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ABSTRACT 

In terms of project risk management, ‘systemic risk’ is identified as risks 
which are artefacts of the environment which a project is executed in, and 
are related to (i) the project team’s actions, (ii) how project controls are 
managed and interact, and (iii) how the project is planned and executed. 
This paper proposes a methodology to estimate the cost impact of systemic 
risk on a portfolio of projects by using risk quantification and Monte Carlo 
simulation, in the absence of a validated parametric risk model, to 
estimate the systemic risks in an entire portfolio of projects. The case 
study simulation results indicate a significant effect of systemic risks on 
the project portfolio risk profile, where systemic risks increased the P80 
value of the contingency requirement by +85.6%. The successful 
management of systemic risk would contribute to project success by 
limiting unnecessary waste.  

OPSOMMING 

In terme van projekrisikobestuur word sistemiese risiko’s geïdentifiseer as 
risiko’s wat ŉ karakteristiek is van die omgewing waarbinne die projek 
uitgevoer word. Hierdie risiko’s hou verband met (i) die aksies van die 
projekbestuurspan, (ii) hoe projekkontroles bestuur word en ineenskakel, 
en (iii) hoe die projek beplan en uitgevoer word. Hierdie artikel stel ŉ 
metode voor wat gebruik kan word om die koste-impak van sistemiese 
risiko’s op ŉ projek portefeulje te bepaal waar daar ŉ gebrek is aan ŉ 
geldige paremetriese model vir die berekening van sistemiese risiko’s se 
impak op ŉ hele projekportefeulje. Dit word gedoen deur middel van risiko 
kwantifisering en Monte Carlo simulasie. Die resultaat toon ŉ 
noemenswaardige impak van sistemiese risiko’s op die risikoprofiel van die 
projekportefeulje, waar sistemiese risiko die gebeurlikheidsbegroting met 
+85.6 % verhoog het. Die suksesvolle bestuur van sistemiese risiko’s kan ŉ 
noemenswaardige effek op projek sukses uitoefen deur die beperking van 
onnodige vermorsing. 

 

1 INTRODUCTION  

1.1 Simulation developed to support science became science in itself 

Nicholas Metropolis coined the term ‘Monte Carlo method’ in the late 1940s after the first electronic 
computer-based Monte Carlo method was devised by Stanislaw Ulam while working at Los Alamos National 
Laboratory (Kamgouroglou, 2020; Metropolis, 1987) as part of the North American nuclear programme. 
When computers became more widely available from the 1970s onwards, it became possible to apply more 
sophisticated methods to determining project contingencies (Broadleaf, 2014); and the availability of the 
first desktop-based Monte Carlo simulation (MCS) software in the 1980s (Hollmann, 2016) opened up a 
significant new field of project risk management research. Harrison, Lin, Carroll, and Carley (2007) stated 
that some research on simulation studies started appearing in the 1980s; but it only began to appear 
regularly in social and management science journals in the 1990s. Harrison et al. (2007, p. 1243) stated 
that “computer simulation can be a powerful way to do science”, and “…computer simulation promises to 
play a major role in the future…”; they concluded that “computer simulation is now a recognised way of 
doing science”. The published research referred to disciplines related to management, psychology, 
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sociology, economics, and political science. Berends and Romme (1999, p. 576) confirmed Harrison et al.’s 
view. By 2010, Jahangirian, Eldabi, Nasseer, Stegioulas, and Young (2010b, p. 8) had reviewed several 
simulation applications published in the peer-reviewed literature on business and manufacturing for the 
period between 1997 and 2006. They found that MCS was primarily employed in solving numerical problems 
such as risk management and property valuation. 

1.2 What is Monte Carlo simulation, and how is it applied in the project risk management 
environment? 

The Monte Carlo simulation (MCS) method is a computerised mathematical technique that is used in 
quantitative analysis and decision-making. MCS is used to perform quantitative risk analysis on models 
approximating a project’s behaviour, based on input factors and dependencies, after substituting any factor 
in a risk model that has inherent uncertainty with a range of values in the form a probability distribution. 
The simulation calculates the model outcomes repeatedly, each time using a different set of random values 
that may be represented by different types of input distribution. MCS software then uses up to tens of 
thousands of iterations to produce a dataset of possible outcome values that may be used to influence 
project decision-making. Instead of stating, for example, that a project will be completed on 15 May 2026, 
the software produces a result in which the outcome is linked to a likelihood — something like “There is a 
60% likelihood that the project will be completed on 15 May 2026”. There are other advantages of MCS, 
such as that it may be used (i) to conduct a sensitivity analysis, and (ii) to provide a measure of the accuracy 
of the simulation results. Software is easily available, may be purchased online, and is relatively 
inexpensive (American Society of Safety Engineers, 2011). What contributes to MSC’s popularity is that it 
can use existing project data and it employs simple statistics Hillson (2009). It is an internationally accepted 
way of conducting risk assessments, as described in ISO31010 (International Organisation for 
Standardization, 2019). In the project management discipline, MCS is used to model discrete cost risks and 
uncertainties related to project schedule delays and project cost. Software packages such as Tamara (Vose 
Software), Oracle Primavera Risk Analysis (Pertmaster®), Safran Risk, and Deltek Acumen Risk use MCS to 
model project schedule risks in terms of both time delay and cost. When modelling cost and schedule in 
projects, there are two types of methodology (Raydugin, 2018). MCSs form part of the first group, called 
the computational method, which is based on calculations of expected total cost and schedule outcomes 
for upcoming projects. The second group, empirical methodologies (i.e., expert opinion, rules of thumb, 
parametric methods, etc.), are based on data analysis for completed projects with the primary goal of 
predicting the outcomes of similar projects (Raydugin, 2018). This method was initially used to estimate 
the effect of risk in projects prior to the increased availability of MCS software (Hollmann, 2016). It is still 
used, especially in earlier project phases when accurate costing information is not yet available and 
systemic risks tend to dominate estimate uncertainty. 

