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SUMMARY 

This research study investigates the influence of specimen geometry and grading 

curve, on the performance of a typical South African unbound granular material. The 

experimental design incorporates three grading curves to evaluate the influence of 

grading. In addition, to evaluate the influence of specimen geometry, two specimen 

sizes were included into the experimental design. Laboratory testing consisted of 

monotonic tri-axial tests to evaluate the shear performance (Cohesion and Friction 

Angle) and more complex short duration dynamic tri-axial tests to evaluate the load 

spreading ability/stiffness (Resilient Modulus) of the selected materials. 

In order to achieve the objectives of this study, a large tri-axial apparatus was 

needed that could accommodate specimens as large as 300mm ϕ * 600mm high. 

This would allow a full grading of large aggregate (up to 50mm particle size) to be 

accurately evaluated. Further development and commissioning of such a large tri-

axial apparatus therefore formed part of this study. 

The representative parent material selected for testing consisted of a G2 graded 

crushed Hornfels stone. The material was dried and sieved into fractions where after 

it was carefully reconstituted to allow for accurate control of specimen grading during 

specimen preparation. The three grading curves consisted of two adjusted grading 

curves (referred to as S19 and G19C), adjusted from the full G2 grading, and the full 

G2 grading itself (referred to as the Full grading curve). 

Material property tests, Sieve Analysis, Bulk Relative Density (BRD) and Optimum 

Moisture Content (OMC) tests were performed to gain an understanding of the 

material characteristics. Moisture-Density relationship curves were developed to 

identify a common Moisture Content that, for all three grading curves, would yield a 

common Dry Density. A Moisture Content of 4.7% was identified that would yield a 

Dry Density of 2340 kg/m3 for all three grading curves. This density could be 

achieved for both sizes of specimen preparation apparatuses without damaging 

material particles. Specimens were compacted using the representative vibratory 

hammer compaction method, sealed and left for 24 hours to allow redistribution of 

moisture and initial development of Cohesion. 

The shear parameters (Cohesion and Friction Angle) were investigated through 
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monotonic tri-axial testing. It was found that Cohesion and Friction Angle are  

influenced by both grading curve and specimen geometry. Cohesion was found to 

reduce as the coarseness of the material grading increased (i.e. finer S19 grading 

yielded higher Cohesion than its coarser G19C counterpart) and the Friction Angle 

was found to increase with increase coarseness (i.e. finer S19 grading yielded lower 

Friction Angles when compared to the G19C grading). 

The influence of specimen geometry was also investigated. It was observed than 

Cohesion decreased with an increase in specimen size. Friction Angle on the other 

hand was found to increase with increased specimen size.  

From dynamic tri-axial test results, it was observed that the Resilient Modulus is 

influenced by both specimen geometry and grading curve. The influence of specimen 

geometry however is complex and no constant trend throughout the grading curves 

tested could be identified. Grading curve however was found to increase the Resilient 

Modulus for coarser gradings (i.e. coarser G19C vs finer S19). Increased large 

particle-to-particle contact area yields higher friction within the material specimen, 

resulting in lower strains induced by higher stresses, i.e. higher Resilient Modulus. 

It was shown, for both monotonic and dynamic tri-axial tests, that the coarser G19C 

grading curve yields more representative results to that of the Full grading curve 

when compared to the finer S19 grading. This was observed for shear and resilient 

performance properties. Additionally, a simple design case study yields similar 

trends. 

In conclusion, material characterisation plays an important role in the design of 

unbound granular materials (UGM’s). Current laboratory characterisation techniques 

however used adjusted gradings to limit the effects stemming from the ratio between 

specimen diameter and maximum particle size. This research has shown that some 

of the current practices do not best represent the true in-situ grading. It has been 

shown that both grading curve and specimen geometry influence the performance of 

UGM’s which, in turn, influences the design of a pavement structure. Therefore, 

accurate modelling of the true in-situ grading, through testing apparatuses capable of 

accommodating in-situ gradings, is required.   
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OPSOMMING 

Hierdie navorsingsstudie evalueer die invloed van proefstukgeometrie en gradering, 

op die gedragseienskappe van ‘n tipiese Suid Afrikaanse ongebinde granulêre 

aggregaat. Om die invloed van gradering te evalueer, is ‘n eksperimentele ontwerp 

ontwikkel wat drie materiaal graderings insluit. Verder, om die invloed van 

proefstukgeometrie te evalueer, is twee proefstukgroottes toegevoeg tot die 

eksperimentele ontwerp. Monotoniese drie-assige toetse is uitgevoer om die 

skuifsterkte (Kohesie en Wrywingshoek) van die materiaal te ondersoek. Addisioneel 

is die styfheid (Veerkragmodulus) van die materiaal ondersoek deur dinamiese drie-

assige toetse.  

Om die doelwitte van hierdie studie te bereik was ‘n groot skaalse die-assige toets 

apparaat benodig wat groot, 300mm ϕ * 600mm hoogte, proefstukke kan 

akkommodeer. So ‘n apparaat laat toe dat die volle gradering van aggregaat (tot en 

met 50mm korrels) akkuraat geëvalueer kan word. Daarom vorm die ontwikkeling en 

opstelling van so ‘n apparaat deel van hierdie studie.    

Die tipiese Hornfels gebreekte klip, met ‘n G2 gradering, wat ondersoek is, was 

gedroog en in verskeie fraksies gesif om die akkuraatheid van proefstuk 

voorbereiding te beheer. Die drie graderings bestaan uit twee aangepaste graderings 

(S19 en G19C gradering skale), aangepas vanaf die volle G2 gradering, en die vol 

G2 gradering homself (verwys na as die “Full” gradering skaal).  

Materiaal gedragstoetse, Sif Analises, Nat Gekompakteerde Relatiewe Digtheid 

(BRD) en Optimum Vog Inhoud (OVI) toetse, was uitgevoer om die materiaal 

eienskappe te ondersoek. Om ‘n gemeenskaplike Vog Inhoud en Droë Digtheid, wat 

vir al drie graderings geld, te vind, is Vog-Digtheid verhoudingskurwes ontwikkel. 

Vanaf die kurwes is identifiseer dat ‘n Vog Inhoud van 4.7% ‘n Droë Digtheid van 

2340 kg/m3 vir al drie graderings sal lewer. Vibrasie kompaksie is toegepas om albei 

skale van proefstukke te kompakteer waarna die proefstukke vir 24 uur geseel is om 

vogverspreiding en ontwikkeling van Kohesie toe te laat.  

Monotoniese drie-assige toetse is uitgevoer om die skuifsterkte parameters (Kohesie 

en Wrywingshoek) te ondersoek. Die resultate het gewys dat beide gradering en 

proefstukgeometrie die Kohesie en Wrywinshoek beinvloed. Daar was gevind dat 

Kohesie verlaag indien die grofheid van die gradering verhoog (m.a.w. die fyner S19 
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gradering lewer hoër Kohesie waardes i.v.m. die growwer G19C gradering). Die 

Wrywingshoek is gevind om te verhoog soos die grofheid van die gradering verhoog 

(m.a.w. die fyner S19 gradering het laer Wrywingshoeke gelewer i.v.m. die growwer 

G19C gradering). 

Resultate het verder gewys dat groter proefstukke laer Kohesie en hoër 

Wrywingshoeke lewer. Daar kan wel gedebateer word dat variasie in materiaal die 

verandering van die skuifsterkte parameters gee, maar die proefstukvariasie is 

beperk om sodoende die invloed daarvan onopmerkbaar te maak.. Verder is die 

verlaging in Kohesie en verhoging in Wrywingshoek, a.g.v. ‘n vergroting in proefstuk 

grootte, vir albei aangepaste graderings geobserveer. Dit is ‘n moontlike aanduiding 

dat die verandering nie materiaal afhanklik is nie maar eerder beinvloed word deur 

die grens toestande tydens kompaksie. 

Dinamiese drie-assige toets resultate het gewys dat die Veerkragmodulus beinvloed 

word deur beide proefstuk geometrie en gradering. Daar is gevind dat die invloed van 

proefstukgeometrie kompleks is, en geen konstante verhouding, wat vir alle toets 

graderings geld, kon identifiseer word nie. Vir die invloed van gradering is daar 

gewys dat die Veerkragmodulus hoër is vir die growwer gradering (m.a.w. G19C 

gradering lewer hoër styfheid as S19 gradering). ‘n Verhoging in korrel-tot-korrel 

kontak area lewer hoër interne wrywing in die proefstuk wat bydrae tot laer 

vervorming by hoër spannings, m.a.w. hoër Veerkragmodulus. 

Baie interessant, vir beide monotoniese en dinamiese drie-assige toetse is gevind 

dat die growwer G19C gradering, i.v.m. die fyner S19 gradering, die ware G2 (Full) 

gradering beter verteenwoordig. Hierdie observasie is geldig vir beide die skuifsterkte 

parameters en weerstands eienskappe. 

Aggregaat karakterisering is ‘n belangrike deel in die ontwerp van ‘n ongebinde 

granulêre materiaal laag. Huidige karakterisering metodes gebruik aangepaste 

graderings sodat resultate nie beinvloed word deur die verhouding tussen proefstuk 

diameter en maksimum klipgrootte nie. Hierdie ondersoek het gevind dat van die 

huidige aanpassings nie die ware gradering verteenwoordig nie. Die resultate wys 

dat beide gradering en proefstuk geometrie die gedrag van die ongebinde granulêre 

materiaal beinvloed, so ook die ontwerp van ‘n padstruktuur. Daar is dus ‘n behoefte 

om die ware gradering te ondersoek wat slegs moontlik is met groot skaalse toets 

apparaat, wat groot klip korrels kan toets. Verder, indien daar ‘n verstandhouding 
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tussen huidige (klein skaalse) toets apparaat en groot skaalse apparaat ontwikkel 

kan word, kan resultate aangepas word, vanaf die klein skaalse resultate, om die 

ware materiaal gedrag meer te verteenwoordig.  
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CHAPTER 1: INTRODUCTION 

This chapter serves as an introduction to this dissertation.  

1.1 Background and Problem Statement 

A principal component included in the design of unbound granular base and subbase 

layers, is the characterisation of the material performance properties. In past times, 

unbound granular materials (UGM’s) were characterised based on physical 

properties such as gradation, plasticity, hardness, durability, and static shear strength 

tests (Austin, 2009). These tests however, could not accurately simulate in field 

conditions or dynamic loading. Therefore, improved tests, better simulating in field 

conditions and dynamic loading, had to be developed. 

Although current laboratory characterisation techniques accurately simulate dynamic 

loading, drawbacks still exist. Most laboratory test set-ups, used in the 

characterisation process, cannot incorporate large aggregate particles (usually 

particles greater than 19mm) due to the influence of ratio between particle size and 

specimen size. Therefore, laboratories use “scaled” down gradings and, for ease of 

testing, scaled specimens. As a result, the initial grading (typically 0 to 37.5mm, for 

crushed stone materials) is modified to a grading suitable for the geometry of the 

associated test set-up. Thus, the true in-situ grading is not tested. 

Several studies have shown grading to have a significant influence on the 

performance of unbound granular materials. Filler content (particles passing 

0.075mm) and grading itself has a significant influence on shear strength 

characteristics and resilient response. Limited literature however exists on the 

influence that large aggregate particles (especially 26.5 and 37.5mm) have on the 

performance properties of unbound granular materials. Within the literature that 

exists, no certain behaviour can be established that is consistent with all material 

types. Therefore, it is necessary to research the influence of large aggregate 

particles on common South African pavement materials, in order to establish an 

understanding of the influence of grading (particularly maximum aggregate size) on 

the performance of UGM’s. 

Furthermore, as mentioned, laboratories use scaled down test specimens for ease of 

testing and due to the high cost associated with large-scale testing apparatuses. Due 
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to limited large-scale testing equipment, especially in South Africa, little research, 

establishing the influence of specimen geometry on performance properties, exists. 

As the need for testing true in-situ grading curves (only possible with expensive 

large-scale equipment), that contain large size particles, increase, the need for 

understanding the effect of specimen geometry becomes more important. Therefore, 

it is necessary to research the influence of specimen geometry on the performance of 

unbound granular materials. 

In summary, a need for understanding the influence of large aggregate particle, on 

the performance of South African unbound granular materials, exist. Furthermore, 

linked to the need for understanding the influence of large aggregate size, a need for 

understanding the influence of specimen geometry also exists. Therefore, this study 

will attempt to establish the influence of maximum aggregate size, and specimen 

geometry, on the performance properties (shear strength and resilient response) of a 

typical South African crushed stone material. 

1.2 Objectives 

It is important to note that the secondary objectives of this research study could only 

be fulfilled by achieving the primary objective, which is the further development and 

commissioning of an existing large-scale tri-axial apparatus, at Stellenbosch 

University. A large section of this research project therefore entails work not 

mentioned in this report. Furthermore, once commissioned, the large apparatus 

together with the small-size tri-axial was utilised to achieve the objectives mentioned. 

The first of the secondary objectives is to evaluate the influence of specimen 

geometry on the performance properties (shear strength and resilient response) of an 

unbound granular material. Thereafter the research aims to establish the influence of 

using adjusted grading curves to evaluate the performance of an unbound granular 

material through small-size tri-axial testing. 

1.3 Scope of Study 

To achieve the aforementioned objectives, an experimental testing program was 

developed that incorporates three methods of grading modification: parallel-scalping 

method, scalp-add-back method, and no modification method. The experimental 

testing program, on each of the modification methods, included physical properties 

tests as well as monotonic and dynamic tri-axial testing. 
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Physical property tests include: material grading, BRD’s (bulk relative densities), and 

optimum moisture content and maximum dry density calculation based on vibratory 

hammer compaction.  

Tri-axial testing include both monotonic and dynamic (resilient response) tri-axial 

tests on both small (150mm Φ * 300mm H) and large-size (300mm Φ * 600mm H) 

specimens. In order to establish an understanding of the influence of confinement, 

both monotonic and Resilient Modulus tests incorporated a range of confining 

pressures (25, 50, 100 and 200 kPa). For Resilient Modulus tests, a range of mild 

Stress Ratios were tested (10, 20, 30, 40 and 55%) which could give an indication of 

the influence of applied stress. 

1.4 Limitations 

The limitations of this research study include: 

 Material testing is limited to one parent material and experimental testing is 

limited to monotonic and dynamic tri-axial tests. 

 Investigation of the influence of specimen geometry is based on two specimen 

sizes only. 

 Analysis of the Full grading curve is limited to large-size tri-axial tests. 

 All specimens are prepared using one moisture content and compacted to one 

target density. 

 Large-size monotonic tri-axial testing is limited to the use of three specimens 

only. 

 To ensure specimens do not fail during testing, dynamic tri-axial tests were 

limited to moderate stress regimes, which only include 10, 20, 30, 40 and 55% 

applied Stress Ratios.  

1.5 Outline of This Dissertation 

The dissertation of this research study is divided into five chapters of which a short 

summary of each is presented below. 

Chapter 1: Introduction – This chapter introduces the reader to the dissertation. 

Firstly, a background into current laboratory characterisation methods, used to 

evaluate the performance of unbound granular materials, is presented. Secondly, 

through a problem statement, drawbacks in the current characterisation methods are 

identified where after the objectives and limitations of the study are set. Presented by 

Stellenbosch University  https://scholar.sun.ac.za



 

4 | P a g e  
 

the final sections of this chapter, is the scope of the study followed by an outline of 

the dissertation. 

Chapter 2: Literature Review – A review of previous literature follows in this 

chapter. Firstly, literature on current pavement structures and the South African 

approach thereto is provided where after pavement loading is discussed. Finally, 

unbound granular material performance (mechanical behaviour, influencing factors 

and laboratory characterisation) and layer construction methods are discussed.  

Chapter 3: Research Design and Methodology – This chapter presents a 

discussion on the experimental design developed and the testing methodology used 

to achieve the objectives of this research study. Furthermore, material procurement 

and preliminary testing thereof is discussed. In addition, a section that focusses on all 

trouble shooting during the research period is presented. 

Chapter 4: Analysis and Discussion of Results – This chapter is dedicated to 

present all test results. Tables present individual test results while the use of graphs 

allows for a more explanatory presentation of the results. Furthermore, 

interpretations and discussions are presented to give the reader some indication of 

the findings.   

Chapter 5: Design Consideration – In this chapter, a design life analysis is 

presented to show the influence of the grading curve on the design life of the 

pavement structure. The design method presented by the South African Mechanistic 

Design Method (SAMDM) is used to evaluate the design life of a typical South 

African class B pavement structure. 

Chapter 6: Conclusions and Recommendations – This chapter, the last of this 

dissertation, presents a synthesis on the findings. Emphasis is placed on the 

influence of grading curve and specimen geometry, on the laboratory performance 

characterisation of the tested material. Finally, based on the test results, 

recommendations are made for further development and improvement to the testing 

equipment used and for further investigation into this research topic. In addition, 

recommendations are made on the use of grading modification methods and the 

loading cycle used during dynamic tri-axial testing.  
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

This Chapter of the report is dedicated to set a detailed technical background for this 

research project and focuses on the deformation behaviour (shear, resilient and 

volumetric) of unbound granular materials with the emphasis on the influence of 

maximum particle size and specimen geometry. 

Presented is a review of pavement structures wherein the discussions focus on the 

historical development of pavement structures, the South African approach to 

pavement structures, and on pavement loading.  

Section 2.3 presents a review on the behaviour of unbound granular materials, 

followed by a discussion of unbound granular layer construction in Section 2.4. The 

review, on the behaviour of UGM’s include discussions on mechanical behaviour of 

UGM’s, factors influencing the mechanical behaviour of UGM’s and laboratory 

characterisation techniques for UGM’s whereas Section 2.4 discusses general 

specifications and methods of unbound granular layer construction. 

This Chapter concludes with a synthesis of the reviewed literature. 

2.2 Pavement Structures  

2.2.1 History of Roads 

Roads, in some sort, have existed since ancient times. Mainly used for trade, in 

general, they were no more than frequently followed paths such as the tracks made 

by the movement of foraging and migrating animals. Humans, on the more important 

routes, maintained and improved their paths at river crossings, swamps and other 

difficult stretches (Roman roads, 2001). The removal of obstacles such as boulders, 

trimming back thorn bushes and, in some cases, the laying of branches and logs on 

the ground to ease human movement all formed part of maintenance routines. 

As communities in certain areas grew, their social structures and networks 

demanded more permanent and improved contact. Roads thus appeared around 

3500 B.C. when communities started to interact with each other by travelling, doing 

business, fighting, and socializing (SAPEM, 2013).  During this time the introduction 

of chariots and wagons to roads, a consequence of the development of the wheel, 
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highlighted that the existing road materials were inadequate and that the roads 

required improvement. Therefore, different cultures made their own unique 

contributions to improving their existing road structures (Roman Roads, 2001): the 

Egyptians were master surveyors, the Greeks excelled in masonry; the Etruscans 

developed cement making and together with the Cretans were skilled at paving. The 

Romans incorporated drainage systems into their roads and recognised the 

developments of others. By incorporating all of the above-mentioned technological 

innovations, and adding their own innovation, the Romans constructed a system of 

roads that remained unmatched for centuries. 

As mentioned above, the introduction of chariots and wagons highlighted the need 

for better quality pavement materials. The existing soil or subgrade, damaged by 

wheel loads, required some sort of protection from the high stresses at the wheel-

road contact area. A pavement structure (layers of better quality material constructed 

over the subgrade) allowed the spreading of stresses from the surface throughout the 

pavement structure to the existing subgrade, thereby reducing the stress on the 

subgrade (Wirtgen, 2004). Figure 2-1 illustrates the reduction of stress through the 

pavement structure. 

 

Figure 2- 1: Load Transfer through the Pavement Structure (SAPEM, 2013) 

Although the Roman roads were unmatched at the time, they were not the first to 

incorporate paved roads into their road network. The earliest records of paved roads 

date back to about 2200 B.C. in Babylonia (modern Iraq), whereas the first Roman 

road, the Via Appia (the Appian Way), was constructed 334 B.C. (SAPEM, 2013; 
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Roman Roads, 2001). The Roman roads however were superior in comparison to 

others. They incorporated a layered system of large stones, with layers of smaller 

stones, gravel, concrete and large paving stones spread on top (Roman Roads, 

2001). To better the performance of their roads, the Roman incorporated drainage 

ditches on the side of the roads and cambered the surface to shed water. In addition, 

the pavement structure was constrained between large stone kerbs as illustrated by 

the schematic of a typical Roman road, Figure 2-2 below. Note the layer system of 

different materials. 

 

Figure 2- 2: Typical Roman Pavement Structure (SAPEM, 2013) 

Some Roman roads lasted for more than a millennium and their basic pavement 

structure principles still used within modern pavements. Modern pavement structures 

incorporate a basic structure (three or four layer systems) similar to that developed 

by the Romans however with some variation in material type and particle size.   

2.2.2 South African Approach 

The South African approach to pavement structures is similar to that of ancient Rome 

although it has been refined to suite the South African environment. Layers of 

different materials, used to spread the load induced by the wheel, results in less 

stress on the existing, low quality, subgrade (see Figure 2-1). 

The pavement foundation and structural layers of South African road pavements 

mostly consist of UGM’s. Other countries also, such as Australia and New Zealand, 

together with some states in USA, incorporate the use of unbound granular structural 

pavement layers in combination with a thin wearing course (Theyse, 2007). Figure 2-

1 above, shows a typical South African pavement structure as explained above. Note 
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that, Figure 2-1 also shows the load spreading and the reduction of stresses 

throughout the pavement structure. 

The purpose of each of the structural layers shown in Figure 2-1 is described below 

(SAPEM, 2013). 

 Wearing Course: This is a functional layer that provides waterproofing, skid 

resistance, noise-damping, visibility, drainage and durability against the 

elements. For surfaced pavements, the surfacing layer consists of spray seals, 

asphalt or concrete. Note that the wearing course for paved roads is bound. 

 Base: This is a load spreading layer and the most important layer of the 

structural layers. The layer must provide support for the surfacing layer and 

spread the high tyre pressures and wheel loads uniformly over the underlying 

subbase.  

 Subbase: This layer provides support for the base during traffic loading and 

provides a sound platform for the construction of a structural base layer of 

high integrity. Furthermore, it also protects the underlying unbound layer. 

 Imported Subgrade: These layers, upper and lower, are primarily capping for 

the subgrade to provide a workable platform to construct the subbase. These 

layers also provide depth of cover for the subgrade and further reduce the 

stresses on the subgrade. 

 Subgrade: This is the existing material supporting the pavement structure. 

The existing material can be modified with stabilisers to reduce plasticity, 

ripped and recompacted to achieve uniform support, or undercut and 

replaced, depending on its quality. 

Typically, the structural layers will consist of two unbound granular layer with the 

base supported by the subbase layer (Theyse, 2007). The South African approach 

however is to incorporate a pavement structure known as an inverted or upside-down 

structure. The inverted structure incorporates a lightly cemented subbase layer as 

support for the unbound granular base layer.  

As mentioned the South African approach incorporates a thin surfacing layer that has 

little load spreading capabilities. With little load spreading by the wearing course (see 

Figure 2-1), the unbound base layer is subjected to high stresses approaching that of 
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the tyre-pavement contact stress. Furthermore, if the surfacing layer does not 

function as a waterproofing layer, variation in moisture content within the base might 

occur. The combination of high stresses and moisture within the unbound base layer 

are most likely to contribute significantly to the deterioration of the pavement 

structure as a whole (Theyse, 2007). 

Pavement design engineers therefore need to understand the effect of high stresses 

and variable moisture contents on the performance of different granular materials. By 

researching different materials and developing design models accordingly, the 

behaviour of unbound granular materials will become clear. Only once pavement 

design engineers understand the behaviour of UGM’s, can confident and accurate 

decision regarding the use of a specific material be made.  

2.2.3 Pavement Loading 

Subsection 2.2.2 highlighted the importance of understanding the behaviour of 

unbound granular materials under loading. Just as important is the loading itself 

therefore an understanding of the loading mechanism within pavement structures is 

required. 

A pavement structure in field undergoes traffic induced wheel loads that cause stress 

patterns within the pavement structure (Lekarp et al., 2000). The stress patterns 

changes as the wheel load passes and are complex. Figures 2-3 (a) and (b) show 

that a material element within a pavement structure is, subjected to stress pulses 

caused by moving traffic.  
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Figure 2- 3: Stresses Condition Beneath Moving Wheel Load: (a) Stresses on Pavement 

Element; (b) Variation of Stresses Over Time as Wheel Passes; (c) Principal Stresses on 

Pavement Element – Element Rotates; (d) No Rotation – Shear Stress Reversal (Brown, 1996) 

Pulses induce horizontal, vertical and shear stresses on the element. For unbound 

materials, the horizontal and vertical stresses are both positive, increasing as the 

load approaches the element. The maximum stress within the material element, both 

horizontal and vertical, occurs at the point where the wheel load is directly above the 

element. At this point the principal stresses (stress state without shear stress), will be 

equal to the horizontal and vertical stresses. As the load moves over and away from 

the element, the horizontal and vertical stresses will reduce.  

In addition, Figures 2-3 (c) and (d) show that a reversal of the shear stresses, 

commonly referred to as principal stress rotation (Austin, 2009), occur as the load 

moves over the element.  

2.3 Review of Unbound Granular Material Behaviour 

Unbound granular materials form the backbone of flexible pavement structures and 

provide load spreading through the base and subbase layer. Failure within an 

unbound granular layer is entirely associated to shear and a materials resistance of 
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shear is a function of the aggregate skeleton i.e. friction caused by aggregate 

interlocking. With the emphasis on pavement structure performance, the need for 

better understanding the performance properties of the materials used within these 

structures become essential. Therefore, this section will review the mechanical 

behaviour of UGM’s and their response to traffic loading in order to gain an 

understanding of the performance properties. Furthermore, this section will also 

present discussions on the factors influencing the behaviour of UGM’s and the 

laboratory characterisation techniques of UGM’s. 

2.3.1 Mechanical Behaviour 

The use of materials within pavement layers requires prior knowledge (being 

empirical or fundamental) of the behaviour of these materials. A true understanding 

of material behaviour can be determined from fundamental information generated by 

pure research at research institutes (Thom et.al, 2005). A discussion of the 

equipment used within this thesis, to obtain fundamental information and to gain an 

understanding of the behaviour of the tested materials, follows in Subsection 2.3.3. 

In this thesis, the phrase “mechanical behaviour” refers to the failure behaviour 

(shear strength), resilient deformation behaviour (Resilient Modulus and Poisson’s 

ratio) and permanent deformation behaviour. Although this thesis will not focus on 

permanent deformation, it is important to note that the permanent deformation of 

UGM’s forms part of failure mechanism. 

Mechanical behaviour of UGM’s under traffic loading has been one of the focus 

areas of research within pavement engineering. Research has shown that UGM’s 

placed under loads exceeding the materials load bearing capacity will undergo shear 

failure. Figure 2-4 (a) shows the results from a typical monotonic failure test, on 

UGM, through a typical stress-strain relationship. Note that an increase in strain is 

associated with an increase in stress only up to the point of failure. After failure, no 

further stress is required for an increase in strain.  

Furthermore, Figure 2-4 (b) shows that, for a single cycle of repeated loading 

(simulation of traffic) well below that of the failure stress, UGM’s will undergo 

deformation. Each cycle of loading will result in permanent (irrecoverable) and 

resilient (recoverable) strain.  
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Figure 2- 4: (a) Monotonic Loading to Failure (b) Strain in UGM’s caused by a Single Load 

Cycle (Araya, 2011) 

Figure 2-4 a) and b) both show strain in the direction parallel to the applied stress. 

The reality in a pavement however is more complex, with stress distributed in three 

dimensions (Jenkins, 2010). In order to understand three dimensional stress strain 

distributions, the Poisson’s Ratio ѵ of the material under loading is required. Material 

Poisson’s Ratios are calculated as the ratio of the strain perpendicular to the applied 

stress (transverse strain εt) in relation to the strain parallel to the applied stress (axial 

strain εa). Figure 2-5 and Equations 2-1, 2-2 and 2-3 illustrates the calculation of 

Poisson’s Ratio for a cylindrical specimen. 

 

Figure 2- 5: Illustration of Poisson’s Ratio in three Dimensions (PavementInteractive, 2007) 

Stellenbosch University  https://scholar.sun.ac.za



 

13 | P a g e  
 

          

ѵ =
𝜺𝑫

𝜺𝑳
            2-1 

𝜺𝑫 =
∆𝑫

𝑫
                                2-2 

𝜺𝑳 =
∆𝑳

𝑳
                    2-3 

Where:  ѵ = Poisson’s Ratio [-]       

  εD  = transverse strain [-]      

  εL  = axial strain [-]       

  ∆D = change in diameter [mm]      

  D = initial diameter [mm]      

  ∆L = change in length [mm]      

  L = initial length [mm]  

It should be noted that although the theory of elastic behaviour does not allow for an 

increase in volume, some researchers e.g., Sweere (1990) and van Niekerk (2002) 

have found that UGM’s sometimes exhibit Poisson’s Ratios greater than 0.5. The 

material thus exhibits resilient dilatation, i.e. a volume increase when subjected to 

shear loads. Larger shear loads result in larger Poisson’s Ratios. 

2.3.1.1 Shear Strength Behaviour 

The SAMDM (South African Mechanistic Design Manual) is one of few mechanistic-

empirical (M-E) pavement design manuals that incorporate a methodology for 

evaluating the bearing capacity of course unbound granular materials (Araya, 2011). 

Under repeated loading, UGM’s exhibits deformation due to densification and gradual 

shear, therefore, understanding the deformation behaviour caused by shear stresses, 

in order to improve the M-E design method, has been the focus of many research 

projects.   

Several researchers have related the permanent deformation of UGM’s to the shear 

stresses within the material (Maree, 1979, Huurman and van Niekerk, 1995 and 

1998, Huurman, 1997, Theyse, 1998 and 2000 and van Niekerk et al. 2000). Maree 

(1979), in his research of UGM’s, developed the concept of a “Safety Factor” (SF) 

against shear failure which is represented by Equation 2-4 as the ratio between the 

material shear strength τf and the applied shear stress τa or equally, by the ratio 

between the material deviator stress at failure ϭd
f and the applied deviator stress ϭa.  
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𝑺𝑭   =
𝝉𝒇

𝝉𝒂
 𝒐𝒓 

𝝈𝒅
𝒇

𝝈𝒅
𝒂          

 =
𝝈𝟏

𝒇
−𝝈𝟑

𝝈𝟏
𝒂−𝝈𝟑

           

 =
𝝈𝟑(𝑲𝒕𝒂𝒏𝟐(𝟒𝟓°+

𝝓

𝟐
)−𝟏)+𝟐𝑲𝑪𝒕𝒂𝒏(𝟒𝟓°+

𝝓

𝟐
)

𝝈𝟏
𝒂−𝝈𝟑

       2-4 

Where:  τf = failure shear stress [kPa]      

  τa = applied shear stress [kPa]     

  ϭd
f = deviator stress at failure [kPa]     

  ϭd
a = applied deviator stress [kPa]     

  ϭ1
f = major principal failure stress [kPa]    

  ϭ1
a = applied major principal stress [kPa]    

  ϭ3 = minor principal stress (confining pressure of tri-axial test) [kPa]

  ϕ  = Friction Angle [°]       

  C  = Cohesion [kPa]       

  K = constant relating to the level of saturation 

The constant K depends on the level of saturation. Maree (1979) suggested values 

for highly (0.6), and normal to dry (0.95) saturation levels however, these constants 

were subsequently refined by Theyse, et.al. (1996) for saturated (0.65), moderate 

moisture (0.8) and normal moisture (0.95) conditions 

Safety factors are typically calculated in the middle of the granular layer, and at 

locations along, and between the wheel paths (Jooste, 2004). Safety factors smaller 

than 1 imply that the applied shear stress exceeds that of the material bearing 

strength and that rapid deformation will occur for static loads. However, under real 

life dynamic loading, a shear stress greater, if ever, that the shear strength, will only 

last for a very short duration. As a result, shear failure will not occur during one load 

application but rather deformation will accumulate rapidly under repeated loading. On 

the other hand, however, for safety factors exceeding one, the accumulation of 

deformation will gradually occur under repeated loading. Note that the failure 

mechanism however, will be the deformation of the UGM and that the rate of failure 

is a function of the enormity of the safety factor. 

