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ABSTRACT 
 

South Africa is a developing country that relies on its agricultural sector as a main source of overall 

economic welfare.  Development does not only give rise to new technology and new products but 

also results in increased amounts of liquid and solid waste.   

Generally, the production of wine is considered an environmentally friendly process, but 

significant amounts of natural resources and organic amendments are necessary, while generating 

large amounts of liquid and solid wastes.  Anaerobic digestion (AD) is an attractive and proven 

treatment option for both liquid and solid wastes as valuable products and depollution can be 

obtained.  AD of liquid waste results in an effluent and biogas, while anaerobic composting of solid 

waste results in an organic amendment, leachate and biogas.   

 The overall objective of this study was to investigate the operational feasibility of the co-

treatment of leachate produced during the anaerobic composting (AnC) of grape skins in an upflow 

anaerobic sludge blanket (UASB) reactor while treating winery wastewater.  This first aim of this 

study was to investigate the efficiency of the anaerobic composting of grape skins.  Laboratory-

scaled digesters (1L) were utilised as anaerobic composting units.  The most important operational 

parameters were identified (pH, moisture content and inoculum (size, ratio, composition)) in order 

to produce a pH stable, odour free compost in 21 days.  

Experimental studies highlighted the importance of shredding waste as well as the addition 

of calcium oxide and green waste to increase the initial pH of the composting mixture.  After 

optimising a 50% (m.m-1) cow manure inoculum, lower inoculum concentrations (10, 15 and 25% 

(m.m-1)) were investigated to make the process more economically viable.  A 10% (m.m-1) 

anaerobic compost (AC) inoculum was found to produce the most favourable results in terms of pH 

stabilisation and leachate generation.  A 50% (m.m-1) moisture level performed the best by 

attaining a pH > 6.5 on day 6 and having the highest end pH (7.65) on day 21, while white and red 

grape skins in an equal ratio were found to generate a higher end pH.  With all these optimum 

parameters in place (shredded waste, green waste, CaO, inoculum, moisture, grape skins), a 

compost with a final pH (7.09), moisture (58%), nitrogen (2.25%), phosphorous (0.22%) and 

potassium content (1.7%) was obtained.  The optimised parameters were scaled-up (1:10) by 

using polyvinyl chloride anaerobic digesters (20 L) to suit the operational requirements of the AnC 

process and also produced a stable compost within 21 days.   

The second aim of this study was to investigate the combined anaerobic digestion of winery 

wastewater (WWW) and leachate obtained from the anaerobic composting of grape skins in an 

upflow anaerobic sludge blanket (UASB).  This involved the operation of a 2.3 L laboratory-scale 

UASB reactor for 205 days.  The reactor successfully co-treated WWW and leachate at  

ca. 8.5 kgCOD.m-3d-1 with a final chemical oxygen demand (COD) reduction of over 90%, a stable 

reactor effluent pH (7.61) and  alkalinity (3 281 CaCO3 mg.L-1).  This study showed the feasibility 

for the combined treatment of liquid and solid waste from the winemaking process.  Although the 
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legal limits for reactor effluent disposal onto land was not met, significant reduction in COD 

concentrations were achieved, whilst producing a soil amendment that could potentially result in 

cost savings for chemical fertilisers.  The benefits related to using anaerobic bioconversion as a 

treatment option for liquid and solid waste could possibly be advantageous to the wine industry as 

an environmental control technology, by converting liquid and solid waste into valuable resources.   
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UITTREKSEL 
 

Suid-Afrika is 'n ontwikkelende land wat staatmaak op sy landbousektor as 'n hoofbron van 

algehele ekonomiese welstand.  Ontwikkeling gee nie net aanleiding tot nuwe tegnologie en nuwe 

produkte nie, maar lei ook tot die verhoogde bydrae van vloeistof sowel as vaste afval. 

Oor die algemeen, word die produksie van wyn beskou as 'n omgewingsvriendelike proses, 

maar aansienlike hoeveelhede natuurlike hulpbronne en organiese kunsbemesting word benodig, 

terwyl groot hoeveelhede vloeistof en vaste afval gegenereer word.  Anaërobiese vertering (AV) is 

'n aantreklike en bewese behandelingsopsie vir beide vloeistof en vaste afval aangesien 

waardevolle produkte en suiwering verkry kan word.  AV van vloeistowwe lewer uitvloeisel sowel 

as biogas, terwyl anaërobiese kompostering van vaste afval 'n organiese kunsbemesting, loog en 

biogas lewer.   

Die oorhoofse doel van hierdie studie was om die operasionele doeltreffendheid van die 

mede-behandeling van loog wat gegenereer word tydens die anaërobiese kompostering (AnK) van 

druiwe doppe in 'n opvloei-anaërobiese-slykkombers (OAS) reaktor terwyl kelderafvalwater 

behandel word, te ondersoek.  Die eerste mikpunt van hierdie studie was om die doeltreffendheid 

van die anaërobiese komposteringsproses van druiwe doppe te ondersoek.  Laboratorium-skaal 

verteerders (1L) is gebruik as anaërobiese komposteringseenhede.  Die belangrikste operasionele 

parameters is geïdentifiseer (pH, voginhoud en inokulum (grootte, verhouding, samestelling)) om ‘n 

'n pH-stabiele, reukvrye kompos te produseer in 21 dae. 

Die belangrikheid van gesnipperde afval asook die byvoeging van kalsiumoksied en groen 

afval om die aanvanklike pH van die komposmengsel te verhoog, is deur eksperimentele studies 

beklemtoom.  Na die optimering van 'n 50% (m.m-1) koeimis inokulum, is laer inokulum 

konsentrasies (10, 15 en 25% (m.m-1)) geondersoek om die proses meer ekonomies uitvoerbaar te 

maak. Daar is gevind dat ‘n 10% (m.m-1) anaërobiese kompos (AK) inokulum die mees gunstige 

resultate lewer in terme van pH stabilisering en loog generering.  ‘n 50% (m.m-1) vloeistof vlak het 

die beste presteer deur 'n pH> 6.5 te bereik teen Dag 6 asook die hoogste eind pH (7.65) teen Dag 

21, terwyl wit en rooi druiwe doppe in dieselfde verhouding gevind is om ‘n hoër eind pH te 

genereer.  Met al hierdie optimum parameters in plek (gesnipperde afval, groen afval, 

kalsiumoksied, inokulum, vog, druiwe doppe) is 'n kompos met 'n finale pH (7.09), vog (58%), 

stikstof (2.25%), fosfor (0.22%) en kalium inhoud (1.7%) verkry.  Die optimale parameters is 

opgeskaal (1:10) deur gebruik te maak van polivinielchloried anaërobiese verteerders (20 L) om 

aan die operasionele vereistes van die AnK proses te voldoen en ook om 'n stabiele kompos binne 

21 dae te produseer. 

Die tweede mikpunt van hierdie studie was om die gekombineerde anaërobiese vertering 

van kelderafvalwater en loog, verkry vanaf die anaërobiese kompos van druiwe doppe in 'n OAS 
reaktor, te ondersoek.  Dit het die bedryf van 'n 2.3 L laboratorium-skaal OAS reaktor vir 205 dae 

ingesluit.  Die reaktor het kelderafwater en loog suksesvol behandel by ongeveer 8.5 kgCSV.m-3d-1 
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met 'n finale chemiese suurstof vereiste (CSV) vermindering van meer as 90%, 'n stabiele reaktor 

uitvloeisel pH (7.61) en alkaliniteit (3 281 CaCO3mg.L-1).  Hierdie studie het die uitvoerbaarheid 

van die gekombineerde behandeling van vloeistof en vaste afval van die wynmaakproses getoon.  

Alhoewel die wetlike vereistes van die reaktor uitvloeisel vir storting op grond nie bereik is nie, is ‘n 

beduidende vermindering in CSV konsentrasies bereik, asook die vervaardiging van 

kunsbemesting wat die potensiële aankoopkoste van chemiese kunsmis kan verminder.  Die 

voordele verbonde aan die gebruik van anaërobiese bio-omskakeling as 'n behandelingsopsie vir 

vloeistof en vaste afval kan moontlik voordelig wees vir die wynbedryf as 'n omgewingsbeheerende 

tegnologie deur om vloeistof en vaste afval om te skakel na waardevolle bronne.   
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Chapter 1   1 

CHAPTER 1 
 

INTRODUCTION 
 

Vinification is a significant agricultural activity in South Africa and wine is an established export 

product (SAWIS, 2010).  Worldwide, agriculture is the largest user of water, with approximately 

70% of freshwater withdrawal and up to 90% in developing countries (UNESCO, 2012).  Due to the 

increased production of wine in South Africa, pressure on the usage of natural resources has 

intensified considerably (Van Schoor, 2005).  Wine making requires a substantial amount of natural 

resources and organic-rich amendments whilst producing large quantities of liquid and solid wastes 

(Ruggieri et al., 2009).  The management and disposal of these residues are ecological problems, 

due to their seasonal and polluting characteristics (Bustamante et al., 2008a) 

Liquid waste is mainly produced by cleaning and washing operations during production, the 

rinsing of fermentation tanks, barrels, equipment and surfaces (Riaño et al., 2011) and consists 

mostly of  winery wastewater (WWW) which contains grape pomace, grape pips and yeast cells 

from the fermentation process (Devesa-Rey et al., 2011).  These waste products can be a primary 

source of pollution, especially during the harvest season (Mace & Mata-Alvarez, 2002).  Since 

most South African wineries are located in the Western Cape (Bruwer, 2003) and a number of 

them are found in the same water catchment area, contamination of downstream sources and 

water tables may occur (Marais, 2001).  The generation of liquid waste is known to be 

approximately 1.2 times more than the volumes of wine produced (Vlyssides et al., 2005).   

Winery wastewater is characterised as a high strength organic waste, with low amounts of 

nitrogen and phosphorous (Toffelmire, 1972), a chemical oxygen demand (COD) of 0.8 - 12.8 g.L-1 

and a pH of 3 - 4 (Petruccioli et al., 2000).  Other compounds in winery effluent include alcohol, 

hexose sugars, carbon-based acids (Moosbrugger et al., 1993), esters and polyphenolic 

compounds (Mosse et al., 2011).  The production of WWW is very inconsistent in terms of quality 

and discharge volume during the course of the year, but approximately 3.0 - 5.0 kL of wastewater 

is produced per tonne of grapes (Kumar et al., 2006).  Immense pressure is placed on wine 

industries to comply with legal ecological requirements, whilst, upholding a competitive place in the 

international market.  Rising costs have led the industry to seek sustainable management practices 

in terms of water demand and supply (Oliveira & Duarte, 2010).   

Solid wastes generated during wine making include plant remains from de-stemmed 

grapes, bagasse from pressing, sediments from clarification and lees from the different decanting 

steps (Devesa-Rey et al., 2011), while the principal solid waste source generated during wine 

making is grape pomace (Diaz et al., 2002).  Winery solid wastes are generally characterised by an 

acidic pH, high polyphenol, organic and potassium content along with significant quantities of 

nitrogen and phosphate (Bustamante et al., 2008b).  Difficulty arises in terms of the elimination, 

storage or conversion of these wastes as large amounts are produced (Arvanitoyannis et al., 2007) 
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especially during the harvest season.  The improper disposal of grape pomace will cause 

ecological complications such as contamination of water sources and the generation of unpleasant 

odours (Brunetti et al., 2011).   

Several advantages exist in using a biological technology for the treatment of liquid and 

solid wastes.  Anaerobic digestion (AD) of liquid waste has been reported as the most appropriate 

option for treating high strength organic wastewater (Rajeshwari et al., 2000) because depollution 

can be achieved (Chia et al., 2014) with the added benefit of low sludge production, low energy 

requirements and low maintenance costs (Pant & Adholeya, 2007).  Anaerobic digestion also 

results in energy recovery (Chia et al., 2014) as a substantial amount (> 50%) of the chemical 

oxygen demand (COD) can be transformed into biogas (Pant & Adholeya, 2007) which can be 

utilised to substitute fossil fuels.   

A drawback of the anaerobic digestion of organic waste is that the substrate to be treated 

often lacks certain nutrients essential to AD (Khalid et al., 2011).  Winery wastewater is low in 

nitrogen and phosphorous (Moletta, 2005) which could require nutrient supplementation in order 

for AD to perform optimally.  The introduction of another waste stream via co-digestion could 

provide the missing nutrients and balance the substrate composition (Kangle et al., 2012).   

Large amounts of solid waste (grape skins) are produced by wineries that have the 

potential to be a valuable resource (Brunetti et al., 2011) with which, currently very little is done.  

The generation of grape pomace has grown into an essential part of winemaking as more 

viticulturists and wine makers in South Africa recognise the benefits of using composted grape 

pomace on vineyards (Dillon, 2011).  Anaerobic digestion of solid waste or anaerobic composting 

(AnC) produces an organic amendment a liquid effluent and biogas, that could be utilised as soil 

conditioner/plant nutrient in agriculture, and a renewable energy source (biogas), respectively 

(Pant & Adholeya, 2007; Khalid et al., 2011).  AnC results in less environmental pollution and 

odour emissions as all liquids and solids generated are captured within a digester.  An additional 

benefit of AnC is the fact that no aeration is needed, and therefore no bulking agents, which allows 

a considerable reduction in the volume of waste (O’Keefe et al., 1996).  The liquid effluent 

(leachate) produced during the anaerobic composting of grape skins is a source of water, inoculum 

and nutrients that could supply winery wastewater with nutrients for optimum AD.   

The objective of this study was to investigate the operational feasibility of the co-treatment 

of leachate produced during the anaerobic composting of grape skins in an UASB reactor treating 

winery wastewater.  This will be accomplished by firstly investigating the efficiency of the anaerobic 

composting of grape skins and, secondly investigating the combined anaerobic digestion of winery 

wastewater with a co-substrate of leachate from the AnC of grape skins.   
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CHAPTER 2 
 

LITERATURE REVIEW 
 

A.  BACKGROUND 
Globally, agriculture is the main consumer of water, with nearly 70% of water withdrawn from 

rivers, lakes and aquifers, and up to 90% water used in growing and developing economies 

(UNESCO, 2012).  This makes the agricultural activity susceptible to water stress and scarcity 

(Croplife International, 2004; Pegram & Eaglin, 2011).   

According to UNDESA (2013), 700 million people in about 43 countries are already 

experiencing water scarcity.  It was further estimated that by 2025 approximately 1.8 billion people 

globally will be living in areas experiencing an absolute water scarcity.  Water scarcity is typically 

defined as an inequity between the availability and demand as well as the detrimental effect of 

surface and groundwater quality (FAO, 2013).  Statistics on world population growth show that the 

populace is expected to increase from 6.9 billion people in 2010 to 9.1 billion in 2050 (UNDESA, 

2013) leading to additional food and water requirements (WEF, 2009).  Demands for agricultural 

products are expected to increase by 70 - 90% by 2050 which adds further pressure on agricultural 

and water sources (WEF, 2009).  If current water practices are continued, an increase in water 

stress could result in about 55% of the population to import food products by 2030 (WEF, 2009).  

The main challenge that the agricultural sector is facing, is not necessarily increasing food growth 

(70% increase by 2050) but producing 70% more food that are available on the plate (UNDESA, 

2013).  As the world economy growths, water requirements will increase and continue to 

outperform the population growth.  Unlike energy, water has no substitutes or alternatives (WEF, 

2009).   

South Africa is a water scarce country with an irregular rainfall (DWAF, 2000a).  The mean 

annual rainfall is approximately 500 mm which is far lower than the global average of 800 mm.  

Water scarcity in South Africa has been intensified due to restricted groundwater supplies and 

because 60% of streams arise from only 20% of the land (DWAF, 2000a).  The National Water 

Resource Strategy estimates the available yield of freshwater in South Africa to be 13 227  

million m3 and as water demand was approximately 12 871 million m3 in the year 2000, it means 

that 98% of the freshwater supply is used (Wassung, 2010).  Groundwater is regarded as one of 

the most vital natural resources (Foster et al., 2012) yet various human activities endanger 

freshwater systems directly (Kates et al., 1990; Meybeck, 2003; Vörösmarty, 2010).  

Transportation, disposal of waste, human wellbeing (Gleick, 1993), climate, energy, food, financial 

growth and the human security challenges that the world will face over the next two decades are all 

related to water security (WEF, 2009).  There is sufficient freshwater on earth to supply 7 billion 

people, but according to UNDESA (2014), too much water is being wasted, contaminated or 

polluted and not managed in a sustainable way.   
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Wine production is an agricultural activity of major importance to South Africa (Melamane et 

al., 2007).  Wine has been firmly established as a leading export product from the agricultural 

sector, being only second to minerals and motor cars (SAWIS, 2010).  South Africa is ranked as 

the 8th largest producer of wine in the world, with 9.665 million hectolitres being produced per year 

(Eedes, 2013).  This ranks South Africa behind Chile (seventh place), with 10.643 million 

hectolitres and before Germany (ninth place) with 9.611 million hectolitres (Eedes, 2013).  During 

the wine production process, a considerable amount of liquid and solid wastes are generated (Gea 

et al., 2005).  These wastes include the carbon-based wastes (grape skins, pips, vine stalks and 

lees), winery effluent, greenhouse gasses and inorganic waste (diatomaceous earth, perlite) 

(Musee et al., 2007).  Vineyards not only need a substantial amount of water for irrigation 

purposes, but water also forms an essential part within wine making for cleaning and sanitation 

(Gabzdylova et al., 2009).  Historically, wine production has been considered an environmentally 

friendly process.  Winemaking however, requires a significant amount of natural resources and 

carbon-rich amendments while producing a large amount of liquid and solid wastes.  New solutions 

need to be considered to develop a sustainable industry (Ruggieri et al., 2009).   

 

THE WINE INDUSTRY 
Winemaking is a biotechnology that is centuries old and that has become a worldwide enterprise 

affecting the economic wellbeing of several countries (Walker, 1999).  The global production of 

wine in 2012 was 252 million hectolitres (OIV, 2013).  Grapes are regarded as one of the most 

significant fruits over the world, with approximately 60 million metric tons being produced annually 

(Rockenbach, 2011).  It is mainly cultivated as Vitis vinifera for the production of wine (Llobera & 

Cañellas, 2006).  Environmental concerns associated with wineries are water pollution, soil 

degradation and damage to plant life due to poor disposal practices of liquid and solid wastes 

(EPA, 2004).   

 

South African wine industry  
Due to the increase in wine production over the past era in South Africa, pressure on the usage of 

natural resources such as water, soil and vegetation has increased drastically (Van Schoor, 2005).  

In 2012, an estimated harvest of 1095.1 million litres was produced (SAWIS, 2013) - 78% was 

used for wine production, 5.7% to wine for brandy production, 12.5 % for distilling wine and 3.6% to 

grape juice and grape juice concentrate (Eedes, 2013).  The total vineyards in South Africa cover 

an area of approximately 101 016 ha with 378.5 million litres of wine exported (SAWIS, 2011).  

This represents nearly 48.5% of the wine production (SAWIS, 2011).  The agricultural sector of 

South Africa plays a significant role in the economy of South Africa, providing work for 

approximately 940 000 people and generating 15% of the Gross Domestic Product (GDP) (Anon., 

2009).  During 2012, 915 711 tons of white and 428 188 tons of red varieties were harvested, and 

1003 700 000 litres of wine produced (SAWIS, 2013).  Previously, the Environmental Conservation 
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Act (Act 73 of 1989) of South Africa did not regard how waste products were produced, disposed of 

or recycled during the production process.  The National Environmental Management Act (Act 107 

of 1998) of South Africa however changed this and states that the full responsibility lies with 

landowners in the protecting and managing of the environment by means of sustainable processes 

(Dillon, 2011).  The grape growing sector of the Western Cape puts immense pressure on the 

already scarce water resources of the province.  The challenge is therefore to uphold an 

economically viable wine industry, while concurrently saving water (Waterwatch, 2013).   

It is understood by historians that wine was produced in the Caucasus and Mesopotamia 

that dates back to 6000 B.C. (Pretorius, 2000; Bester, 2009).  As the physical characteristics of 

grapes differ from vintage to vintage it is not possible to have a set production formula for 

winemaking (Jackson, 2008; Novo et al., 2012).  A simplified flow diagram of the wine production 

process is illustrated in Figure 2.1.  The vinification process (Fig. 2.1) commences when grapes 

and juice reach the winery (Jackson, 2008).  Wine is made by crushing and fermenting grapes, 

followed by straining of the grape skins and seeds where after it is stored and clarified and allowed 

to mature (NWQMS, 1998).  According to Jackisch (1985), the winemaking process can be divided 

into four phases: (i) biological phase where the grapes grow and ripen (ii) 

microbiological/enzymatic phase also known as fermentation (iii) physical/clarification phase where 

minor particles in wine settle by gravity and (iv) the chemical and/or aging phase.  Several 

differences exist between the white and red winemaking process.  During the production of white 

wine, maceration is minimised and lasts only for a few hours (Jackson, 2008).  For red wines 

however, this process is much longer and occurs together with alcoholic fermentation (Jackson, 

2008).  Malolactic fermentation (Fig. 2.1) is avoided for white and some sparkling wines but often 

encouraged for red wines and fuller, more complex white wines (Springham, 1999).   

Waste produced during the winemaking includes both liquid and solid waste (Gea et al., 

2005).  Solid waste generated by the winemaking process (Fig. 2.1) contains plant remains from 

de-stemmed grapes, sediments from clarification, bagasse from pressing and lees from various 

decanting steps (Devesa-Rey et al., 2011).  Liquid waste generated from vinification is mainly 

wastewater which consists out of grape marc, grape pips and dead yeast cells from the alcoholic 

fermentation process (Devesa-Rey et al., 2011).   

 

WINERY WASTE CHARACTERISTICS 
Wineries produce large quantities of waste residues that could cause environmental problems due 

to their seasonal impact and polluting characteristics (FSA Consulting, 2006).  Wastes that are 

produced during winemaking should be considered as part-and-parcel of the process.  The choices 

and subsequent procedures that are decided upon in both the vineyard and cellar will directly 

control the sustainability of a farm, the wine industry and the agriculture of South Africa (Dillon, 

2011).   
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Figure 2.1 Schematic diagram of wine making and waste generation (Nogales et al., 2005; 

Vlyssides et al., 2005; Arvanitoyannis et al., 2006; Jackson, 2008).  LW= Liquid waste, 

SW= Solid waste. 
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Liquid waste 
Currently, one of the main issues that the wine industry is facing is the management of large 

volumes of wastewater (Mosse et al., 2011).  The majority of wineries in South Africa are located in 

the Western Cape (Bruwer, 2003).  Because several are found in the same water catchment area, 

contamination of downstream sources and water tables may occur (Marais, 2001).  Wastewater in 

wineries is mainly generated by: various cleaning and washing operations during the production of 

wine; the rinsing of fermentation tanks, barrels, floors, equipment and surfaces (Riaño et al., 2011); 

in addition to wastewater generated by bottling facilities; product losses; laboratory wastewater; 

and storm water that are captured in the wastewater management systems which also plays a 

polluting role (FSA Consulting, 2006).  Wastewater so formed can serve as a primary source of 

ecological pollution, especially during the harvest season (Mace & Mata-Alvarez, 2002).   

Characteristics of winery wastewater (WWW) differ in terms of the type of wine produced, 

the specific management practices applied (stage of production) and the volume of the tanks used 

(Vlyssides et al., 2005).  Typical quantities of winery effluent are shown in Table 2.1.  The National 

Water Quality Management Systems (NWQMS) (1998) reported that wineries can generate up to 

five kilolitres of wastewater per ton of grapes processed.  The amount is dependent on the degree 

of wash water recycling and if storm water is allowed to enter the effluent stream (NWQMS, 1998).   

 

Table 2.1  Winery effluent amounts generated by different sized wineries (NWQMS, 1998) 

Winery size Crushed grape weight per vintage (ton) Effluent generated per annum 

(kilolitres) 

Large ≥ 20 000 40 000 - 240 000 

Medium 5 000 - 20 000 5 000 - 10 000 

Small ≤ 5 000 1 000 - 9 000 

 

Wastewater generated by wineries is nearly 1.2 times more than that produced as wine 

(Vlyssides et al., 2005) and although the wine industry does not have a reputation as a polluting 

industry, typical characteristics of wastewater can be an environmental threat (Ronquest & Britz, 

1999; Brito et al., 2007).  The quality and volumes of winery effluent vary greatly during the year as 

they are dependable on different winery operations (Kumar et al., 2006).  Winery effluent is 

typically described as a high strength organic waste, with a low nitrogen and phosphorous content 

(Toffelmire, 1972).  Alcohol, hexose sugars (glucose and fructose), organic acids (acetic, propionic, 

tartaric) (Moosbrugger et al., 1993; Keyser et al., 2003), esters and polyphenolic compounds are 

components that are typically present in winery effluent (Mosse et al., 2011).  Winery wastewater is 

characterised by a chemical oxygen demand (COD) of 0.8 - 12.8 g.L-1 and a pH of 3 - 4 (Petruccioli 

et al., 2000).  Literature reports that COD values can increase up to 25 g.L-1, depending on the 

harvest capacity and the pressing activities in the wine cellar (Malandra et al., 2003; Strong, 2008).   
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In South Africa more than 95% of wineries dispose of winery wastewater by irrigation (Van 

Schoor, 2005).  However, before wastewater can be discharged by means of irrigation, it has to 

comply with certain requirements as given in Table 2.2 (Republic of South Africa, 2004).   

 
Table 2.2  Requirements for wastewater if land irrigation is intended for end use (Republic of South 

Africa, 2004) 

Requirement Irrigation site size 
 < 50 m3 < 500 m3 < 2 000 m3 
 

Faecal coliforms (per 100 mL) 

 

< 100 000 
 

< 100 000 
 

< 1 000 

COD1 (mg.L-1) < 5 000 < 400 < 75 

pH 6 - 9 6 - 9 5.5 - 9.5 

Ammonia (mg.L-1)   < 3 

Nitrate/Nitrite (mg.L-1)   < 15 

Chlorine (mg.L-1)   < 0.25 

SS2 (mg.L-1)   < 25 

EC4 (mS.m-1) < 200 < 200 70 - 150 

SAR5 < 5 < 5  

Ortho-phosphate (mg.L-1)   < 10 

Fluoride (mg.L-1)   < 1 

Soap, oil/grease (mg.L-1)   < 2.5 
1Chemical Oxygen Demand, 2Suspended Solids, 4Electrical conductivity, 5Sodium Absorption Rate 

 

Uncontrolled discharge of untreated waste can have severe ecological, social and health 

risks and should therefore be minimised (Riaño et al., 2011).  Possible impacts from various liquid 

waste components are shown in Table 2.3.  Winery wastewater can cause eutrophication of 

natural water resources, soil sodicity, salinity waterlogging and anaerobiosis (Van Schoor, 2005).   

The wine industry often promotes itself as a “clean green image” but the management of 

waste can become a critical issue when polluting the environment.  This matter is further 

aggravated by the fact that volumes of wastewater increases as the wine industry grows (Kumar et 

al., 2006).  Section 39 of the National Water Act (1998) states that untreated winery effluent would 

infrequently qualify for release into natural water resources and should therefore either be treated 

prior to disposal or treated by alternative means (Van Schoor, 2005).  Discarding of complex 

winery wastes signifies high costs to wine makers and therefore, identification of effective low cost 

treatment options is of high importance (Mosse et al., 2011).   

 

Stellenbosch University  https://scholar.sun.ac.za



Chapter 2           12 

Table 2.3 Possible impacts of winery wastewater on the environment (EPA, 2004; Winewatch 2009) 

Indicator Component Possible sources Potential impact 

 
pH, Calcium Carbonate 
(CaCO3) 

 
Alkalinity and/or 
acidity 

 
Ion exchange processes which are acidic-pH ± 2 
Production losses grape juice and wine is fairly 
acidic, pH 3.5 - 5.5 
Breakdown of organic components during 
storage of wastewater further acidifies the 
wastewater  

 
Death of water organisms at extreme pH 
 
Affects: 
Microbe activity during biological wastewater treatment  
Heavy metals solubility in the soil 
Growth of crops  
 

Salinity EC1, TDS2, chloride Washing processes (Caustic Soda)   
By-products from ion exchange processes   
Salty groundwater used for cleaning purposes   
 

Unpleasant taste to water 
Toxic to water organisms 
water uptake by crops are affected 

Nutrients Nitrogen, potassium, 
phosphorus and 
sulphur 

Production losses: grape juice, wine and lees 
Proteins removed by fining are sources of 
nitrogen and phosphorous 
Phosphate cleansing agents and phosphoric acid 

Eutrophication if stored in lagoons (unwanted odours) 
Poisonous to crops in large amounts. 
Potassium can cause decreased infiltration in soil   
 

Organic material TOC3, COD4, BOD5 Production losses: grape juice, wine and lees 
Residues from cleaning and diatomaceous earth 
waste   
Solid waste like skins and pips   
 

Leads to oxygen depletion in water and consequently  
the death of water organisms   
Odour generation due to anaerobic decomposition   

Metal contamination Chromium, copper, 
mercury, nickel, 
zinc, cadmium and 
lead 
 

Aluminium and copper, tanks and piping, lead 
from soldering as well as brass fittings 

Toxic to both plant life and wildlife  

Sodicity SAR6, ESP7 Washing processes (Caustic Soda)  
By-products from ion exchange processes   
Salty groundwater used for cleaning purposes 

Affects the structure of soil  
 
Causes: 
Crusting of surface and inadequate aeration 
Low hydraulic conductivity and infiltration  
Subsoil becomes hard and dense 
 

1Electrical Conductivity, 2Total Dissolved Solids, 3Total Organic Content, 4Chemical Oxygen Demand, 5Biological Oxygen Demand, 7Sodium Absorption Rate, 8Exchangable Sodium Percentage 
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Solid waste 
Solid wastes that are generated by the winemaking process include stalk, grape pomace, wine 

lees and winery sludge (Bustamante et al., 2008a).  The primary solid source produced during the 

wine making process is grape pomace that contains seeds, stalks and peel (Diaz et al., 2002).   

Carbon-based by-products from the wine making process are characterised by an acidic 

pH, high polyphenol, organic and potassium content along with a substantial amount of nitrogen 

and phosphate (Bustamante et al., 2008b).  Grape pomace is often disposed of in open areas, but 

could be used as animal feed (Sánchez et al., 2002) or for extraction of tartaric acid (Nurgel & 

Canbas, 1998).  Tartaric and malic acids are the main acid components present in a grape and the 

extraction thereof produces a valuable product (Nurgel & Canbas, 1998).  Scarcity of grazing 

fields, especially during the dry season makes pomace as animal feeding a feasible option 

(Sánchez, et al., 2002).  Due to the low nutritional quality, the use of animal feed however, is 

limited (Mole et al., 1993; Sánchez, et al., 2002).   

