as a 

representative example. Results from the end-point allelic discrimination analyses were 

exported and incorporated into the main RAAS genotype database for statistical analyses.   

 

3.3.2 Allele-specific PCR 

The I2C polymorphism was genotyped using a previously described allele-specific PCR method 

(Davies et al., 1999). No amplification was observed in the non-template controls, ruling out the 

possibility of contamination. 
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Table 3.1 Basic characteristics of the entire study cohort, stratified into mutation carrier (MC) and non-carrier (NC) groups according to HCM 

mutation status. Data are summarised here as median (interquartile range) due to the skewness of some of the trait distributions. 

  A797TMYH7  R92WTNNT2  R403WMYH7 
  MC NC  MC NC  MC NC 
n*  68 50  48 34  32 24 
age 43.0 (26.8-56.8) 41.5 (29.3-53.0)  36.0 (21.0-47.0) 42.0 (25.5-49.0)  36.5 (25.0-46.8) 38.0 (31.3-50.8) 
BSA (m2) 1.90 (1.60-2.00) 1.90 (1.67-2.03)  1.70 (1.60-1.80) 1.80 (1.60-1.90)  1.80 (1.70-2.00) 1.95 (1.70-2.05) 
SBP (mm Hg) 120 (115-134) 120 (110-130)  115 (110-130) 120 (110-120)  120 (115-130) 120 (114-143) 
DBP (mm Hg) 80 (70-87) 80 (80-89)  73 (70-80) 80 (70-80)  80 (79-80) 80 (78-90) 
HR (bpm) 68 (60-75) 68 (62-76)  68 (61-76) 67 (60-73)  65 (60-76) 72 (65-84) 
LVM (g) 191 (135-237) 135 (109-159)  146 (104-185) 116 (100-144)  170 (134-205) 154 (115-202) 
mIVST (mm) 14.5 (11.0-20.9) 10.5 (9.2-11.3)  14.0 (9.6-18.3) 10.0 (8.6-10.9)  13.6 (11.6-16.0) 11.0 (10.2-12.6) 
mLVWT (mm) 14.0 (11.0-20.7) 10.5 (9.5-11.3)  13.4 (9.9-18.1) 10.0 (9.2-10.9)  13.6 (11.6-17.8) 11.2 (10.2-12.4) 
mPWT (mm) 10.2 (9.1-11.8) 9.0 (8.3-10.0)  10.2 (8.1-11.5) 8.1 (7.5-9.1)  10.1 (9.1-11.5) 9.9 (8.8-10.4) 
CWT score (mm) 196 (151-239) 139 (127-148)  159 (131-192) 131 (117-142)  172 (148-190) 153 (136-166) 
PC1 2.12 (-0.14-4.88) -1.31 (-2.52--0.01)  0.86 (-2.62-2.72) -2.56 (-4.26--1.01)  1.42 (-0.34-2.42) 0.1 (-2.02-1.44) 
*n- number of individuals with available clinical data 

Abbreviations: BSA: body surface area; CWT score: cumulative wall thickness score; DBP: diastolic blood pressure; HR: heart rate; LVM: left ventricular mass; MC: 

HCM mutation carrier; mIVST: maximum interventricular septal thickness; mLVWT: maximum left ventricular wall thickness; mPWT: maximum posterior wall 

thickness; NC: non-carrier; PC1: first principal component; SBP: systolic blood pressure 
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Figure 3.1 Representative genotyping result for the TaqMan allelic discrimination analyses. This 

figure depicts the genotyping results for the rs4635799 polymorphism as a representative example of 

the allelic discrimination plots obtained with the SDS software during end-point analyses. Allele X = C; 

Allele Y = T 
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3.4 Descriptive statistics 

3.4.1 Descriptive statistics for investigated polymorphisms 

All genotype data obtained from the present study was combined with genotype data from the 

two substudies previously reported in the greater project (Cloete REA, M.Sc and Carstens N, 

M.Sc). Table 3.2 summarises basic descriptive statistics for the complete dataset. Genotype 

frequencies for all markers were in agreement with Hardy-Weinberg equilibrium as the cut-off 

value of p = 0.01. 

 

3.4.2 LD assessment 

Pairwise LD statistics for the candidate genes for which two or more variants were genotyped, 

were obtained with Haploview v. 4.2 (Barrett et al., 2005). We provide the modal D’ values, 

which were determined from 100 consecutive Haploview runs, as an estimate of LD. A pair of 

polymorphisms is regarded as being in complete LD if D’ = 1, as this indicates a complete lack of 

evidence of recombination between the two variants. Pairwise LD statistics will be discussed 

with the association analysis results for ease of interpretation. 
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Table 3.2 Minor allele frequencies (MAFs), genotyping efficiency, as well as p-values for 

tests of Hardy-Weinberg equilibrium (HWE) for markers in the study. MAF as determined in a 

set of unrelated individuals.  

Gene Polymorphism Genotyping 
Efficiency (%) a2:a1 MAF HWE 

AGTR2 
rs1403543 99.2 G:A 0.353 0.06 
rs5194 95.5 A:G 0.395 0.02 
rs11091046 100 A:C 0.404 0.02 

RENBP 
rs2269370 100 C:A 0.353 0.36 
rs2269372 96.4 G:A 0.456 0.01 
rs762656 99.7 G:A 0.468 0.01 

ATP6AP2 
rs2968915 99.4 A:G 0.264 1.00 
rs2968917 99.7 T:C 0.190 1.00 
rs10536 98.6 A:G 0.211 1.00 

ACE2 

rs4646179 96.5 T:C 0.020 0.08 
rs879922 86.5 C:G 0.231 0.28 
rs2285666 98.1 C:T 0.263 0.38 
rs1978124 84.0 T:C 0.312 1.00 

ATP1A2 
rs7548116 98.9 A:T 0.337 0.11 
rs6695366 92.7 A:G 0.097 0.18 
rs11585375 96.6 A:G 0.340 0.73 

ATP1B1 
rs1200130 95.5 C:T 0.262 1.00 
rs1358714 99.7 G:A 0.459 0.34 
rs1040503 97.8 G:A 0.470 0.35 

REN 

rs3795575 94.6 G:A 0.120 1.00 
rs1464816 97.0 G:T 0.301 0.50 
rs11571082 97.0 C:T 0.192 0.31 
rs5705 97.0 T:G 0.286 0.70 
rs10900555 96.5 A:G 0.497 0.54 
rs6682082 81.7 C:T 0.183 0.57 

AGT 

rs1926723 93.7 A:C 0.091 1.00 
rs11122575 93.7 T:C 0.094 1.00 
rs699 96.8 C:T 0.316 0.15 
rs4762 97.2 C:T 0.060 1.00 
rs5051 97.2 T:C 0.300 0.26 

ATP1A1 rs10924074 97.8 A:G 0.145 0.08 

 rs850609 98.3 A:T 0.141 1.00 
ATP1B3 rs2068230 100 A:T 0.439 0.01 

AGTR1 
rs2640539 98.3 A:C 0.184 0.38 
rs3772627 94.3 C:A 0.454 0.10 
rs5182 98.3 C:A 0.455 0.73 
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Table 3.2 Continued 

Gene Polymorphism Genotyping 
Efficiency (%) a2:a1 MAF HWE 

NR3C2 

rs906124 91.2 T:C 0.466 0.50 
rs11933380 99.2 T:C 0.439 0.51 
rs745019 88.5 A:G 0.283 1.00 
rs1403142 94.2 A:G 0.389 0.77 
rs13150372 97.8 G:A 0.221 0.44 
rs7694706 99.5 A:G 0.340 0.70 
rs6535584 98.6 C:T 0.374 0.52 
rs6535594 98.6 A:G 0.497 1.00 
rs7699349 98.6 C:T 0.298 0.20 
rs2883930 98.4 C:G 0.296 0.70 
rs4835508 99.5 C:T 0.265 0.13 
rs11945778 99.7 C:T 0.444 1.00 
rs3910047 97.8 T:C 0.278 0.19 
rs3846329 99.2 G:T 0.263 0.19 
rs2137334 84.9 C:T 0.399 0.28 
rs13118022 95.9 G:T 0.476 0.12 
rs4635799 97.0 T:C 0.423 0.07 

CYP11B1 rs4310186 98.9 C:G 0.432 0.22 

 rs6387 97.5 G:A 0.470 0.06 

 rs6410 98.9 C:T 0.494 0.07 
CYP11B2 rs3097 100 C:T 0.165 0.61 

 rs4539 79.1 A:G 0.277 1.00 

 I2C 93.6 I:C 0.376 0.15 

 rs1799998 85.2 C:T 0.241 0.07 

SCNN1A 

rs11614164 97.1 A:G 0.284 0.75 
rs3782726 94.8 T:G 0.294 0.48 
rs7973914 97.4 C:T 0.407 0.50 
rs10849446 98.0 A:C 0.292 0.52 
rs2286600 96.5 G:A 0.284 0.74 

M6PR rs1805725 94.8 A:C 0.161 0.57 

 rs987917 96.7 C:A 0.293 0.28 

CMA1 
rs1885108 96.3 A:G 0.335 0.64 
rs1800875 91.0 A:G 0.317 0.13 

SCNN1G 
rs5735 97.2 T:C 0.273 0.09 
rs4247210 99.4 G:C 0.272 0.50 

SCNN1B 

rs11074555 100 T:C 0.424 0.16 
rs9930640 98.0 G:A 0.092 1.00 
rs239345 99.2 T:A 0.393 0.46 
rs238547 96.4 C:T 0.276 0.20 
rs8044970 99.2 T:G 0.247 0.07 
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Table 3.2 Continued 

Gene Polymorphism Genotyping 
Efficiency (%) a2:a1 MAF HWE 

SCNN1B 
rs152740 95.0 A:T 0.456 0.34 
rs250563 98.6 C:T 0.077 1.00 
rs2303153 94.4 G:C 0.267 0.66 

HSD11B2 rs5479 100 C:A 0.087 0.31 
ACE1 rs4303 90.9 G:T 0.040 1.00 

 rs4298 89.1 C:T 0.129 1.00 

 rs4340 94.5 D:I 0.384 1.00 

 rs4356 92.7 T:C 0.161 1.00 
*a2:a1 major: minor allele 
Abbreviations: ACE: Angiotensin-converting enzyme 1 gene; ACE2: Angiotensin converting enzyme 2 
gene; AGT: Angiotensinogen gene; AGTR1: angiotensin II receptor, type 1 gene; AGTR2: angiotensin II 
receptor, type 2gene; ATP1A1: ATPase, Na+/K+ transporting, alpha 1 polypeptide gene; ATP1A2: ATPase, 
Na+/K+ transporting, alpha 2  polypeptide gene; ATP1B1: ATPase, Na+/K+ transporting, beta 1 
polypeptide gene; ATP1B3: ATPase, Na+/K+ transporting, beta 3 polypeptide gene; ATP6AP2: ATPase, H+ 
transporting, lysosomal accessory protein 2 gene; CMA1: cardiac chymase gene; CYP11B1: 11 beta-
hydroxylase gene; CYP11B2: aldosterone synthase gene; HSD11B2: 11 β-hydroxysteroid-dehydrogenase 
type 2 gene; HWE: Hardy-Weinberg Equilibrium; M6PR: mannose-6-phosphate receptor gene; NR3C2: 
nuclear receptor subfamily 3, group C, member 2 gene; REN: renin gene; RENBP: renin binding protein 
gene; SCNN1A: sodium channel, non-voltage-gated 1 alpha gene; SCNN1B: sodium channel, non-voltage-
gated 1, beta gene; SCNN1G: sodium channel, non-voltage-gated 1, gamma gene  
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3.5 Principal component analysis 

Principal component analysis was used to generate the first principal component (PC1) of the 

16 quantile-normalised cardiac wall thickness measurements. This PC1 score is a weighted 

average of these wall thickness measurements, and explained 75% of the overall variability in 

these measurements in the present cohort. The respective weights (loadings) ranged from 

0.221 to 0.269 (Table 3.3).  

 

Table 3.3 Weights of wall thickness measures in the PC1 hypertrophy score (loadings for 

the first principal component) 

Hypertrophy trait Loading in PC1 

pIVS at mitral valve 0.253 
aIVS at mitral valve 0.261 
AW at mitral valve 0.256 
LW at mitral valve 0.249 
IW at mitral valve 0.221 
PW at mitral valve 0.221 
pIVS at papillary muscle 0.262 
aIVS at papillary muscle 0.269 
AW at papillary muscle 0.267 
LW at papillary muscle 0.254 
IW at papillary muscle 0.234 
PW at papillary muscle 0.238 
  IVS at apex 0.263 
AW at apex 0.259 
LW at apex 0.239 
PW at apex 0.248 

  Abbreviations: aIVS: anterior interventricular septal thickness; AW: anterior wall thickness; IVS: 

interventricular septal thickness; IW: inferior wall thickness; LW: lateral wall thickness; PC1: first 

principal component; pIVS: posterior interventricular septal thickness; PW: posterior wall thickness 

 

3.6 Heritability estimation  

Table 3.4 reports the estimated percentage variance attributable to environment (E) and 

inherited or genetic factors (H), as well as p-values for the test of heritability for the six 

hypertrophy traits chosen for investigation. The heritability values were adjusted for the known 

hypertrophy covariates. In other words, these values are independent of the primary HCM-

causal mutation, hypertension diagnosis, ethnicity, age, sex, BSA, blood pressure and heart rate. 

After adjustment for these covariates, a strong heritable component was found for all six 

hypertrophy traits used in this study.   

 

Stellenbosch University  http://scholar.sun.ac.za



Chapter III 

 

70 
 

Table 3.4 Estimated percentage variance attributable to environment (E) and genetic 

factors (H), as well as the p-values for heritability. All tests were adjusted for the HCM-causal 

mutation as well as other known hypertrophy covariates.  

 

Hypertrophy trait E (%) H (%) p-value 

LVM 41 59 < 0.0001 

mIVST 56 44 < 0.0001 

mLVWT 44 55 0.0001 

mPWT 44 56 0.0002 

CWT score 59 41 0.0018 

PC1 48 52 0.0009 

Abbreviations: CWT score: cumulative wall thickness score; E: environment; G: polygenetic factors; LVM: 

left ventricular mass; mIVST: maximum interventricular septal thickness; mLVWT: maximum left 

ventricular wall thickness; mPWT: maximum posterior wall thickness; PC1: first principal component 

 

3.7 Association analyses 

In this section, the results of our statistical analyses will be presented per gene, starting with a 

schematic of the locations of the variants in the gene. This will be followed by single SNP and 

haplotype analysis results, from both association and interaction models. Next, we plot the 

negative logarithm base 10 from the association analyses as an indication of the relative 

magnitude of the association effect sizes for the variants, as well as the haplotypes, for the six 

HCM phenotypes; in these plots, a red broken line indicates the value corresponding to a p-value 

of 0.05. We also present tables of joint p-values, for each of the three possible pairs of mutation 

groups, from the interaction models, for each variant-phenotype and also for each haplotype-

phenotype pair.   

 

As interaction can be a somewhat complex concept, a representative example of a significant 

interaction between HCM mutation group and a RAAS variant on a trait is shown below in 

Figure 3.2. This example illustrates a significant interaction between HCM mutation group and 

the rs2068230 SNP (ATP1B3) on mIVST, corresponding to the p-values discussed later in this 

chapter. The estimated differences in effect between the HCM mutation groups were as follows. 

The addition of a T-allele was associated with a 3.56 mm higher mIVST in the R92WTNNT2 

compared to the A797TMYH7 group (p= 0.002) and a 2.68 mm higher mIVST in the R403WMYH7 

compared to the A797TMYH7 group (p = 0.033). The difference in effect of the T-allele was, 

however, not significant between the R92WTNNT2 and R403WMYH7 groups (p = 0.563). 
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The graph depicts estimated values of mIVST for 9 hypothetical “average” individuals in the 

present cohort, from each of the three mutation groups, with each possible rs2068230 genotype 

(Figure 3.2). An “average” individual in this cohort would be a 41 year-old male, on 

hypertensive medication, with a BSA of 1.93 m2, mean arterial pressure of 94 mm Hg and a 

heart rate of 69 beats per minute (bpm), who does not carry the specific HCM mutation. For 

“real” individuals with different values for these hypertrophy covariates, the modelled graph 

will simply shift up or down, but the effect sizes (differences between the HCM mutation groups 

and RAAS genotypes) will remain the same. In mutation carriers, 4.98 units would be added to 

the average. 

 

 
Figure 3.2 Graph of estimated mIVST by mutation group and rs2068230 genotype. 

 

It is then evident from the graph that the average effect of the addition of a T-allele in the 

ATP1B3 gene would result in significantly different outcomes, i.e. different interventricular wall 

thickness measurements, depending on the particular HCM causal mutation of that individual. 

More specifically, mIVST will decrease by 3.05 mm in A797TMYH7 carriers, while each T-allele 

will increase mIVST in R92WTNNT2 carriers by 0.51 mm, whereas each T-allele decreases mIVST 

with 0.37mm in R403WMYH7 carriers (Figure 3.2). As the effect of this polymorphism is 

significantly different in A797TMYH7 carriers compared to both other groups, we conclude that 
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this polymorphism has a significant effect in A797TMYH7 carriers. Note that if one allele is 

associated with a decrease in phenotype, the other allele at that locus will automatically be 

associated with a corresponding increase in that phenotype.   

 

Haplotypes could unfortunately not be estimated for the X-linked variants as we are not aware 

of software to assign haplotypes for X-linked genes in extended families.  

 

3.7.1 Angiotensinogen (AGT) 

Figure 3.3 depicts the chromosomal location of AGT, as well as the intragenic location of the 

investigated AGT polymorphisms. Complete LD (D’ = 1) was observed between all investigated 

SNPs in AGT.  
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Figure 3.3 Scale diagram depicting chromosomal location and structure of the AGT gene, as well as intragenic location of target polymorphisms. 

Arrows indicate direction of transcription.  
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P-values for tests of additive allelic association are illustrated in Figure 3.4, independent of 

specific HCM mutation group and of whether a mutation is present, as well as the hypertrophy 

confounders. 

 

 
Figure 3.4 Single polymorphism association results for AGT. Graph indicates –log10 transformed p-

values for the tests of association between AGT variants and investigated hypertrophy traits. The table 

below the graph indicates exact p-values for additive tests of allelic association. The red line in the 

graph indicates a significance level of p < 0.05, and effect sizes for significant associations are indicated 

in the text. 

 

Table 3.5 contains the p-values for simultaneous testing of differences in additive allelic 

association between all pairs of HCM mutation groups and AGT genotype, as explained in 

section 2.6.4. Significantly different allelic effects were observed on LVM and mLVWT (Table 

3.5). The effect of the addition of each r699 T-allele on LVM was 25.6 g higher in the R403WMYH7 

group, when compared to the A797TMYH7 group (Table 3.5). Similarly, the rs5051 C-allele is 

associated with a 27.8 g higher effect in the R403WMYH7 group, compared to the A797TMYH7 

group. On the other hand, the effect of C-allele of rs1926723 is 5.15 mm lower in the R403WMYH7 

group, when compared to the A797TMYH7 group, while the effect of the C-allele of rs11122575 is 

5.80 mm lower in the R403WMYH7 group, when compared to the A797TMYH7 group. 

rs1926723 rs11122575 rs699 rs4762 rs5051
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LVM mPWT mIVST mLVWT CWT PC1

LVM 0.680 0.358 0.460 0.452 0.694
mPWT 0.738 0.200 0.380 0.895 0.637
mIVST 0.481 0.100 0.946 0.294 0.713
mLVWT 0.438 0.062 0.961 0.483 0.977
CWT 0.597 0.169 0.898 0.022 0.641
PC1 0.762 0.145 0.548 0.086 0.754
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Table 3.5 The p-values for interaction between HCM mutation group and AGT genotype, illustrating the differences in allelic effect of the particular 

AGT variants between these groups. Significant p-values are indicated in bold red font and the corresponding effect sizes are discussed in the text. 

    LVM mIVST mLVWT mPWT CWT score PC1 

    

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

AGT rs1926723 0.703 0.142 0.250 0.242 0.643 0.179 0.13 0.166 0.031 0.374 0.333 0.181 0.310 0.328 0.139 0.396 0.251 0.157 

 
rs11122575 0.672 0.096 0.209 0.281 0.356 0.137 0.177 0.060 0.025 0.482 0.158 0.171 0.373 0.166 0.12 0.487 0.118 0.145 

 
rs699 0.347 0.258 0.030 0.237 0.776 0.113 0.229 0.767 0.105 0.993 0.413 0.408 0.748 0.326 0.191 0.915 0.358 0.310 

 
rs4762 0.333 0.925 0.243 0.570 0.533 0.926 0.888 0.766 0.901 0.961 0.131 0.142 0.886 0.820 0.675 0.814 0.761 0.538 

  rs5051 0.214 0.398 0.023 0.257 0.808 0.127 0.227 0.683 0.075 0.946 0.373 0.395 0.648 0.261 0.105 0.819 0.318 0.212 

Abbreviations: AGT: Angiotensinogen gene; CWT score: cumulative wall thickness score; LVM: left ventricular mass; mIVST: maximum interventricular septal thickness; 

mLVWT: maximum left ventricular wall thickness; mPWT: maximum posterior wall thickness; PC1: first principal component 
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Figure 3.5 summarises the AGT haplotype association analyses results, while Table 3.6 depicts 

the observed haplotype distribution as well as the exact p-values for the tests of association 

between the AGT haplotypes and the investigated hypertrophy traits. No statistically significant 

association was found between any of the AGT haplotypes and the investigated hypertrophy 

traits. 

 

   
Figure 3.5 Summary of haplotype association results for AGT. Bar graph indicates –log10 

transformed p-values for the tests of association between the observed haplotypes and investigated 

hypertrophy traits. Red line indicates a significance level of p < 0.05. 
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Table 3.6 Haplotype distribution within AGT, as well as the exact p-values for tests of allelic 

association. All analyses were adjusted for the primary HCM-causal mutation, as well as other 

known hypertrophy covariates.  

 

rs
19

26
72

3 

rs
11

12
25

75
 

rs
69

9 

rs
47

62
 

rs
50

51
 freq. 

p-value for test of association 

 LVM mIVST mLVWT mPWT CWT PC1 

1 A T C C T 0.275 0.252 0.367 0.449 0.203 0.118 0.108 
2 A T T C C 0.214 0.541 0.804 0.614 0.386 0.942 0.868 
3 A T C T T 0.062 0.930 0.833 0.987 0.739 0.432 0.306 
4 C C C C T 0.050 0.564 0.314 0.263 0.896 0.632 0.812 
5 A T T C T 0.021 0.813 0.667 0.743 0.778 0.961 0.956 
6 A T C C C 0.008 0.610 0.449 0.531 0.636 0.431 0.356 
Haplotypes with a frequency < 0.008 not indicated 

Abbreviations: A: adenine; C: cytosine; CWT: cumulative wall thickness score; LVM: left ventricular mass; 

mIVST: maximum interventricular septal thickness; mLVWT: maximum left ventricular wall thickness; 

mPWT: maximum posterior wall thickness; PC1: first principal component; T: thymine 
 

Table 3.7 shows the p-values for interaction between the HCM mutation group and the first four 

AGT haplotypes, to illustrate the differences in allelic effect of these haplotypes between the 

mutation groups. Haplotypes with a frequency of less than 0.050 were not tested. Haplotype 2 

was significantly associated with a 0.97 mm higher effect in the R92WTNNT2 group, compared to 

the A797TMYH7 group (p = 0.044). 
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Table 3.7 The p-values for interaction between HCM mutation group and AGT haplotypes, illustrating the differences in allelic effect of the particular 

haplotypes between these groups. Significant p-values are indicated in bold red font and the corresponding effect sizes are discussed in the text. 

Haplotype 

LVM mIVST mLVWT mPWT CWT score PC1 
R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

1 0.538 0.327 0.680 0.625 0.394 0.184 0.555 0.554 0.248 0.427 0.655 0.759 0.553 0.115 0.318 0.386 0.190 0.628 

2 0.766 0.078 0.118 0.818 0.125 0.164 0.964 0.102 0.089 0.602 0.057 0.153 0.522 0.044 0.190 0.386 0.054 0.331 

3 0.384 0.652 0.092 0.551 0.302 0.757 0.790 0.976 0.740 0.922 0.086 0.081 0.868 0.370 0.231 0.837 0.337 0.186 

4 0.742 0.085 0.231 0.278 0.577 0.191 0.227 0.105 0.049 0.359 0.156 0.112 0.432 0.162 0.145 0.518 0.073 0.125 

Haplotypes with a frequency < 0.050 not tested 

Abbreviations: AGT: Angiotensinogen gene; CWT score: cumulative wall thickness score; LVM: left ventricular mass; mIVST: maximum interventricular septal thickness; 

mLVWT: maximum left ventricular wall thickness; mPWT: maximum posterior wall thickness; PC1: first principal component 
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3.7.2 Renin and renin–associated genes 

Figure 3.6 depicts the chromosomal location of REN, as well as the intragenic location of the 

investigated polymorphisms. A very high degree of LD was observed in the region extending 

from rs5705 to rs3795575 in REN (Table 3.8). Although rs1464816 appears to be in LD with all 

the other prioritised variants in REN (D’ values ranging from 0.8 to 1), we found intermediate to 

low D’ values for the variants covered between rs5705 and rs6682082.   

 

All three investigated SNPs in RENBP were in tight LD (Figure 3.7). Rs296895 and rs2968917 

were found to be in complete LD, while weaker evidence for pairwise LD exists between 

rs10536 and both of these variants in ATP6AP2 (Figure 3.8). The two SNPs investigated in M6PR 

were found to be in complete LD (D’ = 1) (Figure 3.9).  
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Figure 3.6 Scale diagram depicting chromosomal location and structure of the REN gene, as well as intragenic location of target 

polymorphisms. Arrows indicate direction of transcription. 

 

Table 3.8 Pairwise D’ values as a representation of the observed LD structure within REN in the present cohort. 

 
rs3795575 rs1464816 rs11571082 rs5705 rs10900555 rs6682082 

rs3795575 
 

1 0.90 1 0.60 0.19 

rs1464816 
  

0.80 1 0.95 1 

rs11571082 
   

0.94 0.57 0.20 

rs5705 
    

0.72 0.60 

rs10900555 
     

0.60 

rs6682082 
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Figure 3.7 Scale diagram depicting chromosomal location and structure of the RENBP gene, as well as intragenic location of target 

polymorphisms. LD values were D’ = 0.94 between rs762656 and rs2269372, and D’ = 1 for rs2269370 with both other SNPs.  Arrows indicate 

direction of transcription.  
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Figure 3.8 Scale diagram depicting chromosomal location and structure of the ATP6AP2 gene, as well as intragenic location of target 

polymorphisms.  LD values were D’ = 1 between rs2968917 and rs2968915, D’ = 0.34 between rs10536 and rs2968915 and D’ = 0.48 between 

rs10538 and rs2968917. Arrows indicate direction of transcription.  
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Figure 3.9 Scale diagram depicting chromosomal location and structure of the M6PR gene, as well as intragenic location of target 

polymorphisms. Both SNPs were in complete LD (D’ = 1). Arrows indicate direction of transcription.  
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3.7.2.1 Renin (REN) 

A summary of the REN single SNP association analysis in the entire cohort, as well as the exact 

p-values for tests of additive allelic association are shown in Figure 3.10. No evidence for 

association was found between the investigated REN SNPs and hypertrophy traits in this 

analysis.  

 

 
Figure 3.10 Single polymorphism association results for REN. Bar graph indicates –log10 

transformed p-values for the tests of association between REN variants and investigated hypertrophy 

traits. The table below the graph indicates exact p-values for additive tests of allelic association. The 

red line in the graph indicates a significance level of p < 0.05, and effect sizes for significant associations 

are indicated in the text. 

 

Table 3.9 contains the p-values for interaction between the HCM mutation group and the 

respective genotypes for the variants investigated in REN, RENBP, ATP6AP2 and M6PR, 

illustrating the differences in allelic effect of the particular variants between these groups.  

 

The T-allele of rs1464816 in REN was associated with a 42.55 g lower effect on LVM in the 

R92WTNNT2 group versus the R403WMYH7 group (p = 0.049) (Table 3.9). Similarly, the G-allele of 

rs10900555 (REN) was found to result in a 0.05 higher PC1 in the R403WMYH7 group versus the 

A797TMYH7 group (p = 0.046).   

rs3795575 rs1464816 rs11571082 rs5705 rs10900555 rs6682082
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

-lo
g 1

0(
p-

va
lu

e)

LVM mPWT mIVST mLVWT CWT PC1

LVM 0.298 0.174 0.855 0.909 0.385 0.797
mPWT 0.940 0.325 0.770 0.686 0.603 0.176
mIVST 0.641 0.539 0.710 0.807 0.801 0.969
mLVWT 0.969 0.444 0.591 0.972 0.955 0.464
CWT 0.971 0.085 0.809 0.814 0.230 0.750
PC1 0.805 0.100 0.813 0.937 0.501 0.883
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Table 3.9 The p-values for interaction between the HCM mutation group and REN, RENBP, ATP6AP2 or M6PR genotype, illustrating the differences in 

allelic effect of the particular variants between these groups. Significant p-values are indicated in bold red font and the corresponding effect sizes are 

discussed in the text. 

  LVM mIVST mLVWT mPWT CWT score PC1 

  
R92W 

vs 
R403W 

R92W 
vs 

A797T 

R403W 
vs 

A797T 

R92W 
vs 

R403W 

R92W 
vs 

A797T 

R403W 
vs 

A797T 

R92W 
vs 

R403W 

R92W 
vs 

A797T 

R403W 
vs 

A797T 

R92W 
vs 

R403W 

R92W 
vs 

A797T 

R403W 
vs 

A797T 

R92W 
vs 

R403W 

R92W 
vs 

A797T 

R403W 
vs 

A797T 

R92W 
vs 

R403W 

R92W 
vs 

A797T 

R403W 
vs 

A797T 

REN rs3795575 0.267 0.500 0.631 0.833 0.774 0.943 0.757 0.636 0.414 0.969 0.947 0.979 0.736 0.486 0.732 0.544 0.498 0.965 

 
rs1464816 0.049 0.153 0.264 0.172 0.523 0.270 0.245 0.999 0.156 0.367 0.186 0.919 0.346 0.356 0.746 0.444 0.340 0.931 

 
rs11571082 0.846 0.550 0.491 0.356 0.350 0.955 0.309 0.959 0.328 0.350 0.570 0.699 0.948 0.641 0.662 0.827 0.657 0.871 

 
rs5705 0.845 0.989 0.838 0.390 0.846 0.499 0.205 0.686 0.107 0.966 0.424 0.448 0.437 0.549 0.204 0.569 0.637 0.338 

 
rs10900555 0.976 0.225 0.265 0.990 0.692 0.733 0.812 0.734 0.577 0.508 0.463 0.174 0.508 0.163 0.060 0.431 0.168 0.046 

 
rs6682082 0.588 0.364 0.183 0.360 0.187 0.747 0.942 0.787 0.864 0.897 0.613 0.574 0.533 0.837 0.703 0.410 0.598 0.774 

RENBP rs2269370 0.578 0.428 0.804 0.945 0.432 0.428 0.758 0.066 0.149 0.384 0.494 0.866 0.902 0.079 0.089 0.609 0.198 0.106 

 
rs2269372 0.218 0.680 0.394 0.201 0.330 0.656 0.203 0.207 0.880 0.125 0.730 0.214 0.347 0.121 0.725 0.452 0.187 0.730 

 
rs762656 0.819 0.738 0.944 0.985 0.650 0.682 0.858 0.351 0.522 0.429 0.691 0.658 0.816 0.240 0.240 0.699 0.276 0.208 

ATP6AP2 rs2968915 0.718 0.823 0.562 0.955 0.290 0.299 0.697 0.131 0.319 0.630 0.287 0.630 0.916 0.286 0.388 0.946 0.321 0.333 

 
rs2968917 0.239 0.760 0.146 0.331 0.077 0.020 0.362 0.097 0.029 0.780 0.227 0.234 0.293 0.166 0.039 0.225 0.210 0.033 

 
rs10536 0.591 0.756 0.537 0.664 0.963 0.833 0.869 0.642 0.577 0.982 0.691 0.682 0.817 0.715 0.820 0.915 0.773 0.824 

M6PR rs1805725 0.558 0.232 0.573 0.173 0.071 0.742 0.097 0.020 0.536 0.151 0.464 0.460 0.340 0.067 0.370 0.308 0.072 0.420 

 
rs987917 0.599 0.955 0.574 0.152 0.121 0.964 0.130 0.079 0.920 0.502 0.512 0.214 0.431 0.147 0.566 0.517 0.271 0.697 

Abbreviations: ATP6AP2: ATPase, H+ transporting, lysosomal accessory protein 2 gene; CWT score: cumulative wall thickness score; LVM: left ventricular mass; M6PR: 

mannose-6-phosphate receptor gene; mIVST: maximum interventricular septal thickness; mLVWT: maximum left ventricular wall thickness; mPWT: maximum posterior 

wall thickness; PC1: first principal component; REN: renin gene; RENBP: renin binding protein gene 
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Figure 3.11 depicts a graphical summary of the haplotype association results. When the REN 

variants were analysed as a haplotype, we found a significant association between haplotype 4 

(GGTGGC) and LVM, despite the fact that the single SNP association analysis yielded no 

significant results (Figure 3.11).  

 

 
Figure 3.11 Summary of haplotype association results for REN. Bar graph indicates –log10 

transformed p-values for the tests of association between the observed haplotypes and investigated 

hypertrophy traits. Red line indicates a significance level of p < 0.05. 