1.3 Systemic risk 

There are various definitions of the term ‘systemic risk’. ‘System’, in turn, is defined as an assembly or 
combination of elements or parts that together form a complex or unitary whole, and are composed of 
components, attributes, and relationships (Blanchard & Fabrycky, 1990).  
 
Since the ISO31000:2018 definition of risk provides for objectives to be context-specific, systemic risk is 
considered in the context of (i) enterprise risk management and (ii) project risk management. Enterprise 
risk management considers systemic risks as (i) developments that may threaten the stability of the 
financial system as a whole and consequently that of the broader economy, not just one or two institutions; 
or (ii) developments in the financial system that may cause the financial system to seize up or break down 
and so trigger massive damage to the real economy (R. Chapman, 2006). Examples of these risk events are 
(i) the Great Depression, (ii) the financial crisis of 2007 / 2008, and (iii) the great lockdown of 2020. The 
objectives that are impacted by these types of risk relate to issues such as economic growth, reducing 
unemployment, and price stability.  
 
In the project risk management context, these objectives typically relate to meeting the budget and 
completing the project on time and with acceptable quality while meeting all legal and social obligations. 
The Association for the Advancement of Cost Engineering International (AACEI) (2016) states that ‘project 
systemic risks’ are the opposite of ‘project-specific risks’, and defines systemic risks as uncertainties 
(threats or opportunities) that are an artefact of an industry, company, or project system, culture, strategy, 
complexity, technology, or similar over-arching characteristic. ‘Project-specific risks’ is used to identify 
events, actions, and other conditions that are specific to the scope of a project — for example, extreme 
weather, or abnormal soil and geotechnical conditions — and for which the impacts are more-or-less unique 
to the project (AACE International, 2016). These types of risk are normally modelled using computational 
methods such as MCS when the probability of these events occurring is not certain (p<1).  
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Hollmann (2016) expands on the AACEI definition by defining ‘systemic risks’ as artefacts of system 
attributes (the internal project system, its maturity, company culture, and complexity) and the project’s 
interaction with external systems (regional, cultural, political, and regulatory systems). Systemic project 
risks are regarded as possible additional causes of project-specific cost risks that give rise to nonlinear cost 
impacts (Raydugin, 2018). The probability that these risks will occur is p=1. C. Chapman and Ward (2011) 
uses the term ‘systemic uncertainty’, which involves simple forms of dependence or complex feedback and 
feed-forward relationships, which include general or systemic responses between sources that have been 
decomposed.  
 
Therefore, project systemic risks can also be described as the properties or behaviours of a project system 
whose impact is uncertain owing to the nature of the project system and its interactions with external 
systems and for which a cumulative impact can be constantly observed (P=1), even if the individual systemic 
risks occur infrequently (P < 1).  

1.4 Parametric modelling of systemic risk 

The history and application of these types of model are well described by AACE International (2011), 
Hollmann (2016), and Raydugin (2018). These models attempt to model a relationship between inputs (e.g., 
risk factors) and project outcomes (e.g., cost growth) based on the study of empirical data using methods 
such as multi-variable regression analysis, neural networks, or even trial-and-error. In this context, a typical 
form of a simple parametric estimating algorithm is as follows: 
 

𝑂𝑢𝑡𝑐𝑜𝑚𝑒 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡1(𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝐴) + 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡2(𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝐵 )
+ 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡3(𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝐶) …. 

where: 
 
 Constant = Intercept 
 Coefficient = Regression coefficient for a specific parameter 
 Parameter = The value of a specific project property metric (AACE International, 2011) 
 
The main advantages of using parametric estimating for risk analysis and contingency determination are 
that (i) it is empirical in nature (i.e., it is based on actual measured experience), and (ii) it is quick and 
simple. Disadvantages include that, because these empirical methods are based on regression analysis, 
which requires predictable relationships between inputs and outputs, the method is typically limited in 
application to the estimating of the overall project contingency required for selected risk types, and that 
the contribution of individual parameters cannot be isolated. Raydugin (2018) presented a method that 
uses MCS to model systemic risks in single projects, specifically in the context of weak project teams. The 
risk-factoring method described by Broadleaf (2014) can also be used to model systemic risk in single 
projects.  
 