As large quantities of solid waste are generated during winemaking it causes problems in 

terms of storage, elimination or conversion in both environmental and economic terms 

(Arvanitoyannis et al., 2007a).  When this by-product is improperly disposed of and left unattended 

it could cause several environmental problems such as water contamination and foul odours 

(Brunetti et al., 2011).  Smith (2009) investigated the effect of the vine mealy bug surviving in 

unmanaged grape pomace piles.  Her results showed that the bug could survive in these piles and 

when the pomace is spread into vineyards the bugs could consequently infest the vineyards.  The 

author recommended that unattended piles should not be disposed of directly into vineyards, but 

rather be covered for at least a week with thick, clear plastic to prevent airflow and increased pile 

temperatures.  It is also advised to avoid grape pomace and stems being in the same pile as 

“stemmy” piles generate less heat.    

Possible sources and impacts of solid waste obtained from winemaking consist of: (i) 

production losses such as grape juice, wine and lees that leads to odour generation due to 

anaerobic decomposition; (ii) residues from citric, caustic soda and diatomaceous earth filter waste 

which causes smothering of habitats; and (iii) skins and pips that reach wastewater drains which 

reduces soil porosity, oxygen uptake and light transmission in water (EPA, 2004; Winewatch, 

2009).  Additionally, diseases are spread as decomposing masses host a variety of insects and 

pests (flies, mosquitoes, cockroaches, rats) that can act as carriers of illnesses leading to severe 

health complications (Sharholy et al., 2008; Suthar, 2009).   

The direct disposal of solid grape waste onto land, which is a common practice, also leads 

to severe problems due to the presence of degradation components such as tannins and 

polyphenols (Diaz et al., 2002).  Oenocyanin (natural red pigment), reduces the disposal of this 

waste product onto land even further, apart from the attraction of insects, fermented odours and 

liquid release (Seenappa, 2012).  It is thus essential that alternative solutions to current treatment 

options for solid grape waste are considered.   
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B.  TREATMENT OPTIONS FOR LIQUID WASTE (WINERY WASTEWATER) 
 
Liquid waste 
Proof of successful water treatment dates back to ancient Egyptian inscriptions where a variety of 

water purification processes was described.  This included the boiling and filtering of water as well 

as exposing it to sunlight.  It was only realised at the beginning of the 20th century that direct 

disposal of wastewater caused ecological problems (Moharikar et al., 2005).   

Although various treatment options are available for the treatment of WW, all of aim to 

achieve the same- to lead to cause a significant reduction in the concentration of organic matter 

and solids that are present in the wastewater (Mosse et al., 2011).  The main factors for selecting a 

treatment option include the financial requirements and the skill that is required to manage the 

entire system (Mosse et al., 2011).  All wineries are unique in terms of wastewater production (from 

0.5 -14 L per litre of wine) and their disposal practices (Oliveira & Duarte, 2010).  Currently, 

wastewater treatment options include chemical, biological (Shivajirao, 2012) as well as physical 

technologies (Gie, 2007).   

 

Physical methods 
Disintegration, screening, grit removal, flow equalisation and chemical additions 

The use of preliminary treatment is to protect the treatment process from build-up of debris, 

inorganic git, scum formation or reduced efficacy due to fat, oil and grease (FOG) build-up (WEDC, 

2013).   

 Disintegrators (comminutors and macerators) have been used in the past at the inlet of 

wastewater systems to cut up solids (WEDC, 2013).  These processes are no longer favoured in 

wastewater pre-treatment as it generates a poor quality sludge and cut up solids result in 

operational problems (EPA, 1995).   

Most wastewater treatment facilities include screening as a first unit procedure for pre-

treating wastewater.  This process removes substances that could cause impairment and blockage 

to other equipment within the plant (USEPA, 2004).  The screening of wastewater can be classified 

into (i) coarse screening and (ii) fine screening.  Coarse screens (opening ≥10 mm) are often used 

as primary protection devices whereas fine screens (opening 3 – 10 mm) are used in systems that 

lack primary treatment to prevent operational and maintenance problems (GAH Global, 2010).  

Solids (seeds, skins, stem, leaves and grape marc) can be removed by either a basket strainer in 

the floor drain of a winery or by the installation of a screening/straining device in a winery directly 

upstream from a septic tank array (Storm,1997).  A rotating drum screen needs less operational 

attention than an in-line screen or floor screener as these need regular cleaning and monitoring 

especially during the crushing season (Storm, 1997).   

All wastewater treatment plants should be equipped with a grit removal facility (Anon., 

2004).  Grit can be defined as the heavier suspended material within wastewater that is typically 

made up of sand, cinders and gravel (USEPA, 1977).  The removal of grit protects equipment from 
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blockage and abrasion.  This process can be achieved by either conventional sedimentation (solid 

removal) or by mechanical sand and grit equipment.  These include vortex, hydrocyclone and other 

units that operate similarly to spin out solids (AWWA, 2012).   

Flow equalisation is a method used to combine wastewater in holding tanks to “equalise” it 

before releasing wastewater into downstream processes or right into municipal sewage systems 

(Olajire, 2012).  The equalisation of fluctuating wastewater will help make hydraulic polluting rates 

more even and can improve the effectiveness of a treatment process (USEPA, 1977).  Flow 

equalisation typically contains a holding tank and pumping equipment that lowers fluctuations of 

waste streams.  The tank stores excessive hydraulic flow and stabilises the flow within 24 hours to 

a constant rate (Show, 2008).  This process is frequently applied in the wine industry as 

preliminary treatment for wine/stillage (Kennedy & Jenks Consultants, 2013).   

Chemical additions are often applied to wastewater to achieve pH neutrality or to assist with 

chemical flocculation of solids (Green & Kramer, 1979).  To neutralise acidic winery effluent during 

the peak season, lime is added preceding secondary biological treatment.  Lime used for dosage is 

the preferred chemical above that of sodium hydroxide as it causes ecological problems in terms of 

salinity and sodicity of lands (Dillon, 2011).   

 

Sedimentation, coagulation and flocculation   

Literature reports that about 25 - 50% of biological oxygen demand (BOD), 50 - 70% of total 

suspended solids (SS) and 65% of oils and greases are removed by pre-treatment (Pescod, 1992).  

Sedimentation or clarification of wastewater is a low-cost treatment for the separation of particles 

(Lekang, 2001).  It is defined as the segment separation of suspended solid particles from a liquid 

by means of gravity settling.  Sedimentation is influenced by the size of particles present, the 

viscosity and the density of the solid parts (Cancino-Madariaga & Aguirre, 2011).  This process is 

achieved by reducing the velocity of water so that compounds will not remain in suspension to any 

further extent.  When compounds are no longer supported by velocity, they can be removed by 

means of gravity (Nazaroff & Alvarez-Cohen, 2001).  The main purpose of sedimentation is to 

enhance the filtration process by removing particles from the wastewater (Grecory & Zabel, 1990).  

This process can be applied before filtration as a pre-treatment process and is known as pre-

sedimentation (plain sedimentation) (Yim et al., 2000).  Sedimentation basins are available in 

rectangular, circular or square form (Hammer, 1975).   

The solid separation of winery wastewater is desirable because it reduces the amount of 

work on the waste system (Toffelmire, 1972).  Marais (2001) reported that dissolved and 

suspended matter in winery wastewater do not settle by gravity alone and thus need sedimentation 

agents.  Because organic material in winery wastewater is present in soluble form, static 

sedimentation as a treatment option does not cause a significant concentration reduction (Brito et 

al., 2007).  Other disadvantages of sedimentation includes that it is time intensive and only partly 

eliminates turbidity and potential pathogens (Dangol & Spuhler, 2010).   
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Coagulation and flocculation are often referred to as the backbone of advanced water 

treatment processes as their main objective is to enhance separation of particulate compounds in 

processes like filtration and sedimentation (Shammas, 2005).   

Beltran de Heredia et al. (2005) treated wine distillery wastewater by a Fenton-

coagulation/flocculation process making use of calcium hydroxide Ca(OH)2 as a base precipitant.  

The study showed that moderate COD reduction was obtained with the coagulation/flocculation 

and as expected the higher hydrogen peroxide dosages during the first Fenton’s reaction led to 

better COD removals.   

Due to the repulsion charges and sizes of colloidal and suspended particles they are easier 

removed by coagulation and flocculation than by gravity sedimentation (Mihelcic et al., 2009).  

Coagulation is achieved by adding a chemical coagulant to wastewater to destabilize colloidal, 

dissolved and suspended particles (Mihelcic et al., 2009).  After the coagulation process these 

particles aggregate by flocculation and are removed by means of gravity settling or mechanical 

separation (Mihelcic et al., 2009).  Flocculation or conglomeration is a physical process where 

particles become enmeshed with each other.  Dual tanks are normally used for these processes 

(Fig. 2.2).  Within the first coagulant tank, the agitation rate is high when the destabiliser 

(coagulant) is added.  The wastewater remains in this tank for only a limited amount of time.  In the 

second flocculation tank gentle mixing of wastewater occurs for conglomeration and settling to 

ensue (Talty,1988).   

 

Figure 2.2 A schematic illustration of the coagulation-flocculation process (Talty, 1988).   

 

The most common coagulants used in wastewater treatment include aluminium sulphate 

(alum), ferric chloride and ferric sulphate (Jiang &Lloyd, 2002; Bratby, 2006, Renault et al., 2009).  

Alum is a common metal salt and a suitable coagulant for wastewater containing significant 

amounts of organic material.  Iron coagulants can however, work over a wider pH range and are 

more effective in removing colour from wastewater (Rast, 2003).  Zayas et al., (2007) investigated 

the effect of purifying vinasse which had been pre-treated biologically.  The results showed that by 

using FeCl3 as a coagulant at 20 g.L-1 and vinasse effluent at a pH of 8.4, a COD removal of 84% 

could be achieved as well as sufficient colour and turbidity removal (99%).  Braz et al. (2010) 

studied the effect of four different coagulants (FeSO4, Al2(SO4)3, FeCl3 and Ca(OH)2) on both red 
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and white winery wastewater.  Results showed that coagulation and flocculation, within optimum 

and coagulant dosage ranges, lead to an effectual turbidity removal of 92,6% with aluminium 

sulphate in addition to a total suspended solids (TSS) removal of 95,4% with calcium hydroxide.  

The study also showed that coagulation and flocculation as a main treatment process had minor 

capability to remove COD in both the red and white winery wastewater.  Coagulation/flocculation is 

a suitable full scale pre-treatment technology for the reduction of organic and suspended matter of 

winery wastewater (Braz et al., 2010; Ioannou et al., 2013).  Disadvantages of coagulation and 

flocculation include high operational expenses (chemical depletion) and excessive sludge 

formation that often limit the procedure as a main wastewater treatment option (Vesilind, 2003; 

Golob et al., 2005; Kurniawan et al., 2006).   

 

Granular media filtration 

Filtration is a common pre-treatment step in the management of treating winery wastewater.  Solid 

separation (lees, stems and pomace) by means of filtration is essential as it contributes to waste 

reduction (Toffelmire, 1972).  Supplementary removal of suspended material before biological and 

chemical treatment is commonly achieved by granular media filtration (Matsumoto et al., 1982).  

The removal of particles from water by means of granular media filtration plays an important role in 

potable water use, wastewater treatment and industrial water applications (Boller & Kavanaugh, 

1995).  This process has shown to effectively remove particles with low densities from a bacterial 

origin as well as high density inorganic solids such as titanium and ferric oxides (Boller & 

Kavanaugh, 1995).  Filters can be classified in four different categories (Caliskaner et al., 1999): 

 

1. Direction of the flow (up-flow, down-flow); 

2. Type of media (multimedia, dual, single); 

3. Flow driving force (pressure, gravity); and 

4. the rate of the flow (rapid or slow granular media filtration).   

The most widespread use of granular media filtration is the sand filters for the treatment of water 

and nowadays, wastewater treatment.  Although sand filters have been used in water treatment for 

over four centuries it was only employed as a mass scale treatment at the beginning of the 

nineteenth century (Black et al., 1984; Tien & Ramarao, 2007).  Sand is usually used as filtration 

media, although other materials such as crushed magnetite, crushed anthracite (hard coal) and 

garnet could also be used (Droste, 2004).  Filtration techniques are characterised by the mode of 

filtration and are classified as slow sand filtration or rapid sand filtration.  The whole filtration 

process consists out of two phases, filtration and cleaning which is also known as regeneration 

(backwashing) (Hamoda et al., 2004a).   
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Slow sand filters 

Slow sand filters are based on the slow movement of water through a porous sand media.  The 

filtration unit contains two columns: one of water followed by one of sand, which has the ability to 

remove organic and inorganic material along with micro-organisms (Ari & Adin, 2006).  Solids are 

typically removed by filtering through the media surface and accumulated matter called 

“Schmutzdecke” (Pizzi, 2010).  The phrase “Schmutzdecke” is the German word meaning “dirty 

layer/skin” or “sludge blanket”.  This layer is regarded as a gelatinous mat where a mass of micro-

organisms flourish and therefore the highest removal occurs here (Barrett et al., 1991).  

Disadvantages of slow sand filters include: (i) the need for large surface areas and filtering media 

(ii) cleaning of filtering equipment is labour intensive (iii) microbial removal efficiency decreases in 

cold water due to the reduced biological activity of organisms and (iv) insufficient removal of fine 

clays unless a pre-treatment step is in place (USEPA, 2013).  Sand filters are only applicable to 

wastewater that contains a low turbidity (Hammer, 1975).   

 

Rapid sand filter 

Created in North America as an alternative to the slow sand filter, the rapid sand filter was invented 

to use the entire depth filter bed as to ensure a higher quantity of water for a given surface area 

(Droste, 2004).  Rapid sand or gravity filters, are the most common filters used in the treatment of 

wastewater to remove nonsettleable material (Hammer, 1975).  The mechanisms of a rapid sand 

filter (also termed a gravity sand filter) are basically the same as those of the slow sand filter with 

the exception of the biological processes (Scholtz, 2006).  In rapid sand filtration the biological 

activity is minimised, leading to a reduced filter run time in between cleaning procedures which 

restricts the formation of mature biological development.  Rapid sand filtration functions at a tempo 

some ten times that of slow sand filtration (Scholtz, 2006).  Even though rapid sand filtration is 

seen as an established technology for reducing suspended solids and requiring less land area and 

operation than slow sand filters, high capital costs and procedure costs are required (UNEP, 2013).  

Costs can be increased further if raw water needs to be pre-treated.  Rapid filter technology also 

utilizes energy for pumping and high operational skills are needed (UNEP, 2013).  Unless 

prechlorination or activated carbon adsorption has been applied as a pretreatment process, the 

rapid sand filter will not remove unpleasant odours and tastes.  In terms of bacterial loadings 

sufficient chlorination should always follow the filtration process (Hardenbergh & Rodie, 1963).   

 

Chemical treatment options 

This process includes different chlorine varieties, ozone (O3), oxygen (O2) and permanganate 

(MnO4
-).  Chemical treatment of wastewater is mainly used as a tertiary treatment option and is 

suited for the removal of colour and odorous constituents as well as disinfection (Green & Kramer, 

1979; Nazaroff & Alvarez-Cohen, 2001).  The reduction of salt levels in winery wastewater is of 

high importance as salt levels cannot be lowered through commonly used treatment methods 

Stellenbosch University  https://scholar.sun.ac.za



Chapter 2   19 

 

(Winewatch, 2012).  Technologies for salt removal include ion exchange (Mosse et al., 2011) and 

membrane processes (Hamman et al., 1990).   

 

Chlorination 

Wastewater treated ineffectively or left untreated could contain harmful pathogens (Okoh et al., 

2007).  Chlorine usage in wastewater involves: (i) controlling odours and foul air, (ii) regulating 

activated sludge bulking, (iii) preventing septicity, (iv) obliteration of cyanide and (v) acting as a 

disinfecting agent (Black & Veatch Corporation, 2010).  Chlorine is the most commonly applied 

disinfectant to wastewater.  It damages the cellular components of micro-organisms and can be 

used to disinfect wastewater in either a solid, liquid or gas form (Okoh et al., 2007).  When added 

to wastewater chlorine can react with a range of compounds such as nitrogen, organic nitrogen, 

uric acid, cysteine, polyphenols, bacteria and viruses (Black & Veatch Corporation, 2010).   

 Chlorination can be also be used with sand filtration technology.  It is often added before 

the filtering process (pre-chlorination) to kill algae that clogs filters and after filtration (post-

chlorination) to effectively disinfect the wastewater (Hamoda et al., 2004b).  Free chlorine has the 

ability to react with organics to form organochlorinated derivaties which are of great ecological 

concern and therefore any free chlorine remaining in wastewater has to be removed by 

dechlorination to protect aquatic life (Abarnou & Miossec, 1992; Okoh et al., 2007).  While chlorine 

is applied in water and wastewater as a disinfectant, the higher amount of impurities in wastewater 

leads to a higher chlorine dosage (Nazaroff & Alvarez-Cohen, 2001).  Although chlorination is an 

effective disinfectant against bacteria and certain viruses, this technology is applied less frequently 

to wastewater due to the formation of toxic chlorinated by-products (Lazarova et al., 1999).  The 

disadvantages of chlorination includes the poor inactivation of certain viruses and spores at low 

chlorine dosages when used for coliform elimination, the formation of lethal by-products and 

dechlorination cost which increases initial disinfection costs by approximately 20 % (Lazarova et 

al., 1999).    

 

Advanced Oxidation Processes (AOP) 

This technology relies on chemical initiators and energy to destroy contaminants found in water, 

wastewaters, soil and air. It includes UV radiation, ozonation, sonolysis, photocatalysis, wet air 

oxidation, electrochemical oxidation, the Fenton and photo-Fenton reagents and several 

combinations of the aforementioned (Mantzavinos et al., 2007).  AOP generates reactive 

intermediates, with hydroxyl radicals (•OH) being the primary radical produced (Zwiener & 

Frimmel, 2000; Kraft et al., 2003).  By being one of the strongest oxidising species, the hydroxyl 

radicals attack carbon-source compounds by either removing hydrogen ions or adding them to 

double bonds (Mourand et al., 1995).  These technologies are able to oxidise most carbon-source 

pollutants and reduce their concentrations in wastewater (Tabrizi & Mehrvar, 2004).   

Lately, advanced oxidation processes have shown potential as an alternative treatment 

option for winery wastewater (Oller et al., 2011) and have been successfully applied in various 
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studies: (i) Agustina et al. (2008) studied the effect of a photocatalytic/photolytic reactor system on 

winery wastewater.  It was found that the highest degree of photodegradation and COD removal to 

be at zero catalyst loading and 84%, respectively; (ii) Ioannou et al. (2013) investigated the 

purification of winery wastewater by reverse osmosis and oxidation of the concentrate by applying 

a solar photo-Fenton process.  The authors found a COD removal rate of 97% along with a 

deduction rate of 67% for nitrogen and 76.2% for TSS.  By applying the solar photo-Fenton 

oxidation process on the concentrate an additional COD reduction of 75% was achieved; and (iii) 

Lucas et al. (2010) investigated the effect of different advanced oxidation processes on winery 

wastewater.  They found that the O3/UV and O3/UV/H2O2 advanced oxidation processes were the 

most feasible methods for the treatment of winery wastewater in a pilot-scale bubble column 

reactor as significant COD and TOC rates were observed.  Disadvantages of AOP include long 

retention times for certain substances, the production of free radicals that can scavenge carbonate 

and bicarbonate ions and by-products generated from recalcitrant organic matter that may appear 

in the production water (Mourand et al., 1995).  Pretreatments are often necessary for the 

preferred oxidation reaction to take place when certain compounds in the wastewater compete for 

the oxidising agents (Hamman et al., 1990).   

 

Adsorption 

The adsorption process involves a mass transfer procedure where matter (adsorbate) is moved 

from an aqueous phase to a solid phase (adsorbent).  The matter binds to the surface of the solid 

phase by chemical and/or physical interactions (Çeçen & Aktas, 2012).  Activated carbons are the 

most frequently used adsorbents for the treatment of water as a variety of organic solutes can be 

removed from water and wastewater by means of adsorption (Çeçen & Aktas, 2012).   

 These porous adsorbents are mainly used in a powdered activated carbon (PAC) or 

granular activated carbon (GAC) forms (Cooney, 1998).  Activated carbons can be manufactured 

from several raw organic materials and a variety of activation procedures (Worch, 2012).  

Traditionally, adsorption by means of activated carbon was applied to drinking water to remove 

components that cause odour and taste problems, but lately it is applied to wastewater to remove 

remaining organic material that cannot be biodegraded (Nazaroff & Alvarez-Cohen, 2001).  The 

adsorption process represents one of the cheapest tertiary treatment technologies for the removal 

of recalcitrant organic compounds (Green & Kramer, 1979).  For years it was mainly used as a 

treatment option for wastewater generated by chemical industries but due to upgraded equipment 

and reductions in operating costs it is also applied to municipal and industrial wastewater treatment 

plants (Green & Kramer, 1979).   

 

Ion Exchange and membrane processes  

The usage of sodium base cleaning agents (mostly NaOH) in wineries poses to be a major threat 

to the environment as the accumulation of sodium in the environment is a common problem 

(Mosse et al., 2013).  This factor is of high importance if wastewater is disposed of onto land as 

Stellenbosch University  https://scholar.sun.ac.za



Chapter 2   21 

 

salt present in wastewater can have a significant effect on soil properties (Tillman & Surapaneni, 

2002).  Ion exchange is defined as the exchange of ions from a solution for other ions onto a 

surface.  In wastewater treatment it is mainly used for the removal of metals that are toxic and for 

the retrieval of valuable metals (Droste, 2004).  Although ion exchange is a common practice in 

winemaking, almost no literature is available on the application thereof on winery wastewater 

(Mosse et al., 2011).   

Membrane processes have been applied in the treatment of water, seawater and brackish 

water for more than 30 years (Shivajirao, 2012).  Membrane technologies are used for 

desalinisation and the removal of specific ions that are difficult to eliminate by means of other 

methods and is often applied to wastewater that is intended for reuse as it provides softening and 

eliminates organic material, viruses, bacteria and heavy metals (Hamman et al., 1990).  The 

process is grounded on the occurrence of semi-permeable membranes that work as filters 

(Shivajirao, 2012).  Technologies include: electrodialysis, reverse osmosis, nanofiltration, 

ultrafiltration, and electrodialysis reversal (Hamman et al., 1990; Taylor & Francis Group, 2010).  

Due to water scarcity conditions experienced worldwide, there is a strong motivation to recover 

unpolluted water from effluents for reuse (Melamane et al., 2007).  Nataraj et al., (2006) studied 

the effect of a combination treatment (nanofiltration and reverse osmosis) on distillery spentwash.  

The authors achieved a significant removal rate of 99.80% TDS, 99.90% COD and 99.99% of 

potassium.   

 Although as mentioned above, a number of technologies are available for the removal of 

sodium from wastewater they have high capital costs (energy and maintenance) which make them 

impracticable for most wineries and specifically small wineries (Mosse et al., 2011).  

Tchobanoglous et al. (2003) also reported that a main limitation of these methods is the production 

of a concentrate that requires disposal.   

 

Biological methods 

Biological processes are based on microbes that use carbon and energy for growth in order to 

oxidise organic materials in wastewater (Erten-Unal, 2009).  Microbial-based systems for organic 

material degradation have lately gained importance since biological treatment methods have a 

number of advantages above chemical or physical technologies.  Biological treatments of 

wastewater are more effective due to the higher surface-to-volume ratio, they have less operational 

costs as systems can operate at ambient temperatures and they are more robust (Moharikar et al., 

2005).  Biological treatment methods include aerobic and anaerobic treatments and have proven to 

be successful in treating polluted wastewaters (Genovesi et al., 2000).   

 

Aerobic vs anaerobic treatment 

Previously, aerobic treatments were used continuously in industrial countries as energy costs 

involved in this treatment were low.  Due to energy and disposal costs increasing drastically, 

industries were forced to consider other treatment options (Britz et al., 2002).  Figure 2.3 illustrates 
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the implementation of anaerobic systems from 1981 - 2007.  According to van Lier, (2008) up and 

until 2007, 2266 anaerobic full-scale systems were registered and operated worldwide.  According 

to the author another 500 reactors could be added to the number which mainly consists of “home-

made” reactors used by small local companies and industries.  During 1981 – 2007, (Fig. 2.3, left) 

approximately 77% of reactors utilised were granular sludge bed based and only 28% expanded 

bed based.  In 2002 - 2007, however (Fig. 2.3, right) the percentage of expanded based reactors 

increased to 57% and the granular sludge bed reactors to 89%.  Ren, (2013) reported that 

nowadays China is the leader in retaining full-scale (300 m3) anaerobic digesters, with an 

estimated 20 000 AD systems in operation at the end of 2012.  This value represents over 30% of 

the total number of AD systems reported worldwide.   

The main differences and advantages of anaerobic digestion over aerobic treatment are 

highlighted below (Fig. 2.4).  Due to poor biological stabilisation in aerobic systems, a large amount 

of organic material is incorporated as microbial biomass causing excessive sludge production  

(Fig. 2.4) (de Lemos Chernicharo, 2007).  In anaerobic systems only a small volume of biomass is 

produced as most of the biodegradable material is converted to biogas (de Lemos Chernicharo, 

2007).   

 

Figure 2.3 Schematic representation of anaerobic systems implemented from 1981 – 2007 (left) 

and 2002 – 2007 (right) (van Lier, 2008).  UASB: Upflow Anaerobic Sludge Blanket, IC: Internal circulation 

reactor, EGSB: Expanded Granular Sludge Bed, AF: Anaerobic Filter, CSTR: Continuous Stirred Tank Reactor, Lag: 

Lagoons, HYBR: Hybrid, FB: Fluidised bed, IR: incomplete references.   

 

Anaerobic treatment should not necessary be seen as a substitute to aerobic treatment, but rather 

as a treatment that can complement it.  When these biological processes are combined, the 

advantages of both can be incorporated.  The data in Table 2.4 shows the key differences and 

benefits of each treatment system.   

Biogas generated by AD, consists of various gasses (CH4, CO2, CO, H2, H2S, NH3, N2, 

N2O) (Gerardi, 2003) but methane (60 - 65%) and carbon dioxide (35 - 40%) are produced in larger 

quantities (Fillaudeau et al., 2008).  Methane is a renewable energy source and a natural 

flammable gas (Gerardi, 2003).  Methane produced during AD can be used as a fuel source for 
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boilers or function as a substitute for natural gas and fuel oils. It can also be utilised by engine-

generators to generate electrical energy for on-farm usage or be sold to electrical companies 

(Kelleher et al., 2002).   

 

 

 

Aerobic technology               + Oxygen 

 

 

 

 

 

 

 

Anaerobic technology 

 

 

 

 

 

Figure 2.4 A schematic illustration highlighting the main differences between aerobic and 

anaerobic technologies (Parawira, 2004; Els et al., 2005).   

 
Table 2.4 Main limitations and advantages between anaerobic and aerobic biological systems 

(Driessen & Vereijken, 2003; Fang, 2010) 

 Aerobic Anaerobic 

Sludge production high low 

Energy consumption high low 

Energy (methane) production no yes 

COD removal 90 - 98% 70 - 85% 

Nitrogen/Phosphorous removal  high low 

Area requirement  high low 

Discontinues procedure  problematic simple 

 

Mosse et al. (2011) summarised that the most widespread used aerobic biological 

treatments in the wine industry includes: aerated lagoons; activated sludge; sequence batch 

reactor; and membrane bioreactor.  Anaerobic treatment includes anaerobic sequence batch 

reactor, upflow anaerobic sludge blanket and anaerobic lagoons.   
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Aerobic treatment 
 

Aerated Lagoons 

Lagoons or ponds are shallow ground basins that are often used as an effective treatment option 

that needs minimal technology and maintenance (Nameche & Vasel, 1998).  This technology 

involves the treatment of wastewater by means of natural processes that involve algae and aerobic 

micro-organisms (Stander & Theodore, 2008).  This can be achieved by either aeration or 

constructing the lagoons shallow so that air and sunlight can reach it (Zhang et al., 2013).  Oxygen 

and mixing requirements needed for the process to be optimal are obtained by either mechanical 

or diffused aeration (Stevenson, 2008).   

Aerated lagoons can be defined as either aerated lagoons or aerobic-anaerobic/facultative 

lagoons (Bartsch & Randall, 1971).  In aerated lagoons solids are kept in suspension due to mixing 

as supplied by the aeration equipment (Kormanik, 1972; Erten-Unal, 2009).  The aerobic-anaerobic 

or facultative lagoons differ from the above mentioned as the mixing levels are low enough to allow 

the solids that are present to settle, while dissolved oxygen can still be dispersed through the water 

(Kormanik, 1972).  Microbial reactions that occur in aerated lagoons are the same reactions found 

in activated sludge systems apart from the biological sludge (Stander & Theodore, 2008).   

Aeration is used to enhance the organic removal efficiency of the treatment process 

(Moharikar et al., 2005), shorten the treatment time and avoid organic overloading (Green & 

Kramer, 1979).  Aerated conditions within a lagoon are sustained, unless the oxidation rate of 

organic matter exceeds the rate of reaerating (O'Connor et al., 1960).  Organic matter that is 

present in wastewater can be of such an extent that it causes the rate to be exceeded, leading to 

anaerobic conditions.  In order to maintain an oxygen rich environment it is necessary to supply the 

lagoon with oxygen by artificial means (O'Connor et al., 1960; Green & Kramer, 1979).   

Facultative ponds, also termed oxidation or photosynthetic ponds are more common than 

aerobic ponds (Spellman, 2013).  These ponds are approximately 0.9 - 2.4 m deep, containing an 

oxygen rich layer with an anaerobic layer beneath it (USEPA, 2011).  According to literature 

retention times within these ponds may vary according to the temperature.  In warmer climates 5 - 

50 days have been reported, whereas in colder climates it was found to increase from 90 -180 

days (USEPA, 2011) 

Aerated lagoon technology has been applied on fish processing wastewater (Chowdhury et 

al., 2010), cane-sugar wastewater (Ramjeawon, 2000), domestic wastewater (Li et al., 2013) and 

tannery wastewater (Chandra et al., 2011).  Montalvo et al. (2010) investigated the performance of 

pilot-scale aerated lagoons treating winery effluent.  The effluent (18 700 mg.L-1) was fed to an 

aerobic lagoon at a flow rate of 170 L.d-1.  The authors found a COD reduction of 91% after 21 

days of treatment, where after the value was maintained almost constantly.   
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Aerated lagoons have several disadvantages; malodours tend to form if the lagoon is not 

properly designed and operated, the protection of groundwater needs to be taken into 

consideration, high mechanical aeration is very expensive (Barker, 1996), settled sludge needs 

regular removal, accumulation of sludge will increase in colder climates as microbial activity 

decrease and lagoons needs fairly large areas of land (USEPA, 2002).   