Within the equation developed by Maree (1979), two parameters exist that define a 
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materials shear strength properties, the Friction Angle ϕ and the Cohesion C. Both 

these parameters can be determined from a Mohr-Coulomb representation of 

monotonic tri-axial tests as illustrated by Figure 2-6.  

 

Figure 2- 6: Mohr-Coulomb Representation of Monotonic Tri-axial Test (Jenkins, 2010) 

According to the Mohr-Coulomb representation shown, the failure stress ϭ1 in Figure 

2-6 is a function of the confining stress applied during a monotonic tri-axial test, 

therefore, at least two tri-axial tests are required to formulate a failure envelope (a 

tangent line to the Mohr-Coulomb circles). 

Showing the results from two monotonic tri-axial tests through a Mohr-Coulomb 

representation thereof and adding the line tangent to the circles results in an 

estimation of the materials failure envelope. By assuming a linear failure envelope, 

the Friction Angle ϕ [in degrees] and the Cohesion C [in kPa] can be determined. 

Note that the Friction Angle is determined from the slope of the tangent line whereas 

the intercept of the envelope and the y-axes gives the Cohesion. 

In addition, Huurman and van Niekerk (1995), similar to the Safety Factor principal 

developed by Maree (1979), relates the ratio between the applied major stress ϭ1
a 

and the failure stress ϭ1
f to the permanent deformation behaviour of UGM’s. Theyse 

however, through his research of UGM’s (Theyse, 1996, 2000), furthered Maree’s 

work and used the inverse of Maree’s Safety Factor, called the “Stress Ratio”, as the 

critical parameter controlling the permanent deformation of UGM’s.  

It should be noted that all of the methods motioned above (Maree, 1979, Huurman 

and van Niekerk, 1995, and Theyse, 2000), for relating permanent deformation to 
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shear behaviour, relies on the failure strength ϭ1
f to be known.  Equation 2-5 provides 

the formulations of the ratio used by Huurman and van Niekerk (1995) whereas 

Equation 2-6 provides the formulation of the Stress Ratio (inverse of Maree’s Safety 

Factor). Both equations are first represented in terms of the failure strength ϭ1
f and 

secondly in terms of the shear parameters C and ϕ.  

SR =
𝝈𝟏

𝒂

𝝈𝟏
𝒇      

 =
𝝈𝟏

𝒂

𝝈𝟑(𝒕𝒂𝒏𝟐
(𝟒𝟓°+𝝓

𝟐
))+𝟐𝑪𝒕𝒂𝒏(𝟒𝟓°+𝝓

𝟐
)

                2-5 

SR =
𝝈𝟏

𝒂−𝝈𝟑

𝝈𝟏
𝒇−𝝈𝟑

    

 =
𝝈𝟏

𝒂−𝝈𝟑

𝝈𝟑(𝒕𝒂𝒏𝟐
(𝟒𝟓°+𝝓

𝟐
)−𝟏)+𝟐𝑪𝒕𝒂𝒏(𝟒𝟓°+𝝓

𝟐
)
                             2-6 

Where: ϕ  = Friction Angle [°]       

  C  = Cohesion [kPa]       

  ϭ1
f = failure strength [kPa]      

  ϭ1
a = applied major principal stress [kPa]    

  ϭ3 = minor principal stress (confining pressure of tri-axial test) [kPa] 

Theyse (2007) states that the advantage of using the Stress Ratio is that it normalise 

the stresses, for equal Stress Ratios, at various applied stress as. Figure 2-7 gives a 

schematic representation of the normalised stresses. Note that the representation of 

the Mohr-Coulomb circles shown in Figure 2-7, show that an equal Stress Ratio can 

be achieved for different applied stresses. Furthermore, rather than to show the 

behaviour under a single stress state, the Stress Ratio allows comparison between 

material behaviour under various stress states with equal Stress Ratios. 
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Figure 2- 7: Mohr-Coulomb representation of two cases with Equal Stress Ratios (Theyse, 

2007) 

It should be noted that all of the above focuses on the failure mechanism of UGM’s 

however, as mentioned in Section 2.2, the purpose of UGM layers are to spread the 

load incused by traffic throughout the pavement structure. The load spreading ability 

of granular layers is a function of layer stiffness (Jenkins, 2010) therefore the 

stiffness of UGM’s need to be considered.  

2.3.1.2 Resilient Deformation Behaviour 

Traditionally, the theory of elasticity defines the elastic properties (Elastic Modulus E 

and Poisson’s Ratio ѵ) of a material. The stiffness or Elastic Modulus of a material 

can be characterised by Hooke’s Law. This law states that a simple stress strain 

relation exists, for linear elastic behaviour. In addition, the slope of the relationship 

reflects the stiffness or Elastic Modulus (also known as Young’s Modulus). Figure 2-8 

presents a schematic representation of Hooke’s law. 

 

Figure 2- 8: Stiffness or Elastic Modulus as a Function of Stress and Strain (SAPEM, 2013) 
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By definition, linear elastic behaviour implies that the stress strain relation be linear. 

Dealing with UGM’s however, due to the stress-dependent elastic (recoverable) 

nature of the material under repeated loading, the Elastic Modulus is replaced by the 

Resilient Modulus Mr. In addition, the deformation behaviour of UGM’s is non-linear 

elastic, rather, UGM’s show elasto-plastic behaviour. 

As mentioned in the introduction of Section 2.3.1, researchers have characterised the 

deformation behaviour, of UGM’s, subjected to repeated loading, by an elastic or 

recoverable (resilient) and non-recoverable (permanent) deformation. Both the 

resilient and permanent deformation however, is not constant. Figure 2-9 illustrates 

that, as repeated loading takes place, both the increments of permanent and resilient 

deformation reduce. 

 

Figure 2- 9: Unbound Granular Material Behaviour under Repeated Loading (Thom, 1988) 

The stress strain relation defines the Resilient Modulus of UGM’s, similar to the 

Elastic Modulus, however, within Equation 2-7, the stress used is the cyclic axial 

deviator stress ϭd and the strain is the recoverable (resilient) strain εr. Note that 

Subsection 2.3.1 gives an explanation on the principal of recoverable strain εr. 

𝑴𝒓 =
𝝈𝒅

𝜺𝒓
                       2-7 

Where: Mr = Resilient Modulus [MPa]      

  ϭd = applied deviator stress (ϭ1 – ϭ3) [kPa]    

  εr = recoverable or resilient strain [-] 

The cyclic axial deviator stress ϭd within Equation 2-7 defines the difference between 
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the applied major principal stress ϭ1 and the sum of the applied minor principal stress 

ϭ3 and the seating stress ϭp, as illustrated by Figure 2-10. 

 

Figure 2- 10: Schematic Illustration of the Cyclic Axial Deviator Stress Principal (Jenkins, 2000) 

Figures 2-4 b), 2-9 and 2-10 show that the deformation behaviour of UGM’s is far 

from linear. Sophisticated testing apparatus, capable of applying cyclic loads, is 

therefore required to test for the Resilient Modulus. For many years has the tri-axial 

apparatus, capable of applying constant or cyclic stresses in the principal directions, 

been used to test the Resilient Modulus of UGM’s. Paragraph 2.3.3.3 presents a 

review on the tri-axial test apparatus.  

Through the findings of an extensive literature review on the structural response on 

UGM’s, Lekarp et al. (2000) presented a “State of the Art” on the resilient and 

permanent deformation of these materials. The review showed that several factors 

influenced the resilient response, each with varying degrees of importance. In this 

review however, Subsection 2.3.2 presents a discussion on the influence of some of 

these factors with the emphasis placed on the influence of maximum aggregate size 

and sample geometry. 

In the past, and currently, many research projects aim to develop models that 

accurately describe and predict the resilient behaviour of UGM’s. These models 

however are, formulated under unique conditions therefore, an understanding of the 

models formulation and shortcomings are required. In this study three of the many 

available models for predicting Resilient Modulus and two for predicting Poisson’s 

Ratio, are discussed. Note that although more models, for both Resilient Modulus 

and Poisson’s Ratio exist, the primary focus of this thesis is not model related. Some 

models are therefore only reviewed to give the reader background information on the 

formulation and shortcomings of some existing models and the models used within 
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this thesis. 

Mr-ϴ Model 

The Mr-ϴ model, due to its simplicity, is one of the most widely used models for 

predicting the Resilient Modulus of non-linear elastic materials. The model, first 

described by Seed et al. (1962, cited Uthus, 2007) is a non-linear, stress dependent 

power function. Sweere (1990) however states that Brown and Pell (1967), through 

pulse load tests on an instrumented pavement built in a test pit, obtained stiffness 

values for UGM’s. By plotting the obtained values on a double-logarithmic scale, in 

relation to the applied Bulk Stress ϴ (sum of the principal stresses), a straight-line 

relationship was found. This method of representing the stiffness-stress relation of 

UGM’s has now become a standard used within pavement engineering. Figure 2-11 

shows a schematic representation of the Mr-ϴ model, Equation 2-8. 

 

Figure 2- 11: Mr-ϴ Model of Resilient Modulus (Jenkins, 2010) 

𝑴𝒓 = 𝒌𝟏 (
𝜽

𝝈𝟎
)

𝒌𝟐
           2-8 

Where: Mr = Resilient Modulus [MPa]      

  ϴ = Bulk Stress (ϭ1 + ϭ2 + ϭ3) [kPa]     

  Ϭ0 = reference stress (1) [kPa]     

  k1 = material regression coefficient [MPa]    

  k2 = material regression coefficient [-] 

It is important to note that many researchers use a similar Mr-ϴ model (Equation 2-9) 

which, mathematically, is incorrect. 
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𝑴𝒓 = 𝒌𝟏𝜽𝒌𝟐                 2-9 

Where: Mr = Resilient Modulus [MPa]      

  ϴ = Bulk Stress (ϭ1 + ϭ2 + ϭ3) [kPa]     

  k1, k2 = material regression coefficients [-]     

The dimensions of Equation 2-9 cannot be matches.  

Although the Mr-ϴ model fairly accurately fits the tested data, it is not without 

drawbacks. Literature (Uzan, 1985, van Niekerk, 2002, Jenkins, 2002, Uthas, 2007 

and Araya, 2011), states that the Mr-ϴ model does not account for the individual 

influence that the confining stress ϭ3 and the applied deviator stress ϭd have on the 

Resilient Modulus. As a result, all combinations of principal stresses, resulting in 

equal Bulk Stress, will yield equal Resilient Modulus values.  

In addition, van Niekerk (2002) showed that the Mr-ϴ model does not account for the 

reduction in stiffness as the applied stress approaches the failure stress. The Mr-ϴ 

model is less accurate (r2 = 0.945 versus r2 = 0.992) under “severe” stress regimes 

when compared to “mild” stress regimes. Figure 2-13 illustrates, that for different 

confining stresses, the Resilient Modulus reduces as high deviator stresses (“severe” 

regime) are applied. Note that the Mr-ϴ model does not account for the influence of 

“severe” stresses therefore resulting in a lower r2 value compared to the “mild” 

regime (Figure 2-12).  

 

Figure 2- 12: Representation of Mr-ϴ Model Data in Relation to “mild” Regime Tested Data (van 

Niekerk, 2002) 
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Figure 2- 13: Representation of Mr-ϴ Model Data in Relation to “severe” Regime Tested Data 

(van Niekerk, 2002) 

Although not accurate, many researchers often use the Mr-ϴ model with a constant 

Poisson’s Ratio to calculate the transverse strain of a specimen (van Niekerk, 2002 

and Araya, 2011). As mentioned the resilient response of UGM’s is stress 

dependent; therefore, Poisson’s Ratio does not stay constant but rather varies in 

relation to the applied stress. 

Uzan Model 

Uzan (1985), in an attempt to account for the shortcomings of the Mr-ϴ model, 

developed a new non-linear model, based on the Mr-ϴ model but incorporated the 

effect of deviator stress.  

Uzan (1985) through Equation 2-10 below first presented the model. 

𝑴𝒓 = 𝒌𝟑 (
𝜽

𝝈𝟎
)

𝒌𝟒
(

𝝈𝒅

𝝈𝟎
)

𝒌𝟓
                 2-10 

Where: Mr = Resilient Modulus [MPa]      

  ϴ = Bulk Stress (ϭ1 + ϭ2 + ϭ3) [kPa]     

  ϭd = deviator stress [kPa]      

  ϭ0 = reference stress (1) [kPa]     

  k3 = material regression coefficient [MPa]    

  k4, k5 = material regression coefficients [-]     

The model has also been further developed by Witczak and Uzan (1988, cited Araya, 

2011) for the three-dimensional case where the deviator stress Ϭd is replaced with 
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the octahedral shear stress, as illustrated by Equation 2-11. 

𝑴𝒓 = 𝒌𝟔 (
𝜽

𝝈𝟎
)

𝒌𝟕
(

𝝉𝒐𝒄𝒕

𝝈𝟎
)

𝒌𝟖
               2-11 

Where: Mr = Resilient Modulus [MPa]      

  ϴ = Bulk Stress (ϭ1 + ϭ2 + ϭ3) [kPa]     

  𝜏𝑜𝑐𝑡  = octahedral shear stress [kPa]     

  ϭ0 = reference stress (1) [kPa]     

  k6 = material regression coefficient [MPa]    

  k7, k8 = material regression coefficients [-]     

TU-Delft Model 

During their research of unbound road building materials, van Niekerk and Huurman 

(1995) and Huurman (1997), derived a model based on the Mr-ϴ model. This model 

accounted for the influence of confinement and deviator stress separately, as 

illustrated by Equation 2-12. 

𝑴𝒓 = 𝒌𝟗 (
𝝈𝟑

𝝈𝟎
)

𝒌𝟏𝟎
(𝟏 − 𝒌𝟏𝟏 (

𝝈𝟏

𝝈𝟏
𝒇)

𝒌𝟏𝟐

)

 

                       2-12 

Where: Mr  = Resilient Modulus [MPa]     

  ϭ3  = minor principal stress [kPa]    

  ϭ1  = major principal stress [kPa]    

  ϭ1
f  = major principal stress at failure [kPa]   

  ϭ0  = reference stress (1) [kPa]    

  k9  = material regression coefficient [MPa]   

  k10, k11, k12 = material regression coefficients [-] 

It should be noted that the first absolute term, k9 (
σ3

σ0
)

k10

, in this model describes the 

increase of the Resilient Modulus associated with increasing the confining stress ϭ3. 

The second term, 1 − k11 (
σ1

σ1
f )

k12

, describes the decrease in the Resilient Modulus as 

the major principal stress (ϭ1) approach the principal failure stress ϭ1
f.  

Although this model accurately describes the resilient behaviour of granular 

materials, at “severe” stress levels, it also is not without limitations. The model cannot 

describe an increment of the Resilient Modulus for granular materials characterised 
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with an increasing deviator stress, far from failure (Araya, 2011). Therefore, 

additional models have been developed based on the TU Delft Model. Equations 2-

13 shows that, in addition to the TU Delft Model, the Mr-ϴ-
σ1

σ1
f  Model expresses the 

Resilient Modulus as a function of the Bulk Stress on a granular material. In addition  

to the Mr-ϴ-
𝝈𝟏

𝝈𝟏
𝒇 Model, Equation 2-14, Mr-ϴ-

σd

σd
f  Model, first used by Jenkins (2000) in 

his research of Bitumen Stabilised Materials (BSM’s), incorporates the Deviator 

Stress Ratio 
𝝈𝐝

𝝈𝐝
𝒇 rather than  

𝝈𝟏

𝝈𝟏
𝒇, to show the behaviour of the Resilient Modulus as the 

Stress Ratio increases. 

𝑴𝒓 = 𝒌𝟏𝟑 (
𝜽

𝝈𝟎
)

𝒌𝟏𝟒
(𝟏 − 𝒌𝟏𝟓 (

𝝈𝟏

𝝈𝟏
𝒇)

𝒌𝟏𝟔

)

 

                      2-13 

𝑴𝒓 = 𝒌𝟏𝟑 (
𝜽

𝝈𝟎
)

𝒌𝟏𝟒
(𝟏 − 𝒌𝟏𝟓 (

𝝈𝒅

𝝈𝒅
𝒇)

𝒌𝟏𝟔

)

 

                      2-14 

Where: Mr  = Resilient Modulus [MPa]     

  ϴ  = Bulk Stress (ϭ1 + ϭ2 + ϭ3) [kPa]    

  ϭ1  = major principal stress [kPa]    

  ϭ1
f  = major principal stress at failure [kPa]   

  ϭd  = deviator stress [kPa]     

  ϭd
f  = deviator stress at failure [kPa]    

  ϭ0  = reference stress (1) [kPa]    

  k13  = material regression coefficient [MPa]   

  k14, k15, k16 = material regression coefficients [-] 

To show the importance of accurate models, representations of van Niekerk’s (2002) 

results, under “severe” stresses, are shown by Figures 2-14 and 2-15. Figure 2-14 

shows that the Mr-ϴ Model cannot accurately describe the behaviour of the material 

under “severe” stress conditions, whereas Figure 2-15, the Mr-ϴ-
σd

σd
f  Model, better 

shows the material behaviour at “severe” conditions.  

Stellenbosch University  https://scholar.sun.ac.za



 

25 | P a g e  
 

 

Figure 2- 14: Representation of the Mr-ϴ Model’s fit on Test Data (van Niekerk, 2002) 

 

Figure 2- 15: Representation of the Mr-ϴ-
𝝈𝐝

𝝈𝐝
𝒇 Model’s fit on Test Data (van Niekerk, 2002) 

From the figures shown it is clear that, when comparing the Mr-ϴ and the Mr-ϴ-
σd

σd
f  

models, the Mr-ϴ Model more accurately (higher r2 value) fits the test data, however, 

the latter better shows the material behaviour as the deviator Stress Ratio increases. 

It is important to note that material behaviour models should not be calibrated to yield 

the best possible fit rather, to best describe the material behaviour under the 

associated conditions. 

Poisson’s Ratio 

As mentioned in Section 2.3, to simplify lateral strain calculations, researchers often 

use Poisson’s Ratio ѵ as a constant within pavement engineering. Consequently, few 
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models, predicting the change in Poisson’s Ratio with variation in stress condition, 

exist. However, Huurman, through his Doctoral dissertation (Huurman, 1997) 

developed a model that showed that Poisson’s Ratio, similar to the resilient response 

of UGM’s, is also influenced by the applied stress (i.e. Poisson’s Ratio is stress 

dependent). 

In a more recent study, van Niekerk (2002) shows models for the prediction of 

Poisson’s Ratio for granular materials, which are also stress dependent. Two of the 

models suitable for modelling of granular materials, the 
σd

σd
f  Model and the 

σd

σd
f -ϭ3 Model 

are shown by Equation 2-15 and 2-16 respectively. 

ѵ = 𝒏𝟏 (
𝝈𝒅

𝝈𝒅
𝒇)

𝒏𝟐

                  2-15 

ѵ = 𝒏𝟑 (
𝝈𝒅

𝝈𝒅
𝒇)

𝒏𝟒

(
𝝈𝟑

𝝈𝟎
)

𝒏𝟓
                      2-16 

Where: ѵ  = Poisson’s Ratio [-]      

  ϭd  = deviator stress [kPa]     

  ϭd
f
  = deviator stress at failure [kPa]    

  ϭ3  = minor principal stress [kPa]    

  ϭ0  = reference stress (1) [kPa]    

  n1 to n5 = material regression coefficients [-]  

Both models relate Poisson’s Ratio to the deviator Stress Ratio (
σd

σd
f ) however, van 

Niekerk et al. (2000) states that equally well fitting models can be obtained by 

relating Poisson’s Ratio to the 
σd

σ3
-ratio. 

Similar to the Mr-ϴ Model, the 
σd

σd
f  Model does not account for the individual influence 

of the minor principal stress ϭ3 rather it only accounts for the increase in Poisson’s 

Ratio as the shear load (higher Stress Ratio) is increased. For UGM’s however, the 

confining stress ϭ3 plays an important role in the transverse strain development. 

Under higher confining stress ϭ3, more friction is generated which results in a 

resistance to transverse rearrangement of particles, thereby decreasing the 

Poisson’s Ratio.  
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In contrast to the 
σd

σd
f  Model, the 

σd

σd
f -ϭ3 Model accounts for the influence of confinement 

by incorporating an additional term (
σ3

σ0
)

n5

, as illustrated by Figure 2-16 below. 

 

Figure 2- 16: Poisson’s Ratio in Relation to Deviator Stress Ratio for Both Models (van Niekerk, 

2002) 

Note that the 
σd

σd
f -ϭ3 Model better fits the test data for the various confining stresses. 

2.3.2 Factors Influencing the Mechanical Behaviour of UGM’s 

In their “State of the Art” on the resilient response of unbound aggregates Lekarp et 

al. (2000) states that, the resilient response of unbound aggregates is affected by 

several factors with varying degree of importance. Therefore, this section is 

dedicated to review the influence of factor such as moisture content, degree of 

compaction and applied stress, on the mechanical behaviour of UGM’s. The 

emphasis however will be on the influence of grading (particularly maximum 

aggregate size) and specimen geometry. 

The influence of various factors on the shear strength of UGM’s, is best described by 

the change in shear properties C and Ø and the effective stress of the material 

associated with the specific influencing factor whereas, the resilient deformation 

behaviour is best described by the change in Resilient Modulus and Poisson Ratio.  

The effects of influencing factors are best shown graphically by charts in which shear 

properties, Mr-ϴ relations, and Poisson Ratio relations are grouped for the various 
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influence factors under consideration. Therefore, this method of showing the 

influence of factors will be used within this review. 

2.3.2.1 Influence of Moisture Content 

Moisture in a pavement structure has its origin from many sources; groundwater, 

surface water migrating through the shoulder, ditches or through cracks in the 

surface of the road (Uthus, 2007 and Araya, 2011). Due to excessive pore water 

pressure, caused by too much trapped water in combination with cyclic traffic 

loading, the effective stress of an unbound material within a pavement structure may 

reduce. Consequently the bearing capacity of the unbound base or subbase layer 

reduces which ultimately results in complete pavement failure. Figure 2-17 illustrates 

that soil suction or suction pressure contributes to the effective stress of a material. 

 

Figure 2- 17: Effective Stress in a Partially Saturated Granular Material (Theyse, 2010) 

The suction in a material can be seen as a stress holding the unbound granular 

particles together. Note that higher suction pressures increase the materials effective 

stress, whereas a decrease in suction will lower the effective stress of the material. In 

addition, Vanapalli et al. (1996), through a soil-water characteristic curve (Figure 2-

18) have shown that the suction pressure induced within a material is a function of 

the degree of saturation.  
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Figure 2- 18: Typical Soil-Water Characteristic Curve for the Wetting and Drying of a Material 

(Vanapalli et al. 1996) 

The figures show that an increase in saturation (wetting curve, Figure 2-18) results in 

a reduction of the suction stress. The effect of reduced suction, as mentioned, is 

reduced effective stress (Figure 2-17) and reduced shear strength. 

Werkmeister (2003) and Werkmeister et al. (2003) considered the influence of 

climate conditions (Spring-thaw period) on the deformation behaviour of a granular 

layer in two pavement structures. For both structures she found that a slight 1% 

change in moisture content had a significant influence on the deformation behaviour 

of the UGM layers. 

Research by van Niekerk (2002), into mix recycled granulates, and Araya (2011), into 

granular materials, have shown that Cohesion C is largely influence by moisture. 

Araya through his study of ferricrete and weathered basalt found that an increase in 

moisture content (dry to moderate) generally resulted in an increase in both the 

materials Cohesion. However, a further increase in moisture content (moderate to 

wet) resulted in a significant decrease in Cohesion (lower than that of the dry 

moisture condition) in both materials. Figure 2-19 shows the results obtained by 

Araya for the weathered basalt. Note that, for equal degrees of compaction (98%) the 

Cohesion increases from 127 kPa to 171 kPa and then reduced to 88.5 kPa for an 

incremented moisture increase of 2% starting at 5%. Araya conclude that Cohesion 

of granular material will increase with increasing moisture content only up to the 

optimum moisture content (OMC). Above the OMC the Cohesion will decrease 
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significantly. Furthermore, since the densities of the tested material are similar, 98% 

DOC, the change in Cohesion cannot be attributed to the effect that moisture has on 

compaction, but rather to the suction stresses explained earlier. 

 

Figure 2- 19: Cohesion and Friction Angle values as a Function of Moisture Content and 

Degree of Compaction, for a Weathered Basalt Material (Araya, 2011) 

Van Niekerk (2002) tested the failure strength in relation to moisture content of mix 

recycled granulate material, on specimens previously used for Resilient Modulus 

testing, using a multi stage (MST) failure test. The MST allows for one 300mm Φ * 

600mm H specimen to be tested at three confining pressures. This allows the shear 

performance to be evaluated by means of one specimen instead of three. The results 

showed an increase in Cohesion with increased moisture content as shown in Figure 

2-20.  

 

Figure 2- 20: Cohesion and Friction Angle values as a Function of Moisture Content, for a Mix 

Recycled Granulate Material (van Niekerk, 2002) 
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Note that, other than Araya’s results which showed a decrease in Cohesion at 

moisture contents greater than the OMC, van Niekerk’s results shows a consistent 

increase. However, as mentioned, the samples used in the failure tests have also 

been used for Resilient Modulus testing. Furthermore the method of applying 

confinement to the 300mm Φ * 600mm H tri-axial testing apparatus used is based on 

a vacuum. As a result, moisture is extracted from the specimen during Resilient 

Modulus testing resulting in reduced moisture contents when the failure test 

commences. The moisture contents shown in Figure 2-20, 5%, 10% and 15% are 

merely the target moisture contents during the sample preparation phase. The true 

moisture contents however, of the specimens during failure testing can only be 

calculated once the tests are complete. Moisture content calculation, after Resilient 

Modulus and MST testing, showed, in fact, that the true moisture contents were 

5.2%, 10.5% and 11.0% respectively. It can thus be argued that a true moisture 

content of around 15%, or anything above OMC, could result in less Cohesion.    

In terms of the influence of moisture content on Friction Angle, both Figures 2-19 and 

2-20 show no significant change in the Friction Angle. Araya however did notice a 

small decrease in Friction Angle, for the ferricrete material, with an increase in 

moisture content. 

In their “State of the Art”, on the resilient deformation behaviour of unbound 

aggregates, Lekarp et al (2000) states that it is generally agreed that the resilient 

response of dry to most partially saturated granular materials is similar, but as 

complete saturation is approached, the behaviour may be affected significantly. From 

their extensive literature review, Lekarp et al. concluded that an increase in moisture 

content, particularly at high degrees of saturation, has been shown to result in a 

marked reduction of the Resilient Modulus as well as Poisson’s Ratio. 

Sweere (1990), through his study of the influence of moisture on the response 

behaviour of granular base course materials, also found that moisture has a 

significant influence on the resilient behaviour of granular materials. Sweere showed, 

for laterites, that the degree of moisture dependent resilient behaviour was influenced 

by the amount of fines within the laterites. Laterites with a grading close to the Fuller 

Curve were shown to be far less moisture dependent that that of laterites containing 

excess fines. In addition, Sweere also found, when comparing fine and coarse 

graded porphyry material, that the Resilient Modulus of the fine graded material was 
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more influenced by moisture that that of its coarse graded counterpart, as shown by 

Figure 2-21 below. 

 

Figure 2- 21: Mr-ϴ relation for Porphyry Material, for Fine Grading (a) and Coarse Grading (b) 

for both Wet and Dry Specimen Conditions (Sweere, 1990) 

Note that the dry and wet material conditions shown in Figure 2-21 represent the 

saturation levels of 150 mm diameter tri-axial specimens. The specimens were 

compacted at optimum moisture content and tested for resilient properties under wet 

conditions. Once the wet condition tests were completed, specimens were dried, by 

flushing air through them for 1 week, and tested again under the dry condition. For 

the fine graded material shown in Figure 2-21 (a) a degree of saturation of 13% and 

42% represent the dry and wet material condition respectively, whereas, for the 

coarse graded material show by Figure 2-21 (b) a degree of saturation of 7% and 

18% represent the dry and wet material condition respectively.  

Sweere (1990) concluded that, although moisture content does influence the 

performance of unbound materials, the influence is significantly related to the fines 

content.  

2.3.2.2 Influence of Compaction or Density 

Compaction, of unbound material, is defined as the mechanical alteration of material 

particles in order to reduce the volume obtained by the mass of material, i.e. 

increasing the mass to volume ratio or better known as the density (Chilukwa, 2013).  

It has been known, for many years, that density has a significant influence on the 

performance of granular materials (Lekarp et al., 2000).  

Thom (1988) studied the influence of density on the mechanical behaviour of crushed 
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dolomitic limestone. Three different magnitudes of compaction, uncompacted, light 

compaction, and heavy compaction, for several grading curves, were tested in a 75 

mm diameter tri-axial testing apparatus. Light compaction consisted of 150 light 

blows whereas heavy compaction consisted of 150 heavy blows per layer, both over 

five layers per sample. It should be noted that compaction was manual, giving rise to 

the possibility of inconsistency in applied effort. Furthermore, due to apparatus size, 

a maximum particle size of 10 mm was used for all specimens. In addition, the 

proportions on particle smaller than 75 microns were kept constant for all the 

gradings. Thom showed that an increase in density had no significant influence on 

the resilient behaviour, but concluded that density was a dominant factor in reducing 

permanent deformation and increasing shear strength. The dominant influence of 

compaction was shown by plotting the principal Stress Ratio at failure 
σv

σh
, an indicator 

of the shear strength, for the three different levels of compaction in relation to the 

various grading parameters n as shown in Figure 2-22. Note that the principal Stress 

Ratios for the heavy compaction, for all grading curves, are greater than that of the 

lightly compacted material. 

 

Figure 2- 22: Influence of Compaction and Grading Parameter on the Principal Stress Ratio at 

Failure (Thom, 1988) 

Van Niekerk (2002) and Araya (2011) also investigated the influence of degree of 

compaction (DOC) on the performance of recycled mix granulates and granular 

materials respectively. Both van Niekerk and Araya expressed DOC as a percent of 

maximum standard Proctor dry density and found that an increase in DOC resulted in 

a gain in Cohesion for all the materials tested. Van Niekerk, through MST testing on 

samples produced from the three grading limits of mix recycled granulate materials, 
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cured for 28 days and used for Resilient Modulus testing, noted an increase in 

Cohesion of 67%, 51% and 126% for the upper, average and lower grading limit 

respectively. This increase in Cohesion was caused by an increase in the DOC from 

97% to 105%. In addition, van Niekerk also tested the mechanical behaviour of six 

sands and again found that an increase in DOC resulted in increased Cohesion, as 

illustrated by Figure 2-23. 

 

Figure 2- 23: Cohesion in Relation to DOC for Six Research Sands (van Niekerk, 2002) 

In terms of Friction Angle, neither van Niekerk nor Araya could find a consistent trend 

in the change of Friction Angle when related to an increased DOC for their material. 

Araya found that an increase in DOC from 95% to 100% resulted in an increase of 

Friction Angle for weathered basalt at 7% moisture content. For ferricrete however, at 

7.5% moisture content, a slight decrease was noted whereas tests on South African 

G1 material showed comparative results to that of the weathered basalt. An increase 

in DOC from 98% to 105% resulted in an increase in Friction Angle from 52° to 60°.  

