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ABSTRACT

The main objective of this assignment is to consider modern portfolio optimisation under regimes.

Unobservable regimes are assumed to be modulated by a time-change Markov process. These

models are well-known as Markov regime switching models. The Markov regime switching models

are applied to portfolios that consist of a lagged model and a factor model. The lagged model

represents a portfolio of 20 stocks which have been lagged by a day and then classified into regimes

whereas the factor model uses 5 different global risk factors or measures namely, the 3 Fama-French

factors, VIX and a spread between the 3-month JIBAR rate and SAFEX overnight rate to estimate

the unobserved regimes for the portfolio. This assignment considers two regimes. Two regimes are

classified representing the bull and bear markets, periods when the financial market is doing well

and when the market is on a downturn respectively. Thereafter, optimisation is performed by taking

the estimated regimes into account and obtaining the optimal portfolio allocations. Optimisation

methods such as Sharpe ratio method and risk budget method are investigated. For each of these

optimisation methods the portfolios were rebalanced to evaluate the financial markets at the start

of the new investment period, classify it either into a new regime or remaining in the current state

and then adjusting the portfolio weights. Portfolio optimisation including the regimes are then

compared to classical modern portfolio optimisation without regimes consideration. Results show

that portfolio optimisation with regimes obtained the highest Sharpe ratio, indicating the economic

benefit of inclusion of regime switching characteristics in modern portfolio optimisation.

Key words:

Regimes, portfolio, Markov regime switching model, optimisation, lagged model, factor model,

Sharpe ratio, risk budget, rebalancing.
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OPSOMMING

Die hoof doel van die opdrag is om die moderne portefeulje optimalisering onder regimes te oor-

weeg. Dit word aangeneem dat onwaarneembare regimes gemoduleer word deur die tydveranderende

Markov proses. Hierdie modelle is welbekend as Markov regime oorskakelings modelle. Die Markov

regime oorskakelings modelle word toegepas op ‘n portefeulje wat bestaan uit ‘n sloer model en

‘n faktor model. Die sloer model verteenwoordig ‘n portefeulje van 20 aandele wat vir ‘n dag

sloer en dan eers geklassifiseer word in regimes waar die faktor model 5 verskillende globale risiko

faktore gebruik of meet naamlik, die 3 Fama-French faktore, VIX en die verspreiding tussen die

3-maande JIBAR koers en SAFEX oornag koers om te bepaal wat die onwaarneembare regimes

vir die potefeulje is. Hierdie opdrag oorweeg twee regimes. Twee regimes word geklassifiseer deur

die bul en die beer markte, periodes wanneer die finansiële mark opwaarts neig en wanneer die

mark afwaards neig. Daarna word optimalisering gedoen deur die skatting van die regimes in ag

te neem en die optimale portefeulje allokasies te verkry. Optimalisering metodes soos die Sharp

verhouding metode en risiko begroting metode word nagevors. Vir elkeen van die optimalisering

metodes is die portefeuljes weer gebalanseer om die finansiële mark te evalueer aan die begin van

die nuwe bellegings periode. Dit word dan geklassifiseer in ‘n nuwe regime, of dit bly dieselfde en

die portefeulje gewig word daar volgens aangepas. Portefeulje optimalisering insluitend die regimes

word dan vergelyk met die klassieke moderne portefeulje optimalisering sonder om die regimes in

ag te neem. Resultate wys dat portefeulje optimalisering wat regimes insluit, verkry die hoogste

Sharpe verhouding, dit dui die ekonomiese voordeel om die regime oorskakelings eienskappe in ‘n

moderne portefeulje optimalisering.

Sleutelwoorde:

Regimes, portefeulje, Markov regime oorskakelings model, optimalisering, sloer model, faktor model,

Sharpe verhouding, risiko begroting, balansering.
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CHAPTER 1

INTRODUCTION

1.1 AN OVERVIEW

Modern portfolio Theory optimisation has been one of the most active areas of research at the

confluence of finance and mathematics, having been introduced by Markowitz’s seminal paper in

1959 (see Markowitz (1959)) and intensively researched by others. This assignment will investigate

the Markov regime switching models as a way of classifying the South African financial markets into

different unobservable regimes. The regimes will represent the bull and bear states of the economy.

Thereafter, portfolio optimisation as a whole will be investigated taking into account the regime

switching features. Two different models will be chosen to fit these Markov regime switching models

on. The first is a lagged model and the second is the factor model. The lagged model represents

the portfolio which have been lagged by a day and then classified into regimes whereas the factor

model uses 5 different risk factors such as the 3 Fama-French factors, VIX and a spread between

the 3-month JIBAR rate and SAFEX overnight rate to calculate the regimes for the portfolio. First

the parameters of these models have to be estimated by using a calibration method. Thereafter

these calibrated parameters are used for the portfolio optimisation.

Optimising these models for the constructed portfolios is then the next task at hand. Optimisation

using the Sharpe ratio method as well as the risk budget method will be put to the test and compared

among one another. The higher the Sharpe ratio method the more attractive the risk-adjusted

return. Risk budgeting is a type of portfolio allocation in which the portfolio’s risk is spread across

several asset classes with the goal of increasing overall portfolio returns while minimizing total

portfolio risk (Das, 2021). For each of these optimisation methods the portfolios were rebalanced

to evaluate the financial markets at the start of the new investment period, classify it either into a

new regime or remaining in the current state and then adjusting the portfolio weights.

1
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The main objective is to investigate whether applying all of these models and the estimation of the

market regimes, whereafter the portfolio is then optimised taking the current state of the financial

market into account, actually makes a substantial difference. This will be tested by taking a look

at the annualised portfolio returns and the portfolio risk which is then used to calculate the Sharpe

ratios. This is done for a portfolio taking the estimation of the regimes into account and a portfolio

excluding the regime classification that were optimised with the classical optimisation methods.

Thereafter the conclusion of the study can be made.

1.2 PROBLEM STATEMENT

The major question in this assignment is whether the inclusion of regimes lead to better optimi-

sation of a portfolio than the exclusion of the regimes, which refers to the classical methods. The

Markov regime switching model is the chosen model for classifying the South African market into

regimes. The South African economy has gone through numerous turmoil periods and when port-

folio optimisation is done taking unobservable regime switching into account it is deemed as an

appropriate methodology.

1.3 CLARIFICATION OF KEY CONCEPTS

Regimes

Classification of the South African financial markets into two separate states which represent the

bull and bear markets.

Portfolio

Combination of stocks that are invested in by an investor.

Markov regime switching model

Model that switches between regimes using a Markov chain.

2
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Optimisation

To obtain the optimal weighting of stocks in the portfolio to receive the highest returns.

Lagged model

Model that are fitted on the portfolio that are lagged with one day.

Factor model

Model fitted on the portfolio based on different risk factors.

The remainder of the assignment is structured as follow: in Chapter 2 a literature review is discussed

on the Markov regime switching model as well as optimisation. Continuing to Chapter 3 the models

and methodologies are explained as well as some insight on the mathematical background. These

methods were then applied and Chapter 4 is devoted to the empirical results continuing to the

optimisation in Chapter 5. The models that have incorporated the regimes are then compared to

portfolio optimisation excluding the incorporation of the unobserved regimes and the results can

be obtained in Chapter 6. Whereafter, the final conclusion will follow.

3
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CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

This chapter will focus on the background and survey the literature being used in the assignment.

The reasoning behind the methods that are used will be discussed as well as some insights on the

topic’s background.

The main goal for the assignment is to assess the impact of regime switching on portfolio optimisa-

tion. To optimise a portfolio different methods can be used and should be considered to diversify

the risk, and to obtain the optimal weights in each aspect of the portfolio. The founder of modern

portfolio theory, Markowitz, is well regarded (Markowitz, 1959). His study was based on the con-

cept of dividing the portfolio into a mean and variance choice. His mean-variance theorem is still

the foundation of current portfolio theory. According to this theory, maintaining constant volatility

maximizes anticipated return and vice versa. This principle led to the creation of the efficiency

frontier, which allowed investors to select a portfolio depending on their risk tolerance. It’s worth

noting that the efficiency frontier is used to compare how various securities perform against one

another. By taking these interactions into account, an investor may build a portfolio that has the

same expected return but lower risk than if the interactions were not taken into account.

Different formulation of modern portfolios adopted in practice are for example to maximize the

expected return of an asset portfolio given the exposure to risk or maximising the Sharpe ratio

which is simply the excess return over risk. These fundamental assumptions are not contradicted

by post-modern portfolio theory (PMPT). However, it modifies the formula for assessing risk in an

investment to address problems identified by its creators in the original according to Swisher and

Kasten (2005). Followers of both theories utilize software that uses either MPT or PMPT to create

portfolios that fit their desired degree of risk. Risk is tied to the ever changing economic conditions

therefore factors such as the Fama French factors can be considered because it adds value risk and

size risk to the calculation (Womack and Zhang, 2003). Because of the ever changing state of the

4
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economy that can be seen just by considering the global pandemic that COVID-19 has caused the

well known financial market phenomenon of regime switching can be considered as one of the more

appropriate ways to optimise a portfolio.

This study wants to investigate the existing link between the Markov regime switching model and

the performance of an optimised portfolio. Optimisation under regime switching is not an easy

task, the different regimes first needs to be estimated and identified before anything else can be

done. The Markov regime switching model and optimisation methods with all their capabilities

and shortcomings are explored. In the next section portfolio optimisation is investigated whereafter

the Markov regime switching model is explained.

2.2 PORTFOLIO OPTIMISATION

Portfolio optimization is the process of an investor that wants to select the best asset distribution

for the portfolio. Baring in mind that the best portfolio will maximise the expected return and

minimise any costs associated with the risk being taken. This can be based on the principle of

modern portfolio theory (MPT) that is to maximise the possible returns for the lowest risk or

minimising the risk given a target return however, additional constraints are then often needed

to obtain a reasonable solution. The highest Sharpe ratio will be considered because it measures

the excess returns for every unit of risk taken (Sharpe, 1994). Assets should ideally have low

correlation with one another because the interaction of how the assets perform relative to one

another is considered. Therefore we would want to diversify the portfolio as much as possible to

avoid a crash when any particular asset underperforms this forms part of risk mitigation. In other

words, the portfolio needs to be diversified enough with the correct weightings in each asset that

a sudden change in one wouldn’t cause the investor any major losses or bankruptcy. The famous

English saying says it best by not having all your eggs in one basket.

When optimisation of a portfolio is considered the most challenging aspect is to find a strategy to

allocate weights to the different components in the portfolio. There are different ways to do this

5
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that can be considered to be optimal. Skilled managers should however be careful when choosing

an allocation strategy and should consider all possible information about the portfolio. According

to Srivastava (2020) the most intuitive way of allocating weights to securities is based on the

managers conviction for them. However from an academic point of view this can be calculated

using different techniques and using programming tools to calculate the best weightings for the

portfolio. In the early days the managers feel for investing was the way of doing things and they

were actually profitable however after 1997 the increased volatility in the markets caused managers

to turn to other methods. Srivastava (2020) also mentioned that after the 2008 Global Financial

Crisis that the “risk-parity” strategy became very popular (also known as the equally weighted

risk contribution (ERC)). Risk parity is a portfolio allocation approach that uses risk to decide

allocations across multiple components of an investment portfolio. Through the use of leverage, the

risk parity strategy modifies the modern portfolio theory (MPT) approach to investing Asness et al.

(2012). This method assigned identical risk budgets to all participating assets and ignores investor

expectations or projected return forecasts. Lohre et al. (2014) gives a different perspective on

risk parity and states that a diverse risk parity portfolio can be built by deconstructing a portfolio

using principal component analysis (PCA) depending on its underlying risk metrics. The Markowitz

Mean-Variance Optimal Portfolio, based on the Capital Asset Pricing Model or CAPM, is the most

prevalent strategy that incorporates viewpoints. A market-capitalization-weighted allocation is

used in passive investments like the market index.

Other methods can also be considered and a few worth mentioning will be discussed. When the

equally weighted strategy is considered, returns throughout the portfolio are purely random. It

then simply assigns equal weights to all components. However, after the 2008 global crisis a shift

to risk parity was made because in this situation the risk contribution of each asset is equal and it

works best when the Sharpe ratios are the same between the asset classes according to Srivastava

(2020). However, this is not realistic because equal risk contribution approaches do not use time-

varying covariances or correlations. Another method exist to minimise the portfolio’s volatility and

it’s called minimum variance. This would work ideally when the returns and the risk involved is

not proportional to one another. This means that when the risk is reduced it doesn’t lead to lower

returns. The Markovitz Portfolio is a well-known mathematical framework for piecing together a

6
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portfolio of assets in such a way that the expected return for a given amount of risk is maximized,

this is also known as mean-variance optimisation. Costa and Kwon (2019) stated that the optimal

mean-variance approach is very sensitive to the level of noise that comes from the estimated input

parameters, specifically referring to the covariance matrix and asset expected returns.

As in the paper of Agarwal and Lorig (2020) the Sharpe ratio of a portfolio is a simple measure

of mutual fund performance, it is defined as the ratio of a portfolio’s expected excess return to its

standard deviation. They also mentioned that Merton used the risk-aversion parameter of a utility

function to integrate the investor’s risk preference. It was demonstrated that, given a constant

relative risk-aversion utility function, the investor receives a higher expected utility from assets

with a higher Sharpe ratio under the premise that log-asset returns are normally distributed with a

constant Sharpe ratio. In other words it is considered that a market trader who seeks to maximize

his expected terminal utility does so by trading risky assets.