 

Table 3.10 depicts the haplotype distribution observed for the REN gene, as well as the 

respective p-values for tests of association for these haplotypes. Haplotype 4 (GGTGGC) was 

observed in 6.3% of the entire cohort and associated significantly with a 29.10 g decrease in 

LVM (p = 0.049).  
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Table 3.10 Haplotype distribution within REN, as well as the respective p-values for tests of 

allelic association. All analyses were adjusted for the primary HCM-causal mutation, as well as 

other known hypertrophy covariates.  
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rs
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rs
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rs
57
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rs
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05

55
 

rs
66

82
08

2 

freq. 
p-value for test of association 

 
LVM mIVST mLVWT mPWT CWT PC1 

1 G T C T A C 0.157 0.206 0.686 0.669 0.819 0.168 0.185 
2 G G C T G C 0.155 0.128 0.610 0.894 0.329 0.520 0.489 
3 G G C T A C 0.132 0.549 0.676 0.411 0.635 0.419 0.557 
4 G G T G G C 0.063 0.049 0.082 0.323 0.951 0.447 0.508 
5 G G C T A T 0.059 0.864 0.653 0.735 0.360 0.818 0.803 
6 A G T G G C 0.051 0.367 0.767 0.462 0.739 0.983 0.962 
7 G T C T G C 0.026 0.985 0.389 0.993 0.834 0.623 0.525 
8 G G C G G T 0.022 0.835 0.818 0.526 0.620 0.873 0.600 
9 G G C G A T 0.015 0.934 0.453 0.676 0.746 0.498 0.402 

10 G G C G G C 0.013 0.188 0.141 0.853 0.664 0.861 0.935 
11 A G C G G C 0.011 0.262 0.446 0.716 0.477 0.650 0.679 
12 G T C T A T 0.009 0.972 0.900 0.324 0.123 0.785 0.746 
13 A G C G G T 0.009 0.897 0.910 0.223 0.978 0.658 0.856 
14 G T T G G C 0.009 0.887 0.758 0.493 0.831 0.764 0.799 
15 G T C G G T 0.008 0.224 0.734 0.643 0.129 0.212 0.106 

Abbreviations: A: adenine; C: cytosine; CWT: cumulative wall thickness score; G: guanine; LVM: left 

ventricular mass; mIVST: maximum interventricular septal thickness; mLVWT: maximum left ventricular 

wall thickness; mPWT: maximum posterior wall thickness; PC1: first principal component; T: thymine 
 

Table 3.11 contains the p-values for the interaction between the REN haplotypes and the three 

different HCM mutation groups as an indication of the difference in effect of the particular 

haplotypes between the groups. Haplotypes 4, as well as 9 to 15 could unfortunately not be 

tested due to unequal distribution of these haplotypes in the three mutation groups, which 

resulted in stratified sample groups that were too small to test.  

 

Interestingly, we found that when the T-allele of rs146816 was present in a haplotype, the 

differential effect between HCM mutation groups persisted (Table 3.11). Haplotype 1 was 

associated with a 50.33 g lower effect on LVM in the R92WTNNT2 group compared to the 

R403WMYH7 group (p = 0.025). On the other hand, haplotype 7 associated with a significantly 

higher effect of 4.05 mm on the CWT score (p = 0.050) and a 0.25 higher PC1 (p = 0.049) in the 

R92WTNNT2 group compared to the R403WMYH7 group.   
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Table 3.11 The p-values for interaction between the HCM mutation group and REN haplotypes, illustrating the differences in allelic effect of 

the particular haplotypes between these groups. Significant p-values are indicated in bold red font and the corresponding effect sizes are discussed in 

the text. 

Haplotype 

LVM mIVST mLVWT mPWT CWT score PC1 
R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

1 0.025 0.266 0.070 0.507 0.921 0.374 0.358 0.787 0.186 0.269 0.051 0.819 0.318 0.259 0.762 0.388 0.213 0.958 

2 0.729 0.212 0.395 0.124 0.214 0.539 0.144 0.320 0.438 0.929 0.711 0.788 0.515 0.190 0.544 0.707 0.181 0.325 

3 0.464 0.767 0.270 0.595 0.919 0.485 0.903 0.363 0.288 0.632 0.705 0.358 0.628 0.412 0.186 0.500 0.553 0.196 

5 0.441 0.689 0.399 0.127 0.719 0.565 0.481 0.842 0.815 0.343 0.511 0.232 0.300 0.825 0.708 0.216 0.866 0.592 

6 0.910 0.090 0.112 0.293 0.972 0.266 0.258 0.403 0.060 0.717 0.422 0.286 0.794 0.339 0.299 0.893 0.349 0.370 

7 0.219 0.842 0.105 0.539 0.405 0.119 0.358 0.699 0.149 0.838 0.579 0.420 0.050 0.602 0.101 0.049 0.585 0.104 

8 0.393 0.064 0.402 0.242 0.141 0.909 0.131 0.090 0.957 0.799 0.339 0.526 0.265 0.086 0.681 0.565 0.391 0.856 

*Haplotypes 4 and 9-15 not tested 

Abbreviations: CWT score: cumulative wall thickness score; LVM: left ventricular mass; mIVST: maximum interventricular septal thickness; mLVWT: maximum 

left ventricular wall thickness; mPWT: maximum posterior wall thickness; PC1: first principal component 
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3.7.2.2 Renin-binding protein (RENBP) 

There was no statistically significant difference between the HCM mutations groups with 

regards to the effect of RENBP polymorphisms on the investigated hypertrophy traits (Table 

3.9). However, the A-allele of rs762656 in RENBP was found to significantly decrease mPWT by 

0.511 mm (p = 0.013) as shown in Figure 3.12.   

 

 
 

Figure 3.12 Single polymorphism association results for RENBP. Bar graph indicates –log10 

transformed p-values for the tests of association between RENBP variants and investigated 

hypertrophy traits. The table below the graph indicates exact p-values for additive tests of allelic 

association. The red line in the graph indicates a significance level of p < 0.05, and effect sizes for 

significant associations are indicated in the text. 

 

3.7.2.3 (Pro)renin receptor (ATP6AP2) 

We found no statistically significant evidence for association between the investigated ATP6AP2 

variants and any of the hypertrophy traits (Figure 3.13). 

 

However, we observed a difference in effect size caused by the rs2968917 polymorphism in 

ATP6AP2 (Table 3.9). The C-allele of this polymorphism was associated with a significantly 

increased effect of 4.19 mm on mIVST (p = 0.020), 4.18 mm on mLVWT (p = 0.029), 1.81 mm on 
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the CWT score (p = 0.039), as well as 0.11 on PC1 (p = 0.033) in the R403WMYH7 group compared 

to the A797TMYH7 group.  

 

 
Figure 3.13 Single polymorphism association results for ATP6AP2. Bar graph indicates –log10 

transformed p-values for the tests of association between ATP6AP2 variants and investigated 

hypertrophy traits. The table below the graph indicates exact p-values for additive tests of allelic 

association. The red line in the graph indicates a significance level of p < 0.05, and effect sizes for 

significant associations are indicated in the text. 

 

3.7.2.4 Mannose-6-Phosphate Receptor (M6PR) 

The C-allele of rs1805725 in M6PR was significantly associated with a 15.1 g decrease in LVM (p 

= 0.040), a 1.28 mm decrease in mIVST (p = 0.040), a 0.62 mm decrease in CWT score (p = 

0.020), as well as a 0.04 mm decrease in PC1 (p = 0.036) as indicated in Figure 3.14. However, 

this allele was associated with a 2.99 mm lower effect on mLVWT in the R92WTNNT2 group, 

compared to the A797TMYH7 group (Table 3.9). 
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Figure 3.14 Single polymorphism association results for M6PR. Bar graph indicates –log10 

transformed p-values for the tests of association between M6PR variants and investigated hypertrophy 

traits. The table below the graph indicates exact p-values for additive tests of allelic association. The 

red line in the graph indicates a significance level of p < 0.05, and effect sizes for significant associations 

are indicated in the text. 

 

Two haplotypes in M6PR were found to associate significantly with hypertrophy traits (Figure 

3.15). Interestingly, both of these contain a C-allele for the rs987917 SNP (Table 3.12). When 

this C-allele is accompanied by an A-allele at rs1805725, the resulting haplotype is associated 

with a 0.67 mm increase in mLVWT (p = 0.049). However, when the rs987917 C-allele is 

accompanied by a C-allele at rs1805725, the resulting haplotype is associated with a 44.90 g 

decrease in LVM (p = 0.013), a 3.73 mm decrease in mIVST (p = 0.002), a 3.39 mm decrease in 

mLVWT (p = 0.006), a 1.59 mm decrease in CWT score (p = 0.009), as well as a 0.10 decrease in 

PC1 (p = 0.020). This haplotype was, however, only observed in 1.7% of the cohort.  
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Figure 3.15 Summary of haplotype association results for M6PR. Bar graph indicates –log10 

transformed p-values for the tests of association between the observed haplotypes and investigated 

hypertrophy traits. Red line indicates a significance level of p < 0.05 and effect sizes for significant 

associations are indicated in the text. 

Table 3.12 Haplotype distribution within M6PR, as well as the respective p-values for tests 

of allelic association. All analyses were adjusted for the primary HCM-causal mutation, as well as 

other known hypertrophy covariates. Significant p-values indicated in bold red font and effect sizes 

discussed in the text. 
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rs
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freq. 
p-value for test of association 

 LVM mIVST mLVWT mPWT CWT PC1 

1 A C 0.422 0.368 0.134 0.049 0.725 0.100 0.205 
2 C A 0.117 0.115 0.180 0.220 0.655 0.092 0.132 
3 A A 0.109 0.852 0.856 0.405 0.798 0.815 0.929 
4 C C 0.017 0.013 0.002 0.006 0.158 0.009 0.020 

Abbreviations: A: adenine; C: cytosine; CWT: cumulative wall thickness score; LVM: left ventricular mass; 
mIVST: maximum interventricular septal thickness; mLVWT: maximum left ventricular wall thickness; 
mPWT: maximum posterior wall thickness; PC1: first principal component 
 

A haplotype containing the C-allele of rs1805725 and the A-allele of rs987917, i.e. haplotype 2, 

showed a significant difference in effect on three hypertrophy traits in the R92WTNNT2 group, 

compared to the A797TMYH7 group (Table 3.13). This haplotype was associated with a 3.23 mm 

lower effect on mLVWT (p = 0.012), a 1.8 mm lower effect on the CWT score (p = 0.016), as well 

as a 0.11 lower effect on PC1 (p = 0.027). Haplotype 4 (which also contains the rs1805725 C-

allele) was unfortunately not tested due to the low allele frequency of this haplotype.   
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Table 3.13 The p-values for interaction between HCM mutation group and M6PR haplotypes, illustrating the differences in allelic effect of the 

particular haplotypes between these groups. Significant p-values are indicated in bold red font and the corresponding effect sizes are discussed in the 

text. 

Haplotype 

LVM mIVST mLVWT mPWT CWT score PC1 
R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

1 0.615 0.811 0.773 0.126 0.207 0.647 0.142 0.256 0.629 0.564 0.282 0.144 0.688 0.618 0.981 0.773 0.779 0.963 

2 0.907 0.463 0.546 0.375 0.105 0.498 0.166 0.012 0.255 0.221 0.417 0.663 0.311 0.016 0.126 0.302 0.027 0.191 

3 0.533 0.192 0.099 0.267 0.801 0.367 0.476 0.823 0.375 0.928 0.095 0.160 0.513 0.692 0.347 0.694 0.527 0.385 

*Haplotype 4 not tested 

Abbreviations: CWT score: cumulative wall thickness score; LVM: left ventricular mass; mIVST: maximum interventricular septal thickness; mLVWT: maximum 

left ventricular wall thickness; mPWT: maximum posterior wall thickness; PC1: first principal component 
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3.7.3 Angiotensin converting enzymes 

Figure 3.16 depicts the chromosomal location and structure of the ACE gene, as well as 

intragenic location of target polymorphisms. Table 3.14 shows the D’ values determined for 

ACE. Complete LD was observed between rs4340 and rs4298, rs4340 and rs4303, as well as 

rs4340 and rs4356, while incomplete LD exists between rs4298 and rs4303. Very little evidence 

for LD was observed between the remaining variants genotyped in ACE.  

 

Insufficient evidence for LD was observed between rs1978124 and rs879922 (D’ = 0.08), while 

the other polymorphisms investigated in ACE2 appear to be in complete LD as D’ = 1 for the 

remaining SNP pairs (Table 3.15).  

 

Figure 3.18 depicts the chromosomal location and structure for CMA1, as well as intragenic 

location of the investigated polymorphisms. The two SNPs investigated in CMA1 were in 

complete LD (D’ = 1).    
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Figure 3.16 Scale diagram depicting chromosomal location and structure of the ACE gene, as well as intragenic location of target 

polymorphisms. Arrows indicate direction of transcription.  

 

Table 3.14 Pairwise D’ values as a representation of the observed LD structure within ACE in the present cohort. 
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Figure 3.17 Scale diagram depicting chromosomal location and structure of the ACE2 gene, as well as intragenic location of target 

polymorphisms. Arrows indicate direction of transcription. 

 

Table 3.15 Pairwise D’ values as a representation of the observed LD structure within ACE2 in the present cohort. 
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Figure 3.18 Scale diagram depicting chromosomal location and structure of the CMA1 gene, as well as intragenic location of target 

polymorphisms. The two investigated SNPs were in complete LD (D’ = 1). Arrows indicate direction of transcription. 
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3.7.3.1 Angiotensin converting enzyme 1 (ACE) 

The C-allele of one SNP in ACE, rs4356, was associated with a significant CWT score increase of 

0.743 mm (Figure 3.19).   

 

 

 
Figure 3.19 Single polymorphism association results for ACE. Bar graph indicates –log10 

transformed p-values for the tests of association between ACE variants and investigated hypertrophy 

traits. The table below the graph indicates exact p-values for additive tests of allelic association. The 

red line in the graph indicates a significance level of p < 0.05, and effect sizes for significant associations 

are indicated in the text. 

 

Table 3.16 depicts the p-values for interaction between HCM mutation group and ACE, ACE2 or 

CMA1 genotypes, illustrating the differences in allelic effect of the particular variants between 

these groups.  

 

The T-allele of rs4303 was found to differentially affect the HCM mutation groups (Table 3.16). 

The effect of the addition of this T-allele on mPWT was 0.93 mm higher in the R92WTNNT2 group, 

when compared to the R403WMYH7 group, but 2.22 mm lower in the R403WMYH7 group, 

compared to the A797TMYH7 group. There was, however, no statistically significant difference 

between the effect of this allele on the R92WTNNT2 and A797TMYH7 groups. 
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Table 3.16 The p-values for interaction between HCM mutation group and ACE, ACE2 or CMA1 genotype, illustrating the differences in allelic effect of 

the particular variants between these groups. Significant p-values are indicated in bold red font and the corresponding effect sizes are discussed in the text. 

    LVM mIVST mLVWT mPWT CWT score PC1 

    

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

ACE rs4340 0.556 0.773 0.416 0.640 0.471 0.282 0.896 0.553 0.520 0.512 0.870 0.632 0.676 0.484 0.852 0.712 0.642 0.970 

 

rs4298 0.771 0.646 0.754 0.367 0.704 0.555 0.399 0.704 0.602 0.297 0.337 0.933 0.184 0.255 0.983 0.120 0.131 0.805 

 

rs4303 0.255 0.652 0.165 0.556 0.591 0.297 0.308 0.957 0.448 0.050 0.406 0.015 0.088 0.724 0.085 0.071 0.687 0.064 

 

rs4356 0.986 0.183 0.191 0.488 0.291 0.746 0.460 0.388 0.943 0.380 0.628 0.649 0.721 0.198 0.452 0.722 0.234 0.502 

ACE2* rs1978124 0.142 0.056 0.978 0.548 0.733 0.691 0.825 0.828 0.949 0.642 0.468 0.915 0.426 0.490 0.764 0.464 0.517 0.791 

 

rs2285666 0.306 0.111 0.648 0.283 0.316 0.886 0.369 0.164 0.680 0.046 0.027 0.958 0.329 0.079 0.468 0.291 0.059 0.438 

 

rs879922 0.476 0.339 0.989 0.154 0.129 0.768 0.102 0.155 0.546 0.139 0.041 0.936 0.148 0.169 0.630 0.329 0.122 0.870 

CMA1 rs1885108 0.983 0.960 0.943 0.950 0.958 0.991 0.846 0.817 0.670 0.958 0.792 0.835 0.905 0.702 0.803 0.890 0.744 0.654 

 

rs1800875 0.523 0.404 0.170 0.630 0.528 0.300 0.681 0.496 0.318 0.497 0.997 0.459 0.597 0.675 0.355 0.723 0.753 0.516 

* rs4646179 not tested due to low allele frequency 

Abbreviations: ACE: Angiotensin converting enzyme 1 gene; ACE2: Angiotensin converting enzyme 2 gene; CMA1: cardiac chymase gene; CWT score: cumulative wall 

thickness score; LVM: left ventricular mass; mIVST: maximum interventricular septal thickness; mLVWT: maximum left ventricular wall thickness; mPWT: maximum 

posterior wall thickness; PC1: first principal component 
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No statistically significant evidence for association was observed between the identified 

haplotypes and the respective hypertrophy traits (Figure 3.20). Table 3.17 contains the exact p-

values for the tests of association, as well as the haplotype distribution observed for ACE.   

 

 

Figure 3.20 Summary of haplotype association results for ACE. The bar graph indicates –log10 

transformed p-values for the tests of association between the observed haplotypes and investigated 

hypertrophy traits. Red line indicates a significance level of p < 0.05. 
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Table 3.17 Haplotype distribution within ACE, as well as the respective p-values for tests of 

allelic association. All analyses were adjusted for the primary HCM-causal mutation, as well as 

other known hypertrophy covariates.  

 

rs
42

98
 

rs
43

03
 

rs
43

40
 

rs
43

56
 

freq. 
p-value for test of association 

 LVM mIVST mLVWT mPWT CWT PC1 
1 C G D T 0.279 0.354 0.357 0.723 0.523 0.443 0.474 
2 C G I T 0.195 0.654 0.768 0.706 0.810 0.768 0.827 
3 C T D T 0.064 0.774 0.738 0.968 0.980 0.620 0.630 
4 C G I C 0.052 0.292 0.349 0.292 0.155 0.104 0.116 
5 C G D C 0.051 0.435 0.685 0.780 0.566 0.605 0.619 
6 T T D T 0.020 0.217 0.779 0.799 0.775 0.945 0.641 

Abbreviations: C: cytosine; CWT: cumulative wall thickness score; D: Alu deletion; G: guanine; I: Alu 

insertion; LVM: left ventricular mass; mIVST: maximum interventricular septal thickness; mLVWT: 

maximum left ventricular wall thickness; mPWT: maximum posterior wall thickness; PC1: first principal 

component; T: thymine 

 

Table 3.18 contains the p-values for interaction between the different HCM mutation groups 

and ACE haplotypes to illustrate the differences in allelic effect of the different haplotypes 

between these groups. Haplotype 6 was not tested due to low allele frequencies.  

 

Haplotype 3 was associated with a 2.52 mm lower effect on mPWT (p = 0.010), a 2.29 mm lower 

effect on the CWT score (p = 0.029), as well as a 0.14 lower effect on PC1 in the R403WMYH7 

group, compared to the A797TMYH7 group. Conversely, this haplotype had a 1.80 mm increased 

effect on the CWT score (p = 0.033), as well as a 0.11 increased effect on PC1 (p = 0.033) in the 

R92WTNNT2 group, compared to the R403WMYH7 group. Haplotype 4 was associated with a 2.38 

mm increased effect on mPWT (p = 0.017) in the R92WTNNT2 group, compared to the R403WMYH7 

group.  
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Table 3.18 The p-values for interaction between the HCM mutation group and ACE haplotypes, illustrating the differences in allelic effect of 

the particular haplotypes between these groups. Significant p-values are indicated in bold red font and the corresponding effect sizes are discussed in 

the text. 

Haplotype 

LVM mIVST mLVWT mPWT CWT score PC1 
R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

1 0.060 0.287 0.282 0.123 0.414 0.352 0.175 0.158 0.806 0.633 0.925 0.568 0.066 0.273 0.283 0.109 0.290 0.390 

2 0.619 0.954 0.591 0.283 0.556 0.111 0.436 0.582 0.203 0.328 0.646 0.601 0.691 0.534 0.345 0.943 0.512 0.508 

3 0.110 0.715 0.080 0.327 0.473 0.119 0.227 0.850 0.219 0.180 0.152 0.010 0.033 0.694 0.029 0.033 0.539 0.017 

4 0.785 0.496 0.627 0.728 0.900 0.548 0.542 0.919 0.364 0.017 0.085 0.327 0.637 0.675 0.885 0.412 0.445 0.835 

5 0.614 0.532 0.420 0.989 0.286 0.603 0.895 0.359 0.569 0.545 0.981 0.534 0.978 0.233 0.581 0.835 0.348 0.507 

*Haplotype 6 not tested due to low allele frequency 

Abbreviations: CMA1: cardiac chymase gene; CWT score: cumulative wall thickness score; LVM: left ventricular mass; mIVST: maximum interventricular septal 

thickness; mLVWT: maximum left ventricular wall thickness; mPWT: maximum posterior wall thickness; PC1: first principal component 
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3.7.3.2 Angiotensin converting enzyme 2 (ACE2) 

The rs879922 SNP in ACE2 was significantly associated with four hypertrophy traits, viz. LVM, 

mPWT, mIVST and mLVWT (Figure 3.21). The G-allele of this polymorphism was found to 

increase LVM by 13.70 g (p = 0.041), mPWT by 0.62 mm (p = 0.012), mIVST by 1.59 mm (p = 

0.024) and mLVWT by 1.68 mm (p = 0.019).  

  
 

 

 
Figure 3.21 Single polymorphism association results for ACE2. Bar graph indicates –log10 

transformed p-values for the tests of association between ACE2 variants and investigated hypertrophy 

traits. The table below the graph indicates exact p-values for additive tests of allelic association. The 

red line in the graph indicates a significance level of p < 0.05, and effect sizes for significant associations 

are indicated in the text. 

 

The effect of the G-allele of rs879922 in ACE2 on mPWT was 1.20 mm lower in the R92WTNNT2  

group when compared to the A797TMYH7 group (p = 0.041), while the effect of the rs2285666 T-

allele on mPWT was 1.02 mm lower in the R92WTNNT2 group when compared to the R403WMYH7 

group (p = 0.046) and 0.99 mm lower when compared to the A797TMYH7 group (p = 0.027) 

(Table 3.16). 

 

3.7.3.3 Cardiac chymase (CMA1) 

No statistically significant differences in effect were observed for the variants investigated in 

CMA1 (Table 3.16). Similarly, we did not find any statistically significant evidence for 

rs1978124 rs2285666 rs879922 rs4646179
0.0
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1.0

1.5

2.0
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p-
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lu

e)

LVM mPWT mIVST mLVWT CWT PC1

LVM 0.235 0.714 0.041 0.341
mPWT 0.176 0.236 0.012 0.648
mIVST 0.461 0.733 0.024 0.196
mLVWT 0.713 0.959 0.019 0.199
CWT 0.376 0.751 0.096 0.256
PC1 0.084 0.282 0.378 1.000
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association between CMA1 variants any of the heritable hypertrophy traits investigated (Figure 

3.22). 

 

 

 
 
Figure 3.22 Single polymorphism association results for CMA1. Bar graph indicates –log10 

transformed p-values for the tests of association between CMA1 variants and investigated hypertrophy 

traits. The table below the graph indicates exact p-values for additive tests of allelic association. The 

red line in the graph indicates a significance level of p < 0.05, and effect sizes for significant associations 

are indicated in the text. 

 

We also did not find any significant evidence for association between the identified CMA1 

haplotypes and the investigated hypertrophy traits (Figure 3.23 and Table 3.19).  

  

rs1885108 rs1800875
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LVM mPWT mIVST mLVWT CWT PC1

LVM 0.806 0.942
mPWT 0.772 0.212
mIVST 0.663 0.772
mLVWT 0.736 0.783
CWT 0.907 0.426
PC1 0.601 0.436
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Figure 3.23 Summary of haplotype association results for CMA1. Bar graph indicates –log10 

transformed p-values for the tests of association between the observed haplotypes and investigated 

hypertrophy traits. Red line indicates a significance level of p < 0.05. 

 

Table 3.19 Haplotype distribution within CMA1, as well as the respective p-values for tests 

of allelic association. All analyses were adjusted for the primary HCM-causal mutation, as well as 

other known hypertrophy covariates.  

 

rs
18

85
10

8 

rs
18

00
87

5 

freq. 
p-value for test of association 

 LVM mIVST mLVWT mPWT CWT PC1 

1 A A 0.268 0.586 0.880 0.941 0.900 0.854 0.964 
2 T A 0.223 0.677 0.909 0.822 0.593 0.586 0.739 
3 A T 0.210 0.636 0.404 0.336 0.601 0.390 0.364 
4 T T 0.011 0.521 0.495 0.442 0.337 0.633 0.570 

Abbreviations: A: adenine; CWT: cumulative wall thickness score; LVM: left ventricular mass; mIVST: 

maximum interventricular septal thickness; mLVWT: maximum left ventricular wall thickness; mPWT: 

maximum posterior wall thickness; PC1: first principal component; T: thymine 

 

Table 3.20 contains the p-values for interaction between the different HCM mutation groups 

and CMA1 haplotypes to illustrate the differences in allelic effect of the different haplotypes 

between these groups. There were no statistically significant differences in effect of identified 

CMA1 haplotypes between the three HCM mutation groups.  
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Table 3.20 The p-values for interaction between the HCM mutation group and CMA1 haplotypes, illustrating the differences in allelic effect of 

the particular haplotypes between these groups. Significant p-values are indicated in bold red font and the corresponding effect sizes are discussed in 

the text. 

Haplotype 

LVM mIVST mLVWT mPWT CWT score PC1 
R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

1 0.446 0.280 0.778 0.668 0.348 0.628 0.961 0.343 0.378 0.860 0.828 0.692 0.790 0.257 0.406 0.865 0.234 0.325 

2 0.829 0.766 0.945 0.651 0.655 0.973 0.762 0.717 0.969 0.730 0.775 0.933 0.664 0.367 0.664 0.828 0.420 0.571 

3 0.713 0.474 0.326 0.902 0.493 0.488 0.716 0.695 0.476 0.200 0.839 0.116 0.627 0.775 0.445 0.773 0.632 0.483 

*Haplotype 4 not tested due to low allele frequency 

Abbreviations: CMA1: cardiac chymase gene; CWT score: cumulative wall thickness score; LVM: left ventricular mass; mIVST: maximum interventricular septal 

thickness; mLVWT: maximum left ventricular wall thickness; mPWT: maximum posterior wall thickness; PC1: first principal component 
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3.7.4 Angiotensin II Receptors 

Figures 3.24 and 3.25 depict the chromosomal location and structure of the AGTR1 and AGTR2 

genes, as well as intragenic location of target polymorphisms within these genes. 

 

Very little evidence for LD exists between rs5182 and rs2640539 (D’ = 0.28), as well as between 

rs5182 and rs3772627 (D’ = 0.02) within AGTR1, while an intermediate D’ value was observed 

between rs3772627 and rs2640539 (D’ = 0.78) (Figure 3.24). 

 

Complete LD was observed between rs5194 and rs11091046 in AGTR2 (D’ = 1), while a very 

high degree of LD was observed between rs1403543 and rs5194, as well as rs11091046 (Figure 

3.25).  
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Figure 3.24 Scale diagram depicting chromosomal location and structure of the AGTR1 gene, as well as intragenic location of target 

polymorphisms. LD values were D’ = 0.78 between rs2640539 and rs3772627, D’ = 0.28 between rs2640539 and rs5182 and D’ = 0.02 between 

rs3772627 and rs5182. Arrows indicate direction of transcription.  
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Figure 3.25 Scale diagram depicting chromosomal location and structure of the AGTR2 gene, as well as intragenic location of target 

polymorphisms. LD values were D’ = 0.86 between rs14035439 and rs5194, D’ = 0.86 between rs14035439 and rs11091046 and D’ = 1 between rs5194 

and rs11091046. Arrows indicate direction of transcription.  
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3.7.4.1 Angiotensin II Receptor Type 1 (AGTR1) 

The C-allele of rs2640539 in AGTR1 was significantly associated with an increase in mIVST of 

1.15 mm (p = 0.031), as well as an increase of 1.22 mm in mLVWT (p = 0.010) (Figure 3.26). 

 

 

 
 
Figure 3.26 Single polymorphism association results for AGTR1. Bar graph indicates –log10 

transformed p-values for the tests of association between AGTR1 variants and investigated hypertrophy 

traits. The table below the graph indicates exact p-values for additive tests of allelic association. The 

red line in the graph indicates a significance level of p < 0.05, and effect sizes for significant associations 

are indicated in the text. 

 

Table 3.21 depicts the p-values for interaction between HCM mutation groups and AGTR1 or 

AGTR2 genotypes, illustrating the differences in allelic effect of the particular variants between 

these groups.  

 

Rs3772627 within AGTR1 showed significantly different effect sizes in the R92WTNNT2 group 

compared to the A797TMYH7 group (Table 3.21). The effect of the A-allele of this polymorphism 

was 19.11 g higher on LVM (p = 0.049), 2.32 mm higher on mLVWT (p = 0.041), 1.59 mm higher 

on CWT score (p = 0.003) and 0.10 higher on PC1 (p = 0.003) in the R92WTNNT2 group compared 

to the A797TMYH7 group (Table 3.21). 
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LVM 0.167 0.900 0.377
mPWT 0.793 0.769 0.308
mIVST 0.031 0.719 0.528
mLVWT 0.010 0.413 0.224
CWT 0.425 0.414 0.562
PC1 0.123 0.857 0.200
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Table 3.21 The p-values for interaction between HCM mutation groups and AGTR1 or AGTR2 genotype, illustrating the differences in allelic 

effect of the particular variants between these groups. Significant p-values are indicated in bold red font and the corresponding effect sizes are 

discussed in the text. 

    LVM mIVST mLVWT mPWT CWT score PC1 

    

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

AGTR1 rs2640539 0.603 0.494 0.292 0.625 0.897 0.551 0.450 0.783 0.578 0.474 0.277 0.908 0.618 0.912 0.554 0.609 0.772 0.772 

 

rs3772627 0.472 0.049 0.312 0.457 0.062 0.376 0.317 0.041 0.446 0.278 0.176 0.972 0.369 0.003 0.077 0.546 0.003 0.043 

 

rs5182 0.905 0.945 0.843 0.627 0.221 0.539 0.539 0.124 0.440 0.971 0.291 0.343 0.975 0.272 0.331 0.918 0.225 0.317 

AGTR2 rs1403543 0.863 0.203 0.194 0.635 0.132 0.071 0.458 0.912 0.380 0.625 0.344 0.762 0.604 0.643 0.359 0.892 0.549 0.517 

 

rs5194 0.836 0.115 0.240 0.754 0.061 0.048 0.480 0.413 0.139 0.409 0.889 0.316 0.323 0.730 0.189 0.432 0.796 0.302 

 

rs11091046 0.893 0.076 0.085 0.646 0.061 0.031 0.560 0.434 0.189 0.615 0.518 0.268 0.406 0.663 0.224 0.578 0.696 0.369 

Abbreviations: AGTR1: Angiotensin II receptor type 1 gene; AGTR2: Angiotensin II receptor type 2 gene; CWT score: cumulative wall thickness score; LVM: left 

ventricular mass; mIVST: maximum interventricular septal thickness; mLVWT: maximum left ventricular wall thickness; mPWT: maximum posterior wall 

thickness; PC1: first principal component 
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Haplotype 8 was associated with a significant increase in mLVWT of 2.29 mm (p = 0.021), as 

well as an average increase of 1.16 mm in the CWT score (p = 0.042) (Figure 3.27 and Table 

3.22). 

 

 

 
Figure 3.27 Summary of haplotype association results for AGTR1. Bar graph indicates –log10 

transformed p-values for the tests of association between the observed haplotypes and investigated 

hypertrophy traits. Red line indicates a significance level of p < 0.05 and effect sizes for significant 

associations are indicated in the text. 
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Table 3.22 Haplotype distribution within AGTR1, as well as the respective p-values for tests 

of allelic association. All analyses were adjusted for the primary HCM-causal mutation, as well as 

other known hypertrophy covariates.  

 

rs
26

40
53

9 

rs
37

72
62

7 

rs
51

82
 

freq. 
p-value for test of association 

 LVM mIVST mLVWT mPWT CWT PC1 
1 A C C 0.191 0.585 0.591 0.564 0.913 0.948 0.968 
2 A A A 0.162 0.130 0.206 0.150 0.139 0.428 0.442 
3 A C A 0.142 0.515 0.569 0.195 0.762 0.153 0.151 
4 A A C 0.134 0.345 0.800 0.413 0.244 0.618 0.652 
5 C A C 0.084 0.344 0.615 0.511 0.216 0.973 0.948 
6 C C C 0.055 0.133 0.308 0.431 0.198 0.264 0.152 
7 C C A 0.025 0.346 0.567 0.507 0.540 0.783 0.746 
8 C A A 0.021 0.293 0.051 0.021 0.216 0.042 0.182 

Abbreviations: A: adenine; C: cytosine; CWT: cumulative wall thickness score; LVM: left ventricular mass; 
mIVST: maximum interventricular septal thickness; mLVWT: maximum left ventricular wall thickness; 
mPWT: maximum posterior wall thickness; PC1: first principal component 
 

Table 3.23 contains the p-values for interaction between the different HCM mutation groups 

and AGTR1 haplotypes to illustrate the differences in allelic effect of the different haplotypes 

between these groups. 

 

Haplotypes 1 and 4 caused different effects in the different HCM mutation groups (Table 3.23). 

Haplotype 1 caused a 27.12 g lower LVM (p = 0.029), a 2.71 mm lower mIVST (p = 0.029), 2.82 

mm lower mLVWT (p = 0.017), a 1.65 mm lower CWT score (p = 0.009), as well as a 0.1 lower 

effect on PC1 (p = 0.013) in the R92WTNNT2 group, compared to the A797TMYH7 group. 

Conversely, haplotype 4 was associated with an increased effect on LVM of 28.72 g (p = 0.031), 

mLVWT of 2.54 mm (p = 0.043), CWT score of 1.43 mm (p = 0.033) and PC1 of 0.09 (p = 0.029) 

(Table 3.23). Interestingly, haplotype 8 had a 14.80 mm higher effect on mIVST (p = 0.027), as 

well as a 6.20 mm higher effect on the CWT score in the R403WMYH7 group, compared to the 

A797TMYH7 group (p = 0.044) (Table 3.23).  
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Table 3.23 The p-values for interaction between HCM mutation groups and AGTR1 haplotypes, illustrating the differences in allelic effect of the 

particular haplotypes between these groups. Significant p-values are indicated in bold red font and the corresponding effect sizes are discussed in the text. 