Tests by van Niekerk on untreated sands however showed a clear trend in the 

relation between Friction Angle and DOC. Figure 2-24 shows that higher DOC’s 

results in higher Friction Angles obtained for all of the six tested sands. 
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Figure 2- 24: Friction Angle in Relation to DOC for Six Research Sands (van Niekerk, 2002) 

In their “State of the Art” on the resilient response of granular materials, Lekarp et al. 

(2000) reviewed literature from as early as 1962 to more recent, 1997, and 

concluded that the literature is somewhat ambiguous regarding the influence of 

density on the resilient response of granular materials. Several reviewed studies 

showed a general increase in Resilient Modulus with increasing density whereas 

some literature stated that the effect of density, or the state of compaction, is 

relatively insignificant. Furthermore, the reviewed literature generally showed a slight 

decrease in Poisson’s Ratio with increasing density. 

Van Niekerk (2002), in his research of mix recycled granulates, found that an 

increase in DOC results in an increase in the Resilient Modulus and a reduction in 

Poisson’s Ratio. This phenomenon, the increase in stiffness and reduction of 

Poisson’s Ratio with increasing density, was evident for all material types and 

grading curves tested, however, the rate of change was related to the material 

grading used. Figure 2-25 represents the influence of increased DOC on the 

Resilient Modulus of a mix recycles granulate material as reported by van Niekerk. 
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Figure 2- 25: Mr-ϴ Relations as a Function of DOC for a Mix Recycled Granulate Material after 4 

days curing (van Niekerk, 2002) 

In addition to van Niekerk, Araya (2011) tested the influence of DOC on the resilient 

behaviour of a typical South African G1 type material. Araya also found, except for 

the 100% DOC which was slightly lower than the 98% DOC, the stiffness of the 

crushed stone to increase with increasing DOC. 

2.3.2.3 Influence of Applied Stress 

Due to its stress dependent nature, the performance properties of UGM’s under static 

loads are influenced significantly by the effect of stress. By supporting the material 

(adding confinement), the shear strength increases significantly. This increase in 

strength is best illustrated by the Mohr-Coulomb representations shown in 

Subsection 2.3.1.1. In addition, the increase in shear strength due to an increase in 

confinement can further be explained by placing dry sand in a bucket. Whilst a heap 

of dry sand will undergo massive deformation, or even collapse, when a person 

stands on it, the same sand however, placed in a bucket, will be capable of carrying 

the mass of a person without excessive deformation. 

The behaviour of UGM’s under cyclic traffic loading is, as mentioned in Section 2.3, 

stress dependent. Lekarp et al. (2000) states that literature has, without exception, 

shown the applied stress level to have the most significant influence on the resilient 

behaviour of unbound materials. In addition, the reviewed literature showed 

Poisson’s Ratio to reduce with increased confinement and increase with increased 

deviator stress. 

 

Stellenbosch University  https://scholar.sun.ac.za



 

37 | P a g e  
 

Uzan (1985) and Sweere (1990) have both shown that the minor principal stress 

(confining pressure in a tri-axial cell) and the applied major principal stress both have 

a significant influence on the Resilient Modulus of unbound granular materials. They 

found that the Resilient Modulus increased with increasing confinement and with 

increasing major principal stress. 

Uthus (2007) also found that his results followed the trends set by earlier research 

adding that the influence of confining pressure is far more dominant, 3 to 5 times 

more, than the influence of applied deviator stress.  

Van Niekerk (2002) however showed slight contradictions to the trends set out 

above. In his research he established two loading regimes, “mild” and “severe”, and 

noticed that the resilient deformation behaviour of the mix recycled granulate material 

only followed the above mentioned trends for the lower stress state or “mild” stress 

state. At high or more “severe” stress states, closer to the failure stress of the 

material, the resilient deformation behaviour changed and a reduction in Resilient 

Modulus was noted. This phenomenon of a reduction in Resilient Modulus under 

“severe” loading is illustrated by Figures 2-12 and 2-13 as shown in Paragraph 

2.3.1.2 

Furthermore, it should be noted that, due to limitations in testing equipment, all of the 

above research was based on a constant confining pressure being applied over the 

duration of the tests. This however does not accurately simulate the in situ stress 

paths caused by traffic in a pavement (see Figure 2.3). Rondòn et al. (2009) states 

that in an ideal laboratory test setup should be capable of simulating the rotation of 

the principal stress direction as explained in Subsection 2.2.3. Lekarp et al. (2000) 

states that some literature, to compare constant confining pressure (CCP) with 

variable confining pressure (VCP) tri-axial test, exists. The literature shows that VCP 

tests yielded somewhat lower Resilient Modulus values than that of CCP, however, 

the magnitude of the difference was inconsistent and dependent on the applied 

stress level. 

2.3.2.4 Influence of Grading 

The grading of UGM’s used within pavement structures is critical to the performance 

of the pavement. It is therefore important to understand the influence of grading.  

In laboratories the performance of UGM’s is studied through extensive testing 
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however, due to the high cost and practicality of large-scale testing equipment, 

scaled down test equipment and samples are used for material characterisation. To 

achieve realistic results, not influenced by individual large aggregate particles, scaled 

down gradings need to be incorporated. This is achieved by manipulating the original 

grading therefore no true field performance can be measured within laboratories 

rather an approximation thereof. Although grading curve and specimen geometry is 

closely related, the influence of test apparatus scale and sample geometry will be 

discussed in Paragraph 2.3.2.5. This paragraph however will focus on the influence 

of grading and maximum particle size on the mechanical behaviour of UGM’s. 

Lekarp et al. (2000), through an extensive literature review, found that the stiffness of 

UGM’s is, in some degree, influenced by grading (particle distribution) and particle 

size. General trends show that the Resilient Modulus decreases when the amount of 

fines (passing 75 micron) is increased. This can be as a result of reduced large-

grain-to-grain contact area. The presence of a large amount of fines, larger than the 

spaces between the large particles (Figure 2-26 (c)), destroys large-grain-to-grain 

contact area which results in reduced stiffness.     

 

Figure 2- 26: Three Physical States of Soil-Aggregate Mixtures (Molenaar, 2010) 
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Thom (1988), through his study of crushed dry dolomitic limestone at 4 grading 

curves, each with a 10 mm maximum aggregate size and a fixed proportion of 

aggregate smaller than 75 microns, showed that grading has a slight influence on the 

resilient response but a more dominant influence on the shear strength. Uniformly 

graded materials, as shown by Figure 2-26 (a), yielded slightly higher stiffness values 

in comparison to well-graded materials, as shown by Figure 2-26 (b), whereas the 

more well-graded material yielded higher shear strength values. In addition, Thom 

studied the influence of particle size by testing four different materials, namely 

granite, dolomitic limestone, crushed concrete and steel slag with the expectation 

that any trends common to all four are likely to apply equally to other materials. Tests 

were again carried out on 75 mm diameter tri-axial specimens created from dry 

material which was manually compacted using nominally equal compactive effort. To 

gain an understanding of the influence of aggregate size three or four size fractions 

were tested for each material type, ranging from 75 microns to 14 mm. From the 

results, Thom concluded that both the stiffness and shear strength of UGM’s 

decreases with decreasing particle size. Typically, this appears to be about a 25% 

stiffness reduction and 15% shear strength reduction for a tenfold size decrease. 

Sweere (1990) studied the influence of grading curve through a series of resilient tri-

axial tests using two specimen sizes, 400mm Φ * 800mm H and 150mm Φ * 300mm 

H. The results also showed that the Resilient Modulus of granular materials is 

influenced by grading. For material with the same maximum particle size, those with 

a coarse grading were shown to be more stress dependent than those with a fine 

grading. 

In a more recent research project however, van Niekerk (2002) investigated the 

performance behaviour of sands and mix recycled granulates. The results showed 

that higher stiffness values were achieved for the well-graded materials when 

compared to that of the uniformly graded materials. This however contradicts the 

conclusion made by Thom (1988), as mentioned above, and might not have held if 

more fines were added as the influence of the fines would then become the dominate 

factor. Van Niekerk however argues that, due to the larger grain-to-grain contact area 

of a well-graded material (Figure 2-26 (b)) higher friction is induced thereby allowing 

a well-graded material to take up a large deviator stress for equal deformation (higher 

stiffness). 
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For further reading on the influence of moisture, compaction, applied stress, grading 

and maximum aggregate size, and other factors, on the mechanical behaviour of 

UGM’s, the reader is referred to a “State of the Art” on the resilient response of 

unbound aggregates, Lekarp et al. (2000). 

2.3.2.5 Influence of Specimen Geometry 

As mentioned in Paragraph 2.3.2.4, most laboratory characterisation of UGM’s, 

through tri-axial testing, is carried out on adjusted gradings. Research has shown 

that, an unbalance in maximum aggregate size, in relation to specimen geometry, 

can influence test results (Lekarp and Isacsson, 2001). Further research, establishing 

a ratio between specimen diameter and maximum aggregate size (dspecimen/dmax-

particle), recommend a minimum dspecimen/dmax-particle ratio of 6-7 to prevent effects 

stemming from particle size to influence test results (Sweere, 1990 and van Niekerk 

et al. 2000). 

In an investigation of specimen geometry, Thom (1988) conducted tri-axial tests on 

four different grading curves using three specimen sizes. Thom concluded that, the 

Resilient Modulus is uninfluenced by the ratio of specimen diameter to maximum 

aggregate size and that the only effect noticed, as the ratio reduced, was the scatter 

in the stiffness results. The results however showed that shear strength was 

significantly influence by the ratio, increasing as the ratio reduced. 

Furthermore, Sweere (1990) also investigated the influence of specimen diameter in 

relation to maximum aggregate size, through a series of resilient tri-axial test. The 

tests results, from testing two specimen sizes (400mm Φ * 800mm H and 150mm Φ * 

300mm H) at the original 0/40 grading, for crushed masonry and crushed concrete at 

equal values of moisture content and dry density, showed inconsistencies with regard 

to the influence of specimen size. For the smaller specimen the crushed masonry 

showed higher stiffness values whereas the influence on crushed concrete was 

negligible. Sweere, based on the results obtained, concluded that specimen 

geometry, in relation to maximum aggregate size, does influence the resilient 

behaviour of UGM’s during tri-axial testing however, the influence is complex and 

cannot be determined with certainty.  

2.3.3 Laboratory Characterisation of UGM’s 

As mentioned earlier, in Subsection 2.3.1, materials are characterised by generating 

fundamental information on the material, at research institutes. Several 
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characterisation techniques exist. The purpose of this Subsection is to give the 

reader a brief background to some of the most commonly used characterisation 

methods (see Figure 2-27 below) and to explain the characterisation method used in 

this research. If further reading on other characterisation techniques is required, refer 

to Thom et al. (2005). 

 

Figure 2- 27: Six commonly used Characterisation Tests for UGM’s (Thom et al. 2005) 

2.3.3.1 California Bearing Ratio (CBR) 

The California Bearing Ratio (CBR) gives an indication of material bearing capacity 

(Standard CBR) as well as some indication of the resilient behaviour (Repeated 

Loading CBR). The standard test is a penetration test and applies a displacement-

controlled rate (0.8% strain per minute) to a 50.8 mm diameter plate, placed on a 

152.4 mm diameter specimen (Thom et al. 2005). The repeated loading CBR 

however, loads a specimen at a constant rate of 1.24 mm/min until the penetration 

reaches 2.54 mm, whereat, the force required to achieve the penetration is noted. 

The specimen is unloaded, where after it is again loaded to the determined forced, 

and again unloaded. This load, unload cycle is repeated 55 times during which 

displacement and force measurement are recorded. From the data, a stress-strain 

relation, shown in Figure 2-28, is established. It is this stress-strain relation that is 

used to estimate the Elastic Modulus of the tested material, as explained in 

Subsection 2.3.1. 
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Figure 2- 28: Stress-Strain Relation for a Granular Material under Repeated CBR loading (van 

Niekerk, 2002) 

Due to its simplicity, repeatability and cost, the CBR test is extensively used; 

however, when used for testing UGM’s, problems arise. The main issue regarding 

UGM’s is the ratio of mould and plunger geometry in relation to maximum particle 

size of the UGM to be tested (Araya, 2011). Again, as mentioned in Subsection 2.3.2, 

modified gradings are used in order to reduce the influence of maximum particle size 

on the CBR test results, therefore no true in situ bearing capacity is measured. In 

addition, the CBR test does not simulate cyclic traffic loading nor does it simulate the 

stress dependent behaviour of UGM’s (Edwards, 2007). 

2.3.3.2 K-Mould  

C.J. Semmelink (Semmelink, 1991), a South African, developed the K-mould for 

rapid evaluation of the elastic and shear properties of road building materials. As 

shown in Figure 2-27, the K-mould consists of eight circular segments, each spring 

loaded and allowed to move in a radial direction. 

Other that the CBR, the K-mould more accurately simulates the pavement stresses in 

an unbound granular layer due to traffic loading. Semmelink states that, one of the 

advantages of the K-mould is that its supporting stiffness is infinity variable. The 

spring system can, be locked in place to prevent any radial deformation or, allowed to 

apply variable confinement to the specimen. Note that, for the K-mould variable 

Stellenbosch University  https://scholar.sun.ac.za



 

43 | P a g e  
 

confinement is a function of specimen deformation. Further advantages include the 

ease of the test setup and instrumentation and that only one specimen is required for 

the determination of the failure envelope as explained in Paragraph 2.3.1.1. 

The K-mould however, has also come under scrutiny by other researchers with 

regard to its geometry and spring mechanism. Van Niekerk (2002) states: 

 “Disadvantages of the K-mould are its present limited height to diameter (h/d) 

ratio and the fact that the rigid steel wall segments and springs result in a uniform 

deformation and thus most likely a non-uniform horizontal stress over the height of 

the specimen.” 

If further reading, into the development of the K-mould, is required, refer to 

Semmelink (1991). 

2.3.3.3 Tri-axial Test 

The Texas Department of Transport (TxDOT, 2002) defines a tri-axial test, as a test 

wherein stresses are applied in three mutually perpendicular directions, as shown by 

Figure 2-29. These stresses include the major principal stress ϭ1 and the minor 

principal stresses ϭ2 and ϭ3. Note that no shear stress develops on the sides of the 

tested specimen. 

 

Figure 2- 29: Principal of Tri-axial Test (Anochie-Boateng et al., 2009) 

In the current state and age of material characterisation, three tri-axial tests exist: the 

Hollow Cylinder Apparatus (HCA), the monotonic load and the cyclic load tri-axial. All 

of these tests accurately simulate the stresses and loading conditions that occur 
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within a pavement although, the monotonic load test does not simulate cyclic traffic 

loading. For this thesis however, only monotonic and cyclic tri-axial test will be 

utilised therefore, if further reading, with regard to the HCA tri-axial, is required, refer 

to Chan (1990) and Lee et al. (2002). 

Monotonic Tri-axial Test 

The basic principle that formulates the monotonic tri-axial test is an increase in the 

applied principal stress ϭ1 in excess of the applied minor principal stresses ϭ2 and ϭ3. 

The applied principal stress increased until excessive deformation occurs i.e. the 

specimen has failed in shear or strain. The test is carried out under various minor 

principal stresses ϭ3 (confining pressure in tri-axial cell) conditions and the stress-

strain relation for each recorded, as shown in Figure 2-30.  

 

Figure 2- 30: Schematic representation of monotonic tri-axial tests results for two specimens 

tested at low and high confining pressure respectively (Jenkins, 2010) 

By conducting a series of monotonic tests, at different confining pressures, on 

specimens produced from a single material to comparable standard, the shear 

parameters of the tested material can be determined. Mohr-Coulomb circles, as 

explained in Paragraph 2.3.1.1, represent the stress conditions at which shear failure 

occurs. As mentioned a tangent line to the Mohr-Coulomb circles represent a linear 

estimation of the true failure envelope of the tested material. 

The monotonic test, even though it is an accurate measure of the failure envelope of 

unbound granular, and other materials, does not simulate cyclic traffic conditions. 

Under cyclic traffic loading, where the applied major principal stress ϭ1 is far less than 
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the major principal stress at failure ϭ1
f, failure will not occur instantly rather 

deformation will accumulate with repeated loading. Therefore, a more representative 

testing method, one that simulated the large amount of smaller repeated traffic loads, 

had to be developed.  

Cyclic Tri-axial Test 

As mentioned above, the monotonic tri-axial test allows an understanding of a 

materials failure envelope however; it does not accurately simulate a materials 

response to cyclic traffic loading. The cyclic tri-axial test, developed to simulate cyclic 

traffic loading, tests a materials response to different levels of cyclic stress for a 

range of confining pressures. 

Data from the cyclic tri-axial test gives an accurate indication of the Resilient Modulus 

and permanent deformation characteristics of a pavement material under traffic 

loading, as explained in Paragraph 2.3.1.2 

Tri-axial Test Apparatus 

Tri-axial testing apparatus, used for monotonic and cyclic testing, must be capable of 

applying the required loading for the respective tests. Although several test set-ups 

exist, ranging in sample size to the type of confining fluid used, all need to 

incorporate the common features of a tri-axial testing apparatus, as shown in Figure 

2-31 (a) and (b) below. 

 

Figure 2- 31: Schematic Representation of a Typical Tri-axial Test Set-up, (a) Detailed Cell with 

Measuring Equipment and (b) Broader Representation of Tri-axial Test Set-up (IDOT, 2009 and 

Molenaar, 2010 respectively) 
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As illustrated by Figures 2-31 (a) and (b), the most common features found in a tri-

axial testing apparatus are: 

 Tri-axial cell; 

 Actuator; and 

 Measuring devices that include load cell and linear variable displacement 

transducers (LVDT’s) 

Other instrumentation not shown in the figures include: 

 Control system; 

 Data acquisition system; and 

 A method of applying confinement to the specimen 

The tri-axial cell is a fluid (air of water) tight cell in which the tri-axial specimen is 

tested. The cell must be capable of withstanding the high confining pressures 

applied, being air or water pressure, and should be easily opened to allow replacing 

of specimens and measuring devices. In addition, the internal dimensions of the cell 

should be to the extent that it can accommodate the specimen, the bulging 

(deformation) of the tested specimen together with the applied measuring equipment. 

Modern actuators, operated by a servo-controlled hydraulic pressure system, are 

capable of displacement (monotonic) and load controlled (cyclic) testing (Mulusa, 

2009). The system, which is a closed loop feedback system, can exert either a ramp 

or cyclic load on the specimen depending on the test type. In addition, concerning the 

geometry of the testing system and placement of the actuator, Mulusa (2009) states: 

“The preferred geometry of testing system is such that the moving actuator is 

situated above the tri-axial cell with the fixed reaction point situated below the tri-axial 

cell. Inverted set-ups result in limitations on the maximum frequency of the dynamic 

load testing.” 

Measuring devices include the load cell, which accurately measures the applied 

force, and LVDT’s that measure the displacement of the specimen during testing. 

Note that the LVDT’s on the specimen itself is not required for monotonic testing 

since this test only requires measurement of the applied force and the displacement 

of the actuator. Using the displacement of the vertical actuator however means that 

edge effects are included in the displacement measurements, which can significantly 
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influence the evaluated shear parameters. Therefore, it is recommended that 

additional measuring equipment be utilised to reduce the influence of edge effects. 

Furthermore some test set-ups incorporate electronic pressure gauges although, 

mechanical gauges are sufficient. 

Tri-axial testing apparatus, although not shown in the figures, require a control 

system that allows for human-machine interaction. In addition, the set-up requires a 

data capturing system that captures the required data during testing. Modern 

computers, incorporating modern hardware and software, combine both control and 

data capturing system into one test system. 

Tri-axial Test Protocol 

Currently, many tri-axial testing protocols exist for both monotonic tri-axial and cyclic 

tri-axial testing. These protocols, each developed based on different experience and 

testing equipment available, differ in the sense that they incorporate different 

properties, as summarised below. 

 Material (maximum aggregate size); 

 Specimen preparation method (compaction); 

 Condition of specimen (density and moisture content); 

 Sample geometry (small versus large); 

 Measuring equipment (number of LVDT’s and position); 

 Applied confinement; 

 Confinement medium (water, air or oil); 

 Specimen conditioning; 

 Load type and frequency; 

 Testing sequence; and  

 Results 

Protocols change over time however, for the purpose of this review, Table 2-1 

presents a summary of existing Resilient Modulus (short duration cyclic tri-axial test) 

protocols, as summarised by Anochie-Boateng et al. (2009). Although the summary 

gives the reader some indication of the differences in existing protocol properties, 

Section 3.4 presents the specific protocols used within this research project for both 

monotonic (shear properties) and short duration cyclic (deformation properties) tri-

axial tests. 

Stellenbosch University  https://scholar.sun.ac.za



 

48 | P a g e  
 

Table 2- 1: Summary of Different Resilient Modulus Test Protocol Properties (Anochie-Boateng et al., 2009)  
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Table 2- 1 (cont.): Summary of Different Resilient Modulus Test Protocol Properties (Anochie-Boateng et al., 2009)  
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Sample Preparation 

Table 2-1 shows that, several compaction methods exist for compaction of samples 

in the laboratory. The most commonly used compaction methods are, the application 

of a static load or the use of a dynamic hammer (Mgangira et al. 2011). Other 

methods of compaction include a kneading action or using vibratory compaction 

methods e.g. vibratory hammer or vibratory table. Below, follows a discussion of the 

most commonly used steps of laboratory sample preparation and compaction 

whereas, Section 3.4 presents a discussion of the tri-axial sample preparation 

method used for this research. 

The first step, in the laboratory sample preparation method, is the determination of 

the materials maximum achievable dry density and its associated moisture content 

(known as the optimum moisture content) as set in Method A7 of the TMH1. The 

method allows for the determination of the maximum dry density and optimum 

moisture content (OMC) by establishing a moisture-density relation curve, using 

compaction data of the material when prepared and compacted at the Modified 

AASHTO compaction effort at different moisture contents, as illustrated by Figure 2-

32. Note that, for field evaluation purpose, samples shall be prepared to in-situ 

conditions i.e. in-situ moisture content and density, therefore Method A7 will not be 

incorporated. 

 

Figure 2- 32: Moisture-Density Relation Curve for Different Compactive Effort (Craig, 2004) 
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Interestingly, Figure 2-32 also illustrates that compactive effort influences the density 

achieved. Greater compactive effort (4.5kg compared to 2.5kg rammer) results in 

higher densities obtained at lower moisture contents.  

Secondly, water is admixed to the material until the total moisture content within the 

material, is equal to the OMC. Note that dry material contains some amount of 

moisture (known as the hygroscopic moisture content) therefore; the amount of water 

to be admixed is the difference between the OMC and the hygroscopic moisture 

content. The hygroscopic moisture content, similar to any other moisture content 

calculation, is determined as set in Method A7 of the TMH1.  

Finally, using material mixed to the desired moisture content, compaction can 

commence. As mentioned, different protocols enforce different compaction methods, 

therefore no discussion of a specific compaction method will follow, rather, presented 

in Chapter 3, follows a discussion of the compaction method utilised in this research.  

2.4 Unbound Granular Layer Construction 

The quality of layer construction within a pavement structure (unbound or treated 

layer) is a critical aspect that requires consideration. It is well understood that the 

quality of the constructed pavement layers influence the overall performance of the 

pavement structure therefore, standards and specifications exist in order to control 

the quality during the construction process. 

This Subsection will introduce some of the material classification systems and their 

specification, to allow quality control of unbound pavement layers (in particular South 

African unbound layers) and discuss some of the field compaction methods applied 

to achieve the specified layer densities. 

2.4.1 Classification and Specifications 

Several material classification systems exist throughout the world. Some systems 

use the visual appearance of the material and results of different tests to make the 

classification more objective (SAPEM, 2013). Although other classification systems 

exist (AASTHO and Unified), in South Africa, the TRH14 (1985) classification system 

is most commonly used for UGM’s. 

The TRH14 system classifies granular materials according to three material types, 

each consisting of different material classes (ranging from G1 to G10): 
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 Graded crushed stone: G1, G2 and G3; 

 Natural gravels (which include modified and processes gravels): G4, G5 and 

G6; and 

 Gravel-soil: G7, G8, G9 and G10 

The TRH14 requirements for G1 to G10 materials are set in relation to the following 

specifications: 

 Grading i.e.: sieve size, grading modulus, flakiness index and crushing 

strength; 

 Atterberg limits i.e.: liquid limit, plasticity index and linear shrinkage; and 

 Bearing strength and swell i.e.: California Bearing Ratio (CBR) and swell 

For further reading concerning classification systems used elsewhere in the world 

(AASTHO and Unified) reference is made to AASHTO M145-91 (2008 cited SAPEM, 

2013), ASTM D3282 (2009, cited SAPEM, 2013) and Craig (2004) respectively. 

In addition to the material classification systems, different material classes have 

different specifications to adhere too. In terms of compaction specifications set in the 

manual of the Committee of Land Transport Officials (COLTO, 1998), Table 2-2 

summarises the minimum density of graded crushed stone in relation to the apparent 

density (AD), bulk density (BD) and maximum dry density (MDD) of the associated 

material class.  

Table 2- 2: Guidelines for Compaction Specifications of Granular Base Layers (COLTO, 1998) 

 

Apparent and bulk density, also referred to as apparent relative density (ARD) and 

bulk relative density (BRD), refers to the density of the parent material. Several 

methods exist for calculating the density of the parent material however, Botha and 

Semmelink (2004) developed a more user friendly, non-operator dependant and 

repeatable method.  

Furthermore, many other material specifications exist, all of which differ. It is 

important to apply the appropriate specifications, from the relevant documentation, 

for the specification of the particular project. The South African Pavement 
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Engineering Manual (SAPEM, 2013) gives a wide range of specifications for different 

materials as used in South Africa.  

2.4.2 Field Compaction Methods 

The compaction process is undoubtedly the most important process during the 

construction of UGM layers because of its critical influence on the performance of the 

material (refer to Paragraph 2.3.2.2). Semmelink (1995) states that field compaction 

deserve to get more serious attention than has very often been the case.  

The results of laboratory compaction tests are not directly applicable to field 

compaction because of the differences in compactive effort and the manner in which 

the compaction effort is applied (Craig, 2004). Furthermore, as mentioned, most 

laboratory tests are performed on adjusted material grading where the larger 

particles are removed from the original material. However, the densities achieved in 

laboratory tests, using different compactive effort, is similar to the densities achieved 

by field compaction methods. 

Two methods of compaction, method and end-method compaction exist (Graig, 

2004). In method compaction, the compactive type and effort, layer thickness and 

total passes are specified in order to reach an acceptable density. This method 

however is not without drawbacks as variability in material properties and lubrication 

(moisture content) can result in over or under compaction. Total passes generally 

range between 3 and 12 although it is variable depending on the compactive type 

and effort, layer thickness, moisture content and material to be compacted. 

The end-method compaction approach, which is more commonly used, specifies a 

target dry density after compaction. This target dry density is usually presented in 

relation to the maximum dry density (MDD) of the material to be compacted.  

Interestingly, although extensively used, researchers argue against the method of 

specifying a target density, emphasising that compaction should commence until no 

further densification is achievable. Semmelink states that: 

 “Rolling should preferably only stop when there is little or no change in the in 

situ density with successive roller passes. By rolling to this point much premature 

rutting of the pavement can be avoided.” 

Pavement layers should thus, rather be compacted until refusal density is reached. 
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Different compaction methods exist, some more appropriate than others depending 

on the type of compaction required and the material to be compacted. Below follows 

a short discussion on the preferable use of different compaction methods. 

Wirtgen, in their Cold Recycling Manual (Wirtgen, 2004) presents a guide for roller 

selection depending on the material to be compacted. 

 

Figure 2- 33: Primary Roller Selection Guide (Wirtgen, 2004) 

From Figure 2-33, it is clear that more compactive energy is required to compact 

thicker material layers. 

2.5 Conclusion 

Based on the literature reviewed, this section presents a summary of the conclusions 

drawn. 

 Generally, South Africa utilises a lightly cemented subbase as support for an 

unbound granular base layer. 

 The wearing or surfacing course has little load spreading capabilities and adds 

little strength to the pavement structure; rather the wearing or surfacing layer 

acts as a waterproofing layer. 
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 UGM layers are used as load spreading layers; therefore, an understanding of 

the load spreading properties is required.  

 Current laboratory characterisation methods, used to characterise material 

strength and load spreading capabilities, show that moisture content, degree 

of compaction, grading and aggregate size, applied stress (stress dependent) 

and specimen geometry does significantly influence the behaviour of UGM’s.  

 The suction induced by moisture within a material contributes to the effective 

stress of the material (Theyse, 2007). Higher moisture content results in less 

suction, or even pore pressure, thereby reducing the effective stress. Van 

Niekerk (2002) and Araya (2011) found that mechanical performance 

properties (Shear Strength and Resilient Modulus) of UGM’s tend to increase 

with increased moisture content however, Araya (2011) found that a tipping 

point exists where excessive moisture content results in reduced performance. 

This reduced performance can be linked to Theyse (2007) where an excessive 

increase in moisture content results in reduced effective stress within the 

material thereby reducing perfromance.  

 Performance of UGM’s tend to increase with increased compaction or density. 

Thom (1988) found that increased density yielded better shear resistance and 

reduced permanent deformation. His results however showed that density had 

no significant influence on the Resilient Modulus of the tested material. Lekarp 

et al. (2000) through their review of literature concluded that the literature is 

somewhat ambiguous regarding the influence of density on the resilient 

response of granular materials. Several reviewed studies showed a general 

increase in Resilient Modulus with increasing density whereas some literature 

stated that the effect of density is relatively insignificant. In more recent 

studies however (van Niekerk, 2002 and Araya, 2011), researching materials 

similar to that researched in this research study, both studies showed that 

Resilient Modulus increased with increased density. In addition Cohesion and 

Friction Angle was also shown to have increased due to an increase in 

desnity. 

 UGM’s are stress dependent. Without exception, an increase in the minor 

principal stress (confining pressure in tri-axial cell) results in an increase in the 

shear strength and Resilient Modulus and reduces Poisson’s Ratio (Uzan, 

1985 and Sweere, 1990). The effect of the major principal stress however 
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varies. Van Niekerk (2002) found that at lower stress regimes, an increase in 

the applied major principal stress results in an increase in Resilient Modulus 

(material stiffening). This increase however, is short lived, as a further 

increase in the applied major principal stress, approaching the failure stress, 

results in a reduction in stiffness (material softening). 

 General trends show that the strength and Resilient Modulus decreases when 

an excess amount of fines (passing 75 micron) is present. Furthermore, well-

graded materials tend to have higher strength and Resilient Moduli than that of 

uniformly graded materials. Lekarp et al. (2000) and van Niekerk (2002) 

argues that higher large particle-to-particle contact area yields higher friction 

between material particles. This in turn allows the material to take up a greater 

deviator stress for equal deformation (i.e. higher stiffness).   

 Specimen geometry does influence the performance of UGM’s although the 

influence is complex and not yet clearly understood. However, to prevent 

effects stemming from particle size in relation to specimen geometry, a 

minimum ratio, of specimen diameter to maximum aggregate size, of 6-7 

needs to be maintained. 

 Several infield compaction methods exist, some applying static energy, 

vibratory energy and even impact energy. The most commonly used infield 

compaction method however applies vibratory energy.  

 Most laboratory characterisation methods apply the standard Modified 

AASTHO compactive effort (impact compaction) for specimen preparation. 

This however does not simulate infield construction methods and the current 

trend is to move from impact energy to a more representative vibratory enrgy 

method. 