It is also important to keep in mind that an investor should specify their risk appetite because this

will have big implications on how their money is invested considering the time horizon. One should

also consider the really important factor of correlation when the optimisation method is chosen

because will perform better in the presence of correlation than other. Some scenarios are more

optimal than others when the market switches regimes, therefore one should also consider different

regimes under which investments are done. The Markov regime switching model is a good choice

for this and will be discussed in the next section.

2.3 MARKOV REGIME SWITCHING MODEL

Political unrest and financial crises can cause dramatic breaks in economic time series thus the

need for estimating regimes. The first application of the Markov regime switching was coined by

Hamilton (1989) in his paper entitled “A new approach to the economic analysis of nonstationary

time series and business cycles”. If the data that are being used are the result of the alternating

regimes fitting a classical linear regression model would lead to oversimplification of the market

7
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movements because it would merge the market regimes when estimating. Therefore it is proposed

to use a model that take the different states (regimes) including the current regime into account.

In this paper a two-state model is used to divide the market movements into a ‘bull’ and ‘bear’

market, where the ‘bear’ market have higher volatility. The transition between these states can be

represented graphically as follow:

Figure 2.1: Transition from one state to another or remaining in the same state.

A bull market is one in which prices are rising and economic circumstances are typically positive.

A bear market develops when the economy is weakening and the majority of stocks are losing value

according to Gonzalez et al. (2005). It is important to note that in a market that consists of these

bull and bear market cycles modern portfolio optimisation would fail to capture these significant

changes in the economy.

The existence of a Markov regime-switching model can be aided by the use of a Markov chain to

replicate the unseen factors that drive the dynamics of these rapid shifts according to Costa and

Kwon (2019). They also continue to say that it is possible to ‘switch’ between the estimated param-

eters corresponding to a bull or bear market by adding a regime-switching framework to a nominal

factor model of returns, therefore improving estimation accuracy. Because of the uncertainty that’s

introduced by the regime estimation error the Baum-Welch algorithm is used in practice to estimate

the Markov-regime switching model.
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Song (2020) describes the popular Markov switching models as models that use state or regime

specific values to introduce time-variation in the parameters. This time variation is driven by a

discrete-valued latent stochastic process with limited memory, which is significant. More precisely,

the present value of the state indicator is determined solely by the previous period’s value, resulting

in the Markov property and the transition matrix. Being more specific as to what this entails we

define the Markov property as, the property that is an extension of the Markov process deriving the

future states that are dependent on the present state but independent of the past states (Grabski,

2015). The Markov process is a memoryless process which means that it does not remember the

previous states that it visited it only depends on the present state it is in.

Scherer et al. (2018) explains the general state-based approach according to the following three

conclusive phases. The first is the “state” of the system that should be determined where the state

contains both the information needed to describe the system’s dynamics and to make decisions.

Then the transitions between the states in the system is considered. The desired outcome for these

transitions is that it should be Markovian therefore, determining the order of the model constructed

is required. Another desired property is stationarity (that the transitions and time are independent).

Lastly Scherer et al. (2018) states that the chosen decision model must be constructed and thereafter

optimised, meaning that system controls must be chosen and implemented in order to maximize

(or minimize) set objectives. Therefore we can see that there exist a link between the switching in

market condition affecting the economy being modeled by a Markov-regime switching model and

the optimisation of a portfolio. All of this information should be considered when constructing a

portfolio to maximise the returns. Thus we can discuss the conclusion in the next section.

In short this study wants to investigate whether adding the regimes in optimisation is beneficial

compared to optimisation without the incorporation of regimes. It will be compared by using the

Sharpe ratios. The methods and results are discussed in the next sections.
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CHAPTER 3

DATA AND METHODOLOGY

3.1 DATA HANDLING

The purpose of the assignment is apply a Markov regime switching model and then optimise the

portfolio at hand and this is tested for South African data. Different time periods and methods of

gathering data were considered until a conclusion were reached that the time period of observation

that were chosen spanned from the start of 2002 until the middle of 2016. This is to incorporate

the different events that is known to play a significant role in the classification of regimes for

example the Global Financial Crisis of 2008. The daily returns for each asset in the portfolio were

obtained. The data were retrieved from Yahoo Finance and thereafter processed. The portfolio

that were chosen to be constructed were all companies whose data were publicly available (therefore

on Yahoo Finance), and that were well known South African companies to invested and which were

established since or before 2002.

As part of another aspect of the assignment different factors were taken into consideration. The

Fama French 3-factor model were considered, it is an asset pricing model that elaborates on the

CAPM by adding size risk and value risk factors to the market risk factors according to Womack

and Zhang (2003). This data could be found on Kenneth R. French (2021) data library. The CBOE

Volatility Index (VIX) were also considered. It is the real-time market index that represents the

expected market volatility for the next 30-days. The last factor that were considered were the spread

between the 3-month JIBAR rate and SAFEX overnight rate the reason for this consideration is

due to the Global Financial Crisis there is still a need for a South African default-free discounting

curve to capture market risk premium. The spread is used as a proxy for the South African market

risk premium. The data were obtained for the same period as mentioned earlier.
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3.1.1 Portfolio construction and Factors being considered.

The construction of the portfolio were done in the manner that most categories were covered to

diversify the possible investment and to include most aspects of the South African market. The

companies or also referred to as assets in the portfolio were chosen as stated in Table 3.1.

In Table 3.1 the code were also provided. This is the code used in Yahoo Finance to represent

the corresponding company. This is a study applied on South African data therefore the .JO in

the code denotes the market or index of the Johannesburg Stock Exchange (JSE). The JSE is

the largest stock exchange in Africa and provides a market to deal with securities. The reason for

choosing companies is traded on the JSE is because they are listed and therefore complies to certain

regulations and can be seen to be more transparent and provide investors some kind of protection.

This statement will be put to the test according to the different classified regimes and thereafter

the optimisation of the portfolio. It is important to note that the companies might be referred to

the codes as per Table 3.1.

Table 3.1: List of Assets in the Portfolio.

Consumer Goods Code Investments Code

Tiger Brands TBS.JO Investec Group INL.JO
RCL Foods limited RCL.JO Coronation Fund Management Limited CML.JO

Consumer Services Code Telecommunication/Broadcasting Code

Woolworths Holdings Limited WHL.JO Naspers Limited NPN.JO
Shoprite Holdings Limited SHP.JO MTN Group Limited MTN.JO

Health Care Code Chemicals/Mining Code

LIFE Health Care Group Holdings Limited LHC.JO Sasol Limited SOL.JO
Netcare Limited NTC.JO Anglo American Platinum Limited AMS.JO

Insurance Code Industrials Code

Sanlam Limited SLM.JO PPC Ltd. PPC.JO
Discovery Limited DSY.JO

Banking Code Retail Code

Absa Group Limited ABG.JO Mr Price Group Limited MRP.JO
Capitec Bank Holdings Limited CPI.JO
FirstRand Limited FSR.JO
Standard Bank Group Limited SBK.JO
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The factor selection will now be summarised. The Fama French three factors is the size of firms,

book-to-market values, and excess return on the market and can be seen in Table 3.2. The other

factors that were incorporate are also in Table 3.2.

Table 3.2: Summary and abbreviations of factors being considered.

Factor Abbreviation

Fama French Factors Portfolio’s return less the risk-free rate of return MktRF
Small minus big SMB
High minus low HML

Volatility Index Vix
3M JIBAR rate and SAFEX overnight rate Spread

After the data of the companies in the portfolio and factors were obtained for the time period it

could then be processed.

3.1.2 Data Processing

The portfolio data were collected as well as the factors data. It were then transformed to logarithmic

returns that all variables can be measured in a comparable metric, thus enabling evaluation of

analytic relationships amongst the different variables. The formula used for this transformation

were:

rti = log

(
Pti

Pt−1,i

)

Where rti denotes the transformed log return for the ith (i = 1, . . . , I) asset in period t for

t = 1, . . . , T , then Pti denotes the asset price at time t for asset i and Pt−1,i is the asset price at

time t− 1 for asset i.

When all of the log returns were calculated the data we inspected. There were a few entries that

had the value 0 included in them this were removed along with some insignificant small values. The

data were then clean and ready to use. The 2 situations being explained throughout is the lagged
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and factor models. Now that the data are ready to use the lag could be implemented this were

done by only lagging the data by a day due to the fact that we were working with daily data. This

were done and the data sets were then compiled and read into R were the rest of the coding could

commence.

3.2 BASIC MODELS

The Markov regime switching model were applied to the lagged and factor models. The reason for

choosing the lagged version is that it allows for different recent historical amounts to be considered

in forecasting. In order for the regression model to be able to predict the future, independent

variables must typically be lagged. The reason for the choice of factor models are because they

are a powerful and adaptable tool for assessing current risk exposures in a portfolio. There are

certain mathematical denotations that had to be made in each of the certain cases and this will be

explained below thereafter the general mathematics will be explained which applies to both these

models.

The financial market will be classified in one of the two regimes which will be represented by N .

The time period throughout will be denoted by t. The market is considered to be in regime st in

time period t. The remaining notation will be explained as the study continues.

3.2.1 Lagged Model

The method for a Markov regime-switching-based factor model of asset returns is now proposed

for a model with lagged variables. Following the method used by Costa and Kwon (2019), the

behaviour of a variable, yt, is observed and investigated when it undergoes dramatic change at a

given time, t0. The observed behaviour of the variable yt for t = 1, 2, . . . , t0 can be modelled by a

first-order autoregression:

yt = α1 + β1yt−1 + σ1εt, (3.1)

13

Stellenbosch University https://scholar.sun.ac.za



with intercept denoted by α1, the autocorrelation by β1, the volatility is then denoted by σ1 and

εt ∼ N (0, 1). If this series at time t0 undergoes a significant change, the behaviour can then be

describe by:

yt = α2 + β2yt−1 + σ2εt, (3.2)

for t = t0 + 1, t0 + 2, . . .. Rather than assuming that the two systems are independent, it is rather

believed that they are governed by a larger model which consists of both states, which is then the

model used for the lagged variable:

yt = αst + βstyt−1 + σstεt, (3.3)

where st is considered to be in regime in time period t describing the state of the market. The yt

represents the returns in this case. This behaviour is that of financial cycles, where the market is

observed to change abruptly between bull and bear states. The Baum–Welch procedure is used to

estimate the components’ regime-dependent joint distribution. As a result, this regime-switching

factor model of returns proposes that the factors are non-stationary, with two unique, alternating

regimes governing their behavior.

3.2.2 Factor Model

The earliest factor model is the CAPM which introduced an advantage in portfolio optimisation.

However it only took one factor into account. A study done by Bartholdy and Peare (2005)

discussed the formulation of the CAPM and the following equation were derived for the estimation

of expected return. The expected excess return on an asset is i given by:

E [ri]− rf = βM
i (E [rm]− rf)

where is ri the return on asset i, rf denotes the risk-free return, rm is the return on the world

market portfolio, βM
i = Cov(ri,rf)

σ2
M

is the systematic risk of asset i relative to the world market

portfolio (beta), and σ2
M is the variance of the return on the world market portfolio. However, some

issues arise due to the fact that the world market portfolio, consisting of all the assets in the world,
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this is not possible therefore it is necessary to use a proxy. They continued to improve on this by

introducing an alternative of the 3-factor Fama-French model. Thus, for each stock, i, to estimate

excess return, beta estimates for each of the factors are first obtained from the following time series

regression:

rit − rft = ai + β1i (rIt − rft) + β2iSMBt + β3iHMLt + εit t = 1, . . . , t0 (3.4)

where rIt denotes the return at time t on idex I, (this is used as the proxy), SMB denotes the

return on a portfolio of small stocks minus the return on a portfolio of large stocks, and HML is the

return on a portfolio of stocks with high book to market values minus the return on a portfolio of

stocks with low book to market values (Bartholdy and Peare, 2005). Two additional factors were

included to explain excess return the book to market ratio and the size. Taking this equation it

was possible to derive the equation that included all the factors in the portfolio it could then be

expressed as:

rit − rft = ai + β1i (rIt − rft) + β2iSMBt + β3iHMLt

+ β4iMktRFt + β5iVixt + β6iSpreadt + εit, t = 1, . . . , t0

(3.5)

This equation includes all the factors mentioned in Table 3.2. However, Bartholdy and Peare

(2005) concluded that this is not an appropriate approach for estimation. Therefore, a new more

appropriate approach should be followed to take the economic circumstances into account in other

words accounting for the unobserved regimes.

Introducing a new approach which is a similar concept than applied to lagged model, taking the

unobserved regimes into account. The factor model (with a little deviation in notation from the

lagged model) can estimate the returns defined by the regime-dependant linear factor model as:

Rt = αst + βstFt + Γstet (3.6)

Where the intercept is denoted by αst , the autocorrelation by βst and the covariance of the residual

by Γst . When the market is in regime st in period t. This were derived from research done by Ma,
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MacLean, Xu and Zhao (2011). The regimes in this case are characterized by a set of J risk factors,

representing the macro and micro economic indicators. Recalling that it is actually representing

the factors in Table 3.2. Ftj denotes the value of the jth risk factor for j = 1, · · · , J in period t.

Therefore, Ft denotes the vector of risk factors in period t. The asset returns in various market

regimes are characterized with these common risk factors Ft and et ∼ N(0, I).