Haplotype 

LVM mIVST mLVWT mPWT CWT score PC1 
R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

1 0.580 0.029 0.210 0.684 0.029 0.157 0.456 0.017 0.223 0.895 0.197 0.339 0.701 0.009 0.068 0.930 0.013 0.044 

2 0.800 0.673 0.909 0.446 0.659 0.654 0.396 0.697 0.550 0.457 0.333 0.938 0.711 0.242 0.499 0.765 0.152 0.315 

3 0.397 0.978 0.393 0.429 0.548 0.170 0.566 0.258 0.104 0.406 0.381 0.095 0.496 0.825 0.610 0.506 0.822 0.625 

4 0.598 0.031 0.170 0.872 0.065 0.070 0.827 0.043 0.113 0.966 0.109 0.166 0.788 0.033 0.105 0.937 0.029 0.062 

5 0.847 0.471 0.296 0.897 0.463 0.501 0.960 0.483 0.467 0.379 0.497 0.773 0.994 0.492 0.445 0.707 0.717 0.398 

6 0.710 0.316 0.884 0.711 0.201 0.772 0.536 0.169 0.921 0.379 0.293 0.744 0.346 0.269 0.754 0.308 0.184 0.788 

7 0.303 0.432 0.561 0.610 0.702 0.771 0.554 0.656 0.736 0.910 0.304 0.568 0.396 0.830 0.296 0.368 0.786 0.256 

8 0.136 0.305 0.014 0.354 0.129 0.027 0.423 0.196 0.062 0.397 0.570 0.171 0.486 0.106 0.044 0.856 0.199 0.225 

                   Abbreviations: CWT score: cumulative wall thickness score; LVM: left ventricular mass; mIVST: maximum interventricular septal thickness; mLVWT: maximum left 

ventricular wall thickness; mPWT: maximum posterior wall thickness; PC1: first principal component
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3.7.4.2 Angiotensin II Receptor Type 2 (AGTR2) 

The A-allele of rs1403543 in AGTR2 was significantly associated with a decrease of 0.9 mm in 

mIVST (Figure 3.28).  

 

The effects of both the rs5194 G-allele (p = 0.048) and the rs11091046 C-allele (p = 0.031) on 

mIVST were 2.69 mm higher in the R403WMYH7 group, compared to the A797TMYH7 group (Table 

3.21).   

 

 

 
Figure 3.28 Single polymorphism association results for AGTR2. Bar graph indicates –log10 

transformed p-values for the tests of association between AGTR2 variants and investigated hypertrophy 

traits. The table below the graph indicates exact p-values for additive tests of allelic association. The 

red line in the graph indicates a significance level of p < 0.05, and effect sizes for significant associations 

are indicated in the text. 

 

3.7.5 CYP11B1/B2 locus 

Figure 3.29 shows the chromosomal location and structure of the CYP11B1/B2 locus, as well as 

intragenic location of target polymorphisms, while Table 3.24 indicates the observed LD pattern 

across this locus in the present cohort. A very high degree of LD existed within the CYP11B1 

gene, which extends from rs4310186 within CYP11B1 to the first variant in CYP11B2, rs3097, as 

high D’ values were observed across these loci (Table 3.24).  Intermediate D’ values were, 

however, observed between the remaining CYP11B2 and CYP11B1 variants, which points 

toward incomplete LD between these two genes in our study population. This is in contrast to 

previous studies that reported complete LD across the entire locus in a Caucasian population.  
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LVM mPWT mIVST mLVWT CWT PC1

LVM 0.123 0.212 0.230
mPWT 0.788 0.323 0.821
mIVST 0.013 0.062 0.082
mLVWT 0.097 0.146 0.246
CWT 0.140 0.350 0.413
PC1 0.134 0.304 0.424
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Figure 3.29 Scale diagram depicting chromosomal location and structure of the CYP11B1/B2 locus, as well as intragenic location of target 

polymorphisms. The CYP11B1 (drawn from NCBI accession number NM_000497) and CYP11B2 (drawn from NCBI accession number NM_000498) genes, 

as well as the intragenic location of target polymorphisms are shown. Arrows indicate direction of transcription.  
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Table 3.24 Pairwise D’ values as a representation of the observed LD structure across the 

CYP11B1/B2 locus in the present cohort. 

 rs4310186 rs6387 rs6410 rs3097 rs4539 I2C rs1799998 

rs4310186  1 0.94 1 0.57 0.62 0.74 

rs6387   1 1 0.61 0.46 0.70 

rs6410    1 0.66 0.47 0.83 

rs3097     1 0.59 0.75 

rs4539      0.52 0.71 

I2C       0.51 

rs1799998        

 

However, we did not find any statistically significant evidence for association between any of 

the investigated SNPs at the CYP11B1/B2 locus and the heritable hypertrophy traits (Figure 

3.30).  

 

 

 
Figure 3.30 Single polymorphism association results for CYP11B1 and CYP11B2. Bar graph 

indicates –log10 transformed p-values for the tests of association between variants and investigated 

hypertrophy traits. The table below the graph indicates exact p-values for additive tests of allelic 

association. The red line in the graph indicates a significance level of p < 0.05, and effect sizes for 

significant associations are indicated in the text. 

 

rs4310186 rs6387 rs6410 rs3097 rs4539 I2C rs1799998
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LVM mPWT mIVST mLVWT CWT PC1

LVM 0.725 0.314 0.324 0.530 0.624 0.809 0.260
mPWT 0.298 0.117 0.203 0.462 0.215 0.642 0.234
mIVST 0.918 0.668 0.658 0.077 0.322 0.475 0.271
mLVWT 0.884 0.738 0.935 0.158 0.245 0.451 0.361
CWT 0.856 0.373 0.393 0.545 0.430 0.352 0.304
PC1 0.879 0.369 0.501 0.632 0.380 0.611 0.246
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Table 3.25 contains the p-values for interaction between HCM mutation group and CYP11B1 or 

CYP11B2 genotype, illustrating the differences in allelic effect of the particular variants between 

these groups.  

 

We found that the G-allele of rs4310186 (CYP11B1) and the T-allele of rs3097 (CYP11B2) 

caused significantly different effects in the R92WTNNT2 group, when compared to the A797TMYH7 

group. The R92WTNNT2 group showed a 1.82 mm higher increase in mIVST due to the G-allele of 

rs4310186 (p = 0.044) and a 2.68 mm higher increase in mIVST due to the T-allele of rs3097 (p 

= 0.039) (Table 3.25). Also, the rs4310186 G-allele was associated with a significantly higher 

mLVWT in the R92WTNNT2 group when compared to the R403WMYH7 (2.80 mm) and A797TMYH7 

groups (1.83 mm).  
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Table 3.25 The p-values for interaction between HCM mutation groups and CYP11B1 or CYP11B2 genotype, illustrating the differences in allelic effect 

of the particular variants between these groups. Significant p-values are indicated in bold red font and the corresponding effect sizes are discussed in the 

text. 

  
LVM mIVST mLVWT mPWT CWT score PC1 

  

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

CYP11B1 rs4310186 0.334 0.625 0.524 0.065 0.044 0.715 0.017 0.028 0.419 0.983 0.608 0.700 0.337 0.126 0.875 0.533 0.127 0.610 

 
rs6387 0.889 0.966 0.912 0.620 0.221 0.601 0.481 0.303 0.895 0.382 0.918 0.405 0.745 0.430 0.744 0.812 0.425 0.672 

 
rs6410 0.343 0.843 0.416 0.289 0.089 0.692 0.262 0.184 0.991 0.751 0.582 0.878 0.392 0.256 0.929 0.492 0.229 0.751 

CYP11B2 rs3097 0.339 0.068 0.681 0.310 0.039 0.595 0.148 0.078 0.868 0.948 0.516 0.667 0.849 0.190 0.426 0.976 0.137 0.271 

 
rs4539 0.658 0.736 0.459 0.448 0.517 0.776 0.645 0.871 0.533 0.952 0.919 0.987 0.787 0.854 0.670 0.782 0.994 0.767 

 
I2C 0.744 0.779 0.579 0.707 0.677 0.477 0.863 0.978 0.842 0.166 0.603 0.308 0.373 0.709 0.534 0.295 0.780 0.393 

 
rs1799998 0.235 0.151 0.755 0.965 0.811 0.839 0.978 0.553 0.690 0.890 0.688 0.697 0.691 0.270 0.778 0.754 0.425 0.857 

Abbreviations: CWT score: cumulative wall thickness score; CYP11B1: 11 beta-hydroxylase gene; CYP11B2: aldosterone synthase gene; LVM: left ventricular mass; 

mIVST: maximum interventricular septal thickness; mLVWT: maximum left ventricular wall thickness; mPWT: maximum posterior wall thickness; PC1: first principal 

component 
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Two haplotypes were found to associate significantly with hypertrophy traits (Figure 3.31). 

Table 3.26 depicts the haplotype distribution observed across the CYP11B1/B2 locus, as well as 

the respective p-values for association with the investigated hypertrophy traits. Haplotype 8 

was significantly associated with a 3.23 mm increase in mLVWT (p = 0.015), as well as a 1.73 

mm increase in CWT score (p = 0.023) and a 0.11 increase in PC1 (p = 0.020). This haplotype 

was however only observed in 2.7 % of the cohort. In addition, haplotype 10, that was observed 

in only 1.9% of the cohort, associated significantly with a 2.34 mm increase in mPWT (p = 

0.041).  

 

 
 
Figure 3.31 Summary of haplotype association results across CYP11B1/B2. Bar graph 

indicates –log10 transformed p-values for the tests of association between the observed haplotypes 

and investigated hypertrophy traits. Dashed red line indicates a significance level of p < 0.05 and 

effect sizes for significant associations are indicated in the text. 
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Table 3.26 Haplotype distribution across the CYP11B1/B2 locus, as well as the respective p-

values for tests of allelic association. All analyses were adjusted for the primary HCM-causal 

mutation, as well as other known hypertrophy covariates.  

  

rs
17

99
99

8 

I2
C 

rs
45

39
 

rs
30

97
 

rs
64

10
 

rs
63

87
 

rs
43

10
18

6 

freq. 
p-value for test of association 

 
LVM mIVST mLVWT mPWT CWT PC1 

1 T NC G C C A C 0.108 0.244 0.644 0.763 0.481 0.364 0.312 
2 C NC A C C A C 0.099 0.859 0.899 0.706 0.594 0.871 0.910 
3 C CV A T T G G 0.098 0.521 0.488 0.637 0.975 0.606 0.731 
4 C CV A C T G G 0.094 0.263 0.867 0.836 0.362 0.303 0.316 
5 C NC A C T G C 0.056 0.618 0.743 0.908 0.833 0.462 0.509 
6 T NC A C C A C 0.046 0.887 0.890 0.614 0.784 0.388 0.436 
7 C NC G C C A C 0.030 0.279 0.460 0.157 0.261 0.200 0.178 
8 C NC A C T G G 0.027 0.150 0.099 0.015 0.077 0.023 0.020 
9 C NC G C T G G 0.019 0.774 0.499 0.669 0.487 0.614 0.526 
10 C CV A C C A C 0.019 0.062 0.161 0.098 0.041 0.161 0.113 
11 C NC A C C G G 0.015 0.832 0.420 0.286 0.482 0.633 0.676 
12 T NC G C T G G 0.013 0.472 0.368 0.113 0.081 0.402 0.676 
13 T CV G C C A C 0.010 0.848 0.632 0.522 0.912 0.873 0.960 
14 C CV A C T G C 0.009 0.445 0.504 0.679 0.851 0.604 0.677 
15 C NC A C C G C 0.009 0.659 0.552 0.448 0.112 0.370 0.566 
16 C CV A C C A G 0.008 0.861 0.726 0.684 0.244 0.357 0.225 
17 C CV G T T G G 0.008 0.414 0.618 0.751 0.654 0.813 0.638 
18 C NC A T T G G 0.008 0.393 0.277 0.070 0.053 0.327 0.278 
Abbreviations: A: adenine; C: cytosine; CV: converted; CWT: cumulative wall thickness score; G: guanine; 

LVM: left ventricular mass; mIVST: maximum interventricular septal thickness; mLVWT: maximum left 

ventricular wall thickness; mPWT: maximum posterior wall thickness; NC: not converted; PC1: first 

principal component; T: thymine 

 

Table 3.27 contains the p-values for interaction between the different HCM mutation groups 

and CYP11B1/B2 haplotypes to illustrate the differences in allelic effect of the different 

haplotypes between these groups. 
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Table 3.27 The p-values for interaction between HCM mutation groups and haplotypes of the CYP11B1/B2 locus, illustrating the differences in 

allelic effect of the particular haplotypes between these groups. Significant p-values are indicated in bold red font and the corresponding effect sizes 

are discussed in the text.  

Haplotype 

LVM mIVST mLVWT mPWT CWT score PC1 
R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

1 0.568 0.582 0.322 0.429 0.454 0.681 0.751 0.917 0.676 0.266 0.862 0.260 0.698 0.779 0.545 0.493 0.895 0.503 

2 0.375 0.439 0.910 0.587 0.265 0.520 0.308 0.170 0.682 0.912 0.505 0.389 0.446 0.179 0.518 0.501 0.216 0.532 

3 0.473 0.090 0.530 0.206 0.035 0.695 0.148 0.116 0.760 0.289 0.535 0.503 0.738 0.315 0.632 0.977 0.334 0.434 

4 0.308 0.361 0.700 0.347 0.551 0.585 0.388 0.562 0.634 0.056 0.525 0.120 0.264 0.528 0.462 0.205 0.458 0.416 

5 0.525 0.754 0.532 0.618 0.814 0.601 0.688 0.802 0.780 0.789 0.529 0.406 0.702 0.774 0.875 0.772 0.855 0.845 

7 0.783 0.504 0.850 0.985 0.872 0.928 0.808 0.677 0.964 0.696 0.589 0.988 0.925 0.666 0.699 0.957 0.682 0.739 

8 0.353 0.004 0.001 0.199 0.053 0.005 0.066 0.080 0.002 0.291 0.041 0.006 0.095 0.039 0.001 0.179 0.016 0.001 

*Haplotypes 6, 9-18 not tested 

Abbreviations: CWT score: cumulative wall thickness score; LVM: left ventricular mass; mIVST: maximum interventricular septal thickness; mLVWT: maximum 

left ventricular wall thickness; mPWT: maximum posterior wall thickness; PC1: first principal component 
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Haplotype 3 was found to exert a 3.56 mm higher effect on mIVST in the R92W group, compared 

to the A797TMYH7 group (p = 0.035) (Table 3.27). Interestingly, haplotype 8 caused significantly 

different effects between the HCM mutation groups. This haplotype was significantly associated 

with significantly different effects in LVM (p = 0.001), mIVST (p = 0.005), mLVWT (p = 0.002), 

mPWT (p = 0.006), CWT score (p = 0.001), as well as PC1 (p = 0.001) in the R403WMYH7 group, 

compared to the A797TMYH7 group. Similarly, haplotype 8 was associated with significantly 

different effects on LVM (p = 0.004), mPWT (p = 0.041), CWT score (p = 0.039), as well as PC1 (p 

= 0.016) in the R92WTNNT2 group, compared to the A797TMYH7 group. These results should, 

however, be interpreted with caution due to the low frequency of haplotype 8 in the cohort as 

small sample sizes increases the risk for spurious significance of results.  

 

3.7.6 Mineralocorticoid receptor and 11 β-hydroxysteroid-dehydrogenase type 2 

Figures 3.32 and 3.33 depict the chromosomal location and structure of the HSD11B2 and 

NR3C2 genes, as well as intragenic location of target polymorphisms within these genes, while 

Table 3.28 shows the observed LD structure within NR3C2 in the present cohort.  
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Figure 3.32 Scale diagram depicting chromosomal location and structure of the HSD11B2 gene, as well as intragenic location of the target 

polymorphism. Arrows indicate direction of transcription.  
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Figure 3.33 Scale diagram depicting chromosomal location and structure of the NR3C2 gene, as well as intragenic location of target 

polymorphisms. Arrows indicate direction of transcription.  
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Table 3.28 Pairwise D’ values as a representation of the observed LD structure within NR3C2 in the present cohort. 
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rs
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rs906124 
 

0.92 0.58 0.32 0.68 0.08 0.01 0.24 0.42 0.24 0.26 0.18 0.16 0.20 0.16 0.18 0.38 

rs11933380 
  

0.52 0.28 0.52 0.16 0.02 0.16 0.22 0.26 0.3 0.11 0.04 0.02 0.26 0.36 0.38 

rs745019 
   

0.66 0.38 0.18 0.22 0.78 0.42 0.37 0.16 0.14 0.17 0.18 0.29 0.04 0.59 

rs1403142 
    

1 1 0.66 0.39 0.06 0.04 0.32 0.02 0.18 0.03 0.01 0.11 0.56 

rs13150372 
     

1 0.84 0.16 0.16 0.54 0.98 0.06 0.04 0.04 0.05 0.04 0.52 

rs7694706 
      

0.88 0.45 0.17 0.21 0.14 0.05 0.04 0.02 0.07 0.16 0.23 

rs6535584 
       

0.63 0.17 0.08 0.31 0.01 0.04 0.04 0.06 0.36 0.31 

rs6535594 
        

0.93 0.38 0.35 0.24 0.09 0.12 0.22 0.05 0.25 

rs7699349 
         

0.37 0.21 0.2 0.07 0.05 0.11 0.01 0.28 

rs2883930 
          

0.38 0.09 0.03 0.01 0.03 0.14 0.37 

rs4835508 
           

0.03 0.68 0.62 0.04 0.07 0.39 

rs11945778 
            

0.76 0.79 0.02 0.45 0.41 

rs3910047 
             

1 0.38 0.36 0 

rs3846329 
              

0.35 0.04 0 

rs2137334 
               

0.37 0.04 

rs13118022 
                

0.26 

rs4635799 
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3.7.6.1 Mineralocorticoid receptor (NR3C2) 

Rs3910047 and rs3846328 was found to be in complete LD (D’ = 1), whereas almost complete 

LD was observed between rs906124 and rs11933380 (D’ = 0.92), rs13150372 and rs4835508 

(D’ = 0.98), as well as between rs6535594 and rs7699349 (D’ = 0.93) (Table 3.28). In addition, a 

very high degree of LD extends from rs1403142 to rs6535584 in NR3C2. D’ values for the rest of 

the gene is, however, relatively weak, which is perhaps not surprising considering the size of the 

NR3C2 gene.  

 

Figure 3.34 depicts results of the single SNP association analysis for NR3C2, as well as the exact 

p-values for the tests of allelic association. The G-allele of rs745019 was significantly associated 

with en increase in LVM of 10.19 g (p =0.044), as well as an increase of 0.44 mm in mPWT (p 

=0.042). The rs1403142 G-allele, as well as the rs13150372 A-allele was significantly associated 

with respective decreases in mPWT of 0.54 mm (p = 0.011) and 0.63 mm (p = 0.035).  

 

Table 3.29 depicts the p-values for interaction between HCM mutation group and HSD11B2 or 

NR3C2 genotypes, illustrating the differences in allelic effect of the particular variants between 

these groups.  

 

There was a significant difference in effect size of 1.10 mm on mPWT in the R403WMYH7 group, 

when compared to the A797TMYH7 group for the NR3C2 rs1403142 G-allele (p = 0.032) (Table 

3.29). The rs7699349 T-allele was associated with a 20.15 g higher LVM (p = 0.041), 0.94 mm 

higher CWT score (p = 0.050), as well as a 0.06 higher PC1 score (p = 0.049) in the R92WTNNT2 

group compared to the R403WMYH7 group. On the other hand the rs2883930 G-allele was 

associated with a 36.53 g lower effect on LVM in the R92WTNNT2 group when compared to the 

R403WMYH7 group (p = 0.039). Similarly, the rs2137334 T-allele was associated with a 20.29 g 

lower effect on LVM in the R92WTNNT2 group compared to the A797TMYH7 group (p = 0.049).  

 

Stellenbosch University  http://scholar.sun.ac.za



Chapter III 

 

128 
 

 
Figure 3.34 Single polymorphism association results for NR3C2. Bar graph indicates –log10 transformed p-values for the tests of association between NR3C2 

variants and investigated hypertrophy traits. The table below the graph indicates exact p-values for additive tests of allelic association. The red line in the graph 

indicates a significance level of p < 0.05, and effect sizes for significant associations are indicated in the text.
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LVM mPWT mIVST mLVWT CWT PC1

LVM 0.418 0.077 0.044 0.331 0.380 0.059 0.363 0.081 0.313 0.096 0.795 0.746 0.854 0.787 0.610 0.215 0.667

mPWT 0.643 0.894 0.042 0.011 0.035 0.067 0.453 0.295 0.834 0.192 0.928 0.948 0.735 0.541 0.145 0.135 0.419

mIVST 0.639 0.342 0.293 0.761 0.799 0.561 0.998 0.628 0.448 0.380 0.653 0.940 0.899 0.971 0.223 0.772 0.954

mLVWT 0.743 0.993 0.527 0.761 0.676 0.593 0.688 0.841 0.969 0.161 0.693 0.955 0.832 0.868 0.143 0.716 0.722

CWT 0.865 0.540 0.221 0.247 0.525 0.518 0.705 0.217 0.890 0.271 0.483 0.427 0.648 0.712 0.165 0.816 0.692

PC1 0.969 0.476 0.118 0.188 0.309 0.277 0.504 0.203 0.542 0.078 0.118 0.997 0.615 0.673 0.071 0.966 0.670
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Table 3.29 The p-values for interaction between HCM mutation groups and NR3C2 or HSD11B2 genotype, illustrating the differences in allelic 

effect of the particular variants between these groups. Significant p-values are indicated in bold red font and the corresponding effect sizes are 

discussed in the text. 

    LVM mIVST mLVWT mPWT CWT score PC1 

    

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

NR3C2 rs906124 0.600 0.574 0.962 0.623 0.740 0.430 0.518 0.629 0.804 0.673 0.176 0.475 0.962 0.513 0.549 0.755 0.408 0.318 

 rs11933380 0.147 0.295 0.551 0.117 0.744 0.172 0.092 0.163 0.595 0.670 0.131 0.373 0.297 0.153 0.839 0.517 0.096 0.424 

 rs745019 0.127 0.381 0.480 0.538 0.561 0.939 0.891 0.870 0.766 0.708 0.362 0.628 0.275 0.969 0.276 0.295 0.816 0.225 

 rs1403142 0.663 0.645 0.366 0.822 0.099 0.075 0.809 0.149 0.107 0.085 0.783 0.032 0.823 0.115 0.104 0.852 0.166 0.156 

 rs13150372 0.354 0.311 0.827 0.686 0.106 0.415 0.674 0.187 0.564 0.597 0.320 0.847 0.809 0.090 0.358 0.861 0.118 0.370 

 rs7694706 0.534 0.185 0.539 0.724 0.213 0.430 0.981 0.390 0.442 0.936 0.807 0.886 0.859 0.453 0.403 0.922 0.316 0.429 

 rs6535584 0.505 0.970 0.472 0.288 0.910 0.311 0.359 0.896 0.285 0.368 0.774 0.240 0.966 0.262 0.331 0.820 0.249 0.472 

 rs6535594 0.143 0.410 0.372 0.200 0.196 0.766 0.275 0.249 0.851 0.499 0.670 0.706 0.105 0.310 0.368 0.203 0.494 0.424 

 rs7699349 0.041 0.516 0.107 0.182 0.125 0.893 0.493 0.528 0.847 0.418 0.737 0.562 0.050 0.315 0.224 0.049 0.489 0.142 

 rs2883930 0.039 0.116 0.471 0.487 0.467 0.950 0.753 0.138 0.304 0.900 0.847 0.759 0.389 0.105 0.652 0.434 0.088 0.549 

 rs4835508 0.782 0.986 0.759 0.887 0.912 0.961 0.929 0.831 0.770 0.882 0.912 0.794 0.637 0.204 0.521 0.459 0.164 0.630 

 rs11945778 0.225 0.685 0.112 0.469 0.924 0.410 0.652 0.552 0.309 0.115 0.817 0.166 0.186 0.958 0.192 0.209 0.999 0.199 

 rs3910047 0.555 0.190 0.116 0.661 0.348 0.800 0.786 0.572 0.879 0.807 0.623 0.541 0.749 0.465 0.398 0.564 0.484 0.283 

 rs3846329 0.511 0.188 0.094 0.649 0.312 0.761 0.802 0.607 0.888 0.551 0.815 0.431 0.739 0.476 0.391 0.543 0.504 0.271 

 rs2137334 0.141 0.049 0.735 0.123 0.199 0.695 0.218 0.237 0.871 0.829 0.743 0.592 0.210 0.269 0.801 0.295 0.296 0.926 

 rs13118022 0.497 0.319 0.858 0.280 0.160 0.910 0.512 0.399 0.947 0.518 0.113 0.459 0.909 0.574 0.707 0.920 0.476 0.601 

 rs4635799 0.985 0.183 0.297 0.783 0.105 0.316 0.653 0.122 0.455 0.584 0.077 0.051 0.527 0.237 0.113 0.490 0.246 0.104 

HSD11B2 rs5479 0.731 0.879 0.672 0.692 0.795 0.579 0.864 0.542 0.737 0.357 0.615 0.679 0.559 0.724 0.837 0.384 0.808 0.591 

Abbreviations: CWT score: cumulative wall thickness score; HSD11B2: 11 β-hydroxysteroid-dehydrogenase type 2 gene; LVM: left ventricular mass; mIVST: 

maximum interventricular septal thickness; mLVWT: maximum left ventricular wall thickness; mPWT: maximum posterior wall thickness; NR3C2: nuclear receptor 

subfamily 3, group C, member 2 gene; PC1: first principal component.
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Haplotype analysis of the NR3C2 gene yielded a large number of haplotypes with relatively 

small frequencies. Figure 3.35 depicts a summary of the association results for haplotypes with 

a frequency of more than 0.8 %. Five haplotypes associated significantly with one or more of the 

hypertrophy traits. 

 

 
Figure 3.35 Summary of haplotype association results for NR3C2. Bar graph indicates –log10 

transformed p-values for the tests of association between the observed haplotypes and investigated 

hypertrophy traits. Red line indicates a significance level of p < 0.05 and effect sizes for significant 

associations are indicated in the text. 

 

Table 3.30 depicts the haplotypes with a frequency of more than 0.8 %, as well as the exact p-

values for tests of association between the respective haplotypes and the investigated 

hypertrophy traits.  
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Table 3.30 Haplotype distribution within NR3C2, as well as the respective p-values for tests of allelic association. All analyses were adjusted for the 

primary HCM-causal mutation, as well as other known hypertrophy covariates. Effect sizes are indicated in the text.   
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rs
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rs
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rs
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rs
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04

7 

rs
38

46
32

9 

rs
21

37
33

4 

rs
13

11
80

22
 

rs
46

35
79

9 

freq. 
p-value for test of association 

 
LVM mIVST mLVWT mPWT CWT PC1 

1 T T A G A A C A C C C C T G C T C 0.024 0.765 0.461 0.570 0.663 0.755 0.803 
2 T T A A G G T G C C C T C T T G C 0.019 0.158 0.051 0.027 0.299 0.008 0.011 
3 T T A G A A C A C C C C T G T T C 0.018 0.271 0.225 0.136 0.665 0.452 0.384 
4 T T A A G G T G C C C C T G C T T 0.017 0.400 0.939 0.706 0.563 0.844 0.827 
5 C C G G G A C G T C C T T G C G T 0.017 0.829 0.964 0.871 0.894 0.850 0.729 
6 T T A G A A C A C C C C C T C G T 0.015 0.335 0.215 0.068 0.167 0.030 0.039 
7 C C G A G G C A C C C C T G T T C 0.014 0.799 0.753 0.670 0.831 0.733 0.745 
8 T T A A G G T G T C C C C T C G C 0.012 0.828 0.585 0.536 0.301 0.274 0.298 
9 T T A A G G T G C C T C T G C T T 0.011 0.341 0.636 0.972 0.448 0.899 0.868 
10 C C A G G A C A C C C C T G C G C 0.011 0.214 0.177 0.227 0.839 0.144 0.222 
11 T T A A G G T G C C T T T G C G T 0.010 0.131 0.389 0.352 0.247 0.393 0.202 
12 T C A A G A C A C C C C C T T G T 0.010 0.851 0.843 0.950 0.167 0.734 0.524 
13 C C A G G A C A C C T C T G C G T 0.010 0.077 0.102 0.067 0.051 0.024 0.035 
14 T T A A G A C A C C C C T G C G T 0.010 0.952 0.560 0.785 0.344 0.508 0.428 
15 C C A G A A C A C C T T T G C G C 0.010 0.031 0.185 0.484 0.630 0.045 0.074 
16 T T A A G A C A C C C T C T C G T 0.010 0.971 0.147 0.104 0.348 0.452 0.575 
17 C C A A G A C A C C C T T G C G T 0.009 0.969 0.593 0.795 0.989 0.565 0.416 
18 T T A A G A C A C G T C T G T T T 0.008 0.405 0.751 0.672 0.836 0.810 0.810 
19 C T G A G A C G T C C T T G C G T 0.008 0.629 0.915 0.477 0.337 0.275 0.151 
20 C C G A G A T G C C C C T G T T T 0.008 0.885 0.845 0.953 0.257 0.644 0.564 
21 C T A A G G C A C G C T T G T G T 0.008 0.145 0.126 0.058 0.680 0.042 0.063 
Abbreviations: A: adenine; C: cytosine; CWT: cumulative wall thickness score; G: guanine; LVM: left ventricular mass; mIVST: maximum interventricular septal thickness; 
mLVWT: maximum left ventricular wall thickness; mPWT: maximum posterior wall thickness; PC1: first principal component; T: thymine 
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Haplotype 2 was significantly associated with a 2.55 mm increase in mLVWT (p = 0.027), a 1.96 

mm increase in CWT score (p = 0.008), as well as a 1.22 increase in PC1 (p = 0.011). Haplotype 6 

was associated with a 2.24 mm decrease in CWT score (p = 0.030) and a 0.14 decrease in PC1 (p 

= 0.039). On the other hand, haplotype 13 was significantly associated with a 4.03 mm increase 

in CWT score (p = 0.024) and a 0.25 increase in PC1 (p = 0.035). Significant evidence for 

association was found between haplotype 15 and a 60.10 g decrease in LVM (p = 0.031), as well 

as a decrease in CWT score of 2.94 mm (p = 0.045). Lastly, haplotype 21 was found to 

significantly increase CWT score by 5.11 mm (p = 0.042). 

 

The tests for interaction between HCM mutation group and the NR3C2 haplotypes, to determine 

the differences in allelic effect of these haplotypes between the mutation groups could 

unfortunately not be done due the low frequency of these haplotypes in the present HCM 

cohort.   

 

3.7.6.2 11 β-hydroxysteroid-dehydrogenase type 2 (HSD11B2) 

No statistically significant association was found between the investigated HSD11B2 variant and 

any of the investigated hypertrophy traits (Figure 3.36).  

 

 
Figure 3.36 Single polymorphism association results for HSD11B2. Bar graph indicates –log10 

transformed p-values for the tests of association between variants and investigated hypertrophy traits. 

The table below the graph indicates exact p-values for additive tests of allelic association. The red line 

in the graph indicates a significance level of p < 0.05, and effect sizes for significant associations are 

indicated in the text. 
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3.7.7 Epithelial sodium channel subunits 

Figures 3.37, 3.38 and 3.39 depict the chromosomal location and structure of the SCNN1A, 

SCNN1B and SCNN1G genes, as well as intragenic location of target polymorphisms within these 

genes. Tables 3.31 and 3.32 depict the D’ values as a proxy for LD structure in the SCNN1A and 

SCNN1B genes, respectively.  

 

Complete LD was observed between rs2286600 and rs10849446 (D’ = 1), while a high degree of 

LD exists between rs11614164 and rs3782726 (D’ = 0.86) in SCNN1A (Table 3.31).  

Intermediate D’ values were further found for the region between rs7973914 and rs2286600, 

with the exception of rs7973914 and rs10849446, which showed no evidence for LD (D’ = 0).  

 

Complete LD was observed between several SNP pairs, whereas a relatively high degree of LD 

extends between rs11074555 and rs238547 in SCNN1B (Table 3.32). There was however no 

evidence for pairwise LD between rs11074555 and rs2303153, as well as between rs239345 

and rs2303153 (D’ = 0).  

 

Little evidence for LD, i.e. a D’ value of 0.1, was observed between rs5735 and rs4247210 in 

SCNN1G. 
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Figure 3.37 Scale diagram depicting chromosomal location and structure of the SCNN1A gene, as well as intragenic location of target 

polymorphisms. Arrows indicate direction of transcription.  

Table 3.31 Pairwise D’ values as a representation of the observed LD structure within SCNN1A in the present cohort. 

 
rs11614164 rs3782726 rs7973914 rs10849446 rs2286600 

rs11614164 
 

0.86 0.72 0.41 0.38 

rs3782726 
  

0.64 0.22 0.16 

rs7973914 
   

0 0.02 

rs10849446 
    

1 

rs2286600 
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Figure 3.38 Scale diagram depicting chromosomal location and structure of the SCNN1B gene, as well as intragenic location of target 

polymorphisms. Arrows indicate direction of transcription.  
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Table 3.32 Pairwise D’ values as a representation of the observed LD structure within SCNN1B in the present cohort. 

 

 

rs11074555 rs9930640 rs239345 rs238547 rs8044970 rs152740 rs250563 rs2303153 

rs11074555 

 

1.00 0.78 0.74 0.56 0.41 1.00 0 

rs9930640 

  

0.76 1.00 0.22 1.00 0.08 1.00 

rs239345 

   

0.66 0.40 0.36 1.00 0 

rs238547 

    

1.00 0.80 1.00 0.10 

rs8044970 

     

0.56 0.18 0.16 

rs152740 

      

1.00 0.38 

rs250563 

       

1.00 

rs2303153 
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Figure 3.39 Scale diagram depicting chromosomal location and structure of the SCNN1G gene, as well as intragenic location of target 

polymorphisms. D’ = 0.1 between rs5735 and rs4247210. Arrows indicate direction of transcription.  
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3.7.7.1 SCNN1A 

There was no statistically significant evidence for association between any of the investigated 

SCNN1A SNPs and any of the hypertrophy traits (Figure 3.40).  

 

 
Figure 3.40 Single polymorphism association results for SCNN1A. Bar graph indicates –log10 

transformed p-values for the tests of association between variants and investigated hypertrophy traits. 

The table below the graph indicates exact p-values for additive tests of allelic association. The red line 

in the graph indicates a significance level of p < 0.05, and effect sizes for significant associations are 

indicated in the text. 

 

Table 3.33 depicts the p-values for interaction between HCM mutation group and SCNN1A, 

SCNN1B or SCNN1G genotypes, illustrating the differences in allelic effect of the particular 

variants between these groups. We did not find any significant differences in allelic effect of the 

investigated SCNN1A, SCNN1B and SCNN1G variants between the three mutation groups (Table 

3.33). 
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Table 3.33 The p-values for interaction between HCM mutation groups and SCNN1A, SCNN1B or SCNN1G genotype, illustrating the differences in 

allelic effect of the particular variants between these groups. Significant p-values indicated in bold red font and effect sizes discussed in the text. 