 To prevent effects stemming from the ratio between specimen diameter and 

maximum particle size, laboratory characterisation techniques require the true 

in-situ grading to be adjusted to fit the minimum ratio between specimen 

diameter and maximum particle size. This however does not allow accurate 

testing of the true material grading. Further research is required to establish 

the effects of evaluating performance properties based on adjusted material 

gradings. 
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CHAPTER 3: RESEARCH DESIGN AND METHODOLOGY 

3.1 Introduction 

This chapter presents a discussion on the research design and methodology followed 

in this research study. Included are; the experimental design developed to achieve 

the research objectives, material procurement, preliminary material testing, testing 

methodology and trouble shooting required to allow for the execution of the 

experimental design.  

3.2 Experimental Design 

To achieve the objectives of the research, an experimental plan had to be developed 

that would allow for the comparison, of the performance properties, of specimens 

prepared using similar grading curves but with different sized specimens as well as 

similar sized specimens prepared using different grading curves. Figure 3-1, on the 

following page, shows a summary of the experimental design developed for this 

study. 

The experimental design as shown is broken up into 5 sections namely; Material, 

Sample Size, Grading Curve, Tri-axial Tests and Performance Properties, of which a 

short explanation on each is presented below. 

 Material: Due to the nature of this research, time constraints and the size of 

specimens to be prepared and tested, only one representative parent material 

was selected. 

 Specimen Size: Two sample sizes were selected for testing; a 150mm 

diameter with height 300mm (from here on referred to as small-size) and a 

larger 300mm diameter with height 600mm (referred to as large-size). Note 

that the specimen sizes are also represented symbolically as shown by Figure 

3-1. By comparing small- and large-size specimens prepared under similar 

conditions, an understanding of the effect of sample geometry can be 

obtained. In addition, the large-size specimens will allow testing of grading 

curves containing larger (greater than 19mm) aggregates without the 

maximum particle size to specimen diameter influencing the results. 

 Grading Curve: To gain an understanding of the influence of grading curve 

and the accuracy of the methods used in laboratories to adjust the in-situ 

grading (scalping and crushing) the experimental design incorporates three 
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grading curves. For the first grading curve (referred to as “S19”), the parallel-

scalping method is used to remove all aggregate particles retained on the 

19mm sieve (i.e. all particles greater than 19mm are removed). For the 

second grading curve (referred to as “G19C”), the scalp-add-back method is 

incorporated. In this method, all particles retained on the 19mm sieve is 

removed where after an equal mass, equal to that of the scalped material, is 

added back as particles passing the 19mm, but retained on the 13.2mm sieve. 

Finally, a full scale grading (referred to as “Full”) is utilised as the benchmark 

grading within the experimental design. Note that the grading curves are also 

represented through the symbols shown by Figure 3-1.  

 Tri-axial Tests: Both monotonic and dynamic tri-axial tests were used to test 

the performance properties of the various specimens. 

 Performance Properties: Results from monotonic tri-axial tests are used to 

evaluate the shear strength performance through the material’s Cohesion (C) 

and internal Friction Angle (Φ). Cyclic tri-axial tests are performed to gain an 

understanding of the tested material’s performance under dynamic loading 

through its Resilient Modulus (Mr). 
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Figure 3- 1: Flow Chart of the Experimental Design 
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influence of sample geometry can also be investigated through the comparison of 

different sized specimens prepared using similar grading curves and tested under 

similar conditions. 

3.3 Material Procurement and Testing 

Only one material type was selected for testing, see Section 3.2. Four tons of G2 

graded crushed hornfels stone was delivered to Stellenbosch University by Lafarge 

Aggregates situated at the Tygerberg Quarry. The material, delivered by truck, was 

stockpiled and covered for future use. 

Three grading curves were selected for testing. The initial material grading was 

broken down through sieving the material into various fractions, which, at a later 

stage, would be reconstituted to create the required grading curves. The material 

therefore had to be air-dried to allow for the sieving. The material was spread on the 

floor in a room with sufficient ventilation and left to dry. Once the material dried out 

sufficiently it was placed in bags, sealed and moved to the sieving room. This 

allowed for careful control of specimen preparation. 

3.3.1 Sieving 

Sieving commenced once the 

material reached sufficient 

moisture content (air-dried). A 

large-scale vibratory sieve, 

shown in Figure 3-2 was used 

to sieve the material into the 

fractions shown in Table 3-1 

to the right. 

The various fractions were 

then bagged and labelled 

accordingly. 

3.3.2 Grading 

Once the material was sieved and bagged the various material fractions were 

combined to create the desired grading. As mentioned, three grading curves were 

selected for testing (S19, G19C and Full). The S19 and G19C grading curves 

originate from the Full grading as explained below. 

Table 3- 1: Sieve Sizes 

Figure 3- 2: Vibratory Sieve 
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3.3.2.1 S19 

As explained in Section 3.2, the S19 grading is obtained from the Full grading, by 

scalping and removing all material particles retained on the 19mm sieve. The 

modification, which is shown by Figure 3-3, is a common method used in laboratory 

sample preparation as it allows for material specimens, with large particles, to be 

tested using small-size testing equipment 

 

Figure 3- 3: S19 Grading Curve 

Note that, although the parallel-scalping method, represented by the S19 grading 

shown in Figure 3-3, is a commonly used method to manipulate the true grading 

curve, it exhibits drawbacks. As can be seen from Figure 3-3, implementation of this 

modification method results in an upward movement of the grading envelope, parallel 

to that of the original grading and thereby makes the grading finer.  

The reason for the common use and implementation of this grading modification 

however, is the scale of common testing equipment. Most research institutes utilise 

small-scale testing equipment and therefore, to allow for the minimum recommended 

ratio between sample diameter and maximum particle size, remove the larger 

material particles. The easiest and most efficient method used to remove these 

particles is the parallel-scalping method, which, as mentioned, results in a finer 
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grading, not representative of the true in-situ grading. Therefore, a more accurate 

representation of the typical grading is required. 

3.3.2.2 G19C 

The G19C grading curve, which is also derived from the Full grading and an 

alternative to the S19, is shown in Figure 3-4. This grading curve is obtained by 

scalping the particles greater than 19mm and adding the mass scalped back as 

particles retained on the 13.2mm sieve but passing the 19mm sieve, see Section 3.2. 

 

Figure 3- 4: G19C Grading Curve 

Note that, except for the material fraction greater than 13.2mm, the G19C grading 

curve fits that of the Typical/Full G2 grading precisely. In addition, the mass of the 

scalped particles is replaced by the addition of particles with similar characteristics to 

that of the original particles retained on the 19mm sieve. 

3.3.2.3 Full 

The Full grading curve is an unmodified curve simulating that of the original grading. 

None of the material fractions are removed or reduced thus, the Full grading, shown 

in Figure 3-5, fits that of the Typical G2 grading precisely. 
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Figure 3- 5: Full Grading Curve 

3.3.3 Moisture-Density Relation 

From the literature reviewed (see Subsection 2.3.2), it is clear that compaction plays 

an important role in the performance of unbound granular materials. The literature 

also showed that the moisture content (MC) of the material specimen being 

compacted influences the density achieved. By applying equal compactive energy on 

material specimens containing different MC’s, a Density-Moisture relationship can be 

established. From this relationship, shown in Figure 3-6 below, the maximum dry 

density (MDD) of the material specimen, under the respective compactive energy, 

can be established. Note that at optimum moisture content (OMC), the material 

specimen is compacted to its MDD for the applied compactive energy.  
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Figure 3- 6: Typical Density-Moisture Relationship Curve 

The standard method for establishing a Density-Moisture relationship is presented in 

Method A7 of the TMH1 (1986). In this method, the Modified AASHTO compaction 

method, which applies impact energy, is used for testing. This however does not 

accurately simulate infield construction conditions as the most commonly used 

compaction method for crushed stone materials applies vibratory energy. It is 

believed that laboratory characterisation needs to incorporate methods that simulate 

infield conditions. Therefore, for a more accurate simulation of infield compaction, the 

impact energy applied by the Modified AASHTO compaction method, used in Method 

A7, is replaced with vibratory energy from a vibratory hammer compaction apparatus. 

As mentioned, this research will compare different grading curves and samples sizes. 

In addition, the literature reviewed showed that density and moisture content 

influence the performance properties of unbound granular materials. Therefore, 

Density-Moisture relationships, for each grading curve associated with each sample 

size, had to be developed. From these different Density-Moisture relationsships an 

universal moisture content had to be selected that could be used to achieve equal 

densities for each of the grading curves tested at each specimen size. In other 

words, all specimens had to be prepared with equal moisture content and compacted 

to the same density.  
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3.3.3.1 Density-Moisture Relationship for Small-size Specimens 

The Density-Moisture relationship for small-size specimens (150mm Φ * 300mm H), 

was established using a method similar to Method A7 of the TMH1 (1986) with the 

Modified AASHTO compaction apparatus being replaced with the vibratory hammer 

apparatus shown in Figure 3-7. 

 

Figure 3- 7: Small-scale Vibratory Hammer Setup with Bosch Hammer 

As shown in Section 3.2, two grading curves (S19 and G19C) are tested using small-

size specimens. The procedure used during this research for establishing the 

Density-Moisture relationship for small-size specimens follows: 

Step A1: Combine the required material fractions to obtain roughly 5kg of the 

required grading curve. 

Step A2:  Measure the required mass of dry material (±5kg per moisture variable) 

as well as the moisture to be added. 

Step A3: Add the moisture and mix thoroughly. 

Step A4: Weight off 2500gr of wet material and keep remaining material for 

calculation of the MC. 
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Step A5:  Place 2500gr of wet material in vibratory hammer mould and compact 

until refusal density (no further increase in density) is achieved. 

Step A6: Remove compacted specimen and note the mass in grams (M), 

average of three height measurements in mm (h) and the diameter in 

mm (D). Use Equation 3-1 below together with the noted 

measurements to determine the specimen density in kg/m3. 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 [𝑘𝑔 𝑚3⁄ ] =
𝑀

𝜋∗(
𝐷

4

2
)∗ℎ

∗ 106      3-1 

Step A7: Use the remaining material to determine the MC of the mixed material 

using Method A7 of the TMH1 (1986). 

Step A8: Once the MC is determined using Step A7, use the density calculated 

in Step A6 and Equation 3-2 below to determine the dry Density in 

kg/m3 (DD). 

𝑫𝒓𝒚 𝑫𝒆𝒏𝒔𝒊𝒕𝒚 =
𝑫𝒆𝒏𝒔𝒊𝒕𝒚

𝟏+
𝑴𝑪%

𝟏𝟎𝟎

        3-2 

Step A9: Repeat steps A1-A8 for three additional MC’s (increments of 1%) and 

plot each DD (vertical axis) versus its associated MC (horizontal axis) 

as shown by Figure 3-6. This plot, referred to in this report as the initial 

Density-Moisture relation, contains 4 point. 

Step A10: Once all four points have been plotted, identify the MC that would yield 

the MDD and repeat steps A1-A8 to confirm the density. Add this 5th 

point to the initial Density-Moisture curve to obtain the final Density-

Moisture relation curve. 

As mentioned, two grading curves (S19 and G19C) are tested using the small-scale 

vibratory hammer. The initial (before the 5th point of Step A10 was plotted) Density-

Moisture relationship curves for these two grading curves are shown by Figure 3-8 

below. As reference, Appendix A provides the raw data from the associated testing. 
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Figure 3- 8: Initial Density-Moisture Relationship Curve for Small-scale Vibratory Hammer 

It should be noted from Figure 3-8 above that the MDD, for both grading curves, 

would be achieved at a MC close to 5.1%; or this would at least have been the case 

if the Modified AASHTO compaction method were used. However, during compaction 

with the vibratory hammer, as shown by Figure 3-9, it was noted that, at both 5.0 and 

6.0% moisture, a material slush was forced from the mould. This indicated that there 

was an excess of moisture. Therefore, although the OMC seemed to be at 5.1%, a 

5th point at 4.7% moisture was tested.  
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Because of the material slush being forced from the mould, Step A10 was carried out 

using 4.7% moisture. Figure 3-10 shows the addition of the 4.7% moisture. 

 

Figure 3- 10: Final Density-Moisture Relationship Curve for Small-scale Vibratory Hammer 

Note that Figure 3-10 confirms the belief that the OMC for both grading curves is less 

than 5.0%. At 5% moisture both grading curve yield dry densities of about 2350kg/m3 

whereas MDD’s of around 2360kg/m3 is reached at 4.7% moisture. 

Interestingly, a significant and sudden decrease in dry density is noted for an 

increase in moisture from 4.7 to 5.0%. This shows that the compaction achieved for a 
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Figure 3- 9: Material Slush Forced from Mould at Excessively High Moisture Contents 
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crushed stone material, using a vibratory hammer, is very sensitive to moisture 

variations close to the materials OMC.  

A further point to note is the shape of the relationship curve for moisture contents 

below and above OMC. A significant increase in density is noted as the moisture 

content is increased from 3% up to the OMC. A further increase in moisture content 

however, above that of the OMC, sees only a slight change in density with the 

relationship curve flattening as the moisture content is increased further.  

As mentioned earlier, excessive high moisture contents, higher than the OMC, result 

in slushing of fines during compaction. With only fines being slushed from the mould, 

a further increase in moisture content does not result in a significant change in 

density as   

3.3.3.2 Density-Moisture Relationship for Large-size Specimens 

Similar to the determination of the Density-Moisture relationship for small-size 

specimens, a variation to Method A7 of the TMH1 (1986) was used to establish the 

relation between density and MC for large-size (300 mm ϕ * 600 mm H) specimens. 

The Modified AASHTO compaction method was again replaced with a vibratory 

hammer. The vibratory hammer used to compact the large specimens is shown in 

Figure 3-11 below. 

 

Figure 3- 11: Large-scale Vibratory Hammer  
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As shown in Section 3.2, three grading curves are incorporated into the experimental 

design for the large-size specimens (S19, G19C and Full). The procedure followed to 

establish the Density-Moisture relationship for the large-size specimens follow that 

set out in Paragraph 3.4.3.1 above with the only variation being the mass of material 

required. Instead of the 5kg of dry material required for small-size testing, 25kg of dry 

material is required for large-size testing. 

For ease of testing, the full Density-Moisture relationship (five testing points) was 

only determined for the Full grading curve. Whereas, for both the S19 and G19C 

grading curves only one point was tested at an OMC close to that of the small-size 

samples and the large-size Full grading curve. The results of the Full grading curve 

are shown in Figure 3-12 below together with the results of the additional two points 

tested at 4.7% moisture.  

 

Figure 3- 12: Final Density-Moisture Relationship Curve for Large-scale Vibratory Hammer 

Note that the Density-Moisture relationship curve of the Full grading curve also 

shows a sudden decrease in density when compacted with a vibratory hammer at a 

MC slightly greater than the OMC. In addition, it should be noted that for the large-

scale vibratory hammer compaction, similar densities could be achieved at similar 

MC’s. 
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3.3.3.3 Comparison 

As mentioned, the primary objective of this research study is to establish the 

influence of grading curve on the performance of an unbound granular material, 

through monotonic and dynamic tri-axial testing. Therefore, to allow for the 

comparison of performance properties tested on various grading curves, the tested 

specimens had to be prepared in an equal manner.  

From the literature reviewed in Chapter 2, it is clear that both density and moisture 

content influence the performance of unbound granular materials. In addition, 

moisture in the material specimen also influences compaction. Therefore, for the 

purpose of this study, a single moisture content had to be selected that would allow 

various grading curves to be compacted to equal densities for both small and large-

size specimens.    

By combining all of the Density-Moisture relationship curves shown previously, a 

moisture content common to all of the tested grading curves can be identified that 

would results in equal densities being achieved during compaction. Figure 3-13 

shows the Density-Moisture relationship curves for all of the tested specimens. 

 

Figure 3- 13: Combined Density-Moisture Relationship Curves 
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Interestingly, higher densities, at similar MC’s, were achieved for specimens 

compacted using the large-scale vibratory hammer. It is believed (with reference to 

Craig, 2004) that the compactive energy applied to the material when using the large-

scale vibratory hammer is greater than that of the small-scale hammer. As a result, 

greater densities can be achieved. 

This research study requires all specimens to be compacted to an equal density 

therefore, the density achieved when using the large-scale hammer had to be 

reduced. As mentioned, the Density-Moisture relationships were established by 

compacting specimens until refusal density was reached (in other words, the 

maximum possible compaction that could be achieved using the applied compactive 

energy). Therefore, lower densities can be achieved by reducing the time that the 

compactive energy is applied. 

Taking all of the above into consideration, a moisture content of 4.7% was icentified 

that could be used and would allow all specimens to be compacted to a target dry 

density (TDD) of 2340kg/m3. Therefore, these two values were used as the 

compaction moisture content and target dry density for all specimens.  

3.4 Testing Methodology 

The testing methodology followed in this research study consisted of the following 

steps: 

 Material preparation; 

 Mixing of material and moisture; 

 Compaction of specimens; 

 Curing of specimens to be tested; 

 Testing of specimens; 

 Determination of moisture content and dry density at testing; and 

 Data processing 

3.4.1 Material Preparation 

As mentioned, the G2 graded crushed hornfels, delivered by Lafarge, was air-dried, 

sieved into various material fractions, bagged and labelled accordingly. For ease of 

preparation, the various material fractions were combined, prior to mixing, in bags to 

contain the mass of material required during mixing.  
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Due to the limitation of the available mixing equipment, only 25kg of material could 

be mixed at a time. Therefore, for large-size specimens (±104kg when wet), five bags 

of material had to be prepared for each specimen. Each of these bags contained 

23kg of dry material of which ±20kg would be used for the specimen itself and ±3kg 

for moisture calculations. For the small-size specimens on the other hand, only 15kg 

dry material was required for both the specimen and moisture calculations. 

Table 3-2 below gives a breakdown of how the material fractions were combined to 

yield the required grading and mass of dry material.  

Table 3- 2: Breakdown of Material Fraction Combinations for Each Grading and Sample Size

 

3.4.2 Mixing 

Uniform distribution of the moisture within a material specimen plays an important 

role in the performance uniformity of a tested specimen. The literature reviewed 

showed that moisture within material influences the performance thereof. Non-

uniform distribution of the moisture within a material specimen could lead to 

premature failure or results not representative of the true behaviour. Therefore, the 

mixing process used had to be such that uniform distribution of the moisture within 

the material could be achieved. 

For the mixing of both small- and large-size specimen, the pan mixer shown by 

Percent 

Passing 

[%]

Mass 

Retained 

[gr]

Percent 

Passing 

[%]

Mass 

Retained 

[gr]

Percent 

Passing 

[%]

Mass 

Retained 

[gr]

Percent 

Passing 

[%]

Mass 

Retained 

[gr]

Percent 

Passing 

[%]

Mass 

Retained 

[gr]

37.5 100.0 - 100.0 - 100.0 - 100.0 - 100.0 -

26.5 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 87.0 2990.0

19.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 76.0 2530.0

13.2 86.8 1973.7 66.0 5100.0 86.8 3026.3 66.0 7820.0 66.0 2300.0

9.5 76.3 1578.9 58.0 1200.0 76.3 2421.1 58.0 1840.0 58.0 1840.0

4.75 56.6 2960.5 43.0 2250.0 56.6 4539.5 43.0 3450.0 43.0 3450.0

2.36 41.4 2269.7 31.5 1725.0 41.4 3480.3 31.5 2645.0 31.5 2645.0

1.18 30.3 1677.6 23.0 1275.0 30.3 2572.4 23.0 1955.0 23.0 1955.0

0.60 23.0 1085.5 17.5 825.0 23.0 1664.5 17.5 1265.0 17.5 1265.0

0.425 20.0 453.9 15.2 345.0 20.0 696.1 15.2 529.0 15.2 529.0

0.300 17.8 335.5 13.5 255.0 17.8 514.5 13.5 391.0 13.5 391.0

0.150 13.8 592.1 10.5 450.0 13.8 907.9 10.5 690.0 10.5 690.0

0.075 10.5 493.4 8.0 375.0 10.5 756.6 8.0 575.0 8.0 575.0

Pan 0.0 1578.9 0.0 1200.0 0.0 2421.1 0.0 1840.0 0.0 1840.0

15000 15000 23000 23000 23000

Full Large
Sieve 

Size 

[mm]

Total Mass [gr]:

S19 Small G19C Small S19 Large G19C Large
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Figure 3-14 was used. 

 

Figure 3- 14: Pan Mixer used to Mix Material 

The process that was followed to get a uniform distribution of the moisture consists 

of: 

 Add dry material to pan; 

 Determine the required moisture using Equation 3-3 and measure out (1081gr 

and 705gr for large- and small-size specimens respectively); 

𝑾 = 𝑫𝑴 ∗
𝑴𝑪

𝟏𝟎𝟎
                     3-3 

Where: W = mass of moisture [gr]     

   DM = mass of dry material [gr]     

   MC = moisture content [%] 

 Turn on mixer and start mixing the dry material; 

 Once dry material is thoroughly mixed, gently add the moisture whilst mixing 

commences; 

 Continue mixing once all the moisture has been added whilst using a small 

garden spade (see Figure 3-14) to ensure all dry material is loosened from the 

pan; and 
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 Finally, switch off the mixer and remove pan containing mixed material 

Note that it is important to add the moisture gently. This will assist the uniformity of 

the mix. A sudden addition of the moisture will result in lumps of wet material forming 

thereby, leaving some material dry.  

3.4.3 Compaction 

From the literature reviewed in Chapter 2, it was concluded that compaction has a 

significant influence on the performance of unbound granular materials. Therefore, to 

evaluate the influence of grading curve and sample geometry accurately, specimens 

had to be compacted to equal density. 

In addition, it is believed that methods used to prepare laboratory specimens need to 

simulate in-field construction methods. Furthermore, according to the Interim 

Technical Guideline 2 of the Asphalt Academy (2009), vibratory hammer compaction 

yields similar particle orientation to that of construction methods. Therefore, for 

compaction of both small- and large-size specimens, tested in this research study, 

the vibratory hammers shown by Figure 3-7 and 3-11 were utilised.  

Because of the 2:1 ratio between the height and diameter of tri-axial specimens, 

uniform compaction cannot be achieved through single layer compaction. Therefore, 

specimens were compacted in five layers. In addition, as mentioned in Subsection 

3.4.3 the material specimens will not be compacted up to refusal density. Therefore, 

an important part of the compaction procedure used in this research study, is the 

implementation of a measuring device as an indication of the density achieved during 

compaction.  

Since the final height of small- and large-size specimens need to be 300 and 600 mm 

respectively, and the diameter of each mould is known, a simple calculation 

(Equation 3-4 below) can be used to determine the mass of wet material required to 

yield the desired density at the target layer thickness shown in Table 3-3 (60 and 120 

mm per layer for small and large-size specimens respectively). By adding a known 

mass of wet material, with known moisture content, to a mould with fixed diameter, 

and controlling the layer thickness to which the material is compacted, the target 

density can be achieved. 

𝑾𝑴 = 𝑻𝑫𝑫 ∗ (𝟏 +
𝑴𝑪

𝟏𝟎𝟎
) ∗ 𝝅 ∗ (

𝑫𝟐

𝟒
) ∗ 𝑳𝑻 ∗ 𝟏𝟎−𝟔

      3-4 
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Where: WM = mass of wet material [gr]      

  TDD = target dry density [kg/m3]      

  MC = moisture content [%]      

  D = specimen diameter [mm]      

  LT = layer thickness [mm] 

Table 3-3 below gives a summary of the layer thicknesses used during compaction, 

the mass of wet material added to reach the specified layer thicknesses and the 

cumulative layer thickness and mass, for each specimens size. Furthermore, Figure 

3-15 shows the measuring tape placed on the small-scale vibratory hammer (see 

right hand side) as a form of controlling the layer thickness/density during compaction 

(see explanation below, Figures 3-15, 17, 18 and 20) 

Table 3- 3: Layer Thickness and Mass Data

 

 

Figure 3- 15: Tape Measure Placed on Vibratory Hammer to Control Layer Thickness/Density 

Layer 

Thickness 

[mm]

Wet 

Material 

Mass per 

Layer [gr]

Cumulative 

Layer 

Thickness 

[mm]

Cumulative 

Material 

Mass [kg]

Layer 

Thickness 

[mm]

Wet 

Material 

Mass per 

Layer [gr]

Cumulative 

Layer 

Thickness 

[mm]

Cumulative 

Material 

Mass [kg]

1 60 2597.68 60 2.60 120 20781 120 20.78

2 60 2597.68 120 5.20 120 20781 240 41.56

3 60 2597.68 180 7.79 120 20781 360 62.34

4 60 2597.68 240 10.39 120 20781 480 83.13

5 60 2597.68 300 12.99 120 20781 600 103.91

Small-Scale (150*300mm) Large-Scale (300*600mm) 

Layer 

nr.
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Once moisture has been added and the material thoroughly mixed, the wet material 

was weighed according to the “Material Mass per Layer” column in Table 3-3, 

bagged and sealed to ensure no loss of moisture.  These bags were then moved to 

the specific compactor, ready to be placed in the moulds and compacted. 

The next step in the compaction process is the preparation of the specimen mould. 

For both small- and large-size specimens a split mould system was used as shown in 

Figures 3-16 (a) and (b) respectively. Prior to adding the mixed material, each mould 

was cleaned and lubricated to ensure that the compacted specimen could easily be 

removed from the mould without damage. Cook and spray was used to lubricate the 

small mould whereas a plastic sheet was placed along the inner surface of the large 

mould (see Figure 3-19) to separate the material from the moulds’ surface. 

 

Once the mould is assembled, the vibratory hammer is lowered into the mould until 

the foot piece rests on the mould’s base plate where after the “zero line” is marked 

out at the base of the sleeve as shown by Figure 3-17. The material for the first layer 

is then added and compacted to the ‘Target Dry Density Marker, Layer 1’, as 

illustrated by Figure 3-18.  

Figure 3- 16: (a) Small-scale Split Mould and (b) Large-scale Split Mould 

Stellenbosch University  https://scholar.sun.ac.za



 

78 | P a g e  
 

 

Figure 3- 17: Marking off of Zero Line (Kelfkens, 2008) 

 

Figure 3- 18: Indicating the Target Dry Density Line (adjusted from Kelfkens, 2008) 

As mentioned, both small- and large-size specimens were compacted in five layers. 

Therefore, to achieve continuity in the bonding between layers, the top of layers 1, 2, 

3 and 4 were scarified/broken up before the material for the subsequent layer was 

added and compacted. The scarifying tool used on large-size specimen layers is 

shown in Figures 3-19. Note that the tool used for small-size specimens is a scaled 

down version of the one shown in Figure 3-19. 
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After scarification, the material for the subsequent layer is added and compacted to 

the ‘Target Dry Density Marker, Layer 2’, as shown by Figure 3-20.  

 

Figure 3- 20: Dry Density Mark for Layer 2 (adjusted from Kelfkens, 2008) 

The top of the layer is again scarified to ensure continuity in bonding of layers where 

after the next layer is compacted. This procedure is performed until the fifth and final 

layer is added and compacted. Note that no scarification is performed on the top of 

Figure 3- 19: Scarifying Tools used to Loosen Top of Compacted Layers 
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the final layer rather, at this stage the compacted specimen is removed from the 

mould. Importantly, care should be taken when removing specimens from mould in 

order to limit any damage to the specimen. 

Once the specimen has been removed from the mould, specimen measurements 

had to be noted. These measurements include: 

 The exact mass of the specimen; 

 The diameter of the specimen to the nearest mm; and 

 Three height measurements taken at an offset of 120° around the 

circumference of the specimen 

The measurements noted above were then used to compute the Bulk Density using 

Equation 3-5 below where after, the true moisture content determined in Sub-section 

3.5.2 was incorporated into Equation 3-5 to determine the achieved dry density using 

Equation 3-6 below.  

𝑩𝑫 =
𝑴𝒂𝒔𝒔

𝝅∗𝒉∗
𝑫𝟐

𝟒

∗ 𝟏𝟎𝟔                     3-5 

𝑫𝑫 =
𝑩𝑫

𝟏+
𝑴𝑪

𝟏𝟎𝟎

            3-6 

Where: BD = bulk density [kg/m3]      

  Mass = mass of specimen [gr]      

  h = average of three height measurements [mm]   

  D = diameter of specimen [mm]     

  DD = dry density [kg/m3]      

  MC = moisture content [%] 

3.4.4 Curing 

No standard curing methods, such as the methods used for stabilised materials, were 

used in this research study. In addition, no accelerated curing (oven drying) was 

implemented, as no oven that could fit the large–size specimens was available. 

Rather, for this research study, both small- and large-size specimens were 

compacted, sealed and left for 24 hours, to allow for redistribution of moisture and 

initial development of Cohesion, before testing. 
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It should be noted that the 24 hours curing method does not simulate infield curing 

processes and does not yield equilibrium moisture content. Further research is 

required to establish a robust curing method that would yield typical infield moisture 

contents. 

3.4.5 Testing and Data Processing 

To achieve the objectives set for this research study, large-size testing equipment 

capable of testing aggregated greater than 19mm in size, is required. Using small-

size equipment for testing large-size aggregate particles yields non accurate results 

as these results are influenced by the ratio between specimen geometry and 

maximum particle size. Therefore, to eliminate the influence of this ratio, equipment 

capable of testing large-size material particles are required. Such equipment, at 

Stellenbosh University, exist in the form of a large-size tri-axial therefore only tri-axial 

tests were used to establish the influence of grading curve and specimen geometry 

on the performance of the tested material. 

3.4.5.1 Testing Equipment and Consumables 

For both small- and large-size tri-axial testing, a closed loop servo-hydraulic press 

system, controlled by a MTS Flextest 40 Digital Controller, as shown in Figure 3-21, 

was used. MTS Multipurpose TestWare software was used to allow interaction 

between the user and the MTS controller thereby enabling the user to control the 

devices shown in Figure 3-22 below. 
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Figure 3- 21: MTS Flextest 40 Controller used for both Small- and Large-size Testing 

 

 

 

 

 

 

 

 

 

 

It must be emphasised that the two testing devices shown above are not exact 
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Figure 3- 22: Small-scale (Left) and Large-scale (Right) Tri-axial Testing Device 
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scaled versions of each other. Rather, the large-size testing device is far more 

modern, with more functionality, than what its small-size counterpart is. Table 3-4 

below summarises the important similarities and differences between the two devises 

shown above. 

Table 3- 4: Comparison between Small- and Large-Size Tri-axial Testing Devices 

 

For both sizes of testing, the MTS Controller allow rapid data capturing of up to 

512Hz. The system also allows the user to select the data to be captured and the 

format thereof. For the purpose of this research study, data was captured at 512Hz 

and stores as comma-separated files, which could be imported into Excel at a later 

stage. 

Consumables 

For both monotonic and dynamic tri-axial tests, to be performed using the equipment 

shown above, consumable exists. These consumables include: 

 O-rings and grease used to seal the tri-axial cell; 

 Ribbons and springs used to attach circumferential LVDT’s for the small- and 

large-size testing apparatus respectively; and 

 Latex membranes used to cover the entire specimen, allowing confinement 

pressure to be applied 

Except for the latex membranes, all of the other consumables are readily available at 

spare shops. The latex membranes however had to be manufactured at Stellenbosch 

as buying these membranes is expensive. Both small- and large-size membranes 

Small-scale Device Large-scale Device

Controllable Channels

1 (100kN actuator to apply 

vertical load)

2 (500kN actuator to apply vertical 

load and 50kN actuator to apply 

confinement)

Method of Control

Displacement, Force or 

Stress

Displacement, Force, Stress with 

the addition of Confinement for 

the 50kN actuator

Temperature Control Yes (0 to 60 °C) No

Confinement Medium Air Water

Confinement Control Method Manual Controlled by Actuator

Maximum Vertical Load 100kN 500kN

Maximum Confinement Pressure 250kPa 250kPa

Maximum number of measuring 

equipment connectable 

2* Circumferential and 3* 

Vertical LVDT’s 

2* Circumferential and 3* Vertical 

LVDT’s 

Tri-axial Testing Device
Comparison
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were manufactured using latex fluid and the apparatus shown in Figure 3-23. 