 

Activated Sludge 

The first activated sludge treatment plant was constructed in Worcester, England in 1916 (Nazaroff 

& Alvarez-Cohen, 2001).  This process is the most common biological method for the wastewater 

treatment within industries and municipalities. (Ni et al., 2009).  The utmost important component in 

this process is the use of an aeration tank, wherein micro-organisms are mixed with incoming 

wastewater (Moharikar et al., 2005).  The activated sludge process contains three elements (i) an 

aeration tank (reactor) where micro-organisms grow (ii) a clarifier, which is responsible for the 

liquid-solid separation and (iii) a recirculation system for transporting recovered sludge back to the 

aeration tank (Droste, 2004).  Organic materials are biodegraded by being in contact with micro-

organisms within an aerobic environment. Activated sludge treatment is regarded as a suspended 

growth process due to microbes being suspended in the water (Nazaroff & Alvarez-Cohen, 2001).   

Brucculeri et al. (2005) investigated the co-treatment of municipal and winery wastewater in 

a traditional activated sludge process.  Results obtained showed a 90% COD removal rate during 

vintage and 87% during non-vintage.  Nitrogen removal was found to be 65% during both vintage 

and non-vintage.  Petruccioli et al. (2000) studied the aerobic treatment of winery wastewater by 

means of a jet-loop activated sludge reactor.  The reactor (15 dm3) operated for more than a year 

and was fed winery wastewater collected at different times throughout the year.  The COD of the 

wastewater ranged between 800 and 12 800 g.m−3 and was fed to the reactor at an organic 

loading rate (OLR) of 0.8 and 12.8 kg.m−3.d-1.  The authors found that the reactor responded well 

to variations in the wastewater and a COD reduction of 90% was obtained.  Fumi et al. (1995) also 

treated winery wastewater by means of a long term, full scale activated sludge process.  They 

found a significant COD reduction of 98%.  The aerobic sludge produced, contained low levels of 

nitrogen, phosphorous and potassium as well as heavy metals and was therefore suitable for direct 

agricultural use or for the production of compost.  Bolzonella et al. (2007) co-treated winery 

wastewater with municipal wastewater with a full scale activated sludge process for five years.  

They found a significant removal of COD, phosphorous and suspended solids.  Sludge production 

during the vintage period was found to increase from 4.0 to 5.5 tons per day with a poor nitrogen 

removal of only 20%.   

The main advantage of this technology is the almost complete oxidation of materials during 

short retention times, which leads to minimal space requirement (Green & Kramer, 1979).  

Limitations include high maintenance and capital costs, supervision by skilled operators are 

continuously needed (Green & Kramer, 1979) and aerobic sludge disposal is a main operating 

expenditure (Droste, 2004).   
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Rotating Biological Contractor (RBC) and Trickling Filters 

The usage of RBC to treat wastewater dates back to the early 1900s where it consisted out of a 

cylinder with wooden slats.  In the 1930s, it was replaced with metal discs due to clogging and 

bacteriological deterioration of the wood.  Twenty years later it was replaced by expanded 

polystyrene discs which were eventually replaced with high density polyethylene (HDPE) discs 

(Mathure & Patwardhan, 2005).   

RBC is a biological process used for the treatment of carbon-based wastewater and is 

characterised as an attached growth process (Show, 2008).  It consists of a sequence of closely 

spaced circular plastic disks, which are partly submerged into a tank filled with untreated 

wastewater (Show, 2008).  Discs usually consist of lightweight, styrofoam or high-density plastic 

materials (Droste, 2004).  Microbial films develop on the surface of the circular disks which move 

through the wastewater as they rotate.  Micro-organisms degrade organic material while being 

submerged in the wastewater and are provided with oxygen when the disks rotate into the air 

(Moharikar et al., 2005).  RBC has similarities to the activated sludge and trickling filter treatments 

but the biofilm process is the principal feature of this treatment option (Droste, 2004).  Advantages 

of RBC over fixed film processes include less land area requirement, fewer complications with 

noise and odours, the process control is less complex and high removal rates of Biological oxygen 

demand (BOD) (Gray, 2010).  Limitations, however, include the high capital costs, recurrent 

maintenance and unnecessary film-build after a power failure, which often can lead to impairment 

and failure of the motor on restart (Gray, 2010).  Rotating biological contractors have been applied 

widely (Cortez et al., 2008) and successfully in a variety of applications including: bakers yeast 

wastewater (Nahid et al., 2001); food canning wastewater (Najafpour et al., 2006); metal 

contaminated wastewater (Costley & Wallis, 2001); and polyphenolic wastewater (Banerjee, 1997).  

Malandra et al. (2003) treated winery wastewater by means of a small scale RBC with 16 

polystyrene discs.  Winery wastewater was pumped through the system after excessive grape 

marc was removed and the hydraulic retention time was set between 0.35 and 1.4 hours.  Due to 

the short hydraulic retention time the COD reduction rates were found to be only 43%.  The 

authors mention that although the reduction is not as high as when compared to treatments such 

as anaerobic digestion or the activated sludge process, the RBC could be used as an effective pre-

treatment option to lower the COD levels for further treatment by biological systems.   

Trickling filters are an aerobic treatment system that is applied to wastewater to eliminate 

the organic material present therein (USEPA, 2000).  This system operates by micro-organisms 

that attach to a medium to ensure the removal of organic matter.  Trickling filters are also called 

attached-growth processes (USEPA, 2000).  Filters contain fixed or rotating distributor arms that 

spray wastewater over media or rocks that are covered with a biological layer of slime.  Due to the 

open spaces existing between the rock and other media, the process allows air to circulate through 

and consequently keep it oxygenated (Noyes, 1994; Moharikar et al., 2005).  The slime layer 

mainly consists of bacteria and algae but various other organisms (protozoa and metazoa) are also 
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present that have the ability to break down the organic matter (Nahid et al., 2001; Moharikar et al., 

2005).  Micro-organisms within the biofilm metabolise organic material into relatively harmless 

products (Vallero & Peirce, 2003).  Although the trickling filter is easy to operate and manage, 

limitations include (Greiner & Timmons, 1998; Eding et al., 2006): 

 
• Moderate removal rates; 
• Biofilm detaching; 
• Improperly designed filters could result in clogging; and 
• Utilisation of low surface area media requires large volumes and floor space 

The application of the trickling filter and activated sludge process on whey wastewater were 

investigated by Quirk & Hellman (1972).  Other studies include the application of the trickling filter 

on brewery wastewater (Lemji & Eckstädt, 2013), domestic wastewater (Pal et al., 2010), sewage 

wastewater (Anon., 1961), food industry wastewater (El Defrawy & Shaalan, 2003), synthetic dairy 

wastewater (Raj & Murthy, 1999) and distillery wastes (Travieso et al., 2006).   

 

Wetlands 

Wetlands, also termed constructed wetlands, are designed to eliminate impurities from 

contaminated water (Faulwetter et al., 2009).  This technology is an inexpensive alternative to 

conventional treatment options as it often functions without any mechanical or electrical equipment 

(Gray, 2010).  Wetlands can be used as a depollution tool for both secondary and tertiary 

wastewater treatment, stormwater treatment and sludge stabilisation (Gray, 2010).  Biodegradable 

organic compounds are decomposed by bacteria, fungi and actinomycetes that exist on exposed 

plants and soil in the wetland (USEPA, 1993).  Wetlands are classified as either natural or 

constructed wetlands wherein large aquatic plants (macrophytes) like Phragmites australis, Typha 

spp. and Scirpus spp. occurs predominantly (Verhoeven & Meuleman, 1999; Kadlec et al., 2000; 

Rousseau et al., 2004).  Macrophytes have several functions within wetlands (Brix, 1994): 

 
• prevention of erosion; 
• having a filtration effect on the water; 
• supplying micro-organisms with a surface area to attach to; 
• removal of nutrient rich materials; 
• supplying oxygen to the system; and 
• providing a habitation for wildlife  

Natural wetlands include lake marginal, extensive fen systems as well as floodplain 

marshes (Verhoeven & Meuleman, 1999).  Constructed wetlands include two different types of 

wetlands: (i) Infiltration wetlands, where wastewater runs vertically through permeable sediments 

and gathers within a drainage system; and (ii) Surface-flow wetlands where the wastewater runs 

parallel over sediments (Verhoeven & Meuleman, 1999).   

 Wetlands are well documented in literature and have been applied on a variety of wastes: 

dairy farm wastewater (Schaafsma et al., 1993); dairy parlour washings (Healy et al., 2007); 

leather processing wastewater (Calheiros et al., 2007); domestic wastewater and landfill leachate 
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(Vymazal, 2009); as well as winery wastewater (Shepherd et al., 2001).  Another study on winery 

wastewater was investigated by Grismer et al. (2003) who evaluated the use of a constructed 

wetland to treat winery wastewater.  The objective of the study was to determine the retention 

times of full-scale constructed wetlands and its treatment performance.  The aforementioned was 

obtained by monitoring the water quality daily for pH, COD, TSS, total dissolved solids (TDS), 

ammonium, nitrogen, sulphates and sulphides.  Two full-scale subsurface wetlands were evaluated 

during the harvest crush and spring season: 1) a wetland treating wastewater from a moderate-

producing winery near Hopland, California; and 2) a smaller scale winery near Glen Ellen, 

California.  At the Hopland wetland the authors found a COD reduction ranging from 49 - 79% and 

a tannin removal rate of 46 - 78%.  They also found that the removal rates were greater during the 

non-crush period.  At the smaller Glen Ellen wetland, the authors found an almost complete COD 

reduction rate of about 8 000 - 5 mg.L-1.  In this wetland however, they made use of a recirculation 

system, which suggests that when the wetland is properly managed and loaded it could be 

successful for the treatment of winery wastewater.   

Disadvantages of wetlands include the requirement of large land areas and fairly level 

surfaces, possible occurrence and problems with pests and mosquitoes (Hammer & Bastian, 1989; 

Hammer, 1992), literature also states that wetlands could be a source of greenhouse gas 

emissions and that prolonged nutrient overloading could be fatal to biodiversity (Verhoeven et al., 

2006).   

 

Sequencing batch reactor (SBR) 

A SBR achieves equalisation, aeration and clarification in a scheduled sequence within one 

container that consists of five phases (Forbort, 2009): (i) reacting (aeration/mixing); (ii) filling; (iii) 

settling (sedimentation/clarification); (iv) draw (decanting); and (v) idling (Noyes, 1994; Torrijos et 

al., 2001).  SBRs are an example of a fill-and-draw activated sludge system and while the unit 

procedures in the SBR and activated sludge treatments are virtually the same there is one main 

difference.  In conventional activated sludge systems, aeration and sedimentation occurs at the 

same time in separate tanks, whereas during SBR treatment the processes occur after one 

another in the same holding vessel (Tchobanoglous et al., 2003).   

SBRs have been applied on municipal wastewater (Ni et al., 2009; Monsalvo et al., 2012), 

soybean processing wastewater (Su & Hu, 2005), reject-wastewater (Wett et al., 1998), landfill 

leachate and domestic sewage (Diamadopoulos et al., 1997), hypersaline wastewater (Woolard & 

Irvine, 1998), dairy wastewater (Torrijos et al., 2001; Sirianuntapiboon et al., 2005) and poultry 

wastewater (Pierson & Pavlostathis, 2000).  Torrijos & Moletta (1996) investigated the treatment of 

winery wastewater by means of a SBR.  The authors found that the SBR was an effective 

depollution tool for the treatment of winery wastewater as a total COD reduction of 90% was found.  

Other results also included a 95% soluble COD reduction, 97.5% BOD5 reduction and a 50% and 

88% reduction of nitrogen and phosphorous, respectively.   
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Although proven to be an effective depollution tool for the treatment of winery wastewater 

the following limitations are worth mentioning: (i) when compared to other conventional treatments, 

skilled operation for timing and control units are needed (Noyes, 1994); (ii) there is potential risk for 

settled or floating sludge to be discharged during the drawing or decanting phase; and (iii) 

equalisation is sometimes needed after treatment (Arvanitoyannis et al., 2007b).   

 

Anaerobic treatment 
 

Anaerobic lagoons 

Depending on the type of treatment option it is used for, this technology is also referred to as a 

polishing, stabilisation, or maturation lagoon.  Anaerobic wastewater lagoons are constructed to 

treat wastewater before it is reused or released into natural watercourses (Mihelcic et al., 2009).  

Anaerobic lagoons are deep non-aerated earth basins (Mihelcic et al., 2009) with adequate volume 

to allow sedimentation of solids, digesting sludge and to degrade certain soluble carbon-rich 

material.  Wastewater normally enters the lagoon at the bottom where it is mixed with active 

microbes within the sludge blanket (USEPA, 2002).  Microbes degrade organic particles 

anaerobically, with a BOD5 reduction rate of 50 - 80%.  Anaerobic lagoons are mostly used for: (i) 

primary or secondary treatment of wastewaters having high organic loads (Gray, 2010); or (ii) for 

the treatment of sludge (Green & Kramer, 1979).  This treatment is normally pursued by treatments 

such as the trickling filter or facultative lagoons (Green & Kramer, 1979).  The anaerobic 

degradation of organic materials to carbon dioxide and methane is a complex biological and 

chemical process that includes four phases: hydrolysis; acidogenesis; acetogenesis; and 

methanogenesis (Tommaso, 2011).  During the first phase complex compounds are broken down 

to smaller intermediates through hydrolysis (Banks & Wang, 2006).  During phase two 

intermediates are broken down to simple compounds such as alcohol, lactic acid, volatile fatty 

acids (VFA) and CO2. (van Lier et al., 2008).  In phase 3, acetogens use these smaller 

intermediates to produce organic acids that are used by methanogens (phase 4) to produce 

methane and carbon dioxide (Banks & Wang, 2006).  Anaerobic lagoons have been employed to 

treat swine waste (Sharpe & Harper, 1999), dairy wastewater (Baena et al., 1998), sludge solids 

(Parker & Skerry, 1968) and distillery waste (Rao, 1972).   

Although anaerobic lagoons are suited for treating high strength wastewaters, main 

limitations are the requirement of large land areas (Stubbart et al., 2006) and controlling odorous 

compounds (Heber et al., 2002).   

 

Anaerobic filter (AF) 

Anaerobic biological filters were first used at the end of 19th century for the treatment of sanitary 

sewage (Tommaso, 2011).  The anaerobic contract filter is basically a non-aerated trickling filter 

with retention times of up to three days (Woodard & Curran, Inc., 2006).  This process entails the 

fixing of biofilm onto a carrier that is a few hundred squares per cubic metre (Habouzit & Torrijos, 
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1998).  Two types of systems exist: an upflow; or downflow filtering process.  Typically, during the 

treatment process the wastewater is recirculated to have a homogenous distribution of wastewater 

(Habouzit & Torrijos, 1998).  AFs have been used in treating confectionary wastewater, seafood-

processing wastewater, fruit canning wastewater, winery wastewater and cheese dairy wastewater 

(Mendez et al., 1995; Di Berardino et al., 2000; Rajinikantha et al., 2009).  Although AFs can be 

used as a main treatment option is more suitable as a post-treatment option (polishing step) where 

it adds operational safety and stability to the whole process (de Lemos Chernicharo, 2007).   

A study done by Habouzit & Torrijos (1998), investigated the effect of treating winery 

wastewater by means of an acidogenic reactor followed by an AF and finally an aerobic post-

treatment.  Wastewater was obtained from a winery in France that produces approximately 35 000 

hectolitres of wine per year.  The COD of the wastewater generated varied between 8 - 16 g.L-1.  

The authors found a COD removal rate of 24% during the acidogenic phase and a 70% removal 

rate during the anaerobic filter treatment.  Another study done by Yu et al. (2006) investigated the 

efficacy of a lab-scale multi-fed upflow anaerobic filter process for the treatment of rice winery 

effluent.  The reactor functioned at a temperature of 19 - 27°C, with an influent COD ranging from 

8.34 - 25.76 g.L-1.  The authors found an 82% COD reduction rate with an OLR as high as 37.68 

gCOD.L-1.d and a hydraulic retention time of 8 h.   

The main drawback of upflow anaerobic filters is the difficulty in sustaining the necessary 

contact between the untreated wastewater and the sludge due to clogging (van Lier et al., 2008).  

In order to avoid filter clogging special care should be taken in removal of suspended solids 

(Tommaso, 2011).  Literature also reports the following limitations: a large footprint with influent 

dispersion problems as well as a very long start-up period (Els et al., 2005).   

 

ANAEROBIC DIGESTION (AD) 
Anaerobic technology as a treatment option is acknowledged as one of the main advanced 

treatment options for ecological protection and when combined with other suitable procedures, it 

serves as a sustainable and suitable wastewater treatment option in developing countries 

(Seghezzo et al., 1998).  One of these treatment options is anaerobic digestion (Britz et al., 2002).  

During the 1900’s AD was already employed worldwide, mainly in the form of anaerobic ponds for 

treating sewage (Els et al., 2005).  It is defined as a fermentative process where organic materials 

are broken down and biogas is produced.  This process will mainly occur when carbon-based 

materials are available and the redox potential is low (van Lier et al., 2008).  It is therefore often 

found in environments where no oxygen is present like waterways, sediments, marshlands and the 

gut of mammals (van Lier et al., 2008).   

 AD serves as an attractive treatment option, as both depollution and energy recovery can be 

accomplished (Chen et al., 2008).  It is the most suitable treatment option for high strength organic 

wastewater (Rajeshwari et al., 2000) and has been applied universally for the treatment of 

industrial wastewater (Moletta, 2005).  Because the quality of the final effluent generated is not as 

good as obtained by aerobic treatment, AD is often used as a pre-treatment step where after 
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wastewater is released into municipal systems or undergoes an aerobic post-treatment step 

(Tchobanoglous et al., 2003).  This process is a complex set of reactions wherein several groups 

of anaerobic and facultative organisms absorb and degrade organic material simultaneously 

(Cheremisinoff, 1996).  Anaerobic digestion of winery wastewater is the most feasible treatment 

option as significant COD reductions have been reported (Toffelmire, 1972; Keyser et al., 2003; 

Moletta, 2005, Melamane et al., 2007; Ganesh et al., 2010).   

 

Reactor types 

Various types of anaerobic digesters exist: (i) bacterial growth can be classified as either 

suspended or fixed film; (ii) temperature is characterized as a psychrophilic, mesophilic and 

thermophilic system; and (iii) configuration which include a single stage phase or a two-stage 

phase (Gerardi, 2003).  Recently, a considerate amount of time has been spent on developing 

anaerobic reactors for the treatment of wastes, to convert organic material into biogas (Rajeshwari 

et al., 2000).   

 

Anaerobic expanded granular bed (EGSB) and anaerobic fluidised bed reactor systems (AFBR) 

These systems involve the formation of active biofilms that developed on small, inert substrate 

material (McCarty & Smith, 1986).  The expanded granular sludge bed reactor combines the 

features of both the Upflow Anaerobic Sludge Blanket (UASB) as well as the Biofilm Fluidised Bed 

(BFB) reactors.  Like the UASB, biomass is present within the reactor in a granule form but the 

upflow velocities of the liquid (10 m.h-1) and the gas (7 m.h-1) are based on principles similar to the 

BFB reactor (Nicolella et al., 2000a).  By making use of effluent recirculation and a taller reactor, it 

led to the development of the EGSB (Seghezzo et al., 1998; Kato et al., 1999).   

The EGSB reactor uses granular sludge that is known for having higher methane and good 

settling properties (van Lier et al., 2008).  The EGSB reactor has a cylindrical construction filled 

with supporting inert material that occupies 10% of the reactor volume (de Lemos Chernicharo, 

2007).  Various particles have been utilised as supporting materials including gravel, sand, coal 

and polyvinyl chloride.  Biofilm becomes attached to the supporting material, which is expanded by 

the upward velocity of the liquescent (de Lemos Chernicharo, 2007).  The EGSB has been used in 

the treatment of brewery wastewater, slaughterhouse wastewater, starch-containing wastewater, 

cold wastewater and malt-containing wastewater (Rebac et al., 1998; Kato et al., 1999; Núñez & 

Martínez, 1999; Guo et al., 2008a, Guo et al., 2008b).  Advantages of these reactors are that the 

upflow velocity liquescent causes the sludge bed to expand which removes dead zones and allows 

better contact between the sludge and the wastewater.  Another advantage is complete odour 

control due to the completely closed design of the EGSB (Zoutberg & de Been, 1997).  Limitations 

include poor removal of SS and colloidal matter other than flocculent sludge washout which is a 

common occurrence (Seghezzo et al., 1998).   

 The working principles of the anaerobic fluidised bed reactor (AFBR) are very similar to 

those of the EGSB, excluding the size of the supporting materials and the expansion rate.  The 
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upward velocity in this reactor should be high enough to fluidise the bed so that the gravity force 

equals the upward drag force (de Lemos Chernicharo, 2007).  AFBR is one of the most suited 

methods for treating sewage at low temperatures as the reactor can sustain enough active 

microbes to overcome the limitation associated with slow growing anaerobic microbes (Sanz & 

Fdz-Polanco, 1990).  The organisms responsible for hydrolysis and acidogenesis are associated 

with entrapped SS while the microbes responsible for methanogenesis are to be found in the film.  

This way, both methanogenesis and hydrolysis can be improved (Jewell, 1985).  By utilising 

fluidised media, the reactor can maintain high biomass concentrations and consequently operate at 

lower HRT (Fernández et al., 2008).  One of the biggest variables in using AFBR technology is 

selecting a suitable supporting material for microbial adhesion (Montalvo et al., 2008).  AFBRs 

have been employed in phenolic wastewater (Bajaj et al., 2009), synthetic meat wastewater (Rudd 

et al., 1985), food processing wastewater (Wei et al., 2011), sewage (Sanz & Fdz-Polanco, 1990) 

and high-strength distillery wastewater (Fernández et al., 2008).  Montalvo et al. (2008) treated red 

winery wastewater and tropical fruit wine in lab-scale mesophilic anaerobic fluidised bed reactors 

by using natural zeolite as supporting particles.  Results found, showed that both reactors obtained 

a COD removal rate of more than 80 – 86% at an OLR up to 20 gCOD.L-1 d-1.    

 A serious limitation of the AFBR is when biofilm develops on the supporting carrier 

materials, as the density of the film covered particle decreases, resulting in washout.  Full-scale 

applications of this technology are rare due to improperly sound design principles (Saravanan & 

Sreekrishnan, 2006) and monitoring biofilm attachment to supporting carrier particles (Zoutberg & 

de Been, 1997).   

 

Internal circulation reactor (IC) 

Due to washout-related problems experienced with conventional UASB reactors at start-up, more 

advanced anaerobic reactors have been acquired.  One of these advanced technologies is the IC 

reactor (Liu & Tay, 2004).  The first brewery utilising the IC system was the Heineken brewery in 

Den Bosch, The Nederlands in 1990 (Yspeert, 1993).   

The IC reactor contains two upflow sludge blanket like reactor sections on top of each other 

with one highly-loaded and another low-loaded (Driessen & Yspeert, 1999).  The first part has an 

EGSB where COD are mostly converted to biogas.  The biogas is gathered by the bottom phase 

separator to generate a gas lift that transports water and sludge upwards to the gas/solid separator 

(Nicolella et al., 2000a).  Biogas is separated here and the water-sludge combination is lead 

downwards, causing an internal circulation flow (Nicolella et al., 2000b).  As most biogas is 

eliminated by the first separator the turbulence in the reactor is considerably reduced which allows 

the second separator to separate the anaerobic sludge efficiently (Driessen & Vereijken, 2003).  IC 

reactors also use anaerobic granular sludge but tank heights often increases up to 24 meters (Brito 

et al., 2007).   

The Organic Loading Rate (OLR) of IC reactors are often twofold that of UASB systems  

(15 - 30 kgCOD.m-3.d-1) (Pereboom & Vereijken, 1994; Driessen & Vereijken, 2003). The biogas 

Stellenbosch University  https://scholar.sun.ac.za



Chapter 2   33 

 

generation is the driving force for producing the internal circulation flow through an airlift action 

(Christi, 1998).  IC reactors have been used to treat low-strength dairy, medium strength food 

processing and high strength brewery (Marín et al., 1999), swine (Deng et al., 2006) and inuline 

wastewaters (Habets et al., 1997).   

 

Anaerobic sequence batch reactor (AnSBR) 

This technology is a promising technique consisting of a fill and draw process.  The digester holds 

the anaerobic sludge where to wastewater is added for digestion to occur (Moletta, 2005).  The 

AnSBR reactor process is characterized as a suspended growth process with reaction and liquid-

solid separating that occurs within the same container (Tchobanoglous et al., 2003).  Similar to 

aerobic SBR (Tchobanoglous et al., 2003), the AnSBR also involves four repetition phases: 1) 

feeding; 2) reaction; 3) settling; and 4) decant/liquid withdrawal (Ruiz et al., 2002).  Zaiat et al. 

(2001) summarized important features of the four phases: (i) during phase one different feeding 

strategies can be used in discontinuous reactors (either batch or fed-batch); (ii) the type of 

agitation used is important as mechanical mixing and recycling of the gas can lead to increased 

liquid-solid contact; and (iii) phase three is dependent on the self-immobilising properties of the 

biomass.  The biomass (as granules) should have good settleabilty properties as it can increase 

the separation of the liquid and solid phase and (iv) the liquid withdrawal phase should take place 

as quick as possible because oxygen could affect the anaerobic bacteria.  The operation of this 

reactor has the capability to continue its mode of working until the satisfactory level of organic 

degradation has been achieved (Tommaso, 2011).   

Several studies have investigated the AnSBR to treat cheese whey, brewery wastewater, 

fruit and vegetable wastes, palm oil mill effluent and dairy wastewater (Bouallagui et al., 2004; 

Mockaitis et al., 2006; O-Thong et al., 2007; Xiangwen et al., 2008; Donoso-Bravo et al., 2009).  

Ruiz et al., (2002) investigated the treatment of winery wastewater by means of a lab-scale 

AnSBR.  Wastewater was obtained from a winery in Narbonne, France with an average COD of 

19.7 g.L-1 and a TSS concentration of 1.4 g.L-1.  The experiment was carried out in a double walled 

5L mesophilic reactor, using wastewater with an average OLR of approximately 8.6 gCOD.L-1.d-1.  

The results obtained by the authors showed a COD removal rate of greater than 98%.   

 

Anaerobic hybrid reactor (AHR) 

As anaerobic digestion is a common treatment option for high strength wastes, newer digesters are 

being established for treating both high and low strength wastewaters (Britz et al., 1990).  Some 

technologies include more than one approach for instance a sludge bed with an anaerobic filter as 

in the hybrid digester (Büyükkamaci & Filibeli, 2002; Arvanitoyannis et al., 2007b).   

In AHR technology, advantages of the sludge bed reactors and the fixed-bed reactors are 

combined into a reactor where 1) the support matrix is limited to the upper part and 2) the 

flocculant or granular sludge develops in the lower half.  The upper half has a double function as it 

holds the suspended sludge and serves as a polishing step through biofilm development (Henry et 
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al., 1996).  The lower part of the reactor functions as a UASB and contains granular sludge while 

the upper part contains a randomly-packed matrix to aid biomass retention and a surface for 

microbe attachment (McHugh et al., 2003).  Most of the organic material is converted to biogas in 

the lower UASB part of the reactor but any residual COD in the wastewater will be degraded by the 

AF part in the upper level (McHugh et al., 2003).   

A limitation of AHRs includes the difficulty in controlling biofilms (Tizghadam et al., 2008) 

and that AHRs are more suited for the treatment of wastewater where granular sludge formation is 

problematic such as wastes from the chemical industry (Anon., 2013b).  This technology has been 

applied in treating baker’s yeast wastewater (a hybrid digester and an anaerobic filter), municipal 

landfill leachate (UASB and a fixed film reactor), synthetic pharmaceutical wastewater, 

slaughterhouse wastewater (sludge blanket and filter) and winery wastewater (UASB unit and a 

fixed bed anaerobic filter) (Britz et al., 1990; Myburg & Britz, 1993; van der Merwe & Britz, 1993; 

Borja et al., 1998; Di Berardino et al., 2001).   

 

Upflow Anaerobic Sludge Blanket (UASB) 

The UASB is a well-established and proven technology for the treatment of high-strength organic 

wastewater due to the high biomass and microbial communities within the reactor (Liu et al., 2003).  

The UASB system is widely applied for treating wastewaters from the food industry, distilleries, 

tanneries and municipalities (Saleh & Mahmood, 2004).   

The reactor was originally described by Ross and developed by Lettinga and his co-

workers (Lettinga et al., 2001).  Today, UASB reactors are one of the most broadly applied 

treatment options, and commonly applied for treating industrialised effluents (Li & Yu, 2011).  This 

system is based on the main principal that micro-organisms can form dense granules by auto 

immobilisation (Fuentes et al., 2009).  Anaerobic granular sludge is the main constituent of UASB 

technology (Liu et al., 2002) and is therefore also referred to as anaerobic granular sludge bed 

reactors (Li & Yu, 2011).  This anaerobic technology is characterised as a high-rate method that 

involves three stages: liquid; solid (biomass or sludge); and gas (Hung et al., 2008).  The UASB 

reactor contains a rectangular or circular container (van Lier et al., 2008) where wastewater enters 

at the bottom and flows upwards through a dense layer of microbes (sludge blanket) for the 

degradation of organic particles to CH4 and CO2.  The resulting effluent exits the reactor through an 

outlet at the top (Droste, 2004; Mittal, 2006).  The biogas that is generated causes hydraulic 

turbulence when it moves upwards through the reactor resulting in sufficient mixing within the 

system.  This eliminates the need to add mechanical mixing (McHugh et al., 2003).  Advantages of 

the UASB include the ability to handle high organic loading rates at fairly low hydraulic retention 

times, a low energy demand (Tchobanoglous et al., 2003) and being able to endure discontinuous 

operation (Droste, 2004).  Although the UASB reactor is reported to be more sensitive to waste 

constituents than other technologies and start-up is difficult as specific attention is needed for the 

development of the sludge (Droste, 2004) the UASB reactor is the most broadly and successfully 
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applied anaerobic system (van Lier et al., 2008).  The UASB reactor has been employed in varies 

types of wastewater and are shown in Table 2.5.   