The authors of the current study, and Boyle (2020) noted that, in the construction industry, systemic risks 
are typically not considered on their own as part of a quantitative risk analysis. In the rare cases when they 
are raised, the argument tends to be that they are included in the quantified uncertainty ranges, or that 
they are less significant than the project- specific risks.  Thus any “allowance” for systemic risks disappears 
into the model and can’t be observed in the outputs.  The results of this research indicate that systemic 
risks could have a significant effect on project performance and should be addressed as a separate feature 
of QRA’s.  The challenge with this is that there is no accepted method for consistent identification or 
quantification of systemic risks in the absence of a validated parametric model or sufficient time to develop 
one if adequate historical data is available. 

1.5 Simulating risks in a portfolio of projects 

The methods described earlier in this paper all deal with the modelling of risks in a single project. A project 
hierarchy is described in PMBoK™ (Project Management Institute, 2013), in which projects roll up into 
programmes, and programmes roll up into portfolios. C. Chapman and Ward (2011) and Hillson (2009)shares 
this view. Given their nature, portfolios and programmes are more complex systems to manage than single 
projects. When doing a literature search for articles related to simulation models and the quantification of 
risks in a project portfolio, limited information could be found. The manufacturers of simulation software 
such as Palisade Corporation (2014) and (Vose, 2008) define ‘portfolio’ in terms of finding an optimal 
investment portfolio, and do not specifically discuss methods that may be employed in modelling risks in 
an entire capital project portfolio. Schedule simulation on single projects is covered by various authors, 
such as AACE International (2008), Elshaer (2013), and Trietsch and Baker(2012). These, however, tend to 
focus on single projects and not the simulation of a portfolio of projects. The search for multi-project and 
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programme risk management and simulation methods also presented limited results. Lytvyn and Rishnyak 
(2014) presented a decision-making algorithm that can be employed when a project is influenced by a 
multi-project environment. The current study uses methods described by Joubert and Pretorius (2017) to 
model the extent of systemic risks in a portfolio of capital projects.  

1.6 Data used 

The research data was collected over four years while the author was employed by a South African freight 
logistics company (FLC) that also had a capital projects division. The projects’ scope primarily included rail 
and port infrastructure capital projects. The organisation used a quantitative risk assessment model using 
@Risk software to create risk registers for a portfolio of 106 projects. These projects were distributed over 
the concept, project development, and project execution phases of the project lifecycle.  
 
To analyse risks on a portfolio basis, the simulation results of the individual project risk registers were 
uploaded into a Risk information management system. The way in which portfolio-level project risk 
information was extracted and aggregated by the FLC from this system was (i) to count the frequency of 
the individual risks and (ii) to aggregate the P80 values of the individual risks, as shown in Figure 1. If the 
risk ‘inclement weather’ appeared 25 times, the P80 values of each of these risks were simply summed. 
The FLC knew that this method was mathematically incorrect, but at least it indicated which risks appeared 
throughout the project portfolio, and which aggregate risk had the most significant possible consequences.  
 

 

Figure 1: Initial programme and portfolio view of project risks 

1.7 Research objective 

To understand the role of systemic risks in a project portfolio, a more scientific method had to be 
developed to provide insight into the questions below: 
 
1. How can the identified systemic risks be quantified? 
2. What is the extent of systemic project risks in the portfolio of projects? 
3. What type or category of systemic risk caused the most uncertainty in the project portfolio? 
4. Which individual systemic risks caused the most uncertainty in the portfolio of projects? 
5. In which type of project (scope-related) is the most significant amount of systemic risk found? 
 
A more thorough understanding of systemic risk in a portfolio of projects is important. Since the risks are 
systemic by nature, the treatment plans for systemic risks usually rely on elements that cannot be treated 
successfully on a project or programme level. An example of this would be the risk ‘approval delays’ in an 
organisation with a lack of commitment to starting project execution. A typical example of this would be 
delayed project approvals owing to a lack of stakeholder commitment. The consequence of this would not 
only be the delayed implementation of project benefits, but also the effect of escalation on the project 
cost. From a project resource perspective, project teams might be wasting time by attempting to treat 
systemic risks — or, more likely, risks with strong systemic causes — that are beyond their ability and 
mandate to treat. Should the systemic risks be identified, they would be best treated at their origin, not 
where their consequences manifest. Systemic risks tend to be associated with business processes, including 
project management processes, used by or interacting with a project. By treating systemic risks, multiple 
current and future projects would benefit. 
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This paper therefore proposes a methodology that uses a set of individually quantified risk registers, MCS 
(@Risk software), risk names, and systemic risk types and sub-types to understand the extent of the impact 
of systemic risks on a portfolio of projects, as shown in Figure 2.  
 

 

Figure 2: Quantified programme and portfolio view of project risks using Monte Carlo  

2 METHOD 

The basic principle of this methodology is to be able to compare different sets of simulation results with 
one another to determine the effect of one type of systemic risk on the entire project portfolio. The process 
has the following steps: 
 
1. Classify all of the risks in the project portfolio as being either (i) project-specific or (ii) systemic.  
2. Create a project portfolio simulation dataset that includes all of the project-specific and systemic 

risks. 
3. Create a simulation dataset called ‘Project-specific risks only’ in which all of the project-specific risks 

are removed from the simulation results. 
4. Compare the descriptive statistics (mean, percentiles) of the project-specific risks with only the 

project portfolio simulation dataset to determine the effect of the systemic risks on the project 
portfolio.  

 
The rest of this section describes how the model was compiled.  