 

Figure 3- 23: Equipment used for the Manufacturing of small Latex Membranes 

Note that for large-size membranes a larger PVC pipe was used.  

The process used to manufacture these membranes is as follows: 

 Pour latex fluid into tray; 

 Start the motor that turns the PVC pipe; 

 Lift the tray containing the latex fluid until the PVC pipe is roughly 10mm deep 

in the latex fluid; 

 Once the entire pipe is covered with latex, lower the tray; 

 Keep motor turning at a steady pace (this allows the latex to be distributed 

evenly around the pipe); 

 Remove excess latex fluid from tray and clean the tray thoroughly; and 

 Keep motor revolving for 24 hours, allowing the latex to dry, before adding the 

next layer similarly to that of the first layer 

For this research study, to yield a strong yet flexible membrane, three layers of latex 

were applied to the PVC mould. Figure 3-24 shows the dried first layer of latex where 

after the second layer is added. 
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Figure 3- 24: First Layer of Large-size Membrane after Drying 

Once the third and final layer has been left for 24 hours, the membrane is removed. 

Due to the sticky nature of the latex, workability is limited. Therefore, both the inside 

and outside of the membrane is covered with baby powder which reduces the 

stickiness and increase workability.  

3.4.5.2 Monotonic Tri-axial Test 

The monotonic tri-axial test is a simple test, which is commonly used to characterise 

the shear strength parameters (i.e. Cohesion C and internal Friction Angle φ) of 

pavement materials.  

For the purpose of this research study, eight small-size monotonic tests were 

performed for each of the two small-size grading curve. For the large-size grading 

curves however, due to the size of specimens and difficulty of testing, only three 

specimens were tested for each of the three large-size grading curves. Note that, this 

is discussed further and that the effect of the reduced amount of specimens is taken 

into account. 

Specimen Assembly 

The determination of shear strength parameters are such that only the vertical load 

applied to a specimen and the vertical displacement as a result of the applied load, 

need to be noted. Therefore, no additional measuring equipment such as LVDT’s 

need to be placed on the tested specimen. 
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As mentioned, both small- and large-size specimens were cured for 24 hours where 

after testing commenced. Assembly of small-size specimens occurred as follows: 

 Place specimen on the baseplate of the tri-axial cell; 

 Cover the specimen with the respective size latex membrane; 

 Place top plate on top of the specimen; 

 Seal the specimen by placing O-rings and grease on the foot- and top plate; 

 Fit outer Perspex cover on top of the tri-axial cells footplate; 

 Secure the lid of the tri-axial cell by fastening the necessary nuts and bolts; 

 Place tri-axial cell, which now contains the specimen, into the MTS testing 

equipment; 

 Connect pressure hose to cell; and 

 Run test 

Figure 3-25 shows a small-size tri-axial specimen assembled for monotonic testing. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3- 25: Small-scale Tri-axial Specimen Assembled for Monotonic Testing 

Stellenbosch University  https://scholar.sun.ac.za



 

87 | P a g e  
 

Note that the setup shown contains no addition measuring equipment. Thus, the only 

data that can be captured is the displacement and force applied of the vertical 

actuator. 

Due to the mass and size of the large-size tri-axial specimens to be tested in this 

research study, the assembly thereof is not as simple as that of the small-size 

counterpart.  

The first major difference in the assembly of large-size specimens is that the 

specimens are compacted on top of the baseplate, as shown in Figure 3-26 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3- 26: Large-size Tri-axial Specimen Compacted On Top of Baseplate 

Once compaction is complete, the top plate is placed on top of the specimen as 

shown by Figure 3-26 where after the latex membrane is placed over the specimen 

and sealed for 24 hours before testing. 

The next variation to the procedure explained earlier, is that a two-ton portable crane 

is used to lift the specimen and place it on top of the tri-axial cell’s baseplate. Figure 

3-27 below shows a specimen already placed on the baseplate of the cell. 

Baseplate used 

during compaction 
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Similarly, to the assembly of the small specimens, the outer Perspex cover is placed 

on top of the cell’s baseplate. Once the Perspex cover has been placed, the six steel 

bars are screwed into the holes shown on the baseplate where after the top plate is 

fitted, sealed with grease and fastened to ensure an airtight cell. 

 

 

 

 

 

 

 

 

 

 

Once the entire cell has been assembled, as shown in Figures 3-28 and 30-31, the 

cell needs to be placed under the vertical actuator of the large-size tri-axial testing 

apparatus. This procedure is performed using the two-ton portable crane, a trolley 

specifically designed and built for this purpose and the vertical actuator itself. The 

procedure follows: 

 Fasten the entire tri-axial cell to the crane (see Figure 3-28); 

 Lift the cell until the required height is reached; 

 Place the trolley on top of the extended platform of the tri-axial test apparatus 

(see Figure 3-29); 

 Slowly lower the cell onto the trolley and disconnect the crane (see Figure 3-

30); 

 Push the trolley forwards until the specimen is directly under the vertical 

actuator; 

 Connect the cell to the actuator; 

 Use the hydraulic actuator to lift the entre cell from the trolley (see Figure 3-

Figure 3- 27: Large-scale Tri-axial Specimen Placed on Baseplate 
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31); 

 Remove trolley from under the hanging cell (see Figure 3-31); 

 Slowly lower the cell into place using the actuator (see Figure 3-32);  

 Connect pressure hose from 50kN actuator and pressure transducer to cell;  

 Fill the cell with water; and  

 Run test 

 

Figure 3- 28: Large-size Tri-axial Cell Connected to Portable Crane 

 

Figure 3- 29: Trolley Designed and Built to Assist Moving of Tri-axial Cell 
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Figure 3- 30: Large-size Tri-axial Cell On Top of Trolley 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3- 31: Large-size Tri-axial Cell being Lifted by the Actuator 
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Figure 3- 32: Large-size Tri-axial Cell Lowered into Position using Vertical Actuator 

Note that even though Figure 3-29 shows additional measuring equipment attached 

to the specimen, no additional measuring equipment is required. As mentioned on 

Page 46, the only measurements used to evaluate the shear performance through 

monotonic testing are that of the vertical actuators applied force and displacement. 

The use of the vertical actuators displacement however includes the influence of 

edge effects into the measurement, which affects the measured performance. 

Therefore, it is recommended that additional measuring equipment be added to 

monotonic testing apparatuses to limit the influence of edge effects. 

Furthermore, since the confinement pressure of the large-size test apparatus is 

controlled by the MTS system and a pressure transducer, the pressure is also 

captured for quality control purposes. 

Monotonic Test 

Once the test specimen has been assembled and the tri-axial cells placed, testing 

commenced. 

As mentioned, eight small-size specimens were tested for each of the two small-size 

grading curves whereas three large-size specimens were tested for each of the three 
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large-size grading curves. For small-size testing, two specimens were tested under 

each of the following confining pressures: 

 25 kPa; 

 50 kPa; 

 100 kPa; and 

 200 kPa 

For large-size testing on the other hand, only three specimens were tested under 50, 

100 and 200 kPa confinement.  

For all of the above confinement pressures and both small- and large-size monotonic 

tests, a test protocol was programmed into MTS’s Multipurpose TestWare that 

utilises the displacement-controlled mode to apply a constant strain rate of 1% strain. 

During the test both the displacement of the vertical actuator and the force applied 

thereof is captured at 512Hz. Additionally, since the large-size tri-axial test apparatus 

automatically controls the confining pressure, the large-size test protocol had to 

include a function that utilised a pressure-controlled mode to control the pressure 

within the cell. 

In addition, the test function programed into the MTS system for both small- and 

large-size specimens utilised a “Break-detect” function. This function was programed 

to end the test once the load applied by the vertical actuator has reached 80% of the 

failure load. For example, if the maximum applied load was equal to 10kN then the 

test will end when the applied load reaches 8kN.  

To summarise, the basic procedure to perform a monotonic test on the small-size tri-

axial test apparatus follows: 

 Assemble the cell; 

 Manually increase the confinement pressure to the desired pressure; and 

 Run the MTS Flextest function programed for small-size monotonic tests 

The procedure used for large-size tri-axial testing is slightly different and includes: 

 Assemble the cell; and 

 Run the MTS Flextest function programed for large-size monotonic tests 

The final step in the testing of monotonic tri-axial specimens is the determination of 
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the moisture content at testing. This moisture content is computed by destroying the 

specimens and using Method A7 of the TMH1 (1986). 

Data Processing 

The data captured during both small- and large-size monotonic tri-axial tests were 

processed according to the steps set out in Mgangira et al. (2011). 

Step 1: From the data captured, note the maximum applied (Pa
f) for each of the 

specimens tested. Using the failure load, calculate the applied failure 

stress (σa,f) using Equation 3-7 as shown. 

  𝝈𝒂,𝒇 =
𝑷𝒂

𝒇

𝑨
                 3-7

  Where: σa,f = applied failure stress [kPa]   

    Pa
f = applied failure load [kN]    

    A = circular cross-sectional area before test [m2] 

Step 2:  Calculate the major principal stress at failure (σ1,f) for each specimen 

using Equation 3-8. The major principal stress at failure is defined as 

the sum of the confining stress (σ3), the stress caused by the dead 

weight on top of the specimen (σdw) and the applied failure stress (σa,f).  

                    𝝈𝟏,𝒇 = 𝝈𝟑 + 𝝈𝒅𝒘 + 𝝈𝒂,𝒇                           3-8

 Where: σ1,f = major principal failure stress [kPa]  

   σ3 = applied confinement pressure [kPa]  

   σdw = stress caused by dead weight [kPa] 

Step 3: Both the Cohesion (C) and internal Friction Angle (φ) can be computed 

once the relationship between the confining stress (σ3) and the major 

principal failure stress (σ1,f) is known. 

 According to Mgangira et al. (2011), the relationship is given by 

Equation 3-9. 

 𝝈𝟏,𝒇 = 𝑨 ∗ 𝝈𝟑 + 𝑩       3-9 

  Where: 𝑨 =
𝟏+𝒔𝒊𝒏 𝝋

𝟏−𝒔𝒊𝒏 𝝋
      and 𝑩 =

𝟐∗𝒄𝒐𝒔 𝝋

𝟏−𝒔𝒊𝒏 𝝋
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From the data, σ1,f and σ3 of the tested specimens, a regression 

analysis is performed to determine the values of A and B. 

Step 4: With A and B known, the Cohesion and internal Friction Angle is 

computed using Equations 3-10 and 3-11. 

 𝝋 = 𝒔𝒊𝒏−𝟏 (
𝑨−𝟏

𝑨+𝟏
)                  3-10 

 𝑪 =
𝑩∗(𝟏−𝒔𝒊𝒏 𝝋)

𝟐∗𝒄𝒐𝒔 𝝋
              3-11 

Where: C  = Cohesion [kPa]     

  φ = Friction Angle [°] 

In addition to the above, which represents the Mohr-Coulomb Model for determining 

the shear parameters, an additional method, the Drucker-Prager Model in p-q space, 

can also be used to compute the shear parameters. Although not used to evaluate 

the influence of grading curve and specimen geometry on the shear performance in 

this research study, the Drucker-Prager Model does add value in that it considers 

intermediate principal stresses (Rani et al. 2014). Furthermore, for the Mohr-

Coulomb criterion, the major principal stress σ1 is independent of the intermediate 

principal stress σ2, which leads to underestimating the yield strength of the material 

(Al-Ajmi and Zimmerman, 2005). This also disagrees with test results reflecting the 

influence of σ2 to the strength of the tested material in many cases. A further 

disadvantage of the Mohr-Coulomb criterion is that the cross-section of the Mohr-

Coulomb criterion is six-facetted, due to the irregular hexagon deviatoric plane, rather 

than smooth as in the case of the Drucker-Prager criterion (Erkens, 2002). 

For the purpose of this study, the Drucker-Prager Model is ignored and only shear 

parameters calculated by means of the Mohr-Coulomb Model is used to evaluate the 

influence of specimen geometry and grading curve. 

3.4.5.3 Short Duration Dynamic Tri-axial Test 

The short duration dynamic tri-axial test is a complex test that requires several small 

measurements, on the tested specimen, during testing. These measurements are 

used to compute the Resilient Modulus (Mr) of the tested material. 

For this research study, three small-size specimens were tested for each of the two 

small-size grading curves whereas two short duration dynamic tri-axial tests were 
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performed for each of the three large-size grading curves. 

Sample Assembly 

The assembly of both small- and large-size tri-axial specimens for dynamic testing 

follows the same procedure as that of monotonic specimens. The only difference in 

the procedure is the assembly of the additional measuring equipment required. 

As mentioned, the Resilient Modulus is determined by measuring displacements on a 

specimen when dynamically loaded. The displacement of the middle third of the 

specimen is required. Therefore, three vertical LVDT’s are placed at an offset of 120° 

around the circumference of the specimen. Note that the two fixed points of each of 

these LVDT’s are at a height of 100 and 200mm, and 200 and 400mm for small- and 

large-size specimens respectively. 

In addition to the vertical LVDT’s, two circumferential LVDT’s are placed around the 

centre of the specimens to be tested. The measurements from these LVDT’s are 

used to compute the Poisson’s Ratio of the tested specimen. 

Figure 3-33 shows a small-size tri-axial specimen assembled and ready for dynamic 

testing. Note that the assembly of the large-size specimen is similar. 
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Figure 3- 33: Small-size Specimen Assembled for Dynamic Tri-axial Test 

In summary, the specimen assembly process for both small- and large-size 

specimens are: 

 Place specimen into tri-axial cell; 

 Place three vertical LVDT’s at an offset of 120° apart in the centre third of the 

specimen; 

 Place two circumferential LVDT’s at the centre of the specimen; 

 Fit the top plate of the tri-axial cell whilst connect the cables for each 

measuring device to the cables connected to the MTS Controller; 

 Places assembled cell in the chamber or onto the platform for small- and 

large-size testing apparatus respectively; 

 Connect the pressure hoses; and 

 Run Test 

Short Duration Dynamic Test 

Once the test specimen has been assembled and the tri-axial cell placed, testing 

commenced. 

Vertical LVDT’s 

set at an offset 

of 120° 

Circumferential 

LVDT’s set at 

the centre of 

the specimen 

Vertical LVDT’s 

set at a fixed 

height equal to 

1/3 and 2/3 of the 

specimen 

height. 
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As mentioned, three small-size specimens were tested for each of the two small-size 

grading curves whereas two short duration dynamic tri-axial tests were performed for 

each of the three large-size grading curves. 

All of the above-mentioned specimens were tested using a pre-programed MTS 

function that incorporates a haversine load phase combined with a resting period, as 

shown by Figure 3-34 below. The one-second load cycle shown, consists of: 

 A 0.05 seconds loading phase; followed by 

 A 0.05 seconds unloading phase; and finally 

 A 0.9 seconds resting period 

 

Figure 3- 34: A Single Load Cycle for the Short Duration Dynamic Tri-axial Test 

Furthermore, the programed MTS function consists of a conditioning phase, where 

750 load cycles are applied to the specimen, using a force-controlled mode, under a 

constant confinement pressure of 200 kPa. During this phase, the 750 load cycles 

are distributed by five Stress Ratios (10, 20, 30, 40 and 55% of the maximum failure 

stress computed through monotonic testing at the specific confinement) as illustrated 

in Table 3-5 below. 
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Table 3- 5: Loading Regime for Short Duration Dynamic Tri-axial Test

 

Once the conditioning of the test specimen has completed, the MTS function allows 

the production phase to start. In this phase, as shown by Table 3-5, 100 load cycles 

are applied to the specimen, again using the force-controlled mode, for each of the 

five increasing Stress Ratios and their respective confining pressures (starting at 200 

kPa and working down to 25 kPa). 

In addition to the above, the MTS programed function is programed such that it will 

required specimen specific input variables from the user. These variables include 25 

maximum applied loads, each representing the five Stress Ratios and their five 

respective confining pressures. Note that these variables are specimen specific and 

are computed from the respective specimen’s monotonic test results. The procedure 

used to compute these variables is explained below, followed by Table 3-6 which 

presents a summary of the loading schedule used for each short duration dynamic 

tri-axial test. 

The load variables required during short duration dynamic tri-axial testing are 

computed as follows: 

 Determine the specimen’s shear parameters (C and φ) using monotonic tri-

axial test results; 

 Compute the confinement specific failure stress using the shear parameters 

determined above, each of the five confining pressures and Equation 3-12. 

 

𝝈𝒅
𝒇

= 𝝈𝟑 ∗ 𝐭𝐚𝐧𝟐(
𝝋

𝟐
) + 𝟐𝑪 𝐭𝐚𝐧 (𝟒𝟓 +

𝝋

𝟐
)            3-12 

Where: 𝜎𝑑
𝑓
    = Failure stress [kPa]     

  𝜎3      = Confinement pressure [kPa]    

  φ      = internal Friction Angle [°]     

  C      = Cohesion [kPa] 

10% 20% 30% 40% 55%

Conditioning 200 100 cycles 100 cycles 150 cycles 200 cycles 200 cycles

200 100 cycles 100 cycles 100 cycles 100 cycles 100 cycles

150 100 cycles 100 cycles 100 cycles 100 cycles 100 cycles

100 100 cycles 100 cycles 100 cycles 100 cycles 100 cycles

50 100 cycles 100 cycles 100 cycles 100 cycles 100 cycles

25 100 cycles 100 cycles 100 cycles 100 cycles 100 cycles

Stress Ratio as Percentage of Monotonic Failure StressConfinement 

Pressure [kPa]
Test Phase

Production
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 Determine the maximum applied load, for each of the specific Stress Ratios 

and the respective confining pressures, using Equation 3-13. 

 

𝑳𝒎𝒂𝒙 = 𝑺𝑹 ∗ 𝝈𝒅
𝒇

∗ 𝝅 ∗
𝑫𝟐

𝟒
   𝟏𝟎𝟖⁄                     3-13 

Where: Lmax = maximum applied load [kN]    

  SR = Stress Ratio [%]      

  σd
f = failure stress from Equation 3-11 [kPa]   

  D = diameter of specimen [mm] 

Note that Table 3-6 gives two values for the minimum applied load or seating load 

during each load cycle. A value of 0.4 and 1.5 kN is used for small- and large-size 

specimens respectively. In addition, Table 3-6 further provides the load cycles to be 

recorded. Note that for each loading phase and its respective confinement and 

Stress Ratio, the data during the first and final five loading cycles are recorded. For 

both small- and large-size testing, data is captured at a rate of 512Hz and include the 

following data points: 

 Three vertical LVDT readings [mm]; 

 Two circumferential LVDT readings [mm]; 

 Vertical displacement of vertical actuator [mm]; 

 Force applied by vertical actuator [kN]; and 

 Time/duration of test [s] 

As stated earlier, the confining pressure for small-size testing needs to be controlled 

manually whereas the large-size apparatus utilises an actuator to control 

confinement. Therefore, for large-size testing the confining pressure applied [kPa], by 

the 50kN actuator is also captured. 
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Table 3- 6: Summary of Loading Schedule used for Short Duration Dynamic Tri-axial Test 

 

To summarise, the basic procedure used to perform a small-size, short duration, 

dynamic tri-axial test, follow: 

 Assemble the specimen and tri-axial cell; 

Cycles
Loading 

Phase

Confining 

Pressure 

[kPa]

Stress 

Ratio [%]

Maximum Applied Force 

[kN]:                               

Equation 3-11 and 3-12

Minimum 

Applied 

Force or 

Seating 

Load [kN]

First and Last Five 

Cycles to be 

Recorded

0-100 10 σf
d(200)*0.1*π*(D2/4) 0.4 or 1.5 0-5, 96-100

101-200 20 σf
d(200)*0.2*π*(D2/4) 0.4 or 1.5 101-105, 196-200

201-350 30 σf
d(200)*0.3*π*(D2/4) 0.4 or 1.5 201-205, 346-350

351-550 40 σf
d(200)*0.4*π*(D2/4) 0.4 or 1.5 351-355, 546-550

551-750 55 σf
d(200)*0.55*π*(D2/4) 0.4 or 1.5 551-555, 746-750

751-850 10 σf
d(200)*0.1*π*(D2/4) 0.4 or 1.5 751-755, 846-850

851-950 20 σf
d(200)*0.2*π*(D2/4) 0.4 or 1.5 851-855, 946-950

951-1050 30 σf
d(200)*0.3*π*(D2/4) 0.4 or 1.5 951-955, 1046-1050

1051-1150 40 σf
d(200)*0.4*π*(D2/4) 0.4 or 1.5 1051-1055, 1146-1150

1151-1250 55 σf
d(200)*0.55*π*(D2/4) 0.4 or 1.5 1151-1155, 1246-1250

1251-1350 10 σf
d(150)*0.1*π*(D2/4) 0.4 or 1.5 1251-1255, 1346-1350

1351-1450 20 σf
d(150)*0.2*π*(D2/4) 0.4 or 1.5 1351-1355, 1446-1450

1451-1550 30 σf
d(150)*0.3*π*(D2/4) 0.4 or 1.5 1451-1455, 1546-1550

1551-1650 40 σf
d(150)*0.4*π*(D2/4) 0.4 or 1.5 1551-1555, 1646-1650

1651-1750 55 σf
d(150)*0.55*π*(D2/4) 0.4 or 1.5 1651-1655, 1746-1750

1751-1850 10 σf
d(100)*0.1*π*(D2/4) 0.4 or 1.5 1751-1755, 1846-1850

1851-1950 20 σf
d(100)*0.2*π*(D2/4) 0.4 or 1.5 1851-1855, 1946-1950

1951-2050 30 σf
d(100)*0.3*π*(D2/4) 0.4 or 1.5 1951-1955, 2046-2050

2051-2150 40 σf
d(100)*0.4*π*(D2/4) 0.4 or 1.5 2051-2055, 2146-2150

2151-2250 55 σf
d(100)*0.55*π*(D2/4) 0.4 or 1.5 2151-2155, 2246-2250

2251-2350 10 σf
d(50)*0.1*π*(D2/4) 0.4 or 1.5 2251-2255, 2346-2350

2351-2450 20 σf
d(50)*0.2*π*(D2/4) 0.4 or 1.5 2351-2355, 2446-2450

2451-2550 30 σf
d(50)*0.3*π*(D2/4) 0.4 or 1.5 2451-2455, 2546-2550

2551-2650 40 σf
d(50)*0.4*π*(D2/4) 0.4 or 1.5 2551-2555, 2646-2650

2651-2750 55 σf
d(50)*0.55*π*(D2/4) 0.4 or 1.5 2651-2655, 2746-2750

2751-2850 10 σf
d(25)*0.1*π*(D2/4) 0.4 or 1.5 2751-2755, 2846-2850

2851-2950 20 σf
d(25)*0.2*π*(D2/4) 0.4 or 1.5 2851-2855, 2946-2950

2951-3050 30 σf
d(25)*0.3*π*(D2/4) 0.4 or 1.5 2951-2955, 3046-3050

3051-3150 40 σf
d(25)*0.4*π*(D2/4) 0.4 or 1.5 3051-3055, 3146-3150

3151-3250 55 σf
d(25)*0.55*π*(D2/4) 0.4 or 1.5 3151-3155, 3246-3250
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 Manually increase confinement to 200kPa for conditioning; 

 Run the MTS Flextext function programed for small-size dynamic testing; 

 Input the variables required by the MTS test function; and 

 Manually change confining pressure when required to 

The procedure used for large-size testing is less complex and include the following 

steps. 

 Assemble the specimen and tri-axial cell; 

 Run the MTS Flextext function programed for small-size dynamic testing; and 

 Input the variables required by the MTS test function 

Finally, similar to that of the monotonic test, the moisture content and dry density at 

testing is determined from the tested specimens. 

Data Processing 

As mentioned, the short duration dynamic tri-axial test was used to evaluate the 

resilient response of the tested material. The Resilient Modulus was used as an 

indicator of the resilient response and the determination thereof was based on the 

definition shown in Figure 3-35 below. 

 

Figure 3- 35: Resilient Modulus Definition and Calculation (Theyse, 2012) 
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The procedure used to compute the Resilient Modulus as set in Figure 3-35 follows 

the method explained by Mgangira et al. (2011). Within this method it is required that, 

for each of the last five load cycles of every applied Stress Ratio and every confining 

pressure level, the following shall be determined. 

 The minimum (LVDTmin) and maximum (LVDTmax) deformation reading for 

each of the three on specimen LVDT’s:  

 

This allows for the calculation of the average axial deformation, of the middle 

third of the specimen, during each load cycle, using Equation 3-14. 

𝜟𝜹𝒂(𝑵) =
∑ (𝑳𝑽𝑫𝑻𝒊,𝒎𝒂𝒙−𝑳𝑽𝑫𝑻𝒊,𝒎𝒊𝒏)𝒊=𝟑

𝒊=𝟏

𝟑
            3-14 

Where: Δδa(N)  = average axial deformation per load cycle N [mm]

  LVDTi,max = maximum deformation on ith LVDT [mm] 

  LVDTi,min = minimum deformation on ith LVDT [mm] 

  N  = cycle number [-]     

  i   = LVDT number [-] 

 The resilient axial strain per load cycle: 

 

The resilient axial strain is calculated using Equation 3-15. 

𝜺𝒂(𝑵) =
𝜟𝜹𝒂(𝑵)

𝑳𝒈
                   3-15 

Where: εa(N) = resilient axial strain [-]     

  Δδa(N) = average axial deformation per load cycle N [mm] 

  Lg = gauge length [mm] 

Note that, gauge length is defined as the length between the fixed LVDT 

points. For this research study, 100mm and 200mm gauge lengths were used 

for small- and large-size testing respectively. 

 The cyclic stress per load cycle: 

 

The cyclic stress per load cycle is defined as the difference in maximum - and 

minimum stress applied to the specimen. As mentioned, fixed seating loads of 

0.4 and 1.5kN were used as the minimum load on small- and large-size 

specimens respectively whereas the maximum loads applied to the specimens 
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are shown in Table 3-6. Equation 3-16 can be used to determine the cyclic 

stress per load cycle. 

𝝈𝒄𝒚𝒄𝒍𝒊𝒄(𝑵) =
𝑳𝒎𝒂𝒙(𝑵)−𝑳𝒎𝒊𝒏(𝑵)

𝑨
                        3-16 

Where: σcyclic(N) = the Nth cycle’s cyclic stress [kPa]  

  Lmax(N)  = maximum load during Nth cycle [kN]  

  Lmin(N)  = minimum load during Nth cycle [kN]  

  A  = circular cross-sectional area of specimen [m2] 

 

 Resilient Modulus per load cycle: 

 

As defined by Figure 3-35, the Resilient Modulus for each load cycle shall be 

calculated using Equation 3-17. 

𝑴𝒓(𝑵) =
𝝈𝒄𝒚𝒄𝒍𝒊𝒄(𝑵)

𝜺𝒂(𝑵)∗𝟏𝟎𝟎𝟎
                        3-17 

Where: Mr(N)  = Resilient Modulus per load cycle [MPa]  

  σcyclic(N) = the Nth cycle’s cyclic stress [kPa]  

  εa(N)  = resilient axial strain [-] 

 

 The average Resilient Modulus of the last five load cycles per loading 

sequence: 

 

As mentioned, the data for the last five load cycles of each loading sequence 

is captured. Therefore, to incorporate each of the five cycles’ data, an average 

Resilient Modulus is computed using Equation 3-18. 

𝑴𝒓 =
∑ 𝑴𝒓(𝑵)

𝒋=𝟓
𝒋=𝟏

𝟓
                    3-18 

From the data processing shown above, several graphs were prepared. These 

graphs are shown in the following chapter where the results are analysed and 

discussed. 

3.5 Trouble Shooting 

As mentioned in the introduction to this dissertation, the objectives of this research 

study could only be achieved through the further development of an existing large-

size tri-axial testing apparatus. This section is dedicated to introduce the reader to 
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the some preliminary testing that was done and to briefly explain the modifications 

that were made to the existing apparatus. 

3.5.1 Preliminary Testing 

Since the capabilities of the existing large-size tri-axial apparatus was unknown, 

several preliminary tests were performed, together with Mrs Chantal Rudman, 

lecturer at the Stellenbosch University’s Civil Engineering Department, to become 

acquainted with the apparatus and its capabilities.  

The tests ranged from low to high frequency pressure tests and incorporated both 

static and dynamic, vertical loading and pressure control. A draft report (Rudman, 

2012), has been drafted based on initial testing which shows and explains all 

modifications made to allow commissioning and testing of large tri-axial apparatus.  

A key element mentioned in the draft report, which should be highlighted, is the 

positioning of the pressure transducer during variable confinement testing. During the 

first preliminary test conducted, it was observed that, at high frequencies, the actual 

pressure within the tri-axial cell did not correspond to that of the pressure demand. 

An investigation was launched and it was concluded that the cell pressure was in fact 

lower that the pressure measured by the pressure transducer. Figure 3-36 shows the 

layout of the testing apparatus. 

 

Figure 3- 36: Layout of Large-size Tri-axial Testing Apparatus (Rudman, 2012) 

Stellenbosch University  https://scholar.sun.ac.za



 

105 | P a g e  
 

Initially, with the pressure transducer attached directly above the 50kN actuator 

(which controls the cell pressure) on top of the Top of Pressure Cylinder (ToP in 

Figure 3-36), variable confinement demands were not transferred to the tri-axial cell. 

Rather, due to friction within the pipe system connecting the pressure controller to 

the tri-axial cell, a premature pressure built-up existed before the pressure could be 

transferred to the cell itself (i.e. the pressure transducer measured the demanded 

pressure before the demanded pressure reached the cell). 

The pressure transducer was repositioned on the Top of the Specimen Cylinder (ToC 

in Figure 3-36) and it was observed that the internal cell pressure was equal to that of 

the commanded pressure for both static and variable confinement pressures. At this 

stage, both static and dynamic tri-axial test could be performed without hassle. 

With the above modification made, more tests were performed and it was confirmed 

that: 

 Monotonic tri-axial test could be performed with accurate control of the 

confining pressure up to 350 kPa and applying a vertical force up to 250 kN. 

 Dynamic control of the confinement pressure was capable for confining 

pressures up to 300 kPa at frequencies up to 10 Hz. 

 Application of a dynamic vertical load was possible up to load of 100 kN at 

frequencies up to 5 Hz. 

3.5.2 Dynamic Tri-axial Testing 

After the successful testing of all large-size monotonic tri-axial specimens, large-size 

short duration dynamic tri-axial tests were performed. The test apparatus, at low 

Stress Ratios (forces lower than 100 kN) and low frequencies (less than 5 Hz), 

seemed to perform as expected. However, the test protocol applied required forces in 

excess of 100 kN at frequencies of 10 Hz to be applied. The combination of great 

forces at high frequencies resulted in successive movement in the support structure. 

The movement caused by high Stress Ratios resulted in movement of the entire tri-

axial cell which in turn caused water leaks in the pipe system. In addition, such 

excessive movement is dangerous and could cause damage to the testing 

apparatus. Therefore, modifications were made to increase the rigidity of the support 

frame. 