It is important to note that to be able to calculate the Markov regime switching models together

with the matrices that will follow we first had to do linear regression of the factors or lagged returns

on the model as a whole and then read that into the functions to write the regime-switching model

with the results that can be seen in Chapter 4. The reason for this is that the parameters were

unknown and first had to be calibrated before the Markov regime switching could be done.

The following information is applicable on both the lagged and factor model. The model parameters

of the 2 models are dependent on the regime st. The vector α′st = (α1st , · · · , αIst) contains the

state-depend intercepts of the linear factor model. Then taking the second term into account we

can express βst which is the autocorrelation, as a matrix representing the relationship between the

variables:

βst =

⎛
⎜⎜⎜⎝

β11st · · · β1Jst
...

. . .
...

βI1st · · · βIJst

⎞
⎟⎟⎟⎠

which then defines the sensitivities of asset returns to the common risk factors in state st. The β

value measures the systematic risk of an investment in comparison to the market as whole. The

linear factor model implies that, given the factors (either lagged or risk factors), the conditional

asset returns within a regime are then normally distributed with mean vectors:

μst = αst + βstFt (3.7)

and covariance matrix:

Σst = ΓstΓ
′
st (3.8)
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Estimates of the regime-dependent parameters and forecasts for the values of the factors are required

for the linear factor model to be useful for forecasting returns over time. There are N distinct

regimes, in this study N = 1, 2 and the movements of the market regimes follow a Markov chain.

The regimes are denoted by n and qtn = Pr [st = n], for n = 1, . . . , N . The initial regime distribution

is represented as q0 and the transition probability matrix is given as P = {pmn}.

The transition probability from regime m to regime n is given by the following equation:

pmn = Pr (st+1 = n | st = m) , ∀ m,n. (3.9)

For period t, given that the regime m is in the period of t − 1, the two-state transition matrix

describing the probability of switching from one regime to another is represented by the following

matrix:

Γ =

⎡
⎣ γ11 γ12

γ21 γ22

⎤
⎦

where γij gives the probability that state i will be followed by state j. Therefore, every row must

sum up to unity as:
2∑

j=1

γij = 1 for i = 1, 2

.

The unconditional expected asset return is expressed as:

μ̄tm =

N∑
n=1

μtnpmn, (3.10)

and the covariance matrix as:

Σ̄tm =

N∑
n=1

[
(μtn − μ̄tm)2 + ΓnΓ

′
n

]
pmn. (3.11)

When the regimes in each period are known, estimating model parameters from observations on

returns and factors becomes quite simple. However, if the regime at each time, as well as the model
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parameters for each regime, are unknown, then the model parameters must be calculated directly

from the data, and the regime must be deduced.

The Baum-Welch algorithm is used for the estimation of the parameters of the Markov regime

switching model, this includes the transition matrices, the β matrices, the initial state and inter-

cept etc. according to Mitra and Date (2010). They continued defining it to also be known as

the forward-backward algorithm which is a dynamic programming approach and a special case of

the EM algorithm, which stands for the expectation-maximization algorithm. The forward and

backward phase is part of the E-step and the update phase part of the M-step. This EM algorithm

will be explained in the next section.

3.3 ESTIMATION ALGORITHM

The main research done about the topic of the EM algorithm is that of Dempster, Laird and Rubin

(1977) and this combined with the work of Ma et al. (2011) is used as basis for the explanation of

how this study implemented the EM algorithm. This process consists of 2 steps. The steps are as

follow:

• The first step is regarding the E in EM algorithm. This is for the estimation of the missing

data for the regimes.

• The second step refers to the M which is the maximization of the likelihood based on the

estimated missing data on the regimes.

To execute the EM algorithm one have to specify the number of regimes. In this study we have

defined the number of regimes N = 2. Then continue to denote the model parameters as

θ = {αst , βst ,Γst , q0, P}, the unknown regimes at each time is defined as S, and the observed data

on returns and factors is represented by X.

The iterative algorithm can then be set out to be as:

• The E-step: First a set an initial value θ0 for the true parameter set θ, then the calculation

18

Stellenbosch University https://scholar.sun.ac.za



for the conditional distribution for regimes can be done as follow,

Q(S) = P
(
S | X; θ0

)
.

Thereafter the expected log-likelihood of the data can be calculated with respect to the two

regimes,

EQ[lnP (X,S; θ)].

• The M-step: This step is were the maximization of the expected log-likelihood with respect

to the conditional distribution of the regimes take place, to produce an improved estimate of

θ. The improved estimate is:

θ1 = argmax
θ
{EQ[lnP (X,S; θ)]}

With θ1 denoting the new value for θ, then returning to the E-step again.

The results from applying the EM algorithm to the data are:

1. The parameter estimates as:

θ̂ =
{(

α̂n, β̂n, Γ̂n, ∀ n = 1, . . . , N
)}

,

2. the estimated transition matrix, and

3. the posterior distribution of regimes. The implied regime, Ŝ, at each time is the most likely

regime.

The EM method necessitates the determination of a known number of regimes from the data. The

goal is to find the model that fits the data the best, and the number of regimes is part of the fit.

The number of regimes where chosen as 2 classifying the state of the economy in either an upward

swing or downward swing. In the next section the results of these mathematics will be explained.

Note that another amount of regimes could be chosen or investigated however taking the turmoil

South African economy it was chosen to work with 2 regimes.
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The data handling has been discussed in Section 3.1 as well as the chosen assets in the portfolio

that were constructed. The factors that are used and their abbreviations were stated. After all

of the data processing were done and the data were correct and ready to use the basic models

were discussed. The lagged model and factor models along with their equations and derivations

were done and then the chapter continued to the last section of the estimation algorithm. The

EM algorithm is explained along side the steps and calculations that should be done. The theory

is explained along with the equation and derivations and Chapter 4 will give the empirical results

which were obtained by implementing the models and methods of Chapter 3.
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CHAPTER 4

EMPIRICAL RESULTS

The Markov regime switching model were implemented for the two scenarios. Hereafter, the regimes

were classified for the time period that the financial markets were observed. The matrix values were

obtained by the methods explained in Section 3.2 completing the equations of Chapter 3. The results

were obtained following the methods of Chapter 3. Thereafter, optimisation is done using different

methods of optimisation for the two scenarios as well as for different categories of the portfolio.

4.1 LAGGED MODEL

As explained earlier the market were classified into regimes according to the data of 20 lagged

variables. The variables were lagged with a day using daily returns. After applying Markov regime

switching methods to these data the regimes could be classified into 2 regimes that is referred to as

regime 1 and 2. This represents the bull and bear markets respectively, as mentioned a bull market

is one where the economic circumstances are typically positive in which prices are rising and and

a bear market develops when the economy is slow and most stocks are declining in value. We are

interested if this would make a difference to the optimisation efficiency and mitigation of risk.

Figure 4.1 is a visual representation of the regimes after it have been classified by the lagged

variables. This splits the South African market into 2 states depending on the market condition.
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Figure 4.1: The lagged model’s regime movements over the time period.

Next, the different values were calculated for each variable as explained in Chapter 3 for the equation

of:

yt = αst + βstyt−1 + σstεt, (4.1)

Starting with the αst the values were calculated for the vectors representing each regime for each

lagged variable. The alphas are also representing the state-depend intercepts of the linear factor

model. This can be seen in Table 4.1 below.

Table 4.1 shows the alphas (α) for regime 1 and 2, alpha measures how closely a stock’s returns

match or surpass those generated by the market. A negative alpha, such as Tiger brands for regime

1 seen to be -0.0011 on the other hand, shows that the asset is not generating returns at the same

rate as the broader sector.
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Table 4.1: Lagged model alphas for regime 1 and 2.

Lagged Alphas Regime 1 Regime 2

Tiger brands -0.00110 0.00176
RCL Foods 0.00125 -0.00086
Woolworths -0.00080 0.00006
Shoprite -0.00050 -0.00092
LIFE -0.00012 0.00062
Netcare -0.00090 0.00068
Sanlam 0.00068 -0.00161
Discovery 0.00136 -0.00064
Absa -0.00091 -0.00008
Capitec 0.06374 0.00111
FirstRand 0.00006 0.00006
Standard Bank -0.00077 -0.00016
Investec 0.00023 -0.00449
Coronation -0.00053 0.00177
Naspers 0.00184 -0.00203
MTN -0.06169 -0.00077
Sasol -0.00033 0.00027
Anglo American Platinum 0.00253 -0.00220
PPC -0.00126 -0.00085
Mr Price -0.00466 0.00124

There is a higher chance that there will be excess returns in other words alphas in the bull regime,

therefore it is expected that the knowledge of potential future regimes are up to date to allocate

the the assets. The next factor in Equation 4.1 is the β variable. The most important thing to

be attentive on is that the α values and β values vary across the regimes and that it doesn’t stay

fixed. The β represents the sensitivities of asset returns to the common risks in state st. It is also

sometimes referred to as the autocorrelation between the variables as in the research done by Costa

and Kwon (2019).

Tables 4.2 and 4.3 represents the β’s for the lagged variables. It is important to note that the

numbering for 1 to 20 is simply for the 20 assets in the lagged model. These also represents the one

day lags that are incorporated into the model. Thus we can assume that these values represents

the autocorrelation between the variables and the respective lagged variables.
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Table 4.2: Lagged Model beta coefficients for regime 1 continuing at the bottom.

1 2 3 4 5 6 7 8 9 10

Tiger brands -0.29332 0.10175 -0.04063 0.02499 -1.15774 -0.01855 0.01120 0.02086 -0.08555 -3.18619
RCL Foods -0.03861 -0.02152 0.01452 0.02071 -0.20353 0.07381 -0.00535 0.02146 0.02544 -1.33226
Woolworths -0.03705 -0.02914 0.49780 0.01599 -0.54808 0.10170 0.01160 0.00757 0.03345 -2.19770
Shoprite 0.03628 0.04444 0.09122 0.02774 -0.50966 -0.09392 -0.10012 -0.16436 -0.02799 -3.31915
LIFE 0.02239 0.01050 0.41169 0.04734 -0.18881 0.22028 -0.06334 0.04799 0.01832 9.67907
Netcare -0.01295 -0.19990 -0.26403 0.00299 -0.87027 0.05666 0.03312 -0.05109 -0.10516 -7.36824
Sanlam 0.00560 0.14599 0.34113 0.19550 0.99708 0.14499 -0.22027 -0.06096 -0.04017 5.36067
Discovery 0.14219 0.03545 -0.19439 -0.04311 0.40594 -0.04943 0.02347 -0.48334 0.17866 1.48362
Absa 0.10038 -0.10475 -0.22304 -0.06911 0.74975 -0.12643 -0.03352 0.09681 -0.09920 -9.28193
Capitec 0.06934 0.01757 0.14270 0.09452 0.09550 -0.08135 -0.04717 -0.03554 0.15075 -0.41648
FirstRand -0.19606 -0.02058 -0.15531 -0.27217 -0.80410 0.11358 0.00578 0.03671 -0.13517 2.29556
Standard Bank -0.05865 0.19895 -0.14857 0.14092 0.03422 -0.13814 0.00900 0.02409 -0.07450 -6.90570
Investec -0.10406 0.11373 0.38057 0.19211 0.08505 0.19038 -0.07632 0.00008 -0.06362 2.46532
Coronation 0.02776 -0.09405 -0.26160 0.11231 0.85198 0.05669 0.05976 0.05646 -0.08158 7.60783
Naspers 0.01830 0.09024 -0.11367 0.01880 0.54522 0.05360 -0.01929 0.04042 0.04915 -1.43607
MTN 0.03454 -0.11970 -0.01315 -0.07099 -0.66823 -0.03695 0.09360 0.00581 0.08250 -4.82672
Sasol 0.01954 -0.12499 -0.00165 -0.25943 0.03945 -0.10330 0.04885 -0.05075 0.07292 6.19480
Anglo American Platinum 0.05061 0.03233 -0.03296 0.14022 -0.07804 -0.06141 -0.03381 -0.03021 0.04349 2.26579
PPC -0.08201 0.03916 -0.02976 0.04861 -0.50574 0.08625 0.00914 0.05740 -0.08997 -3.44336
Mr Price -0.00578 -0.14591 -0.10307 0.07208 -0.32317 0.02736 -0.02955 0.15086 0.06261 7.67954

11 12 13 14 15 16 17 18 19 20

Tiger brands -0.14178 0.09420 0.07341 -0.08357 0.10963 0.13163 0.11452 0.05173 -0.04339 -0.20003
RCL Foods 0.01456 -0.00584 0.01923 -0.05255 -0.08228 -0.12755 -0.01053 0.12790 0.03781 0.35124
Woolworths 0.02195 0.02139 -0.02987 0.04211 0.01009 -3.13309 0.07883 -0.00917 -0.02200 0.38556
Shoprite -0.02234 -0.09496 -0.01631 -0.06149 -0.05031 -0.46606 0.03750 -0.09922 0.10957 0.18883
LIFE 0.14364 0.04985 -0.00913 0.02694 0.01181 1.79727 -0.01299 0.12349 0.14220 0.03072
Netcare -0.04055 0.14546 0.02518 -0.10600 0.02007 -1.05260 0.01761 -0.09516 -0.15710 -0.34533
Sanlam 0.12379 -0.02644 -0.02532 0.02578 -0.08168 1.94414 0.06176 0.01433 0.24751 -0.07260
Discovery -0.18370 0.05814 0.05149 0.26261 0.06743 4.70000 0.05866 -0.29646 -0.10610 -0.64388
Absa -0.25292 0.05646 -0.11584 0.03068 -0.04228 0.89491 -0.07825 0.01630 -0.19539 -0.38899
Capitec 0.00341 0.02988 0.01171 -0.00116 -0.02003 0.63859 0.00110 -0.03706 -0.02940 0.05417
FirstRand 0.44069 -0.08774 0.02835 -0.04583 0.05793 -0.38255 0.01591 0.15294 0.08902 -0.73560
Standard Bank 0.00883 -0.21869 0.02891 -0.06864 -0.04145 -1.46712 -0.11681 -0.16055 -0.12054 0.43369
Investec 0.08750 -0.08318 -0.14964 0.08548 0.17938 -1.34909 -0.05786 0.07370 0.28515 0.71540
Coronation -0.06600 -0.07696 0.01559 -0.34283 0.07618 2.43118 -0.02045 0.03272 -0.03477 0.44651
Naspers -0.00337 -0.00852 0.04524 0.03076 0.07556 -0.64444 0.04552 -0.10249 -0.17449 -0.04678
MTN -0.08520 -0.06502 0.05317 -0.10544 -0.04749 -0.05947 -0.05823 0.04371 -0.04286 0.22806
Sasol -0.01358 0.07227 0.07650 0.09828 0.08841 -5.60889 0.11317 -0.01297 -0.12529 -0.37609
Anglo American Platinum 0.02577 0.01015 -0.03963 -0.01821 0.04396 0.95303 -0.00338 -0.06464 0.11368 -0.08800
PPC 0.05363 0.04835 0.04416 -0.06048 0.02397 0.49355 0.01131 0.12605 0.04255 -0.06269
Mr Price 0.05363 0.04835 0.04416 -0.06048 0.02397 0.49355 0.01131 0.12605 0.04255 -0.06269

The following table represents the exact same concepts however the state referring to in this table

is representing regime 2. The values of beta can give a lot of information, if the beta values are

less than 1 it theoretically means that it is less volatile than the market. The inverse of this is also

true. Whereas when the beta value is negative then the asset is inversely correlated to financial

market benchmark.
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Table 4.3: Lagged Model beta coefficients for regime 2 continuing at the bottom.