    LVM mIVST mLVWT mPWT CWT score PC1 

    

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

SCNN1A rs11614164 0.281 0.382 0.643 0.711 0.768 0.527 0.828 0.919 0.881 0.205 0.807 0.242 0.340 0.657 0.474 0.535 0.785 0.635 

 

rs3782726 0.783 0.383 0.717 0.341 0.455 0.636 0.558 0.767 0.679 0.331 0.837 0.361 0.541 0.553 0.815 0.763 0.709 0.955 

 

rs7973914 0.523 0.581 0.858 0.483 0.288 0.819 0.586 0.095 0.339 0.267 0.242 0.893 0.486 0.064 0.375 0.638 0.074 0.284 

 
rs10849446 0.655 0.392 0.880 0.785 0.271 0.609 0.854 0.279 0.545 0.342 0.417 0.659 0.669 0.203 0.654 0.643 0.173 0.632 

 
rs2286600 0.540 0.754 0.709 0.928 0.591 0.552 0.808 0.696 0.918 0.986 0.664 0.700 0.813 0.597 0.467 0.964 0.500 0.510 

SCNN1B rs11074555 0.976 0.379 0.392 0.940 0.600 0.681 0.993 0.888 0.887 0.936 0.435 0.519 0.875 0.814 0.705 0.816 0.730 0.577 

 

rs9930640 0.190 0.688 0.227 0.201 0.856 0.326 0.183 0.934 0.442 0.746 0.206 0.160 0.529 0.983 0.702 0.594 0.789 0.578 

 

rs239345 0.855 0.857 0.998 0.828 0.976 0.794 0.918 0.568 0.621 0.515 0.453 0.140 0.902 0.719 0.617 0.726 0.632 0.396 

 

rs238547 0.539 0.833 0.379 0.630 0.244 0.591 0.924 0.566 0.671 0.453 0.732 0.245 0.976 0.629 0.689 0.984 0.698 0.743 

 

rs8044970 0.582 0.961 0.531 0.522 0.780 0.697 0.346 0.805 0.465 0.497 0.424 0.920 0.299 0.870 0.378 0.307 0.894 0.371 

 

rs152740 0.625 0.449 0.852 0.748 0.478 0.767 0.520 0.260 0.727 0.303 0.832 0.395 0.545 0.293 0.754 0.590 0.232 0.614 

 

rs250563 0.852 0.290 0.394 0.764 0.797 0.558 0.632 0.744 0.856 0.898 0.327 0.420 0.850 0.693 0.864 0.794 0.903 0.875 

 

rs2303153 0.179 0.739 0.271 0.246 0.958 0.204 0.644 0.979 0.604 0.536 0.667 0.290 0.350 0.836 0.271 0.375 0.797 0.275 

SCNN1G rs5735 0.277 0.996 0.248 0.194 0.285 0.624 0.219 0.258 0.740 0.197 0.345 0.560 0.489 0.548 0.832 0.485 0.562 0.815 

 

rs4247210 0.452 0.382 0.956 0.249 0.198 0.985 0.433 0.625 0.727 0.139 0.055 0.790 0.475 0.895 0.540 0.451 0.869 0.534 

Abbreviations: CWT score: cumulative wall thickness score; LVM: left ventricular mass; mIVST: maximum interventricular septal thickness; mLVWT: maximum left 

ventricular wall thickness; mPWT: maximum posterior wall thickness; PC1: first principal component; SCNN1A: sodium channel, nonvoltage-gated 1 alpha gene; SCNN1B: 

sodium channel, nonvoltage-gated 1, beta gene; SCNN1G: sodium channel, nonvoltage-gated 1, gamma gene 
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Two haplotypes were found to associate significantly with LVM (Figure 3.41). Table 3.34 

contains the haplotype distribution and the respective p-values for the tests of association 

between these haplotypes and the investigated hypertrophy traits. Haplotype 1 was present in 

17.4% of the entire HCM cohort and associated significantly with a 15.90 g decrease in LVM (p = 

0.037). Conversely, haplotype 10 was present in only 1.8 % of the cohort and associated with a 

36.90 g increase in LVM (p = 0.030).  
 

 

 
Figure 3.41 Summary of haplotype association results for SCNN1A. Bar graph indicates –log10 

transformed p-values for the tests of association between the observed haplotypes and investigated 

hypertrophy traits. Dashed red line indicates a significance level of p < 0.05 and effect sizes for 

significant associations are indicated in the text. 
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Table 3.34 Haplotype distribution within SCNN1A, as well as the respective p-values for 

tests of allelic association. All analyses were adjusted for the primary HCM-causal mutation, as 

well as other known hypertrophy covariates. Effect sizes are indicated in the text.  

  

rs
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61
41

64
 

rs
37
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72
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rs
79

73
91
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rs
10

84
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46
 

rs
22

86
60
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freq. 
p-value for test of association 

 
LVM mIVST mLVWT mPWT CWT PC1 

1 A T T A G 0.174 0.037 0.417 0.717 0.472 0.686 0.654 
2 A T C A G 0.167 0.528 0.472 0.317 0.655 0.481 0.564 
3 G G C A G 0.085 0.377 0.416 0.417 0.968 0.623 0.657 
4 A T T C A 0.065 0.951 0.526 0.895 0.306 0.585 0.382 
5 G G C C A 0.060 0.486 0.489 0.780 0.359 0.717 0.684 
6 A T C C A 0.055 0.079 0.134 0.169 0.503 0.162 0.132 
7 A T T A A 0.029 0.236 0.770 0.929 0.368 0.772 0.752 
8 G G T A G 0.025 0.244 0.804 0.840 0.700 0.417 0.64 
9 A G T A G 0.018 0.790 0.254 0.461 0.497 0.594 0.711 
10 G G T C A 0.018 0.030 0.294 0.112 0.286 0.354 0.312 
11 G T C A G 0.018 0.526 0.943 0.952 0.107 0.647 0.69 
12 G G C C G 0.017 0.692 0.749 0.786 0.745 0.472 0.494 
13 A G C A G 0.010 0.164 0.818 0.782 0.284 0.999 0.924 
14 G T C C A 0.010 0.609 0.913 0.825 0.982 0.487 0.364 

*Haplotypes < 0.01 not indicated 
Abbreviations: A: adenine; C: cytosine; CWT: cumulative wall thickness score; G: guanine; LVM: left 
ventricular mass; mIVST: maximum interventricular septal thickness; mLVWT: maximum left ventricular 
wall thickness; mPWT: maximum posterior wall thickness; PC1: first principal component; T: thymine 
 

Table 3.35 contains the p-values for interaction between the different HCM mutation groups 

and SCNN1A haplotypes to illustrate the differences in allelic effect of the different haplotypes 

between these groups. Haplotype 3 was found to have a significantly different effect on LVM 

between the R92WTNNT2 and A797TMYH7 groups (Table 3.35). This haplotype was associated with 

a 44.61g lower effect on LVM in the R92WTNNT2 group, compared to the A797TMYH7 group. 

Similarly, haplotype 6 caused a 4.02 mm lower effect on mIVST (p = 0.013), a 3.69 mm lower 

effect on mLVWT (p = 0.010), a 1.88 mm lower effect on CWT score (p = 0.013), as well as a 0.12 

lower effect on PC1 (p = 0.024). Haplotypes 7, 9 and 12-14 were not tested due to too small 

sample sizes for the three HCM mutation groups as a consequence of low haplotype frequency.  
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Table 3.35 The p-values for interaction between HCM mutation groups and SCNN1A haplotypes, illustrating the differences in allelic effect of 

the particular haplotypes between these groups. Significant p-values indicated in bold red font and effect sizes discussed in the text. 

Haplotype 

LVM mIVST mLVWT mPWT CWT score PC1 
R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

1 0.659 0.416 0.725 0.662 0.251 0.506 0.256 0.182 0.854 0.151 0.111 0.901 0.507 0.055 0.263 0.545 0.063 0.265 

2 0.462 0.769 0.646 0.366 0.366 0.911 0.928 0.894 0.836 0.691 0.364 0.691 0.646 0.740 0.898 0.703 0.871 0.836 

3 0.149 0.017 0.649 0.260 0.074 0.797 0.355 0.061 0.563 0.227 0.183 0.839 0.372 0.056 0.695 0.421 0.095 0.751 

4 0.960 0.345 0.070 0.643 0.221 0.196 0.479 0.232 0.497 0.336 0.512 0.473 0.692 0.469 0.641 0.552 0.503 0.994 

5 0.584 0.491 0.830 0.528 0.322 0.880 0.429 0.439 0.667 0.945 0.770 0.820 0.273 0.357 0.507 0.282 0.510 0.433 

6 0.209 0.355 0.594 0.106 0.013 0.579 0.166 0.010 0.364 0.781 0.152 0.298 0.095 0.013 0.687 0.209 0.024 0.515 

8 0.598 0.726 0.365 0.344 0.437 0.080 0.140 0.248 0.007 0.393 0.664 0.197 0.208 0.473 0.042 0.482 0.379 0.113 

10 0.641 0.663 0.824 0.964 0.961 0.985 0.914 0.670 0.865 0.319 0.279 0.706 0.919 0.969 0.933 0.709 0.805 0.810 

11 0.635 0.578 0.980 0.841 0.958 0.710 0.481 0.619 0.689 0.645 0.255 0.417 0.558 0.917 0.523 0.548 0.981 0.432 

*Haplotypes 7, 9 and 12-14 not tested 
Abbreviations: CWT: cumulative wall thickness; LVM: left ventricular mass; mIVST: maximum interventricular septal thickness; mLVWT: maximum left 
ventricular wall thickness; mPWT: maximum posterior wall thickness; PC1: first principal component 
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3.7.7.2 SCNN1B 

The G-allele of rs8044970 was associated with a significant decrease of 1.66 mm in mIVST (p = 

0.007), as well a significant decrease of 1.28 mm in mLVWT (p = 0.029) as seen in Figure 3.42. 

 

 
Figure 3.42 Single polymorphism association results for SCNN1B. Bar graph indicates –log10 

transformed p-values for the tests of association between variants and investigated hypertrophy traits. 

The table below the graph indicates exact p-values for additive tests of allelic association. The red line 

in the graph indicates a significance level of p < 0.05, and effect sizes for significant associations are 

indicated in the text. 

 

Table 3.36 contains the p-values for interaction between HCM mutation group and SCNN1B 

haplotypes, illustrating the differences in allelic effect of the particular haplotypes between 

these groups. Haplotypes 6, 7, 9-14 and 16-26 were not tested due to unequal distribution of 

these haplotypes among the HCM mutation groups, which resulted in insufficient sample sizes 

for the analysis.  

 

Haplotype 5 was found to have a significantly different effect on the respective mutation groups 

(Table 3.36). This haplotype was associated with a 56.78 g increased effect on LVM (p = 0.030), 

a 2.62 mm increased effect on mIVST (p = 0.047) and a 1.39 mm increased effect on mPWT (p = 

0.049) in the R92WTNNT2 group, compared to the A797TMYH7 group. Similarly, haplotype 5 was 

associated with an 8.79 mm increased effect on mLVWT (p = 0.028), a 4.40 mm increased effect 

on the CWT score (p = 0.010), as well as a 0.28 increased effect on PC1 (p = 0.034).  
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LVM 0.363 0.149 0.619 0.460 0.069 0.319 0.960 0.441
mPWT 0.325 0.557 0.410 0.536 0.077 0.319 0.623 0.927
mIVST 0.378 0.798 0.571 0.910 0.007 0.786 0.861 0.758
mLVWT 0.359 0.552 0.464 0.749 0.029 0.401 0.552 0.572
CWT 0.615 0.615 0.125 0.455 0.163 0.563 0.059 0.867
PC1 0.194 0.597 0.337 0.334 0.092 0.571 0.269 0.735
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Table 3.36 The p-values for interaction between HCM mutation groups and SCNN1B haplotypes, illustrating the differences in allelic effect of 

the particular haplotypes between these groups. Significant p-values indicated in bold red font and effect sizes discussed in the text. 

Haplotype 

LVM mIVST mLVWT mPWT CWT score PC1 
R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

1 0.695 0.607 0.884 0.540 0.189 0.450 0.504 0.151 0.404 0.374 0.431 0.941 0.476 0.206 0.561 0.400 0.155 0.538 

2 0.260 0.760 0.492 0.179 0.397 0.089 0.162 0.844 0.236 0.669 0.348 0.730 0.137 0.627 0.134 0.151 0.826 0.204 

3 0.252 0.379 0.073 0.737 0.097 0.528 0.897 0.155 0.469 0.865 0.100 0.235 0.627 0.357 0.279 0.716 0.270 0.290 

4 0.842 0.513 0.635 0.963 0.445 0.425 0.708 0.295 0.486 0.596 0.719 0.280 0.727 0.144 0.050 0.539 0.191 0.036 

5 0.389 0.030 0.528 0.745 0.047 0.072 0.200 0.222 0.028 0.739 0.049 0.102 0.158 0.096 0.010 0.292 0.127 0.034 

8 0.323 0.551 0.159 0.281 0.942 0.257 0.339 0.458 0.642 0.627 0.534 0.943 0.463 0.889 0.503 0.456 0.891 0.495 

15 0.958 0.750 0.771 0.582 0.964 0.600 0.653 0.950 0.683 0.366 0.192 0.959 0.401 0.659 0.606 0.355 0.593 0.598 

*Haplotypes 6, 7, 9-14 and 16-26 not tested 
Abbreviations: CWT: cumulative wall thickness score; LVM: left ventricular mass; mIVST: maximum interventricular septal thickness; mLVWT: maximum left 

ventricular wall thickness; mPWT: maximum posterior wall thickness; PC1: first principal component
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Figure 3.43 provides an overview of the results obtained from the haplotype association 

analyses of SCNN1B, while Table 3.37 depicts the haplotype distribution observed for SCNN1B, 

as well as the respective p-values for association between these haplotypes and the heritable 

hypertrophy traits. Four haplotypes were found to associate significantly with hypertrophy 

traits. Haplotype 5 was observed in 5.9% of the cohort and was associated with a 0.083 mm 

increase in mPWT (p = 0.046). Haplotype 9 was significantly associated with a 0.94 mm 

decrease in mPWT (p = 0.046), as well as a 1.09mm decrease in CWT score (p = 0.020) as a 

0.068 decrease in PC1 (p = 0.022).  

 

Interestingly, haplotype 19 was found to associate significantly with almost all the investigated 

hypertrophy traits (Figure 3.43). This haplotype was significantly associated with a decrease in 

mIVST of 2.80 mm (p = 0.023), a 2.58 mm decrease in mLVWT (p = 0.016), a 1.22 mm decrease 

in mPWT (p = 0.041), a 1.48mm decrease in CWT score (p = 0.015), as well as a 0.093 decrease 

in PC1 (p = 0.025) (Table 3.37). In addition, haplotype 20 was associated with a 3.88 mm 

increase in mIVST (p = 0.012) and a 3.63 mm increase in mLVWT (p = 0.015).  

 

 

 
Figure 3.43 Summary of haplotype association results for SCNN1B. Bar graph indicates –log10 

transformed p-values for the tests of association between the observed haplotypes and investigated 

hypertrophy traits. Dashed red line indicates a significance level of p < 0.05 and effect sizes for 

significant associations are indicated in the text. 
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Table 3.37 Haplotype distribution within SCNN1B, as well as the respective p-values for 

tests of allelic association. All analyses were adjusted for the primary HCM-causal mutation, as 

well as other known hypertrophy covariates. Effect sizes are indicated in the text. 
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rs
99

30
64

0 

rs
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rs
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rs
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44
97

0 

rs
15

27
40

 

rs
25

05
63

 

rs
23

03
15

3 

freq. 
p-value for test of association 

 
LVM mIVST mLVWT mPWT CWT PC1 

1 T G T C G T C G 0.100 0.540 0.454 0.744 0.598 0.744 0.512 
2 C G A C T A C G 0.074 0.413 0.312 0.135 0.750 0.182 0.211 
3 T G T T T A C G 0.072 0.456 0.708 0.769 0.553 0.348 0.222 
4 T G T T T A C C 0.062 0.430 0.339 0.205 0.505 0.258 0.322 
5 T G T C T T C G 0.059 0.085 0.476 0.164 0.046 0.292 0.348 
6 T G T C T T C C 0.040 0.490 0.511 0.424 0.684 0.271 0.319 
7 C G A T T A C G 0.028 0.092 0.621 0.605 0.455 0.159 0.107 
8 C G A C T A C C 0.028 0.437 0.756 0.602 0.848 0.858 0.920 
9 C G A C T T C G 0.024 0.053 0.116 0.158 0.046 0.020 0.022 
10 C A A C T T C G 0.023 0.131 0.920 0.795 0.242 0.423 0.374 
11 T G T C G T C C 0.022 0.660 0.933 0.861 0.773 0.623 0.611 
12 T G T T T A T G 0.022 0.707 0.228 0.761 0.925 0.332 0.508 
13 T G A C T A C G 0.018 0.900 0.635 0.913 0.085 0.697 0.456 
14 C G T C T T C G 0.017 0.399 0.579 0.910 0.073 0.755 0.555 
15 C G T C T A C G 0.017 0.980 0.941 0.961 0.424 0.741 0.668 
16 T G A C T T C G 0.017 0.741 0.987 0.790 0.946 0.575 0.674 
17 C G T C G A C G 0.014 0.167 0.542 0.680 0.224 0.227 0.148 
18 C G T C G T C G 0.012 0.903 0.367 0.614 0.484 0.528 0.849 
19 T G A C G A C G 0.012 0.101 0.023 0.016 0.041 0.015 0.025 
20 T G T T T T C G 0.012 0.119 0.012 0.015 0.054 0.077 0.064 
21 C A T C G T C G 0.011 0.782 0.680 0.727 0.475 0.957 0.873 
22 C A A C T A C G 0.010 0.489 0.309 0.361 0.733 0.806 0.888 
23 C G A T T A C C 0.010 0.451 0.510 0.758 0.821 0.876 0.804 
24 T G T C T A C G 0.010 0.156 0.920 0.662 0.340 0.645 0.608 
25 T G A C T A C C 0.009 0.250 0.595 0.707 0.934 0.508 0.496 
26 C G A C G T C G 0.008 0.364 0.467 0.423 0.528 0.404 0.724 

Abbreviations: A: adenine; C: cytosine; CWT: cumulative wall thickness score; G: guanine; LVM: left 
ventricular mass; mIVST: maximum interventricular septal thickness; mLVWT: maximum left ventricular 
wall thickness; mPWT: maximum posterior wall thickness; PC1: first principal component; T: thymine 
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3.7.7.3 SCNN1G 

We did not find any statistically significant evidence for association between any of the SCNN1G 

variants and the investigated hypertrophy traits (Figure 3.44). 

 

  
Figure 3.44 Single polymorphism association results for SCNN1G. Bar graph indicates –log10 

transformed p-values for the tests of association between variants and investigated hypertrophy traits. 

The table below the graph indicates exact p-values for additive tests of allelic association. The red line 

in the graph indicates a significance level of p < 0.05, and effect sizes for significant associations are 

indicated in the text. 

 

No statistically significant evidence for association was found between the identified SNNN1G 

haplotypes and the investigated hypertrophy traits (Figure 3.45). Table 3.38 depicts the 

haplotype distribution within SCNN1G, as well as the respective p-values for tests of allelic 

association. 
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Figure 3.45 Summary of haplotype association results for SCNN1G. Bar graph indicates –log10 

transformed p-values for the tests of association between the observed haplotypes and investigated 

hypertrophy traits. Dashed red line indicates a significance level of p < 0.05 and effect sizes for 

significant associations are indicated in the text. 

 

Table 3.38 Haplotype distribution within SCNN1G, as well as the respective p-values for 

tests of allelic association. All analyses were adjusted for the primary HCM-causal mutation, as 

well as other known hypertrophy covariates.  

 

rs
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rs
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freq. 
p-value for test of association 

 LVM mIVST mLVWT mPWT CWT PC1 

1 C C 0.329 0.518 0.257 0.340 0.726 0.550 0.680 
2 C G 0.285 0.989 0.586 0.645 0.445 0.810 0.820 
3 T G 0.071 0.339 0.058 0.165 0.980 0.499 0.575 
4 T C 0.059 0.673 0.282 0.789 0.623 0.960 0.782 

Abbreviations: C: cytosine; CWT: cumulative wall thickness score; G: guanine; LVM: left ventricular mass; 

mIVST: maximum interventricular septal thickness; mLVWT: maximum left ventricular wall thickness; 

mPWT: maximum posterior wall thickness; PC1: first principal component; T: thymine 

 

Table 3.39 contains the p-values for interaction between HCM mutation group and SCNN1G 

haplotypes, illustrating the differences in allelic effect of the identified haplotypes between 

these groups. 
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Table 3.39 The p-values for interaction between HCM mutation group sand SCNN1G haplotypes, illustrating the differences in allelic effect of 

the particular haplotypes between these groups. Significant p-values indicated in bold red font and effect sizes discussed in the text. 

Haplotype 

LVM mIVST mLVWT mPWT CWT score PC1 
R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

1 0.503 0.027 0.183 0.516 0.006 0.057 0.397 0.004 0.067 0.878 0.118 0.200 0.758 0.001 0.006 0.902 0.004 0.011 

2 0.175 0.496 0.045 0.572 0.289 0.127 0.807 0.095 0.081 0.132 0.977 0.107 0.216 0.148 0.013 0.157 0.290 0.020 

3 0.521 0.059 0.576 0.491 0.002 0.218 0.724 0.025 0.281 0.552 0.009 0.307 0.355 0.019 0.484 0.314 0.011 0.440 

4 0.667 0.705 0.260 0.758 0.703 0.342 0.692 0.838 0.393 0.666 0.587 0.181 0.666 0.688 0.903 0.804 0.904 0.834 

Abbreviations: CWT score: cumulative wall thickness score; LVM: left ventricular mass; mIVST: maximum interventricular septal thickness; mLVWT: maximum 
left ventricular wall thickness; mPWT: maximum posterior wall thickness; PC1: first principal component 
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We identified three haplotypes that had differential effects on the three HCM mutation groups 

(Table 3.39). Haplotype 1 was associated with a 21.05 g lower effect on LVM (p = 0.027), a 3.27 

mm lower effect on mIVST (p = 0.006), a 3.44 mm lower effect on mLVWT (p = 0.004) and a 1.99 

mm lower effect on the CWT score in the R92WTNNT2 group, compared to the A797TMYH7 group. 

In addition this haplotype was associated with a 2.04 mm lower effect on the CWT score (p = 

0.006) and a 0.13 lower effect on PC1 in the R403WMYH7 group, compared to the A797TMYH7 

group.  

 

Haplotype 2 was found to have a 32.79 g higher effect on LVM (p = 0.045), as well as a 1.93 mm 

higher effect on the CWT score (p = 0.013) in the R403WMYH7 group, compared to the A797TMYH7 

group (Table 3.39). Haplotype 3 resulted in a 5.59 mm increased effect on mIVST (p = 0.002), as 

well as an increased effect of 4.56 mm mLVWT, 2.09 mm on mPWT (p = 0.009) and 2.47 mm on 

the CWT score in the R92WTNNT2 group, compared to the A797TMYH7 group (Table 3.39). 

 

3.7.8 Na+/K+-ATPase subunits  

Figures 3.46, 3.47, 3.48 and 3.49 depict the chromosomal location and structure of the ATP1A1, 

ATP1A2, ATP1B1 and ATP1B3 genes, as well as intragenic location of target polymorphisms 

within these genes.  

 

The two SNPs investigated in ATP1A1, viz. rs10924074 and rs850609, was found to be in 

complete LD (D’ = 1). Intermediate D’ values were observed between rs7548116 and rs6695366 

(D’ = 0.48), as well as between rs6695366 and rs11585375 (D’ = 0.42), while scant evidence 

exists for LD between rs7548116 and rs11585375 (D’ = 0.1) in ATP1A2 (Figure 3.47). In 

addition, very little evidence exists for LD between the variants investigated in ATP1B1; LD 

values were D’ = 0.16 between rs1200130 and rs1358714, D’ = 0.36 between rs1200130 and 

rs1040503 and D’ = 0.06 between rs1358714 and rs1040503 (Figure 3.48). 
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Figure 3.46 Scale diagram depicting chromosomal location and structure of the ATP1A1 gene, as well as intragenic location of target 

polymorphisms. The two SNPs were found to be in complete LD (D’ = 1).  Arrows indicate direction of transcription.  
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Figure 3.47 Scale diagram depicting chromosomal location and structure of the ATP1A2 gene, as well as intragenic location of target 

polymorphisms. LD values were D’ = 0.48 between rs7548116 and rs6695366, D’ = 0.10 between rs7548116 and rs11585375 and D’ = 0.42 

between rs6695366 and rs11585375. Arrows indicate direction of transcription.  
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Figure 3.48 Scale diagram depicting chromosomal location and structure of the ATP1B1 gene, as well as intragenic location of target 

polymorphisms. LD values were D’ = 0.16 between rs1200130 and rs1358714, D’ = 0.36 between rs1200130 and rs1040503 and D’ = 0.06 

between rs1358714 and rs1040503. Arrows indicate direction of transcription.  
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Figure 3.49 Scale diagram depicting chromosomal location and structure of the ATP1B3 gene, as well as intragenic location of target 

polymorphism. Arrows indicate direction of transcription.  
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3.7.8.1 ATP1A1 

There was, however, no statistically significance for association between the investigated 

ATP1A1 SNPs and the hypertrophy traits (Figure 3.50).  

 

 

 
Figure 3.50 Single polymorphism association results for ATP1A1. Bar graph indicates –log10 

transformed p-values for the tests of association between variants and investigated hypertrophy traits. 

The table below the graph indicates exact p-values for additive tests of allelic association. The red line 

in the graph indicates a significance level of p < 0.05, and effect sizes for significant associations are 

indicated in the text. 

 

Table 3.40 depicts the p-values for interaction between HCM mutation group and ATP1A1, 

ATP1A2, ATP1B1 or ATP1B3 genotypes, illustrating the differences in allelic effect of the 

particular variants between these groups. 

 

The rs850609 SNP in ATP1A1 was found to have significantly different effects on mPWT (p = 

0.040), CWT score (p = 0.040) and PC1 (p = 0.043) in the R92WTNNT2 group versus the 

A797TMYH7 group (Table 3.40). The T-allele of this polymorphism was found to have an 

increased effect of 1.40 mm on mPWT, 1.94 mm on CWT and 0.12 on PC1 (Table 3.40). 
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Table 3.40 The p-values for interaction between HCM mutation groups and ATP1A1, ATP1A2, ATP1B1 or ATP1B3 genotype, illustrating the 

differences in allelic effect of the particular variants between these groups. Significant p-values indicated in bold red font and effect sizes discussed in the 

text. 

    LVM mIVST mLVWT mPWT CWT score PC1 

    

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

ATP1A1 rs10924074 0.637 0.765 0.902 0.717 0.609 0.411 0.694 0.328 0.193 0.997 0.218 0.227 0.922 0.390 0.460 0.890 0.370 0.460 

 

rs850609 0.169 0.157 0.626 0.336 0.069 0.806 0.420 0.136 0.849 0.121 0.040 0.820 0.273 0.040 0.700 0.272 0.043 0.719 

ATP1A2 rs7548116 0.588 0.360 0.222 0.591 0.912 0.527 0.933 0.210 0.313 0.524 0.450 0.227 0.830 0.686 0.613 0.815 0.740 0.636 

 
rs6695366 0.378 0.987 0.341 0.347 0.709 0.432 0.339 0.472 0.557 0.196 0.132 0.620 0.176 0.394 0.309 0.255 0.356 0.447 

 
rs11585375 0.425 0.793 0.590 0.950 0.560 0.547 0.963 0.441 0.503 0.917 0.430 0.405 0.822 0.459 0.381 0.875 0.488 0.442 

ATP1B1 rs1200130 0.094 0.881 0.084 0.458 0.958 0.504 0.308 0.942 0.378 0.897 0.114 0.202 0.436 0.684 0.283 0.421 0.682 0.271 

 

rs1358714 0.761 0.516 0.826 0.992 0.933 0.936 0.893 0.960 0.920 0.796 0.693 0.555 0.416 0.717 0.576 0.373 0.806 0.466 

 

rs1040503 0.122 0.314 0.497 0.212 0.414 0.566 0.134 0.195 0.733 0.389 0.329 0.998 0.137 0.158 0.787 0.204 0.237 0.803 

ATP1B3 rs2068230 0.791 0.030 0.097 0.563 0.002 0.033 0.589 0.002 0.029 0.851 0.051 0.055 0.894 0.004 0.021 0.916 0.009 0.019 

Abbreviations: ATP1A1: ATPase, Na+/K+ transporting, alpha 1 polypeptide gene; ATP1A2: ATPase, Na+/K+ transporting, alpha 2  polypeptide gene; ATP1B1: ATPase, Na+/K+ 
transporting, beta 1 polypeptide gene; ATP1B3: ATPase, Na+/K+ transporting, beta 3 polypeptide gene; CWT score: cumulative wall thickness score; LVM: left ventricular 
mass; mIVST: maximum interventricular septal thickness; mLVWT: maximum left ventricular wall thickness; mPWT: maximum posterior wall thickness; PC1: first 
principal component 
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Figure 3.51 shows a graphical summary of the results for the haplotype association analysis for 

ATP1A1. Table 3.41 shows the observed haplotype distribution for ATP1A1, as well as the exact 

p-values for the respective tests of association between these haplotypes and the investigated 

hypertrophy traits. Haplotype 4 was observed in 2.2% of the cohort and associated significantly 

with 1.48 mm increase in mPWT (p = 0.021).  

 

 
Figure 3.51 Summary of haplotype association results for ATP1A1. Bar graph indicates –log10 

transformed p-values for the tests of association between the observed haplotypes and investigated 

hypertrophy traits. Dashed red line indicates a significance level of p < 0.05 and effect sizes for 

significant associations are indicated in the text. 

 

Table 3.41 Haplotype distribution within ATP1A1, as well as the respective p-values for 

tests of allelic association. All analyses were adjusted for the primary HCM-causal mutation, as 

well as other known hypertrophy covariates. Effect sizes indicated in the text. 
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freq. 
p-value for test of association 

LVM mIVST mLVWT mPWT CWT PC1 

1 A A 0.765 0.241 0.104 0.184 0.587 0.462 0.523 
2 G A 0.112 0.641 0.716 0.799 0.934 0.843 0.627 
3 A T 0.101 0.670 0.115 0.115 0.284 0.165 0.186 
4 G T 0.022 0.137 0.406 0.567 0.021 0.449 0.376 

Abbreviations: A: adenine; CWT: cumulative wall thickness score; G: guanine; LVM: left ventricular mass; 
mIVST: maximum interventricular septal thickness; mLVWT: maximum left ventricular wall thickness; 
mPWT: maximum posterior wall thickness; PC1: first principal component; T: thymine 
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Table 3.42 contains the p-values for interaction between HCM mutation group and ATP1A1 

haplotypes, illustrating the differences in allelic effect of the particular haplotypes between 

these groups. Haplotype 2 was found to have 1.78 mm increased effect on mPWT in the 

R92WTNNT2 (p = 0.038), as well as a 1.81 mm increased effect on mPWT in the R403WMYH7 group 

(p = 0.031), compared to the A797TMYH7 group. Haplotype 3 had a 44.70 g higher effect on LVM 

in the R92WTNNT2 group, compared to the R403WMYH7 group (p = 0.040). 
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Table 3.42 The p-values for interaction between HCM mutation groups and ATP1A1 haplotypes, illustrating the differences in allelic effect of 

the particular haplotypes between these groups. Significant p-values indicated in bold red font and effect sizes discussed in the text. 

Haplotype 

LVM mIVST mLVWT mPWT CWT score PC1 
R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

1 0.676 0.991 0.418 0.368 0.329 0.232 0.347 0.933 0.774 0.863 0.299 0.305 0.714 0.479 0.801 0.683 0.407 0.641 

2 0.534 0.766 0.379 0.792 0.106 0.259 0.926 0.119 0.146 0.712 0.038 0.031 0.687 0.120 0.332 0.721 0.111 0.294 

3 0.040 0.334 0.210 0.147 0.063 0.854 0.161 0.200 0.787 0.132 0.395 0.424 0.397 0.172 0.741 0.321 0.146 0.793 

4 0.523 0.632 0.857 0.188 0.305 0.736 0.375 0.998 0.335 0.725 0.797 0.916 0.878 0.913 0.986 0.852 0.725 0.845 

Abbreviations: CWT score: cumulative wall thickness score; LVM: left ventricular mass; mIVST: maximum interventricular septal thickness; mLVWT: maximum 
left ventricular wall thickness; mPWT: maximum posterior wall thickness; PC1: first principal component 
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3.7.8.2 ATP1A2 

We did not find any statistically significant evidence for association between the ATP1A2 SNPs 

and hypertrophy traits (Figure 3.52). In addition, the investigated ATP1A2 SNPs were not found 

to have differential effects on the three HCM mutation groups (Table 3.40). 

 

 
Figure 3.52 Single polymorphism association results for ATP1A2. Bar graph indicates –log10 

transformed p-values for the tests of association between variants and investigated hypertrophy traits. 

The table below the graph indicates exact p-values for additive tests of allelic association. The red line 

in the graph indicates a significance level of p < 0.05, and effect sizes for significant associations are 

indicated in the text. 

 

Two haplotypes within ATP1A2 associated significantly with hypertrophy traits (Figure 3.53). 

Haplotype 1 within ATP1A2 was present in 29% of the cohort and associated significantly with 

an 11.1 g decrease in LVM (p = 0.027), as well as a 0.97 mm decrease in mIVST (p = 0.016) 

(Table 3.43). However, the exact opposite of this haplotype, i.e. the rarer haplotype 7, was 

associated with a 44.10 g increase in LVM (p = 0.025). 

 

Table 3.44 contains the p-values for interaction between HCM mutation group and ATP1A2 

haplotypes, illustrating the differences in allelic effect of the particular haplotypes between 

these groups. Haplotype 4 was found to be associated with a 46.65 g increased effect on LVM in 

the R92WTNNT2 group, compared to the A797TMYH7 group (p = 0.035).  
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Figure 3.53 Summary of haplotype association results for ATP1A2. Bar graph indicates –log10 

transformed p-values for the tests of association between the observed haplotypes and investigated 

hypertrophy traits. Dashed red line indicates a significance level of p < 0.05 and effect sizes for 

significant associations are indicated in the text. 