The modifications that were brought to the large-size tri-axial apparatus include: 
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 Placing of spacer blocks to level the existing platform (see Figure 3-37 below); 

and 

 

Figure 3- 37: Spacer Blocks used to Level Tri-axial Platform 

 Increasing rigidity of existing platform by fixing it to the support structure below 

(see Figures 3-38 and 39) 

 

 

 

 

 

 

 

 

 

 

Figure 3- 38: Drilling of Holes through Platform and Support Beams 

Spacer 

Block 
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Figure 3- 39: Fixing of Platform to Support Beams to Increase Rigidity 

The above-mentioned modifications increased the rigidity thereby reducing 

movement of the tri-axial cell. To confirm this, a dynamic test was performed and 

even at the highest Stress Ratio of 55% the test was conducted in a safe manner 

without any excessive movement. Dynamic loading could be performed under safe 

conditions for the following: 

 Dynamic loading up to 200 kN for frequencies up to 10 Hz. 

For further reading on the trouble shooting of the large-size tri-axial test apparatus 

please refer to Rudman (2012). 

3.6  Summary 

Chapter 3 is summarised as follows: 

 An experimental design was developed that incorporates two specimen sizes 

(small S and large L) and three grading curves (S19, G19C and Full) to allow 

for investigation of the influence of grading curve and specimen size. 

 Small-size specimens were prepared using the two adjusted gradings (i.e. S-

S19 and S-G19C) whereas large-size specimens were prepared using the two 

adjusted gradings and the full in-situ G2 grading (L-S19, L-G19C and L-Full).  

 The G2 material procured was dried and sieved into various material fractions 

to allow for accurate control of specimen preparation. 

 Moisture-Density relationship curves were developed, using vibratory 
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compaction, for all grading curves and used to identify a single moisture 

content that would yield a single target dry density for both specimen sizes. 

 All material gradings were mixed by adding 4.7% moisture and mixing it 

through with a pan mixer. 

 Once the material has been thoroughly mixed, the wet material, for both 

specimen sizes, was placed in split moulds and compacted to the desired 

density using the measuring apparatus mentioned in Sub-section 3.4.3. 

 Importantly, since the material tested is an UGM, no standard curing method 

was applied; rather, material specimens were left for 24 hours to allow 

redistribution of moisture and development of initial Cohesion. 

 Two types of performance tests were performed to evaluate the performance 

of the selected material gradings; monotonic  and dynamic tri-axial tests. 

 Monotonic tri-axial tests were used to evaluate the shear performance 

(Cohesion and Friction Angle) and short duration dynamic tri-axial tests to 

evaluate the resilient response (Resilient Modulus) of the tested specimens. 

 Monotonic test results were compared for specimens tested for a range of 50, 

100 and 200 kPa confining pressures. 

 Short duration dynamic tri-axial test were performed for a range of confining 

pressures reducing from 200 to 150, 100, 50 and 25 kPa for Stress Ratios 

increasing from 10 to 20, 30, 40 and 55%. 

 Adjustments and improvements were brought to the large-size tri-axial testing 

apparatus to allow safe performing of tests and to ensure that test results were 

uninfluenced by the testing apparatus. 
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CHAPTER 4: ANALYSIS AND DISCUSSION OF RESULTS 

4.1 Introduction 

This chapter is dedicated to present, interpret and discuss all test results relevant to 

the experimental design. In addition, this chapter also presents results of additional 

testing, performed to gain a better understanding of the representative parent 

material’s behaviour. 

Firstly, quality control results are presented and discussed where after, with 

reference to the research objectives, the material shear parameters, evaluated 

through monotonic tri-axial testing, are analysed. In the final section of this chapter, 

dynamic tri-axial test results are presented and discussed. 

4.2 Quality Control 

As mentioned in earlier sections of this report, both moisture content and density 

significantly influences the performance of UGM’s. Therefore, to allow accurate 

comparison of performance properties, for specimens with different geometry and 

grading curve, both the moisture content within specimens and the densities to which 

these specimens are compacted, had to be similar. 

For all specimens prepared and tested the mixing moisture content, dry density after 

compaction and moisture content after testing was computed and noted. From these 

results, graphs were prepared showing the consistency of the moisture content in 

relation to the target moisture content of 4.7% and the density achieved as a 

percentage of the target dry density of 2340 kg/m3, as determined in Sub-section 

3.3.3. 

4.2.1 Small-size Specimens 

Figure 4.1 shows a graph illustrating the mixing and compaction quality control that 

was implemented for both grading curves of small-size specimens. Note that Figure 

4-1 summarises the data for more small-size specimens than were originally set out 

in the experimental design. These extra specimens were used for additional testing 

which will be explained at a later stage in this chapter. 

It is clear from Figure 4.1, that small-size specimens were compacted to close 

proximity to the target dry density (see vertical axis on left). For the quality control 

purposes of this research study, a variation of ±1% in relation to the target dry density 
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was allowed (i.e. an upper dry density limit of 2360 and a lower limit of 2320 kg/m3 

was set). 

 

Figure 4- 1: Small-size Specimen Quality Control Summary 

In addition to the high level of density control (standard deviations of 5.15 and 6.50 

kg/m3 for S19 and G19C grading curves respectively), the mixing/compaction 

moisture content (see vertical axis on right) was also carefully controlled (standard 

deviations of 0.064 and 0.139 % moisture for S19 and G19C grading curves 

respectively). Only specimens with moisture contents within 0.5% moisture either 

side of the target moisture content, were tested (i.e. an upper limit of 5.2% and a 

lower limit of 4.2% moisture was set). 

It should be noted that, for both grading curves, the mixing moisture content, 

although within the limits set, is closer to the upper limit than the lower limit (i.e. 

slightly higher than the target moisture content). This phenomenon, although not 

explained in Chapter 3, most likely results from the incorporation of the material’s 

hygroscopic moisture content into the mixing moisture content.  

The hygroscopic moisture content for each material grading curve was determined 

and accounted for by removing the computed mass of hygroscopic moisture from the 

moisture to be added during mixing. The hygroscopic moisture contents however 

were computed using material that was air dried for a longer period to that of material 

used during specimen preparation. As a result, it is plausible that the material used 

during specimen preparation contained slightly higher hygroscopic moisture contents 
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than the material used during the testing of the hygroscopic moisture content. This, in 

turn, will slightly increase the moisture content during mixing and compaction by the 

difference in tested hygroscopic moisture content and true hygroscopic moisture 

content. e.g. If the tested hygroscopic moisture content is 0.2% then only 4.5% 

moisture needs to be added during mixing to reach the target 4.7% moisture. If 

however, the hygroscopic moisture content during specimen preparation is 0.3%, 

then the addition of 4.5% moisture will yield a mixing and compaction moisture 

content of 4.8%, 0.1% higher than the target moisture content. 

Although the influence of moisture content on the performance of UGM’s is 

significant, the impact of the variation in hygroscopic moisture content is so small that 

it would have an insignificant influence on the findings of this report. However, a 

specimen prepared with a variation in moisture content that results in the mixing and 

compaction moisture content of a specimen falling outside of the set limits, would 

have been removed from the testing envelope and repeated. 

Once compacted, specimens were sealed and left standing for 24 hours before 

testing. This is done to allow the unbound material to develop some initial cohesion 

before testing. Therefore, to allow for accurate comparison of tested specimens, the 

effect of curing on the moisture content at testing had to be controlled. For the 

purpose of this study, the moisture content after testing was used as an indication of 

the variability in curing.  

Figure 4-3 shows the variation in moisture content of specimens after testing. When 

compared to Figure 4-1 for the same specimens, a reduction in moisture content is 

evident. This shows that even though the specimens were sealed directly after 

compaction, using plastic bags, the 24 hour curing process does results in a slight 

reduction in moisture content.  
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Figure 4- 2: Small-size Specimen Moisture Variation after Testing 

Figure 4-3 shows the small-size specimens sealed in plastic. Note that some 

moisture, originally added to the specimens, adheres to the plastic bag’s surface 

thereby reducing the moisture content within the specimen. This reduction in 

moisture prior to testing will influence the moisture content after testing, as seen in 

Figures 4-1 and 4-2. 

 

Figure 4- 3: Moisture Adhering to Plastic Surface during Curing 
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Interestingly, Specimens 9 to 14 yields much lower moisture contents after testing 

than Specimens 1 to 8. This is due to the nature of the tests performed on the 

specific specimens. Specimens 1 to 8 were used for monotonic tri-axial testing 

purposes whereas Specimens 9 to 14 were utilised for dynamic tri-axial testing.  

During dynamic tri-axial testing, cyclic loads are applied to the specimen ranging 

from low to high Stress Ratios. As these loads are applied, the plasticity of the 

material reduces. In addition to the reduction of plasticity, further compaction is 

achieved by the re-packing and settling of material particles. This increase in 

compaction caused by dynamic loading, forces some moisture out of the specimen 

thereby reducing the moisture content of the specimen during testing. This 

phenomenon, shown in Figure 4-4, was noted during dynamic tri-axial testing and 

explains the reduced final moisture content for dynamic tri-axial specimens. This 

shows the importance of measuring the moisture content before and after testing. 

 

Figure 4- 4: Moisture Extruded from Specimen during Dynamic Loading 

Note that the effect of reduced moisture content during dynamic loading will be 

discussed further in Section 4.4. 

4.2.2 Large-size Specimens 

Figure 4-5, similar to Figure 4-1, illustrates the control of quality for large-size tri-axial 

specimens based on compaction moisture content and density achieved.  
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Figure 4- 5: Large-size Specimen Quality Control Summary 

Again, all large-size specimens used for testing fell within the limits set for this 

research study. Furthermore, and more important, when comparing Figure 4-1 and 4-

5, one should note that the moisture content during compaction and densities 

achieved for both small and large-size specimens are similar. This allows for 

accurate comparison of the respective sized testing equipment. 

It is interesting that, when comparing the standard deviations of the specimens 

prepared, large-size specimens show lower standard deviations in both moisture 

content and dry densities achieved. Table 4-1 summarises the standard deviations 

achieved for all of the specimens prepared for this research study. 

Table 4- 1: Summary of Standard Deviations 
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Note that the higher standard deviations observed for the small-size specimens could 

impact on the results obtained from small-size testing. 

Furthermore, the phenomenon of reduced moisture contents for dynamic specimens 

is also noted for large-size specimens. Figure 4-6 shows, for dynamic Specimens 4 

to 7, lower moisture contents after testing than that of monotonic tri-axial Specimens 

1 to 3. When comparing the reduction in moisture content from before testing to after 

testing for monotonic specimens alone, a slight difference in the magnitude of the 

reduction in moisture contents is noted between the two grading curves. Table 4-2 

summarises the average moisture contents for all grading curves of each specimen 

size. 

Table 4- 2: Summary of Moisture Content during Compaction and After Testing 

 

An average reduction in moisture content for small-size specimens during the curing 

process of 0.51% is noted whereas a reduction of only 0.14% is noted for large-size 

specimens. The primary factor influencing the variation is likely to be the difference in 
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in moisture adhering to the plastic. Large-size specimens on the other hand are 
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4.3 Monotonic Tri-axial Testing 

Monotonic tri-axial tests were utilised to determine the shear properties of the 

selected material. Both the Cohesion C and Friction Angle Φ were computed using 

the results obtained from monotonic tri-axial tests. 

A minimum of three tri-axial specimens, with equal properties, tested at three 

different confining pressures are required to determine the shear parameters of a 
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material specimen. For the purpose of this study however, eight small-size 

specimens and three large-size specimens were tested at four and three confining 

pressures respectively.  

4.3.1 Presentation of Initial Test Results 

Monotonic tri-axial test results can be plotted to show the stress-strain relationship of 

the tested specimens, at the respective confining pressures, as shown in Figure 4-6. 

Note that only the small-size S19 stress-strain relationships are shown and that all 

other stress-strain relationship curves are presented in Appendix B.  

 

Figure 4- 6: Stress-Strain Relationship Curve for Small-size S19 Specimens 

In addition to the above stress-strain relationship curves, the monotonic tri-axial test 

results can be plotted in the Mohr-Coulomb representation, as shown in Figure 4-7. 

S 

S19 
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Figure 4- 7: Mohr-Coulomb Representation of Small-size S19 Monotonic Test Results 

The shear parameters are computed by fitting a failure envelope to the Mohr-

Coulomb representation shown above. The slope of the failure envelope, a linear line 

tangent to all of the Mohr circles, is known as the Friction Angle Φ [in degrees] 

whereas the failure envelope’s intercept with the shear stress axis is known as the 

Cohesion C [in kPa]. 

Note that only the small-size S19 grading curve’s Mohr-Coulomb representations are 

shown and that all other Mohr-Coulomb representations are presented in Appendix C 

together with their respective stress-strain relationship curves. 

The shear parameters, computed as set out above, for all combinations of grading 

curves and specimen geometries are summarised in Table 4-3. 

Note that Table 4-3 shows the Cohesion and Friction Angle for two confining 

pressure ranges, 25, 50, 100 and 200 kPa and 50, 100 and 200 kPa respectively. As 

mentioned, only three large-size tri-axial specimens are tested to determine the 

shear parameters of large-size specimens whereas eight small-size specimens are 

tested. The effect of the reduced number of specimens needs to be accounted for 

since the confinement pressure range for small-size testing is different to that of 

large-size testing. 
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Table 4- 3: Summary of Cohesion and Friction Angle for Various Grading and Specimen Sizes 

 

Table 4-3 shows that reducing the number of specimens for small-size testing from 

eight specimens, over a confinement range of 25, 50, 100 and 200 kPa, to six 

specimens, over a confinement pressure range of 50, 100 and 200 kPa, results in a 

significant increase in Cohesion and a reduction in Friction Angle. This shows that 

Cohesion is more accurately defined by considering a confinement pressure range of 

25 and 50 kPa although this confinement range was not used to determine the 

Cohesion for this study. In addition, Figure 4-8 shows the change in Friction Angle 

and Cohesion as a percentage of the initial shear parameters computed with eight 

specimens and a confinement pressure range of 25, 50, 100 and 200 kPa.  

Cohesion 

[kPa] 

Friction 

Angle  

[°]

Cohesion  

[kPa] 

Friction 

Angle  [°]

2331 157.59 47.76 0.96 184.73 45.90 0.98

- 245.49 47.65

2336 93.97 51.00 0.96 109.47 49.96 0.96

- 176.43 50.89

2334 - - - 174.11 47.78 1.00

2332 - - - 109.15 51.73 1.00

2334 - - - 127.49 49.77 0.99

Symbol R2

50 - 200 kPa 

Confinement Range

R2

25 - 200 kPa 

Confinement RangeAverage 

Density 

[kg/m3]

Stellenbosch University  https://scholar.sun.ac.za



 

119 | P a g e  
 

 

Figure 4- 8: Percentage Change in Shear Parameters when Changing the Confinement 

Pressure Range for Small-size Tri-axial 

It is thus clear that, to allow for accurate comparison of, shear parameters, the 

confinement pressure range under which the specimens were tested needs to be 

equal. Therefore, to accommodate this, the 25 kPa confinement pressure is removed 

from the testing scope. I.e. the results from only six of the eight small-size monotonic 

tri-axial specimens, tested over a confinement pressure range of 50, 100 and 200 

kPa will be used for further comparisons. 

A further interesting point to take note of from Table 4-3 is the correlation coefficient 

R2 values. It is clear that larger specimens yield more repeatable results since the 

obtained coefficients of variance are higher however less large-size specimens were 

tested and a different R2 could have been achieved if more specimens were tested. 

4.3.2 Influence of Specimen Geometry 

The influence of specimen geometry on the material’s shear parameters can be 

evaluated through the comparison of the shear parameters from similar grading 

curves yet different specimen sizes. 

Figure 4-9 shows the influence of specimen geometry on the Cohesion of both the 

S19 and G19C grading curves. 
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Figure 4- 9: Influence of Specimen Geometry on Cohesion 

Note that there is a definite decrease (5.8%) in Cohesion for the S19 grading curve, 

whereas the G19C grading curve shows a mere 0.3% decrease in Cohesion as the 

specimen size is increased. This shows that a lower Cohesion can be expected for 

larger specimens however the magnitude of the change is influenced by the grading 

curve.  

It could be argued that this decrease in Cohesion, due to an increase in specimen 

size, is caused by material variability however, it is believed that specimen variability 

is so small that its influence on the results are insignificant. Therefore, it is believed 

that the decrease in Cohesion results from the increased specimen size. In addition, 

the decrease in Cohesion is noted for both grading curve which supports the 

conclusion that the change in Cohesion is related to the change in specimen size. 

Figure 4-10 illustrates the influence of specimen geometry on the Friction Angle of 

the tested grading curves. The results show that for both the S19 and G19C grading 

curves the larger specimen size yields higher internal Friction Angles. For the S19 

grading curve an increase in Friction Angle of 4.1% is noted whereas, the G19C 

grading curve shows a smaller increase of 3.5% when comparing the smaller 

specimen’s results to that of its larger counterpart. This shows that an increase in 

Friction Angle can be expected with an increase in specimen size. Interestingly, the 

G19C grading curve is again less influenced by the change in specimen geometry 

when compared to the S19 grading curve. 
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Figure 4- 10: Influence of Specimen Geometry on Internal Friction Angle 

It is plausible that the increase in Friction Angle observed in Figure 4-10, due to an 

increase in specimen size, results from improved material packing. For larger 

specimens, which exhibit larger cross-sectional area and larger material volume per 

compacted layer (see Sub-section 3.4.3), increased particle movement can be 

expected during compaction. This leads to better particle orientation thereby 

improving packing and increasing particle-to-particle friction. Increased friction 

between material particles result in increased Friction Angles for larger specimens.  

4.3.3 Influence of Grading Curve 

The influence of grading curve, on the material’s shear parameters can be evaluated 

through the comparison of the shear parameters from specimens prepared with 

different grading curves yet similar specimens sizes. 

Figure 4-11 shows the influence of grading curve on the Cohesion of the tested 

specimens.  
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Figure 4- 11: Influence of Grading Curve on Cohesion 

As expected, a clear decrease in Cohesion is noted for both small and large-size 

specimens as the grading becomes coarser (i.e. from S19 to G19C). For the large-

sized specimens the Cohesion of the Full grading curve is slightly lower than that of 

the S19 grading yet higher than that of the G19C grading curve.  

The change in Cohesion can be attributed to the coarseness of the grading. The finer 

S19 grading, in comparison to the coarser G19C grading, yields increased capillary 

suction, due to reduced void size and increased number of voids, thereby increasing 

the effective stress within the material specimen. Increased effective stress results in 

increase shear performance, i.e. increased Cohesion. In addition, friction between 

small aggregate particles could also add to the improved Cohesion however, the 

influence of suction should be the dominant factor here.   

The influence of grading curve on the Friction Angle is illustrated in Figure 4-12. As 

expected, due to improved aggregate interlocking, the coarser G19C grading curve, 

for both sized specimens, yields a higher Friction Angle when compared to the finer 

S19 grading curve. Furthermore, as illustrated by Figure 2-26, excess fines within the 

material specimen, as is the case for the S19 grading, cause “floating” of larger 

particles thereby reducing large particle-to-particle friction. Therefore, the finer S19 

grading yields lower Friction Angles when compared to the coarser G19C grading. 
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Figure 4- 12: Influence of Grading Curve on the Friction Angle 

Interestingly, it is observed again that the large-sized Full grading yield results 

between that of the two adjusted grading curves. The Friction Angle is lower than 

both the G19C grading curves yet greater than that of the S19 grading curves. 

4.3.4 Comparison 

Although the objectives of this research study are to evaluate the influence of both 

grading curve and specimen geometry, on the performance properties of the tested 

material, it is important to identify which of the adjusted grading curves yield the most 

representative results when compared to the true Full in-situ grading curve. 

Assuming that the large-size specimens, prepared using the Full grading curve, are 

most representative of the in-situ material shear parameters, a comparison can be 

made. Using the large-size, Full grading curve test results as a benchmark and 

normalising all monotonic tests results thereto, allows comparison. Figure 4-13 

shows all of the normalised monotonic tri-axial test results for this research study. 
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Figure 4- 13: Normalised Monotonic Tri-axial Test Results 

Note that, Figure 4-13 above allows comparison of the two testing apparatuses 

based on monotonic tri-axial results. In addition, Figure 4-13 also gives an indication 

of which adjusted grading curve represents the full grading curves test results best. 

It is clear from Figure 4-13 that the two testing apparatuses yield similar results for 

both Friction Angle and Cohesion, with only slight differences observed. This is 

evident for both modified grading curves (i.e. S19 and G19C) as the normalised 

Cohesion values for the S19 grading curve are 1.45 and 1.37; and the normalised 

Friction Angle values are 0.92 and 0.96 for the small and large-size apparatus 

respectively.  

For the G19C grading curve, normalised Cohesion values of 0.86 and 0.86 are 

shown whereas the normalised Friction Angle values are 1.00 and 1.04, for the small 

and large-size specimens respectively. 

Figure 4-13 together with the normalised values above confirm that the two sized 

testing apparatuses yield similar results when testing similar specimens and that they 

are comparable. In addition Figure 4-13 shows, based on the normalised values, 

that, for both sized specimens, the G19C grading curve yield more representative 

shear parameters, when compared to the Full grading curve. 
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Figure 4-14 adds value to the results and conclusions shown above.  The Full 

grading is represented in Figure 4-14 b) which shows that the grading is balanced in 

the amount of fines and larger particles.  

The S19 grading curve, a fine grading, can be represented by Figure 4-14 c) which 

clearly has an excess amount of fines thereby reducing large grain-to-grain contact 

area. This in turn reduces Friction Angle, due to the “floating” nature of large particles 

within the fines. The S19 grading curve also yields higher Cohesion. The “gluey” 

mastic resulting from the excess fines and moisture causes this. In addition, finer 

gradings yield more surface area and reduced voids within the mix. This results in a 

thinner layer of moisture covering the material particles, which in turn increase 

capillary suction. Increased capillary suction results in increased Cohesion and 

Friction Angle.   

The G19C grading, which is also represented by Figure 4-14 b) also has a balance in 

fine and coarse material particles. Therefore, Figure 4-14 adds thereto that the G19C 

grading curve is more representative of the Full grading curve.  

 

Figure 4- 14: Three Physical States of Aggregate Particle Distribution (Molenaar, 2010) 
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4.3.5 Additional Testing 

As mentioned in Section 4.2, additional specimens, outside of the original; 

experimental design’s scope, were prepared. These specimens were tested under 

different conditions to that of the specimens set out in the experimental design, in 

order to gain a better understanding of the tests themselves and the material’s 

performance properties. 

As illustrated in the experimental design, three small-size specimens are used for 

small-size dynamic tri-axial tests. In order to gain some understanding of the effect of 

dynamic loading, small-size monotonic tri-axial tests were performed at a range of 

confinement pressures namely 50, 100 and 200 kPa. The tests on these three 

specimens were performed once dynamic tests were complete thereon. This was 

done for both small-size gradings and the results compared to the monotonic tri-axial 

test results from the initial six specimens (for a similar confinement range, before 

dynamic loading), as shown in Figure 4-15. 

 

Figure 4- 15: Comparison of Small-size Shear Parameters Prior and Post Dynamic Loading 

Interestingly, a significant increase in both Cohesion and Friction Angle is noted for 

both grading curves when comparing values before and after dynamic loading. This 
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increase in shear properties confirms the anticipated behaviour, mentioned in Section 

4.2, that the reduction in moisture content (see Figure 4-2 and 4-4) is caused by an 

increase in density resulting from dynamic loading and improved particle packing. 

An increase in density yields more contact points and higher internal contact area 

between aggregate particles, as illustrated by Figure 4-16, thereby increasing the 

Friction Angle within the tested specimens. Furthermore, as mentioned earlier, 

reduced moisture content results in increased suction, thereby increasing the 

Cohesion of the tested specimens.  

 

Figure 4- 16: Change in Soil Structure due to Increased Compaction/Density (Multiquip, 2011) 

Even after dynamic loading, the Cohesion and Friction Angle are similarly influenced 

by grading curve as the results shown in Sub-sections 4.3.2, 4.3.3 and 4.3.4. The 

G19C grading curve again yields lower Cohesion and higher Friction Angle than that 

of its finer S19 counterpart.  

4.4 Dynamic Tri-axial Testing 

Dynamic tri-axial tests were used to evaluate the resilient response of the tested 

material. The Resilient Modulus Mr of the tested specimens was computed using the 

results obtained from short-term dynamic tri-axial tests. 

For the purpose of this study, three small-size specimens, for each of the two small-

size grading curves, were tested whereas one large-size specimen was tested for the 

S19 grading curve and two large-size specimens each, for the G19C and Full grading 

curves. An initial conditioning phase was performed on each tested specimen, which 

consisted of Stress Ratios ranging from a minimum of 10% to a maximum of 55%, to 

remove the materials plasticity without causing premature failure. A 200 kPa 

confinement pressure was applied to the specimen during all Stress Ratios of the 
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conditioning phase, where after the loading phase commenced. The combination of a 

200 kPa confining pressure and the applied Stress Ratios, result in high Bulk 

Stresses, allowing rapid removal of material plasticity without damaging the 

specimen. 

The loading phase consists of five confinement pressures ranging from 200 to 25 

kPa. For each confinement pressure, five Stress Ratios are applied ranging from an 

initial 10% to the final 55%.  

4.4.1 Presentation of Initial Mr Test Results 

Dynamic tri-axial test results can be plotted to show the relationship between the 

Resilient Modulus of the specimen to the applied confinement pressure and the 

associated Stress Ratios. Figure 4-17 shows a typical illustration of the Resilient 

Modulus test results obtained from dynamic tri-axial testing. 

 

Figure 4- 17: Typical Resilient Modulus Values for Small-size S19 Specimen 1 

It is clear from Figure 4-17 that the Resilient Modulus of the tested specimen is stress 

dependent. From the evaluation of the influence of confining pressure on the 

Resilient Modulus, a clear increase in Resilient Modulus is noted for an increase in 

confining pressure. This increase in Resilient Modulus, resulting from an increase in 

confinement pressure, is noted for all applied Stress Ratios. 

Furthermore, when evaluating the influence of Stress Ratio, a clear increase in the 

Resilient Modulus is noted for an increase in Stress Ratio. Again, this increase in 
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Resilient Modulus, as a result of increased Stress Ratios, is noted for all confinement 

pressure ranges. 

Note that Figure 4-17 only shows the results obtained from testing a small-size 

specimen (Specimen 1), prepared using the S19 grading curve. All other specimens 

tested also showed an increase in Resilient Modulus for an increase in confinement 

pressure and an increase in applied Stress Ratio. The results are presented in 

Appendix C. 

It is clear that both confinement pressure and applied Stress Ratio influences the 

resilient response of a tested specimen. Therefore, to account for the influence of 

both confinement pressure and Stress Ratio simultaneously, the Resilient Modulus 

values are presented in relation to the applied Bulk Stress Ɵ in kPa. 

The Bulk Stress, defined as the sum of all principal stresses (σ1 + σ2 + σ3), influences 

the Resilient Modulus values of the small-size S19 tri-axial specimen as illustrated in 

Figure 4-18. Note that the values of both the Resilient Modulus and associated Bulk 

Stress are plotted on a double-logarithmic scale. 

 

Figure 4- 18: Resilient Modulus – Bulk Stress Relationship, Small-size S19, Specimen 1 

With σ2 and σ3 representing the applied confinement pressure and σ1, the sum of the 

applied confinement and the applied vertical stress (a function of the applied Stress 

Ratio), an increase in Resilient Modulus is expected for an increase in Bulk Stress. 

As mentioned, the Bulk Stress is a function of σ1, σ2, and σ3. Therefore, an increase 
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in the confinement pressure (increase in σ1, σ2 and σ3) and/or the applied Stress 

Ratio (increase in σ3) will result in an increase in the Bulk Stress thus, an increase in 

the Resilient Modulus. 

Figure 4-18 and the figures presented in Appendix C, confirm that the resilient 

behaviour of the tested material is stress dependent. Higher Resilient Modulus 

values were obtained at greater applied Bulk Stress. This increase in Resilient 

Modulus, as shown in Figure 4-18, was noted for all of the tested specimens of which 

the results are presented in Appendix C. 

Even though it has now been shown that, the tested material’s resilient behaviour is 

stress dependent, the magnitude of its dependency on the sum of the applied 

stresses (Bulk Stress) in not yet known. Therefore, material models need to be 

developed to allow for a better understanding of the degree of stress dependency. 

4.4.2 Modelling of Resilient Behaviour 

As has been shown above, the resilient behaviour of all the specimens tested (see 

Appendix C) is stress dependent. The degree of stress dependency, for the different 

specimen and grading curves however is not known. Therefore, material models 

need to be calibrated that gives an indication of the material stress dependency. 

Many material models exist that allows the evaluation of stress dependent resilient 

behaviour. For the purpose of this study however, two material models were used. 

Equation 4-1 represents the more basic Mr-ϴ model whereas Equation 4-2 

represents the more accurate Mr-Ɵ- 
𝜎𝑑

𝜎
𝑑
𝑓 model. 

𝑴𝒓 = 𝒌𝟏 (
𝜽

𝝈𝟎
)

𝒌𝟐
                               4-1 

𝑴𝒓 = 𝒌𝟑 (
𝜽

𝝈𝟎
)

𝒌𝟒
(𝟏 − 𝒌𝟓 (

𝝈𝒅

𝝈𝒅
𝒇)

𝒌𝟔

)

 

                                               4-2 

Where: Mr  = Resilient Modulus [MPa]     

  ϴ  = Bulk Stress (ϭ1 + ϭ2 + ϭ3) [kPa]    

  Ϭ0  = reference stress (1) [kPa]    

  k1  = material regression coefficient [MPa]   
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  k2  = material regression coefficient [-]   

  ϭd  = deviator stress [kPa]     

  ϭd
f  = deviator stress at failure [kPa]    

  k3  = material regression coefficient [MPa]   

  k4, k5, k6 = material regression coefficients [-] 

Using a non-linear regression analysis, both models were calibrated to best fit the 

obtained Resilient Modulus values for all combinations of similar specimens (i.e. data 

from all three small-size S19 specimens were combined and the model calibrated 

thereto). 

Figures 4-19 and 4-20 shows both the calibrated models, fitted to the results 

obtained from the three small-size S19 tri-axial tests. The results from all other 

specimens calibrated to fit the Mr-Ɵ and Mr-Ɵ- 
𝜎𝑑

𝜎
𝑑
𝑓 models are presented in Appendix D 

and Appendix E respectively.  

 

Figure 4- 19: Mr-Ɵ Model Calibrated to Fit Small-size S19 Resilient Modulus Results 

Note that there is little variation between the Resilient Modulus results obtained from 

testing the three specimens. At 25 kPa confinement the specimens yield Resilient 

Modulus values ranging between 175 and 190 MPa when tested at 10% Stress Ratio 

whereas the specimens show Resilient Modulus values ranging between 528 and 

609 MPa when tested at 200 kPa confinement at 55% Stress Ratio. 

In addition, the model coefficients k1 and k2 varies little to that of previous research 
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done on similar material (van Niekerk, 2002). 

Although Figure 4-19 shows a high coefficient of variation between the tested results 

and that of the calibrated model (R2 = 0.90), the model only accounts for the 

influence of Bulk Stress and does not account for the deviator Stress Ratio as in the 

case of the Mr-Ɵ- 
𝜎𝑑

𝜎
𝑑
𝑓 model. Figure 4-20 shows the Mr-Ɵ- 

𝜎𝑑

𝜎
𝑑
𝑓 model calibrated to fit the 

results obtained from the three small-size S19 dynamic tri-axial tests. 

 

Figure 4- 20: Mr-Ɵ- 
𝝈𝒅

𝝈𝒅
𝒇  Model Calibrated to Fit Small-size S19 Resilient Modulus Results 

Immediately, because it accounts for the influence of the deviator Stress Ratio, the 

Mr-Ɵ- 
𝜎𝑑

𝜎
𝑑
𝑓 model fits the obtained results better (see Table 4-5 below).  