1 2 3 4 5 6 7 8 9 10

Tiger brands 0.24364 0.07119 0.05116 0.05685 -0.00134 0.01448 0.03504 -0.02972 0.25036 0.05243
RCL Foods 0.06392 -0.38727 0.00695 0.01053 0.02776 0.01548 -0.00954 -0.04278 0.07706 0.00273
Woolworths 0.10382 -0.03672 -0.18534 0.01807 0.03762 0.01595 0.05008 0.00749 -0.02748 -0.03552
Shoprite 0.04390 -0.05931 -0.04867 -0.15376 -0.01736 0.04842 0.13591 0.00404 -0.04746 0.04595
LIFE 0.01078 -0.00843 -0.00267 0.04777 -0.05533 -0.02874 0.17471 0.00525 0.04409 0.01770
Netcare 0.02954 0.09804 0.11046 -0.05526 0.03429 -0.20977 -0.19285 0.01277 0.06523 -0.02960
Sanlam -0.01194 -0.09526 -0.08869 -0.08832 0.00334 -0.01587 -0.02199 0.06073 0.15374 -0.00038
Discovery -0.08332 0.00268 0.05274 -0.03293 -0.02124 0.04182 0.04376 0.32173 -0.22828 0.05106
Absa -0.12494 0.05666 -0.02661 -0.10489 -0.06492 0.05403 -0.07062 -0.20267 -0.38196 -0.08277
Capitec -0.17282 -0.05572 -0.05985 -0.02504 -0.03240 0.11129 0.12367 0.08570 -0.17211 -0.01684
FirstRand 0.27679 -0.00034 -0.03808 0.06242 0.04023 -0.02292 0.12880 0.16163 0.50972 0.08533
Standard Bank -0.11636 -0.06088 0.06041 -0.00256 0.01911 -0.18849 -0.19381 -0.06029 0.22454 -0.02047
Investec 0.06920 0.09684 -0.01891 0.02230 0.01581 -0.03027 0.07912 0.03580 0.20005 -0.03135
Coronation -0.06881 -0.04815 0.01389 -0.02710 -0.05213 -0.06276 -0.04154 0.02511 0.09778 -0.01925
Naspers -0.10365 0.00328 -0.02328 -0.03378 -0.01993 -0.06848 -0.03145 -0.12367 -0.16784 -0.03193
MTN -0.06074 -0.00623 -0.04664 -0.05355 -0.00928 -0.01281 -0.08013 0.04738 -0.17934 -0.01606
Sasol 0.03544 0.04196 0.02692 0.05119 0.01188 0.10669 -0.05978 0.01484 -0.16483 0.00910
Anglo American Platinum -0.01531 -0.00747 0.00764 -0.00158 -0.01449 -0.00112 0.06585 0.00258 -0.03105 0.02584
PPC 0.04738 0.00785 0.07195 0.02607 -0.00419 -0.02523 0.00962 -0.01537 0.06572 0.00357
Mr Price -0.01382 0.06771 -0.03049 0.00987 0.00041 -0.05827 0.00503 -0.14011 -0.05054 -0.00571

11 12 13 14 15 16 17 18 19 20

Tiger brands 0.17687 -0.26396 0.04852 0.10423 0.05862 0.04287 -0.16674 0.02923 0.05690 0.04416
RCL Foods 0.03348 0.13373 -0.01217 0.18429 0.07450 0.05287 0.09053 -0.00163 0.05427 0.01827
Woolworths 0.06125 -0.00342 0.10668 -0.07573 0.05632 0.00934 -0.10527 -0.02892 0.02961 -0.00829
Shoprite -0.06638 0.19073 0.08974 0.13395 -0.03836 -0.00732 -0.12452 -0.04250 -0.02834 0.06800
LIFE 0.01963 0.12595 0.18739 0.07730 0.04727 0.02415 -0.01630 -0.03424 0.02404 0.03801
Netcare 0.01593 -0.37660 -0.15329 0.10343 0.04026 0.01425 -0.11654 -0.00036 -0.08216 0.06714
Sanlam -0.01468 0.24343 0.02953 -0.00608 0.02491 -0.00847 -0.16697 -0.06630 -0.09919 0.03066
Discovery 0.05661 -0.30026 0.01831 -0.26873 -0.07126 0.00843 -0.12341 0.07909 0.04898 0.01617
Absa -0.02671 -0.47404 0.00781 -0.18711 -0.11617 -0.05023 -0.17023 -0.05979 0.05702 -0.06075
Capitec 0.04450 0.14048 -0.04995 0.02410 0.05670 -0.02590 0.05718 0.00980 -0.08546 -0.04787
FirstRand -0.38129 0.36315 0.01386 0.23008 -0.10780 -0.00073 0.11600 -0.05407 -0.03532 0.03375
Standard Bank -0.02506 0.15206 -0.23205 0.07328 0.08735 -0.03873 -0.02392 -0.02510 0.03397 -0.05574
Investec -0.01457 0.21799 0.09274 -0.15128 -0.09286 -0.02895 0.00043 0.02646 -0.12948 -0.05283
Coronation -0.01047 0.19103 -0.07544 0.30518 -0.11073 0.01956 0.02005 0.05895 -0.02860 -0.02185
Naspers -0.03382 -0.18109 -0.07887 -0.11769 -0.09618 0.00398 -0.14319 0.05686 -0.00275 -0.01387
MTN -0.04846 0.05765 -0.14147 0.08287 -0.00142 -0.05643 0.18342 -0.00339 -0.01944 -0.01274
Sasol 0.09674 -0.00784 -0.09596 -0.16445 0.01378 0.03170 -0.16797 -0.02111 0.04748 0.03612
Anglo American Platinum -0.00983 -0.02019 0.09040 0.02279 0.03387 0.01806 0.07558 0.04639 0.01467 0.00724
PPC 0.00076 -0.13201 -0.03124 0.07636 -0.04430 0.00052 0.02432 0.00545 -0.05021 -0.00661
Mr Price -0.04200 0.10065 -0.00268 -0.09953 0.04217 0.02239 0.19092 0.08010 0.12775 -0.07578

These coefficients can be used to determine whether or not an asset or stock moves in the same

direction as the financial markets. It may also help determine how risky and volatile an asset or

stock is in comparison to the rest of the market. In a nutshell, the beta is used to determine how

much risk a certain asset adds to a portfolio. For example in Table 4.3 Tiger brands have a positive

relationship in the same direction as the market with the value of 0.24364. Whereas Absa have a

negative relationship to the market with the beta value of -0.12494.
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The next result for the lagged model is the table representing the transition matrix for the transition

between the bear and bull markets. Table 4.4 denotes the transition probabilities of the transition

between regime 1 to 2 or of remaining in the same state or regime.

Table 4.4: Transition Matrix for the lagged model.

1 2

1 0.6741725 0.3258275
2 0.2873179 0.7126821

When the values of the transition matrix are analysed, a few conclusions could be made. The

value of 0.6741725 which is currently in regime 1 is interpreted that there is a 67.4% chance of

remaining in the current regime 1 state. Still currently in regime state 1 it has a 0.3258275 chance

thus 32.58275% chance of switching from regime 1 to regime 2. This matrix can be interpreted as

relative stable regimes with not as high probability of switching between the two regimes.

The next section is very similar however that section is based on the factor model whereas this

section were done on the lagged variables.
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4.2 FACTOR MODEL

This section is very similar to that of the lagged model in Section 4.1 however the regimes are

now classified according to the risk factors at hand representing the economical risks that could

be present. The chosen risk factors are global proxies market conditions such as the Fama-French

factors and the Vix representing the volatility that plays a significant role. The choice for the

3-month JIBAR-SAFEX overnight rate spread is due to the fact that it can be used as a measure

of fear in the South African market.

Figure 4.2 is the visual representation of the switching of regimes for the observed time period at

hand. It represents the different states of the South African financial markets.

Figure 4.2: The factor model’s regime movements over the time period.

For the factor model the methodology explained in Section 3.2.2 is followed to obtain the previous

mentioned model of:

Rt = αst + βstFt + Γstet (4.2)

First of all the α values are obtained for regime 1 and 2. These values represent the intercept

corresponding to each factor based on the influence of the risk factors being used to represent the
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market conditions.

The α’s for regime 1 and 2 are printed in the table below. It represents the intercept. When

interpreting these intercepts we know that in the linear model it represents the expected mean

values. Table 4.5 represents the alphas (α) for regime 1 and 2, alpha measures how closely a stock’s

returns match or surpass those generated by the market. A negative alpha, such as MTN for regime

1 is seen to be -0.10933 and shows that the asset is not generating returns at the same rate as the

broader sector, compared to Anglo American Platinum that has a positive value for regime 1 of

0.02017.

Table 4.5: Factor model alphas for regime 1 and 2.

Factor Alphas Regime 1 Regime 2

Tiger brands 0.01858 -0.00763
RCL Foods 0.00214 0.00897
Woolworths -0.00380 0.00921
Shoprite -0.00391 0.00361
LIFE 0.00050 0.03439
Netcare -0.00869 0.00276
Sanlam -0.00652 0.00050
Discovery -0.00747 0.00464
Absa 0.00259 -0.01356
Capitec 0.00122 -0.95194
FirstRand -0.00720 -0.02345
Standard Bank -0.00978 0.00286
Investec -0.01598 0.00498
Coronation 0.00883 0.00212
Naspers 0.00663 -0.01768
MTN -0.10933 -0.00259
Sasol -0.00436 0.01671
Anglo American Platinum 0.02017 -0.00510
PPC 0.00535 -0.00424
Mr Price 0.00476 -0.00483

Continuing the next values that were calculated were those of the β matrix. These values represents

the sensitivities of the assets returns in the South African constructed portfolio and the common

risk factors found at each state. Estimates of the regime-dependent parameters and predictions for
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the values of the factors are required for the linear factor model to be useful for forecasting returns

over time.

A beta coefficient can be used to relate the volatility of a single stock to the whole market’s

systematic risk. In statistics, beta is the slope of a line resulting from a regression of data points.

According to Abdymomunov and Morley (2011) the coefficient β is an effective way of describing

the movements of an asset’s returns as it responds to swings in the market. Therefore, the use of

regimes.

Table 4.6 as well as Table 4.7 reflects the beta coefficients for regime 1 and 2 respectively. These

coefficients can help with understanding whether the asset or stock moves in the same direction as

the financial markets or not. It can also assist with the process of assessing how risky and volatile

the asset or stock is compared to the rest of the market. In short the beta is being used to measure

how much risk is being added to a portfolio by the certain asset.

For example the -0.00130 beta value between Tiger brands and MktRF shows that there is a negative

correlation or relationship between the variable and the market. It reacts different compared to

the market reaction. However, it is a very small difference and not very significant. The beta value

of 0.27871 between MTN and Vix have a stronger positive relationship than the previous example

and could be considered more significant.
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Table 4.6: Factor Model beta coefficients for regime 1.