The UASB reactor has also been employed in various studies for treating winery 

wastewater.  Kalyuzhnyi et al. (2000) treated diluted winery vinasse (1 - 17 gCOD.L-1) by means of 

psychrophilic (9 - 10°C, 18 - 20°C) and mesophilic (20 - 35°C) reactors during four trials.  Both the 

reactors were seeded with flocculant mesophilic sludge, but the psychrophilic reactor had an 

additional 30% adapted psychrophilic granular sludge.  The COD reductions were higher than 85% 

for the higher temperature reactors and just above 60% for the 9 - 10°C psychrophilic reactor.  

Moosbrugger et al. (1993), treated grape wine distillery waste by means of a UASB reactor.  The 

authors found a COD removal of 94% with a maximum OLR of 19 kgCOD.m-3.d-1.  Keyser et al. 

(2003) evaluated three UASB reactors for treating winery wastewater.  The control reactor was 

seeded with only sewage sludge.  The pH during the trial varied (5.5 - 7.5 ) continuously clearly 

showing an unstable state.  Even after 90 days the COD removal never reached 70%.  The reactor 

showed problems commonly experienced with ordinary sludge seeding and had to be re-seeded 

constantly.  Trial two consisted of an UASB reactor seeded with granular sludge which was 

enriched with Enterobacter sakazakii.  The authors reported a COD removal of 90% in only 17 

days with a HRT of 24 h.  The last trial consisted of an UASB reactor that was seeded with brewery 

granules.  Results showed a COD removal of 85% within 50 days.  These results also indicated 

that granular seeding plays a significant role in reactor start-up and that UASB serves as an 

effective treatment option.   

 

Table 2.5 Applications of UASB technology to treat various wastes 

Waste COD 
removal 

Temperature Reference 

Leachate from food waste 96% Mesophilic Shin et al., 2001 

Canning and winery 53.0 - 98.9% Mesophilic Sigge et al., 2005 

Bagasse-based wastewater  80 - 85% Mesophilic Chinnaraj & Rao, 2006 

Cheese-producing wastewater 98% Mesophilic Gavala et al., 1999 

Black water and dairy parlour > 80% Psychrophilic Luostarinen & Rintala, 2005 

Dairy and domestic wastewater 69% Psychrophilic Tawfik et al., 2008 

Tannery soak liquor 78% Mesophilic Lefebvre et al., 2006 

Distillery wastewater > 90% Mesophilic Wolmarans & de Villiers, 2002 

Pot-ale from malt-whiskey  80% Mesophilic Goodwin et al., 2001 

Opaque brewery wastewater 57% Mesophilic Parawira et al., 2005 

Distilled cane molasses  39 - 67% Thermophilic Harada et al., 1996 

 

Lettinga (1995) stated that limitations of AD are not serious and can be overcome.  Van Lier 

et al. (1992) illustrated that one of the main limitations of an UASB reactor namely the long start-up 

period could be significantly reduced by using granular sludge as a seeding material.   
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C.  TREATMENT OPTIONS FOR SOLID WASTE 
 

Solid waste 
Managing solid waste in the food industry is often a problem, as it often represents 30% of 

incoming raw materials (Schaub & Leonrad, 1996).  Presently the management of winery wastes 

are handled by external companies but this is a very expensive option for the wine industry in 

terms of disposal and transport costs (Ruggieri et al., 2009).  In South Africa, the leading company 

for the processing of solid winery waste is Brenn-O-Kem located in both Wolseley and Worcester 

(Dillon, 2011; Anon., 2012).  Brenn-O-Kem produces wine spirits, calcium tartrate, grape seed 

tannin, grape seed oil and grape skin by-products from grape pomace (Anon., 2013a).  Wastetech 

is a registered waste and recycling company, that handles most solid waste removals within the 

South African wine industry (Dillon, 2011).  Waste removal by means of external companies is 

costly and has problematic alternatives such as high transportation, high disposal and high 

environmental impacts (Ruggieri et al., 2009).  Brenn-O-Kem processes approximately 25 – 30% 

of the total solid waste generated by the South African wine industry.  Their contracts are with 

nearly 25% of all wineries, mostly allocated in the Breede River valley and the transportation costs 

are covered by the winery itself (Dillon, 2011).   

Solid waste is disposed by means of landfilling, incineration, pyrolysis (Mariani et al., 1992; 

Encinar 1997; Di Blasi et al., 1999; Kulcu & Yaldiz, 2005), aerobic composting (Manios, 2004; 

Flavel et al., 2005) vermicomposting (Nogales et al., 2005) and anaerobic composting (O’Keefe et 

al., 1993; O’Keefe et al., 1996; Mata-Alvarez et al., 2000; Griessel, 2002).   

 

Landfilling 

Possibly one of the oldest and most-common methods of solid waste disposal is by means of 

landfill-site dumping.  This method of disposal is relatively simple, but careful selection needs to be 

considered for the site in order to avoid environmental problems.  One of the most important 

features of landfill-site dumping is the ability to generate landfill leachate (Britz et al., 1990).  Liquid 

emissions are known as “leachate” (Shabiimam & Dikshit, 2011) or aqueous effluent that is 

commonly generated by rainwater trickling through waste.   

Primarily the landfilling of solid waste was done at the lowest expense possible; therefore 

waste was disposed of on nearby low-value lands, and often wetlands to generate a waste dump 

(Lee & Lee, 2004).  Various processes in the waste (microbial, physical, and chemical) can transfer 

the impurities to the rain water that is percolating through.  One of the main environmental 

challenges globally is the proper treatment and safe disposal of leachate (Shabiimam & Dikshit, 

2011).   

Leachate can be classified according to the age of the landfill.  Leachate from landfills 

under the age of five years are termed “young leachate” with a pH under 6.5 and COD values as 

high as 10 000 mg.L-1.  Landfill leachates between the ages of five to ten years are referred to as 

Stellenbosch University  https://scholar.sun.ac.za

http://www.brenn-o-kem.co.za/grape-pomace/grape-wine-spirits/
http://www.brenn-o-kem.co.za/tartrates/calcium-tartrate/
http://www.brenn-o-kem.co.za/grape-pomace/grape-seed-tannin/
http://www.brenn-o-kem.co.za/grape-pomace/grape-seed-tannin/
http://www.brenn-o-kem.co.za/grape-pomace/grape-seed-oil/
http://www.brenn-o-kem.co.za/grape-pomace/grape-skin-byproducts/


Chapter 2   37 

 

“intermediate leachate”.  Typical COD values in the ranges of 4 000 - 10 000 mg.L-1 have been 

reported for intermediate leachates with a pH of 7 (Alvarez-Vazquez et al., 2004).  Leachates from 

landfills over 10 years old are classified as “stabilised leachate”.  The COD values are less than 2 

000 mg.L-1 with a less significant biodegradable content and are also termed “old leachate” 

(Shabiimam & Dikshit, 2011).   

The most important environmental impacts that are related to landfill-site dumping are the 

pollution of ground- and surface waters by landfill leachate (Kjeldsen et al., 2002).  Pollution of 

these sources is the most severe ecological effect caused by landfill run-off, because most landfills 

were traditionally built without engineered linings and leachate collection systems (Kjeldsen et al., 

2002).  Particular attention should therefore be paid to leachate generated by landfills as various 

studies have shown that even an insignificant amount (less than 40 000m3) of leachate could have 

an impact on groundwater (Bagchi, 1987).   

 

Incineration 

Incineration is defined as the thermal destruction of combustible waste in an enclosed device 

(DWA, 2013).  The process takes place in a combustion chamber on fire grates, where after ash is 

transported with descending sloped floors (Ojovan & Lee, 2005).   

Compounds commonly present in this waste include nitrogen, phosphorous, sulphur, 

halogens or metal (Lauridsen, 2008).  Incinerator technologies that are currently being applied 

include rotary kiln, gasification, liquid injection and fluidised bed types.  The temperatures used 

within these chambers ranges between 1 000 and 1 900°C (Lauridsen, 2008).  Materials are 

burned at a controlled temperature which is high enough to destroy harmful chemicals.  When 

materials are broken down, gas is produced that passes through equipment to remove remaining 

compounds such as metals, acids and ash particles (USEPA, 2012).   

Air emissions from incinerators are one of the key issues that are crucial to control.  

Incinerator facilities in South Africa are mostly controlled by guidelines as stipulated in the South 

African Atmospheric Pollution Prevention Act, 1965 (Act 45 of 1965).  The operational site and air 

emissions from incinerators should frequently be inspected by air contamination authorities 

(DWAF, 2000b).  The collection, transportation and storage preceding the incineration process 

must also comply with specific conditions as prescribed in the South African Health Act, 1977 (Act 

63 of 1977) (DWAF, 2000b).   

Major disadvantages of this process are: (i) the high operating and capital costs; (ii) the 

presence of several metals, organic polluting substances; (iii) dioxins and furans in the air being 

released; (iv) remaining ash produced as an end product also needs to be disposed of in an 

appropriate manner as it may contain toxic materials; and (v) as also found with landfills, the siting 

of the facility could potentially be problematic (Chang, 2009; Herselman, 2009).  Although a proven 

and well-established treatment option as well as the most-commonly used technology for treating 

nuclear waste, these advantages should always be weighed against the mentioned restrictions 

(Herselman, 2009).   
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Pyrolysis 

Pyrolysis can be described as the thermal breakdown of biomass at high temperatures under 

anaerobic conditions to produce solid (char), liquid (bio oil) and gas (syngas) products (Bridgwater, 

1999).  The proportions of these products are dependent on the pyrolysis technique and the 

parameters chosen.  Techniques, that involves slow heating over longer periods of time produces 

high char yields with adequate quantities of tar by-products (Onay & Kockar, 2003).  Higher 

heating processes that are accompanied by a shorter reaction time produce higher liquid yields 

(Onay & Kockar, 2003).   
Different pyrolysis techniques can therefore be divided into three subclasses: (i) 

conventional pyrolysis also termed carbonisation; (ii) fast pyrolysis; and (iii) flash pyrolysis 

(Demirbaş & Arin, 2002).  Conventional pyrolysis is defined as a method that ensues under a slow 

heating rate to produce the highest char yield (Gheorghe et al., 2009) while occurring between 

temperatures of 300 - 700°C (Maschio et al., 1992).  During fast pyrolysis biomass is heated 

rapidly and generates aerosols, vapours and charcoal (Bridgwater, 1999).  Fast pyrolysis is defined 

as a decomposition process at moderate heat temperatures with high heat transfer rates (Czernik 

& Bridgewater, 2004).  The temperature range of this process slightly increases compared to 

conventional pyrolysis, with temperature reaching 600 – 1 000°C (Maschio et al., 1992).  Flash 

pyrolysis is accompanied with the smallest particle sizes and occurs at temperatures between  

800 – 1 000°C (Maschio et al., 1992).   

During pyrolysis, solid waste is kept in a basket within the refrigeration sector of the reactor.  

A gas flow of nitrogen (200 cm3.min-1) is passed through for an hour to remove air from any part of 

the connection.  Thereafter, the basket is fed through a heating zone and the process starts 

(Arvanitoyannis et al., 2007b).  The liquid fraction that is produced during pyrolysis consists of two 

phases: (i) a water soluble phase containing organic-oxygen material of a low molecular weight; 

and (ii) a water insoluble phase consisting out of insoluble carbon-rich material (bio oil) with a high 

molecular weight (Demçirbaş & Arin, 2002).    

Encinar et al. (1997) studied the effect of pyrolysis on olive and grape bagasse to 

determine the most important characteristics of the charcoals formed as well as the quality and 

amount of gasses and liquids that were generated.  The main gasses produced were hydrogen, 

carbon dioxide, carbon monoxide and methane.  Amongst the liquids produced the authors found 

methanol, phenols, furfuryl alcohol, furfural and acetone.  Di Blasi et al., (1999) also investigated 

the pyrolysis characteristics of various agricultural residues on bench scale.  These residues 

included wheat straw, olive husks, grape marc and rice husks with wood chips.  The authors found 

that the devolatilization rates for grape residues were the slowest of all the residues and due to 

their higher lignin content, it was also found that olive and grape residues generated higher yields 

of ethylene (C2H4) and ethane (C2H6).  Difficulties have been experienced with applying pyrolysis 

technology to solid waste.  The temperatures in the pyrolysis chamber are adequate to keep ash 

and residues molten but difficulty arises in controlling the solidification of the molten particles as it 

exits from the reactor.  Uneven cooling of molten ash causes unnecessary slagging which blocks 
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the reactor outlet and consequently prevents ash discharge.  The slag must first be removed by 

shutting down the reactor in order for the process to continue (Noyes, 1994).   

 

Composting 

Approximately 80% of total waste generated by the wine making process is organic waste or 

organic by-products (Gea et al., 2005).  In Uganda, landfilling and incineration was traditionally the 

most-common means of banana peel disposal, but the practices thereof have been proven to be 

unsustainable (Kalemelawa et al., 2012).  Landfilling and incineration has also been a common 

method employed by food industries to dispose of solid food waste (Schaub and Leonard, 1996).  

Landfilling is often limited due to land scarcity (Kalemelawa et al., 2012) and incineration 

processes are energy consuming (Ke, 2010). Schaub and Leonard (1996), also reported 

environmental regulations and concern, in addition to the costs and closure of the landfill sites 

instigated other options to be considered.   

An alternative option for the management of organic (winery) waste is composting (Nakata, 

1994; Flavel et al., 2005; Ruggieri et al., 2009) as research has shown that due to the nature of its 

contents, pomace could be recycled as a soil conditioner (Diaz et al., 2002; Flavel et al., 2005; 

Brunetti et al., 2011).   

Three kinds of composting are known: aerobic composting; vermicomposting; and 

anaerobic composting (Horn, 1995).   

 

Aerobic composting 

Composting is defined as the biochemical degradation of organic materials to obtain a sanitary, 

soil-like end product (Kulcu & Yaldiz, 2005) which occurs in the presence of oxygen (Liang et al., 

2003; Zhu, 2007).  Composting can be classified into four categories: windrow composting; aerated 

windrows; aerated static piles; and in-vessel composting.  The aerated and in-vessel methods are 

commonly used when wastes are available in high concentrations, whereas windrow composting is 

more suited to farm operations (Lopez-Real, 1996).   

The terms “stability” and “maturation” are often used interchangeably in composting even 

though they refer to different properties within the product (Said-Pullicino et al., 2007).  These 

terms are generally used to describe the quality of compost (Som et al., 2009; Guo et al., 2012).  

Stability is defined as the degree to which organic material has been decomposed (Wu et al., 

2000), whilst having resistance to additional diminishing (Wichuk & McCartney, 2010).  Heat 

production, oxygen-uptake and carbon dioxide- release are parameters used to measure compost 

stability as it represents microbe activity (Ke, 2010).  Mature compost will not cause unfavourable 

effects (phytotoxicity) to growing components or to the environment (Ke, 2010) and is typically 

defined as the degree to which phytotoxic organic materials have been degraded (Wu et al., 2000).  

Phytotoxicity to a plant can occur when organic material has only been partly decomposed (Said-

Pullicino et al., 2007).  Wichuk and McCartney (2010) describe mature compost as being “ready for 

a specific end use”.  Maturity of compost is evaluated by plant development or by using sensory 
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activity (Iannotti et al., 1993).  When immature and/or unstable compost is applied as an organic 

amendment it could inhibit plant growth by binding nitrogen and releasing noxious elements in the 

soil (Guo et al., 2012).   

Aerobic composting is well documented and successfully applied on a variety of wastes: 

municipal solid waste (Pietro & Paola, 2004); biosolids from wastewater treatment (Liang et al., 

2003); olive tree branches, olive tree leaves, vine branches, pressed grape skins and pig manure 

(Manios, 2004); as well as green waste and biowaste (Som et al., 2009).  Arvanitoyannis et al. 

(2007a), reported that the use of compost produced from winery wastes is increasing due to the 

overall state of soil, characterised by low levels of humus.  Compost derived from pressed grape 

skins showed to produce one of the highest quality soil conditioners in terms of agronomic and 

physical features (Manios, 2004).   

Composting as a treating option provides numerous advantages towards the food industry 

(Schaub & Leonard 1996).  The volume of organic waste is reduced by 40%, major costs are 

saved as disposal of the compostable wastes are not necessary and the final end product can 

generate income (Schaub & Leonrad, 1996).  When the end-product is applied as an organic 

amendment it improves the water holdings properties of the soil, reduces temperature variations 

and supplies nutrients (Flavel et al., 2005).  Disadvantages of this process include: the high 

investment costs for the preparation of land and machinery like the construction of concrete floors 

and leachate collection systems; the stalk shredder as while as additional machinery needed for 

pile-turning (Ruggieri et al., 2009); and finally this process is labour intensive and time consuming 

(Horn, 1995).   

 

Vermicomposting 

During vermicomposting earthworms transform complex organic waste into a stable humus-like 

product (nutrient-rich bio-fertiliser) called vermicompost (Suthar, 2010) and earthworm biomass 

(Ndegwa & Thompson, 2000).  The worms feed on the organic material present and emit the 

undigested materials as worm casts (Bansal & Kapoor, 2000) or vermicompost (Suthar, 2010).  

According to Munroe (2012), approximately 1800 species of earthworms exist globally.  The 

Eisenia fetida is an extremely tough and adaptable worm (Munroe, 2012) known as the compost 

worm (Yadav & Garg, 2009) or the red wriggler (Ndegwa et al., 2000) which is native to most parts 

of the world.   

 Vermicomposting is categorised by both mechanical as well as biochemical procedures.  

Mechanical processes are characterised by the ventilation, mixing and grinding of the waste 

substrates (Ndegwa & Thompson, 2000).  The biochemical process is represented by the 

decomposition of solid waste within the intestine of the earthworm (Nogales et al., 2005).  Although 

the vermicomposting process is stabilised by earthworms and micro-organisms, the earthworms 

are the actual drivers of the process (Suthar, 2010).  The microbes are responsible for the 

decomposition of the organic material while the worms improve the substratum and change the 

biological activity (Suthar, 2009).   
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Worms function as machine-driven blenders, changing the biological, physical and 

chemical form of the organic material.  Through this process the C:N ratio of wastes are reduced 

and the uncovered surface area for microbes are increased which enhances the disintegration of 

waste (Domίnguez, 2004).  Vermicompost is a carbon-rich source with a high mineralisation rate 

that enhances the nutrient availability to plants (Domίnguez, 2004) as the nutrient availability per 

kilogram weight is more than the carbon source from which it was originally produced (Garg et al., 

2006) 

Vermicomposting have been successfully applied in winery waste (Nogales et al., 2005), 

vegetable-solid waste (Suthar, 2009), tannery sludge mixed with cattle dung (Vig et al., 2011), 

sludges from paper mill and dairy (Elvira et al., 1998), kitchen waste, agro-residues, institutional 

and industrial wastes (Garg et al., 2006), and crop residues and cattle dung (Bansal & Kapoor, 

2000).   

One of the main disadvantages of this process is the maintaining of the temperature to 

below 35°C, as higher temperatures will kill the earthworms (Alidadi et al., 2005).  The temperature 

is insufficient to destroy harmful pathogens and therefore the end product does not comply with the 

United States Environmental Protection Agency (USEPA) for the destruction of pathogens (Alidadi 

et al., 2005).  Other disadvantages of vermicomposting over traditional composting includes: a 

larger space requirement as worms are surface feeders; and more resources are needed for the 

start-up process by either the need to acquire worms or the time and labour to grow them (Munroe, 

2012).   

 

Anaerobic composting (AnC) or Anaerobic digestion (AD) of solid waste 

Anaerobic composting (AnC) or anaerobic digestion (AD) of solid waste is a natural occurring 

process in which micro-organisms degrade organic matter to nutrients in a simpler form in an 

anoxic environment (Liang et al., 2003).  AD of solid waste is the main degradation process found 

in a landfill (Rapport et al., 2008).  The main advantages of this process is the production of biogas 

an organic amendment (Khalid et al., 2011) and a liquid effluent, which can be used as a 

renewable energy source and a valuable soil conditioner, respectively (Mata-Alvarez et al., 1992).  

Anaerobic treatment of solid wastes is classified according to certain parameters: (i) the 

continuousness of the system; (ii) the temperature at which the system operates; (iii) the design of 

the anaerobic reactor; and (iv) the solid content of the waste (Li et al., 2011).  AnC as a treatment 

option is used increasingly by farms and agro-industrial corporations to produce methane (Lesteur 

et al., 2010).   

 Greenhouse gasses like carbon dioxide (CO2) and methane (CH4) are produced during 

landfill-site dumping.  These gasses are released into the earth’s atmosphere and cause severe 

ecological pollution (Khalid et al., 2011).  If the same principles are applied in a controlled AnC 

surrounding, favourable results are obtained: (i) decomposition in a sealed environment prevents 

methane from escaping to the atmosphere; and (ii) if not used as a renewable energy source 

burning of methane will release carbon-neutral CO2 (Ward et al., 2008).   
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Even though various gasses are produced within a digester, the only gas of economic value 

is biogas, which consists out of approximately 60 - 65% methane and 35 - 40% carbon dioxide 

(Gerardi, 2003).  Biogas can serve as a renewable source of energy which can replace the use of 

fossil fuels in the production of power, heat and vehicle fuel (del Real Olvera & Lopez-Lopez, 

2012).   

Anaerobic composting as a treating option has been applied to a variety of wastes: crab-

picking wastes (O’Keefe et al., 1996); municipal solid waste (O’Keefe et al., 1993); fruit and 

vegetables waste (Bouallagui et al., 2005); and industrial wastes (Khalid et al., 2011).   

Although AnC is not as widely recognised as aerobic composting, (Fernández et al., 2008) 

this process should be the preferred method for the treatment of solid waste as: (i) It is a net 

producer rather than a consumer of energy (O’Keefe et al., 1993); (ii) a higher organic loading rate 

(Bouallagui et al., 2005); and lower biomass are obtained (Ward et al., 2008); (iii) less 

environmental pollution and odour emissions are obtained as all liquids and solids produced during 

this process are captured within a digester; and (iv) because no aeration is required for the process 

and therefore no bulking agents, a substantial reduction in the volume of waste is allowed (O’Keefe 

et al., 1996).   

 

D.  THEORY OF ANAEROBIC DIGESTION 
AD is a proven method for treating liquid, solid and semi-solid carbon-based wastes, offering 

benefits above conventional (aerobic) methods, particularly from an energetic and ecological point.  

Sludge produced is minimal and stable, and contains nutrients that could be utilised as soil 

enrichers (Marín et al., 1999).  According to Fang et al. (1994) the success of AD by means of a 

UASB reactor depends on the development of active and settleable sludge granules.  The authors 

also stated that the microstructure of a UASB granule is subjected to the type of substrate used.  

Els et al. (2005) summarised the microstructure of a UASB granule and digestion (Fig. 2.5).   

 

 

 

 

 

 

 

 

Figure 2.5 llustration of the UASB granule on microbial level (Fang et al., 1994; Els et al. 2005).   
 

Acidogenic microbes appear to be on the outer layer of the granule followed by the 

acetogenic species and finally the methanogens (Fig. 2.5) (Els et al., 2005).  Digestion can be 

divided into four phases: hydrolysis (liquefaction); acidogenesis; acetogenesis; and 

methanogenesis (Fillaudeau et al., 2008; Ponsá et al., 2008).  No individual organism can perform 
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these reactions individually and therefore AD consists of a complex ecosystem of various microbial 

groups that all work together in a coordinated way to generate methane and carbon dioxide 

(Anderson et al., 2003).  The organisms depend on one another for providing appropriate 

nutritional substrates and maintaining a proper environment (correct redox potential, ionic balance 

and hydrogen pressure) for optimal digestion (Ditchfield, 1986).   

 

Hydrolysis  

Due to the inability of acetogens and methanogens to utilize complex polymeric molecules directly 

these substances must first be degraded to smaller soluble monomers before methanogenesis can 

proceed (de Lemos Chernicharo, 2007). Consequently, hydrolysis (Fig. 2.6) involves the 

degradation or hydrolysing of complex compounds such as cellulose, proteins, fats and 

carbohydrates into soluble monomers like amino acids, glucose and fatty acids (Iannotti et al., 

1982; Enders & Siebert-Raths, 2011).   

These actions are performed by extracellular enzymes excreted by microbes from 

fermentative group one (Fig. 2.7) (Khanal, 2008). Since enzymes e.g. cellulose, protease, lipase, 

amylase, chitinase and pectinase are extracellular, they are capable of degrading large substrate 

polymers that cannot cross the bacterial cell wall to soluble monomers (Anderson et al., 2003).  

The bacteria who implement the first stage of the anaerobic process belongs to family of 

Enterobacteriaceae and Streptococcaceae as well as the genus Bacteroides, Clostridium, 

Butyrivibrio, Eubacterium, Bifidobacterium and Lactobacillus (Novaes, 1986).   

 

Acidogenesis and Acetogenesis 

Soluble products from hydrolysis are broken down further by facultative anaerobes and anaerobes 

(group one) to intermediate products (Khanal, 2008).  Acidogenesis results in the production of 

hydrogen gas, carbon dioxide, organic acids, organic-nitrogen and organic-sulphur compounds.  

Table 2.6 shows the principal compounds (acids, alcohol and organic-nitrogen) produced by 

fermentation during anaerobic digestion.  It is also indicated whether these compounds can be 

used directly as substrates by methanogens or indirectly after being degraded to acetate by 

fermentative bacteria (Gerardi, 2003).  The most significant VFA or organic acid that is produced is 

acetate (Table 2.6) responsible for nearly two-thirds of methane generated in mesophilic and 

thermophilic reactors (Zinder, 1990).  Carbon dioxide and hydrogen can also be converted directed 

to methane or acetate (Fig. 2.7) (Gerardi, 2003).   

The acidogenic phase consists of various fermentative species including Lactobacillus, 

Escherichia Coli, Bacillus, Clostridium, Ruminococcus, Propionibacterium, Micrococcus, 

Streptococcus, Eubacterium and Butyribacterium (Anderson et al., 2003).  By consuming extra 

oxygen that enters the feeding, these facultative organisms also protect oxygen sensitive 

methanogens (Anderson et al., 2003).  During the production of acetic and propionic acid, large 

amounts of hydrogen is also formed which decreases the pH medium (de Lemos Chernicharo, 

2007).  There are however, two ways possible for hydrogen to be consumed in the medium: (i) 
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methanogens utilize hydrogen and carbon dioxide to generate methane; and (ii) through the 

formation of organic acids (de Lemos Chernicharo, 2007).  The fastest conversion process in the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.6 A model of the biochemical reactions which proceeds through the hydrolysis of waste 

during anaerobic digestion (Christ et al. 2000; Gerardi, 2003).   

 

food chain is acidogenesis, that results in ten to twenty times higher microbial growth rates and five 

times higher microbial yields and conversion rates when compared to methanogens (Van Lier et 

al., 2008).  Acetate is not only generated via the acid-forming phase (acidogenesis) but also 

through acetogenesis.  Here, VFA combines with alcohol to be converted to acetic acid, hydrogen 

and carbon dioxide by hydrogen-producing acetic microbes group two (Fig. 2.7) (Khanal, 2008).  

During these conversions it is essential that the hydrogen partial pressure is maintained at a very 

low level for thermodynamically favoured conditions (Speece, 1983).   

The oxidation of reduced substances to acetate, carbon dioxide and hydrogen are 

performed by obligate hydrogen producing acetogens (OHPA) (Aresta, 2012).  The β-oxidation 

(Fig. 2.7) of even-numbered fatty (to acetate) and uneven-numbered fatty acids (acetate, 

propionate and hydrogen) are also performed by OHPA’s (McInerney et al., 1981).   
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Table 2.6 Most significant compounds generated by fermentation during anaerobic digestion 

(Gerardi, 2003) 

Compound name Chemical formulation 
Acetate1 C2H4O2 
Butanol C4H10O 
Butyric acid2 C4H8O2 
Caproic acid (hexanoic) C6H12O2 
Formic acid1 CH2O2 
Ethanol2 C2H6O 
Lactic acid C3H6O3 
Methanol1 CH4O 
Methylamine1 CH5N 
Propyl alcohol C3H8O 
Propionic acid2 C3H6O2 
Succinic acid C4H6O4 
1directly used by methanogens, 2indirectly used by methanogens 

  

Several OHPA’s have been identified: (i) Syntrophomonas wolfei, an anaerobic, 

nonphototrophic bacterium (McInerney et al., 1981; Wofford, 1986; Beaty & McInerney, 1987); 

Syntrophobacter wolinii, a nonmotile Gram-negative rod (Boone & Bryant, 1980); Syntrophus 

buswellii, a motile, Gram-negative, anaerobic rod-shaped organism (Mountfort et al., 1984); and 

Methanothermobacter thermoautotrophicus (previously Methanobacterium thermoautotrophicum) 

(Luo et al., 2002).   

The activities of OHPA’s serves as the link between the initial fermentation and final 

methanogenesis stage and are dependent on the activity of hydrogen utilising species (such as 

hydrogenophilic methanogens) (O’Flaherty & Lens, 2003).  These species maintain very low levels 

of hydrogen partial pressure to keep the OPHA’s reactions exergonic and are therefore referred to 

as synotrophs (O’Flaherty & Lens, 2003).  Synotroph plainly means “eating together” and this 

refers to the connection between the hydrogen-producing and hydrogen-consuming methanogenic 

species (Parawira, 2004).   

Acetogens are responsible for oxidising the products from the acidogenic phase to a 

suitable substrate for the methanogens to use (de Lemos Chernicharo, 2007).  Thus, these 

metabolic processes produce the main substrates (acetic acid, hydrogen and carbon dioxide) that 

are utilised by the methanogens to generate methane (Ditchfield, 1986).   

 

Methanogenesis 

During the last phase of anaerobic digestion, methanogens convert the end-products of previous 

stages to methane (Gray, 2010).  Three major metabolic pathways exist for the production of 

methane (Khanal, 2008):   

 

1. Carbon dioxide reducing or hydrogenotrophic pathway; 
2. Acetoclastic or acetotrophic pathway; and 
3. Methyltrophic pathway 
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Figure 2.7  Metabolic route of AD at molecular level (Ditchfield, 1986; Anderson et al., 2003; 

Gerardi, 2003; Kashyap et al., 2003; Kumar, 2006).   