2.1 Consolidate risk registers and review risk names 

The first step was to consolidate the existing risk registers into a single MS Excel spreadsheet to 
accommodate a concurrent MCS. This spreadsheet was based on the existing project risk register template. 
The initial portfolio included 106 risk registers. Of these, 86 were suitably complete and could be copied 
into a complete risk register (CRR) that contained 329 different risk names, representing 1063 individual 
risks.  
 
The next step was to review all of the risk names to ensure a consistent use of the naming conventions. 
Risk names such as ‘inclement weather’ and ‘bad weather’ were consolidated into ‘inclement weather’, 
and risk names such as ‘industrial action’, ‘labour unrest’, and ‘strikes’ were merged into ‘industrial 
action’. At the end of this exercise the 329 risk names had been reduced to 166. 

2.2 Categorise projects 

Projects have many characteristics and attributes that can be used as criteria to categorise them. Crawford 
et al. (Crawford, Hobbs, & Turner, 2004) described various ways in which project can be classified, 
including (i) scope, (ii) stage of life-cycle, (iii) timing, (iv) risk, and (v) complexity. From this list, scope 
(the project category in Table 1) was selected, since FLC customers have specific businesses objectives 
that in turn influence the different varieties of project that they might require. Each of the different 
projects was therefore assigned to a list of 15 project categories. A sample of this classification is given in 
Table 1, where ‘project types’ refers to ‘project categories’. Using the PMBoK™ (Project Management 
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Institute, 2013) project hierarchy, the list of projects assigned to a project type would make up a 
programme, and all of the programmes would constitute the portfolio.  

Table 1: Project categories 

 

2.3 Categorise systemic risks and link the risks to the combined risk register 

A new sheet, ‘Risk names’, was created. This was then populated with the various risk names, and each of 
the projects was classified. Risks that were project-specific, not systemic, were classified as ‘project-
specific to the scope of a particular project’. The remainder of the risks were classified according to the 
typical main and sub-type of systemic risks, as listed in Table 2 and by AACEI in RP 42R-08 (AACE 
International, 2011). As a rule, for each risk name, the underlying project level risks were reviewed to help 
determine whether the underlying risks had significant systemic causes that originated inside the project 
system boundary and that were relevant to the portfolio of projects. For the purpose of the classification, 
the project system boundary included all of the parties contracted to execute the project, as well as the 
SOE’s business processes and systems that were used by the projects. In cases where the classification 
structure could not easily classify all of the risks, the priority was to ensure that the risk was at least 
classified correctly as being either systemic or project-specific. These classifications were then linked to 
the CRR to be used in the simulation. Table 2 lists these categories, the number of risks categorised into 
each category, and the number of risks in the CRR for each of the categories.  

Table 2: Categorised risk names 

Systemic risk type Systemic risk sub-type Number 
of risks in 

each 
category 

Number of 
risks in 

risk 
register 

Specific to the scope of a particular project Specific to the scope of a particular 
project 

85 297 

Process definition Basic design 2 81 

Level of technology 1 3 

Process complexity 0 0 

Material impurities 0 0 

Project definition Site/soils requirements 2 12 

Engineering and design 7 58 

Health, safety, security, 
environmental 

10 251 

Planning and schedule development 28 201 

Project management and estimating process Estimate inclusiveness 4 10 

Team experience/competency 20 134 

Cost information available 5 12 

Estimate bias 2 4 

Total 166 1063 

2.4 Existing risk quantification model 

The risk quantification model allowed for single- and multiple-occurrence risks. The table below describes 
the probability values used for single occurrence risks. These values were selected from the likelihood 
ranges prescribed by the FLC’s enterprise risk management policy, since @Risk requires discrete values to 
simulate likelihood.  
 
Likelihood scales, as presented in Table 3, represent the probability part of the probability-impact grids 
(PIGs) described by Hillson (2009, p. 38) and Cooper et al. (2005, p. 53). There are various criticisms of 
these matrices, including their focus on threats and the exclusion of opportunities, as well as their inability 
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to support complex decision-making (2009, p. 39), (2008), (2011, p. 49). A further inadequacy is that they 
do not provide for multiple occurrence risks, and do not assess risk urgency. However, the matrices were 
what were used in the FLC’s risk register template (RRT).  

Table 3: Likelihood categories 

Category 
Qualitative 
description 

Criteria 
Probability 

interval 

A Rare Occurrence requires exceptional circumstances, exceptionally 
unlikely; even in the long-term future; only occur as a 100-year 
event. 

1.0% 

B Unlikely May occur, but not anticipated, or could occur in years to 
decades. 

20.0% 

C Moderate May occur shortly, but a distinct probability that it won’t, or 
could occur within months to years. 

45.0% 

D Likely Balance of probability is that it will occur, or could occur within 
weeks to months.  

80.0% 

E Almost certain Consequence is occurring now, or could occur within days to 
weeks. 

95.0% 

 
The likelihood of single occurrence risks was modelled using a binomial distribution. This is a discrete 
distribution that returns integer values greater than or equal to zero (Palisade Corporation, 2014). However, 
there are risks that might occur multiple times in a single project, such as inclement weather, industrial 
action, and late material deliveries. A Poisson distribution was used to model the frequency of these risks. 
This discrete distribution returns only integer values greater than or equal to zero (Palisade Corporation, 
2014). 