 

Table 3.43 Haplotype distribution within ATP1A2, as well as the respective p-values for 

tests of allelic association. All analyses were adjusted for the primary HCM-causal mutation, as 

well as other known hypertrophy covariates. Effect sizes are indicated in the text. 
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freq. 
p-value for test of association 

 LVM mIVST mLVWT mPWT CWT PC1 

1 A A A 0.290 0.027 0.016 0.087 0.695 0.184 0.221 
2 A A G 0.174 0.748 0.737 0.337 0.115 0.358 0.339 
3 T A A 0.139 0.813 0.626 0.538 0.809 0.777 0.781 
4 T A G 0.077 0.676 0.414 0.499 0.661 0.437 0.484 
5 T G A 0.051 0.241 0.484 0.837 0.990 0.955 0.884 
6 A G A 0.021 0.700 0.112 0.614 0.854 0.359 0.181 
7 T G G 0.019 0.025 0.805 0.711 0.153 0.391 0.299 
8 A G G 0.010 0.352 0.351 0.252 0.962 0.406 0.346 

Abbreviations: A: adenine; CWT: cumulative wall thickness score; G: guanine; LVM: left ventricular mass; 

mIVST: maximum interventricular septal thickness; mLVWT: maximum left ventricular wall thickness; 

mPWT: maximum posterior wall thickness; PC1: first principal component; T: thymine 
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Table 3.44 The p-values for interaction between HCM mutation group and ATP1A2 haplotypes, illustrating the differences in allelic effect of 

the particular haplotypes between these groups. Significant p-values indicated in bold red font and effect sizes discussed in the text. 

Haplotype 

LVM mIVST mLVWT mPWT CWT score PC1 
R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

1 0.357 0.774 0.471 0.544 0.928 0.568 0.416 0.432 0.890 0.900 0.945 0.944 0.367 0.563 0.668 0.425 0.622 0.693 

2 0.970 0.089 0.116 0.883 0.260 0.358 0.797 0.179 0.309 0.898 0.274 0.367 0.980 0.435 0.483 0.929 0.475 0.564 

3 0.101 0.527 0.232 0.128 0.461 0.319 0.242 0.690 0.146 0.200 0.488 0.077 0.217 0.763 0.303 0.354 0.850 0.425 

4 0.696 0.035 0.114 0.869 0.872 0.795 0.871 0.618 0.655 0.904 0.610 0.869 0.997 0.770 0.883 0.872 0.820 0.785 

5 0.873 0.260 0.355 0.348 0.497 0.143 0.203 0.804 0.226 0.688 0.928 0.708 0.304 0.851 0.327 0.500 0.922 0.510 

Abbreviations: CWT score: cumulative wall thickness score; LVM: left ventricular mass; mIVST: maximum interventricular septal thickness; mLVWT: maximum 
left ventricular wall thickness; mPWT: maximum posterior wall thickness; PC1: first principal component 
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3.7.8.3 ATP1B1 

The rs1200130 SNP within ATP1B1 was significantly associated four hypertrophy traits, viz. 

LVM (p = 0.017), mPWT (p = 0.027), CWT score (p = 0.045), as well as PC1 (p = 0.046) (Figure 

3.54). The T-allele of this polymorphism was associated with a 12.50g increase in LVM, 0.393 

mm increase in mPWT, a 0.38 mm increase in CWT score, as well as a 0.02 increase in PC1. The 

investigated ATP1B1 SNPs were not found to have differential effects on the three HCM 

mutation groups (Table 3.40). 

 

 
Figure 3.54 Single polymorphism association results for ATP1B1. Bar graph indicates –log10 

transformed p-values for the tests of association between variants and investigated hypertrophy traits. 

The table below the graph indicates exact p-values for additive tests of allelic association. The red line 

in the graph indicates a significance level of p < 0.05, and effect sizes for significant associations are 

indicated in the text. 

 

Two ATP1B1 associated significantly with hypertrophy traits (Figure 3.55). Table 3.45 shows 

the observed haplotype distribution for ATP1B1, as well as the p-values for the respective tests 

of association between these haplotypes and the investigated hypertrophy traits. Haplotype 2 

was present in 14.5% of the cohort and associated significantly with a 20.20 g decrease in LVM 

(p = 0.006). In contrast, haplotype 5 was associated with a 0.83 mm increase in mPWT (p = 

0.043).  

 

Table 3.46 contains the p-values for interaction between HCM mutation group and ATP1B1 

haplotypes, illustrating the differences in allelic effect of the particular haplotypes between 
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these groups. Haplotype 6 was associated with a 1.94 mm lower effect on the CWT score in the 

R92WTNNT2 group, compared to the R403WMYH7 group (p = 0.040). Additionally, haplotype 7 was 

associated with a 2.27 mm higher effect on mPWT in the R92WTNNT2 group, compared to the 

A797TMYH7 group (p = 0.019). Haplotype 8 was not included in this analysis due to a low MAF.  
 

 
Figure 3.55 Summary of haplotype association results for ATP1B1. Bar graph indicates –log10 

transformed p-values for the tests of association between the observed haplotypes and investigated 

hypertrophy traits. Dashed red line indicates a significance level of p < 0.05 and effect sizes for 

significant associations are indicated in the text. 

 

Table 3.45 Haplotype distribution within ATP1B1, as well as the respective p-values for 

tests of allelic association. All analyses were adjusted for the primary HCM-causal mutation, as 

well as other known hypertrophy covariates. Effect sizes are indicated in the text. 
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p-value for test of association 

 LVM mIVST mLVWT mPWT CWT PC1 
1 C G A 0.186 0.414 0.724 0.110 0.574 0.808 0.990 
2 C G G 0.145 0.006 0.482 0.899 0.159 0.707 0.691 
3 C A G 0.142 0.408 0.691 0.426 0.350 0.156 0.079 
4 C A A 0.130 0.507 0.465 0.844 0.955 0.511 0.572 
5 T A G 0.091 0.069 0.355 0.219 0.043 0.221 0.317 
6 T G G 0.064 0.268 0.329 0.126 0.446 0.241 0.212 
7 T A A 0.052 0.891 0.744 0.836 0.751 0.635 0.602 
8 T G A 0.017 0.077 0.405 0.944 0.674 0.517 0.463 
Abbreviations: A: adenine; C: cytosine; CWT: cumulative wall thickness score; G: guanine; LVM: left 
ventricular mass; mIVST: maximum interventricular septal thickness; mLVWT: maximum left ventricular 
wall thickness; mPWT: maximum posterior wall thickness; PC1: first principal component; T: thymine 
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Table 3.46 The p-values for interaction between HCM mutation groups and ATP1B1 haplotypes, illustrating the differences in allelic effect of 

the particular haplotypes between these groups. Significant p-values indicated in bold red font and effect sizes discussed in the text. 

Haplotype 

LVM mIVST mLVWT mPWT CWT score PC1 
R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

R92W 

vs 

R403W 

R92W 

vs 

A797T 

R403W 

vs 

A797T 

1 0.796 0.472 0.243 0.910 0.422 0.275 0.782 0.820 0.538 0.911 0.598 0.632 0.949 0.588 0.493 0.906 0.652 0.718 

2 0.106 0.548 0.231 0.502 0.933 0.545 0.749 0.888 0.690 0.855 0.630 0.919 0.924 0.824 0.963 0.952 0.697 0.853 

3 0.615 0.457 0.272 0.938 0.403 0.443 0.856 0.460 0.429 0.780 0.146 0.140 0.297 0.218 0.052 0.192 0.400 0.060 

4 0.068 0.257 0.213 0.486 0.229 0.983 0.492 0.408 0.830 0.861 0.494 0.820 0.553 0.496 0.795 0.606 0.936 0.623 

5 0.288 0.800 0.408 0.129 0.174 0.926 0.315 0.438 0.851 0.905 0.943 0.838 0.192 0.645 0.403 0.197 0.832 0.275 

6 0.051 0.384 0.225 0.335 0.492 0.105 0.103 0.726 0.184 0.318 0.555 0.614 0.040 0.436 0.166 0.064 0.225 0.421 

7 0.758 0.224 0.264 0.291 0.590 0.556 0.339 0.226 0.974 0.262 0.019 0.545 0.191 0.092 0.849 0.231 0.086 0.945 

* Haplotype 8 not tested 

Abbreviations: CWT score: cumulative wall thickness score; LVM: left ventricular mass; mIVST: maximum interventricular septal thickness; mLVWT: maximum 

left ventricular wall thickness; mPWT: maximum posterior wall thickness; PC1: first principal component 
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3.7.8.4 ATP1B3 

The rs2068230 SNP in ATP1B3 showed the most pronounced difference in effect between the 

respective HCM mutation groups (Table 3.40). The T-allele of this polymorphism caused a 25.70 

g higher LVM in the R92WTNNT2 group, when compared to the A797TMYH7 group (p = 0.030). In 

addition, the rs2068230 T-allele was associated with a 3.56 mm higher mIVST in the R92WTNNT2 

versus the A797TMYH7 group, as well as a 2.68 mm higher mIVST in the R403WMYH7 versus the 

A797TMYH7 group. A similar effect was also observed for mLVWT, CWT score and PC1. The 

rs2068230 T-allele caused a 3.34 mm higher on effect mLVWT, a 1.88 mm higher CWT score, as 

well as a 0.12 higher PC1 in the R92WTNNT2 group compared to the A797TMYH7 group. Also, this 

allele resulted in a 2.68 mm higher effect on mLVWT, a 1.84 mm higher CWT score, as well as a 

0.12 higher PC1 in the R403WMYH7 versus the A797TMYH7 group.  

 

However, there was no statistically significant evidence for association between the rs2068230 

SNP in ATP1B3 and any of the hypertrophy traits (Figure 3.56). 

 

  
Figure 3.56 Single polymorphism association results for ATP1B3. Bar graph indicates –log10 

transformed p-values for the tests of association between variants and investigated hypertrophy traits. 

The table below the graph indicates exact p-values for additive tests of allelic association. The red line 

in the graph indicates a significance level of p < 0.05, and effect sizes for significant associations are 

indicated in the text. 
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3.8 Optimal selection 

Previous studies analysed a set of five “pro-LVH” polymorphisms within the RAAS (Kaufman et 

al., 2007; Ortlepp et al., 2002; Perkins et al., 2005), constituting a set of SNPs that together 

confer an increased risk of hypertrophy development in HCM. The underlying hypothesis was 

that, as RAAS contribution to hypertrophy typically results in modest effect sizes, the compound 

effect of a number of variants might result in larger effects. However, as indicated previously, 

the full extent of the RAAS has not yet been considered in studies of hypertrophy modification, 

and thus the five pro-LVH polymorphisms may be considered a fairly limited approach to this 

matter. 

 

Therefore, we used stepwise selection to identify markers among the greater RAAS study 

performed here, to identify a subset of markers that independently predicted an increase in at 

least one of the four selected hypertrophy indices. We identified nine such markers. Complete 

genotype data were not available for all the individuals for all traits and these analyses were 

consequently performed on the subset of individuals that had complete genotype and 

phenotype data for the respective traits.  

 

The effect of each of the nine alleles that conferred an increased risk for hypertrophy 

development is listed in Table 3.47. These effects are given per allele as for all other results in 

this chapter. The combined effect of one of each of the nine alleles listed in Table 3.47 resulted 

in a 127.80 g increase in LVM, as well as a 13.97 mm increase in mIVST, a 14.67 mm increase in 

mLVWT, as well as a 7.85 mm increase in PC1.  

 

As a comparison, we also modelled the previously described five “pro-LVH” polymorphisms to 

gauge their collective effect on hypertrophy in HCM in order to comment on the effectiveness of 

these markers as hypertrophy risk predictors in the present HCM cohort. As a caveat, we did not 

use the precise AGTR1 polymorphism, rs5186, used in the previous studies, but we included the 

neighbouring rs5182 in our analyses, which is in LD with the rs5186 polymorphism in the 

1000Genomes CEU low coverage panel as well as an English Caucasian and Chinese population 

(Abdollahi et al., 2007; Su et al., 2007). 

 

However, we found that none of these polymorphisms were independently associated with any 

of the hypertrophy traits (Table 3.48). In addition, we observed markedly smaller compound 

effects for these alleles than for the nine SNPs that we had identified. The combined effect of all 

five ‘pro-LVH” polymorphisms resulted in a 27.40 g increased LVM, a 2.15 mm increased mIVST, 

a 2.22 mm increased mLVWT, as well as a 1.49 mm increased PC1. 

Stellenbosch University  http://scholar.sun.ac.za



Chapter III 

 

168 
 

 

Table 3.47 Allelic effects of variants predicting a significant increase in hypertrophy in the 

present cohort.  

   
LVM mIVST mLVWT PC1 

Gene Polymorphism Allele (n = 120) (n = 120) (n = 120) (n = 105) 
ACE rs4356 C 15.0 1.47 1.49 0.60 

AGT rs4762 C 13.3 1.35 1.44 1.54 

AGTR2 rs1403543 G 9.30 0.93 0.75 0.38 

ATP1B1 rs1200130 T 12.3 0.64 0.74 0.83 

M6PR rs1805725 A 23.3 1.95 2.00 0.80 

NR3C2 rs745019 G 19.0 1.98 1.97 0.88 

NR3C2 rs1403142 G 0.20 0.86 1.11 0.58 

NR3C2 rs13150372 G 21.5 2.60 2.95 1.58 

SCNN1B rs8044970 T 13.8 2.19 2.21 0.65 

Combined effect on hypertrophy trait 127.8 13.97 14.67 7.85 

Average effect per allele 14.2 1.55 1.63 0.87 

Abbreviations: A: adenine; ACE: Angiotensin converting enzyme 1 gene; AGTR2: angiotensin II receptor, 
type 2 gene; ATP1B1: ATPase, Na+/K+ transporting, beta 1 polypeptide gene; C: cytosine; G: guanine; 
LVM: left ventricular mass; M6PR: mannose-6-phosphate receptor gene; mIVST: maximum 
interventricular septal thickness; mLVWT: maximum left ventricular wall thickness; NR3C2: nuclear 
receptor subfamily 3, group C, member 2 gene; PC1: first principal component; SCNN1B: sodium channel, 
non-voltage-gated 1, beta gene; T: thymine  
 

 

Table 3.48 Allelic effects of the five “pro-LVH” polymorphisms on hypertrophy traits in the 

present cohort. 

    LVM mIVST mLVWT PC1 
Gene Polymorphism Allele  (n = 119) (n = 119) (n = 119) (n = 105) 
ACE rs4340 I  5.20 0.54 0.41 0.33 
AGT rs699 T  1.70 0.82 0.72 0.03 
AGTR1 rs5182 C  3.90 0.40 0.49 0.37 
CYP11B2 rs1799998 T  6.30 0.05 0.04 0.00 
CMA rs1800875 G  10.3 0.35 0.56 0.77 
Combined effect on hypertrophy trait  27.4 2.15 2.22 1.49 
Average effect per allele  5.50 0.43 0.44 0.30 

Abbreviations: ACE: Angiotensin converting enzyme 1 gene; AGTR1: angiotensin II receptor, type 1 gene; 
C: cytosine; CMA1: cardiac chymase gene; CYP11B2: aldosterone synthase gene; G: guanine; LVM: left 
ventricular mass; mIVST: maximum interventricular septal thickness; mLVWT: maximum left ventricular 
wall thickness; PC1: first principal component; T: thymine 
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This smaller effect is perhaps to be expected as we used four more polymorphisms than the 

previous studies. However, we also found that the average effect per variant was higher in our 

set of polymorphisms, which is indicative of a better predictive value per variant. The average 

effect per allele on LVM was 14.20 g for our set of polymorphisms, whereas the average “pro-

LVH” allele predicted a 5.50 g increase on LVM. Moreover, the average allele in our set of 

polymorphisms predicted an increase of 1.55 mm, 1.63 mm and 0.87 mm in mIVST, mLVWT and 

PC1, respectively. However, the average “pro-LVH” allele only predicted increases of 0.43 mm, 

0.44 mm and 0.30 in mIVST, mLVWT and PC1, respectively. 
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CHAPTER 4: Discussion 

 

4.1 HCM as a complex disorder 

There is a large spectrum along which genetic variation can contribute to disease. Despite 

disease-causing mutations that would understandably have a seminal influence on a given 

disease, there exists the possibility of a number of factors, genetic or otherwise, that can impact 

on the eventual disease phenotype. This rings true particularly for complex diseases, where the 

eventual phenotype is characteristically influenced by a multitude of environmental and genetic 

factors of modest effect. However, it is also true for diseases that are not typically thought of as 

complex conditions. 

 

It is now uncontested that the individual sarcomeric mutations that cause HCM are not 

sufficient, in and of themselves, to entirely explain the variability seen in the extent and 

distribution of hypertrophy in this disease. This is best illustrated in families with HCM, where 

we see a wide range of cardiac phenotypes in affected family members who share a common 

disease-causing mutation (Erdmann et al., 2001; Fananapazir and Epstein, 1994).  

 

Despite its monogenic origin, previous findings point towards a number of factors that 

dynamically influence the eventual disease phenotype of a particular HCM patient. In particular, 

the LVH seen in HCM is partly attributable to environmental influences as well as to the complex 

interaction of a number of modifier genes (Marian, 2002). These genetic modifiers are neither 

necessary, nor sufficient to cause the disease, but they have the ability to significantly alter the 

presentation and progression of hypertrophy. In isolation, most modifier genes probably do not 

alter the HCM phenotype by much, but the composite effect of a number of modifier loci might 

have a significant effect on LVH development. However, exceptions may occur in HCM cases 

harbouring multiple sarcomeric mutations. For example, Biesiadecki et al. demonstrated that an 

R111C substitution in the cardiac troponin I gene countered the effects of a DCM-causing 

cardiac troponin T splice-variant in the hearts of wild turkeys (Biesiadecki et al., 2004), as 

turkeys with both mutations did not exhibit the DCM phenotype. Further functional analyses 

showed that this effect can be explained by the fact that the R111C substitution leads to a 

lowered binding affinity of troponin I for troponin T, which compensates for the increased 

binding affinity caused by the troponin T splice-variant (Biesiadecki et al., 2004). 

 

Aside from environmental factors, there are a number of genetic modifiers that have been 

proposed for HCM, including tumour necrosis factor (TNF)-alpha (Patel et al., 2000), 

peroxisome proliferator-activated receptor gamma (PPARG) (Wang et al., 2007), as well as 
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genes involved in Ca2+-homeostasis (Chiu et al., 2007; Friedrich et al., 2009) and myocardial 

energetics (Ho, 2010b).  

 

In the present study we explored the contribution of variations in genes encoding RAAS 

components to hypertrophy development in HCM. This system was previously investigated for 

its potential impact on HCM, and a number of RAAS variants have been shown to significantly 

alter the HCM phenotype (Marian, 2002; Orenes-Pinero et al., 2011). However, the bulk of these 

studies focussed on single polymorphisms within a core set of genes, viz. AGT, ACE, CMA, AGTR1 

and CYP11B2. One drawback of these single variant approaches is that it neglects the effect of 

epistasis, while another is that these studies typically report relatively modest effect sizes, 

which is difficult to interpret clinically.  

 

A few studies attempted to address these issues by investigating the compound effect of a set of 

five “pro-LVH” polymorphisms within these genes (Kaufman et al., 2007; Ortlepp et al., 2002; 

Perkins et al., 2005). However, this approach still appears to be overly simplistic when one 

takes into account that there is a complex biological interplay between all the components of the 

entire RAAS. Moreover, these variants might not offer a fair representation of RAAS variability 

in all population groups, while the contribution of the renin portion of the pathway, as well as 

the downstream RAAS effectors had remained largely neglected by this limited approach.  

 

We, therefore, investigated the contribution of the entire RAAS to hypertrophy development by 

investigating not only the “pro-LVH” genes, but also including some genes that have not 

previously been investigated within the context of HCM. To this end we utilised a single SNP, as 

well as a phased haplotype association approach. Lastly, we provide a set of polymorphisms 

that best represented the overall contribution of the RAAS to hypertrophy in our cohort in an 

attempt to inform on hypertrophy risk stratification.  

 

4.2 Genetic association studies to identify modifiers in HCM 

The previous decade saw a 1000% increase in published genetic association studies (Donahue 

and Allen, 2005). In general, and specifically in cardiovascular research, this is partly 

attributable to the invaluable contribution on the HapMap project, which provided a catalogue 

of human genetic variation and LD structure for a core set of population groups (International 

HapMap Consortium., 2005; Manolio et al., 2008; Musunuru and Kathiresan, 2008), as well as 

rapid advances in the technology for detecting and genotyping SNPs (Morton and Collins, 2002; 

Palmer and Cardon, 2005; Ragoussis, 2009).  
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While association studies using single polymorphisms present certain challenges, as well as the 

likelihood of detecting only small individual effects (Little et al., 2009), that does not necessarily 

mean that genetic association studies are of little value in the study of complex diseases, and 

more specifically HCM. However, it is wise to be mindful of the inherent shortcomings and 

strengths of this approach.  

   

At its core, genetic association studies investigate whether a correlation exists between a 

particular genetic variant and a disease trait. It does not, however, establish causality (Donahue 

and Allen, 2005). Statistical evidence for association between a particular allele and a 

phenotypic trait can arise from three situations (Cardon and Palmer, 2003). Firstly, the allele 

itself might be functional and exert a direct effect on the expression of the phenotype. Secondly, 

the allele might be in LD or correlated with a functional allele. However, a third possibility 

exists, viz. spurious allelic association, where the significant association is purely due to chance.  

 

It is vital to ensure the reproducibility of a study due to the basic caveats of association studies. 

In HCM there are a number of factors that influence the eventual hypertrophic phenotype and 

failure to adjust for these variables impacts directly on the reproducibility and interpretability 

of a particular study. In addition, there are a few study design concerns that pertain specifically 

to HCM association studies. We will now discuss these basic concerns and caveats of association 

studies, which an emphasis on studies aimed at identifying hypertrophy modifiers in HCM.  

 

4.2.1 Power 

Statistical power in an association study refers to the probability that a test statistic reflects a 

true association (or lack thereof) between a genomic variant and a specific disease trait (Gordon 

and Finch, 2005). Power should therefore be the starting consideration for any association 

study. While it is not always possible to do specific power calculations in the advent of a study, it 

remains critical to take the relative power of a particular study into account when interpreting 

its results and one should consequently always bear the relative power in mind when designing 

a genetic association study.  

 

Traditionally, the power of a modifier study relies on the marker allele frequency, the effect size 

within the cohort, as well as the true effect size, and the number of confounders for which 

adjustment is made (Colhoun et al., 2003; Donahue and Allen, 2005). In addition, errors in 

phenotypic classification and genotype errors contribute significantly to the power of an 

association study (Gordon and Finch, 2005). At present, no comprehensive method for 
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calculating the power of an association study in extended families (such as the present cohort) 

exists, while, in fact, very few case-control HCM studies have reported power calculations. 

 

Although our cohort size can be considered modest by current population association study-

standards, it is simply the reality that HCM cohorts will typically be relatively small, as 

explained in Table 1.1 in Chapter 1, seeing that HCM prevalence is estimated to be 1 in 500 in 

young adults (Maron et al., 1995). This makes the logistics of enrolling extremely large cohorts a 

challenge; in fact, the cohorts described here are some of the largest reported cohorts of 

individuals carrying the same founder mutation. The impact of cohort size on the statistical 

power of an association study can, however, not be ignored and results from smaller studies 

should consequently be interpreted with caution. In this study, we, nonetheless, made every 

effort to include every individual who gave informed consent within the 27 founder families.  

 

4.2.2 Marker selection 

Effective marker selection in conjunction with the currently available high-throughput 

genotyping technology, which provides better quality, specificity and time-efficiency (Kwok and 

Chen, 2003; Tsuchihashi and Dracopoli, 2002) can significantly improve the quality of an 

association study. It is not practical or in most cases financially feasible, to genotype all the 

known variants in a gene of interest in an association study. In fact, some markers might not be 

informative in the population in question. Moreover, disease susceptibility loci and marker 

allele frequencies might vary between different ethnic groups (Bamshad, 2005; Frazer et al., 

2009; Ioannidis et al., 2004; Jorde and Wooding, 2004). Previous studies have found that a RAAS 

polymorphism that serves as a marker for hypertrophy in one population might have a very low 

MAF in a different population (Wang et al., 2008).  

 

It is therefore necessary to prioritise certain genetic polymorphisms or makers. Markers chosen 

for genetic association studies basically fall into two main categories, namely polymorphisms 

chosen with the prior probability of functionality or markers chosen with the possibility of 

correlation (LD) with a true functional variant.   

 

Functional variants have the advantage of an increased prior likelihood of involvement in 

association studies, but on the other hand, these mutations typically have low heterozygosity 

values, as they impact directly on disease phenotypes and are subject to greater evolutionary 

selection than common variants with modest or no impact on disease phenotypes (Shastry, 

2007). Another possible disadvantage to this selection method is that there is no comprehensive 

list of all the possible functional variants in the human genome, or any genome for that matter, 
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at present. Researchers are therefore left to select variants that have a previously published 

functional effect or to select markers that confer marked changes on mRNA stability or the 

eventual amino acid sequence of the resulting protein, by, for example, influencing mRNA 

splicing or through non-synonymous exonic mutations. This approach is simply not possible for 

all genes and is, therefore, limited to well-characterised genes.  

 

However, the power of a particular study might be hampered by the use of genetic markers that 

have a low MAF, especially when one considers the small effect sizes that seem to be the norm 

in HCM hypertrophy modifier studies (Lechin et al., 1995; Mayosi et al., 2003), and the profound 

impact that these two parameters have on the statistical power to avoid spurious results 

(Donahue and Allen, 2005). It is, therefore, preferable (and common practice) to select markers 

with relatively high MAFs for modifier studies in complex disorders, especially if the intended 

cohort is relatively small, rather than functional variants with low MAFs. 

 

Using LD to guide marker selection allows for adequate, efficient and population-specific 

coverage of the gene under investigation, with the added benefit of the ability to prioritise 

markers with a fairly high MAF to ensure adequate statistical power to detect true significant 

effects. This approach to marker selection has been shown to reduce genotyping effort in 

association studies aimed at mapping quantitative trait loci (such as cardiac hypertrophy), 

without much loss of power (Weiss and Clark, 2002; Zhang et al., 2002; Zhang and Sun, 2005).  

 

It is, in addition, not necessary to cover all the informative markers in a population with a high 

MAF. By selecting markers based on their ability to capture most of the haplotype structure in a 

particular genomic area, we can limit the number of polymorphisms needed for a particular 

genetic association study. The degree of LD in the particular area of interest will in this case 

dictate the number of variants required for adequate coverage of a gene (Zhang et al., 2004). LD 

patterns typically vary greatly across the human genome, with some regions of low LD 

interspersed with regions of high LD (Gabriel et al., 2002; Johnson et al., 2001; Zhang et al., 

2004); LD also varies between different population groups and subgroups. Previous studies 

proposed that only a small number of tag SNPs are required to capture most of the haplotype 

structure in high LD regions of the human genome (Johnson et al., 2001; Patil et al., 2001; Stram, 

2004). In addition, previous reports state that LDU maps have greater power when compared to 

the centi-Morgan/kb map and that LDU maps are a powerful tool for disease gene association 

mapping using LD (Collins et al., 2004; Maniatis et al., 2005). 
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In the present study we prioritised markers with a MAF higher than 0.05, using LD-guided 

marker selection. HapMap CEU and YRI LD maps were used to select markers to cover the AGT, 

ACE, ACE2, CMA and AGTR1 genes by capturing the main haplotypes across these genes, while 

LDU mapping was used to select markers to cover the rest of the genes in the present study. 

There are currently no studies published in which the superiority of either method over the 

other has been assessed, to the best of our knowledge, and we, therefore, chose to use the LDU 

method over the tag SNP method, as the theoretical number of SNPs required to cover a chosen 

gene is generally fewer using the LDU method, resulting in better cost-effectiveness.  

 

It must however still be mentioned that while the use of markers with high MAFs offer benefits 

over scarcer functional variants in the search for modifier variants in HCM, the probability 

exists that the resultant association studies will not directly indentify functional variants that 

impact on gene function, but rather point towards genetic loci that warrant further 

investigation.  

 

4.2.3 Linkage disequilibrium (LD) 

In other words, the possibility then exists that variants that associate significantly with a 

disease phenotype are not in themselves functional, but that they are in LD with genetic variants 

that confer a true biological impact on the RAAS and, consequently, hypertrophy. In these cases 

we cannot pinpoint the precise location of a functional variant based on the results of a genetic 

association study alone as that particular variant is not only in LD with other (possibly rare or 

even yet undiscovered) mutations and polymorphisms, but also structural variants, the majority 

of which have not yet been identified (Frazer et al., 2009; McCarroll et al., 2008). 

  

In essence, genetic association points out a genetic region that correlates significantly with a 

particular phenotype. The size of this region is dependent on the measure of LD in that 

particular study population. For instance, Reich et al. found that LD typically extends 60 kb from 

common alleles in a United States population of north-European descent, while LD in a Nigerian 

population extends markedly less far (Reich et al., 2001).  

 

Drawing from examples within the RAAS, haplotype studies showed that aldosterone synthesis 

is affected by genotypes at CYP11B2, as well as the neighbouring CYP11B1, as LD exists across 

the entire CYP11B1/B2 locus in Caucasians (Imrie et al., 2006; Alvarez-Madrazo et al., 2009). 

The pattern of LD is, however, not uniform across populations of different ethnic origin (Conrad 

et al., 2006; Gabriel et al., 2002; Hinds et al., 2005). For instance, we generally see a higher 
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degree of LD in Caucasian populations than in African populations (Henn et al., 2011; Reich et 

al., 2001; Shifman et al., 2003).  

 

Patterns of LD are, therefore, variable across the genome and between different populations 

(Ardlie et al., 2002a; Conrad et al., 2006; Liu et al., 2004; McVean et al., 2004). Markers in close 

proximity to a particular functional genetic variant might, consequently, show less or more LD 

than markers further away, and it is presently not possible to predict which of theses markers 

will be in strongest LD with another neighbouring functional variant (Cardon and Bell, 2001). 

Consequently, significant associations with some markers might not be identified in a region 

that contains a disease-modifying variant, while significant associations might be detected at 

directly adjacent markers, which can lead to inconsistent results across studies (Cardon and 

Bell, 2001). Additionally, ignoring LD in association studies can inflate false positive rates 

(Schaid et al., 2002).   

 

It is, therefore, important to be familiar with the LD structure of the particular population under 

investigation. Ideally, one would use an LD map constructed from LD information from the 

particular population group under investigation. This is, however, not always possible as 

comprehensive LD maps for all the possible ethnic populations do not exist at present. The 

recent release of information of HapMap3 populations (Altshuler et al., 2010), which adds seven 

more populations to the initial four HapMap populations, offer the possibility of better-matched 

LD maps for some populations, such as the Maasai in Kinyawa, Kenya, but detailed LD 

information is, however, still lacking for most populations.  

 

In the absence of such a specific map, we used LD information from both the HapMap CEU and 

YRI populations as a proxy for our population for marker selection purposes as our cohort is 

comprised of individuals of mixed ancestry, as well as Caucasians, and due to the fact that the 

full datasets for these populations were available at the time of marker selection for this project.  

 

4.2.4 Population stratification 

However, false positive associations might also originate from undetected population 

substructure in any genetic association study (Cardon and Palmer, 2003; Clayton et al., 2005; 

Cooper et al., 2008; Hu and Ziv, 2008; Ioannidis et al., 2001; Koller et al., 2004). Association 

between a specific genotype and disease trait could, therefore, be confounded by population 

stratification in a study population consisting of a mixture of two or more subpopulations with 

different allele frequencies and disease risks, leading to a false positive association between a 
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certain variant and a particular disease trait (Colhoun et al., 2003), especially if the allele 

frequencies of the variant are vastly different in the subpopulations involved in the study. 

 

However, previous studies that modelled the possible effects of population stratification 

reported that its effects, if left unadjusted for, are likely to be small in most cases (Ardlie et al., 

2002b; Ioannidis et al., 2004; Millikan, 2001; Wacholder et al., 2000; Wang et al., 2004). In 

addition, a meta-analysis of 697 studies on 43 gene-disease associations provided evidence 

against large effects of population stratification, by showing consistent associations across 

different ethnic groups (Ioannidis et al., 2004). 

 

It is, however, still advisable to protect against the possible confounding effects of underlying 

population stratification in studies where small or moderate effect sizes are expected, as is 

usually the case in complex associations. This is because these studies typically require larger 

sample sizes and the effect of population stratification increases markedly with an increase in 

sample size (Little et al., 2009; Marchini et al., 2004). 

 

Family-based studies using the transmission disequilibrium test offer a unique solution as 

within family association is robust against population admixture and stratification as 

untransmitted and transmitted share the same genetic ancestry (Abecasis et al., 2000; Laird and 

Lange, 2006; Ott et al., 2011). However, to ensure maximum power, family-based studies need 

to incorporate the between-family information as well, which is still vulnerable to stratification 

issues (Price et al., 2010).  

 

Mixed effects models offer a comprehensive and practical approach to simultaneously address 

confounding due to family structure, cryptic relatedness and population stratification (Peloso et 

al., 2011; Price et al., 2010). Basically, this approach models disease phenotypes using a mixture 

of random and fixed effects. Fixed effects include the investigated marker, as well as optional 

covariates, such as age or BSA, while random effects are based on a phenotypic covariance 

matrix, modelled as the sum of non-heritable and heritable random variation (Price et al., 2010). 

Modelling population structure or ethnicity as a fixed effect provides an adequate measure to 

address population stratification issues, but requires running principal component analysis to 

infer genetic ancestry in the cohort in order to remove the effects of population stratification 

entirely (Price et al., 2010).  

 

In the present study we incorporate both the within- and the between family components of 

association in favour of increased statistical power, using mixed models. The use of these 
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models enabled us to (among others) adjust for family-relatedness and, consequently, 

admixture, to a certain degree. In addition we modelled self-reported ethnicity as a fixed effect 

to further adjust for population stratification.    

 

4.2.5 Confounders 

Confounding variables are factors that are related to both the disease and the particular disease 

trait under investigation. An apparent association between a disease trait and a given genetic 

polymorphism can sometimes, therefore, actually be attributed to confounding effects 

(Campbell and Rudan, 2002; Cordell and Clayton, 2005). The effect size of these confounding 

variables is, however, jointly related to its correlation with the factor under investigation, as 

well as to the eventual outcome; multiple confounders can contribute anywhere from modest 

effects to a substantial compound effect (Campbell and Rudan, 2002).  

 

Cardiac hypertrophy, in general, and in the context of HCM has a multifactorial origin, arising 

from a complex interaction between causal mutations and a multitude of susceptibility genes 

and environmental factors (Balakumar and Jagadeesh, 2010; Xu et al., 2010b). If one then 

considers these environmental influences and genetic factors that could impact on disease 

presentation and progression, and could, therefore, possibly confound statistical analyses, it 

becomes essential to take the underlying etiology of the disease into account when designing an 

HCM association study.  