 

When taking COD in consideration (Fig. 2.7), approximately 70 - 72% comes from the 

decarboxylation of acetate (eq. 1) via the acetoclastic methanogens (Fig. 2.7) while the rest is from 

the reduction of carbon dioxide (eq. 2) via the hydrogen-utilising methanogens (Fig. 2.7) (McCarty, 

1964; Ditchfield, 1986; del Real Olvera & Lopez-Lopez, 2012).  Methylotrophic methanogens 

develop on substrates that contain the methyl group.  Illustrations of these substrates include 

methanol (eq. 3) and methylamine (eq. 4) (Gerardi, 2003).  Although most methane is generated 

by the acetoclastic methanogens, the significance of the hydrogen-utilising methanogens should 

not be underestimated as they remove hydrogen molecules (eq. 2) from the system (Ditchfield, 

1986).   
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Reduction of carbon dioxide 

                                                            C02 + 8H  CH4 + 2H20                                                      (2) 

 

                                                      3CH4O + 6H  3CH4 + 3H2O                                                    (3) 

 

                                              4(CH3)3-N + 6H2O  9CH4 + 3CO2 + 4NH3                                       (4) 

 

The removal of these molecules has a dual function: (i) it promotes the conversion of butyric and 

propionic acid to acetic acid; and (ii) it prevents organic acid build-up so that the digestion process 

can continue under stable, steady state conditions (Ditchfield, 1986).  The two most important 

genera of acetotrophic methanogens (Grop 4 are the Methanosarcina and Methanosaeta species 

(Gerardi, 2003; de Lemos Chernicharo, 2007) (formerly Methan-othix) (Khanal, 2008).  

Methanosarcina organisms are coccid (spherical cells) that uses several methanogenic substrates 

including methanol, methylamines (Table 2.6) and sometimes H2/CO2.  The doubling time of these 

organisms on acetate is 1 – 2 days.  The Methanosaeta species are bacillus (rod shaped) cells that 

only develop on acetate with a doubling time of 4 – 9 days (Khanal, 2008).  The most commonly 

isolated hydrogen-utilising methanogens from anaerobic systems includes Methanobacterium, 

Methanospirillum and Methanobrevibacter (de Lemos Chernicharo, 2007).   

The generation of gaseous methane as an end product is the actual process responsible 

for the organic matter removal measured in terms of COD (Lawrence & McCarty, 1967).  The 

biodegradation of organic material to acetate is often the rate-limiting step in the degradation of 

organic molecules and anaerobic conversions whereas with poorly biodegradable materials, the 

hydrolysis phase may turn out to be the rate-limiting phase (Gerardi, 2003).  The overall rate-

limiting phase in anaerobic digestion is the conversion of VFA towards CH4 as methanogens 

function slower than acetogens (Nazaroff & Alvarez-Cohen, 2001).  The slow growth of 

methanogens explains why a long start-up period is needed with unadapted seeding materials (van 

Lier, 2008).   

 

Factors affecting AD of liquid and solid waste 
As methane organisms are strict anaerobes, they are prone to sensitivity against changes in pH, 

temperature and alkalinity and therefore various operational conditions should be checked and 

sustained for optimum methanogen activity (Gerardi, 2003).  Because methanogenesis are often 

regarded as the rate-limiting step in anaerobic treatment, systems are monitored for biogas 

production (del Real Olvera & Lopez-Lopez, 2012).  For AD of liquid wastes physical factors such 

as solid retention time and loading rate, hydraulic retention time, temperature, mixing, and oxygen 

affects the process.  Chemical factors include pH, alkalinity, VFA content, nutrients and toxic 

substances (Junge, 1980).  Factors affecting AD of solid wastes include pH, alkalinity, moisture, 

carbon source and nitrogen (Khalid et al., 2011).   
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Temperature 

Temperature is one of the principal AD parameters as it controls the rate of anaerobic degradation 

and more specifically hydrolysis and methanogenesis (Nayono, 2010).  Several reports in literature 

exist on the significant effect that temperature has on the process kinetics and biogas production of 

AD (Bouallagui et al., 2009b; Riau et al., 2010).  The hydrolysis and acidogenesis stages are not 

affected by temperature as much as the acetogenic and methanogenic groups due to the fact that 

there are generally some organisms among the mixed population who have their optimum 

temperature in the range wherein the digester is functioning (Parawira, 2004).  As acetogenesis 

and methanogenesis are performed by more specific species they are prone to be more sensitive 

to temperature (Rajeshwari et al., 2000).  Lower temperatures during AD are known to cause a 

decrease in the microbe growth, substrate utilisation and biogas production (Trzcinski & Stuckey, 

2010).  According to Lettinga et al. (2001) chemical and biological reactions under psychrophilic 

conditions occur a lot slower than mesophilic conditions and therefore require more energy for the 

degradation of organic materials.  Although methane production can take place a wide over range 

of temperatures (Table 2.7) (Gerardi, 2003), AD mostly takes place at mesophilic or thermophilic 

temperatures with their prime temperature being 35°C and 55°C, respectively (Angelidaki & Ahrino, 

1994; Ward et al., 2008).   

 

Table 2.7 Ideal temperature ranges for optimum methane production (Gerardi, 2003)  

Microbes Range (°C) 
Psychrophilic  5 - 25 
Mesophilic 30 - 35 
Thermophilic 50 - 60 
Hyperthermophilic/Stearothermophilic > 65 
 

Even though thermophilic temperatures could lead to an increase in the reaction rate, the 

methane yield attained at a specific organic amount stays the same regardless of the temperature 

(del Real Olvera & Lopez-Lopez, 2012).  Thermophilic conditions are more prone to toxic 

sensitivity, operational costs are higher and temperatures are more difficult to control (Gerardi, 

2003).  Mesophilic reactors are more stable with less energy requirements when compared to 

thermophilic reactors (El-Mashad et al., 2003; Fernández et al., 2008).  Organisms operating in the 

mesophilic range (Table 2.7) are known to be more robust and tolerable to changes in ecological 

parameters.  Systems that are smaller, poorly insulated, or in colder environments can all benefit 

from using mesophilic reactors to minimise system crashing.  Due to the stability of this process, 

mesophilic AD systems are the preferred anaerobic treatment over thermophilic temperatures 

(Zaher et al., 2007).   

 

pH and alkalinity 

According to del Real Olvera & Lopez-Lopez (2012) pH and alkalinity are related and together 

causes an appropriate surrounding for methanogenesis to occur.  Sufficient alkalinity is needed in 

any anaerobic digestion system to sustain a stable pH and optimal biological activity (Lee et al., 
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2009).  Various pH ranges for anaerobic digestion has been reported by researchers (Khalid et al., 

2011) but according to Ward et al. (2008) the ideal range is 6.8 – 7.2.  Anderson et al. (2003) also 

stated that although the pH for AD is reported to be 7, the optimal is thought to be 6.5 – 7.8.  

McCarty (1964) also stated that digestion can proceed normally between a pH of 6.6 - 7.6 with 

optimum being between 7.0 – 7.2.  The suggested pH range ensures an acceptable environment 

for methanogens to work and it also helps sufficient buffering capacity or alkalinity (Gerardi, 2003).  

The organisms responsible for acidogenesis have an optimal pH 5 – 6 (Droste, 2004) while 

methanogens work well in pH ranging from 6.8 – 7.2 (Gerardi, 2003).   

Below a pH of 6.6, the development rate of methanogens is slowed (McCarty, 1964; Mosey 

& Fernandes, 1989) while a too high alkalinity surrounding could lead to granule disintegration and 

consequently digester failure (Sandberg & Ahring, 1992).  Alkalinity in digesters is a result from the 

degradation of organic-nitrogen molecules as well as the production of carbon dioxide from 

degrading organic molecules (Gerardi, 2003).  Alkalinity plays a vital role in regulating the pH in the 

digester by buffering the acidity (VFA) derived by the acidogenesis stage (Gerardi, 2003).  

Researchers have reported digester failure during treatment due to the accumulation of VFA which 

inhibits the works of methanogens (Parawira et al., 2006).  The buffering capacity is typically 

referred to as the alkalinity of an anaerobic digestion system.  The buffering action is the 

equilibrium of the CO2 and the bicarbonate ions which supplies resistance to pH changes and are 

therefore proportional to the concentration of the aforementioned (Ward et al., 2008).  A more 

dependable method of measuring imbalances in the digester is the measuring of the buffer 

capacity rather than direct pH measurement, because an accumulation of fatty acids will lower the 

buffer capacity before decreasing the pH (Ward et al., 2008).  According to Gerardi, (2003) an 

optimum buffering capacity of about 1 500 – 3 000 CaCO3 mg.L-1 is needed for a stable and 

maintained digestion process.   

 

Factors impacting liquid waste degradation 
 

Nutrients 

Nutritional requirements by organisms are very important as nutrients supply: (i) cellular building 

blocks that are used for growth; and (ii) ensures that the cell are able to synthesize enzymes and 

co-factors responsible for driving metabolic and biochemical reactions (Anderson et al., 2003).  

The occurrence of ions is a very important parameter in a reactor as it can affect the granulation 

development and stability of the UASB (Rajeshwari et al., 2000).  For AD to be optimal various 

organic and inorganic substances are needed.  This includes macronutrients such as nitrogen and 

phosphorous as well as sulphur, vitamins and trace elements (iron, nickel, magnesium, selenium, 

copper, cobalt) known as micronutrients (Mata-Alvarez, 2003).  Even though these nutrients are 

required in very low amounts, the lack of them causes a significant effect on the growth and 

performance of microbes (Rajeshwari et al., 2000).  These elements can often be missing in waste 

streams arising from only one source (Rajeshwari et al., 2000) and should be supplemented before 
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treatment (Pol, 1995).  Winery wastewater is known as a high-strength organic waste with a low 

nitrogen and phosphorous content (Toffelmire, 1972) with C:N:P of 81:1:1.35 (Ronquest & Britz, 

1999).  According to Gerardi, (2003) a C:N:P ratio of 1000:7:1 is needed for high strength 

wastewaters so that the digester can perform optimally.   

 

Retention times 

Hydraulic retention time (HRT) can be defined as the amount of time that waste remains in the 

digester and in contact with the biomass.  For easily biodegradable compounds such as sugar, the 

HRT is low whereas more complex compounds may need longer HRTs (Khanal, 2008).  The solid 

retention time (SRT) on the other hand, is a main parameter for controlling waste stabilisation of 

organic compounds in anaerobic digesters (Kuscu & Sponza, 2007).  The SRT indicates the mean 

residence time of the microbes and is related to the growth thereof (Clara et al., 2005).  Higher 

SRT values are more beneficial as it leads to higher removal capacities, reduces the digester 

volume and it provides buffering capacity.  HRT values influences the rate and extent of and 

methane generation and is one of the most significant factors affecting the transformation of 

volatile substrates into gaseous products (Gerardi, 2003).  For AD to be optimal a low HRT/SRT 

ratio has been reported by Alphenaar et al. (1993).   

 

Toxicity and inhibition 

A significant variety in literature exists on the inhibition or toxicity levels of materials on anaerobic 

digestion.  The most important explanation for this is due to the fact that AD is such a complex 

process that includes several mechanisms such as antagonism, synergism and acclimation (Chen 

et al., 2008).  Toxicity can either be classified as (i) acute or (ii) chronic.  Acute toxicity is when an 

unacclimated population are exposed to a sudden high concentration of hazardous waste while 

chronic toxicity involves gradual exposure over a long amount of time (Gerardi, 2003).  The 

digestion process can be inhibited by materials arising from the effluent stream such as ammonia, 

heavy metals and halogenated compounds or from metabolic by-products from microbes such as 

ammonia, sulphide and VFA (Khanal, 2008) that can either slow down the digestion process 

(toxicity) or lead to process failure (inhibition) (Anderson et al., 2003).  Although various 

compounds at different thresholds levels affect AD, generally VFA, pH, free ammonia and 

hydrogen sulphur are the most common (Mata-Alvarez, 2003).  Free ammonia (NH3) is more toxic 

than ionized NH4, because free ammonia can passively transport across the cell membrane and 

dissociate which leads to intracellular pH changes (Nishio & Nakashimada, 2013).   

 

Mixing 

Apart from the type of reactor design, most anaerobic reactors are mixed to supply organic 

substrates to active microbes, to release trapped biogas bubble and to ensure that sedimentation 

of denser material does not occur (Ward et al., 2008).  Mixing can be accomplished in the following 

ways (i) mechanical drivers such as turbines or propellers, (ii) hydraulic sheer force by recirculating 
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the feed and (iii) recurrent gas circulation (Anderson et al., 2003).  Slow, gentle mixing ensures that 

the metabolic activities of both acetogens and methanogens remain in close contact with one 

another.  Mixing is also advantageous to acetogens as it supplies efficient hydrolysis of waste 

products and generates acids and alcohols (Gerardi, 2003).  If mixing is not sufficient it could lead 

to pockets of material in the digester which are not at the same temperature, pH and stages of 

digestion that will affect the overall performance of the digestion process (Stafford, 1981).  A 

system therefore only requires adequate mixing (Khanal, 2008) as excessive mixing could also 

lead to a decrease in biogas generation (Ward et al., 2008).   

 

Factors impacting solid waste degradation 
 

Moisture 

Higher moisture contents or humidity (60 – 80%) leads to a higher methane generation 

(Hernández-Berriel et al., 2008) although the moisture initially added will drop to a lower level as 

the digestion process continues (Khalid et al., 2011).  Water is essential for (i) methane generation 

as nutrients need to be dissolved before being utilised by microbes (ii) it aids with the diffusion of 

substrates towards organism sites and (iii) high moisture contents dilutes the concentration of 

carboxylic acid that adds to the buffering capacity (Lay et al., 1997).  Hernández-Berriel et al. 

(2008) studied the effect of two different moisture contents (70%, 80%) on the digestion of 

municipal solid waste.  The reactor containing 70% moisture generated a stronger leachate and 

therefore a higher methane percentage was produced.  Lay et al. (1997) studied the combined 

effect of pH and moisture content on the digestion of high-solid sludge.  The authors found that 

moisture content was an essential ecological parameter that can increase methane generation as 

the results obtained, showed at an optimum pH the activity of the methanogens decreased from a 

100 - 53% when the moisture contents were lowered from 96 – 90%.   

 

Nutrients (Carbon source/substrate, Nitrogen, C/N ratio) 

The microbiological ecosystem of a digester will depend on the substrate type, substrate amount 

and other factors such as pH and temperature (Ghaniyari-Benis et al., 2009).  As certain types of 

carbon sources support the working activity of certain microbes, this forms the basic foundation for 

good digester performance (Zhao et al., 2010).  Fernández et al. (2008) investigated the effect of 

substrate concentration on anaerobic digestion and reported that the initial concentration of the 

substrate can significantly influence the AD process.  Nitrogen is the inorganic macronutrient that is 

utilised in large concentrations by microbes for growth (de Lemos Chernicharo, 2007).  Nitrogen is 

vital for protein synthesis (Kayhanian & Rich, 1995) and due to the fact that micro-organisms grow 

more in carbohydrate rich waste than waste containing proteins and VFA, the amount of nitrogen 

needed for waste containing carbohydrates are six times larger (de Lemos Chernicharo, 2007).  

Ammonia is produced by the degradation of nitrogenous materials present in the waste generally in 

a protein form (Kayhanian, 1999).  Nitrogen is absorbed in ammonia form which also helps with 
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stabilising the digester pH.  According to Fricke et al. (2007) a nutrient ratio of C:N:P:S in 

600:15:15:3 is adequate for methanization to take place.  Although a too high ammonia 

concentration can inhibit digestion (Chen et al., 2008) a total ammonia concentration (TAN) of 

about 200 mg.L-1 could be beneficial to AD (Liu & Sung, 2002).  The carbon to nitrogen ratio (C/N) 

is an important parameter in a biological process (Lin & Lay, 2004).  Bouallagui et al. (2009a) 

advised a C/N ratio of 22 – 25 for digestion of fruit and vegetable waste, while an optimal ratio of 

the degradation of the organic fraction of municipal solid waste was suggested to be 20 – 35 

(Guermond et al., 2009),   

 

E.  CO-DIGESTION 
Co-digestion can be defined as the combined treatment of one or more wastes with balancing 

characteristics (Ağdağ & Sponza, 2007).  AD serves as a potential treatment option to decrease 

ecological burdens and supply biogas for energy (Alvarez & Lidén, 2008).  A main factor limiting 

AD of organic wastes is an unbalanced supply of nutrients (Khalid et al., 2011).  Winery 

wastewater is known to have a low nitrogen and phosphorous content (Toffelmire, 1972) which 

needs to be supplemented for AD to be optimal (Ronquest & Britz, 1999; McLachlan, 2004).  Co-

digestion is an alternative solution as co-substrates can supply the missing nutrients and balance 

the substrate composition (Mata-Alvarez et al., 2000; Umetsu et al., 2006; Jagadabhi et al., 2008; 

Pagés-Díaz et al., 2014) and is a known method to increase methane yields of AD.  Advantages of 

co-treatment includes: (i) the dilution of hazardous components such as ammonia; (ii) a better 

nutrient balance; (iii) increased biodegradation of organic matter; (iv) an improved biogas yield 

(Mata-Alvarez et al., 2000; Khalid et al., 2011); and (v) increased digestion rates as well as 

hygienic stabilisation (Sosnowski et al., 2003; ).   

 The produced leachate is a source of water, inoculum and nutrients that is desirable for 

optimum AD.  Another advantage of co-treatment is that VFA and related fermentative products, 

formed during start-up are removed and carried over to the aged reactor to convert into methane.  

This helps eliminating digester instability that is commonly found in single-stage digesters (O’Keefe 

et al., 1993).  Co-digestion is well documented in literature and has been applied widely:  

 

• olive mill wastewater and wine-grape residues with slaughterhouse wastewater 
(Fountoulakis et al., 2008); 

• Sewage sludge together with grease trap sludge obtained from a meat processing plant 
(Luostarinen et al., 2009); 

• Municipal solid waste (organic fraction) with FOG waste acquired from sewage treatment 
plant (Martín-González et al., 2010); 

• Chicken manure with agricultural wastes (Abouelenien et al., 2014); 
• Food waste (FW) and fruit/vegetable residue with dewatered activated sludge (Guo et al., 

2014); 
• Solid slaughterhouse wastes and agro-residues (Pagés-Díaz et al., 2014); 
• Disposable diapers with waste activated sludge (Torrijos et al., 2014) 
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Rodríguez et al. (2007) evaluated the operational performances of ABR co-treating winery 

wastewater and waste activated sludge.  Results obtained showed that the percentages of 

methane generation were lower with wastewater alone in comparison with sludge and wastewater 

together.  The maximum biogas produced was found to be at a 50:50 ratio of wastewater and 

sludge together with a 60% COD reduction.  Riaño et al. (2011) studied the effect of anaerobic co-

digestion of swine manure with winery wastewater.  The authors found that co-treatment with 40% 

winery wastewater lead to improved removal efficiencies of approximately 52% for total COD and 

61% of volatile suspended solids (VSS) compared to digesting the swine manure alone.  The study 

showed that the co-treatment of swine manure and winery wastewater is capable of generating 

methane gas efficiently.   

 

F.  GENERAL CONCLUSIONS 
Winemaking is a centuries old biotechnology that has become a worldwide initiative affecting the 

economic wellbeing of several countries (Walker, 1999).  Winemaking however, needs a significant 

amount of natural resources and carbon-rich amendments whilst producing a large amount of 

liquid and solid wastes (Ruggieri et al., 2009).  These wastes could cause environmental problems 

due to their polluting characteristics (FSA Consulting, 2006).  Ecological concerns often associated 

with wineries are water pollution, soil degradation and damage to plant life due to poor disposal 

practices of liquid and solid wastes (EPA, 2004).   

The preceding review evidently indicates that biological treatment of liquid and solid wastes 

is an effective treatment option with several advantages.  Anaerobic digestion of liquid waste 

(winery wastewater) is an attractive treatment option as both depollution and energy recovery can 

be accomplished (Chen et al., 2008) while anaerobic composting of solid waste (grape skins) 

generates biogas, an organic amendment (Khalid et al., 2011) and a liquid effluent, which can be 

used as a renewable energy source and a valuable soil conditioner, respectively (Mata-Alvarez et 

al., 1992).   

A main feature that limits anaerobic digestion, is the unbalanced supply of nutrients within 

waste substrates (Khalid et al., 2011).  Winery wastewater that is known to have low nitrogen and 

phosphorous content (Toffelmire, 1972) needs to be supplemented for digestion to be optimal 

(Ronquest & Britz, 1999; McLachlan, 2004).  Co-digestion or co-treatment is an alternative solution 

as co-substrates can supply the missing nutrients and balance the substrate composition (Mata-

Alvarez et al., 2000; Umetsu et al., 2006; Jagadabhi et al., 2008; Pagés-Díaz et al., 2014).  Co-

digestion is also a known method to increase methane yields of AD.  To date, very little literature is 

available on co-treating leachate from anaerobic composting within a UASB reactor treating winery 

wastewater.  These combined treatment options have enormous potential in future application 

within the wine industry in order to create sustainable water and waste utilisation practices.   
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CHAPTER 3 
 

DETERMINING OPTIMUM OPERATIONAL PARAMETERS FOR 
ANAEROBIC COMPOSTING OF GRAPE SKINS 

 

Summary 
Wine production is of major importance to South Africa and requires significant amounts of natural 

resources and carbon-rich amendments while generating large volumes of liquid and solid wastes.  

Anaerobic composting of solid waste generates an organic amendment, a liquid effluent (leachate) 

and biogas.  These products can be used as a valuable soil conditioner and a renewable energy 

source (biogas).  In order to create a functional anaerobic composting system, the objective must 

be to identify which operational parameters to optimise.   

During this study eight experimental studies were performed to optimise operational 

parameters to achieve the above objective.  It was found that strict control of pH, moisture, 

inoculum composition and the initial inoculum size were necessary to produce a quality end-

product.  After finding that grape skins cannot be composted alone due to its high carbon content 

and low pH, green waste and CaO were added and the mixture soaked overnight at 37°C.  It was 

also essential to shred all waste to speed up the composting process so as to reach a final 

composting period of 21 days.  The removal of leachate generated during the digestion process 

was important in avoiding acidification.  It was also found that the alkalinity of the anaerobic 

wastewater reactor effluent, used as a moisturising liquid, played a significant role in buffering the 

volatile fatty acids (VFA) formed during the initial stages of composting.  With all optimum 

operational parameters in place (6 g CaO, 50% (m.m-1) moisture, 20% (m.m-1) green waste, 150 g 

white and red grape skins in an equal ratio (50:50), and 15% (m.m-1) cow manure as inoculum, a 

stable end-compost was produced.  The composting process described was scaled-up (1:10) and 

also produced a stable compost within 21 days. 

 

Introduction 
The generation of solid waste is a growing worldwide issue due to increases in production and thus 

its management needs to be improved (Sinan Bilgili et al., 2007).  Solid waste produced during 

winemaking includes grape pomace (seeds, stalk and skins), wine lees and winery sludge 

(Bustamante et al., 2008a).  The primary solid waste portion generated during the wine making 

process is the pomace (Diaz et al., 2002).  These wastes are characterised by an acidic pH, high 

polyphenol, organic and potassium contents along with considerable amounts of nitrogen and 

phosphate (Bustamante et al., 2008b).   

Research has shown that due to the nature of its composition, grape pomace can be 

recycled as a soil conditioner (Diaz et al., 2002; Flavel et al., 2005; Brunetti et al., 2011).  

Anaerobic digestion (AD) of solid waste or anaerobic composting (AC) is a well-known method for 
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the treatment of liquid, solid and semi-solid carbon-based wastes.  It offers several benefits over 

conventional (aerobic) treatments, mainly from an energetic and environmental point of view 

(Marín et al., 1999).  Products generated by the anaerobic composting of solid waste (grape skins) 

include: (i) an organic amendment (Khalid et al., 2011); (ii) a liquid fraction; and (iii) biogas which 

can be used as valuable soil conditioners and a renewable energy source (biogas), respectively 

(Mata-Alvarez et al., 1992).   

According to literature the main factors influencing anaerobic composting include the 

nutrient content, moisture levels, pH, alkalinity, temperature (Khalid et al., 2011) and the initial 

inoculum source (Forster-Carneiro et al., 2007).  Grape pomace consists of 8% seeds, 10% stems, 

25% skins, 57% pulp and is high in nitrogen, potassium and calcium (Westover, 2006).  However, 

due to the chemical characteristics and high carbon content of winery waste it cannot be 

composted alone (Kulcu & Yaldiz, 2005).  Westover (2006) reported that grape pomace alone 

degrades slowly due to the low pH (3.5 – 3.8) and therefore lime or other feedstocks are often 

added to increase the pH.   

Currently, with the trend in organic farming, the use of nitrogen rich organic wastes is 

favoured as a substitute to the addition of chemical nitrogen sources.  Cow and poultry manure are 

examples of organic nitrogen wastes that can be used to substitute chemical nitrogen sources 

(Kalemelawa et al., 2012).  AnC systems have successfully been operated with cow manure (CM) 

as inoculum in other composting trials (Griessel, 2002).  The advantages of using cow manure are 

that it is a plentiful resource (Ward et al., 2008), the high alkalinity in cow manure serves as a 

buffering capacity for the accumulation of VFA’s formed and nutrients (macro and micro) present 

are essential for microbial growth (Astals et al., 2012).  In another study peach pulp and apple 

pomace were successfully composted by using anaerobic granules as inoculum (Griessel, 2002).   

Literature warns that sufficient moisture is important for: (i) methane production as nutrients 

need to be dissolved before being utilised by the microbes; (ii) it helps with the diffusion of 

substrates to organism sites; and (iii) a higher moisture content dilutes the concentration of 

carboxylic acid which then enhances the buffering capacity (Lay et al., 1997).  Alkalinity is required 

in any biological system to sustain a stable pH and optimal biological activity (Lee et al., 2009).  

Although different pH ranges have been reported for optimum AD (Khalid et al., 2011), the ideal 

range is between 6.5 and 7.8 (Anderson et al., 2003), while the optimum is considered to be  

6.8 – 7.2 (Ward et al., 2008).  This pH range ensures an acceptable working environment for 

methanogens and helps with sufficient buffering capacity (Gerardi, 2003).   

The aim of this study was thus to optimise the operational parameters for the anaerobic 

composting of grape skins, to produce stable compost.  This will be done by identifying and 

optimising operational parameters in terms of inoculum (size, ratio and composition), pH, moisture 

content, green waste addition and grape skin (carbon source) ratios.   
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Materials and Methods 
 

Laboratory-scale anaerobic compost digesters 

During this study, modified Schott bottles (1 L) were used as laboratory-scale anaerobic compost 

digesters (Fig. 3.1).  Synthetic pot scourers (diameter = 80 mm) were placed at the bottom of the 

digesters to prevent clogging of the leachate outlet (Fig. 3.1).  Moisture was added to the digesters 

through the neck of the bottle.  A biogas outlet allowed gas production and composition to be 

measured, while another outlet was used to flush the digesters with nitrogen prior to the start of the 

experimental study (ES) (Fig. 3.1).  The leachate formed was drained from the digester via an 

extension at the bottom of the unit.   

 

 

 

 

 

 

 

 

 
 
 

 
 

Figure 3.1 Schematic illustration and photograph of the modified Schott bottles (1 L) that were 

used as laboratory-scale anaerobic compost digesters (Griessel, 2002).   

 

Scaled-up digesters 

For the up-scaling (1:10) study, 20 L poly vinyl chloride (PVC) containers (500 x 400 mm) were 

used as anaerobic composting units (Fig. 3.2) (Griessel, 2002).  Synthetic pot scourers were 

placed at the bottom of the units to prevent the clogging of the leachate outlet.  Inlets/outlets (Fig. 

3.2) allowed moisturising liquid to be added and biogas production to be measured.   

 

Substrate 

Red and white grape skins were obtained during the harvest season of 2012 and 2013 from 

Muratie Wine Estate, Stellenbosch, South Africa.  Grape skins were vacuum packed in plastic bags 

and stored at -18°C until utilised.  Fresh green waste (grass) was obtained the day before each ES 

commenced from Langverwacht Landscaping, Stellenbosch, South Africa, and was kept in a 

sealed container at 4°C until needed.  The pH adapted effluent that was used throughout this study 

as a moisturising liquid had a dual purpose: (i) to provide micro-organisms and substrate with 

Moisture 

inlet 

Biogas/Nitrogen  

inlet/outlet 

Scourer

 Leachate outlet 
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moisture; and (ii) to help increase the pH of the system by washing out VFA’s formed during the 

initial stages of composting.   

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 3.2 Schematic illustration and photograph of the PVC digesters that were used to up-scale 

the anaerobic compost digesters (Griessel, 2002).   
 

Inoculum 

Anaerobic granules were obtained from a full-scale UASB reactor treating distillery wastewater in 

Wellington, South Africa (The James Sedgwick Distillery, Wellington, South Africa).  Fresh cow 

manure or cattle dung was acquired the day before each ES commenced and was kept in a sealed 

container at 4°C until needed.  The cow manure was obtained from Welgevallen Research Farm, 

Stellenbosch University, South Africa.  Anaerobic compost used as inoculum during Experimental 

Study (ES) 4 – 7 was obtained from the end-product compost from ES2.   

 

Preliminary experimental studies 

After identifying the operational parameters that showed control possibilities (inoculum (size, ratio 

and composition), pH, moisture content, green waste addition and grape skin (carbon source) 

ratios), preliminary experimental studies were conducted to determine the impact of different 

operating conditions.  The following factors were investigated: degree of shredding of the grape 

skins and other solids; calcium oxide (CaO)/lime solutions; green waste inclusion; pH of 

moisturising liquid; as well as the frequency of moisturising the compost.  The moisture content of 

the solid waste in the digesters was kept constant (50% m.m-1) by the addition of pH adjusted  

(pH = 10) effluent from a laboratory-scale upflow anaerobic sludge blanket (UASB) reactor treating 

grain distillery wastewater (GDWW) (Robertson, 2013).   

 

Moisture inlet 

Biogas outlet 

 

Leachate outlet 

PVC container with lid, 

bolts and rubber ring 
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Experimental Studies 1-8 

The experimental set-up of ES 1 - 8 is given in Table 3.1.  Moisturising liquid was added to the 

digesters every 24 h.  The volume of UASB reactor effluent that was added to the digesters 

depended on the volume of leachate generated by each individual unit (i.e. volume leachate 

produced that was removed and the same volume of UASB effluent that was added).  Laboratory 

grade calcium oxide (CaO)/lime (Merck, Germany) dissolved in tap water was added to the grape 

skins and green waste of both the laboratory-scale digester (6 g in 150 mL) and to the up-scaled 

digester (60 g in 1500 mL).  The grape skins mixtures were allowed to soak for 24 h at 37°C.   