Estimating consequence 

Risk consequence was modelled in respect of the financial impact on the project, using the following 
formula: 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = 𝑇𝑖𝑚𝑒 𝐷𝑒𝑙𝑎𝑦3 𝑃𝑜𝑖𝑛𝑡 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒  ×  𝑊𝑒𝑒𝑘𝑙𝑦 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑜𝑠𝑡
+ 𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝐶𝑜𝑠𝑡3 𝑃𝑜𝑖𝑛𝑡 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒   

where: 

𝑾𝒆𝒆𝒌𝒍𝒚 𝑾𝒆𝒊𝒈𝒉𝒕𝒆𝒅 𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝑪𝒐𝒔𝒕 = ∑ 𝑺𝒖𝒑𝒑𝒍𝒊𝒆𝒓 𝑾𝒆𝒆𝒌𝒍𝒚 𝑹𝒂𝒕𝒆𝒌  ×  𝑪𝒐𝒏𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 (%)𝒌

𝟓

𝒌=𝟏

 

This application can be described using the following example. A project has two contractors, Contractor 
A (weekly average rate of R20 000) and Contractor B (weekly average rate of R5 000). During the risk 
workshop it is established that, should a specific risk realise, Contractor A will have a 10% loss and 
Contractor B a 100% loss. The weekly weighted average cost would therefore be as follows: 
 

𝑊𝑒𝑒𝑘𝑙𝑦 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑜𝑠𝑡 = R20 000 ∗ 10% + R5 000 ∗ 100% 
= R7 000 

 
To ensure that sampling takes place at the tail end of more uncertain risks, two different distributions that 
accentuate long tails were used to simulate three-point estimates. By modelling the minimum value as a 
P5 and the maximum as a P95, these distributions compensate for quantification bias by extending the 
distribution beyond the estimated values in the same way as a trigen distribution does. 
 

𝑇𝑖𝑚𝑒 𝐷𝑒𝑙𝑎𝑦3 𝑃𝑜𝑖𝑛𝑡 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 𝑅𝑖𝑠𝑘𝑃𝑒𝑟𝑡𝐴𝑙𝑡(0.05, 𝑀𝑖𝑛, 0.5, 𝑀𝑜𝑠𝑡 𝑙𝑖𝑘𝑒𝑙𝑦, 0.95, 𝑀𝑎𝑥) 
or 

𝑇𝑖𝑚𝑒 𝐷𝑒𝑙𝑎𝑦3 𝑃𝑜𝑖𝑛𝑡 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 𝑅𝑖𝑠𝑘𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝐴𝑙𝑡(0.05, 𝑀𝑖𝑛, 0.5, 𝑀𝑜𝑠𝑡 𝑙𝑖𝑘𝑒𝑙𝑖𝑦, 0.95, 𝑀𝑎𝑥) 
when 

(𝑴𝒂𝒙 − 𝑴𝒐𝒔𝒕 𝒍𝒊𝒌𝒆𝒍𝒚) ≥ 𝟐 × (𝑴𝒐𝒔𝒕 𝒍𝒊𝒌𝒆𝒍𝒚 − 𝑴𝒊𝒏) 

Taking the above, the overall logic used in creating the simulation results appears in Figure 3.  
It should be noted that the choice of distributions and the assignment of their parameters were done to 
attempt to answer the research questions that didn’t include validation of the model against actual data.  
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RiskPoisson(λ)

RiskBinomial(1,n)

Likelihood

WWC x 
RiskPertalt(0.05,Low,9.5,Medium,0.95,High)

WWC  x 
RiskLognormalt(0.05,Low,9.5,Medium,0.95,High)

RiskPertalt(0.05,Low,9.5,Medium,0.95,High)
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Figure 3: Overall method followed in creating simulation results for the combined risk register
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2.5 Create reports 

The next step was to generate reports. The MS Excel name manager tool was used to identify the columns 
in the CRR that were going be used in the reports. This step significantly simplified the creation and 
understanding of the formulas, and the following named ranges were created: (i) Project_Category, (ii) 
Risk_Name, (iii) Simulation_Result, (iv) Risk_Systemic_Type, and (v) Risk_Systemic_Type_Sub. This method 
allowed tornado graphs to be created for specific data input combinations. These graphs present sensitivity 
analysis results that display a ranking of the input distributions that impact the simulation results. The 
longer the bars on the graph, the more the simulation inputs are correlated with the outputs (Palisade 
Corporation, 2014). 
The following syntax was used: 
 

= 𝑆𝑢𝑚𝐼𝑓𝑠(𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑅𝑒𝑠𝑢𝑙𝑡, 𝑃𝑟𝑜𝑗𝑒𝑐𝑡_𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦, "Rail Power Supply",  
𝑅𝑖𝑠𝑘_𝑆𝑦𝑠𝑡𝑒𝑚𝑖𝑐_𝑇𝑦𝑝𝑒_𝑆𝑢𝑏, "𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑖𝑛𝑔 𝑎𝑛𝑑 𝐷𝑒𝑠𝑖𝑔𝑛") + 𝑅𝑖𝑠𝑘𝑂𝑢𝑡𝑝𝑢𝑡() 

 
This may be interpreted as: Produce a simulation output where the project category equals ‘rail power 
supply’ and the systemic risk type equals ‘engineering and design’. 
 