 

Previous studies have reported correlations between body size (Chumlea et al., 2009; Garner et 

al., 2000), age (Fleg and Strait, 2011; Lasky-Su et al., 2008), gender (Maass et al., 2004; Okin et 

al., 2000), ethnicity (Okin et al., 2000), blood pressure (Roman et al., 2010), hypertension (Kraja 

et al., 2011; Levy et al., 1990b; Puntmann et al., 2010; Sipola et al., 2011), heart rate (Saba et al., 

2001) and LVH. In HCM in particular, one must also consider the possible differential effect of 

the distinct disease-causing mutations, or mutations in distinct genes, on the extent and 

distribution of cardiac hypertrophy (Ackerman et al., 2002; Arad et al., 2005; Marian and 

Roberts, 2001; Moolman et al., 1997; Varnava et al., 2001; Watkins et al., 1995a).  

 

In addition, previous studies reported context-dependent associations between RAAS variants 

and hypertrophy traits, where such associations were dependent on, among others, ethnicity 

(Jin et al., 2011b; Kuznetsova et al., 2005; Wang et al., 2008), blood pressure (Tang et al., 2002) 

and the primary HCM causal mutation (Perkins et al., 2005; Tesson et al., 1997).  
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Weak replication rates of genetic associations aimed at identifying modifiers for HCM might, 

therefore, reflect inconsistent adjustment for relevant hypertrophy confounders; failure to 

account for confounding variables directly influences the reproducibility of a particular study 

(Cardon and Palmer, 2003). In the present study, we adjusted all analyses for the identity of the 

primary HCM-causing mutation (R92WTNNT2, R403WMYH7, or A797TMYH7), self-reported ethnicity, 

hypertension diagnosis, mean arterial pressure, sex, BSA, heart rate and age at clinical 

assessment. We did, however, not adjust for circulating Ang II levels or other measures of 

plasma RAAS activity, which has the potential to mask or exaggerate the contribution of 

individual RAAS component to hypertrophy development.  

 

4.2.6 Phenotypic definition and distribution 

Phenotypic heterogeneity and errors in phenotypic classification, as well as genotype errors 

contribute significantly to the power of an association study (Gordon and Finch, 2005), while 

weak replication rates in genetic association results may also reflect inconsistency in 

phenotypic definition across studies (Cardon and Palmer, 2003). The responsibility of the 

researcher is, therefore, to minimize the chance for spurious results through careful study 

design and relevant statistical methods.  

 

In this study, we used a number of quantitative traits to describe hypertrophy. There are 

possible advantages to investigating quantitative phenotypes such as blood pressure or LVM, 

rather than a qualitatively described disease state, which can be difficult to ascertain precisely 

in diseases with diagnostic criteria that require human interpretation and discretion (Newton-

Cheh and Hirschhorn, 2005). Dichotomous traits, such as disease state, are sometimes difficult 

to pinpoint with exact precision, as is the case in some psychiatric disorders and, for example, 

hypertension, where criteria for diagnosis can vary between research groups. But, more 

importantly, most dichotomous traits do not give an indication of the severity of the disease. 

The heritability, i.e. the proportion of trait variance that can be ascribed to genetic factors as 

explained in section 2.7.5, also relies strongly on the accuracy of this measurement. The 

heritability of the particular trait then, in turn, affects the strength of the association study. 

Quantitative traits that are easily measured in a large number of individuals, and that show high 

heritability, are therefore preferable in association studies (Newton-Cheh and Hirschhorn, 

2005).  

 

In an analysis of published randomized trials evaluating the effects of antihypertensive therapy 

on left ventricular morphology, as assessed by echocardiography, Cuspidi et al. showed that the 

phenotypic definition of LVH is extremely variable across studies (Cuspidi et al., 2008), where 
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some studies used LVM as a proxy for LVH, while others used maximal left ventricular wall 

thickness. In HCM, the definition of LVH poses a potential problem. As discussed in Chapter 1, 

the phenotypic expression of HCM varies greatly between individuals, particularly with regard 

to the extent and distribution of hypertrophy. Cardiac hypertrophy in HCM is mostly 

asymmetrical, and HCM patients rarely exhibit uniform concentric hypertrophy. It is, therefore, 

difficult to quantify the extent and distribution of hypertrophy in a whole cohort using a single 

measurement.  

 

The most commonly studied phenotype in HCM is LVM, as determined by echocardiography, as 

this approach makes use of a readily available clinical tool (Myerson et al., 2002) and it provides 

a more comprehensive measure of the extent of hypertrophy than a single wall thickness 

measurement could do. The extent and distribution of LVH in HCM is, however, extremely 

variable and asymmetric, as discussed earlier, while echocardiographically determined LVM is 

derived from geometric assumptions; hence echocardiographically determined LVM may be an 

inaccurate measure of total LVH in the context of HCM. On the other hand, cardiac MRI is 

credited with being a more precise and reproducible measure of LVM than M-mode and 2D-

echocardiography, although the substantial costs involved in the infrastructure prohibits many 

investigators from using this technique. Moreover, the heritability of echocardiographically-

determined LVM is estimated to be between 0.17 and 0.69 as discussed earlier, while ECG and 

MRI measures are reported to be more heritable (Busjahn et al., 2009; Mayosi et al., 2002). 

These estimates are however heavily cohort-specific and sensitive to hypertrophy confounders. 

Thus, a great need exists for a clear consensus on the most appropriate measure of hypertrophy 

across HCM association studies. 

 

On the other hand, single measurements are difficult to interpret clinically as no single 

measurement could give the most accurate representation of the degree of hypertrophy in all 

affected individuals, given the asymmetry and the variability of the distribution of LVH in HCM. 

One way to address this issue is to use composite scores that encompass a number of 

hypertrophy measurements to describe the extent of hypertrophy. A number of such scores, 

such as the Wigle score (Wigle et al., 1985) and the Maron-Spirito score, exist (Spirito and 

Maron, 1990); however, it is still uncertain which composite score offers the best estimate of the 

extent of hypertrophy. It is also debatable whether these two scores offer the best description of 

ventricle-wide LVH. The Maron-Spirito score is a quantitative appraisal of the extent of 

hypertrophy and is the sum of the maximum wall thickness obtained from four left ventricular 

segments at the mitral and papillary muscle levels of the heart. This score might, however, not 

perform equally well across all HCM patient groups in accurately describing the extent and 
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distribution of LVH, especially where the hypertrophy in localised to a certain region, like, for 

instance, in the case of a less frequent form of HCM where LVH is restricted to the apex. A 

weighted sum of the cardiac wall thickness measurements might offer a better appraisal of 

overall LVH in such a scenario. The Wigle score, on the other hand, is potentially vulnerable to 

differences in interpretation between clinicians as it is a semi-quantitative score consisting of a 

number of subjective scores added together to form an overall impression of the extent of 

hypertrophy.  

 

In the absence of a consensus measurement that accurately reflects the degree and distribution 

of hypertrophy in HCM; we investigated six hypertrophy measurements. In total, 16 wall 

thickness measurements were taken at three levels of the heart to estimate the distribution of 

hypertrophy, using 2D and M-mode echocardiography, by a single cardiologist. We then used 

mLVWT, mPWT and mIVST to indicate the distribution of hypertrophy. Additionally, we 

determined LVM by echocardiography and two composite hypertrophy scores as an indication 

of the extent of hypertrophy. The CWT score is the sum of all 16 cardiac wall thickness 

measurements, while the composite hypertrophy score derived by principal component 

analysis, PC1, best described the variability in these 16 echocardiographically determined wall 

thickness measurements in our cohort.  

 

It must also be mentioned that most statistical packages for association analysis of quantitative 

traits assume a normal distribution of trait values (Diao and Lin, 2006; Lange et al., 2002). 

Outliers with extreme values can, however, influence the analysis outcome, leading to 

inappropriately low p-values if the trait distribution deviates from the assumed normal 

distribution (Newton-Cheh and Hirschhorn, 2005). This can be addressed using appropriate 

statistical transformation to achieve normality (Newton-Cheh and Hirschhorn, 2005). In the 

present study, we transformed all hypertrophy traits to approximate normality using quantile 

normalization, prior to the association analysis (Pilia et al., 2006).  

 

4.2.7 Multiple testing 

Multiple testing in any cohort can result in an increased probability of obtaining a false positive 

result (type I error). A popular solution for this is to use a Bonferroni adjustment. This method 

assumes that all the performed tests are independent and each p-value is subsequently 

multiplied with the number of tests performed. However, Bonferroni corrections can be overly 

stringent and possibly over-correct for false-positives by assuming complete independence; this 

is obviously not the case in family-based association studies (Cardon and Bell, 2001; Perneger, 

1998). Furthermore, Bayesian methods for multiple testing correction require prior knowledge 
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of the probability of involvement, which is presently unknown for most genetic variants 

(Campbell and Rudan, 2002; Thomas and Clayton, 2004).  

  

The hypertrophy traits investigated in the present study are correlated as they are all at least in 

part derived from the same 16 wall thickness measurements, while a degree of LD, although 

sometimes not complete, exists between our chosen markers. The tests that we perform are 

therefore not entirely independent and we consequently did not use corrections for multiple 

testing.  

 

That said, one must also consider that overly conservative adjustment for multiple testing, 

especially when there is currently no consensus on the appropriate statistical method for 

multiple testing corrections in extended families and complex phenotypes, might leave true 

biological effects undetected if initial exploratory studies are discarded or discouraged in favour 

of controlling the false-positive rate (Thomas and Clayton, 2004). However, the necessity for 

valid replication cannot be overstated in genetic association studies, given the statistical 

possibility of false positive and negative results (Ioannidis et al., 2001) and we agree that initial 

studies, such as the present investigation, that do not employ multiple testing corrections 

should be viewed as “hypothesis generating” but can, upon subsequent replication, be of value 

in elucidating the molecular underpinning of cardiovascular disease (Crossman and Watkins, 

2004).  

 

4.2.8 Compound genetic effects 

Finally, the possibility exists that a given association study identifies a real correlation between 

a variant and a disease phenotype, but nevertheless would not reproducible if the underlying 

genetic effect of the variant is weak (Hirschhorn et al., 2002). This is particularly applicable in 

association studies on complex cardiovascular phenotypes, such as cardiac hypertrophy in HCM, 

where relatively small effect sizes are typically reported (Donahue and Allen, 2005).  

 

In the following discussion on the association results, we provide estimates of effect size in an 

attempt to quantify the contribution of RAAS variants to hypertrophy. The effect sizes reported 

here are modest, although comparable to those reported by previous studies (Lechin et al., 

1995; Mayosi et al., 2003; Sookoian et al., 2008; Wang et al., 2006). The clinical relevance might, 

however, improve if one considers the compound effect of a number of RAAS polymorphisms, 

where each contributes a modest amount to the eventual hypertrophic phenotype.  
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However, the compound effect of these RAAS variants on hypertrophy might not necessarily be 

additive in nature. The influence of epistasis where the effects of one locus is amplified, altered 

or even masked by another locus (Cordell, 2002), has not yet been considered extensively in 

HCM. It is conceivable that such an interaction should exist between RAAS variants due to their 

complex biological functions; moreover, such epistatic effects have been reported between 

RAAS variants in atrial fibrillation (Tsai et al., 2004), coronary atherosclerosis (Ye et al., 2003), 

hypertension (Williams et al., 2004) and coronary artery disease (Tsai et al., 2007). There is, 

therefore, a need for a comprehensive analysis that focuses on the compound effects of multiple 

hypertrophy modifier loci within the RAAS to gain the most accurate understanding of its role in 

hypertrophy development.  

 

While we did not perform formal statistical analyses to detect epistasis in the present study, we 

investigated RAAS gene haplotypes as a proxy for within gene epistatic effects. In addition, we 

aimed to identify a subset of variants from multiple RAAS genes that, together, confer a 

measurable risk of LVH development in the present cohort as a proxy for epistatic effects 

between genes.  

 

4.3 Use of haplotypes in association studies 

The use of haplotypes offers an advantage over single SNP association approaches by providing 

additional power for mapping disease modifier genes while factoring in the interdependency 

among genetic markers studies, as it considers the compound effect of a number of SNP loci 

(Clark, 2004; Liu et al., 2008) 

 

Haplotypes are constituted of the alleles present at multiple genetic markers inherited from the 

same parent (Ott and Lucek, 1998). Haplotypes are vital to elucidating and understanding the 

LD pattern across the human genome as LD measures derived from marker pairs, such as D’ and 

r2, cannot precisely capture higher-order interdependency among markers (Ardlie et al., 2002a; 

Liu et al., 2008; Weiss and Clark, 2002). The best way to understand genomic LD patterns is in 

fact to know the actual inherited haplotypes (Daly et al., 2001; Liu et al., 2008).  

 

Virtually all genetic association methods that are based on single markers can be applied to the 

analysis of haplotypes, as previously identified haplotypes can be considered as alleles for a 

single multi-allelic marker (Liu et al., 2008). It has been suggested that haplotype-based 

association tests offer improved power, compared to single SNP association tests in both 

population-based and family-based approaches (Akey et al., 2001; Bader, 2001; Botstein and 

Risch, 2003; Clark, 2004; De La Vega et al., 2005; Li and Jiang, 2005; Martin et al., 2000; Morris 
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and Kaplan, 2002; Zaykin et al., 2002; Zhang et al., 2002). This is hypothesised to be due to the 

ancestral genetic structure that is captured by these haplotypes (Akey et al., 2001).  

 

The power of single variant-based association methods rely on the measure of LD between the 

disease-susceptibility locus and the investigated marker locus. The difficulty is that these 

methods do not necessarily incorporate LD information from flanking markers, which can 

potentially lead to a loss of power (Liu et al., 2008).  

 

Haplotype-based methods are regarded as being more powerful than single SNP studies, as 

these consider LD information from multiple markers simultaneously. For instance, the 

possibility exists that several markers within a small genomic region might be in LD with both 

the disease locus and with each other. In such a scenario, single marker-based LD methods 

might not capture all the available LD information which is contained in multi-locus haplotypes 

(Akey et al., 2001; Morris and Kaplan, 2002). Akey et al. found that when a distance of 1 cM is 

assumed between adjacent markers and the disease susceptibility locus is in the middle of these 

markers, the sample sizes required by a two- or four marker locus haplotype association test is 

approximately one-half and one-quarter, respectively, of the sample size required for the 

equivalent single marker association test (Akey et al., 2001). 

 

Moreover, haplotypes offer improved power to detect disease QTLs when using haplotypes 

compiled of markers selected to capture the LD structure in a gene (Li et al., 2006). In addition, 

haplotypes of two or more SNPs generally have a higher probability than individual SNPs of 

showing useful LD with a disease mutation, although exceptions are described (Garner and 

Slatkin, 2003). Therefore, the use of haplotypes offers an attractive approach to complex disease 

mapping as haplotypes can be tested for association as a proxy for untyped causal variants 

(Newton-Cheh and Hirschhorn, 2005). However, this depends on whether haplotypes can 

capture other markers more efficiently than multiple markers considered independently. It has 

been suggested that multi-marker combinations of tag SNPs may capture more untyped variants 

and therefore allow these SNPs to be used more efficiently (Newton-Cheh and Hirschhorn, 

2005). However, this might not be completely true in all situations. In a population such as that 

investigated in the present study, where a detailed LD map of the specific population is not 

available, one has to use other, better characterised populations as a proxy for tag-SNP selection 

with the understanding that some information might still be lost through this approach due to 

the difference in LD structure between the proxy- and the true study population. 
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The use of haplotypes in association studies, furthermore, allows for the simultaneous 

investigation of multiple potentially disease-modifying variants. This would allow association 

studies to pick up effects of markers that have undetectable effects when considered 

individually, but act along with others though epistatic effects to markedly influence the 

phenotype. In addition, it allows one to test haplotypic combinations of markers with weak 

individual effects for yet stronger combined effects (Newton-Cheh and Hirschhorn, 2005). For 

instance, previous studies have shown that combined effects of multiple sequence variants on 

promoter activity or protein structure may actually precipitate or exacerbate the disease 

phenotype, even when the individual SNPs had poor predictive power (Drysdale et al., 2000; 

Joosten et al., 2001; Kankova et al., 2010). 

 

In addition, it is known that the functionality of a particular protein is influenced and sometimes 

actually determined by how it is folded. Protein folding is determined by the amino acid 

sequence of the protein, which is in turn determined by DNA sequence variation. Several 

nucleotide changes within the coding regions of the same gene, constituting a particular 

haplotype, can consequently interact to have a marked effect on the eventual protein and 

consequently its function (Clark, 2004; Schaid, 2004). A number of such examples in humans 

exists in the literature (Clark et al., 1998; Hollox et al., 2001; Tavtigian et al., 2001). 

 

Notwithstanding the increase in statistical power, the use of haplotypes in preference to SNPs 

adds complexity to association studies. Haplotypes can unfortunately be technologically 

demanding and expensive to measure with direct molecular techniques (Douglas et al., 2001; 

Michalatos-Beloin et al., 1996; Tost et al., 2002; Yan et al., 2000). Most studies consequently 

preferentially used haplotypes that were inferred or estimated statistically from multilocus 

genotyping data for QTL mapping (Bagos, 2011; Cardon and Abecasis, 2003; Schaid, 2004).  

 

However, the number of possible haplotypes increases dramatically with the addition of each 

new marker and many haplotypes will consequently have low frequencies, while the possibility 

for ambiguity of the actual haplotype increases due to incomplete datasets that is frequent with 

larger extended families. Constructing an individual’s haplotypes using genotype data from 

close relatives can decrease ambiguity in the haplotype (haplotype inference), while phased 

haplotypes can offer substantial improvements to association studies (Becker and Knapp, 2002; 

Browning and Browning, 2011; Clark, 2004; Liu et al., 2008; Rohde and Fuerst, 2001; Tewhey et 

al., 2011). Thus, the incorporation of pedigree information has been shown to improve the 

precision for haplotype frequency estimation and the accuracy for haplotype reconstruction 

(Zhang and Zhao, 2006). Haplotype ambiguity might, however, still be an issue of concern when 
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a large number of markers is used, as the likelihood of incomplete datasets increases (Hodge et 

al., 1999; Van Steen et al., 2007). 

 

There are numerous computational and statistical methods for determining or inferring 

haplotypes using pedigrees, each with its own strengths and weaknesses, as reviewed 

previously (Liu et al., 2008; Schaid, 2004). Basically, exact likelihood-based methods can only 

handle small pedigrees with fewer markers, due to the extensive computations required, while 

approximate likelihood-based methods are more suited to larger pedigrees and many marker 

loci (Liu et al., 2008; Schaid, 2004) 

 

For the present study we used SimWalk2 (Sobel and Lange, 1996) as this method can infer a 

most likely pair of haplotypes for each individual in large, extended pedigrees, while dealing 

with a certain proportion of missing data. However, one disadvantage to haplotype association 

analysis is the fact that no method for haplotype estimation or determination exists for X-linked 

markers at present. Software for phased haplotype estimation is currently limited to autosomal 

genes, while it would be nearly impossible to correctly assign and phase haplotypes using 

manual haplotype assignment in large, extended pedigrees, such as those in the present study; 

especially where there are some genotypes missing, due to differing marker genotyping 

efficiencies.  

 

4.4 Heritability 

The heritability statistic, h2, refers to the proportion of variability in the disease phenotype 

under investigation that can be attributed to genetic factors. We expect that most diseases with 

familial clustering should have at least some genetic component, but it is essential in genetic 

association studies to know what proportion of variability in the quantitative phenotype chosen 

to represent disease variability can be explained by environmental influences and what 

proportion is attributable to genetic factors, to ensure that we identify true genetic modifiers. If 

no significant heritable component can be found for a particular disease trait, there is simply no 

grounds for continuing with a genetic association study, as there is no genetic component 

influencing variability of the disease phenotype.  

 

However, a particular modifier variant will not necessarily explain the entire heritable 

component of a disease; in fact, we find that most complex disease heritabilities rely on the 

effects of a number of modifier loci, each explaining only a modest proportion of the heritability 

of a particular trait (Manolio et al., 2009).   
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The heritability value reported here for the CWT score and mLVWT is in accordance with earlier 

values reported for cardiac wall thickness (Mayosi et al., 2002; Swan et al., 2003). However, 

previously published heritability estimates for echocardiographically determined LVM ranged 

from 17% to 69% in different populations, with the lowest values reported in healthy adults 

and the highest in monozygotic twins (Bella et al., 2004; De Simone et al., 2007; Jin et al., 2011a; 

Juo et al., 2005; Kotchen et al., 2000; Mayosi et al., 2002; Post et al., 1997; Swan et al., 2003). 

Despite the range of LVM heritability values reported in these studies, all of them agreed that 

adjustment for known hypertrophy confounders such as age, sex and blood pressure 

significantly affected these values. In the Northern Manhattan Family Study, for instance, the 

heritability of LVM was estimated at 65% in a model adjusted for age and gender, while this 

value dropped to 49% in a model adjusted for age, sex, weight, height, systolic blood pressure, 

diabetes, and antihypertensive medication (Juo et al., 2005). Furthermore, the heritability of 

LVM can also be influenced by the method used to determine the trait: LVM, as determined by 

cardiac MRI, was estimated at 84% after adjustment for age and sex in a recent study on twins 

(Busjahn et al., 2009).  

 

The heritability estimates reported in this multigenerational HCM founder family cohort then 

offers a relevant appraisal of the heritability of the six investigated traits, as it is independent of 

the known confounding effects of the primary HCM causal mutation, as well as other known 

hypertrophy covariates (Table 3.4). After adjustment for these covariates, we report a strong 

heritable component for all six hypertrophy traits used in this study.   

 

4.5 Results from the association analyses 

4.5.1 Angiotensinogen  

Kang et al. crossed angiotensinogen-deficient mice with transgenic mice expressing the rat 

angiotensinogen gene exclusively in the brain and liver; the resulting crossbred animals did not 

express angiotensinogen in the kidney or the heart (Kang et al., 2002). Interestingly, these 

crossbred animals showed markedly reduced cardiac hypertrophy and fibrosis when compared 

to mice expressing angiotensinogen in the liver, brain and heart, even though blood pressure 

was similar (Kang et al., 2002). Moreover, transgenic mice overexpressing the rat 

angiotensinogen gene developed chronic hypertension coupled with extensive cardiac 

hypertrophy and impaired cardiac function (Xu et al., 2009). These studies provide evidence for 

the hypertrophic effects of angiotensinogen.  

 

Studies aimed at investigating the effect of AGT polymorphisms on LVH, both within the context 

of hypertension and HCM, have, however, yielded inconsistent results, despite the clear 
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biological link between AGT and cardiac hypertrophy. The M235T (rs699) SNP, in particular, 

has been associated with LVM in some hypertensive cohorts (Jeng, 1999; Karjalainen et al., 

1999), but not all (Iwai et al., 1995; Kauma et al., 1998). Two meta-analyses revealed that this 

polymorphism serves as a marker for hypertension in Caucasians, although no correlation could 

be found between this polymorphism and cardiovascular complications (Sethi et al., 2003; 

Staessen et al., 1999).  

 

There are of course a number of factors that could account for these weak replication rates in 

association studies as discussed in the previous sections, but inconsistent association between 

AGT polymorphisms and LVH most likely stems from inconsistent adjustment for common 

hypertrophy confounders, coupled with a difference in allele frequency of AGT variants across 

populations of different ethnic origin (Corvol et al., 1999; Sethi et al., 2003; Staessen et al., 

1999), as well as the varying AGT haplotype structure across populations (Nakajima et al., 

2002).   

 

In the EPOGH study on 824 individuals 221 nuclear families from three Caucasian populations, 

respectively from Poland, Russia and Italy, Kuznetsova et al. reported a strong context 

dependence for association between AGT -532 C/T and -6 G/A polymorphisms and LVMindex, as 

well as mean cardiac wall thickness (Kuznetsova et al., 2005). For instance, they found a 

significant association between both LVMindex and mean cardiac wall thickness and the -532 C/T 

polymorphism, alone and combined with the -6 G/A polymorphism in a haplotype, in Slavic, but 

not Italian males in population-based, as well as family-based analyses.  However, in women, 

LVMindex was neither associated with single AGT variants nor with the haplotypes. They also 

reported that the significant association that they observed between these polymorphisms and 

both hypertrophy indices were dependent on age, gender, ecogenetic context and appeared to 

be modulated by the trophic effects of salt intake on LVM.  

 

A similar effect was observed in 605 predominantly Caucasian patients obtained from the 

HyperGEN cohort (Tang et al., 2002). LVM, as well as LVMindex, and the M235-T allele was 

negatively associated in hypertensive patients from this cohort, but positively associated in 

normotensive patients, in a model adjusted for the potential confounding effect of weight, 

height, age, sex, systolic blood pressure, diastolic blood pressure, presence of diabetes, and 

antihypertensive medication use. The authors attributed these findings to the differential effects 

of the respective antihypertensive medications or other unknown hypertrophy confounders 

(Tang et al., 2002). In addition, studies on animals expressing human -6 G/A | M235T haplotype 
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combinations report that the cardiovascular effects of these haplotypes were largely dependent 

on environmental influences (Grobe et al., 2010).  

 

Similarly, we find inconsistent study designs and adjustment for relevant hypertrophy 

confounders in HCM. Previous studies reported a higher M235-T allele frequency in Japanese 

HCM patients, when compared to their unaffected siblings and offspring (Ishanov et al., 1997; 

Kawaguchi, 2003). A similar study on 150 South Indian HCM (90 sporadic HCM and 60 familial 

HCM) patients and 165 age- and sex-matched healthy controls, without known hypertension or 

LVH, also reported significant differences in M235T allele frequencies between patients with 

sporadic HCM and controls, although these findings were not replicated in patients with familial 

HCM (Manohar Rao et al., 2010). In contrast, Yamada et al. found no significant association 

between this variant and non-familial HCM in a Japanese cohort (Yamada et al., 1997). Such 

studies are, however, difficult to interpret clinically, due to small sample sizes, inadequate 

adjustment for known hypertrophy confounders and more importantly, due to the fact that 

these studies did not investigate a clearly defined HCM phenotype, especially when the 

underlying heterogeneity in HCM presentation is well documented.  

  

Brugada et al. reported that none of the commonly studied AGT SNPs, viz. M235T, T174M, and -

6 G/A, had a significant influence on a composite LVH score or LVM in a cohort of 108 unrelated 

HCM patients (Brugada et al., 1997). Similarly, the M235T polymorphism was not found to 

associate significantly with left ventricular wall thickness in a cohort of 389 unrelated patients 

with HCM (Perkins et al., 2005).  

 

In the present study, we found significant evidence for association between rs4762 (T174M) 

and the CWT score. The T-allele of this polymorphism was found to significantly decrease the 

CWT score by 1.03 mm. We did however not find association between the well-studied AGT 

M235T (rs699) or -6 G/A (rs5051) polymorphisms and any of the investigated hypertrophy 

indices. In contrast to previous investigations (Brugada et al., 1997; Ishanov et al., 1997; 

Kawaguchi, 2003; Manohar Rao et al., 2010; Perkins et al., 2005; Yamada et al., 1997), we 

adjusted all analyses for the primary HCM-causal mutation, as well as for other known 

hypertrophy covariates. This might be an explanation for the inconsistent association between 

AGT variants and hypertrophy. In fact, our results show that the M235T and -6 G/A 

polymorphisms had significantly different allelic effects on LVM between the R403WMYH7 and 

A797TMYH7 groups.  
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Curiously, we did not find a statistically significant association between any of the identified 

AGT haplotypes and the investigated hypertrophy traits. This is in agreement with a previous 

study on 777 individuals from the HyperGEN study, which also found no significant association 

between AGT haplotypes and LVH, after adjustment for age, sex, hypertension status, and heart 

rate (Rasmussen-Torvik et al., 2005).   

 

One possible explanation is that the effects of the rs4762 could have been diluted or masked in 

the 5-SNP haplotype. However, in terms of causality, it remains difficult to pinpoint the variant 

responsible for association significant associations with AGT variants due to the tight LD 

structure of the AGT gene observed in the present and other investigations (Rasmussen-Torvik 

et al., 2005).  

 

Previous studies have reported that the significant associations seen with the M235T variant 

are actually attributable to the fact that this variant is in tight LD with the -6G/A variant in the 

promoter of the AGT gene (Inoue et al., 1997; Tang et al., 2002). However, studies with 

transgenic mice expressing either the -6G/235M or the -6A/235T human AGT haplotype, found 

that both transgenes exhibited the same transcriptional activity and produced similar plasma 

levels of human Angiotensinogen (Cvetkovic et al., 2002). Due to fact that LD extends over a few 

kilobases in the UTR region of this gene, there might be more, yet unidentified, cis acting genetic 

factors influencing the effect of AGT on cardiac hypertrophy and more studies are, therefore, 

needed to fully elucidate the contribution of this locus to hypertrophy in general and within the 

context of HCM.  

  

4.5.2 Renin and renin-associated genes 

The RAAS can be inhibited efficiently at several levels of the cascade, but interruption of Ang I 

generation by renin is considered most efficacious as direct renin inhibition uniquely decreases 

plasma renin activity, which is not achieved through ACE and Ang receptor blockers (Balakumar 

and Jagadeesh, 2010a; Westermann et al., 2008b). The recent development of a direct renin 

inhibitor, aliskiren, therefore renewed interest in renin as a potential therapeutic target in 

cardiac hypertrophy management (Sever et al., 2009; Verdecchia et al., 2008). 

 

Direct renin inhibitors were also proven to be at least as effective as ACE inhibition and Ang 

receptor blockade in LVH reduction in double-transgenic rats and mice expressing human REN 

and AGT (Major et al., 2008; Pilz et al., 2005), as well as in spontaneously hypertensive rats (Van 

Esch et al., 2010). Aliskiren was also shown to reduce cardiac remodelling and hypertrophy 

after myocardial infarction in mice, independent of its effect on blood pressure (Westermann et 
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al., 2008a). The recent ALLAY study on 465 patients with hypertension tested the effectiveness 

of aliskiren on LVH reduction, while comparing its effects to the Ang-receptor blocker losartan 

(Solomon et al., 2009). LVMindex was significantly reduced in both treatment groups, 

independent of blood pressure lowering effects. There were, however, no statistically significant 

differences in effect between the two treatment groups, leading the authors to conclude that 

aliskiren was as effective as losartan in reducing LVH (Solomon et al., 2009).  

 

While there is ample evidence reporting an association between REN polymorphisms and 

hypertension (Ahmad et al., 2005b; Frossard et al., 2001), to the best of our knowledge, there 

are no studies that investigate the effects of REN gene variants on hypertrophy development.   

 

We therefore complement the findings of these animal studies and clinical trials by reporting a 

significant association between REN haplotype 4 (GGTGGC) and a decrease of 29.1 g in LVM. 

Two other haplotypes were also found to be associated with different effects between the 

different HCM mutation groups. Haplotype 1 (GTCTAC) was associated with a 50.33 g lower 

effect on LVM in the R92WTNNT2 group compared to the R403WMYH7 group, while haplotype 7 

(GTCTGC) associated with a significantly higher effect of 4.05 mm on the CWT score and a 0.25 

higher PC1 in the R92WTNNT2 group than in the R403WMYH7 group. Interestingly, these 

haplotypes only differ in one respect, namely the allele at rs10900555. This points towards a 

context dependent effect of this SNP, but further research is needed to confirm these findings as 

haplotype 7 was only observed in 2.6 % of the cohort.   

 

We did, however, not find association between single REN variants and any of the investigated 

hypertrophy traits (Figure 3.10). This might be due to the fact that these polymorphisms act 

together to markedly affect hypertrophy development, while the individual effects are too weak 

to detect.  

 

In the present study we also investigated the effect of three proteins that associate with renin 

function in vivo on hypertrophy development in HCM, viz. RnBP, M6PR and the PRR. Research 

on these proteins is sparse at present, but preliminary studies show that the effects of these 

three proteins might be crucial in understanding renin’s cellular hypertrophic functions that are 

independent of blood pressure regulation (Nguyen et al., 2003).    

 

Previous studies have shown that the heart can generate renin locally from circulating prorenin 

by proteolytic cleavage and non-proteolytic activation through the PRRs in myocardial tissues 

(Nguyen et al., 2002; Nguyen and Danser, 2008; Nguyen and Muller, 2010; Reudelhuber et al., 
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1994). Prorenin might also offer significant physiological relevance in hypertrophy 

development as plasma concentrations of prorenin is ten times greater than that of renin 

(Danser et al., 1998), while circulating prorenin levels may reach as high as 100 times the level 

of renin under conditions of renal damage and cardiac hypertrophy (Susic et al., 2008).  

 

Transgenic rats expressing prorenin exclusively in the liver demonstrated a 400-fold increase in 

plasma prorenin. These animals exhibited, but developed severe liver fibrosis, as well as cardiac 

hypertrophy, despite normal plasma renin levels and blood pressure (Veniant et al., 1996). 

Later, Saris et al. found that prorenin bound to the PRR activated the p38 MAPK/HSP27 

pathway in neonatal rat cardiomyocytes (Saris et al., 2006), which they postulated to explain 

the severe hypertrophy observed by Veniant et al.  

 

Earlier studies have reported that renin and prorenin per se exerts hypertrophic cellular effects, 

independent of Ang II generation, possibly through involvement of the PRR (Methot et al., 1999; 

Nguyen et al., 1996; Prescott et al., 2002). Later, studies showed that renin and prorenin are 

able to induce DNA synthesis and activate profibrotic, inflammatory and hypertrophic signalling 

pathways that function independent of Ang II generation through binding with the PRR (Huang 

et al., 2006; Huang et al., 2007b; Ichihara et al., 2006; Nguyen and Muller, 2010). This includes 

activation of the p42/p44 MAPK intracellular pathways, release of PAI-1, as well as TGF-β1 

(Cousin et al., 2010). Interestingly, these pro-hypertrophic signalling cascades are not inhibited 

by ACE inhibitors, aliskiren or AT1R blockers (Balakumar and Jagadeesh, 2010a).  

 

Recently, Cruciat et al. proposed a renin-independent mechanism for the PRR, as this protein 

acted as an adaptor between Wnt receptors and the v-H+-ATPase complex in human cultured 

cells (Cruciat et al., 2010). This link between Wnt signalling and the PRR is especially intriguing 

as aberrant Wnt signalling has been linked to cardiac hypertrophy (Balakumar and Jagadeesh, 

2010b). Connelly et al. later confirmed the co-localization of PRR with v-H+-ATPase in the heart 

and reported an increased expression of PRR in the hearts of transgenic animals with diabetic 

cardiomyopathy (Connelly et al., 2011). These animals developed diastolic dysfunction, 

interstitial fibrosis and cardiomyocyte hypertrophy, while PRR expression was reduced with 

renin inhibition, which resulted in improved cardiac structure and function (Connelly et al., 

2011).  