 The volumes of discharged leachate for each composting reactor unit was measured daily 

(ES 1 – 8) and stored at 4°C until needed for analysis (ES 7 - 8).  The polyphenol, nitrogen and 

phosphorous contents of the leachate were determined at the beginning of ES7.  For both ES7 and 

ES8 the following parameters were monitored daily: pH; leachate volumes; and alkalinity.  The 

chemical oxygen demand (COD) and biogas composition were analysed three times a week while 

total suspended solids (TSS) and volatile suspended solids (VSS) were determined once a week.  

Microbial analyses were done on the compost and leachate before and after the 21 day duration.   

Physico-chemical analyses were determined by an external analytical laboratory, Bemlab 

(Strand, South Africa).  As the ideal pH for digestion has been reported as 6.5 – 7.8, with an 

optimum of 6.8 – 7.2, a pH of 6.5 was chosen as a reference pH (i.e. to be reached as quickly as 

possible for optimum digestion and methane generation).  Composting digesters were flushed with 

nitrogen for 20 s, sealed and kept in an incubator room at 37°C.  All studies, as shown in Table 

3.1, were conducted in triplicate.   

 

Experimental study 1: Effect of inoculum composition and ratio  
Three laboratory-scale anaerobic compost digesters were used during ES1 and consisted of: 

shredded white and red grape skins (150 g each) (1:1); moisture content of 50% (m.m-1); shredded 

green waste (20% m.m-1) and inoculum (50% m.m-1).  The inoculum consisted of anaerobic 

granules and fresh cow manure (1:1).  The three digesters differed only in terms of their inoculum 

ratio content.  Digester 1 contained anaerobic granules and cow manure in a 50:50 ratio, Digester 

2 in a 25:75 ratio and Digester 3 in a 0:100 ratio (Table 3.1).  The effluent obtained from a UASB 

reactor treating GDWW (moisturising liquid) was set at pH 10 with 2M potassium hydroxide (KOH).   

 

Experimental study 2:  Effect of inoculum size  
The purpose of this study was to determine the effect of a lower inoculum concentration on the 

digestion process.  The contents of the three digesters used consisted of: shredded white and red 

grape skins (150 g each) (1:1); moisture content of 50% (m.m-1); shredded green waste  

(20% m.m-1) and inoculum (10, 15 and 25% m.m-1).  The inoculum consisted of only cow manure 

(CM).  The three digesters differed only in terms of their inoculum size.  Digester 1 contained 10% 

(m.m-1) CM, Digester 2 contained 15% (m.m-1) CM and Digester 3 had 25% (m.m-1) CM (Table 

3.1).  Adapted GDWW set at pH 10 was used as moisturising liquid.   

Stellenbosch University  https://scholar.sun.ac.za



Chapter 3           92 

 

Table 3.1  Experimental set-up used during ES 1 to 8 

                                                                                                              Lab-scale                                                                                                       Up-scale 

 ES1 ES2 ES3 ES4 ES5 ES6 ES7     ES 8 

Inoculum anaerobic 
granules + 

cow manure 

cow 
manure 

AC from ES2 AC from ES2 AC from ES4 AC from ES4 cow 

manure 

cow 

manure 

Moisturising liquid GDWWW GDWWW WWW 

(Alkalinity) 

WWW WWW WWW WWW 

 

WWW 

Inoculum size per 

digester (m.m-1) 

50 10, 15, 25 10, 15, 25 10 10 10 15 15 

Inoculum ratio 50:50; 25:75; 
0:100 

- 

 

- - - - - - 

Moisture content 

(m.m-1) 

50 50 50 50 35, 40, 45, 50, 
55, 60 

50 50 50 

Green waste  

(m.m-1) 

20 20 20 20 20 20 20 20 

Grape skin ratio 

(white:red) 

50:50 50:50 50:50 50:50 50:50 25:75; 50:50; 
75:25 

50:50 50:50 

*Parameter investigated is highlighted  
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Experimental study 3:  Effect of anaerobic compost (AC) as inoculum 
The third study was done to investigate the effect of anaerobic compost and a lower inoculum size 

on the digestion of red and white grape skins.  Three digesters containing shredded white and red 

grape skins (150 g each) (1:1), moisture content of 50% (m.m-1), shredded green waste  

(20% m.m-1) and inoculum (10, 15 and 25% m.m-1), were used.  The inoculum consisted of AC 

obtained from the Experimental study 2 (ES2).  Digester 1 contained 10% (m.m-1) AC, Digester 2 

15% (m.m-1) AC and Digester 3 contained 25% (m.m-1) AC (Table 3.1).  Throughout this ES, 

moisturising liquid (reactor effluent from an UASB reactor treating winery wastewater) was used.  

Due to the fact that the UASB reactor was still in a start-up phase, the winery effluent generated 

had a very low alkalinity (±800 mgCaCO3.L-1) compared to the alkalinity from the UASB treating 

GDWW (±4 000 mgCaCO3.L-1), used in the preliminary experimental studies as well as ES1 - ES2.  

Therefore, di-potassium hydrogen orthophosphate (K2HPO4) and potassium hydrogen carbonate 

(KHCO3) were used in equal masses to adjust the alkalinity of the winery effluent from day 10 

onwards to a desired level (3 500 mgCaCO3.L-1).   

 

Experimental study 4:  Effect of a 10% (m.m-1) AC inoculum  
Due to the apparent importance of the alkalinity of the moisturising liquid (ML), ES3 was repeated 

with winery UASB effluent that had a high inherent alkalinity.  A 10% (m.m-1) AC inoculum was 

used during this experimental study.  The three digesters used consisted of the following: shredded 

white and red grape skins (150 g each) (1:1); moisture content of 50% (m.m-1); shredded green 

waste (20% (m.m-1)); and inoculum (10% (m.m-1)).  The final end-product compost from ES2 was 

used again as AC inoculum.  Winery UASB reactor effluent was used as moisturising liquid for the 

remainder of the experimental studies (ES4 - ES8).   

 

Experimental study 5:  Effect of different moisture levels 
After optimising the inoculum size, composition and ratio it was decided to determine the impact of 

different moisture levels on the efficacy of the composting process.  Six digesters were used during 

this study and contained: shredded white and red grape skins (150 g each) (1:1); shredded green 

waste (20% (m.m-1)); AC inoculum (10% (m.m-1)) and different moisture (M) contents (35, 40, 45, 

50, 55 and 60% (m.m-1)) (Table 3.1).   

 

Experimental study 6:  Effect of different grape skin (carbon source) ratios 
The purpose of ES6 was to determine if any differences on the efficacy of the composting process 

exist when using different white and red grape skin (GS) ratios.  Three digesters were used each 

containing: shredded green waste (20% m.m-1); AC inoculum (10% (m.m-1)) and moisture (50% 

m.m-1).  The three digesters differed only in terms of grape skin ratio content.  Digester 1 contained 

white (WGS) and red grape skins (RGS) in a 25:75 ratio, Digester 2 in a 75:25 ratio and Digester 3 

in a 50:50 ratio (Table 3.1).   
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Experimental study 7:  Effect of the optimised parameters  
The final laboratory-scale study included all the optimum parameters (inoculum (ratio, size, type), 

moisture content, grape skin ratio) that had been identified in the previous studies.  Three digesters 

were used and consisted of 6 g CaO, 50% (m.m-1) moisture, 20% (m.m-1) green waste, 150 g white 

and red grape skins (50:50) and 15% (m.m-1) cow manure.  Cow manure was chosen as inoculum 

as in “industrial” applications a “first batch” would always require an inoculum other than anaerobic 

compost.  An inoculum size of 15% was chosen to ensure an efficient “start-up/first batch”.   

 

Experimental study 8:  Effect of optimised parameters on the up-scaled composting 
process 
This study included all the optimum parameters in terms of inoculum (ratio, size, type), moisture 

content and grape skin ratio as used in ES7.  It was also decided to use 15% (m.m-1) inoculum 

during the up-scale study (Table 3.1).  Three up-scaled digesters (total digester volume of 5 550 g) 

were used and consisted of 60 g CaO, 50% (m.m-1) moisture, 20% (m.m-1) green waste, 1 500 g 

white and red grape skins in an equal ratio (50:50) and 15% (m.m-1) cow manure as inoculum.   

 

Analytical methods 
pH and Alkalinity 

The pH and alkalinity of the composting leachate were measured using a digital pH meter (WTW) 

and electrode (Xylem Inc., Germany) and a titration method, respectively (APHA, 1998).  The 

alkalinity is expressed as mg CaCO3.mL-1.   

 

COD 

The leachate samples were digested with a COD digestion reactor (Hach Co. Loveland, U.S.A), 

cooled and colorimetrically measured using a DR2000 spectrophotometer (Hach Co. Loveland, 

CO) set at 585 nm, and standardised procedures (APHA, 1998).  COD Solution A and Solution B 

(Merck, Germany) for the measuring range 500 – 10 000 mg.L-1 were used.  The COD of leachate 

produced on day 1 (used for co-treatment) was also confirmed by using a Spectraquant® COD Cell 

Test (5 000 – 90 000 mg.L-1) (Merck, Germany).  All analyses were performed in duplicate.  The 

COD concentration was used to simulate the carbon value in the determination of the C:N:P ratio.   

 

TSS and VSS 

Analyses of leachate were performed once a week according to standard methods (APHA, 1998).   

 

Biogas  

A Varian 3300 gas chromatograph (Varian Inc., Palo Alto, CA) equipped with a thermal 

conductivity detector and a 2.0 x 3.0 mm i.d. Hayecep Q (Supelco, Bellefonte, PA) 80/100 mesh 

packed column was used to determine the biogas composition.  The oven temperature was set to 
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55°C, helium was used as the carrier gas at a flow rate of 30 mL.min-1.  A sample volume of 0.2 

mL was used (Sigge, 2005) and all analyses were done in duplicate.   

 

Nitrogen, phosphate and polyphenols 

The content of both these nutrients (nitrogen and phosphorous) were confirmed by means of 

Spectroquant® Nitrogen (0.5 – 15.0 mg.L-1 N) and Spectroquant® Phosphate Cell tests (0.05 – 5.0 

mg.L-1 PO4-P) (Merck, Germany) using a Merck Spectroquant® Nova 60 spectrophotometer.   

Polyphenol content within compost leachate was determined using the Folin-Ciocalteau method 

(Singleton & Rossi, 1965).  Analyses were performed in duplicate and a dilution of 1:50 was used.   

 

Coliforms and Escherichia Coli  

Microbial analysis on both the compost leachate and compost from ES7 and ES8 were determined 

on days 1 and 21 according to the SANS 9308 (SANS, 2012) method using a Colilert-18 kit 

(IDEXX, USA).  A 10 g compost sample was placed in a stomacher bag, and 90 mL of sterile 

physiological saline solution (PSS) was added.  The sample was stomached for approximately 2 

min, after which the liquid content was used to prepare a dilution series (10-1 to 10-10).  For the 

compost leachate, 10 mL was added to 90 mL saline solution, where after a dilution series  

(10-1 - 10-10) was prepared.  Duplicates of each dilution series were prepared as to ensure an end 

sample volume of 100 mL.  Colilert-18 reagent indicator (4-methylumbelliferyl-𝛽-D-glucuronide) 

(MUG) was added to each of the duplicate Schott bottles.  Each dilution was poured into a Quanti-

Tray/2000 (IDEXX, USA) and sealed with a Quanti-Tray® Sealer Model 2X (IDEXX, USA).  The 

trays were incubated at 37°C for 18 h.  After the 18 h incubation period, total coliforms were 

determined by counting the wells within the Quanti-Tray that developed a yellow colour.  The 

presence of E. coli was determined by counting the wells that fluoresced under ultra violet light 

(365 nm) (Spectroline® Model CM-10 Fluorescence Analysis Cabinet).  The positive counts for 

both total coliforms and E. coli were used to determine the corresponding loads by using an IDEXX 

Quanti-Tray®/2000 most probable number (MPN) table (IDEXX, USA; SANS, 2012).  Microbial 

counts were expressed as either MPN.100 mL-1 or MPN.100 g-1.   

 

Physico-chemical analyses 

The pH (KCl), electrical resistance and total extractable cations (Potassium (K), Calcium (Ca), 

Magnesium (Mg), Sodium (Na)) were all determined according to the methods described by The 

Non-affiliated Soil Analyses Work Committee (1990) and standard operating procedures (SOP) 

from Bemlab Pty Ltd (Strand, South Africa).  The method for pH determination in soil as described 

by The Non-affiliated Soil Analyses Work Committee (1990), was adapted.  Samples were dried 

overnight at 105°C, after which a paste was made (5 g sample and 25 mL 1N KCl) and the pH was 

measured by placing the pH electrodes in the mixture.  Results are reported in pH (KCL).  For 

electrical resistance a saturated soil paste was prepared by mixing air-dried samples with de-
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ionised water.  The electrical resistance of the paste is expressed as ohms.  During this study the 

electrical conductivity (dS.m-1) (inverse of the resistivity) was used for discussion purposes.   

For the total extractable cations (Potassium (K+), Calcium (Ca2+), Magnesium (Mg2+), 

Sodium (Na+)) and Phosphorous (P) as well as micro-nutrient analysis (Boron (B), Copper (Cu), 

Manganese (Mn), Zinc (Zn), Iron (Fe) and Cobalt (Co)) compost samples were first prepared by 

drying overnight at 70°C, where after they were milled to approximately 40 micron and ashed at 

480°C.  The samples were then extracted through filter paper by adding 50:50 HCl (32%) solution.  

The extracted solutions were analysed against suitable standards with a Varian Inductively 

Coupled Plasma Atomic Emission Spectroscopy (ICP-OES) Optical Emission Spectrometer.  The 

results were expressed as mg.kg-1.   

 The total Carbon (C) and Nitrogen (N) were determined directly using total combustion on a 

Leco Truspec® CN N analyser.  Both C and N were expressed as %C and %N.  Ammonium (NH4) 

and Nitrates (NO2) were extracted with a 1M KCl solution and analysed with an Auto Analyser at 

Bemlab Pty Ltd (Strand, South Africa).  The results were reported as mg.kg-1.  All analyses were 

conducted in triplicate.   

The moisture, bulk density and ash were also determined according to SOP from Bemlab 

(Strand, South Africa).  The gravimetric moisture content was done on a mass/mass basis by 

drying compost samples over night at 70°C.  Bulk density of compost samples was determined by 

weighing 60 cm3 of compost at 20°C.  The results were given as kg.m-3.  The ash content was 

performed by weighing 2 g of dried (70°C), sieved (40 micron) compost and ashing it overnight in a 

muffle furnace at 480°C.  Results were expressed as the ash percentage of the dried compost 

sample.  In order to lower the moisture content after the 21 day period the composts was dried on 

open trays in an incubator room for 24 h at 37°C.   

 

Results and Discussion 
 

Preliminary experimental studies 

It was found during the preliminary studies that the composting process can be sped up by using 

shredded waste as smaller pieces most probably provide more available surface areas for micro-

organisms.  Results obtained showed that the laboratory-grade CaO resulted in better solubility 

than the industrial CaO and this was therefore used in the subsequent studies.  Moisturising liquid 

(pH adapted effluent from an UASB reactor treating GDWW) was added to the digesters every 24 

hours, depending on the volume of leachate generated within each individual unit.  It was noted 

that in order to improve the digestion process, the leachate formed would have to be drained 

continuously as this led to the accumulation of VFA’s and caused the pH to drop to below 6.5.  The 

pH drop probably led to growth inhibition of the microbes responsible for the digestion and 

subsequently resulted in process failure.  During the preliminary study, colour changes were 

observed; red-purple to brownish-green for the grape skins and dark green to yellow for the 

leachate.  By the end of the 21 day study the grape skins changed into a uniform soil-like texture.   
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Experimental study 1: Effect of inoculum composition and ratio  

Inoculum during this study consisted of 50% (m.m-1) anaerobic granules and fresh cow manure in 

ratios of 50:50, 25:75 and 0:100.  The results, in terms of leachate volume and pH are shown in 

Figure 3.3.  It can be seen that Digester 2 achieved a pH of 6.68 by day 5 and a final pH of 7.81 by 

day 21 (Fig. 3.3).  Digester 1 surpassed a pH of 6.5 by day 7, reaching a final pH of 7.6.  Digester 

3 reached a pH above 6.5 by day 15 and a final end pH of 7.79.  In terms of the stabilisation of the 

pH, Digester 1 and Digester 3 performed the best with a neutral pH (Fig. 3.3) being reached by day 

16, while Digester 2 (25:75) only reached a pH above 7 by day 18.  The overall pH stability (in 

terms of pH being above 6.5) of Digester 1 was seen to be better than Digester 2 and Digester 3, 

with only four pH measurements after day 6 being below 6.5.  The stabilisation of the pH as seen 

for both Digester 1 and Digester 3 from day 16 onwards (Fig. 3.3) can probably be linked to the 

stabilisation and the microbial activity.  In general, an initial increase in pH was seen for all 3 

digesters, after which the pH decreased slightly and stabilised only to increase and stabilise again.  

A possible explanation for the initial pH increase, after which a slight decrease was observed (Fig. 

3.3) could be due to the high alkalinity in the cow manure serving as a buffering capacity for the 

accumulation of simple VFA’s formed during the early composting stages (Astals et al., 2012).  The 

second increase in pH can possibly be contributed to the microbial breakdown of these acids and 

the release of alkali and alkali earth metals that were connected to carbon matter (Smith & 

Hughes, 2002).  Another explanation could be the high amount of CaO present in the digester 

during the early stages of composting.  The CaO could possibly have led to a higher alkalinity and 

therefore a higher pH.  As the CaO “washed out” of the system (through the daily “moisturising 

action”) the alkalinity decreased, possibly leading to a decrease in pH.  Over time the digesting 

system started to generate its own alkalinity, possibly allowing the pH to rise and eventually 

stabilise around neutral.   

Digester 1 produced the most leachate (1 071 mL) over the 21 day ES compared to 

Digester 2 (759 mL) and Digester 3 (728 mL) (Fig. 3.3).  A possible explanation for this is the high 

moisture content of manure and granules.  The moisture content of both the granules and manure 

were determined to be 92% and 80%, respectively.  A higher ratio of granule:manure inoculum 

content could therefore possibly lead to a higher moisture content and consequently a higher 

volume of leachate generation.  In terms of volume reduction Digester 1 performed the best with a 

21% mass reduction followed by the Digester 2 (18%) and Digester 3 (17%).   

Overall the digesters followed a similar trend (Fig. 3.3) as pH increased over the ES period 

and leachate volume decreased.  Although Digesters 1 and 2 reached a pH of 6.5 earlier, the pH of 

Digester 3 (containing only cow manure) was found to be very close to the “lower limit” around the 

same time and all three digesters reached the same end pH (Fig. 3.3).  Due to the fact  
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Figure 3.3 pH and leachate volumes generated with the different inoculum compositions and ratios over the ES1 period (n=3) (Red line indicates pH 

of6.5 which was taken as the lower limit for optimum operation) (Error bars represent error at 95% confidence interval). 
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that the highest pH difference between cow manure and anaerobic granules as inoculum  

(Digester 1) and cow manure alone (Digester 3) were approximately one (Fig. 3.3) as well as the 

fact that anaerobic granules are expensive and availability is limited (Liu & Tay, 2004) the use of 

anaerobic granules for inoculation purposes was stopped in further experimental studies.   

 

Experimental study 2:  Investigating the effect of inoculum size  

Based on the successful application of a 50% (m.m-1) inoculum as found during ES1, it was 

decided to investigate the effect of lower inoculum concentrations (10, 15, 25% (m.m-1)) on the 

composting process.  The advantage would be that a lower inoculum concentration could allow a 

higher amount of grape waste to be treated making the process more feasible and economical.  A 

similar pH trend for that observed (Fig. 3.4) in the previous study where 50% (m.m-1) inoculums of 

anaerobic granules and cow manure in different ratios were used.  The volume of leachate 

generated in this case decreased and the pH increased during the 21 day period.  It was expected 

that the inoculum concentration would be correlated to the size of the microbial community, and 

therefore that the higher inoculum content would result in better process stability in terms of pH 

and degradation.  This however, was not the case as Digester 1, with the lower inoculum (10% 

(m.m-1)) slightly outperformed Digester 3 containing 25% (m.m-1) inoculum.  Digester 1 surpassed 

a pH of 6.5 by day 6, which could favour methane production.  Digesters 2 and 3 reached a pH 

above 6.5 only by days 11 and 13, respectively (Fig. 3.4).  The pH of Digester 1 reached neutral by 

day 12 and stabilised to an end pH of 8.01 by day 21 (Fig. 3.4).  Digester 1 also generated the 

most leachate throughout the study (791 mL) with Digester 3 producing 747 mL followed by 

Digester 2 producing the least (712).  Leachate volumes gave a good indication of digester activity, 

as it appeared that higher volumes of leachate benefitted the pH of the composting process (i.e. 

higher volumes leachate produced, generated compost with a higher end pH).   

Digester 3 had the highest volume reduction (27%), compared to Digester 2 with a 21% 

reduction.  It was also noted during this experimental study that not all of the moisturising liquid 

seeped through the grape skins.  This resulted in a water layer forming within the digester that 

consequently added to the final moisture content of the compost.  After drying the compost for 24 h 

at 37°C in an incubator room, the volume reduction of the compost increased significantly to 67%, 

75% and 76% for Digesters 1, 2 and 3, respectively.   

Although Digester 1 reached a pH > 6.5 first, the pH of Digester 3 was very close to the 

“lower limit” and pH stabilisation was seen for all 3 digesters (Fig. 3.4) from day 11.  Due to the 

similar results obtained, it was decided that using the lowest possible concentration of inoculum 

(10% (m.m-1)) would be most beneficial.  The lower inoculum concentration would allow more 

grape waste to be treated making the process more feasible.   
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Figure 3.4 pH and leachate volumes generated during the investigation of the inoculum size on the efficacy of the composting process over the ES2 

period (n=3) (Red line indicates pH of 6.5 which was taken as the lower limit for optimum operation) (Error bars represent error at 95% 

confidence interval). 
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Experimental study 3:  Effect of anaerobic compost (AC) as inoculum 

After optimising the CM inoculum size (10% (m.m-1)) in ES2, it was decided to use AC as inoculum 

during this experimental study.  AC as an inoculum could possibly be more beneficial than CM in 

attaining a pH > 6.5 before day 6, as the micro-organisms responsible for degradation of the solid 

waste have already acclimatised to the anaerobic conditions.  The aim was thus to reach a  

pH > 6.5 as early as possible as this would favour methane production and reduce unpleasant 

odours due to the accumulation of VFA’s.   

The results, in terms of leachate volume and pH, are shown in Figure 3.5.  Unlike the 

previous experimental studies, none of the digesters had reached a pH of 6.5 by day 10 (Fig. 3.5) 

as the highest pH at this point was observed in Digester 2 (4.74).  Therefore, the UASB winery 

effluent used as moisturising liquid, was adjusted from day 10 onwards to approximately 3 500 

mgCaCO3.L-1.  A slight increase (Fig. 3.5) in pH was seen hereafter as Digesters 1 and 2 reached 

a pH above 6.5 by day 15 (Fig. 3.5).  Digester 3 containing 25% (m.m-1) inoculum, failed to reach a 

pH above 6.5 throughout the 21 day ES period.  Digester 3 generated the lowest volume of 

leachate (498 mL), compared to Digester 1 (655 mL) and Digester 2 (643 mL).  The leachate from 

Digester 3 also had an unpleasant acidic odour due to the very low pH, indicating digester 

instability.   

Although results obtained were not as expected, Digester 1, with the lower inoculum 

concentration (10% (m.m-1)) performed the “best” during this experimental study by maintaining a 

neutral pH from day 17 and reaching a final pH of 7.78 (day 20).  This ES highlighted the important 

role of alkalinity during pH stabilisation.   

 

Experimental study 4:  Effect of a 10% (m.m-1) AC inoculum  

From the results obtained in ES3 it was evident that alkalinity is an important parameter in the AnC 

of grape skins and thus, ES3 was repeated with winery UASB reactor effluent as a ML with a high 

inherent alkalinity (3 500 mgCaCO3.L-1).   

The digesters reached a pH > 6.5 by day 7 (Fig. 3.6) while pH stabilisation (pH 7 – 8) was 

seen from day 8 onwards, reaching a final pH of 7.60.  The total volume of leachate produced by 

the digesters over 21 days was found to be 1 009 mL (Fig. 3.6).  Again the same trend can be 

seen in terms of leachate generation and pH evolution for all the digesters as the pH increased, 

where after it slightly stabilised, and increased again (Fig. 3.6).  To monitor the activity within the 

digesters the leachate generated on day 11 and day 16 was analysed for alkalinity content and 

chemical oxygen demand (COD) concentration.  Results indicated an increase in alkalinity from ca.  

6 103 to 6 308 mgCaCO3.L-1 and decrease in COD from ca. 74 196 to 29 403 mg.L-1.  An increase 

in the alkalinity content and decrease in the COD concentration was expected as this was taken as 

a clear indication that degradation had taken place in the digesters.  The overall pH results from 

ES4 (Fig. 3.6) showed to be more stable than results obtained from ES3 (Fig. 3.5) indicating the 

significant importance of the high inherent alkalinity of the moisturising liquid during pH evolution.   
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Figure 3.5 pH and leachate volumes generated during the investigation of anaerobic compost (AC) as an inoculum source during the composting 

process over the ES 3 period (n=3)(Red line indicates pH of 6.5 which was taken as the lower limit for optimum operation)  (Error bars 

represent error at 95% confidence interval). 
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Figure 3.6 pH and leachate volumes generated during the investigation of anaerobic compost (AC) as an inoculum source during the composting 

process over the ES4 period (n=3) Red line indicates pH of 6.5 which was taken as the lower limit for optimum operation) (Error bars represent 

error at 95% confidence interval). 
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Experimental study 5:  Effect of different moisture levels  

After establishing the optimum inoculum size (10% (m.m-1)), during ES1 and ES2, and inoculum 

type (AC in ES3), it was decided to also investigate the effect of various moisture (M) levels (35, 

40, 45, 50, 55 and 60% (m.m-1)) on the anaerobic composting process.  Literature reports that 

although it is difficult to maintain constant moisture levels during digestion, higher levels facilitate 

the degradation process (Khalid et al., 2011).  This agrees with results obtained in this study as the 

digesters operated at lower moisture levels (35 and 40% (m.m-1)) failed to reach a pH > 6.5 (Fig. 

3.7) and although Digester 3 (45% (m.m-1)) reached 6.5 by day 17, it decreased again, only 

reaching a pH of 7.18 by day 21 (Fig. 3.7).  The digesters operated at lower moisture contents 

produced less leachate over the ES period (Table 3.2) and showed a lower final pH (Fig. 3.7).  

Digesters 5 and 6 showed pH stabilisation from day 16 onwards, but only reached a neutral pH 

around day 14 and day 16, respectively.  Digester 4 performed the best and was the first digester 

to reach a pH > 6.5 (day 6).  It also had the highest final pH (7.65) (Fig. 3.7).  Therefore, it was 

clear from these results that a moisture content of 50% (m.m-1) was the optimum   

 

Table 3.2  Total leachate volumes produced by the digesters during ES6 over the 21 day period 

Moisture content % (m.m-1) 35 40 45 50 55 60 

Leachate volume (mL)* 550 597 805 969 1062 627 
*Total leachate volume (mL) generated over the 21 day period 

 

Experimental study 6:  Effect of different grape skin (carbon source) ratios.   

After identifying optimal values for the following parameters- inoculum ratio, size and type (10% 

(m.m-1) AC) as well as optimal moisture conditions (50% m.m-1), it was decided to investigate the 

effect of different white and red grape skins (carbon source) ratios (25:75, 50:50, 75:25) on the 

composting process (Fig. 3.8).  The results, in terms of leachate volume and pH are shown in  

Figure 3.8.  Digester 3 (50:50), containing equal volumes of WGS and RGS was found to perform 

the best with a pH > 6.5 being reached by day 15 and a final pH of 7.18.  Digester 1 (25:75) 

reached a pH > 6.5 (7.03) by day 16, but failed to stabilise, only reaching a pH of 5.72 by day 21 

(Fig. 3.8).  Digester 2 (75:25) failed to reach a pH of 6.5 within 15 days and stopped producing 

leachate.  As a result the pH could not be recorded for the rest of the study.  Digester 3 generated 

the most leachate during the ES (total 805 mL), followed by Digester 1 with 626 mL and the lowest 

for Digester 2 with a total of 170 mL.  The low volumes of leachate generated by Digester 2 

correlated with the low pH values obtained (Fig. 3.8), indicating overall composting failure.   

The poor performance of Digester 3 (75:25) can possibly be explained in terms of the 

winemaking process.  It was expected that the white grape skins (WGS) would perform better as 

during the production of white wine, the maceration process only lasts a few hours (Jackson, 

2008).  For the production of red wine it is a much longer process and occurs together with 

alcoholic fermentation (Jackson, 2008).  Taking the abovementioned into consideration it was 

expected that the nutritional content and pH of white grape skins to be more favourable.   
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Figure 3.7 pH and leachate volumes generated during the investigation of different moisture levels on the composting process over the ES5 period  

(n=6) (Red line indicates pH of 6.5 which was taken as the lower limit for optimum operation) (Error bars represent error at 95% confidence 

interval).
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Figure 3.8 pH and leachate volumes generated during the investigation of different grape skin (carbon source) ratios on the composting process over 

the ES6 period (n=3) (Red line indicates pH of 6.5 which was taken as the lower limit for optimum operation) (Error bars represent error at 

95% confidence interval). 
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Although the moisture content for both types of grape skins were found to be 70%, the pH of the 

white grape skins (3.81) was found to be higher than the pH of red grape skins (RGS) (3.21).  In 

Fig. 3.8 it is clear that the 50:50 ratio of grape skins (Digester 3) performed the best in terms of pH 

stabilisation and leachate generation and this parameter was therefore taken as the optimum 

grape skin (carbon source) ratio for the anaerobic composting process.   

 

Experimental studies 7 and 8:  Effect of optimised parameters on the composting process 

The last lab-scale study (ES7) as well as the up-scale (ES8) was done to investigate the combined 

effect of all the optimised parameters as identified during the previous experimental studies.  It was 

decided to use a 15% (m.m-1) CM inoculum in both studies, instead of a 10% (m.m-1) AC inoculum 

because in “industrial” applications a “first batch” would always require an inoculum other than AC.  