MktRF SMB HML Vix Spread

Tiger brands -0.00130 0.00539 -0.00141 -0.05695 -0.02478
RCL Foods 0.00132 0.00009 -0.00018 -0.01243 -0.00162
Woolworths 0.00137 0.00269 0.00101 0.03304 -0.00143
Shoprite 0.00261 -0.00062 -0.00059 0.01921 0.00098
LIFE 0.00297 -0.00013 -0.00020 0.02259 -0.00751
Netcare 0.00447 0.00293 -0.00530 0.03687 0.00523
Sanlam 0.00221 0.00288 -0.00215 0.02546 0.00745
Discovery 0.00321 -0.00196 -0.00088 0.01036 0.00839
Absa 0.00362 -0.00600 0.00047 0.00034 -0.00835
Capitec 0.00246 0.00026 -0.00005 0.00217 -0.00086
FirstRand 0.00341 -0.00013 0.00030 0.02697 0.00828
Standard Bank 0.00134 -0.00127 0.00082 0.02613 0.01296
Investec 0.00268 0.00382 -0.00028 0.08912 0.00877
Coronation 0.00305 -0.00115 -0.00214 0.00292 -0.01941
Naspers 0.00495 -0.00102 -0.00642 -0.00768 -0.00880
MTN 0.00675 -0.01391 0.02256 0.27871 0.07967
Sasol 0.00458 -0.00102 -0.00082 0.04740 -0.00746
Anglo American Platinum 0.00373 -0.00163 0.00102 0.08184 -0.05807
PPC 0.00286 -0.00235 -0.00030 -0.01433 -0.00891
Mr Price 0.00289 0.00162 -0.00065 0.00158 -0.00815

As can be seen in Table 4.6 and 4.7 the assets doesn’t deviate significantly from the market and

doesn’t add a significant amount of risk to the portfolio. However there is also always a trade-off

between risk and return low risk is related to low returns. All of this information is also true for

the beta coefficients for the lagged model.

The values of beta can give a lot of insight for example if the beta values are less than 1 it

theoretically means that it is less volatile than the market. The inverse of this is also true. Whereas

when the beta value is negative then the asset is inversely correlated to financial market benchmark.
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Table 4.7: Factor Model beta coefficients for regime 2.

MktRF SMB HML Vix Spread

Tiger brands 0.00272 -0.00268 0.00081 0.03644 0.00644
RCL Foods 0.00342 -0.00335 -0.00149 -0.01999 -0.00945
Woolworths 0.00709 -0.00421 -0.00364 -0.03479 -0.01324
Shoprite -0.00204 -0.00006 0.00507 -0.01704 -0.00566
LIFE -0.02003 0.00576 0.01699 -0.04947 -0.04762
Netcare 0.00273 -0.00091 0.00068 -0.00751 -0.00366
Sanlam 0.00542 -0.00049 0.00240 0.01461 -0.01222
Discovery 0.00192 0.00080 -0.00029 -0.00641 -0.00553
Absa 0.00328 0.00454 0.00160 0.03883 0.01339
Capitec 0.05940 0.19347 0.24428 1.57245 1.38397
FirstRand 0.00028 0.00246 -0.00144 0.04975 0.02201
Standard Bank 0.00651 0.00507 0.00167 0.02338 -0.02017
Investec 0.00533 -0.00218 0.00021 -0.05333 -0.00094
Coronation 0.00353 0.00404 0.00138 0.04239 -0.01698
Naspers 0.00228 0.00366 0.00123 0.03207 0.01783
MTN 0.00200 0.00164 0.00002 0.00560 0.00246
Sasol 0.00074 0.00333 0.00798 -0.08149 -0.00954
Anglo American Platinum 0.00150 0.00241 0.00343 0.01211 0.00260
PPC 0.00175 0.01016 0.00296 0.01224 0.00289
Mr Price -0.00222 -0.00122 -0.00304 -0.08117 0.02519

The beta coefficient assumes that the returns are normally distributed however, this is not the case

because the South African financial market is susceptible for large shocks. In reality it is also not

always normally distributed therefore, one should be careful when interpreting the beta coefficients.

Table 4.8 is the result for the gamma matrix of Section 3.2.2. It denotes the transition probabilities

of the transition between regime 1 to 2 or of remaining in the same state or regime. This matrix

can be interpreted as relative stable regimes with not as high probability of switching between the

two regimes.

With this transition matrix, one can perform matrix multiplication and determine trends if there

are any present and one can use this for predictions.
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Table 4.8: Transition matrix for the factor model.

1 2

1 0.8240015 0.1759985
2 0.2772869 0.7227131

This then concludes the Markov regime switching model for both the lagged and factor portfolios.

In the next chapter the optimisation will be done testing different scenarios to see if whether adding

regimes to the optimisation actually improves the risk return trade-off.

4.3 OPTIMISATION

The goal is to allocate capital to risky assets such that the investment goals are met. This is usually

measured in terms of risk and return. Referring to the alpha and beta matrices (earlier in this

chapter) were obtained in this case the alpha measured the excess return and the regime dependent

beta denoted the measurement of risk. The objective is to maximise the return incorporating risk

exposure constraints. These constraints are that:

• When the weights are calculated it should add up to one. Mathematically this can be ex-

pressed as: wti for the portfolio weight for the time period t for asset i. This will then be:∑I
i=1wti = 1.

• The other constraint that were imposed were that the minimum sum of the weights should

at least be 0.99 and the maximum sum of the weights can be 1.01.

According to Ma, MacLean, Xu and Zhao (2011) if the regime in period t−1 is m and the portfolio

weights for period t is w′t = (wt1, · · · , wtI), then the one-period expected portfolio alpha is:

Ψm (wt) = E
[
A′stwt | st−1 = m

]
=

N∑
n=1

I∑
i=1

wtiαinpmn (4.3)

As a result, when new information is obtained at each decision point in time, the unconditional

alpha with respect to the posterior probability of the regimes may be determined. The regime-

dependent portfolio beta is constrained to adjust for systematic risk. Although risk aversion is
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desirable, taking certain risks can result in significant gains in returns. To allow for a limited

exposure to the common risk factors, a regime-dependent risk tolerance parameter δ is added. In

each possible regime in the next period, the portfolio beta for factor j in regime n is defined as

Φjn (wt) =

I∑
i=1

wtiβijn, ∀j = 1, · · · , J, and n = 1, · · · , N. (4.4)

Therefore, the portfolio risk exposure is constrained as:

−δn ≤ Φjn (wt) ≤ δn, ∀j = 1, · · · , J, and n = 1, · · · , N (4.5)

The tolerance parameter δ could depend on the particular factor and regime. With the reformula-

tion of the constraints and objective, the portfolio optimisation for period t is determined from the

following stochastic linear programming problem:

maxwt Ψm (wt)

s.t.
∑I

i=1wti = 1,

−ξl ≤ wti ≤ ξu, i = 1, · · · , I.
(4.6)

This will then be used to maximise the Sharpe ratio. The formula for calculating the Sharpe ratio

is given by:

SR =
Rp −Rf

σp
(4.7)

where: Rp is the return of the portfolio, Rf is the risk-free rate and σp is the standard deviation of

the portfolio’s excess return. This will be calculated for both cases.

Therefore, using the equations above the maximum Sharpe ratio could then be expressed as:

max SR =

∑N
n=1

∑I
i=1wtiαinpmn∑I

i=1wtiβijn
(4.8)

which is simply Equation 4.3, divided by Equation 4.4. This is including the unobserved regimes.
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The assumption of a structure for asset returns has significant ramifications for investing decisions.

There is an unknown regime in each period, as well as a returns distribution for assets that are

conditional on the regime. Transitions between regimes are also Markovian, with a constant prob-

ability matrix for transitions. The investment choice is made at the start of each period, based

on the previous period’s regime and the probability of switching to each of the current period’s

alternative regimes.

The constraints that were mentioned earlier were all considered when programming the outcomes

and were fulfilled in the results below. As part of the Markov regime switching model it were

possible to obtain the regimes for each day that were in our observation time period and these

regimes were used in the optimisation.

There is an unknown regime in each period, as well as distributions for returns of the assets that

are dependent on the regime. Transitions between regimes are also Markovian, with a constant

probability matrix for transitions. The investment choice is made at the start of each period, based

on the previous period’s regime and the probability of switching to each of the current period’s

alternative regimes. Therefore the portfolio should be rebalanced for a constant chosen period to

see whether the weights should change corresponding to the regime it is in and the possible risk

appetite.

Transaction costs for rebalancing are not considered. The portfolios were rebalanced periodically,

with each investment period consisting of 3 months therefore rebalancing quarterly for a total of 33

investment periods. The portfolio is then held constant or static for the duration of this investment

period whereafter the process is repeated for the next period. According to Costa and Kwon (2019)

these regime switching models are expected to perform better due to the fact of re-estimating the

regime-dependent parameters at the start of each investment period. The implications of correctly

identifying a change in the regimes at the start of the new investment period to reflect the current

markets and then continuing by re-optimising the portfolio could have a tremendous positive effect

on the investment goals.
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In theory it would be more beneficial to rebalance the portfolio more frequently to mimic the market.

This means that it takes the market conditions into consideration due to the new classification of

regimes and can therefore perform better and prevent losses. However in practice it is not really

the case to do it frequently due to the transaction costs and the labour needed to do this. Thus,

the chosen quarter period is not unrealistic for practice.

The lagged and factor model will now be examined based off of the above explanation. For both

the models these facts are true and implemented, making it possible to compare the results that

were obtained. There were under each model to methods of optimisation used the first being the

Sharpe ratio method and the other method being the risk budget method. For methods used the

portfolio were rebalanced quarterly.

However, estimators of the means and the variance-covariance matrices of the asset classes are

necessary to perform the two-moment optimisation of the classical portfolio theory. According to

Seidl et al. (2012) the arithmetic mean is used as a mean estimator in the classical optimisation case,

and the covariance is used for the variance-covariance matrix. The mean and variance-covariance

matrices are computed conditional on the current state in the regime switching framework. Hence

the following computation is done for the mean:

μst =
1

nst

nst∑
i=1

xi, (4.9)

where nst is the number of xi in the regime and the xi is the asset returns in the portfolio.

Σst = (Cov (xi, xj))i,j=1,...,nst
. (4.10)

for the variance covariance computation.

Then the optimal unconditional portfolio weights at time t+ 1 are then calculated as follow:

upw(t) = ξ1t (P (1, 1)w1t + (1− P (1, 1))w2t)

+ (1− ξ1t) (P (2, 2)w2t + (1− P (2, 2))w1t)
(4.11)
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with wit being the optimal portfolio weights conditional on regime i. ξit being the probability of

being in the regime i. P (1, 1) and P (2, 2) are the transition probabilities from the transition matrix.

The risk budget approach, which is very similar to the Sharpe ratio, is then used. The fundamental

concept is to allow for time-varying risk budgets that can take into account changing performance

projections for various assets. The paper by Chakravorty, Awasthi, Singhal, Gupta and Srivastava

(2019) states that the risk budgets are proportionate to the expected Sharpe Ratio of various

securities, then normalized so that the total risk budget is 1. The risk budgets are then scaled by

the target risk to compare with risk contribution.

RBst =
|E[Sharpe Ratiost]|

(
∑

s |E[Sharpe Ratiost]|)
∗ τ (4.12)

where, E[Sharpe Ratiost] is the expected Sharpe Ratio at time t for stock or asset s, τ is the target

risk of the allocation, RBst is the risk budget for stock or asset s at time t. For this assignment

the maximum risk allocation allowed was 50%. The other measures such as the weights, mean

covariance etc. is calculated the same as described in Equation 4.8 onward.

Thereafter an additional section is added were the optimal weights were calculated for each category

used for investments. Thus splitting up the portfolio into categories and optimising correspondingly

to each category individually. The results will be explained next.

4.4 OPTIMISATION OF THE LAGGED MODEL

The lagged model were optimised using the regimes calculated by the Markov regime switching

model in the previous chapter. The results will follow for the Sharpe ratio and risk budget methods

along with the rebalancing of each method.
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4.4.1 Sharpe method for the lagged model.

The main objective of this method being implemented, alongside the constraints is that the returns

corresponding to the risk should be maximised. In other words, the Sharpe ratio indicates how well

it has performed in relation to the risk it has taken on. The Sharpe ratio may be used to compare

risk-adjusted returns across all fund types since it uses the standard deviation. This method also

incorporated return on investment to get the best results.

Table 4.9: Sharpe ratio as method of optimisation for regime 1 under the lagged model.

Code Optimal Weights

Tiger brands TBS.JO 0.336
RCL Foods RCL.JO 0.152
Woolworths WHL.JO 0.024
Shoprite SHP.JO 0.000
LIFE LHC.JO 0.050
Netcare NTC.JO 0.192
Sanlam SLM.JO 0.000
Discovery DSY.JO 0.000
Absa ABG.JO 0.002
Capitec CPI.JO 0.044
FirstRand FSR.JO 0.000
Standard Bank SBK.JO 0.042
Investec INL.JO 0.000
Coronation CML.JO 0.146
Naspers NPN.JO 0.006
MTN MTN.JO 0.000
Sasol SOL.JO 0.000
Anglo American Platinum AMS.JO 0.000
PPC PPC.JO 0.000
Mr Price MRP.JO 0.006

Total 1

Mean 0.0005771
Standard deviation 0.01109

Comparing Table 4.9 and 4.10 it can be seen that the weighting for the bull and bear regimes differ

significantly. The weightings also indicate how the diversification is done and what risks could be

taken. The weightings for the bull market of regime 1 differ significantly to regime 2, this is due to
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the fact that regime 2 diversifies the portfolio to be safer in an unstable market whereas in regime

1 some chances can be taken because the economy is more stable and the prices are not declining

dramatically in which risks should be avoided. This is also the reason why the standard deviation

differs slightly for the two regimes. The standard deviation indirectly reflects the risk taken and in

regime 1 the standard deviation is larger than in regime 2 as well as the means.

Table 4.10: Sharpe ratio as method of optimisation for regime 2 under the lagged model.