 

The PRR therefore offers an Ang II-independent link between renin, prorenin and cardiac 

hypertrophy. However, in the present study, we found no statistically significant evidence for 

association between the investigated ATP6AP2 variants and any of the hypertrophy traits as 

Stellenbosch University  http://scholar.sun.ac.za



Chapter IV 

 

195 
 

evident from Figure 3.13. On the other hand, we observed a difference in effect size caused by 

the rs2968917 polymorphism in ATP6AP2 in the R403WMYH7 group compared to the A797TMYH7 

group, which might point toward context-dependent effects. We were, unfortunately, not able to 

estimate haplotypes for ATP6AP2 as there are currently no documented methods available for 

estimating haplotypes for X-linked genes.  

 

Furthermore, human renin and prorenin contains the M6P signal that is necessary to bind to 

M6P/IGFII receptors and these receptor have been shown to bind prorenin and renin on 

cardiomyocytes (Van den Eijnden et al., 2001; Van Kesteren et al., 1997a), and to generate renin 

from prorenin through proteolytic cleavage (Saris et al., 2001a). However, binding of prorenin 

to M6P/IGFII receptors on the cell membrane of neonatal rat cardiomyocytes resulted in 

enhanced DNA and protein synthesis in the presence of angiotensinogen, but not in its absence, 

while intracellular prorenin activation through these receptors did not result in intracellular or 

extracellular Ang II generation, leading the authors to conclude that these effects were mediated 

through the catalytic activity of prorenin per se, rather than intracellular activation (Saris et al., 

2002). The M6P/IGFII receptor has consequently been suggested rather to act as a clearance 

receptor, as it exclusively binds glycosylated forms of prorenin and renin, which is followed by 

rapid internalization of the M6PR/(pro)renin complex, intracellular proteolytic activation to 

mature renin and subsequent degradation (Nguyen, 2006).  

 

However, another avenue of research suggests that this receptor is essential during early 

cardiac development (McCormick et al., 1996), while complete M6P/IGFII receptor knockout 

results in foetal overgrowth and neonatal lethality (Wylie et al., 2003). In addition, a lone study 

associating M6P/IGFII receptor down-regulation with decreased sensitivity of cardiomyocytes 

to TNF- and hypoxia-induced apoptosis, suggests that this receptor might be involved in cell 

growth and apoptotic signalling pathways in the heart (Chen et al., 2004).  

 

In the present study we find strong evidence for association between M6PR variants and LVH as 

evident from Figures 3.14 and 3.15. The C-allele of rs1805725 in M6PR was significantly 

associated with a 15.1 g decrease in LVM, a 1.28 mm decrease in mIVST, a 0.62 mm decrease in 

CWT score, as well as a 0.04 decrease in PC1. Interestingly, both haplotypes containing the C-

allele for the rs987917 SNP, viz. AC and CC, were found to associate significantly with 

hypertrophy traits (Table 3.12). When this C-allele is accompanied by an A-allele at rs1805725, 

the resulting haplotype is associated with a 0.67 mm increase in mLVWT. However, when the 

rs987917 C-allele is accompanied by a C-allele at rs1805725, the resulting haplotype is 

associated with much larger effects, namely a 44.9 g decrease in LVM, a 3.73 mm decrease in 
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mIVST, a 3.39 mm decrease in mLVWT, a 1.59 mm decrease in CWT score, as well as a 0.10 

decrease in PC1. The rs1805725 polymorphism, therefore, appears to have a strong 

independent effect on hypertrophy development, which is strengthened by the rs987917 

polymorphism.  

 

A preliminary HapMap and NCBI gene search showed no flanking genes with obvious 

cardiovascular functions, so it is unlikely that the association signal is originating from a 

neighbouring gene. Further research is therefore warranted to fully elucidate the cardiac-

specific functions of this gene in order to clarify the link between M6PR variants and cardiac 

hypertrophy observed in the present study. One might speculate that improper function of the 

M6PR might lead to prorenin accumulation, which has been shown to exert hypertrophic effects 

(Veniant et al., 1996), but there is currently no evidence to back this hypothesis.  

 

In vitro studies have shown that the RnBP is able to inhibit renin’s activity upon binding to it 

(Takahashi et al., 1994). In renal homogenates, RnBP forms a tight heteromeric complex with 

renin, designated as “high molecular weight renin” (Takahashi et al., 1983), the formation of 

which is dependent on a leucine zipper motif in RnBP (Inoue et al., 1991). Binding of RnBP to 

renin has been shown to inhibit angiotensinogen to Ang I conversion in mouse pituitary AtT-20 

cells transfected with human renin and RnBP cDNAs, while the expression of RnBP inhibits 

active renin secretion in a dose-dependent manner (Inoue et al., 1992). The T61C 

polymorphism in intron 6 of RENBP was later shown to associate significantly with increased 

plasma prorenin, as well as with the renin/prorenin ratio, but not with circulating renin, blood 

pressure, heart rate or LVM (Knoll et al., 1997). 

 

However, knockout mice lacking RnBP were normotensive, with normal renin levels, and did 

not exhibit any obvious adverse phenotypes (Schmitz et al., 2000). On the other hand, 

Bohlmeyer et al. showed that RnBP was selectively activated in failing human hearts 

(Bohlmeyer et al., 2003). Using ribonuclease protection assays, this group found increased 

RENBP gene expression in failing hearts from patients with ischaemic and idiopathic dilated 

cardiomyopathies, when compared to healthy, non-failing hearts (Bohlmeyer et al., 2003). In 

addition, reverse transcriptase-PCR demonstrated RENBP expression in endothelial cells, but 

not in the cardiomyocytes of the patients with non-failing hearts. However, RENBP expression 

was not detectable in endothelial cells, but was selectively activated in cardiomyocytes of failing 

hearts (Bohlmeyer et al., 2003). One can then speculate that RnBP only has cardiovascular 

functions under certain pathological conditions, which might possibly relate to the 

cardioprotective effects proposed for RnBP though its inhibitory effect on renin. RnBP could 
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possibly be recruited to decrease renin activity, which would lead to decreased Ang I and 

ultimately Ang II, which has known hypertrophic effects on the heart.  

 

In the present study, the A-allele of rs762656 in RENBP was found to significantly decrease a 

single hypertrophy measurement, mPWT, by 0.51 mm. However, as with ATP6AP2, we were 

unable to estimate haplotypes for the X-linked RENBP. The evidence for involvement of RnBP in 

hypertrophy development is in addition comparatively weak when the present results are 

viewed in conjunction with the discussed results from animal studies. More research is, 

therefore, needed to elucidate the cardiac effects of RnBP per se and consequently the 

hypertrophic effects of RENBP gene variants.  

 

4.5.3 Angiotensin converting enzymes 

This ACE gene remains the most commonly studied candidate modifier gene for HCM as it is 

responsible for conversion of Ang I to the active Ang II, as well as the inactivation of bradykinin, 

which exerts strong cardiovascular effects in opposing directions. While Ang II promotes 

hypertension and cardiac hypertrophy, bradykinin exerts cardioprotective effects. 

 

A strong correlation exists between ACE and blood pressure, which is evident from the fact that 

ACE inhibitors are currently the gold standard in hypertension treatment (Paulis and Unger, 

2010). However, earlier studies have demonstrated that plasma ACE activity is significantly 

related to LVM, independent of systemic blood pressure (Schunkert et al., 1997). Moreover, 

meta-analyses of clinical trials demonstrate that ACE inhibitors are able to effectively reduce 

LVH, even after adjustment for treatment duration and change in blood pressure (Dahlof et al., 

1992; Klingbeil et al., 2003; Schmieder et al., 1996). 

 

Most association studies on ACE focus on the I/D polymorphism (rs4340) in intron 16 of this 

gene, as it is thought to be functional, exerting an incremental effect on plasma and tissue ACE 

levels, where II-homozygotes exhibit the lowest levels of plasma and tissue ACE, heterozygotes 

the intermediate and DD-homozygotes the highest (Marian, 2002; Tiret et al., 1992). However, 

the I/D variant is not located in a coding region and does not exert any clear effect on gene 

transcription, which points to a very real possibility that it might only be a marker for a 

functional variant in close proximity (Cox et al., 2002; Keavney et al., 1998).  

 

A recent meta-analysis on echocardiographic phenotypes from 8979 individuals from 38 

association studies (Jin et al., 2011b) reported that both DD homozygotes and ID heterozygotes 

had a higher LVM or LVMindex than II homozygotes. However, these data were compiled from 
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studies with inconsistent adjustment for lifestyle and environmental confounders of 

hypertrophy. In addition, the authors reported a significant publication bias towards studies 

reporting an association between LVM and the I/D polymorphism, which may have led to an 

overestimation of association in the combined cohort (Jin et al., 2011b).  

 

On the other hand, the Framingham Heart study, which had a smaller, but still fairly large cohort 

of 2439 individuals, did not find significant evidence for linkage or association between the I/D 

polymorphism and LVM (Lindpaintner et al., 1996). This study clearly adjusted all association 

and linkage analyses for sex, age, height, weight, systolic blood pressure, and the presence of 

diabetes, ischemic heart disease or congestive heart failure. 

 

A number of studies have investigated the effects of this polymorphism in HCM, but when we 

examine these studies more closely, it becomes apparent that the underlying designs of these 

studies are too diverse to draw definitive conclusions regarding the effect of this polymorphism 

on the HCM phenotype. For instance, three earlier studies (Pfeufer et al., 1996; Rai et al., 2008; 

Yoneya et al., 1995) looked at allele frequency differences between HCM patients and controls, 

which does not offer any information on the link between this polymorphism and LVH per se.  

 

In the present study we did not find significant evidence for association between the I/D 

polymorphism and any of the investigated hypertrophy traits (Figure 3.19), which is consistent 

with findings from previous HCM cohorts (Buck et al., 2009; Coto et al., 2010; Osterop et al., 

1998; Yamada et al., 1997), but in contrast to others (Doolan et al., 2004; Lechin et al., 1995; 

Tesson et al., 1997). All these studies have comparatively modest sample sizes ranging from 62 

to 545, but they differ largely on the adjustment for relevant confounders, which might account 

for the discrepant results as association between this polymorphism and hypertrophy indices is 

context-dependent and sensitive to hypertrophy confounders (Sayed-Tabatabaei et al., 2006). 

For instance, none of these studies adjusted their analyses for the primary HCM-causal 

mutation, which might specifically have an impact on the outcome of ACE I/D association 

studies in HCM.  

 

In families harbouring HCM causal mutations in either the MYBPC or MYH7 genes, Tesson et al. 

reported a mutation-specific association between the I/D polymorphism and LVH. They found 

no significant association when the cohort was analysed together, whereas a significant 

association was, however, reported between the ACE D-allele and interventricular septal 

thickness in individuals with the R403Q mutation in MYH7 (Tesson et al., 1997). In the present 

study, we did not find significant differences in effect of the I/D polymorphism between the 
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three HCM mutation groups, but we did, however, find that the effect of the rs4303 T-allele on 

mPWT was higher in the R92WTNNT2 group, when compared to the R403WMYH7 group, but lower 

in the R403WMYH7 group, compared to the A797TMYH7 group. In addition, we identified two ACE 

haplotypes, namely haplotypes 3 (CTDT) and 4 (CGIC), that had significantly different effects on 

mPWT, the CWT score, as well as PC1.  

 

That said, we report a significant association between the ACE rs4356 C-allele and a significant 

CWT score increase of 0.74 mm after adjustment for all the relevant HCM hypertrophy 

confounders. Interestingly, this polymorphism falls in the intron 18 to 3’ UTR region that was 

suggested to most likely harbour the functional mutation responsible for positive I/D 

association signals (Sayed-Tabatabaei et al., 2006). Haplotype association analyses did, 

however, not yield significant results. One possible explanation for this could be that the other 

three non-associated SNPs in the haplotype, viz. rs4298, rs4303 and rs4340, mask the effect of 

the rs4356 C-allele when combined into a single haplotype.  

 

There is a clear link between ACE activity and cardiac hypertrophy (Buck et al., 2009; Huang et 

al., 2007a; Schunkert et al., 1997); moreover, smaller clinical trials report favourable 

cardiovascular outcomes for HCM patients on ACE-inhibitors (Kyriakidis et al., 1998). However, 

due to the heterogeneous designs and outcomes of previous studies on the effect of ACE 

polymorphisms on hypertrophy in HCM and the fact that most studies only focussed on the I/D 

polymorphism, it is difficult to comment on the use of ACE polymorphisms for risk stratification 

in HCM patients. A large, carefully controlled study aimed at genetic variation across the entire 

ACE region with adequate adjustment for known hypertrophy confounders might shed some 

light on this matter.  

 

A homologue of ACE, designated as ACE2, removes the C-terminal phenylalanine from Ang II, to 

form Ang-(1-7), which is a ligand of the G-protein-coupled receptor Mas and which was only 

discovered in 2002 (Crackower et al., 2002). This protein is thought to be essential for 

cardiovascular functions as ACE2-knockout mice develop progressive Ang II-mediated age-

dependent cardiomyopathy, which is associated with increased oxidative stress, as well as 

pathological hypertrophy (Oudit et al., 2007).  

 

Furthermore, results from animal models show that ACE2 deletion does not affect blood 

pressure, but rather combats adverse cardiac remodelling, as it accelerates cardiac hypertrophy 

as well as the progression from hypertrophy to cardiac failure (Yamamoto et al., 2006). On the 

other hand, chronic ACE2 inhibition resulted in an accumulation in cardiac Ang II, which 

Stellenbosch University  http://scholar.sun.ac.za



Chapter IV 

 

200 
 

increased LVH and fibrosis in transgenic hypertensive rats (Trask et al., 2010). This is 

complemented by the findings that ACE2 overexpression protected against Ang II-induced 

cardiac hypertrophy and fibrosis (Huentelman et al., 2005), while recombinant human ACE2 

reduced Ang II-induced LVH in wild type mice and partially prevented the development of 

dilated cardiomyopathy in pressure-overloaded mice (Zhong et al., 2010).  

 

Lieb et al. reported that the minor alleles of four SNPs in the X-linked ACE2 gene (rs4646156, 

rs879922, rs4240157 and rs233575) were associated with interventricular septal thickness, as 

well as LVMindex in unrelated males from a German population from the MONICA Augsburg 

survey (Lieb et al., 2006). These four SNPs showed high pairwise LD and a common haplotype, 

consisting of the minor alleles of these SNPs, was associated with a modestly increased LVMindex 

and interventricular septal thickness after adjustment for age, body mass, antihypertensive 

medications and systolic blood pressure. While these findings were restricted to hemizygous 

males and not replicated in females, Lieb et al. reported that another SNP outside this LD block, 

rs2285666, associated significantly with decreased LVMindex in females, but not males. In terms 

of functionality, this possibly suggests that neither of the four SNPs within the common 

haplotype, viz. rs4646156, rs879922, rs4240157 or rs233575, are, in fact, functional and that 

this region rather points to a nearby functional variant.  

 

Later, Wang et al. reported that the T-allele of rs2106809 and C-allele of rs6632677 conferred 

an increased risk for HCM in males, but not females, from a study of 261 Chinese HCM patients 

and 600 healthy controls (Wang et al., 2008). In addition, a TC haplotype from these SNPs 

associated significantly modestly increased interventricular septal thickness again in males, but 

not females, independent of age, body mass and blood pressure. The authors did, however, not 

investigate the four SNPs  that associated significantly with hypertrophy in males from the Lieb 

et al. study, as these SNPs were either not polymorphic or had very low MAFs in the Chinese 

population (Wang et al., 2008).  

 

A previous study from our lab on a smaller subset of the present HCM cohort reported that the 

G-allele significantly increased LVM by 18.7 g, mIVST by 1.9 mm and mPWT by 0.7 mm (Van der 

Merwe et al., 2008). These findings were replicated in the present larger cohort with slightly 

smaller effect sizes as the G-allele of this polymorphism was found to increase LVM by 13.7 g, 

mPWT by 0.623 mm, mIVST by 1.59 mm and mLVWT by 1.68 mm. However, the effect of the G-

allele of rs879922 on mPWT was 1.20 mm lower in the R92WTNNT2 group when compared to the 

A797TMYH7 group, as shown in Table 3.16. Unfortunately, we could not do haplotype-based 
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analyses as, as mentioned previously, there are currently no methods available to construct 

phased haplotypes from X-linked markers in extended families.  

 

The rs879922 polymorphism is located in an intron without any obvious functional role. The 

possibility then exists that it might be in LD with a functional polymorphism towards the 3’ end 

of the gene as rs879922 resides in a haplotype block spanning a large portion of the 3’ end of 

ACE2 in both the HapMap CEU end YRI populations (Van der Merwe et al., 2008).  

 

However, there exists a third protein, namely cardiac chymase that is responsible for Ang I to 

Ang II conversion in the heart. Cardiac chymase is produced from mast cells in the heart and is 

able to locally generate cardiac Ang II from Ang I, while previous studies have reported that 

CMA accounts for 80% of the Ang II generated in human ventricles (Urata et al., 1993). This has 

significant physiological implications, as CMA activity is not inhibited by ACE inhibitors (Guo et 

al., 2001), which could impact on the efficacy of ACE inhibition as a treatment option in cardiac 

hypertrophy.  

 

CMA activity is increased in the hearts of cardiomyopathic hamsters (Shiota et al., 1997; Shiota 

et al., 1998). Moreover, Koga et al. reported increased LVM and blood pressure levels in 

transgenic mice expressing human CMA, while CMA inhibition increased survival rate, coupled 

with a regression of cardiac hypertrophy and end-diastolic left ventricular pressure, in a 

hamster model of myocardial infarction (Hoshino et al., 2003).  

 

Previously, Gumprecht et al. reported that a -1903 G/A transition in the 5’ untranslated region 

of CMA1 (rs1800875), together with the ACE I/D polymorphism associated with an increased 

risk of LVH development in Caucasian type-2 diabetics (Gumprecht et al., 2002). However, this 

polymorphism was not associated with the extent of LVH in a cohort of 50 unrelated HCM 

patients and 50 healthy controls (Pfeufer et al., 1996). In addition, Ortlepp et al. found no 

significant evidence for association between rs1800875 and LVM or interventricular septal 

thickness in a HCM family cohort after adjustment for age, sex and the presence of hypertension 

(Ortlepp et al., 2002).  

 

Our results complement these findings, as we did not find any evidence for association between 

the rs1800875 or rs1885108 polymorphisms and hypertrophy indices in the present cohort 

(Figure 3.22), which is supplemented by a lack of association between haplotypes of these SNPs 

and the investigated hypertrophy traits (Table 3.19). While CMA appears to have an impact on 

cardiac function in vivo, we cannot confirm that genetic variation in this gene contributes to LVH 
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development in HCM. There is, however, still a possibility that genetic variants in this gene 

could contribute to LVH in a different population and these results should be verified in an 

independent, preferably larger cohort, to allow definitive conclusions on this matter. 

 

 

4.5.4 Angiotensin II receptors 

Ang II exerts its main hypertrophic effects through the AT1R s. Binding of Ang II to these 

receptors activates a number of cellular pathways involved in cardiac hypertrophy, including 

vasoconstriction, aldosterone release and growth stimulation (Dostal and Baker, 1992; 

Hoffmann et al., 2001). The essential role of the AT1R in the heart is further illustrated in 

transgenic mice overexpressing the AT1R selectively in cardiomyocytes, which exhibited an 

increase in cardiac mass, coupled with cardiomyocyte hyperplasia at birth and died within the 

first weeks after birth (Hein et al., 1997). More recently, Ainscough et al. developed transgenic 

mice with cardiomyocyte-specific inducible human AT1R gene expression. Low levels of AT1R 

expression in cardiomyocytes from the start of adolescence increased cardiomyocyte growth in 

these animals, which lead to cardiac hypertrophy in adulthood, which was not associated with 

changes in blood pressure or heart rate (Ainscough et al., 2009).  

 

Large clinical trials have concluded that AT1R antagonists reduce LVH and other associated 

cardiac morbidities in hypertensive cohorts (Dahlof et al., 2002b; Okin et al., 2003). In addition, 

a recent consensus document on the current research priorities in HCM identified the AT1R as a 

potential target for intervention in HCM that warrants further investigation (Force et al., 2010). 

This is based on four small clinical trials that demonstrated improvements in cardiovascular 

morphology and function in patients with non-obstructive HCM receiving AT1R-inhibitors 

(Araujo et al., 2005; Kawano et al., 2005; Penicka et al., 2009; Yamazaki et al., 2007). A study by 

Penicka et al. reported that the AT1R-antagonist candesartan resulted in a regression of LVH, 

coupled with an improvement of left ventricular function and exercise tolerance in patients with 

non-obstructive HCM (Penicka et al., 2009). This group also noted that the magnitude of LVH 

regression was related to the specific HCM causal mutation, with MYH7 mutation carriers 

showing the greatest response to the AT1R-antagonist (Penicka et al., 2009). 

 

An A/C transversion at position 1166 in the 3’ untranslated region of AGTR1 (rs5186) has 

received much attention as a potential risk factor in cardiovascular genetic association studies. 

This polymorphism was previously associated with a number of cardiovascular outcomes (Coto 

et al., 2010; De Denus et al., 2008; Ortlepp et al., 2002; Xu et al., 2010a). However, studies on the 

relationship between this polymorphism and LVH yielded discrepant results as some studies 
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report significant associations with LVM (Kelly et al., 2011; Smilde et al., 2007), while others do 

not (Castellano et al., 1996; Hamon et al., 1997; Kuznetsova et al., 2004). 

 

A study by Wang et al. investigated the effects of AGTR1 C-512T, A1166C and L191L (rs5182) 

polymorphisms on the progression of blood pressure and LVM in a longitudinal study on 

European American and African American youths (Wang et al., 2006). In the single variant 

association analyses, none of the variants showed a significant association with LVM. However, 

haplotype analysis identified a haplotype (-521C, 191L and A1166) associated with a significant 

decrease of 12.9 g in LVM when compared to the most common reference haplotype (–521T, 

191L and A1166) (Wang et al., 2006).  

 

In HCM, most studies only focussed on the A1166C polymorphism. Osterop and co-workers 

found that the 1166C-allele associated significantly with an increase in LVM in a cohort of 104 

HCM patients, independent of age, gender, peak left ventricular outflow gradient, plasma renin, 

and the ACE I/D polymorphism (Osterop et al., 1998). Similarly, Coto et al. reported a significant 

association between the 1166C-allele and increased left ventricular wall thickness in HCM 

patients (Coto et al., 2010). On the other hand, Funada et al. reported that when analysed alone, 

the A1166C polymorphism did not influence LVH, but when analysed in combination with the 

ACE I/D polymorphism, the two SNPs associated significantly with left ventricular end-systolic 

dimension and ejection fraction, but not with interventricular septal thickness or mean wall 

thickness (Funada et al., 2010).  

 

The A1166C polymorphism is located in the 3’ UTR of AGTR1; studies aimed at unravelling the 

functional mechanism of this polymorphism came up short-handed as this polymorphism did 

not affect AT1R affinity or density (Danser and Schunkert, 2000; Paillard et al., 1999), nor did it 

affect plasma Ang II levels (Miller et al., 1999). A recent in vitro study demonstrated that the 

1166A-allele allows the binding of hsa-miR-155 micro-RNA, which is able to repress mRNA 

expression post-transcriptionally, which, in turn, downregulates the expression of only the 

A1166, and not the 1166C-allele. This results in increased translation of AGTR1 in C-allele 

carriers (Sethupathy et al., 2007). However, it is uncertain at this stage whether AGTR1 and hsa-

miR-155 are concomitantly expressed in the heart. As no definite functional mechanism has 

been demonstrated to link this polymorphism to AT1R functionality, this polymorphism is most 

probably not the functional variant driving positive association signals. 

 

In the present study we investigated the effects of an intron 1 polymorphism, rs2640539, the 

rs3772627 in the approximate “middle” of the gene, as well as the rs5182 polymorphism at the 
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3’-end of the gene. One possible limitation is that we did not investigate the rs5186 

polymorphism; however, we did assess the neighbouring rs5182, which is in tight LD with 

rs5186 (Abdollahi et al., 2007; Su et al., 2007). When we analysed haplotypes of all three 

variants, we found that a haplotype of all three minor alleles, CAA, associated with an increase 

in mLVWT of 2.29 mm, as well as an increase of 1.16 mm in the CWT score (Table 3.22). 

However, in the single variant analysis, only rs2640539 showed significant evidence of 

association (Figure 3.26). The C-allele of this polymorphism resulted in an increase in mIVST of 

1.15 mm, as well as an increase of 1.22 mm in mLVWT.  

 

A previous detailed LD analysis of AGTR1 yielded two distinctive LD blocks, with a definite 

break in LD between the 5’- and 3’-ends of the gene (Abdollahi et al., 2007). In the present study 

we also found a similar LD pattern with little evidence for LD between the 5’ rs2640539 and the 

more 3’ rs5182. This definite break in LD prompted Abdollahi et al. to speculate that the 5’ and 

3’ ends of AGTR1 might have independent functional effects in addition to potential epistatic 

effects (Abdollahi et al., 2007).  

 

In light of the larger effects of the combined haplotype in the present cohort, one can argue in 

favour of this theory. The possibility exists that variants from both intragenic loci might 

contribute to hypertrophy development, possibly even in a context-specific manner. In the 

present study, we saw a significant difference in effect of the minor allele haplotype CAA in the 

R403WMYH7 group, compared to the A797TMYH7 group, while the converse major allele 

haplotype, ACC, had significantly different effects in the in the R92WTNNT2 group, compared to 

the A797TMYH7 group. It is, however, difficult to further substantiate this theory as most 

previous studies only focused on 3’ variants within this gene, while HCM-mutation context-

specificity has not previously been explored in AGTR1.  

 

While we provide additional information for the involvement of this gene in HCM hypertrophy, 

more research is needed to pinpoint the functional variants responsible for these associations, 

perhaps within the context of different disease populations and ethnicities to clarify whether a 

single or multiple loci in this gene affects hypertrophy development.  

 

Contrary to the AT1Rs, the AT2Rs are associated with cardioprotective effects (Van Kesteren et 

al., 1997b). Studies in adult rat hearts suggested that AT2Rs have antihypertrophic effects on the 

heart that counterbalance the hypertrophic effects of the AT1Rs (Booz and Baker, 1996; 

Mukawa et al., 2003). In addition, AT2R blockade in Ang II-treated rats results in an amplified 

left ventricular growth response to Ang II (Bartunek et al., 1999), while AT2R-knockout mice 
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show higher left ventricle/body weight ratios, as well as left ventricular end-diastolic and left 

ventricular end-systolic dimensions after myocardial infarction, when compared to wild type 

mice (Oishi et al., 2003).  

 

Previous studies have identified a +1675 G/A polymorphism in exon 2 of the X-linked AGTR2 

gene as a possible modifier of cardiovascular phenotypes. This polymorphism is located at a 

lariat branch-point in the first intron, 29 bp before exon 2, in a region that is essential for 

transcriptional activity (Erdmann et al., 2000; Warnecke et al., 2005). This polymorphism was 

thought to affect pre-mRNA splicing (Nishimura et al., 1999), but later investigations 

demonstrated that it modulates AT2R protein expression, but not mRNA splicing (Warnecke et 

al., 2005). This provides a possible mechanism for action, as increased AT2R protein levels may 

be protective in LVH development (Warnecke et al., 2005). 

 

The +1675 A-allele was significantly associated with increased LVM, as well as relative left 

ventricular wall thickness in young, mildly hypertensive males (Schmieder et al., 2001). 

Similarly, Herrmann et al. reported a significant association between the +1675 A-allele and 

LVM in males from the GLAEOLD cohort (Herrmann et al., 2002). However, this association was 

not replicated in the similar, but larger GLAECO cohort (Herrmann et al., 2002).  

 

In contrast to these findings, Alfakih et al. reported an association between the +1675 G-allele 

and increased LVMindex as determined with MRI (Alfakih et al., 2004), which is credited with 

being a more accurate and reproducible measure of LVM than 2D- and M-mode 

echocardiography, although echocardiography is still widely used to estimate LVM, as it is more 

readily available as a clinical tool (Myerson et al., 2002).  

  

In accordance with the latter study, we find a significant association between the +1675 A-allele 

and a decrease of 0.9 mm in mIVST as shown in Figure 3.28. In a previous investigation on a 

smaller subset of the present cohort, we found significant evidence for association between the 

+1675 G/A polymorphism and PC1 (Carstens et al., 2011), which was not replicated in the 

present cohort. This smaller group did, however, also show a significant association between 

the +1675 G/A polymorphism and mIVST, which is in accordance with the present findings 

(Carstens, N; M.Sc). The fact that we did not find a significant association with PC1 in the 

present cohort might relate to the possibility that the larger cohort provided improved 

statistical power to detect true effects. Another possibility is that it might be a reflection of the 

particular pattern of LVH in the newly added patients, as cardiac hypertrophy might be localised 

to the IVST in some HCM patients. PC1, on the other hand, was constituted from 16 cardiac wall 
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thickness measurements at three levels in the heart, which would require hypertrophy at more 

than one segment to be significantly elevated.  

 

We did, however, not find any evidence for association between rs11091046 (+3123 A/C) and 

any of the investigated hypertrophy traits, as shown in Figure 3.28, which stands in contrast to 

the findings of Deinum et al. (Deinum et al., 2001). This group reported an association between 

the +3123 C-allele and decreased LVMindex in unrelated female, but not male, HCM patients, 

independent of plasma renin, the +1166 A/C AGTR1 variant or the I/D ACE variant. This study 

did, however, not account for differences in the primary HCM causal mutation, which may have 

had confounding effects on the association. For instance, the effect of the +3123 C-allele on 

mIVST was 2.69 mm higher in the R403WMYH7 group, compared to the A797TMYH7 group, in the 

present study. In addition, this group did not investigate the +1675 G/A polymorphism, so 

another possibility is that the positive association signal originated from LD with the +1675 G/A 

variant, which is known to affect AT2R protein expression, as the +3123 A/C and +1675 G/A 

variants were in LD in this cohort.  

 

4.5.5 CYP11B1/B2 locus 

Studies on perfused rat hearts and neonatal cardiomyocytes demonstrated increased 

cardiomyocyte contractile force and hypertrophy in response to aldosterone administration 

(Barbato et al., 2004; Dooley et al., 2011; Rossier et al., 2010; Sato and Funder, 1996). In fact, 

aldosterone directly stimulated cardiac hypertrophy in neonatal rat ventricular cardiomyocytes 

(Okoshi et al., 2004). This hypertrophic response was associated with increased alpha- and 

beta-myosin heavy chain mRNA levels and the activation of ERK1/2, JNK, and protein kinase C, 

while MR inhibition suppressed this effect (Okoshi et al., 2004).  

 

Increased serum aldosterone concentration was associated with significant increases in LVM, 

posterior wall thickness and relative wall thickness in a cardiovascular risk cohort of 1575 

patients without overt heart failure (Edelmann et al., 2011), as well as a population based 

sample of 615 middle-age subjects (Schunkert et al., 1997), while suppression of aldosterone 

was associated with a reduction in LVMindex after adjustment for blood pressure change in the 

hypertensive ALLAY cohort (Pouleur et al., 2011). Myocardial aldosterone and  CYP11B2 mRNA 

levels is furthermore elevated by 4- to 6-fold in HCM patients, compared to healthy donor hearts 

(Tsybouleva et al., 2004).  

 

The -344T/C polymorphism (rs1799998) resides in a putative SF-1 binding site and the -344 C-

allele increases SF-1 binding four-fold in vitro, which points toward a possible mechanism 
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whereby this polymorphism could influence gene expression (White et al., 1999). However, a 

later study confirmed the -344 C-allele increase in SF-1 binding in vitro, but also demonstrated 

that that SF-1 failed to stimulate CYP11B2 expression in vivo (Bassett et al., 2002). This 

polymorphism in the 5’ promoter region of the CYP11B2 was significantly associated with 

plasma aldosterone levels in a cohort of 216 patients with essential hypertension, after 

adjustment for age and urine Na+-excretion (Pojoga et al., 1998), as well as LVM in 84 healthy 

Caucasians, independent of sex, body size, blood pressure, physical activity, smoking, and 

ethanol consumption (Kupari et al., 1998). 

 

However, no evidence for association was found between this polymorphism and serum 

aldosterone, LVMindex or other echocardiographic measures of LVH in 1445 young Caucasian 

adults from the third MONICA survey (Schunkert et al., 1999b). In addition, a later meta-

analysis reported that the -344T/C variant was not significantly associated with LVM or 

interventricular septal wall thickness in a pooled sample of 2157 unrelated subjects, although a 

smaller subset of hypertensive subjects (n = 332) homozygous for the T-allele showed a 6.9% 

increase in LVM, compared to CC-homozygous subjects (Sookoian et al., 2008).    

 

Mayosi et al. investigated the effect of this promoter variant, as well as five other CYP11B2 

polymorphisms (singularly and in combined haplotypes) on heart size, in 955 members from 

229 British Caucasian extended families recruited through hypertensive probands (Mayosi et 

al., 2003). Haplotype analysis revealed a relatively common haplotype with a frequency of 

22.4% that associated significantly with an increase in septal wall thickness in this cohort. In a 

single variant association analysis, which was confirmed using measured haplotype analyses, 

the G5937C variant associated with septal wall thickness, while the I2C and A4550C variants 

associated with left ventricular cavity size. The estimated effects of these polymorphisms were, 

however, comparatively modest as the G5937C variant contributed to 2.4 % of the variability in 

septal wall thickness, while the I2C and A4550C variants contributed to 2.0 and 3.4% of the 

variability in left ventricular cavity size, respectively (Mayosi et al., 2003).  

 

Mayosi et al. further speculated that these associations could be due to or influenced by genetic 

variation in the neighbouring CYP11B1 gene. More extensive haplotype analyses of the entire 

CYP11B1/B2 locus later revealed a high degree of LD between markers in these two genes 

(Ganapathipillai et al., 2005; Keavney et al., 2005), which was followed by studies that showed 

that aldosterone synthesis is influenced by genotypes at CYP11B2, as well as CYP11B1 (Imrie et 

al., 2006; Alvarez-Madrazo et al., 2009). 
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To the best of our knowledge, this is the first study to investigate the influence of the entire 

CYP11B1/B2 locus on LVH phenotypes in HCM, whereas previous investigations in HCM largely 

focussed on the influence of the -344T/C polymorphism on cardiovascular phenotypes. In a 

study on 142 unrelated HCM patients, Patel et al. found that CYP11B2 −344T/C genotypes did 

not influence LVM or interventricular septal thickness (Patel et al., 2000). In contrast to the 

study by Tsybouleva et al., Chai et al. found that plasma and left ventricular tissue levels of 

aldosterone in 79 unrelated HCM patients were not significantly different from those in age-

matched controls (Chai et al., 2006). In addition, they reported a significant association between 

the CYP11B2 -344T-allele and LVMindex, as well as interventricular septal thickness in men, but 

not in women (Chai et al., 2006).  