An inoculum size of 15% (m.m-1) was chosen to ensure an efficient “start-up/first batch” as previous 

studies showed that the activity of the microbial community is related the inoculum size (Griessel, 

2002).  The optimum moisture content (ES5, 50% m.m-1) and grape skin ratio (ES6, 50:50) were 

applied during both the ES7 and ES8.   

Results obtained during experimental studies 7 and 8 are shown for both the lab-scale (Fig. 

3.9, Table 3.3) and the up-scale digesters (Fig. 3.10, Table 3.4).  The results for the physico-

chemical analyses of the composts from both the lab-scale and the up-scale are shown in Table 

3.5.  Several photo images taken before and after the composting process are shown in Figure 

3.11.   

As very little literature exists on the quality and composition of anaerobic compost, it was 

decided to compare results obtained from the physico-chemical analysis of the anaerobic compost 

with guidelines and regulations regarding aerobic compost.  Regulations regarding the Fertilizers, 

Farm Feeds, Agricultural Remedies and Stock Remedies Act, 1947 (Act no. 36 of 1947) of South 

Africa contains very little information regarding compost requirements and according to Malherbe 

(2014) there is a lack in South Africa for guidelines on composting (Malherbe S.  2014, Senior 

Research Agronomist, ZZ2 Laboratories, Mooketsi, South Africa, personal communication, 28 

August).  In contrast there are clear guidelines in Europe and in the USA.  According to Brinton 

(2000), it is difficult to summarise international compost quality standards as various regulations 

and guidelines exist.  In Table 3.6 the guidelines from different countries are summarised 

(Alexander, 1994; Brinton, 2000; Allen, 2014; ECN, 2014, Watson, 2014).   

 

pH, leachate volume, alkalinity and COD 
The pH changes and leachate generation during ES7 followed the same trend (Fig. 3.9) as seen 

during the previous studies with the pH increasing and leachate production decreasing over the 21 

day study period.  The lab-scale digesters (ES7) surpassed a pH of 6.5 on day 10 and reached a 

final end pH of 7.09.  The up-scale study (ES8) also followed the general pH and leachate trend 

with digesters reaching a pH > 6.5 on day 6 with a final pH of 7.20 (Fig. 3.10).  According to results 

obtained from the pH (KCl) analysis, the end pH values (Table 3.5) for the compost, with the  
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Figure 3.9 pH and leachate volumes generated during the investigation of the effect of optimised parameters on the lab-scale composting process 

over the ES7 period (n = 3) (Red line indicates pH of 6.5 which was taken as the lower limit for optimum operation) (Error bars represent 

error at 95% confidence interval). 
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Figure 3.10 pH and leachate volumes generated during the investigation of the effect of optimised parameters on the up-scale composting process 

over the ES 8 period (n=3) (Red line indicates pH of 6.5 which was taken as the lower limit for optimum operation) (Error bars represent 

error at 95% confidence interval). 
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Table 3.3  Summary of results obtained from the composting leachate of the lab-scale digesters 

during anaerobic composting of grape skins in Experimental Study 7 (n=3) 

 Time (d) 

 1 4 7 10 14 16 19 20 21 

          
Alkalinity1 4 942 2 725 5 983 10 383 11 450 12 625 19 300 20 750 23 000 

COD2 13 2795 - 76 458 - 59 353 57 645 - 53 910 - 

TSS, VSS3 2.005;1.500 1.625;1.265 1.200;1.040 

Biogas4 0.004 0.00 0.003 0.00 0.00 0.00 0.00 0.00 0.00 

Methane5 No methane detected 

1 Alkalinity (mgCaCO3.L-1), 2 (mg.L-1), 3 (g.L-1), 4 Biogas (L.day-1), 5 Methane (%) 

 

 

Table 3.4  Summary of results obtained from the composting leachate of the up-scale digesters 

during anaerobic composting of grape skins in Experimental Study 8 (n=3) 

 Time (d) 

 1 4 7 10 14 16 19 20 21 

          
Alkalinity1 2 751 6 233 7 800 8 100 7 892 8 992 14 658 17 800 19 067 

COD2 13 9815 60 975 46 800 46 170 37 778 - 13 662 12 771 - 

TSS, VSS3 5.335;4.325 1.645;1.395 1.220;1.080 

Biogas4 0.002 0.003 0.002 0.002 0.006 0.002 0.002 0.002 0.003 

Methane5 No methane detected 

1 Alkalinity (mgCaCO3.L-1), 2 (mg.L-1), 3 (g.L-1), 4 Biogas (L.day-1), 5 Methane (%) 
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Table 3.5  Chemical and physical characterisation of the composts obtained during the investigation of the effect of the optimised parameters on the 
composting process 

 
Scale Sample pH (KCl) EC (dS.m-1) Moisture (%) Density (kg.m-

3) 

Ash (%) NH4-N (mg.kg-

1) 

NH3-N (mg.kg-

1) 

Nitrogen (%) Carbon (%) 

 

Lab  

1 7.0 0.143 59 491.10 11.80 152.32 3.68 2.27 38.74 

2 6.7 0.167 59 485.70 12.15 310.44 3.08 2.17 37.36 

3 7.1 0.167 55 395.00 13.40 163.72 3.32 2.32 38.96 

 

Up 

1 6.5 0.167 48 434.50 13.90 384.40 4.08 2.18 38.30 

2 6.4 0.167 47 388.00 13.45 430.00 6.44 2.04 35.76 

3 6.6 0.167 48 410.50 13.60 415.82 5.67 2.30 36.38 

 

 

 Sample Phosphorous 

(%) 

Potassium 

(%) 

Calcium 

(%) 

Magnesium 

(%) 

Sodium 

(mg.kg-1) 

Manganese 

(mg.kg-1) 

Copper 

(mg.kg-1) 

Iron 

(mg.kg-1) 

Zinc 

(mg.kg-1) 

Boron 

(mg.kg-1) 

 

Lab 

1 0.24 1.65 1.91 0.10 307 32.43 20.85 180.80 36.79 11.33 

2 0.22 1.74 2.05 0.11 301 34.39 31.31 133.66 36.94 8.53 

3 0.21 1.71 2.09 0.11 354 33.66 18.44 138.32 37.28 6.32 

 

Up 

1 0.21 1.78 2.67 0.13 364 38.84 11.30 119.94 40.90 6.79 

2 0.21 1.72 2.56 0.13 356 37.08 11.31 116.08 45.01 7.69 

3 0.23 1.76 2.71 0.12 362 36.75 11.36 117.09 43.80 7.43 
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Figure 3.11 Images taken of the waste before and after the anaerobic composting process  

(a = before shredding; b = after shredding) of green grass and grape skins, (c) shredded 

grape skins and grass before the addition of CaO, (d) compost obtained after the 21 day 

period before drying and (e), the final compost (dried for 24 h at 37° C and milled).   

 
 
 
 
 
 
 
 
 

a b 

c

   

d

   

e
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Table 3.6 Summary of guidelines from different countries regarding compost quality 

 Local South Africa SOP* USA Europe and Germany 

 

pH 6.5 – 7.5 6.8 – 7.3 declared 

Nitrogen (%) 

NH4 (mg.kg-1) 

NH3 (mg.kg-1) 

- 

< 500 

200 – 500 

1.0 – 2.0 

- 

- 

- 

- 

- 

Phosphorous - 0.6 – 0.9% < 1 200 mg.L-1 

Organic matter (%) 25 – 60 > 30 > 20% 

Electrical conductivity (dS.m-1) 1.5 – 3 < 4.0 - 

Bulk density (kg.m-3) - 534 – 593 - 

Potassium - 0.2 - 0.5% < 2 000 mg.L-1 

Moisture (%) 20 – 40 45 – 50 < 75 

Ash (%) < 37.5 - - 

Calcium - - - 

Magnesium - - - 

Sodium (g.L-1) - - < 2.5 

Manganese - - - 

Copper (mg.kg-1) - 1 500 100 

Iron -  - 

Zinc - 2 800 400 

Boron - - - 

C:N 12 – 15 15 - 20 18 

Pathogens  

. 

 Salmonella non-

detected in 25 g 

E.coli < 1 000 MPN.g-1 

Other No offensive odours, glass, wire or other unacceptable fragments 
*Standard Operating Procedure 
 

exception of the sample from Digester 2 (up-scale), are all within limits (6.5 – 7.3) (Table 3.6).  The 

pH (KCl) method (5 g sample and 25 mL (1N) KCl) gives a better indication than the pH (H2O) of 

the hydrogen ion activity because potassium chloride is used to mask variations in salt 

concentrations that could be caused by fertiliser residues, irrigation water or the microbial 

degradation of organic matter (The Non-Affiliated Soil Analyses Work Committee, 1990).  The pH 

of compost is of importance as the compost can alter the pH of the soil which could directly affect 

the availability of nutrients to the plant (Tester, 1990).  Although a pH of 6.4 is slighty below the 

value recommended by a local South African composting company (Table 3.6), Darlington, (2012) 

reported that most types of compost have a between pH of 6 and 8.  He states that it depends on 

the substrate from which the compost was derived.   
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 The alkalinity for the lab-scale digesters was found to increase (Table 3.3) from  

4 942 mgCaCO3.L-1 on day 1 to 23 000 mgCaCO3.L-1 by the end of the 21 day study.  The up-scale 

digesters also showed an increase from 2 751 mgCaCO3.L-1 to 19 067 mgCaCO3.L-1 by the end of 

the ES (Table 3.4).  Both lab-scale and up-scale digesters showed a decrease in alkalinity after 

Day 1 which increased gradually from day 6 for the lab-scale (Table 3.4) and Day 3 for the up-

scale digesters (Table 3.5), respectively.  Possible explanations for this include: (i) the high 

alkalinity of the cow manure used could have served as additional buffering capacity for the 

accumulating VFA’s formed (Astals et al., 2012) during the initial stages of composting or; (ii) 

resulting from the grape skin mixture to soak with CaO overnight at 37°C.  Literature states that 

due to the low pH of grape pomace (3.5 – 3.8) it degrades slowly on its own and therefore lime or 

feedstock may be added to increase the pH (Westover, 2006).  The pH results from this study are 

in accordance with literature as the pH of the WGS and RGS before composting was found to be 

3.81 and 3.20.  The lime/CaO mixture was added to lift the initial pH and it is possible that the 

residual CaO washed out with the leachate by day 1 and led to a higher alkalinity measurement.  It 

was expected to see an increase in alkalinity as the pH and alkalinity are important for the 

composting process and together result in a suitable environment for methanogenesis to occur 

(Del Real Olvera & Lopez-Lopez, 2012).  It is well known that adequate alkalinity is required in any 

anaerobic digestion system to sustain a stable pH and optimal biological activity (Lee et al., 2009).  

Sufficient alkalinity is required for proper pH control (Gerardi, 2003) and thus explains why the 

alkalinity increased as the pH stabilised.   

The COD of the leachate was found to decrease over the 21 days for both the lab-scale 

(Table 3.3) and up-scale (Table 3.4) from 132 795 – 53 910 mg.L-1 and 13 9815 – 12 771 mg.L-1, 

respectively.  A decrease in COD concentration was expected and taken as an indication of 

successful biodegradation of the organic matter present in the substrate (Fernández et al., 2008).   

 

Microbial analysis 

Cow manure is a known source of coliforms and E. coli (Himathongkham et al., 1999) and thus it 

was expected that the results obtained show the presence of these organisms.  Coliforms counts 

for both the leachate and compost on day 1 were 26.2 × 106 MPN.100 mL-1 and 85.878 × 106 

MPN.100 g-1, respectively.  The E. coli counts for the leachate were 65.7 × 104 MPN.100 mL-1 and 

58 × 106 MPN.100 g-1 for the compost.  The Coliform and E. coli count of the leachate after the 21 

day study period were found to be 248 × 104 MPN.100 mL-1 and 178 × 104 MPN.100 mL-1, 

respectively.  The E. coli counts for the leachate obtained from experimental studies 7 and 8 were 

higher (178 × 104 MPN.100mL-1) than the counts from the final compost for both the lab-scale 

digesters (980 MPN.100 g-1) (ES7) and up-scale digesters (970 MPN.100 g-1) (ES8).  A possible 

reason for the E. coli loads being higher in the leachate could be due to the daily wetting of the 

compost.  The wetting liquid was added from the top of the digester and trickled through the 

compost allowing the E. coli to be “washed out” from the compost and transferred into the 

leachate.  However, the E. coli loads in the compost from both the lab-scale digesters and the up-
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scale digesters were within recommended limits (< 1 000 MPN.g-1) (Table 3.6), but the loads in the 

leachate were too high (> 1 000 MPN.mL-1).  Although E. coli are normally destroyed in a hot 

compost pile (Garrett et al., 2012) the digesters in this study were kept at 37°C, where they could 

easily multiply as this temperature is the optimum growth temperature for E. coli (Glass, 1982).   

Pasteurisation of compost is highly recommended and is often applied in the composting 

industry (Cotter, 2014).  Additionionally it eliminates insects, other microbes and pathogens.  Heat 

treatment can also help reduce high ammonia levels by convertion to nitrogenous compounds.  In 

the mushroom industry a recommended temperature of 54° - 60°C is applied for 3 – 6 h (Cotter, 

2014).   

 

Electrical conductivity (EC), moisture, bulk density and ash in compost 
The electrical conductivity is an indication of the total dissolved salts in the sample (The Non-

Affiliated Soil Analyses Work Committee, 1990).  When soluble salt levels are present in a too high 

concentration it could affect germinating seeds and plant growth (Watson, 2014).  All crops differ in 

their salt tolerance levels and EC does not indicate the type of salts that are present in the sample 

(Sullivan & Miller, 2001).  The EC of the compost from the lab-scale and up-scale digesters (Table 

3.5) are within the limits (Table 3.6) although according to Allen (2014), acceptable salt levels are 

based on the intended use of the compost.  Watson (2014) state that an EC range of  

0.13 – 0.34 dS.m-1 is low risk and that it is a suitable range for seedlings and sensitive plants.   

The moisture content of compost is easily determined but may generally vary due to 

different storage conditions, feedstocks and processing (Sullivan & Miller, 2001).  The moisture 

content of all compost samples obtained in ES7 and ES8 were within international recommended 

limits, although the digesters had moisture contents above that of the recommended value applied 

by a local South African composting company (Table 3.6).  Darlington (2012) stated that compost 

should have a moisture content between 35 – 60% as the moisture can affect the bulk density of 

the product and consequently transportation costs.  Compost with a moisture content under 35% 

could indicate poor stabilisation or the product may have been stored for an exceptionally long time 

and moisture loss may have taken place.  Composts with a too low moisture content (< 35%) are 

often dusty and unpleasant to handle (Sullivan & Miller, 2001), whereas extremely wet compost 

can be heavy and problematic to apply uniformly (Darlington, 2012).  According to section 35 of the 

Fertilizers, Farm Feeds, Agricultural Remedies and Stock Remedies Act, (Act 36 Of 1947) compost 

may only be sold if the moisture content does not exceed 40%.  Griessel (2002), also reported very 

high moisture contents (82 – 84%) of compost samples after anaerobic digestion.  Possible 

solutions for reducing the moisture content of compost further include: (i) spreading compost 

samples in the sun or; (ii) placing samples in open containers in an incubator room at 37°C for 24 

h. 

Bulk density (weight per unit volume) of compost, is affected by several factors including: 

the moisture content; particle size; ash content and; the degree of composition (Sullivan & Miller, 

2001).  By determining the bulk density of compost, a conversion of nutrient data to volume basis 
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is possible.  Due to the fact that volume basis is the form in which compost is handled (Allen, 

2014), this test can be used to provide data on the water and air retaining properties of the 

samples (Watson, 2014).  This test together with moisture analyses is used by compost users to 

determine volume-based application rates (Sullivan & Miller, 2001).  The bulk density values for the 

compost are lower than the recommended values from the USA (Table 3.6) but according to 

Sullivan & Miller (2001), compost obtained from bigger piles, or those that were badly packed in a 

truck could have higher bulk density values.   

The ash content of compost is an indication of the inorganic elemental content (Board, 

2004).  The ash content (Table 3.5) of the compost from both the lab and up-scale digesters (ES7 

and ES8) were within requirements as stipulated in Table 3.6.  Section 35 of the Fertilizers, Farm 

Feeds, Agricultural Remedies and Stock Remedies Act, (Act 36 Of 1947) states that compost may 

only be sold if the ash content does not exceed 67%.  Based on results obtained, it can be 

assumed that the end-products from these experimental studies are suitable to be used as 

compost in terms of EC, bulk density and ash.   

 

Total N (nitrates and ammonium) P, K Ca, Mg, Na, Cu, B, Fe, Zn in compost 
The above nutrients are all important to plant growth but the macronutrients are usually the most 

important.  Macronutrients include nitrogen, phosphorous, potassium, calcium, magnesium and 

sulphur whereas iron, zinc, copper, boron and manganese are classified as micronutrients 

(Watson, 2014).  Nitrogen, phosphorous and potassium are classified as primary nutrients needed 

for vine growth and calcium, magnesium and sulphur as secondary nutrients.  These primary and 

secondary nutrients needed for optimal vine growth are absorbed by the plant roots from the soil 

(Raath, 2006).   

According to Raath & Schutte (2001), a total nitrogen percentage of < 0.7% is considered 

low and a value of > 2.0% as high.  The nitrogen results (Table 3.5) of the compost from both the 

lab-scale and up-scale studies (ES7 and ES8) can therefore be classified as high.  Raath & 

Schutte (2001), also mention that total inorganic nitrogen (NH4
+ and NH3

-) indicates the amount of 

nitrogen that is immediately available to the plant.  When the inorganic nitrogen is too high (> 7 000 

mg.kg-1) it could cause burning of the plant roots, whereas a too low value (< 70 mg.kg-1) could 

indicate that the compost lost nutrients through leaching.  According to the recommended 

guidelines (Table 3.6) the NH4 values are all within limits, but the NH3 values were very low.   

Only a partial amount of the total P, Mg and Ca content is available to the plants whereas 

all of the total compost K is available (Sullivan & Miller, 2001).  Phosphorous has a very low 

mobility in soil and should therefore be applied during the preparation of the soil to correct the P 

content in the subsoil.  After this most vineyards need very little P fertilisation as the P 

requirements for vines are approximately one sixth of that of K and N (Raath & Diedericks, 2006).  

Raath & Schutte (2001) stated that a P concentration of > 1.2% is considered high and < 0.2% as 

low.  The P content of composts from experimental studies 7 and 8 (Table 3.5) were both found to 

be in the lower category.  However, only when the amount of compost to be applied to a field has 
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been determined, the correct amount of P to be applied can also be calculated.  If the P content is 

still too low the soil can be supplemented with rock phosphate (Raath & Schutte, 2001).  

Knowledge of reaction kinetics between different plant nutrients is of vital importance as over-

fertilisation of K can happen easily that could affect the availability of other nutrients.  A K 

concentration of > 0.5% is regarded as high, whereas < 0.1% can be seen as low (Raath & 

Schutte, 2001).  Results from this study (Table 3.5) showed that the K content of the ES7 and ES8 

compost is in the higher category.  Ca is usually the main cation (Ca2+) found on soil particles and 

bound tighter than Mg2+ and K+ (Raath & Diedericks, 2006).  Antoine & Junod (2004) stated that 

the main mineral components found in grapes are Ca, K, Mg, Na and Fe.  Similar results were 

found during this study except that the compost had a higher Ca than K content.  A possible 

explanation for this could be due to the CaO used during the CaO soaking to increase the initial pH 

of the grape skins.  Although the Na is relatively high compared to other nutrients (Table 3.5), the 

results showed that the EC was within limits for the compost.   

According to Raath & Schutte (2001) Mn, B, Cu and Zn in concentrations of > 200 mg.kg-1, 

> 50 mg.kg-1, > 200 mg.kg-1 and > 350 mg.kg-1, respectively is considered as high.  Although 

micronutrients and heavy metals can build up over time all of the above mentioned in the ES7 and 

ES8 compost were in the normal range.   

 
Biogas and methane 
The biogas values obtained during these studies were found to be low or even absent at times for 

the lab-scale (Table 3.3) and even for the up-scale digesters (Table 3.4).  Possible explanations for 

this could be: (i) the low nutritional content of the grape skins (GS) and; (ii) the unfavourable 

oxidation reduction potential (ORP) within the digester.   

According to Antoine & Junod (2004), GS mainly consist of cellulose, hemi-cellulose, 

pectin, insoluble proteins, tartaric as well as malic acids.  Cellulose is one of the most abundant 

carbohydrate polymers in nature and is very resistant to microbial degradation as it is insoluble 

(Kim, 2011).  According to Chen et al. (2008), agricultural wastes that are associated with a low 

gas yield during AD have high lignocellulosic contents or a high C:N ratio.  Grape pomace is also 

characterised by a high content of polyphenols (Arvanitoyannis et al., 2007).  This is a known 

organic compound that can be toxic at high concentrations to the consortium in anaerobic 

digesters (Gerardi, 2003;).  Although good compost were obtained in ES7 and ES8 the polyphenol 

content of composting leachate was found to be > 200 mgGAE.L-1.  This could have led to the 

inhibition of the methanogen part of the consortium.   

Optimum ranges for anaerobes to degrade substrates are when their surroundings are 

between -200 and -400 millivolts.  Any dissolved oxygen that enters the AD system can raise the 

ORP which leads to the inhibition of anaerobic activity (Gerardi, 2003).  In order to avoid 

acidification of the compost, moisturising liquid was added every 24 h to the digesters through the 

cap opening.  Any oxygen that centered the system could possibly have led to a higher ORP and 

consequently inhibited or slowed the methanogen activity.   
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Conclusions 
During this study it was found that the strict control of specific operational parameters (pH, 

moisture, inoculum size and ratio, and composition) was essential to produce a good compost 

product within 21 days.  During experimental studies 7 and 8, the digester parameters reached 

stable-state conditions.  Stable-state is defined as a state which can be maintained indefinitely 

without system failure (Cobb & Hills, 1990), during which the variation in digester operational 

parameters is less than 10%.  Volume reductions of 59% and 67% were achieved for the lab-scale 

(ES7) and up-scale digesters (ES8), respectively.  Cow manure was found to be the best inoculum 

to use for start-up in terms of availability and economic feasibility as well as leading to good quality 

compost with a stable end pH.  A lower inoculum size was also optimised with anaerobic compost 

as the most favourable inoculum.  A lower inoculum size has the advantage of allowing more grape 

waste to be treated and is more economically feasible while anaerobic compost as an inoculum 

could possibly result in a system where the pH reaches 6.5 earlier quicker due to the fact that the 

microbial consortium have already acclimatised to the anaerobic environment.   

It was found that a high alkalinity of the moisturising liquid as obtained from an UASB 

reactor was crucial in terms of pH stabilisation.  With optimum parameters in place, a pH-stable, 

odour-free compost was obtained for both lab-scale and up-scale digesters with nutritional 

characteristics complying with guidelines (pH, ash, N%, K%, P%, Ca%, Mg%, Na%, Cu%, Fe%, 

Zn%, B%, EC).   

Due to the fact that biogas production and methane generation (%) was found to be low or 

even absent, future research should investigate the effect of co-digesting grape skins with a 

carbohydrate rich waste source such as green kitchen waste or apple pomace.  These wastes 

could possibly provide enough nutrients to facilitate the generation of increased volumes of biogas 

and methane.  This study showed that the AnC of grape skins on lab-scale is a possible solution in 

terms of solid waste recycling.  However, when the AnC of grape skins on an industrial scale is 

considered various factors (CaO addition, shredding of waste, leachate removal, temperature 

control) still need to be investigated in order to create a more sustainable wine industry.   
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CHAPTER 4 
 

CO-TREATMENT OF LEACHATE PRODUCED DURING THE ANAEROBIC 
COMPOSTING OF GRAPE SKINS IN AN UPFLOW ANAEROBIC SLUDGE 

BLANKET REACTOR TREATING WINERY WASTEWATER 
 

Summary 
Liquid waste generated during the winemaking process consists mainly of wastewater which 

contains grape pips and dead yeast cells from the fermentation, while solid waste includes grape 

pomace (seeds, stems, skins, pulp) and filter waste.  The uncontrolled discharge of untreated 

waste can have severe ecological, social and health risks and must be minimised.  Anaerobic 

biological treatment is recognised as one of the primary advanced treatment options for 

environmental protection and when combined with other appropriate procedures, it can serve as a 

sustainable and suitable wastewater treatment option in developing countries.  Anaerobic digestion 

(AD) of liquid waste results in both depollution and energy recovery, while anaerobic composting 

(AnC) of solid waste generates a soil amendment (compost), leachate and biogas.  Leachate can 

serve as a liquid fertiliser or can be utilised as a nutrient source during co-treatment in anaerobic 

digestion.   

 This study presents the results obtained from monitoring the co-digestion of anaerobic 

composting leachate and winery wastewater (WWW) in a laboratory-scale UASB reactor.  The 

UASB had an operational volume of 2.3 L and a hydraulic retention time of 24 h.  The reactor was 

monitored and operated in four different phases to reach an organic loading rate of ca.  

8.5 kgCOD.m-3d-1 by day 205.  A final COD reduction (> 90%), effluent pH (7.61), alkalinity (3 281  

CaCO3 mg.L-1) and methane (67%) was achieved even when the volume of leachate to be co-

treated was doubled from its “calculated maximum value”.  The combination of waste streams (co-

treatment) has enormous potential in future application within the wine industry in order to create 

sustainable water and waste utilisation practices.   

 

Introduction 
Oenology is an old worldwide technology affecting the economic wellbeing of many countries 

(Walker, 1999).  The production of wine in 2012 was approximately 252 million hectolitres (OIV, 

2013).  Winery wastewater volumes are almost 1.2 times more than the wine produced (Vlyssides 

et al., 2005) and, although the wine industry does not have a reputation as a polluting industry, 

typical characteristics of it can be an ecological threat (Ronquest & Britz, 1999; Brito et al., 2007).   

One of the main concerns the wine industry is facing, is the management of large volumes 

of wastewater (Mosse et al., 2011).  Winery wastewater is defined as a high strength organic 

waste, with a low nitrogen and phosphorous content (Toffelmire, 1972).  Alcohol, hexose sugars, 

organic acids (Moosbrugger et al., 1993; Keyser et al., 2003), esters and polyphenolic compounds 
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are constituents that are typically present in winery effluent (Mosse et al., 2011).  Winery effluent is 

characterised by a chemical oxygen demand (COD) of between 0.8 - 12.8 g.L-1 and a pH of 3 - 4 

(Petruccioli et al., 2000).  Depending on the harvest capacity and activities in the wine cellar, the 

COD of WWW can reach 25 g.L-1 (Malandra et al., 2003; Strong, 2008).  The uncontrolled disposal 

of untreated WWW may result in severe environmental, social and health risks and should 

therefore be minimised (Riaño et al., 2011).   

Anaerobic digestion (AD) of liquid waste is an attractive treatment option as both 

depollution and energy recovery can be achieved (Chen et al., 2008).  Anaerobic composting of 

solid waste generates an organic amendment (Khalid et al., 2011), a liquid effluent (leachate) 

(Mata-Alvarez et al., 1992) and biogas.  The leachate generated during AnC is a source of water, 

inoculum and nutrients that is desirable for optimum AD (O’Keefe et al., 1993).  The main limitation 

of the AD process is the unbalanced level of nutrients in the waste substrate (Khalid et al., 2011).  

WWW that is known to be low in nitrogen and phosphorous (Toffelmire, 1972) requires to be 

supplemented for the digestion process to be optimal (Ronquest & Britz, 1999; McLachlan, 2004).  

Co-treatment is an alternative solution to supplementation as co-substrates can supply the missing 

nutrients and optimise the substrate composition (Mata-Alvarez et al., 2000; Umetsu et al., 2006; 

Jagadabhi et al., 2008; Pagés-Díaz et al., 2014).  According to Kangle et al. (2012) co-substrates 

improve the biogas yields during AD due to positive synergisms that are established as well as 

supplying the system with missing nutrients.   

The aim of this study was to investigate the co-treatment of leachate from the anaerobic 

composting of grape skins in an upflow anaerobic sludge blanket (UASB) treating winery 

wastewater.  This will be achieved by using a lab-scale UASB reactor that is treating winery 

wastewater.  The optimum leachate volume that can be co-treated will be determined, as well as 

monitoring the efficacy of the treatment process.   

 

Materials and Methods 
 

UASB reactor design and set-up 

The UASB reactor (Fig. 4.1) treating WWW was set up as described by Trnovec & Britz (1998), 

Ronquest & Britz (1999) and McLachlan (2004).  The reactor had an operational volume of 2.3 L 

with a hydraulic retention time (HRT) of 24 h.  Substrate was fed semi-continuously to the bottom 

of the reactor (Fig. 4.1) by means of a peristaltic pump (Watson-Marlow 501) and an electronic 

timer.  Recirculation was made possible with the aid of a peristaltic pump (Watson-Marlow 302S) at 

an upflow velocity of 2.4 m.h-1.  The temperature of the reactor was maintained at 35°C by an 

electronic control unit and heating tape (Meyer et al., 1993).  A temperature probe was also 

inserted to measure temperature variation in the middle of the cylinder (Fig. 4.1).  In order to 

prevent excess heat loss, the reactor was covered with shock-absorbent plastic (Meyer et al., 

1993).  Biogas exited through the top of the reactor and the volume of gas was measured by using 

a manometric unit equipped with an electronically counter (Fig. 4.1).  The overflow of the reactor 
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emptied through a U-shaped tube (Fig. 4.1) that prevented atmospheric oxygen from entering the 

system.   

 

Substrate (WWW and leachate) 

Winery wastewater was obtained during the harvest season from Distell Ltd, Stellenbosch, South 

Africa (February - April 2013 and 2014).  The WWW was stored in 25 L drums and kept at -18°C.  

When WWW was required, drums were defrosted and kept at 4°C until needed.  Leachate 

removed from the anaerobic composting of grape skins was obtained from experimental studies as 

described in Chapter 3 of this study and stored at 4°C until utilised.  WWW was supplemented with 

500 mg.L-1 K2HPO4, 500 mg.L-1 potassium hydrogen carbonate (KHCO3), 250 mg.L-1 ((NH2)2CO) 

(urea) and diluted with tap water to the required COD.  When needed, the substrate or influent was 

adjusted to a pH of 7.0 with 2M potassium hydroxide (KOH).   