Code Optimal Weights

Tiger brands TBS.JO 0.170
RCL Foods RCL.JO 0.194
Woolworths WHL.JO 0.022
Shoprite SHP.JO 0.000
LIFE LHC.JO 0.002
Netcare NTC.JO 0.224
Sanlam SLM.JO 0.000
Discovery DSY.JO 0.116
Absa ABG.JO 0.000
Capitec CPI.JO 0.062
FirstRand FSR.JO 0.002
Standard Bank SBK.JO 0.004
Investec INL.JO 0.076
Coronation CML.JO 0.034
Naspers NPN.JO 0.004
MTN MTN.JO 0.032
Sasol SOL.JO 0.006
Anglo American Platinum AMS.JO 0.018
PPC PPC.JO 0.000
Mr Price MRP.JO 0.028

Total 0.994

Mean 0.0003592
Standard deviation 0.01089

It can be seen that Table 4.9 satisfies the first condition mentioned before Section 5.1 that the sum

of the weights equal to 1. Whereas Table 4.10 satisfies the second condition that it lies between

0.99 and 1.01.
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In regime 1, the weight was of Anglo American Platinum was 0, but this changed in regime 2. This

gives evidence that inclusion of regime switching is economic significant. The opposite also reflects

this because Tiger brands had a decline in the weight of 0.336 to 0.170 from regime 1 to regime

2 respectively. For the lagged model Sanlam had a 0 weight in both portfolios for regime 1 and

2. However when the risk budget method were used this was not the case as seen in Table 4.13

and Table 4.14. This shows the significance in the measures used to compute the optimal portfolio

weights.

4.4.2 Rebalancing the lagged model for the Sharpe ratio method.

Rebalancing is were the portfolio is reclassified into a regime and according to that it gets new

weightings therefore buying and selling some of the stocks to obtain the new investment strategy

according to the regime the economy is classified as. The portfolio can’t be held the exact same for

the duration of time, it needs to change to incorporate the economic cycles.

The portfolio were rebalanced quarterly resulting in the statistics given below. Thus taking the

first and last rebalancing dates into account and working with quarters, 33 rebalances were done

as shown in Table 4.11.

Table 4.11: Statistics of the rebalancing of the portfolio under the Sharpe ratio method.

Number of rebalancing dates 33
First rebalance date 2007-08-31
Last rebalance date 2016-02-26
Annualized Portfolio Rebalancing Return -0.001761423
Annualized Portfolio Standard Deviation 0.08388356
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Table 4.12: Downside risk measures.

Downside Risk Measures Portfolio Returns

Semi Deviation 0.0085
Gain Deviation 0.0070
Loss Deviation 0.0083
Downside Deviation (MAR=43.33%) 0.0136
Downside Deviation (Rf=0%) 0.0085
Downside Deviation (0%) 0.0085
Maximum Drawdown 0.3103
Historical VaR (95%) -0.0196
Historical ES (95%) -0.0276
Modified VaR (95%) -0.0196
Modified ES (95%) -0.0289

In Table 4.12 the negative Historical VaR is actually a good thing implying that the portfolio has

a high probability of making a profit. When compared to standard deviation alone, downside devi-

ation offers you a better understanding of how much an investment may lose. Standard deviation

is a measure of volatility on the upside and downside, and it only gives you a partial picture. The

downside deviations of two assets with the same standard deviations are likely to differ. When a

“risky” investment with a high standard deviation has a low downside deviation, it is likely to be

safer than it appears. In this case we can see that all the downside deviations are relatively small.

Figure 4.3 on the next page is simply a visual representation of the weightings assigned to each

asset in the lagged portfolio. It gives an indication of where most of the capital were allocated to

during which period. This is a reflection of the rebalancing of the weights to optimise the portfolio.
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Figure 4.3: Weighting chart of the weights assigned in the portfolio for the time period.

4.4.3 Risk budget method for the lagged model.

This new method for optimising the lagged model is a popular risk-based asset allocation technique

where risk budgets are assigned to each assets’ risk contribution. This risk budgeting technique

has the goal to diversify the risk in the portfolio by assigning target risk contributions to each

component.
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Table 4.13: Risk budget as method of optimisation for regime 1 under the lagged model.

Code Optimal Weights

Tiger brands TBS.JO 0.066
RCL Foods RCL.JO 0.304
Woolworths WHL.JO 0.014
Shoprite SHP.JO 0.002
LIFE LHC.JO 0.010
Netcare NTC.JO 0.106
Sanlam SLM.JO 0.010
Discovery DSY.JO 0.014
Absa ABG.JO 0.006
Capitec CPI.JO 0.066
FirstRand FSR.JO 0.000
Standard Bank SBK.JO 0.016
Investec INL.JO 0.014
Coronation CML.JO 0.144
Naspers NPN.JO 0.014
MTN MTN.JO 0.004
Sasol SOL.JO 0.062
Anglo American Platinum AMS.JO 0.024
PPC PPC.JO 0.094
Mr Price MRP.JO 0.030

Total 1

Standard Deviation 0.01097

The two Tables of 4.13 and 4.14 compare quite well for the two regimes. There aren’t major

differences as seen in the Sharpe ratio method for the lagged model. The weightings differ for the

two regimes due to the risk contributions of the assets to the portfolio. The standard deviations

also compare well considering that they are relatively close to one another and does not differ

significantly.

Table 4.13 satisfies the condition that the sum of the weights should equal 1 whereas, Table 4.14

lies in the second condition’s interval which is between 0.99 and 1.01. Both these values satisfies

the necessary conditions.
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Table 4.14: Risk budget as method of optimisation for regime 2 under the lagged model

Code Optimal Weights

Tiger brands TBS.JO 0.084
RCL Foods RCL.JO 0.212
Woolworths WHL.JO 0.012
Shoprite SHP.JO 0.040
LIFE LHC.JO 0.054
Netcare NTC.JO 0.074
Sanlam SLM.JO 0.020
Discovery DSY.JO 0.000
Absa ABG.JO 0.020
Capitec CPI.JO 0.034
FirstRand FSR.JO 0.000
Standard Bank SBK.JO 0.004
Investec INL.JO 0.016
Coronation CML.JO 0.188
Naspers NPN.JO 0.008
MTN MTN.JO 0.000
Sasol SOL.JO 0.184
Anglo American Platinum AMS.JO 0.054
PPC PPC.JO 0.000
Mr Price MRP.JO 0.004

Total 1.008

Standard Deviation 0.01121

4.4.4 Rebalancing the lagged model for the risk budget method.

The portfolio were rebalanced quarterly resulting in the statistics given below. The reason for

this is that rebalancing could be a costly process, doing it very frequently would not be cost

effective however it can’t be ignored. Quarterly therefore is a good middle ground for doing it

frequently enough to identify some cyclical trends and not to frequent that it would be considered

unprofitable. Thus taking the first and last rebalancing dates into account and working with

quarters, 33 rebalances were done as shown in Table 4.15.
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Table 4.15: Statistics of the rebalancing of the portfolio under the Risk Budget method.

Number of rebalancing dates 33
First rebalance date 2007-08-31
Last rebalance date 2016-02-26
Annualized Portfolio Rebalancing Return 0.012159
Annualized Portfolio Standard Deviation 0.08668535

The regime at each rebalancing date could also be obtained this is given in Table A.1 in the Ap-

pendix. Together with the rebalanced regimes the optimal weightings at each rebalanced investment

period were also obtained and this can be seen in Table A.2. It is important to note that these

tables were obtained for all the cases however it will only be shown for this method and tests as an

example of how the tables are composed, however this is not the important part to focus on. The

information obtained resulting from different calculations using these weights are more essential to

analyse and will be discussed throughout the study.

Table 4.16: Downside risk measures.

Downside Risk Measures Portfolio Returns

Semi Deviation 0.0090
Gain Deviation 0.0071
Loss Deviation 0.0089
Downside Deviation (MAR=43.33%) 0.0138
Downside Deviation (Rf=0%) 0.0088
Downside Deviation (0%) 0.0088
Maximum Drawdown 0.2395
Historical VaR (95%) -0.0201
Historical ES (95%) -0.0285
Modified VaR (95%) -0.0206
Modified ES (95%) -0.0344

For all the drawdown deviations the Sharpe ratio method in Table 4.12 gave more desirable results.

However, with the risk budget method the chances of making a profit due to the negative VaR

is higher and the maximum drawdown is lower. Maximum drawdown seeks the most significant

shift from a high to a low point before a new peak is reached. It’s vital to remember, however,

that it only considers the amount of the highest loss and ignores the frequency of significant losses.

Maximum drawdown does not reveal how long it took an investor to recover from a loss, or even if
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the investment recovered at all, because it only gauges the biggest drawdown. Maximum drawdown

is a risk indicator that focuses on capital preservation, which is a major concern for most investors.

It is used to compare the relative riskiness of one stock screening approach to another (Leal and

de Melo Mendes, 2005).

Figure 4.4 is a graphical illustration of how the weights are assigned to each asset in the portfolio.

The weights were rebalanced quarterly and therefore there are 33 columns representing the rebal-

anced investment periods. These values were calculated and Figure 4.4, gives an overview of how

the portfolio were weighted. It can also be seen were the regimes were switched at the start of the

investment period and thus the rebalanced weighting.

Figure 4.5 is to show that the risk contribution can be obtained using different measures. On the

left expected shortfall were used and on the right the standard deviation. Each asset in the portfolio

can then be seen as to what their contribution is to the risk of the portfolio.

Figure 4.4: Weighting chart of the weights assigned in the portfolio for the time period using
the risk budget method.
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Figure 4.5: The left hand side is the risk contribution for regime 1 which were done by using
Expected shortfall. The right hand side shows the risk contribution for regime 2 which were
done by using the standard deviation.

4.5 OPTIMISATION OF THE FACTOR MODEL

Next we will look at the two different methods that are the Sharpe ratio method and risk budget

method respectively for the factor model. This section is based on the same principles that were

explained in lagged model situation. The regimes used for this optimisation were calculated from the

Markov regime stitching model for the factor model. This section now incorporates the calculated

regimes from the factors and uses that as a basis for the optimisation using the different methods.

First the Sharpe ratio method results will be explained including the rebalancing and thereafter

the risk budget method along with its rebalancing will be explained.

4.5.1 Sharpe method for the factor model.

The main objective of this method, alongside the constraints explained before Section 5.1, is that

the returns corresponding to the risk should be maximised. In other words, the Sharpe ratio

indicates how well it has performed in relation to the risk it has taken on. The Sharpe ratio may

be used to compare risk-adjusted returns across all fund types since it uses the standard deviation.
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When comparing Table 4.17 and 4.18 it can be seen that the weighting differ from regime 1 to

regime 2. The weightings for the portfolio of regime 2 is more diversified than regime 1 this is due

to the fact that the South African economical state is in a downturn therefore it is to risky and the

investor should diversify the portfolio to mitigate some of the risk. This is reflected in the means

of the two tables for the two regimes. Regime 2 has a smaller mean than regime 1 and this is to be

expected. However what is interesting is that the two standard deviations are very closely related

to one another.

Table 4.17: Optimal Sharpe ratio method weightings of the factor model for regime 1.

Code Optimal Weights

Tiger brands TBS.JO 0.1120
RCL Foods RCL.JO 0.1560
Woolworths WHL.JO 0.0260
Shoprite SHP.JO 0.0040
LIFE LHC.JO 0.0837
Netcare NTC.JO 0.1526
Sanlam SLM.JO 0.0014
Discovery DSY.JO 0.0320
Absa ABG.JO 0.0717
Capitec CPI.JO 0.0629
FirstRand FSR.JO 0.0260
Standard Bank SBK.JO 0.0042
Investec INL.JO 0.0640
Coronation CML.JO 0.1147
Naspers NPN.JO 0.0068
MTN MTN.JO 0.0000
Sasol SOL.JO 0.0349
Anglo American Platinum AMS.JO 0.0370
PPC PPC.JO 0.0000
Mr Price MRP.JO 0.0040

Total 0.9939

Mean 0.000444
Standard deviation 0.01084

Above is the table for the optimal weightings for regime 1 and below for regime 2. After regime 2’s

table the rebalancing results for the factor model will be examined for the Sharpe ratio method.

This is will also be compared to the lagged model.
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Table 4.17 satisfies the constraint that the optimal weights should either sum to 1 or lie inside

the interval of 0.99 and 1.01. Thus Table 4.17 satisfies the interval constraint with the sum of the

optimal weights adding up to 0.9939.

Table 4.18: Optimal Sharpe ratio method weightings of the factor model for regime 2.

Code Optimal Weighting

Tiger brands TBS.JO 0.044
RCL Foods RCL.JO 0.226
Woolworths WHL.JO 0.040
Shoprite SHP.JO 0.058
LIFE LHC.JO 0.028
Netcare NTC.JO 0.144
Sanlam SLM.JO 0.004
Discovery DSY.JO 0.036
Absa ABG.JO 0.006
Capitec CPI.JO 0.048
FirstRand FSR.JO 0.028
Standard Bank SBK.JO 0.022
Investec INL.JO 0.004
Coronation CML.JO 0.104
Naspers NPN.JO 0.008
MTN MTN.JO 0.072
Sasol SOL.JO 0.032
Anglo American Platinum AMS.JO 0.000
PPC PPC.JO 0.044
Mr Price MRP.JO 0.046

Total 0.994

Mean 0.0003223
Standard deviation 0.01085

The total of Table 4.18 satisfies the constraints.