In some instances, the use of =RiskOutput() did not produce the intended result, as the tornado graphs 
treat likelihood and consequence of a single risk as separate inputs. In these cases, the =RiskMakeInput() 
function was used, since it specifies that the calculated value for a formula is treated as a simulation input, 
in the same way as a distribution function. The effect is that the values of the variables in the preceding 
cells feeding into the =RiskMakeInput() function are used in the calculation, but the variables in the 
preceding cells do not appear in a tornado diagram linked to the =RiskMakeInput() function cell. The next 
step was to generate reports using the above principles. Figure 4 shows the use of =SumIfs(), 
=MakeRiskInput(), and =RiskMakeOutput() in generating output distributions for the systemic risk 
categories.  
 

 

Figure 4: Report for systemic risk categories (amounts in R million) 

3 FINDINGS 

The findings for the simulation results below are discussed, and relate to research objectives 2 to 5 as 
discussed in paragraph 1.7:  
 

 Extent of systemic project risks’ impact on the project portfolio. 

 Systemic risk categories causing the most uncertainty in the project portfolio. 

 Individual systemic risks causing the most uncertainty in the project portfolio.  

 Project type (scope-related) with the most significant risk. 

3.1 Extent of systemic project risks’ impact on the project portfolio 

The simulation model was run for 10 000 iterations, and the results indicated that systemic risks have a 
significant impact on the project portfolio. When the systemic risks are included in the project portfolio, 
the mean of the entire project portfolio contingency requirement increases from R2 456.0 million to 
R4 557.8 million (+85.6%) (Figure 5). The green graph (entire portfolio) presents the sum of the simulation 
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results of the blue graph (systemic risks) and the red line (project-specific risks). This result is impacted by 
the choice of impact distributions and the assignment of parameters. It can be reasonably assumed, 
however, that using validated distributions will not indicate that the systemic risks’ effect on portfolio 
level is negligible. 
 
This can be measured in two ways: by (i) using a tornado graph, or (ii) comparing the mean or P80 values 
of the individual systemic risk categories.  
 

 

Figure 5: Simulation results: Impact of systemic risks on the project portfolio 

 

Figure 6: Simulation results: Systemic risk sub-type tornado graph 
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The tornado graph of the systemic risks in Figure 6 identifies site/soils requirements as the top driver, 
while —when comparing the means in Table 4 — the planning and schedule development category resulted 
in the highest mean per risk category. The reader will observe that there are some similarities between 
the sequence of the risk categories in Figure 6 and Table 4, but that there are also several significant 
differences in the ranking sequence for the same risk category between Figure 6 and Table 4. 
 
When reviewing the CRR, it was found that the category site/soils requirements contained risks related to 
site access. This makes sense in the context of the FLC, in that there is a recurring theme of the 
organisation’s operating divisions not handing over project sites to the capital projects divisions on time.  
Regression coefficients are presented in @Risk using tornado diagrams, which measure the tendency of the 
value of the output cell used to vary, depending on the value of the input variables. The percentage 
variation in the inputs, risks, output results, and discrete values, such as an estimate value or schedule 
duration, has a significant effect on the output results of a model and therefore on the regression 
coefficients displayed in tornado diagrams. Thus it is important to understand the features of the software 
and of the model used to avoid a misinterpretation of the tornado results. This is especially important when 
a risk model is combined with a schedule and a CAPEX QRA model, as this can result in even more misleading 
results. 

3.2 Systemic risk categories causing the most uncertainty in the project portfolio 

When reviewing the mean of the various categories, it was found that planning and schedule development 
category had the highest mean of all the categories. This category included risks such as (i) approval delays, 
(ii) contracting strategy, (iii) contractor quality, (iv) operational readiness, and (v) unavailable equipment.  
 
Because of the definition of the mean’s calculation, the mean does not indicate the potential effect of the 
extreme values of the input variables, and so it should be used with caution if some of the output results 
being compared produce values across a wide range. In such a case, using an additional comparison of P80, 
or possibly even P90, values on the high side and P10 or P20 on the low side would be useful to guide 
decisions on which items to prioritise for action.  

Table 4: Systemic risk sub-type category ranked by mean 

Systemic risk sub-type Systemic risk type Mean 
(R million) 

Planning and schedule development Project definition R 695.68 

Team experience/competency Project management and estimating process R 481.73 

Health, safety, security, environmental Project definition R 441.88 

Site/soils requirements Project definition R 290.08 

Basic design Process definition R 79.25 

Engineering and design  Project definition R 55.02 

Cost information available Project management and estimating process R 38.66 

Estimate inclusiveness Project management and estimating process R 14.51 

Estimate bias Project management and estimating process R1.25 

Level of technology Process definition R0.16 

Process complexity Process definition R- 

Material impurities Process definition R- 

3.3 Individual systemic risks causing the most uncertainty in the project portfolio  

For this section, the reader needs to be reminded that the systemic risks discussed in this section refer to 
a type of risk, and that the model would typically include a number of the same systemic risks across the 
portfolio, but only one record per project.  
 