 

When analysed alone, we did not find any evidence for association between the -344T/C 

polymorphism or the other investigated CYP11B1/B2 polymorphisms and LVH in the present 

cohort (Figure 3.30). Two haplotypes were, however, found to associate significantly with 

hypertrophy traits. Haplotype 8 associated with a 3.23 mm increase in mLVWT, as well as a 1.73 

mm increase in CWT score and a 0.11 increase in PC1. This haplotype was, however, only 

observed in 2.7 % of the cohort, while haplotype 10, which was observed in only 1.9% of the 

cohort, associated with a 2.34 mm increase in mPWT. The effect of haplotype 8 was, however, 

significantly different between the R403WMYH7 and A797TMYH7 groups, as well as between the 

R92WTNNT2 and A797TMYH7 groups, which points to a strong context-specific effect underpinning 

the association of this haplotype in the entire cohort. Further research in larger cohorts are 

needed to confirm this differential effect, due to the low frequency of haplotype 8 in the cohort, 

which resulted in relatively small test groups for this particular analysis. 

 

The results reported here are, therefore, in keeping with previous reports that LVH is influenced 

by variation across the entire locus. The effect sizes estimated for our study are, however, larger 

than that observed for the Mayosi et al. cohort (Mayosi et al., 2003), notwithstanding that the 

haplotypes from this study were constructed from one more variant than the previous 

haplotype. In contrast to the haplotype described by Mayosi et al., which was observed in 22.3 

% of that cohort, haplotype 8 had a frequency of only 2.7% in the present cohort, which is 

consistent with the general trend seen in the effect of genetic variation on complex phenotypes, 

where common variants are generally associated with smaller effects than rarer variants.  

 

Moreover, we report a high degree of LD between CYP11B1 variants, which extends from 

rs4310186 within CYP11B1 to the first CYP11B2 polymorphism, rs3097 (Table 3.24). 

Intermediate D’ values were, however, observed between the remaining CYP11B2 and CYP11B1 
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variants demonstrating incomplete LD between these two genes, which is in contrast to 

previous studies that reported complete LD across the entire locus in a Caucasian population 

(Ganapathipillai et al., 2005). 

4.5.6 Mineralocorticoid receptor and 11 β-hydroxysteroid-dehydrogenase type 2 

Aldosterone exerts its main effects on cellular Na+ homeostasis and cardiac hypertrophy when 

bound to the MR to form the MR/aldosterone complex, which activates aldosterone-induced 

early and late response gene transcription and signalling cascades to mediate these effects via 

its downstream effectors (Fuller and Young, 2005). Studies on animal models demonstrated 

that aldosterone is able to directly induce cardiomyocyte hypertrophy through its binding to the 

MR (Le Menuet et al., 2004; Yoshida et al., 2010), while several lines of evidence demonstrate 

the potential benefits of MR-blockade on cardiac hypertrophy. MR-blockade with eplerenone 

resulted in a regression of LVH and related attenuation of heart failure in rats with salt-sensitive 

hypertension the absence of an antihypertensive effect (Nagata et al., 2006). Likewise, the MR 

antagonist spironolactone attenuated LVH in uremic rats (Michea et al., 2008) and transgenic 

rats overexpressing human the MR (Stas et al., 2007) without a significant reduction in blood 

pressure.  

 

In a transgenic mouse model of human HCM, Tsybouleva et al. provided convincing evidence 

that aldosterone affects the relationship between sarcomeric dysfunction and the HCM cardiac 

phenotype as the MR blocker spironolactone significantly improved diastolic function, while 

reducing myocyte disarray and interstitial fibrosis in these mice (Tsybouleva et al., 2004). 

Furthermore, overexpression of the human MR in mice resulted in dilated cardiomyopathy in 

two independent studies (Le Menuet et al., 2001; Ouvrard-Pascaud et al., 2005), which was 

coupled with significant increases in heart rate, while blood pressure levels remained 

unchanged. Ang II furthermore induced LVH and diastolic dysfunction without affecting systolic 

function in transgenic mice with cardiomyocyte-specific overexpression of the human MR, 

without affecting blood pressure (Di Zhang et al., 2008). Moreover, cardiomyocyte-restricted 

MR deficiency prohibited adverse cardiac remodelling following myocardial infarction and 

pressure overload (Fraccarollo et al., 2011; Lother et al., 2011).  

 

In randomized clinical trials, MR antagonists reduced the risk of ventricular remodelling, 

myocardial fibrosis and sudden cardiac death, independent of the antagonist’s blood pressure 

lowering effects (Pitt et al., 1999; Pitt et al., 2003; Pitt et al., 2005). MR blockade is currently 

under investigation as a possible experimental therapy option in HCM, as small preliminary 

studies showed beneficial cardiovascular effects of the MR blocker spironolactone (Marian, 

2009).   
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There is currently a paucity of studies on the effect of genetic variation in NR3C2 on both 

overload-induced and blood pressure-independent hypertrophy and the present study is the 

first to our knowledge to investigate the effect of NR3C2 SNPs on LVH in HCM. We report an 

association between the rs745019 G-allele and a 10.19 g increase in LVM, as well as an increase 

of 0.443 mm in mPWT, while the rs1403142 G-allele, as well as rs13150372 A-allele was 

significantly associated with respective decreases in mPWT of 0.541 mm and 0.626 mm. As a 

high degree of LD exists between these three polymorphisms (Table 3.28), this possibly 

indicates the existence of a functional variant within that LD block that has a marked effect on 

mPWT.  

 

Haplotype analyses did not reveal common haplotypes, but rather a large range of low 

frequency haplotypes, as evident in Table 3.30, which is most likely a reflection on the 

incomplete LD in this fairly large gene. Five haplotypes showed a significant association with 

the CWT score. Haplotypes 2, 13 and 21 were associated with increases in CWT of 1.96 mm, 

4.03 mm and 5.11 mm, respectively, while haplotypes 6 and 15 resulted in respective 2.24 mm 

and 2.94 mm decreases in CWT. Interestingly, these haplotypes all share the rs745019 A-allele, 

the rs7699349 C-allele, as well as the rs13118022 G-allele; haplotypes associated with a 

decrease in CWT also contained the rs13150372 A-allele, while haplotypes associated with an 

increase contained the G-allele of this polymorphism. In addition to the association with the 

CWT score, haplotypes 2, 6 and 13 also associated with PC1, while haplotype 2 also associated 

with mLVWT and haplotype 15 with LVM. The relatively large haplotype effect sizes reported 

here are again consistent with the current theory that rarer variants exert greater effects in 

complex phenotypes.  

 

Notwithstanding epistatic effects, the possibility then exists for multiple LVH-modifying loci 

within NR3C2, when one takes the low levels of LD and the size of this gene into account. More 

research is certainly warranted to explore the full contribution of genetic variation in NR3C2 to 

LVH in HCM in light of the present findings, as well as the results from previous studies that 

suggest an important link between the MR and cardiovascular phenotypes per se and within the 

context of HCM, as discussed earlier in section 1.12.  

 

The MR, which is able to bind both aldosterone and cortisol with equal affinity, is protected 

from cortisol occupancy under normal circumstances by 11β-HSD2, which degrades cortisol to 

corticosterone, which is then unable to bind to the MR (Farman and Bocchi, 2000). AME, a rare 

form of congenital hypertension, is caused by null-mutation in this gene and patients with AME 
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suffer from severe hypertension, hyperkalaemia and low aldosterone levels, as well as 

associated end-organ complications, such as renal or cardiovascular damage (Dave-Sharma et 

al., 1998). 

Transgenic mice with cardiomyocyte-specific overexpression of human 11β-HSD2 were 

normotensive, but developed LVH, fibrosis and heart failure (Qin et al., 2003). However, 

HSD11B2-null heterozygote mice, expressing only half of the wild type enzyme levels, develop 

salt-sensitive hypertension, coupled with an increase in heart:body weight ratio, which could be 

partially reduced by the MR-blocker spironolactone (Bailey et al., 2011). Spironolactone, 

additionally, modulated MR and 11β-HSD2 expression levels in a rat model, which improved 

adverse left ventricular remodelling (Takeda et al., 2007). Little is, however, known about the 

involvement of this gene in LVH development in humans, although one study reported a 

correlation between urinary 11β-HSD2 activity and LVM in patients with essential hypertension 

(Glorioso et al., 2005). 

 

This gene falls into a region of high LD, while the whole gene is itself located within one LD 

block in all four HapMap populations, and comparatively few polymorphic markers have been 

reported on dbSNP for this gene. We, therefore, only chose one haplotype-tagging SNP for 

investigation. However, we did not find any statistically significant evidence for association 

between this HSD11B2 rs5479 variant and any of the investigated hypertrophy traits. We can 

consequently not exclude the possibility of additional, yet undetected, variants in HSD11B2 that 

might have an impact on LVH solely on the basis of the present findings.  

 

4.5.7 Epithelial sodium channel subunits  

The ENaCs, consisting of three homologous α-, β-, and a γ-subunits, are regulated by the 

MR/aldosterone complex and these channels are important regulators of intracellular Na+ , as 

they are responsible for the eventual electrodiffusion of Na+ through epithelial cells upon RAAS 

stimulation. The cardiovascular effects of the ENaCs are evident from Liddle syndrome, which is 

caused by gain-of-function mutations in ENaC subunit genes; these mutations lead to decreased 

ENaC degredation, resulting in excessive Na+-absorption, K+-wasting, systemic hypertension, as 

well as an elevated incidence of early cardiovascular disease and LVH (Hansson et al., 1995; 

Jeunemaitre et al., 1997; Rossi et al., 2011). 

 

ENaC mutations have been implicated in numerous hypertensive phenotypes, while the ENaC 

inhibitor amiloride has well-documented antihypertensive effects (Spence, 2010; Su and Menon, 

2001). ENaC inhibition has, in addition, been linked to a number of cardiovascular benefits 

(Teiwes and Toto, 2007). ENaC inhibition in combination with a thiazide-diuretic caused 
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significant reductions in both coronary mortality and sudden cardiac death in elderly patients 

with hypertension, that could not be achieved through diuretics alone (Hebert et al., 2008). 

 

Studies on salt-sensitive and spontaneously hypertensive rats demonstrated that amiloride can 

reduce LVH and other cardiovascular complications, independent of its effect on blood pressure 

and changes in serum K+ levels (Ji et al., 2003; Mirkovic et al., 2002). However, blood pressure 

regulation and Na+ balance appeared normal in heterozygous α-ENaC-knockout mice, in spite of 

varying salt diets, which is attributable to increased RAAS activity through a compensatory 

upregulation of AT1Rs (Wang et al., 2001). The AT1R antagonist candesartan was found to 

increase the abundance of ENaC β- and γ-subunits, while decreasing the quantity of ENaC α-

subunits, which is the rate-limiting factor for assembly of mature ENaC complexes, in salt-

restricted rats (Beutler et al., 2003). In addition, previous studies reported altered expression of 

renal ENaC subunits in obese rats, as well as rats with chronic heart failure; this was partially 

reversed by candesartan treatment (Lutken et al., 2009; Madala Halagappa et al., 2008; Zheng et 

al., 2011).  

 

The association of the ubiquitin ligase Nedd4-2 with the ENaCs, leads to ubiquitination and 

subsequent removal of the ENaCs from the plasma membrane, which demonstrates that Nedd4-

2 is essential to ENaC activity and regulation (Staub et al., 2000; Zhou et al., 2007). Nedd4-2-

knockout mice had elevated blood pressure levels, coupled with impaired ENaC activity, which 

was exaggerated by a high salt diet (Shi et al., 2008); these animals ultimately developed cardiac 

hypertrophy and systolic dysfunction (Shi et al., 2008).  

 

In the present cohort, we found no statistically significant evidence for association between 

SNPs in the ENaC α-subunit gene, SCNN1A, and LVH as evident from Figure 3.40. However, two 

SCNN1A haplotypes associated with LVM. The most common haplotype, ATTAG, was present in 

17.4 % of the cohort and associated significantly with a 15.9 g decrease in LVM. Haplotype 10 

(GGTCA), on the other hand, was present in only 1.8 % of the cohort, but was associated with a 

36.9 g increase in LVM. 

 

Interestingly, these haplotypes contain different alleles for all the investigated SNPs, except for 

the rs7973914 T-allele. In addition, a haplotype containing the same alleles as haplotype 1, 

except for a C-allele at rs7973914, ATCAG, did not associate with LVM. Likewise, a haplotype 

with a haplotype containing the same alleles as haplotype 10, except for a C-allele at rs7973914, 

GGCCA, also showed no statistically significant evidence for association. This SNP did, however, 
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not associate significantly with LVH in the single SNP analyses, which either points to a context-

dependent effect of this SNP, or an epistatic effect of all the investigated variants.  

 

We also found a significant association between the G-allele of rs8044970 in SCNN1B and a 

significant decrease of 1.66 mm in mIVST, as well as a significant decrease of 1.28 mm in 

mLVWT. In addition, four haplotypes were found to associate significantly with hypertrophy 

traits. Haplotype 5 was present in 5.9% of the cohort and was associated with a 0.083 mm 

increase in mPWT as shown in Table 3.37. However, this significant association is possibly 

driven by the effect of this haplotype in R92WTNNT2 carriers, as this haplotype had a 1.39 mm 

increased effect on mPWT in the R92WTNNT2 group, compared to the A797TMYH7 group (Table 

3.36). Haplotype 9 was significantly associated with a 0.94 mm decrease in mPWT, as well as a 

1.09 mm decrease in CWT score and a 0.068 decrease in PC1.  

 

Haplotype 19 was found to associate significantly with all the investigated hypertrophy traits 

except LVM; this haplotype decreased mIVST by 2.80 mm, mLVWT by 2.58 mm, mPWT by 1.22 

mm, CWT score by 1.48 mm and PC1 by 0.093. Haplotype 20, on the other hand, resulted in a 

3.88 mm increase in mIVST and a 3.63 mm increase in mLVWT. Both these haplotypes then had 

relatively large effects, which is probably a reflection on their low frequency, and again is 

consistent with the theory that rarer variants exert greater effects in complex phenotypes.  

 

In contrast to SCNN1A and SCNN1B, we found no statistically significant evidence for association 

between SCNN1G SNPs, or related haplotypes, and LVH in the present cohort. We did, however, 

find that three of the four SCNN1G had strong differences in effect between the different HCM 

mutation groups, even though the combined effect did not reach statistical significance, which 

point to possible context-specific effects. 

 

4.5.8 Na+/K+-ATPase subunits 

Another vital downstream effector of the MR/aldosterone complex is the Na+/K+-ATPase, which 

is responsible for the exchange of Na+ and K+ ions across plasma membranes. This 

transmembrane protein consists of an α- and a β-subunit (Kaplan, 2002), where the α-subunit 

confers the catalytic activity of the enzyme and contains binding sites for Na+, K+ and ATP (Shull 

et al., 1985), while the β-subunit modulates the pump function. The β-subunit is also essential 

for α-subunit expression, as well as for integration of the latter subunit and its stability within 

the endoplasmic reticulum (Rajasekaran et al., 2005). 

 

Stellenbosch University  http://scholar.sun.ac.za



Chapter IV 

 

214 
 

Na+/K+-ATPase knockout mice also suggest different functions for α- and β-subunits in the 

heart. Heterozygous Na+/K+-ATPase α-knockout mice showed altered contractility (James et al., 

1999), while homozygous Na+/K+-ATPase β-knockout mice exhibited ventricular hypertrophy 

(Magyar et al., 1994). Homozygous knockout mice with cardiomyocyte-specific Na+/K+-ATPase 

β-inactivation exhibited mild hypertrophy, coupled with reduced contractility and ventricular 

function (Barwe et al., 2009). 

 

Previous studies on animal models of cardiac hypertrophy reported altered expression of 

Na+/K+-ATPase α- and β-subunit isoforms in hypertrophied ventricles (Baek and Weiss, 2005; 

Trouve et al., 2000; Xie et al., 1999; Yamamoto et al., 2009; Zwadlo and Borlak, 2005), while 

several other studies reported Na+/K+-ATPase isoform shifts in cardiac hypertrophy 

(Charlemagne et al., 1994; Charlemagne and Swynghedauw, 1995; Kim et al., 1994; Zahler et al., 

1996).  

 

Research on human failing hearts demonstrated that Na+/K+-ATPase isoform expression is 

altered in failing compared to non-failing human hearts (Muller-Ehmsen et al., 2001; Schwinger 

et al., 1999; Shamraj et al., 1993). Myocardial biopsies from patients with aortic valve disease 

demonstrated that myocardial hypertrophy was also associated with a reduction in Na+/K+-

ATPase concentration (Larsen et al., 1997). Endomyocardial biopsies from patients with 

impaired cardiac function, furthermore, showed a 40% decrease in total Na+/K+-ATPase 

concentration, while such a decrease in Na+/K+-ATPase concentration correlated with a 

decrease in heart function (Schwinger et al., 2003).  

 

Partial inhibition of the cardiac Na+/K+-ATPase with ouabain and other related cardiac 

glycosides has positive inotropic effects on the myocardium (Akera and Ng, 1991; Huang et al., 

1997). Ouabain also induced hypertrophic growth in cultured neonatal rat cardiomyocytes, 

coupled with increased expression of TGF-β (Huang et al., 1997). The hypertrophic response 

that follows Na+/K+-ATPase inhibition was also associated with p42/44 MAPK and ROS-

dependent pathways (Kometiani et al., 1998; Xie et al., 1999). 

 

Later, Fedorova et al. demonstrated that LVH development and subsequent transition to heart 

failure in Dahl salt-sensitive rats on a high Na+ diet was associated with sensitivity to ouabain 

and shifts in left ventricular Na+/K+-ATPase isoform composition (Fedorova et al., 2004). In a 

mouse model of pressure overload hypertrophy, mice overexpressing an ouabain sensitive 

Na+/K+-ATPase α1-subunit showed severe myocardial hypertrophy four weeks after aortic 

banding, compared to ouabain resistant mice (Wansapura et al., 2011).  
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In the present study, we investigated the Na+/K+-ATPase α1, α2, β1 and β3 subunits as these 

subunits showed convincing evidence for cardiac expression (Malik et al., 1998; Schwinger et 

al., 1999; Wang et al., 1996). While we found no significant evidence for association between 

either of the investigated ATP1A1 SNPs, viz. rs850609 and rs10924074, and LVH, we found that 

the combined haplotype of the two minor alleles of these variants resulted in a decrease in 

mPWT of 1.48 mm, which suggests that the individual effects of these alleles might be too small 

to detect, and that some form of epistatic interaction exists between these alleles. Interestingly, 

the T-allele of rs850609 was found to have an increased effect of 1.40 mm on mPWT in the 

R92WTNNT2 group versus the A797TMYH7 group, which possibly point to a context-specific effect. 

These two SNPs are located in introns, with no obvious functional effects, and were in complete 

LD with each other in the present cohort, so it is therefore not possible to pinpoint the location 

of the variant responsible for the positive association from these results alone.  

 

As with ATP1A1, we also found no association between the investigated ATP1A2 variants and 

LVH when considered alone, whereas two haplotypes showed significant evidence for 

association. The relatively common AAA haplotype, which is compiled of all three major alleles, 

resulted in an 11.1 g decrease in LVM, as well as a 0.97 mm decrease in mIVST. On the other 

hand, the rarer haplotype of all three minor alleles, TGG, resulted in a 44.1 g increase in LVM. As 

all three major or minor alleles are required to have a statistically significant effect on LVM, this 

might point towards weak individual, but stronger compound, SNP effects.  

 

Contrary to these genes, we found significant evidence for association with ATP1B1 SNPs and 

haplotypes. When considered alone, the T-allele of rs1200130 was associated with a 12.5g 

increase in LVM, a 0.39 mm increase in mPWT, a 0.38 mm increase in CWT score, as well as a 

0.024 mm increase in PC1. The effect of this allele was, however, not statistically significant 

when combined with the other two investigated SNPs, except for within the TAG haplotype that 

was associated with a 0.83 mm increase in mPWT. On the other hand, the combined haplotype 

of all three major alleles, CGG, which was present in 14.5% of the cohort, associated significantly 

with a 20.2 g decrease in LVM.  

 

The investigated ATP1B3 polymorphism had strikingly different effects between the different 

mutation groups, although the average effect did not amount to statistical significance. This 

strongly points to context-specific effects, but it is still unsure at this stage if this variant truly 

significantly affects LVH development.  
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4.6 Optimal selection 

Previous studies found that increased LVH correlated with an increased risk for cardiovascular 

morbidity and mortality (De Simone et al., 2009; Gupta et al., 2010; Lai et al., 2011; Okin, 2009; 

Verma et al., 2008); most noted is the Framingham LVH risk scores for cardiovascular outcome 

prediction (Pencina et al., 2009). It is, therefore, imperative to identify factors that confer an 

increased risk for LVH development before its occurrence. Risk prediction with the use of 

genetic markers has become quite attractive as constantly improving genotyping technologies 

offer the promise of relatively quick and inexpensive clinical tools. In addition, the outcomes of 

single gene- and genome-wide association studies have greatly expanded risk prediction from a 

handful of mutations with severe effects to a multitude of variants with modest individual 

effects.  

 

There is, however, some grounds for caution here, as genetic risk prediction has had some 

success in some diseases (such as breast cancer and type 2 diabetes), but not all (for example, 

Crohn’s disease) (Jostins and Barrett, 2011). This can be attributed to a number of factors such 

as inadequate adjustment for relevant confounders, weak individual effects, as well as allelic 

and locus heterogeneity of risk variants across populations (Jostins and Barrett, 2011). Genetic 

risk prediction in a complex phenotype such as HCM LVH is even further complicated by the 

individual causal mutations that each confers somewhat different cardiac phenotypes.  

 

Investigating more than one gene in a pathway provides certain benefits over single variant 

analyses, especially when individual effects are relatively weak (Cordell and Clayton, 2005; 

Delles et al., 2008). By considering the compound effect of a number of variants in a pathway, 

we can evaluate greater effect sizes, which enhance risk stratification, while also taking epistatic 

effects into account. This is particularly relevant in the RAAS, as this system is comprised of a 

complex interplay between a number of contributing factors, while single variant analyses 

might oversimplify RAAS involvement in cardiovascular phenotypes.  

 

Ortlepp et al. investigated a set of five polymorphisms, collectively termed the “pro-LVH” 

polymorphisms, which was previously suggested to influence the HCM phenotype, in 26 

individuals with HCM from a single family with the same HCM-causal mutation (Ortlepp et al., 

2002). This included the ACE I/D, AGT M235T, AGTR1 A1166C, CYP11B2 -344T/C and CMA -

1903 G/A polymorphisms. After adjustment for age, sex and the presence of hypertension, this 

group found that each of the five polymorphisms associated significantly with LVM. In addition, 

they found a direct correlation between the number of pro-LVH” polymorphisms present in an 

individual and the degree of LVH (Ortlepp et al., 2002). This group could, however, not test 
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whether each variant was associated with LVM independent of the other “pro-LVH” 

polymorphisms due to the small sample size of the cohort.  

 

Later, Perkins et al. assessed the effect of the ACE I/D variant, as well as a composite “pro-LVH” 

score (0-5), derived from the presence or absence of the five “pro-LVH” variants as a proxy for 

the pooled effect of these variants, in 389 unrelated HCM patients (Perkins et al., 2005). They 

found a significant association between left ventricular wall thickness and the ACE DD genotype 

in the patient subset with MYBPC3 HCM mutations, but not in patients with MYH7 or as yet 

unidentified HCM-causal mutations. In addition, they only found significant evidence for 

association between the “pro-LVH” score and left ventricular wall thickness in the subgroup of 

patients with as yet unidentified HCM mutations (Perkins et al., 2005).  

 

More recently, Kaufman et al. investigated the effect of these polymorphisms on LVH in a 

paediatric HCM cohort (n = 65) (Kaufman et al., 2007). They found a positive correlation 

between the number of “pro-LVH” genotypes and an increase in LVM, independent of age, sex, 

race and a positive family history of HCM. At baseline, they found a higher LVMindex in patients 

with two or more “pro-LVH” genotypes. In a follow-up investigation on 40 of these children 

after a median of 1.5 years, they found that patients with two or more “pro-LVH” genotypes had 

an increased LVMindex, as well as interventricular septal thickness (Kaufman et al., 2007).  

 

These studies therefore show that the collective effect of a number of RAAS polymorphisms 

might be a better predictor of LVH than single polymorphisms, but the five variants used in 

these studies might not be adequate or even effective in LVH prediction across all ethnicities 

and cohorts. In fact, previous studies have shown that the utility of LVH risk prediction scores 

can vary considerably between different ethnic populations (Lai et al., 2011; Riddell et al., 

2010). 

 

In the present study we did not find any statistically significant evidence for association 

between the five “pro-LVH” variants and LVH. We therefore used stepwise selection to identify a 

subset of variants that served as better LVH predictors in the present cohort. To this end, we 

initially identified a set of 12 RAAS variants that associated significantly with at least one 

hypertrophy trait in the present cohort, which is the same criterion for inclusion used in the 

original Ortlepp study. Thereafter, we further reduced this subset of variants to a set of nine 

markers that predicted an increase in at least one of the four selected hypertrophy indices, viz. 

LVM, mIVST, mLVWT and PC1, independent of known hypertrophy covariates and the other 

significant variants.  
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We found that our set of “pro-LVH” polymorphisms had far superior predictive value for LVH in 

the present cohort. If an individual were to possess the risk alleles for all nine of these 

polymorphisms, we would expect a 127.80 g increase in LVM, as well as a 13.97 mm increase in 

mIVST, a 14.67 mm increase in mLVWT, as well as a 7.85 increase in PC1. This is in stark 

contrast to the combined effect of all five “pro-LVH” polymorphisms, which resulted in only a 

27.40 g increased LVM, a 2.15 mm increased mIVST, a 2.22 mm increased mLVWT, as well as a 

1.49 increase in PC1.  

 

There is, however, a very slim chance that an individual would possess all nine of these alleles 

(or even all five of the “pro-LVH” risk alleles) and we did not observe such an individual in the 

present cohort. It is, furthermore, perhaps to be expected we would observe larger effects as we 

used four more polymorphisms than the previous studies. Even so, we find that our alleles had a 

greater average effect per variant in our cohort, compared to the average effect of the “pro-LVH” 

variants, which is indicative of a better predictive value per variant. The average effect per allele 

on LVM was 14.20 g for our set of polymorphisms, whereas the average “pro-LVH” allele 

predicted a 5.50 g increase on LVM. Moreover, the average allele in our set of polymorphisms 

predicted an increase of 1.55 mm, 1.63 mm and 0.87 in mIVST, mLVWT and PC1, respectively. 

However, the average “pro-LVH” allele only predicted increases of 0.43 mm, 0.44 mm and 0.30 

in mIVST, mLVWT and PC1, respectively. 

 

It is, however, important to note here that our set of alleles might not be an accurate predictor 

of hypertrophy development in a different HCM population. There might be a number of equally 

valid sets of “pro-LVH” polymorphisms, each unique to a particular population. The set of 

polymorphisms that impact significantly on hypertrophy development in a given population 

might be influenced by the LD structure in that population, as well as the molecular mechanisms 

that contribute to LVH development in that particular population, where we expect some 

mechanisms to overlap between populations, while others could be unique to a particular 

population.  

 

4.7 Closing thoughts and future directions 

Instead of merely evaluating the effect of the presence or absence of certain alleles, we have 

provided a quantitative measure of their effect, which we feel will be more suited to risk 

prediction as an allele can be significantly associated with a particular disease trait, while only 

exerting a comparatively modest effect on that particular phenotype, as is frequently the case in 

complex phenotypes.  
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As a whole, we also found that significant effects were not restricted to the commonly studied 

genes in the more proximal part of the RAAS, and that the MR and downstream RAAS effector 

genes, such as the ATP1B1 gene, can also provide significant insight into the future risk of LVH 

development.   

 

Suffice to say, these variants are also in no manner linked to LVH in a simple, deterministic way. 

There are a multitude of environmental factors and other pharmaceutical or therapeutic 

interventions that could impact on the eventual cardiac phenotype of an individual. It is at this 

stage likely that there will be multiple and equally valid sets of “pro-LVH” variants within the 

RAAS and other pathways across different population groups. Moreover, previous studies 

demonstrated that sex, height, BMI and systolic blood pressure conferred a strong independent 

risk for increased LVM (Meijs et al., 2010) and there is consequently a clear need for adequate 

adjustment for known hypertrophy confounders, such as the primary disease-causing mutation 

in HCM, to filter the true risk contributors from those with relatively little or no predictive value 

on LVH development in a particular population.  

 

While our set of polymorphisms serves as a relevant and accurate predictor of LVH in this 

cohort, this might not be the case in a different ethnic background and it is therefore vital to 

take this into account when designing future studies. Also, risk profiles might be different for 

different LVH indices as evident from the present study, where we found that certain RAAS 

allele subsets had larger effects on LVM than mLVWT, for instance. Clarification on the best 

echocardiographic measure for use in genetic association studies as an indicator of 

cardiovascular morbidity and mortality risk in HCM will provide a standard against which, as 

well as a context within which, these studies can be evaluated to educate future study designs 

aimed at identifying LVH risk variants in order to maximise their applicability and use.   

 

Research such as the present rather provides the basis on which future studies can build 

improved risk profiles for LVH development within the context of HCM and ultimately in all 

patients with a risk of cardiac hypertrophy. Stepwise selection provides a valuable tool with 

which one can evaluate a set of loci, while adjusting for non-genetic covariates or the effects of 

other investigated markers, allowing researchers to screen for a subset of markers that best 

predicts the variability in LVH (Schaid, 2004). As a caveat, we did not use haplotypes in our 

stepwise selection analyses as we are not able estimate haplotypes for the X-linked genes at this 

stage. However, haplotype-based predictive models may provide advantages over single-SNP 
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approaches by simultaneously taking epistatic effects into account and facilitating the detection 

of effects driven by cis-interactions among nearby SNPs (Kang et al., 2011). 

 

4.8 Conclusion 

In the present study we identified a number of RAAS variants that had significant effects on 

HCM hypertrophy, whether alone or within the context of a multi-variant haplotype. Our results 

are consistent with previous studies that reported relatively modest effects of RAAS variants in 

cardiac hypertrophy. We add to these findings by reporting generally larger effects with RAAS 

gene haplotypes, than with single polymorphisms, while the largest of these effects seemed to 

be found with rarer variants, which is perhaps not surprising considering the general trend in 

the contribution of genetic variation to complex phenotypes (Frazer et al., 2009).  

 

The present study should be viewed as “hypothesis generating” and variants identified here as 

plausible hypertrophy modifiers serve as a valuable starting point for future research. 

Moreover, our findings suggest that the eventual hypertrophic phenotype of HCM is indeed 

modulated by the compound effect of a number of RAAS modifier loci, where each 

polymorphism makes a modest contribution towards the eventual phenotype. However, RAAS 

involvement in HCM hypertrophy still has several partially answered, or even unanswered, 

questions. For now, HCM modifier studies appear to have converged on a very limited list of 

“pro-LVH” polymorphisms in the proximal part of the RAAS, while the contribution of additional 

RAAS modifiers of the HCM hypertrophic phenotype has received little attention to date. Our 

findings suggest that genetic variation in renin and renin-associated genes, as well as the MR 

and downstream RAAS effectors such as the Na+/K+-ATPase and ENaCs, also has plausible 

hypertrophic effects in HCM. This is the first RAAS investigation, to our knowledge, to provide 

clear quantitative effects for a subset of RAAS variants indicative of a risk for LVH development 

that are representative of the entire pathway.  

 

The ultimate aim in research projects such as the present is to identify effective targets for 

antihypertrophic therapies and to build an accurate, population-specific genetic risk profile for 

use as a clinical tool to assist in HCM risk stratification and treatment. A position of strength in 

this regard will essentially rely on the successful integration of knowledge gained from a range 

of approaches, including animal models, clinical trials, as well as carefully designed and 

properly executed genetic association studies. For now, the primary challenge will be to 

understand and appreciate the complexity of the HCM hypertrophic phenotype and to develop 

studies and analysis methods that increase the likelihood of identifying real effects, while 
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minimizing false positives, with recognition for the inherent shortcomings of these particular 

approaches.  
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APPENDIX I 

 

PAGE PROOFS FOR CHAPTER IN ANGIOTENIN: NEW RESEARCH (SEE FOOTNOTE 1) 

 

https://www.novapublishers.com/catalog/product_info.php?products_id=24714 
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APPENDIX II 

 

SOLUTIONS AND BUFFERS 

 

1. DNA EXTRACTION SOLUTIONS 

 

Cell lysis buffer  

Sucrose 0.32 M 

Triton-X-100 1% 

MgCl2 5 mM 

Tris-HCl 10 mM 

H2O 1 l 

  

3 M Sodium Acetate  

Sodium Acetate (Merck (Pty) Ltd, RSA) 40.81 g 

H2O 50 ml 

Adjust pH to 5.2 with glacial acetic acid (Merck (Pty) Ltd, RSA) and adjust volume to 100 ml 

with ddH2O 

  

Na-EDTA solution  

NaCl (Merck (Pty) Ltd, RSA) 18.75 ml of 4 mM stock solution 

EDTA (B & M Scientific) 250 ml of 100 mM stock solution 

Mix well  

  

Phenol/Chloroform  

Phenol (saturated with 1x TE) (Merck (Pty) Ltd, RSA) 50 ml 

Chloroform (Merck (Pty) Ltd, RSA) 48 ml 

8-hydroxyquinone (Merck (Pty) Ltd, RSA) 2 ml 

Mix well, store at 4˚C  

  

  

Stellenbosch University  http://scholar.sun.ac.za



 

334 
 

Chloroform/octanol (24:1)  

Chloroform (Merck (Pty) Ltd, RSA) 96 ml 

Octanol (Merck (Pty) Ltd, RSA) 4 ml 

Mix well, store at 4˚C  

  

TE-buffer (10x stock solution)  

TrisOH 0.1 M (pH 8.00) 

EDTA  0.01 M (pH 8.00) 

H2O 150 ml 

Mix well  

 

2. ELECTROPHORESIS STOCK SOLUTIONS 

 

SB Buffer (20x stock)  

Di-sodium tetraborate decahydrate 38.137g/mol 

Add ddH2O to a final volume of 1 l  

  

Bromophenol blue  

Bromophenol blue (Merck (Pty) Ltd, RSA) 0.2 % (w/v) 

Glycerol 50% 

Tris (pH 8.00) 10 mM 

  

Ethidium Bromide  

Ethidium Bromide 500 mg 

ddH2O 50 ml 
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APPENDIX III 

 

PUBLICATION OF SINGLE SNP ASSOCIATION RESULTS FOR AGTR2 

 

http://www2.jraas.com/content/12/3/274.refs 
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