4.5.2 Rebalancing using the Sharpe ratio method for the factor model.

The portfolio were rebalanced quarterly resulting in the statistics given below. Thus taking the first

rebalancing date of 2007-08-31 and last rebalancing date of 2016-02-19 into account and working

with quarters, 33 rebalances were done as shown in Table 4.19.
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Table 4.19: Statistics of the rebalancing of the portfolio under the Sharpe ratio method.

Number of rebalancing dates 33
First rebalance date 2007-08-31
Last rebalance date 2016-02-26
Annualized Portfolio Rebalancing Return 0.00629372
Annualized Portfolio Standard Deviation 0.08241688

Table 4.20: Downside risk measures.

Downside Risk Measures Portfolio Returns

Semi Deviation 0.0085
Gain Deviation 0.0067
Loss Deviation 0.0085
Downside Deviation (MAR=43.33%) 0.0134
Downside Deviation (Rf=0%) 0.0084
Downside Deviation (0%) 0.0084
Maximum Drawdown 0.2755
Historical VaR (95%) -0.0186
Historical ES (95%) -0.0272
Modified VaR (95%) -0.0197
Modified ES (95%) -0.0334

The negative Historical in Table 4.20 implies that the portfolio has a high probability of making a

profit. When comparing this table to Table 4.12 of the Sharpe ratio method of the lagged model

it can be concluded that for the Sharpe ratio method the lagged model performed better for the

value at risk measures. However when examining the downside deviations the portfolio based on

the factors performed better. This might be due to the fact that the factors are directly related to

the markets that influence the assets in the portfolio.

Figure 4.6 on the next page is simply a visual representation of the weightings assigned to each

asset in the factor portfolio. It gives an indication of where most of the capital were allocated to

during which period. This is a reflection of the rebalanced weights that optimise the portfolio.

When having a closer look to Figure 4.6 it can be seen as to where the switches in the regimes too

place at the start of the investment period. This is where the blue coloured size blocks differ for
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each investment period compared to the investment periods where the sizes of the blocks stayed the

same (in other words the weightings did not differ) and no re-optimisation and rebalancing were

done.

Figure 4.6: Weighting chart of the weights assigned for each asset in the portfolio for the
time period using the Sharpe ratio method.

4.5.3 Risk budget method for the factor model.

The risk budget method for optimising the factor model is implemented the exact same way as for

the lagged model. This is a popular risk-based asset allocation technique where risk budgets are

assigned to each assets’ risk contribution. This risk budgeting technique has the goal to diversify

the risk in the portfolio by assigning target risk contributions to each component. It is important

to note that the risk contribution has a maximum set to 0.5 for any one of the assets in the portfolio
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for when the risk are calculated. The different weightings for the regimes are compared, whereafter

the portfolio are rebalanced.

Table 4.21: Risk budget as method of optimisation for regime 1 under the factor model.

Code Optimal Weighs

Tiger brands TBS.JO 0.190
RCL Foods RCL.JO 0.126
Woolworths WHL.JO 0.000
Shoprite SHP.JO 0.018
LIFE LHC.JO 0.092
Netcare NTC.JO 0.134
Sanlam SLM.JO 0.014
Discovery DSY.JO 0.118
Absa ABG.JO 0.016
Capitec CPI.JO 0.016
FirstRand FSR.JO 0.006
Standard Bank SBK.JO 0.010
Investec INL.JO 0.032
Coronation CML.JO 0.012
Naspers NPN.JO 0.086
MTN MTN.JO 0.002
Sasol SOL.JO 0.094
Anglo American Platinum AMS.JO 0.006
PPC PPC.JO 0.032
Mr Price MRP.JO 0.000

Total 1.004

Standard Deviation 0.01125

Comparing the optimal weights for the regime 1 and 2 there are no significant remarks worth

mentioning even though the weight differ for the different states of the South African economy.

However, it is important to note that the standard deviation for regime 1 is slightly higher than

regime 2, this is the desired result. It is known that the South African economy is in an upwards

swing when it is classified in regime 1, thus entering or currently in a bull market. Therefore the

investor would be able to take on a bit more risk thus the higher standard deviation.

Compared to Table 4.22 of regime 2 with the lower standard deviation due to the fact that the

market is a bull market. Therefore it is more risky to invest and it would not be advised to buy
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new stocks but to rather diversify within the portfolio. The risk budget method is used due to the

allocation of the risk thus this makes sense.

Table 4.22: Risk budget as method of optimisation for regime 2 under the factor model.

Code Optimal Weights

Tiger brands TBS.JO 0.174
RCL Foods RCL.JO 0.236
Woolworths WHL.JO 0.090
Shoprite SHP.JO 0.020
LIFE LHC.JO 0.040
Netcare NTC.JO 0.054
Sanlam SLM.JO 0.000
Discovery DSY.JO 0.000
Absa ABG.JO 0.036
Capitec CPI.JO 0.074
FirstRand FSR.JO 0.056
Standard Bank SBK.JO 0.062
Investec INL.JO 0.000
Coronation CML.JO 0.002
Naspers NPN.JO 0.028
MTN MTN.JO 0.046
Sasol SOL.JO 0.058
Anglo American Platinum AMS.JO 0.006
PPC PPC.JO 0.006
Mr Price MRP.JO 0.002

Total 0.99

Standard Deviation 0.01107

Both Table 4.21 and Table 4.22 satisfied the previously defined constraints based on the sum of the

optimal weights.

4.5.4 Rebalancing of the factor model using the risk budget method.

The portfolio were rebalanced 33 times representing the quarterly rebalanced investment periods.

When comparing Table 4.23 to Table 4.19 representing the Sharpe ratio method for the factor

model, the annualized portfolio standard deviation for the factor model is higher as well as the
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annualized rebalancing return. The standard deviation is not a good thing it represents the risk

that are taken on but therefore the returns are higher. It is the risk return trade-off that comes

into play.

Table 4.23: Statistics of the rebalancing of the portfolio under the Risk Budget method.

Number of rebalancing dates 33
First rebalance date 2007-08-31
Last rebalance date 2016-02-26
Annualized Portfolio Rebalancing Return 0.009152771
Annualized Portfolio Standard Deviation 0.08744983

Table 4.24: Downside risk measures.

Downside Risk Measures Portfolio Returns

Semi Deviation 0.0090
Gain Deviation 0.0071
Loss Deviation 0.0087
Downside Deviation (MAR=43.33%) 0.0139
Downside Deviation (Rf=0%) 0.0089
Downside Deviation (0%) 0.0089
Maximum Drawdown 0.2710
Historical VaR (95%) -0.0190
Historical ES (95%) -0.0279
Modified VaR (95%) -0.0207
Modified ES (95%) -0.0325

Comparing the table above to the Table 4.20 the maximum drawdowns are relatively close to one

another however the risk budget outperforms the Sharpe ratio slightly. This can also be seen for

the value at risk measures. However comparing it to the lagged model’s risk budget implementation

shown in Table 5.8 the lagged model outperforms the factor model when considering the maximum

drawdown. The same result when comparing the value at risk measures as well.

Figure 4.7 is a graphical illustration of how the weights are assigned to each asset in the portfolio.

The weights were rebalanced quarterly and therefore there are 33 columns representing the rebal-

anced investment periods. These values were calculated and this figure gives an visual overview of

how the portfolio were weighted. It can also be seen were the regimes were switched at the start of

the investment period and thus the rebalanced weighting.
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Figure 4.8 is to show that the risk contribution can be obtained using different measures. On

the left expected shortfall were used and on the right the standard deviation. Each asset in the

portfolio’s contribution to the risk of the portfolio is visualised.

Figure 4.7: Weighting chart of the weights assigned for each asset in the portfolio for the
time period using the risk budget method.

Figure 4.8: The left hand side is the risk contribution for regime 1 which were done by using
Expected shortfall. The right hand side shows the risk contribution for regime 2 which were
done by using the standard deviation.
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4.6 OPTIMISATION FOR EACH CATEGORY

This section shows that optimisation can be applied in different ways. In this case each category

of the portfolio (except those who only had one asset in the industry) were taken and optimised

according to the two regimes. The optimal weightings were calculated using the risk budget method

only. Therefore the standard deviation is given to show the risk obtained for each category.

Table 4.25: Optimisation for regime 1 for each category that can be invested in the portfolio.
This were done by using the risk budget method. (Note that the standard deviation is for
each category.)

Consumer Goods Code Optimal Weighting Standard deviation

Tiger Brands TBS.JO 0.564 0.01364
RCL Foods limited RCL.JO 0.444

Consumer Services

Woolworths Holdings Limited WHL.JO 0.488 0.01646
Shoprite Holdings Limited SHP.JO 0.516

Health Care

LIFE Health Care Group Holdings Limited LHC.JO 0.358 0.01701
Netcare Limited NTC.JO 0.652

Insurance

Sanlam Limited SLM.JO 0.492 0.01628
Discovery Limited DSY.JO 0.518

Banking

Absa Group Limited ABG.JO 0.344 0.01562
Capitec Bank Holdings Limited CPI.JO 0.042
FirstRand Limited FSR.JO 0.222
Standard Bank Group Limited SBK.JO 0.382

Investments

Investec Group INL.JO 0.526 0.01499
Coronation Fund Management Limited CML.JO 0.476

Telecommunication/Broadcasting

Naspers Limited NPN.JO 0.494 0.01854
MTN Group Limited MTN.JO 0.508

Chemicals/Mining

Sasol Limited SOL.JO 0.570 0.01924
Anglo American Platinum Limited AMS.JO 0.436
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The weights for each industry category doesn’t differ dramatically between the regimes. It is

however important to note that the same constraints apply as mentioned at the start of the chapter.

Therefore, when the weights are summed for each category it doesn’t necessarily add up exactly

to 1 due to the leniency of the minimum sum being 0.99 and maximum sum being 1.01 that is

implemented by the constraints. This just shows that optimisation within an portfolio can be done

in different ways.

Table 4.26: Optimisation for regime 2 for each category that can be invested in the portfolio.
This were done by using the risk budget method. Note that the standard deviation represents
the category.

Consumer Goods Code Optimal Weighting Standard deviation

Tiger Brands TBS.JO 0.556 0.01343
RCL Foods limited RCL.JO 0.436

Consumer Services

Woolworths Holdings Limited WHL.JO 0.482 0.01621
Shoprite Holdings Limited SHP.JO 0.508

Health Care

LIFE Health Care Group Holdings Limited LHC.JO 0.356 0.0169
Netcare Limited NTC.JO 0.646

Insurance

Sanlam Limited SLM.JO 0.490 0.01624
Discovery Limited DSY.JO 0.518

Banking

Absa Group Limited ABG.JO 0.250 0.01565
Capitec Bank Holdings Limited CPI.JO 0.074
FirstRand Limited FSR.JO 0.192
Standard Bank Group Limited SBK.JO 0.474

Investments

Investec Group INL.JO 0.524 0.01497
Coronation Fund Management Limited CML.JO 0.476

Telecommunication/Broadcasting

Naspers Limited NPN.JO 0.498 0.01869
MTN Group Limited MTN.JO 0.512

Chemicals/Mining

Sasol Limited SOL.JO 0.568 0.01921
Anglo American Platinum Limited AMS.JO 0.436
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This chapter implemented the two scenarios of the lagged and factor models. The Markov regime

switching model were applied and the regimes were classified for the time period that the financial

markets were observed. The matrix values were obtained by the methods explained in Chapter 3 for

the alphas, betas and transition matrices. These values were analysed and explained. Thereafter,

the optimisation methods and constraints were stated. Optimisation using the Sharpe method and

the risk budget method were implemented for the two scenarios and it was rebalanced quarterly.

The methods were compared and the results were analysed. The optimal weights for the portfolio

were obtained and some downside risk measures were provided. Lastly, optimisation were done for

each category of the portfolio to show that there are different ways in which one can optimise a

portfolio.
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CHAPTER 5

COMPARISON OF THE RESULTS

The main objective of the assignment is to test whether adding a classification into regimes optimise

a portfolio better than when optimising without classifying the economy into regimes and not

incorporating that into the optimisation. In this chapter the objective is to compare the Sharpe

ratios of the portfolio without the regimes with the portfolio including the regime switching model.

These two options will be referred to as cases. The higher the Sharpe Ratio, the better the

investment’s risk-adjusted performance will be. Equation 4.7 to Equation 4.10 is used in this

comparison for computation.

The Sharpe ratios using Equation 4.7 were then calculated and Table 5.3 were obtained. Note that

the risk-free rate where assumed to be 5% (this value is chosen due to the fact that all the treasury

bill rates varied around 5% as-well the JIBAR rates and therefore an approximated chosen value

of 5% is used). The Sharpe ratio calculated for the portfolio without regimes were done by using

Monte Carlo simulation and then choosing the weights out of 5000 weights that minimised the

variance. The other option were to use the weights of the maximised Sharpe ratio. For the table

values the minimised variance method were chosen. These weights could easily be expressed by the

following equation:

argmin
w

σ2
p = min

w

1

2
w Σ wT (5.1)

With the constraint that the sum of the weights should add up to 1 combined with an only positive

constraint (w ≥ 0) that one could only long the position.

Figure 5.1 shows the portfolio weights that minimised the variance. These weights were used in the

calculation to obtain the values for the portfolio excluding the regimes in Table 5.3.
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Figure 5.1: Minimum variance portfolio weights for the portfolio excluding the regimes.

Table 5.1: Weights obtained using minimum variance for the portfolio excluding the incor-
poration of regimes.