Interestingly, the Mr-Ɵ- 
𝜎𝑑

𝜎
𝑑
𝑓 model shows material stiffening (k5 < 0) for the range of 

Stress Ratios tested. One would expect the material’s Resilient Modulus to reduce 

with increased deviator stress however, for the material tested and the range of 

Stress Ratios applied, the Resilient Modulus increases with increased deviator Stress 

Ratio.  

It is believed that this stiffening occurs as a result of the increased density and 

reduced moisture content during dynamic loading. As explained in  Chapter 4.2 and 

4.3, Sections 4.2.1, 4.2.2 and 4.3.5, the dynamic loading of both small and large-size 

specimens results in an increase in density which, in turn forces moisture from the 
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specimen thereby reducing moisture content and increasing suction within the 

material specimen. Literature shows that the effect of increased density and reduced 

moisture content is increased Resilient Modulus (see Paragraphs 2.3.2.1 and 

2.3.2.2). 

Note that material stiffening was observed for all specimens tested (k5 < 0) as 

illustrated in Table 4-4 and Appendix E. 

Table 4- 4: Summary of Material Coefficients and Correlation Coefficients for Calibrated Models

 

Interestingly, when comparing the k5 material coefficients, the large-size specimens 

seem to undergo less material stiffening in comparison to that of the small-size 

specimens. 

Concerning all other material coefficients, for the Mr-Ɵ model, no definite trend can 

be observed regarding the influence of grading curve or specimen geometry. When 

comparing the two specimen sizes of the S19 grading curve, the small-size 

specimens yield lower k1 coefficients yet higher k2 coefficients. The complete 

opposite however is noted when comparing the two specimens sizes of the G19C 

grading curve where the larger specimens now yields lower k1 coefficients yet higher 

k2 coefficients.  

A further interesting point when comparing the two models, as shown by Figure 4-21, 

is that the Mr-Ɵ- 
𝝈𝒅

𝝈
𝒅
𝒇 model yields slightly higher Resilient Modulus values for Bulk 

Stress values less than 300 kPa, at low deviator Stress Ratios SRd (less than 0.1). 

For a Bulk Stress greater than 300 kPa, at SRd < 10%, the Mr-Ɵ- 
𝝈𝒅

𝝈
𝒅
𝒇 model shows 

lower Resilient Modulus values than that of the Mr-Ɵ model.  

This however changes as the effect of the deviator Stress Ratio is incorporated into 

k1 [MPa] k2 [-] R
2

k3 [MPa] k4 [-] k5 [-] k6 [-] R
2

S19 3 13.40 0.50 0.90 19.25 0.44 -0.38 1.57 0.92

G19C 3 19.17 0.47 0.90 28.31 0.39 -0.60 1.62 0.98

S19 1 16.42 0.48 0.98 17.07 0.47 -0.08 1.98 0.98

G19C 2 11.13 0.54 0.94 15.64 0.48 -0.48 2.09 0.97

Full 2 14.62 0.51 0.92 18.75 0.46 -0.30 1.28 0.94
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the Mr-Ɵ- 
𝝈𝒅

𝝈
𝒅
𝒇 model. As mentioned the tested material shows stiffening with increased 

deviator Stress Ratio. Thus, for an equal Bulk Stress, an increase in deviator Stress 

Ratio results in an increase in Resilient Modulus. Furthermore Figure 4-21 shows 

that, at SRd = 50%, both models yield comparable Resilient Modulus values whereas 

a further increase in deviator Stress Ratio, for the Mr-Ɵ- 
𝝈𝒅

𝝈
𝒅
𝒇, yields greater Resilient 

Modulus values than that of the Mr-Ɵ model.  

 

Figure 4- 21: Comparison of Models at SRd = 10, 50 and 90% for Small-size S19 Specimens 

Note that, although Figure 4-20 only shows the change in Resilient Modulus as a 

result of an increase in deviator Stress Ratio for the small-size S19 specimens, all 

other specimens (see Appendix H) showed similar trends to that illustrated above. 

4.4.2.1 Influence of Specimen Geometry 

The influence of specimen geometry on the resilient response of the tested material 

can be evaluated by using the calibrated models and plotting their results in relation 

to various Bulk Stress values and, in the case of the Mr-Ɵ- 
𝝈𝒅

𝝈
𝒅
𝒇 model, also the applied 

Stress Ratio. Figure 4-22 shows the estimated Resilient Modulus values, estimated 

using the calibrated Mr-Ɵ model at four Bulk Stress values. 

0

100

200

300

400

500

600

700

800

0 500 1000 1500 2000

R
e
s
il
ie

n
t 

M
o

d
u

lu
s
 [

M
P

a
] 

Bulk Stress [kPa] 

Mr-Ɵ Model Mr- Ɵ-DSR Model 0.1 DSR 

Mr- Ɵ-DSR Model 0.5 DSR Mr- Ɵ-DSR Model 0.9 DSR 

Stellenbosch University  https://scholar.sun.ac.za



 

135 | P a g e  
 

 

Figure 4- 22: Estimated Resilient Modulus Values for the Mr-Ɵ Model 

It is clear from Figure 4-22 that the Mr-Ɵ model is influenced by specimen geometry 

however; the influence is not constant for both grading curves. When comparing the 

small and large-size S19 results, the larger specimens yield higher resilient moduli, 

for the full range of Bulk Stress values. On the other hand, the small-size G19C 

results show higher resilient moduli than that of the large-size results. Thus, no 

certain influence of specimen size can be established for all grading curves.  

Again, when evaluating the influence of specimen geometry on the Mr-Ɵ- 
𝝈𝒅
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𝒇 model, it 

is clear that the model is influenced by specimen geometry however no certain trend 

can be established. From Figure 4-23, showing the results obtained from the 

calibrated model for a SRd = 10% and Figure 4-24, showing the results obtained for a 

SRd = 50%, no clear trend is noted. From Figure 4-25 however, it is clear that, for a 

SRd = 90%, small-size specimens yield higher Resilient Modulus values than larger 

specimens do. 
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Figure 4- 23: Estimated Resilient Modulus for the Mr-Ɵ- 
𝝈𝒅

𝝈𝒅
𝒇  Model with SRd = 10% 

  

Figure 4- 24: Estimated Resilient Modulus for the Mr-Ɵ- 
𝝈𝒅

𝝈𝒅
𝒇  Model with SRd = 50% 
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Figure 4- 25: Estimated Resilient Modulus for the Mr-Ɵ- 
𝝈𝒅

𝝈𝒅
𝒇  Model with SRd = 90% 
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Ratio. Figure 4-26 shows the estimated Resilient Modulus values, using the 

calibrated Mr-Ɵ model at four Bulk Stress values. 

 

Figure 4- 26: Estimated Resilient Modulus Values for the Mr-Ɵ Model 

Figure 4-26 shows, except for the large-size specimens at Bulk Stresses less than 
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Figure 4- 27: Estimated Resilient Modulus for the Mr-Ɵ- 
𝝈𝒅

𝝈𝒅
𝒇  Model with SRd = 10% 

 

Figure 4- 28: Estimated Resilient Modulus for the Mr-Ɵ- 
𝝈𝒅

𝝈𝒅
𝒇  Model with SRd = 50% 
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Figure 4- 29: Estimated Resilient Modulus for the Mr-Ɵ- 
𝝈𝒅

𝝈𝒅
𝒇  Model with SRd = 90% 

Interestingly, except for the large-size specimens, with an applied SRd = 10% (see 
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Figure 4- 30: Normalised Resilient Modulus Values for Mr-Ɵ Model 

A further interesting point to take note of from Figure 4-30, for the full range of 

applied Bulk Stresses, is that large-size S19 specimens yields more representative 

results, to that of the Full grading curve, when compared to smaller specimens. For 

the G19C grading curve on the other hand, smaller specimens yield results that are 

more representative of the Full grading curve. 

For the Mr-Ɵ- 
𝝈𝒅
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𝒇 model on the other hand, no best fit can be identified to fit the Full 

grading curve for the entire range of Bulk Stresses and applied deviator Stress 

Ratios. Figures 4-31, 4-32 and 4-33 shows the Mr-Ɵ- 
𝝈𝒅

𝝈
𝒅
𝒇 model’s values normalised in 

relation to the Full grading curves estimated Resilient Modulus values at four Bulk 

Stresses for SRd = 10, 50 and 90% respectively. 
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Figure 4- 31: Normalised Resilient Modulus Values for SRd = 10%, Mr-Ɵ- 
𝝈𝒅

𝝈𝒅
𝒇  Model 

 

Figure 4- 32: Normalised Resilient Modulus Values for SRd = 50%, Mr-Ɵ- 
𝝈𝒅

𝝈𝒅
𝒇  Model 
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Figure 4- 33: Normalised Resilient Modulus Values for SRd = 90%, Mr-Ɵ- 
𝝈𝒅

𝝈𝒅
𝒇  Model 

Note that neither of the two adjusted grading curves represents the results obtained 

from the Full grading curve best for the full range of applied Bulk Stress and deviator 

stress. It is only at an applied SRd = 50 and 90%, for Bulk Stress values greater 

and/or equal to 500 kPa, that the G19C grading curve represents the Full grading 

curve’s results best. For a SRd = 10% no certain best fit is observed. For small-size 

specimens the G19C grading curve yields more representative results compared to 

the large-size Full grading curve’s results. For the large-size specimens on the other 

hand the S19 grading curve yields results that are more representative of the Full 

grading. 
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grading curve would yield results more representative of the true in-situ grading. 
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was instant. It therefore became questionable whether a 0.9 second resting period 

within one load cycle (refer to Figure 3-33) was required. Furthermore, to evaluate 

the influence of increased density during dynamic loading, additional load cycles 

were applied to some specimens after the initial dynamic tri-axial test was complete. 

The results are presented below. 

4.4.4.1 Evaluation of Resting Period 

Dynamic tri-axial test results were used to establish whether the tested material’s 

response was rapid enough to allow for a shortened resting period. Figures 4-34, 4-

35 and 4-36 shows the normalised applied stress and normalised LVDT readings, 

each normalised in relation to themselves (i.e. the applied stress cycle is normalised 

over the full second in relation to the maximum applied stress whereas each LVDT’s 

strain measurement is normalised in relation to that specific LVDT’s maximum strain 

measure over the one second load cycle).  

 

Figure 4- 34: Last 55% SR Conditioning Cycle, S-S19 
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Figure 4- 35: Last 55% SR 200 kPa Load Cycle, S-S19 

 

Figure 4- 36: Last 55% SR 25 kPa Load Cycle, S-S19 
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exhibits plastic behaviour. Once conditioning removes all plasticity, the material’s 

response becomes more rapid. Therefore, no prolonged resting period is required 

during the loading phases. 

Although Figures 4-34, 4-35 and 4-36 only show load cycles for a small-size S19 

specimens, the above phenomenon has been confirmed for all grading and specimen 

sizes tested. Appendix F presents the graphs shown above for all specimens with the 

addition of the 10% Stress Ratio data for the conditioning phase and the 200 and 25 

kPa loading phase.  

Note that, although large-size specimens also show that the 0.9 second resting 

period is not required, Figure 4-37 shows that the LVDT measurements are less 

stable which could influence the accuracy of test results. Improvements to the 

attachment mechanism will be required as the stability of the attached LVDT’s could 

influence accuracy of the measured displacements. 

 

Figure 4- 37: Last 55% SR 200 kPa Load Cycle, L-S19 
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 0.025 second unloading phase; and finally a 

 0.95 second resting period 

Interestingly, Figure 4-38, and the figures presented in Appendix G, again shows that 

the material’s response is rapid. Furthermore, when comparing the normal 0.1 

second loading phase to that of the rapid 0.05 second loading phase, no significant 

difference in Resilient Modulus is observed (see comparison between Figure 4-39 

and 4-40).  

 

Figure 4- 38: Last Rapid 55% SR 200 kPa Load Cycle, S-S19 
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Figure 4- 39: Resilient Modulus vs Bulk Stress, Small-size S19, 0.1/0.9 Load Cycle 

 

Figure 4- 40: Resilient Modulus vs Bulk Stress, Small-size S19, 0.05/0.95 Load Cycle 
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shorten testing duration, the use of rapid loading cycles is not recommended. 

In addition, not all testing apparatuses are capable of applying both shortened 

loading phases and resting periods without influencing the results. Systematic 

loading errors could influence results. Therefore, a need to evaluate each machine’s 

load dependent pulse wave exists.   

4.4.4.3 Influence of Density Increase during Dynamic Tri-axial Testing 

As has been mentioned in Sections 4.2 and 4.3, an increase in specimen density 

during dynamic loading was observed. Moisture was forced from specimens during 

dynamic loading (Section 4.2) and, in the case where monotonic tri-axial test were 

performed on specimens already dynamically loaded (Section 4.3), a clear increase 

in shear properties, due to the increase in density, was noted. 

To further confirm the above observations additional load cycles were performed on 

large-size dynamic tri-axial specimens after the initial load cycles have been 

completed. The load cycles that were repeated included all five applied Stress Ratios 

at confinement pressure ranges of 200, 150 and 100 kPa. Figure 3-41 shows the 

results obtained for the large-size S19 specimen. 

 

Figure 4- 41: Influence of Increased Density on Resilient Modulus of Large-size S19 Specimen 

Note that, for all four applied confinement pressures, the Resilient Modulus obtained 

after initial dynamic loading is greater than that measured in the initial dynamic 

loading phase. The above was shown for all three large-size grading curves and the 
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CHAPTER 5: DESIGN CONSIDERATION 

The load applied to a pavement structure is transferred throughout the structure by 

the various pavement layers. Each of these layers transfers the applied load 

differently depending on the stiffness properties of the layers’ associated parent 

material. Therefore, to understand load distribution within a pavement structure, a 

stress-strain analysis of the entire pavement structure is required. This chapter 

presents such an analysis based on the parent material and grading curves 

investigated in this research study in order to evaluate the influence of grading curve 

on the design of an unbound pavement layer. 

5.1 Pavement Structure and Loading 

The pavement structure selected for analysis is what can be typically expected in 

South Africa for a class B road. Figure 5-1 shows the structure and the load applied 

to the pavement structure.  

 

Figure 5- 1: Pavement Structure and Load Layout used in Stress-Strain Analysis 
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nature of unbound granular materials, the 150 mm basecourse is divided into three 

50 mm sub-layers, each with an initial assumed material stiffness of 400 MPa 

(Theyse, 1996). The sub-base comprises a selected G5 material, stabilised to a C3 

type material with an assumed stiffness of 1000 MPa. Although Theyse (1996) 

recommends the stiffness values for a typical C3 to range between 1000 and 2000 

MPa after construction, a lower value in the range was selected as the stiffness of 

cemented layers, due to fatigue cracking, reduces with time. Below the cemented 

layer, a 150 mm G5 selected subgrade layer with a stiffness of 200 MPa followed by 

the in-situ subgrade with a stiffness of 80 MPa is incorporated into the design 

analysis. 

For the purpose of this comparative analysis, which is to ascertain the influence of 

grading on the laboratory determined Resilient Modulus properties and hence the 

structural performance of the granular base, only Phase І of the material stiffness 

properties is considered. Note that the selected layer moduli are realistic for such a 

scenario of an inverted pavement structure. 

The load applied to the pavement structure, see Figure 5-1, comprises an 80 kN 

super single tyre, single axle load (i.e. 40 kN load on each tyre). This load, although 

not the standard 80 kN dual wheel axle load used in South Africa (SAPEM, 2013), is 

used to simplify the design but still meet the requirements of an equivalent standard 

80 kN dual wheel, single axle load.  

Morton et al. (2004) through a study of traffic loading on the N3 between 

Johannesburg and Durban, South Africa, has shown that, due to improved tyre 

manufacturing, the tyre pressures associated with current heavy vehicles range 

between 700 and 825 kPa. Therefore, for the purpose of this analysis, a tyre 

pressure of 800 kPa is utilised which, together with the 40 kN tyre load, yields a 

contact area of 0.05m2. The associated radius of the applied stress is 126 mm. 

In addition to the above, Figure 5-1 also shows the points within the pavement 

structure that were analysed. Points 1, 2 and 3 are critical points taken in the centre 

of each of the three 50 mm unbound granular layers. At these points the principal 

stresses were analysed.  Points 4 and 5 are taken at the bottom of the third unbound 

granular layer and at the top of the stabilised layer respectively. This shows the 

change in stress between two layers, at similar depths, within the pavement 

structure. Points 6 and 7 are taken at the bottom of the stabilised layer and the top of 
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the selected subgrade layer, whereas Points 8 and 9 are analysed at the bottom of 

the selected subgrade and top of the in-situ subgrade respectively. Point 6 is the 

critical point within the stabilised layer and the horizontal strain is analysed in order to 

evaluate fatigue cracking. Note that only Points 1, 2, 3 and 6 will be required for 

analysis of the pavements life expectancy however, to show an accurate distribution 

of stresses throughout the pavement structure more points are required. 

5.2 Unbound Basecourse Mr Iteration 

As confirmed in Chapter 4, the Resilient Modulus of the tested UGM is stress 

dependent. In addition, as shown by Figure 2-1, the pavement layers distribute the 

applied load throughout the pavement thereby reducing the stress with increased 

depth. Therefore, an iterative stress-strain analysis is required to obtain the Resilient 

Modulus associated with the applied stresses within the UGM basecourse. 

For the purpose of this study, the design software developed by Shell, BISAR 3, was 

used to perform the iterative design. The iterative procedure is performed by using 

the initial assumed stiffness values and computing the associated stresses within 

Layers 1, 2 and 3. These stresses are then used to compute the Bulk Stress where 

after the material stiffness can be computed using the calibrated Mr model. As 

mentioned the Mr-Ɵ- 
𝝈𝒅

𝝈
𝒅
𝒇 model used in this research, predicts material stiffening at 

high Stress Ratios. This however is inconsistent with true material performance, 

which softens or even fails at high Stress Ratios. Therefore, to limit the influence of 

predicted material stiffening, only the Mr-Ɵ model will be used in the Design Life 

analysis. 

Once the new stiffness values are known, the design analysis is performed again 

using the newly computed stiffness values until the difference between consequent 

stiffness values are less than 10%. This is in order to meet the design reliability of 

90% for a class B road (SAPEM, 2013). Table 5-1 shows the iterative procedure for 

the small-size S19 grading curve. 
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Table 5- 1: Iterative Design Method to Compute Resilient Modulus (Small-size S19 Specimens) 

 

Note that the iterative design for all other grading and specimen sizes are presented 

in Appendix J. Furthermore, note that the Resilient Modulus values obtained from the 

first iteration is used as the input Resilient Modulus values for the second iteration. 

Table 5-2 presents a summary of the final Resilient Modulus values obtained from 

the iterative design procedure for all of the tested grading and specimen sizes. 

Table 5- 2: Summary of Final Mr Values

 

Interestingly, although the Bulk Stresses of the respective layers are in close 

proximity, the final Resilient Modulus values differ quite significantly. Normalising the 

obtained Resilient Modulus values in relation to the large-size Full grading curve 

specimens shows that both sizes of the G19C grading curve yields Resilient Modulus 

values more representative of the Full grading curve. This is illustrated by Figure 5-2. 

ϭ1 [kPa] ϭ2 [kPa] ϭ3 [kPa]

1 400.0 799.4 474.1 474.1 1747.6 560.2 40%

2 400.0 725.5 236.7 236.7 1198.9 464.0 16%

3 400.0 572.9 190.4 190.4 953.7 413.8 3%

1 560.2 797.5 504.2 504.3 1806.0 569.5 2%

2 464.0 712.4 220.1 220.1 1152.6 454.9 -2%

3 413.8 557.5 179.9 179.9 917.3 405.8 -2%

1 569.5 797.5 504.5 504.5 1806.5 569.5 0%

2 454.9 712.2 218.2 218.3 1148.7 454.2 0%

3 405.8 557.7 180.2 180.2 918.1 406.0 0%

Mr [Mpa]

Mr 

Deviation 

from 

Previous 

1

2

3

13.40 0.50

BISAR 3 

Input Mr 

[Mpa]

Iteration Layer

Values from BISAR 3

ϴ [kPa] k1 [MPa] k2 [-]

Specimen 

Scale 

Grading 

Scale 
Layer

BISAR 3 

Input Mr 

[MPa]

ϴ [kPa] k1 [MPa] k2 [-] Mr [MPa]

Mr Deviation 

from 

Previous [%] 

1 569.5 1806.5 569.5 0.0

2 454.9 1148.7 454.2 0.0

3 405.8 918.1 406.0 0.0

1 655.7 1839.5 656.2 0.0

2 527.1 1145.1 525.1 0.0

3 466.0 889.0 466.2 0.0

1 602.6 1819.7 602.8 0.0

2 484.5 1148.0 483.2 0.0

3 431.2 906.4 431.4 0.0

1 643.1 1832.6 643.5 0.0

2 499.7 1138.7 497.7 0.0

3 437.4 897.7 437.7 0.0

1 676.5 1845.4 677.1 0.0

2 532.0 1139.0 529.4 0.0

3 465.3 885.5 465.6 0.0

150 mm ϕ * 

300 mm H

S19

G19C

300 mm ϕ * 

600 mm H

S19

G19C

FULL 14.62 0.51

13.40 0.50

0.4719.17

16.42 0.48

0.5411.13
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Figure 5- 2: Normalised Resilient Modulus Values after Iterative Design 

It is very interesting, as it has been shown in Chapter 4, that at different Bulk 

Stresses and applied deviator Stress Ratios, different grading and specimen sizes 

represent the Full grading curve best. The above however shows that for a typical 

South African pavement structure, under typical South African loading conditions, 

with the associated parent material, that the G19C grading curve represents the 

Resilient Modulus of the Full grading curve best. This is confirmed by comparing the 

Bulk Stresses induced in the unbound base layer to the Bulk Stresses and their 

associated Resilient Modulus values in Chapter 4. It has been shown in Chapter 4 

that for Bulk Stresses in close proximity to 1000 kPa and higher, that the G19C 

grading curve represents the Full grading best. 

It is important to note however that the above was found to be true for the specific 

Stress Ratios (low, ± 20%) induced in the pavement analysis. It is plausible that the 

findings, at higher Stress Ratios, can be inconsistent to that observed above. 

However, it could be argued that the above observation hold true since a competent 

design should yield low Stress Ratios to ensure that the material does not become 

unstable (due to high Stress Ratios). 
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5.3 Design Life Calculations 

To determine the design life of the pavement structures, the final Resilient Modulus 

values are used to determine the stresses and strains of the associated layers which 

is used in transfer functions to obtain the design life.  

5.3.1 Unbound Granular Base Layer 

Figures 5-3 and 5-4 show the development of horizontal and vertical stresses 

throughout the pavement structure as analysed in BISAR 3 for the associated base 

material. 

 

Figure 5- 3: Horizontal Stress Development in Pavement Structure 

Note that for all specimen and grading curves, there is a constant change in 

horizontal stress with an increase in pavement depth. Further, note that at depths of 

150, 350 and 500 mm there is a jump in the horizontal stress. This jump is caused by 

a change in the stiffness of the materials. With the strain being equal, a change in 

stiffness results in a change in stress (Hooke’s Law). 
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Figure 5- 4: Vertical Stress Development in Pavement Structure due to Loading 

From Figure 5-4, it should be noted that, as expected, there is a decrease in vertical 

stress with increase in pavement depth. This confirms that the load applied to the 

pavement structure is distributed throughout the pavement structure by the pavement 

layers, thereby reducing the stress as the depth increases. Furthermore, this 

reduction in vertical stress contributes to the reduction in Resilient Modulus of the 

UGM basecourse. A reduction in vertical stress yields a lower Bulk Stress, which in 

turn yields a lower Resilient Modulus. 

For the purpose of this research study, the South African Mechanistic Design Method 

(SAMDM) was used to establish the design life of both the base and subbase layer of 

the pavement structure. 

For all three layers of the unbound base course the design safety factor, F is 

determined using Equation 5-1 (Theyse, 2000). 

𝑭 =
𝝈𝟑∅𝒕𝒆𝒓𝒎+𝑪𝒕𝒆𝒓𝒎

𝝈𝟏−𝝈𝟑
                              5-1 

Where: σ3 = horizontal principal stress [kPa]     

  σ1 = vertical principal stress [kPa]     

  ϕterm = 𝐾 (𝑡𝑎𝑛2 (45 +
∅

2
) − 1)      

  Cterm = 2𝐾𝐶 tan (45 +
∅

2
)       
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  K = moisture condition constant (0.8 for moderate moisture) 

  ϕ = Friction Angle [°]       

  C = Cohesion [kPa] 

Once the factor of safety F has been determined as shown above, the relationship 

between the estimated design life and F, shown by Equation 5-2 (Theyse, 2000), can 

be applied to establish the estimated design life N, of the material layer. Note that 

Equation 5-2 presents the transfer function for estimating the design life of class B 

roads. 

𝑵𝑩 = 𝟏𝟎(𝟐.𝟔𝟎𝟓𝟏𝟐𝟐𝑭+𝟑.𝟕𝟎𝟕𝟔𝟔𝟕)
                                             5-2 

Where: NB  = Estimated design life for class B roads [ESA] 

Table 5-3 presents a summary of the design life calculations for each of the grading 

and specimen sizes analysed.  

Table 5- 3: Summary of Design Life Calculation for Unbound Granular Basecourse Layer 

 

Interestingly, Table 5-3 shows that the critical points of failure, for all of the 

specimens analysed are in the centre of the basecourse layer. This is confirmed by 

plotting the deviator Stress Ratio DSR in relation to the pavement depth as illustrated 

by Figure 5-5. Note, from Figure 5-5, that the maximum DSR is reached at a depth of 

75 mm, which is at the centre of the basecourse. 

Note that the Design Life calculations show that the granular base will last forever (N 

= ±1012 ESA’s). This however is a shortcoming of the SAMDM as highlighted by F.J. 

Jooste’s in his re-evaluation of some aspects of the mechanistic-empirical design 

Specimen 

Size 

Grading 

Curve

C 

[kPa]
ϕ [°]

Position-

Layer

σ1 

[kPa]

σ3 

[kPa]

σ1,f 

[kPa]

σd 

[kPa]

σd,f 

[kPa]
DSR C-term ϕ-term F NB [ESA]

Middle-1 797.5 504.5 3987.5 293.0 3483.0 0.08 9.5 3.0E+28

Middle-2 712.2 218.2 2242.3 494.0 2024.1 0.24 3.3 1.8E+12

Middle-3 557.7 180.2 2010.7 377.5 1830.5 0.21 3.9 6.5E+13

Middle-1 796.5 521.5 4529.1 275.0 4007.6 0.07 11.7 1.2E+34

Middle-2 706.1 219.5 2254.3 486.6 2034.8 0.24 3.3 2.6E+12

Middle-3 547.2 170.9 1888.2 376.3 1717.3 0.22 3.7 1.7E+13

Middle-1 797.1 511.3 4332.2 285.8 3820.9 0.07 10.7 3.7E+31

Middle-2 709.8 219.1 2371.9 490.7 2152.8 0.23 3.5 7.1E+12

Middle-3 553.4 176.5 2086.1 376.9 1909.6 0.20 4.1 1.8E+14

Middle-1 796.6 518.0 4931.0 278.6 4413.0 0.06 12.7 5.2E+36

Middle-2 706.9 215.9 2422.1 491.0 2206.2 0.22 3.6 1.2E+13

Middle-3 549.9 173.9 2073.3 376.0 1899.4 0.20 4.0 1.7E+14

Middle-1 796.2 524.6 4608.1 271.6 4083.5 0.07 12.0 1.1E+35

Middle-2 704.6 217.2 2315.9 487.4 2098.7 0.23 3.4 4.8E+12

Middle-3 545.7 169.9 1963.2 375.8 1793.3 0.21 3.8 4.5E+13

S19

45.9

50.0109.5

Large

47.8174.1

109.1 51.7

49.8127.5

Small

S19

G19C

184.7

FULL

G19C 503.27 5.84

557.04 5.17

729.76 4.08

480.72 5.23

721.56 4.57
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approach (Jooste, 2004). Given the overall pavement balance, which is poor 

considering the Modular Ratio between the stiffness of the subbase and subgrade 

layers (Modular Ratio of 5 which is high), hence the low expected life of the subbase 

layer (see calculations in Sub-section 5.3.2), the low DSR in the granular base layer 

still lead to very high SF’s and expected Design Life’s. Therefore, it appears that the 

granular base will last forever, but this is actually not the case. 

 

Figure 5- 5: Progression of DSR in Relation to Pavement Depth 

5.3.2 Cement Stabilised Subbase Layer 

The design life of the cement stabilised subbase layer is also computed using the 

method presented by the SAMDM. The mechanism of failure expected is that of 

fatigue cracking therefore the critical point of analysis is the tensile strain at the 

bottom of the stabilised layer (depth of 350 mm). BISAR 3 is again used to evaluate 

the stain and the fatigue relationship presented by Equation 5-3 (Theyse, 2000) is 

used to estimate the design life. 

𝑵𝑩 = 𝑺𝑭 ∗ 𝟏𝟎
𝟔.𝟖𝟒(𝟏−

𝜺

𝟕.𝟔𝟑𝜺𝒃
)
                             5-3 

Where: NB  = Estimated design life for class B roads [ESA]   

  SF = Layer thickness shift factor (100.00285h – 0.293)   

  ε = Tensile strain at bottom of stabilised layer [με]  

  εb = Strain at break (125 με for C3 material) 

Table 5-4 presents the calculations used to estimate the design life of the cements 
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stabilised subbase layer.  

Table 5- 4: Summary of Design Life Calculations for Stabilised Subbase Layer 

 

Note that there is a slight difference in the design life estimations for each of the 

evaluated grading and specimen sizes. 

5.3.3 Comparison of Design Life 

It is clear from Tables 5-3 and 5-4 and Figure 5-6 that pavement failure will be 

caused by a failure in the stabilised subbase. Cracking will occur due to the high 

tensile strains developed at the bottom of the layer. 

 

Figure 5- 6: Comparison of Estimated Design Life Values 

A further interesting point to take note of is that, although the failure of the pavement 

structure will occur in the subbase, the estimated design life of the pavement 

structure that incorporates the G19C grading curves are more representative to that 

of the Full grading curve. This shows that for the design life analysis shown, that the 

analysis of the G19C grading curves are more representative to that of the Full 

grading curve. In addition it should be noted that results obtained by testing large 

specimens yield far greater expected design lives compared to small specimens 
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It is important to note that although the initial design life of the basecourse is high in 

comparison to that of the subbase, the stiffness of the subbase will decrease as it 

approaches failure. As the pavement finds more balanced Modular Ratios, the 

stiffness of the subbase will reduce, resulting in a reduced basecourse stiffness 

thereby reducing the design life of the granular base too. However, for the purpose of 

this comparison into the influence of the base layer’s grading, it suffices to use the 

initial subbase stiffness for the stress distribution in this sensitivity analysis. 
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

This final chapter presents a synthesis on the conclusions drawn from the research 

study. In addition, recommendations for future studies are presented as well as 

methods to improve the current testing protocols and testing equipment used for this 

study. 

6.1 Conclusions 

6.1.1 General Conclusions 

The general conclusions that were made based on observations and results obtained 

in this study include: 

 The most commonly used method of grading manipulation, the parallel-scalp-

method, referred to as the S19 grading curve in this thesis, yields a very fine 

grading that does not, at any stage along the grading curve, simulate the initial 

Full grading. Therefore, an alternative method, more representative of the true 

grading, needs to be implemented. 

 The alternative to the S19 grading curve, the G19C grading curve, yields a 

grading curve that fits the Full grading curve precisely except at sieve sizes 

greater than 13,2mm. 

 Both sizes of specimen compaction equipment allowed for accurate control of 

density. This in turn allowed comparison of different sized specimens prepared 

under similar conditions. 