The results of the individual systemic risks are also presented by way of a tornado graph and a table 
containing the category means. The tornado graph in Figure 7 shows that the most important systemic risk 
is the site access — operational requirements risk. This risk belongs to the site/soils requirements category, 
which was the top driver in Figure 6’s regression tornado. The other risks in the site/soils requirements 
category appear much lower down in this tornado. When comparing Figure 7 with Table 5’s comparison of 
the individual risks’ ean value, there are some noticeable differences in the sequences. These are largely 
caused by the same mechanisms that were explained in the discussion of the category level results. 
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Figure 7: Simulation result: Systemic risks top 20 tornado graph 

The next table lists the top 20 systemic risks, ranked according to the mean of the related risk’s output 
distributions.  

Table 5: Simulation result: Systemic risks top 20 ranked by mean 

Rank Risk name Mean 
(R million) 

Number of times 
in CRR 

Systemic risk sub-category 

1 Equipment unavailable R 400.27 8 Planning and schedule 
development 

2 Late order placement R 357.98 18 Team experience/competency 
3 Environmental approval challenged R 246.52 4 Health, safety, security, 

environmental 
4 Site access — operational requirements R 239.38 11 Site/soils requirements 
5 Occupations R83.62 40 Planning and schedule 

development 
6 Labour unrest R78.91 61 Health, safety, security, 

environmental 
7 Site access R61.77 13 Planning and schedule 

development 
8 Scope definition R58.80 30 Basic design 
9 Site selection & servitudes R50.18 1 Site/soils requirements 
10 Environmental non-compliance R46.55 35 Health, safety, security, 

environmental 
11 Crime R40.04 48 Health, safety, security, 

environmental 
12 Design approvals R37.87 12 Team experience/competency 
13 Approval delays R37.39 17 Planning and schedule 

development 
14 Escalation R33.66 3 Cost information available 
15 Skills & resources R33.03 30 Team experience/competency 
16 Geotech R32.69 24 Engineering and design  
17 Procurement delays R26.26 8 Team experience/competency 
18 Commissioning delays R20.62 5 Planning and schedule 

development 
19 Damage to underground services R20.37 51 Basic design 
20 Site congestion R19.72 16 Planning and schedule 

development 
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3.4 Project type (scope-related) with the most significant risk 

It would also be important to review the results indicating in which project category (as defined earlier) 
systemic risk would be the most prevalent. As before, the results are presented in both tornado graphs and 
a table of the means, as shown in Figure 8.  
 

 

Figure 8: Simulation result: Systemic risks per project category tornado graph (R million) 

Table 6 lists all of the project categories, ranked according to the mean of the related risk’s output 
distributions.  

Table 6: Simulation result: Systemic risks per project category ranked according to the mean 

Project category Total budget 
(R Million) 

No. of projects Mean 
(R Million) 

Rail power supply R2 889.48 17 R1 484.13 
Rail tunnels and bridges R2 010.00 2 R525.01 
Port marine infrastructure R15 570.00 9 R191.36 
Rail earthworks and OHTE R25 438.40 12 R155.82 

Port bulk handling equipment R3 070.70 11 R54.51 

Port liquid handling equipment R19.60 1 R12.46 

Port stacking and laydown areas R1 071.00 7 R11.78 

Port and rail safety and security R331.00 6 R4.31 

Rail signaling R459.00 2 R3.79 

Port road infrastructure R90.00 1 R2.88 
Port environmental clean-up R30.00 1 R0.49 
Rail earthworks R18.60 2 R0.28 

Rail equipment R420.00 4 R0.11 

Port equipment R118.30 3 R0.08 
Rail power supply R2 889.48 17 R1 484.13 

4 DISCUSSION 

4.1 Simulation results and future research 

The simulation results model quantified the importance of identifying and treating systemic risks on a 
programme and portfolio level, since it indicated that the system risks more than doubled the mean value 
of the project-specific risks simulation. It contributes to the body of knowledge because it shows how 
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readily accessible simulation packages (such as @Risk) can be used to determine the effect  of systemic 
risks in a portfolio of capital projects.  
 
As the data used for the models discussed in this paper was based on risk registers, it contained predictions 
by the assessment team. The application of this approach could be expanded to enable the reliable 
identification of systemic risk factors, and to establish guidelines for these factors’ uncertainty ranges and 
a method for parameter verification if sufficient suitable data is available. The authors have started to 
explore the following next steps: 
 
1. Establish a method to extract actual systemic risk data from the project performance data of 

completed projects, and establish whether the actual impacts of systemic risks on completed projects 
are as important as indicated in this research. 

2. Explore the effect and importance of the individual business process controls associated with all of 
the systemic risks in a portfolio or similar projects — for example, do they sum or accentuate each 
other? 

3. Develop a suitable systemic risk categorisation system that allows categorisation of the systemic risks 
and their underlying variables. 

4. Develop a verifiable set of quantified risk factors that can be applied in quantitative project risk 
analysis, thereby improving the credibility of the results. Systemic risks are very similar to the concept 
of risk factors used in cost and schedule simulation software packages when the issue of risk factor 
quantification is a challenge.  