Code Portfolio Weights

Tiger brands TBS.JO 0.089
RCL Foods RCL.JO 0.103
Woolworths WHL.JO 0.005
Shoprite SHP.JO 0.081
LIFE LHC.JO 0.043
Netcare NTC.JO 0.041
Sanlam SLM.JO 0.036
Discovery DSY.JO 0.074
Absa ABG.JO 0.080
Capitec CPI.JO 0.057
FirstRand FSR.JO 0.016
Standard Bank SBK.JO 0.005
Investec INL.JO 0.024
Coronation CML.JO 0.077
Naspers NPN.JO 0.037
MTN MTN.JO 0.004
Sasol SOL.JO 0.084
Anglo American Platinum AMS.JO 0.016
PPC PPC.JO 0.084
Mr Price MRP.JO 0.044

Total 1
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Table 5.1 shows the portfolio weights that were obtained by the Monte Carlo simulation using the

minimum variance as criteria of Equation 5.1, that excludes the regimes.

The lagged model that were optimised using the Sharpe ratio for the case including the regimes.

The values of the weights and transition matrix (Chapter 4) etc. were explained earlier in the

assignment. The probability of 0.5 were used for the calculation of the unconditional portfolio

weight using Equation 4.11. The following unconditional weights were obtained:

Table 5.2: Unconditional weights calculated for the lagged model including the regimes.

Code Unconditional Weights

Tiger brands TBS.JO 0.250
RCL Foods RCL.JO 0.174
Woolworths WHL.JO 0.023
Shoprite SHP.JO 0.000
LIFE LHC.JO 0.025
Netcare NTC.JO 0.209
Sanlam SLM.JO 0.000
Discovery DSY.JO 0.060
Absa ABG.JO 0.001
Capitec CPI.JO 0.053
FirstRand FSR.JO 0.001
Standard Bank SBK.JO 0.022
Investec INL.JO 0.039
Coronation CML.JO 0.088
Naspers NPN.JO 0.005
MTN MTN.JO 0.017
Sasol SOL.JO 0.003
Anglo American Platinum AMS.JO 0.009
PPC PPC.JO 0.000
Mr Price MRP.JO 0.017

Total 0.996

The whole assignment boils down to the following table below. Does including the regimes result in

a better Sharpe ratio which measures the performance of a portfolio compared to a risk-free asset,

after adjusting for risk. For the annualized portfolio returns of Table 5.3, the lag model including

the regimes obtained a much higher return than the portfolio excluding the regimes. However this
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comes with a trade-off therefore the portfolio risk for the lag model including the regimes has a

significantly higher standard deviation than the portfolio excluding the regimes. This might be

misleading because when you look at the risk return ratio the lagged model including the regimes

still perform better even though the risk is much higher it has a 54.7% compared to the 41.6% of

the portfolio excluding the regimes.

Comparing the Sharpe ratios show the lagged model including the regimes performed a lot better

than the portfolio excluding the regimes. The Sharpe ratios are not very high but this could be

due to the fact of the choice of assets in the portfolio or due to the volatile South African markets.

However this still shows that including the regimes switching into the model and then optimising

the portfolio outperforms the portfolio that doesn’t incorporate the regimes in the model.

Table 5.3: Comparison between a model including and excluding regimes

Portfolio excluding
the regimes

Lagged Model
Including Regimes

Annualized portfolio returns 0.07463949 0.288809
Portfolio Risk (Standard deviation) 0.1793876 0.5278877

Sharpe Ratio 0.1373534 0.4523859

This chapter compared two portfolios, one portfolio excluding the regimes and the other including

the regimes. The results showed that the inclusion of the regimes obtained a higher Sharpe ratio

and proved that incorporating the regimes is a better option for optimisation. The next and final

chapter will consist of a discussion of the concluding remarks.
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CHAPTER 6

CONCLUSION

This assignment investigated the Markov regime switching models as a way of classifying the South

African financial markets into different regimes. Two different models were chosen to fit these

Markov regime switching models on. The first was a lagged model and the second was the factor

model. Optimising these models for the constructed portfolios were then the next task. Optimisa-

tion using the Sharpe ratio method as well as the risk budget method were tested and compared

among one another which resulted in similar conclusions. For each of these optimisation methods

the portfolios were rebalanced to evaluate the financial markets at the start of the new investment

period, classify it either into a new regime or remaining in the current state and then adjusted the

portfolio weights. However the lagged model were then chosen for the duration of the tested as well

as the Sharpe ratio as method of comparison. The reason for choosing the lag model is because

it is a key performance measure of past performance seen in the data that have an effect on the

business.

The main objective was to investigate whether including the split of the financial markets into

regimes, whereafter the portfolio was optimised actually makes an economic contribution. This

was tested by taking a look at the annualised portfolio returns and the portfolio risk which were

then used to calculate the Sharpe ratios. The inclusion of the regimes into the model and the

classical way of optimising a portfolio were then compared. The finding of this assignment gives

overwhelming evidence of the inclusion of regimes in portfolio optimisation to capture essential

features of the financial market.

Further research could be done in different methods of optimisation beyond the Sharpe ratio and

risk budget method to see how it compares. A different approach to choosing stocks in a portfolio

could also be taken to see how that would possibly change the results. There are also post modern

portfolio theory methods that have quite a gap for research in the market. Another approach could

also be taken by adding another regime in the model which would represent the state between the

bull and bear states and to investigate the optimal number of regimes.
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Overall the Markov regime switching model that are included in portfolio optimisation does obtain

better results than portfolio optimisation without classifying the markets into different regimes.
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APPENDIX A

ADDITIONAL TABLES

Table A.1: The regime at each rebalancing date for the Lagged model

Date Regime

2007-08-31 2
2007-12-28 2
2008-06-23 2
2008-07-30 2
2008-11-26 2
2009-05-28 1
2009-09-28 1
2009-12-14 2
2010-03-30 1
2010-06-28 1
2010-09-24 1
2010-12-29 1
2011-03-30 1
2011-06-29 1
2011-09-29 1
2011-12-30 1
2012-03-29 1
2012-06-29 1
2012-09-27 1
2012-12-26 1
2013-03-27 1
2013-06-28 1
2013-09-27 1
2013-12-31 1
2014-03-28 1
2014-06-20 1
2014-09-30 1
2014-12-26 1
2015-03-31 1
2015-06-30 1
2015-09-30 1
2015-12-28 1
2016-02-26 2

The dates are numbered from 1 to 33 however it corresponds to the exact dates in Table A.1 above.
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Table A.2: The optimal weighting at each rebalanced date for the lagged model

TBS.JO RCL.JO WHL.JO SHP.JO LHC.JO NTC.JO SLM.JO DSY.JO ABG.JO CPI.JO

1 0.026 0.150 0.002 0.018 0.002 0.000 0.004 0.430 0.008 0.036
2 0.006 0.106 0.000 0.004 0.002 0.000 0.002 0.026 0.000 0.000
3 0.568 0.086 0.004 0.168 0.032 0.002 0.000 0.012 0.074 0.022
4 0.142 0.230 0.030 0.000 0.042 0.002 0.002 0.020 0.000 0.046
5 0.142 0.230 0.030 0.000 0.042 0.002 0.002 0.020 0.000 0.046
6 0.142 0.230 0.030 0.000 0.042 0.002 0.002 0.020 0.000 0.046
7 0.142 0.230 0.030 0.000 0.042 0.002 0.002 0.020 0.000 0.046
8 0.142 0.230 0.030 0.000 0.042 0.002 0.002 0.020 0.000 0.046
9 0.330 0.118 0.000 0.058 0.010 0.000 0.108 0.070 0.000 0.016

10 0.330 0.118 0.000 0.058 0.010 0.000 0.108 0.070 0.000 0.016
11 0.260 0.062 0.060 0.000 0.000 0.130 0.070 0.248 0.000 0.004
12 0.330 0.118 0.000 0.058 0.010 0.000 0.108 0.070 0.000 0.016
13 0.260 0.062 0.060 0.000 0.000 0.130 0.070 0.248 0.000 0.004
14 0.260 0.062 0.060 0.000 0.000 0.130 0.070 0.248 0.000 0.004
15 0.260 0.062 0.060 0.000 0.000 0.130 0.070 0.248 0.000 0.004
16 0.260 0.062 0.060 0.000 0.000 0.130 0.070 0.248 0.000 0.004
17 0.084 0.184 0.002 0.040 0.054 0.108 0.154 0.082 0.018 0.016
18 0.260 0.062 0.060 0.000 0.000 0.130 0.070 0.248 0.000 0.004
19 0.260 0.062 0.060 0.000 0.000 0.130 0.070 0.248 0.000 0.004
20 0.260 0.062 0.060 0.000 0.000 0.130 0.070 0.248 0.000 0.004
21 0.260 0.062 0.060 0.000 0.000 0.130 0.070 0.248 0.000 0.004
22 0.084 0.184 0.002 0.040 0.054 0.108 0.154 0.082 0.018 0.016
23 0.084 0.184 0.002 0.040 0.054 0.108 0.154 0.082 0.018 0.016
24 0.084 0.184 0.002 0.040 0.054 0.108 0.154 0.082 0.018 0.016
25 0.084 0.184 0.002 0.040 0.054 0.108 0.154 0.082 0.018 0.016
26 0.084 0.184 0.002 0.040 0.054 0.108 0.154 0.082 0.018 0.016
27 0.084 0.184 0.002 0.040 0.054 0.108 0.154 0.082 0.018 0.016
28 0.156 0.224 0.000 0.000 0.000 0.020 0.084 0.044 0.002 0.024
29 0.156 0.224 0.000 0.000 0.000 0.020 0.084 0.044 0.002 0.024
30 0.084 0.184 0.002 0.040 0.054 0.108 0.154 0.082 0.018 0.016
31 0.156 0.224 0.000 0.000 0.000 0.020 0.084 0.044 0.002 0.024
32 0.156 0.224 0.000 0.000 0.000 0.020 0.084 0.044 0.002 0.024
33 0.064 0.158 0.000 0.002 0.036 0.250 0.074 0.002 0.000 0.000
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FSR.JO SBK.JO INL.JO CML.JO NPN.JO MTN.JO SOL.JO AMS.JO PPC.JO MRP.JO

1 0.000 0.074 0.006 0.000 0.000 0.000 0.006 0.000 0.234 0.000
2 0.010 0.006 0.032 0.080 0.020 0.068 0.000 0.010 0.022 0.616
3 0.002 0.002 0.000 0.000 0.014 0.000 0.000 0.002 0.010 0.004
4 0.000 0.006 0.002 0.000 0.006 0.264 0.012 0.000 0.022 0.168
5 0.000 0.006 0.002 0.000 0.006 0.264 0.012 0.000 0.022 0.168
6 0.000 0.006 0.002 0.000 0.006 0.264 0.012 0.000 0.022 0.168
7 0.000 0.006 0.002 0.000 0.006 0.264 0.012 0.000 0.022 0.168
8 0.000 0.006 0.002 0.000 0.006 0.264 0.012 0.000 0.022 0.168
9 0.000 0.092 0.010 0.004 0.026 0.000 0.086 0.000 0.060 0.002

10 0.000 0.092 0.010 0.004 0.026 0.000 0.086 0.000 0.060 0.002
11 0.000 0.070 0.000 0.080 0.000 0.002 0.002 0.000 0.006 0.006
12 0.000 0.092 0.010 0.004 0.026 0.000 0.086 0.000 0.060 0.002
13 0.000 0.070 0.000 0.080 0.000 0.002 0.002 0.000 0.006 0.006
14 0.000 0.070 0.000 0.080 0.000 0.002 0.002 0.000 0.006 0.006
15 0.000 0.070 0.000 0.080 0.000 0.002 0.002 0.000 0.006 0.006
16 0.000 0.070 0.000 0.080 0.000 0.002 0.002 0.000 0.006 0.006
17 0.006 0.002 0.010 0.108 0.064 0.000 0.002 0.010 0.028 0.038
18 0.000 0.070 0.000 0.080 0.000 0.002 0.002 0.000 0.006 0.006
19 0.000 0.070 0.000 0.080 0.000 0.002 0.002 0.000 0.006 0.006
20 0.000 0.070 0.000 0.080 0.000 0.002 0.002 0.000 0.006 0.006
21 0.000 0.070 0.000 0.080 0.000 0.002 0.002 0.000 0.006 0.006
22 0.006 0.002 0.010 0.108 0.064 0.000 0.002 0.010 0.028 0.038
23 0.006 0.002 0.010 0.108 0.064 0.000 0.002 0.010 0.028 0.038
24 0.006 0.002 0.010 0.108 0.064 0.000 0.002 0.010 0.028 0.038
25 0.006 0.002 0.010 0.108 0.064 0.000 0.002 0.010 0.028 0.038
26 0.006 0.002 0.010 0.108 0.064 0.000 0.002 0.010 0.028 0.038
27 0.006 0.002 0.010 0.108 0.064 0.000 0.002 0.010 0.028 0.038
28 0.002 0.000 0.000 0.296 0.000 0.054 0.066 0.016 0.004 0.004
29 0.002 0.000 0.000 0.296 0.000 0.054 0.066 0.016 0.004 0.004
30 0.006 0.002 0.010 0.108 0.064 0.000 0.002 0.010 0.028 0.038
31 0.002 0.000 0.000 0.296 0.000 0.054 0.066 0.016 0.004 0.004
32 0.002 0.000 0.000 0.296 0.000 0.054 0.066 0.016 0.004 0.004
33 0.020 0.028 0.000 0.168 0.072 0.002 0.014 0.052 0.000 0.054
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