 

UASB operation 

The UASB reactor was seeded with 350 g anaerobic granules (sludge bed height = 32.5 cm) 

(volatile suspended solids (VSS) = 0.082 g.L-1) obtained from a full-scale UASB reactor treating 

distillery wastewater in Wellington, South Africa (The James Sedgwick Distillery, Wellington, South 

Africa).  To reactivate the granules, the UASB was fed pH adjusted tap water (7.00) containing Di-

Potassium hydrogen orthophosphate (K2HPO4) and urea ((NH2)2CO) (500 mg.L-1 each) for 24 h.  

The reactor was then fed a mixture of a synthetic glucose substrate (SGS) (Show et al., 2004) and 

WWW (10% v.v-1) diluted to a chemical oxygen demand (COD) of approximately 1 000 mg.L-1.  

Additionally, trace element solution (1 mL.L-1) as described by Nel et al. (1985) was added weekly 

to the substrate.  The SGS:WWW ratio was steadily decreased until the reactor substrate only 

consisted of diluted WWW.  The COD of the WWW was then increased stepwise to a COD of ca.  

4 000 mg.L-1.  As the volume of leachate (Chapter 3 of this thesis) added to the winery wastewater 

was steadily increased, the volume of tap water was reduced by the same volume to reach a 

substrate COD of ca. 8 500 mg.L-1.  The operating period (205 days) was divided into four phases 

consisting of different feeding regimes.   

 

Volume of Leachate to be co-treated 

The amount of leachate to be co-treated was calculated by using data (tonnes of grapes processed 

per season) provided by two local wineries (Winery X, Winery Y) situated in Stellenbosch, South 

Africa during the harvest season of 2013.  According to literature 700 – 3 800 L wastewater is 

produced per tonne of grapes processed (Cohen et al., 2013).  Approximately 250 – 300 kg grape 

skins (GS) are obtained per tonne of grapes (Jordaan, P.  2014, Assistant Winemaker, 

Paardeberg, Malmesbury, South Africa, personal communication, 14 April 2014).  The total volume 

of leachate generated during the anaerobic composting of grape skins was calculated from 

Experimental Study 5 in Chapter 3 of this thesis.   
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Figure 4.1 Schematic diagram of the UASB used to co-treat WWW and leachate.   
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Winery X 

• Total of 300 tonnes grapes processed during harvest season (Average of 275 kg grape skins 
produced per ton of grapes.  Therefore, 83 tonnes of GS produced per season) 

• Average amount of WWW produced per tonne of grapes = 2 250 L  
 

∴ 300 tonnes ×  2 250 L = 657 000 L wastewater produced during harvest season  

∴ 48 mL leachate produced per day for 300 g grape skins (Chapter 3 of this thesis, ES5) 

∴ 160 mL leachate produced per day per kg of grape skins 

∴ 160 L leachate produced per day per tonne of grape skins 

∴ 83 tons grape skins × 160 L leachate = 13 280 L leachate 

 

657 000 L WWW : 13 280 L leachate 

49.5 L WWW : 1 L leachate 

 

If 2 L of substrate is fed to the reactor every 24 h, 40 mL of leachate is needed to be co-
treated 
 
Winery Y 

• 850 tons grapes processed during harvest season (average of 275 kg grape skins produced per ton 
of grapes. Therefore, 234 tonnes of GS produced per season) 

• Average amount of WWW produced per tonne of grapes = 2 250 L  

∴ 850 tonnes ×  2 250 L = 1 912 5000 L wastewater produced during harvest season  

∴ 48 mL leachate produced per day for 300 g grape skins (Chapter 3 of this thesis, ES5) 

∴ 160 mL leachate produced per day per kg of grape skins 

∴ 160 L leachate produced per day per tonne of grape skins 

∴ 234 tons grape skins × 160 L leachate = 37 400 L leachate 

 

1 91 2000 L WWW : 37 400 L leachate 

51.0 L WWW: 1 L leachate 

 

If 2 L of substrate is fed to the reactor every 24 h, 40 mL of leachate is needed to be co-
treated 
 

Analytical methods 

Parameters used to monitor the WWW substrate and effluent during this study included: pH; 

alkalinity [as calcium carbonate (mg CaCO3.mL-1)]; total suspended solids (TSS); volatile 

suspended solids (VSS); nitrogen; phosphate; COD; and polyphenols.  Sludge bed height (Fig. 

4.1) before and after the co-treatment of leachate and WWW was also measured.   
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For COD analysis the influent, effluent and leachate samples were digested with a COD 

reactor (Hach Co. Loveland, U.S.A), cooled and colorimetrically measured using a DR2000 

spectrophotometer (Hach Co. Loveland, CO) set at 585 nm, and standardised procedures (APHA, 

1998).  The COD of leachate produced on day 1 (used for co-treatment) were also confirmed by 

using a Spectraquant® COD Cell Test (5 000 – 90 000 mg.L-1) (Merck, Germany).  The COD 

reduction was calculated from the soluble COD in the effluent (after treatment) and the total COD 

in the substrate (before treatment).  All analyses were performed in duplicate.  The COD 

concentration were used for the carbon value in the determination of the C:N:P ratio.   

Analyses for TSS and VSS on leachate and effluent were performed once a week 

according to Standard Methods (APHA, 1998).  A Varian 3300 gas chromatograph (Varian Inc., 

Palo Alto, CA) and a Varian 4290 integrator was used to determine biogas composition.  The Gas 

Chromatograph was equipped with a thermal conductivity detector and a 2.0 x 3.0 mm i.d. 

Hayecep Q (Supelco, Bellefonte, PA) 80/100 mesh packed column.  The oven temperature was 

set to 55°C, helium was used as the carrier gas at a flow rate of 30 mL.min-1.  A sample volume of 

0.2 mL was used (Sigge, 2005) and all analyses were done in duplicate.   

The nitrogen and phosphate content of the WWW were confirmed by using Spectroquant® 

Nitrogen and Spectroquant® Phosphate Cell tests (Merck, Germany).  The nitrogen  

(0.5 – 15.0 mg.L-1 N) and phosphate (0.05 – 5.0 mg.L-1 PO4-P) values were measured using a 

Merck Spectroquant® Nova 60 spectrophotometer.   Polyphenol content of raw WWW was 

determined using the Folin-Ciocalteau method (Singleton & Rossi, 1965).  Analyses were 

performed in duplicate.   

In the previous chapter of this thesis (Chapter 3) it was confirmed that E. coli was present in 

the composting leachate, and thus microbial analysis on the effluent obtained from the UASB co-

treating WWW and composting leachate was determined at the end of Phase D.  Analysis was 

performed according to the SANS 9308 (SANS, 2012) method using a Colilert-18 kit (IDEXX, 

USA).  Effluent (10 mL) was added to 90 mL saline solution, where after a dilution series (10-1 - 10-

10) was prepared.  Duplicates of each dilution series were prepared as to ensure an end sample 

volume of 100 mL.  Colilert-18 reagent indicator (4-methylumbelliferyl-𝛽-D-glucuronide) (MUG) was 

added to each of the duplicate Schott bottles.  Each dilution was poured into a Quanti-Tray/2000 

(IDEXX, USA) and sealed with a Quanti-Tray® Sealer Model 2X (IDEXX, USA).  The trays were 

incubated at 37°C for 18 h.  After the 18 h incubation period, total coliforms were determined by 

counting the wells that showed a yellow colour.  The presence of E. coli was determined by 

counting the wells that fluoresced under ultra violet light (365 nm) (Spectroline® Model CM-10 

Fluorescence Analysis Cabinet).  The positive counts for both total coliforms and E. coli were used 

to determine the corresponding loads by using an IDEXX Quanti-Tray®/2000 most probable 

number (MPN) table (IDEXX, USA; SANS, 2012).  Microbial counts were expressed as MPN.100 

mL-1.   
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Results and Discussion 
The performance of the UASB reactor was monitored, by assessing different operational 

parameters of the substrate and the UASB effluent during the trial period.  Different Phases (A - D) 

were used to increase the organic loading rate (OLR) to ca. 8.5 kgCOD.m-3d-1 (day 205).   

 

Phase A (Day 0 – 100) 

Phase A involved the start-up and stabilisation of the reactor over a 100 day trial period.  The aim 

was to reach and maintain an OLR of ca. 4.1kgCOD.m-3d-1 while the reactor effluent generated in 

this phase was also used as a moisturising liquid for compost from Experimental Study 3 (Chapter 

3 of this thesis).  The operational efficiency parameters that were monitored are shown in Table 

4.1.  The substrate COD was increased stepwise from day 0 to day 100 from ca. 1 000 – 4 100 

mg.L-1 and OLR 1.0 - 4.1kgCOD.m-3d-1.  The substrate consisted of WWW and SGS, diluted with 

tap water to the desired COD.  As the pH and COD reduction of the system increased, the SGS 

was systematically reduced in 10% (v.v-1) increments and replaced with WWW until the reactor 

influent consisted of only WWW.   

 

Table 4.1  Operational parameter ranges for the UASB reactor during Phase A of the treatment 

of WWW  

Parameter Day 0 – 100 

Alkalinity (mgCaCO3.L-1) 150 – 1 625 

COD of substrate (mg.L-1) 1 000 – 4 100 

COD reduction (%) 32 – 87 

OLR (kgCOD.m-3d-1) 1.0 – 4.1 

Biogas (L.d-1) 0.54 – 4.59 

Substrate pH 7.0 – 7.5 

Effluent pH 6.7 – 7.5 

TSS (g.L-1) 0.230 - 0.305 

VSS (g.L-1) 0.115 - 0.190 

 

Initially, the reactor effluent pH was below (pH 6.6; Table 4.1) the recommended level  

(6.8 – 7.2) (Anderson et al., 2003; Gerardi, 2003, Ward et al., 2008) for optimum AD.  In order to 

increase the pH of the system, the pH of the substrate was increased to 7.5 (Table 4.1).  After the 

pH of the system had a pH between 7.0 – 7.10, the substrate pH was again lowered to pH 7.0.  

Thereafter the reactor pH remained stable between 7.3 – 7.5 until the end of Phase A (day 100).   

The alkalinity of the system at the start (< 1 000 mgCaCO3.L-1) was lower than the 

recommended range (1 500 – 3 000 CaCO3 mg.L-1) (Anderson et al., 2003; Gerardi, 2003.  The 

alkalinity was found to increase to ca. 1 625 mgCaCO3.L-1 by day 100 (Table 4.1).  The COD 

reduction and biogas production was initially very low but steadily increased to reach ca. 87% and 

4.59 L.d-1, respectively (Table 4.1).   
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Phase B (Day 101 – 142) 

The purpose of Phase B was to maintain the desired substrate COD (± 4200 mg.L-1) as found 

during the harvest season of 2013 and to ensure that the reactor was at a stable state before the 

co-treatment with leachate was started.  Stable state is defined as a state which can be sustained 

indefinitely without reactor system failure, with a variation in reactor performance of < 10% (Cobb & 

Hill, 1990).   

The substrate COD was kept constant between 4 000 and 4 300 mg.L-1 until day 144 (Fig. 

4.2).  The small variation in COD levels was ascribed to the characteristics of WWW which are 

known to differ in terms of the type of wine produced and the specific management practices 

(Vlyssides et al., 2005).  An increase in COD reduction was seen from day 101 until day 116, after 

which a decrease in COD reduction (%) was observed that was ascribed to the increase in 

substrate COD (Fig. 4.2).  From day 121 until day 132 a stable COD reduction was seen  

(92 - 93%), after which a slight increase in COD reduction was found until the end of Phase B, 

where COD reduction was 96%.   

The pH of the reactor effluent increased from day 108 to day 118 (Fig. 4.3) and while it was 

higher than the recommended pH value for methanogens (Anderson et al., 2003) it decreased after 

day 120 to between pH 7.0 – 7.5.  Due to a drop in alkalinity (< 2 000 CaCO3 mg.L-1) by day 128 

(Fig. 4.3) the pH of the substrate was increased that led to a gradual increase in the effluent pH 

until day 140 after which the effluent pH decreased again to 7.3.  Although the alkalinity content 

varied during Phase B (Fig. 4.3), it was within the recommended value of 1 500 – 3 000 CaCO3 

mg.L-1 (Gerardi, 2003).  Adequate alkalinity (buffer capacity) is required in any AD system to 

sustain a stable pH and optimal biological activity (Lee et al., 2009).  Determination of the buffer 

capacity is a more reliable method of measuring imbalance in the digester, because an 

accumulation of fatty acids will lower the buffer capacity before decreasing the pH (Ward et al., 

2008).  This statement agrees with results obtained during this study as the alkalinity and pH 

decreased and increased (Fig. 4.3) concurrently.  Due to the fact that significant variations in 

alkalinity and pH can be introduced into a reactor by the substrate feed (Gerardi, 2003), a possible 

explanation for the fluctuation in alkalinity as seen in Figure 4.3 could be due to the variation in 

chemical composition of the winery wastewater.   

Biogas production was initially low (4.9 L.d-1) (Fig. 4.4), possibly due to a rapid increase in 

the OLR, but increased to ca. 8.3 L.d-1 towards the end of Phase B.  The methane (%) varied 

between 63 – 70% during Phase B (Fig. 4.4).  Biogas can consist of various gasses (CH4, CO2, 

CO, H2, H2S, NH3, N2, N2O) (Gerardi, 2003) but methane (60 - 65%) and carbon dioxide (35 - 40%) 

are the major ones (Fillaudeau et al., 2008).  An increase above 30% in the CO2 concentration 

could possibly indicate reactor instability as an increase in the CO2 concentration is associated with  
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Figure 4.2  Substrate COD, effluent COD and COD reduction of the UASB reactor co-treating WWW and composting leachate. 
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Figure 4.3  Substrate pH, effluent pH and alkalinity of the UASB reactor co-treating WWW and composting leachate.   
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Figure 4.4  Biogas volume and methane percentage of the UASB reactor co-treating WWW and composting leachate.   
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a change in the type of methanogens (i.e. activity) (Gerardi, 2003; De Lemos Chernicharo, 2007).  

As the biogas and methane generation stayed fairly stable during Phase B (Fig. 4.4), as well as the 

COD reduction and effluent pH it was concluded that the reactor was in a stable phase and ready 

to start the co-treatment.   

 

Phase C (Day 143 – 180) 

After the amount of leachate to be co-treated was calculated, the COD of the substrate was 

increased gradually from ca. 4 300 – 6 700 mg.L-1 (day 146 - 180) corresponding to an OLR of  

4.3 – 6.7kgCOD.m-3d-1 (Fig. 4.2).  An overall COD reduction > 90% was maintained during Phase 

C (Fig. 4.2).  Although the effluent pH was fairly stable between pH 7.5 and pH 8.0, the value is 

higher than the recommended value for optimum anaerobic digestion.   

Due to the fact that the COD reduction stayed constant although the COD concentration of 

the substrate increased (Fig. 4.2), it was expected to also see an increase in biogas production.  

This, however, was not the case as an initial decrease in both the biogas production (to ca.  

5.0 L.d-1) and methane content (60 - 63%) was seen after the co-treatment started (Fig. 4.4).  This 

could probably be attributed to the introduction of a new waste stream that could have influenced 

the activity of the microbial consortium responsible for generating biogas or due to CO2 being 

converted to bicarbonates (Gerardi, 2003) and thus alkalinity.  Although it was expected that the 

introduction of a new waste stream would result in an increase in the VFA’s, the effluent pH and 

COD reduction remained fairly stable (Fig. 4.2, Fig. 4.3).  This can possibly be ascribed to the 

alkalinity, formed by the additional CO2 production that was utilised to buffer the increased amount 

of VFA’s and, therefore not resulting in changes in the total alkalinity.  As higher leachate volumes 

in the substrate were maintained the consortium of methanogens started to adapt and degrade the 

VFA’s, resulting in an increase in biogas content as seen from day 153 (ca. 6.8 L.d-1), after which it 

remained stable until day 169.  Another increase in biogas volume was seen around day 170, to 

ca. 7.6 L.d-1, after which it remained stable at this level until the end of Phase C.  From day 162 the 

methane content remained within the recommended range of 65 – 70% (Jönsson et al., 2003, Rasi 

et al., 2007) until the end of Phase C (Fig. 4.4).   

Phase C showed that the maximum volume of leachate to be co-treated could be attained 

in 40 days of co-treatment starting, while COD reductions in excess of 90% were achieved, pH of 

the effluent remained above 7.2 and alkalinity varied between 1 370 – 3 800 CaCO3 mg.L-1.  

Having achieved stable COD reductions at the desired co-treatment substrate COD of ca.  

6 700 mg.L-1, it was decided to increase the volume of co-treated leachate to ca. double its 

volume, simulating a “shock loading” scenario.   

 

Phase D (Day 181 – 205) 

During Phase D the COD and OLR was thus rapidly increased to ca. 8 500 mg.L-1 and  

8.5 kgCOD.m-3d-1 (Fig. 4.2).  A COD reduction > 90% was maintained during this phase with an 
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effluent COD lower than 1 000 mg.L-1 (Fig. 4.2).  An initial drop below a pH of 7.5 was seen by day 

181 (Fig. 4.3), after which it stabilised to a pH between 7.5 and 8.0 after day 192.  The drop in pH 

can probably be ascribed to the rapid increase in COD concentration at the start of Phase D (day 

181) (Fig. 4.2).  The alkalinity during this phase was found to vary between 2 400 – 4 500 CaCO3 

mg.L-1 (Fig. 4.3).  These values are higher than recommended by Gerardi (2003) (1 500 – 3 000  

CaCO3 mg.L-1) and Anderson et al. (2003) (2 000 – 3 000 CaCO3 mg.L-1) (Fig. 4.3) for optimal 

anaerobic digestion.  A similar trend in terms of alkalinity content and biogas volumes as found 

during Phase C were seen during Phase D as the results obtained, showed that biogas volumes 

initially decreased and then increased, whereas alkalinity increased and then stabilised.   

Although the substrate COD concentration doubled to 8 500 mg.L-1 during Phase D the 

biogas volumes remained mostly in a stable range (ca. 7.0 – 8.0 L.d-1) (Fig. 4.4).  A possible 

explanation for not achieving a higher biogas production during Phase D is probably due to 

population changes within the consortium as a result of the rapid addition of a higher COD waste 

stream.  Methanogen populations often have doubling times of several days (Zinder, 1993) and 

Phase D (24 days) could have possibly been too short for the methanogens to adapt and produce 

more methane.  This would explain the fact that biogas volumes did not increase substantially, 

although alkalinity and COD reduction remained stable.  The decrease in the initial alkalinity 

content as seen on day 192 was probably due to the system utilising it to buffer the increased 

amount of VFA’s generated as increased volumes of leachate were added to the substrate.  As the 

alkalinity decreased, the CO2 formed during the degradation of the VFA’s probably resulted in the 

slight increase of biogas volume as seen from day 190, which stabilised to ca. 8.1 L.d-1 until the 

end of Phase D (Fig. 4.4).  Another possibility for the overall increase in alkalinity during Phase D 

could be due to the addition of increased amounts of leachate as obtained from the anaerobic 

composting of grape skins during Chapter 3 (Experimental Study 7, day 1) of this study, which had 

a high alkalinity.   

In conclusion, during Phase D it was found that the reactor continued to operate optimally 

even after the amount of leachate to be co-treated was doubled with a final COD reduction 

> 90%, effluent pH = 7.61, an alkalinity of 3 281 CaCO3 mg.L-1 and a methane content of 67%.  As 

the COD reduction remained constant (> 90%), the biogas volumes produced where lower than 

expected and the alkalinity content was within the recommended range, the excess carbon was 

probably utilised to form biomass (sludge bed height increased from ca. 32.5 - 64 cm) or unutilised 

carbon sources such as lignin and cellulose.   

 

Effluent quality 

The final COD concentration (< 1 000 mg.L-1) and pH (7.61) of the reactor effluent was within the 

regulatory limit for wastewater if land irrigation (< 50 m3) is the intended end use (Republic of 

South Africa, 2004) but advanced treatments are often necessary to reduce or remove nitrogen, 

phosphorous and suspended solids in order to meet specific regulations (Srinivasan, 2008).  
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Therefore, further analyses of the reactor effluent would be necessary to identify if it complies with 

all regulations regarding disposal by means of land irrigation.   

The E. coli loads of the reactor effluent were found to be 3 870 × 102 MPN.100 mL-1.  This 

value is higher than the recommended value for faecal coliforms (E. coli) (< 100 000 per 100 mL) if 

land disposal is the intended end use for volumes of up to 50 m3.d-1 (Republic of South Africa, 

2004).   

 

Conclusion 
The generation of wastewater is a characteristic part of wine production, and thus it is necessary to 

minimise the volumes produced.  In order to prevent ecological pollution, this wastewater 

(WWW) must be treated efficiently.  This study showed that the co-digestion of winery 

wastewater with leachate from the anaerobic composting of grape skins was treated successfully, 

in an UASB reactor at OLR of 8.5 kgCOD.m-3d-1 with biogas volumes and methane content (%) of 

ca. 7.0 – 8.0 L.d-1, and 65 - 71%, respectively.  The final COD concentration of the reactor effluent 

was within the regulatory limit (< 5 000 mg.L-1), but the faecal coliform (E. coli) levels were too 

high, which makes the reactor effluent unsuitable for land application (irrigation) (Republic of 

South Africa, 2004).   

The feasibility of co-treating liquid waste (WWW) from wine production and liquid waste 

(leachate) from the AnC of grape skins in a lab-scale UASB reactor was shown.  It is necessary 

that in order to provide a more economically viable solution for wineries, especially during peak 

harvest season, the up-scaling of this process needs to be investigated.  It is also recommended 

that longer trial periods must be evaluated to determine the full potential of biogas generation 

during the co-treatment of composting leachate and WWW so that the consortium can acclimatise 

better to the additional waste stream that could possibly favour higher methane production.   
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CHAPTER 5 
 

GENERAL DISCUSSION AND CONCLUSIONS  
 

South Africa is a developing country that relies heavily on agricultural activities as a main source of 

overall economic growth (Anon., 2009).  The production of wine is such an activity with an 

estimated 915.5 million litres produced in 2013 (SAWIS, 2014).  The South African wine industry 

surpassed its export record, with approximate volumes of 527.7 million litres, a 26% increase from 

2012 to 2013 (Anon., 2014).  Increases in wine production not only places immense pressure on 

the usage of natural resources such as water, soil and vegetation but also on the wine industry 

itself, to comply with legal environmental requirements whilst upholding a competitive place in the 

international market (Oliveira & Duarte, 2010).  More than 95% of South African wineries dispose 

of winery effluent by means of irrigation (Van Schoor, 2005) which could have severe 

environmental and health risks if disposed of in an uncontrolled and untreated manner.  Solid 

grape waste (grape pomace), directly disposed onto land is a common practice, which results in 

ecological problems.  Liquid and solid waste generated by winemaking needs to be treated in an 

appropriate manner to create sustainable water and waste utilisation practices within the wine 

industry.  Anaerobic digestion (AD) is a proven biotechnology for the treatment of liquid, solid and 

semi-solid carbon-based wastes (Marín et al., 1999).  AD offers advantages over other (aerobic) 

biotechnologies, mostly in terms of energy and environmental aspects (Moletta, 2005).  A major 

drawback of AD is the uneven nutritional content in the waste substrate (Khalid et al., 2011) that 

can only be overcome by applying a co-treatment to supply the missing nutrients and optimise the 

substrate composition (Mata-Alvarez et al., 2000; Pagés-Díaz et al., 2014).   

 The objective of this study was to investigate the operational feasibility of the co-treatment 

of leachate produced during the anaerobic composting of grape skins in an upflow anaerobic 

sludge blanket (UASB) reactor, while treating winery wastewater.  The first aim was to investigate 

the efficiency of the anaerobic composting of grape skins.  This was accomplished by the set-up 

and optimisation of the composting system, evaluating the quantity and the quality of the final 

compost and investigating a possible treatment option for the composting leachate.  The data 

obtained showed that the control of the inoculum composition, inoculum size, the pH as well as 

moisture content was of significant importance to produce a quality end-product.  Since it was 

essential to control the pH, the most suitable method was investigated so as to increase and 

control the pH of the digesters.  This was accomplished by adding pH adapted UASB effluent 

every 24 h, whilst removing the leachate produced during the digestion process to avoid 

acidification of the system.  When using UASB effluent with a low alkalinity (obtained during the 

start-up phase), the composting system pH failed to reach a pH > 6.5 even over 21 days.  It was 

therefore of importance that the inherent alkalinity of the reactor effluent that was used as 

moisturising liquid was high (3 500 mg.L-1).  This also played a significant role in buffering the 
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volatile fatty acids (VFA) formed during the initial stages of composting.  Preliminary experimental 

studies also showed that grape skins cannot be composted alone due to their high carbon content 

and low pH.  Thus, green waste (as source of nitrogen) and calcium oxide (CaO) were added and 

allowed to soak overnight at 37°C.  The pH after the CaO soaking showed that is was necessary to 

only add the inoculum after the CaO soaking.  The reason for this is that the lime solution probably 

was an unfavourable environment for the organisms.  During preliminary experimental studies, it 

was also found that the waste needed to be shredded to speed up the composting process and to 

reach a final product by 21 days.  The inoculum size and composition were found to be important 

during the digestion of the solid waste as they are directly responsible for the degradation.  A 10% 

(m.m-1) anaerobic compost inoculum was found to give the best compost, especially in terms of a 

pH stable and odour free compost.  Using the lowest possible AC inoculum, results in more grape 

waste to be treated over time allowing the process to be more feasible.  This study showed that AC 

as an inoculum also led to a more rapid attainment of pH > 6.5, which could possibly lead to a 

more pH stable end product as microbes responsible for the degradation of the waste, have 

previously adapted to the anaerobic conditions.  Over the 21 day study period, colour changes 

were observed for both the grape skins (red-purple to brownish-green) and the composting 

leachate (dark green to yellow).  By the end of the 21 day study the grape skins also changed into 

a uniform soil-like texture, with little recognisable grape skin pieces.  A general trend was seen for 

all experimental studies, as the leachate pH increased and leachate volume decreased throughout 

the 21 day study period.  The leachate produced by the AnC of grape skins could be utilised as a 

liquid fertiliser or as a co-substrate during anaerobic digestion of winery wastewater.  The 

generation of leachate was not only of significant importance in monitoring the digesting content, 

but also gave an indication of the activity within the digesters, as it appeared that digesters 

generating higher volumes of leachate produced composts with a higher end pH and a larger mass 

reduction.   

The UASB reactor used during the co-treatment of winery wastewater and composting 

leachate had a double advantage: (i) the reactor effluent was used to wet the system, therefore 

eliminating the need to utilise clean tap water; and (ii) to increase and control the pH of the 

digesting units to better facilitate the composting process when effluent was re-added to the 

system.  An additional benefit of using UASB reactor effluent as a moisturising liquid is the 

continuous addition of fresh and active micro-organisms to the digesting units.   

With all the optimum operational parameters in place: 6 g CaO; 50% (m.m-1) water; 20% 

(m.m-1) green waste; white and red grape skins in an equal ratio (50:50) (150 g each); and 15% 

(m.m-1) cow manure inoculum, a good, stable compost was produced.  In order to create a method 

to produce a stable compost in only 21 days the optimum factors as found during the lab-scale 

experimental studies were up-scaled (1:10) (total mass of 5 550 g).  Physico-chemical analysis of 

both the lab-scale and up-scale products showed favourable results that complied with guidelines 
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(pH, ash, N%, K%, P%, Ca%, Mg%, Na%, Cu%, Fe%, Zn%, B%, EC) obtained from a local South 

African composting company.   

 The second aim of the study was to investigate the combined anaerobic digestion of winery 

wastewater and leachate from the composting process.  This was achieved by using a lab-scale 

UASB reactor (2.3 L).  The final COD reduction (> 90%), effluent pH (7.61), alkalinity (3 281 

CaCO3 mg.L-1) and methane content (67%) were obtained even when the volume of co-treated 

leachate was doubled to simulate a “shock loading” scenario as may be expected during peak 

harvest season for large wineries.  By introducing this additional waste stream (leachate) to the 

UASB reactor, the volatile fatty acids formed during the initial composting stages were removed 

and carried over into the stable UASB reactor to be converted into biogas.  This prevented 

instability and composting failure in the anaerobic digester while treating an additional waste 

product without any pre-treatment in an lab-scale UASB reactor.  Microbial analyses (E. coli) from 

the compost were within standard guidelines (< 1 000 MPN.g-1).  In contrast the E. coli levels for 

the leachate and the subsequent UASB effluent, were too high (3 870 × 102 MPN.100 mL-1), 

indicating that it is unsuitable for land disposal (irrigation) for volumes of up to 50 m3.d-1 (Republic 

of South Africa, 2004).  It was concluded from the data obtained during this study, that when an 

UASB reactor and anaerobic composting digesters are operated together, more than one waste 

stream can be treated successfully that could possibly contribute to a more sustainable wine 

industry. 

 

Concluding remarks 
This study provides a possible solution for wineries to simultaneously treat liquid waste from wine 

production as well as the leachate obtained during anaerobic composting of grape skins.   

 Although this study showed that the AnC of grape skins on lab-scale is a possible solution 

in terms of solid waste recycling, when the AnC of grape skins on an industrial scale is considered 

various parameters (CaO addition, shredding waste, leachate removal, temperature control) would 

need to be investigated in order to create an economically viable process.  Due to the fact that 

biogas values obtained during the anaerobic composting of grape skins were found to be low or 

even absent for both the lab-scale and up-scale digesters the co-digestion of grape skins with a 

carbohydrate rich waste such as green kitchen waste should be investigated.  This could possibly 

provide nutrients to facilitate the generation of increased biogas and methane.   

To better characterise the stability and maturity of the end-product, the germination index 

(based on the germination seed) and SOLVITA® (commercial maturity test based on CO2 and 

NH3) test could be evaluated to compare these results with general recommended physico-

chemical characteristics.  With increased environmental awareness, stricter legislation for waste 

disposal is increasing and new solutions need to be considered to develop a sustainable wine 

industry.  This study showed the feasibility of co-treating winery wastewater and composting 

leachate in a lab-scale UASB reactor.  It is recommended that longer trial periods should be 
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evaluated to investigate the full potential of biogas generated during the co-treatment process so 

that the microbial consortium can adapt to the additional waste stream, possibly allowing more 

methane gas to be produced.  It is also recommended to further analyse the reactor effluent to 

identify possible post-treatment options to reduce the microbial counts of reactor effluent after co-

treatment.  Future research should include a complete study on industrial scale to determine the 

actual feasibility of the process.   
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