4.2 Lessons learnt 

1. During the building of the model, some lessons were noted that could have an impact on future 
research and on the practical implementation of the proposed methodology. The first was that the 
classification of risks into the various systemic risk categories proved to be problematic, and resulted 
in extensive discussions about how the risks were classified. It is recommended that the classification 
of this be done in a workshop environment attended by suitable subject-matter experts. The definition 
of systemic risks needs to be clear, and the boundaries of the system in which they may arise need to 
be clearly defined. It is also recommended that, after the risks have been classified, the various groups 
of classified risks should be reviewed to ensure that there is internal consistency in them.  

2. In the discussions about systemic risk classification, the following properties were noted that made 
classification particularly challenging: (i) project-specific risks can turn into systemic risks over time; 
(ii) some risks display both systemic and project-specific properties at the same time, such as a 
contractor’s poor procurement process for critical equipment; (iii) project-specific risks can lead to 
systemic risks — for example, in an attempt to manage a project-specific risk, cumbersome processes 
could be imposed; and (iv) project-specific risks and their causes can be used to predict where there 
might be systemic risks. 

3. The systemic risk classification system used was also problematic in that it was focused on systemic 
risks found in the design and construction of process plants. This was evident in the categories process 
complexity and material impurities not having any risks assigned to them. A structure that provided 
for port and rail construction projects could have been more useful, and so establishing such a 
structure is a topic for future research.  

4. It is also important to note that there was value in reviewing the simulation results using both tornado 
graphs and tables to present the means of the various simulation results, as they show the simulation 
results in respect of both variability and order of magnitude. The latter can be used to present the 
business case for further analysis of the identified focus areas to enable treatment planning or, if 
possible, to implement the required treatment plans already identified.  

5. The method that was applied when risks in a portfolio were classified as either systemic or project-
specific and then included or excluded from the simulation results to determine the effect of systemic 
risks on the portfolio can, of course, also be applied to individual projects. This in itself is useful in 
providing a potential treatment plan cost justification for systemic risks on a project level. 

4.3 Limitations 

Some limitations were also encountered during the research. Some simulation models may be too complex; 
and so Axelrod (1997), Vose (2008, p. 7), and Marsh (2013) advocate the use of simple models, as it is then 
easier to gain insight into causal relationships. The model presented in this paper is relatively simple, as it 
circumvents long, complex equations, avoids using any macros, and is contained in a single worksheet. 
Simulation models that are not presented in sufficient detail may be difficult to verify and validate 
independently, thus reducing the reliability of the research results (Harrison, Lin, Carroll, & Carley, 2007, 
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p. 124). The simple model presented in this paper, together with the way in which the model has been 
described, should overcome this shortcoming.  
 
Some issues with independent verification might also be encountered. By their nature, simulation 
experiments are artificial, since they are based on computer models in which the simulation data is 
computer-programme generated (Harrison, Lin, Carroll, & Carley, 2007, p. 1241). The data used in this 
research was based on data supplied by subject-matter experts. Eppen et al. (1988, p. 2) call models like 
this a “selective abstraction of reality”. This in turn raises the question of how the simulation model is 
aligned to real-world behaviour. This may be remedied by comparing the simulation results with empirical 
work, and by basing some of the simulation model’s parts on empirical work. Model validation is therefore 
included as a step in the development of quantitative models (2005, p. 259), (2008, p. 5). An example in 
this paper is the validation of criteria used to select which risks to model with long tails and the choice of 
PERT and lognormal distributions for the selected risks; and the assignment of these distributions’ 
parameters could well have resulted in somewhat different results if different choices had been made. 
Further research on these aspects would be advisable prior to applying them in practice. 
 
Both Vose (2008, p. 5) and Palisade Corporation (2014) emphasised the importance of using correlation in 
simulation models. The simulation model presented in this paper contains data from 86 different projects 
with 1063 individual risks. This would require a 1063 by 1063 correlation matrix to be part of the model. 
Given the dynamic and complex nature of such a matrix, it had to be assumed that all of the risks were 
independent, which made the requirement of a correlation matrix redundant. 
 
Broadleaf (2014) stated that there is evidence that, when considering a large number of items, realistic 
correlation modelling is rarely practised. Since project contingency was only simulated in the risk registers, 
and no integration between the risk register, the cost estimate and the schedule took place, no comment 
can be made about the impact of systemic risks on the project schedules that form part of this project 
portfolio. The main reason for this is that the authors did not have access to the schedules of the individual 
projects, and also that they were not aware of any schedule simulation software that would be able to run 
such a concurrent schedule simulation and the required data analysis for this methodology.  

5 CONCLUSION 

This research would not have been possible without the advances in ICT during the last 40 years, which 
allowed the development of desktop MCS cost-simulation software that can be used to quantify project 
cost and schedule contingencies. This paper presents a novel methodology that could be used (i) to estimate 
the impact of systemic risks on a portfolio of capital projects; (ii) to determine the relative importance of 
the specific systemic risks and their categories; and (iii) identify a ranked list of 20 systemic risks that could 
be used as a checklist for similar projects or portfolios. The inclusion of systemic risks in the existing 
project-specific risk dataset had a significant impact, since it increased the mean of the project 
contingency dataset by 85.6%. This result confirms the importance of identifying and implementing suitable 
treatment plans for systemic risks as part of a project management system quality improvement drive. 
Although some limitations are mentioned, the method is still valid for identifying the most important 
systemic risks for further analysis before suitable treatment plans are implemented.  
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