 The large-size testing apparatus allows more accurate control of the applied 

confinement pressure. The pressure is controlled by the system itself and not 

manually as is the case with the small-size testing apparatus. 

 The entire range of monotonic tri-axial specimens showed a decrease in 

moisture content due to the curing method implemented. Large-size 

monotonic specimens however showed a smaller reduction in moisture 

content (0.14%) when compared to small-size specimens (0.51% reduction). 

As mentioned, the implementation of plastic bags, to seal the small-size 

specimens, results in a build-up of moisture on the surface of the plastic 

thereby removing moisture from the specimens themselves. In addition, the 

volume to surface area ratio (30 and 60 for small- and large-size specimens 

respectively) could also influence the flow of moisture, resulting in increased 
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moisture loss for small-size specimens which has more surface area in 

relation to specimen volume when compared to large-size specimens. 

 All sizes of specimens tested showed the material’s stress dependent nature. 

Shear strength increased with increasing confinement pressure whereas all 

dynamically loaded specimens showed an increase in Resilient Modulus for 

an increase in confinement pressure, applied vertical stress and Bulk Stress. 

 The number of specimens tested influences material shear parameters. 

Results show that reducing the number of small-size specimens monotonically 

tested from eight to six (i.e. removing the 25 kPa specimens) results in a 

significant increase in Cohesion and a decrease in Friction Angle. Therefore, 

to allow for comparison, a similar range of confinement pressures needs to be 

tested. 

 All tests performed on specimens already dynamically loaded, showed an 

increase in both shear strength and resilient performance properties. 

Monotonic tri-axial tests were performed on small-size specimens that were 

dynamically tested up to a maximum Stress Ratio of 55% . The results 

showed an increase in both Cohesion and Friction Angle. In addition, 

additional load cycles were applied to large-size dynamically loaded 

specimens once the initial dynamic tri-axial test was complete. The results 

showed an increase in the Resilient Modulus of the tested material. 

Furthermore, all Mr-Ɵ- 
𝝈𝒅

𝝈
𝒅
𝒇 calibrated models showed material stiffening (k5 < 0). 

This stiffening results from an increase in density and a reduction in plasticity 

as a result of dynamic loading. Another factor that supported the phenomenon 

that dynamic loading causes an increase in density was the forcing out of 

moisture from the specimens during dynamic testing. 

 Generally the Mr-Ɵ- 
𝝈𝒅

𝝈
𝒅
𝒇 model, which accounts for the influence of the deviator 

Stress Ratio, fits the measured Resilient Modulus values best. As mentioned 

however, the model predicts material stiffening. Although this is the case for 

the range of applied Stress Ratios, material softening or even failure is 

expected at severe Stress Ratios. Therefore, it is important to note that this 

conclusion is based on the range of Stress Ratios tested and different trends 

can be expected for more severe Stress Ratios. 

 The dynamic tri-axial test results showed that for all sizes of specimens the 

one second load cycle can be shortened to a half second load cycle without 
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influencing the measured Resilient Modulus. The response of this specific 

material is so rapid that there is no need for a 0.9 second rest period. Although 

it has also been shown that the duration of the loading and unloading phase 

can also be halved, this does place severe strain on the testing equipment. 

 Analysis of large-size dynamic tri-axial results show that the mechanism used 

to connect vertical LVDT’s to the large-size specimens allows severe 

movement of the LVDT’s which could influence the results obtained. An 

improvement to the current mechanism is required. 

 For the typical pavement structure analysed, basecourse failure will occur in 

the centre of the basecourse layer. 

 The design life analysis shows that the critical design life is that of the 

stabilised subbase layer which will fail long before failure in the basecourse 

occurs. Failure will occur due to tensile strains induced at the bottom of the 

stabilised subbase layer. 

6.1.2 Influence of Specimen Geometry 

To gain an understanding of the influence of specimen geometry, on the performance 

properties tested, two sizes of specimens were tested. The results were analysed 

and it was concluded that: 

 The larger specimens, for both grading curves, showed lower Cohesion values 

when compared to small-size specimens. In terms of Friction Angle, both 

grading curves yielded greater angles of internal friction for larger specimens. 

 

Although it is plausible that the influence is due to material variation, the 

variation in material specimens is small and that the influence thereof is 

insignificant. In addition, both grading curves showed the above influence of 

specimen geometry which adds to the believe that the observation in 

influenced by specimen geometry rather than material variation. 

 

 With regard to Resilient Modulus and the Mr-Ɵ  model, it is clear that specimen 

geometry does influence the Resilient Modulus however, no certain and 

constant trend can be established.  

 

For the S19 grading curve, larger specimens yield larger Resilient Modulus 

values whereas the G19C grading curve yields higher Resilient Modulus 
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values for the small size specimens. The influence of specimen geometry is 

thus influenced by the grading op the tested specimens. 

 

 The Mr-Ɵ- 
𝝈𝒅

𝝈
𝒅
𝒇 model also shows that the Resilient Modulus is influenced by 

specimen geometry and that no certain trend can be established. The model 

however adds to the Mr-Ɵ model, in that it shows that the applied deviator 

Stress Ratio also affects the influence of specimen geometry and that the 

affect is not constant for all grading curves. 

For a deviator Stress Ratio of 0.1, the S19 grading curve yield higher Resilient 

Modulus values for large specimens over the entire range of Bulk Stresses. 

The G19C grading curve on the other hand yields lower Resilient Modulus 

values for large-size specimens for stresses equal and less than 500 kPa. For 

Bulk Stresses greater than 500 kPa the G19C grading curve yield greater 

Resilient Modulus values for larger specimens. 

In summary, both grading curves, for an applied deviator Stress Ratio of 0.1 

and applied Bulk Stresses greater than 500 kPa, yield higher Resilient 

Modulus values for large-size specimens. For Bulk Stresses 500 kPa and less, 

the G19C grading curve yield lower values for large-size specimens. 

For a deviator Stress Ratio of 0.9 and the entire range of Bulk Stresses, the 

smaller specimens yield greater Resilient Modulus values for both grading 

curves. 

 Large-sized specimens showed lower standard deviations and coefficients of 

variation, for both monotonic and dynamic tri-axial test, when compared to 

small-size specimens. It is believed that this is due to boundary conditions, 

caused by the moulding process, influencing the obtained results thereby 

showing that larger sized specimens are less influenced by boundary 

conditions caused by the split moulds used during specimen preparation. 

6.1.3 Influence of Grading Curve 

The influence of grading curve on the resilient response of the tested material can be 

evaluated by using the calibrated models and plotting their results in relation to 

various Bulk Stress values and, in the case of the Mr-Ɵ- 
𝝈𝒅

𝝈
𝒅
𝒇 model, the applied Stress 
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Ratio. From the plotted results, it can be concluded that: 

 For both specimen sizes, the finer S19 grading curve yield far greater 

Cohesion values when compared to that of the coarser G19C and Full grading 

curves. 

 In terms of Friction Angle, the coarser G19C grading curve yields, as 

expected, higher angles of internal friction for both specimen sizes, when 

compared to the finer S19 grading curve. 

 With regards to the Resilient Modulus values, estimated with the Mr-Ɵ model, 

the G19C grading curve yields greater Resilient Modulus values compared to 

its finer counterpart, the S19 grading curve, for Bulk Stresses greater than 500 

kPa. This confirms that grading curve does influence the Resilient Modulus of 

the tested material although the influence is affected by the applied Bulk 

Stress. 

 The Mr-Ɵ- 
𝝈𝒅

𝝈
𝒅
𝒇 model also shows that grading curve influences the Resilient 

Modulus of the tested material. Except for an applied deviator Stress Ratio of 

0.1, the G19C grading curve yield higher Resilient Modulus values when 

compared to the S19 grading curve for both sizes of specimens. At a deviator 

Stress Ratio of 0.1 however, the large-size S19 specimen yields greater 

Resilient Modulus values for the entire range of Bulk Stresses. 

 

This confirms that the Resilient Modulus of the tested material is influenced by 

grading curve however; the applied deviator Stress Ratio also affects the 

influence. 

6.1.4 Comparison of Grading Curves 

Although not initially set as an objective of this thesis, a revised method of grading 

manipulation for small-size laboratory characterisation of pavement materials is 

recommended. Through analysis of test results and based on the assumption that 

the large-size Full grading curve specimen’s best simulate true infield performance, 

the following can be conclude: 

 In terms of the grading curve itself, the G19C grading curve fits a large portion 

of the Full grading curve whereas no part of the S19 grading curve fits the Full 

grading curve. This in itself shows that the G19C grading curve is more 

representative of the Full grading. 
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 For both Cohesion and Friction Angle, the G19C grading curve yields more 

representative results to that of the Full grading curve. This is noted for both 

small and large-size specimens. 

 With regard to the experimental Resilient Modulus and design results that 

were considered for the tested grading curves, none of the two adjusted 

grading curves yield results that are comparable to that of the Full grading for 

the full range of Bulk Stresses and applied SRd. However, the G19C grading 

curve fits the Full grading best for a wider range of Bulk Stress and SRd 

values. 

 In terms of the design life analysis, the estimated pavement design life for both 

sizes of the G19C grading curves are more representative of the Full grading 

curve when compared to that of the finer S19 grading curves. In addition, 

when comparing the Bulk Stresses induced in the granular base due to 

loading, the G19C grading fits the Full grading best. This shows than even 

though the G19C grading does not always fit the Full grading best, especially 

at low Bulk Stresses (<100 kPa) and Deviator Stress Ratios (<20%), it does 

however fit the Full grading best for typical South African pavement structures 

and the stresses induced therein due to typical South African loading 

conditions. Note that this is true for Phase 1 of the design and could have 

been different for Phase 2 (equivalent granular phase). 

6.2 Recommendations 

Although the research study yielded valuable information regarding the influence of 

specimen geometry and grading curve on the performance of the tested material, the 

research was not without drawbacks. Therefore, to improve future research into this 

topic and other topics involving similar testing protocols, recommendations are 

presented below.  

6.2.1 Future Research 

Recommendations for future research include: 

 Only one representative parent material was selected for testing. Therefore, 

it is recommended that, future studies, investigating the influence of grading 

curve and specimen geometry, investigate the influences on more types of 

materials. This would show whether the influence is similar for various 

material types. 
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 One moisture content and target dry density was used for all grading curve. 

In doing this, some grading curves tested might not have been compacted to 

their maximum density at their optimum moisture content. Therefore it is 

recommended that future research evaluate specimens compacted to 

maximum density at their optimum moisture content. This would give a better 

understanding of the material infield performance when compacted to its 

maximum density. 

 The literature reviewed showed that some practices use specimens 

previously dynamically loaded for evaluation of shear performance. This 

research however shows that an increase in shear performance can be 

expected when comparing results from virgin specimens to that of previously 

dynamically loaded specimens. It is therefore recommended that this practice 

only be used to evaluate the future expected shear performance of the 

material once dynamically loading and not during initial design phase testing.  

 It has been shown that the commonly used parallel-scalping method (S19 

grading curve) does not yield results as representative of the true Full 

grading curve. Therefore, it is recommended that future research incorporate 

the more representative scalp-add-back method (G19C grading curve) for 

specimen preparation and testing. 

 A robust method for achieving equilibrium moisture content is required for 

large-size specimens. Further research to develop such an method is 

required for future testing of large-size specimens. 

6.2.2 Testing Protocols 

The results show that, for the representative parent material tested, the current 0.9 

second resting period within the prescribed loading cycle, is too long. The response 

of the material is rapid and after about 0.4 seconds no further change in the 

displacement measured by the vertical LVDT’s is noted. Therefore, since there is no 

further change noted, there is no need for the prolonged resting period. It is 

recommended, based on the results obtained, that the loading cycle for dynamic tri-

axial tests be revised to incorporate a 0.1 second loading phase followed by a 0.4 

second resting period. This would halve the time required to perform both short 

duration dynamic and permanent deformation tri-axial tests. 

Care should however be taken when shortening these load pulses. As mentioned, 

shortening the loading phase placed high strain on the apparatuses used. 
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Furthermore, not all tri-axial apparatuses are capable of applying shortened load 

pulses without influencing the obtained results. Therefore, it is advised that, if the 

route of shortening the load pulse is taken, the tester should perform a regime of 

tests to evaluate the equipment used  load dependent pulse wave to confirm whether 

the apparatus used is capable of applying the shortened load without influencing the 

results.  

6.2.3 Testing Apparatus 

Although the testing apparatus’ used for this research study performed as desired, 

slight changes to the equipment can improve future testing. Therefore, it is 

recommended that: 

 The small-size tri-axial apparatus be upgraded to a system similar to that of 

the large-size apparatus. Currently the small-size apparatus requires the 

researcher to manually set the confinement pressure using a valve system. 

This however is not as accurate as the system implemented on the large-size 

apparatus, which is automatically controlled, by the control system, to yield the 

desired confinement pressure. 

 The mechanism used to attach the vertical LVDT’s to large-size specimens be 

changed to a similar method as that used on the small-size tri-axial apparatus. 

The small-size tri-axial apparatus implements a mechanism that is more rigid 

when compared to that of the large-size mechanism thereby yielding more 

stable displacement measurements. 
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Appendix A:  

Material Densities Based on Vibratory Compaction 

Table A- 1: Mod Results for Small-size S19 Grading Curve 

Target 
MC [%] 

Mass 
[g] 

Height 
[mm] 

Density 
[kg/m3] 

Holder 
Ref 

EM [g] 
WM 
[g] 

DM [g] 
True 

MC [%] 
Average 
MC [%] 

3 2483.00 

61 

2290.91 

Y9 237.10 933.90 912.90 3.11 

3.04 61 73 237.50 935.60 914.90 3.06 

62 98 178.40 914.30 893.10 2.97 

4 2484.00 

59 

2409.70 

X2 237.20 902.90 877.60 3.95 

4.04 58 84 224.10 937.50 909.30 4.12 

58 43 228.50 957.00 928.70 4.04 

4.7 2477.00 

57 

2473.58 

63 226.40 901.90 872.60 4.53 

4.79 56 12 203.10 925.20 891.20 4.94 

57 70 197.80 974.60 938.30 4.90 

5 2454.00 

56 

2465.11 

12 203.10 898.90 865.20 5.09 

4.92 57 13 226.50 979.20 944.60 4.82 

56 80 193.80 977.00 940.80 4.85 

6 2395.00 

55 

2479.19 

70 197.90 875.80 837.90 5.92 

5.91 55 6A 179.60 874.80 834.60 6.14 

54 63 220.90 918.10 880.70 5.67 

 

Table A- 2: Mod Results for Small-size G19C Grading Curve 

Target 
MC [%] 

Mass 
[g] 

Height 
[mm] 

Density 
[kg/m3] 

Holder 
Ref 

EM [g] WM [g] DM [g] 
True 

MC [%] 
Average 
MC [%] 

3 2488.00 

61 

2308.07 

60 222.60 954.00 930.50 3.32 

3.20 61 61 285.50 1046.60 1022.10 3.33 

61 32 219.30 1001.00 978.50 2.96 

4 2491.00 

59 

2402.76 

3B 187.40 898.00 871.70 3.84 

3.81 59 2 207.20 952.90 924.70 3.93 

58 58 202.60 933.00 907.30 3.65 

4.7 2463.00 

56 

2474.15 

44 179.50 893.60 862.10 4.61 

4.71 56 X2 237.00 1016.10 981.40 4.66 

57 65 228.40 1040.90 1003.30 4.85 

5 2444.00 

56 

2469.68 

53 215.10 917.60 884.50 4.94 

4.94 56 24 185.90 886.00 852.70 4.99 

56 2 238.70 976.40 942.10 4.88 

6 2383.00 

54 

2481.91 

14 198.50 938.90 897.30 5.95 

5.94 54 18 189.70 964.40 921.40 5.88 

55 17 153.10 900.50 858.30 5.98 
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Table A- 3: Mod Results for Large-size Full Grading Curve 

Target 
MC [%] 

Mass [g] 
Height 
[mm] 

Density 
[kg/m3] 

Holder 
Ref 

EM [g] WM [g] DM [g] 
True 

MC [%] 
Average 
MC [%] 

4 20934.00 

124 

2381.95 

80 193.80 773.40 751.00 4.02 

3.74 125 65 228.50 898.70 876.20 3.47 

124 70 197.80 888.30 863.50 3.73 

4.7 21155.00 

118 

2522.04 

2A 187.40 858.90 828.90 4.68 

4.68 119 32 202.50 873.20 842.60 4.78 

119 54 215.00 934.40 902.80 4.59 

5 20967.00 

119 

2506.67 

73 237.40 882.60 850.70 5.20 

4.92 118 63 226.40 901.50 870.50 4.81 

118 Y3 236.20 1024.20 988.40 4.76 

6 20858.00 

117 

2514.89 

4A 236.80 967.50 929.20 5.53 

6.09 117 X1 236.50 978.30 932.00 6.66 

118 20 172.00 992.90 945.90 6.07 
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Appendix B: 

Monotonic Tri-axial Test Results 

 

 

Figure B- 1: Stress-strain Relationship Curves, Small-size S19 

 

Figure B- 2: Eight Circle Mohr-Coulomb Representation, Small-size S19 

 

Figure B- 3: Six Circle Mohr-Coulomb Representation, Small-size S19 
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Figure B- 4: Stress-strain Relationship Curves, Small-size G19C 

 

Figure B- 5: Eight Circle Mohr-Coulomb Representation, Small-size G19C 

 

Figure B- 6: Six Circle Mohr-Coulomb Representation, Small-size G19C 
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Figure B- 7: Stress-strain Relationship Curves, Large-size S19 

 

Figure B- 8: Three Circle Mohr-Coulomb Representation, Large-size S19 

 

Figure B- 9: Stress-strain Relationship Curves, Large-size G19C 

 

Figure B- 10: Three Circle Mohr-Coulomb Representation, Large-size G19C 
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Figure B- 11: Stress-strain Relationship Curves, Large-size Full 

 

Figure B- 12: Three Circle Mohr-Coulomb Representation, Large-size Full 

 

Figure B- 13: Mohr-Coulomb Representation, S-S19, Post Dynamic Loading 

 

Figure B- 14: Mohr-Coulomb Representation, S-S19, Post Dynamic Loading
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Appendix C: 

Dynamic Tri-axial Test Results 

 

Figure C- 1: Small-size S19 Resilient Modulus Results, Specimen 1 

 

Figure C- 2: Resilient Modulus vs Bulk Stress, Small-size S19, Specimen 1 

 

Figure C- 3: Small-size S19 Resilient Modulus Results, Specimen 2 

 

Figure C- 4: Resilient Modulus vs Bulk Stress, Small-size S19, Specimen 2 
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Figure C- 5: Small-size S19 Resilient Modulus Results, Specimen 3 

 

Figure C- 6: Resilient Modulus vs Bulk Stress, Small-size S19, Specimen 3 

 

Figure C- 7: Small-size G19C Resilient Modulus Results, Specimen 1 

 

Figure C- 8: Resilient Modulus vs Bulk Stress, Small-size G19C, Specimen 1 
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Figure C- 9: Small-size G19C Resilient Modulus Results, Specimen 2 

 

Figure C- 10: Resilient Modulus vs Bulk Stress, Small-size G19C, Specimen 2 

 

Figure C- 11: Small-size G19C Resilient Modulus Results, Specimen 3 

 

Figure C- 12: Resilient Modulus vs Bulk Stress, Small-size G19C, Specimen 3 
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Figure C- 13: Large-size S19 Resilient Modulus Results, Specimen 1 

 

Figure C- 14: Resilient Modulus vs Bulk Stress, Large-size S19, Specimen 1 

 

Figure C- 15: Large-size G19C Resilient Modulus Results, Specimen 1 

 

Figure C- 16: Resilient Modulus vs Bulk Stress, Large-size G19C, Specimen 1 
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Figure C- 17: Large-size G19C Resilient Modulus Results, Specimen 2 

 

Figure C- 18: Resilient Modulus vs Bulk Stress, Large-size G19C, Specimen 2 

 

Figure C- 19: Large-size Full Resilient Modulus Results, Specimen 1 

 

Figure C- 20: Resilient Modulus vs Bulk Stress, Large-size Full, Specimen 1 
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Figure C- 21: Large-size Full Resilient Modulus Results, Specimen 2 

 

Figure C- 22: Resilient Modulus vs Bulk Stress, Large-size Full, Specimen 2
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Appendix D: 

Modelling of Mr-Ɵ Model 

 

Figure D- 1: Mr-Ɵ Modelling of Small-size S19 Resilient Modulus 

 

Figure D- 2: Mr-Ɵ Modelling of Small-size G19C Resilient Modulus 

 

Figure D- 3: Mr-Ɵ Modelling of Large-size S19 Resilient Modulus 

 

Figure D- 4: Mr-Ɵ Modelling of Large-size G19C Resilient Modulus 
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Figure D- 5: Mr-Ɵ Modelling of Large-size Full Resilient Modulus 
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Appendix E: 

Modelling of Mr-Ɵ- 
𝝈𝒅

𝝈
𝒅
𝒇  Model 

 

Figure E- 1: Mr-Ɵ- 
𝝈𝒅

𝝈
𝒅
𝒇  Modelling of Small-size S19 Resilient Modulus

 

Figure E- 2: Mr-Ɵ- 
𝝈𝒅

𝝈𝒅
𝒇  Modelling of Small-size G19C Resilient Modulus 

 

Figure E- 3: Mr-Ɵ- 
𝝈𝒅

𝝈𝒅
𝒇  Modelling of Large-size S19 Resilient Modulus 

 

Figure E- 4: Mr-Ɵ- 
𝝈𝒅

𝝈𝒅
𝒇  Modelling of Large-size G19C Resilient Modulus 
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Figure E- 5: Mr-Ɵ- 
𝝈𝒅

𝝈𝒅
𝒇  Modelling of Large-size Full Resilient Modulus 
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Appendix F: 

0.1 – 0.9 Loading Rate 

 

Figure F- 1: Last 10% SR Conditioning Cycle, S-S19 

 

Figure F- 2: Last 55% SR Conditioning Cycle, S-S19 

 

Figure F- 3: Last 10% SR 200 kPa Load Cycle, S-S19 

 

Figure F- 4: Last 55% SR 200 kPa Load Cycle, S-S19 

 

Figure F- 5: Last 10% SR 25 kPa Load Cycle, S-S19 

 

Figure F- 6: Last 55% SR 25 kPa Load Cycle, S-S19 
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Figure F- 7: Last 10% SR Conditioning Cycle, S-G19C 

 

Figure F- 8: Last 55% SR Conditioning Cycle, S-G19C 

 

Figure F- 9: Last 10% SR 200 kPa Load Cycle, S-G19C 

 

Figure F- 10: Last 55% SR 200 kPa Load Cycle, S-G19C 

 

Figure F- 11: Last 10% SR 25 kPa Load Cycle, S-G19C 

 

Figure F- 12: Last 55% SR 25 kPa Load Cycle, S-G19C 
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Figure F- 13: Last 10% SR Conditioning Cycle, L-S19 

 

Figure F- 14: Last 55% SR Conditioning Cycle, L-S19 

 

Figure F- 15: Last 10% SR 200 kPa Load Cycle, L-S19 

 

Figure F- 16: Last 55% SR 200 kPa Load Cycle, L-S19 

 

Figure F- 17: Last 10% SR 25 kPa Load Cycle, L-S19 

 

Figure F- 18: Last 55% SR 25 kPa Load Cycle, L-S19 
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Figure F- 19: Last 10% SR Conditioning Cycle, L-G19C 

 

Figure F- 20: Last 55% SR Conditioning Cycle, L-G19C 

 

Figure F- 21: Last 10% SR 200 kPa Load Cycle, L-G19C 

 

Figure F- 22: Last 55% SR 200 kPa Load Cycle, L-G19C 

 

Figure F- 23: Last 10% SR 25 kPa Load Cycle, L-G19C 

 

Figure F- 24: Last 55% SR 25 kPa Load Cycle, L-G19C 
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Figure F- 25: Last 10% SR Conditioning Cycle, L-Full 

 

Figure F- 26: Last 55% SR Conditioning Cycle, L- Full 

 

Figure F- 27: Last 10% SR 200 kPa Load Cycle, L- Full 

 

Figure F- 28: Last 55% SR 200 kPa Load Cycle, L- Full 

 

Figure F- 29: Last 10% SR 25 kPa Load Cycle, L- Full 

 

Figure F- 30: Last 55% SR 25 kPa Load Cycle, L- Full
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Appendix G: 

0.05 – 0.95 Loading Rate 

 

 

Figure G- 1: Small-size S19 Resilient Modulus Results, Rapid Loading 

 

 

 

 

 

 

 

 

Figure G- 2: Resilient Modulus vs Bulk Stress, Small-size S19, Rapid Loading 
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Figure G- 3: Last Rapid 10% SR Conditioning Cycle, S-S19 

 

Figure G- 4: Last Rapid 55% SR Conditioning Cycle, S-S19 

 

Figure G- 5: Last Rapid 10% SR 200 kPa Load Cycle, S-S19 

 

Figure G- 6: Last Rapid 55% SR 200 kPa Load Cycle, S-S19 

 

Figure G- 7: Last Rapid 10% SR 25 kPa Load Cycle, S-S19 

 

Figure G- 8: Last Rapid 55% SR 25 kPa Load Cycle, S-S19 
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Appendix H: 

Comparison of Models and Influence of Deviator Stress Ratio 

 

Figure H- 1: Comparison of Models at SRd = 10, 50 and 90% for Small-size S19 

 

Figure H- 2: Comparison of Models at SRd = 10, 50 and 90% for Small-size G19C 
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Figure H- 3: Comparison of Models at SRd = 10, 50 and 90% for Large-size S19 

 

Figure H- 4: Comparison of Models at SRd = 10, 50 and 90% for Large-size G19C 

 

Figure H- 5: Comparison of Models at SRd = 10, 50 and 90% for Large-size Full
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Appendix I: 

Influence of Increased Density on Resilient Modulus during Dynamic 

Testing 

 

Figure I- 1: Increase in Resilient Modulus of L-S19 Specimen after Initial Dynamic Loading 

 

Figure I- 2: Increase in Resilient Modulus of L-G19C Specimen after Initial Dynamic Loading 
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Figure I- 3: Increase in Resilient Modulus of L-Full Specimen after Initial Dynamic Loading 
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Appendix J: 

Iterative Design Calculations of Resilient Modulus 

 

Table J- 1: Iterative Design Calculations of Mr for Small-size S19 Specimens 

 

Table J- 2: Iterative Design Calculations of Mr for Small-size G19C Specimens 

 

Table J- 3: Iterative Design Calculations of Mr for Large-size S19 Specimens 

 

 

ϭ1 [kPa] ϭ2 [kPa] ϭ3 [kPa]

1 400.0 799.4 474.1 474.1 1747.6 560.2 40%

2 400.0 725.5 236.7 236.7 1198.9 464.0 16%

3 400.0 572.9 190.4 190.4 953.7 413.8 3%

1 560.2 797.5 504.2 504.3 1806.0 569.5 2%

2 464.0 712.4 220.1 220.1 1152.6 454.9 -2%

3 413.8 557.5 179.9 179.9 917.3 405.8 -2%

1 569.5 797.5 504.5 504.5 1806.5 569.5 0%

2 454.9 712.2 218.2 218.3 1148.7 454.2 0%

3 405.8 557.7 180.2 180.2 918.1 406.0 0%

Mr [Mpa]

Mr 

Deviation 

from 

Previous 

1

2

3

13.40 0.50

BISAR 3 

Input Mr 

[Mpa]

Iteration Layer

Values from BISAR 3

ϴ [kPa] k1 [MPa] k2 [-]

ϭ1 [kPa] ϭ2 [kPa] ϭ3 [kPa]

1 400.0 799.4 474.1 474.1 1747.6 640.6 60%

2 400.0 725.5 236.7 236.7 1198.9 536.6 34%

3 400.0 572.9 190.4 190.4 953.7 481.9 20%

1 640.6 796.6 520.1 520.1 1836.8 655.7 2%

2 536.6 707.0 223.6 223.6 1154.2 527.1 -2%

3 481.9 547.3 170.3 170.3 887.9 466.0 -3%

1 655.7 796.5 521.5 521.5 1839.5 656.2 0%

2 527.1 706.1 219.5 219.5 1145.1 525.1 0%

3 466.0 547.2 170.9 170.9 889.0 466.2 0%

Mr [Mpa]

Mr 

Deviation 

from 

Previous 

1

2

3

19.17 0.47

BISAR 3 

Input Mr 

[Mpa]

Iteration Layer

Values from BISAR 3

ϴ [kPa] k1 [MPa] k2 [-]

ϭ1 [kPa] ϭ2 [kPa] ϭ3 [kPa]

1 400.0 799.4 474.1 474.1 1747.6 591.2 48%

2 400.0 725.5 236.7 236.7 1198.9 493.4 23%

3 400.0 572.9 190.4 190.4 953.7 442.1 11%

1 591.2 797.2 510.5 510.5 1818.2 602.6 2%

2 493.4 710.4 221.9 222.0 1154.3 484.5 -2%

3 442.1 553.4 176.1 176.1 905.6 431.2 -2%

1 602.6 797.1 511.3 511.3 1819.7 602.8 0%

2 484.5 709.8 219.1 219.1 1148.0 483.2 0%

3 431.2 553.4 176.5 176.5 906.4 431.4 0%

Mr [Mpa]

Mr 

Deviation 

from 

Previous 

1

2

3

16.42 0.48

BISAR 3 

Input Mr 

[Mpa]

Iteration Layer

Values from BISAR 3

ϴ [kPa] k1 [MPa] k2 [-]
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Table J- 4: Iterative Design Calculations of Mr for Large-size G19C Specimens 

 

Table J- 5: Iterative Design Calculations of Mr for Large-size Full Specimens 

 

 

ϭ1 [kPa] ϭ2 [kPa] ϭ3 [kPa]

1 400.0 799.4 474.1 474.1 1747.6 627.2 57%

2 400.0 725.5 236.7 236.7 1198.9 511.7 28%

3 400.0 572.9 190.4 190.4 953.7 452.2 13%

1 627.2 796.7 516.9 516.9 1830.5 643.1 3%

2 511.7 707.7 219.7 219.7 1147.1 499.7 -2%

3 452.2 549.9 173.4 173.4 896.7 437.4 -3%

1 643.1 796.6 518.0 518.0 1832.6 643.5 0%

2 499.7 706.9 215.9 215.9 1138.7 497.7 0%

3 437.4 549.9 173.9 173.9 897.7 437.7 0%

Mr [Mpa]

Mr 

Deviation 

from 

Previous 

1

2

3

11.13 0.54

BISAR 3 

Input Mr 

[Mpa]

Iteration Layer

Values from BISAR 3

ϴ [kPa] k1 [MPa] k2 [-]

ϭ1 [kPa] ϭ2 [kPa] ϭ3 [kPa]

1 400.0 799.4 474.1 474.1 1747.6 658.6 65%

2 400.0 725.5 236.7 236.7 1198.9 543.4 36%

3 400.0 572.9 190.4 190.4 953.7 483.6 21%

1 658.56 796.4 522.9 522.9 1842.2 676.5 3%

2 543.41 705.8 222.1 222.1 1150.0 532.0 -2%

3 483.56 545.9 169.2 169.2 884.3 465.3 -4%

1 676.50 796.2 524.6 524.6 1845.4 677.1 0%

2 531.99 704.6 217.2 217.2 1139.0 529.4 0%

3 465.28 545.7 169.9 169.9 885.5 465.6 0%

Mr [Mpa]

Mr 

Deviation 

from 

Previous 

1

2

3

14.62 0.51

BISAR 3 

Input Mr 

[Mpa]

Iteration Layer

Values from BISAR 3

ϴ [kPa] k1 [MPa] k2 [-]
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